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location 2. (f) Longitudinal fracture map of location 3. (g)
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Plot of length of sample versus simulated fractures for all
the locations. Red line in the plot is a line of 45 degree
slope, black line is the trend line fitted to data points. (c)
Frequency distribution of length for longitudinal fractures
of sample maps. (d) Frequency distribution of length for
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(a)Index map showing the location of hinges and
transverse fracture density (in m/sq.m) for simulated and
sample maps. Fracture map and respective simulation of
transverse set of locations marked in red are displayed in
figures b through g. Location 1 and 3 are hinge locations
while location 2 is a limb location. (b) Transverse fracture
map of location 1. (¢) Simulated transverse fracture map of
location 1.(d) Transverse fracture map of location 2. ()
Simulated transverse fracture map of location 2. (f)
Transverse fracture map of location 3. (g) Simulated
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all the locations. Red line in the plot is a line of 45 degree
slope, black line is the trend line fitted to data points. (b)
Plot of length of sample versus simulated fractures for all
the locations. Red line in the plot is a line of 45 degree
slope, black line is the trend line fitted to data points. (c)
Frequency distribution of length for transverse fractures of
sample maps. (d) Frequency distribution of length for
transverse fractures of simulated maps.

(a)Index map showing the location of hinges and oblique
fracture density (in m/sq.m) for simulated and sample
maps. Fracture map and respective simulation of oblique
set of locations marked in red are displayed in figures b
through g. Location 1 and 3 area hinge locations while
location 2 is a limb location. (b) Oblique fracture map of
location 1. (¢) Simulated oblique fracture map of location
1.(d) Oblique fracture map of location 2. (e) Simulated
oblique fracture map of location 2. (f) Oblique fracture
map of location 3. (g) Simulated oblique fracture map of
location 3.

(a) Frequency distribution of length for NNE oblique
fractures of sample maps. (b) Frequency distribution of
length for NNE oblique fractures of simulated maps. (¢)
Frequency distribution of length for NN'W oblique
fractures of sample maps. (d) Frequency distribution of
length for NNW oblique fractures of simulated maps.
(a)Index map showing the location of hinges and

Fractional Connected Area for simulated and sample maps.

Fracture map and respective simulation of all sets of
locations marked in red are displayed in figures b through
g. Location 1 and 3 are hinge locations while location 2 is
a limb location. (b) Connectivity map of location 1. (¢)
Simulated connectivity map of location 1.(d) Connectivity
map of location 2. (e) Simulated connectivity map of
location 2. (f) Connectivity map of location 3. (g)
Simulated connectivity map of location 3.

Histogram of fractional connected area from all the sample
maps and the simulated fractures extracted using the
sample map area. The statistics for the same is recorded in
the adjacent table.

(a) Location of study area marked by a red dot on state
map of Utah. (b) Generalized structure map of
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Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Canyonlands area ((Hintze, 2000) (c) Generalized geologic
map of study area (Hintze, 2000).

(a) Location of Canyonlands needles district in Utah. (b)
General geologic map of the study area, red boundary
showing the extent of the study area. (c) Location of
fracture data measurement on 60cm resolution Quickbird
image. The yellow lines on the image indicate traces of
normal faults in the area, acquired from Utah geological
survey, (Hintze et al., 2000).

Fractures mapped on 60cm resolution Quickbird image.
The yellow lines on the image indicate traces of normal
faults in the area, acquired from Utah geological survey,
(Hintze et al., 2000).

Fractures mapped on 60cm resolution Quickbird image.
The yellow lines on the image indicate traces of normal
faults in the area, acquired from Utah geological survey,
(Hintze et al., 2000). Red lines indicating fractures striking
14° and green lines indicating fractures striking 30°. (b)
Rose diagram showing strikes of 30° set. (c) Equal area
stereographic plots showing poles to planes of 30° set. (d)
Rose diagram showing strikes of 14° set. (¢) Equal area
stereographic plots showing poles to planes of 14° set.
Fractures mapped on 60cm resolution Quickbird image.
The yellow lines on the image indicate traces of normal
faults in the area, acquired from Utah geological survey,
(Hintze et al., 2000). Red lines indicating fractures striking
121° and green lines indicating fractures striking 137. (b)
Rose diagram showing strikes of 137° set. (c) Equal area
stereographic plots showing poles to planes of 137° set. (d)
Rose diagram showing strikes of 121° set. (c¢) Equal area
stereographic plots showing poles to planes of 121° set. N:
Number of fractures

Orientation of oblique sets. a-b. Rose diagrams showing
the strikes of (a) 44° and (b) 76° fracture set. c-d. Equal
area stereographic plots showing poles to planes of
fractures and great circle bedding. (c) 44° (d) 76° fracture.
e-f. Rose diagrams showing the strikes of (¢) 102 and (1)
166°fracture set. g-h. Equal area stereographic plots
showing poles to planes of fractures and great circle of
bedding. (g) 102 (h) 166 fracture set.
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Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

Figure 4.12

Fractures mapped on 60cm resolution Quickbird image.
The yellow lines on the image indicate traces of normal
faults in the area, acquired from Utah geological survey,
(Hintze et al., 2000). Red lines indicating fault parallel
fractures striking 14° degree set and green lines indicating
fault parallel fractures striking 30° degree set. (b) Length
histogram of 14° degree set. (¢) Length histogram of 30°
degree set.

Fractures mapped on 60cm resolution Quickbird image.
The yellow lines on the image indicate traces of normal
faults in the area, acquired from Utah geological survey,
(Hintze et al., 2000). Red lines indicating fault parallel
fractures striking 14° set and green lines indicating fault
parallel fractures striking 30° set. (b) Density histogram of
14° set. (c) Density histogram of 30° set.

Fractures mapped on 60cm resolution Quickbird image.
The yellow lines on the image indicate traces of normal
faults in the area, acquired from Utah geological survey,
(Hintze et al., 2000). Red lines indicating fault normal
fractures striking 121° and green lines indicating fault
normal fractures striking 137°. (b) Length distribution of
137° set. (¢) Length distribution of 121° set. N: Number of
fractures.

Fractures mapped on 60cm resolution Quickbird image.
The yellow lines on the image indicate traces of normal
faults in the area, acquired from Utah geological survey,
(Hintze et al., 2000). Red lines indicating fault normal
fractures striking 121 and green lines indicating fault
normal fractures striking 137. (b) Density distribution of
137° set. (c) Density distribution of 121° set. N: Number
of fractures

Fault parallel and fault normal fracture exposed on the
surface of an interlayer within Cedar Mesa sandstone. Pen
(15cm) in photograph for scale. Point to note is that the
termination of fault normal fracture against fault parallel
set. (b) Same relation of termination is observed in
remotely sensed image.

Map showing density distribution of fault parallel and fault
normal fracture set. (a) Fault parallel (14°) fracture set (b)
Fault parallel (30°) fracture set (c) Fault normal (121°)
fracture set and (d) Fault normal (137°) fracture set.
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Figure 4.13

Figure 4.14

Figure 4.15

Figure 4.16

Figure 5.1

Figure 5.2

Figure 5.3

Map showing density distribution (a) 44° fracture set (b) 106
76° fracture set (c) 102° fracture set and (d) 166° fracture

set.

(a) Schematic diagram showing distance calculation from 107
fault traces. (b) Plot of fault parallel fracture Density

against Distance from nearest fault. (c) Plot of fault

normal fracture Density against Distance from nearest

fault. (d) Schematic diagram showing distance calculation

from fault intersection and/or tip. (¢) Plot of fault parallel

fracture Density against Distance from nearest fault tip;

gray area marks the no-data region. (f) Plot of fault normal
fracture Density against Distance from nearest fault tip;

gray area marks the no-data region.

Fracture connectivity patterns in Canyonlands area. The 108
yellow polygons represent the connected area, the red lines

are traces of normal faults, and the black lines are the

traces of connected group of fractures.

(a) Map showing density distribution of connected 109
fractures (b) Plot showing Fractional connected length

(connected fracture density) against Distance from normal

fault

(a) Single set of fracture with an angular dispersion of 15 128
degree. (b) Two sets of fractures with one dominant set

extending across the study area and a second set of cross

fractures developed in between the dominant set. (c) Two
orthogonal set of fractures where both sets are dominant.
Examples from single set of simulated fractures with 10 129
degree dispersion in strike, varying between175 to 185

degree. (a-d) Single set of fracture with varying length and
spacing . (e) Fracture cluster extracted from 5.2a. (f)

Fracture cluster extracted from 5.2b. (g) Fracture cluster

extracted from 5.2c¢. (h) Fracture cluster extracted from

5.2d. L*: Normalized length; S*: Normalized spacing.

Examples from single set of simulated fractures with 20 130
degree dispersion in strike, varying between175 to 185

degree. (a-d) Single set of fracture with varying length and
spacing . (e) Fracture cluster extracted from 5.3a. (f)

Fracture cluster extracted from 5.3b. (g) Fracture cluster

extracted from 5.3c. (h) Fracture cluster extracted from

5.3d. L*: Normalized length; S*: Normalized spacing.
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Examples from single set of simulated fractures with 30
degree dispersion in strike, varying between165 to 195
degree. (a-d) Single set of fracture with varying length and
spacing . (e) Fracture cluster extracted from 5.4a. (f)
Fracture cluster extracted from 5.4b. (g) Fracture cluster
extracted from 5.4c. (h) Fracture cluster extracted from
5.4d. L*: Normalized length; S*: Normalized spacing.
Plot of Spacing vs. Fractional Connected Area for varying
length and orientation. The curve for varying length in
each plot is color coded. L: Normalize length of fracture.
(a-f) Simulation of two sets of fractures, angle between 2
sets ranges from15 to 19 degree. (g-1) Angle between 2
sets range from 30 to 34 degree. (m-r) Angle between 2
sets range from 45 to 49 degree. L: Normalized length of
cross fractures; A: Angle between two sets in degrees.
(a-f) Simulation of two sets of fractures, angle between 2
sets ranges from60 to 64 degree.(g-1) Angle between 2 sets
range from 75 to 79 degree.(m-p) Angle between 2 sets
range from 86 to 90 degree. L: Normalized length of cross
fractures; A: Angle between two sets in degrees.

(a-f) Plot of fractional connected area and cluster size
versus length of cross fractures for different angular
difference between two sets. (g) Plot of critical length of
cross fracture required for cluster size to be equal to 1
versus the angle between the two sets of fractures.
Simulation of two orthogonal set of fractures. Normalized
length of EW and NS fracture is 0.1. Red lines indicate the
connected group of fractures. (a-c) Density of NS set
Im/sq.m and density of EW set vary from 1 to 3m/sq.m.
(d-f) Density of NS set 3m/sq.m and density of EW set
vary from 1 to 3m/sq.m. FCA: Fractional Connected Area.
Simulation of two orthogonal set of fractures. Normalized
length of EW set is 0.1 and NS set is 0.3. Red lines
indicate the connected group of fractures. (a-c) Density of
NS set 1m/sq.m and density of EW set vary from 1 to
3m/sq.m. (d-f) Density of NS set 3m/sq.m and density of
EW set vary from 1 to 3m/sq.m. FCA: Fractional
Connected Area.

Simulation of two sets at 45 degrees. Length of EW and
NS set is 0.1. Red lines indicate the connected group of
fractures. (a-c) Density of NS set 1m/sq.m and density of
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EW set vary from 1 to 3m/sq.m. (d-f) Density of NS set
3m/sq.m and density of EW set vary from 1 to 3m/sq.m.
FCA: Fractional Connected Area.

Simulation of two sets at 45 degrees. Length of EW set is
0.1 and NS set is 0.3. Red lines indicate the connected
group of fractures. (a-c) Density of NS set 1m/sq.m and
density of EW set vary from 1 to 3m/sq.m. (d-f) Density
of NS set 3m/sq.m and density of EW set vary from 1 to
3m/sq.m. FCA: Fractional Connected Area.

Graphical representation of simulation results for two sets
of fractures with changing length and density. Plots of D2
versus Fractional Connected Area. (a) Orthogonal sets
with normalized length of of both sets is 0.1 (b)
Orthogonal sets with normalized length of L1=0.3 and
L2=0.1. (c) 45 degree sets with normalized length of both
sets is 0.1. (d) 45 degree sets with normalized length of
L1=0.3 and L2=0.1.(e) Orthogonal set and 45 degree set
plotted together, curves color coded for varying L1 and
D1. L1: Normalized length of NS set; D1: Density of NS
set; L2: Normalized length of EW set; D2: Density of EW
set.

(a) Fractures hosted in Tensleep sandstone (Bellahsen et
al., 2006). (b) Fracture cluster extracted from photo 5.14a.
Red lines indicate fractures contributing to the cluster. (¢)
Simulated fractures with low strike dispersion. (d)
Fractures hosted in Carboniferous sandstone at Telpyn
point, Wales, UK, (Rohrbaugh et al.,2002). (¢)
Anastomosing fracture pattern in Entrada sandstone, Utah,
(Lorenz and Cooper, 2000).0: Dispersion of strike
orientation.

Natural fractures in Lompoc Landing, California. (a) NS
trending fractures. (b) Connected group of NNW-SSE and
NE-SW trending fractures. (¢) EW trending fractures. (d)
Connected group of EW trending fractures. (e) Fracture
network consisting of all fracture sets. (f) Connected group
of fractures constituted of all set of fractures. 0: Dispersion
of strike within a singel set.

(a) Natural fractures hosted in Nashpoint limestone,
(Josnin et. al., 2002). (b) Fracture trace of a part of the
pavement marked by dotted lines in 5.16a (c) Fractures in
Jurassic limestone formation, Llanwit Major, Wales,
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Figure 5.17

Figure 5.18

Figure 5.19

Figure Al

Figure A2

(Rohrbaugh et al., 2002). (d) Simulated fractures
intersecting at high angle. 0: Dispersion of strike
orientation.

(a) Two sets of fractures intersecting at low angle on the
flank of Salt Valley Anticline. Some fractures are traced
out on the photograph to highlight the angular relation
between intersecting fractures. (b) Fracture traces from
part of figure 5.17a marked by a dotted line. Two sets of
fractures represented by blue and red line. (¢c) Two sets of
simulated fractures intersecting at low angles.

(a) Two sets of fractures at high angle, hosted in Tensleep
sandstone. (b) Fracture traces of the pavement shown in
figure 5.18a. Red lines represent fractures that belong to
the fracture cluster.(c) Example from simulation of a
condition similar to 5.18a.

Fractures hosted in carbonate unit of western flank of
Teton anticline. (a) One dominant set of fracture resulting
into continuous connected network. (b) Several set of
fractures resulting into connected pattern but not
continuous pathway. (¢) Low fracture density resulting
into low connectivity despite of multiple set of fractures.
(d-e) Examples from simulated map.

(a) Density map of longitudinal fractures for location MO1.

(b) Density map of simulated longitudinal fractures for
location MO1. The fractures for area MO1 are extracted
from the simulated map generated for the entire Teton
anticline. (¢) Density map of longitudinal fractures for
location M02. (d) Density map of simulated longitudinal
fractures for location M02. The fractures for area M02 are
extracted from the simulated map generated for the entire
Teton anticline. (e) Fracture map of longitudinal set for
location MO1. (f) Simulated fracture map of longitudinal
set for location MO1. (g) Fracture map of longitudinal set
for location M02. (h) Simulated fracture map of
longitudinal set for location M02.

(a) Density map of longitudinal fractures for location M03.

(b) Density map of simulated longitudinal fractures for
location M03. The fractures for area M03 are extracted
from the simulated map generated for the entire Teton
anticline. (¢) Density map of longitudinal fractures for
location M04. (d) Density map of simulated longitudinal
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Figure A3

Figure A4

Figure AS

fractures for location M04. The fractures for area M04 are
extracted from the simulated map generated for the entire
Teton anticline. (e) Fracture map of longitudinal set for
location M03. (f) Simulated Fracture map of longitudinal
set for location MO03. (g) Fracture map of longitudinal set
for location M04. (h) Simulated fracture map of
longitudinal set for location M04.

(a) Density map of longitudinal fractures for location MOS.

(b) Density map of simulated longitudinal fractures for
location M05. The fractures for area M05 are extracted
from the simulated map generated for the entire Teton
anticline. (¢) Density map of longitudinal fractures for
location M06. (d) Density map of simulated longitudinal
fractures for location M06. The fractures for area M06 are
extracted from the simulated map generated for the entire
Teton anticline. (e) Fracture map of longitudinal set for
location MOS. (f) Simulated Fracture map of longitudinal
set for location M0S5. (g) Fracture map of longitudinal set
for location M06. (h) Simulated fracture map of
longitudinal set for location M06.

(a) Density map of longitudinal fractures for location M07.

(b) Density map of simulated longitudinal fractures for
location M07. The fractures for area M07 are extracted
from the simulated map generated for the entire Teton
anticline. (¢) Density map of longitudinal fractures for
location M8. (d) Density map of simulated longitudinal
fractures for location M0S8. The fractures for area MOS8 are
extracted from the simulated map generated for the entire
Teton anticline. (e) Fracture map of longitudinal set for
location MO7. (f) Simulated fracture map of longitudinal
set for location M07. (g) Fracture map of longitudinal set
for location M08. (h) Simulated fracture map of
longitudinal set for location MO08.

(a) Density map of longitudinal fractures for location M09.

(b) Density map of simulated longitudinal fractures for
location M09. The fractures for area M09 are extracted
from the simulated map generated for the entire Teton
anticline. (¢) Density map of longitudinal fractures for
location M10. (d) Density map of simulated longitudinal
fractures for location M10. The fractures for area M10 are
extracted from the simulated map generated for the entire
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Figure A6

Figure A7

Figure A8

Figure A9

Teton anticline. (e) Fracture map of longitudinal set for
location M09. (f) Simulated fracture map of longitudinal
set for location M09. (g) Fracture map of longitudinal set
for location M10. (h) Simulated fracture map of
longitudinal set for location M10.

(a) Density map of longitudinal fractures for location M11.

(b) Density map of simulated longitudinal fractures for
location M11. The fractures for area M 11 are extracted
from the simulated map generated for the entire Teton
anticline. (¢) Density map of longitudinal fractures for
location M12. (d) Density map of simulated longitudinal
fractures for location M12. The fractures for area M12 are
extracted from the simulated map generated for the entire
Teton anticline. (e) Fracture map of longitudinal set for
location M11. (f) Simulated fracture map of longitudinal
set for location M11. (g) Fracture map of longitudinal set
for location M12. (h) Simulated fracture map of
longitudinal set for location M12.

(a) Density map of longitudinal fractures for location M13.

(b) Density map of simulated longitudinal fractures for
location M13. The fractures for area M 13 are extracted
from the simulated map generated for the entire Teton
anticline. (c¢) Fracture map of longitudinal set for location
M13. (d) Simulated fracture map of longitudinal set for
location M13.

(a) Density map of transverse fractures for location MO1.
(b) Density map of simulated transverse fractures for
location MO1. The fractures for area MO1 are extracted
from the simulated map generated for the entire Teton
anticline. (¢) Density map of transverse fractures for
location M02. (d) Density map of simulated transverse
fractures for location M02. The fractures for area M02 are
extracted from the simulated map generated for the entire
Teton anticline. (e) Fracture map of transverse set for
location MO1. (f) Simulated fracture map of transverse set
for location MO1. (g) Fracture map of transverse set for
location M02. (h) Simulated fracture map of transverse set
for location M02.

(a) Density map of transverse fractures for location M03.
(b) Density map of simulated transverse fractures for
location M03. The fractures for area M03 are extracted
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Figure A10

Figure Al1

Figure A12

from the simulated map generated for the entire Teton
anticline. (¢) Density map of transverse fractures for
location M04. (d) Density map of simulated transverse
fractures for location M04. The fractures for area M04 are
extracted from the simulated map generated for the entire
Teton anticline. (e) Fracture map of transverse set for
location M03. (f) Simulated fracture map of transverse set
for location MO03. (g) Fracture map of transverse set for
location M04. (h) Simulated fracture map of transverse set
for location M04.

(a) Density map of transverse fractures for location M0S5.
(b) Density map of simulated transverse fractures for
location M05. The fractures for area M0S5 are extracted
from the simulated map generated for the entire Teton
anticline. (¢) Density map of transverse fractures for
location M06. (d) Density map of simulated transverse
fractures for location M06. The fractures for area M06 are
extracted from the simulated map generated for the entire
Teton anticline. (e) Fracture map of transverse set for
location MO0S5. (f) Simulated fracture map of transverse set
for location M05. (g) Fracture map of transverse set for
location M06. (h) Simulated fracture map of transverse set
for location M06.

(a) Density map of transverse fractures for location M07.
(b) Density map of simulated transverse fractures for
location M0O7. The fractures for area M07 are extracted
from the simulated map generated for the entire Teton
anticline. (¢) Density map of transverse fractures for
location M08. (d) Density map of simulated transverse
fractures for location M0S8. The fractures for area MOS are
extracted from the simulated map generated for the entire
Teton anticline. () Fracture map of transverse set for
location M07. (f) Simulated fracture map of transverse set
for location M07. (g) Fracture map of transverse set for
location MO08. (h) Simulated fracture map of transverse set
for location M08.

(a) Density map of transverse fractures for location M09.
(b) Density map of simulated transverse fractures for
location M019. The fractures for area M09 are extracted
from the simulated map generated for the entire Teton
anticline. (¢) Density map of transverse fractures for
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Figure A13

Figure A14

Figure A15

location M10. (d) Density map of simulated transverse
fractures for location M10. The fractures for area M10 are
extracted from the simulated map generated for the entire
Teton anticline. (e) Fracture map of transverse set for
location M09. (f) Simulated fracture map of transverse set
for location M09. (g) Fracture map of transverse set for
location M10. (h) Simulated fracture map of transverse set
for location M10.

(a) Density map of transverse fractures for location M11.
(b) Density map of simulated transverse fractures for
location M11. The fractures for area M 11 are extracted
from the simulated map generated for the entire Teton
anticline. (¢) Density map of transverse fractures for
location M12. (d) Density map of simulated transverse
fractures for location M12. The fractures for area M12 are
extracted from the simulated map generated for the entire
Teton anticline. (e) Fracture map of transverse set for
location M11. (f) Simulated fracture map of transverse set
for location M11. (g) Fracture map of transverse set for
location M12. (h) Simulated fracture map of transverse set
for location M12.

(a) Density map of transverse fractures for location M13.
(b) Density map of simulated transverse fractures for
location M13. The fractures for area M 13 are extracted
from the simulated map generated for the entire Teton
anticline. (c¢) Fracture map of transverse set for location
M13. (d) Simulated fracture map of transverse set for
location M13. (e) Plot of density of sample versus
simulated fractures for all the locations. Red line in the
plot is a line of 45 degree slope, black line is the trend line
fitted to data points. (f) Plot of length of sample versus
simulated fractures for all the locations. Red line in the
plot is a line of 45 degree slope, black line is the trend line
fitted to data points. (g) Frequency distribution of length
for transverse fractures of sample maps. (h) Frequency
distribution of length for transverse fractures of simulated
maps.

(a) Density map of oblique fractures for location MO1. (b)
Density map of simulated oblique fractures for location
MO1. The fractures for area MO1 are extracted from the
simulated map generated for the entire Teton anticline. (c)
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Figure A16

Figure A17

Figure A18

Density map of oblique fractures for location M02. (d)
Density map of simulated oblique fractures for location
MO?2. The fractures for area M02 are extracted from the
simulated map generated for the entire Teton anticline. (e)
Fracture map of oblique sets for location MO1. (f)
Simulated fracture map of oblique sets for location MO1.
(g) Fracture map of oblique sets for location M02. (h)
Simulated fracture map of oblique sets for location M02.
(a) Density map of oblique fractures for location M03. (b)
Density map of simulated oblique fractures for location
MO3. The fractures for area M03 are extracted from the
simulated map generated for the entire Teton anticline. (c)
Density map of oblique fractures for location M04. (d)
Density map of simulated oblique fractures for location
MO4. The fractures for area M04 are extracted from the
simulated map generated for the entire Teton anticline. (e)
Fracture map of oblique sets for location M03. (f)
Simulated fracture map of oblique sets for location M03.
(g) Fracture map of oblique sets for location M04. (h)
Simulated fracture map of oblique sets for location M04.
(a) Density map of oblique fractures for location MO0S5. (b)
Density map of simulated oblique fractures for location
MOS5. The fractures for area M05 are extracted from the
simulated map generated for the entire Teton anticline. (c)
Density map of oblique fractures for location M06. (d)
Density map of simulated oblique fractures for location
MO6. The fractures for area M06 are extracted from the
simulated map generated for the entire Teton anticline. (e)
Fracture map of oblique sets for location MO05. (f)
Simulated fracture map of oblique sets for location M05.
(g) Fracture map of oblique sets for location M06 (h)
Simulated fracture map of oblique sets for location M06.
(a) Density map of oblique fractures for location M07. (b)
Density map of simulated oblique fractures for location
MO7. The fractures for area M07 are extracted from the
simulated map generated for the entire Teton anticline. (¢)
Density map of oblique fractures for location M08. (d)
Density map of simulated oblique fractures for location
MO8. The fractures for area M08 are extracted from the
simulated map generated for the entire Teton anticline. (e)
Fracture map of oblique sets for location MO07. (f)
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Figure A19

Figure A20

Figure A21

Figure A22

Simulated fracture map of oblique sets for location M07.

(g) Fracture map of oblique sets for location M08. (h)

Simulated fracture map of oblique sets for location M08.

(a) Density map of transverse fractures for location M09. 186
(b) Density map of simulated transverse fractures for

location M09. The fractures for area M09 are extracted

from the simulated map generated for the entire Teton

anticline. (¢) Density map of transverse fractures for

location M10. (d) Density map of simulated transverse

fractures for location M10. The fractures for area M 10 are
extracted from the simulated map generated for the entire

Teton anticline. (e) Fracture map of transverse set for

location M09. (f) Simulated fracture map of transverse set

for location M09. (g) Fracture map of transverse set for

location M10. (h) Simulated fracture map of transverse set

for location M10.

(a) Density map of oblique fractures for location M11. (b) 187
Density map of simulated oblique fractures for location

M11. The fractures for area M 11 are extracted from the

simulated map generated for the entire Teton anticline. (¢)

Density map of oblique fractures for location M12. (d)

Density map of simulated oblique fractures for location

M12. The fractures for area M 12 are extracted from the

simulated map generated for the entire Teton anticline. (e)
Fracture map of oblique sets for location M11. (f)

Simulated fracture map of oblique sets for location M11.

(g) Fracture map of oblique sets for location M12. (h)

Simulated fracture map of oblique sets for location M12.

(a) Density map of oblique fractures for location M13. (b) 188
Density map of simulated oblique fractures for location

M13. The fractures for area M13 are extracted from the

simulated map generated for the entire Teton anticline. (c)
Fracture map of oblique sets for location M13. (d)

Simulated fracture map of oblique sets for location M13.

(a) Fracture cluster map for location MO1. (b) Cluster map 189
for fractures of location M01, extracted from the simulated

map generated for the entire Teton anticline. (¢) Fracture

cluster map for location M02. (d) Cluster map for fractures

of location M02, extracted from the simulated map

generated for the entire Teton anticline.
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Figure A23

Figure A24

Figure A25

Figure A26

Figure A27

Figure A28

(a) Fracture cluster map for location M03. (b) Cluster map
for fractures of location M03, extracted from the simulated
map generated for the entire Teton anticline. (¢) Fracture
cluster map for location M04. (d) Cluster map for fractures
of location M04, extracted from the simulated map
generated for the entire Teton anticline.

(a) Fracture cluster map for location M05. (b) Cluster map
for fractures of location M05, extracted from the simulated
map generated for the entire Teton anticline. (¢) Fracture
cluster map for location M06. (d) Cluster map for fractures
of location M06, extracted from the simulated map
generated for the entire Teton anticline.

(a) Fracture cluster map for location M07. (b) Cluster map
for fractures of location M07, extracted from the simulated
map generated for the entire Teton anticline. (c) Fracture
cluster map for location M08. (d) Cluster map for fractures
of location M08, extracted from the simulated map
generated for the entire Teton anticline.

(a) Fracture cluster map for location M09. (b) Cluster map
for fractures of location M09, extracted from the simulated
map generated for the entire Teton anticline. (¢) Fracture
cluster map for location M10. (d) Cluster map for fractures
of location M 10, extracted from the simulated map
generated for the entire Teton anticline.

(a) Fracture cluster map for location M11. (b) Cluster map
for fractures of location M11, extracted from the simulated
map generated for the entire Teton anticline. (¢) Fracture
cluster map for location M12. (d) Cluster map for fractures
of location M 12, extracted from the simulated map
generated for the entire Teton anticline.

(a) Fracture cluster map for location M13. (b) Cluster map
for fractures of location M13, extracted from the simulated
map generated for the entire Teton anticline.

XXV

190

191

192

193

194

195



Abstract

Fracture network patterns have been studied in two areas with different
structural settings: (a) Dolomitic limestones on Teton anticline, in the frontal part
of the fold thrust belt in the Sawtooth Range, Montana and (b) Cedar Mesa
sandstones within normal faulted structures in the Canyonlands area, Utah. GIS-
based techniques were used to study the two-dimensional distribution of fractures
on exposed bedding planes in both areas. Individual fracture characteristics, such
as fracture length, orientation, and density were analyzed along with the
connectivity pattern of fracture networks. The latter parameter is important in
determining whether the fractures are isolated or form extensive connected
pathways.

Studies on both structures reveal that the fracture patterns vary with
structural position. In the Teton anticline, which is a multiple hinge anticline, the
longitudinal fractures represent the dominant fracture set, and show the most
variation with structural position, with values greater at the hinges than on the
limbs. Transverse fractures, on the other hand, show less variation with structural
position and show higher densities in the vicinity of regional fractures. A method
of fracture simulation which incorporates the structural controls on fracture
densities was developed and applied to the Teton anticline. In the Canyonlands
area, the higher density of fault-parallel fractures is observed within a narrow

zone in the vicinity of normal faults.
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Fracture permeability is strongly controlled by the connectivity of
fractures. The connectivity of a fracture network depends on the geometry and
characteristics of individual fractures and also on how the fracture sets are
distributed in space. Increasing fracture propagation leads to the formation of
clusters or connected fractures. The connected clusters increase in size as (1) an
increasing number of fractures are added to the system, (2) the lengths of the
fractures increase to connect individual fractures, (3) the orientations of fractures
in a set exhibit a higher degree of dispersion, or (4) fractures of multiple sets are
added to the system. A series of fracture simulations were modeled to investigate
the influence of the four characteristics on the fracture network, and to identify
the relative contribution of each factor towards network connectivity. Fracture
clustering was also studied for both the Teton anticline and the Canyonlands area,

and found to be strongly controlled by structural position.
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CHAPTER 1:

INTRODUCTION

1.1 INTRODUCTION
1.2 OBJECTIVES

1.3 SIGNIFICANCE OF THE STUDY



1.1 Introduction

Natural fractures are increasingly recognized as an important factor in the
exploration and production of hydrocarbons and also for many environmental
applications. Fracturing increases the porosity, and more importantly, the
permeability in otherwise tight rock units, and also enhances the connectivity
between different units within an oil field. Fracture distribution is heterogeneous
and depends on various geologic factors including lithology, bed thickness,
proximity to faults and structural position.

Prediction of the fracture density and orientation in different parts of a
subsurface structure is difficult because of limited data availability. Subsurface
fracture data is limited to oriented core and/or borehole televiewer or log data.
Interpolation of fracture densities between these sparse data points requires good
analog models based on field-based fracture analysis. Furthermore, methods for
simulating fractures across a structure are necessary to predict the fracture pattern
and intensities across the entire structure.

Field analysis of fractures in the past has focused on the following topics:
(1) Characterization of fracture parameters, (2) Relationship of Fracture Density
or Spacing to structural and lithologic factors, and (3) Simulation of fractures. The
focus of this research has been on trying to understand the distribution of fractures
around major structures and their mechanics of formation. Significant progress

has been made in methods of characterizing fracture patterns and predicting the



controls of lithological parameters on fracture intensities. Although a number of
studies have been conducted on the variation of fracture parameters with
structural position (McQuillan, 1974, Stearns, 1964, Sinclair, 1980), our
understanding of these details are less than complete. Simulation of fractures has
been successfully conducted for simple fracture patterns which are homogeneous
within the area of observation (Barton, 1995, Josnin et al., 2002). However, no
studies of fracture simulation with variable intensities and orientations around a
macroscopic structure have been conducted to date.

In order to successfully predict fracture orientations, lengths and densities
in the subsurface, it is necessary to have surface analogs of fracture patterns in
compressive and extensional setting. The surface model should not only show
typical fracture orientations, length distributions, and densities, but the variation
of fracture parameters relative to structural position, especially distance from fold
hinges or distance from the fault. It is also necessary to develop method of
simulating fracture patterns and densities based on variations in structural
position. Fractures along Teton anticline in the frontal part of Sawtooth Range,
Montana, and in Grabens area of the Canyonlands National Park, Utah, presents

excellent example that fulfill these criteria.



1.2 Objectives

The objective of this study is to (1) conduct detailed fracture analyses in
different structural settings, to provide good surface analogs for subsurface
fracture prediction, and (2) design a method for two dimensional fracture
simulation that can incorporate the structural relation inferred from fracture
characterization with respect to macroscopic structure. The structures selected for
this study are the Teton anticline which exposes Devonian and Mississippian
carbonates in the frontal part of Sawtooth fold-thrust belt in Montana and the
Canyonlands Graben of Paradox Basin, Utah, which exposes the fractures in
Jurassic sandstone within an extensional setting.

More specific targets are (1) to map the fracture pattern in different
structural settings and identify the difference in mapped patterns; (2) characterize
the fracture orientations, lengths and densities in a number of well-mapped
outcrops around the structures; (3) analyze the variation of fracture densities of
different fracture sets with structural position; (4) design a method of fracture
simulation using the spatial relation of fractures with respect to structural
position; and (5) study the interaction of different fracture parameters that control
fracture connectivity.

These topics are discussed in chapters 2 through 5. Chapter 2 is dedicated
to fracture characterization across a folded carbonate unit. The study is carried out

for the Teton anticline, which is an open, asymmetric, multi-hinge fold. Fracture



parameters are related to the structural position on the fold. Also, detailed fracture
connectivity analysis is performed to investigate the interaction of different
fracture sets and its sensitivity to structural position.

In chapter 3, a two dimensional fracture simulation is designed that is
based on the database generated for Teton anticline. The simulation is designed
such that it can incorporate the spatial variation of fracture parameters with
respect to structural position. The theoretical background for the simulation and
the significance of the results are discussed in detail in this chapter.

Chapter 4 is devoted to fracture characterization in an extensional setting.
The study is carried out in the Graben Area of the Needles district of Canyonlands
National Park, Utah. In this case the variation of fracture parameters is related to
normal faults. The spatial variation of fracture density is used as a guide to
investigate the evolution of faults and fractures.

In Chapter 5, a series of theoretical fracture simulations is conducted to
identify the contribution of different fracture parameters towards fracture

connectivity.

1.3 Significance of the Study

Fracture distribution directly affects the hydrologic and mechanical
properties of rock. Fractures may serve as conduits for fluid flow or may act as

barriers to flow. For example an interconnected network of opening-mode



fractures can transform an otherwise impermeable rock into a viable aquifer or
economic hydrocarbon reservoir. Fractures also play a major role in landscape
evolution. Thus, a good understanding of fracture geometry, distribution and
fracture mechanism is critical for exploring and producing for hydrocarbons, for
groundwater modeling and for evaluating rock mass stability.

This study develops techniques to quantify the spatial distribution of
fractures. It also explores the geologic factors that control these spatial variations,
especially the structural position. The study also provides a means to incorporate
the geologic factor in fracture simulation. The permeability of a fractured rock
mass is controlled by the extent to which the individual fractures are linked to
form a continuous fracture network through the rock. Thus, the connectivity of a
fracture system determines the effective permeability of the rock mass, which in
turn is dependent on the fracture geometry and distribution. The analytical
techniques developed in this study will provide insight on the two dimensional

connectivity of fracture networks.
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2.1 Introduction

The Teton anticline is a multiple hinge anticline containing fractured
Mississippian-Devonian carbonates in the frontal part of the Sawtooth Range in
Montana. The structure serves as a good surface analog for fracture patterns and
connectivities within subsurface folded carbonate reservoirs. The primary fracture
sets are longitudinal and transverse relative to the axis of the fold, although two
additional oblique sets are also present. The length and density of the longitudinal
fracture sets are strongly controlled by position relative to multiple hinges. The
transverse fractures are related to changes in fold plunge and exhibit less variation
in fracture density. Fracture connectivity is dependent on the number of fracture
sets, their orientations and dispersions, and the densities of the fracture sets. The
connectivity is measured using two parameters: the fractional connected area
which represents the fraction of the total sample area that is connected by
fractures, and the distribution of clusters of different sizes in any given area.
Because the longitudinal fractures represent the dominant fracture set, and also
show the most variation with structural position, the fracture connectivity, as
measured by both the fractional connected areas and the distribution of cluster
sizes, is greater in vicinity of the fold hinges. The results and approaches used in
the study have some important implications for subsurface folded fractured
carbonate reservoirs. The analysis of sparsely distributed fracture data from wells

must be integrated with an understanding of the controls of the macroscopic



structure on fracture parameters, to effectively simulate fracture patterns and

connectivities around subsurface structures.

2.2 Objectives

This chapter describes a detailed analysis of fracture parameters on a
folded carbonate unit to provide a surface analog for subsurface fracture
prediction. The structure selected for this study is the Teton anticline which
exposes Devonian and Mississippian carbonates in the frontal part of Sawtooth
fold-thrust belt in Montana (Mudge, 1972). The structure serves as a good
analogue for many surface fractured reservoirs in the frontal parts of fold and
thrust belts.

The detailed objectives are (1) to characterize the fracture orientations,
lengths and densities in a number of well-mapped outcrops around the structure;
(2) to analyze the variation of fracture densities of different fracture sets with
structural position and lithology, and to understand the distribution of different
fracture sets with structural position; (3) to use cluster analysis to understand the
interaction of different fracture sets to control the fracture connectivity, and the

variation of the connectivity with structural position.



2.3 Structural Background of Teton Anticline

The Northern Montana overthrust belt is an arcuate zone of northerly
trending and westerly dipping thrust faults and related folds, formed during late
Cretaceous to Tertiary times. The thrust belt can be subdivided into two main
subprovinces: the Sawtooth Range, which is made up of large thrusts involving
Paleozoic carbonates, and the Disturbed belt, which consists of closely-spaced
thrusts and related folds in the Cretaceous units (Mudge, 1972). These two
subprovinces correspond to the Front Ranges and the Foothills, respectively, of
the Canadian Rockies (Bally et al, 1966).

The Teton anticline is an anticline exposing folded Mississippian and
Devonian carbonates located in the frontal part of the Sawtooth Range (Figure
2.1). The structure is an asymmetric anticline with a steep, eastern limb and a
somewhat more gently-dipping western limb. The crest and western limb of the
structure are well exposed, thereby providing adequate outcrops for detailed
fracture analysis. The east limb of the structure is forested and contains few well
exposed outcrops and was not analyzed. The size, geometry, and structural
position of the anticline make it an excellent surface analog for many subsurface

fractured anticlines.
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2.4 Previous Work

Many techniques have been developed to characterize fractures in rock
masses by quantifying fracture attributes such as spacing (and its inverse, fracture
density or intensity), length, aperture and fractal dimension (Stearns, 1967;
McQuillan, 1974; Priest and Hudson, 1976; LaPointe and Hudson, 1985; Velde et
al., 1990; Narr and Suppe, 1991; Dershowitz, and Herda, 1992; Gillespie et al.,
1993; Barton, 1995; Wu and Pollard, 1995; Renshaw, 1997; Ehlen, 2000;
Mauldon et al., 2001; La Pointe, 2002; Wu and Pollard, 2002; Peacock et al.,
2003, Ortega et. al. 2006). Linear fracture spacing (linear) was traditionally
measured along scan lines (Piteau, 1970; La Pointe and Hudson, 1985) and results
are represented in the form of a statistical parameters (mean/median fracture
spacing and its standard deviation) or a parameter derived from the
measurements, e.g. Rock Quality Designation, Fracture Spacing Index, Fracture
Spacing Ratio (Priest and Hudson, 1976; Narr and Suppe, 1991; Gross, 1993). For
outcrop measurements, areal measures of fracture intensity have been developed
and these yield more accurate results. Using this approach, the Fracture intensity
of a fracture set is measured either by the number of fractures per unit area or the
summed lengths of fractures per unit area (Dershowitz and Herda, 1992, Wu and
Pollard, 1995, Mauldon and Dershowitz, 2000).

There has been significant research on the stratigraphic controls of fracture

intensity, including parameters such gross lithology, grain size, and texture
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(Huang and Angelier, 1989; Narr and Suppe, 1991; Gross et al., 1995;
Underwood et al., 2003, Bahat, 1988;, Becker and Gross, 1996, Price, 1966;
Gross, 1993, Gillespie, et. al., 1999; Bai and Pollard, 2001). In addition to bed
thickness and lithology, fracture density has also been found to vary with
structural position, including proximity to fracture zones or faults (Friedman,
1969, Stearns and Friedman, 1972, Peacock, 2001) and curvature related to fold
geometry (Blanchet, 1957; Harris et al., 1960; Stearns and Friedman, 1972; Lisle,
1994; Engelder et al., 1997; Hennings, et al., 2000).

In addition to studying various attributes of fracture population, fracture
networks have also been studied by examining their clustering and resulting
connectivity (Odling and Webman, 1991; Priest, 1993; Odling, 1997), building on
concepts of percolation theory (Chelidze, 1986; Bebbington et al., 1990;
Berkowitz and Balberg, 1993; Berkowitz, 1995; and Gueguen, et al., 1997).
Fracture connectivity has been analyzed using these concepts of percolation
theory by a number of workers (Odling and Webman, 1991; Odling, 1992; Priest,
1993; Jolly and Cosgrove, 2003).

Fracture patterns on the Teton anticline have been analyzed by a number
of workers (Stearns and Friedman, 1972; Sinclair, 1980; Spooner, 1984). These
studies have focused on the orientations of fracture orientations around the fold,
local measures of fracture intensities and the separation of fracture sets into

extension and shear fractures on the basis of their orientations. The fracture
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measurements in all cases were conducted at isolated locations and no analyses of
the interaction of the different sets to form fracture networks were conducted. The
results of these studies (Stearns and Friedman, 1972) are commonly used as
models for fracture patterns around open folds.

The present study uses and builds upon this existing inventory of
techniques and also incorporates some new methods of fracture characterization.
The measurement and characterization of fractures is simplified by incorporating
all information into a Geographic Information Systems (GIS). This not only
enables an efficient analysis of the distribution and orientations of different
fracture sets, but the efficient measure of the intensity of different sets in terms of
the total length or number per unit area. Some additional parameters for analyzing
fracture clustering are used to meaningfully translate the effects of fracture

clustering on reservoir drainage.

2.5 Approach

The present study uses and builds upon this existing inventory of
techniques and also incorporates some new methods of fracture characterization.
The measurement and characterization of fractures is simplified by incorporating
all information into a GIS system. This not only enables an efficient analysis of
the distribution and orientations of different fracture sets, but the efficient

measure of the intensity of different sets in terms of the total length or number per
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unit area. Some additional parameters for analyzing fracture clustering are used to
meaningfully translate the effects of fracture clustering on reservoir drainage.

Although the Teton anticline appears to be a concentric anticline from
aerial photographs, the detailed geometry consists of segments of low curvature
separated by multiple hinges. Detailed structural analysis was used to map out the
multiple hinges on the west limb and hinge of the Teton anticline. The hinges
were mapped by delineating zones of significant dip change in the bedding data
(Figure 2.2), and extrapolated along the structural trend where fewer
measurements were made. The changes in dip varied from about 3° (hinge E) to
about 10° (hinge A). Four main hinges were mapped between the crest and the
exposed area on the west limb, and three additional and more closely spaced
hinges were mapped on the east limb (Figure 2.2). Some of these hinges were
previously identified by Sinclair (1980) and Spooner (1984), and confirmed as
part of this study, whereas others were delineated in this study.

Fracture analysis was conducted on the crest and west limb of the Teton
anticline, in the best exposed parts of the structure, immediately north of the north
fork of the Teton anticline (Figure 2.3). Most measurements were made on
dolomitic limestone units of similar thickness. Two types of sample outcrops were
studied: (1) larger continuous outcrops with areas ranging between 30 and
100sq.m and (2) smaller outcrops with areas of 1-2.5sq.m. On the larger outcrops,

the fractures were mapped out using a 1sq.m grid and later transferred to a digital
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data base (Figure 2.4). The smaller outcrops were mapped using field
photographs. For both types of sample outcrops, all fractures visible with the
naked eye from a distance of a few feet were mapped. To remove distortion on
these smaller maps, they were georectified by measuring grids of control points
and transferring them to the photographs. The locations of all the measurement
stations on the Teton anticline are shown in Figure 2.3a.

The photographs and fracture maps were scanned and uploaded into
ArcMap (ESRI, 2006), and the scanned images were rectified by referencing the
coordinates of the control points set at the outcrop. These georectified images
were then used to generate the digital fracture maps.

All fractures mapped were primarily extensional fractures. The mapping
of fractures focused on the following parameters: (1) the lengths of the fractures,
(2) the orientations of the different fracture sets, and (3) the densities (or
intensities) of each fracture set. The densities of the fractures were determined
from the fracture maps, and were defined by two separate parameters: the number
of fractures per unit area and the summed lengths of fractures of any set per unit
area.

The fracture maps were also used to conduct cluster analysis for the
fractures in question to study the connectivities of the networks. The structural
controls of these fracture parameters (lengths, orientations, and densities) and

fracture aggregate parameters such as cluster distribution and connectivities of the
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fracture networks were then analyzed by studying the variations of these

parameters with structural position.

2.6 Fracture Characterization
Fracture Orientations

Fracture orientations measured for the outcrops are displayed on rose
diagrams and equal angle stereographic net projections for each of the measured
locations (Figure 2.5a-f). The fracture data is also shown with bedding rotated to
horizontal, to show the orientations of the fractures relative to bedding (Figure 2.5
g-1). The fold axis of Teton anticline trends N8W, and plunges 2° towards 352° in
the study area. This orientation was determined from the pole of the great circle
through all of the poles to bedding.

Based on the fracture plots and assuming a dispersion of 30° for each
fracture set, four main sets of fractures were identified. The two most dominant
fracture sets are a longitudinal set with a mean strike of 160° and dip of 76° W,
and a transverse set, with a mean strike of 80°, and a dip of 80° S. Two other sets,
one with a mean strike of 33° and a dip 82° SE, and another with a strike of 113°
and dip of 82° SW, are oblique to the trend of the structure. A number of
additional sets are also present, but these are much less abundant than these four
main sets. The average strikes of the fracture sets do not change significantly

when the corresponding bedding dips are rotated to horizontal (Figures 2.5 g-1).
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Fracture Densities and Lengths

For each fracture set, the distributions of lengths and fracture densities
were analyzed. In contrast to the use of scan lines to estimate fracture density or
spacing, the fracture density of each set was defined as the summed lengths of all
fractures of that set per unit area (Figure 2.6). Using this approach a fracture
density grid was generated for each fracture set. Figure 2.7 a-d shows the
distribution of fracture densities for the longitudinal, transverse, and oblique sets
at these locations. The longitudinal fractures were found to have a significantly
higher mean density (4.1m/sq.m) than the transverse fractures (2.7m/sq.m). The
oblique sets show the lowest mean densities (1.7 and 0.7m/sq.m). The densities
of both longitudinal and transverse sets varied for the outcrops in the area, with
the longitudinal fractures exhibiting a greater variability. This variation was
attributed primarily to structural position, so the control of structural position on
fracture density was further analyzed.

The lengths of field scale fractures have been analyzed separately for the
longitudinal, transverse and the two oblique sets (Figure 2.7e-h). The longitudinal
fractures have a mean length of 0.48m, whereas the transverse fractures have a
shorter mean length of 0.3m. The two oblique fracture sets have mean lengths of

0.35m and 0.37m, respectively.
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2.7 Controls of Structural Position

Variation of fracture densities and lengths with respect to the hinges was
studied on the west limb. Excessive vegetation and lack of continuous outcrops
prevented a similar analysis on the east limb. In general the fracture densities are
higher on the multiple hinges (mean value of 7.5m/sq.m) than on the limbs (mean
value of 2.9 m/sq.m) as shown in Figure 2.8c and 2.8d. This variation is apparent
when comparing outcrops located directly on the hinges with those in the centers
of the limb (Figure 2.11). Furthermore, the longitudinal fracture sets show
significant variation in density with distance from the nearest fold hinge of the
multiple hinge fold (Figures 2.9). This pattern is also reflected in the lengths of
the fractures which have mean lengths of 0.64m and 0.34m on the hinge and limb,
respectively (Figure 2.8a-b). The transverse and oblique fractures, which are
unrelated to the hinges, show little variation in fracture intensity or length with

respect to distance from hinges.

2.8 Relationship of Fracture Densities to Macroscopic Structural Evolution
The relationship of the fracture densities to the fold evolution can be
explained in two possible ways. The first hypothesis is that the Teton and little
Teton anticline are fault-bend folds, with all hinges related to active or passive
axial surfaces (Suppe, 1983; Medwedeff and Suppe, 1997) formed during the

fault-bend folding process. According to this hypothesis, most parts of the hinge
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zone would pass through at least one and possibly more than one active axial
surface tied to fault bends and would therefore show some degree of fracturing.
However, the final locations of the active and passive axial surfaces would show
the highest fracture densities, because they represent the zones with the highest
finite curvature.

The second hypothesis is that the Teton anticlines originated as
detachment folds within the Mississippian-Devonian units cored by weak shales
within the Devonian Three Forks-Jefferson Formations. During the early stages
of concentric folding, the outer arc was subjected to layer-parallel extension and
resulted in the formation of longitudinal fractures. With continuing folding,
bending was concentrated along multiple hinges, so that the fracture densities
increased along the multiple fixed hinges. The fold was then transported over
fault bends to its present stage. The transport of the fold over fault bends resulted
in hinge migration and the development of additional fractures. According to this
hypothesis, some of the hinge zones with high fracture densities may represent
early formed fixed hinges, while others may represent the passive and axial
surfaces associated with fault-bend folding.

Because of the limited surface data through the Teton anticlines, it is
difficult to determine which of the two hypotheses is supported by the detailed
macroscopic geometry of the Teton anticline; however, both hypotheses can be

used to satisfactorily explain the distribution of fracture densities of the
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longitudinal fractures. The transverse fracture which show little variation in
density are probably related to changes in curvature parallel to the fold axis due to

variations in fold plunge.

2.9 Fracture Connectivity and Cluster Aanalysis

The effectiveness of fractures of different orientations and densities in
improving the drainage of a reservoir depends not only on the fracture densities of
various sets, but on how well the fractures interact to form a continuous network.
A method of estimating this effectiveness is by measuring the clustering of
fractures.

In a fracture network, a group of linked fractures is known as a cluster, a
term borrowed from the concepts of percolation theory (Stauffer, 1985, Chelidze,
1986; Bebbington et al., 1990; Berkowitz and Balberg, 1993; Berkowitz, 1995;
and Gueguen, et al., 1997). The cluster size of any fracture network has been
defined as the proportion of the total fracture trace length in the study area
belonging to the largest cluster (Odling, 1992, 1995, 1997). Thus,

Cluster size = 3 Fracture trace length in the largest cluster

> Fracture trace length in the study area
A cluster which links opposite sides of the study area is termed a
percolating cluster. Portions of the fracture patterns that do not lie on the direct

pathways through fracture system are termed as dead-end fractures. Fractures in

20



the percolating cluster, which are devoid of any dead-end fracture segments,
constitute the fracture backbone (Stauffer, 1985, Priest, 1993).

For fractured hydrocarbon reservoirs, our interest is in the mean
connectivity of an area and the most likely outcome of connectivity encountered
by a drilled well. This can be characterized by defining two parameters, one of
which defines the total length or area of connected fracture networks, while the
second defines the distribution of cluster sizes (Figure 2.10).

The first parameter can be defined by the fractional cluster length or the
fractional connected area, which represent the proportion of the total length of
fractures and total surface area of rock connected by fractures to the total study
area.

Fractional Cluster Length = Total length of Connected Fractures
Total Sample Area

Fractional Connected Area = Total Surface Area of Rock Connected By Fractures
Total Sample Area

The fractional connected area quantifies the absolute area that can be drained by
fracture networks and is perhaps the best measure for estimating the effectiveness
of the fracture networks. In Figure 2.10, two networks are shown, both of which
have a fractional connected area of 0.31, so that the ratio of summed areas of
connected fractures to the total sample area is 0.31. From a practical perspective,
this parameter defines the probability of a drilled well encountering a connected

fracture network.
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The second parameter is a measure of the distribution of cluster sizes for
the area in question. For a fixed fractional connected area, this parameter defines
the size of the fractured network that will be encountered by a drilled well. In
Figure 2.10, the sample area shown in b will have a probability of encountering a
larger connected area.

A comparison of these parameters with the densities of different fracture
sets enables estimation the importance of different sets in enhancing fracture-
controlled drainage. The fractional connected area and the distribution of cluster
sizes are dependent on the number of fracture sets, as well as the density of each
fracture set. An optimum distribution of fractures of different sizes provides the
largest cluster and the highest connectivity.

An assessment of the variation in connectivity with structural position was
made for the Teton anticline. The analysis addressed the relative values of
connectivity, since absolute values are not measurable for surface outcrops. Since
most measured fractures showed no evidence of shear motion, it was assumed that
they contributed directly to the connectivity. It was further assumed that all
fracture sets had similar apertures so that their relative contribution to the
connectivity was dependent only on their lengths and densities.

In the Teton anticline, the density of the longitudinal fractures is strongly
controlled by the structural position, namely, the position relative to the hinges.

The transverse and oblique fractures present an important component to the
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fracture connectivity; however, their density is more uniform and not as
dependent on structural position. Therefore, areas close to the hinge zones
generally show a high fractional connected area compared to the limbs (Figure
2.11 and 2.12a). Locally high fractional connected areas on the limbs are usually
due to a higher density of transverse fractures. Because connectivity is dependent
both on the number of fracture sets and the density of each set, the variations in
FCA are not as pronounced as those of the densities of longitudinal sets alone
(compare figures 2.12a and 2.9a). The distribution of connected areas shows that
although both hinge and limb zones show large numbers of small connected
clusters, the hinge zone show a significant concentration of larger cluster areas

(Figure 2.12b-c).

2.10 Discussion and Conclusions

The Teton anticline presents an excellent opportunity for studying the
structural controls of fracture orientations, lengths, and densities in a surface
structure. It also serves as a good analog for fracture distribution and
connectivities for subsurface folded carbonate reservoirs.

The orientations of fracture patterns in the Teton anticline can be grouped
into four primary sets, although additional secondary sets are also present. The
primary fracture sets are longitudinal and transverse relative to the axis of the

fold, with two additional oblique sets. The length and density of the longitudinal
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fractures sets are strongly controlled by position relative to multiple hinges. The
transverse fractures are related to changes in fold plunge and exhibit less variation
in fracture density.

Fracture connectivity is best represented by two different parameters: the
fractional connected area which represents the fraction of the total sample area
that is connected by fractures, and the distribution of clusters of different sizes in
any given area. The connectivity of fractures is dependent on the number of
fracture sets, their orientations and dispersions, and the densities of the fracture
sets. Because the longitudinal fractures represent the dominant fracture set, and
also show the most variation with structural position, the fracture connectivity, as
measured by both the fractional connected areas and the distribution of cluster
sizes, is normally greater in vicinity of the fold hinges.

The results and approaches of the study have some important implications
for the study of subsurface folded fractured carbonate reservoirs. Fracture analysis
in subsurface reservoirs is usually based on sparsely distributed data from
production wells. The data usually consists of borehole images and other fracture
identification logs, calibrated with core data. The measurements of fracture
orientations, lengths and densities and an analysis of their controls are important
in obtaining a picture of fracture patterns around the structure. Furthermore, the

interaction of different fracture sets and their controls on fracture connectivity are
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important in understanding the structural controls of fracture permeabilities in
different structural positions.

Curvature analysis is commonly used to obtain a relative measure of
fracture density around the curvature. However, as indicated by the results of this
study, many structures do not show a smooth variation of curvature around the
structure. Instead, fracture densities may increase significantly in narrow hinge
zones resulting in discontinuous variations in fracture density. A careful analysis
of the geometry and evolution of the macroscopic structure based on surface data,
3-D seismic data, and dipmeter data is essential for conducting predictive fracture
analysis. The integration of fracture data, and the controls of the macroscopic
structural geometry on fracture parameters, can be used to effectively simulate

fracture patterns and connectivities around the structure.
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Figure 2.4: Example of fracture map of two different scales. (a) fracture maps of ~90 sq.m., overalin by a 1m grid. (b) photograph
of location of fracture map where fractures are mapped out of georectified photographs. (c) fracture traces digitized out of (b).
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Figure 2.7. Histogram showing density distribution of (a) Longitudinal fractures (b)
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Transverse fractures (¢c) NNE oblique fractures and (d) WNW oblique fractures.
Histogram showing length distribution of (e) Longitudinal fractures (f) Transverse
fractures (g) NNE oblique fractures (h) WNW oblique fractures.
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CHAPTER 3:

FRACTURE SIMULATION

3.1 INTRODUCTION

3.2 PREVIOUS WORK IN FRACTURE SIMULATION

3.3 LOCAL FRACTURE SIMULATION METHOD

3.4 STRUCTURALLY CONTROLLED SIMULATION

3.5 REVIEW OF RESULTS OF FRACTURE SIMULATION

3.6 CONCLUSIONS
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3.1 Introduction

Analysis of fractures using outcrop or subsurface data usually involves
isolated and widely- spaced data points. Surface analysis is usually conducted on
isolated outcrops, whereas subsurface analysis is limited to oriented core and/or
borehole televiewer or log data from widely-spaced wells. Prediction of the
fracture density and orientation in different parts of a subsurface structure requires
the interpolation of fracture densities between these sparse data points.

Simulation of fracture is one method of interpolating between data points.
The accuracy of fracture prediction is dependent on a simulation algorithm that
incorporates all controls of fracture density and orientation for an area. Most
existing methods of simulation, discussed in more detail in the next section,
involve methods that simulate fracture parameters homogeneously over a local
region. Therefore, these methods do not incorporate structural controls of fracture
density. In this section, a method of regional simulation that extends these
methods to regional simulation incorporating structural parameters is discussed.
The methods are then used to simulate fracturing and connectivity for the Teton
anticline which exposes Devonian and Mississippian carbonates in the frontal part
of the Sawtooth Range in Montana. Fracture parameters vary with structural
position on the structure, so that it provides a good analogue for many surface

fractured reservoirs in the frontal parts of fold belts.
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3.2 Previous work in fracture simulation

There are three main conceptual models to simulate fracture network
geometry: (1) Stochastic Continuum Model (SC) (2) Channel Network Model
(CN) and (3) Discrete Fracture Network Model (DFN),

In stochastic continuum model, heterogeneous media is treated as a
random variable described through its statistical parameters and analyzed by
statistical modeling techniques (e.g. Monte Carlo simulation). It has been used to
model fractured media (Neuman, 1987) though more commonly used to model
granular porous media (Smith and Freeze, 1979, Gutjahr, 1978). Channel network
model depend on the length, width, apertures and hydraulic conductivities to
simulate the hydraulic and transport properties of the channels or fractures.
Discrete Fracture Network model is based on fracture characteristics and specific
relation between the parameters like length, orientation, density, aperture
termination relation and fracture shape.

The Stochastic Continuum and Channel Network models are mostly used
for modeling groundwater flow and transport while the Discrete Fracture Network
model is commonly used to simulate realistic geological realizations (Dershowitz
et al., 1996). Dershowitz et al. reviewed the main conceptual DFN models (table
A1) in terms of their applicability, advantages and disadvantages. The
development of each model is based on specific relationships between

characteristics such as location of fracture sets, termination and fracture shape. A
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detail of various models used in fracture simulation is provided in the appendix

table Al.

3.3 Local fracture simulation method

The basic geometric characteristics that are considered during the
simulation of fracture networks are fracture location, size (defined by trace length
in two dimensional studies) and orientation. Each set of fractures is simulated
separately. The input data for fracture simulation is obtained from data collected
in the field. Fracture data is sorted in different fracture sets based on orientation.
Basic characteristics like fracture length and density are evaluated for each set
separately.

Local simulation is done by choosing a region for simulation, such that the
fracture characteristics of the chosen region can be represented by a sample map
prepared in the field. In other words, the region must be structurally and
lithologically congruent with the sample map. The sample map should also be
devoid of ‘no data’ regions. Local fracture simulation achieved in this study is
guided by the Baecher model (Baecher et al., 1977). The primary characteristics
of the Baecher model are that the fracture centers are located uniformly in space
using a Poisson process and the fractures are generated as discs with a given
radius and orientation. In this study, the fractures simulated on the bedding plane

as two-dimensional trace lengths, hence the shape and size of the fractures are
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characterized by line length, instead of discs. In the present study the distribution
of fracture location is guided by fracture density, which is a modification from
Baecher model where the fracture centers are uniformly distributed.

The primary goal of the simulation is to obtain a fracture network for an
unmapped area, using the data from a mapped area. The basic assumption in this
simulation is that the spatial variations of fracture characteristics in the unmapped
area are similar to that of the mapped area. Thus the first step of selecting an area
of simulation is achieved based on the knowledge of local geology and its
influence on fracturing. In the case of the Teton anticline, where the fracture
characteristics are influenced by vicinity to hinge zone, the area of simulation is
chosen such that the area is located at least 40m away from any hinges and also
the area is within the same lithologic facies as the sample map. Following the
selection procedure, a sequence of steps is carried out to transfer the fracture
characteristics from the mapped area to the unmapped area, which is discussed in

detail in the following sections.

Fracture size (or trace length) simulation

Fracture trace length of the sample area is determined from field mapping
and fracture digitizing. Fracture length in the sample area is fitted to exponential
distribution. The statistics of the length distribution are noted (e.g. maximum,

minimum, mean, median and standard deviation). These distribution parameters
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and the theoretical curves fitted to the distribution are used to guide the fracture
length over the area of simulation. The detail of the process based on a
hypothetical data set is described below:

Let’s say sample area S1 is of dimension 10m * 10m, and has 100
fractures, with a maximum fracture length of 2m and a minimum of 0.25m
(Figure 3.1 a, b). This data is used to generate a fracture simulation over area A1l
of dimension 100m * 100m

Step 1: The length distribution of the fractures within the sample area is
analyzed in detail. The equation of the curve fitted to the length distribution is
extracted. All the statistical parameters are noted (figure 3.1 c, d).

Step 2: Corresponding to 100 fractures in the sample area, 10000 points
are generated for the simulation area (100 fractures in 10*10m are proportional to
100*100= 10000 points in 100*100m area). Each point is assigned length values
following the distribution equation extracted from the sample map. The equation
1s iterated within the range of values observed in the sample map. Thus the
maximum, minimum, mean, median and standard deviation of the length values
assigned to these points are the same as that of the sample map.

Step 3: From the sample map the length of each fracture is transferred to
the fracture center points and then the fracture centers are interpolated over the
sample area s1 to generate the fracture length grid. The interpolation is performed

using the inverse distance weighted function given by the equation:
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Zy =X = wiZ; (Shepard, 1968)

Where Zx is estimated based on the value of neighboring points Z; at all
points n, and Z; is weighted based on its distance from the unknown point Z.
Thus wj is given by:

wi = 1/dj, where dix is the distance between the known point i and the
unknown point k.

The cell size for the interpolated grid is Icm (figure 3.2a)

Similarly, for the simulation area, the length values from the generated
points are interpolated to generate a length map for area A1l. The interpolation
parameters used for the simulation area is same as that of the sample map. The
cell size for the interpolated grid over area A1l is 10cm (figure 3.2b).

Step 4: The semi-variogram of length grid for the sample map is fitted to a
theoretical semi-variogram curve. The theoretical semi-variogram is a function
describing the degree of spatial dependence of a random field. It is defined as the
expected squared increment of the values between two locations. It is given by the
equation:

T'(h) = (“n(h)) ij‘) (X(Z;i + h))%, (Matheron, 1963) where n is the number
of pairs separated by distance h (also known as the lag). Thus comparing the
semi-variogram of the sample and simulation grid will provide a good estimate of

spatial variation of the variable that is simulated. The semi-variogram of the
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simulation map is derived and compared to the semi-variogram of the sample

map, to estimate the closeness of match (figure 3.2c).

Fracture location simulation

Fracture sites or center points are generated as a function of fracture
density. Fracture density is calculated by two proposed methods, which are: (a)
summation of length over area (Dj) and (b) number of fractures over area (Dy,)
(Mauldon et al. 2001). A fracture density (D;) grid for the sample area is
generated by evaluating the density value of each cell within the grid, by
summing all fracture lengths within a prescribed search radius centered at the cell,
divided by the search area (Gross et al., 2000). The density (D) grid is also
generated by calculating the number of fracture centers within a prescribed search
radius centered at the cell, divided by the search area. While D, provides a good
estimate of number of fracture in the system, D provides a more comprehensive
estimate of density as it is sensitive to both the number and length of fractures.
Hence D, is used to simulate fracture location and D; is used to verify the
goodness of match. The density information of the sample map is used to generate
the density grid for the simulation area and finally the length and density
information of each cell is used to create the fracture site.

The detailed process of determining the fracture location is as follows:
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Step 1: The fracture density (D) grid for sample area S1 is generated using
the following equation:

Di=(% LA

where, L, is the length of fracture within a search radius and A is the
circular area (figure 3.3a).

Fracture density is also calculated as the number of fractures per unit area.
In this method, fracture centers are used to count the fractures. Fracture density is
given by number of fractures within the prescribed search radius divided by the
circular area.

D,=n/A

where n is the number of fracture within a search radius and A is the
circular area.

The cell size for the above grids is 1cm (figure 3.4a).

Step 2: The density grids of the sample area are characterized by using
semi-variogram. The range and sill of the semi-variogram is noted and an
experimental semi-variogram is fitted to the data. The range and sill derived from
the data are used to create the density distribution for the simulation area. The
semi-variogram curve becomes asymptotic at a certain level, the distance where
the curve first flattens is the range and the value at which the curve attains the
range is called the sill. This generates the fracture density grid for the simulation

area (figure 3.4 b, c, d).
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Step 4: Dividing the density grid (Dy) by the circular area (calculated from
the search radius used for the density grid), the grid is converted to fracture
number grid.

Step 5: The resulting fracture number grid is converted to an integer grid,
such that each square unit has a whole number value (n) assigned to it.

Step 6: The resulting grid is resampled to a coarser grid such that cell size
of the grid is equivalent to the search radius used to derive the density grid.

Step 7: For each unit area n numbers of points are generated as fracture
sites. The points are generated using Poisson point process that is given by the
equation:

P(a) = e™[(m")/Factorial(a)]

where m = average number of random occurrences per interval, P is the
probability of occurrence of “a” in the interval.

Thus the fracture sites are generated randomly within the unit square area,
while the number of fracture sites for each square unit is controlled by the fracture
density. These fracture sites are the fracture centers of the simulated fractures

(figure 3.5).

Fracture orientation simulation
The fracture orientation data for the simulated fractures is calculated based

on von Mises distribution (Davis, 1986). This is a circular equivalent of a normal
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distribution and is characterized by two parameters: mean direction and standard
deviation. The mean direction and dispersion or spread of the strike direction is
obtained by evaluating the resultant vector of field data given by the following
equation:

R=[(Z_, cos0)’ + (= sin6;)*]"? (Engelder and Delteil, 2004)

where, the strike of fracture is assumed to be unit vector at an angle 0.

X; =cosO; y;=sinb;.

The resultant length R is standardized by dividing R by the number of

observations n. The standardized resultant length R’ varies between 0 and 1,

where larger the value of R’ more tightly bunched are the observations.

Generating simulated fractures

After evaluating the mean and dispersion of direction, the orientation for
simulated fractures are assigned to each fracture site. The orientation can be
assigned to the sites randomly within the dispersion range. Considering the
orientation of one set of fractures will be within a tight range of dispersion, a
random distribution within the range is reasonable. In case of wide dispersion,
orientation must be assigned according to the rose-diagram statistics of the
sampled fracture set. Each fracture site is also assigned a fracture length from the

underlying length grid. The area of simulation is populated with fracture sites
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(points), where the each site has a value for fracture orientation and length
attached to it. Using the length and orientation data a fracture is generated at each
site, the site location point being the center of the fracture (figure 3.6). After
generating the simulated fractures, the density (D) grid is generated for the
simulated fractures (figure 3.3b). The variogram of density (D)) grid generated
from the sample map that is generated from the simulated fractures is compared to

check the closeness of match (figure 3.3c).

3.4 Structurally controlled simulation

In naturally fractured reservoirs, fracture size, orientation or density are
commonly not homogeneous isotropic properties and vary with lithology and
structural position. Integration of the structural controls on fracture intensities
notably modifies the simulated fracture network while enhancing its connectivity.

Field studies for the Teton anticline suggest that the key structural control
that is postulated to be important for longitudinal fractures is distance from the
hinge. Transverse fractures are generally more homogeneously distributed, but
they do appear to increase slightly in the vicinity of regional fracture sets (figure
3.7). Therefore, in order to correctly predict fracture patterns and density around a
macroscopic structure, it is necessary to incorporate these structural controls into

the simulation process.
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The structural controls of fracture parameters were incorporated into the
simulation by using fracture density data from sample map as the primary data
and using the relation of fracture density to proximity to a feature as a secondary
variable. This is done by using the function of collocated cokriging to simulate
fracture density for the entire structure.

Collocated cokriging is a method of coupling the primary data with a
secondary variable and relies on the strength of the relationship between the
primary and secondary data. The method is applicable in situations where the
secondary variable is more continuously sampled than the primary variable, so
that in places of lack of primary data, the relation between the primary and
secondary variable, expressed in the form of correlation coefficient, can be used
to supplement for the primary data. This method is widely used in a variety of
applications. Examples include velocity modeling from well data, time to depth
conversion, heterogeneity modeling, seismic data integration in stochastic earth
model and permeability modeling from densely sampled porosity data (Lee and
Xu, 2000, Dubrule, O., 1998, Lamy et. al., 1999, Dubrule, O. and Haldorsen,
H.H., 1986).

The method starts by identifying the secondary variable that is more
densely sampled and can be used to supplement the primary data. In the case of
the Teton anticline, it is inferred from the field observations that the longitudinal

fracture density decreases with distance from hinge. The correlation coefficient is
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calculated between the fracture density and proximity to fold hinge. The cell
value of ‘proximity to hinge’ is available as a continuous value for the entire ‘area
to be simulated’, hence making it a perfect secondary variable that can be used for
collocated cokriging. A semi-variogram model of the primary variable, i.e.
fracture density in this case, is derived. Finally the semi-variogram model of the
primary variable, the grid of the secondary variable and the correlation coefficient
is used to generate a fracture density simulation for the entire structure.

The secondary variable semi-variance model is assumed to be proportional
to the primary attribute semi-variance model, thus the correlation coefficient is
used as the constant of proportionality. The density value of the target cell is
estimated using the following equation:

Zx=MnZi + ApZy + A3Z3 + ProTo (Xuetal., 1992)

Where Z is the density to be estimated for the target cell, Z,, Z, Z3, are
the density values at the neighboring cells, A1, A, A;3,. are the weight of the
density value for the respective location, determined based on the semi-variance
model of build for the density distribution, Ty is the value of secondary variable at
the target cell and By is the weight of the secondary variable based on the
correlation coefficient.

Some key features of collocated cokriging is that (i) the secondary
attribute should be continuously sampled or the sampling must be dense and

uniform enough to yield a meaningful continuous grid with simple interpolation;
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(i) the accuracy of the estimate is strongly dependent on the correlation
coefficient as it controls the scaling between primary and secondary data, hence
careful estimation of the correlation coefficient is critical to get an accurate
estimation; (iii) the secondary attribute will have less influence in the estimation if
the correlation coefficient is less than 0.5. Thus to effectively use the influence of
structural position on fracture density or any similar relationship, it is important to
identify a factor that has a strong influence on the fracture parameter; (iv) it is
important to understand the physical meaning of the correlation; and (v) this
method of simulation honors the primary data, which is the fracture density values
from the sample map and at the same time integrates the spatial correlation of the
variations of the secondary data, but the integration depends only on correct linear
correlation model.

In case of Teton anticline, the density of longitudinal fractures to
proximity to hinge yielded a correlation coefficient of 0.88, which ensures a
reasonably good correlation of density to hinge for the entire structure. Using the
correlation coefficient, ‘proximity of hinge’ grid and semi-variogram model for
fracture density derived from the sample maps (figure 3.8), the fracture density
gird of the simulation area is generated (figure 3.9). After estimating the fracture
density for the entire structure, fracture center points are generated using

Poisson’s point process described in the previous section.
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The length distribution for the same set of fracture yielded a correlation
coefficient of 0.5 when plotted against proximity to hinge. Thus, unlike the
fracture density map, the length of longitudinal fractures did not exhibit any
systematic spatial variation with respect to the hinge. The average length of
longitudinal fractures plotted against distance from hinge shows a clustered
pattern. The plot exhibits two clusters, which can be interpreted as the points
within a distance of 0 to 25m from the hinge exhibits a high average length
ranging form 0.6 to 0.8m while the fractures away from the hinge exhibit a low
average length ranging from 0.3 to 0.5m (Figure 3.10a). The cumulative length
distribution of longitudinal fractures from the all the hinge locations and that from
all the limb locations are plotted separately. The length grid of an area within 25m
from hinge is prepared using the length distribution of hinge locations and then
the procedure is repeated for the area away from hinge (>25m from hinge) (Figure
3.11a, b). Finally the grids are merged to generate a unified length grid for the
entire area (figure 3.11c). After generating fracture sites or center points (using
the simulated fracture density grid) and the length grid, the length for each
fracture center is extracted from the underlying fracture length grid. The
orientations of fractures are assigned according to the mean orientation and
standard deviation of longitudinal fracture set observed in the sample maps. At

this point each row of attribute table of fracture center has information about the
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length and orientation of respective fractures. Finally this information is used to
generate simulated fracture for each fracture center.

Transverse fractures do not show any systematic relation with respect to
the hinges, but do exhibit a weak relation with respect to the regional fractures
(figure 3.7). The density of transverse fracture is high in the vicinity of regional
fractures and decreases away from it. The cross plot of distance from regional
fractures to distance away from regional fractures yields a correlation coefficient
of 0.7. Thus the transverse fractures were simulated using the density grid of
transverse fracture as the primary variable, the distance from regional fracture as
secondary variable and correlation coefficient of 0.7.

The spatial distribution of oblique fractures did not exhibit any relation
with the major structure, thus the simulation of oblique sets were done using the

average density, length and orientation values for different sets.

3.5 Review of results of fracture simulation

Fracture simulation for the Teton anticline is performed using the field
data and structural relations derived from field measurements. Several sets of
fractures are observed in Teton anticline, the two most dominant set of fractures
being (1) the longitudinal set, parallel to the fold axis and (2) the transverse set,
perpendicular to fold axis. The density of the longitudinal set shows positive

correlation with the fold hinges, i.e. the density increases with proximity to fold
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hinge. The longitudinal fracture set exhibits an increased density within the hinge
zone while the density decreases rapidly approximately 40m away from the fold
hinge (figure 3.7a). The transverse set on the other hand, shows no systematic
change in density with respect to the fold hinges, rather positive relation is
exhibited between density of the transverse set and proximity to regional fractures
(figure 3.7b), though this relation is much more feeble than the relation between
longitudinal fracture set and distance from the fold hinges. For all other sets of
fractures no correlation between density and any structural feature was identified.
The oblique fracture sets comprises of less than 8% of the total fracture length
and/or number, hence have minimal influence on the overall fracture pattern. All
the fracture data used for simulation was collected from the same lithologic unit
to take out the influence of lithology on fracture parameters.

A series of 13 large and 18 small maps were used for fracture simulation.
The density map of the sample and simulated longitudinal fractures for the same
area are compared visually to see the similarity of the maps (figure 3.12 and
Appendix figure A1 — A7). Longitudinal fractures of all the locations exhibits a
good match with the sample maps. Average density and length for longitudinal set
of fractures from each location are recorded from the sample and simulated
fracture maps and cross plotted (figure 3.13) to compare the results. Both the plots
yielded a high correlation coefficient. The point to note is that the trend line in the

plot has a slope of 46° for both length and density cross plot, which indicates that
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the simulated and sample fracture distribution matched very well. The length
distribution of sample fractures versus the simulated fractures is plotted as
cumulative distribution in figure 3.13. In both the plots 90% of all the fractures
are less than 50cm in length and a few fractures are 2m or greater in length.

Transverse fractures from the simulated and sampled map are compared in
the same way. Visual comparison of the sample and simulated fracture density
(figure 3.14 and Appendix figure A8 — A14) reveals similar pattern of fracture
distribution. The cross plot of density values of sample versus simulated fractures
exhibits a high correlation coefficient (figure 3.15), though the slope of the trend
line fitted through the data show approximately 3° departure from 45°, indicating
that the match between sample and simulated fractures are less perfect than that
for the longitudinal fractures. This is because the coefficient used for density
simulation of transverse fractures was 0.7, which implies that the structural
relation used for simulation of this set was weaker compared to that of the
longitudinal set. Cumulative plot of length distribution reveals a close match of
the sample and simulated fractures (figure 3.15).

In case of oblique fractures the result of comparison between the sample
and simulation shows match when all the locations are taken together, but some of
the individual locations exhibit a poor match, although the overall statistics are
comparable. This is because the simulation is based on field data only which is

sparsely located. The density distribution of oblique fractures in sample and
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simulated maps is demonstrated in figures 3.16 and Appendix figures A15 — A21
and the length distribution of the same is shown in figure 3.17.

The average length, density and orientation of longitudinal, transverse and
oblique sets of fractures are summarized in table 2, 3 and 4 respectively. The
average density calculated as the total length of fractures within the study area
divided by area. The comparison clearly shows that the simulated longitudinal
fractures exhibit the closest match with the sample map while the oblique
fractures exhibit the least match. This difference signifies the importance of

incorporating structural factor in fracture simulation.

Table 3.1: Comparison chart of longitudinal fracture parameters

Location | Average length Density Orientation
Sample | Simulation | Sample | Simulation | Sample | Simulation

MO1 0.27 0.3 2.90 3.2 163 166
MO02 0.7 0.68 7.84 7.93 160 163
MO03 0.65 0.62 8.30 8.55 159 159
Mo04 0.31 0.30 2.01 22 158 160
MO5 0.45 0.6 5.68 533 163 164
MO6 0.43 0.44 3.29 3.42 163 162
MO7 0.43 0.41 1.79 1.65 170 167
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MO8 0.38 0.38 2.72 2.74 164 164
M09 0.42 0.45 5.05 5.55 168 172
M10 0.4 0.4 3.03 3.49 170 170
M1l 0.64 0.62 243 2.38 163 166
M12 0.39 0.41 1.81 1.76 168 166
M13 1.07 1.2 9.15 10.7 171 175
Table 3.2: Comparison chart of transverse fracture parameters
Location | Average length Density Orientation
Sample | Simulation | Sample | Simulation | Sample | Simulation

MO1 0.29 0.33 3.02 3.46 87 80
MO02 0.21 0.24 1.63 1.87 75 70
MO3 0.12 0.15 1.59 1.87 82 76
M04 0.35 0.39 5.14 5.5 76 80
MO5 0.33 0.42 2.99 3.91 74 73
MO6 0.21 0.28 1.55 2.06 80 71
MO7 0.4 0.41 4.17 4.26 89 85
MO8 0.35 0.36 3.12 3.21 75 80
M09 0.44 0.44 4.43 4.4 79 78
M10 0.41 0.42 4.44 4.71 86 82
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Ml11 0.53 0.53 2.56 2.6 99 81
M12 0.29 0.33 1.32 1.4 83 80
M13 0.15 0.2 0.89 1.07 86 84
Table 3.3: Comparison chart of oblique fracture parameters
Location | Average length Density Orientation
Sample | Simulation | Sample | Simulation | Sample | Simulation

MO1 NNE | 0.42 0.32 0.41 0.35 31 30
NNW 0.33 0.43 1.07 0.42 112 122
MO2 NNE | 0.39 0.39 0.74 0.37 37 26
NNW 0.53 0.31 0.43 1.37 120 125
MO3 NNE | 0.24 0.39 0.61 0.32 37 33
NNW 0.28 0.41 0.4 0.36 113 120
MO04 NNE | 0.31 0.32 0.48 0.34 39 30
NNW 0.28 0.36 0.44 0.45 125 120
MO5 NNE | 0.54 0.45 0.63 0.42 54 32
NNW 0.22 0.37 0.03 0.43 128 120
MO06 NNE | 0.33 0.4 1.3 0.45 32 29
NNW 0.28 0.33 0.4 0.33 117 123
MO7 NNE | 0.37 0.23 0.63 0.99 17 16.5
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NNW 0.37 0.35 2.85 0.27 107 118
MO8 NNE | 0.32 0.35 0.99 0.43 35 33
NNW 0.42 0.38 1.58 0.47 117 121
M09 NNE | 0.24 0.32 0.17 0.28 7 29
NNW 0.12 0.36 0.01 0.41 110 119
MI10 NNE | 0.57 0.31 0.3 0.3 38 29
NNW 0.39 0.29 0.68 0.32 109 120
MI1 NNE | 0.4 0.4 0.42 0.46 28 38
NNW 0.5 0.34 0.35 0.45 123 120
MI2 NNE | 0.3 0.42 0.31 0.44 29 30
NNW 0.28 0.4 0.21 0.37 116 122
MI3 NNE | 0.56 0.33 3.45 0.53 22 30
NNW 0.31 0.33 0.61 0.53 118 119

The final test of simulation lies in comparing the connectivity of the
sample data and the simulated fracture pattern. Connectivity of the sample
fracture maps and simulated fracture maps for the same locations are evaluated.
Connectivity is evaluated in terms of cluster size and fractional connected area.
The result of the comparison is summarized in table 5. The results show that the
difference in fractional connected area between the sample and simulated map is

within 5% (except in places where there area no-data zone within the sample
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area), which implies that the connectivity pattern of the fracture network is well
preserved in the simulation procedure. Connected groups of fractures in sample
and simulated maps are shown in figures 3.18 and Appendix figure A22 — A28.
Histogram plots of fractional connected area for the sample maps and that of the
simulated maps (extracted using the sample map area) are shown in figure 3.19.
The plot shows that in both the cases most of the connected areas are less than
5sq.m Both in sample and simulated maps, the hinge locations have high
fractional connected areas. Four sets of fractures that are simulated separately
contribute to the connectivity of fracture network. Of the four sets, two sets
(longitudinal and transverse sets) were simulated using structural controls. Two
oblique sets were simulated using the average density and length distribution for
the entire area. Since the latter sets are less dominant for the entire area, they have
less contribution to the connectivity pattern, so the fractional connected area of
the sample and simulated maps yielded a good match even though the oblique sets
were simulated using the average bulk values for the entire structure. The cluster
size of the sample and simulated fractures showed a good match in 7 out of 6
large sample maps. This is most likely attributed to the method of calculation of
cluster size. The value of cluster size is depended only on the largest cluster of the
study area, so the simulation method was able to re-generate the connected pattern
of the fracture network, but did not necessarily recreate the largest cluster of a

specific area.
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Table 3.4: Comparison chart of connectivity

Location | Cluster size Fractional
Connected Area
Sample | Simulation | Sample | Simulation

MO1 0.06 0.06 0.5 0.62
MO02 0.41 0.55 0.98 0.99
MO03 0.76 0.4 0.93 0.89
MO04 0.2 0.2 0.8 0.77
MO5 1 0.9 0.85 0.97
MO06 0.3 0.3 0.65 0.65
MO7 0.3 0.28 0.73 0.69
MO8 0.6 0.1 0.82 0.78
M09 0.98 0.83 0.84 0.88
M10 0.9 0.4 0.83 0.81
M1l 0.9 0.6 0.78 0.77
M12 0.15 0.1 0.41 0.37
M13 0.98 0.92 0.96 0.92

3.6 Conclusions

This approach of simulation of fracture network using structural controls
gave good results concerning the spatial distribution of fractures. This model
allows generation of networks with characteristics that closely mimics natural
network observed in the outcrops. Although the simulation relies on simple

inputs, it allows incorporation of structural controls for producing variation of
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fracture characteristics across the structure. The simulation successfully
reproduced fracture density ranging from very low density in the limb areas and
progressively high density in the hinge zones. This property of fracture density
variation is inferred from detailed field studies and used as a guide for fracture

simulation.
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CHAPTER 4:

FRACTURE DISTRIBUTION OF CANYONLANDS

GRABEN AREA

4.1 INTRODUCTION

4.2 STRUCTURAL BACKGROUND OF CANYONLANDS
4.3 FRACTURE CHARACTERISTICS IN THE
CANYONLANDS

4.4 STRUCTURAL CONTROLS OF FRACTURES IN THE
CANYONLANDS

4.5 FRACTURE CONNECTIVITY IN THE CANYONLANDS

4.6 CONCLUSIONS
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4.1 Introduction

Fracture patterns associated with normal faults were studied in the Graben
area of Canyonlands National Park, Utah. High quality exposures of fractures in
the Cedar Mesa Sandstone mappable using remote sensing data were available for
the area. The normal faults mapped in the area were obtained from a Utah
Geological Survey map (Hintze, et al., 2000) (Figure 4.1). Data was primarily
obtained from high resolution (60 cm) Quickbird satellite images from Digital
Globe, which collects black and white, four band multispectral color images. The
images used for this study were orthorectified, pan sharpened natural color image
of 60cm resolution. Orthorectification is an image processing technique used to
eliminate terrain and panoramic distortion and provide better horizontal accuracy.
Pan-sharpening is a resampling method that increases the resolution of
multispectral image data by using a high resolution panchromatic image. Such
high resolution image enables identification of any fractures longer than 60cm.
The fractures are formed in the Cedar Mesa sandstone, which is aeolian sandstone
with surface exfoliation. The fractures identified on the Quickbird image are the
only scale of fractures that are present on the bedding plane of the uppermost unit
of Cedar Mesa sandstone. The image obtained from the digital image library was
used as a base map for identifying fractures (Figure 4.2c). The fractures in the

Canyonlands area range in length from a few tens of meters to a few kilometers.
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Field work was carried out to provide a ground check for remote sensing
data and also to record the vertical extent of the fractures. The fractures that are
exposed in the map view are contained within the Cedar Mesa sandstone unit.
Data collection in the field focused on fracture length, orientation, type of fracture
and termination characteristics of different sets of fractures to understand the
sequence of fracturing.

Fractures mapped were often not continuous due to erosion. Thus patches
of continuously mapped area were selected and all analyses were limited within
these areas to eliminate noise in the data. The locations of all measurement
stations are shown in Figure 4.2. Various fracture parameters (length, orientation,
density), along with fracture network connectivity properties of the mapped
fractures were analyzed and studied in detail to understand the variation of these
parameters with respect to distance from the normal faults in the Canyonlands

arca.

4.2 Structural Background of Canyonlands

The Canyonlands are located within the Paradox basin, which was formed
due to the collapse of the pre-Pennsylvanian basement along pre-existing NW
trending faults. The most active period of subsidence extended from mid-
Pennsylvanian to late Triassic, (Baars and Doelling, 1987). The lowermost unit of

the paradox basin is the Paradox Formation, which consists of cyclic evaporites,
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black shales and carbonates (Baars et al., 1967). The sedimentary section above
the Paradox Formation consists of the Pennsylvanian Honker Trail Formation, the
Pennsylvanina-Permian lower Cutler beds and the Permian Cedar Mesa
Sandstone (Condon, 1997). The grabens in the Needles district of the
Canyonlands National Park were formed as the Colorado River eroded the
sedimentary overburden down to the Pennsylvanian evaporites. Thus the erosion
of the canyon removed downdip confinement and allowed gravity driven
extension of the overburden resulting in the formation of normal faults and related
fractures (McGill and Stromquist, 1975).

The canyonlands grabens are a series of northeast-southwest trending
normal faults along the southeastern side of the Colorado River (Figure 4.1). It
has been estimated (based on the downcutting rate of the Colorado River) that the
graben development began ca. 0.5Ma (McGill and Stromquist, 1975). The major
grabens exhibit a wide variety of fault linkages and transfer zones (Trudgill and

Cartwright, 1994).

4.3 Fracture characteristics in the Canyonlands

Fractures in this area extend from a few meters to several hundred meters
in length. The smallest fracture identified from the digital image was 0.87m and
the largest fractures extend to 814.2m (figure 4.3). Fracture orientations measured

at the outcrops are displayed on rose diagrams and equal angle stereographic net
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projections (Figure 4.4, 4.5, 4.6). Based on the fracture plots, several sets of
fractures were identified with two most dominant sets that are parallel and
perpendicular to the regional normal faults. The set parallel to the normal fault is
oriented NE-SW and the set perpendicular to the fault is oriented ESE-WNW. A
close look at the orientation data reveals that there is a spatial variation within the
most dominant sets. Assuming a dispersion of 20°, the fault parallel set can be
divided in two subsets, a 14° set and a 30° set. The fracture set with 14° average
strike is more dominant in the northeastern part of the study area and the density
decreases towards the west and south of the study area, where the 30° set is more
dominant (figure 4.4). Similar observations are made within the fault normal set
of fractures. This set is divided into a 121° set and a 137 © set. The fracture set
with 121° average orientation has a higher density in the northeastern part of the
study area, whereas the 137° fracture set is more dominant in the southern and
western part of the area (figure 4.5). A generalized pattern that can be inferred
from the observations of fracture orientation is that the 121° set is co-associated
with the 14° set and the 137° set is co-associated with the 30° set. Similar
observations were made by Lorenz and Cooper, (2001), in fractures within the
Entrada sandstone in the Salt Valley anticline, Utah which is about 80miles north
of the Canyonlands graben area. This spatial variation of fracture orientation may
be related to the episodic dissolution or movement of evaporites resulting in the

rotation of fractures (Lorenz and Cooper, 2001). All the fracture sets are sub-
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vertical and are perpendicular to sub-horizontal bedding, which has an orientation
of 218/02W. In subsequent discussions, the 14° and 30° sets are grouped together
and referred to as fault parallel fractures while the 121° and 137° sets are grouped
together and referred to as fault perpendicular fractures.

For each fracture set, the distributions of length and fracture density were
analyzed (figure 4.7, 4.8, 4.9, 4.10). Fracture density grids were generated for
each fracture set, where the value of each cell in the grid is calculated as the
summed lengths of all fractures of that set within a circular search radius, divided
by the search area (Figure 2.5). The sequence of fracturing as observed in the field
exhibits that the fracture perpendicular to the fault almost always terminates at the
fracture parallel to the fault. Figure 4.11a shows a field photograph exhibiting this
relationship, within an interlayer of Cedar Mesa sandstone. The same relation of
termination is also observed in the Quickbird images (Figure 4.11b). Thus the
relation of fracture termination is consistent at multiple scales.

The fault parallel fractures were found to have a significantly higher
length and average density than the fault normal fractures. Map pattern of fracture
density values for different sets is shown in figure 4.12, 4.13. The densities of
both fault parallel and fault normal fractures sets exhibit spatial heterogeneity

which is primarily tied to the structural position.
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4.4 Structural controls of fractures in the Canyonlands

There are two main structural controls of fracture densities in the

Canyonlands area: (1) distance from faults, and (2) radial distance from fault tips.

Distance from Faults

The fracture density of dominant sets of fractures, i.e. the fault parallel and
fault normal sets, exhibit systematic variation with respect to distance from
normal faults. The averaged fracture density within an area of every Sm from the
fault trace was plotted against distance from fault (Figure 4.8a, b). Both of the
dominant sets exhibit high fracture density in the vicinity of the fault, and the
density decreases away from the fault trace. The curve shows a stepped pattern
indicating that within a narrow zone around the fault the density is high, but away
from the fault zone, the density decreases gradually. Again, approximately 300m
away from the fault, the density decreases rapidly and eventually decreases to the
lowest density value farthest from the fault.

This relationship of the fracture densities of sets parallel to the normal
fault can be attributed to the fact that the NE-SW faults formed due to slip on pre-
existing fractures. The faults in the Canyonlands Graben nucleated on pre-
existing fractures and then possibly increased in length by mechanical interaction
of slipped fractures (Moore and Schultz, 1999). Thus the faults may have formed

where the fracture density was high, eventually resulting in a map pattern of high
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density of fault parallel fractures in the vicinity of the normal faults. The fault
normal set, on the other hand, was formed due to stress rotation within the stress
shadow zone of the large normal faults (Katternhorn et al., 2000). Therefore, one
interpretation of the spatial pattern of fracture density with respect to faults is that
the fault parallel fractures formed before the normal faults and the fault normal
fractures were formed synchronously with the normal faults under the same

regional stress state.

Distance from Fault Tips

To study the variation of density with distance from fault tips, the
locations of all fault linkages and fault terminations within the study area were
marked by points and the distance of each cell was calculated as the minimum
radial distance from the point (figure 4.14d). A cross plot was generated for the
density of fault parallel set and distance from fault linkage and/or termination
points (Figure 4.14¢). The plots show comparatively lower densities within 15m
of the linkage and then the density increases, remains high within ~200m from the
termination points and then decreases gradually. A similar plot was made with the
fault normal set (Figure 4.14f) but no systematic relation was observed.

The state of stress at the fault tip leads to an increase in the formation of
secondary fractures leading to linkage of faults (Martel and Pollard, 1989,

Trudgill and Cartwright, 1994). Relay structures develop when two fault segments
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propagate into an overlapping configuration and further lateral propagation is
inhibited by the interaction of stress fields around the overlapping fault tips
(Peacock and Sanderson, 1991, Seagall and Pollard, 1980). Progressive increase
in displacement gradient near the locked fault tips results in the rotation of the
ramp between the overlapped segments. Several of these overlapping and rotated
fault segments are observed within the study area. Therefore, one should expect
higher fracture densities in the immediate vicinity of these fault tips. One
explanation of the low density values in the vicinity of fault linkages is probably
due to a high rate of erosion in these areas, which can be attributed to the

increased fracturing at fault tips.

4.5 Fracture connectivity in the Canyonlands

Cluster analysis is performed on the fracture networks to evaluate the
connectivity pattern of fractures. Due to the presence of multiple sets of fractures,
and at least of one set of fractures (the fault-parallel set) being extensive in size,
the connectivity within each fault block is very high (Figure 4.15). In all the
blocks the fracture maps are completely connected to yield a fractional connected
area of 1. Thus the fracture connectivity in this case is controlled dominantly by
the length of the fault parallel fracture set that has an average length 80m, which
is 43 to 72% higher than any adjacent fracture sets. The fractures parallel and

perpendicular to normal faults exhibit a spatial relation with the normal faults
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with the density of both sets high within a zone adjacent to the fault and then
decreasing dramatically beyond that zone. This relation has some control on the
connectivity pattern which is inferred from the density pattern of the connected
fractures. Fractional connected length, which is effectively the density of
connected group of fractures, is evaluated as a grid (Figure 4.16a). The map
pattern of the density grid exhibits high values located near the fault. Figure 4.16b
shows a plot of fractional connected length averaged over Sm distance from the
fault against distance from fault. The plot reveals that the fractional connected
length decreases gradually with distance from fault then at a distance of
approximately 200m there is a sudden drop in connectivity. This pattern is
consistent with the spatial distribution of fault parallel set that shows a drop in
density approximately 200m away from the fault tip. The connectivity of the
fracture network being controlled by the length of the fault parallel fractures
exhibits similar spatial variation, i.e., the fracture connectivity is high in the

vicinity of normal faults, and decreases dramatically at a distance of 200m.

4.6 Conclusions

Fracture patterns in the Canyonlands area can be grouped into two major
sets and four minor sets. The primary fracture sets are parallel and perpendicular
to the regional NE-SW trending normal faults. The fracture set parallel to the

normal fault exhibits spatial variation of strike. The orientation of this set changes
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from an average of 014° in the northeastern part of the study area to 030° towards
the south and western part of the study area (towards the Colorado river). A
similar relation is also observed in the set perpendicular to normal fault, i.e. the
121° set is dominant in the northeastern part and the 137° set is dominant towards
the south and western part of the study area. Similar observation in the Salt valley
anticline was attributed to episodic movement of salt in the subsurface (Lorenz
and Cooper, 2000).

Major fracture sets in the area were formed in the same stress regime. The
normal faults nucleated on the pre-existing fault parallel fractures and later
increased in length by interaction with slipped fractures, while the fault normal
fractures formed with in the stress shadow zone of the normal faults due to local
stress rotation. This evolution of fractures resulted in a relationship between the
fracture density and distance from the normal faults. The density of the two
major sets of fractures and the overall fracture connectivity exhibit high values in

the vicinity of the faults and decrease gradually with distance from the faults.
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CHAPTER 5:

FRACTURE CONNECTIVITY

5.1 INTRODUCTION

5.2 APPROACH

5.3 METHODOLOGY

5.4 SINGLE FRACTURE SET

5.5 TWO FRACTURE SETS, ONE SET DOMINANT

5.6 TWO FRACTURE SETS, BOTH SET VARYING

5.7 CONNECTIVITY PATTERN FROM OUTCROP
EXAMPLES

5.8 CONCLUSIONS
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5.1 Introduction

Fluid flow in fractured rocks is controlled by an interconnected pattern of
conductive fractures. Therefore, the identification and characterization of the key
parameters that influence the connectivity of fracture networks is important in
understanding the patterns of fluid flow in fractured rocks. In most fractured
reservoirs, the flow is predicted based on dual permeability models that
incorporate the matrix and fracture permeabilities. The fracture permeability is
usually the more dominant component, so that an accurate prediction of this
component is important in developing a successful model.

The fracture permeability is determined by only a small fraction of
fractures within a fracture system that are interconnected to form a continuous
permeable network. Due to limited subsurface data availability, it is difficult to
build precise reservoir models with explicit information about the fracture
geometry, so that the fracture geometry is usually summarized by a limited
number of parameters. Therefore, it is critical to know the fracture parameters that
have the most dominant influence on connectivity of the fracture network.

The problem can be addressed using multiple approaches. First detailed
analysis of fractured outcrops can provide surface analogues which can be used to
model subsurface reservoirs. Second, simulations of fracture networks can be
conducted for different scenarios to predict the influence of different parameters

in controlling fracture connectivity.
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In this section a detailed study of fracture networks is conducted to
investigate the evolution of fracture connectivity with varying geometric
properties. A series of simulated fracture maps are generated to identify the

factors influencing connectivity of fracture systems.

5.2 Approach

Fracture connectivity is sensitive to the geometry and characteristics of
individual fractures. Connectivity also depends on the spatial distribution of
different fracture sets (Balberg and Binenbaum, 1983; Balberg et al., 1991;
Odling et al., 1999). Increasing fracture propagation leads to the formation of
clusters or connected fractures. Field studies (Rouleau and Gale, 1985; Odling,
1992, 1993, 1997, Gillespie et al., 1993; Bloomfield, 1996; Castaing et al., 1996)
suggest that connectivity and clustering are dependent on fracture lengths,
densities, dispersion, and spacing. In general, connectivity increases as (1) an
increasing number of fractures of the same set are added to the system, (2) the
length of the fractures increases (3) the orientation of fractures in a set exhibits a
higher degree of dispersion, or (4) fractures of multiple sets are added to the
system.

A series of fracture simulations are modeled to investigate the influence of
all four characteristics on the fracture network, and to identify the relative

contribution of each factor towards network connectivity. All simulations are
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conducted in two-dimensions, and all simulated fractures are assumed to be open
and have the same length/aperture ratio. In real situations, some fracture sets will
be more conductive than others, but this factor is not considered in the
simulations. Because the combination of the key parameters can result in an
almost infinite number of possibilities, only three specific settings that relate to
real observations are considered.

The simulations are compared to natural examples of natural fractures
seen in outcrops and also with published fracture maps gathered to establish the
effects of different fracture parameters on connectivity in natural fracture systems.
Integration of simulated fracture maps with surface analogues of natural fracture
system provides an overview of the fracture geometry and interaction of a range

of fracture systems.

5.3 Methodology

GIS based software is used to simulate 2D fracture maps within a constant
area in this study. The simulation was conducted for three main types of fracture
systems (Figure 5.1): (1) A single fracture set with varying length, spacing and
angular dispersion; (2) Two sets of fractures with one dominant set of fracture of
constant length and spacing, and a second set with varying lengths, spacing and
orientations connecting the dominant set of fractures; and (3) Two sets of

fractures, with both sets varying in length, density and orientation. In the past,
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connectivity has been quantified by cluster size (Odling, 1997), which measures
the length of the largest connected group of fractures as a proportion of the total
fracture length in the network. In this study, the extent of clustering and
connectivity is measured by the fractional connected area (FCA) defined as:

FCA = Summed area of all connected clusters within the fracture network
Total Sample Area

This parameter provides a measure of the extent to which the fractures within the
system can drain the area in question. The simulated results are then compared to

identify the influence of critical parameters on fracture connectivity.

5.4 Single fracture set

Straight line segments are generated at multiple stages to study influence
of length, spacing and dispersion on fracture connectivity for a single set of
fractures within a square area bounded by sides of length 1 (figures 5.2, 5.3, 5.4).
The length and spacing of fracture are normalized by the side of the square, 1. At
each stage, two of the three parameters are held constant and the third parameter
is varied at regular intervals. Normalized length L* (=L/1) is varied from 0.1 to
0.3 at an increment of 0.05, spacing is varied from 0.025 to 0.25 at an increment
0f 0.025 and dispersion is varied from 10 to 30° at increment of 5°.

For all the simulated fracture maps fractional cluster area is calculated to

investigate the variation of connectivity with varying fracture parameters.
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Furthermore, critical combinations of parameters at which complete connectivity
is achieved (a) in the direction parallel to the average fracture trend and (b) in the
direction perpendicular to the average fracture trend are studied.

For single fracture set of fractures a minimum dispersion of 10° is
necessary to establish connectivity for most combinations of fracture lengths and
spacing. Connectivity in a direction parallel to the average fracture orientation is
most dependent on the lengths of the fractures, with good connectivity established
at normalized lengths of 0.3, independent of the fracture spacing. This is an
important consideration for natural fractures systems involving a single set of
fractures.

Connectivity in directions both parallel and transverse to the fracture set
requires the intersection of the independent fracture swarms through an optimum
combination of dispersion, normalized length and normalized spacing. The
relation between orientation, dispersion, minimum length and spacing of fracture
networks required to trigger connectivity in lateral direction can prescribed using
the following equation:

L* = S*/sin(0/2)
Where L* is the minimum normalized length required for connectivity in lateral
direction, S* is the normalized spacing and 0 is the angular dispersion within a

single set of fractures.
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The variation in the fractional connected area resulting from the
simulations is displayed as plot of normalized spacing versus connectivity for
different normalized lengths and dispersions, in figure 5.5. The value of the
fractional connected area increases with increasing normalized length and
dispersion, and decreasing spacing. The simulations with higher lengths and
greater dispersions always result in higher fractional connected areas. The
fractional connected area increases dramatically, when the fracture networks
extend connectivity in the perpendicular direction. Therefore, the most critical
factor appears to be the normalized spacing of the fractures. Significant
connectivity is only attained when the normalized spacing drops below 0.1.
Furthermore, the fractional connected area increases in a non-linear fashion below
this spacing. Total connectivity in only attained below values of S* = 0.1, except

for very high dispersions.

5.5 Two fracture sets, one set dominant

In natural fracture system, two sets of fractures, with one systematic set
and one less dominant set of cross fractures are commonly observed (Josnin et al.,
2002, Rohrbaugh et al., 2002, Finn et al., 2003). The systematic set of fracture is a
more planar, consistent in orientation and considerably greater in trace length due

to earlier timing of formation (Finn et al., 2003). The cross fracture set, which
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forms later, is limited in trace lengths and is generally confined between fractures
of the pre-existing set.

To study the interaction of systematic fracture set and a second set of cross
fractures at various orientation and length, two set of fractures were simulated by
generating a series of equally spaced cross fractures between a set of systematic
fractures that cross the entire sample area and have a constant spacing (S*) of 0.1.
A series of simulated fracture maps were generated by varying the length and
orientation of cross fractures. Lengths of cross fractures were gradually increased
until the fractures intersected the systematic fractures. The angle between the
systematic fracture set and the cross fracture set varied from 15 to 90°. The strike
of cross fractures had a dispersion of 4 to 5°. Connectivity of the fracture network
for each orientation of cross joints was triggered at a certain length, i.e., the
fractional connected area and cluster size yielded a value greater than 0;
subsequently, the network became completely connected in both directions
yielding a fractional connected area of 1 and finally at a greater length, all the
fractures contributed to the connected network when the cluster size became 1.
The length at which the fractional connected area and cluster size became greater
than 1, and the length at which all the fractures became connected were unique
different angles between the two fracture sets (figures 5.6 and 5.7).

The critical length of the cross fracture required for maximum

connectivity is given by:
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L*Xmax = S*1/5in0yin
and the critical length of the cross fracture required to trigger fracture connectivity
in a network is given by:

L*Xmin = S*1/81n0max
where L*; is the critical length of cross fracture, S*; is the spacing of systematic
fracture and O,y and O, are minimum and maximum angle between the
systematic and cross fracture, respectively. The table below summarizes the
maximum and minimum acute angle for each set of cross fractures generated in
the simulation and the expected range of length for which the network will

achieve complete connectivity.

Table 5.1: Summary table of acute angle between systematic and cross fracture
orientation (0) (in degree) and the critical length (Lx) (in meter) of cross fracture.

The spacing between systematic fractures is constant at 1m.

Ormin Ormax Sin Omin Sin Omax Lxmax Lixmin
15 19 0.26 0.33 3.86 3.07
30 34 0.50 0.56 2 1.79
45 49 0.71 0.75 1.41 1.33
60 64 0.87 0.90 1.15 1.11
75 79 0.97 0.98 1.04 1.02
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90 94 1.00 1.00 1.00 1.00

The variation in fractional connected area and cluster size is shown against
length for different angles between the two fracture sets. These maps show the
dramatic change in connectivity at unique points (Figure 5.8a-f). Cross plot of
angle between cross fracture and systematic fracture versus critical length at
which the complete connectivity is attained is shown in figure 5.8g. The plot
shows that the critical length for connectivity increases with a decrease in the

angle between the systematic fractures and the cross fractures.

5.6 Two fracture sets, both set varying

Connectivity patterns of fracture networks where at least one set of
fractures is systematic are relatively simple as the systematic fracture set provides
the basic framework and presence of cross fractures enhance the connectivity in
the lateral direction, i.e., in the direction perpendicular to systematic fractures. In
areas where neither of the fracture sets are systematic, the fracture network yields
complex connectivity patterns which are controlled by a combination of
parameters of all the sets. A series of simulation is performed with two sets of
fractures in which the density and length of both sets are changed systematically.
In the first series of examples, two orthogonal sets of fractures are generated

(figure 5.9-5.10) and then in the second series, the angle between the fracture sets
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is reduced to 45° (figure 5.11-5.12. In all simulations, the length of one set is held
constant, while the length of the other set and the density of both sets is increased
systematically.

The results show increases in fracture connectivity with length, density,
and an increase in the angle of intersection of the two sets. Graphical
representation of results (figure 5.13) reveals that the increase in density of one
set had a dramatic effect on connectivity when the length of the other set was
short (0.1), while the change in connectivity was more subtle to insignificant
when the length of the other set is long (0.3). The slope of curves for two series of
simulations, are comparable, indicating that the effect of length and density on
both the series are similar, but the absolute value of connectivity yielded by the
networks is different. The orthogonal set of fractures yielded higher connectivity
compared to fractures at a 45° angle of intersection, and the difference in

connectivity values is greater at lower length and/or density.

5.7 Connectivity pattern from outcrop examples

The results of fracture simulation are compared to natural fracture to
investigate the effects of spatial distribution of natural fractures on fracture
network parameters. Although the simulated fractures are more uniformly
distributed spatially, fracture geometries observed in several different outcrops

exhibit patterns similar to those generated through fracture simulation. Examples
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of natural fracture patterns from various sources ranging from personal field work

to information gathered from published literature were used in this study.

Single fracture set

Fractures on the bedding surface of the Tensleep Formation (figure
5.14a) in the forelimb of Sheep mountain anticline (Bellahsen etl al., 2006)
exhibit a single set of ENE-WSW fracture with 10° dispersion in strike and
average normalized spacing of 0.05 (approx.) and average normalized length of
0.24 (aprox). The point to note in this photograph is that the fractures have low
connectivity (fractional connected area of 0.06), and the connectivity is
manifested only along the strike of the fractures. Despite the low spacing and high
length due to the uniform sub-parallel orientation of the fractures, there is no
connectivity in the direction perpendicular to the fractures because of the low
dispersion, hence resulting in a low fractional connected area of 0.06. This result
is consistent with the fracture simulation achieved a similar spacing, length and
orientation dispersion exhibited in figure 5.14c with similar length, spacing and
orientation dispersion and a low connectivity of 0.05.

Figure 5.14d-e shows an example of fractures in the Late Namurian
(Carboniferous), Upper sandstone Group at Telpyn Point, Wales, U.K. There are
several sets of fractures, but the most dominant set is a NS set with a strike

dispersion of 13°, average normalized length of 0.21 and normalized spacing of
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0.02. The map shows a clustering of fractures in the central part of the study area,
where the fractures are much closely spaced (S* = 0.016), whereas on either side,
the spacing is 0.021. Connectivity of the NS set is extracted for the whole map.
Fractional connected area for the entire study area yielded by the NS set is 0.1,
but in the central part of the study area where the fractures are closely spaced
(S*=0.016), and the dispersion is higher, the fractional connected area is 0.35.
This is because the close spacing and higher dispersion of the fractures triggers
lateral connectivity that resulted in a higher total connectivity. However, the low
dispersion of fracture orientations prevented complete connectivity in the area.
This example establishes the fact that a single set of fracture can furnish
connectivity where the fractures are closely spaced and there is dispersion in

orientation significant enough to overcome the spacing.

Two fracture sets, one set dominant

Multiple sets of fracture increases the chances of connectivity. An
example of fractures from Lompoc landing (Figure 5.15), California illustrates
this fact. All the fractures in the figures are from the same outcrop, different sets
of fractures are illustrated separately to demonstrate the contribution of systematic
and cross fractures towards enhancing the connectivity. In Figure 5.15a-b, there
are two sets of fractures, a NE set of average normalized length of 0.07 and

dispersion 10° and a NNW set of normalized length 0.05 and dispersion 4°. These
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two fracture sets form a few clusters yielding a fractional connected area of 0.024.
None of the individual clusters are extensive enough to connect the entire study
area. In figure 5.15c-d, the east-west striking systematic fractures are long and
extensive, and connect the opposite ends of the study area in the E-W direction.
The average normalized length of EW set is 0.3 and the dispersion 30°. Due to the
extensive length and higher dispersion, the network yielded fractional connected
area of 0.41, but the connectivity is extended only along the strike of the fractures
and the clusters still do not connect the entire area. In figure 5.15d-e, all the
fracture sets together yielded a fractional connected area of 1 and formed a
continuous fracture network that cover the entire study area. This example
illustrates that although the secondary sets have very low lengths and high
spacing, that because they are at two sets are at high angles to the systematic set,
the dramatically increase the connectivity to cover the entire area.

Examples of two sets of fractures with a set systematic fractures connected
by a perpendicular set of cross fractures are observed in several outcrops. Figures
5.16 show two examples, from the Nashpoint limestone, Wales (figure 5.16a-b)
(Josnin, et. al., 2002), and from the Jurassic limestone formation of Llantwit
Major, Wales (figure 5.16c) (Rohrbaugh et. al., 2002).

Fractures in Nashpoint limestone consist of two orthogonal sets of
fractures (figure 5.16a-b). In this example the NS fractures striking 175° are much

longer (average length =0.4) compared to the EW fracture striking 88° (average
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length = 0.28m) and also the NS set is moreclosely spaced (spacing = 0.02). This
is an example where one set (NS set) is a systematic set of fracture extending
across the study area, whereas an orthogonal set of cross fractures (EW set) is
contributing toward enhancing the lateral connectivity, thus leading to a fractional
connectivity of 1.

A similar case is observed in the pavement of limestones within the early
Jurassic Porthkerry Formation (Figure 5.16c; (Rohrbaugh, et al., 2002). In this
example there are two orthogonal sets, with one systematic set striking 165° and a
cross set striking 75°. The fracture network exhibits complete connectivity, due to
the high angle between the two sets, in spite of the short lengths and relatively
high spacing of the second set. A simulation is shown in Figure 5.16d, where the
network exhibits complete connectivity even thought second set (cross fractures)
were of short length and high spacing.

Figure 5.17a-b, exhibits fractures on the flank of Salt Valley Anticline, in
the Entrada sandstone, Utah, where two sets of fractures, unlike the fractures in
Nashpoint limestone or Porthkerry Formation, are intersecting at alow angle. In
this example two sets of fractures are present only in the western part of the study
area hence a connected pattern is manifested only in the western part. But even
where two sets are presen , and the fractures of both sets are closely spaced, the

low angle of intersection of two sets resulted in low connectivity. A low angle of
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intersection of two sets requires a high length of the cross set to build network

connectivity.

Two fracture sets, both sets varying

In Figure 5.18a-b, there are two dominant sets of fractures in the Tensleep
sandstone, a NW-SE set of strike 329° with an average dispersion of 12° and an
ENE-WSW set of strike 72° with an average dispersion of 11°. The angle
between two sets is 76°. The average normalized length of the ENE-WSW set is
0.1 and the normalized spacing is 0.06, whereas for the NW-SE set, the average
normalized length is 0.09 and the normalized spacing is 0.06. Thus this fracture
pattern is an example of two fracture sets, at a high angle to each other, where
both sets show similar spacings and lengths. The fractional connected area of the
network is 1, indicating complete connectivity. The important characteristic in
this fracture network is that although both sets have relatively low lengths, the
average length is higher than the spacing of for each set, and this results in a high
connectivity. This is consistent with the results yielded by the two sets of
simulated fractures shown in figure 5.18f, where the length of two orthogonal sets
are higher than the spacing of the respective sets.

Figure 5.19 shows fractures in Mississippian carbonates on the western
flank of Teton anticline, Montana. All the maps consist of several sets of

fractures, but there are two dominant sets that control the connectivity of study
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area. The fracture map in figure 5.19a, exhibits two sets of fractures where NW-
SE set is the dominant set with a density of 8.3m/sq.m and normalized length of
0.1. The fractional connected area is 0.93 and the fractures connect the opposite
ends of the sample area. The fracture map of 6.39b, shows two dominant sets of
fractures where both sets are of similar length but the density of the EW set is
double that of the NW set resulting in several fracture clusters, but none of the
clusters are extensive enough to cover the entire area. A simulation of this
example 1s shown in figure 5.19d, where there are two sets of fractures of similar
length, but the density of the EW set is double that of NS set. The difference in
connectivity between figures 5.19a and 5.19b is because in figure 5.19a there is
one fracture set, the NW-SE set that is long and closely spaced forming the
backbone of the network and all other sets are enhancing the connectivity in
direction perpendicular to the main set, whereas in figure 5.19b, none of the sets
are dominant and the orthogonal sets of fracture result in only moderate
clustering. In figure 5.19c¢, all the fracture sets have very low density, with the
northwest set having the highest fracture density of 1.8m/sq.m (NW set), resulting
in low fractional connected area of 0.41. An example from the simulated maps
exhibits how the low length and fracture density resulted in low fracture

connectivity.
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5.8 Conclusions

Fracture simulation designed to analyze the controls of different fracture
parameters (variations in fracture strike, density and length) on fracture network
connectivity reveals certain parameters are more dominant in controlling the
connectivity. Simulations with one set of fractures show that increases in length,
density and dispersion all result in higher fracture-parallel connectivity, but the
increase in density is the most important in increasing fracture-normal
connectivity, especially, where the dispersion in fracture strike is very low.

Simulations of two sets of fractures reveal that the density, length and the
difference in angle between the two sets play dominant role in achievement of
complete connectivity. In cases where one set of fracture is a systematic set and
extends through the entire length of the study area, there is a critical combination
of length of the second set and the angle between the two sets that results into
complete connectivity. In cases where both set of fractures have varying length
and density, the influence of increasing density of one set had a dramatic effect on
connectivity when the length of the other set was short, while the change in
connectivity was more subtle to insignificant when the length of the other set is
long. The network also showed higher connectivity with increasing angular

difference between two sets.
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Figure 5.6. (a-f) Simulation of two sets of fractures, angle between 2 sets ranges from15
to 19 degree. (g-1) Angle between 2 sets range from 30 to 34 degree. (m-r) Angle
between 2 sets range from 45 to 49 degree. L: Normalized length of cross fractures; A:
Angle between two sets in degrees.
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Figure 5.7. (a-f) Simulation of two sets of fractures, angle between 2 sets ranges from60
to 64 degree.(g-1) Angle between 2 sets range from 75 to 79 degree.(m-p) Angle between
2 sets range from 86 to 90 degree. L: Normalized length of cross fractures; A: Angle
between two sets in degrees.
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Table Al: Fracture simulation models, (Dershowtiz et al. 1999).

Concept Advantages Limitations
Model Applicability
Orthogonal | Fracture Rock masses Single Planar
(Dershowitz | network with completely | geometry and assumptions,
and simulated defined treatment of limitation in
Einstein, from 3 sets | rectangular rock | data the variation
1988) of blocks (mostly to of fracture

unbounded | hydrology) orientation

orthogonal

joints
Baecher Generate Homogeneous Few field data | Do not
disk fracture rocks available. simulate
(Baecher et. | network Accurate in terminations
al., 1978; from fracture rock mechanics | of fractures;
Barton, centers that and hydraulics | fractures must
1978) are when a little is | be planar.

distributed known

uniformly in

space
Enhanced Generate Fractured rock Suited for Fracture size
Baecher fractures masses in which | simulation of distribution is
(Geier, et., | fracture joint connectivity of | not preserved,
al., 1989) centers terminations are | natural fracture | joints may be

located at observed population. planar

random Multiple

points in intersections

space. per fracture

Intersections area possible

are

calculated

with pre-

existing

fractures
BART Same Fractured rock Quick Fractures
(Dershowitz | principle as | masses in which | simulation. must be
et. al., 1998) | for the fracture Fracture size is | planar

Enhanced terminations are | preserved.

Baecher observed Spatial
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model,

correlation in

except that the simulated

the center of fracture

fracture population

terminating

at

intersections

is generated

from point

on fracture

intersection
Veneziano | Fracture Suited for 100% | Polygonal Often fail to
(Veneziano, | network persistent and shapes are often | construct
1978) generated in | unbounded observed in blocks.

3 stochastic | fractures nature. More Intersection

processes appropriate of fractures

based on than orthogonal | does not often

Poisson model for most | match joint

plane and cases, specially | edges.

Poisson lines in case of Complex 3 D

coplanarity model

Dershowitz | Fracture Accurate for Model distinct | Can generate
(Dershowitz | network systems which rock blocks of | large number
, 1984) generated exhibit distinct various shapes, | of smaller

from 2 rock blocks flexibility in the | polygons. Not

stochastic bounded distribution of | so well fitted

processes polygonal fracture for coplanar

based on fractures and orientations. fractures

Poisson orientation Joint

plane dispersion intersection at

joint edges

Mosaic Deterministi | Fracture systems | Manage non Not so
Tessellation | ¢ and/or resulting from a | coplanarity, accurate in
(Dershowitz | stochastic process of block | creation of the | cases that do
and generation of | formation blocks first not display
Einstein, the blocks, (jointing in polyhedral
1988) then columnar basalt) blocks and

definition of polygonal

fracture fractures;

planes blocks

created first;
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indirect
modeling of

location,
orientation
and shape of
fractures

Poisson Same Same as Same as Specific

Rectangle concept as Enhanced Enhanced conceptual

(Dershowitz | Enhanced Baecher Baecher model.

, 1998) Baecher Require a
except that good
fractures knowledge of
area the rock mass
rectangular geometry

Geostatistic | Generate Describe the Account for a The size of

al fractures spatial behavior | good spatial the sampling

(Gervais et. | according to | of regionalized correlation area must be

al., 1995) a specified variables of the consequent
variogram fracture network compared to

the study area

War Zone Simulate Simulation of Binary model. | Specific

(Geier et. higher fracture network | Identify conceptual

al., 1989) densities of | in shear zones “ordinary zone” | model.
fractures and in the and “non- Require good
between two | surrounding rock | fractured zone” | knowledge of
major mass rock mass
subparallel geometry
fractures

Non-Planar | Generate Simulation of Enhance rock Require good

Zone fractures fracture network | zones with knowledge of

(Dershowitz | along non- along specified specific rock mass

et. al., 1998) | planar user | features (eg. geometrical geometry
defined Deformation properties.
surface zone) Binary model

Levy-Lee Generate In combination Accounts for Do not

Fractal clusters of with geometrical | the chronology | consider the

(Geier et. smaller analysis: of fracture size and

al., 1989) fractures Hierarchical formation. shape of the
around wider | fracture trace Ability to blocks
fractures model generate a non- | delimited by

stationary the simulated
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fracture system | fractures.
with a set of Definition of
parameters that | the most
remain constant | appropriate
throughout the | fractal
generation dimension.
system
Nearest- Fractures are | Can account for | Generate Must have
neighbour organized the generation of | clusters of enough data
(Geier et. into primary, | fracture network | fractures to assess the
al., 1989) secondary according to the | around primary | different
and tertiary | theory of fracture | group. More groups and
groups and | genesis explicit than chronology.
area Levy-Lee
generated in model if
this fractures can be
sequence classified
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Density map of transverse fractures for location M02. (d) Density map of simulated transverse fractures for location M02. The

Figure A8: (a) Density map of transverse fractures for location M0O1. (b) Density map of simulated transverse fractures for
fractures for area M02 are extracted from the simulated map generated for the entire Teton anticline. (¢) Fracture map of

location MO1. The fractures for area MO1 are extracted from the simulated map generated for the entire Teton anticline. (c)

transverse set for location MO1. (f) Simulated fracture map of transverse set for location MO1. (g) Fracture map of transverse

set for location M02. (h) Simulated fracture map of transverse set for location M02.
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Density map of transverse fractures for location M04. (d) Density map of simulated transverse fractures for location M04. The

Figure A9: (a) Density map of transverse fractures for location M03. (b) Density map of simulated transverse fractures for
fractures for area M04 are extracted from the simulated map generated for the entire Teton anticline. (¢) Fracture map of

location M03. The fractures for area M03 are extracted from the simulated map generated for the entire Teton anticline. (c)

transverse set for location M03. (f) Simulated fracture map of transverse set for location M03. (g) Fracture map of transverse

set for location M04. (h) Simulated fracture map of transverse set for location M04.



"9(QJN UO1)BI0] 10J 39S 9s1Asuen) Jo dewr armoery pajenuis () "9\ UOIIBIO[ J0J 198

as1aasuen jo dew armoerq () "GON UONBIO[ 0] 39S dsIdASURI) Jo dew arnjoely paje[nuwis (J) “SOIN UOIIBIO0] J0J JS ISIOASURI)
Jo dew armoeIq (9) "UIONUE UOIJ], AINUD Y} J0J Peroudd dew pajenuwis ay) WOIy PAjoRNX dIe 9] BIE J0J SINIILI)

9L, "90JAl UOIIBOO[ J0J SAINoRIy 9sI1dAsueI) pajernurs jo dew Ajisua(q (p) "90JA UONEBIO] 10 SAINoely ds1oAsuen) Jo dew Aisua
(9) ourponUE UOIAY, AINUD Y} 10J PAILIdUST dew paje[nIIS AU} WOIJ PAIILNXI ATk GOJA BAIR JOJ SAIMIRIJ AY [, "SOIN UOIIBI0]
J10J SaImoeIy 9s19AsuLI) pajernuwirs Jo dew Aysua(q (q) "SOIN UOIEBI0] J0J SaImoryj as1oAsuen) Jo dew Aysua(g (B) 01V 2In31g

177

@)

(w/bs/w)
Ajisusp
ainjoel

©)



"SOJN UOT)BI0] J0J 39S os1asuen Jo dewr armoery pajenuirs (4) "gOIN UOIIBIO[ J0J 39S

as1aasuen jo dew armoerq () LN UONBIO[ J0J 39S dsIdASURI] Jo dew arnjoely paje[nuwis (J) “LOIN UOIIBIO0[ J0J J3S ISIOASURI)
Jo dewr axmyoe1q () "duIfonUE U0JI], IIUL A} J0J PIjeIduasd dew pajenuwuls Ay} WOI PIAJORIIXI dIe YOI BIIR J0J SAINoRI)

oYL, "ROIAl UOIIBOO[ JOJ SAINoeIy 9s1dAsuen) pajenurs jo dew Ajisua(q (p) "ROIN UONEBIO[ 10 SAINoely Is1oAsuen) Jo dew Arsuo
(9) ourOnUE VO], AINUD Y} 10J PAILIdUIT dew paje[NIIS AU} WOIJ PAIILNXI Ik /(A BAIR JOJ SAIMIRI) Y [, *LOIN UOIIBI0]

10} SaImoely 9s1oAsuen) pajernuwis jo dew A)sud(q (q) “LOIN UOIBIO[ J0J SaImoely as1oAsuen Jo dew Aysua(q (8) 11V 2131

(w/bs/w)
Ajisusp
ainjoel

178



"0 1IN UO1BI0] 10§ 39S 9s19Asuen) Jo dew armoery pajenwis (Y) "([ A UOLIBIO[ J0J 39S

as1aasuen jo dew armoer] (3) ‘60N UONEBIO[ 0] 19S dsIdASURI) Jo dew arnjoely paje[nuwis (J) “6OIN UOIIBd0][ J0J J3S ISIOASURI)
Jo dew armoeIq () "UIONUE U0IJ], AINUD Ay} J0J PIjeroudd dew pajenuwis oy} WOIy PAJOBNX 1B ()| BIR J0J SINIORI)

9UL "O[JA UOIBOO[ 10} SaINjoely os1dAsuen) pajernurs jo dew Ajsua(q (p) (1A UONEBIO] 10 SaInjoely ds1oAsuen) Jo dew Aisuaq
(9) ourponUE UOIAY, AINUD Y} I0J PAILIdUIT dew paje[nIS AU} WOILJ PAIILNXI ATk (OJA BAIR JOJ SAIMIRI) Y[, "6 0N UONEBIO[
10} SaImoeIy 9s19ASuRI) pajernuwirs Jo dew Aysua(q (q) “6OIN UOIBI0] J0J SaIoryj as1oAsuen) Jo dew Aysuo(g (B) 71V 2In31g

zz< Il
zz-oz I
oz-g I
gL-9L [ ]
aL-vL [ |
vi-z.

N © 0~
[
N © 0 —

o[
(w/bs/w)

Ajisusp
ainjoel

®) ©)

179



"Z1IN UO1ed0] 10§ 39S 9s19asuen) Jo dew armoesy pajenwis () "Z [N UOIBIO[ 10J 39S

as1aAsuen jo dew armoerq () [N UOIBd0[ 10J 39S ds1oAsuen) Jo dew arnjoely pajenuilsg () [ [JN UOIBIO[ J0J 19S ISIOASURI)
Jo dew armoeIq (9) "UIONUE UOIJ], AINUD Ay} J0J PIjeroudd dew pajenuirs oyj WOy PajoBNXd A1k TN BIR J0J SINIORI)

oYL "ZIIA UOIEdO0[ 10} SaInoely os1dAsuen) pajernurs jo dew Ajsua(q (p) "7 1A UONEBIO] 10 SaInjoely as1oAsuen) Jo dew Aisua
(9) -ourpOnUE UOIIT, AINUD AY) J0J PAILIAUST dew paje[NUIS AU} WOIJ PAIJLIIXI dIB [ A BIIR J0J SAINJORIY YL, [ [N UOIIBIO]

10} SaImoeIy 9s19AsuLn) pajernwils Jo dewr Aysua(q (q) [ [N UONBIO[ 10J sanjoety asidasue} Jo dewr Arsud(q (e) 1€V 231

(w/bs/w)
Aysusp
ainjoel4

(@

180



‘sdewr pajenwirs Jo saInjoesy 9SI9ASURI) 10§ 33U Jo uonnquisip Aouanbaig () ‘sdew opduwres jo sormyoeiy asioasuen

103 I3u9] Jo uonnquysip Aouanbai (3) -sjurod eiep 01 paniy surpuas Ay} st oull yoeq ‘9doys 92133p G Jo auij e s1jopd

AU} Ul QUI| PaY "SUONEBIO] AY) [[ J0J SaINOeI) paje[nuis snsidA dduwes Jo yy3ud] Jo 1014 (F) ‘siurod eiep 03 paniy duIpuax )
st our] yoelq ‘9doys 22133p G Jo duif & s1jo[d oy uI dUI[ PAY "SUOILIO[ Y} [[B J0J SAINORL paje[nuils snsidA d[dwes Jo AJsuap
J0 1014 (9) "€ 1IN Uoned0] 10§ 39S 9s1dAsuen} Jo dew armoesy paje[nwis (p) "¢ [JA UOIBOO][ 10 J9s ds1oAsuen Jo dewr axmgoer|
(9) ourpOnUE UOIAY, AINUD Y} 10J PAILIdUIT dew paje[nIIS AU WOIJ PAIILNXI Ik ¢ [JA BAIR JOJ SAIMIRIJ Y[, "€ ]\ UOIIBO0]
10} SaIMoR} 9s19ASURI) pajernuwirs Jo dew Aysua(q (q) "€ TN UOIIBI0] J0J SaIoryJ as1oAsuen) Jo dew Aysuo(g (B) 41V 2In31g

zz< IR (P) (9)

wg 0

(wybs/w
Aysusp L]

alnjoel ®

(@) : (®)

~

181



"ZOIN Uoned0] 10y s319s anbrjqo jo dew ainjoesy pajenuils ()

"ZOIN uo11820] 10} S33s anbrjqo jo dew axmoei (3) * 1IN UO1EBI0] 10} S13s anbijqo Jo dew aimodey pajenwis () 1O UOnBIO[
10J $39s anbr1jqo jo dew axmoei (9) "duIonjUR UOIJ], AINUD A JOJ PIeIdud3 dew paje[nuIs Ay} WOIJ PIJOBNX ATk 7O LI
J0J SQIMoRI} AU, "ZOIN UONEBI0] 10} sarjoelj anbijqo pajenuurs jo dew A11sud (p) “ZOIN Uoned0] 10§ sainjoesy anbrjqo jo dew
Aisua (9) ouronue uold], AINUD AY) J0J PAILIdUS dew paje[nIS Ay} WOIJ PAIJLNXI Ik (A BIR JOJ SaImdel) UL, 10N
uoneodo[ 10§ sanjoely anbrpqo pajernuis jo dew AJsud(q (q) "TOIN Uoned0[ 103 sarmodely anbijqo jo dew Ayrsua (B) :G1v 2In31g

182




"FOIN uones0] 10j s3as anbijqo jo dew armoeyy pajenuis (Y)

"FOJN UO118d0] 10J $33s anbrjqo jo dew axmoei (3) *¢OJN UO1EBI0] 10} S33s anbijqo Jo dew aimodry pajenwis (J) “€ON UOnBIO[
10J $39s anbrqo jo dew axmoeiq (9) "duIoRUR UOIJ], AINUD A JOJ PIeIdud3 dew paje[nwIs Ay} WOIJ PIJOBNX ATk ()] BoIe
10} saImoel} AU, ‘H(JN Uoneoo] 1oj sarmoely anbrjqo pajernuwis jo dew Kjisud(q (p) QN uoneso] 1oy sarmoesj anbrjqo jo dew
Asudg (9) our[onue UOII], AU A} J0J PAJeIduad dew pajenuwils oY) WOoIJ PAIOLNXI dIe A BaIe J0J SQIMORI) YL "CON
uoneodo[ 10§ sanjoely anbrpqo pajernuis jo dewr AJsud(q (q) "€OIN UonedO0[ 103 sarmoely anbrjqo jo dew Aysua (B) 191V 2In31q

3)
|
wg 0
e 8
a
‘e . ;
E 9 0.‘
[ ] [

e < s, (wybs/w)

. Ajisuap

.
o

[}
=
=i

=
|}
©
as

w

(P) () (C)) «* (e)

183



_/\\ 14
-

Py '
ISR\7
\\W\\\\/(\w \L\
NE g ¥
v, ‘ 1l \_\ \\M
R\ 7

~
—

M

|
wg 0 .
. o 2 o &4
. r‘. 4 ’
é e ®™
. W e
- . ﬂ Q\‘
) oo L X
" »
(P) >

~
O
~

"9QJN Uoned0] 10§ $33s anbijqo jo dew armoery pajenuis (Y)
90N uoneod0o[ 10J s3as anbrjqo jo dew axmoesq (3) "SOIN Uonedo[ 10§ s3as anbrjqo jo dew armoesy pajenuwis (J) "SON Uonedo|
10J $39s anbrjqo jo dew axmoeiq (9) "duIoRUR UOIJ], AINUD A JOJ PIeIdud3 dew paje[nuwIs oY) WOIJ PIJOLNX dIe 9N LI
10J saImoely AU [, "9 uoneoo] 1oy sarmoely anbrjqo pajernuwis jo dew K1sud(q (p) "9 uoneso] 1oy sarmoesj anbrjqo jo dew
Asudg (9) our[onue U], AU A} J0J PAIeIduasd dew paje[nuwiIs oY) WOIJ PAIOLNXI dIe GOJA BIe J0J SQIMORI) YL "SON
uoneodo[ 10§ sanjoely anbrpqo pajernuis jo dew AJsud(q (q) "SOIN UonedI0[ 103 sarmoely anbrjqo jo dew Aysua (B) ;£ 1V 2In31q

—
>E
=235
GC)Q
SE

[}
=
=
=1
]
©
=
w

€) ©®)

< 4

@ » (e)

184



"QOIAl UOnIBI0] 10¥ S319s anbrjqo jo dew ainjoesy pajenuuis ()

"QOJN UO01180] 10J S13s anbrjqo jo dew axmoel (3) ‘LN UO1IEBI0] 10} S13s anbijqo jo dew axmodey pajenwiis (J) “LON UOnedI0[
10J $39s anbrqo jo dew axmoeiq (9) "duIonUR UOIJ], AINUD A JOJ PIeIdud3 dew paje[nwIs oY) WOIJ PIJOLNX dIe YOI LI
J0J SQIMoeIy AU ], "§OIN UOIIEBI0] 10} sarjoelj anbijqo pajenuurs jo dew A11sud (p) “SOIN UOneI0][ 10§ sainjoesy anbrjqo jo dew
Aisud (9) ouronue uold], AINUD AY) J0J PAILIdUIS dew paje[nIS A} WOIJ PAIILNXI ATk /()] BIR JOJ SaImdel) Ay [, “LON
uonedo[ 10§ sanjoety anbrpqo pajernuis jo dew Ajsud(q (q) “LOIN Uoned0[ 103 sarmoely anbijqo jo dew Aysua( (B) 181V 2In31q

N ==
) P/A\\ ' //\gﬁw_//,ﬁ_/\
/7 \\ A =& _uw,_
~ S kB N /lW%
N Y W..%\ //.\IM _.uw
\ \/l \ \ -~ .{%m M \I/”
o . ZrW\M/ﬁJ ST
AN — - FANS SSE
@ ~ ()

wg 0

(@

185



"0 1IN UOnBI0] 10§ 39S 9s19Asuen) Jo dewr armoery pajenuis (Y) "( [N UOLIBOO[ J0J 198

aszoasuen; Jo dew axmoer (3) "gOIN UONEOO] 10 39S 9s19Asue) Jo dew ainjoeyy pajenuwis (J) “6OIN UOLIBIO[ 10J J9S ISIJASURT)
Jo dew a1myoe1 (9) "duIONUE UOIJ], AIIIUD JY) J0J pajerousd dewr poje[nuuis oY) WOIJ PAJoBIIXd Ik ()] ] BIIR JOJ SOINjorly

oYL "OTJA UOnEBO0] J0J saInjorly 9sidAsuer) paje[nuis jo dewr A1suo( (p) (1A UOIBIO[ 10J SQInjoely 9sIoAsue) Jo dewr Ajsua(q
(9) -ourponue U0, AINUD AY) 10J PIjeIoudsd dew paje[nwIs Y} WOLJ PIJOBIIXI A GO BIE J0J SAIMIORI) YL, "6(O]N UONEBI0]
10} SaImoely 9s19AsuLI) pajernuwirs Jo dew Aysua(q (q) "6OIN UOIIBI0] J0J SaInjoryj as1oAsuen) Jo dew Aysua(g (B) 61V 2In31g

wg

(W

(P)

@)

N
N
'N
o N
N A

0c-8l
8L -9l
9l -yl
vi-¢l

o
—
1

'
AN < © o

CHEEEE D

AN < © ©
1

i

(w/bs/w
Aysusp
ainjoely

-~

©)

@

(®)

186



"Z1IN uo11ed0] 10§ $33s anbijqo jo dew aimoely pajenuis (Y)

"Z1IA Uoned0] 10y s319s anbijqo jo dew axmoeiy (3) [ [N uonedo[ 103 s3as anbrjqo jo dew axmoely pajenwis (J) "1 [N UONBIO[
10} s39s anbijqo jo dew armoes, (9) "duIdIuE U0 AINUD Y} J0J pajeroudd dew paje[nuiis dy) WO pajoBNXd ATk A BoIR
J0J sarmoely Ay, ‘7N Uonedo] 10y sarmoely anbrjqo pajernuis jo dew K1sud(q (p) "7 1IN Uonedo] 10§ sarmoely anbrjqo jo dew
Aisua(q () ~duIdnuE uojd], AU Y} J0J poreroudd dew paje[nwirs oY) WO PAIOLNXd ATk [ [N BIIR J0J SAUINIORI) YL "[[IN
uoneodo[ 10§ sainjoety anbrjqo pajernuis jo dew Aysua(q (q) [N UOnBIO[ 10§ sainjoesy anbrqo jo dew Kyisua(q () 07y 2In3i

N
N
'N
o N
N A

0c-8l
8L -9l
9l -yl
vi-¢l

o
—
1

'
AN < © o

CHEEEE D

AN < © ©
[
o

(w/bs/w
Aysusp
ainjoely

-~

©)

€) Q)

(@) : (®)

187



"€ TN uonedo] 10y s319s anbrjqo jo dew aimjoesy pajenuwis (p) € [N UOnBI0] 10J s3as anbrjqo jo dew
aInyoel] (9) "QUIONUE U0, INUS Y} 10J pajerousd dew poje[nuuls dy) WO PIJOBIIXd I8 ¢ [JA BIE 10J SoInjoet) oyl "¢ N
uoneodo[ 10 sanjoesy anbrjqo pajernuis jo dew AJsud(q (q) "€ N Uoned0[ 10J sarmoely anbijqo jo dew Aysua(g (B) 17V 2In31g

zz< IR (P

wg

—
2 E
32
FRZR
®© S =
s O &
[T o

(@) (®)

188



"QUITONUR UO0JJ], AINUD oY) JOJ pajesousd dewr paje[nuis oy) Woij poloenxd ‘zOJA UoIedo] Jo

saxmoey 10y dew 1930 (P) "ZOIN uoneoo[ 10 dew 193snjo a1njoer,] (9) "dUI[ONIUE U0, AIIUD Ay} 10J pajeroudd dew pajernuuis

oy} WOIJ PAIOBIXd ‘[ OJA UONEBIO[ Jo sarmoey 10J dew 193sn) (q) "[QJAN uoneso] 1oy dew 10sn[o armoel, (e) :zgy g

W

AVA %W,v e

. MG OIS
66°0 = BOJE /A

ury 0

86°0 = eale

pa}osauu09 pa}oauu09
|euonoe. |euonoe.
P) ()
AJIAIOBUU0D
1O uonewnsa
Japun
ul pajnsal
wljy iy, uonejaban
0} anp ejep
ou JO ealy
290 = eale G'0 = eale
pa]oauu0d pa}0auuU09
[euonoely |euonoel
(@

(®)

189



"QUITONIUR UO0JJ], AINUD 9y} JOJ pajesousd dewr paje[nuuis oy) Woij poloenxd ‘f(JA UoIedo] Jo
samoely Joy dewr 193sn[) (P) "HOIN Uoned0[ J0J dew 193sn[o 21moel] (9) "UIONUE U0IJ], AINUS Y} J0] pajerousd dew pajernurs
o} WO} PAIOBIXD ‘COJA UONEBOIO[ JO sarmoey 10J dew 193sn))) (q) "€ uoneso] 1oy dew 10sn[o armoel, (e) :¢gy i

w w
10 =eale \ (X : == S T ) 080 = eale
p8}o8auu0d S o s (p) p8}oauu0d ©)
|euonoel |leuonoe.
——
w w
68°0 = eaJE AWM MRS €6°0 = BOJE
pa}08uUU0D , pa}08uUU0D
|euonoe. |euonoe.

@ ®

190



"QUITONIUR UO0JJ], AINUD oY) JOJ pajesousd dewr paje[nuiis ay) Wolj poloenxd ‘9JA UOIed0] JO
somoely 1oy dewr 193sn[) (P) "9QIA Uonedo[ Joj dew 193sn[o 2Inoel (9) "UIONUER U0IJ], AINUS Y} J0] pajerousd dews pajernurs
oy} WOIJ PAIOBIXD ‘GOJA UONEBIO[ JO sarmoely 10J dew 193sn))) (q) "SOIN uoneso] 1oy dew 10sn[o armoel (e) 47y oI

ury 0 uy

G9'0 = eale b RPN G9'0 = eale
Po}osUU0D : Po}osUU0D
|euonoe.l (p) [euonoel

AjIAi08UU0D
JO uonew}se

Japun ul
pejnsai eyep
ou Jo ealy

TR
A0S (@
oo, W

9 DY o

" % /
palneEs e 1!/ -

Dk S R0 B Ma
,,‘V._

wy, wy,

b

et
é:—,.’ _,W,/\)..,/‘ 3

i

"

/6°0 = eale N WY Gg'0 = eale
pPa}oaUUOD \ Pa}0aUUO0D
|euonoel Q) |euonoel

(®)

191



Fractional

connected

=0.69

area

4m

Fractional

connected

area=0.73

4m

192

Fractional

connected

Fractional

=0.78

area

connected

area =0.82

4m

4m

Figure A25: (a) Fracture cluster map for location M07. (b) Cluster map for fractures of location M07, extracted from the

simulated map generated for the entire Teton anticline. (¢) Fracture cluster map for location M08. (d) Cluster map for fractures

of location M08, extracted from the simulated map generated for the entire Teton anticline.
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simulated map generated for the entire Teton anticline. (¢) Fracture cluster map for location M10. (d) Cluster map for fractures

Figure A26: (a) Fracture cluster map for location M09. (b) Cluster map for fractures of location M09, extracted from the
of location M 10, extracted from the simulated map generated for the entire Teton anticline.
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