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ABSTRACT 

 

COMPARISON OF MODELS IN DETERMINING SARCOPENIA STATUS IN 

OLDER ADULTS  

 

Ashley Ann Walter, Ph.D. 

 

The University of Oklahoma, 2011 

 

Supervising Professor: Joel T. Cramer, Ph.D. 

Sarcopenia is defined as the age-related loss of muscle mass and function.  The 

purposes of this study were to examine the consistency among the four different 

sarcopenia classification models and explore new variables to improve sarcopenia 

classification, to determine the effects of aging on body composition, functionality, 

muscle quality, handgrip strength, and skeletal muscle index (SMI) and determine the 

relationships among muscle mass, functionality, mobility, muscle quality, handgrip 

strength, and SMI. Ninety-one women (age = 68.5±7.9 yrs; height = 162.1±6.5 cm; 

weight = 64.7±11.1 kg) and 76 men (age = 70.7±6.2 yrs; height = 176.1±6.6 cm; 

weight = 82.8±10.6 kg) volunteered to participate in one of two separate studies: a 

two-phase clinical trial (phase one = A08, n=53; phase two = A09, n=54) sponsored by 

Abbott Nutrition conducted in 2008 and 2009 entitled “Evaluation of AN777 in 

Elderly Subjects,” and a clinical trial (G10, n=60) sponsored by General Nutrition 

Corporation conducted in 2010 entitled “Effects of Whey Protein Supplementation on 
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body Composition, Muscular Strength, and Mobility in Older Adults.” Participants 

completed body composition, handgrip strength, functionality and mobility, and bench 

press and leg press 1-repetition maximum (1-RM) strength assessments. A full body 

dual-energy x-ray absorptiometry (DEXA) scan was completed to assess total body 

lean mass (LM), total body fat mass (FM), and appendicular lean mass (ALM). 

Additional calculations included estimated total body skeletal muscle (TBSM), non-

skeletal muscle lean mass, and SMI (ALM/ht2).  Handgrip strength was measured as 

the average of the two highest of three trials using a hand-held digital or hydraulic 

handgrip dynamometer with their dominant hand. The timed get-up-and-go (TGUG) 

was performed on a measured and marked 3-meter course using an armless wooden 

chair and a digital stopwatch. Bench press and leg press strength were assessed using a 

five-repetition maximum (5-RM) protocol on a standard Olympic bench and 45° hip 

sled, respectively, 5-RM was then used to estimate 1-RM strength. Participants were 

classified as sarcopenic or non-sarcopenic using four different cut-off value criteria 

established by Baumgartner et al. (1998), Delmonico et al. (2007), and two methods 

by Newman et al. (2003): (a) ALM/ht2 and (b) residuals method.  Handgrip muscle 

quality (HGMQ), upper- and lower-body muscle quality (UMQ and LMQ, 

respectively) were also calculated as maximal strength divided by dominant arm 

muscle mass, total arm muscle mass, or total leg muscle mass, respectively.  Fourteen 

separate two-way analyses of variance (ANOVA) (gender [men vs. women] x age [50s 

vs. 60s vs. 70s vs. 80s]) were used to analyze LM, FM, ALM, TBSM, handgrip 

strength, TGUG, SMI, SMI residuals, non-skeletal muscle lean mass, bench press and 

leg press 1-RM, HGMQ, UMQ, and LMQ. Independent t-tests were used to analyze 
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gender differences amongst all variables and one-way ANOVAs used to analyze 

differences between age groups (50s: n=20, 60s: n=63, 70s: n=60, and 80s: n=11). In 

addition, Kendall’s W and chi-squared tests were performed along with binary logistic 

regression to identify the best cut-off values and models in classification of sarcopenia. 

PASW version 18.0 was used for all statistical analysis (Chicago, Illinois, United 

States). An alpha of p≤0.05 was used to determine statistical significance for all 

analyses. Independent t-tests indicated that participants were significantly younger in 

G10 than A08 or A09 (p<0.05) and men were younger than the women in G10 

(p<0.05).  Men were taller, weighed more, and had lower body fat percentages than 

women in all studies (p<0.05), with no differences between studies. Using the 

Baumgartner et al. (1998), Newman et al. (a) (2003), and Delmonico et al. (2007) cut-

off values to classify sarcopenia, sarcopenic individuals were significantly older than 

non-sarcopenic individuals (p<0.05). However, there were no age-related differences 

when using the Newman et al. (b) cut-off values (p>0.05). There were no gender- or 

age-related differences for TGUG (p>0.05). There was a significant interaction for 

handgrip strength (p<0.05). Men in their 50s, 60s, and 70s had greater handgrip 

strength than women (p<0.05), men in their 50s, 60s, and 70s had greater handgrip 

strength than those in their 80s, and women in their 50s and 60s had greater handgrip 

strength than those in their 70s and 80s (p<0.05). Men had greater values for ALM, 

TBSM, LM, non-skeletal muscle LM, bench press and leg press 1-RM, HGMQ, 

UMQ, LMQ, SMI, or SMI residuals (p<0.05) than women. Men and women in their 

50s, 60s, and 70s had significantly greater LM, TBSM, ALM, and LB 1-RM than 

those in their 80s (p<0.05). Non-skeletal LM was greater for individuals in their 60s 
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than in their 80s (p<0.05). Upper-body 1-RM was greater for individuals in their 60s 

than those in their 80s (p<0.05).  LMQ was greater for individuals in their 50s than 

those in their 80s (p<0.05), and SMI was greater for individuals in their 60s than those 

in their 80s (p<0.05). There were low to moderate positive correlations among UMQ 

and LMQ (r=0.39) and leg press 1-RM and handgrip strength (r=0.47) in women, 

UMQ and leg press 1-RM (r=0.48), LMQ and HGMQ (r=0.31), HGMQ and bench 

press 1-RM (r=0.37), handgrip strength and upper-body 1-RM (r=0.67), and handgrip 

strength and leg press 1-RM (r=0.57) in men.  Men and women had low to moderate 

positive correlations among LMQ and handgrip strength (r=0.43 and r=0.32, 

respectively) and bench press 1-RM (r=0.58 and r=0.49, respectively). There were low 

to moderate negative correlations among UMQ and TGUG (r= -0.27), age and LMQ 

(r= -0.35), HGMQ (r= -0.34), and leg press 1-RM (r= -0.46) in women, and age and 

handgrip strength (r= -0.30 and r= -0.54, respectively) and bench press 1-RM (r= -

0.37 and r= -0.28, respectively) in men and women.  In men and women, SMI was 

positively correlated with bench press 1-RM (r=0.59 and r=0.53, respectively), leg 

press 1-RM (r=0.65 and r=0.61, respectively), handgrip strength (r=0.52 and r=0.37, 

respectively), LM (r=0.72 and r=0.70, respectively), ALST (r=0.83 and r=0.82, 

respectively), LMQ (r=0.43 and r=0.36, respectively), and TBSM (r=0.83 and r=0.82, 

respectively). In women, SMI was positively correlated with FM (r=0.29) and 

negatively correlated with age (r= -0.37) and negative correlated with TGUG (r= -

0.42) in men. The prevalence of sarcopenia ranged from 31-44% in women and was 

13% in men based off of the four different cut-off values. To identify which of the four 

cut-off values would be the most appropriate to adapt as the standard in classifying 
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sarcopenia, Kendall’s W and chi-squared tests were performed.  The highest 

agreement in distributions was among Newman et al. (a) (2003) and Delmonico et al. 

(2007), with 100% agreement (r=1.00, p<0.001), followed by Baumgartner et al. 

(r=0.760, p<0.001). Exploratory binary logistic regression was calculated to determine 

if sarcopenia status (sarcopenic vs. non-sarcopenic) could be determined with theory-

based predictors (age, gender, LM, handgrip strength, and TGUG). The best predicted 

probability estimates were derived with Newman et al. (a) (2003) or Delmonico et al. 

(2007) as the dependent variable in classifying sarcopenia using gender and lean mass 

as the predicting variables. The results of the present study confirm previous findings 

that functional strength and muscle quality were negatively correlated with age and 

that LM and functional strength decreased in the 7th and 8th decades of life. Previous 

studies have used cut-off values established by Baumgartner et al. (1998), however, 

using ALM/m2 and cut-off values established by Newman et al. (a) (2003) or 

Delmonico et al. (2007) may be more appropriate in classifying sarcopenia.  A larger 

epidemiological database needs to be established in order to generalize the proper cut-

off values to the entire elderly population.
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CHAPTER I 

INTRODUCTION 

Aging presents a multitude of potential complications ranging from diabetes 

and cardiovascular disease, to reduction in bone mineral density and loss of muscle 

mass among others.  The reduction of muscle mass as a result of age was first 

scientifically investigated in the early 1930s by Macdonald and Critchley.[14] The term 

sarcopenia is derived from the Greek roots sarc and penia meaning flesh and loss, 

respectively, and was originally defined by Rosenberg as the age-related loss of 

muscle mass.[60]  Reduction in muscle mass plays a role in the loss of function, and 

subsequently, changes in quality of life. For example, Grimby et al.[29] reported that 

78-81 year old men and women had on average 10-30% lower muscle fiber area and a 

much higher risk of falls and disability.[41,45] Recently, the European Working Group 

on Sarcopenia in Older People (EWGSOP) developed a working definition of 

sarcopenia, which indicated that the individual must exhibit low muscle mass 

accompanied by either low muscle strength and/or low physical performance.[15]  

Measurements of total-body and appendicular muscle mass have been 

compared using bioelectrical impedance analysis (BIA),[38,58] dual-energy x-ray 

absorptiometry (DEXA),[2,28,43,68] magnetic resonance imaging (MRI),[40,43,48] and axial 

computed tomography (CT)[28,48,68] scans.  Although MRI and CT scans are the most 

accurate way to assess muscle mass, these methods are not cost-effective and require 

trained personnel to conduct and interpret the scan.  Skeletal muscle index (SMI) is a 

commonly used method in identifying relative muscle mass.  SMI can be calculated 

from appendicular skeletal muscle mass (the sum of fat-free mass of the arms and legs, 
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expressed as ALM, ALST, or ASM) using DEXA and/or BIA.[2,17,25,39,44,57]  This index 

is calculated the same way as body mass index (BMI), but specific to muscle mass 

rather than body mass. However, the cut-off values used to determine what is 

categorized as normal or sarcopenic based on a criterion method has yet to be 

validated.  In attempt to establish universal criteria for sarcopenia classification, 

Baumgartner et al.[2] suggested reference cut-off values based on the average of 229 

young men and women from the Rosetta Study[25] and cross-referenced in 301 elderly 

men and women from the New Mexico Aging Process Study.[2,3]  Similar to 

osteoporosis classifications, individuals in the reference group were considered 

sarcopenic if their SMI was greater than two standard deviations below the young 

adult average. For Baumgartner et al.,[2] SMI was calculated as ASM divided by height 

in meters squared, which set the cut-off values at less than 7.26 kg/m2 for men and 

5.45 kg/m2 in women.  However, many studies published since Baumgartner et al.[2] 

have established additional reference cut-off values to classify sarcopenia based on 

different populations.  Although there are inconsistencies in cut-off values, most 

previous studies have used ASM/m2 to estimate SMI.[2,17,37,39,57]   

As an assessment of functional strength, handgrip strength is traditionally used 

to provide insight regarding upper-body muscle loss with aging.[24]  A loss in handgrip 

strength can impair the ability to complete activities of daily living, such as opening 

jars or carrying groceries or laundry.[63]  Likewise, impaired gait speed or balance 

instability could result in difficulties completing daily tasks.  One study by Kallman et 

al.[42] investigated hand grip strength across all ages (20-100 years) and over a 9-year 

follow-up period.  The authors reported that only a fraction of the participants lost a 



3 
 

significant amount of handgrip strength over the course of the study. Furthermore, 

handgrip strength had a greater correlation with age than muscle mass.  Kallman et 

al.[42] examined the decrease in handgrip strength across age and longitudinally and 

reported that handgrip strength declined from age 40 on as did muscle mass.[42] Most 

studies have evaluated handgrip strength and age cross-sectionally and have reported a 

decrease in handgrip strength as age increased.[5,19,42,47,63] However, decrements in 

handgrip strength can only be partially associated with muscle mass, therefore, 

handgrip strength alone cannot accurately reflect age-related changes in muscle mass.  

The addition of lower body mobility and strength assessments in older individuals may 

help in accurately identifying sarcopenic individuals, such as the short physical 

performance battery (SPPB), isometric leg extensor and flexor strength, dynamic 

strength (i.e., leg press), and timed get-up-and-go (TGUG). Lauretani et al.[47] reported 

muscle power to be the best determining factor in poor mobility in the elderly, and the 

least sensitive was calf muscle cross-sectional area. The SPPB includes several tests 

including repeated chair raises, gait speed test, and standing balance tests.[47]  An 

alternative is the TGUG, where in one timed series, an individual must rise from a 

chair, walk 3-meters, turn around an obstacle, and return to the seated position, which 

assesses balance, gait speed, and leg strength all in one measurement. A score greater 

than 9 seconds is considered impaired in older adults.[7] 

Yet another alternative to muscle mass, strength, and function is to assess 

muscle quality.  Ivey et al.[36] recently investigated the effects of short-term (9-week) 

strength training and detraining (31 weeks) on muscular strength, muscle mass, and 

muscle quality in young and old men and women.  The authors reported that all groups 
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significantly improved 1-RM, muscle volume, and muscle quality, but young women 

expressed the greatest increase in muscle quality compared to all other groups.  

Following 31 weeks of detraining, all groups except older women maintained the 

improvements in muscle quality.  The authors suggested there were non-muscle mass 

factors contributing to the strength gains in all groups, which may have been related to 

neural adaptations. Muscle quality was calculated by the authors as the dominant 

quadriceps one-repetition maximum (1-RM) divided by the quadriceps muscle volume 

of the dominant leg as assessed by MRI.  Alternatively, several studies have reported 

muscle quality as isometric,[53,56] isokinetic,[28,49,56] or dynamic[36] maximal strength 

using various exercises relative to muscle mass either estimated from anthropometric 

assessment, estimated from single cross-sectional images from MRI or CT,[49] or 

actual muscle volume from multi-slice MRI or CT.[11]  

 Currently, the consistency among methods for classifying individuals as 

sarcopenic is unknown. There is a need to identify which model or combination of 

models would most accurately classify sarcopenia in the older adult population.  

Because previously established cut-off values have been developed on independent 

homogeneous populations, more specific criteria is needed to establish a valid and 

reliable model for the diagnosis of sarcopenia Variables to consider for such a model 

might include muscle quality, muscle strength, functionality assessments (i.e., 

handgrip strength and timed get-up-and-go), and body composition.  The incorporation 

of new criteria may be necessary to generalize the overall model.   

 

Purposes of the Study 
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1. The primary purpose of this study was to examine the consistency among the 

four different sarcopenia classification models and explore new variables to 

improve sarcopenia classification. 

2. The secondary purpose of this study was to examine the effects of aging on 

body composition, muscle strength, functionality, and muscle quality.   

3. The tertiary purpose of this study was to examine the relationships among age, 

muscle mass, and functionality in determining sarcopenia status. 

 

Research Questions 

The research questions for this study are: 

1. Do muscle quality, functionality, muscle mass, and strength change similarly 

across age? 

2. How many individual subjects are consistently classified as sarcopenic with all 

4 models? How many individuals are classified as sarcopenic with any 2 or 3 

of the 4 models? 

3. What is the consistency among the 4 different ways to classify sarcopenia? 

4. Do muscle quality and/or functionality improve consistency of classification? 

5. What are the relationships among age, muscle quality, SMI, and functionality? 

6. What are the common traits among all the subjects that are consistently 

classified? 

 

Hypotheses 
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1. It was hypothesized that muscle quality, functionality, muscle mass, and 

strength decrease with age. 

2. It was hypothesized that similar proportions of individuals are classified by any 

two SMI methods, however, not always the same two methods. 

3. It was hypothesized that the proportion of individuals classified as sarcopenic 

would be greater using the Baumgartner et al. method than the other three 

methods. 

4. It was hypothesized that the addition of muscle quality and functional capacity 

to low muscle mass will more accurately classify sarcopenic individuals.  

5. It was hypothesized that there are positive correlations among muscle quality 

and SMI and negative correlations among SMI and functionality, and 

functionality and SMI. 

6. It was hypothesized that individuals classified as sarcopenic by any method 

also had low handgrip strength, slow get-up-and-go times, and/or low bench 

and leg press 1-RM strength. 

 

Study Variables 

Independent Variables 

 Gender (male vs. female) 

 Age (50s vs. 60s vs. 70s vs. 80s) 

 Sarcopenia Status (sarcopenic vs. non-sarcopenic) 

Dependent Variables 

 Age—chronological age of participant. 
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 Lean mass (LM)—total body adipose-free lean mass estimated from total body 

DEXA scan. 

 Fat mass (FM)—total body fat mass estimated from total body DEXA scan. 

 Appendicular lean mass (ALM), appendicular lean soft tissue (ALST), or 

appendicular skeletal mass (ASM)—the sum of the left and right arm and leg 

lean mass, as determined by DEXA. 

 Total body skeletal muscle (TBSM)—total body adipose-free lean tissue 

estimated using the equation developed by Kim et al.[44] 

TBSM = (1.13 x ALST) – (0.02 x age) + (0.61 x sex) + 0.97, where male=1 and 

female =0 

 Handgrip strength—maximal amount of force the dominant hand can produce 

isometrically. The average two highest of three attempts was considered 

handgrip strength. 

 Timed get-up-and-go (TGUG)—timed assessment of mobility of functionality 

 Skeletal muscle index (SMI)—the amount of total body skeletal muscle mass 

(kg) relative to height (m) squared. 

 SMI residuals—difference between estimated ASM and actual ASM from 

DEXA.  Estimated ASM was calculated using gender-specific equations.[57] 

Men: predicted ALM (kg) = -22.48 + 24.14 x height (m) + 0.21 x fat mass (kg) 

Women: predicted ALM (kg) = -13.19 + 14.75 x height (m) + 0.23 x fat mass 

(kg)  

 Non-skeletal muscle lean mass—Bone- and adipose-free lean tissue calculated 

as total body lean mass – ALST. 
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 Upper-body 1-repetition maximum (1-RM)—maximal bench press weight 

estimated from 5-RM bench press. 

 Lower-body 1-RM—maximal leg press weight estimated from 5-RM leg press. 

 Handgrip muscle quality (HGMQ)—dominant hand handgrip strength relative 

to dominant arm lean mass. 

 Upper-body muscle quality (UMQ)—relative upper body strength, expressed 

as upper body 1-RM divided by total arm lean mass 

 Lower-body muscle quality (LMQ)—relative lower body strength, expressed 

as lower body 1-RM divided by total leg lean mass 

 

Delimitations 

The delimitations of this study are: 

1. One hundred sixty seven men and women 55-90 participated in one of three 

studies conducted between 2008 and 2011. 

2. All participants were required to complete a health history questionnaire and 

sign a written statement of informed consent prior to any testing. 

3. All participants were non-diabetics, free of cancer, any kidney or liver disease. 

4. No participants had taken any protein, weight loss supplements, calcium or 

vitamin D within 2 months of participation. 

5. No participants had any type of surgery within 1 month of study participation.  

6. All participants had a BMI 18.5-30 kg/m2. 
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7. No participants had the presence of uncontrolled blood pressure or 

cardiovascular disease, no presence of arthritis that may inhibit handgrip 

measurement. 

8. Participants recruited were not actively participating in a structured exercise 

program. 

9. Variables were measured using: 

a. Dual-energy x-ray absorptiometry (DEXA) measuring body 

composition. 

b. Handgrip dynamometry measuring dominant handgrip strength. 

c. Timed get-up-and-go with a digital stopwatch on a 3-meter course to 

measure gait speed, balance, and stability. 

d. 5-repetition maximum bench and leg press to measure upper and lower 

body absolute strength. 

 

Limitations 

The limitations of this study are: 

1. Only a small sample of the elderly population from the Oklahoma City 

metropolitan area volunteered to participate and results may not accurately 

represent the entire elderly population. 

2. Not a truly random sample was taken due to local recruitment (local churches, 

Huston Huffman Center, campus faculty, etc.).  Additionally, the study sample 

may not represent a completely random sample as all participants are 

volunteers. 
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3. The variables were measured by different investigators from one study to the 

next, therefore, there may be intra-tester error in the measurements taken. 

4. A different handgrip dynamometer was used in A08 and A09 than was used in 

G10. 

5. Maximal effort was required for testing sessions and slight discomfort from 

exertion may have prevented true maximal effort. 

6. Only participants in A09 and G10 (n=114) completed 5-RM bench press and 

leg press strength assessments. Whereas all other measurements were 

completed on all 167 participants. 

7. Upper-body muscle quality was calculated as bench press 1-RM divided by 

total arm lean mass, however, the primary mover of bench press is the 

pectoralis major and axial muscle mass was not included in the calculation. 

Therefore, UMQ as calculated in the present study does not accurately reflect 

the quality of all muscles involved in the movement. 

 

Assumptions 

The assumptions of this study are: 

Theoretical Assumptions 

1. Accurate health history will be provided. 

2. Maximal exertion will be put forth during testing measurements. 

3. Equipment is calibrated and working properly. 

Statistical Assumptions 

1. The populations from which the samples are drawn are normally distributed. 
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2. The sample will be randomly selected. 

3. The variability of the samples in the experiment are exactly or nearly equal 

(Homogeneity of Variance). 

4. Independence of observations; there is no correlation, dependence, or 

association between groups (all groups are independent of one another). 

5. Data are based on a parametric, interval or ratio measurement scale for all 

parametric tests. 

6. Logistic regression outcome must be discrete. 

7. Logistic regression: ratio of cases to variables, for every variable, there is a 

sufficient number of cases. 

8. Logistic regression: absence of multicollinearity 

9. Logistic regression: independence of errors, between-subjects design not 

within-subjects. 

 

Operational Definitions 

Functionality—the ability to perform activities of daily living without difficulty, 

including walking, carrying groceries, opening containers, standing from a seated 

position, etc.  

Elderly—adults aged 65 years or older. 

Comorbidity—the occurrence of a disease or illness in the presence of another disease 

or illness.  

Sarcopenia—the age-related reduction in muscle mass and function. 
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Skeletal Muscle Index—calculated as appendicular skeletal muscle divided by height 

in meters squared. 

Five-Repetition Maximum (5-RM)—A measure of absolute strength, the amount of 

weight an individual can lift no more than five times in good form. 

Muscle Quality—muscular strength relative to the amount of muscle mass used. 

 

Abbreviations  

HT – Height (cm) 

BM – Body mass (kg) 

CT – Computed tomography 

MRI – Magnetic resonance imaging 

pQCT – peripheral quantitative computed tomography 

BIA – bioelectrical impedance analysis 

DEXA – dual-energy x-ray absorptiometry 

FM – fat mass 

FFM – fat-free mass 

ASM – appendicular skeletal muscle 

ALM – appendicular lean mass 

ALST – appendicular lean soft tissue 

TBSM – total body skeletal muscle 

TBMM – total body muscle mass 

RSMI – relative skeletal muscle index 

SMI – skeletal muscle index 
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MQ – muscle quality 

5-RM – five-repetition maximum 

1-RM – one-repetition maximum 
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CHAPTER II 

REVIEW OF LITERATURE 

Recently, the European Working Group on Sarcopenia in Older People 

(EWGSOP) convened and established recommendations for identifying and possibly 

diagnosing sarcopenia.  The parameters include low muscle mass, plus either low 

muscle strength or low physical performance.[15]  The primary index used in 

classifying sarcopenia is low muscle mass, which can be measured by magnetic 

resonance imaging (MRI), dual-energy x-ray absorptiometry (DEXA), or bioelectrical 

impedance analysis (BIA).  Several researchers have identified different ways to 

evaluate muscle mass across the age spans with various assessment 

tools.[2,30,34,37,38,44,57]  For example, skeletal muscle index (SMI) is defined as 

appendicular muscle mass divided by height in meters squared (kg/m2), [2] which is the 

same conceptual formula as the body mass index (BMI).  However, body composition 

of body mass is not accounted for by BMI, whereas SMI considers muscle mass in the 

arms and legs, which is particularly important for elderly adults as sarcopenia 

diminishes mobility and functionality facilitated by appendicular muscle.  When 

attempting to use SMI as a tool for diagnosing sarcopenia, cut points have been 

established in several populations,[2,17,57] however, there is no universally adopted cut 

points, best for identifying sarcopenia.  Furthermore, there is no criterion method for 

how to obtain or calculate SMI, and it is not entirely clear-if SMI is the most 

appropriate screening tool for sarcopenia.  Therefore, the general purpose of this 

review is to identify any apparent differences in body composition, and functional 

performance among gender and measurement issues in an aging population. 
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Differences in Skeletal Muscle Mass Across Age and Gender 

Peak muscle mass is often achieved in the second or third decade if life, 

maintained through the fourth decade, and diminished thereafter - beginning in the 

fifth decade.[21,42]  Subsequently, a similar pattern exists for the development and 

eventual loss of muscle strength over the age span.[28,33,42]  Of concern is the age-

related reduction in muscle mass is proportionally greater for larger muscle groups 

than smaller muscles.[40]  Furthermore, men tend to experience a greater reduction in 

muscle mass than women with advanced age, perhaps related to having more to start 

with.[40]  The goal of this literature review section is to explore the age-related changes 

in skeletal muscle mass, how these patterns compare between genders, and hypotheses 

developed to explain sarcopenia. 

 

Baumgartner, Waters, Gallagher, Morley, and Garry, 1999[4] 

 It is evident that men and women lose muscle mass as they age.  The purpose 

of this study was to identify any factors that may influence the reduction on skeletal 

muscle mass in an older population.  A sample of 121 males and 180 females 65-97 

years old was collected from the New Mexico Aging Process Study (NMAPS).  

Dietary intake, sex hormones, physical activity questionnaire, grip strength, and a 

DEXA were recorded for all participants after IRB approval and consent.  Partial 

correlations and stepwise regression was run on the data to determine relationships 

among variables and the strongest predictors of the reduction in muscle mass with age.  

The authors reported that both genders experience a reduction of muscle mass and 



16 
 

corrected muscle strength with advancing age and that grip strength decreased with 

age, independent of muscle mass.  Physical activity levels ranged from low to 

moderate across genders.  There were positive associations with physical activity and 

muscle mass and negative correlations with fat mass and physical activity.  In men, 

free-testosterone, physical activity, cardiovascular disease, and IGF-1 were 

significantly associated with muscle mass, whereas, only total fat mass and physical 

activity were associated with muscle mass in women.  After controlling for these 

factors, age is not a significant contributor to muscle mass.  The authors concluded 

that there is a multifactorial effect on muscle loss and strength loss in healthy men and 

women.  Muscle loss is related to lack of physical activity in both genders, and 

hormone status is an important factor in maintaining muscle mass in men only. 

 

Kim, Wang, Heymsfield, Baumgartner, and Gallagher, 2002[44] 

 The purpose of this study was to develop an equation for predicting TBSM 

from DEXA, compared to MRI as the actual SM measure.  Four hundred fourteen men 

and women of diverse ethnicities ≥18 years old were recruited to participate in this 

study.  About two-thirds of the participants were included as the model development 

group, while the others were to be utilized as the model validation group.  Height and 

weight were measured before each participant underwent a full body DEXA scan.  

Using the scan analysis, appendicular lean soft tissue (ALST) was calculated from the 

sum of all lean tissue in the right and left arms and legs.  ALST was then used as a 

variable in multiple regression along with age, race, and gender as predictors of 

TBSM.  Actual TBSM was determined from ~40 axial slices from MRI.  Between 
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group differences were tested using Student’s t-tests and Pearson’s correlations were 

used to identify any relationships between ALST from DEXA and TBSM from MRI.  

The authors reported that there was no significant difference for BMI between men 

and women in the model development group, however, the men were taller, weighed 

more, and were younger.  All men had a lower percent fat and greater TBSM.  Women 

in the model validation group were younger and taller, had greater ALST and TBSM 

than the women of the model development group.  Upon model development, ALST 

was the strongest predictor of TBSM, with r2 = 0.96 and standard error of 1.63 kg.  

Two additional models incorporating age and sex as predictors of TBSM were 

included and stayed in the final model, and when race was included, it did not 

contribute significantly to the model.  The final prediction model was TBSM = (1.13 x 

ALST) – (0.02 x age) + (0.61 x sex) + 0.97.  The prediction model for TBSM was not 

significantly different from actual measured TBSM.  The authors concluded that 

TBSM can be accurately predicted using a single DEXA scan, age, and gender in a 

diverse population of individuals, and because age and gender are factors of the 

equation, it can be used across all populations. 

 

Narici, Maganaris, Reeves, and Capodagilo, 2003[55] 

 The purpose of this cross-sectional study was to determine if changes in 

muscle architecture influence the prevalence of sarcopenia in addition to the reduction 

in muscle mass and to address the functional significance of the changes in muscle 

architecture.  Sixteen men 70-81 years old and 14 men 27-42 years old volunteered to 

participate in this study.  All participants were healthy, recreationally active, and free 
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of injury.  Computerized tomography was completed on all participants to determine 

anatomical cross-sectional area (ACSA) from the largest of a sequence of slices 

completed beginning at the knee space.  The maximal contour of the medial 

gastrocnemius was selected and used as ACSA, and medial gastrocnemius muscle 

volume was calculated from all sequential slices using a spline algorithm to account 

for missing slices and the sum of all of the determined areas and multiplied by slice 

thickness (10mm).  Muscle architecture was determined at a set joint angle of 115°, 

and an ultrasound was conducted to measure resting fascicle length and pennation 

angle at the midbelly of the dominant medial gastrocnemius.  Physiological cross-

sectional area (PCSA) was determined as the ratio of volume and fascicle length.  Any 

age-related differences were determined using paired-samples t-tests and Pearson’s 

product moment correlation from linear regression was used to compare the 

associations among variables.  The results indicated that the younger men had 

significantly higher maximal ACSA, muscle volume, PCSA, fascicle length, and 

pennation angle.  There was a significant correlation between pennation angle and 

maximal ACSA.  Although expected, there were no significant differences in the ratio 

of ACSA to PCSA between the older and younger men.  The authors concluded that 

aging significantly affects muscle architecture and these alterations may have negative 

effects on muscle function with advanced age. 

 

Kim, Heshka, Gallagher, Kotler, Mayer, Albu, Shen, Freda, and Heymsfield, 2004[43] 

 The purpose of this study was to develop and validate models in prediction of 

adipose-free total-body skeletal muscle with MRI and DEXA.  The study involved two 
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phases, one included participants receiving a full body MRI for adipose-free total-

body skeletal muscle and a DEXA scan for appendicular lean soft tissue (ALST).  A 

multi-slice MRI was performed to complete the total-body skeletal muscle as inter- 

and intramuscular adipose-free skeletal muscle and a full body DEXA scan was 

analyzed for right and left arm and leg fat-free and bone-free lean mass, identified as 

ALST.  Adipose-free total-body skeletal muscle was predicted using a model with 

ALST determined by DEXA as the predicting variable.  The second phase was to 

cross-validate the prediction models in subjects with different body compositions.  The 

model development group consisted of healthy men and women over the age of 18 

with a BMI under 35 kg/m2 and the model validation group consisted of anorexic 

females, recreationally active men and women, and men and women before 

acromegaly treatment.  The phase one prediction equations were developed using 

linear regression with race and gender as fixed factors and MRI-derived adipose-free 

total-body skeletal muscle as the dependent variable.  The best fit model was 

determined as the one with the lowest standard error and appropriate independent 

variables such as ALST, age, body weight and body fat where the adjusted R2 was 

maximized without violating the multicollinearity assumption.  The second phase was 

the model validation with a diverse sample of individuals.  The difference between the 

actual measured skeletal muscle and the value from the predicted equation was 

compared using student t-tests.  Individuals in either the model development or model 

validation group were 18-88 years old of varying ethnicities.  ALST calculated from 

the DEXA scan was the strongest predictor in explaining MRI-derived adipose-free 

total-body skeletal muscle (model 1), followed by a minimal influence from age 
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(model 2), gender and race (model 3), and body weight and body fat did not add to the 

models therefore were not included.  All of the models were validated with a diverse 

group of individuals classified as athletic and acromegalic, but did not accurately 

predict skeletal muscle in anorexic females.  Model 1 was, however, validated in 

anorexics with a BMI >16 kg/m2.  The authors could conclude that a full body DEXA 

scan, along with age, gender, and race can accurately predict MRI-derived adipose-

free total body skeletal muscle as an alternative, low cost, and quick method in 

determining skeletal muscle.   

 

Cuthbertson, Smith, Babraj, Leese, Waddell, Atherton, Wackerhage, Taylor, and 

Rennie, 2005[16] 

 The purpose of this study was to determine if older men had a reduced anabolic 

response to different amounts of essential amino acids (EAAs).  Twenty-four older and 

20 younger men were assessed for BMI and skeletal muscle mass prior to muscle 

biopsies and determination of fractional synthesis rate of the vastus lateralis.  All 

participants were divided into groups of four and consumed 0, 2.5, 5, 10, 20, or 40g of 

EAAs in water.  Fractional synthesis rate was assessed over 3 hours and muscle 

biopsies were taken before and after the 3 hour period.  There were no observed 

differences in basal muscle protein synthesis, however, the older individuals displayed 

a reduced anabolic response to the EAA ingestion.  RNA:protein and MPS:RNA ratios 

were reduced in the older individuals after 10g of EEA, as were the responses of the 

anabolic signaling pathway.  The authors concluded that older individuals had a 

reduced capacity of MPS, and in general, EAAs can stimulate MPS independent of an 
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insulin response. Therefore, older individuals may not benefit from a high protein diet 

or supplementation, notwithstanding the nutrient availability of such. 

 

Delmonico, Kostek, Johns, Hurley, and Conway, 2008[18] 

 The purpose of this study was to determine how DEXA compares to 

computerized tomography (CT) in tracking changes in thigh muscle mass after 

strength training in 50 healthy adults 50-83 years old.  All participants underwent a 

full body DEXA scan, used to determine body composition and thigh muscle volume 

for bone and adipose-free muscle mass (considered fat free mass) before and after a 10 

week strength training program.  A peripheral CT scan was completed on both thighs 

to determine the muscle volume before and after the strength training program.  The 

muscle volume on the untrained leg served as a control to factor biological variation.  

All muscle mass was outlined, excluding bone and adipose tissue, and was noted as 

FFM.  One-repetition maximum strength was determined for the knee extensors using 

a Keiser leg extension machine.  All strength training sessions were performed on the 

same equipment with the right leg, three times per week for 10 weeks.  Paired sample 

t-tests were conducted to determine any differences between the trained and untrained 

legs’ strength and muscle mass and Bland and Altman plots were created with the 

differences between DEXA and CT plotted against the average of each method.  The 

authors reported that men and women improved their 1-RM strength after the strength 

training program in both the trained and untrained legs.  DEXA and CT indicated an 

increase in thigh CSA in all participants and both legs, but the increase in thigh FFM 

was much greater in the trained leg.  Men and women exhibited similar percent 
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changes in thigh FFM using DEXA and CT, as well as no percent change differences 

in trained and untrained legs when comparing either method.   There was a strong 

correlation between DEXA and CT thigh FFM before and after the strength training 

program.  The slopes of the percent change lines measured by CT vs. DEXA were not 

significantly different, but the DEXA was shown to underestimate by 0.25% for every 

1% change in muscle mass.  In some cases CT indicated an increase in thigh FFM, 

whereas DEXA indicated a decrease.  Overall, thigh FFM was overestimated by 

DEXA before and after the 10 week strength training program.  The authors concluded 

that DEXA may not be sensitive enough to detect small changes in muscle mass after a 

training intervention. 

 

Development of Sarcopenia Cut-off Values 

In 1990 and again in 1997, Heymsfield et al.[32] and Gallagher et al.,[25] 

respectively, suggested using the sum of total arm and leg lean mass from a single 

DEXA scan to estimate appendicular skeletal muscle mass as opposed to total body 

potassium due to the utility and availability of DEXAs for clinical assessment of 

muscle mass.  Skeletal muscle mass decreases with age and has been linked to 

functional impairment in older individuals.[33,42]  In attempt to generalize ASM across 

men and women of varying heights, ASM was divided by height squared, similar to 

BMI.[2] Therefore, the purpose of this review section is to assess the various studies 

that use ASM/ht2 in different populations for establishing sarcopenia cut points. 
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Baumgartner, Koehler, Gallagher, Romero, Heymsfield, Ross, Garry, and Lindeman, 

1998[2] 

 There were multiple purposes of this study, to determine a method to estimate 

relative skeletal muscle mass, to estimate prevalence of sarcopenia in elderly men and 

women, and finally to determine any relationships among sarcopenia, health 

behaviors, physical impairment, mobility, and comorbidities.  Several datasets were 

used from the New Mexico Elder Health Survey including healthy men and women, 

Hispanic and non-Hispanic whites where sub-samples underwent a full body DEXA to 

determine body composition.  Data from two other studies were used as reference data 

for the analyses, one included 301 elderly men and women, and the other included 229 

men and women 18-40 years old used to define the cut points for sarcopenia.  The 

survey included medical histories and questionnaires including record of dietary 

intake, mental status, behavior, and attitude assessment.  Other health parameters such 

as glucose tolerance, electrocardiograms, and clinical and biochemical nutrient 

chemical analyses were assessed.  Anthropometric measures were assessed including 

height, weight, hip and waist circumference, and triceps and subscapular skinfolds on 

the right side.  Grip strength was measured on the dominant hand three times and the 

average of the two highest was used for analysis.  From the DEXA scan, appendicular 

skeletal muscle mass (ASM) and body composition were determined as suggested by 

Heymsfield[31].  A subsample of the individuals was divided into two groups, one as an 

equation development group and the other ad an equation validation group.  An 

equation to predict ASM was determined from gender, anthropometric, handgrip 

strength, and body composition data and an equation to predict percent fat was 
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developed using gender and anthropometric data.  The best predictive equations were 

ASM = (0.2487 x weight) + (0.0483 x height) – (0.1584 x hip circ.) + (0.0732 x grip 

strength) + (2.5843 x sex) + 5.8828 and percent body fat = (0.2034 x waist circ.) + 

(0.2288 x hip circ.) + (3.6827 x ln(triceps skinfold)) – (10.9814 x sex) – 14.3341.  

These prediction equations were validated against the actual, measured values 

obtained by the DEXA and further tested with an independent sample from the Aging 

Process Study.  The agreement of the predicted and actual values was determined by 

regression and tested to see if the slope and intercept were significantly different than 

1 and 0, respectively.  Additionally, the fit of the predicted equations was determined 

using the residuals, as the difference between the actual and predicted value, against 

age and ethnicity.  Sarcopenia was identified as a measure of relative muscle mass and 

calculated using ASM (kg)/height2 (m2), similar to that of BMI, which takes into 

account height differences across gender.  The cut points to identify sarcopenia were 

set at less than 2 standard deviations below the average for the younger adults’ 

reference data previously mentioned.  The authors reported that the predicted percent 

body fat and predicted ASM were highly correlated with their respective estimates 

from the DEXA.  The predictive equations were found to overestimate muscle mass at 

the higher levels.  Predicted body fat was within ±4% and muscle mass within ±1.7kg.  

The authors could not determine any alternative factors affecting the equations related 

to body composition and muscle mass.  Muscle mass was lower in the elderly men and 

women when compared to the younger men and women.  The prevalence of 

sarcopenia was 60% in individuals over 80 years old and only 13.5-24% in individuals 

under 70 years old.  The incidence of sarcopenia was also greater in Hispanics than 
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non-Hispanics.  The authors concluded that older individuals have reduced muscle 

mass and incidence of sarcopenia increases with age.   

 

Newman, Kupelian, Visser, Simonsick, Goodpaster, Nevitt, Kritchevsky, Tylavsky, 

Rubin, and Harris, 2003[57] 

 The purpose of this study was to compare two different models that identify 

sarcopenia in relation to lower extremity function.  The Health Aging and Body 

Composition (Health ABC) Study was conducted in 2 cities that recruited 2,984 70-79 

year old adults.  A DEXA was performed on all participants and then classified using 

one of two methods.  One method was aLM adjusted to height squared as established 

by Baumgartner et al.[2] and the other was based on residuals of predicted aLM using 

height and fat mass.  For both methods, the lowest 20% of the distribution of residuals 

was used to classify individuals as sarcopenic and not sarcopenic.  A predicted aLM 

was determined differently for men and women, the predicted aLM was calculated for 

males using the equation (aLM (kg) = -22.48 + 24.14 x height (m) + 0.21 x fat mass 

(kg)) and for females using (aLM (kg) = -13.19 + 14.75 x height (m) + 0.23 x fat mass 

(kg)).  Gait speed, balance and chair stands were performed to determine lower 

extremity function.  Additional confounding variables such as obesity, race, age, 

alcohol or tobacco use, and physical activity were also recorded.  The authors reported 

that fat mass and percent body fat were higher in women than men.  Men also had 

higher values of lean body mass.  Within each gender, black men and women had 

higher values for aLM/ht2 than their white counterparts.  Black women also had higher 

values of lean mass and higher BMI and physical activity than white women.  The 



26 
 

lowest 20% of the population was considered sarcopenic regardless of the method 

used based on the arbitrary cut point of 20%.  Not everyone that was classified by both 

methods, where 202 men and 155 women were classified by both, but 85 men and 155 

women were only classified by one method.  Of the individuals classified by the 

aLM/ht2 method, less than 9% were overweight and obese, however, for the residual 

method, 26.9% men and 42.7% women were overweight and classified as sarcopenic.  

There were no age differences in those classified as sarcopenic by either method.  In 

men and women, BMI was higher in those classified as sarcopenic by the residuals 

method than the aLM/ht2 method.  More black men were classified as sarcopenic by 

the aLM/ht2 method and there were no racial differences in women.  Conversely, the 

proportion of women with lower extremity limitation was higher when classified by 

the residual method and there was no difference in men.  Overall, regardless of which 

method classified an individual as sarcopenic, they typically had reduced lower 

extremity function.  The authors suggest the inclusion of height and fat mass in 

determining the prevalence of sarcopenia in overweight individuals. 

 

Tankó, Movsesyan, Mouritzen, Christiansen, and Svendsen, 2002[66] 

 In women, the incidence of sarcopenia is one of the leading causes of disability 

and mortality.  The purpose of this study was to identify any hormone and age-related 

variations in total body muscle mass and appendicular muscle mass.  754 healthy 

women 18-85 volunteered to participate in different studies in a local area and were 

included in the present analysis after meeting specific criteria.  Height, weight, and a 

DEXA scan were collected on each individual.  Appendicular lean tissue mass was 
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determined as the sum of bone mineral-free and adipose-free lean mass from each arm 

and leg, and total lean tissue mass was all bone mineral-free and adipose-free lean 

tissue.  ALM and TLM were reported individually, and relative to height in meters 

squared.  The results of this study indicated there was a strong negative correlation 

between age and ALM or TLM.  The incidence of sarcopenia was identified using 

criteria similar to that established by Baumgartner et al.[2] was identified using 216 

women 18-39 years old and resulted in a gradual increase in those affected from the 

fourth decade of life and every decade thereafter.  The authors gathered that, although 

apparently healthy, aging women are progressively stricken by the onset of sarcopenia 

with advancing age. 

 

Delmonico, Harris, Lee, Visser, Nevitt, Kritchevsky, Tylavsky, and Newman, 2007[17] 

The purpose of this study was to compare two methods used to classify 

individuals as sarcopenic to predict functional impairment in men and women.  Two 

thousand nine hundred seventy six men and women 70-79 years old participated in 

body composition and physical function testing for the Health Aging and Body 

Composition Study.  After completion of a DEXA scan, aLM was calculated using the 

aLM/ht2 model as established by Baumgartner et al.[2] and then calculated in an 

equation that incorporated height and fat mass.  The predicted aLM was calculated 

using different equations for males using (aLM (kg) = -22.59 + 24.21 x height (m) + 

0.21 x fat mass (kg)) and for females using (aLM (kg) = -13.21 + 14.76 x height (m) + 

0.23 x fat mass (kg)).  The difference between the actual aLM compared to the 

predicted aLM was considered the residual aLM.  Similar to Newman et al.,[57] 
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sarcopenia was defined as the lowest 20% of the study’s sample from either model.  

Participants were asked if they had persistent lower extremity limitation, defined as 

difficulty walking one quarter mile or climbing stairs without rest over two 6-month 

periods. Participants were asked of this self-report over a 5-year follow-up.  Actual 

physical performance was also assessed using functionality tests such as sit-and-stand 

tests, gait speed, and standing balance, all of which are included in the short physical 

performance battery (SPPB).  Physical activity status was also recorded and used as an 

estimation of caloric expenditure.  Additionally, men and women were analyzed 

separately due to apparent differences in skeletal muscle mass and lower extremity 

performance was used as a covariate based on its association with the incidence of 

sarcopenia.  The authors reported that the women had lower total body mass, LM, and 

aLM, with higher total fat mass and percent body fat than the males.  There were also 

differences among white and black men for total body mass, aLM, fat mass, and 

percent body fat and the incidence of sarcopenia was lower among the black men and 

women using the residuals method.  Black women also had significantly higher total 

body mass, BMI, LBM, aLM, fat mass and percent body fat than white women.  

Women that were classified as sarcopenic based on the residuals method had a higher 

incidence of lower extremity limitation, however, men and women classified as 

sarcopenic using the aLM/m2 method had a reduced incidence of lower extremity 

limitation than their non-sarcopenic counterparts.  Men classified as sarcopenic using 

either method had reduced lower extremity performance scores than non-sarcopenic 

men.  Lower extremity performance was lower for sarcopenic women identified using 

the residuals method, but only after adjusting for confounding variables such as age, 
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race, and alcohol consumption.  The authors concluded that the residuals method 

identified low muscle mass more accurately than the aLM/m2 method, especially in 

women.  Additionally, if an individual had reduced muscle mass, especially relative to 

fat mass and height, then their incidence of disability would be greater due to the 

individual’s inability to carry their body weight and maintain functional movement. 

 

Iannuzzi-Sucich, Prestwood, and Kenny, 2002[34] 

 The this study wanted to confirm the incidence rate of sarcopenia based on the 

cut points of less than 2 standard deviations below the gender-specific young adult 

average for skeletal muscle mass as established by Baumgartner and colleagues[2].  

Baseline data was compiled from four different longitudinal studies involving older 

men and women.  Participants underwent a DEXA scan, the SPPB, and different 

questionnaires regarding physical activity and quality of life.  ASM was determined 

and expressed relative to height2, and TSM was also calculated and expressed relative 

to height2.  Prevalence of sarcopenia in the present group of older adults was 22.6% 

and 26.8% for women and men, respectively.  The best predictors of ASM were BMI 

for women, and BMI, mean power, and bio-available testosterone in men.  The authors 

concluded that any intervention that may influence any of the predictors may be 

necessary in the reduction of the incidence of sarcopenia in this particular population. 

 

Alternative Methods to Determine Sarcopenia 

DEXA has become a popular clinical means to assess bone density and skeletal 

muscle mass.  Using the DEXA imaging software to establish regions of interest (ROI) 
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for segmenting and compartmentalizing the appendicular versus axial skeleton also 

provides density-based values for axial and appendicular muscle mass.[32]  Segmenting 

the muscle mass of the left arm, right arm, left leg, and right leg may help predict the 

incidence of sarcopenia, because the appendicular musculature is largely responsible 

for mobility and functionality.  Another, simple but less common method for 

determining segmental muscle mass comes from the use of bioelectrical impedance 

analysis (BIA).[37-39]  Using BIA, intra and extracellular water and adipose are factored 

into determining TBSM, and introduce less error into determination of such.  Several 

studies have determined alternative definitions and cut points of sarcopenia than those 

determined using DEXA.[38,48,58]  Therefore, the purpose of this review section is to 

assess the studies that utilize BIA in determining sarcopenia cut points in older 

individuals. 

 

Janssen, Heymsfield, Baumgartner, and Ross, 2000[38] 

 The purposes of this study were to develop an equation to predict total body 

skeletal muscle mass using BIA and to cross-validate the developed equation.  Height, 

weight, and actual total body muscle mass (TBSM) were determined in 388 men and 

women across two different laboratories using magnetic resonance imaging (MRI), 

and then all participants underwent BIA testing where all resistance measurements 

were adjusted for height.  Each Laboratory developed an equation to predict TBSM 

from BIA. After each equation was developed, the data were pooled to generate a final 

regression equation of [TBSM = (height(cm)2 / R(Ω) x 0.401) + (gender x 3.825) + 

(age x -0.071) + 5.102], where gender: men=1 and women=0.   The r2 of the equation 
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was 0.86 and standard error was 9%.  The equation was developed using only 

Caucasian data and can be applied to African Americans and Hispanics, however, 

under estimated TBSM in Asians.  The average difference between the TBSM from 

BIA and MRI were not significantly different, however, there is a significant positive 

correlation between the difference in the MRI and predicted BIA TBSM.  The authors 

reported that the greater the actual TBSM, the more BIA over-predicted TBSM, and 

those with lower actual TBSM, the more the BIA prediction underestimated TBSM.  

Additional confounding variables such as adipose tissue and fat-free lean mass did not 

add significantly to the prediction model, therefore they were not included.  The 

authors concluded that the equation developed is valid to use in predicting TBSM in 

healthy adults 18-86 years old. 

 

Janssen, Heymsfield, and Ross, 2002[39] 

 The purpose of this study was to identify the prevalence of sarcopenia in older 

adults and to identify the relationship of sarcopenia with functional impairment.  

Fourteen thousand eight hundred eighteen adults 18 and older participated in this study 

and underwent assessment of height, weight, and BIA.  Six thousand four hundred 

fourteen men and women 18-39 years old were used as a reference group to determine 

the normal and sarcopenic cut-offs, then skeletal muscle mass was determined on 

4,502 men and women 60 years and older.  They also reported functional impairment 

(the inability to walk one quarter mile or climb 10 stairs) and physical disability 

(inability or difficulty performing activities of daily living and ability to lift or carry 10 

pounds).  Whole body BIA was measured with electrodes on the right wrist and ankle, 
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where skeletal muscle mass was calculated using an equation by Janssen et al.[38] 

Skeletal muscle mass was predicted with [(height2/BIA resistance x 0.401) + (gender x 

3.825) + (age x -0.071)] + 5.102 = SM (kg).  The prediction of SM was highly 

correlated (0.93) with measured muscle mass from MRI and the standard error at 9%.  

Absolute skeletal muscle mass was converted to a percentage of total body mass 

[(SM/BM)*100].  Sarcopenia was classified using the younger adults’ gender-specific 

means and -1 standard deviations below the young adult mean was considered class I 

sarcopenia and -2 standard deviations below the young adult mean was considered 

class II sarcopenic.  Additional confounders that were factored into analysis include 

age, race, healthy behaviors, comorbidity, and BMI.  The cut-offs for class I 

sarcopenia were set as 37-31% for men and 28-22% for women, class II was set at 

<31% for men and <22% for women.  The prevalence of sarcopenia increased from 

the third to the sixth decade and then plateaued.  The authors reported there were a 

greater percentage of sarcopenic women than sarcopenic men over the age of 60.  The 

incidence of physical disability and functional impairment was also greater among 

class I and class II sarcopenic men and women.  The authors concluded that reduced 

skeletal muscle mass is significantly associated with functional impairment and 

physical disability in older Americans, especially women.  

 

Janssen, Baumgartner, Ross, Rosenberg, and Roubenoff, 2004[37] 

 The purpose of this study was to determine skeletal muscle cut points for 

identifying risk of disability in older adults.  Four thousand four hundred forty nine 

individuals 60 years and older participated in the Third National Health and Nutrition 
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Examination Survey (NHANES III). Total body muscle mass was determined relative 

to height using BIA and physical disability was assessed from a standard 

questionnaire.  Muscle mass was determined using an equation previously developed 

by Janssen et al.[38] and considered skeletal muscle index (SMI).  Polynomial 

regression was run with lines fit to the pattern of percent of individuals disabled 

against SMI (kg/m2). Cut points were determined and identified as low-, moderate-, 

and high-risk disability at specific SMIs.  The cut points were determined 

independently of gender where there is the lowest incidence of disability and the 

highest SMI.  The likelihood ratio or positive and negative results based on frequency 

distribution of individuals with disability were used to determine the upper and lower 

limits of disability risk characterized by SMI for both men and women.  The cut points 

established for women were ≤6.75 kg/m2 and ≤5.75 kg/m2 for moderate- and high-risk, 

and for men the cut points were identified at ≤10.75 kg/m2 and ≤8.5 kg/m2.  The 

authors reported that women with physical disability increased from 10.8 % and 

14.1% in women with low- and moderate-risk SMI, respectively, to 25.8% in those 

with a high-risk SMI, and a similar, but reduced pattern was observed in men with 

2.8%, 8.1%, and 14.8% in low-, moderate-, and high-risk SMI individuals, 

respectively.  The SMI cut points used to predict physical disability were also used to 

predict functional limitation (climb 10 stairs or carry 10 pounds) where increased 

limitation was found to appear at lower SMIs.  The authors concluded that these cut 

points used to determine disability risk will be useful in determining morbidity risk 

among individuals with and without sarcopenia. 
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Muscle Quality 

Reduced muscle mass can impair overall functionality and mobility associated with 

healthy aging.[51]  Understanding the implications of sarcopenia is vital in determining 

mortality risk and disability.[61]  Remaining functional and having the ability to 

maintain quality of life by completing activities of daily living are important for 

healthy living.  The term “muscle quality” typically calculates strength relative to 

muscle mass.[49]  The importance of muscle quality stems from the disassociation 

between muscle strength and muscle mass in the elderly.[9,49,53,67]  That it, a loss in 

muscle mass may not always be matched by a concomitant loss in muscle strength or 

vice versa.  Therefore, monitoring muscle quality may not only account for sarcopenia, 

but also monitor the risk for functional impairment.[37]  Therefore, the purpose of this 

review section is to introduce the utility of muscle quality as relative muscular strength 

and the effects with aging or exercise interventions in maintaining or improving 

muscle quality. 

 

Lynch, Metter, Lindle, Fozard, Tobin, Roy, Fleg, and Hurley, 1999[49] 

The purpose of this study was twofold, to identify differences in muscle quality 

of the arms and legs across age and secondly, to determine if either gender or muscle 

group affects the relationship between MQ and age.  Seven hundred three subjects 19-

93 years old volunteered to participate in the Baltimore Longitudinal Study on Aging, 

however, only 502 individuals underwent the body composition testing.  Height, 

weight, and body composition from a full-body DEXA scan were assessed on all 

participants.  Concentric and eccentric peak torque was also measured on the dominant 
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arm flexors and the leg flexors.  Arm and Leg muscle quality was calculated as 

concentric or eccentric peak torque divided by the muscle mass of the respective limb.  

One way ANOVAs were run to determine differences across age for all variables and 

multiple regression analyses were performed on all peak torque, muscle quality, and 

arm-leg differences for peak torque and muscle quality by age and gender. In the event 

of an age by gender interaction, men and women were analyzed separately.  Men were 

reported as taller and heavier, with more muscle mass and less body fat than their 

female counterparts.  Body mass was significantly lower for the oldest decade of men 

when compared to the youngest men and there was no trend for body mass in women 

across age.  Men had reduced arm and leg muscle mass from their 60s and older, 

whereas women had reduced arm muscle mass from their 60s and older but leg muscle 

mass was reduced from their 40s and older.  Arm and leg eccentric and concentric 

peak torque decreased as age increased for men and women.  Arm muscle quality 

decreased between men and women as age increased.  Leg muscle quality was higher 

in men than women and was sustained until the 5th decade, then accelerated after then 

in both men and women.  Alternatively, arm muscle quality was higher than leg 

muscle quality in men and women and the rate of decline in arm and leg muscle 

quality was the same, where the decline in leg muscle quality was greater than arm 

muscle quality in women.  The authors concluded that muscle quality is influenced by 

gender and age, with differences among muscle quality of different body parts and 

muscular contractions.  
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Tracy, Ivey, Hurlbut, Martel, Lemmer, Siegel, Metter, Fozard, Fleg, and Hurley, 

1999[67] 

 Upper and lower body muscle quality declines with age in both men and 

women.  The purpose of this study was to examine the effect of unilateral lower body 

strength training in men and women 65-75 years old.  Twelve men and 11 women 

volunteered to participate in the program.  All participants were sedentary who had not 

worked out in 6 months or more.  All participants underwent a full-body DEXA scan 

to determine bone-free lean body mass.  Strength was assessed on an isokinetic 

dynamometer for peak torque and force production.  A 1-repetition maximum was also 

assessed using a Keiser knee extension machine for familiarity on the equipment used 

for the training program and to determine the training load.  All participants trained 

their dominant knee extensors for approximately 9 weeks, completing 5 sets of varying 

repetitions with varying rest periods.  Participant’s thighs were scanned using an MRI 

to determine muscle cross-sectional area before and after training. The quadriceps 

muscle was selected as the region of interest for each successive slice and summed to 

determine muscle volume and calculated volume was divided by isometric and 1-RM 

values to represent muscle quality.  As expected, men were taller, weighed more with 

higher fat free mass, and had less body fat.  Men alone had a slight increase in body 

mass after training, where neither gender had experienced changes in percent fat or fat 

free mass.  The strength training program resulted in an increase in strength for both 

groups and men had a greater absolute increase than women, but the relative strength 

gains were similar for men and women.  Strength gains were significantly higher in the 

trained than the untrained leg.  Isometric peak force increased in the trained leg in men 
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only.  Additionally, there was no significant increase in the untrained leg isometric 

peak force in both men and women.  Isometric peak torque increased in the trained leg 

of the men but not women, but not significantly different from the untrained leg in 

both genders.  There were no changes in isometric peak torque at the faster speed 

during isokinetic strength testing.  Quadriceps muscle cross-sectional area increased in 

the trained leg of both genders.  The men demonstrated greater absolute increases in 

quadriceps muscle cross-sectional area.  There was also a slight increase in the 

untrained leg’s quadriceps muscle cross-sectional area in men but not women.  The 

trained leg had greater increases in muscle cross-sectional area than the untrained leg 

for both genders.  Muscle quality was significantly improved in the trained and 

untrained leg of men and women when expressed as 1-RM per unit of muscle volume 

and there was no difference in genders.  The increase in muscle quality was greater in 

the trained leg then the untrained leg of men but not women.  When expressed at peak 

force per unit of muscle volume, there was no significant change from the training 

program for either leg or gender.  The authors indicated that the cross-education of the 

untrained leg in men and women could be due to neural or paracrine factors.  

Additionally, older men and women can exhibit improvements in trained and cross-

educated legs’ muscle quality when expressed as 1-RM per unit of muscle volume, 

and that men had greater absolute increases in 1-RM strength after a 9 week strength 

training program. 

 

Inaba, Kurajoh, Okuno, Imanishi, Yamada, Mori, Ishimura, Yamakawa, and 

Nishizawa, 2010[35] 
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 In a clinical population, maintenance of muscle mass to retain physical 

function is imperative.  The purpose of this study was to examine if a lower creatinine 

level in diabetic hemodialysis patients is related to lower muscle mass or muscle 

quality.  Three hundred ten individuals undergoing hemodialysis, with and without 

diabetes mellitus participated in this study with their age ranging from 26 to 89 years 

old.  Blood sampling was performed before the Monday hemodialysis session and 

frozen until needed for analysis.  Handgrip strength was determined using the non-

dominant hand’s highest of three trials.  Each participant underwent a full-body DEXA 

scan.  Each scan was analyzed for fat free mass by subtracting fat mass from total dry 

weight.  Body mass and lean mass were expressed relative to height and reported as 

BMI and LMI.  ALMI was also calculated using the sum of both arm’s lean mass.  

Muscle quality was calculated as handgrip strength divided by total body LMI.  There 

were no differences between diabetic and non-diabetic for age, gender, weight, BMI, 

whole body LMI, or ALMI.  Hand grip strength was significantly lower in diabetic 

patients.  The ratios of handgrip strength to LMI, handgrip strength to ALMI, 

creatinine to LMI, and creatinine levels to ALMI were all lower in diabetic patients.  

There were significant correlations between creatinine levels and LMI, creatinine 

levels and handgrip strength, and handgrip strength and LMI in diabetic and non-

diabetic patients.  Regression slopes were significantly different for the relationship 

between handgrip strength and LMI for diabetics and non-diabetics, but the slopes of 

the relationship between creatinine and handgrip strength or creatinine and LMI were 

not significantly different.  The slopes for creatine levels and LMI were significantly 

different in larger groups of similar patients, where the slope for diabetics was lower 
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than the non-diabetics.  The authors concluded that muscle quality is well-reflected by 

creatinine levels in diabetic patients undergoing hemodialysis, and may be more 

representative of poor muscle quality than reduced muscle mass or malnutrition. 

 

Overall, there are apparent differences among aging men and women’s muscle mass 

and functional performance.  There are several studies that have compared the 

accuracy of different measurements of muscle mass ranging from MRI, CT, DEXA, 

and BIA.[38,43,48,58,68]  Additionally, using DEXA, there are multiple studies that have 

identified cut points for identification of sarcopenia in older adults, however, there is 

an inconsistency among these different studies’ cut points.[2,17,57] Although each study 

has justification for the cut points identified, there needs to be a single factor that 

clinicians can use to correctly identify the incidence of sarcopenia in any population. 
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CHAPTER III 

METHODOLOGY 

Subjects and Research Design 

Data from 167 men and women between the ages of 55 and 90 years were 

included in the present ex post facto study design. Table 1 contains the mean ± 

standard deviation of the sample demographics. Baseline data from two separate 

clinical trials were analyzed ex post facto. The two separate studies included: a two-

phase clinical trial (phase one = A08; phase two = A09) sponsored by Abbott Nutrition 

conducted in 2008 and 2009 entitled “Evaluation of AN777 in Elderly Subjects,” and a 

clinical trial (G10) sponsored by General Nutrition Corporation conducted in 2010 

entitled “Effects of Whey Protein Supplementation on body Composition, Muscular 

Strength, and Mobility in Older Adults.” For each clinical trial, participants were 

recruited from the University of Oklahoma-Norman Campus faculty and the 

surrounding Oklahoma City metropolitan area by flyers and verbal recruitment 

(Appendix F).   

The inclusion and exclusion criteria for these clinical trials were similar. All 

participants were free from diabetes, active cancers, kidney or liver diseases, and they 

had not taken any protein, weight loss, calcium, or vitamin D nutritional supplements 

within at least 2 months of their screening visit. None of the subjects had undergone 

any type of in-patient surgery within 1 month of their screening visit. All participants 

for trials A08 and A09 had a BMI of 20-30 kg/m2 and for trial G10 their BMI was 

18.5-28.5 kg/m2; therefore, the overall BMI for all subjects was between 18.5-30 

kg/m2. All subjects were untrained in resistance and aerobic exercise, and there was no 
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presence of uncontrolled blood pressure or arthritis that may have inhibited handgrip 

measurement. Blood analyses of BUN and creatinine, as confirmed by attending 

physicians, indicated no renal impairment.  

Each subject completed testing for (a) body composition, (b) handgrip strength, 

(c) functionality, and (d) bench press and leg press strength.   All procedures were 

explained to participants and they then signed an informed consent (Appendix C), 

HIPAA (Appendix D), and health and exercise status questionnaire (Appendix E). Any 

additional variables that were used in this study were calculated using one or any 

combination of these four aforementioned raw data. Of the 167 participants in all of 

the studies, 53 did not complete 5-RM bench press and leg press strength testing, but 

did complete all other assessments. 

Procedures 

Body Composition 

All body composition was assessed using dual-energy x-ray absorptiometry (DEXA) 

(Lunar Prodigy Advance, PA+300532, Madison, WI).  The device was calibrated daily 

with a quality assurance phantom with varying bone mineral density standards and 

percent fat standards and scans were not performed on subjects unless the quality 

assurance passed, where the measured density was within a predetermined range of the 

phantom’s actual densities.  Participants visited the laboratory after an 8-hour fast.  

Prior to each scan the participant’s height, body mass, gender, birthdate, and race were 

entered in to the enCORE software (v.10.50.086, GE Healthcare, Madison, WI) by a 

certified technician.  Each participant was asked to remove all removable metal objects 

from their body, and they were instructed to lay supine on the padded scan table with 
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the hands pronated (lying flat on the scanner bed) and positioned near their body (but 

not touching the hip). The legs were kept adducted by a Velcro strap wrapped around 

the distal leg, just above the ankles.  A total body scan was selected with the 

appropriate body thickness (thin, standard, or thick, based on chest depth), and each 

scan lasted approximately 6 minutes. Scans were saved and analyzed after dividing the 

body into specific regions of interest (ROI). The right and left arms were separated 

from the torso by positioning the ROI through the neck of the humerus and the hands 

were separated from the hips. The lower-body was divided with a midline between the 

thighs and legs, and it was separated from the axial skeleton with a line through the 

necks of the femurs. Using results from the whole body scan, segmental lean mass 

(right arm, right leg, left arm, and left leg), total arm lean muscle mass, total leg lean 

muscle mass, total-body lean mass, and fat mass were used in further analyses. 

Additional variables used were also calculated from primary variables derived from 

the DEXA scan including ALST[32] (Eq. 1), non-skeletal muscle lean mass (Eq. 2), and 

TBSM (Eq. 3).  ALST (Eq. 1) was calculated as the sum of the adipose-free muscle 

mass of the arms and legs.  TBSM was predicted using an equation developed by Kim 

et al.[44] using ALST, age, and gender (Eq. 3). 

ALST = ∑ሺܔ܉ܜܗܜ	ܕܚ܉	ܖ܉܍ܔ	܍ܔ܋ܛܝܕ	ܛܛ܉ܕ ൅   ሻܛܛ܉ܕ	܍ܔ܋ܛܝܕ	ܖ܉܍ܔ	܏܍ܔ	ܔ܉ܜܗܜ

 (Eq. 1) 

Non-skeletal muscle lean mass = total lean mass – ALST (Eq. 2) 

TBSM = (1.13 x ALST) – (0.02 x age) + (0.61 x gender*) +0.97 (Eq. 3) 

         *Gender: male = 1 and female = 0 

 



43 
 

Sarcopenia Classification 

 Four different methods of classifying sarcopenia were adopted from the 

literature. Table 2 displays each literature source, the population used to develop the 

classification system, the cut-off values for classification, and how those cut-off values 

were determined. 

The first method used was proposed by Baumgartner et al.[2] using the DEXA scan, 

appendicular lean mass (ALM, which is also referred to as ASM and ALST in this and 

other studies) was determined as the sum of lean mass in the arms and legs as 

suggested by Heymsfield.[32]  ASM was expressed relative to height squared (similar 

to how BMI is expressed), and consequently was considered the skeletal muscle index 

(SMI).  The cut-off values used to classify sarcopenia were gender-specific and used 2 

standard deviation units below the mean young adult sample used in the study.  

Newman et al.[57] proposed two methods to classify sarcopenia. The first method used 

the same SMI value (ASM/ht2) (Newman (a)). The second method used by Newman et 

al.[57] predicted gender-specific ALM (Newman (b)) with the following equations: 

Men: predicted ALM (kg) = -22.48 + 24.14 x height (m) + 0.21 x fat mass (kg) 

 (Eq. 4) 

Women: predicted ALM (kg) = -13.19 + 14.75 x height (m) + 0.23 x fat mass (kg) 

 (Eq. 5) 

The difference between the predicted ALM and the actual ALM was considered the 

residual.  The cut-off points for both methods proposed by Newman et al.[57] were 

determined as the lowest 20% of the sample studied in that paper.  Finally, Delmonico 

et al.[17] used the ALM/ht2 method suggested by Baumgartner et al.[2] and adapted it to 
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their population of older men and women.    The cut-off values established by 

Delmonico and colleagues[18] were also set at the lowest 20% of the study’s 

population.   

 

Handgrip Strength 

Isometric handgrip strength of the dominant hand was assessed using either a 

hand-held digital handgrip dynamometer (Detecto, DHS Series, Webb City, MO) or a 

hydraulic adjustable-handle handgrip dynamometer (Jamar, Sammons Preston Roylan, 

Boilingbrook, IL). A non-adjustable grip width (Detecto) was used for all subjects in 

A08 and A09, while subjects in G10 used the Jamar dynamometer with an adjusted 

grip width such that the 2nd phalanx of the middle finger was perpendicular to the 

device.  Subjects performed the handgrip tests in a standing position with the arm near 

the torso, the elbow flexed at 90°, the forearm pronated to a neutral position, and the 

dynamometer head facing the tester directly in front of the participant. The scores 

from three trials were recorded, and the average of the two highest trials was used for 

subsequent analyses.  Furthermore, handgrip muscle quality was calculated with the 

following equation: 

Handgrip Muscle Quality = Handgrip strength (kg) / dominant-arm lean mass 

(kg) (Eq. 6) 

 

Functionality 

The timed get-up-and-go was performed on a measured and marked 3-meter 

course on solid laminate tile flooring using an armless wooden chair and a digital 
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stopwatch. Each participant began the test in a seated position with their feet behind a 

line marked on the floor. They were instructed to stand up, walk along the 3-meter 

line, turn around at the end of the line, and return to the start position as quickly as 

they could. The stopwatch began at the first sign of movement and stopped once the 

participant returned to the seated position. Time was recorded in seconds. 

 

Bench Press and Leg Press Strength 

Participants in A09 and G10 (n=114) completed bench press and leg press 

strength assessments, respectively. The 5-RM bench press exercise was performed on 

a standard free-weight bench (TuffStuff, Pomona, California) with an Olympic bar. 

The 5-RM leg press exercise was performed using a plate-loaded hip sled with a 45º 

incline (Paramount Fitness Corp., Los Angeles, California). For the bench press, 

participants were instructed to lay flat on the bench with their eyes directly under the 

bar, hands about shoulder width apart with a closed pronated grip. After receiving a 

lift-off from a spotter, subjects lowered the bar to their chest, paused briefly, and then 

pressed the bar to full extension of the elbows without locking them out. For the leg 

press, subjects were instructed to sit in the seat with their back flat against the backrest 

and were instructed to grasp the handles of the device tightly to avoid the buttocks 

losing contact with the seat during the exercise. Subjects placed their feet in the middle 

of the platform about shoulder-width apart, and this foot position remained constant 

for all the subsequent leg press tests. Subjects were instructed to lower the platform 

until the legs reached 90º of flexion at which point they were instructed to fully extend 

the legs (i.e., 0° of leg flexion). After a complete demonstration and explanation of the 
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exercises, each participant completed two warm-up sets with the first set of 10 

repetitions at about 55-65% and the second set of 6-7 repetitions at about 75-80% of 

their estimated 1-RM. Three to 5 minutes of rest was allowed between sets. The load 

was increased to the subject’s perceived 5-RM. Participants were instructed to 

complete 5 repetitions through their full range of motion. If they completed 5 

repetitions and failed on the 6th attempt, testing was complete. If they performed more 

or fewer than 5 repetitions, they rested and the load was increased or decreased 5-10%, 

respectively, for their subsequent attempt. The 5-RM was determined within 5 

attempts for the majority of participants. Once the 5-RM load was determined, the 1-

RM was estimated with a prediction chart[20] using the following equation: 

Epley[20] Predicted 1-RM = (1 + (0.0333 x reps)) x rep load (Eq. 7) 

 The estimated bench press and leg press 1-RM values were used in subsequent 

analyses. The bench press testing was always performed prior to the leg press. Muscle 

quality was calculated with the following equations:   

Upper-body muscle quality = bench press 1-RM (kg) / ∑ሺܜܐ܏ܑܚ	ܕܚ܉	ۻۺ ൅

 ሻ (Eq. 8)ۻۺ	ܕܚ܉	ܜ܎܍ܔ

Lower-body muscle quality = leg press 1-RM (kg) / ∑ሺܜܐ܏ܑܚ	܏܍ܔ	ۻۺ ൅

 ሻ (Eq. 9)ۻۺ	܏܍ܔ	ܜ܎܍ܔ

 

Data Analyses 

Eight separate independent t-tests were performed to examine age differences 

among individuals classified as sarcopenic or non-sarcopenic using each of the four 

methods.  Fourteen separate two-way (2 x 4) full-factorial analyses of variance 
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(ANOVA) (gender [men vs. women] x age [50s vs. 60s vs. 70s vs. 80s]) were used to 

analyze LM, FM, ALM, TBSM, handgrip strength, TGUG, SMI, SMI residuals, non-

skeletal muscle lean mass, bench press and leg press 1-RM, HGMQ, UMQ, and LMQ.  

Follow-up analyses included independent t-tests (men vs. women) collapsed across 

age and 1-way ANOVAs (50s vs. 60s vs. 70s vs. 80s) collapsed across gender with 

post-hoc analyses using pairwise comparisons.  

Prevalence rates were calculated as ratios of the sample classified as sarcopenic 

to the entire sample (expressed as a percentage of the sample) for each of the four 

methods.[2,23,34,46,66]  Use of prevalence rates within each study sample has been 

previously documented.[2,10,34,46,51]  

Pearson’s Product moment correlations were performed separately for each 

gender to determine the relationships among age, TGUG, bench press and leg press 1-

RM, handgrip strength, LM, SMI, and HGMQ, UMQ, and LMQ.   

To select the best model in determining sarcopenia status, Kendall’s W 

coefficients of concordance were performed to demonstrate any differences among the 

different models’ distributions of the categorical variable, SMI classification 

(sarcopenic vs. non-sarcopenic) for men and women. This test is used in comparing 

ranking by multiple judges where there may be ties in the rank, in this case 1 is better 

than 0 (no value) where 1 is non-sarcopenic.[64] Chi-squared (X
2) tests of independence 

also compared any relationships among the different methods’ distributions,[48,50,59] 

similar to those performed by Inaba et al.[35] and Newman et al.[57] where X
2 were used 

to test the differences in categorical variable distribution. 
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As an exploratory analysis, binary logistic regression[12,22,52,65] analyses were 

used to predict one of two outcomes: sarcopenic or non-sarcopenic (as opposed to 

multiple logistic regression where there would be three or more potential 

outcomes).[22,65]  Four separate logistic regression analyses[6] were performed with 

using the enter method as per previous recommendation,[27,65] each of the four methods 

for predicting sarcopenia classification selected as the dependent variables. Age, 

gender, LM, handgrip strength, and TGUG were used as theory-based predictors of 

sarcopenia classification, which were mathematically independent of the dependent 

variable.  

All data were analyzed using computer software (PASW Statistics, version 

18.0, Chicago, Illinois, United States). An alpha of P≤0.05 was used to determine 

statistical significance for all analyses. 
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CHAPTER IV 

RESULTS 

Age-related Differences Among Sarcopenia Classification 

Figures 1-8 display differences across age for women and men for skeletal 

muscle and lean mass estimations, mobility and functionality performance, muscle 

quality, and SMI classifications. 

Using the Baumgartner et al.[2] cut-off criteria, men and women classified as 

sarcopenic were significantly older than non-sarcopenic (mean differences 5.28 years, 

p=0.020; 5.76 years, p=0.002, respectively).  Using the Newman et al.[57] (a) cut-off 

criteria, men and women classified as sarcopenic were significantly older than non-

sarcopenic (mean differences 5.28 years, p=0.020; 6.12 years, p<0.001; respectively).  

Using the Newman et al.[57] (b) residuals cut-off criteria, men and women were not 

significantly different ages after being classified as sarcopenic or non-sarcopenic 

(mean differences 3.49 years, p=0.130; 3.38 years, p=0.054; respectively).  Using the 

Delmonico et al.[17] cut-off criteria, men and women classified as sarcopenic were 

significantly older than non-sarcopenic (mean differences 5.28 years, p=0.020; 6.12 

years, p<0.001; respectively). 

 

Age- and Gender-related differences in Body Composition, Functionality, Strength, 

and Muscle Quality 

There was no two-way interaction for ALM (p=0.105), however, there were 

main effects for gender (p<0.001) and age (p<0.001) (Figure 1a).  ALM (collapsed 

across age) was significantly greater in men (p<0.001, mean difference 9.1 kg) than in 
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women.  Pairwise comparisons with Bonferroni corrections indicated that individuals 

in 50s, 60s, and 70s had significantly greater ALM (collapsed across gender) than 

those in 80s (p=0.001, mean difference 4.4 kg; p<0.001, mean difference 4.1 kg; 

p=0.002, mean difference 3.3 kg, respectively) (Figure 2a). 

 There was no two-way interaction for TBSM (p=0.102), however, there were 

main effects for gender (p<0.001) and age (p<0.001) (Figure 1b).  TBSM (collapsed 

across age) was significantly greater in men (p<0.001, mean difference 10.8 kg) than 

in women.  Pairwise comparisons with Bonferroni corrections indicated that 

individuals in 50s, 60s, and 70s had significantly greater TBSM (collapsed across 

gender) than those in 80s (p<0.001, mean difference 5.6 kg; p<0.001, mean difference 

5.0 kg; p=0.002, mean difference 4.0 kg, respectively) (Figure 2b). 

 There was no two-way interaction for LM (p=0.209), however, there were 

main effects for gender (p< 0.001) and age (p<0.001) (Figure 1c).  LM (collapsed 

across age) was significantly greater in men (p<0.001, mean difference 17.4 kg) than 

in women.  Pairwise comparisons with Bonferroni corrections indicated that 

individuals in 50s, 60s, and 70s had significantly greater LM (collapsed across gender) 

than those in 80s (p=0.001, mean difference 8.4 kg; p<0.001, mean difference 7.4 kg; 

p=0.003, mean difference 6.1 kg, respectively) (Figure 2c). 

 There was no two-way interaction for non-skeletal muscle LM (p=0.588), 

however, there were main effects for gender (p<0.001) and age (p=0.036) (Figure 1d).  

Non-skeletal muscle LM (collapsed across age) was significantly greater in men 

(p<0.001, mean difference 6.6 kg) than in women.  Pairwise comparisons with 

Bonferroni corrections indicated that individuals in 60s had significantly greater non-
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skeletal muscle LM (collapsed across gender) than those in 80s (p=0.036, mean 

difference 2.3 kg) (Figure 2d). 

 There was no two-way interaction for FM (p=0.220) and no main effect for age 

(p=0.200). However, there was a main effect for gender (p=0.021) (Figure 1e).  FM 

(collapsed across age) was significantly greater in women (p=0.021, mean difference 

4.2 kg) than in men (Figure 2e).   

For handgrip strength, there was a two-way interaction (p=0.023) (Figure 3a).  

A one-way ANOVA indicated a significant difference across age (p<0.001 and 

p=0.004) for both women and men, respectively.  Follow-up post-hoc analyses with 

Bonferroni corrections indicated that handgrip strength was significantly greater for 

women in 50s than 70s and 80s (p=0.001 and p<0.001, respectively) and women in 

60s had greater grip strength than 80s (p=0.013).  Men in 50s, 60s, and 70s had 

significantly greater handgrip strength than men in 80s (p=0.003, p=0.003, and 

p=0.002, respectively). Additional independent t-tests indicated that men had greater 

handgrip strength than women in 50s, 60s, and 70s (p<0.001) (Figure 4a). 

 There was no two-way interaction for TGUG (p=0.879), and there were no 

main effects for age (p=0.364) or gender (p= 0.095) (Figures 3b and 4b). 

 There was no two-way interaction for bench press 1-RM (p=0.343), however, 

there were main effects for gender (p=0.006) and age (p<0.001) (Figure 3c).  Bench 

press 1-RM (collapsed across age) was significantly greater in men (p<0.001, mean 

difference 27.0 kg) than in women.  Pairwise comparisons with Bonferroni corrections 

indicated that individuals in 60s had significantly greater bench press 1-RM (collapsed 

across gender) than those in 80s (p=0.014, mean difference 13.4 kg) (Figure 4c). 
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 There was no two-way interaction for leg press 1-RM (p=0.299), however, 

there were main effects for gender (p=0.003) and age (p<0.001) (Figure 4d).  Leg 

press 1-RM (collapsed across age) was significantly greater in men (p<0.001, mean 

difference 79.3 kg) than in women.  Pairwise comparisons with Bonferroni corrections 

indicated that individuals in 50s, 60s, and 70s had significantly greater leg press 1-RM 

(collapsed across gender) than those in 80s (p=0.001, mean difference 76.3 kg; 

p=0.016, mean difference 52.1 kg; p=0.026, mean difference 50.4 kg, respectively) 

(Figure 4d). 

There was no two-way interaction for HGMQ (p=0.117) and there was no main 

effect for age (p=0.080). However, there was a main effect for gender (p=0.013) 

(Figure 5a).  HGMQ (collapsed across age) was significantly greater in women 

(p=0.013, mean difference 1.5 kg·kg-1) than in men (Figure 6a).  

There was no two-way interaction for UMQ (p=0.575) and there was no main 

effect for age (p=0.186). However, there was a main effect for gender (p<0.001) 

(Figure 5b).  UMQ (collapsed across age) was significantly greater in men (p<0.001, 

mean difference 1.6 kg·kg-1) than in women (Figure 6b).   

 There was no two-way interaction for LMQ (p=0.578), however, there were 

main effects for gender (p=0.029) and age (p=0.001) (Figure 5c).  LMQ (collapsed 

across age) was significantly greater in men (p=0.001, mean difference 2.0 kg·kg-1) 

than in women.  Pairwise comparisons with Bonferroni corrections indicated that 

individuals in 50s had significantly greater LMQ (collapsed across gender) than those 

in 80s (p=0.021, mean difference 3.3 kg·kg-1) (Figure 6c). 
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There was no two-way interaction for SMI (p=0.566), however, there were 

main effects for gender (p=0.023) and age (p<0.001) (Figure 7a).  SMI (collapsed 

across age) was significantly greater in men (p<0.001, mean difference 2.2 kg·m-2) 

than in women.  Pairwise comparisons with Bonferroni corrections indicated that 

individuals in 60s had significantly greater SMI (collapsed across gender) than those 

in 80s (p=0.014, mean difference 0.8 kg·m-2) (Figure 8a). 

There was no two-way interaction for SMI-residuals (p=0.892) and there was 

no main effect for age (p=0.250). However, there was a main effect for gender 

(p=0.008) (Figure 7b).  SMI-residuals were significantly greater in women (p=0.008, 

mean difference 1.5 kg) than in men (Figure 8b). 

 

Relationships Among Age, Body Composition, Functionality, Strength, and Muscle 

Quality 

In women, age was negatively correlated with LMQ (r= -0.35, p<0.01), 

HGMQ (r= -0.34, p<0.01), handgrip strength (r= -0.54, p<0.01), UMQ (r= -0.28, 

p<0.05), and leg press 1-RM (r= -0.46, p<0.01).  UMQ was negatively correlated with 

TGUG (r= -0.27, p<0.05) and positively correlated with LMQ (r= 0.39, p<0.01). LMQ 

was positively correlated with handgrip strength (r=0.32, p<0.05) and bench press 1-

RM (r=0.49, p<0.01). Handgrip strength was positively correlated with leg press 1-

RM (r=0.47, p<0.01). Additionally, SMI was positively correlated with bench press 1-

RM (r=0.53, p<0.01), leg press 1-RM (r=0.61, p<0.01), LM (r=0.70, p<0.01), ALST 

(r=0.82, p<0.01), TBSM (r=0.82, p<0.01), LMQ (r=0.36, p<0.01), handgrip strength 
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(r=0.37, p<0.01), and FM (r=0.29, p<0.01) and negatively correlated with age (r= -

0.37, p<0.01). 

In men, age was negatively correlated with handgrip strength (r=-0.30, p<0.05) 

and bench press 1-RM (r=-0.37, p<0.05). UMQ was positively correlated with leg 

press 1-RM (r=0.48, p<0.01).  LMQ was positively correlated with HGMQ (r=0.32, 

p<0.05), handgrip strength (r=0.43, p<0.01), and bench press 1-RM (r=0.58, p<0.01). 

HGMQ was positively related to bench press 1-RM (r=0.58, p<0.01). Handgrip 

strength was positively correlated with bench press 1-RM (r=0.67, p<0.01) and leg 

press 1-RM (r=0.57, p<0.01). Additionally, SMI was positively correlated with bench 

press 1-RM (r=0.53, p<0.01), leg press 1-RM (r=0.65, p<0.01), handgrip strength 

(r=0.52, p<0.01), LM (r=0.72, p<0.01), ALST (r=0.83, p<0.01), LMQ (r=0.43, 

p<0.01), and TBSM (r=0.83, p<0.01) and negatively correlated with TGUG (r=0.42, 

p<0.01). 

 

Prevalence Rates 

Three of 86 (3%) women and six of 68 (9%) men had impaired (>09.00s) TGUG using 

cut-off values determined by Bohannon[8]  and 26 out of 91 (28.6%) women and eight 

out of 76 (10.5%) men were classified as having impaired handgrip strength as 

established by Laurentani et al.[47]. The percentage of men and women whom were 

classified as sarcopenic with each of the four SMI cut-off criteria are presented in 

Table 2.   

 

Sarcopenia Cut-off Criteria Comparisons 
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The percentage of men and women whom were classified as sarcopenic with 

each of the four criteria are presented in Table 2.  Three of the 4 different cut-off 

criteria use the same equation (ALM/ht2) to identify SMI, but in attempt to compare all 

four’s distributions of the sarcopenia classifications, Kendall’s coefficient of 

concordance resulted in a significant difference among the distributions for women 

(p=0.025) and no differences among the distributions for men (p>0.05).  Further 

analyses included chi-squared (X
2) test of independence to make pairwise comparisons.  

In men, the chi-squared analysis resulted in a significant lack of independence across 

all methods (p<0.001), however, the strongest relationships emerged among the 

Baumgartner, Newman (a), and Delmonico methods (r=1.00, p<0.001).  The Newman 

(b) method’s X
2 was significant, however, the relationships among Newman (b) and all 

other methods was not as strong (r=0.744, p<0.001) as other pairings.  In women, the 

X
2 analysis resulted in a significant lack of independence across all methods (p<0.05).  

Comparison of the Newman (a) and Delmonico methods resulted in a perfect 

relationship (r=1.00, p<0.001), Baumgartner with Newman (a) and Delmonico 

resulted in a strong relationship (r=0.760, p<0.001), and the weakest relationships 

resulted from Baumgartner and Newman (b) (r=0.374, p=0.001), and Newman (a) and 

Delmonico with Newman (b) (r=0.267, p=0.013). 

 

Exploratory Logistic Regression 

Four separate binary logistic regression analyses were conducted on SMI 

classification using each method [1-Baumgartner[2], 2-Newman[57] (a), 3-Newman[57] 

(b), and 4-Delmonico[17]] as the outcome of an individual being sarcopenic or non-
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sarcopenic and five potential predictors of SMI: age, gender (female=0; male=1), LM, 

handgrip strength, and TGUG.  Backwards likelihood ratio analyses were completed to 

determine the maximal likelihood estimate of an individual being sarcopenic or non-

sarcopenic.  The results of the logistic regression using cut-off criteria suggested by 

Baumgartner et al.[2] indicated a significant model (p<0.001) including handgrip 

strength (B=0.069, p=0.095), gender (B=5.102, p<0.001) and LM (B=0.307, p<0.001) 

as independent predictors and the intercept at B= -16.816.  The model correctly 

predicted 82.5% of the cases.  The models resulting from Newman et al.[57] (a) and 

Delmonico et al.[17] were identical with a significant final model (p<0.001) that 

included gender (B=5.711, p<0.001), LM (B=0.452, p<0.001) as independent 

predictors and the intercept at B= -20.8.  The models correctly predicted 83.1% of the 

cases.  Lastly, the model resulting from Newman et al. (b) residual method indicated a 

significant final model (p<0.001) which included handgrip strength (B=0.122, 

p<0.001) and TGUG (B=-0.49, p<0.001) as independent predictors and the intercept at 

B=0.581.  This model correctly predicted 80.5% of the cases.   
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CHAPTER V 

DISCUSSION 

Age-Related Changes in Body Composition, Functionality, Strength, and Muscle 

Quality 

Similar to previous studies, men were taller, weighed more, and had lower 

body fat percentages than women in all studies (p<0.05), in agreement with previous 

studies.[17,47,57]  It has been well documented that muscle mass and strength decreases 

with advancing age.[4,5,28,33] Previous studies have reported that muscle mass remains 

stable through the fourth decade followed by a slow decrease in muscle mass from 

there on.[36]  The present study’s results indicated there was a decrease in LM, ALM, 

and TBSM following the 7th decade.  Although there were decreases in LM, there were 

no age-related changes in fat mass.  Fat mass has been previously reported to increase 

with age,[26] primarily due to genetics, inactivity, chronic illness, neural and hormonal 

changes, and concomitant diseases.[1,25]  In addition, the results from the present study 

indicated that there were age-related decreases in muscular strength.  Handgrip 

strength was lower in the 80s than at any other age in men, but in women handgrip 

strength was lower in the 70s and 80s than in the 50s and 60s.  Bench press and leg 

press 1-RM was greater for men than women and collapsed across gender, bench press 

1-RM was greater in the 60s than 80s and leg press 1-RM was lower in the 80s than at 

any other age.  Interestingly, there were no age-related differences for HGMQ or 

UMQ, which indicated that strength in the upper body was maintained relative to the 

amount of muscle mass lost.  This is similar to that reported by Newman et al.[56] in 

that the weight bearing muscles (lower-body) had a greater decline in muscle mass 
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than non-weight bearing muscles (upper-body).  The present results indicated women 

had greater HGMQ than men, but lower UMQ and LMQ.  LMQ was greater for 

individuals in their 50s than those in their 80s.  Sayer et al.[62] recently reported that 

the relationship between muscle mass early in life (infancy) and early adulthood may 

indicate a predisposition to developing sarcopenia.  Ultimately, maintenance or an 

increase in strength while maintaining or reducing the amount of muscle loss will 

improve muscle quality in older individuals.  Tracy et al.[67] reported improvements in 

knee extensor strength, quadriceps muscle volume, and muscle quality with resistance 

exercises in older men and women.  Thus, suggesting that resistance exercises may 

support muscle growth and subsequent increases in strength while combating a 

reduction in functionality and mobility with aging.  

Recently, ALM has been assessed relative to height to normalize the data 

across gender and is referred to as SMI.[2,32].  Regardless of the height normalization, 

men had higher SMI than women, and although the cut-off values used to determine 

sarcopenia status reflect the gender differences, there are still inconsistencies among 

the cut-off values.  In men, the cut-off values range from 7.23-7.26 kg/m2,[2,17,57] 

however, in women there is a larger cut-off value range (5.45-5.67 kg/m2).[2,17,57]  

Therefore, inconsistencies in cut-off values may potentially increase the errors in the 

classification of sarcopenia.  In addition, mean SMI values with the residuals method 

calculated[57] resulted in greater values in women compared to men, which suggested 

that there was a higher amount of variability in the  prediction of ALM when using 

height and FM from a whole-body DEXA scan.[57]  Furthermore, the EWGSOP 

established the working definition of sarcopenia as the decrease in skeletal muscle 
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mass as the primary factor and functional deficits of mobility or handgrip strength as 

secondary factors.[15,23,54]  In the present study, women had lower handgrip strength 

than men and a greater percentage of women had impaired handgrip strength 

according to established criteria by Lauretani et al.[47] of <20 kg (28.6%), while only 

10.5% of the men had impaired (<30 kg) handgrip strength.  If the same 28.6% of 

women and 10.5 % of men also have a SMI that falls below the cut-off value, then 

they would be considered sarcopenic according to the EWGSOP definition.  However, 

42.3%, 46.2%, 50.0%, and 50.0% of women with impaired handgrip strength were 

also classified as sarcopenic by Baumgartner et al.,[2] Newman et al.[57] (a and b), and 

Delmonico et al.,[17] respectively, not 100%. In addition, 75.0%, 75.0%, 62.5%, and 

75.0% of men with impaired handgrip strength were also classified as sarcopenic by 

Baumgartner et al.,[2] Newman et al.[57] (a and b), and Delmonico et al.,[17] 

respectively. 

 

Relationships Among Age, Body Composition, Functionality, Strength, and Muscle 

Quality 

Similar to previous reports,[57] the results from the present study indicated 

significant negative correlations among age and handgrip strength, LM, upper- and 

lower-body 1-RM strength, LMQ, and HGMQ in women and handgrip strength, LM, 

and upper-body 1-RM in men.  In addition, there were positive correlations among 

handgrip strength, HGMQ, upper- and lower body 1-RM, LMQ and UMQ for both 

genders, which is expected because the strength assessments are included in the 

calculation of muscle quality. 
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SMI is the most commonly used index of sarcopenia as established by 

Baumgartner et al.[2] SMI (ALM/ht2) was strongly correlated with TBSM, ALST, and 

LM in men and women.  SMI was also strongly positively correlated with upper- and 

lower-body 1-RM in men and women and handgrip strength in men.  These 

relationships confirm the consensus definition of sarcopenia established by EWGSOP 

and their recommendations in classifying sarcopenia status based on muscle mass and 

function.[13,15,23,54]  Of note, TGUG was not significantly correlated to SMI in women 

and had a weak correlation with SMI in men.  Therefore the TGUG method may not 

be acceptable in an overall model to diagnose sarcopenia.  The use of the SPPB is 

recommended by EWGSOP, primarily the 4-meter gait speed assessment of 

mobility,[15,23] however, the 4-meter gait speed test of the SPPB was not included in 

the present study. 

 

Prevalence Rates of Sarcopenia 

As the size of the aging population increases, there is a growing need for the 

determination of the extent of which sarcopenia is affecting older adults.  Currently 

there are no databases forming DEXA-derived ALM normative values for young (18-

39 years) middle-aged (40-60 years), or older adults (>60 years).  In women, the 

prevalence rates of sarcopenia in the current sample differs, depending on which 

previous study’s criteria is used: Baumgartner et al.,[2] Newman et al.,[57] or Delmonico 

et al.[17]  The prevalence rates were higher than previously reported in women and 

lower than previously reported in men.  The present study indicated that 30.8% of the 

women were considered sarcopenic according to the cut points established by 
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Baumgartner et al.,[2] whereas, the authors reported 33.9% prevalence in individuals 

≥65 years.  In addition, Baumgartner et al.[2] reported that 28.5% men were classified 

as sarcopenic, whereas, 13.2% of the sample were considered sarcopenic in the present 

study.  Previously, Iannuzzi-Suchich et al.[34] reported prevalence rates of 22.6% and 

26.8% for women and men, respectively, according to the Baumgartner et al.[2] cut-off 

values.  Tankó et al.[66] reported 32.9% of women >70 years were considered 

sarcopenic using the Baumgartner et al.[2] criteria and 12.3% with their own reference 

group (18-39 years).  Furthermore, Tanko et al.[66] used the same method as 

Baumgartner et al.[2] when determining a cut-off value (> -2 SD young adult mean) in 

women, which resulted in a lower value of 5.4 kg/m2.  The other criteria used in the 

present study, Newman et al. (a) and (b),[57] and Delmonico et al.[17] indicated a much 

higher prevalence in women of 41.8%, 40.7%, and 41.8%, respectively.  In these 

studies the lowest 20% of the sample were considered sarcopenic and the cut-off 

values were set as the lowest quintile, despite the fact that in their population of 70-79 

year old adults, 20% may be considered a conservative estimate.  Men had a lower 

prevalence of sarcopenia with a calculated 11.8% for all models.  Differences in the 

prevalence rates may be due to the study populations, with the present study having a 

lower age limit (≥55 years) and a larger age range (55-90 years, inclusive) than 

previous reports. Nonetheless, Tankó et al.[66] and Janssen et al.[40] reported a decline 

in muscle mass beginning in the fifth decade and suggests the present sample’s age 

range (55-90) would capture accurate estimates of the prevalence of sarcopenia.  In 

addition, previous studies used population-based samples from larger health surveys 
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where participants may not have visited a laboratory to undergo a DEXA to determine 

ALM, rather ALM was estimated from anthropometric measures.[2] 

 

Alternative Classifications of Sarcopenia 

The prevalence rates in the present study, Baumgartner et al.,[2] Iannuzzi-

Suchich et al.,[34] and Tankó et al.[66] were greater than 20% (with the exception of 

men in the present study), which suggests that the arbitrary cut-off values at the lowest 

20% of the samples of Newman et al.,[57] and Delmonico et al.,[17] may not be 

accurately representing the correct cut-off that should be used in the classification of 

sarcopenia.  When using non-parametric analyses to determine the agreement among 

the different methods of classification, Kendall’s W was used to compare the 

distributions of individuals considered sarcopenic. Kendall’s W resulted in agreement 

of classification among all of the methods.  Follow-up X
2 analyses were performed to 

identify where (among the four methods) the strongest agreement occurred, and 

indicated that the strongest agreement was between Newman et al. (a)[57] and 

Delmonico et al.,[17] followed by Baumgartner et al.[2] 

 Since conception of the term ‘sarcopenia’, the interest and number of research 

studies conducted on sarcopenia has risen, and the number of different classification 

cut-off values has increased, subsequently resulting in an inconsistency in the 

classification of sarcopenia. In order to improve the classification, the present study 

explored an alternative use of binary logistic regression in the determination of 

sarcopenia with commonly used theory-based predictors encompassing the EWGSOP 

consensus definition of the age-related reduction in muscle mass and function.  The 
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use of binary logistic regression with the independent predictors of age, gender, 

muscle mass, and a measure of functional performance may be useful in predicting 

sarcopenia status as “sarcopenic” or “normal” to incorporate uniformity in 

classification and may reduce the need to establish fixed cut-off values.  The present 

study indicated that the most accurate model provided 83.1% correct predicted 

probability using Newman et al.[57] (a) or Delmonico et al.[17] and independent 

predictors of gender and LM.  A model derived by Baumgartner et al.[2]criteria 

included gender, LM, and handgrip strength and provided 82.5% correct predicted 

probability. This method has been used in clinical settings to determine sepsis in the 

ICU.[27]  Collectively, logistic regression can provide a binary determination of 

sarcopenia status where individuals with common characteristics (i.e., handgrip 

strength, LM, or age) would be classified into one of two outcomes.  Future studies 

may warrant the use of this method in classification as opposed to identifying multiple 

cut-offs for function and muscle mass. 

 

Conclusion  

The classification of sarcopenia has most commonly been diagnosed by using 

the cut points established by Baumgartner et al.[2], however, using ALM/m2 and cut 

points established by Newman et al.[57] (a) or Delmonico et al.[17] may more 

appropriately classify the current population as sarcopenic or non-sarcopenic.  A larger 

epidemiological database needs to be established in order to generalize the proper cut-

off values, perhaps those established by Newman et al.[57] (a) or Delmonico et al.[17] as 
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the dependent variable and the basis of binary logistic regression in actual 

classification of sarcopenia.  
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Table 1. Age, height, body mass, and percent body fat for all participants in A08, A09, 

G10, and together as a group. 

 

Study n

Men 27 71.8 5.3 177.4* 7 83.3* 10.8 29.6* 5.4

Women 26 72.3 5.7 162.4* 5.7 64.5* 12.1 39.0* 7.5

All 53 72.0 5.5 170.0 9.9 74.1 14.8 34.2 8.0

Men 27 72.6 6.0 173.9* 5.3 82.8* 11.4 28.6* 5.6

Women 27 72.3 6.9 160.8* 6.1 62.9* 10.4 38.6* 6.1

All 54 72.4 6.4 167.4 8.7 72.9 14.8 33.6 7.7

Men 22 67.1*
# 6.1 177.2* 7.0 81.0* 9.7 27.4* 5.3

Women 38 63.1*
# 6.7 162.9* 7.2 66.0* 11.0 38.4* 6.3

All 60 64.6 6.8 168.2 9.9 71.9 13.0 34.4 7.9

167 69.5 7.2 168.5 9.5 72.9 14.1 34.1 7.9

Values  represent mean ± SD; *denotes  a difference between gender; #denotes  a difference among studies

Body Fat (% )

A08

A09

G10

TOTAL SAMPLE

Age Height (cm ) Body Mass (kg )
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Table 3. Sarcopenia cut points by gender and relative prevalence of sarcopenia in the 

current study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Study  units Women # Sarcopenic (% ) Men # Sarcopenic (%)

Baumgartner et al., 1998 (kg/m
2
) <5.45 28 (30.8 ) <7.26 9 (11.8 )

Newman et al., 2003a (kg/m
2
) <5.67 38 (41.8 ) <7.23 9 (11.8 )

Newman et al., 2003b (kg) >‐1.73 37 (40.7) >‐2.29 9 (11.8 )

Delmonico et al., 2007 (kg/m
2
) <5.67 38 (41.8 ) <7.25 9 (11.8 )

Classified by all 4 as sarcopenic 19 (20.9) 7 (9.2 )

Classified by all 4 as non‐sarcopenic 37 (40.7) 55 (72.4)
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Figure 1. Appendicular skeletal muscle mass (a), total body skeletal muscle (b), lean 

mass (c), non-skeletal muscle lean mass (d), and fat mass (e) for women (black) and 

men (grey) across age.  Results are displayed with line of best fit and equation, R2, 

standard error of the estimate, and SEE expressed as a percentage of the mean.   
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Figure 2. Age and gender differences for appendicular skeletal muscle mass (a), total 

body skeletal muscle (b), lean mass (c), non-skeletal muscle lean mass (d), and fat 

mass (e). Results are displayed as mean + SE values, women-black, men-grey.   

* denotes a significant difference among age groups; # denotes a significant difference 

between genders. 
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Figure 3. Handgrip strength (a), timed get-up-and-go (b), bench press 1-RM (c), and 

leg press 1-RM (d) for women (black) and men (grey) across age.  Results are 

displayed with regression line and equation, R2, standard error of the estimate, and SEE 

expressed as a percentage of the mean.   
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Figure 4. Age and gender differences for handgrip strength (a), timed get-up-and-go 

(b), bench press 1-RM(c), and leg press 1-RM (d). Results are displayed as mean + SE 

values, women-black, men-grey. * denotes a significant difference among age groups; 

#  denotes a significant difference between genders. 
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Figure 5. Hand grip muscle quality (a), upper- (b), and lower-body muscle quality (c) 

for women (black) and men (grey) across age.  Results are displayed with regression 

line and equation, R2, standard error of the estimate, and SEE expressed as a 

percentage of the mean.   
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Figure 6. Age and gender differences for handgrip muscle quality (a), upper-body 

muscle quality (b), and lower-body muscle quality (c). Results are displayed as mean + 

SE values, women-black, men-grey. * denotes a significant difference among age 

groups; # denotes a significant difference between genders. 
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Figure 7. Skeletal muscle index expressed as ALM/ht2 (a), and residuals (b) for 

women (black) and men (grey) across age and SMI cut-off criteria for women (c) and 

men (d).  Results are displayed with regression line and equation, R2, standard error of 

the estimate, and SEE expressed as a percentage of the mean.   
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Figure 8. Age and gender differences for skeletal muscle index expressed as ALM/ht2 

(a) and residuals (b). Results are displayed as mean + SE values, women-black, men-

grey. * denotes a significant difference among age groups; # denotes a significant 

difference between genders. 
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