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Abstract 

 

A novel particle lithography technique with the ability to pattern protein in hexagonal 

dot arrays was developed. The patterning method consists of a simple three-step 

procedure:  (1) formation of a close-packed polystyrene microsphere monolayer, (2) 

grafting of a protein-resistant layer of poly(ethylene glycol) (PEG), and (3) selective 

adsorption of protein into the resulting PEG holes. The diameter and center-to-center 

spacing of the patterned features was varied simultaneously by changing the diameter of 

the spheres used in the lithographic mask or independently using a simple heating 

modification. A combination of the original and modified procedures was used to 

produce patterns of protein dots with diameters of 450 nm – 9 µm and center-to-center 

spacings of 2 – 10 µm. To demonstrate the applicability of the particle lithography 

technique, a fluorescent-based immunoassay was created using quantum dot 

bioconjugates (QDBCs). The millions of protein dot features per patterned substrate 

served as redundant sampling points that produced a subpicomolar detection limit. 

Finally, the QDBC patterns were also used to investigate the differences between 

neutrophil spreading on patterned and homogenously coated anti-PSGL-1 (PL1) 

surfaces.   
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Chapter 1:  Introduction 

 

Why is Protein Patterning Important?  

Many cellular processes are affected by the spatial arrangement of proteins including 

life cycle events (growth, differentiation, proliferation, and apoptosis);[1-8] movement 

(migration and chemotaxis);[9-15] protein synthesis;[7,16,17] respiration;[18] immunological 

response (antigen recognition and synapse formation);[19-25] and adhesion (capture, 

alignment, rolling, confinement, and spreading).[10,26-32] In addition, several biosensor[33-

43] and cell culture[44-49] platforms rely on the organization of proteins into distinct 

regions. In order to further elucidate the relationship between cellular functions and 

protein spatial presentation and to produce new biological technologies, reliable 

methods of patterning protein in discrete domains are needed. 

 

Purpose and Motivation 

The primary objective of our work was to design a protein-patterning technique with the 

versatility to be used in a wide array of applications, including the investigation of 

cellular phenomena and the development of advanced technologies, like those listed 

above. While broad applicability was a major design consideration for our patterning 

process, we chose to demonstrate the use our protein-patterned substrates by studying 

the effects of ligand clustering on neutrophil adhesion.  

 

Although the effects of protein spatial arrangement have been reported for other 

immunological cell types (e.g. lymphocytes),[14,15,19-21,23-25,40-43,50,51] relatively few 
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studies have been published detailing the response of neutrophils or neutrophil mimics 

to protein-patterned surfaces.[29,52,53] Consequently, there are several important 

physiological processes involving neutrophils that remain to be investigated. For 

example, as part of the inflammatory response, neutrophils transiently adhere to 

activated endothelial cells expressing the adhesion molecule P-selectin.[54] The rapid 

formation and breakage of bonds between P-selectin glycoprotein ligand-1 (PSGL-1) 

constitutively expressed on neutrophils and endothelial P-selectin causes neutrophils to 

roll before firmly adhering to the endothelium.[55] Activated endothelial cells express P-

selectin in a punctated fashion in structures called clathrin-coated pits that have lateral 

dimensions on the order of tens of nanometers to several hundred nanometers.[56-58] 

Protein-patterned substrates can be used experimentally to mimic activated endothelial 

cells and to determine the relationship between P-selectin feature dimensions (e.g. patch 

size and spacing) and neutrophil rolling behavior (e.g. velocity and fluidity). 

 

The applications of protein-patterned substrates, such as neutrophil-rolling experiments, 

provided the motivation for our patterning-process design criteria. We identified several 

characteristics of an ideal patterning technique including: 

 

 Capability to pattern protein in both nanometer- (e.g. single proteins, clathrin 

coated pits) and micrometer-scale (e.g. full-cell size) domains of any desired 

shape. 

 Flexibility to vary feature spacing and geometry to control the number of 

features with which cells can interact simultaneously. 
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 Ability to pattern multiple proteins on a single substrate. 

 Biomolecule-friendly processing to preserve protein conformation and 

activity and to produce the correct protein orientation. 

 High throughput production of both individual features and whole substrates. 

 Low cost, simple equipment and methods to maximize accessibility in the 

scientific community. 

 

Protein Patterning Techniques 

With these criteria in mind, we considered the numerous methods that have been 

utilized to pattern protein on the micro- and nanometer scales to identify a starting point 

to develop our patterning procedure. Each technique has an associated cost, throughput, 

availability, resolution, and set of available feature geometries. For comparison, the 

basic characteristics of the most common techniques with at least sub-micron resolution 

are qualitatively summarized in Table 1.1.  A more thorough discussion of the basic 

protocols, advantages, and disadvantages of each technique is also provided. 

 

Microcontact Printing (µCP) (Figure 1.1) is a “soft lithography” technique that utilizes a 

stamp to transfer protein to surfaces.[59] To create protein patterns, a silicon master is 

first produced using a lithographic technique,[7,60,61] micromachining,[62] or a variety of 

less conventional methods.[63] Next, an elastomeric stamp, most commonly made from 

poly(dimethylsiloxane) (PDMS), is produced by pouring a pre-polymer and a curing 

agent over the master and allowing it to solidify. The stamp is then removed from the 

master, inked with the desired protein or chemical solution, and stamped onto the 

surface to be patterned. After the stamp is removed, the area of the substrate not  
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Table 1.1:  Methods Used to Pattern Proteina 

Technique  Resolution  Throughput Expense 
Available 

Geometries

Microcontact Printing (µCP)  50 nm  +++*  $$*  ++ 

Nanoimprint Lithography (NIL)  <10 nm  +++*  $$*  ++ 

Photolithography  100 nm  ++-+++  $$-$$$$  ++ 

Electron-Beam Lithography (EBL)  <10 nm  +  $$$  +++ 

Scanning Probe Lithography (SPL)  10 nm  +  $$  +++ 

Block Copolymer Lithographic 
Techniques (BCL / BCML) 

<10 nm  +++  $  + 

Particle Lithography  30 nm  +++  $  + 

a The most well-characterized techniques with at least sub-micron resolution 
* Requires mask fabrication by another lithographic method 
 

 

Figure 1.1:  Microcontact Printing (µCP) Schematic. 
 

exposed to the stamp can be backfilled with a different protein[64] or a protein-repellant 

species.[65] 

 

Once formed, both the µCP pattern master and the stamps produced with it can typically 

be reused. This quality, combined with the straightforward procedure for making the 

stamps, makes µCP relatively inexpensive and simple to perform. The technique also 

has a nanometer-scale resolution limit and is versatile in the types of patterns it can 

produce. To date, microcontact printing has been used to pattern protein features as 
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small as approximately 50 nm with a high degree of reproducibility.[66,67] Using 

multiple stamps[64] or staggered features on one stamp,[60] multiple proteins can be 

patterned on a single substrate. Finally, numerous µCP patterning geometries are 

available and are restricted only by the limitations of the technique used to produce the 

master and by the properties of the elastomer used for the stamp.  

 

Although µCP has many advantages, there are also drawbacks to the technique. While 

the creation of stamps from a master and the stamping process itself is relatively simple, 

the fabrication of the master often requires processes that are more advanced and more 

expensive. This issue is compounded by the fact that a new master is required whenever 

a new pattern geometry is desired. In addition to the difficulty and expense of producing 

masters, the elastomer stamps are subject to deformation that can lead to changes in 

feature sizes (although this is sometimes useful)[68] or structural failure of stamp 

features.[69-71] Finally, when a protein solution is used as the stamp “ink,” the transferred 

protein can lose activity and specificity and cover the surface less densely and less 

homogeneously than protein adsorbed from solution.[72,73] Regardless of the ink used, 

µCP transfers contaminants, such as silicone oligomers, from the stamp to the patterned 

surface, which can affect the functionality of the final patterns.[73,74] 

 

Nanoimprint Lithography (NIL) is a derivative of µCP that uses rigid masters instead 

of elastomeric stamps to transfer patterns to substrates. In NIL (Figure 1.2), a pattern 

master is pressed onto a polymer-coated substrate heated above the glass transition 

temperature of the polymer. After the substrate is allowed to cool, the master is 
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removed to reveal the imprinted design. The design features then serve as a lithographic 

mask or mold to pattern protein,[75] protein adherent molecules,[76-79] or protein repellant 

molecules.[77,80-82] 

 

 

Figure 1.2:  Nanoimprint Lithography (NIL) Schematic. 
 

Due to its similarity to µCP, NIL has roughly the same advantages and disadvantages 

but with a few notable differences. At just several nanometers, the resolution limit of 

NIL is an order of magnitude lower than µCP and allows for single protein molecule 

patterning.[79,83] Also, NIL masters are rigid, so they are not subject to the same failure 

events as µCP stamps, but it is more difficult to maintain conformal contact during 

pattern transfer.[84] Since NIL masters are not inked directly and are made from 

materials (e. g. silicon) that do not leach impurities, the risk of contaminating a surface 

during printing is eliminated. As in µCP, a new master is needed for each desired 

pattern geometry. Since NIL masters include smaller features than µCP masters, the 

techniques used to fabricate them are typically more advanced and thus may require 

more expensive and specialized processing. 
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Photolithography exploits the light-sensitive properties of chemicals called resists to 

transfer patterns from a mask to a surface (Figure 1.3). In conventional 

photolithography, a homogeneous layer of a photoresist is formed on a substrate, often 

by spin-coating, that may be pre-coated with a protein adherent or repellant 

species.[48,85-87] Next, a photomask is used to selectively expose areas of the resist to 

light. Depending on the resist used, the exposed areas will degrade and become more 

soluble (positive photolithography) to a developer or will polymerize and become less 

soluble (negative photolithography). When the resist is subsequently exposed to the 

developer, the soluble regions of the resist will dissolve and reveal the pattern 

transferred from the photomask. This pattern can be used to selectively adsorb or graft 

protein,[88,89] a protein adherent layer,[38,48,90] or a protein repellant layer[8,17,91] to the 

underlying surface. Finally, the remaining resist is removed, and the newly exposed 

areas can be left unaltered or backfilled with protein,[87] a protein adherent species,[8,17] 

or a protein repellant species.[92,93] 

 

 
Figure 1.3:  Photolithography Schematic (Positive Resist Shown). 
 

Traditionally, the resolution limit of photolithography has been defined by the Rayleigh 

limit, which, for practical purposes, is often estimated as half the wavelength of the 

light source.[94] Thus, for a UV light source, the resolution limit would be on the order 

of hundreds of nanometers, and that size scale has been achieved in protein 
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patterning.[95] Recently, advanced techniques such as scanning near-field 

photolithography have been used to produce feature sizes on the order of tens of 

nanometers in electronic circuits and approximately 100 nanometers in protein 

patterns.[94,96,97] As these technologies become better developed, it is likely they will be 

further extended to protein patterning applications. 

 

In addition to a sub-micron resolution limit, other advantages of photolithography 

include the ability to pattern complicated geometries and the ability to pattern multiple 

proteins on a single substrate.[20,86,88,98,99] The geometries available for patterning are 

limited only by the previously discussed resolution limit, the time and expense of 

fabricating or purchasing photomasks, and the cost of the lithographic system. It is 

possible to reduce or eliminate the cost of photomasks by using “maskless” techniques 

that utilize moving mirrors[100] or microscope components[86,88] to direct light. 

Additional reductions in cost and processing times can be achieved by using 

photoreactive chemicals that are components of the desired end-product in place of 

resists that must be removed.[5,86,88,95,97,98,100,101]  

 

Unfortunately, even with cost-saving modifications, the price of the specialized 

equipment necessary for photolithography can be prohibitive. These expenses increase 

substantially as the resolution limit of the photolithographic system decreases with the 

most advanced commercial systems costing tens of millions of dollars.[96] Furthermore, 

to ensure even application of photoresist during spin-coating, photolithography must be 

performed in dust free cleanroom facilities that add additional costs to the process.[102] 
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In addition to high cost, patterns produced by photolithography must be exposed 

serially, which can contribute to long processing times. This restriction can be partially 

overcome by the use of automated systems but not without additional specialized, 

expensive equipment. 

 

Electron-Beam Lithography (EBL) (Figure 1.4) is similar to photolithography in that 

designs can be created in a resist that is later removed[103-105] or generated directly in an  

 

 
Figure 1.4:  Electron-Beam Lithography (EBL) Schematic. 
 

electron-sensitive compound that is a desired component of the final protein pattern.[106-

116] However, there are two important differences between EBL and photolithography. 

First, EBL utilizes an electron beam instead of a light source. Electrons have a 

wavelength approximately 100,000 times smaller than that of light, so EBL is not a 

diffraction limited technique. Instead, the minimum feature size achievable with EBL is 

determined by the size of resist molecules and secondary electron interactions, which 

produce a resolution limit on the order of a few nanometers.[117,118] The second 

significant difference is that an electron beam is constantly repositioned to create 

patterns in EBL instead of features being transferred via a photomask. Since EBL is a 

maskless technique, nanometer-scale structures can be created in virtually any 

geometry, and the patterns can be altered by simply changing software inputs. 
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The primary disadvantages of EBL are the need for expensive equipment that requires 

specialized training and low sample throughput due to serial processing. Furthermore, 

the nature of electron beam instruments restricts the types of materials that can be 

patterned by EBL. In order to prevent charging, substrates must either be intrinsically 

conductive or treated with a conductive material. For this reason, most EBL protein 

patterns have been created on silicon even though other materials, such as transparent 

glass, are more convenient for laboratory applications. Thin layers of gold[116] and 

indium tin oxide[119] have been deposited on glass to eliminate charging during EBL but 

at the cost of additional processing time and equipment. Finally, the high-vacuum 

environment necessary for EBL can denature proteins, which restricts the serial 

patterning of multiple proteins on a single surface.[117] Protocols have been developed to 

overcome this limitation, but only for proteins whose functionality is not altered by 

drying[112] or that selectively adhere to specific chemical moieties.[120] 

 

Scanning Probe Lithography (SPL) encompasses multiple techniques that utilize 

atomic force microscope (AFM) tips to pattern proteins on the micro- and nanometer 

scales. In SPL, a cantilever with a sharp tip (radius of curvature on the order of a few 

nanometers) is positioned close enough to a surface that an “ink” can be transferred 

from the tip to the surface or that the tip can deform the surface. By manipulating the 

characteristics of the sample surface, the properties of the AFM tip, and the way in 

which the AFM tip interacts with the sample surface, patterns may be formed by 

addition (dip-pen nanolithography [DPN]),[121-127] subtraction (nanoshaving),[128-130] or 
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substitution (nanografting, either physical[131,132] or chemical[133,134]) of protein or 

organic molecules.[117,135,136] 

 

 
Figure 1.5:  Scanning Probe Lithography (SPL) Variations. 
 

SPL techniques have been used to pattern features with dimensions as small as ten 

nanometers, which allows for the immobilization of single proteins.[137,138] Since SPL 

systems are maskless, features can be patterned in any desired geometry so long as they 

are above the resolution limit of the particular instrument. Furthermore, multi-protein 

arrangements can be created by iterative processing or by simply changing inks during 

the writing process.[139-142] 

 

Most SPL setups are also used for AFM imaging and thus contain only a single 

cantilever. Since only a small sample area (approximately 100 µm x 100 µm) can be 

patterned during each cycle with a single cantilever, SPL throughput is limited on 

traditional AFMs.[84] To address this issue, parallel DPN systems have been developed 

with as many as 55,000 cantilevers, but the scheme still has weaknesses.[143] First, the 

cantilevers cannot be controlled individually, so the same design must be produced by 

each tip. In addition, the cantilevers can only contact one sample at a time. 
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Consequently, while the time required to pattern a single substrate is decreased, samples 

must still be processed serially. Finally, the cantilever arrays and the self-leveling 

system necessary to produce uniform contact between the cantilevers and the surface to 

be patterned add extra cost to the already expensive AFM platform.[144] All SPL 

systems, regardless of the number of cantilevers mounted, require specialized training 

to use and constant tip cleaning and/or re-inking to ensure pattern uniformity.[84] 

 

Block Copolymer Lithography (BCL) and Block Copolymer Micelle Lithography 

(BCML) employ copolymer molecules to create nanometer-scale arrays of single-

polymer domains or arrays of micelles, respectively.[145,146] The copolymer molecules 

are formed by covalently linking “blocks” of polymers with varying degrees of polarity 

to create hybrid amphiphilic molecules. These molecules phase-separate when coated 

on a surface (BCL) or above critical concentrations in solution (BCML). In BCL, the 

copolymer molecules form distinct domains of the individual polymer moieties of 

which they are composed. The resulting arrangement can be used, as is, to selectively 

graft protein[147-153] or can serve as a mask for modification of the underlying substrate 

before protein attachment.[154] In BCML, copolymer micelles with metal salt cores are 

formed in solution before they are transferred to the surface to be patterned. The 

copolymer molecules are then chemically removed to form an array of metal particles 

that serve as protein anchoring points.[155-160] 

 

The self-assembly of copolymer molecules in BCL and BCML does not require 

specialized equipment, which makes the techniques two of the most high throughput, 
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Figure 1.6:  Block Copolymer Lithography (BCL) Schematic. 
 

 
Figure 1.7:  Block Copolymer Micelle Lithography (BCML) Schematic. 
 

inexpensive, and technologically simple methods to form nanometer-scale protein 

patterns with down to single protein molecule resolution.[84] The dimensions and shapes 

of BCL structures can be varied to a degree by changing the molecular weight of the 

polymer blocks or the concentration of copolymer in solution.[146,150,151] BCML features 

can be altered through similar modifications and by adjusting the metal salt 

concentration, the water concentration, or the dip-coating speed of the micellar 

solution.[161] 

 

Although the lengths of the copolymer molecules give block copolymer lithographic 

techniques a nanometer-scale resolution limit, they also limit the ability of BCL and 

BCML to produce larger protein-coated features or spacing between features. In order 

to define protein-coated areas measuring greater than approximately 100 nm or with 
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spacing greater than several hundred nanometers, BCL and BCML must be combined 

with more traditional lithographic techniques that decrease the throughput and add 

complexity and expense to the processes.[161] Furthermore, without further lithographic 

treatment, the available pattern geometries are extremely limited. Finally, to date, BCL 

and BCML have not been used to create multi-protein patterns, which further restricts 

the versatility of the techniques. 

 

Particle Lithography utilizes micro- or nanometer-scale spheres as a lithographic mask 

to pattern protein. The basic procedure begins with the deposition of the spherical 

particles, which is typically accomplished by drop-casting,[162-169] dip-coating,[170,171] or 

spin-coating[171-174] a colloidal suspension onto the surface to be patterned. Next, the 

protein,[165,167,171] protein adherent chemical,[168] or protein repellant chemical[162,169,172-

174] that will comprise the background of the pattern is applied to the surface if it was 

not a component of the sphere suspension.[163,164,166] When the spheres are subsequently 

removed, the newly uncovered areas of the substrate can be left bare[163-167,171] or 

covered with a protein[162,169,172-175] or another chemical species.[170] 

 

 
Figure 1.8:  Particle Lithography Schematic. 
 

Regardless of the deposition technique applied, the spheres used in particle lithography 

ultimately self-assemble into close-packed arrangements that can be used as a 
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lithographic mask to create millions of duplicate features simultaneously. As a result, 

particle lithography only requires relatively simple, inexpensive equipment and 

techniques and can be used to create samples in parallel. In addition, particle 

lithography has been used to create features with dimensions as small as tens of 

nanometers.[176-178] 

 

Although particle lithography is a versatile technique to pattern protein, it is not without 

limitations. To date, particle lithography has not been used to pattern multiple proteins 

on the same substrate. Furthermore, the available patterning geometries, including the 

shape, size, spacing, and spatial arrangement of the protein coated areas, are restricted 

by the shape and size of the spherical particles that compose the mask. Consequently, 

particle lithography has only been used to pattern protein in or around circular,[162,164-

166,168-170,172-175,179] triangular,[180] and ring[162,163,166] domains. Other materials have been 

deposited in more complexly shaped regions (e.g. ellipses,[181] crescents,[182] 

hexagons,[183] trapezoids,[184] rods,[176] shuttlecocks,[184] zigzag lines,[184] chains,[177]), but 

these techniques have not yet been extended to protein patterning.  

 

Without mask modification, the spacing and size of protein coated areas are dependent 

on the mask particles’ diameter. To vary these properties independently, heating[179] and 

etching[170,172-175] techniques have been used to enlarge or reduce feature sizes, 

respectively, without affecting feature spacing. Methods have also been developed to 

alter particle spacing without altering particle dimensions (and thus, theoretically, not 
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altering the transferred feature sizes), but they have not yet been applied to protein 

patterning.[185] 

 

Close-packed spherical particles form hexagonal arrays that define the spatial 

orientation of patterned structures. Protocols have been developed to create line,[185-187] 

square,[187] and ring[185-187] arrangements of close-packed particles. In addition, arrays of 

non-close-packed particles with random,[188] square,[185] and hexagonal[185] periodicities 

have been formed. Unfortunately, none of these modifications have been applied to 

protein patterning.  

 

Overview 

A nanometer-scale resolution limit, high throughput, and “bench-top” technology make 

particle lithography an attractive alternative to other protein patterning methods. Thus, 

we chose particle lithography as the basic platform for our protein patterning 

procedures. However, as discussed above, particle lithography has inherent limitations 

that must be resolved to maximize the applicability of the technique. The subsequent 

chapters in this dissertation detail the development of our basic patterning procedure, 

modifications to overcome some of the major drawbacks of the technique, and the 

application of protein patterns produced by particle lithography to cell adhesion 

experiments. Each chapter includes an introduction to provide the relevant background 

information and motivation for the particular study. 
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Chapter 2 introduces our basic particle lithography protein patterning technique. We 

characterized the three steps of our procedure:  lithographic mask formation, passivation 

of the unblocked surface by grafting a protein-repellant layer of poly(ethylene glycol) 

(PEG), and adsorption of protein in the domains protected by the spheres. We 

demonstrate the ability of our technique to create hexagonal protein “dot” patterns with 

sub-micron to micron-sized dimensions that are independent of the protein used. In 

addition, we discuss the importance of removing residual surfactant from substrate 

surfaces in order to obtain uniform features. The patterning protocol presented in this 

chapter was the basis for the remainder of the work in this dissertation. 

 

Chapter 3 describes an extension of our particle lithography technique to pattern 

quantum dot bioconjugates (QDBCs). This variation of our technique allows for the 

patterning of proteins, antibodies, and small biological molecules, such as biotin, in sub-

micron domains. We utilized the relatively-high quantum efficiency and photostability 

of quantum dots relative to traditional fluorophores to construct a sensitive fluorescent 

immunoassay with a sub-picomolar detection limit. Although a slight departure from 

our goal of creating cell adhesion substrates, this study demonstrates the broad 

applicability of our patterning procedure that we achieved. In addition, patterned 

QDBCs allow relatively long-term fluorescent visualization of protein coated areas in 

cell adhesion studies discussed in later chapters. 

 

Chapter 4 discusses a modification of our patterning process to independently-control 

protein-dot diameters and center-to-center distances. By heating the sphere lithographic 
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mask beyond its glass transition temperature, we induced deformation that expanded the 

“footprint” of the spheres in the PEG background. We used both uniform heating to 

create single-diameter protein dot patterns and gradient heating to create a continuum of 

protein dot diameters on a single substrate. This chapter also includes our first 

application of our patterning technique to cell-adhesion experiments. We demonstrated 

the spreading of isolated human neutrophils on anti-PSGL-1 (PL1 antibody) patterned 

surfaces and found that adhesion was limited to PL1-coated areas. 

 

Chapters 5 and 6 examine the results of other preliminary studies, provide suggestions 

for future directions, and present the major conclusions of this dissertation. 

 

Summary of Scientific Contributions 

The major scientific contributions of this work are: 

 The development of a low cost, “bench-top” protein patterning technique 

capable of producing sub-micron features quickly and easily compared to other 

patterning techniques. 

 The extension of the patterning technique to multiple proteins and biomolecule-

conjugated particles (i.e. CdSe quantum dots and nanogold). 

 The modification of the technique with a deformation heating step to change 

protein dot diameters without altering their center-to-center spacing. The heat 

can be applied uniformly to create patterns with dots of a single diameter or as a 

gradient to create a continuous gradient of dot sizes across a sample. 
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 The application of the technique to a proof-of-concept novel fluorescent binding 

assay with a sub-picomolar detection limit. The binding assay could 

theoretically be used for a number of different analytes of interest from various 

biological fluids. 

 The application of the technique to a proof-of-concept neutrophil spreading 

assay. The assay could theoretically be used to study adhesion interactions in a 

wide array of physiologically relevant situations (e.g. different ligands, ligand 

geometries, cell types, flow conditions, etc.). 
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Chapter 2:  Fabrication of Protein Dot Arrays via Particle 

Lithography 
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Introduction 

The fabrication of micro- and nano-scale patterns of proteins has applications in a 

number of fields. In biology, protein patterning has been used to investigate the role of 

protein spatial presentation on cell adhesion,[1] chemotaxis,[2] cell proliferation,[3] and 

cell apoptosis.[4] In the field of biosensors, patterning has been utilized to fabricate 

multianalyte immunosensor arrays,[5] protein microarrays for bacterial detection,[6] 

patterned DNA microarrays,[7,8] and to align neuronal cell growth on microelectronic 

devices.[9] Finally, protein-patterned substrates have been utilized for the growth of 

cardiomyocyte cultures for myocardial repair,[10] the growth of osteoblast cells for bone 

tissue engineered constructs,[11] and for growing co-cultures of hepatocytes and 

fibroblasts.[12]   

 

Current methods of protein patterning include both “top-down techniques” such as 

microcontact printing,[1,13,14] microfluidic patterning,[15-18] photolithography,[19,20] 

imprint lithography,[21] and E-beam lithography[22-24] and “bottom-up techniques” such 

as block copolymer micelle nanolithography[25-27] and particle lithography.[28-30] 
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Important parameters in choosing one method over another often include the size of the 

pattern, the shape of the pattern, pattern fidelity and long-range order, processing time, 

necessity of specialized equipment, and cost. The reader is referred to the reviews of 

Vörös et al.[31] and Christman et al.[32] for an in-depth analysis of the specific 

advantages and disadvantages of these methods.   

 

Particle lithography is an attractive technique for protein patterning due to its simplicity, 

low-cost, and versatility. This technique has been widely used in a number of areas to 

generate nanometer to micrometer sized patterns with a variety of materials, such as 

inorganics,[33,34] metals,[35-38] and polymers.[39-41] However, in the area of protein 

patterning, particle lithography is a relatively new method (Table 2.1). In an initial 

study by Garno et al.,[28] surfaces with periodic protein nanostructures were prepared by 

mixing latex spheres with a specific protein followed by deposition on flat surfaces. 

Upon sphere removal, a honeycomb protein pattern was obtained. This technique has 

been extended to the fabrication of honeycomb patterns of protein mixtures [(protein A 

and bovine serum albumin (BSA)][42] and protein rings.[43] Similar honeycomb 

structures have been obtained by our group by an alternative procedure in which 

incubation of the protein solution occurs only after the sphere monolayer is formed.[40]  

Alternatively, particle lithographic methods have been developed to fabricate patterns 

of protein dots.[29,30,44-46] 

 

A persistent challenge in fabricating useful patterns via particle lithography for both 

protein and non-protein applications is to create patterns with high fidelity and long-  
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Table 2.1: Comparison of Particle Lithography Methods of Protein Patterninga 

a PLL-g-PEG – poly(lysine)-graft-poly(ethylene glycol); PVA – poly(vinylalcohol); PEO – poly(ethylene 
oxide); GFP – green fluorescent protein; NA – not applicable; BSA – bovine serum albumin; IgG – 
immunoglobulin; SpA – staphylococcal protein A 
 

range order. In response to this challenge, considerable research has been performed 

and a diverse set of strategies, such as spin coating,[41,47] confined convective 

assembly,[48] physical confinement,[49] template assisted assembly,[50,51] chemically 

Pattern 
Type 

Method of 
Monolayer 
Formation 

Background/ 
Grafting Method 

Pattern Size 
Protein 
Type(s) 

Ref 

Dots Spin Coating 
PEO 
Plasma Polymerization 

50 – 200 nm 
BSA 
Human IgG 

46 

Dots 
Computer-
Driven Dip 
Coating 

PLL-g-PEG 
Electrostatic 0.1 – 2.0 m Streptavidin 30 

Dots 
Rings 

Solvent 
Evaporation 

PEG-silane 
Liquid or Vapor Phase 
Grafting 

60 – 120 nm Lysozyme 29 

Dot 
Electrostatic 
Solvent 
Evaporation 

PLL-g-PEG 
Electrostatic 

124 nm 
Ferritin 
Laminin 

45 

Dots 
Solvent 
Evaporation 

PVA 
Photocrosslinking 

490 nm GFP 44 

Dots 
Patterned 
Wettability 

PEG-silane 
Liquid Phase Grafting 0.45 – 1.2 m 

BSA 
Fibrinogen 
P-selectin 

This 
Work 

Honeycomb 
Rings 

Solvent 
Evaporation 

NA 0.2 – 0.8 m 
BSA 
Rabbit IgG 

28 

Honeycomb 
Rings 

Solvent 
Evaporation 

NA 0.2 – 0.5 m 
SpA 
BSA 

42 

Honeycomb 
Rings 

Spin Coating NA 0.16 – 2.3 m 

BSA 
Fibrinogen 
Anti-mouse 
IgG 

40 

Rings 
Solvent 
Evaporation 

NA 0.20 – 0.36 m 

Ferritin 
Apoferritin 
BSA 
Rabbit IgG 

43 
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patterned surfaces,[52-54] patterned wettability,[55,56] Langmuir-Blodgett technique,[57,58] 

and electrodeposition[59,60] have been developed.  Excellent reviews of these colloidal 

techniques are available.[61,62] Despite the fact that these techniques are available, most 

of the studies that employ particle lithography to pattern proteins have relied on simple 

solvent evaporation (see Table 2.1). As will be discussed below, we have employed the 

technique of patterned wettability to produce large areas of well-ordered microspheres 

and subsequent protein dot patterns. 

 

An additional issue in the fabrication of protein dots via particle lithography is creating 

a background that repels protein. Because of its protein-resistant properties, most 

strategies have employed poly(ethylene glycol) (PEG) as the inert background via two 

different strategies. In the first scheme, particle lithography is employed to initially 

define hydrophobic regions on a surface (e.g. alkane thiols on gold nanodisks[45] or 

dodecyl phosphates on TiO2
[30]) and then the copolymer poly(L-lysine)-graft-

poly(ethylene glycol) (PLL-g-PEG) is electrostatically grafted around these regions to 

provide an inert and protein-repellant background. Subsequently, proteins are adsorbed 

to the patterned hydrophobic regions. By contrast, the second scheme involves 

covalently grafting a layer of poly(ethylene glycol) through silane chemistry around the 

beads.[29] Upon removal of the beads, holes in the protein-repellant layer are exposed 

for subsequent protein deposition.   

  

In this work, we report a novel method (Figure 2.1) for fabricating periodic patterns of 

protein dots, 450 nm – 1.1 m in diameter. To create patterns with long-range order we  
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Figure 2.1:  Schematic of the Protein Patterning Procedure. Step 1:  A circular, 
hydrophilic region is created on a glass slide (A – D). Step 2:  A drop of a bead 
suspension is deposited on the hydrophilic surface, and as the solvent evaporates, a 
monolayer of spheres is formed (D and E). Step 3:  The monolayer of spheres then 
serves as a mask to selectively graft a layer of PEG to the glass substrate through silane 
chemistry (E and F). Step 4:  The sphere monolayer is removed, exposing bare glass 
surrounded by PEG, and the protein is then adsorbed to these bare glass regions (F – H). 
 

first used the method of patterned wettability to self-assemble a monolayer of latex 

spheres. This sphere monolayer then served as a lithographic mask to selectively graft a 

nanometer thin layer of PEG. A solution phase grafting procedure with methoxy-

poly(ethylene glycol)-(triethoxy)silane (PEG-silane or mPEG-sil) was developed to 

form a siloxane-anchored self-assembled monolayer of PEG around the beads. In 

contrast to the method of Cai described above,[29] the PEG layer in our procedure was 

grafted directly to the glass substrate instead of a previously deposited silane 

monolayer. A challenge in forming the PEG layer was to find a solvent that would 

allow for the silanization reaction but that would not dissolve the polystyrene beads.  

Following sphere removal, periodic patterns of holes in the protein-repellant PEG layer 
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were exposed, and proteins selectively adsorbed onto the underlying surface in these 

holes. We demonstrate the versatility of this technique by fabricating dot patterns of 

different diameters and different proteins.  

 

Experimental Section 

Chemicals and Materials. Polystyrene latex spheres (2 m, 5 m, and 10 m mean 

diameter) were purchased from Duke Scientific, and washed once in DI water by 

centrifugation before use. Silicon wafers (P type, <111>) were purchased from Wafer 

World, Inc (West Palm Beach, FL), while mPEG-sil  (MW = 5000) was purchased from 

LaySan Bio (Arab, AL).  Poly(dimethylsiloxane) (PDMS; Sylgard-184, Dow-Corning) 

was purchased from Krayden (Marlborough, MA). AlexaFluor488-labeled Fibrinogen, 

AlexaFluor488-BSA,  and an AlexaFluor 488 protein labeling kit were obtained from 

Invitrogen (Carlsbad, CA). The labeling kit was used to label P-selectin (R&D 

Research) according to the manufacturer’s instructions. The 1.4 nm FluoroNanogold-

anti-mouse Fab'-AlexaFluor 488 and GoldEnhance (GE) EM were purchased from 

Nanoprobes (Yaphank, NY). 

 

Substrate Preparation and Self-Assembled Monolayer Formation. Microscope glass 

slides, coverslips, or silicon wafers were sequentially cleaned in trichloroethylene, 

acetone, methanol, and DI water for 2 min each cycle using an ultrasonic cleaner.  A 

small circular region of each substrate was selectively made hydrophilic by placing a 

cured PDMS mold containing a 4.5 mm diameter hole onto the surface (Figure 2.1B) 

and exposing to an air plasma at 400 mTorr (Harrick Scientific Corp., Model PDC-32G, 
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Ithaca, NY) under low power (0.010 W/cm3) for 30 seconds (Figure 2.1C). After 

plasma treatment, the PDMS mold was removed and the substrate was left untouched 

for ~30 minutes (Figure 2.1D). Next a drop (3–18 µl) of a washed bead suspension was 

deposited on the patterned region and allowed to dry overnight at 4 °C to form the 

monolayer of microspheres (Figure 2.1E). The volume and concentration of the bead 

solution deposited were adjusted so that there were a sufficient number of beads to form 

a complete monolayer over the plasma treated area.  After bead monolayer formation, 

substrates were heated at 80 °C for 1 h to keep the beads anchored to the surface during 

washing and wet chemical modification.  Finally, each substrate was gently placed in a 

Petri dish full of DI water and allowed to soak for five minutes to remove residue from 

the bead suspension.  Substrates were gently removed from the DI water and allowed to 

dry in ambient conditions for at least 1 h before PEG grafting.   

 

PEG Grafting. The bead monolayer then served as a mask to selectively graft a 

nanometer thin layer of poly(ethylene glycol) (PEG) to the substrate.  Briefly, the 

substrates were exposed to an air plasma at 400 mTorr for 1 min at high power (0.027 

W/cm3), immediately incubated in a 4 mM solution of mPEG-sil in anhydrous 

acetonitrile, and left overnight at room temperature (Figure 2.1F). For the mPEG-sil 

incubation, either a 400 l droplet of the solution was deposited on the surface or the 

substrate was completely immersed in the liquid. We observed similar results using 

both techniques. The substrates were then gently placed in three consecutive Petri 

dishes full of acetonitrile and allowed to soak for 5 min in each to remove any ungrafted 

mPEG-sil.  Finally, the substrates were rinsed with a stream of DI water using a 
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standard laboratory wash bottle (Nalgene #2401-0500) to further remove any ungrafted 

mPEG-sil and to remove the beads.  The final result was a PEG-coated surface with 

periodic holes (Figure 2.1G).  

 

Protein Adsorption. AlexaFluor488-labeled proteins were dissolved in Hanks 

Balanced Salt Solution (HBSS) at concentrations of 10–100 µg/ml. Aliquots of a 

protein solution were dispensed on the PEG-patterned surface and incubated for 2 hr at 

room temperature to allow protein to adsorb into the uncoated holes (Figure 2.1H). 

Following incubation, the substrates were rinsed first with 25 mL HBSS using a transfer 

pipette and then with 50 mL of DI water using a standard laboratory wash bottle to 

remove any unbound protein.   

 

Immunogold Labeling. A 1.4 nm FluoroNanogold (FNG) was dissolved in phosphate-

buffered saline (PBS), pH 7.4, at concentrations of 20–80 µg/ml. Aliquots of an FNG 

solution were dispensed on the PEG-patterned surface and incubated for 2 hr at room 

temperature. Following incubation, the substrates were rinsed first with 25 mL PBS 

using a transfer pipette and then with 50 mL DI water using a standard laboratory wash 

bottle. Next, an aliquot of GE EM was mixed according to the manufacturer’s 

instructions using a 1:2:1:1 or 1:3:1:1 ratio of GE EM solutions A, B, C, and D, 

respectively. The GE EM solution was dispensed on the FNG-patterned surface and 

allowed to incubate for 20 min at room temperature. Following incubation, the 

substrates were rinsed with 50 mL DI water using a standard laboratory wash bottle and 
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then dried under a stream of nitrogen. Finally, substrates were coated with 5 nm of 

carbon using thermal evaporation. 

 

Substrate Characterization. Bead monolayer formation was characterized by both 

optical and scanning electron microscopy (SEM). Optical images were acquired with a 

Zeiss Axiovert 200 inverted microscope equipped with a CoolSnap cf digital camera. 

SEM images of bead monolayers were obtained by sputtering the monolayers with an 

Au/Pd layer (5 nm) and then imaging with a Zeiss 960A scanning electron microscope 

under 15 kV accelerating voltage. 

 

To characterize the coverages of bead monolayers using optical microscopy, bright field 

images were taken of parts of bead monolayers and then combined to form montages of 

complete monolayers.  The areas covered by close-packed beads were measured with 

MetaMorph Imaging Software.   We defined surface coverage as the percentage of area 

covered by single layers of close-packed beads with respect to the total area of the 

substrate.  (Small defects and areas of multiple layers of beads were considered reduced 

coverage). 

 

To characterize the PEG layer formed, small pieces (1 cm x 1 cm) of silicon wafers 

with a native oxide were modified with a uniform PEG layer by the methods described 

for the glass substrates.  Ellipsometric measurements of the PEG layer film thickness 

were made using a Gaertner L-117C manual ellipsometer (Gaertner Scientific Corp., 

Chicago, IL) with a 632.8 nm He–Ne laser at an angle of incidence of 70°.  All film 
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thicknesses were determined using the Gaertner Ellipsometry Measurement Program 

(GEMP) in the one-layer and two-layer mode.  We measured PEG layer thicknesses in 

two ways.  Initially, we modeled the two layers (PEG layer on a native oxide layer on 

silicon) as a one-layer system, based on the fact that the index of refraction for PEG 

(nPEG = 1.46)[63] and that for silicon dioxide are very close (nSiO2
= 1.46).  Finally, we 

used better optical data for a native silicon dioxide layer based on the work of 

Subramanian et al.[64] as part of a two-layer system.  The results in both cases were 

within statistical error.  In the latter analysis, we determined the index of refraction and 

thickness of the native oxide layer by iteration, using the usual parameters for the 

silicon substrate (n= 3.85 + 0.02i), and the index of refraction versus thickness curve 

reported by Subramanian et al.[64]  Doing this, we determined our native oxide thickness 

was typically 2.9 nm with n= 2.43 (cf. with a thickness of 3.2 nm assuming an n= 1.46).  

Using these properties for our native oxide, we used the GEMP program in the two-

layer mode to determine the PEG layer thickness.  For all measurements of PEG film 

thickness, we measured the sample in at least two different locations on at least two 

identically prepared films and these were compared to an out-of-the-box sample from 

the same silicon wafer prepared and measured with the PEG samples. 

 

Characterization of the protein-patterned substrates was done by fluorescent imaging 

with a fluorescent microscope (Zeiss Axiovert 200) and analyzed with MetaMorph 

Imaging Software. Substrates patterned with FluoroNanogold were imaged with a Zeiss 

960A scanning electron microscope (SEM) with 20-kV accelerating voltage using a 

backscattered electron (BSE) detector. 
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Calculations and Statistics. Values are presented as means  standard errors of the 

mean unless otherwise specified, and statistical significance was assessed when 

appropriate by a Student’s t test for paired data, with P < 0.05 considered as statistically 

significant. 

 

Results and Discussion 

Periodic patterns of protein dots were fabricated on glass or silicon wafers by a three 

step procedure (Figure 2.1): (1) Formation of a bead monolayer, (2) grafting of a 

protein-resistant PEG layer, and (3) selective adsorption of protein.  A variety of 

complementary microscopy techniques were employed to characterize the structures 

produced and to optimize the process.   

 

Bead Monolayer Formation. A persistent challenge in the use of particle lithography 

is the ability to create large areas of hexagonally packed, defect-free, bead monolayers. 

Thus, we investigated whether surfaces with patterned wettability[55,56] would result in 

the formation of large continuous areas of close-packed and ordered bead monolayers. 

A circular area of glass or silicon substrates was selectively treated with an air plasma 

via a PDMS mold to create a distinct region of increased hydrophilicity or wettability 

(Figure 2.1A – D). Aqueous suspensions (~0.05% V/V) of latex beads were dispensed 

onto the plasma cleaned substrates. As a control, suspensions of latex beads were also 

dispensed onto substrates that had not been plasma cleaned. As solvent evaporated from 

the colloidal suspensions, attractive capillary forces between the beads developed and 

caused them to self-assemble into closely packed and ordered monolayers. In both cases 

(Figures 2.2A, B), imperfections in bead ordering (e.g. point defects, dislocation, and  
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Figure 2.2:  Bead Monolayers. Optical image montage of a monolayer formed by 
10 µm beads (A) following the plasma cleaning procedure and (B) without plasma 
cleaning. SEM images of (C) 2, (D), 5, and (E) 10 µm bead monolayers. Panels A and 
B are both montages composed of several smaller images. The square corner features in 
panel A are an artifact of piecing together the montage. In panels A and B, white areas 
contain no beads. The gray and black areas contain beads that are close-packed but 
contain the defects shown in panels C – E. the larger grain boundary defects are visible 
in the close-packed areas of panels A and B as lines. 
 

grain boundaries) were observed. On substrates that were not exposed to the plasma 

cleaning process (“unpatterned substrates”), the bead monolayer was not confined to a 

specific area, and the monolayer formed included large areas absent of any beads 

(Figure 2.2B).  However, on plasma-cleaned substrates (“patterned substrates”), the 

monolayer of beads was observed to preferentially nucleate at the edge of the plasma-

treated region, resulting in a distinct boundary (Figure 2.2A) of regions with and 

without beads. Furthermore, patterned substrates exhibited a lower concentration of 
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defects and an increased surface coverage of bead monolayers as compared to substrates 

that were not plasma cleaned. For example, patterned surfaces had bead surface 

coverages >84% with 5 and 10 m diameter beads whereas untreated glass surfaces 

exhibited surface coverages of 60 and 38%, respectively. Figure 2.2C – E shows images 

of periodic arrays formed on patterned substrates with 2, 5, and 10 m diameter beads. 

Because of the improved surface coverage subsequent studies were performed with 

patterned substrates. 

 

Grafting of a Protein-Resistant PEG Layer. Following bead monolayer formation, a 

protein-repellent background of PEG was created around the beads by chemically 

grafting mPEG-sil to the surface. Subsequent removal of the bead monolayer uncovered 

periodic holes in the PEG layer. It should be noted that covalently grafting the PEG-

silane to the glass in solution around polystyrene beads was not trivial.  Since the 

original work of Sagiv and co-workers on the formation of SAMs from siloxane 

compounds,[65,66] subsequent research has shown that the formation of organosliane 

SAMs depends upon a number of key parameters: water content, solvent, temperature, 

and deposition time.[67] Furthermore, the reactivity of the silane depends upon its type 

(e.g. chlorosilanes, alkoxysilanes) and functionality (e.g. mono-, di-, or trifunctional 

silanes).  Normally, silanes are grafted to glass in organic solvents such as toluene to 

eliminate the problems of multilayer formation or polymerization in the bulk solvent 

phase in the presence of large amounts of water. However organic solvents such as 

toluene will dissolve the beads. Therefore, the number of solvents that allow for PEG 

monolayer formation but do not dissolve the beads is limited.  After trying a number of 
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different solvents, acetonitrile was chosen. To confirm the successful grafting of the 

PEG layer, we performed ellipsometry on both bulk silicon and silicon modified with a 

mPEG-sil film.  Ellipsometry of the bare silicon provided the refractive index and 

thickness of the native silicon dioxide layer, which we used to subsequently determine 

the PEG layer thickness. The oxide thickness was measured to be 2.9 nm, and the PEG 

layer thickness was 0.5 ± 0.2 nm. This value is smaller than previous measurements of 

the thickness (1.6–1.7 nm) of a dry PEG layer (MW = 5000) using ellipsometry and 

atomic force microscopy (AFM).[68] We hypothesize that this difference in thickness is 

related to variations in the grafting density of PEG.  

 

Protein-Patterned Substrates. The final step of the process was the selective adsorption 

of protein into the wells of the patterned PEG substrate. Figure 2.3 shows fluorescent 

images of surfaces that were patterned with PEG via 2, 5, and 10 m diameter beads 

and subsequently incubated with solutions of fluorescent fibrinogen. Well-resolved dots 

of protein in a hexagonal pattern were observed. As the size of the bead increased, both 

the size of the protein dots formed (450–1050 nm) and the center-to-center spacing 

between dots increased. To demonstrate the versatility of this technique, we fabricated 

patterned substrates with two other types of cell adhesion molecules (P-selectin and 

albumin) and measured the diameter of the dots formed by fluorescent microscopy.  As 

shown in Figure 2.4, the size of the protein dots produced for a given bead size was 

constant and independent of the protein deposited. These results suggest that the 

patterning technique could be extended to a number of different proteins, so long as 

they readily adsorb to glass surfaces. It has previously been shown  
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Figure 2.3:  Arrays of Protein Dots Fabricated Via Particle Lithography. 
Fluorescent images of surfaces patterned with fluorescent fibrinogen via particle 
lithography with (A) 2 µm spheres, (B) 5 µm spheres, and (C) 10 µm spheres. The 
fluorescent line intensity (arbitrary units) graphs to the right of each image correspond 
to the dashed lines in each image. 

 
that protein adsorption to glass primarily occurs through ionic interactions, presumably 

between protein amine groups and glass silanol groups, and that the adsorption of 

protein increases with increasing isoelectric point.[69] Although proteins with lower 

isoelectric points may adsorb at a lower rate than those with higher isoelectric points, 

the majority of proteins will adsorb to glass and thus could be used with the patterning 
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Figure 2.4:  Size of Protein Dots is Dependent Upon the Diameter of the Latex 
Sphere Utilized. Average diameter of the protein dots created for each bead size with 
three different proteins. Dot diameters of protein patterns were measured from 
fluorescent images using MetaMorph Image Analysis software. SEM imaging was 
performed to measure the diameters of the dot patterns of FNG. For each condition, a 
total of three different slides and 80 – 340 dots were measured. A line to guide the eye 
is shown. 

 
technique. 
 

It should be noted that the fluorescent dot measurements (450 nm) measured for the 2 

m beads were near the resolution limit of standard fluorescent microscopes (200–500 

nm). When objects with dimensions smaller than the resolution limit are imaged, they 

will project with dimensions of the resolution limit. Thus, to confirm that the 

fluorescent measurements of the protein dots were accurate, we patterned FNG on 

substrates made with 2, 5, and 10 m diameter beads and then imaged the samples 

using SEM. 

 

FNG is composed of an antibody Fab’ fragment covalently bound to a 1.4 nm gold 
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particle, which is smaller than the resolution limit (~50 nm) of the SEM we used. To 

make the patterned FNG visible by SEM imaging, we used GE EM to increase the size 

of the gold particles. To prevent the substrates from charging in the SEM, we coated 

them with a thin (5 nm) layer of carbon. The final result was patterned dots of gold 

particles on a carbon background. The large atomic number difference between the gold 

particles and the carbon background allowed us to use BSE imaging to view the FNG 

dots. Figure 2.5 shows BSE images of substrates that were patterned with FNG via 10, 

5, and 2 m diameter beads. The diameters of the dots on substrates made with 10, 5, 

and 2 m beads were 1200 ± 300, 640 ± 60, and 450 ± 50 nm, respectively. These 

measurements agree quite well with those made by fluorescent microscopy (Figure 2.4). 

In addition, the absence of gold particles between the dots provides additional evidence 

of the ability of the PEG regions of the substrate to prevent protein adsorption. 

 

To corroborate that the protein selectively adsorbed in the patterned PEG holes and not 

in the PEG background, we exposed fluorescent fibrinogen dots formed using 10 m 

beads to fluorescent light until they were completely photobleached. Figure 2.6 shows 

the fluorescent intensity (arbitrary units) of a linescan across three dots with time. 

Although the fluorescent intensity inside of the dots decreases to zero in about 10 min, 

the baseline intensity between the dots remains constant. This confirms the protein 

resistant-properties of the PEG grafted between the protein dots. 

 

Effect of Bead Monolayer Cleaning. In the course of our study, we found that 

cleaning the bead monolayer in DI water was essential for the formation of consistent  



54 
 

Figure 2.5:  Arrays of FNG Particles Fabricated Via Particle Lithography. SEM 
images of surfaces patterned with FNG particles by particle lithography with (A) 10 µm 
spheres, (B) 5 µm spheres, and (C) 2 µm spheres. 
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Figure 2.6:  Photobleaching of Protein Patterns. Line scans of the fluorescent 
intensity of three protein dots fabricated via 10 µm beads were measured as a function 
of time. 
 

protein dots. Figure 2.7A–D shows representative fluorescent images of protein patterns 

formed on substrates that were not thoroughly cleaned prior to PEG grafting. At the 

periphery (Figure 2.7E, Region A) of bead monolayer patterns that were not cleaned 

prior to mPEG-sil grafting, dot patterns with interconnecting lines (Figure 2.7A) were 

frequently observed. In addition, a 2-fold variation in the protein dot diameters was 

often observed, with the dot size gradually decreasing and becoming uniform as one 

moves from the periphery towards the center of the pattern (Figure 2.7B).  Towards the 

center of the pattern (Figure 2.7E, Region B), we observed a haze of protein (Figure 

2.7C), and in the center of the pattern (Figure 2.7E, Region C), we observed smaller 

dots with uniform diameters (Figure 2.7D).  

 

The presence of the interconnecting fluorescent lines suggested that something on the 

surface was preventing complete grafting of the PEG layer around the beads.  We 

hypothesized that the most likely cause was residual surfactant from the bead  
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Figure 2.7:  Effect of Latex Sphere Monolayer Washing. (A – D) Fluorescent images 
of unwashed substrates patterned with fluorescent fibrinogen via 10 µm beads. Phase 
contrast image of a 10 µm bead monolayer (E) prior to cleaning and (F) after cleaning 
with a 5 min soak in DI water. 
 

suspension being deposited on the surface during evaporation of the liquid.[70,71] To test 

this hypothesis, we performed phase contrast imaging of the bead monolayers formed 

after water evaporation and prior to cleaning (Figure 2.7C). The different shading in 

region A compared to regions B and C appeared to support our hypothesis. 



57 
 

Furthermore, subsequent cleaning of the same bead monolayer by soaking in DI water 

for 5 min and then allowing the bead monolayer to air-dry for at least 1 hr resulted in 

the removal of this ring (Figure 2.7D) and produced the uniform dot patterns observed 

in Figure 2.3.   

 

Conclusions 

A simple method for fabricating protein-patterned substrates with nanometer to 

micrometer scale dimensions was developed. The method includes selectively grafting a 

protein-repellant layer of PEG in the holes of a SAM of latex spheres, removal of the 

spheres, and selective adsorption of the protein. The size of the protein dots formed 

ranged from 450 nm to 1.1 m, and was dependent upon the size of the spheres utilized. 

The versatility of this technique was demonstrated by patterning surfaces with three 

different proteins (fibrinogen, P-selectin, and albumin) as well as with antibody-coated 

FNG.  These results suggest that this is a generic patterning technique that could be 

extended to a number of proteins. We anticipate that smaller diameter dots (~50 nm) of 

protein can be created via this technique by using commercially available latex spheres 

with diameters of 100 nm.   
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Chapter 3:  Patterning of Quantum Dot Bioconjugates via Particle 

Lithography 

This chapter was reproduced in part with permission from: 
 
Taylor, Z. R.; Sanchez, E. S.; Keay, J. C.; Johnson, M. B.; Schmidtke, D. W. Patterning 
of Quantum Dot Bioconjugates via Particle Lithography. Langmuir. 2010, 26, 18938-
18944. 
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Introduction 

Due to their unique fluorescent properties, semiconductor quantum dots (QDs) have 

been utilized in the development of novel light emitting devices,[1] solar cells,[2] 

biological imaging schemes,[3-7] and biosensors for the detection of proteins,[8-11] nucleic 

acids,[12-16] bacteria,[17,18] and other chemical species.[19-27] Compared to organic 

fluorophores, QDs exhibit both higher quantum efficiency and greater photostability. 

Furthermore, since their fluorescent properties are size-dependent, QDs with identical 

chemical compositions but different diameters can be used when multiple fluorophores 

are desired. For biological applications, QDs can be conjugated to a number of 

biomolecules including nucleic acids and proteins.[28-30] These characteristics make QDs 

an important resource in a number of scientific fields. 

 

Recently, there has been a great deal of interest in patterning surfaces with QDs in sub-

micrometer domains (Table 3.1). QD-patterned surfaces have potential applications in 

electronics, computing, data storage, molecular interaction studies, and biosensors.[31] In 

biosensing applications, patterned surfaces present increased densification of surface 

recognition elements,[32] availability of binding sites,[33] and immobilization  
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Table 3.1:  Comparison of Quantum Dot Sub-Micrometer Patterning Methodsa 

Pattern Type Method of Pattern Formation Pattern Size 
Quantum Dot 
Bioconjugate(s) 
Patterned 

Ref 

Dots Dip-pen Nanolithography (DPN) 500 – 900 nm QD-IgG 35 

Dots 
(Single QDs) 

S-layer Protein Scaffolding 
7 – 22 nm 
(spacing) 

 36 

Dots 
Lines 

Dip-pen Nanolithography (DPN) 
230 nm /            
90 – 400 nm 

QD-SA 
QD-IFNα2 

37 

Dots Particle Lithography 500 – 600 nm 
QD-SA 
QD-B 
QD-IgG 

This 
Work 

Lines Microcontact Molding 160 – 510 nm  38 

Lines Electron-beam Lithography 200 nm QD-IgG 39 

Lines 
Wells 

Surface Reconstructed Block 
Copolymers  

<10 – 24 nm  40 

Lines 
Squares 
Cylinders 

Pattern Replication in Nonwetting 
Templates (PRINT) Process ~50 nm – 3 µm  41 

Rings 
Evaporative Templating            
(Particle Lithography) 

86 – 266 nm  42 

Rings 
Pores 

“Two-particle” Lithography      
(Particle Lithography) 

140 – 210 nm QD-Cys 43b 

Squares Microcontact Printing 500 – 800 nm  44 

Squares Electron-beam Lithography 100 nm – 4 µm QD-SA 45 

a SA = streptavidin;  Cys = cysteine; IFNα2 = interferon- α2; B = Biotin 
b CdS QDs; all other references in table use CdSe QDs 
 

efficiency[34] over homogeneously coated surfaces. Ultimately, these advantages lead to 

lower detection limits.[32-34] 
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Of the methods used to pattern QDs, particle lithography is an attractive option because 

it relies on simple, relatively inexpensive techniques and can be used to process several 

samples simultaneously. Particle lithography has previously been used to create 

periodic arrays of QD rings and QD films with periodic porelike structures.[42,43] In a 

study by Lewandowski et al.,[43] particle lithography was used to pattern cysteine-coated 

QDs, which can be categorized as a type of QD bioconjugate (QDBC). We define 

QDBCs as QDs that have been conjugated to biological molecules, such as amino acids 

and proteins. QDBCs have also been patterned in “dot” domains via dip-pen 

nanolithography (DPN)[35,37] and electron-beam lithography (EBL),[39,45] both of which 

require specialized equipment and training and have restricted throughput. 

 

Previously, we developed a particle lithography technique to fabricate both honeycomb 

patterns[46] and dot patterns of proteins.[47] Here we extend particle lithography to 

pattern sub-micrometer holes in a methoxy-poly(ethylene glycol)-silane (mPEG-sil) 

layer filled with QDBCs. To our knowledge, this is the first study where QDBCs have 

been patterned in dot domains by particle lithography. We demonstrate the potential for 

these patterns to be used in biosensing applications by designing a QD-based 

fluorescent binding assay with a subpicomolar detection limit. 

 

Experimental Section 

Chemicals and Materials. Polystyrene latex spheres (5 µm mean diameter) were 

purchased from Duke Scientific (Fremont, CA) and washed once in DI water by 

centrifugation before use. Poly(dimethylsiloxane) (PDMS; Sylgard-184, Dow-Corning) 
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was purchased from Krayden (Marlborough, MA). Human serum albumin (HSA; 

Albuminar-25, CSL Behring) was purchased from National Hospital Specialties 

(Hackensack, NJ). Qdot 655 biotin, Qdot 655 goat F(ab’)2 anti-mouse IgG,  Qdot 525 

streptavidin, Qdot 525 goat F(ab’)2 anti-mouse IgG, Alexa Fluor 488 avidin, Alexa 

Fluor 488 fibrinogen, Alexa Fluor 488 goat anti-chicken IgG, and Qdot incubation 

buffer (2% BSA in 50 mM borate buffer, pH 8.3, with 0.05% sodium azide)  were 

purchased from Invitrogen (Carlsbad, CA). Monoclonal mouse anti-human IgG-biotin 

was purchased from Sigma-Aldrich (St. Louis, MO). Finally, methoxy-poly(ethylene 

glycol)-silane (mPEG-sil; MW=5000) was purchased from Laysan Bio (Arab, AL). 

 

Substrate Preparation. Periodic holes in a protein-repellant layer of mPEG-sil were 

formed as previously described[47] (Figure 3.1). Briefly, glass slides were cleaned in 

trichloroethylene, acetone, methanol, and DI water in sequential, 2 minute cycles in an 

ultrasonic cleaner. Next, a PDMS mold with a 4.5 mm diameter circular hole cut from 

the center was placed on the surface of each slide. The substrates were then exposed to  

 

 
Figure 3.1:  Schematic of the mPEG-sil Patterning Procedure. A pattern of periodic 
holes in a mPEG-sil layer is formed with the following sequence. A PDMS stamp is 
applied to a substrate before treatment in an air-plasma in order to create a relatively 
hydrophilic region. A suspension of polystyrene spheres is deposited in the hydrophilic 
region to create a sphere monolayer. Next, a layer of mPEG-sil is grafted to the 
substrate around the spheres. Finally, the spheres are removed to reveal areas of bare 
substrate that serve as adsorption sites. 
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an air-plasma (Harrick Scientific Corp, model PDC-32G, Ithaca, NY) at 400 mTorr and 

“low” power (0.010 W/cm3) for 30 s to create a relatively hydrophilic region in the 

circular areas of the glass not covered by the PDMS molds. After plasma treatment, the 

PDMS molds were removed, and the substrates were left untouched for approximately 

30 min. To form sphere monolayers, 5.06 µL of 0.075% wt 5 µm sphere suspension was 

deposited on the circular hydrophilic region of each substrate and was allowed to dry 

overnight at 4 °C. After monolayer formation, the substrates were heated at 80 °C for 1 

h to promote firm adhesion of the spheres to the surface. Next, the substrates were 

soaked for 5 min in DI water to remove residue from the sphere suspension and then 

allowed to dry for 1 h in ambient conditions. After drying, mPEG-sil was grafted to the 

substrates around the spheres by first exposing the substrates to an air-plasma at 400 

mTorr and “high” power (0.027 W/cm3) for 1 min before immediately applying 375 µL 

of 4 mM mPEG-sil in anhydrous acetonitrile to the substrates. The grafting was allowed 

to proceed overnight at room temperature. Next, ungrafted mPEG-sil was removed by 

soaking the substrates in three consecutive Petri dishes full of anhydrous acetonitrile for 

5 min each.  Finally, the substrates were washed with approximately 50 mL DI water 

using a wash bottle to remove the spheres and reveal the hexagonal pattern of holes in 

the mPEG-sil layer. These holes then served as adsorption sites for QDBCs or 

fluorescent protein. 

 

Single QDBC Patterns. QDBC solutions were centrifuged for 5 min at 6600 rpm 

(Fisher Scientific, model 05-090-128) to remove any QDBC aggregates that may have 

formed during storage. Next the supernatant was removed and diluted to a concentration 
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of 50 nM with phosphate buffered saline (PBS), pH 7.4. Solutions of 655 biotin- and 

655 goat anti-mouse IgG-conjugated QD (QD-B and QD-IgG, respectively) solutions 

were used without further modification. During dilution, HSA was added to 525 

streptavidin-conjugated QD (QD-SA) solutions to a final concentration of 3.4 µg/mL to 

prevent aggregation. After the addition of HSA, QD-SA solutions were allowed to sit 

for 30 min prior to use. After preparation, 75 µL of QDBC solution was dispensed onto 

the mPEG-sil-patterned surface and incubated for 2 h at room temperature to allow 

QDBCs to adsorb in the mPEG-sil holes. Finally, substrates were washed with 25 mL 

PBS using a transfer pipette and 50 mL DI water using a wash bottle to remove any 

unbound QDBCs. 

 

Colocalized Dual-QDBC Patterns. Single QD-B patterns were produced as described 

in the “Single QDBC patterns” section above. After incubating with QD-B and 

washing, about 1 mL of 5 mg/mL HSA in PBS was dispensed on the substrate for 30 

min to block any remaining adsorption sites. The substrates were then washed with 25 

mL of PBS using a transfer pipette.  A QD-SA solution was mixed as described in the 

“Single QDBC patterns” section above but with a final HSA concentration of 10 

mg/mL to prevent aggregation and nonspecific adsorption. Next, 75 µL of the QD-SA 

solution was dispensed and allowed to incubate on the substrate for 30 min. Finally, the 

substrate was washed with 25 mL of 5 mg/mL HSA in PBS using a transfer pipette and 

50 mL DI water using a wash bottle. 
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IgG-biotin Binding Assay Substrates. mPEG-sil surfaces patterned with periodic 

holes were produced as described in the “Substrate Preparation” section above. Next, 75 

µL of 20 µg/mL Alexa Fluor 488 avidin diluted in PBS was dispensed onto the surface 

for 2 h to allow the protein to adsorb in the mPEG-sil holes. After incubation, substrates 

were washed with 50 mL of PBS using a wash bottle. The substrates were then held 

vertically and gently shaken to remove excess liquid from the surface. Next, 75 µL of 

mouse anti-human IgG-biotin diluted in PBS to a final concentration between 500 fM 

and 50 nM was distributed onto the surface and incubated for 1 h. The substrates were 

washed with PBS using a wash bottle and excess liquid was removed before a final 

incubation with 75 µL of 50 nM QD-IgG for 30 min.  Lastly, the substrates were 

sequentially washed with 25 mL of PBS and 50 mL of DI water using wash bottles. 

 

Substrate Characterization. Fluorescent images of QDBC patterns were acquired with 

a Zeiss Axiovert 200 inverted microscope equipped with a 100x objective (NA = 1.3) 

and a CoolSnap cf digital camera. The image acquisition time was adjusted between 0.5 

and 10 s depending on the type of sample. Atomic force microscopy (AFM) images 

were obtained with a Topometrix Explorer SPM instrument operating in noncontact 

mode.  

 

Image Analysis. Image analysis was performed with the open source software packages 

ImageJ (version 1.40 g) and Gwyddion (version 2.19). To determine QDBC dot sizes, 

images were first thresholded to create a binary image of black QDBC dots and white 

background. The thresholding criteria were optimized and remained constant for each 
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image analyzed. Next, the areas of each QDBC dot were measured. Finally, the area 

measurements were used to calculate the diameters of the QDBC dots with the 

assumption they were circular. 

 

For the dose-response and binding assay experiments, the peak fluorescent intensity 

within each QDBC dot was measured. Next, the intensities were reduced by the value of 

the background which was determined by taking an image with the camera completely 

blocked. This correction assigns a value of zero to all protein dots that did not contain a 

QD fluorescent signal. The background-corrected QDBC intensities were then averaged 

for each concentration. 

 

Calculations and Statistics. Values are presented as means ± standard deviation of the 

mean unless otherwise specified, and statistical significance was assessed when 

appropriate by Student’s t test, with P < 0.05 considered as statistically significant. 

Outliers were identified as measurements outside of three standard deviations of the 

mean and were eliminated. All experiments except AFM measurements were performed 

on at least three different samples each made on different days. 

 

Results and Discussion 

QDBC Patterning Process. QDBC patterns were formed via particle lithography by a 

three-step process:  (1) formation of a polystyrene sphere monolayer, (2) grafting of a 

protein-repellant methoxy-poly(ethylene glycol)-silane (mPEG-sil) layer, and (3) 

selective adsorption of the QDBC into the resulting mPEG-sil holes. 
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QDs Conjugated to Biologically Important Small Molecules, Proteins, or 

Antibodies Can Be Patterned in Sub-micrometer Domains. Figure 3.2 shows  

 

 
Figure 3.2:  Fluorescent Images of Single-QDBC Patterns. (A) Schematic of the 
final step to make a single-QDBC pattern. Fluorescent images (pseudocolored post-
acquisition) of patterns made with 525 QD-streptavidin (B), 655 QD-biotin (C), and 655 
QD-goat-anti-mouse IgG (D). The fluorescent line intensity (arbitrary units) graphs to 
the right of each image correspond to the dashed lines in each image. 
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representative fluorescent images of QDBC-filled holes formed with QDs conjugated to 

streptavidin (QD-SA), biotin (QD-B), and goat anti-mouse IgG (QD-IgG).  The mean 

diameters of the fluorescing regions (dots) were determined to be 570 nm ± 110 nm, 

570 ± 90 nm, and 530 ± 90 nm for QD-SA, QD-B, and QD-IgG, respectively. The 

similar values obtained for all three species indicate that the size of the dots is 

independent of the QDBC patterned. To verify the fluorescent dot size measurements, 

we also obtained images using AFM of these QDBC arrays. Figure 3.3A shows a 

representative AFM image of a substrate patterned with QD-IgG. Applying the same 

analysis procedure used to determine the fluorescent dot sizes, we found the mean 

diameter of the QD-IgG dots to be 500 ± 70 nm, corroborating the fluorescent 

measurements. Figure 3C shows a representative line-cut through three QD-IgG dots. 

The average peak height within the QD-IgG dots was 9-10 nm, which agrees well with 

the approximate size of a single QDBC, suggesting that QDBCs do not form multiple 

layers in our patterns. Furthermore, these data demonstrate that our technique is 

versatile and can be used to pattern QDs conjugated to several different classes of 

biologically important molecules. 

 

QDBCs Exhibit High Photostability. To assess the photostability of the patterned 

QDBCs, we exposed QD-B patterns to continual fluorescent light and obtained images 

every 5 min for 30 min. For comparison with a typical fluorescent dye, we performed 

the same experiment with patterns of Alexa Fluor 488 fibrinogen (AF-Fib) but acquired 

images every 30 s for 10 min. Three representative dots were chosen from each 

substrate’s set of images, and their peak fluorescent intensities were measured over  
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Figure 3.3:  AFM Images of a Single-QDBC Pattern. (A) A 20 µm x 20 µm AFM 
image of a QD-IgG pattern. (B) A differentiated image of the single dot outlined by the 
box in (A). The color scale for (A) and the height scale for (B) are 25 nm. The height 
profile graph (C) corresponds to the dashed line in (A). 
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Figure 3.4:  Comparison of the Photobleaching of a QDBC and a Common 
Fluorescent Dye. The intensities for each fluorescent species were normalized 
individually to show the percent change in intensity over time. Data are shown as mean 
± standard error of the mean. 
 

time. Figure 3.4 shows the average peak fluorescent intensities of the QD-B and AF-Fib 

dots during photobleaching. After 10 min, the AF-Fib dots were nearly completely 

photobleached while the intensities of the QD- B dots remained relatively constant. 

 

Although there is fluctuation in the average intensities of the QD-B dots over time, the 

difference between the initial and final data points is not statistically significant. We 

hypothesize that these fluctuations are due to the phenomenon of quantum dot 

blinking.[28] Our results compare favorably with previous studies documenting the 

photostability of QDBCs.[48,49] These data demonstrate the high photostability of QDs, 

especially compared to common fluorescent dyes. 

 



77 
 

The Site Density of QDBCs Can Be Manipulated By Varying the Coating 

Concentration. Since QDBCs adsorb in the unfilled holes of the mPEG-sil-patterned 

substrates nonspecifically, the number of QDs that adsorb to the surface should be 

dependent on the coating concentration of the QDBC solution. To verify that the site 

density of QDBC patterns is dependent on the coating concentration of the QDBC 

solution, we made QD-IgG patterns using solutions between 500 pM and 50 nM. Figure 

3.5A shows the fluorescent intensity of the QD-IgG that adsorbed to the glass substrate 

as a function of the solution coating concentration. The average intensities for the  

 

 
Figure 3.5:  Dose-Response Curve of the Single-QDBC Patterning Technique. (A) 
Fluorescent intensity versus concentration graph for patterns made with various 
concentrations of QD-IgG (500 pM to 50 nM). (B—D) Representative fluorescent 
images (pseudocolored post-acquisition) of patterns made with 50 nM (B), 10 nM (C), 
and 1 nM (D) QD-IgG. Data are shown as mean ± standard error of the mean (* P < 
0.001). 
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concentrations investigated were each statistically significant from the intensities for the 

nearest higher and lower concentrations. The linear trend observed suggests that the 

solution concentration tested is below the critical amount required for saturation of the 

surface and demonstrates that the site density of QDBCs may be controlled by the 

coating concentration of the QDBC solution. 

 

QDBC Patterns Retain Biological Functionality and Can Be Used to Create Dual-

QDBC Patterns. Figure 3.6A shows a schematic of the process to fabricate colocalized 

QDBC patterns. To create dual-QDBC patterns, we first made QD-B patterns. The 

patterns were then incubated with HSA to fill any remaining adsorption sites. Finally, 

the patterns were incubated with QD-SA and imaged. Figure 3.6B—D shows 

representative fluorescent images of the individual and colocalized QD-B and QD-SA 

signals. Overall, 99% ± 2% of the QD-B dots were colocalized with QD-SA. To verify 

the specificity of the binding between QD-B and QD-SA, positive control samples were 

made with QD-B and Alexa Fluor 488 avidin. Two sets of negative control samples 

were also made with QD-B and either Alexa Fluor 488 goat anti-chicken IgG or 525 

QD-IgG. Images from the positive control samples were similar to those from samples 

made with QD-B and QD-SA, while images from the negative controls had no signal 

from the 488 goat anti-chicken IgG or the 525 QD-IgG (data not shown). The results 

from the controls indicate that QD-SA binding to QD-B is a result of the specific 

interaction of the biotin and streptavidin moieties and not due to the QDs interacting 

with each other or with the protein portions of the QDBCs. These data demonstrate that 

dual-QDBC patterns can be created with high specificity. 
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QDBCs Can Be Used to Create Sensitive Binding Assays. In order to demonstrate 

one application of our patterning technique, we designed a QD-based fluorescent 

binding assay (Figure 3.7A). Surface-based binding assays typically include a capture 

molecule adsorbed or covalently bound to a substrate that specifically binds an analyte 

of interest. After the substrate is exposed to a solution containing an unknown that also 

specifically binds the analyte of interest and can be directly or indirectly detected. The 

signal from the reporter molecule can then be quantified and related to the concentration 

of the analyte. In the construction of our binding assay, we used avidin as our capture 

molecule, biotinylated mouse IgG as our analyte of interest, and goat QD-IgG as our 

reporter molecule. First, Alexa Fluor 488 avidin was dispensed on a mPEG-sil-

patterned surface where it nonspecifically adsorbed in the mPEG-sil holes. Next, 

biotinylated mouse anti-human IgG (IgG-biotin) was distributed on the surface, and the 

 

 
Figure 3.6:  Fluorescent Images of a Colocalized Dual-QD Pattern. (A) Schematic 
of the formation of a dual-QDBC pattern of QD-SA colocalized with QD-B. (B, C) 
Images (pseudocolored post-acquisition) of the fluorescent signal from QD-B (B) and 
QD-SA (C) from the same area of a single substrate obtained by switching fluorescent 
filters.(D) Resulting image when (B) and (C) are combined. 
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biotin moieties of the biotin-IgG were specifically bound by the avidin. The QD-goat 

anti-mouse IgG was then deposited on the surface and specifically bound to sites on the 

protein portion of the IgG-biotin. Finally, the fluorescent intensity of the QDs was 

quantified.  By using the same concentration of avidin and QD-IgG but varying the 

concentration of IgG-biotin for each sample, the amount of IgG-biotin that was bound  

 

  
Figure 3.7:  IgG-biotin Binding Assay Curve. (A) Schematic of the binding assay 
procedure. (B) Fluorescent intensity versus concentration graph for patterns made with 
various concentrations of IgG-biotin (500 fM to 50 nM). (C—E) Representative 
fluorescent images (pseudocolored post-acquisition) of patterns with 50 nM (C), 500 
pM (D), and 5 pM (E) IgG-biotin. Data are shown as mean ± standard error of the mean 
(* P < 0.001). 
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to each sample was only dependent on the concentration of IgG-biotin used for each 

sample. Consequently, the amount of QD-IgG bound to each sample, and the intensity 

of the resulting fluorescent signal, also varied with IgG-biotin concentration. 

 

We measured the fluorescent intensities of dot patterns made with IgG-biotin 

concentrations of 50 nM and 10-fold dilutions to 500 fM (Figure 3.7B). Between 50 nM 

and 5 pM, the curve follows a logarithmic trend with a coefficient of determination of 

R2 = 0.9771. The average intensities for the concentrations investigated were each 

statistically significant from the intensities for the nearest higher and lower 

concentrations. Below 50 pM, the fluorescent intensities were relatively low. However, 

because this patterning technique allows for hundreds of redundant samples on a single 

substrate, the differences in intensities were statistically significant. Since only 75 µL of 

IgG-biotin solution is required per binding assay substrate (see Experimental Section), 

the mass of IgG-biotin detected was between 560 pg and 5.6 fg for 50 nM and 500 fM 

substrates, respectively. These data show that our QDBC patterning technique can be 

used to detect biological species over a concentration range of several orders of 

magnitude. 

 

Conclusions 

A simple, high throughput method of patterning QDBCs in sub-micrometer domains 

was developed. Substrates were patterned by forming a self-assembled monolayer of 

polystyrene spheres, grafting mPEG-sil to the substrate around the spheres, and then 

removing the spheres and adsorbing QDBCs into the sites previously occupied by the 



82 
 

spheres. To exhibit the versatility of this technique, we patterned QDs conjugated to 

biologically important small molecules, proteins, and antibodies. The diameters of the 

dots formed were 500-600 nm and independent of the QDBC adsorbed. Dual-QDBC 

patterns were created through specific interactions between biotin- and avidin-

conjugated QDs. The applicability of this method was also demonstrated by designing a 

QD-based immunoassay with a detection limit in the femtomolar range. Based on these 

results we anticipate that this platform may be extended to a wide range of 

immunoassays. In addition, by changing the diameters of the spheres during monolayer 

formation, the spacing between and diameters of the resulting QDBC dots can be varied 

from the nanometer to micrometer scale, and be applied to a variety of cell adhesion and 

molecular interaction studies where patterns of fluorescent bioconjugates are required. 
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Chapter 4:  Independently Controlling Protein Dot Size and Spacing in 

Particle Lithography 

This chapter was reproduced in part with permission from Langmuir, submitted for 
publication. 
 
Unpublished work copyright 2012 American Chemical Society. 
 
 
Introduction 

Protein patterns with micro- and nanometer scale features have been fabricated by a 

number of different techniques, including microfluidic patterning,[1-3] 

photolithography,[4-6] electron-beam lithography (EBL),[7,8] microcontact printing 

(µCP),[9-11] dip-pen nanolithography (DPN),[12,13] and particle lithography.[14-19] There 

are several factors to consider when choosing a technique for a specific application, 

including desired feature size and geometry, cost, processing time, and accessibility. 

Particle lithography is an attractive option to pattern protein because it relies on low 

cost, bench-top technology with the ability to produce nano-structured samples in 

parallel. 

 

Although particle lithography has several advantages, the process is not without 

limitations. The area of the contact point between a spherical particle and the underlying 

substrate, which eventually defines each protein-attractive or repellant region, is 

determined by the diameter of the sphere. For close-packed colloidal masks, the 

diameter of the spheres also fixes the center-to-center distance between the contact 

points. Consequently, the area of protein-attractive or repellant regions and the center-
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to-center distance between those regions change simultaneously when the diameter of 

the spheres is altered.  

 

In order to independently control the size and center-to-center spacing of protein pattern 

features, colloidal masks have been altered by etching and heat treatment techniques. To 

reduce feature size, reactive ion etching (RIE) has been utilized to shrink spheres before 

using them as a lithographic mask.[16,20,21] Alternatively, to increase feature size, Agheli 

et al. used a modification of the heat treatment procedure developed by Hanarp et 

al.[22,23] After deposition, spheres were heated above their glass transition temperature 

(approximately 100 °C)[24] to produce deformation and thus increase their contact area 

with the underlying substrate. However, neither group investigated the increase in 

feature size as a function of temperature. Furthermore, the colloidal masks used were 

dispersed rather than close-packed, which eliminated the effects of sphere to sphere 

contact during deformation. 

 

In this work, we present a new heating technique to independently control the size and 

center-to-center spacing of features produced with close-packed colloidal masks. 

Monolayers of 10 µm spheres were heated at various temperatures to create protein dots 

with uniform diameters of approximately 2 – 8 µm. Using differential heating, protein 

patterns were made with a continuous gradient of dot sizes of approximately 1 – 9 µm. 

Finally, we demonstrate the utility of these protein patterns by observing the effect of 

protein patch geometry on the spreading of human neutrophils. 
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Experimental Section 

Chemicals and Materials. Polystyrene latex spheres (10 µm mean diameter) were 

purchased from Duke Scientific (Fremont, CA) and washed once in DI water by 

centrifugation before use. Poly(dimethylsiloxane) (PDMS; Sylgard-184, Dow-Corning) 

was purchased from Krayden (Marlborough, MA). Alexa Fluor 488 fibrinogen and 

Qdot 655 goat F(ab’)2 anti-mouse IgG (QD-IgG) were purchased from Invitrogen 

(Carlsbad, CA). Human serum albumin (HSA) was purchased from Gemini Bio-

Products (West Sacramento, CA). Methoxy-poly(ethylene glycol)-silane (mPEG-sil; 

MW=5000) was purchased from Laysan Bio (Arab, AL). Finally, mouse anti-human P-

selectin glycoprotein ligand-1 (PSGL-1) (PL1 antibody), mouse anti-human CD3, the 

Src tyrosine kinase inhibitor PP2, and its inactive analogue PP3, were generously 

provided by Dr. Rodger P. McEver’s group at the Oklahoma Medical Research 

Foundation. 

 

Single Protein Dot Size Substrate Preparation. Periodic patterns of protein dots were 

formed using a modified version of our previously described protocols (Figure 

4.1).[18,19] Briefly, glass slides were cleaned in trichloroethylene, acetone, methanol, and 

DI water in sequential, two-minute cycles in an ultrasonic cleaner. After drying the 

slides under a stream of nitrogen, a PDMS mold with a 4.5 mm diameter circular hole 

cut from the center was placed on the surface of each slide. The substrates were then 

exposed to an air-plasma (Harrick Scientific Corp, model PDC-32G, Ithaca, NY) at 400 

mTorr and “low” power (0.010 W/cm3) for 30 s. After plasma treatment, the PDMS 

molds were removed, and the substrates were left untouched for approximately 30 min.  
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Figure 4.1:  Schematic of the Protein Patterning Procedure. A periodic pattern of 
protein dots is formed using a modified version of our previously described 
protocols.[18,19] (A) A drop of polystyrene sphere suspension is deposited on a glass 
slide. As the solvent evaporates, a sphere monolayer is formed. (B) The spheres are 
deformed by exposing the monolayer to either a uniform temperature (B1) or a 
temperature gradient (B2). (C) A protein-repellant mPEG-sil is covalently grafted to the 
glass surface around the spheres. (D) The spheres are removed to reveal protein 
adsorption sites in an mPEG-sil background. (E) A protein solution is deposited on the 
mPEG-sil patterned surface, and the protein selectively adsorbs to the bare glass in the 
PEG holes. 
 

To form sphere monolayers, 12.7 µL of 0.67% wt 10 µm sphere suspension was 

deposited on the patterned region of each substrate and was allowed to dry in ambient 

conditions overnight. After monolayer formation, the substrates were heated at 80 °C 

for 30 min to promote firm adhesion of the spheres to the surface. Next, the substrates 

were soaked for 5 min in DI water to remove residue from the sphere suspension and 

then allowed to dry for 1 hr in ambient conditions. After drying, the substrates were 

placed in a laboratory oven (Shel Lab, model 1415M, Cornelius, OR) at 105, 115, 125, 

or 135 °C for 60 min. After heating, mPEG-sil was grafted to the substrates around the 

spheres by first exposing the substrates to an air-plasma at 400 mTorr and “high” power 

(0.027 W/cm3) for 1 min and then immediately applying 375 µL of 4 mM mPEG-sil in 
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anhydrous acetonitrile to the substrates. The grafting was allowed to proceed overnight 

at room temperature. Next, ungrafted PEG was removed by soaking the substrates in 

three consecutive Petri dishes full of anhydrous acetonitrile for 5 min each. The 

substrates were then washed with approximately 50 mL DI water using a wash bottle to 

remove the spheres and reveal the hexagonal pattern of holes in the PEG layer. These 

holes then served as adsorption sites for fluorescent protein. Alexa Fluor 488 fibrinogen 

was dissolved in HBSS at a concentration of 20 µg/mL and was dispensed on the PEG-

patterned surfaces for 2 hr. Following incubation, the substrates were first rinsed with 

25 mL HBSS using a transfer pipette and then with 50 mL of DI water using a wash 

bottle to remove any unbound protein. 

 

Gradient Protein Dot Size Substrate Preparation. Substrates with a gradient of 

protein dot sizes were made using the same procedure for single protein dot size 

substrates but with a custom differential heating setup instead of a laboratory oven 

(Figure 4.1B2). After the DI water soak and dry, the substrates were held on a ¾” x ¾” 

stainless steel vacuum chuck using vacuum and two stainless steel wire clips (0.030” 

diameter). The chuck was heated using a cartridge heater controlled by a variac and the 

chuck temperature measured using a type-K thermocouple spot welded to the vacuum 

chuck sidewall. Differential heating of samples was achieved by placing a sample with 

the patterned region half on the heated surface and the other half free standing in air. 

Substrates were heated for 30 min at a chuck temperature of 150 °C. After the substrates 

cooled, the PEG-grafting and protein adsorption steps were completed as described for 

substrates with single protein dot sizes. 
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Human Neutrophil Isolation. Peripheral whole blood was obtained by venipuncture 

from donors via a syringe containing heparin (20 USP units / mL blood to be collected). 

Collected blood was layered on top of an equal volume of Lympholyte-poly Cell 

Separation Media (Cedarlane Labs, Burlington, NC) and was centrifuged for 30 min at 

650 x g. After centrifugation, the polymorphonuclear cell band was transferred to a new 

centrifuge tube, diluted with an equal volume of 0.4% sodium chloride, and further 

diluted with two volumes of HBSS to restore normal osmolarity. The resulting cell 

suspension was centrifuged for 10 min at 650 x g. After discarding the supernatant, 

remaining red blood cells were lysed by adding 10 mL 0.2% sodium chloride, quickly 

inverting to mix, and then adding 10 mL 1.6% sodium chloride. The suspension was 

centrifuged for 5 min at 650 x g, the supernatant was discarded, and the cells were 

resuspended in 5 mL 0.5% HSA in HBSS. The cells were washed three times by 

centrifugation (5 min at 650 x g in 5 mL 0.5% HSA in HBSS), counted, and 

resuspended at 106 cells / mL in 0.5% HSA in HBSS. For experiments involving an 

inhibitor, PP2 or PP3 was added to the isolated cells to a final concentration of 10 µM, 

and the cells were allowed to incubate with the inhibitor at least 30 min before use. The 

blood collection protocol was approved by the Institutional Review Board of the 

University of Oklahoma, and informed consent was obtained from all donors. 

 

Neutrophil Spreading Experiments. Single dot size PEG-patterned substrates were 

created as described above using spheres heated to 135 °C for 60 min. Next, QD-IgG 

stock solution was centrifuged for 5 min at 2200 x g to remove any aggregates formed 

during storage. The supernatant was removed, diluted to 50 nM in PBS, and dispensed 
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on the PEG-patterned surfaces. After incubating 3 hr at room temperature, the substrates 

were washed with approximately 50 mL PBS using a laboratory wash bottle to remove 

any unbound QD-IgG. Next, 20 µg/mL PL1 antibody in PBS was dispensed on the 

patterned surfaces. After incubating 1 hr at room temperature, the slides were washed 

with 25 mL PBS using a transfer pipette to remove any unbound antibody. Finally, the 

slides were coated with 0.5% HSA for at least 1 hr to block any remaining adsorption 

sites. A parallel plate flow chamber (GlycoTech, Gaithersburg, MD) was attached by 

vacuum to a spreading experiment substrate. Isolated neutrophils were pulled into the 

chamber at a shear rate of 500 s-1 and were allowed to settle onto the patterned surface 

under static conditions. Cellular interactions were recorded directly to video in real time 

for up to 30 min. 

 

Substrate Characterization. Fluorescent and differential interference contrast (DIC) 

images and video of spreading cells and protein dot patterns were acquired with a Zeiss 

Axiovert 200 inverted microscope equipped with a 100X objective (NA = 1.3) as 

previously described.[19,25] In cell spreading experiments, the same setup was used to 

perform interference reflection microscopy (IRM) to visualize the dynamic adhesive 

interactions of neutrophils with the protein-coated substrates. Interference reflection 

microscopy is a well-established technique used to image close apposition (< 100 nm) 

between cells and surfaces.[26,27] IRM is based upon the destructive and constructive 

interference patterns that are generated from light reflected from the substrate-buffer 

interface with light reflected from the buffer-cell interface. In regions where the cell 

adheres to the substrate or is in close contact (~10-15 nm), the light waves reflected 
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from the substrate buffer and buffer-cell interfaces cancel each other out, which 

produces the darkest (black) regions in the image. As the distance between the cell 

membrane and the substrate increases, the interference effect becomes attenuated with 

more distant regions appearing dark grey (~30-40 nm) or white (~100 nm).[28,29] 

Consequently, IRM can be used to visualize the adhesion patterns or “footprint” of cells 

with substrates. A CoolSnap cf digital camera was used to capture still images, and a 

Dage-MTI CCD-300T-RC camera was used to capture video. 

 

Image Analysis. Image analysis was performed with the open source software package 

ImageJ (version 1.40g), and video was analyzed using MetaMorph Imaging Software. 

To determine fluorescent protein dot sizes, images were first thresholded to create a 

binary image of black fluorescent protein dots and white background. The thresholding 

criteria were optimized and remained constant for each image analyzed. Next, the areas 

of each fluorescent protein dot were measured. Finally, the area measurements were 

used to calculate the diameters of the fluorescent protein dots with the assumption they 

were circular. 

 

Calculations and Statistics. Values are presented as means ± standard deviation of the 

mean unless otherwise specified. All experiments except the protein dot gradient 

patterning were performed on at least three different samples each made on different 

days. 
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Results and Discussion 

Protein dot patterns with independently controlled dot diameters and center-to-center 

spacing were formed via particle lithography by a five-step process (Figure 4.1): (1) 

formation of a polystyrene sphere monolayer, (2) deformation heating of the sphere  

 

 
Figure 4.2:  Fluorescent Images of Protein Dot Patterns. Fluorescent fibrinogen 
patterns made via particle lithography using 10 µm spheres heated to (A) 105 °C, (B) 
115 °C, (C) 125 °C, and (D) 135 °C. The fluorescent line intensity (arbitrary units) 
graphs to the right of each image correspond to the dashed lines in each image. All scale 
bars are 10 μm. 
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monolayer, (3) grafting of a protein-repellant methoxy-poly(ethylene glycol)-silane 

(mPEG-sil) layer, (4) removal of the sphere monolayer, and (5) selective adsorption of 

protein into the resulting mPEG-sil holes. 

 

Protein Dot Diameters Are Dependent On Deformation Heating Temperature. 

Figure 4.2 shows representative images of protein dots formed with fluorescent 

fibrinogen. The sharp transitions between fluorescing and non-fluorescing regions in the 

accompanying fluorescent line intensity graphs suggest that the protein selectively 

adsorbs into the holes in the PEG layer. The diameters of the protein dots varied 

approximately linearly with the deformation heating temperature for sphere monolayers 

heated for 60 min (Figure 4.3). Initially, other heating times were also attempted, but 

shorter heating times generated larger variations in protein dot diameters, while longer 

heating times did not produce a significant improvement in dot size variation (data not 

shown). We hypothesize that relatively long deformation heating times yield smaller 

variations in protein dot diameter by minimizing the effects of fluctuations in 

temperature and slight differences in sample loading and unloading times. The data 

from the optimized heating time demonstrate the reproducibility of the patterning 

procedure. 

 
Deformation Heating Can Be Used to Create Uniform or Gradient Protein Dot Patterns. 

Figure 4.4 shows representative fluorescent images and the relationship between protein 

dot diameters and monolayer position for a sample differentially heated at 150 °C for 30 

min. The differential heating produced three distinct regions of protein dot diameters. 

The spheres on the left side of the sample, which were in direct contact  
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Figure 4.3:  Relationship Between Protein Dot Diameter and Heat Temperature. 
Fluorescent protein dots created using 10 µm spheres heated for 60 min at 105 – 135 °C 
were measured using ImageJ software. Data is shown as mean ± standard error of the 
mean. 

 

with the heat source, deformed enough to completely cover the substrate. Consequently, 

the PEG could not graft to the underlying glass, and protein was allowed to adsorb 

homogenously across the surface. This is represented in the graph as protein dots with 

diameters equivalent to their center-to-center spacing of 10 µm. At approximately 1.8 

mm from the monolayer’s left edge, sphere deformation decreased to a threshold that 

allowed individual dots to be resolved, and their diameters decreased linearly with 

increasing distance from the heat source. Finally, at the far right of the sample, the 

protein dot diameters stabilized at approximately 1.2 µm, which agrees well with our 

previous measurements of protein dots made using unheated 10 µm sphere monolayers. 

The data demonstrate the ability of the patterning technique to produce samples with 

single or multiple protein dot diameters. 
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Figure 4.4:  Diameter Measurements and Fluorescent Images of Protein Dots 
Formed Using Gradient Heating. Fluorescent fibrinogen dots formed using 10 µm 
spheres exposed to a temperature gradient were measured using ImageJ software. The 
thermal gradient was created by attaching the left half of the sample to a heated 
microscope stage at 150 °C, while the right half was freestanding in air (Figure 1B2). 
The labeled data points on the graph correspond to the fluorescent images of areas with 
dot diameters of approximately (A) 9 µm, (B) 7 µm, (C) 5 µm, (D) 3 µm, and (E) 1 µm. 
Data points with a value of 10 µm indicate areas of continuous protein coverage. All 
scale bars are 20 μm. 
 

Neutrophils Spread on Immobilized PL1 Under Static Conditions. Although 

particle lithography has previously been used to generate protein patterns, to our 

knowledge, those patterns have not been used to investigate cell adhesion. We used our 

particle lithography technique to produce neutrophil adhesion substrates by capturing 

mouse anti-human monoclonal antibody (PL1) to P-selectin glycoprotein ligand-1 

(PSGL-1) with adsorbed quantum dots conjugated to goat anti-mouse IgG (QD-IgG). 

Neutrophil adhesive interactions with QD-IgG/PL1 coated substrates were monitored 

by nearly-simultaneous (switching time of ~ 1 s) IRM and DIC imaging (Figure 4.5). 

When isolated neutrophils were allowed to settle on substrates coated with unpatterned 
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QD-IgG/PL1, the PSGL-1 constitutively expressed on the neutrophil cell membranes 

was bound by the PL1, and neutrophil spreading was observed (Figure 4.5A). Since the 

substrate was homogenously coated with ligand, the neutrophil spread relatively evenly 

in all directions. After five minutes, the neutrophil had spread completely, which is 

evidenced by its flat appearance in the final DIC image and the lack of bright areas in 

the final IRM image. To our knowledge, neutrophil spreading on immobilized PL1 has 

not previously been documented, but this response is not surprising since the role of 

PSGL-1 as a signaling molecule has been well established. PSGL-1 mediated signaling 

during rolling interactions with either P-selectin or E-selectin has been reported to 

induce integrin activation and slow rolling.[30-33] Similarly, several groups have 

observed that cross-linking PSGL-1 to antibodies induces activation.[34-36]  

 

Neutrophil spreading on PL1 is Src-dependent. In order to determine the mechanism 

of neutrophil spreading on immobilized PL1, several control experiments were 

performed. Neutrophils were allowed to settle on surfaces coated with QD-IgG but 

without any bound PL1 or other primary antibody. No spreading was observed, which 

indicates that spreading on QD-IgG/PL1 coated surfaces was not due to the QDs or their 

conjugated F(ab’)2 fragments. Likewise, neutrophils also did not spread on surfaces 

coated with QD-IgG with bound mouse anti-human CD3. Since neutrophils do not 

express CD3, these results indicate that neutrophil spreading on QD-IgG/PL1 was not 

due to the presence of a primary antibody in general but required the specific interaction 

between PSGL-1 and PL1. PSGL-1 engagement to E-selectin has previously been 

shown to induce signaling through the Src-family kinases.[37] To investigate whether the 
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Src-family kinases are involved in neutrophil spreading on PL1, neutrophils were 

pretreated with PP2 or PP3 before exposure to QD-IgG/PL1 coated surfaces. PP2 is a 

selective Src-family kinase inhibitor, and PP3 is a nonfunctional molecule structurally 

similar to PP2 that is used as a PP2 negative control. The addition of PP2 abolished 

neutrophil spreading while the addition of PP3 did not affect neutrophil spreading. 

These results indicate neutrophil spreading on immobilized PL1 is induced by Src-

dependent signaling through the interaction of PSGL-1 and PL1. 

 

Neutrophil Adhesion is Limited to Protein Dots on Patterned Substrates. To 

investigate whether neutrophil spreading would be affected by the spatial presentation 

of PL1, we performed similar experiments with neutrophils on dot patterns of QD-

IgG/PL1. Figure 4.5B and Figure 4.5C show representative images of neutrophils 

spreading on QD-IgG dots with and without bound PL1, respectively. The diameters of 

the dots in both patterns are approximately 8 µm with a center-to-center spacing of 10 

µm. After 10 min, the neutrophil settled on the substrate without PL1 (Figure 5C) 

showed no spreading, which indicates that PL1 and not the QD-IgG was responsible for 

neutrophil spreading as previously discussed. The neutrophil that settled on the QD-IgG 

pattern with PL1 (Figure 4.5B) spread asymmetrically with adhesion initially limited to 

four protein dots immediately accessible to the cell. After fully covering the four dots 

by t = 5 min, the neutrophil began probing the surrounding area by repeatedly extending 

and retracting areas of the neutrophil membrane. Through this process, the neutrophil 

eventually made contact with a fifth protein dot. The neutrophil only spread thinly 

enough to partially cover the final dot, and there was no observable change after t = 20  
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Figure 4.5:  Neutrophil Spreading on PL1. Isolated neutrophils were allowed to settle 
on cell adhesion substrates coated with QD-IgG and PL1 (A – homogeneously coated, 
B – patterned) or QD-IgG only (C – patterned). Protein patterns and cellular interactions 
were recorded to video using IRM, DIC microscopy, and fluorescent microscopy, and 
still images were captured from the video using MetaMorph Imaging Software. 
Patterned substrates (B,C) were created with 10 µm spheres heated to 135 °C for 60 
min. All scale bars are 10 µm. 



103 
 

min. Throughout the spreading experiment, IRM imaging showed the neutrophil was 

only in close contact with the substrate in the QD-IgG/PL1 coated areas. These results 

indicate that neutrophil adhesion to a substrate can be controlled using our protein 

patterning technique. 

 

Areas of Continuous Neutrophil Coverage Can Be Created with Multiple Cell 

Perfusions. When only a single perfusion of neutrophils was used for adhesion 

experiments, only part of the patterned area was eventually covered by spread 

neutrophils. However, when multiple cycles of perfusing new neutrophils and pausing 

the flow to let them settle were used on a single substrate, areas of continuous spread-

neutrophil coverage could be created. Figure 6 shows a set of representative DIC, IRM, 

and fluorescent images of an area almost completely covered by spread neutrophils. The 

dashed circle in each image emphasizes the only full-dot break in the coverage. The 

uncovered dot is visible in the IRM image and has the highest intensity in the 

fluorescent image, which is likely because it is not covered by a spread neutrophil.  

 

 
Figure 4.6:  Continuous Layer of Neutrophils on QD-IgG/PL1 Dots. (A) DIC, (B) 
IRM, and (C) fluorescent images of neutrophils spreading on patterned QD-IgG and 
PL1. The circle in each image outlines the only dot that is not covered by spread 
neutrophil. The substrate was created by infusing cells several times over a patterned 
substrate fabricated using 10 µm spheres heated to 135 °C for 60 min 
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These results show the capability of our technique to vary the density of spread 

neutrophils on patterned substrates. 

 

Conclusions 

A simple method to independently control protein dot diameters and center-to-center 

spacing in protein patterns fabricated via particle lithography was developed. The 

patterns were made by forming a monolayer of polystyrene spheres, heating the spheres 

to various levels of deformation, grafting a layer of protein-repellant mPEG-sil around 

the spheres, and then adsorbing protein into the holes created by sphere removal. The 

versatility of our technique was demonstrated by using 10 µm spheres to create single-

diameter dot patterns of approximately 2 – 8 µm and gradient dot patterns with a 

continuum of dot diameters between those produced by an unheated sphere monolayer 

(approximately 1 µm) and a melted sphere monolayer (homogenous protein coverage). 

We demonstrated one application of our patterning method by controlling the adhesion 

of human neutrophils in a static spreading assay. We anticipate this technique could be 

extended to include more protein dot diameters and center-to-center spacings as well as 

new cell lines and adhesion types (i.e., rolling under shear).  
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Chapter 5:  Suggestions for Future Directions 

 

After our basic protein patterning method was established, our work was directed 

towards overcoming limitations of the technique (i.e. long-term visualization of protein 

patterns and independent control of protein dot size and center-to-center spacing) and 

applying the technique to new investigations and technologies (i.e. neutrophil spreading 

on patterned PL1 and the design of a fluorescent immunoassay). To maximize the 

versatility and impact of the patterning process, further work should be performed in 

both of these areas. 

 

Multi-protein Patterns 

As previously discussed, particle lithography has not yet been used to create multi-

protein patterns despite their utility in heterogeneous cell co-cultures,[1] multi-analyte 

biosensors,[2] and the examination of the cellular response to multiple ligands that are 

spatially segregated.[3] We are currently investigating extensions of our particle 

lithography technique to pattern multiple proteins. In keeping with our original design 

principles, the new modifications are relatively inexpensive and simple to employ.  

 

Filled-Honeycomb Patterns were created by substituting a protein-adherent silane for 

the protein-repellant mPEG-sil typically used in our patterning technique (Figure 5.1). 

The filled-honeycomb patterning procedure is identical to the process outlined in 

Chapter 4 through the deformation heating step. After heating, trimethoxyoctadecyl-

silane (Aquasil; Thermo Fisher Scientific, Waltham, MA) was grafted to the substrates 

around the spheres by first exposing the substrates to an air-plasma at 400 mTorr and  
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Figure 5.1:  Filled-Honeycomb Patterning Schematic. 
 

“high” power (0.027 W/cm3) for 1 min and then immediately applying 500 µL of 1% 

Aqausil in DI water to the substrates. The grafting was allowed to proceed for 10 s 

before the excess liquid was aspirated from the surface and the substrates were soaked 

in DI water for 5 min to remove any unbound Aquasil. The substrates were then dried 

under a stream of nitrogen. Alexa Fluor 488 BSA was dissolved in HBSS at a 

concentration of 20 µg/mL and was dispensed on the Aquasil-patterned surfaces for up 

to 2 hr. It is important to note that the Aquasil treatment, DI water washing, nitrogen 

drying, and protein incubation did not remove the spherical particles from the substrates 

under the conditions studied. Following protein incubation, the substrates were rinsed 

with 25 mL HBSS using a transfer pipette to remove the spheres and any unbound 

protein. If the rinsing did not remove the spheres, the substrates were sonicated in 

HBSS in 2 min intervals until the spheres were removed. Alexa Fluor 647 fibrinogen 

was dissolved in HBSS at a concentration of 20 µg/mL and was dispensed on the BSA-

patterned surfaces for up to 2 hr.  Finally, the substrates were rinsed with 25 mL HBSS 

using a transfer pipette and 50 mL of DI water using a wash bottle to remove any 

unbound protein. 

 

 



112 
 

Figure 5.2 shows images from a filled-honeycomb pattern that was created with 10 µm 

spheres heated to 125 °C for 60 min and thus had similar dimensions to the single 

protein pattern in Figure 4.2C. The boundaries between the BSA and fibrinogen coated 

honeycomb background and dots, respectively, were well defined. In addition, there 

was no signal from the fibrinogen in the pattern background and no signal from the 

BSA in the pattern dots, which indicates that the protein adsorbed only in the desired 

areas.  

 

 
Figure 5.2:  Fluorescent Images of a Filled-Honeycomb Pattern. (A, B) Images 
(pseudocolored post-acquisition) of the fluorescent signal from Alexa Fluor 488 BSA 
(A) and Alexa Fluor 647 fibrinogen (B) from the same area of a single substrate 
obtained by switching fluorescent filters. (C) Resulting image when (A) and (B) are 
combined. 
 

This technique should be further validated by determining the reproducibility of the 

patterns, the activity of the protein adsorbed in the background, the activity of the 

protein adsorbed in the dots, and the amount of protein (if any) that adsorbs in undesired 

locations. Since this technique relies on the sphere mask (1) to stay attached to the 

substrate during the first protein incubation and (2) to detach from the surface without 

contact to the surface (i.e. removal by scratching), the feasibility of using this process 

with different sphere sizes and deformation heating conditions should also be 

investigated. 
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Dual-Protein Dot Patterns were created with a different modification to our patterning 

technique (Figure 5.3). One side of Alexa Fluor 488 fibrinogen patterns (20 µg/mL 

coating concentration) produced by the process outlined in Chapter 4 were simply 

“wiped” with a sharp edge of a rectangular piece of Teflon sheet. This procedure was 

performed with the samples covered with HBSS to prevent protein drying and 

inactivation. Although the wiping action can be performed by hand, the Teflon was 

secured to a linear translation stage (Newport Corporation, North Billerica, MA) to 

provide even pressure to the substrates’ surfaces along the straightest paths possible. 

After wiping, the samples were rinsed with 25 mL of HBSS using a transfer pipette to 

prevent any detached protein from readsorbing. Next, an Alexa Fluor 647 fibrinogen 

solution (20 µg/mL) was dispensed on the substrates for 2 hr. Finally, the substrates 

were rinsed with 25 mL of HBSS using a transfer pipette and 50 mL of DI water using a 

wash bottle to remove any unbound protein. 

 

 
Figure 5.3:  Dual-Protein Dot Patterning Procedure. 
 

Figure 5.4 shows images from a two-protein dot pattern that was created with 10 µm 

spheres heated to 135 °C for 60 min and thus had similar dimensions to the single 

protein pattern in Figure 4.2D. The boundary between the wiped and unaltered sides of 

the pattern is sharp and even divides individual dots. Although the wiped and unaltered 

sides of the pattern appear to only have Alexa Fluor 647 fibrinogen and Alexa Fluor 
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488 fibrinogen signals, respectively, each side showed some (approximately 15x less 

signal) undesirable adsorption of fibrinogen labeled with the opposite fluorophore. The 

contamination on the wiped side of the pattern may be due to incomplete removal of the 

protein that was initially adsorbed or readsorption of protein detached during the wiping 

process. The contamination on the unaltered side of the pattern may be due to the 

second protein filling unoccupied adsorption sites in the dot domains or the formation 

of fibrinogen multilayers, which has been previously documented.[4] 

 

 
Figure 5.4:  Fluorescent Images of a Dual-Protein Dot Pattern. (A, B, D, E) Images 
of the fluorescent signal from Alexa Fluor 488 fibrinogen (A, D) and Alexa Fluor 647 
fibrinogen (B, E) from the same area of a single substrate obtained by switching 
fluorescent filters and magnifications (40X and 10X). (C) Resulting image when (A) 
and (B) are pseudocolored and combined. (F) Resulting image when (D) and (E) are 
pseudocolored and combined. 
 

Further experiments with this technique should be performed to determine the 

reproducibility of the patterns, the activity of the protein adsorbed in the dots on the 

wiped side, the activity of the protein adsorbed in the dots on the unaltered side, and the 
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amount of protein that adsorbs in undesired locations. Although some applications may 

not be affected by a small amount of the opposite protein contaminating each side of the 

dual-protein dot patterns, methods to reduce or eliminate contamination should be 

investigated. To exclude the possibility that single-protein multilayers are forming, two 

different proteins (e.g. BSA and fibrinogen, as in the filled-honeycomb patterns) should 

be used to create patterns instead of the same protein with different fluorophores. 

Contamination may be reduced on the unaltered side by blocking unoccupied 

adsorption sites before the wiping procedure. Contamination on the wiped side may be 

reduced by performing the wiping procedure in the presence of the second protein to be 

patterned so that it can compete with the detached protein for recently-vacated 

adsorption sites. In addition, multiple wiping steps may be employed with intermediate 

rinses to more thoroughly remove the originally adsorbed protein. 

 

If the contamination can be reduced to an acceptable level, the dual-protein dot 

patterning procedure could be extended to pattern protein dots in more complicated 

geometries and/or to pattern more than two proteins on a single substrate. Using a 

wiping tool with single or multiple points, adsorbed protein could be removed from 

smaller areas of patterned substrates with each wiping procedure. This would allow 

lines or even more complicated designs to be “drawn” in an originally adsorbed protein 

before adsorbing a second protein. If multiple wiping procedures were used, each 

followed by the adsorption of a different protein, complex designs of several proteins 

could be created on a single substrate. 
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Cell Adhesion Studies 

As discussed in Chapter 1, one of the initial motivations for our protein patterning 

technique was to investigate the relationship between neutrophil adhesion and protein 

spatial arrangement. Under different physiological conditions, neutrophils can adhere 

transiently (i.e. rolling) or firmly (i.e. spreading) to physiological  surfaces. Chapter 4 

includes a proof of concept neutrophil spreading study, but there are a number of 

neutrophil adhesion experiments that remain to be completed. 

 

Neutrophil Spreading Experiments. To better understand the effects of ligand spatial 

arrangement on neutrophil spreading, the study performed in Chapter 4 should be 

extended. The neutrophil spreading response to other protein dot sizes and center-to-

center spacings should be examined to determine the minimum feature size necessary to 

induce spreading and the relationship between experimental conditions and the rate and 

extent of spreading. By varying protein dot dimensions, contact between spreading cells 

could be encouraged or restricted to determine whether cell-to-cell communication 

affects spreading. In addition to varying protein dot dimensions, neutrophil spreading 

characteristics could also be compared for different ligands and in the presence of 

different inhibitors, which has been studied for homogeneously coated substrates but 

not for patterned substrates.[5] 

 

Neutrophil Rolling Experiments. During the inflammatory response, neutrophils roll 

on activated endothelial cells that express P-selectin in a punctated fashion.[6-8] P-

selectin patterned substrates could be used to determine the minimum dimensions 
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required to support rolling on individual features, the effects of patch size and spacing 

on rolling characteristics (e.g. velocity and fluidity), and the prevalence of different 

rolling behaviors (e.g. smooth rolling, skipping, and pausing) on patterns with various 

geometries. 

 

Other Recommended Studies 

Although there are numerous applications of protein patterns with the dimensions that 

have already been fabricated, the particle lithography technique should be extended to 

other sphere sizes to produce larger and smaller protein dot diameters and center-to-

center spacings. In addition, the knowledge gained from the suggested cell adhesion 

studies could be applied to similar studies of other cell types. For example, the 

information from neutrophil rolling experiments could be useful to investigations of 

platelet rolling in thrombosis,[9] infected red blood cell rolling in malaria,[10] and cancer 

cell rolling in metastasis.[11] 
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Chapter 6:  Conclusions 

The major conclusions from this dissertation are as follows: 

 The development of a novel protein patterning method based on particle 

lithography was described.  

 The patterning technique relies on inexpensive, “bench-top” processes and 

equipment and was used to produce samples with millions of protein-coated 

“dot” features in parallel.  

 By changing the diameters of the spherical particles used as the lithographic 

mask, the diameters and center-to-center spacing of the resulting protein dots 

were varied simultaneously between 450 – 1050 nm and 2 – 10 µm, 

respectively. 

 Sphere monolayer washing was critical to PEG-layer integrity and pattern 

uniformity. 

 Patters were created with multiple proteins and biomolecule-coated particles 

(i.e. CdSe quantum dots, nanogold). The pattern dimensions were independent 

of the protein or biomolecule-coated particle used during patterning. 

 Quantum dot bioconjugates (QDBCs) were used to construct a fluorescent-based 

immunoassay that was well-characterized by a logarithmic function over four 

orders of magnitude of analyte concentration. The assay had a subpicomolar 

concentration detection limit, which, when combined with the low sample 

volume required for the assay, corresponds to a mass detection limit of only 

several femtograms. 
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 Protein dot diameters and center-to-center spacing were controlled 

independently with the addition of a simple heating process. Using the 

patterning procedure with the heating modification, protein dots with diameters 

of 1.1 – 9 µm were created with a center-to-center distance of 10 µm. 

 Protein dot patterns with single diameters could be created using uniform heat or 

a continuous gradient of diameters using differential heating. 

 PEG-patterned substrates coated with anti-PSGL-1 (PL1) were used to study 

neutrophil spreading. Neutrophils adhered only to antibody-coated regions of the 

patterns. 

 Multiple infusions of neutrophils were used to form a continuous layer of spread 

neutrophils over a PL1-patterned surface. 
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