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Abstract 

Natural products have traditionally played an important role in drug discovery 

research.  They have been particularly important in the search for therapies for 

neurodegenerative diseases.  Although there are numerous forms of neurodegenerative 

diseases, the disorders associated with protein misfolding (e.g. Alzheimer’s, Parkinson’s, 

Huntington’s and prion diseases) represent a unique area for natural products drug 

discovery as these diseases share many pathological features, suggesting that therapies 

developed for any one of these diseases may have applications for the others.  There have 

been many reports of secondary metabolites with biological activities related to 

neurodegeneration associated with protein misfolding, and emerging drug targets for 

these diseases are fueling interest in finding natural products which can serve as leads for 

therapeutic development.  The literature surrounding the topic of natural products and 

neurodegenerative disease has been summarized in the first chapter of this dissertation. 

Although there have already been many natural products identified as potential 

therapeutic leads for neurodegenerative diseases, there is still a significant need for the 

enhancement of methodologies used for bioassay screening of secondary metabolites.  

Metabolomic approaches to drug discovery have the potential to combine the advantages 

of phenotypic disease models and molecular target assays.  The metabolomic 

examination of a phenotypic disease model can provide detailed information concerning 

the molecular target and/or the mechanism of action of a compound while simultaneously 

revealing its phenotypic effects.  The third chapter of this dissertation describes the 

metabolomic examination of a phenotypic model of Huntington’s disease.  This detailed 

exploration of the metabolic changes associated with mutant huntingtin toxicity has 
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revealed many intriguing new insights into the specific processes which are involved in 

the cellular response to protein aggregation.  The results in this chapter show that the 

metabolic response of cells to mutant huntingtin can be detected using a metabolomic 

approach and that these metabolic changes can be used to identify potential therapeutic 

targets for Huntington’s disease.  These results also show the importance of the 

metabolites alanine, glutamine, glycerol and valine in the metabolic response to mutant 

huntingtin in multiple species.  This work provides the foundation for the future 

development of a metabolomic-based drug discovery platform for natural products. 

In the fourth chapter of this dissertation, the use of metabolic profiling to examine 

the protective role of the metabolite trehalose is described.  Trehalose is a disaccharide 

that has been previously identified as having therapeutic implications for 

neurodegenerative diseases.  In order to explore the role that trehalose plays in the yeast 

model of Huntington’s disease, a series of yeast strains with gene deletions for each step 

in the metabolic cycle of trehalose were engineered to express normal and mutant 

huntingtin protein fragments.  One of these gene deletion strains, deficient in the 

production of the acid trehalase protein, exhibited a prounouced reduction in the toxicity 

associated with mutant huntingtin, the aggregation of mutant huntingtin and the 

elimination of the metabolic aberrations associated with mutant huntingtin expression. 

This investigation of the role of trehalose in the yeast model of Huntington’s disease 

provides evidence for the therapeutic potential of the manipulation of chemical chaperone 

systems in mammalian cells. 

The final chapter of this dissertation diverges from the topic of neurodegeneration 

and instead describes the isolation and characterization of a series of briarane diterpenes 
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from a Briareum sp. of octocoral.  The ichthyotoxic properties of these compounds are 

described as well as their metabolic transformation by fish.  The scientific merits of this 

study make it an important and significant part of my doctoral research and demonstrate 

the multidisciplinary nature of my research. 
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Chapter 1 The emerging role of natural products for the treatment of 

neurodegenerative diseases associated with protein misfolding 

1.1 Introduction 

Neurodegenerative diseases caused by misfolded proteins have become a 

significant problem in developing countries as life expectancies continue to rise.  Today 

millions of people suffer from neurodegenerative diseases such as Alzheimer’s, 

Parkinson’s, Huntington’s and prion diseases (Farooqui and Farooqui 2009; Stefani 

2007). These disorders share many common pathological features, including the 

formation of protein aggregates in the brain, dysregulation of cell signaling, oxidative 

stress, inflammation, and apoptosis (Amor, et al. 2010; Davies, et al. 2006; Skovronsky, 

et al. 2006).  The search for new therapies for these conditions is urgent since there are 

currently no effective treatments available to halt or reverse their progress (Scatena, et al. 

2007).   

The United States National Institute of Neurological Disorders and Stroke 

(NINDS) estimates that over 4.5 million people suffer from these diseases in the U.S. 

alone (NINDS 2010), and there are many millions more suffering in other countries 

around the world (Figure 1.1).  Alzheimer’s disease is the most common of these 

neurodegenerative conditions, with an estimated 4 million diagnosed cases in the U.S.  

Parkinson’s disease is the second most common with around half a million diagnosed 

cases.  Huntington’s disease and prion diseases are much rarer, but the crippling and fatal 

effects of these diseases are no less severe for those suffering from them.  Because of the 

millions of people affected by these diseases, there is considerable work underway to 
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search for new therapies for 

patients with these disorders 

(Cornelis, et al. 2007; Gilgun-

Sherki, et al. 2006; Gold and 

Villafranca 2003; Lleo 2007; 

Planells-Cases, et al. 2006; 

Scatena, et al. 2007; Van der 

Schyf, et al. 2006; Van der 

Schyf, et al. 2007). 

Natural products are expected to play a significant role in the search for 

neurodegenerative disease therapeutics since historically secondary metabolites have 

been an excellent source for the development of small molecule therapeutics (Butler 

2004; Newman 2008; Newman and Cragg 2007).  The unique combination of novel 

chemical space occupied by natural products coupled with their potent bioactivities has 

made them an attractive resource for drug discovery.  Neurodegenerative diseases pose a 

particularly difficult problem for drug discovery efforts since the mechanisms of many of 

these diseases are still not clearly understood.  The exceptional properties of natural 

products make them excellent tools for answering the difficult problems posed by drug 

discovery efforts for neurodegenerative disorders.  Two molecules have already 

demonstrated the potential of natural products for treating neurodegenerative disease: 

galanthamine (1) and huperzine A (2).  Both of these compounds inhibit the enzyme 

acetylcholinesterase and are in clinical use for the treatment of Alzheimer’s disease 

(Dong, et al. 2009; Heinrich and Lee Teoh 2004).   

Alzheimer’s
4,000,000

Parkinson’s
500,000

Huntington’s
15,000

Prion
300

Prevalence of neurodegenerative 
disorders in the United States

Figure 1.1 Estimated prevalence of neurodegenerative 
diseases associated with protein misfolding in the United 
States. Data from the United Stated National Institutes of 
Health, National Institute of Neurological Disorders and 
Stroke. 
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A small number of review articles have 

appeared previously summarizing discoveries in 

natural products limited to Alzheimer’s and 

Parkinson’s disease (Houghton and Howes 2005) or 

the very broad topic of biological activity in the 

central nervous system with little space given to 

neurodegenerative diseases  (Clement, et al. 2004; 

Gomes, et al. 2009).  Somewhat more common have 

been reviews of natural products discoveries related to 

a single biological target for neurodegenerative 

disease, such as acetylcholinesterase (Barbosa Filho, 

et al. 2006; Jung and Park 2007; Loizzo, et al. 2008; 

Orhan, et al. 2009; Viegas Jr, et al. 2005) or neurotrophins (Ohizumi, et al. 2004; Tohda, 

et al. 2005).  There have also been reviews of specific classes of compounds such as the 

flavonoids and polyphenols and their biological activities pertaining to neurodegeneration 

(Bastianetto, et al. 2007; Patel, et al. 2008; Vafeiadou, et al. 2007).  However, there has 

never been a comprehensive review of the natural products literature that summarizes the 

data concerning protein aggregation related neurodegenerative diseases.  This review 

summarizes the literature pertaining to bioactive natural products and their primary 

application to neurodegenerative diseases associated with protein misfolding.  

Compounds with very broad or non-specific bioactivities, such as antioxidants, have been 

excluded since their therapeutic applications are limited.  Instead this review is focused 

on summarizing the role of natural products in drug discovery efforts for established as 

2 

1 

OHN

CH3

N

N

H3C

H

CH3

CH3O

O

OH

N

O
H3C

CH3

H
N O

H3C

CH3

NH2

3 



4 

well as emerging targets for neurodegenerative diseases.  The following sections will 

provide a brief introduction to each disease followed by a summary of natural products 

discoveries related to therapeutic targets specific for each disease. 

1.2 Alzheimer’s disease 

Alzheimer’s disease (AD) is characterized by the presence of insoluble amyloid 

plaques in the extracellular region between neurons; these plaques consist primarily of 

the β-amyloid (Aβ) peptide, the aggregation-prone agent that is central to AD 

neuropathology (Pallas and Camins 2006).  The misfolding and aggregation of Aβ is 

believed to lead to disruption of normal neuronal functions, including decreased 

production and altered regulation of neurotransmitters and neurotrophins, mitochondrial 

dysfunction, oxidative stress, inflammation, and tau hyperphosphorylation (Pallas and 

Camins 2006; Querfurth and LaFerla).  The combined effects of these problems lead to 

the degeneration of cholinergic neurons, especially in the hippocampus, which results in 

the primary symptom of AD (i.e. memory loss) (Pallas and Camins 2006; Querfurth and 

LaFerla). 

Because AD is caused by such a multi-faceted collection of disrupted cellular 

processes, there are many potential therapeutic targets for this disease.  It has even been 

proposed that drug discovery efforts would benefit from a polypharmacological approach 

that modulates multiple targets (Van der Schyf, et al. 2006; Van der Schyf, et al. 2007).  

In the following sections, the reported activities of natural products against a variety of 

AD targets have been summarized.  In some cases these targets are specific enzymes, in 

others the target is simply the general alleviation of toxic agents associated with AD.  The 

relevant biological activity and structural features are discussed in each case. 
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1.2.1 Acetylcholinesterase inhibitors.  Natural products with inhibitory activity 

against cholinesterases, such as physostigmine (3), have been known since the 1920’s 

(Triggle, et al. 1998), although it wasn’t until later in the 20th century that these 

compounds began to receive attention as potential therapeutics for AD (Orhan, et al. 

2009).  The therapeutic effect of these compounds for AD is due to the increase in 

concentration of the neurotransmitter acetylcholine at the synapse, which is normally 

deactivated by the enzyme acetylcholinesterase (Lleo 2007).  Acetylcholinesterase 

inhibitors are commonly used to treat AD; the natural product galanthamine (1), 

originally isolated from Galanths spp. of plants, is an approved therapy for AD in the 

United States and Europe as well as many other countries (Heinrich and Lee Teoh 2004).  

Huperzine A (2) is another well known acetylcholinesterase inhibitor which was 

originally isolated from Huperzia serrata, a plant with traditional use in Chinese folk 

medicine (Yuan, et al. 2008).  It has entered clinical use in China and is being developed 

for use in other countries (Dong, et al. 2009).  The activity of 2 and other naturally 

occurring inhibitors of acetylcholinesterase have been thoroughly reviewed elsewhere 

(Barbosa Filho, et al. 2006; Jung and Park 2007; Loizzo, et al. 2008; Orhan, et al. 2009; 

Viegas Jr, et al. 2005; Yuan, et al. 2008; Zangara 2003). 

1.2.2 Kinase inhibitors (Cdk5 and Gsk3).  Two protein kinases have been 

implicated in AD, cyclin dependent kinase 5 (Cdk5) and glycogen synthase kinase 3 

(Gsk3), both of which are promising targets for the development of new therapies against 

AD.  Although Gsk3 has multiple functions, it is known to play an important role in the 

phosphorylation of tau and in the production of Aβ; inhibition of Gsk3 has also been 

shown to decrease the production of Aβ in a mouse model of AD (Giese 2009; 
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Hernandez and Avila 2008).  Cdk5 is essential for neuronal development, but its function 

in adults is not as clear (Liu, et al. 2007).  It has been shown that Cdk5 phosphorylates 

both tau and the amyloid precursor protein (APP), leading to the formation of 

neurofibrillary tangles (NFT’s) and increased production of the toxic Aβ peptide (Liu, et 

al. 2007).  Inhibitors of Gsk3 and Cdk5 have exciting potential as targets for the 

treatment of AD and several promising natural products leads have been identified. 

Hymenialdisine (4), marine sponge metabolite, was identified as an extremely 

potent inhibitor of both Gsk3 (IC50 = 10 nM) and Cdk5 (IC50 = 28 nM) (Meijer, et al. 

2000).  A variety of structurally related compounds were also tested against a series of 

kinases in the same study, but 4 was significantly more potent than all of the other 

compounds. 

The manzamines are a series of marine sponge alkaloids with impressive activity 

as inhibitors of Gsk3 and Cdk5 (Hamann, et al. 2007).  Manzamine A (5), 8-

hydroxymanzamine A (6), manzamine E (7), manzamine F (8), manzamine Y (9), and the 

unique manzamine dimer, neo-kauluamine (10) all inhibit Gsk3 in vitro at a 

concentration of 25 µM (Cheng, et al. 2006; El Sayed, et al. 2001).  Manzamine A also 

inhibits Cdk5 (IC50 = 1.5 µM) and decreases tau phosphorylation in human 

neuroblastoma SH-S5Y5 cells (Hamann, et al. 2007).  Compounds 5-10 all inhibited 

Gsk3 in vitro, but in a cell-based assay only 5 and 6 inhibited Gsk3 (Cheng, et al. 2006).  

None of the manzamines are active against acetylcholinesterase or β-secretase (BACE1), 

nor do they protect SH-SY5Y cells against oxidative-stress induced death (Cheng, et al. 

2006).  Manzamine A (5), B (11), C (12) and D (13) exhibit low micromolar anti-

inflammatory activity, but 7 and 8 do not (Mayer, et al. 2005).  A recent molecular 
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docking study also suggests that 6 binds to the ATP-noncompetitive pocket of Gsk3 

(Peng, et al. 2010).   

1.2.3 β-amyloid toxicity.  Because of its central role in AD pathogenesis, several 

models of AD based upon Aβ induced toxicity have been developed.  These include 

rodent and insect models as well as cell culture models (Bateman and Chakrabartty 2004; 

Bloom, et al. 2005; Iijima and Iijima-Ando 2008).  Some of these models transgenically 

express the amyloid precursor protein (APP), which is then cleaved by a series of 

secretases to form toxic Aβ, while other models utilize Aβ peptide infused into cultured 

4 
5 (R1 = R2 = H)  
6 (R1 = H, R2 = OH) 
9 (R1 = OH, R2 = H)  
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cells or rodent brains.  These models accurately recapitulate many of the pathological 

features of AD, such as neurotoxicity, apoptosis, formation of amyloid plaques, tau 

hyperphosphorylation, and memory loss (Bateman and Chakrabartty 2004; Bloom, et al. 

2005; Iijima and Iijima-Ando 2008). 

Akebia saponin D (14), isolated from the plant Dipsacus asperoides, protects 

PC12 cells from toxicity associated with Aβ treatment at concentrations as low as 0.1 

µg/mL (Ouyang, et al. 2009).  Treatment with 14 also decreases the influx of Ca2+ into 

the Aβ treated cells, decreases the amount of lactate dehydrogenase released by the cells 

and reduces the morphological defects caused by Aβ treatment of PC12 cells (Ouyang, et 

al. 2009).  

Two compounds, withanamide A (15) and C (16), isolated from the fruit of the 

Ayurvedic plant Withania somnifera, protect PC12 cells against toxicity induced by Aβ 

treatment (Jayaprakasam, et al. 2009).  Compound 15 significantly protects cells against 

14 
15 

16 
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Aβ toxicity at a concentration of 50 µg/mL, but 16 has no significant effect on cell 

viability.  The authors suggest that the difference in activity is due to the unique way in 

which the unsaturated hydrophobic side chain of 15 binds to the active motif of the Aβ 

peptide (Jayaprakasam, et al. 2009).   

Eight iridoid glycosides, isolated from Gardenia jasminoides, enhance the short-

term memory in a transgenic Aβ Drosophila model of AD (Hong, et al. 2009).  

Compounds including  6′-O-trans-p-coumaroylgeniposide (17), 10-O-

succinoylgeniposide (18), 6′-O-acetylgeniposide (19), 6′-O-trans-sinapoylgeniposide 

(20), geniposide (21), 10-O-acetylgeniposide (22), 11-(6-O-trans-

sinapoylglucopyranosyl)gardendiol (23), and 10-(6-O-trans-

sinapoylglucopyranosyl)gardendiol (24) all significantly enhance the performance index 

of flies expressing human Aβ42 in an assay testing the short-term memory of the flies 

(Hong, et al. 2009).  The compounds were administered to the flies in a 4% sucrose 

solution at a concentration of 0.00076 % (w/v) for 7 days prior to testing the short-term 

memory of the flies.   

A stilbene monomer, 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside (25), was 

isolated from the roots of Polygonum multiflorum(Yan 1981).  When administered to a 

transgenic mouse model of AD at a dosage of 240 µmol/kg/day, 25 effectively reduces 

learning-memory deficits in the mice (Zhang, et al. 2006). 

The quinazoline alkaloid dehydroevodiamine (26), first isolated from Evodia 

rutaecarpa (Nakasato, et al. 1962), significantly reduces Aβ induced amnesia in mice 

with a minimum effective dose of 0.75 mg/kg (Wang, et al. 2001).  Compound 26 also 
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reduces tau hyperphosphorylation in an activated Gsk3 rat model of AD (Hamann, et al. 

2007), and in calyculin A treated rat brain slices (Fang, et al. 2007).  

1.2.4 β-secretase inhibitors.  The toxic Aβ peptide is formed from the enzymatic 

cleavage of APP.  There are three enzymes or enzyme complexes that cleave APP: α-

secretase, β-secretase (BACE1) and the γ-secretase complex (Giese).  BACE1 and the γ-
secretase complex have both been implicated as therapeutic targets for AD since their 

inhibition may be able to reduce the amount of Aβ in the brain (Panza, et al. 2009).  

There have also been some attempts to increase the activity of α-secretase since it is 

responsible for the production of non-toxic Aβ, but these have met with only limited 

success (Giese).  Most of the work in the development of secretase inhibitors for AD drug 

discovery has focused on BACE1 because it is a single enzyme and thus allows for more 

focused targeting by drugs.  BACE1 activity is elevated in the brains of AD patients and 

it has been shown that a reduction in this activity is beneficial in AD models (Vassar, et 

al. 2009).   
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A series of alkaloids isolated from the rhizome of Coptis chinensis yielded several 

compounds with inhibitory activity against BACE1 (Jung, et al. 2009).  Groenlandicine 

(27) and epiberberine (28) both inhibit BACE1 in vitro with IC50 values of 19.7 µM and 

8.6 µM, respectively.  Berberine (29) was not reported to show significant in vitro 

BACE1 inhibition in this study, but another study from 2007 reported a decrease in the 

production of Aβ in cells transgenically expressing APP upon treatment with 29 (Asai, et 

al. 2007).  This decrease indicates that although 29 does not inhibit BACE1, it may be 

active against another part of the APP processing machinery such as the γ-secretase 

complex.  Two other isoquinoline alkaloids, coptisine (30) and palmatine (31), along with 

29 significantly enhance neurite outgrowth in PC12 cells at a concentration of 5 µg/mL, 

25 µg/mL and 5 µg/mL, respectively (Shigeta, et al. 2002).  

1.3 Parkinson’s disease 

 The primary symptoms of Parkinson’s disease (PD) are a loss of motor function 

and coordination, which is largely due to the specific degeneration of dopaminergic 

neurons in the brain (Lees, et al. 2009).  The affected regions of the brain in PD 
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accumulate protein aggregates, called Lewy bodies, which consist largely of the 

misfolded protein α-synuclein (Brundin, et al. 2008).  The native function of α-synuclein 

is still not clear.  The investigation of α-synuclein function is difficult, in part because it 

changes its conformation in an environment-dependent fashion (Uversky 2007).  While 

the role of α-synuclein in the neuropathology is still not completely understood, it is 

known that the protein can act as a neurotoxin and it is believed to participate in the 

pathogenesis of the disease (Brundin, et al. 2008; Uversky 2007).  Other cellular features 

of PD include mitochondrial dysfunction, inflammation, oxidative damage and apoptosis 

(Allain, et al. 2008). 

Unfortunately, nearly all of the current therapies approved for PD exclusively 

enhance the dopaminergic activity in the brain, which is only effective for treating the 

symptoms of PD rather than its cause (Lees, et al. 2009).  The lack of a clear 

understanding of the underlying biochemical causes of PD has made the development of 

effective neuroprotective treatments for PD very difficult (Schapira, et al. 2006).  The 

following section will describe the small number of natural products that have been 

identified as having promise for development as therapies for PD. 

1.3.1 6-hydroxydopamine toxicity.  There are not as many good models of PD as 

there are for AD, but there are some models which recapitulate enough of the features of 

PD to be useful in the development of new therapies (Jenner 2008).  Perhaps the most 

commonly used model is 6-hydroxydopamine (6-OHDA) induced toxicity.  6-OHDA is a 

neurotoxin which specifically targets catecholaminergic (dopaminergic and 

noradrenalinergic) neurons and induces a handful of cellular features that are also 

observed in PD, primarily oxidative stress but also mitochondrial dysfunction as well 
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(Simola, et al. 2007).  A disadvantage to the 6-OHDA model of PD is its lack of 

usefulness in identifying compounds which reduce the non-dopaminergic defects of PD; 

however, efforts to develop non-dopaminergic therapies utilize targets which not specific 

for PD (Colosimo, et al. 2006; Simola, et al. 2007). 

Three compounds isolated from the roots of Stemona tuberosa were found to 

protect SH-SY5Y cells against toxicity from 6-OHDA treatment (Lee, et al. 2006).  

Stilbostemin B 3′-β-D-glucopyranoside (32), stilbostemin H 3′-β-D-glucopyranoside (33), 

and stilbostemin I 2″-β-D-glucopyranoside (34) all protected cells from 6-OHDA induced 

toxicity at concentrations of 1 µM (Lee, et al. 2006).   

Paeoniflorin (35), a compound with a very unique cage-like pinane moiety, has 

shown the ability to decrease the behavioral abnormalities induced by 6-OHDA in rats at 

doses as low as 5 mg/kg (Durairajan, et al.).  Interestingly, this report also showed that 35 

does not directly antagonize dopamine receptors, which may indicate the potential for 

this compound as non-dopaminergic therapy for PD. 

The quinolizidine alkaloid cytisine (36) and its derivative 5-bromocytisine (37)  

significantly reduce the decrease in striatal dopamine induced by 6-OHDA administration 

to rats, but the 3-bromocytisine (38)  derivative had no effect on striatal dopamine 

concentrations (Abin-Carriquiry, et al. 2008).  A decrease in striatal dopamine levels is a 

key pathological feature of the 6-OHDA model of PD (Simola, et al. 2007).  
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1.4 Huntington’s disease 

Huntington’s disease (HD) is a progressive neurodegenerative disorder arising 

from a CAG trinucleotide repeat expansion mutation in the huntingtin (Htt) gene 

(Imarisio, et al. 2008; Walker 2007).  Individuals carrying mutant forms of huntingtin 

(mHtt) encoding for ≥35 glutamine repeats are at risk of developing HD.  The number of 

polyglutamine-encoding CAG repeats in mHtt strongly influences the age of disease 

onset, symptom severity, and rate of HD progression (Langbehn, et al. 2010).  Although 

all of the mechanisms associated with mHtt toxicity are not clear, it is known that they 

involve both gain-of-function and loss-of-function processes (Imarisio, et al. 2008).  

Many of the same neuropathological features observed in other neurodegenerative 

diseases are present in HD, including protein aggregates, oxidative stress, mitochondrial 

dysfunction and apoptosis (Imarisio, et al. 2008).  The majority of drug discovery efforts 

for HD are focused on either reducing aggregation of the mHtt protein, enhancing 

clearance of the mHtt protein from the cell or promoting survival in mHtt expressing cells 

(Fecke, et al. 2009).  
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1.4.1 Gsk3 as a target for HD.  Although Gsk3 has been identified as a 

therapeutic target for AD (Giese 2009), there is evidence that it may be useful for HD as 

well.  It has been shown that inhibition of Gsk3 protected cells against mHtt toxicity 

(Carmichael, et al. 2002),  and it is possible that the Gsk3 inhibitors described previously 

(i.e. the manzamines and 4) as potential AD therapies may also have applications for HD. 

1.4.2 Caspase inhibitors.  Apoptosis has been implicated as playing an important 

role in HD, and the blocking of the apoptotic signals through the inhibition of caspases 

has been proposed to be another potential therapeutic target for this disease (Pattison, et 

al. 2006).  Caspases 1 and 3 are upregulated in HD patients and in HD mouse models and 

they also are able to enzymatically cleave the huntingtin protein, resulting in an increase 

in the amount of toxic mutant huntingtin fragments in diseased cells (Cornelis, et al. 

2007; Pattison, et al. 2006).  Caspase inhibitors have the potential to directly block this 

causative enzymatic step in the pathogenesis of HD, and as such they make attractive 

targets for drug discovery efforts. 

Discorhabdin P (39), isolated from a Batzella sp. of deep-water marine sponge, 

inhibits the caspase CPP32 with an IC50 value of 0.78 µM (Gunasekera, et al. 1999).  The 

related compound discorhabdin C (40) shows no inhibitory activity against CPP32, which 

is intriguing since the only structural differences between the two compounds is the 

presence of a methylamine group on the iminoquinone moiety of 39 as opposed to a 

secondary amine at the same position in 40. 

1.4.3 Autophagy enhancement.  Autophagy refers to the combined processes 

whereby a cell is able to degrade and recycle large masses, including protein bodies and 
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even organelles (Davies, et al. 2007).  It has been shown that increasing autophagy in 

cells containing toxic misfolded protein fragments can enhance survival of the cells and 

increase the clearance of the misfolded proteins from the cells (Davies, et al. 2007).  It 

has been proposed that the enhancement of autophagy may be a good therapeutic target 

for HD and possibly for other neurodegenerative diseases as well (Davies, et al. 2007; 

Ravikumar, et al. 2006; Roze, et al. 2008).   

Rapamycin (41) is a well known secondary metabolite which was first isolated 

from the bacterium Streptomyces hygroscopicus (Sehgal, et al. 1975).  Through 

interactions with its biological target, FKB12, 41 inhibits the mTOR complex, resulting 

in an upregulation of autophagy, as well as other downstream effects (Graziani 2009; 

Kang, et al. 2008).  It was recently suggested that this ability to increase autophagy may 

be a useful therapeutic approach to treating HD, especially in combination with lithium 

treatment, which enhances autophagy through an mTOR independent pathway (Sarkar, et 

al. 2008).  The potential of this combination approach was demonstrated by the 

protection of flies against mHtt induced neurodegeneration in an HD Drosophila model 

(Sarkar, et al. 2008). 

1.5 Prion diseases 

Prion diseases, also known as transmissible spongiform encephalopathies, are a 

rare but fatal group of neurodegenerative diseases observed in humans and other 

mammals (Fontaine and Brown 2009; Geissen, et al. 2007).  Although it is estimated that 

there are only 200 cases diagnosed in the U.S. each year, these diseases require a focused 

effort for therapeutic development since they are usually fatal within one year of 

diagnosis and because they are transmissible diseases (NINDS 2010).  The most common 
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prion disease in humans is Creutzfeldt-Jakob disease, but other forms of the disease 

include kuru, fatal familial insomnia (FFI), and Gerstmann-Straussler-Scheinker disease 

(NINDS 2010).  These diseases are believed to be caused by an infectious agent called a 

prion, which is a misfolded protein that forms amyloid plaques and is able to transfer its 

misfolded confirmation to other proteins (Krammer, et al. 2009). 

Several cellular models of prion diseases have been developed which have been 

useful in the development of drug discovery efforts for prion diseases (Krammer, et al. 

2009).  Almost all of the strategies under investigation as therapies for prion diseases 

target the prion protein itself and aim to either inhibit the prion misfolding process, 

reduce the total amount of prion protein in cells or to stabilize the natively folded prion 

protein (Nicoll and Collinge 2009).  Some efforts have been made to identify small 

molecules that can inhibit the amyloidogenic properties of prions, but these have been 

almost exclusively from synthetic sources (Schatzl 2009). The investigations of natural 

products with inhibitory activity against prions have been summarized in the following 
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sections. 

1.5.1 Prion amyloidogenesis inhibition.  The polyene macrocycle amphotericin 

B (42) was originally isolated from the Streptomyces nodosus in 1955 and has been 

widely used as an antifungal drug over the past 50 years (Abu-Salah 1996; Lemke, et al. 

2005; Mechlinski, et al. 1970; Oura, et al. 1955; Stiller, et al. 1955).  Compound 42 

reduces the generation of the misfolded form of the prion protein in prion-infected GT1-7 

and S12 cells when applied to the cells at a concentration of 4.5 µg/mL (Mange, et al. 

2000).  No toxicity due to 42 was observed in these cell lines. 

The plant metabolite curcumin (43) was originally isolated from Curcuma longa 

and a wide variety of biological activities have been reported for it, including several 

related to other neurodegenerative diseases (Anand, et al. 2008; Lin, et al. 2006).  The 

accumulation of the misfolded form of the prion protein in prion-infected neuroblastoma 

cells are reduced by treatment with 43 (IC50 ≈ 10 nM) (Caughey, et al. 2003). 

The screening of a library of 2000 natural products and drugs was completed in 

order to identify compounds that inhibit the accumulation of misfolded form of the prion 

protein in prion-infected cells (Kocisko, et al. 2003).  This screening effort identified 17 

active compounds with IC50 values of ≤ 1 µM.  A series of naturally occurring 

polyphenols, including epicatechin monogallate (44), epigallocatechin 3-monogallate 

(45) and 2,3,5,7,3′,4′-pentahydroxyflavin (46), were identified which were active both in 

vitro and in vivo (Kocisko, et al. 2003).   
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A series of tetracycline derivatives was recently shown to have anti-prion activity 

(Forloni, et al. 2009).  The analogues doxycycline (47) and minocycline (48) were 

particularly effective, both in vivo and in vitro.  These are attractive compounds for 

therapeutic development since they are already FDA approved antibiotics and are 

currently undergoing early stage clinical trials (Forloni, et al. 2009).   
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1.6 General neurodegeneration 

The similarity of cellular dysfunctions among the neurodegenerative diseases 

which have been described in the previous sections suggests that therapies may be 

developed which can effectively ameliorate these diseases through a mechanism which is 

not specific to any single disorder.  There are a variety of bioassays available to identify 

natural products with therapeutic potential for general neurodegeneration.  The most 

commonly used assays measure protection against glutamate induced neurotoxicity 

(Dong, et al. 2009; Planells-Cases, et al. 2006; Sheldon and Robinson 2007), 

neurotrophic activity (Gold and Villafranca 2003; Ohizumi, et al. 2004; Price, et al. 2007; 

Tohda, et al. 2005), anti-inflammatory activity (Dheen, et al. 2007; Gilgun-Sherki, et al. 

2006), and monoamine oxidase inhibition (Van der Schyf, et al. 2006).  The various 

secondary metabolites that have been tested in these assays are summarized here, 

grouped according to the assays in which they exhibited activity.  

1.6.1 Glutamate induced neurotoxicity.  Glutamate is a major neurotransmitter 

in the brain, but excessive exposure to glutamate can lead to the death of neurons due to a 

process called excitotoxicity (Dong, et al. 2009).  Cell death related to glutamate induced 

excitotoxicity has been implicated in AD, PD, and HD (Planells-Cases, et al. 2006).  

Many of the damaging effects of excitoxicity are attributed to excessive Ca2+
 efflux in 

neurons, which can in turn trigger a signal cascade leading to apoptosis and oxidative 

stress (Dong, et al. 2009; Sheldon and Robinson 2007).  These shared features among a 

variety of neurodegenerative disorders makes glutamate induced toxicity an attractive 

target in the search for therapies for neurodegeneration.  
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Seven iridoid glycosides, 8-O-E-p-methoxycinnamoylharpagide (49), 8-O-Z-p-

methoxycinnamoylharpagide (50), 6′-O-E-p-methoxycinnamoylharpagide (51), 6′-O-Z-p-

methoxycinnamoylharpagide (52), E-harpagoside (53), Z-harpagoside (54), and 

harpagide (55), isolated from the roots of Scrophularia buergeriana have shown the 

ability to increase the viability of rat cortical cells upon treatment at concentrations 

ranging from approximately 0.1-10.0 µM (Kim, et al. 2002).  Neural toxicity was 

determined by the measurement of the release of lactate dehydrogenase into the medium 

from the cells. 

Six dihydropyranocoumarin analogues, 4″-hydroxytigloyldecursinol (56), 4″-

hydroxydecursin (57), (2″S,3″S)-epoxyangeloyldecursinol (58), (2″R,3″R)-

epoxyangeloyldecursinol (59), decursinol (60), and decursin (61), showed the ability to 

enhance the viability of rat cortical cells treated with a toxic concentration of glutamate 

(100 µM) (Kang, et al. 2005).  All six compounds (56-61) significantly increased cell 

viability of the glutamate treated cells at concentrations of 0.1-1.0 µM (Kang, et al. 

2005). 
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Six liminoid analogues isolated from the root bark of Dictamnus dasycarpus, 

dictamnusine (62), dictamdiol A (63), fraxinellone (64), calodendrolide (65), obacunone 

(66), and limonin (67), showed significant neuroprotective activity against glutamate-

induced neurotoxicity in primary cultures of rat cortical cells at a concentration of 0.1 µM 

(Kang, et al. 2008).  The neuroprotective activity of 62-67 was greater than the positive 

control used in the assay, dizocilpine maleate, a noncompetitive agonist of the NMDA 

receptor (Kang, et al. 2008).   

1.6.2 Neurotrophic activity.  Healthy neuronal activity is promoted and 

maintained by neurotrophins, small proteins which participate in the regulation of a 

variety of neuronal processes including survival, neurite outgrowth and differentiation of 

neural stem cells (Connor and Dragunow 1998; Price, et al. 2007).  Due to the 

neuroprotective and neurodegenerative effects of neurotrophins, they have potential for 

use as therapeutics for neurodegenerative diseases (Connor and Dragunow 1998; Yuen 
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and Mobley 1996), but their poor pharmacological properties make them inferior 

candidates for therapeutic development (Price, et al. 2007).  Therefore, small molecules 

with good pharmacological properties which are able to potentiate the effects of 

endogenous neurotrophins such as nerve growth factor (NGF) or modulate neurotrophic 

targets such as TrkA (the cellular receptor for NGF), hold great promise as therapies for 

neurodegeneration (Webster and Pirrung 2008).  Related to the neurotrophin-focused 

approach is the attempt to develop stem cell-based therapies for neurodegenerative 

diseases (Kim and de Vellis 2009).  Stem-cell approaches to treating neurodegeneration 

could be greatly enhanced by the availability of small molecules that can effectively 

control the differentiation of neural stem cells (NSCs).  Although there have been a small 

number of reviews concerning natural products with neurotrophic activity (Gold and 

Villafranca 2003; Ohizumi, et al. 2004; Tohda, et al. 2005), the most promising results in 

this area of research as well as highlights of more recent discoveries are presented here. 

Farnisone A (68) and C (69), isolated from the fungus Paecylomyces farinosus 

RCEF 0101, enhance neurite outgrowth in PC12 cells at a concentrations of 20 and 50 

µM, respectively (Cheng, et al. 2004).  A third compound, farnisone B, did not enhance 

neurite growth, even though it differs from 68 only by the presence of a hydroxylamine in 

the pyridone ring (Cheng, et al. 2004).  Although both 68 and 69 induced neurite growth 

independent of NGF, neither compound was as effective as NGF by itself (Cheng, et al. 

2004).   

Three diterpenes, kansuinins A (70), D (71) and E (72), isolated from the roots of 

Euphorbia kansui L., were tested for their stimulatory effects on TrkA, the cellular 

binding target of NGF (Colby, et al. 2004).  The survival of TrkA expressing fibroblasts 
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were specifically promoted by 72 (ED50 = 0.2 µg/mL), while 70 and 71 promoted the 

survival of fibroblasts expressing both TrkA and TrkB (ED50 = 7.9 and 0.6 µg/mL, 

respectively, for TrkA expressing fibroblasts).  TrkB is the receptor for brain-derived 

neurotrophic factor (BDNF), a neurotrophin that has a variety of functions and supports 

the healthy function of neurons, including cholinergic and dopaminergic neurons  

(Connor and Dragunow 1998). 

The militarinones are a series of alkaloids isolated from the fungus Paecilomyces 

militaris RCEF 0095 (Cheng, et al. 2006; Schmidt, et al. 2002; Schmidt, et al. 2003).  

Militarinone A (73) is the most active in this series, showing a significant enhancement 

of neurite outgrowth in PC12 cells at a concentration of 33 µM with no associated 

toxicity.  The dehydroxy analog of 73, (+)-N-deoxymilitarinone (74), also enhances 

neurite outgrowth in PC12 cells, but at a concentration of 100 µM.  Treatment of human 
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neurons (IMR-32) with 74 at the same concentration (100 µM) is toxic to the cells 

(Cheng, et al. 2006; Schmidt, et al. 2002).  Treatment of PC12 cells with militarinone B 

(75) and C (76) at concentrations of 100 µM results in only “marginal” enhancement of 

neurite outgrowth with very low levels toxicity (Schmidt, et al. 2003). 

Ginsenosides Rg3 (77), Rk1 (78) and Rg5 (79), isolated from the roots of Panax 

Sanchi-ginseng, enhance neuronal differentiation of neural stem cells (NSCs) 

(Durairajan, et al.).  The most active of the three compounds is 79, and its activity is 

dependent on Ca2+ influx through Ca2+ channels.  The optimal procedure for the 

induction of differentiation to neurons in NSCs required transient exposure of the NSCs 

to 8 µM 79 for 24 h followed by 72 h incubation with the same compound at 1 µM 

(Durairajan, et al.).  This treatment causes a general enhancement of cell growth in NSC 

cultures as well as an increase in the number of neurons and a decrease in the number of 

astrocytes present in the culture. 
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Four sphingolipids, (4E,6E,2S,3R)-2-N-eicosanoyl-4,6-tetradecasphingadienine 

(80), (4E,2S,3R)-2-N-eicosanoyl-4-tetradecasphingenine (81), and (4E,6E,2S,3R)-2-N-

docosanoyl-4,6-tetradecasphingadienine (82) and (4E,2S,3R)-2-N-octadecanoyl-4-

tetradecasphingenine (83), potentiate the ability of nerve growth factor (NGF) to enhance 

the outgrowth of neurites in PC12 cells at concentrations of 10 µM (Kwon, et al. 2003).  

The four compounds (80-83) were isolated from Bombycis Corpus 101A, a traditional 

Korean medicinal resource used for the treatment of movement disorders; Bombycis 

Corpus 101A is made by killing Bombyx mori (silk moth) larvae with the fungus 

Beauveria bassiana 101A (Kwon, et al. 2003).  Compounds 80 and 82 had greater 

activity than 81 and 83, with the primary difference between these compounds being the 

presence of the C-6 double bond in the more active compounds (Kwon, et al. 2003).   

1.6.3 Anti-inflammatory.  The inflammatory response in the brain can play a 

beneficial role in combating neurodegeneration, but chronic inflammation is associated 

with a variety of neurodegenerative diseases and it has been shown to be a contributing 

factor to neuronal death (Amor, et al. 2010).  Microglia are the resident macrophages in 

the brain and when activated they are able to combat pathogens, but they can also cause 

damage to neuronal cells (Dheen, et al. 2007).  Activated microglia are the prime 

participants in neuroinflammation, and they 

can contribute to neuronal death through a 

variety of mechanisms, such as the production 

of reactive nitrogen species (e.g. nitric oxide) 

and reactive oxygen species (e.g. hydrogen 

peroxide) (Brown 2007).  Consequently, anti-
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inflammatory drugs have been proposed as good candidates for neurodegenerative 

disease therapies, and some compounds have already entered clinical trials (Gilgun-

Sherki, et al. 2006).   

The diarylheptanoid (3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol (84), isolated 

from the plant Curcuma comosa, significantly reduces the expression of inducible nitric 

oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) in lipopolysaccharide (LPS) 

treated HAPI microglial cells when applied at a concentration of 1 µM (Thampithak, et 

al. 2009).  In addition, the concentration of the products of iNOS and COX-2, nitric oxide 

(NO) and prostaglandin E2 (PGE2), respectively, were observed to decrease in the treated 

microglial cells. 

Four oxindole alkaloids and one indole alkaloid glycoside exhibited the ability to 

reduce the amount of NO released by LPS treated rat microglial cells (Durairajan, et al.).  

Corynoxeine (85), rhynchophylline (86), isocorynoxeine (87), isorhynchophylline (88) 

and vincoside lactam (89), isolated from the leaves of Uncaria rhynchophylla, were 

active with IC50 values of 15.7, 18.5, 13.7, 19.0 and 16.4 µM, respectively.  These values 

compare favorably with the activity of resveratrol (IC50 = 11.5 µM) in the same assay.  

Interestingly, two other oxindole alkaloids, 18,19-dehydrocorynoxinic acid B (90) and 

18,19-dehydrocorynoxinic acid (91), were not active in the assay, even though the only 

structural differences between them and compounds 85 and 87 was the stereochemistry of 

the ethylene groups and the presence of a carboxylic acid rather than a methyl ester 

(Durairajan, et al.).   
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Plakortide P (92), isolated from the marine sponge Plakortis angulospiculatus, 

reduces the amount of thromboxane B2 (TXB2) released by LPS treated rat microglia 

(IC50 = 0.93 µM) (Kossuga, et al. 2008).  No cytotoxicity was observed upon treatment 

with 92 in a variety of mammalian cell lines and it induced the release of only low 

concentrations of lactate dehydrogenase. 

Lobetyolin (93) and tetradeca-4E,8E,12E-triene-l0-yne-l,6,7-triol (94), isolated 

from the roots of Platycodon grandiflorum, were examined for their ability to activate 

nuclear factor-κ B (NF-κB) (Dong, et al. 2009).  NF-κB is a transcription factor which 

participates in the activation of microglia and other pro-inflammatory responses (Dheen, 

et al. 2007).  These two compounds (93 and 94) increase the transcriptional activity of 

NF-κB in HEK293 human embryonic kidney cells at a concentration of 20 µM. 

1.6.4 Monoamine oxidase inhibitors.  Monoamine oxidase (MAO) is an enzyme 

which deaminates monoamine neurotransmitters, generating hydrogen peroxide as a 

byproduct (Van der Schyf, et al. 2006).  Both the MAO A and B isoforms have been 
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implicated as potential targets for 

neurodegenerative disease (Van der 

Schyf, et al. 2006).  Recent evidence 

suggests that inhibition of both forms of 

this enzyme confers neuroprotection 

through antiapoptotic mechanisms, the 

reduction of ROS production and 

stabilization of the  mitochondrial 

membrane (Naoi, et al. 2009).  MAO 

inhibitors have a long history of use in 

the treatment of PD, but they have more recently shown to have potential as therapeutics 

for other neurodegenerative diseases (i.e. AD and HD) as well (Van der Schyf, et al. 

2006).   

Seven xanthone glycosides, corymbiferin 3-O-β-D-glucopyranoside (95), 

corymbiferin 1-O-β-D-glucopyranoside (96), triptexanthone C (97), veratriloside (98), 

swertianolin (99), norswertianolin (100), and swertiabisxanthone-I 8′-O-β-D-

glucopyranoside (101), and three xanthone aglycones, bellidin (102), bellidifolin (103) 

and swertiabisxanthone-I (104), were isolated from Gentianella amarella ssp. acuta and 

examined for their inhibitory activity against MAO A and B (Urbain, et al. 2008).  

Compounds 102 and 103 show the greatest inhibition of MAO A (91% and 99%, 

respectively), and these values are greater than that of the positive control pargyline 

(60%).  Paragyline is a known inhibitor of MAO A and B.  All 10 compounds inhibit 
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MAO B, but 96 and 99 show the greatest activity (94% and 71%, respectively), although 

this activity is less than that of the positive control pargyline (98%) (Urbain, et al. 2008).   

1.7 Summary and conclusions 

Natural products have been an excellent source of new therapies for 

neurodegenerative diseases for many decades.  Because of their naturally refined 

biological activities and novel structural features, natural products are well positioned to 

lead the way in future drug discovery efforts for these disorders.  Although there are 

currently no effective therapies for AD, HD, PD and prion diseases, the increasing 

number of natural products which can modulate potential drug targets for these diseases 

points to the development of new therapies in the near future. 

Historically, natural products have been heavily utilized in therapies for 

neurodegenerative disorders, as demonstrated by the clinical use of the 

acetylcholinesterase inhibitors 1 and 2 in the treatment of AD.  Biological targets such as 

95 (R1 = OH, R2 = H, R3 = β-Glc, R4 = R5 = OCH3, R6 = R7 = H, R8 = OH)  
96 (R1 = β-Glc, R2 = H, R3 = OH, R4 = R5 = OCH3, R6 = R7 = H, R8 = OH)  
97 (R1 = OH, R2 = β-Glc, R3 = R4 = H, R5 = R6 = OCH3, R7 = H, R8 = OH)  
98 (R1 = OH, R2 = H, R3= R4 = OCH3, R5 = R6 = H, R7 = β-Glc, R8 = H)  
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acetylcholinesterase inhibitors for AD and dopamine receptor agonists for PD have 

traditionally been the focus of investigations of natural products for neurodegeneration.  

There are many emerging targets for neurodegenerative diseases, however, that are 

beginning to receive more focus in natural products drug discovery efforts. 

Enzymes such as Gsk3 and Cdk5 have generated interest as targets for AD and 

HD.  Compounds such as the manzamines (5-13) have demonstrated potent activity 

against these targets.  Secondary metabolites such as 14 and 29, which can alleviate the 

toxic effects of Aβ or inhibit its production through inhibition of BACE1, are also 

receiving attention as potential therapies for AD.  Enhancement of autophagy using 

compounds such as 41 has also been proposed as a therapy for HD and other protein 

misfolding associated diseases.  There are many targets which can be used to ameliorate 

neurodegeneration in general.  A number of natural products have been identified which 

are able to reduce the harmful effects of glutamate toxicity or chronic inflammation 

associated with neurodegeneration (i.e. 63 and 84).  Other compounds have neurotrophic 

activity and hold the potential to reverse the degeneration caused by AD, HD, PD and 

prion diseases (i.e. 72 and 79). 

More than 100 secondary metabolites have been described in this comprehensive 

review of the literature pertaining to natural products drug discovery efforts for 

neurodegenerative diseases associated with protein misfolding.  Considering that millions 

of people suffer from these diseases, the work summarized here provides hope that new, 

effective therapies for curing these diseases will be available in the future. 



32 

The information in Chapter 1 has been adapted from a review paper that is in 

preparation for the journal Natural Products Reports. 
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Chapter 2 Hypothesis and Specific Aims 

2.1 Hypothesis 

Natural products have served a critical role in the development of modern 

Western medicine (Newman 2008).  As shown in the preceding chapter, there are many 

exciting developments emerging from natural products that may lead to effective 

therapies for neurodegenerative diseases.  The potential drug targets for 

neurodegenerative diseases which can be modulated by natural products are varied and 

numerous.  Therefore, tools are needed to simultaneously evaluate the activity of many 

targets at once.  Metabolomics, which is the concurrent examination of a pool of 

metabolites, has demonstrated the capacity to meet this demand for multifaceted drug 

discovery approaches (Kaddurah-Daouk and Krishnan 2008; Kaddurah-Daouk, et al. 

2008). 

 Given the contributions of natural products towards the development of new 

therapies for neurodegeneration and the utility of metabolomics for investigating these 

diseases, it is expected that the metabolomic investigation of a yeast model of 

neurodegeneration will lead to the identification of metabolic pathways which are 

perturbed due to the toxicity associated with protein aggregation.  Therefore, the 

following hypothesis has been proposed for this dissertation: modulation of the 

metabolic processes which are perturbed due to the toxicity associated with protein 

aggregation will alter the cellular response to protein aggregation.  In order to 

explore the validity of this hypothesis, Specific Aims 1 and 2 have been investigated.  

Specific Aim 3 diverges from the topic of neurodegeneration and instead describes the 

characterization of a series of diterpenes isolated from a soft coral specimen.  Although 



34 

the focus of this final project is substantially different from the other work described in 

this dissertation, its scientific merits make it an important and significant part of my 

doctoral research. 

2.2 Specific Aim 1: Identify the metabolic aberrations underlying mutant 

huntingtin toxicity in yeast and assess their degree of preservation in humans 

and mice 

Natural products-based drug discovery investigations are reliant upon assays 

which can identify compounds with biological activities that are relevant to the disease of 

interest.  Although a variety of molecular targets have begun to emerge for developing 

therapeutics to treat neurodegenerative disease, phenotypic disease models offer several 

advantages for drug discovery.  Phenotypic models have the great advantage of being 

mechanism blind, allowing for the identification of compounds which are able to 

modulate disease processes without requiring any prior knowledge of the mechanism.  

Therefore, phenotypic models can help facilitate the discovery of previously unidentified 

targets for the disease.  However, phenotypic models are often difficult to incorporate 

into target-specific drug discovery efforts that are common in modern high-throughput 

pipelines. 

Metabolomics is a powerful multi-parameter tool for evaluating phenotypic traits 

associated with disease processes and provides the means to combine the advantages of 

phenotypic disease models with the mechanistic information afforded by molecular target 

approaches.  1H NMR metabolome profiling has been employed in this project to 

characterize the metabolic aberrations in a yeast model of HD that are attributable to the 

mutant huntingtin protein’s gain-of-toxic-function effects.  Multivariate statistical 
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analysis has been used to compare the results from the yeast HD model to metabolomic 

data reported from transgenic mice expressing a mHtt gene fragment and HD patients. 

2.3 Specific Aim 2: Alter the cellular response to toxicity associated with 

protein aggregation through the modulation of trehalose metabolism 

The results of the investigation of Specific Aim 1 revealed that the intracellular 

concentration of the metabolite trehalose is dramatically altered in response to the 

presence of mHtt.  Trehalose is a disaccharide which is found in a variety of microbes, 

plants and insects (Elbein, et al. 2003).  The trehalose cycle in yeast is primarily 

maintained by seven proteins, encoded for by the genes TPS1, TPS2, TPS3, TSL1, NTH1, 

NTH2 and ATH1 (Francois and Parrou 2001; Voit 2003).  Trehalose is highly effective as 

a protectant of biomolecules from various types of stress, including desiccation and heat 

(Crowe 2007; Jain and Roy 2009; Kaushik and Bhat 2003).  It has been shown that 

trehalose can also prevent the aggregation of misfolded proteins both in vitro and in vivo 

(Singer and Lindquist 1998). 

The effects of mHtt expression have been evaluated in a series of yeast strains 

with gene knockouts for the seven enzymes which participate in trehalose cycle in order 

to elucidate the role that trehalose plays in the response of yeast to mHtt.  Each of these 

knockout strains has been engineered to express either a normal Htt protein fragment or a 

mHtt protein fragment.  Metabolic profiling has been used in combination with molecular 

techniques to investigate the altered cellular responses of these engineered strains to mHtt 

protein. 
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2.4 Specific Aim 3: Ichthyotoxicity and Metabolic Transformation of Select 

Briarane Diterpenes 

Briaranes represent a structurally diverse group of marine-derived diterpenes that 

are found among several coral species and other invertebrates.  The briaranes have 

demonstrated remarkable biosynthetic adaptability to structural variation, as shown by 

the fact that changes in structural features have been observed at all 20 positions of the 

briarane carbon skeleton.  More than 500 different briaranes have been reported and 

many of these have been tested in a wide variety of assays to investigate their biological 

activities (Sung, et al. 2005; Sung, et al. 2008; Sung, et al. 2002).  Many of these assays 

have examined the potential application of briaranes to human health, but some have also 

endeavored to ascertain the ecological role of these compounds.  Although the ecological 

function of the briaranes still remains uncertain, an ichthyotoxic role as chemical 

defensive agents against foraging reef fish is highly probable. 

The exploration of a Briarium sp. of soft coral collected from Vanuatu has led to 

the isolation of the three new briaranes designated RAMs A–C.  The structures and 

absolute configurations of these compounds have been determined using a combination 

of NMR, MS, X-ray diffraction and other techniques.  The ecological role of these 

compounds has been investigated using an ichthyotoxicity assay.   
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Chapter 3: Identification of the metabolic aberrations underlying 

mutant huntingtin toxicity in yeast and assessment of their degree of 

preservation in humans and mice 

3.1 Introduction 

Huntington’s disease (HD) is a progressive neurodegenerative disorder arising 

from a CAG trinucleotide repeat expansion mutation in the huntingtin (Htt) gene 

(Imarisio, et al. 2008; Walker 2007).  Individuals carrying mutant forms of huntingtin 

(mHtt) encoding for ≥35 glutamine repeats are at risk of developing HD.  The number of 

polyglutamine-encoding CAG repeats in mHtt strongly influences the age of disease 

onset, symptom severity, and rate of HD progression (Langbehn, et al. 2010).  

Unfortunately, the mechanisms by which mHtt and its aggregation-prone protein product 

causes HD have not yet been determined (Fang, et al. 2007).  This lack of information 

has hampered the establishment of disease-specific biochemical markers for gauging the 

toxic effects of mutant huntingtin, which has impeded efforts to develop chemical 

methods for monitoring HD progression. 

Several cellular and animal HD models have been constructed to help elucidate 

the mechanisms responsible for the toxicity of the mutant huntingtin protein including 

monkeys (Kang, et al. 2008), mice (Masuda, et al. 2008; Menalled, et al. ; Van 

Raamsdonk, et al. 2007), zebrafish (Diekmann, et al. 2009; Lumsden, et al. 2007; 

Schiffer, et al. 2007), fruit flies (Branco, et al. 2008; Jackson, et al. 1998; Ravikumar, et 

al. 2006; Wolfgang, et al. 2005), nematodes (Faber, et al. 1999; Faber, et al. 2002; Jeong, 

et al. 2009; Satyal, et al. 2000), mammalian cells (Desai, et al. 2006; Igarashi, et al. 2003; 
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Subramaniam, et al. 2009), and yeast (Giorgini and Muchowski 2009; Krobitsch and 

Lindquist 2000; Meriin, et al. 2002).  Each of these systems has provided important new 

insights regarding the cellular dysfunctions arising from mHtt expression and several of 

these models have served as screening platforms for HD drug discovery (Barsby and 

Kubanek 2005; Desai, et al. 2006; Krammer, et al. 2009; Sarkar, et al. 2007b; Wang, et 

al. 2005; Zhang, et al. 2005).  Among these models, the yeast Saccharomyces cerevisiae 

has proven to be exceptionally informative with respect to HD processes due to its ability 

to recapitulate many of the cellular and molecular features of the disease (Giorgini and 

Muchowski 2009).  Expression of the N-terminal portion of mHtt in yeast is sufficient to 

cause the rapid onset of characteristic huntingtin aggregation (Krobitsch and Lindquist 

2000) and cell death (Meriin, et al. 2002).  The ability of this organism to recapitulate 

many of the defining phenotypic features of mutant huntingtin is quite remarkable given 

the fact that yeast lack Htt orthologs (Outeiro and Giorgini 2006).  Consequently, the 

yeast model is a valuable tool for understanding the unique gain-of-toxic function 

properties attributable to mHtt and for probing the cellular mechanisms of HD. 

S. cerevisiae expressing mHtt were used for the purpose of characterizing 

metabolic biomarkers associated with mutant huntingtin’s toxicity.  This is the first report 

in which a non-mammalian transgenic model has been used to critically evaluate 

perturbations in primary metabolites that stem from mutant huntingtin’s toxicity.  In 

addition, a systematic review of published metabolomics studies performed on transgenic 

mice expressing mHtt and humans with HD was conducted in order to identify conserved 

metabolic features that are disrupted by mutant huntingtin.  The data obtained from 

human and mouse studies were qualitatively compared to results generated from the yeast 
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model, and this has provided new insight regarding the metabolic disturbances that are 

attributable to mutant huntingtin’s gain-of-toxic-function effects.  This information is 

anticipated to enhance our understanding of mutant huntingtin’s impact on biochemical 

processes in cells and improve strategies for selecting HD biomarkers. 

3.2 Experimental Procedures 

3.2.1 Yeast strains and media.  Construction and maintenance of the HD yeast 

model has been previously described (Williams, et al. 2007).  Briefly, S. cerevisiae 

strains designated “103Q” and “25Q” were prepared that expressed the N-terminal 

fragment of human Htt followed by CAG codon repeats encoding for 103 and 25 

glutamine (Q) repeats, respectively.  The Htt fragments were fused to enhanced green 

fluorescent protein (EGFP) reporters (C-terminus) and the constructs were placed under 

the control of GAL1 promoters.  The 103Q and 25Q strains were maintained on uracil-

free (plasmid selective marker) synthetic complex media (SC) supplemented with yeast 

nitrogen base (without amino acids, Sigma-Aldrich), yeast drop-out supplement (with 

histidine and methionine, Sigma-Aldrich), 0.5% (w/v) ammonium sulfate, and 2% (w/v) 

glucose.  Compared to the 25Q yeast, the 103Q yeast exhibited distinctive phenotypic 

traits attributable to expression of the human mHtt fragment.  These features included the 

characteristic aggregation of the EGFP-labeled mutant huntingtin in 103Q yeast, as well 

as their significantly reduced viability when cultured under conditions that were 

permissive for mHtt-expression (Appendix, Figure A1).   

3.2.2 Metabolomic analysis of 103Q and 25Q yeast.  Yeast were grown using a 

two-stage (I and II) culture process.  Stage I cultures were grown in 250 mL wide-mouth 

Erlenmeyer flasks containing 50 mL SC media supplemented with 2% glucose and 
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placed on a rotary shaker/incubator (140 rpm, 30 °C) for 24 h.  Stage II cultures were 

prepared by centrifuging stage I cultures (3,000×g, 5 min), decanting the supernatant, and 

suspending the cell pellet in 50 mL SC media supplemented with 2% galactose to induce 

Htt gene fragment expression.  Stage II cultures were then incubated with shaking for 

16.5 h (140 rpm, 30 °C).  Next, stage II cultures were centrifuged (3,000×g, 5 min), the 

supernatant decanted, and the cell pellet immediately suspended in 50 mL methanol (25 

°C) and vortexed vigorously.  This entire process was carefully monitored to ensure that 

precisely 20 ± 5 min reproducibly elapsed from the time cultures were removed from the 

incubator to the moment cells were placed in methanol. 

Following 3 h of extraction at 25 °C, cell suspensions were centrifuged (3,000×g, 

5 min) and the methanol was immediately decanted.  The resulting extracts were 

evaporated in vacuo and the remaining organic residues were weighed and stored in 5 

dram vials at -20 °C until NMR analysis.  Samples were prepared for NMR by adding to 

each vial a 666 µL aliquot of a solution containing deuterium oxide (D2O, 99.9% D) with 

0.2% w/v sodium azide (bacterial growth inhibitor), 10 mM imidazole (pH indicator), 

and 0.5 mM 2,2-dimethyl-2-silapentane-5-sulfonate (DSS).  The DSS standard is used by 

the data analysis software (Chenomx NMR Suite v 5.0, described below) as a chemical 

shift reference, an internal standard for quantification, and chemical shape indicator to 

assess the shim quality and predict line widths for each analyte.  No additional sample 

clean-up was performed prior to NMR analysis.  1H NMR spectra were collected on a 

500 MHz Varian VNMRS-500 spectrometer with a triple resonance probe at 20 °C.  Data 

collection parameters were as follows: number of scans = 64, relaxation delay = 1 s, pulse 

width = 2.9 µs, acquisition time = 4 s, spectral width = 6200 Hz, temperature = 20.0 °C, 
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spinning = 20 Hz, data points = 24,876; no steady-state scans were collected and no 

solvent suppression was used. 

3.2.3 Metabolomics data analysis.  All 1H NMR FIDs were imported into 

Chenomx NMR Suite v 5.0 (Chenomx, Inc.) for processing and binning.  Each spectrum 

(0–6 ppm region) was divided into 0.005 ppm bins and the regions containing the 

residual water (4.750–4.900 ppm) and methanol (3.335–3.350 ppm) signals were 

removed from further analysis.  For the purpose of this investigation, focus has been 

placed on the 0–6 ppm portions of the 1H NMR spectra because preliminary analyses 

showed that no significant changes occurred in the downfield portions of the full spectra 

(up to 12 ppm).   

Prior to statistical analyses, all Fourier-transformed 1H NMR data sets were 

normalized by expressing the peak intensities in each bin as a percentage of the total area 

under the curve for the 0–6 ppm region of the spectrum.  Data sets were analyzed by 

principal components analysis (PCA) with XLSTAT (Addinsoft, Inc.).  PCA is a data 

reduction technique that transforms data via a linear combination to uncorrelated 

orthogonal variables (principal components), allowing sources of variation in the data to 

be categorized (Jolliffe 2002).  Individual metabolites were manually identified using the 

Chenomx NMR Suite (Appendix, Table A1) and then quantified by comparison to the 

internal DSS standard.  Additional experiments using 2D NMR techniques (1H-1H 

TOCSY, 1H-13C HSQC, and 1H-13C HMBC) and spiking of samples with authentic 

standards were used to verify each metabolite identified in this study (data not shown).  

Spectral regions representing galactitol (3.660–3.695, and 3.945–3.985 ppm) and acetate 

(1.900-1.960 ppm) were removed from the principal components analysis because these 
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compounds were present in large and highly variable quantities that were unduly 

influential in terms of their effects on each sample’s profile.  Instead, these metabolites 

were manually annotated and quantified for statistical evaluation.  Two-tailed, parametric 

z-tests were performed using XLSTAT. 

3.2.4 Metabolomic analysis of potassium cyanide, amphotericin B, and 

cycloheximide treated 103Q and 25Q yeast.  Stage I and stage II were prepared as 

described in the experimental procedures, with the exception that stage II cultures were 

treated with either potassium cyanide (Way 1984), amphotericin B (Palacios, et al. 2007), 

or cycloheximide (Obrig, et al. 1971) at concentrations of 46 µM, 38 nM, and 98 nM, 

respectively. Concentrations of toxins were chosen that inhibited 25Q yeast growth to 

30% of the growth of untreated controls. Data was collected and analyzed as described 

above. 

3.2.5 Systematic review and comparison of published HD metabolic profiles.  

A systematic review of the literature was conducted to identify published data from 

model systems and humans that described metabolic changes associated with mutant 

huntingtin toxicity.  The PubMed database (United States National Library of Medicine, 

National Institutes of Health) was utilized to perform a comprehensive search for articles 

published prior to August of 2009.  A broad set of search criteria were utilized, which 

included pairing the search terms “Huntington’s disease,” “Huntington’s chorea,” 

“Huntington disease,” “Huntingtons,” and “Huntington” in combination with 

“biomarker,” “metabolite,” “metabolic,” “metabolomics,” “metabonomics,” 

“metabolism,” “MRI,” “magenetic resonance imaging,” “mass spectrometry,” 

“neurochemical,” “NMR,” “nuclear magnetic resonance,” and “spectroscopy.”   
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Only studies in which mHtt expression was determined to be responsible for 

inducing HD in humans or an HD-like condition in model organisms were retained for 

analysis.  Work employing non-mHtt-based systems (e.g., 3-nitropropionic acid induced 

neuronal toxicity) was excluded since it is uncertain the degree to which these approaches 

mimic HD pathogenesis (Tsang, et al. 2009).  The resulting reference set was 

independently reviewed by two individuals and studies were retained for analysis if 1) 

one or more primary metabolites were identified and 2) methods for assessing changes in 

the concentrations of the metabolites were described.  The complete list of metabolic 

changes observed in these studies is provided in Table A2 in the Appendixes. 

The amassed data were quantitatively assessed using correspondence analysis 

(CA) (Greenacre 1992; 2007; Greenacre and Degos 1977).  This method provides a 

means for analyzing qualitative data in a graphical format.  Weighted profile values are 

calculated for tabular (row-column) data and the relative similarities between weighted 

profile points are described in terms of their χ2 distances.  Prior to performing CA, the 

data (Appendix, Table A2) were reformatted into a contingency table that was suitable 

for testing (Appendix, Table A3).  For the purpose of this investigation, data set were 

structured to reflect the number of times each metabolite’s concentration was reported to 

have changed significantly in yeast, mice, and humans in response to mutant huntingtin 

toxicity.  CA was performed and visualized using XLSTAT. 

3.3 Results 

3.3.1 1H NMR determination of 103Q and 25Q yeast intracellular 

metabolites.  Analysis of the 1H NMR spectra generated from 103Q and 25Q yeast 

strains was undertaken using the Chenomx NMR Suite v 5.0 library of primary 
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metabolites.  This facilitated the detection of 29 compounds whose identities were 

confirmed by comparisons with 1D (Appendix, Table A1) and 2D NMR data generated 

from authentic standards.  Even with no sample cleanup prior to 1H NMR analysis, the 

observed signal detection was excellent, which enabled the confident assignment of 

proton resonances that were subject to considerable signal overlap (Figure 3.1).  

Biomolecules were identified which represent a wide range of metabolically and 

chemically distinct classes including amino acids (4-aminobutyrate, alanine, arginine, 

asparagine, aspartate, glutamate, glutamine, histidine, isoleucine, leucine, methionine, 

phenylalanine, proline, threonine, tryptophan, tyrosine, and valine), a nucleoside 

(adenosine), a cofactor (NAD+), and osmolytes (glycerol, trehalose), as well as 

Figure 3.1.  Representative 1H NMR spectra (δH 0–6 ppm) of A) 25Q and B) 103Q HD yeast 
extracts acquired at 500 MHz in D2O with 0.2% w/v sodium azide, 10 mM imidazole, and 0.5 
mM DSS.  
 

A

B
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metabolites associated with energy metabolism (ATP, acetate, formate, galactose, 

propylene glycol, succinate) and stress response (glutathione).  Galactitol was also 

identified, but its definitive biochemical role(s) in yeast is not well defined. 

3.3.2 Expression of mHtt alters the metabolome of 103Q yeast.  The 

application of principal components analysis (PCA) was tested as a multivariate 

statistical method for reducing the dimensionality of the metabolomics data.  It was 

anticipated that this would enable the identification of changes in the metabolic profiles 

of HD yeast attributable to mutant huntingtin’s toxicity.  Examination of the 1H NMR 

data by PCA revealed well-defined clusters for the metabolite profiles of 103Q and 25Q 

yeast (Figure 3.2).  Remarkably, these data represent an accumulation of 61 replicates per 

strain, which were collected by three individuals from 17 independent experiments 

carried out over a non-consecutive 17 week period.  The notable clustering of these data, 

despite the relatively challenging conditions used for this experiment, demonstrates the 

robustness and reproducibility of this 

metabolomics approach.   

Inspection of the loadings plot 

from the F1 axis (Figure 3.3) revealed 

several regions in the 1H NMR spectra 

that substantially contributed to the 

metabolic differences between yeast 

expressing normal versus mutant Htt 

fragments.  In view of the fact that the 

Figure 3.2.  PCA scores plot of 1H NMR data for 
25Q (�) and 103Q (�) yeast.  Data points 
represents single experimental replicates (n = 61 
for each strain).  The data were obtained from 17 
different experiments performed on different 
days and show notable consistency.  Substantial 
differentiation between the 25Q and 103Q yeast 
metabolomes is reflected in the distinct 
clustering among replicates of the two HD yeast 
strains.  
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sole difference between 25Q and 103Q yeast was the number of CAG repeats present in 

Figure 3.3.  Loadings plot of the F1 axis from the PCA of 25Q and 103Q yeast metabolomes.  
The loadings plot was used to identify sources of variability that contributed to the 
differentiation between 25Q and 103Q yeast.  Regions of high variability that corresponded to 
decreased (phased upward) or increased (phased downward) concentrations of primary 
metabolites in 103Q yeast are labeled.  Modeled spectral data for each metabolite (and DSS 
standard) are stacked above the loadings plot for reference.  
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their respective Htt gene fragments, this enabled the use of the loadings plot data to 

search for metabolic changes that were attributable to mutant huntingtin’s toxicity.  These 

data assisted in the identification of 11 metabolites that exhibited substantial variations in 

their respective concentrations between the two yeast strains (Figure 3.3).  The 

significantly altered metabolites included alanine, galactose, glutamine, glycerol, 

threonine, and valine, which were more abundant in 103Q yeast, while acetate, histidine, 

proline, succinate, and trehalose were markedly decreased (note: although acetate levels 

significantly decreased in 103Q yeast (Figure 3.4), they were removed from PCA 

analysis (Figure 3.3) due to their disproportionate and overwhelming influence during the 

initial statistical analysis).  Using a 

quantitative method based on an 

internal DSS standard (Weljie, et 

al. 2006), the concentrations for 

each of the 11 metabolites in the 

25Q and 103Q samples (Figure 

3.4) were determined.  No attempt 

was made to ascertain the 

recoveries for the 11 substances; 

therefore, this data does not 

represent their absolute cellular 

concentrations in yeast.  However, 

the recovery efficiencies can be 

assumed to be equivalent because 

Figure 3.4.  Changes in the relative concentrations of 
metabolites identified by PCA of 25Q and 103Q 
yeast.  The sample concentrations of the metabolites 
were determined by quantifying the integrals 
attributed to each of the non-exchangeable proton 
resonances in all 25Q and 103Q samples and 
expressing them relative to an internal DSS standard.  
Data are expressed as the percent change in 
metabolite concentration in 103Q yeast relative to 
control 25Q yeast.  A two-tailed, parametric z-test (α 
= 0.05) was used to determine the significance of the 
change in relative concentrations for each metabolite 
(n = 61).  Bars represent the mean relative 
metabolite concentration and standard deviations.  
All values were significantly different from zero with P 
≤ 0.0001 except for galactose (P = 0.0018) and 
threonine (P = 0.0096).  
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all of the sample extractions were carried out under identical conditions, thus enabling the 

determination of the relative percent change in the quantity of each primary metabolite.  

Using this approach, the relative concentrations of the 11 metabolites identified from the 

F1 loadings plot were shown to be significantly (two-tailed parametric z-test, α = 0.05) 

altered in yeast expressing a human mHtt fragment (Figure 3.4). 

Although the changes in the relative concentrations of primary metabolites had 

been ascribed to the toxic effect of mutant huntingtin, the possibility that some or all of 

the variation observed might be reflective of a generalized ‘toxic’ response in yeast could 

not be ruled out.  Therefore, the impact of several small molecule toxins on the yeast 

metabolome was explored.  The compounds potassium cyanide (inhibits complex IV of 

the mitochondrial electron transport chain), amphotericin B (forms pores in cellular 

membranes leading to the release of electrolytes), and cycloheximide (inhibits ribosomal 

protein biosynthesis) were screened against 25Q yeast at concentrations that caused 

decreases in cell proliferation equivalent to the ~30% reduction in 103Q versus 25Q cell 

growth following galactose-induced expression of the mHtt fragment.  Examination of 

the 1H NMR data by PCA revealed that each of the toxins caused restructuring of the 

yeast metabolome in a manner that was distinct from the 103Q yeast profile (Appendix, 

Figure A2).  Moreover, the individual metabolites (along with their respective changes in 

concentrations) that contributed to the toxin-induced metabolic profiles were different 

from those distinguishing 103Q versus 25Q yeast (data not shown).  This supported the 

conclusion that changes in the yeast metabolome induced by mHtt fragment expression 

are reflective of a specific gain-of-toxic function response stemming from mutant 

huntingtin’s toxicity. 



49 

3.3.3 Comparison of conserved HD metabolic features in humans, mice, and 

yeast.  It became clear through the course of this work that a multispecies comparison of 

metabolomics datasets would facilitate the identification of primary metabolites that are 

candidate conserved biomarkers for mutant huntingtin’s gain-of-toxic function properties.  

Identifying these biomarkers is important since huntingtin’s effects in humans are 

speculated to result from a combination of both loss-of-function and gain-of-toxic-

function properties (Cattaneo, et al. 2005; Imarisio, et al. 2008).  A systematic review of 

published studies documenting the metabolic changes exhibited in HD patients (Nicoli, et 

al. 1993; Reynolds, et al. 2005; Taylor-Robinson, et al. 1996; Underwood, et al. 2006) 

and transgenic mice expressing mHtt (Jenkins, et al. 2005; Jenkins, et al. 2000; Tkac, et 

al. 2007; Tsang, et al. 2006; Underwood, et al. 2006) was conducted in order to 1) 

identify which cellular metabolites were present in the mouse model and humans with 

HD and 2) determine which of these metabolites changed in response to disease.  

Correspondence analysis (CA), a descriptive multivariate statistical technique that is used 

for creating maps depicting the underlying relationships among categories of tabularized 

data, was selected as a statistical tool for this study.  This technique enabled the direct 

comparison of results from the HD yeast model with data obtained from metabolomics 

experiments performed in mice and humans.  In this case, CA was used to probe for 

primary metabolites whose concentration changes in yeast, mice, and humans were 

indicative of a generalized metabolic response to mHtt toxicity.  
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The metabolic changes 

reported in mice and humans 

were combined with results 

derived from HD yeast and the 

data were arranged in a 

contingency table identifying 1) 

the frequency with which each 

metabolite’s concentration was 

reported to have changed 

significantly and 2) the specific 

biological system in which 

metabolic changes occurred (Appendix, Table A3).  Examination of the multispecies 

dataset by CA resulted in the separation of the variables into two categories (organism 

and metabolite) along the principal axes, which accounted for all of the variation (inertia) 

in the data set (Figure 3.5).  The CA plot revealed that the overall metabolic patterns of 

yeast, mice, and humans were distinguishable from one another.  Interestingly, the 

metabolomes of mice and humans were clearly separated from yeast along the first 

principal (F1) axis; however, the profiles of yeast and mice were distinct from humans in 

the second principal (F2) dimension.  Further inspection of the CA plot revealed that 

several metabolites responded similarly in two or more HD systems, which suggested 

that these metabolites could be potential biomarkers for toxicity associated with mHtt 

expression.  Therefore, focused attention was placed on examining the relationships 

among these metabolites in reference to their source organisms.   

Figure 3.5  Asymmetric plot from CA of metabolic 
changes reported for cells in which mHtt expression 
occurs.  For CA, column profiles represent the different 
biological systems (humans, mice, yeast), while row 
profiles represent the metabolites identified as having 
undergone significant changes.  Metabolites that were 
reported from a single HD model occupy coordinates 
that superimpose upon the source organism.  For 
clarity, these metabolites have been removed from this 
diagram, but they can be found in Supporting 
Information, Table 3.  
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Examination of the CA plot revealed that the four metabolites, alanine, glutamine, 

glycerol and valine exhibited similar changes in model organisms and humans expressing 

mHtt (Figure 3.5).  The occurrence of these four metabolites in the CA plot in a region 

that was central to both the F1 (separating mice and humans) and F2 (separating mice and 

yeast) dimensions indicates that alanine, glutamine, glycerol and valine might be 

important multispecies biomarkers for gauging mutant huntingtin’s gain-of-toxic effects.  

Other notable trends that were observed in the CA plot included the co-localization of 

creatine, glutamate, lactate, malonate, N-acetylaspartate, and urea with mice and humans 

in the F1 dimension.  This indicates that these six metabolites behaved similarly in both 

mammalian systems.  We also noted that succinate and acetate clustered in the F2 

dimension of the CA plot with mice and yeast, which indicated that these metabolites 

responded similarly in the two model organisms.  Besides alanine, glutamine, glycerol 

and valine, no additional metabolites were observed that were unique solely to yeast and 

humans. 

3.4 Discussion 

Metabolomics is concerned with determining the identities, concentrations, and 

distributions of small molecules in living systems with the presumption that the resulting 

metabolic profiles are reflective of an organism’s physiological status.  Therefore, 

perturbation to an organism’s biological processes should result in distinct changes to its 

steady-state metabolome, making metabolomics a powerful multi-parameter profiling 

technique that is well suited for identifying disease-dependent metabolic aberrations 

(Dunckley, et al. 2005; Gowda, et al. 2008; Kaddurah-Daouk and Krishnan 2008; Powers 

2009).  A metabolomics approach has been applied as a tool for discerning the unique 
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gain-of-toxic function effects attributable to mutant huntingtin’s toxicity in a HD yeast 

model and these results have been compared to the metabolic restructuring that occurs in 

human HD patients and transgenic mice.   

Using a yeast model to map metabolites that exhibited significant shifts in their 

relative intracellular concentrations showed that disruptions are detected in the steady-

state concentrations of small molecules whose metabolic pathways are seemingly 

independent (Figure 3.6).  For example, the biochemically distinct compounds trehalose, 

Figure 3.6.  Map illustrating the biochemical linkages among the primary metabolites identified 
in HD yeast.  Only the most predominant metabolic pathways are shown for simplicity.  
Metabolites shown in bold underwent significant concentration changes in 25Q versus 103Q 
yeast.  Arrows represent individual metabolic (enzymatic) steps required for biotransformation 
(note – italicized metabolites were not observed in yeast extracts, but represent known and 
important metabolic links).  
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proline, glutamine, galactose, and acetate exhibited large changes in their respective 

concentrations following mHtt expression.  However, if these metabolites are considered 

in terms of their major cellular roles – energy storage/generation (acetate, galactose and 

trehalose) and maintenance of intracellular nitrogen pools (glutamine and proline) – then 

potential links among these small molecules begin to emerge.  Consequently, 

metabolomics can be used to provide evidence for errant or disrupted regulatory 

processes that are involved in HD-related cell death.  However, caution should be used in 

applying this form of interpretation to these findings since inferences based simply on 

assigning gross biochemical roles to individual metabolites can be deceptive of their true 

functions within complex metabolic networks (Steuer 2006). 

Several conserved metabolic changes have been observed that are shared among 

HD yeast, mice, and humans (Figure 3.7), and this has revealed what appears to be a core 

set of phenotypic (metabolic) markers related to mHtt expression.  The metabolites 

alanine, glutamine, glycerol, and valine show substantial promise as biomarkers for 

gauging mutant huntingtin’s gain-of-toxic function effects.  It is anticipated that 

metabolomics and other ‘-omics’-based strategies will have important applications that 

may be applied to discerning the cellular mechanisms of HD.  However, at the present 

time, it is not immediately apparent how altered levels of alanine, glutamine, glycerol, 

and valine are linked to mutant huntingtin’s toxicity.  Further experiments will be needed 

to probe the relationships among cellular pathways that are impacted by mutant 

huntingtin.   
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Despite the passing of 

nearly two decades since the 

genetic basis of HD was defined 

(MacDonald, et al. 1993), no 

clinically-approved therapeutic 

agents have been developed that 

allay the toxicity component of 

this disorder (Fecke, et al. 2009).  

One exciting potential application 

of the multispecies approach 

described above to investigating 

mutant huntingtin’s toxicity is this 

method’s capacity for sifting 

through large biomarker sets so 

that metabolic perturbations arising from the disruption of conserved biological features 

can be identified.  These pathways are anticipated to provide focused insight into the 

biochemical networks that may be involved in HD and respond positively to therapeutic 

modulation.  Currently, several of these pathways are being explored further as part of a 

comprehensive effort to develop novel therapeutic approaches for treating the underlying 

toxicity component of mutant huntingtin.  It is anticipated that these efforts toward this 

endeavor will be reported in due course. 

The material in Chapter 3 is adapted from Joyner et al. Journal of Proteome Research 

2010, 9 (1), 404-412.  

Figure 3.7.  Venn diagram illustrating similarities 
among the metabolomes of humans, mice, and yeast 
expressing mHtt.  Pairs of integers represent the 
number of metabolites identified within a given 
organism or set of organisms (first integer) versus the 
number of biomolecules that are reported to undergo 
significant concentration changes (second integer).  
Among the eight metabolites that are reported from all 
three HD systems, four (alanine, glutamine, glycerol, 
and valine) undergo significant shifts in concentrations 
following mutant huntingtin expression.  The 
metabolites listed in the diagram are those found 
significantly altered in the three pair-wise comparisons 
(clockwise from left side: yeast and mice, mice and 
humans, and yeast and humans).  A complete list of 
all metabolites is provided in Supporting Information, 
Table 2.  
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Chapter 4 Alteration of the cellular response to toxicity associated with 

protein aggregation through the modulation of trehalose metabolism 

4.1 Introduction 

The recent metabolomic examination of the baker’s yeast (Saccharomyces 

cerevisiae) model of Huntington’s disease (HD) demonstrated the practicality of using 

metabolic profiling to investigate the metabolic aberrations associated with HD (Joyner, 

et al. 2010).  Huntington’s disease (HD) is a progressive neurodegenerative disorder 

arising from a CAG trinucleotide repeat expansion mutation in the huntingtin (Htt) gene 

(Imarisio, et al. 2008; Walker 2007).  Individuals carrying mutant forms of huntingtin 

(mHtt) encoding for ≥35 glutamine repeats are at risk of developing HD, and the number 

of polyglutamine-encoding CAG repeats in mHtt strongly influences the age of disease 

onset, symptom severity, and rate of HD progression (Langbehn, et al. 2010).  The recent 

metabolomic examination of the yeast HD model revealed that the metabolite which 

showed the greatest change in concentration in response to mHtt expression was trehalose 

(Joyner, et al. 2010). 

Trehalose is a disaccharide which is found in a variety of microbes, plants and 

insects (Elbein, et al. 2003).  The trehalose cycle in yeast is primarily maintained by 

seven proteins, encoded for by the genes TPS1, TPS2, TPS3, TSL1, NTH1, NTH2 and 

ATH1 (Figure 4.1) (Francois and Parrou 2001; Voit 2003).  The protein products of 

TPS1, TPS2, TPS3 and TSL1 combine to form the trehalose synthase complex, which 

catalyzes in two steps the formation of trehalose from glucose-6-phosphate and UDP-

glucose.  Trehalose is hydrolyzed by the products of NTH1 and ATH1.  In contrast to the 
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other proteins in the trehalose cycle, the function of the protein product of NTH2 is not 

well understood. 

Biomolecules can be protected from many types of stress, including desiccation 

and heat, by the presence of trehalose (Crowe 2007; Jain and Roy 2009; Kaushik and 

Bhat 2003).  It has been shown that trehalose can also prevent the aggregation of 

misfolded proteins both in vitro and in vivo, which lends support to its putative role as a 

chemical chaperone (Singer and Lindquist 1998).  These results have inspired the 

exploration of the use of trehalose to inhibit the aggregation of disease-related proteins in 

a handful of neurodegenerative disorders, including Alzheimer’s disease, prion diseases 

and HD (Beranger, et al. 2008; Fung, et al. 2005; Liu, et al. 2005; Qi, et al. 2009; Tanaka, 

et al. 2005).  

Figure 4.1  The trehalose metabolic cycle in yeast.  Trehalose is biosynthesized from UDP-
glucose and glucose-6-phosphate in a two-step process by the trehalose synthase complex 
(Tps1p, Tps2p, Tps3p, and Tsl1p).  Trehalose can be hydrolyzed to form glucose by the 
neutral trehalases (Nth1p and Nth2p) and by acid trehalase (Ath1p). 
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  In this study, a series of yeast strains with gene knockouts for each of the genes 

which participate in the trehalose cycle were engineered to express either normal Htt or 

mHtt.  The deletion of ATH1 leads to the elevation of intracellular concentrations of 

trehalose and the alleviation of the reduced cell growth caused by mHtt expression.  The 

metabolic profiles of each strain were also analyzed, showing that the metabolic 

aberrations associated with the expression of mHtt can be decoupled from the toxicity of 

the mutant huntingtin protein.  Finally, the mechanism of protection against mutant 

huntingtin toxicity by trehalose was explored using a series of protein degradation 

inhibitors. 

4.2 Experimental Procedures 

4.2.1 Yeast strains, plasmids and transformations. Seven Saccharomyces 

cerevisiae knockout strains prepared in the background BY4742 (MATα his3∆1 leu2∆0 

lys2∆0 ura3∆0) were used in this study (Table 1).  The plasmids containing the 

huntingtin construct were prepared and used as described previously (Williams, et al. 

2007).  Briefly, constructs containing the N-terminal fragment of human Htt followed by 

CAG codon repeats encoding for either 103 or 25 glutamine (Q) repeats fused at the C-

terminus to enhanced green fluorescent protein (EGFP) reporters were placed under the 

control of GAL1 promoters (Zhang, et al. 2005).  Transformations were performed using 

the lithium acetate-heat shock method (Gietz and Schiestl 2007).  Transformation success 

was confirmed by observation of fluorescing huntingtin-EGFP and by reverse 

transcriptase (RT) PCR amplification of huntingtin-EGFP mRNA.  Strains expressing the 

construct with 103 glutamine repeats or 25 glutamine repeats were designated “103Q” 

and “25Q”, respectively.  The 103Q and 25Q lines of each strains were maintained on 
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uracil-free (plasmid selective 

marker) synthetic complex media 

(SC) supplemented with 2% 

(w/v) glucose. 

4.2.2 Yeast growth 

assays (spot tests).  Yeast cultures were grown for 24 hours in SC media supplemented 

with 2% (w/v) glucose.  Prior to performing the assays, the optical density of each culture 

was determined and the cultures were diluted to ensure that each assay began with a 

uniform number of cells.  Cells were spotted onto SC agar media supplemented with 2% 

(w/v) galactose in four five-fold dilutions and incubated at 30˚ C.  

4.2.3 Fluorescent microscopy and image processing.  All microscopic images 

were collected using an Olympus BH-2 microscope (Olympus America Inc.) with an 

Olympus DApo100x oil-immersion objective, a BH2-RFL-T3 high pressure mercury 

burner and SPOT Insight 2 MP digital camera (Diagnostic Instruments, Inc.).  Images 

were uniformly cropped to remove empty space in the image and adjusted for contrast 

and brightness. 

4.2.4 Confirmation of gene transcription using RT-PCR.  Expression of the 

Htt-EGFP constructs was confirmed using reverse transcriptase (RT) PCR. Total RNA 

was isolated from yeast cultures using an RNEasy Mini Kit (Qiagen, Inc.) and reverse 

transcriptase and PCR reactions were carried out in a single tube for each sample.  

Amplified products were analyzed using agarose gel electrophoresis. 

Table 4.1 S. cerevisiae strains used in this study 
Strain Genotype 

BY4742 MATα his3∆1 leu2∆0 lys2∆0 ura3∆0 
∆tps1 isogenic to BY4742, ∆tps1::KanMX 

∆tps3 isogenic to BY4742, ∆tps3:: KanMX 
∆tsl1 isogenic to BY4742, ∆tsl1:: KanMX 
∆ath1 isogenic to BY4742, ∆ath1:: KanMX 
∆nth1 isogenic to BY4742, ∆nth1:: KanMX 
∆nth2 isogenic to BY4742, ∆nth2:: KanMX 
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4.2.5 Metabolomic characterization of yeast strains.  Collection and analysis of 

metabolomics data from the yeast model of HD has been described previously by our 

group (Joyner, et al. 2010).  Briefly, yeast were grown using a two-stage (I and II) culture 

process at 30 °C.  Stage I cultures were grown in 50 mL SC media supplemented with 

2% (w/v) glucose for 24 h.  Stage II cultures were prepared by centrifuging stage I 

cultures, decanting the supernatant, and suspending the cell pellet in SC media 

supplemented with 2% (w/v) galactose to induce Htt gene fragment expression.  After 

16.5 h, stage II cultures were centrifuged, the supernatant was decanted, and the cell 

pellet was immediately suspended in methanol.  After 3 h of extraction, cell suspensions 

were centrifuged and the methanol was decanted.  The solvent in the resulting extracts 

was evaporated in vacuo and the samples were prepared for NMR by adding 666 µL of a 

solution containing deuterium oxide with a pH indicator (10 mM imidazole) and an 

internal standard (0.5 mM 2,2-dimethyl-2-silapentane-5-sulfonate (DSS)) to each sample.  

No additional sample clean-up was performed prior to NMR analysis.  1H NMR spectra 

were collected on a 500 MHz Varian VNMRS-500 spectrometer with a triple resonance 

probe at 20 °C. 

4.2.6 Metabolomics data analysis.  Data were analyzed as described previously 

with minor modifications (Joyner, et al. 2010).  Briefly, all 1H NMR FIDs were imported 

into Chenomx NMR Suite v 5.0 (Chenomx, Inc.) for processing and binning.  The 0–6 

ppm region of each spectrum was divided into 0.005 ppm bins and the regions containing 

the signals for residual water (4.750–4.900 ppm) and methanol (3.335–3.350 ppm) were 

removed from further analysis.     
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All processed 1H NMR data sets were normalized to the total area under the curve 

for the 0–6 ppm region of the spectrum prior to statistical analyses.  Chenomx NMR 

Suite was used to manually identify metabolites and quantify their respective 

concentrations based upon comparisons to an internal DSS standard.  Principal 

components analysis (PCA) was used to analyze the data sets with the software package 

XLSTAT (Addinsoft, Inc.).  Two-tailed, parametric t-tests were performed using 

XLSTAT. 

4.2.7 Protein degradation inhibition assay.  Yeast strains were grown in SC 

media supplemented with 2% (w/v) glucose for 24 h and standardized aliquots were 

taken from each culture, centrifuged, and re-suspended in 50 mL 0.85% (w/v) sodium 

chloride solution.  Ten-fold dilutions were made from the sodium chloride-yeast 

suspension into SC media supplemented with 2% (w/v) galactose and 200 µL aliquots 

were transferred into the wells of a 96-well microplate.  The protein degradation 

inhibitors phenylmethylsulfonyl fluoride (PMSF), tunicamycin and salinosporamide were 

then added to individual wells of the microplate at final concentrations of 1 mM, 0.25 

µg/mL and 1 µM, respectively. 

4.3 Results 

4.3.1 Transformation of yeast knockout strains and comparison of their 

growth profiles.  A series of yeast knockout strains deficient for genes involved in 

trehalose metabolism were engineered to express either a normal Htt fragment (25Q) or 

mHtt fragment (103Q).  Successful transformations were completed for the wild type 

strain (BY4742) and five of the seven knockouts, which were designated WT-25Q, WT-
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103Q, ∆tps1-25Q, ∆tps1-103Q, ∆tps3-25Q, ∆tps3-103Q, ∆nth1-25Q, ∆nth1-103Q, 

∆nth2-25Q, ∆nth2-103Q, ∆ath1-25Q and ∆ath1-103Q. 

The growth profiles of all 10 transformants were compared using spot cultures on 

agar plates (Figure 4.2).  Remarkably, the ∆ath1-103Q line grew almost as well as the 

∆ath1-25Q line.  This enhanced growth strongly suggested that the lack of functional 

Ath1p resulted in a reduction in the toxic effects of the mutant huntingtin protein.  The 

growth profiles of the WT, ∆nth1, ∆nth2 and ∆tps3 strains were almost identical, with 

the 103Q lines for each of these strains growing significantly less than the 25Q lines due 

to the toxic effects of mutant huntingtin (Figure 4.2).  The ∆tps1 lines grew much less 

than the others, which was not unexpected since these lines should not be able to produce 

any trehalose, thus leading to a reduction in growth.  However, the ∆tps1-25Q line still 

grew more than the ∆tps1-103Q line, indicating that even in this background mutant 

huntingtin exhibits toxicity. 

Figure 4.2  Yeast cell growth assay of 25Q and 103Q lines of 
yeast knockout strains. The ∆ath1-103Q line was the only line with 
enhanced growth while expressing mHtt. 
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4.3.2 Comparison of mutant huntingtin aggregation in yeast knockout 

strains.  Fusion of the huntingtin fragments at the C-terminus to enhanced green 

fluorescent protein (EGFP) enabled us to visualize the huntingtin fragment in all 10 

transformants (Figure 4.3).  All of the 25Q lines exhibited similar appearances, showing 

that the normal huntingtin was diffused throughout the cells.  In contrast to the 25Q lines, 

the WT-103Q line exhibited a series of pronounced aggregates distributed throughout the 

cells.  Both the ∆nth1-103Q and ∆tps3-103Q lines had similar phenotypes to the WT-

103Q line.  Interestingly, the ∆nth2-103Q line displayed a different phenotype from the 

other 103Q lines, with only very small aggregates visible in the cells and in much fewer 

numbers.    The ∆tps1-103Q line was similar to both the WT-103Q and ∆nth2-103Q lines 

Figure 4.3  Fluorescence microscope images of yeast knockout strains expressing human Htt 
fragments.  Images of the 25Q and 103Q line of each knockout are shown.  Aggregates are 
visible in all of the 103Q lines except ∆ath1-103Q.  No aggregates are visible in any of the 
25Q lines.  All images are shown at equivalent magnifications. 
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in that it contained aggregates, but differed from the other strains in that it contained a 

large number of very small aggregates that were distributed evenly throughout the cell.  

The ∆ath1-103Q line exhibited a very different phenotype in which the 

huntingtin-EGFP was localized to what appeared to be a single compartment.  Although 

the low fluorescent intensity observed in the ∆ath1-103Q line suggested that the amount 

of transgenic protein in the cell was very low, RT-PCR confirmed that the mHtt-EGFP 

construct was being expressed at similar levels as in the WT-103Q line. 

4.3.3 Metabolic profiling of yeast knockout strains and measurement of 

intracellular trehalose concentration.  The metabolic profiles of the transformants were 

determined by 1H NMR metabolomics.  PCA was used to analyze these data and to 

investigate changes in the metabolite profile of each strain.  As previously observed 

(Joyner, et al. 2010), the metabolic profiles of the WT-25Q and WT-103Q lines were 

distinct and did not overlap, indicating severe perturbations in primary metabolic 

functions in response to the expression of the mHtt fragment (Figure 4.4). 

The metabolic profile of the ∆ath1-103Q line was indistinguishable from those of 

the ∆ath1-25Q and WT-25Q lines (Figure 4.4a).  These similarities suggested that the 

∆ath1 deletion conferred protection from mutant huntingtin toxicity, which is in 

agreement with the enhanced growth observed in the spot test assay (Figure 4.2).  

Surprisingly, the profile of the ∆nth1-103Q line was also indistinguishable from those of 

the ∆nth1-25Q and WT-25Q lines (Figure 4.4b), even though no growth enhancement 

was observed in the spot test assay.  The metabolic profiles of the ∆nth2 lines mimicked 

those of the WT lines, with both of the 103Q lines clustering together and both of the 
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25Q lines clustering together (Figure 4.4c).  Similar to the ∆nth1 lines, the profile of the 

∆tps3-103Q line was indistinguishable from those of the ∆tps3-25Q and WT-25Q lines 

Figure 4.4  Scatter plot from PCA of metabolic data for 25Q and 103Q lines of WT (n = 18) vs 
a) ∆ath1 (n = 18), b) ∆nth1 (n = 18), c) ∆nth2 (n = 9), d) ∆tps3 (n = 9), and e) ∆tps1 (n = 9).  
The percentage value in each axis lable represents the total amount of independent variation 
in the data set which is captured by that axis.   f) The intracellular concentration of trehalose in 
yeast knockouts as determined from yeast extracts generated for metabolomic analysis.  
Asterisks over bars indicate significance of difference from WT-103Q based on a Dunnet's 2-
sided test.  Asterisks over brackets indicate significance of difference between values in 25Q 
and 103Q lines of each strain based on a Student’s t-test (** P < 0.0001, * P ≤ 0.01, ns = not 
significant, ND = not detected). 
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(Figure 4.4d).  These similarities in metabolic profile between the 103Q and 25Q lines of 

∆nth1 and ∆tps3 stand in stark contrast to the growth profile of these transformants 

(Figure 4.2).  The metabolic profile of the ∆tps1-25Q and ∆tps1-103Q lines were quite 

unique, with a dramatic separation from the WT lines in the F1 axis (Figure 4.4e).  

Examination of the F1 loadings plot from the PCA showed that this large separation was 

primarily due to the extreme difference in trehalose concentrations between the ∆tps1 and 

WT lines (4.4f).  

The relative intracellular concentration of trehalose was also determined for each 

transformant (Figure 4.4f).  Trehalose concentrations in the 103Q lines were generally 

much lower than in the 25Q lines, particularly for the WT, ∆nth1 and ∆nth2 lines.  

However, the concentration of trehalose was indistinguishable between the ∆ath1-25Q 

and ∆ath1-103Q lines.  Trehalose was detected in higher concentrations in the ∆tps3-

103Q line than in most of the other 103Q lines, but it was still significantly lower than in 

the ∆tps3-25Q line and much lower than the observed trehalose concentration in the 

∆ath1 lines.  No trehalose was detected in any of the ∆tps1 lines, which is in agreement 

with previous observations (Bell, et al. 1998).  

4.3.4 Inhibition of protein degradation in yeast HD model.  In view of the 

emerging link between the protective role of trehalose in cells and its impact on protein 

processing and degradation, we examined a series of protein degradation inhibitors in the 

WT and ∆ath1 strains.  Three inhibitors were selected which target different protein 

degradation pathways in yeast: PMSF, salinosporamide and tunicamycin.  PMSF disrupts 

autophagy by inhibiting serine proteases involved in the degradation of autophagic 

bodies, leading to a severe reduction in autophagy (Jones 1991; Takeshige, et al. 1992).  
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Salinosporamide is a potent inhibitor of the 20S proteasome, reducing the functionality of 

the ubiquitin-proteasome system (Feling, et al. 2003).  Tunicamycin inhibits protein 

glycosylation, leading to the accumulation of unfolded proteins in the endoplasmic 

reticulum (ER) which induces ER stress.    The concentration of each inhibitor was 

determined based upon published examinations of the activity of these compounds in 

yeast systems. 

The effects of the three protein degradation inhibitors were determined by 

measuring the relative amount of huntingtin per cell as well as the total growth of the 

Figure 4.5  Treatment of yeast expressing mHtt  with protein degradation inhibitors.  PMSF 
inhibits autophagy, tunicamycin disrupts ERAD, and salinosporamide inhibits the proteasome.   
a)The ratio of huntingtin/cell as determined by fluorescent measurements and OD600 
measurements of cell cultures treated with inhibitors of protein degradation.   The significance 
of the difference between the huntingtin/cell values in the 25Q and 103Q lines of each strain 
were determined using a Students t test: WT PMSF (P < 0.0001), WT tunicamycin (P = 
0.0540), WT salinosporamide (P < 0.0001), ∆ath1 PMSF (P = 0.3240), ∆ath1 tunicamycin (P 
= 0.3605), ∆ath1 salinosporamide (P = 0.2168).  b) The OD600 of cultures treated with protein 
degradation inhibitors. The significance of the difference between the OD600 values in the 25Q 
and 103Q lines of each strain were determined using a Students t test: WT PMSF (P = 
0.4128), WT tunicamycin (P = 0.0049), WT salinosporamide (P < 0.0001), ∆ath1 PMSF (P = 
0.1095), ∆ath1 tunicamycin (P = 0.8802), ∆ath1 salinosporamide (P < 0.0001).  All data was 
normalized to vehicle treated controls. Dashed lines shows the relative value of vehicle treated 
cultures. 
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WT-25Q, WT-103Q, ∆ath1-25Q and ∆ath1-103Q lines after treatment with these 

compounds (Figure 4.5).  The relative amount of huntingtin per cell was determined by 

measuring the total fluorescence from EGFP in a culture and normalizing this value to the 

OD600 of the culture.  Treatment of the WT-103Q line resulted in an increase in 

huntingtin levels for each inhibitor tested.  However, only treatment with tunicamycin 

and salinosporamide caused an increase in huntingtin levels in the WT-25Q line.  

Tunicamycin was the only inhibitor which caused an increase in huntingtin in the ∆ath1-

25Q and ∆ath1-103Q lines. 

The effects of the protein degradation inhibitors on the growth of the WT-25Q, 

WT-103Q, ∆ath1-25Q and ∆ath1-103Q lines were also determined.  Tunicamycin caused 

the most severe reduction in growth in the WT-25Q line, but in the WT-103Q line all 

three inhibitors had approximately the same effect.  PMSF and salinosporamide caused 

very little reduction in growth of the ∆ath1-25Q and ∆ath1-103Q lines, but tunicamycin 

treatment severely impeded the growth of both lines.  

4.5 Discussion 

A metabolomics-based approach has been employed in this study in combination 

with yeast knockout strains deficient in trehalose metabolic pathways in order to 

investigate the role of trehalose in protecting cells against the toxicity of mHtt.  There is 

substantial evidence that trehalose functions as a chemical chaperone and that its activity 

is due to the disruption of hydrogen bonding between the water molecules surrounding a 

protein (Jain and Roy 2009).  It is hypothesized that interactions between water and 

trehalose molecules alters the thermodynamic folding landscape for misfolded proteins, 

causing them to remain in isolated misfolded conformations rather than form aggregates 
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(Liu, et al. 2008).  This hypothesis may explain the ability of trehalose to increase the 

accessibility of misfolded proteins to molecular chaperones (Singer and Lindquist 1998). 

Interestingly, only the deletion of the acid trehalase (∆ath1) resulted in increased 

trehalose concentrations and protection against mutant huntingtin toxicity.  There is 

currently considerable debate regarding the role of acid trehalase in cells (Fecke, et al. 

2009; Garre, et al. 2009; Huang, et al. 2007), which makes interpretation of these results 

difficult.  Even more surprising was the observation that neutral trehalase does not afford 

protection against mutant huntingtin toxicity.  While the deletion of the neutral trehalase 

was expected to have a significant effect on intracellular trehalose levels, only a very 

modest effect was observed. 

Intracellular concentrations of trehalose were not predictive of the metabolic 

response of the knockouts to mHtt expression.  The metabolic aberrations associated with 

mHtt expression were completely alleviated in the ∆ath1-103Q line; this line also 

exhibited a significant increase in intracellular trehalose levels.  However, the metabolic 

aberrations associated with mHtt expression were also assuaged in the ∆nth1-103Q line, 

which did not show an increase in intracellular trehalose, and in the ∆tps3-103Q line, 

which exhibited only a small increase in trehalose (Figure 4.4).  Neither the ∆nth1-103Q 

line nor the ∆tps3-103Q line showed any increase in growth compared to the WT-103Q 

line, suggesting that the metabolic dysfunction caused by mHtt can be decoupled from 

the reduction in growth associated with its expression. 

The variation in aggregation patterns observed in this series of yeast 

transformants confirms previous observations that aggregation of mutant huntingtin is not 
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necessarily linked to its toxicity (Duennwald, et al. 2006).  Intriguingly, it has recently 

been shown that misfolded proteins can be sequestered into distinct cellular 

compartments in yeast (Kaganovich, et al. 2008).  The destination of the misfolded 

protein depends on whether the protein is destined for degradation via the proteasome or 

if it is simply being sequestered to protect the cell from potential toxicity associated with 

misfolded proteins.  The localization of the mutant huntingtin in the ∆ath1-103Q line 

appears similar to the compartmentalization described by Kaganovich et al., but the data 

collected in this study are insufficient to determine which compartment is being utilized 

by the cell. 

Considering the lack of toxicity observed in the ∆ath1-103Q transformant, the 

increase in intracellular trehalose in this line, the lack of aggregation of mutant huntingtin 

and the alleviation of the metabolic defects associated with mHtt expression, it appears 

that trehalose protects yeast from mutant huntingtin toxicity via a chemical chaperone 

mechanism.  This conclusion is supported by the fact that inhibition of autophagy has no 

effect on the clearance of mutant huntingtin from the cells with elevated trehalose 

concentrations (Figure 4.5).  These results are in contrast to a previous observation that 

trehalose can enhance the clearance of protein aggregates from cells by inducing 

autophagy (Sarkar, et al. 2007a). 

Although trehalose has been repeatedly shown to be one of the most effective 

osmolytes for preventing the aggregation of amyloidogenic proteins, other osmolytes 

have demonstrated similar properties (Singer and Lindquist 1998; Tanaka, et al. 2004).  It 

is possible that molecular systems which function as chemical chaperones in a similar 

fashion to trehalose may be present in humans.  If such a process is identified, it may 
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hold potential as a therapy for many protein misfolding diseases, including HD and other 

neurodegenerative diseases. 

The information in Chapter 4 has been adapted from a manuscript which is in 

preparation for publication in the FEBS Journal. 
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Chapter 5 Ichthyotoxicity and Metabolic Transformation of Select 

Briarane Diterpenes 

5.1 Introduction 

Briarane diterpenes constitute a unique class of marine-derived secondary 

metabolites that are composed of a conserved bicyclo[8.4.0] system and fused γ-lactone.  

Since the first briarane diterpene, briareine A, was reported in 1977 from a gorgonian 

coral by Burks and colleagues at the University of Oklahoma (Burks, et al. 1977), >500 

related metabolites have been described from various corals, and other marine 

invertebrates (Sung, et al. 2005; Sung and Chen 2002; Sung, et al. 2008; Sung, et al. 

2002).  A notable feature of the structural diversity within this compound family is that 

functionalization, ring opening/closure, and epimerization is observed throughout all 20 

positions of the briarane carbon skeleton.  The extraordinary biosynthetic adaptability of 

the briaranes to structural variation has made these metabolites an attractive subject for 

assessing how their naturally-occurring chemical variation influences the biological 

activities of this compound class. 

While the majority of bioassays performed on these compounds have focused on 

the potential applications of briaranes to human health and diseases (e.g., cancer cell 

cytotoxicity, anti-inflammatory, and antiviral activities), a subset of the investigations 

were designed to query the ecological roles of briaranes (Changyun, et al. 2008).  These 

studies have evaluated the antifouling properties of briaranes, as well as their toxicity and 

antifeedant activities against marine invertebrates and fish.  For example, a fraction 

enriched in erythrolides A, B, and D from the encrusting gorgonian octacoral 
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Erythropodium caribaeorum deterred reef fish from feeding on agar baits infused with 

the briarane mixture; however, the antifeedant effects of the purified erythrolides were 

substantially diminished (Fenical and Pawlik 1991).  Whereas erythrolide A was 

completely inactive as a feeding deterrent, the antifeedant effects of purified erythrolides 

B and D were rather marginal.  In another example, renillins A–D were shown to inhibit 

feeding on baits presented to lesser blue crabs (Callinectes similis); however, only 

renillins C and D showed antifeedant activity against mummichog fish (Fundulus 

heteroclitus) (Barsby and Kubanek 2005). 

In addition to the observed antifeedant properties of briaranes, it is worth 

considering other ecologically-relevant functions that these compounds may serve for 

their biogenic hosts.  One possibility is that the briaranes may function as acute biotoxins, 

which would help prevent predation.  Although toxins are generally believed to convey a 

competitive advantage to the host organism, there is little evidence that these types of 

compounds are capable of directly modulating the palatability of potential food items 

(Molyneux and Ralphs 1992).  Moreover, it has been proposed that compounds capable 

of eliciting a toxic response have a greater impact on substantially limiting the dietary 

adaptation of predators to potential food sources than compounds which act only as 

feeding deterrents (Glendinning, et al. 2001).  Therefore, it is reasonable to deduce that 

defensive toxins should play an important role in community-scale interactions between 

chemically-protected prey and their prospective predators (Swihart, et al. 2009).  While a 

substantial number of putative marine-derived defensive diterpenes have been shown to 

be lethal to fish (Albericci, et al. 1978; Cimino, et al. 1990; Cimino, et al. 1988; De 

Petrocellis, et al. 1991; Gavagnin, et al. 1992; Iwagawa, et al. 1995; Iwagawa, et al. 1996; 
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McPhail and Davies-Coleman 1997; Miyamoto, et al. 1995; Schlenk and Gerwick 1987; 

Uchio, et al. 1985), we are aware of only a single ichthyotoxicity study involving a 

metabolite bearing a briarane-skeleton (Uchio, et al. 1989).  In this particular example, it 

was reported that compound 1 was toxic to Gambusia affinis at concentrations ranging 

from 2–5 ppm. 

The hypothesis of this investigation is that in comparison to the modest feeding 

deterrent activity exhibited by some briaranes, the toxicity of these compounds might 

play an important role in mounting an effective defensive strategy against predation.  

This conjecture is supported by the observation that although briaranes often accumulate 

at relatively substantial levels in certain corals, only a limited subset of these compounds 

exhibit efficacy toward deterring foraging behavior.  In order to test this hypothesis, the 

chemical diversity of a Briarium sp. collected in Vanuatu has been explored.  This 

examination led to the purification and subsequent structure determination of three new 

briaranes RAMs A–C (2-4).  The ichthyotoxicity and brine shrimp toxicity of the RAMs 

were assessed against a reporter fish strain (Pimephales promelas) and Artemia salina.  

This research has also afforded the unique opportunity to analyze a heretofore unexplored 

aspect of the interaction of briaranes with biological systems – the metabolic 

transformation of briaranes by fish.  The major RAM metabolites were also subjected to 

bioassay testing against Artemia salina.  Based on this study, the theory is proposed that 

briarane toxicity plays a defensive role by providing protection to certain corals against 

predatory fish.  Furthermore, these data demonstrate that the metabolism of briarane 

toxins by fish leads to further expansion of the already remarkable structural diversity 

exhibited by the briaranes. 
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5.2 Experimental Procedures 

5.2.1 General Experimental Procedures.  NMR data were obtained on Varian 

VNMR spectrometers (400 and 500 MHz for 1H, 100 and 125 MHz for 13C) with broad 

band and triple resonance probes at 20 ± 0.5 °C.  Electrospray-ionization mass 

spectrometry data was performed on a LCT Premier (Waters Corp.) time-of-flight 

instrument.  Optical rotations were measured on a Rudolph Research Autopol III 

automatic polarimeter.  HPLC separations were performed on a Shimadzu system using a 

SCL-10A VP system controller and Gemini 5µm C18 column, (110Å, 250 x 21.2 mm) 

with a flow rate of 10 mL/min.  X-ray diffraction data were collected on a Bruker-AXS 
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with an APEX CCD area detector with a Cu X-ray source.  All solvents were of ACS 

grade or better. 

5.2.2 Animal Material and Sample Preparation.  The Briarium sp. used for this 

project was obtained from the National Cancer Institute’s Natural Products Repository of 

marine invertebrates (identification number C020997-A/20).  The sample was collected 

in the Republic of Vanuatu at a depth of 10 meters.  The sample had been extracted using 

1:1 dichloromethane–methanol and then water.  The material extracted using the 1:1 

mixture of dichloromethane–methanol was selected for this study. 

5.2.3 Purification of the RAMs A–C (2–4).  The extract was suspended in water 

and partitioned against ethyl acetate.  The ethyl acetate soluble material (4 g) was 

prepared for HPLC by passing it through a C18 SPE cartridge and eluting it with 

methanol.  The extract was subjected to preparative-scale HPLC by passing the material 

over a C18 column with a mobile phase of 40–100% acetonitrile–water over 50 minutes.  

The first substantial peak to elute from the column (965 mg) was determined to be pure 2.  

The second major peak to elute from the preparative HPLC was determined by ESIMS 

and 1H NMR to be a mixture of structurally related metabolites.  The mixture was further 

purified by subjecting the material to a second round of C18 HPLC, but this time an 

isocratic elution scheme utilizing 68% acetonitrile in water was used.  This provided 520 

mg of 3.  The third fraction to elute from preparative HPLC (96 mg) was determined to 

be a mixture and it was subsequently purified by C18 HPLC with a 45–65% acetonitrile–

water gradient, which yielded 54 mg of 4. 
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5.2.4 RAM A (2) : colorless crystalline solid from methanol; [α]21
D –109.0 (c 

0.001, acetone); HRESIMS m/z 545.2004, C26H34NaO11 ([M + Na]+, clad. 545.1999); 1H 

NMR, see Table 2; 13C NMR see Table 1. 

5.2.5 RAM B (3) : white powder; [α]21
D –100.8 (c 0.0024, chloroform); 

HRESIMS m/z 601.2616, C30H42NaO11 ([M + Na]+, calcd. 601.2625); 1H NMR, see 

Table 2; 13C NMR see Table 1. 

5.2.6 RAM C (4) : white powder; [α]21
D –102.0 (c 0.0024, chloroform); 

HRESIMS m/z 629.2938, C32H46NaO11 ([M + Na]+, calcd 629.2938); 1H NMR, see Table 

2; 13C NMR see Table 1. 

5.2.7 Ichthyotoxicity Assay.  The ichthyotoxicity of RAMs A and B were 

determined as specified in EPA-821-R-02-012 (US EPA, 2002) (with the modifications 

noted below) and were approved by the University of Oklahoma Institutional Animal 

Care and Use Committee.  For each assay, 90 mL clear glass jars were filled with 50 mL 

of filtered and aged tap water and 10-14 day old Pimephales promelas fry (three per jar) 

were added and allowed to acclimatize for 1 h.  The jars were randomized and samples 

dissolved in 0.5 mL methanol were added to the jars.  The RAM A (2) sample used in 

this experiment appeared to contain < 1% (by mass) contaminants as determined by 1H 

NMR and HPLC.  The RAM B (3) sample used in the assay was determined to contain 

~5% (by mass) RAM C (4) as determined by 1H NMR and HPLC.  Controls consisting of 

vehicle-only were included in each experiment.  Fish were maintained under 12 h light/12 

h dark photoperiods at 24 ºC.  Samples were tested in triplicate and the results were 

expressed as the LC50 (the concentration lethal to 50% of fish) ± standard deviation at 48 



77 

h.  The LC50 values were determined in SigmaPlot v10 (Systat Software Inc) using 

sigmoidal dose-response regression analyses with variable slope parameters.  All fish 

were euthanized at the conclusion of each experiment. 

5.2.8 Purification of the RAMs A-M1, B-M1, and C-M1 (5–7).  The water from 

all treatment groups for compounds 2 and 3 were pooled separately and the samples were 

partitioned against ethyl acetate.  The ethyl acetate soluble materials from the two 

samples were subjected to preparative-scale HPLC by passing the material over a C18 

column with a mobile phase of 50–100% methanol–water over 60 minutes.  The samples 

pooled from the ichthyotoxicity test of 2 yielded one major new metabolite that was 

designated RAM A-M1 (5) (12 mg), while the samples from the ichthyotoxicity test of 3 

yielded one new major metabolite designated RAM B-M1 (6) (5 mg) and one minor new 

metabolite designated RAM C-M1 (7) (3 mg).  The chromatograms generated during the 

purification of the metabolites are illustrated in Figure 4. 

5.2.9 RAM A-M1 (5) : colorless crystalline solid from methanol; [α]21
D –45.0 (c 

0.0024, methanol); HRESIMS m/z 503.1895, C24H32NaO10 ([M + Na]+, calcd 503.1893); 

1H NMR, see Table 2; 13C NMR see Table 1. 

5.2.10 RAM B-M1 (6) : white powder; [α]21
D –13.0 (c 0.0024, methanol); 

HRESIMS m/z 559.2529, C28H40NaO10 ([M + Na]+, calcd 559.2519); 1H NMR, see Table 

2; 13C NMR see Table 1. 

5.2.11 RAM C-M1 (7) : white powder; [α]21
D –2.9 (c 0.0024, methanol); 

HRESIMS m/z 587.2818, C30H44NaO10 ([M + Na]+, calcd 587.2832); 1H NMR, see Table 

2; 13C NMR see Table 1. 
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HRESIMS and NMR (1H and 13C NMR, HSQC, HMBC, COSY, and NOESY) 

data for compounds 2–7 and crystallographic data for 2 and 5 are included in the 

Appendix. 

5.3 Results and Discussion 

The methanol extract of the Briareum sp. was partitioned between water and ethyl 

acetate.  The ethyl acetate layer was retained and the solvent removed under vacuum.  

The resulting organic residue was analyzed by gradient C18 HPLC, which revealed three 

major metabolites that were targeted for isolation.  Compound 2 eluted first from the C18 

column and it exhibited a pseudomolecular ion [M+Na]+ with a m/z of 545.2004 under 

HRESIMS conditions.  This corresponded to a molecular formula of C26H34NaO11 (calcd 

545.1999) for the metabolite.  Inspection of the 13C NMR data for 2 (Table 5.1) revealed 

a total of 26 unique carbon atoms, which included four carbonyls (δC 168.3, 169.8, 170.3 

and 170.4), four olefinic carbons (δC 121.9, 122.5, 142.0, and 144.2), and eight sp3 

hybridized carbons attached to oxygens (δC 64.8, 65.1, 71.3, 72.4, 72.8, 73.5, 73.6, and 

77.4).  The remaining carbon resonances appeared between δC 9.7 to 48.2 and 1JH-C 

HSQC data enabled the determination that seven of the carbons were methyls (δC 9.7, 

14.0, 20.9, 21.0, 21.2, 21.6, and 26.5).  Given the biogenic source of compound 2, both 

the HRESIMS and HSQC data were consistent with what was expected for briarane-

diterpene-type metabolites that are commonly encountered in these organisms.  Structure 

determination efforts focused on dereplicating compound 2 ultimately proved fruitless, 

however, we did observe notable similarities between the data for 2 and those reported by 

Wu et al. for briaexcavatolide S (C26H34O11) (Wu, et al. 2003).  Consequently, attention 
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was focused on using the basic briarane diterpene scaffold of briaexcavatolide S as a 

convenient tool for accelerating the structural characterization of 2. 

While all of the proton and carbon resonances in the cyclodecane and fused γ-

lactone ring portions of 2 closely matched the data for briaexcavatolide S, some 

substantial differences among the carbon resonances in the vicinity of the hexene ring 

Table 5.1 13C NMR Data (CDCl3) for RAMs A, B, C, A-M1, B-M1 and C-M1 (2–7) 

position 
δC, number of attached protonsa 

2b 3c 4c 5c 6c 7c 
1 48.2, C 48.2, C 48.2, C 48.0, C 48.0, C 48.0, C 
2 77.4, CH 77.5, CH 77.5, CH 77.7, CH 77.6, CH 77.7, CH 
3 40.1, CH2 40.2, CH2 40.2, CH2 40.1, CH2 40.1, CH2 40.1, CH2 
4 72.8, CH 72.5, CH 72.5, CH 72.9, CH 72.8, CH 72.7, CH 
5 144.2, C 144.3, C 144.4, C 144.2, C 144.3, C 144.3, C 
6 122.5, CH 122.4, CH 122.4, CH 122.4, CH 122.3, CH 122.3, CH 
7 73.6, CH 73.6, CH 73.6, CH 73.9, CH 73.8, CH 73.7, CH 
8 71.3, C 71.4, C 71.4, C 71.4, C 71.4, C 71.4, C 
9 65.1, CH 65.2, CH 65.2, CH 65.6, CH 65.6, CH 65.6, CH 
10 44.6, CH 44.7, CH 44.7, CH 44.0, CH 44.0, CH 44.0, CH 
11 72.4, C 72.6, C 72.6, C 77.2, C 73.9, C 73.9, C 
12 73.5, CH 73.5, CH 73.5, CH 70.6, CH 70.6, CH 70.6, CH 
13 121.9, CH 122.1, CH 122.0, CH 124.4, CH 124.2, CH 124.3, CH 
14 142.0, CH 141.9, CH 142.0, CH 140.0, CH 140.1, CH 140.1, CH 
15 14.0, CH3 14.1, CH3 14.1, CH3 14.1, CH3 14.1, CH3 14.1, CH3 
16 26.5, CH3 26.5, CH3 26.5, CH3 26.6, CH3 26.6, CH3 26.6, CH3 
17 64.8, C 64.9, C 64.9, C 64.9, C 64.9, C 64.9, C 
18 9.7, CH3 9.7, CH3 9.7, CH3 9.8, CH3 9.8, CH3 9.8, CH3 
19 170.4, C 170.4, C 170.4, C 170.5, C 170.5, C 170.5, C 
20 21.2, CH3 21.2, CH3 21.2, CH3 21.4, CH3 21.4, CH3 21.4, CH3 
1’  173.2, C 173.1, C  173.1, C 173.1, C 
2’  34.2, CH2 34.2, CH2  34.2, CH2 34.3, CH2 
3’  24.5, CH2 24.8, CH2

  24.6, CH2 24.9, CH2 
4’  31.2, CH2 29.0, CH2

  31.2, CH2 29.0, CH2 
5’  22.3, CH2 28.9, CH2  22.3, CH2 28.9, CH2 
6’  13.9, CH3 31.6, CH2  13.9, CH3 31.6, CH2 
7’   22.6, CH2   22.6, CH2 
8’   14.1, CH3   14.07, CH3 

4-OCOCH3 170.3, C   170.2, C   
4-OCOCH3 21.0, CH3   21.1, CH3   
9-OCOCH3 168.3, C 168.3, C 168.3, C 168.3, C 168.3, C 168.3, C 
9-OCOCH3 21.6, CH3 21.6, CH3 21.6, CH3 21.6, CH3 21.6, CH3 21.6, CH3 
12-OCOCH3 169.8, C 169.8, C 169.8, C    
12-OCOCH3 20.9, CH3 20.9, CH3 20.9, CH3    

aDetermined by HSQC experiment 
bData for 13C NMR determined at 125 MHz 
cData for 13C NMR determined at 100 MHz 



80 

system were noted.  For example, the observation was made that C-20 in 2 resonated at 

δC 21.2, whereas in briaexcavatolide S this carbon was reported to appear at δC 28.8 (∆ -

7.6 ppm).  Other carbon chemical shifts in the hexene system that varied between 2 

versus briaexcavatolide S included C-1 (∆ 0.2 ppm), C-10 (∆ -1.1 ppm), C-11 (∆ -1.5 

ppm), C-12 (∆ -1.8 ppm), C-13 (∆ 3.1 ppm), and C-14 (∆ -3.2 ppm). 

Using a 2-3JH-C HMBC experiment (Appendix, Table A4), the entire planar 

structure of 2 was independently confirmed.  Focusing on the hexene portion of the 

compound, correlations were observed from H-10 → C-1, C-11, C-12, and C-20; from H-

12 → C-11, C-13, C-14, C-20, and C-25; from H-13 → C-1 and C-11; from H-14 → C-1, 

C-10, C-12, and C-15; from H-20 → C-10; and from H-26 → C-25.  This established that 

the hexene ring systems in 2 and briaexcavatolide S shared the same planar configuration 

and that the compounds must be stereoisomers that differed in the configuration of one or 

more asymmetric centers.  Using NOESY to probe this portion of 2 (Appendix, Table 

A4), a series of informative correlations were observed that enabled the investigation of 

the relative configuration of the four asymmetric carbons.  Whereas the H-15 methyl 

protons exhibited NOE correlations with H-14 and H-20, the H-10 proton was only 

correlated with H-2.  The H-20 protons also exhibited additional correlations that 

included H-9, H-12, and OH-2.  An additional set of correlations were detected between 

OH-11 and H-9 and H-12.  In view of these data, compound 2 was determined to be the 

C-11, C-12 diastereomer of briaexcavatolide S. 

While in the process of establishing the relative configuration of 2, crystals of the 

new metabolite were successfully prepared for X-ray diffraction studies.  A thermal 

ellipsoid plot generated from these data is shown in Figure 5.1.  The data from this 
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experiment not only supported the proposed relative configuration of 2, but it also 

enabled the unequivocal determination of the absolute configuration of the metabolite as 

1S,2S,4R,7S,8S,9S,10S,11S,12R,17R. 

The HRESIMS analysis of compound 3 provided a pseudomolecular ion [M + 

Na]+ at m/z 601.2616 that was consistent with a molecular formula of C30H42NaO11 

(calcd 601.2625).  Upon examination of the 1H NMR data, it became apparent that 

compound 3 was structurally similar to 2 (Tables 5.1 and 5.2).  Two notable changes in 

the 1H NMR spectrum of 3 were that an acetate methyl singlet that had appeared in 2 was 

replaced by a methyl triplet (δH 0.9, t, J = 7.0 Hz) in 3 and that eight new protons were 

detected at δH 2.32 (t, J = 7.5 Hz, 2H), 1.64 (m, 2H), and 1.32 (m, 4H).  In addition, the 

13C NMR (Table 5.1) and 1JH-C HSQC spectra of 3 exhibited four new methylene carbon 

resonances at δC 22.3, 24.5, 31.2, and 34.2 that accounted for all eight of the new protons.  

Given the substantial quantity of 3 that was available (>500 mg), the opportunity to 

perform a 13C–13C INADEQUATE experiment was capitalized on (Figure 5.2).  Based on 

the results from this study, it was 

concluded that the aforementioned 

methylenes were part of a pendant 

hexanoate that began with an ester 

carbonyl (δC 173.2) and terminated in 

a methyl group (δC 13.9). 

Figure 5.1  Thermal ellipsoid plot drawing for the 
X-ray crystal structure of 2. 



 

 

Table 5.2 1H NMR Data (CDCl3) for RAMs A, B, C, A-M1, B-M1 and C-M1 (2–7) 

position 
δH, multiplicity ( J in Hz) 

2a 3b 4a 5a 6a 7a 

2 3.25, dd (5.5, 7.0) 3.27, dd (5.0, 7.0) 3.26, t (7.5) 3.32, d (7.7) 3.32, d (7.3) 3.33, d (7.0) 
3a 2.00, m 2.00, m 2.00, m 2.00, m 2.00, m 2.00, m 
3b 2.84, t (13.0) 2.84, dd (13.0, 14.3) 2.85, dd (12.7, 14.3) 2.83, dd (12.5, 14.0) 2.83, dd (12.4, 14.5) 2.83, dd (12.5, 14.0) 
4 5.16, ddd (1.0, 5.5, 13.0) 5.17, dd (5.0, 7.0, 13.0) 5.17, ddd (1.0, 5.5, 12.7) 5.17, ddd (12.5, 5.5, 1.0) 5.17, dd (5.4, 12.4) 5.17, dd (5.4, 12.5) 
6 5.41, dt (1.3, 9.5) 5.41, dt (1.3, 9.5) 5.40, dt (1.5, 9.5) 5.39, dt (9.5, 1.5) 5.38, dt (9.5, 1.2) 5.38, d (9.4) 
7 5.78, d (9.5) 5.78, d (9.5) 5.78, d (9.5) 5.78, d (9.5) 5.76, d (9.5) 5.76, d (9.4) 
9 5.92, d (4.0) 5.92, d (3.8) 5.92, d (4.0) 5.92, d (3.4) 5.92, d (3.5) 5.92, d (3.0) 
10 2.46, d (4.0) 2.47, d (3.8) 2.47, d (4.0) 2.40, d (3.4) 2.40, d (3.5) 2.40, d (3.0) 
12 4.73, d (6.0) 4.75, d  (6.0) 4.74, d (6.0) 3.75, d (6.0) 3.75, d (6.0) 3.75, d (6.0) 
13 5.96, dd (6.0, 10.3) 5.97, dd (6.0, 10.3) 5.96, dd (6.0, 10.3) 5.90, dd (10.3, 6.0) 5.90, dd (6.0, 10.2) 5.90, dd (6.0, 10.4) 
14 5.89, d (10.3) 5.89, d (10.3) 5.89, d (10.3) 5.83, d (10.3) 5.84, d (10.2) 5.84, d (10.4) 
15 1.13, s 1.13, s 1.13, s 1.13, s 1.13, s 1.13, s 
16 2.04, d (1.3) 2.05, d (1.3) 2.05, d (1.5) 2.04, d (1.5) 2.04, d (1.2) 2.04, s 
18 1.67, s 1.69, s 1.68, s 1.71, s 1.70, s 1.71, s 
20 1.21, s 1.22, s 1.22, s 1.17, s 1.16, s 1.17, s 
2’  2.32, t (7.5) 2.32, t (7.5)  2.32, t, 7.4 2.32, t (7.5) 
3’  1.64, m 1.62, m  1.63, m, 7.4 1.63, m 
4’  1.32, m 1.31  1.32, m 1.31, m 
5’  1.32, m 1.31  1.32, m 1.31, m 
6’  0.90, t (7.0) 1.29  0.90, t (7.0) 1.27, m 
7’   1.28   1.29, m 
8’   0.88, t (7.0)   0.88, t (7.5) 

4-OCOCH3 2.08, s   2.09, s   
9-OCOCH3 2.24, s 2.24, s 2.24, s 2.25, s 2.24, s 2.24, s 
12-OCOCH3 2.06, s 2.07, s 2.06, s    

2-OH 2.14, d (5.5) 4.87, br s 2.63, br s    
11-OH 2.38, s 2.39, br s 2.39, br s 2.65, br s 2.67, br. s 2.67, br. s 

aData for 1H NMR determined at 500 MHz 
bData for 1H NMR determined at 400 MHz 
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Rather than further optimizing the 13C–13C INADEQUATE experiment to capture 

all possible 1JC-C correlations, these data were supplemented with information from a 2-

3JH-C HMBC experiment and this enabled the confirmation that the only variation in the 

planar structures of 2 and 3 was the type of ester substituent attached at the C-4 position 

(Figure 5.2).  NOESY data collected for 3 (Appendix, Table A5) exhibited a strikingly 

similar pattern of proton correlations with 2 (Appendix, Table A4) and this enabled the 

conclusion to be made that 3 shared the same relative configuration.  While the 

preparation of a crystal suitable for X-ray analysis of 3 was not successful, it is proposed 

that the absolute configuration of 3 is also 1S,2S,4R,7S,8S,9S,10S,11S,12R,17R based on 

its shared biogenic origins and similar optical rotation data ([α]21
D –109.0 and –100.8 for 

2 and 3, respectively) 

Compound 4 yielded a pseudomolecular ion (HRESIMS [M + Na]+) at m/z 

629.2938 consistent with a molecular formula 

of C32H46NaO11 (calcd 629.2938).  Compared 

to 3, the molecular formula of 4 represented an 

increase in C2H4, from which the speculation 

was made that this was due to the addition of 

two methylenes.  Examination of the 1H NMR 

integration data for 4 revealed four new protons 

in the region spanning from δH 1.28 to 1.31 

(Table 5.2).  HSQC confirmed that these 

protons were associated to two new methylenes 

(δC 28.9 and 29.0), while HMBC established 

CH3
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H3C

H3C
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13C-13C INADEQUATE
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Figure 5.2  13C-13C INADEQUATE and 
selected 1H-13C HMBC data that were 
used to establish the structure of 3. 
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that these carbons were situated among a group of four other methylenes (δC 22.6, 24.8, 

31.6, and 34.2), a carbonyl (δC 173.1), and a methyl group (δC 14.1) (Appendix, Table 

A6).  Together, these carbons formed an octanoate ester.  Consideration of the remaining 

HMBC correlations and NOESY data for 4 (Appendix, Table A6) confirmed that the 

compound shared the same briarane skeleton that had previously been established for 2 

and 3.  The only difference in the new metabolite was that 4 bore a C-4 octanoate ester 

whereas 2 and 3 possessed C-4 acetate and hexanoate groups, respectively.  In light of the 

fact that all three compounds have the same biogenic source and exhibit similar optical 

rotations values ([α]21
D –102.0 for 4), it is proposed that the absolute configuration of 4 is 

1S,2S,4R,7S,8S,9S,10S,11S,12R,17R. 

Given the substantial quantity of 2 (> 99% purity based on HPLC) and 3 (mixture 

of approximately 95% of 3 with 5% of 4) that was obtained, the investigation of the 

ichthyotoxicity of these compounds was initiated.  The flathead minnow (Pimephales 

promelas) was employed for this study since it is a widely used and well accepted model 

for determining the acute toxicity of a broad range of chemicals against aquatic 

vertebrates (EPA-821-R-02-012 2002).  After a preliminary assessment of the toxicity of 

2 and 3, both compounds were tested across a series seven concentrations (each 

concentration was tested in triplicate sets of three fish) that spanned the estimated LC50 

range of the toxin.  Based on these experiments, 3 was found to be quite toxic to fish with 

an LC50 of 0.3 mM, while 2 was 4.7 times less potent with an LC50 of 1.4 mM (Figure 

5.3). 
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At the conclusion of the ichthyotoxicity studies, the water from each vessel that 

had supported the fish throughout the assay was collected and pooled separately for all 

doses of 2 and 3.  Although the RAMs demonstrate remarkable stability with no 

detectable signs of degradations for periods of up to one month in aqueous and organic-

based solvents, the surprising finding was made that < 30% of the RAMs used in the 

ichthyotoxicity test were left in the assay water.  Instead, it was noted that the samples 

from the two treatment groups each contained new metabolites (Figure 5.4).  The 

separation of the metabolites was carried out by gradient C18 HPLC resulting in the 

isolation of 5-7. 

The assumption that 5 (RAM A-M1) had been derived from 2 was confirmed by 

comparative inspection of the 1H NMR data for both compounds (Table 5.2).  The spectra 

of 2 and 5 looked remarkably similar with two notable exceptions: the C-12 acetate 

methyl singlet was missing for 5 and H-12 had shifted upfield from δH 4.73 (d, J = 6.0 

Hz, 1H) in 2 to δH 3.75 (d, J = 6.0 Hz, 1H) in 5.  The HRESIMS analysis of compound 5 

provided a pseudomolecular ion [M + Na]+ at m/z 503.1895 that was consistent with a 

molecular formula of C24H32NaO10 (calcd 503.1893).  This represented a loss of C2H3O, 

which could be readily 

accounted for if an acetate 

had been lost through 

hydrolytic cleavage.  In 

addition to the 1H NMR 

and HRESIMS data that 

supported the loss of an Figure 5.3  Dose-dilution ichthyotoxicity results for RAM A (2) 
and RAM B (3) against P. promelas fry. 
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acetate from 2, the 13C NMR 

data further substantiated 

this proposal showing the 

loss of methyl and carbonyl 

resonances in 5, as well as 

the upfield shift of C-12 

from δC 73.5 in 2 to δC 70.6 

in 5 (Table 5.1).  In 

addition, compound 5 was 

successfully crystallized 

from chloroform and the 

crystal was analyzed by X-

ray diffraction spectroscopy.  

The thermal ellipsoid plot 

diagram of 5 illustrated in Figure 5.5 supported the loss of the C-12 acetate and 

confirmed that the rest of the briarane structure remained intact with a relative 

configuration of 1S,2S,4R,7S,8S,9S,10S,11S,12R,17R.  Given the relative stability 

previously noted for 2, the proposal was made that 5 was the product of metabolic 

transformation of 2 by the fish and therefore retained the absolute configuration of 2.  

The fish were not directly ingesting the compounds under the assay conditions; therefore 

the uptake of 2 may have occurred through the gill membrane.  Following its 

deacetylation, it is postulated that 5 was excreted back into the water either through the 

gills or urine. 

Figure 5.4  New metabolites that were generated from 
treating fish (P. promelas fry) with RAMs A-C (2-4).  A) Fish 
treated with RAM A (2) resulted in the formation of the RAM 
A-M1 (5).  B) Fish treated with a mixture of RAM B (3) and 
RAM C (4) (~95:5 mixture) led to the formation of RAM B-M1 
(6) and RAM C-M1 (7).  Only the sections of the HPLC 
chromatogram where the RAMs and their metabolite eluted 
(20-50 minutes) when passed over C18 (50–100% MEOH 
over 60 minutes) are shown for clarity.  The structures of 
compounds corresponding to the other minor abundance 
peaks were not determined. 
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Compound 6 (RAM B-M1) yielded a pseudomolecular ion (HRESIMS [M + 

Na]+) at m/z 559.2529 that was consistent with a molecular formula of C24H32NaO10 

(calcd 559.2519).  The loss of C2H3O in 6 compared to 3 suggested that this compound 

was also the product of a deacetylation process.  This was quickly confirmed by 

comparisons 1H (loss of methyl singlet and upfield shift of the H-12 doublet from δH 4.75 

in 3 to δH 3.75 in 6) (Table 5.2) and 13C (loss of methyl and carbonyl resonances in 6 and 

upfield shift of C-12 from δC 73.5 in 3 to δC 70.6 in 6) (Table 5.1) NMR data for both 

compounds.  HMBC and NOESY experiments (Appendix, Table A8) confirmed that the 

remainder of 6 shared the same planar structure and relative configuration as 3 and it is 

proposed that this metabolite also shares the same absolute configuration. 

HRESIMS analysis of compound 7 (RAM C-M1) provided a pseudomolecular 

ion [M + Na]+ at m/z 587.2818 that was consistent with a molecular formula of 

C24H32NaO10 (calcd 587.2832).  Although the relationship of this metabolite to 3 was at 

first perplexing, the recollection was made that approximately 5% by mass of 3 used in 

the fish assay had been contaminated with 4.  Reconsideration of the possibility that the 

residual quantity of 4 could have been 

metabolically transformed into 7 led 

to the reexamination of the HRESIMS 

data where it was noted that this 

metabolite had likely arisen as the 

result of 4 being deacetylated.  

Inspection of the 1H NMR (loss of 

methyl singlet and upfield shift of the Figure 5.5  Thermal ellipsoid plot drawing for the 
X-ray crystal structure of 5. 
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H-12 doublet from δH 4.74 in 4 to δH 3.75 in 7) (Table 5.2) and 13C NMR (loss of methyl 

and carbonyl resonances in 7 and upfield shift of C-12 from δC 73.5 in 4 to δC 70.6 in 7) 

(Table 5.1) data for 7 quickly confirmed that this metabolite was derived from 4.  

Examination of the HMBC and NOESY data (Appendix, Table A9) showed that other 

than the loss of the C-12 acetate, the remaining portion of the structure for 7 was identical 

to the parent compound.  Consequently, it is proposed that 7 also shared the same 

absolute configuration with the rest of the briarane diterpenes and metabolic 

transformation products obtained in this study. 

Although insufficient material was available to test the relative ichthyotoxic 

properties of the RAM metabolites (5–7), the toxicity of these compounds and 2–4 were 

evaluated against Artemia salina.  However, even at doses ranging up to 2 mM, no brine 

shrimp toxicity was observed for any of the compounds.  These data suggest that the 

ichthyotoxic effects of briaranes likely contribute to a toxic defensive strategy used by 

certain corals and marine invertebrates to protect against foraging fish predators, but may 

be inactive against other invertebrate species.  It has also been shown for the first time 

that these compounds are subjected to structural modification via metabolic 

transformation in fish.  These data serve as a cautionary reminder of the role that 

metabolic transformations can play when testing natural products in vivo. 

The information in Chapter 5 has been adapted from a manuscript which is in 

preparation for publication in the Journal of Natural Products. 
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Appendix 

 

 

  

A

B

25Q25Q

103Q103Q

Figure A1 False-color fluorescent 
microscopy images of yeast cells 
expressing human Htt fragments.   A) 
Yeast expressing Htt fragment with 25 
glutamine repeats.  B) Yeast 
expressing mHtt fragment with 103 
glutamine repeats.  Spot cultures (A, 
lower panel; B, lower panel) show a 
significant decrease in cell viability due 
to mutant huntingtin toxicity.  
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Figure A2 Comparison of metabolic changes in 
response to various toxins.  Potassium cyanide 
(KCN) and cycloheximide treatment cause 
distinct metabolic changes in 25Q yeast that are 
different from the changes caused by mHtt 
toxicity. 
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Structures of Metabolites with 1H NMR Chemical Shifts and M

Structure with 1H NMR Chemical Shifts and Multiplicities
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aspartate 

formate 
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glutathione 
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Structures of Metabolites with 1H NMR Chemical Shifts and Multiplicit

(continued from page 105) 

Structure with 1H NMR Chemical Shifts and Multiplicities
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glycerol 

histidine 

isoleucine 

leucine 

methionine 

Nicotinamide adenine 
dinucleotide 
(oxidized) 
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Structures of Metabolites with 1H NMR Chemical Shifts and Multiplicities

(continued from page 106) 

Structure with 1H NMR Chemical Shifts and Multiplicities
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proline 

propylene glycol 
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threonine 

trehalose 

tryptophan 
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tures of Metabolites with 1H NMR Chemical Shifts and Multiplicities

(continued from page 107) 

Structure with 1H NMR Chemical Shifts and Multiplicities
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Metabolite 

tyrosine 

valine 
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Structures of Metabolites with 1H NMR Chemical Shifts and Multiplicities

(continued from page 108) 

Structure with 1H NMR Chemical Shifts and Multiplicities
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Table A2 Metabolic Profiling Data for Selected Key Metabolites Identified in Studies of Huntington’s Disease Model Systems and Humans 

  
This study Nicoli et al. 

(1993)4 
Taylor-Robinson et 

al. (1996)5 
Reynolds et al. 

(2005)6 
Underwood et al. 

(2006)7 
Jenkins et al. 

(2000)8 
Jenkins et al. 

(2005)9 
Tsang et al. 

(2006)10 Tkac et al. (2007)11 

Organism yeast human a, b human c, d human d human b, mouse b mouse c, d, e mouse c, d mouse b, c, e, f mouse c, d 

Data collection 
technique 

1H NMR 
1H NMR, 

HPLC 
1H MRS 1H MRS GC-TOF-MS 1H-NMR 1H MRS 

1H NMR, HR-MAS 
1H NMR 

in vivo 1H NMR 

2-amino-n-butyrate ND ND ND ND significant g, h ND ND ND ND 

2-oxoglutarate ND ND ND ND ND ND ND increase ND 

4-aminobutyrate ns ns ND ND ND ns ND decrease ns 

acetate decrease ns ND ND ND ND ND decrease ND 

adenosine ns ND ND ND ND ND ND ND ND 

alanine decrease ns ND ND significant g, h ns ND decrease ND 

arginine ns ND ND ND ND ND ND ND ND 

ascorbate ND ND ND ND ND ND ND ND increase 

asparagine ns ND ND ND ND ND ND ND ND 

aspartate ns ns ND ND ND ns ND decrease ND 

ATP ns ND ND ND ND ND ND ND ND 

choline ND ND ns ND ND increase increase decrease ND 

citrate ND ns ND ND ND ND ND ND ND 

creatine ND ns ns decrease ND ns ns increase increase 

dimethylglycine ND ND ND ND ND ND ND decrease ND 

ethylene glycol ND ND ND ND significant g, h ND ND ND ND 

formate ns ND ND ND ND ND ND ND ND 

galactitol ns ND ND ND ND ND ND ND ND 

galactose increase ND ND ND ND ND ND ND ND 

glucose ND ND ND ND significant g, i increase ND ND ns 

glutamate ns ns increase increase ND decrease ns decrease increase 

glutamine increase ns increase increase ND increase ns increase increase 

glutathione ns ND ND ND ND ND ND ND increase 

glycerol increase ND ND ND significant g ND ND ND ND 

glycerophosphocholine ND ND ND ND ND ND ND increase increase 

glycine ND increase ND ND ND ns ND ns ND 
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Table A2 Metabolic Profiling Data for Selected Key Metabolites Identified in Studies of Huntington’s Disease Model Systems and Humans (continued from 
page 110) 

  This study Nicoli et al. 
(1993)4 

Taylor-Robinson et 
al. (1996)5 

Reynolds et al. 
(2005)6 

Underwood et al. 
(2006)7 

Jenkins et al. 
(2000)8 

Jenkins et al. 
(2005)9 

Tsang et al. 
(2006)10 Tkac et al. (2007)11 

Organism yeast human a, b human c, d human d human b, mouse b mouse c, d, e mouse c, d mouse b, c, e, f mouse c, d 

Data collection 
technique 

1H NMR 
1H NMR, 

HPLC 
1H MRS 1H MRS GC-TOF-MS 1H-NMR 1H MRS 

1H NMR, HR-MAS 
1H NMR 

in vivo 1H NMR 

histidine decrease ND ND ND ND ND ND ND ND 

isoleucine ns ns ND ND ND ND ND ND ND 

lactate ND ns ns increase significant g decrease ND increase ns 

leucine ns ns ND ND ND ND ND ND ND 

lysine ND ns ND ND ND ND ND ND ND 

malonate ND ND ND ND significant g ND ND ND ND 

methionine ns ND ND ND ND ND ND ND ND 

myo-inositol ND ND ND ns ND ns ND increase increase 

N-acetylaspartate ND ND ns decrease ND decrease decrease decrease decrease 
N-acetylaspartate 
glutamate 

ND ND ND ND ND ND ND increase/ decrease ns 

NAD+ ns ND ND ND ND ND ND ND ND 

phenylalanine ns ND ND ND ND ND ND ND ND 

phosphocholine ND ND ND ND ND ND ND decrease ns 

phosphocreatine ND ND ND ND ND ND ND ND increase 

phosphorylethanolamine ND ND ND ND ND ND ND ND decrease 

proline decrease ns ND ND ND ND ND ND ND 

propylene glycol ns ND ND ND ND ND ND ND ND 

pyroglutamate ND ND ND ND significant g, i ND ND ND ND 

pyruvate ND increase ND ND ND ND ND ND ND 

scyllo-inositol ND ND ND ND ND increase ND increase ND 

spermine ND ND ND ND ND ND ND decrease ND 

succinate decrease ND ND ND ND decrease ND decrease ND 

taurine ND ND ND ND ND increase increase increase increase 

threonine increase ND ND ND ND ND ND ND ND 

trehalose decrease ND ND ND ND ND ND ND ND 
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Table A2 Metabolic Profiling Data for Selected Key Metabolites Identified in Studies of Huntington’s Disease Model Systems and Humans (continued from 
page 111) 

  This study Nicoli et al. 
(1993)4 

Taylor-Robinson et 
al. (1996)5 

Reynolds et al. 
(2005)6 

Underwood et al. 
(2006)7 

Jenkins et al. 
(2000)8 

Jenkins et al. 
(2005)9 

Tsang et al. 
(2006)10 Tkac et al. (2007)11 

Organism yeast human a, b human c, d human d human b, mouse b mouse c, d, e mouse c, d mouse b, c, e, f mouse c, d 

Data collection 
technique 

1H NMR 
1H NMR, 

HPLC 
1H MRS 1H MRS GC-TOF-MS 1H-NMR 1H MRS 

1H NMR, HR-MAS 
1H NMR 

in vivo 1H NMR 

trimethylamine ND ND ND ND ND ND ND decrease ND 

trimethylamine N-oxide ND ND ND ND ND ND ND increase ND 

tryptophan ns ND ND ND ND ND ND ND ND 

tyrosine ns ND ND ND ND ND ND ND ND 

urea ND ND ND ND significant g ND ND ND ND 

valine increase ND ND ND significant g ND ND ND ND 

α-hydroxybutyric acid ND ND ND ND significant g, h ND ND ND ND 

α-ketoisocaproate ND ND ND ND ND ND ND decrease ND 

Abbreviations: ND = Not detected or not reported, ns = not significant, MRS = magnetic resonance spectroscopy, HR-MAS = high-resolution magic angle spinning, HPLC = high performance liquid 
chromatography.  a Cerebrospinal fluid.  b Serum.  c Results from multiple tissue types summarized in this table.  d In vivo brain.  e In vitro brain.  f Urine. g Direction of change (increase/decrease) not 
reported.  h Detected only in human serum. 
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Table A3 Contingency Table of Metabolic Studies of Mutant Huntingtin Toxicity 
Metabolite Yeast Human Mouse TOTALS 
2-amino-n-butyrate 0 1 0 1 
2-oxoglutarate 0 0 1 1 
4-aminobutyrate 0 0 1 1 
acetate 1 0 1 2 
alanine 1 1 1 3 
ascorbate 0 0 1 1 
aspartate 0 0 1 1 
choline 0 0 3 3 
creatine 0 1 2 3 
dimethylglycine 0 0 1 1 
ethylene glycol 0 1 0 1 
galactitol 1 0 0 1 
glucose 0 0 2 2 
glutamate 0 2 3 5 
glutamine 1 2 3 6 
glutathione 0 0 1 1 
glycerol 1 1 1 3 
glycerophosphocholine 0 0 2 2 
glycine 0 1 0 1 
histidine 1 0 0 1 
lactate 0 2 3 5 
malonate 0 1 1 2 
myo-inositol 0 0 2 2 
N-acetylaspartate 0 1 4 5 
phosphocholine 0 0 1 1 
phosphocreatine 0 0 1 1 
phosphorylethanolamine 0 0 1 1 
proline 1 0 0 1 
pyroglutamate 0 0 1 1 
pyruvate 0 1 0 1 
scyllo-inositol 0 0 2 2 
spermine 0 0 1 1 
succinate 1 0 2 3 
taurine 0 0 4 4 
threonine 1 0 0 1 
trehalose 1 0 0 1 
trimethylamine 0 0 1 1 
trimethylamine N-oxide 0 0 1 1 
urea 0 1 1 2 
valine 1 1 1 3 
alpha-hydroxybutyric acid 0 1 0 1 
alpha-ketoisocaproate 0 0 1 1 
TOTALS 11 18 52 81 



 

Table A4 NMR Spectroscopic Data (CDCl3) for RAM A (2) 

 

 

 

 

 

 

 

 

 

 

 

aData determined at 100 MHz 
bDetermined by HSQC experiment at 500 MHz 
cData determined at 500 MHz 

  

position δC,a mult.b δH (J in Hz)c COSYc HMBC c NOESYc 
1 48.2, C     
2 77.4, CH 3.25, dd (5.5, 7.0) 3a, 2-OH 4, 10, 15 16, 10 
3a 40.1, CH2 2.00, m 2, 3b, 4 2, 4, 5 3b 
3b  2.84, t (13.0) 3a, 4 1, 2, 4, 5 3a, 7 
4 72.8, CH 5.16, ddd (1.0, 5.5, 13.0) 3a 3, 6, 5, 16, 4-OCOCH3 16 
5 144.2, C     
6 122.5, CH 5.41, dt (1.3, 9.5) 7, 16 4, 16 16 
7 73.6, CH 5.78, d (9.5) 6, 12-OCOCH3 5, 6, 19 3b 
8 71.3, C     
9 65.1, CH 5.92, d (4.0) 10 1, 8, 12, 17, 9-OCOCH3 18, 20 
10 44.6, CH 2.46, d (4.0) 9 1, 2, 8, 9, 11, 12, 15, 20 2 
11 72.4, C     
12 73.5, CH 4.73, d (6.0) 13 9, 10, 11, 13, 14, 20, 12-OCOCH3 13, 20 
13 121.9, CH 5.96, dd (6.0, 10.3) 12, 14 1, 11 12 
14 142.0, CH 5.89, d (10.3) 13 1, 2, 10, 12, 15 15, 2-OH 
15 14.0, CH3 1.13, s  1, 2, 10, 13, 14 14, 20, 9-OCOCH3 
16 26.5, CH3 2.04, d (1.3) 6 4, 5, 6 2, 4, 6 
17 64.8, C     
18 9.7, CH3 1.67, s  8, 10, 17, 19 9 
19 170.4, C     
20 21.2, CH3 1.21, s 11-OH 4, 10 9, 12, 15, 2-OH 

4-OCOCH3 170.3, C     
4-OCOCH3 21.0, CH3 2.08, s  4-OCOCH3  
9-OCOCH3 168.3, C     
9-OCOCH3 21.6, CH3 2.24, s  9, 9-OCOCH3 15 
12-OCOCH3 169.8, C     
12-OCOCH3 20.9, CH3 2.06, s 7 12-OCOCH3  

2-OH  2.14, d (5.5) 2 2, 3 14, 20 
11-OH  2.38, s 20 11, 20 9 (vw), 12 (w) 
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Table A5 NMR Spectroscopic Data (CDCl3) for RAM B (3) 

position δC, a mult.b δH (J in Hz)c COSYc HMBC c INADEQUATE a NOESYd 
1 48.2, C    2, 10, 14  
2 77.5, CH 3.27, dd (5.0, 7.0) 3a 15 1, 3 10, 16 
3a 40.2, CH2 2.00, m 2, 3b 2 2, 4 3b, 4, 7, 15 
3b  2.84, dd (13.0, 14.3) 3a, 4 1, 2, 5  3a, 7, 15 
4 72.5, CH 5.17, dd (5.0, 7.0, 13.0) 3b 3, 5, 6, 16, 1’ 3 3a 
5 144.3, C    16  
6 122.4, CH 5.41, dt (1.3, 9.5) 7, 16 16   
7 73.6, CH 5.78, d (9.5) 6 5, 6, 19  3a, 3b 
8 71.4, C      
9 65.2, CH 5.92, d (3.8) 10 8, 9-OCOCH3  10, 18, 20 
10 44.7, CH 2.47, d (3.8) 9, 11-OH 1, 2, 8, 9, 11, 15, 20  2, 9 
11 72.6, C      
12 73.5, CH 4.75, d  (6.0) 13 10, 11, 13, 14, 12-OCOCH3 13 13, 20 
13 122.1, CH 5.97, dd (6.0, 10.3) 12, 14 1 12 12 
14 141.9, CH 5.89, d (10.3) 13 1, 10, 15  15 
15 14.1, CH3 1.13, s  1, 2, 14  3a, 3b, 14, 20 9-OCOCH3 
16 26.5, CH3 2.05, d (1.3) 6  5 2 
17 64.9, C      
18 9.7, CH3 1.69, s  8, 17, 19  9 
19 170.4, C      
20 21.2, CH3 1.22, s    9, 12, 15 
1’ 173.2, C    2’  
2’ 34.2, CH2 2.32, t (7.5) 23 1’, 3’, 4’ 1’, 3’  
3’ 24.5, CH2 1.64, m 22, 24 1’, 2’, 4’, 5’ 2’, 4’  
4’ 31.2, CH2 1.32, m  5’ 3’, 5’  
5’ 22.3, CH2 1.32, m 26 4’ 4’, 6’  
6’ 13.9, CH3 0.90, t (7.0) 25 4’, 5’ 5’  

9-OCOCH3 168.3, C      
9-OCOCH3 21.6, CH3 2.24, s  9-OCOCH3  15 
12-OCOCH3 169.8, C      
12-OCOCH3 20.9, CH3 2.07, s  11, 12-OCOCH3   

11-OH  2.39, br s 10, 20 20   
2-OH  4.87, br s     

aData determined at 100 MHz 
bDetermined by HSQC experiment at 400 MHz 
cData determined at 400 MHz 
dData determined at 500 MHz 
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Table A6 NMR Spectroscopic Data (CDCl3) for RAM C (4) 

position δC, a mult.b δH (J in Hz)c COSYd HMBCd NOESYc 
1 48.2, C     
2 77.5, CH 3.26, t (7.5) 3a 15, 3, 10, 1  
3a 40.2, CH2 2.00, m 2, 3b, 4 4, 2 2, 3b, 4, 7, 15 
3b  2.85, dd (12.7, 14.3) 3a, 4 1, 4, 2, 5 2, 3b, 4, 6, 7, 9, 10, 15, 9-OCOCH3 
4 72.5, CH 5.17, ddd (1.0, 5.5, 12.7) 3a, 3b 16, 6, 5 2, 3a, 3b, 7, 16 
5 144.4, C     
6 122.4, CH 5.40, dt (1.5, 9.5) 7, 16 16, 4 10, 16 
7 73.6, CH 5.78, d (9.5) 6 9, 6, 5, 19 3b,  9-OCOCH3 
8 71.4, C     
9 65.2, CH 5.92, d (4.0) 10 8, 9-OCOCH3  
10 44.7, CH 2.47, d (4.0) 9 15, 20, 1, 9, 8, 11, 2 2, 6, 9 
11 72.6, C     
12 73.5, CH 4.74, d (6.0) 13 20, 10, 11, 13, 14, 12-OCOCH3 10, 13, 14, 20, 11-OH 
13 122.0, CH 5.96, dd (6.0, 10.3) 12, 14 1, 4 12, 15, 20 
14 142.0, CH 5.89, d (10.3) 13 15, 10, 1, 12, 2 2, 12, 15, 20, 11-OH 
15 14.1, CH3 1.13, s  10, 1, 2, 14 14, 16, 18, 9-OCOCH3, 12-OCOCH3 
16 26.5, CH3 2.05, d (1.5) 6 4, 5, 6  
17 64.9, C     
18 9.7, CH3 1.68, s  17, 8, 19 9 
19 170.4, C     
20 21.2, CH3 1.22, s 11-OH 10, 11, 12 9, 15 
1’ 173.1, C     
2’ 34.2, CH2 2.32, t (7.5) 3’ 1’, 3’, 4’ 3’, 4’, 7 
3’ 24.8, CH2 1.62, m 2’, 4’ 1’, 2’, 4’  
4’ 29.0, CH2 1.31 3’ 5’  
5’ 28.9, CH2 1.31    
6’ 31.6, CH2 1.29  8’  
7’ 22.6, CH2 1.28 8’   
8’ 14.1, CH3 0.88, t (7.0) 7’ 6’, 7’  

9-OCOCH3 168.3, C     
9-OCOCH3 21.6, CH3 2.24, s  9-OCOCH3 15, 16, 18, 20, 12-OCOCH3, 2-OH 
12-OCOCH3 169.8, C     
12-OCOCH3 20.9, CH3 2.06, s  12-OCOCH3  

11-OH  2.39, br s 20   

2-OH  2.63, br s    
aData determined at 100 MHz 
bDetermined by HSQC experiment at 400 MHz. 
cData determined at 500 MHz 
dData determined at 400 MHz 
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Table A7 NMR Spectroscopic Data (CDCl3) for RAM A-M1 (5) 

position δC, a mult.b δH (J in Hz)c COSYd HMBC d NOESYc 
1 48.0, C     
2 77.7, CH 3.32, d (7.7) 3a 15 10, 16 
3a 40.1, CH2 2.00 2, 3b, 4 4, 2, 5 3b, 15 
3b  2.83, dd (12.5, 14.0) 3a, 4 1, 4 3a, 7, 15 
4 72.9, CH 5.17, ddd (12.5, 5.5, 1.0) 3a, 3b 16, 3, 6, 5, 4-OCOCH3 16 
5 144.2, C     
6 122.4, CH 5.39, dt (9.5, 1.5) 7, 16 16, 4 7, 16 
7 73.9, CH 5.78, d (9.5) 6 5, 19 3b, 6 
8 71.4, C     
9 65.6, CH 5.92, d (3.4) 10 10, 1, 17, 12, 8, 7, 9-OCOCH3 18, 20, 11-OH 
10 44.0, CH 2.40, d (3.4) 9 15, 20, 1, 9, 8, 7, 2 2, 11-OH 
11 77.2, C     
12 70.6, CH 3.75, d (6.0) 13 10, 13, 14 13, 20 
13 124.4, CH 5.90, dd (10.3, 6.0) 12, 14 1, 12, 7 12 
14 140.0, CH 5.83, d (10.3) 13 15, 10, 1, 12, 2 15 
15 14.1, CH3 1.13, s  10, 1, 2, 14 3a, 3b, 14, 9-OCOCH3 
16 26.6, CH3 2.04, d (1.5) 6 4, 6, 5 2, 4, 6 
17 64.9, C     
18 9.8, CH3 1.71, s  17, 8, 19 9 
19 170.5, C     
20 21.4, CH3 1.17, s  10, 12, 7 9, 12 

4-OCOCH3 170.2, C     
4-OCOCH3 21.1, CH3 2.09, s  4-OCOCH3  
9-OCOCH3 168.3, C     
9-OCOCH3 21.6, CH3 2.25, s  9-OCOCH3 15 

11-OH  2.65, br s  20 9, 10 
aData determined at 100 MHz 
bDetermined by HSQC experiment at 400 MHz. 
cData determined at 500 MHz 
dData determined at 400 MHz 
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Table A8 NMR Spectroscopic Data (CDCl3) for RAM B-M1 (6) 

position δC,a mult.b δH (J in Hz)c COSYd HMBC c NOESYc 
1 48.0, C     
2 77.6, CH 3.32, d (7.3) 3a 3, 4, 10, 15 10, 16 
3a 40.1, CH2 2.00 m 3b, 2, 4 2, 4, 5 3b 
3b  2.83, dd (12.4, 14.5) 3a, 4 1, 4 3a, 7, 15 
4 72.8, CH 5.17, dd (5.4, 12.4) 3a, 3b 5, 6, 16, 1’ 16 
5 144.3, C     
6 122.3, CH 5.38, dt (9.5, 1.2) 16, 7 4, 16 7, 16 
7 73.8, CH 5.76, d (9.5) 6 5, 6, 19 3b, 6 
8 71.4, C     
9 65.6, CH 5.92, d (3.5) 10 1, 7, 8, 10, 9-OCOCH3 10, 18, 20, 11-OH 
10 44.0, CH 2.40, d (3.5) 20, 9 1, 2, 7, 8, 9, 15, 20 2, 9, 11-OH 
11 73.9, C     
12 70.6, CH 3.75, d (6.0) 13 10, 11, 13, 14, 20 13, 14, 20 
13 124.2, CH 5.90, dd (6.0, 10.2) 12, 14 11, 12 12, 14 
14 140.1, CH 5.84, d (10.2) 13 1, 10, 12, 15 12, 13, 15 
15 14.1, CH3 1.13, s   3b, 14, 9-OCOCH3 
16 26.6, CH3 2.04, d (1.2) 6 4,5,  6 2, 4, 6 
17 64.9, C     
18 9.8, CH3 1.70, s  8, 17, 19 9 
19 170.5, C     
20 21.4, CH3 1.16, s 10 10, 11, 12 9, 12 
1’ 173.1, C     
2’ 34.2, CH2 2.32, t, 7.4 3’ 1’, 3’, 4’ 3’ 
3’ 24.6, CH2 1.63, m, 7.4 2’, 4’ 1’, 2’, 4’, 5’ 2’, 4’ 
4’ 31.2, CH2 1.32, m 3’ 5’ 3’ 
5’ 22.3, CH2 1.32, m 6’ 4’ 6’ 
6’ 13.9, CH3 0.90, t (7.0) 5’ 4’, 5’ 5’ 

9-OCOCH3 168.3, C     
9-OCOCH3 21.6, CH3 2.24, s  9-OCOCH3  

11-OH  2.67, br. s  11, 20 9, 10 
aData determined at 100 MHz 
bDetermined by HSQC experiment at 500 MHz. 
cData determined at 500 MHz 
dData determined at 400 MHz 
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Table A9 NMR Spectroscopic Data (CDCl3) for RAM C-M1 (7) 

position δC,a mult.b δH (J in Hz)c COSYd HMBC c NOESYc 
1 48.0, C     
2 77.7, CH 3.33, d (7.0) 3a 4, 15 10, 16 
3a 40.1, CH2 2.00, m 2, 3b, 4 2, 4, 5 3b, 15 
3b  2.83, dd (12.5, 14.0) 3a, 4 1, 2, 4 3a, 7, 15 
4 72.7, CH 5.17, dd (5.4, 12.5) 3a, 3b 3a, 5, 6, 16, 1’ 16 
5 144.3, C     
6 122.3, CH 5.38, d (9.4) 7, 16 4, 16 7, 16 
7 73.7, CH 5.76, d (9.4) 6 5, 6, 19 3b, 6 
8 71.4, C     
9 65.6, CH 5.92, d (3.0) 10 8, 11 18, 20, 11-OH 
10 44.0, CH 2.40, d (3.0) 9 1, 2, 8, 11, 15, 20  
11 73.9, C     
12 70.6, CH 3.75, d (6.0) 13 10, 11, 13, 14, 20 20 
13 124.3, CH 5.90, dd (6.0, 10.4) 12, 14 9-OCOCH3 14 
14 140.1, CH 5.84, d (10.4) 13 1, 10, 12 13, 15 
15 14.1, CH3 1.13, s  1, 2, 10, 14 3a, 3b, 14, 9-OCOCH3 
16 26.6, CH3 2.04, s 6 4, 5, 6 2, 4, 6 
17 64.9, C     
18 9.8, CH3 1.71, s  8, 17, 19 9 
19 170.5, C     
20 21.4, CH3 1.17, s  10, 11, 12 9, 12 
1’ 173.1, C     
2’ 34.3, CH2 2.32, t (7.5) 3’ 1’, 3’, 4’ 3’ 
3’ 24.9, CH2 1.63, m 2’,4’ 1’, 2’, 4’ 2’ 
4’ 29.0, CH2 1.31, m 3’ 5’  
5’ 28.9, CH2 1.31, m    
6’ 31.6, CH2 1.27, m    
7’ 22.6, CH2 1.29, m 8’ 8’ 8’ 
8’ 14.07, CH3 0.88, t (7.5) 7’ 6’, 7’ 7’ 

9-OCOCH3 168.3, C     
9-OCOCH3 21.6, CH3 2.24, s  9-OCOCH3  

11-OH  2.67, br. s  11, 20  
aData determined at 100 MHz 
bDetermined by HSQC experiment at 500 MHz. 
cData determined at 500 MHz 
dData determined at 400 MHz 
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Table A10 Crystallographic data and structure refinement for RAM A (2).  Data was 
collected and interpreted by Dr. Douglas Powell in the Department of Chemistry and 
Biochemistry at the University of Oklahoma. 
Empirical formula C26 H34 O11 
Formula weight 522.53 
Crystal system Monoclinic 
Space group P21 

Unit cell dimensions 
a = 9.724(2) Å      α= 90° 

b = 14.873(3) Å    β= 115.539(8)° 
c = 10.233(2) Å    γ= 90° 

Volume 1335.3(5) Å3 
Z, Z' 2, 1 
Density (calculated) 1.300 Mg/m3 
Wavelength 0.71073 Å 
Temperature 100(2) K 
F(000) 556 
Absorption coefficient Semi-empirical from equivalents 
Max. and min. transmission 0.979 and 0.961 
Theta range for data collection 2.21 to 26.00° 
Reflections collected 11814 
Independent reflections 5239 [R(int) = 0.0258] 
Data / restraints / parameters 5239 / 1 / 340 
wR(F2 all data) wR2 = 0.0766 
R(F obsd data) R1 = 0.0331 

Goodness-of-fit on F2 1.005 
Observed data [I > 2σ(I)] 4977 
Absolute structure parameter 0.3(6) 
Largest and mean shift / s.u. 0.000and 0.000 
Largest diff. peak and hole 0.177 and -0.175 e/Å3 

wR2 = ( Σ [w(Fo
2 - Fc

2)2] / Σ [w(Fo 2)2] )1/2  

R1 = Σ ||Fo| - |Fc|| / Σ |Fo| 
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Figure A3 HRESIMS of RAM A (2) 

 

Figure A4 1H-NMR spectrum (500 MHz, CDCl3) of RAM A (2)  
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Figure A5 13C-NMR spectrum (125 MHz, CDCl3) of RAM A (2) 

 

Figure A6 HSQC-NMR spectrum (500 MHz, CDCl3) of RAMA (2)  
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Figure A7 HMBC-NMR spectrum (500 MHz, CDCl3) of RAM A (2) 

 

Figure A8 COSY-NMR spectrum (500 MHz, CDCl3) of RAM A (2)  



Figure A9 NOESY-NMR spectrum (

Figure A10 HRESIMS of 
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NMR spectrum (500 MHz, CDCl3) of RAM A (2) 

HRESIMS of RAM B (3)  
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Figure A11 1H-NMR spectrum (400 MHz, CDCl3) of RAM B (3) 

 

Figure A12 13C-NMR spectrum (100 MHz, CDCl3) of RAM B (3)  
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Figure A13 HSQC-NMR spectrum (400 MHz, CDCl3) of RAM B (3) 

 

Figure A14 HMBC-NMR spectrum (400 MHz, CDCl3) of RAM B (3)  
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Figure A15 COSY-NMR spectrum (400 MHz, CDCl3) of RAM B (3) 

 

Figure A16 NOESY-NMR spectrum (500 MHz, CDCl3) of RAM B (3)  



Figure A17 INADEQUATE

Figure A18 HRESIMS of 
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INADEQUATE-NMR spectrum (400 MHz, CDCl3) of RAM

HRESIMS of RAM C (4)  

 

RAM B (3) 
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Figure A19 1H-NMR spectrum (500 MHz, CDCl3) of RAM C (4) 

 

Figure A20 13C-NMR (100 MHz, CDCl3) of RAM C (4)  
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Figure A21 HSQC-NMR spectrum (400 MHz, CDCl3) of RAM C (4) 

 

Figure A22 HMBC-NMR spectrum (400 MHz, CDCl3) of RAM  C (4)  
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Figure A23 COSY-NMR spectrum (400 MHz, CDCl3) of RAM C (4) 

 

Figure A24 NOESY-NMR spectrum (500 MHz, CDCl3) of RAM C (4)  



Table A11 Crystallographic data and structure refinement
collected and interpreted by Dr. Douglas Powell in the Department of Chemistry and 
Biochemistry at the University of Oklahoma.

Empirical formula 

Formula weight 
Crystal system 
Space group 

Unit cell dimensions 

Volume 
Z, Z' 
Density (calculated) 
Wavelength 
Temperature 
F(000) 
Absorption coefficient 
Max. and min. transmission
Theta range for data collection
Reflections collected 
Independent reflections 
Data / restraints / parameters

wR(F2 all data) 
R(F obsd data) 

Goodness-of-fit on F2 
Observed data [I > 2σ(I)] 
Absolute structure parameter
Largest and mean shift / s.u.
Largest diff. peak and hole 

wR2 = ( Σ [w(Fo
2 - Fc

2)2] / 

R1 = Σ ||Fo| - |Fc|| / Σ |Fo 

Figure A25 HRESIMS of 
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Crystallographic data and structure refinement for RAM A-M1
collected and interpreted by Dr. Douglas Powell in the Department of Chemistry and 
Biochemistry at the University of Oklahoma. 

(C24 H32 O10) ⋅ (H2 O) 

C24 H34 O11 
498.51 
Orthorhombic 
P212121 
a = 8.0444(16) Å   α= 90° 

b = 16.005(3) Å     β= 90° 
c = 18.919(6) Å     γ= 90° 

2435.8(10) Å3 
4, 1 

1.359 Mg/m3 
0.71073 Å 
100(2) K 
1064 
Semi-empirical from equivalents 

Max. and min. transmission 0.995 and 0.955 
Theta range for data collection 1.67 to 26.00° 

2721 
2721 [R(int) = 0.0000] 

Data / restraints / parameters 2721 / 0 / 316 
wR2 = 0.1950 
R1 = 0.0817 
1.147 
2270 

Absolute structure parameter 0(3) 
Largest and mean shift / s.u. 0.000and 0.000 

 0.379 and -0.324 e/Å3 

] / Σ [w(Fo 2)2] )1/2 

 

HRESIMS of RAM A-M1  (5) 

M1 (2).  Data was 
collected and interpreted by Dr. Douglas Powell in the Department of Chemistry and 
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Figure A26 1H-NMR (500 MHz, CDCl3) of RAM A-M1 (5) 

 

Figure A27 13C-NMR (100 MHz, CDCl3) of RAM A-M1 (5)  
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Figure A28 HSQC-NMR (400 MHz, CDCl3) of RAM A-M1 (5) 

 

Figure A29 HMBC-NMR (400 MHz, CDCl3) of RAM A-M1 (5)  
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Figure A30 COSY-NMR (400 MHz, CDCl3) of RAM A-M1 (5) 

 

Figure A31 NOESY-NMR (400 MHz, CDCl3) of RAM A-M1 (5)   



Figure A32 HRESIMS of 

Figure A33 1H-NMR (500 MHz, CDCl
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HRESIMS of RAM B-M1 (6) 

NMR (500 MHz, CDCl3) of RAM B-M1 (6) 
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Figure A34 13C-NMR (100 MHz, CDCl3) of RAM B-M1 (6) 

 

Figure A35 HSQC-NMR (500 MHz, CDCl3) of RAM B-M1 (6)  
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Figure A36 HMBC-NMR (500 MHz, CDCl3) of RAM B-M1 (6) 

 

Figure A37 COSY-NMR (400 MHz, CDCl3) of RAM B-M1 (6)  



Figure A38 NOESY-NMR (500 MHz, CDCl

Figure A39 HRESIMS of 
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NMR (500 MHz, CDCl3) of RAM B-M1 (6) 

HRESIMS of RAM C-M1 (7)  
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Figure A40 1H-NMR (500 MHz, CDCl3) of RAM C-M1 (7) 

 

 

Figure A41 13C-NMR (100 MHz, CDCl3) of RAM C-M1 (7) 
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Figure A42 HSQC-NMR (500 MHz, CDCl3) of RAM C-M1 (7) 

 

Figure A43 HMBC-NMR (500 MHz, CDCl3) of RAM C-M1 (7)  



142 

 

Figure A44 COSY-NMR (400 MHz, CDCl3) of RAM C-M1 (7) 

 

Figure A45 NOESY-NMR (500 MHz, CDCl3) of RAM C-M1 (7) 


