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ABSTRACT 

 This research discusses and investigates possible approaches for 

modeling post-tensioned (PT) prestressed concrete structures via the finite 

element method (FEM). The challenge of modeling PT prestressed concrete 

structures lies in the treatment of the interface between the concrete and 

prestressing tendons. The generic modeling techniques that are discussed were 

based on general purpose finite element packages. Two strategies for modeling 

the interface are presented in detail. For the first method, a series of linear spring 

elements was introduced to approximate the sliding behavior of prestressing 

tendons at the interface. For the second method, the interface was modeled 

directly through contact formulation. Additionally, the corresponding material 

constitutive relations, element preference and solution algorithm are discussed in 

depth. The generic modeling schemes were validated against experiments, and 

proved to be robust and reliable for modeling PT structures. However, slightly 

overestimated tendon stresses were observed at the ultimate state of structures in 

many numerical simulations. A preliminary scientific analysis yields the 

conclusion that the phenomenon is likely caused by the frictionless assumption 

which neglects the frictional-induced prestress loss in the modeling. 

 Besides the issue of overestimated prestressing tendon stress, it is difficult 

to apply the generic modeling schemes to simulate large-scale PT structures such 

as a PT frame system. The involvement of the solid element combined with the 

explicit dynamic algorithm becomes a large barrier to modeling large-scale 
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structures due to the computational anxiety. The later part of the research zeros in 

on the development of an innovative nonlinear finite element formulation which 

incorporates contact techniques and engineering elements to considerably reduce 

the need of computational power. A nonlinear prototype program was developed 

to model PT prestressed concrete frames in two-dimensional space accordingly. 

The stress solution of prestressing tendons was also improved by considering 

frictional effects in the formulation. The proposed formulation was validated 

against analytic solutions and experimental data via several numerical studies. 

The prototype program was also demonstrated to be versatile and robust for 

analyzing PT prestressed concrete frames. Although the currently implemented 

material constitutive relations and beam element in the prototype program limit 

its applications, advanced material models and beam elements could be 

implemented into the current formulation with trivial works in the future.  

In addition to the study of modeling techniques, three practical 

engineering problems were investigated through the proposed FEM. The 

investigated problems include: (1) punching shear failure of two-way PT 

prestressed concrete slabs; (2) prestress increment in the prestressing tendon at 

the service stage of structural members; and (3) influence of the PT systems (i.e., 

bonded vs. unbonded) on structural performance of typical PT members. A series 

of numerical simulations based on general purpose finite element packages were 

conducted according to the documented experiments. The extensive analyses of 

the numerical and experimental data lead to the following conclusions: (1) the 
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eccentric shear stress model proposed in ACI 318 predicts reasonable moment-

shear interaction mechanisms for PT interior, edge, and, corner slab-column 

connections; (2) in the case of PT edge and corner connections, the punching 

shear provisions in ACI 318 are overly conservative in some cases, more 

research is suggested to quantify the prestressing effect on punching shear 

capacity and to relieve some of the provisions; and (3) the bonding condition of 

prestressing tendons has no effect on flexural strength of PT one-way slabs and 

beams, or the moment-shear interaction in two-way PT interior slab-column 

connections.  
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CHAPTER 1. INTRODUCTION 

 Prestressed concrete is a structural concept that was first introduced for 

overcoming concrete’s natural weakness in tension in the early 1940s. 

Prestressed concrete is essential in many applications today in order to fully 

utilize concrete compressive strength, and through proper design, to control 

cracking and deflection. Due to those benefits, the prestressed concrete industry 

has been experiencing breathtaking developments and a construction boom ever 

since the first prestressed concrete project, Walnut Lane Memorial Bridge, was 

built in Philadelphia, Pennsylvania in 1951. The efforts toward development 

made by many engineers over the past sixty years have made prestressed 

concrete an essential and powerful technique in the modern construction 

industry. Generally, prestressed concrete can be applied in one of three ways: as 

pre-tensioned prestressed concrete; as unbonded post-tensioned (PT) prestressed 

concrete and as bonded PT prestressed concrete. The first two have become the 

most popular types of prestressed concrete systems in North America.  

 Although design methods have been developed over the decades, an 

understanding of the ultimate mechanism in the prestressed concrete system is 

still greatly needed in many aspects. Such aspects include the intricate problems 

of punching shear failure of a prestressed two-way slab system, stress increase in 

the prestressing strand under service loads, and discrepancies of structural 

behaviors between bonded and unbonded post-tensioned systems. However, to 

perform extensive experimental tests on each subject is extremely expensive and 
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time-consuming. The finite element method, on the other hand, was introduced 

into structural analysis in the late 1960s. The efforts and developments made by 

many pioneering researchers over the past five decades have enabled the finite 

element method to become a versatile and powerful approach in structural 

analysis. The principal goals of this study are establishing finite element models 

of prestressed concrete systems subject to particular problems and investigating 

those problems in accordance with current building codes. 

 Chapter 2 summarizes previous experimental tests with regard to 

particular engineering problems. The problems considered include punching 

shear failure of two-way post-tensioned slabs, stress increase in prestressing 

tendons at the failure of the structural members and an investigation about the 

influence on the behaviors of prestressed concrete systems by different bonding 

(i.e., bonded PT vs. unbonded PT). Related literatures of finite element modeling 

with respect to prestressed concrete systems are provided.  

 Chapter 3 briefly presents the hypothesis and objectives of the 

dissertation. 

 Chapter 4 provides descriptions of modeling prestressed concrete systems 

via existing general purpose finite element packages. The modeling of PT tendon 

systems presents a great challenge in terms of finite element discretization due to 

the boundary nonlinearity. Two possible approaches to modeling PT tendon 

systems are discussed. The first and traditional approach is a so called ‘spring 

system method’ which literally utilizes a large number of rigid springs to 
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approximate the mechanical behavior of an unbonded PT system. The second 

approach formulates the PT tendon systems as contact problems. The nonlinear 

boundaries are directly handled by the second approach which yields a better 

flexibility and accuracy of modeling a variety of PT structures. The spring 

method is found in many literatures whereas the contact formulation is rarely 

applied to finite element analysis in the context of PT structures. The reason 

behind this is that the generic contact problems are difficult to model and still 

remains a very active research area today. In addition, directly formulating 

nonlinear boundary problems via contact approach usually requires much more 

computational power than the traditional spring method.  

 Followed by the general modeling approaches discussed in Chapter 4, a 

large number of documented tests are numerically simulated to validate the 

proposed modeling approaches as well as to conduct further researches in 

Chapter 5. The numerically modeled specimens (19 slabs and 3 beams) are 

grouped to two parts where the first part of the simulations is used to analyze the 

punching shear failure of a prestressed two-way slab system. The second part is 

used to study discrepancies of structural behaviors between bonded and 

unbonded PT systems. The numerical results are well agreed with experimental 

data and are used to investigate the aforementioned practical engineering 

problems.  

 The drawback of using a general purpose finite element package is that 

one has less modeling flexibility. For example prestress loss is hard to model at 
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several prestressing stages. Therefore, a two-dimensional nonlinear finite 

element formulation incorporating contact techniques is proposed in Chapter 6. 

The formulation is capable of analyzing inelastic behavior of PT beams. Several 

elements are developed in order to assemble the complete PT beam system. The 

proposed contact element deals with the interaction between concrete and 

prestressing tendons, the nonlinear beam element simulates conventional 

reinforced concrete (RC) beams; the nonlinear truss element assembles the 

prestressing tendon; the embedding element embeds prestressing tendons into 

concrete beams, and a special anchorage element is also proposed to 

accommodate the ability of simulating post-tensioning procedures. With all these 

elements assembled together, a complete PT beam system can be successfully 

modeled along with appropriate material constitutive models. The solution 

strategy employs a modified Newton-Raphson approach with a line search 

technique that improves the robustness of the method. Accordingly, all tangent 

stiffness matrices of aforementioned elements are analytically derived in 

accordance with the proposed nonlinear solver. Both frictionless and frictional 

contacts are formulated in simulating unbonded and bonded PT beams. 

Furthermore, in the proposed finite element framework it is fairly easy to 

implement other types of elements such as elements with higher order beam 

theory (e.g., a Timoshenko beam element) to address different kinds of practical 

engineering problems. Sufficient accuracy can be obtained with a relatively 

coarse mesh under the current formulation to compare to the modeling approach 
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with solid elements. This leads to a very cost-efficient solution to studying 

engineering problems and aid practical designs. All of the proposed formulations 

are programmed and implemented by MATLAB language (MATLAB, 2010b). 

Several numerical studies are carried out to inspect the performance of the 

proposed model. 

 In Chapter 7, all materials are summarized together. Conclusions are 

given with regard to finite element modeling techniques of PT structures as well 

as the practical engineering problems analyzed and evaluated by the proposed 

modeling scheme. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Punching Shear Failure of PT Slab-Column Connections 

The following review covers previous experiments conducted regarding 

PT slab-column connections or PT flat plates under quasi-static gravity and/or 

lateral loadings. Some of them were selected as the experimental basis of the 

following numerical analyses in Chapter 5. 

 Scordelis et al. (1959) tested a two-way unbonded PT flat plate system 

with four panels supported at nine points (eight points along edges and one point 

at the center). The slab was post-tensioned with twelve cables in each direction, 

uniformly distributed with a draped parabolic profile to balance desired moments. 

Each cable consisted of a single 1/4 in. high strength steel wire greased and 

placed in a plastic sheathing. Four tests were performed, one each under uniform 

prestress; under unequal prestress (1.8:1 for column to middle strip), skip loading 

(live load was only presented on one panel) and uniform loading to failure (live 

load was presented on four panels). A punching shear failure occurred at the 

center support after extensive flexural cracking. Theoretical calculations were 

also performed to predict moment and deflection within the elastic range by the 

beam theory and elastic plate method. The design method was evaluated by the 

experiment.  

 Brotchie and Beresford (1967) conducted an experimental test of an 

unbonded PT flat plate system. The overall slab dimensions were 26 ft by 42 ft in 

footprint and 3 in. in thickness, with supporting columns spaced on a 12 ft by 9 ft 
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grid. Prestressing tendons were single 0.276 in. wires unbonded and draped to 

follow overall panel moment profiles and tensioned to balance these moments at 

the sustained loading. A 30 month long test was performed under sustained 

loading followed by a short term uniform loading test until flexural failure 

occurred. The slab system failed by a process of folding and yield rotation 

initialization where actual shear capacity was unknown.  

 An experimental study followed Scordelis’ study (1959) and was 

performed by Odello and Mehta (1967). The test specimen was identical to the 

specimen in Scordelis’ study except that five drop panels were added at the edge 

and center supports, respectively. The slab was loaded and unloaded at several 

levels and monotonically loaded to failure. Flexural failure was observed first 

followed by an ultimate failure of combined flexure and shear failure with a 

slightly higher load. The beam theory was investigated with this experiment and 

yielded a satisfactory elastic and ultimate analysis. Cracking and ultimate load 

carrying capacities of the slab were increased significantly with the presence of 

drop panels. These three experiments were related to large scale unbonded PT 

flat plate systems. However, conclusions on the punching shear capacity of slab-

column connections under such prestressed concrete systems have not been 

reached.  

 Other researchers (Gamble, 1964; Burns and Hemakom, 1977; Burns and 

Hemakom, 1985; Kosut et al., 1985) conducted experiments on unbonded PT flat 

plate systems with attempts to investigate the punching shear strength. A two bay 
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by three bay continuous unbonded PT flat plate was tested by Gamble (1964). 

The plate system consisted of two spans of 12 ft in the transverse direction and 

three 9 ft spans in the longitudinal direction along with twelve square column 

supports underneath the slab. The lightweight concrete slab was post-tensioned in 

both directions using 0.276 in. diameter high strength wire with a straight profile. 

The wires were spaced at 4 in. in the direction of the 12 ft span and 6 in. in the 

direction of the 9 ft span. Additional non-prestressed mild steel was also 

provided. Long term and short term tests were performed. The specimen was 

loaded uniformly until all panels failed. A very brittle shear failure occurred at 

one of the interior slab-column connections before flexural failure. The moment 

distribution was investigated and was in a reasonable agreement with the elastic 

moment before cracking. The flexural strength was predicted by using the yield 

line theory but was not able to be verified by the experiment. Punching shear 

strength was evaluated based on several available equations for the interior slab-

column connection, whereas no investigation was made to the corner connections.  

 Burns and Hemakom (1977) tested a one-third scale unbonded PT flat 

plate with nine panels. The slab was three bay by three bay with 10 ft spans in 

each direction and was post-tensioned with 68 1/4 in. diameter seven-wire 

strands in each direction with a draped profile. The tendons were distributed 70% 

in the column strip and 30% in the middle strip. In addition, non-prestressed mild 

steel was provided at the column regions. The slab was loaded by a whiffletree 

system producing sixteen load points on each main panel and four load points on 
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each span of overhang. A total of 15 tests were performed. The first test was 

about the instrument check. Nine of them were related to flexural tests and five 

of them were subjected to punching shear failure tests. The experimental 

observations indicated that the shear capacity was relatively consistent from 

column to column. The moment distribution observed from the experiments was 

compared with the elastic plate theory and equivalent frame method, indicating 

the design method performed well. In addition, the flexural capacity was 

accurately predicted by the yield line theory. Another half scale unbonded PT flat 

plate with nine panels was tested by Burns and Hemakom (1985). The slab had 

three spans of 10 ft in each direction and was post-tensioned with 23 1/4 in. 

diameter tendons in the north-south direction and 24 1/4 in. diameter tendons in 

the west-east direction. The tendons were uniformly distributed in the north-

south direction and banded in the column strip in the west-east direction. All 

tendons had a draped profile. Additional non-prestressed mild steel was provided 

at the column regions. A similar loading procedure was employed in a total of 12 

tests. The first test was performed to check instruments. Eight of the tests were 

flexural tests and three of the tests were punching shear tests. In all failure load 

tests, the slab failed by flexure followed by a punching shear failure with the 

same load. Burns and Hemakom (1985) concluded a large deflection and 

curvature at the negative moment yield line might have triggered the shear failure 

after the flexural failure.  
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 Kosut et al. (1985) conducted a test of half scale unbonded PT flat plate 

with four panels. The test slab was 20 ft square with two spans of 10 ft in each 

direction and nominally 2.75 in. in thickness. The 0.25 in. diameter, 244 ksi 

strength wires were uniformly distributed in one direction and banded in the 

column strip in the other direction. All tendons had a draped profile. Auxiliary 

non-prestressed bonded reinforcement was provided at the connection. Several 

connections were further reinforced by shear stirrups. A similar loading system 

used by Burns and Hemakom (1977; 1985) was employed in this test. A total of 

13 tests were performed of which eight were related to flexural tests and four 

were tested to assess the shear strength of individual slab-column connections. 

Test results showed use of vertical reinforcement at the exterior slab-column 

connection did not increase the shear strength. 

 Martinez-Cruzado (1993) investigated two 3/7 scale isolated unbonded 

PT edge slab-column connections and two corner connections. The slabs with the 

corner connection had an overall length of 7 ft 1-1/2 in. in each direction and 3-

5/8 in. in thickness. The corner connection was in the south-west corner, whereas 

other corners of the slab were supported by pin connections simulating an 

inflection boundary in the prototype structure. The slab with the edge connection 

had an overall length of 13 ft 3 in. in the lateral loading direction and 6 ft 11-

11/32 in. in the transverse direction, and a slab thickness of 3-5/8 in. Similar 

boundary conditions were used for the edge connection specimens. Five 3/8 in. 

diameter prestressing strands were banded in the north-south direction 
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concentrating in the column strip, while another two and three were banded and 

uniformly distributed inside and outside the column strip along the west-east 

direction, respectively, in the slabs. A similar arrangement of tendon layouts was 

used for the slab with the edge connection except the banded tendons were 

grouped in the west-east direction. All prestressing strands were drape shaped. 

Supplemental bonded reinforcing bars were provided at the negative moment 

region around the column. Additional dead loads were applied to the slab before 

testing to achieve the desired gravity load in the column at the initialization of 

the test. A cloverleaf displacement loading pattern was applied to the column top 

with several cycles of different drift ratios for the purpose of simulating multi-

directional seismic loading. One of the conclusions reached in the study was that 

the presence of high compressive stress in the slab-column connection region 

increases the shear strength of the connection. The increase of tensile stress was 

very small in the strand under constant gravity and increased lateral load.  

 Gardner and Kallage (1998) tested a two bay by two bay unbonded PT 

flat plate. The slab had two spans of 8 ft 11-7/8 in. in each direction and 3.54 in. 

in thickness. Three of the edge columns were circular and the others were square 

shaped. The 0.51 in. diameter, greased, seven-wire strands were uniformly 

distributed in one direction and banded in the column strip in the other direction. 

All tendons had a draped profile. No other supplementary bonded reinforcement 

was provided. The slab was uniformly loaded to failure in increments with forty 

point loads. The punching shear failure occurred in a circular edge slab-column 
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connection through a uniformly distributed load increase. After the initial failure, 

additional supports were placed at the failed edge connection to further load until 

another punching shear failure occurred at a rectangular interior slab-column 

connection. By shoring the interior connection, load was applied again until a 

rectangular corner slab-column connection failed by punching shear. Gardner 

and Kallage (1998) proposed a method to predict the punching shear strength and 

concluded that the presence of precompression in a slab might affect the shear 

strength of edge and corner slab-column connections.  

 Foutch et al. (1990) tested four isolated PT slabs with edge connections. 

Four slabs had the same dimensions of 80 in. in one direction, 60 in. in the other 

direction and 4 in. in thickness. The slabs were only supported by the edge 

connections located at the center of the exterior edge. Slab1 and Slab2 had 

banded tendons perpendicular to the exterior edge while tendons were uniformly 

distributed in the other direction. Tendons were banded parallel to the exterior 

edge in Specimens Slab3 and Slab4. All tendons were Grade 270, 3/8 in. 

diameter, seven wire strands. In addition, non-prestressed mild steel was used as 

the crack control reinforcement in the vicinity of the column, and was also placed 

as the top and bottom edge reinforcement around the perimeter of the slab to 

prevent the splitting crack. The loading pattern of Slab1 and Slab2 were different 

from Slab3 and Slab4. The loading positions varied by the moment-to-shear ratio. 

All slabs were monotonically loaded to a failure. It was supported by the test 
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results that the shear strength of a slab-column edge connection benefited from 

the precompression in the concrete.  

 Warnitchai et al. (2004) tested a 3/5 scale bonded PT slab with an interior 

slab-column connection. The square slab had a length of 18 ft 8-2/5 in. along 

each direction and 4.72 in. in thickness. The column was right located at the 

center of the slab with a section dimension of 9.84 in. x 19.69 in. and extended 

35.43 in. above and below the slab mid-plane. The slab was supported by pin 

connections at two sides in the direction of lateral loading. The clear span 

between the pin connections of two sides was 16 ft 4-4/5 in. The slab was post-

tensioned with eight bonded straight, Grade 270, 1/2 in. diameter, seven-wire 

strands. The tendons were banded in the lateral loading direction and uniformly 

distributed in the other direction. Additional non-prestressed reinforcement was 

provided at the slab top and bottom. The top slab bars were concentrated only at 

the connection region. The bottom steel mat was provided throughout the whole 

slab. Additional gravity loads were applied to the slab by sand bags in order to 

obtain the desired gravity-to-shear ratio. The lateral load was applied on the top 

of the column with several cycles of different drift ratios until the punching shear 

failure occurred. The brittle failure occurred at the drift ratio of 2%.  

 Most of the experimental programs reviewed above, however, provided 

insufficient data to assess the punching shear strength in the PT slab-column 

connections. The experiments carried out by Martinez-Cruzado (1993), Foutch et 

al. (1990), and Warnitchai et al. (2004) were isolated systems which had 
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sufficient data from tests. Therefore the FEM models were constructed for those 

specimens. The descriptions of the modeling are addressed in Chapter 4. 

 

2.2 Comparative Study of Prestressing Tendon Bonding 

The following reviews previous investigation of bonding influence of 

prestressing tendons. They were selected as the experimental basis of the 

following numerical analyses in Chapter 5. 

 Comparative studies with regard to the prestressing tendon bonding 

influence on the structural behavior have been rarely reported in the past. 

Mattock et al. (1971) conducted an experimental study of seven simple supported 

single-span beams and three continuous two-span beams. All beams were 

categorized into three groups for the test as three T-beams (CB1, CU1 and CU2), 

continuous over two spans of 28 ft each; three simply supported T-beams (TB1, 

TU1 and TU2) of 28 ft each; and three simply supported rectangular beams 

(RB1, RU1 and RU2) of 28 ft span each. An additional unbonded PT T-beam 

was tested which was identical to the TU1 and TU2, except that a single 3/8 in. 

diameter non-prestressed seven wire strand was provided as additional bonded 

reinforcement. Each of the beams was post-tensioned by two, Grade 270, 1/2 in. 

diameter seven wire strands. In the first beam of each group, the tendons were 

bonded by grouting after the post-tensioning. The tendons were left unbonded in 

the other two beams of each group. The tendons were draped parabolically in all 

simply supported beams with an effective depth of 10 in. at the mid-span and 
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zero eccentricity at the ends of the beams. In all continuous beams, the tendons 

were draped with an effective depth of 10 in. at both the mid-spans and zero 

eccentricity at the ends of the beams. In addition, different non-prestressed 

bonded mild steel was provided for each beam in accordance with ACI 318-63 

(1963). Dead weight of all test specimens was increased by 100 percent due to 

the fact that all beams were half-scaled. Each span was subjected to four equal 

point loads which were applied at points 1.5 ft and 5.5 ft away from the mid-span 

on each side. The point loads were increased monotonically until the failure of 

test beams occurred. For the simply supported beams, it has been realized that the 

ultimate strength of the unbonded beams might have been up to 30% greater than 

that of the bonded beams even though they were with the same design strength 

according to ACI 318-63. The test results from both simply supported and 

continuous beams also revealed that the crack spacings of the unbonded beams 

were equivalent to or larger better than those of the bonded ones which implied 

good serviceability characteristics. Mattock et al. (1971) also concluded that the 

unbonded beams with non-prestressed bonded reinforcement behaved more like a 

flexural member than a hinged tied arch.  

 Cooke et al. (1981) investigated twelve simply supported PT one-way 

slabs. Nine of them were prestressed with the unbonded tendons and the rest 

were prestressed with the bonded tendons. Of the nine unbonded slabs, three 

(Slab1, Slab2 and Slab3) had a length of 15 ft 9 in. with spans of 15 ft 1-1/8 in.; 

three (Slab4, Slab5 and Slab6) had a length of 11 ft 9-3/4 in. with spans of 11 ft 
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1-3/4 in.; and three (Slab7, Slab8 and Slab9) had a length of 7 ft 10-1/2 in. with 

spans of 7 ft 2-5/8 in. The three bonded slabs (Slab B4, Slab B5 and Slab B6) 

were identical to Slab4, Slab5 and Slab6, respectively, except the tendons were 

bonded to the concrete. The slabs in each unbonded group had a width of 1 ft 1-

7/8 in., 2 ft 3-3/4 in. and 3 ft 10-1/2 in. All slabs were 7-1/16 in. in the thickness. 

The first two slabs in each group were prestressed with three straight tendons of 

1/2 in. diameter. The last slab in each group was prestressed with three straight 

tendons of 5/16 in. diameter. All tendons were placed at an effective depth of 4-

3/4 in. No additional bonded reinforcement was provided to any of the slabs. All 

slabs were subjected to a constant bending moment by two line loads which were 

applied at 4 ft 11-1/16 in., 3 ft 7-5/16 in. and 2 ft 3-9/16 in., respectively, from 

the supports in each group. All slabs were statically loaded in increments until 

the failures occurred.  

 All equations predicting tendon ultimate stress were evaluated to have 

under-predicted the ultimate tendon stress except the equation from ACI 318-77 

(1977). This equation yielded a slightly higher value compared to measured 

results only for a low prestressing steel index, eq  ( cpepe ffq '/ρ= ). All of the 

equations examined for flexural strength produced conservative values except 

those equations from ACI 318-77 and CP110 which yielded slightly higher 

values for a low eq . It was recommended that non-prestressed bonded 

reinforcement should have been provided when 𝑞𝑒  is less than about 0.11, 

otherwise the flexural instability can result in smaller ductility at failure. The 
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difference of behaviors between the bonded and unbonded slabs with similar 

reinforcement, and material and loading configurations were found to be very 

small except the slabs with a very low eq . Cooke et al. (1981) also observed that 

the crack spacings of Slab4 were larger than those of its bonded counterpart, 

SlabB4. A conclusion was drawn that Slab6 and SlabB6 with a very low eq  

behaved more like a hinged tied arch than a flexural member. Some of the 

specimens in these two studies were modeled by the finite element method 

(FEM) for further study. The descriptions of modeling are presented in Chapter 

4. 

 

2.3 Finite Element Formulation of Prestressed Concrete Members 

Finite element applications of prestressed concrete (PC) have been 

actively researched for decades since the pioneering work was done by Ngo and 

Scordelis (Ngo and Scordelis, 1967). The key to simulating the different types of 

prestressed concrete systems (pre-tension, bonded and unbonded PT) lies in the 

modeling of the bonding condition between the concrete and tendons. Tendons in 

a pre-tensioned prestressed concrete member can be idealized as perfect bonding 

which implies the strain compatibility between the tendons and surrounding 

concrete. On the other hand, either a bonded or an unbonded PT member requires 

an unbonded formulation in the jacking stage. Studies regarding the formulations 

of the bonded, partially and fully unbonded tendons are various and rich in the 

literature. The following review discusses the previously developed modeling 
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scheme of interactions between prestressing tendons and concrete. The most 

popular treatment was to utilize link (rigid spring) elements between tendons and 

correspond sheathing or concrete. The other method was to employ empiric 

equations for determining the unbonded tendon strain. However, research on 

contact techniques to directly model the interface between prestressing tendons 

and corresponding sheathing has not been conducted to the author’s knowledge.  

 Kang and Scordelis (1980) proposed a nonlinear finite element procedure 

analyzing prestressed concrete frames with bonded or unbonded tendons. This 

procedure takes into account the material and geometric nonlinearities as well as 

load history, temperature history, creep, shrinkage, and aging of the concrete, and 

relaxation of the prestress. The complete uniaxial stress-strain relations for the 

concrete, non-prestressed steel reinforcement and prestressing steel were 

modeled. The displacement field of the frame element is linear along its local 

axis and cubic perpendicular to the axis. Reinforcement steel was modeled by a 

separate layer with the assumption of perfect bonding. The curved prestressing 

tendons were discretized into several linear segments. The bonded prestress 

tendons were treated in the same way as non-prestressed bonded reinforcement 

steel with perfect bonding of the concrete, whereas the strain of the unbonded 

prestressing tendons was determined by the deformed geometry of the tendons. 

The prestress loss due to friction and anchorage slip of the PT members at a 

transfer stage were calculated along with empiric equations and incorporated into 

the procedure. For the pre-tensioned or PT bonded members, the stiffness of the 
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prestressing tendon was included in the stage of perfect bonding in the analysis, 

while the stiffness of the prestressing tendon was neglected for the PT unbonded 

members. The equilibrium equations were formulated as incremental forms of 

the load. An iterative procedure was applied to solve each load increment. The 

time domain was divided into a discrete number of time steps to perform a time 

dependent nonlinear analysis. The aforementioned iterative procedure was 

applied to each time step to converge the unbalanced load to a prescribed 

tolerance. This nonlinear finite element procedure was applied to several 

numerical examples including a bonded PT beam tested by Lin (1955), a bonded 

and unbonded PT I-beam tested by Breckenridge and Bugg (1964) as well as a 

pre-tensioned concrete column tested by Aroni (1968). All simulations resulted 

in good agreement with the experiments.  

 The finite element procedure proposed by Van Greunen and Scordelis 

(1983) was able to analyze both the pre-tensioned and PT bonded and unbonded 

slabs. The procedure was incorporated into a computer program, NOPARC (Van 

Greunen, 1979) which is capable of analyzing the prestressed slabs with the 

consideration of time dependent effects, material and geometric nonlinearities. A 

flat triangular shell finite element was used for concrete. The biaxial stress-strain 

law for concrete was an orthotropic formulation proposed by Darwin and 

Pecknold (1976; 1977) and adopted in the study. A uniaxial stress-strain relation 

was used for the non-prestressed reinforcement steel as well as prestressing 

tendons. The stiffness of the bonded reinforcement steel and tendon was included 
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in the formulation where the deformation field of the steel is the same as that of 

the concrete. For the unbonded tendons, a modified method utilizing an average 

extension factor was used to determine the stress-strain state of the unbonded 

tendons. A step-by-step integration scheme in the time domain was employed to 

analyze the effects of the time-dependent phenomena such as creep, shrinkage in 

the concrete, stress relaxation of the prestressing tendons, and temperature 

changes on the behavior of reinforced and prestressed concrete structures. Two 

numerical analyses were carried out in the study including a pre-tensioned 

prestressed concrete column tested by Aroni (1968) and a continuous two-way 

unbonded PT slab tested by Scordelis et al. (1959). The analysis maintained a 

good agreement with the experiment for the pre-tensioned column, while the 

modeling scheme was partially consistent with the slab test data in the inelastic 

range. Van Greunen and Scordelis (1983) explained that the discrepancies found 

at the failure stage were caused by the coarse mesh and difficulty of modeling the 

actual tendon forces at major interior cracks.  

 El-Mezaini and Citipitioglu (1991) presented a discrete formulation for 

reinforcement simulating the bonded, fully unbonded and partially unbonded 

behaviors of the tendons. The key feature of the formulation hinges on the 

development of an isoparametric element with moveable nodes in which the 

nodes in the element can be moved without node mapping distortions. With these 

features, the concrete nodes were moved to new locations, such that the concrete 

nodes coincide with the reinforcement nodes in space. The stiffness matrices of 



22 

 

the concrete and reinforcement elements were evaluated separately. The stiffness 

matrix of the reinforcement was directly added to that of the concrete for the 

bonded formulation, whereas the stiffness matrices of the concrete and 

reinforcement elements were transformed to the local rotated axes per each 

element. The structural stiffness matrix was reassembled by considering the 

coupled and uncoupled degrees of freedom of the reinforcement nodes. Linear 

springs were added between the overlapped concrete and reinforcement nodes 

simulating a partially bonding condition. Several numerical problems, including 

a square-plate, a simple-beam with different tendon bonding conditions, a two-

span continuous beam as well as a non-prismatic continuous beam with both the 

bonded and unbonded conditions, were solved by the linear finite element 

analyses to evaluate the discrete reinforcement formulation. The numerical 

results yielded good agreement with the previous analysis results by other 

researchers. 

 Nikolic and Mihanovic (1996) proposed a finite element model to analyze 

the PT structures. The tendons were formulated by a one-dimensional 

isoparametric three-node element with a uniaxial stress-strain relation. The 

concrete was modeled by an eight-node two-dimensional element associated with 

a concrete material model which combines the elasto-viscoplastic approach with 

the smeared crack approach. The prestress loss due to friction was taken into 

account by considering that a distributed load due to prestress within a tendon 

consists of the normal and tangential parts with respect to the tendon direction. 
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The normal part of the distributed loads is a function of the curvature of the 

tendon, whereas the tangential part is the product of normal part and a friction 

factor. The prestress transfer was simulated by obtaining the equivalent nodal 

forces on the concrete nodes due to the prestress. The prestressing tendons and 

non-prestressed reinforcement were embedded into the concrete with perfect 

bonding. Typically, three phases were used in a simulation including: 1) applying 

the dead load prior to prestressing; 2) prestressing; and 3) applying the remaining 

dead and live load. Four numerical analyses were carried out in the study 

including an unbonded PT beam, a PT beam with different frictional coefficients, 

prestressing methods and a bonded PT non-prismatic continuous beam. The 

numerical results were in good agreement with the available experimental data 

and previous analyses done by other investigators. 

 The procedure proposed by Vecchio et al. (2006) was capable of 

simulating the unbonded PT concrete structures. A link element between the 

unbonded tendon and concrete was developed which consists of two mutually 

orthogonal springs. The tangential spring along with the tendon was associated 

with a bond stress model whereas the other spring had an infinitely large 

stiffness. The bond stress was modeled as a function of the tendon location, and 

tendon curvature and wobble effect. The friction stress, however, was 

independent of the tendon slip. The concrete was formulated by a two-

dimensional rectangular element with a smeared rotating crack constitutive law. 

Prestressing tendons were formulated by a truss element, while non-prestressed 
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reinforcement steel was formulated either by a truss element or a smeared 

reinforcement layer. Typically, two analysis steps were involved in the proposed 

procedure: 1) applying the temperature field to the anchorage by which the 

anchorage expands and shrinks uniaxially in the direction of tendon prestressing 

to simulate the tendon prestressing and prestress loss due to the anchorage wedge 

setting; 2) applying an external load. The frictional loss of the tendon was 

automatically calculated according to the proposed bond stress formulation. Two 

numerical examples were investigated. A series of flexural controlled prestressed 

I-beams with unbonded tendons were modeled and had very good agreements 

with the experiments. Several shear dominant I-beam and T-beams with bonded 

or unbonded tendons were also modeled, where all of the simulations were well 

performed compared with the experiments. Vecchio et al. (2006) also concluded 

that the accuracy of the finite element analysis with respect to the PT unbonded 

members was barely influenced by neglecting the unbonded tendon friction 

effect; however, the ductility was greatly impacted during an analysis of a 

flexural controlled member.  
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CHAPTER 3. HYPOTHESIS AND OBJECTIVES 

 The principal aim of this study is to discuss approaches of modeling a PT 

prestressed concrete system and accordingly develops finite element modeling 

schemes appropriate for investigating particular engineering problems. It is 

hypothesized that potential modeling schemes can be developed via the finite 

element method (FEM) and thereafter yields robust and accurate numerical 

solutions. Both the numerical results and previous experimental data were used 

to make recommendations and suggestions related to the current building code 

based on the proposed FEM. In part one of this study, modeling schemes based 

on general purpose finite element packages were discussed and presented which 

is the basis of the following numerical analyses. Particular engineering problems 

that are investigated in this study include the assessment of punching shear 

provisions in ACI 318-08 (2008) and the evaluation of flexural strength 

equations (for both bonded and unbonded PT members) in ACI 318-08. The 

corresponding finite element models are constructed in general purpose finite 

element packages. In part two of this study, a more flexible nonlinear finite 

element formulation is developed which specializes in solving structural 

problems in the context of PT prestressed concrete frames.  

The objectives of the dissertation are 1) developing potential modeling 

schemes for PT prestressed structures based on general purpose finite element 

packages; 2) evaluating the current building code in terms of particular problems; 

3) validation of the proposed modeling schemes and studying specific 
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engineering problems through the proposed FEM; and 4) developing a robust and 

flexible framework of nonlinear finite element analysis that lies particular 

emphasis on modeling PT prestressed structures. 

 The following chapters describe the methodology of this study. The 

discussions of methodology are divided into two parts. Part one contains the 

materials of modeling schemes based on general purpose finite element packages 

(Chapter 4) and corresponding numerical studies regarding engineering problems 

(Chapter 5). Part two starts at Chapter 6, and mainly discusses the proposed 

formulations, implementations and mathematic fundamentals that lay behind 

them. Several numerical examples are carried out in the end of Chapter 6. 
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CHAPTER 4. MODELING SCHEME IN GENERAL     

PURPOSE FINITE ELEMENT PACKAGES 

4.1 Introduction 

This chapter presents and discusses a general methodology of modeling 

PT prestressed structures in general purpose finite element packages. The 

specified modeling approaches via ABAQUS (2008) are particularly discussed 

and all formulations selected are widely available in many other finite element 

packages. The fundamental principle is the same, even though modeling details 

might vary as different finite element packages are used. The essential concept is 

to discretize a concrete entity via general purpose solid elements in combination 

with truss or beam elements which are used to discretize steel reinforcement. 

 Constitutive models are carefully selected to address governing laws of 

materials. Generally, a plasticity model considering strain hardening, strain 

softening with the ability of adding tension stiffening, proper yielding criterion 

and flow rules can be successfully used to simulate concrete material with a 

smeared cracking feature. In some packages, a concrete model with a smeared 

cracking approach is directly available. Neither type of constitutive models will 

be able to track individual crack as cracking is smeared through the entire 

element. However, it is still possible to capture an individual dominant crack via 

smeared cracking type model if the mesh is refined in the area of cracking.  
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A conventional elasto-perfect plasticity model is good enough to model 

mild steel bars in concrete structures whereas an elasto-plasticity with isotropic 

hardening is more appropriate of modeling high-strength prestressing steel. 

Assuming perfect bonding for non-prestressed mild steel bars is accurate enough 

in most scenarios, since most typical PT structures present very low 

reinforcement ratios of mild steel bars. On the other hand, interaction between 

concrete and tendons plays a more significant role than the bonding of mild steel 

bars. Modeling of unbonded and partially bonded tendons is difficult due to the 

introduction of a nonlinear boundary. Two modeling schemes (a spring system 

method vs. a direct contact formulation) are proposed by either approximating 

the nonlinear boundary problem to a linear boundary problem or formulating the 

nonlinear boundary via FEM directly. A thorough discussion regarding the spring 

system method and direct contact formulation is given in this chapter. The 

prestressing force in a structure is simulated by giving a prescribed prestress 

field. The initial strain filed is achieved by various methods such as the 

temperature approach (manipulating the temperature field around tendons).  

Conventional implicit static analysis or explicit dynamic analysis is 

successfully applied to obtain the solution. The choice highly depends on the 

availability of the algorithm, solution convergence rate and computational 

efficiency of the selected finite element packages. The aforementioned details are 

discussed in details in the last section of this chapter. 
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4.2 Material Constitutive Relations 

4.2.1 Concrete constitutive model 

A built-in “damaged plasticity model” in ABAQUS (2008) was employed 

for concrete modeling. No considerations were given to the concrete damage 

during unloading, that is, a plasticity model without damage. Preliminary 

analyses were performed to validate that results under monotonic loads are not 

sensitive to the damage factors ( cd  and td  in Figure 4.1; zero vs. non-zero). 

Most documented tests reviewed in the literatures were not subjected to cyclical 

loads. Therefore, the damage and stiffness degradation descriptions during cyclic 

loading conditions were not used in the concrete constitutive model for 

simplicity. The following discussion briefly describes the theories behind the 

damaged plasticity model in ABAQUS. More detailed information can be found 

in the ABAQUS theory manual (2008). 

 

Figure 4.1 Concrete uniaxial stress-strain relation models; (a) in compression 

and (b) in tension 
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The expression of strain rate is broken down into elastic and plastic parts as 

shown in Equation. 4.1. 

el plε ε ε= +                                               (4.1) 

 

where ε , elε , and plε  are the total, elastic, and plastic strain rates, respectively.  

The strain-stress relations of concrete are presented as: 

0(1 ) : ( ) : ( )el pl el pldσ ε ε ε ε= − − = −D D                          (4.2) 

 

where el
0D and elD are the initial (undamaged) and degraded elastic stiffnesses of 

the material, respectively. The parameters of ε  and plε  are the total and plastic 

strains, respectively (see Figure 4.1), and d is the scalar stiffness degradation 

variable (= 0 in this study), which is a function of stress state, uniaxial damage 

variables of cd  and td , and stiffness recovery factors. 

The relationship between the Cauchy stress (σ ) and effective stress (σ ) 

is defined through the scalar degradation variable (d) as: 

(1 )dσ σ= −                                                 (4.3) 

 

     In this study, no damage is considered in the model; therefore, the 

effective stress simply becomes the Cauchy stress from Equation 4.3. 
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     Hardening variables control the evolution of the yield surface and 

degradation of the elastic stiffness. They are referred to as the equivalent plastic 

strains ( plε ) in tension and compression, respectively. 

pl
pl t

pl
c

ε
ε

ε
 

=  
 





                                                    (4.4) 

 

These hardening variables are a function of three principal strain and 

principal stress components under general multiaxial stress conditions. The 

effective uniaxial tensile and compressive cohesion stresses, tσ  and cσ , are 

calculated from the hardening variables as: 

0 ( )
(1 )

plt
t t t

t

E
d

σσ ε ε= = −
−

                                         (4.5) 

0 ( )
(1 )

plc
c c c

c

E
d

σσ ε ε= = −
−

                                        (4.6) 

 

where the subscripts t and c denote tension and compression, respectively, and E0 

is the initial tangent modulus in uniaxial loading.  

As described later in this section, the effective uniaxial cohesion stresses 

influence yield surface. This model requires uniaxial strain-stress relation to be 

defined by the user, and then ABAQUS (2008) converts the relation into a stress 

versus plastic strain curve as expressed in Equations 4.5 and 4.6. Figure 1 shows 

the uniaxial stress-strain relation used in this model for compression and tension, 

respectively. 
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The uniaxial stress-strain relation is extended to multiaxial stress 

conditions. The yield function (F) adopted by this model is based on the yield 

function proposed by Lubliner et al. (1989) and integrates the modifications 

suggested by Lee and Fenves (1998), taking the following form: 

max max
1( , ) ( 3 ( ) ) ( ) 0

(1 )
plpl pl

c cF q pσ ε α β ε σ λ σ σ ε
α

= − + − − − ≤
−

            (4.7) 

 

where 
1 ( )
2

x x x= +  and p  is the effective hydrostatic pressure defined as: 

3
x y zp

σ σ σ+ +
= −                                               (4.8) 

 

and q  is the Mises equivalent effective stress defined as: 

3 :
2

q S S=                                                    (4.9) 

 

where S  is the effective deviatoric stress matrix. The parameter ( )plβ ε  is a 

function of the effective tensile and compressive cohesion stresses as well as 

dimensionless material constant α , which can be determined from the initial 

equibiaxial and uniaxial compressive yield stresses; the coefficient λ  only 

appears if a triaxial stress state is presented, which can be calculated by 

comparing the yield conditions along the tensile and compressive meridians; and 

maxσ  is the algebraically maximum principal stress of the effective stress tensor. 

http://hy-pc:2080/v6.8/books/stm/ch07s01atr01.html#stm-ref-lubliner-1989
http://hy-pc:2080/v6.8/books/stm/ch07s01atr01.html#stm-ref-fenves-1998
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The plastic potential G was assumed “non-associated” in the meridional 

(p-q) plane. The potential G used in this model is the modified Drucker-Prager 

hyperbolic function (Drucker and Prager, 1952; ABAQUS, 2008) defined as: 

2 2
0( tan ) tantG e q pσ ψ ψ= + −                                 (4.10) 

 

where e is the eccentricity defining the rate at which the function approaches the 

asymptote and ψ is the dilation angle measured in the p-q plane at high confining 

pressure. 

The constitutive model presented above requires concrete uniaxial stress-

strain relation. However, the entire stress-strain curve from experiments was not 

reported. Instead, concrete compressive strength was accessible in the 

documentations. Therefore, an empirical model proposed by Carreira and Chu 

(1985) was employed to describe the uniaxial stress-strain relation in 

compression of concrete if the experimental data were not available. The tension 

stiffening was used to define the interaction between the concrete and the 

deformed bars when cracking occurs. For heavily reinforced members, tension 

stiffening was suggested such that the stress reduces to zero at a total strain of 

about ten times the strain at cracking (ABAQUS, 2008). For lightly reinforced 

members like PT structures, however, such a large tension stiffening effect would 

introduce unreasonable mesh sensitivity because no reinforcement is provided in 

some of the cracked regions. A small tension stiffening effect is liable to cause 

severe discontinuity at the material level. Consequently, a solution slowly 
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converges or diverges in implicit analysis. However, this is not a concern in 

explicit analysis since ABAQUS (2008) utilizes lumped element mass matrices 

and equations of motion are integrated by the explicit central difference 

integration rule. As a result, no stiffness matrix was formed with the desire of 

solving system equations. For that reason, explicit dynamic analysis was the 

basis of the following modeling schemes. More discussions of implicit static 

analysis vs. explicit dynamic analysis are given in Section 4.5. A small tension 

stiffening effect was considered for the following analyses of PT structures, by 

assuming the cracking strain ( ck
tε ) as equal to approximately twice the strain 

corresponding to σt0. Other material parameters such as α, β and λ, described 

previously, were set to the default values, for no experimental data are available 

in most cases. However, the ABAQUS manual (2008) does not provide any 

recommendations for dilation angle ψ. A dilation angle of 50° yielded the best 

results of preliminary analyses of PT structures; thus, a dilation angle of 50° was 

recommended and adopted in the following analyses of PT structures. 

 

4.2.2 Steel constitutive model 

     An elasto-perfect plastic model was assumed for modeling of mild steel 

(Figure 4.2 (a)). The bilinear stress-strain relationship (along with a yield stress 

of yf  and elastic modulus of sE ) is reasonably accurate to define the behavior of 

non-prestressed mild steel bars. The values of yf  and sE  used to define the 
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bilinear relationship were usually measured in experimental programs. Thus, 

these material parameters were directly obtained from corresponding 

experiments in the later numerical simulations of documented tests. On the other 

hand, a nonlinear model consisting of multiple isotropic elasto-plastic segments 

was used for modeling PT tendons (Figure 4.2 (b)). This nonlinear stress-strain 

relationship follows the empirical stress-strain model developed by Devalapura 

and Tadros (1992) for Grade 270 seven-wire strands, otherwise corresponding 

experimental data were used for the numerical analysis. 

 

Figure 4.2 Steel uniaxial stress-strain relation models used for: (a) mild steel 

bars and (b) post-tensioning tendons 

 

4.3 Element Selections 

 The general purpose 8-node first-order solid element (Figure 4.3) with 

reduced integration rule (C3D8R in ABAQUS element library) is a good choice 

for discretizing a concrete entity. This first-order reduced integration element 

greatly saves computational cost and also avoids shear locking that likely occurs 
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in the first-order full integration element. However, the reduced integration 

element has some fictitious zero energy modes which lead to overestimated 

deformation in structures. As a result, a careful hourglass control is imperative 

for these elements.  

 

Figure 4.3 Schematic view of the first order brick element with reduced 

integration rule 

 

 Bonded mild steel bars are modeled using 2-node linear truss elements 

(T3D2 in ABAQUS element library) constrained within the concrete solid 

elements. The same truss element is applied to model PT tendons despite which 

interaction model is selected for simulating slips of tendons (spring system 

method and contact formulation). In both cases, a tendon with a curvy profile is 

discretized into a large number of linear segments.  
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 If the spring system method is selected to model the interactions of an 

unbonded PT structure, the spring element needs to be rigid (several magnitudes 

of order stiffer than other components in the structure) with the ability of finite 

rotation. The SPRINGA element in the ABAQUS element library is a proper 

choice for its capability of large displacements in both implicit static and explicit 

dynamic formulations. The element used for the fictitious tendon is the same as 

the real tendon. The only discrepancy is that the imaginary tendon has negligible 

stiffness compared with other components in the structure.  

If the contact formulation is selected to model the contact interface, it is 

necessary to discretize corresponding tendon sheathings. An appropriate choice 

of elements for modeling tendon sheathings could be the same element used to 

model concrete entity as a general purpose 8-node first-order solid element. 

Another choice is a shell element. Although, the element performance of the 

first-order solid element with reduced integration is very sensitive to the initial 

configuration of the element shape (a distorted shape of the element will yield 

inaccurate outputs), it is not a concern to model tendon sheathings which are 

constrained within concrete elements. The rationale hinges on the typically small 

stiffness of tendon sheathing compared with the corresponding tendons. Thus, 

the virtual work contributions from tendon sheathings are negligible. Even if the 

tendon sheathing has noticeable stiffness along the corresponding tendon 

direction, it is easier to model by alternative truss elements with equivalent 

stiffness. Therefore, the tendon sheathing element only serves as a contact 
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interface element which distributes prestressing balancing force into concrete. 

More details about the spring system method and direct contact formulation are 

presented in the following section. 

 

4.4 Interaction between Concrete and Steel 

4.4.1 Embedding constraint and rigid beam constraint 

 The interactions between non-prestressed mild steel bars and concrete are 

assumed to be perfectly bonded as the low reinforcement ratio in typical PT 

prestressed structures. Based on this assumption, the nodes of mild steel bars 

need to be displacement compatible with the nodes of surrounding concrete 

elements. The approaches to assure the compatibility among displacement fields 

are various, such as superimposing reinforcing bar nodes onto nearby concrete 

nodes and linear constraint equations. The embedding constraint provided in 

ABAQUS (2008) is able to constrain translational degrees of freedom which can 

be used to embed truss elements into solid linear brick elements.  

 The complicated anchorage of PT prestressing systems can be simplified 

and modeled by specified nodal constraints. The constraints ensures that the 

nodes of tendon are properly “anchored” in the concrete at the anchorage zone. 

The constraint is fulfilled by Multi-Point Constrains (MPCs) provided in 

ABAQUS (2008). A particular rigid beam MPC is a good choice to anchor the 

tendon end nodes in surrounding concrete nodes. 
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4.4.2 Spring system method 

 The most difficult part of modeling an unbonded or partially bonded PT 

prestressed system is simulating tendon slips and their corresponding strain. The 

problem is the nature of boundary nonlinearity. An exact model of the nonlinear 

boundary requires a contact formulation between tendons and corresponding 

tendon sheathings. A popular alternative approach to the contact formulation is to 

approximate the nonlinear boundary to a linear one. It utilizes a large number of 

linear springs to eliminate the boundary nonlinearity. Figure 4.4 illustrates the 

mechanism of the spring system model.  

 

Figure 4.4 Modeling of unbonded PT system using the spring system method 
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 Real and virtual tendons were modeled as depicted, respectively, and they 

were connected to each other with a spring attached at each node. The springs 

were assumed to be rigid enough to rotate with no axial and bending 

deformations. Additional constraints were applied to the springs to ensure that 

rotation only occurs along the slide direction by linear constraint equations. 

Virtual (trivial) tendons with negligible stiffness (very small Young’s modulus) 

were embedded in the concrete entity, ensuring no influence on the concrete slab 

stiffness. As a result, the prestressing balancing load due to post-tensioning was 

first transferred from the nodes of real tendons to the nodes of virtual tendons, 

and then to the concrete nodes around virtual tendons while the axial pre-

compressive force was transferred by the anchorage simulated by a rigid beam 

MPC (Figure 4.5). In this manner, the mechanism of unbonded post-tensioning 

tendons is simulated reasonably well. The discrepancy of prestressing balancing 

load transfer due to the difference in the position of real and virtual tendons is 

negligible.  

 

Figure 4.5 Balancing load transferred through spring system 
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 Two questions arise with the spring system method: 1) the optimal spring 

quantity and location in the modeling, and 2) the optimal length of spring 

element. The mechanism expressed in Figure 4.3 implies that the primary role of 

the springs is to transfer the balancing load due to post-tensioning from tendons 

to the concrete. Thus, the springs should be located at turning points of the 

tendon and at points where concentrated loads are imposed. To investigate the 

questions, a parametric study was carried out. A set of analyses was performed 

with various spring densities for Specimen S1 tested by Foutch et al. (1990), as 

shown in Figure 4.6 (more information about the modeling and experimental 

programs is presented in Chapter 5).  

 

Figure 4.6 Comparisons between the analyses with different quantities of 

springs used for S1 (Experiments tested by Foutch et al., 1990) 
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 It is evident that the quantity of springs hardly influences the final results 

and thus, it is concluded that if the springs are located in necessary locations with 

a reasonable density (e.g., 2 to 3 springs per feet), the results would converge to a 

unique solution.  

 Spring length plays another unknown factor in the model. As described, 

finite sliding was explicitly simulated by the rotation of the spring elements. A 

smaller radius of rotation may cause a larger vertical position change of the 

tendon which may in turn lead to a further deviation from the actual solution, 

whereas a larger radius may too greatly offset the vertical balancing load that is 

transferred from the real tendon to virtual tendon. Another set of analyses with 

various spring lengths were made for the same Specimen S1 as shown in Figure 

4.7. Three cases were considered: 0.25 in., 0.5 in., and 0.75 in. length for the N-S 

tendon and 0.5 in., 1 in., and 1.5 in. length for E-W tendon, respectively. Except 

at the ultimate stage, the responses for the three cases are quite similar. This 

implies that the spring length in the spring system model is not so influential in 

the overall results. Rather, the allowable spring length is limited by the concrete 

cover above or beneath the tendon.  
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Figure 4.7 Comparisons between the analyses with different spring lengths 

used for S1 (NS: spring lengths of tendons in N-S direction; EW: spring lengths 

of tendons in E-W direction; 

Experiments conducted by Foutch et al., 1990) 

 

4.4.3 Contac formulation 

 Even though the spring system method is quite flexible in modeling and 

provides well approximated results, it is limited to modeling perfectly unbonded 

PT structures which yields a uniformly distributed strain field of tendon. The 

motivation of investigating the prestressing loss due to friction, simulating 

partially unbonded and bonded PT structures essentially requires a more robust 

approach to account for the non-uniform strain field of a tendon. At this point, an 

appropriate contact formulation might be the route to the ultimate approach of 

modeling PT prestressed systems. The nature of contact formulation enables the 
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possibility of applying different contact constitutive models at contact interfaces 

which makes it even more flexible in modeling than the spring system one. The 

following descriptions of the contact formulation in ABAQUS (2008) are on the 

basis of explicit dynamic analysis. The interface modeling between tendon 

elements and corresponding sheathing elements is accomplished through 

Surface-to-surface contact in ABAQUS/Explicit contact formulations. The 

tangential behavior of contact is frictionless so that the tendon is free to slip at 

prestressing stage. The assumption of no frictional effects for unbonded tendon is 

reasonable (Vecchio et al., 2006; Kang and Wallace, 2008). A simple change of 

frictionless to rough (infinite friction) ensures the perfect bonding between 

tendons and corresponding sheathings after prestressing. Sheathings are therefore 

embedded into the concrete element for deformation compatibility. A similar 

method based on contact formulation was employed in a numerical study of PT 

slab in fire by Ellobody and Bailey (2008). Figure 4.8 illustrates the modeling 

details. 
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Figure 4.8 Modeling of unbonded/bonded PT systems using the contact 

formulation 

 

 The downside of the current contact formulation compared with the 

spring system method is its computational anxiety. In the explicit dynamic 

algorithm, there has not been any strict rule to determine the increment of critical 

stable time if the contact comes into action. A careful check of system energy is 

required to validate the solution. Therefore, as a summary, the spring system 

method offers a quick and simple way to model unbonded PT systems. On the 

other hand, the contact formulation presents more modeling flexibility and 

robustness and thereafter is the basis of the following numerical studies in 

Chapter 5. 
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4.5 Prestressing and Time Solution Method 

 The procedure of post-tensioning is complicated as it is accomplished by 

several stages in real practice. The effective prestress in a tendon can never be 

uniformly distributed. Even if greased sheathings are used in the prestressing 

process, prestress loss after post-tensioning is inevitable. However, the 

magnitude of prestress loss might be very small in those isolated small scale 

structural members such as in the many down-scaled test specimens reviewed in 

Chapter 2. This is the basis of assuming a uniformly distributed prestress field 

immediately after post-tensioning. This assumption simplifies the 

implementation of prestressing in the modeling. The popular approach of 

modeling prestressing is imposing a prescribed prestress field in the tendons 

before simulations. Due to the nature of explicit dynamic algorithm, to avoid 

transient response of impulse load, the prestress should be imposed in a gradual 

manner. Prestressing is obtained by manipulating the temperature field around 

tendon elements (Stavroulaki et al., 1997) in the case of this study. Uniformly 

distributed initial prestress is generated by decreasing the temperature field. This 

approach is reasonable if the length of the tendon is relatively short at the jacking 

stage where friction loss is a minor effect. All simulations should have a separate 

step for prestressing in which tendon-sheathing contact is always frictionless. 

This treatment enables simulation of both unbonded and bonded PT structures. If 

the unbonded tendon is modeled, the frictionless nature remains in the following 

analysis steps; otherwise it is changed to rough/stick (infinite friction) simulating 
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bonded PT structures. As mentioned early in this chapter, explicit time 

integration was employed because the small tension stiffening effect often leads 

to failures of numerical algorithms in conventional implicit static analysis. On 

the contrary the explicit algorithm seldom aborts due to its significant robustness. 

The compromise is the conditional stability of the explicit algorithm which limits 

the critical time increment to a tiny scale. Even though the time increment is 

conservatively evaluated in ABAQUS, a careful check of system energy is 

essential to ensure the solution is not erroneous. In addition, if simulations are 

performed in a quasi-static manner, a gradually increased load with sufficient 

period should be able to minimize the inertia effect and damp out transient 

responses. 
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CHAPTER 5. NUMERICAL SIMULATIONS OF 

DOCUMENTED TESTS 

5.1 Introduction 

 This chapter presents all numerical simulations that were carried out 

following the modeling schemes proposed in the previous chapter. These 

simulations cover four two-way unbonded PT edge slab-column connections 

tested by Foutch et al. (1990) in Section 5.2; two two-way unbonded PT corner 

slab-column connections tested by Martinez-Cruzado (1993) in Section 5.3; a 

two-way bonded PT interior slab-column connection tested by Prawatwong et al. 

(2007) in Section 5.4; three one-way unbonded PT slabs and three one-way 

bonded PT slabs tested by Cooke et al. (1981) in Section 5.5; and three PT beams 

tested by Mattock et al. (1971) in Section 5.5. All of the numerical simulations 

conducted in this chapter are used to study particular engineering problems in 

practice in accordance with the current building code (ACI 318-08, 2008). 

Through Sections 5.2 to 5.4, the complicated moment shear interaction at edge, 

corner and interior slab-column connections are particularly investigated and 

studied, respectively. The comparative study of PT tendon bonding and flexural 

strength are discussed in Sections 5.4 through 5.7. Furthermore, each numerical 

simulation is compared with corresponding experimental data to validate the 

modeling schemes proposed in the previous chapter. All modeling approaches 
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are consistent on the basis of discussions in Chapter 4, otherwise will be 

specified in the modeling descriptions of each section below. 

 

5.2 Numerical Simulations of Four Two-Way Unbonded PT Edge Slab-

Column Connections 

5.2.1 Description of specimens 

 Four post-tensioned slab-edge column connections tested by Foutch et al. 

(1990) were selected to evaluate the developed unbonded PT modeling schemes. 

Test specimen dimensions and reinforcing details are depicted in Figure 5.1 

through 5.3. The half-story column above and below the slab was pinned at each 

end. In the first two specimens (S1 and S2), tendons were banded perpendicular 

to the exterior edge of the slab. In the other two specimens (S3 and S4), tendons 

were banded parallel to the exterior edge of the slab, as presented by Figure 5.1 

and 5.2. No. 3 mild steel bars were used as crack-control steel reinforcement (top 

mild steel) in the vicinity of the column, and were also placed as top and bottom 

edge reinforcement around the perimeter of the slab to prevent splitting due to PT 

anchorage bursting forces (see dashed lines in Figures 5.1 and 5.2). 
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Figure 5.1 Details of reinforcement and dimension of Specimens S1 and S2 
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Figure 5.2 Details of reinforcement and dimension of Specimens S3 and S4 
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Figure 5.3 Tendon profile in two directions 

 

 The only discrepancy between S1 and S2 or between S3 and S4 is the 

loading position (Figure 5.4), which varies the moment-to-shear ratio. For each 

specimen, four equally distributed loading plates were placed parallel to the 

exterior edge of the slab, with the column pinned at both ends (top and bottom). 

All PT tendons used were Grade 270 3/8 in. diameter, seven-wire strands. The 

average modulus of elasticity was 28,300 ksi. The tendons were inserted into 1/2 

in. diameter polyethylene tubing to prevent bonding to the concrete. All bonded 

bars were Grade 60 steel with a measured yield stress of 72.7 ksi and an ultimate 

stress of 126.7 ksi. Detailed information is provided in the paper by Foutch et al. 

(1990). 
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Figure 5.4 Loading positions 

 

5.2.2 Numerical models 

 The spring system method is adopted for the PT system modeling in this 

numerical study. One-half of the slab and column was modeled due to its 

symmetry with respect to the axis perpendicular to the slab edge. The tendon 

located in the symmetry line was reduced to half the cross-section of the original 

dimension for modeling symmetrical boundary conditions. For each specimen, 

about 75 to 100 spring elements were used to simulate the unbonded tendon 

behavior. Figure 5.5 illustrates the finite element meshes and unbonded tendon 

modeling systems used for the Specimens S3 and S4 (actual tendons in black and 

trivial tendons in blue). Every dot except for tendon end anchorages represents 

the location of a spring element.  
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Figure 5.5 Concrete finite element meshes and spring system (half of one PT 

specimen; symmetric to the centerline of the column) 

 

5.2.3 Numerical results and validations 

 Figure 5.6 depicts the comparison of the simulated and measured moment 

versus drift ratio relations for S1 and S3 that failed in a flexural manner. The 

numerical results of S1 and S3 showed a fairly good agreement with the 

experimental results.  
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Figure 5.6 Comparisons between experimental and analytical results for S1 

and S3 

 

The damage patterns of S1 and S3 are also plotted in Figures 5.7, 5.8 and 

5.9. The plot of damage is essentially based on the maximum principal plastic 

strain which can be considered as cracking. The darker the color, the more 

tension damage was present in that area. (The same method of post-processing 

damage pattern was used for the rest of the numerical investigations as in 

Sections 5.4, 5.4 and 5.5). The experimental result is only available to S1 and is 

also shown in Figure 5.8. The numerical pattern of S1 agrees very well with the 

experiment. The dominant crack was especially accurately correctly captured 

compared with the experiment. 
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                                       (a)                                                           (b) 

Figure 5.7 Numerical damage pattern of S1 (South half of the original 

specimen); 

(a) perspective view and (b) top plan view 

 



58 

 

 

Figure 5.8 Experimental damage pattern of S1 (Foutch et al., 1990) 
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                                       (a)                                                             (b) 

Figure 5.9 Numerical damage pattern of S3 (South half of the original 

specimen); 

(a) perspective view and (b) top plan view 

 

 Figure 5.10 compares the numerical and experimental results of S2 and 

S4 that failed in flexure followed by punching. Both S2 and S4 agreed 

reasonably well with the experimental data prior to punching shear failure. 

Although a slightly higher strength resulted than that found from the measured 

moment-drift relationships, general trends correlated fairly well with the test data. 

Furthermore, the PT connection damage patterns observed by Foutch et al. (1990) 
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correspond to the numerically predicted behavior (Huang et al., 2010). According 

to the deformations resulting from the analysis, S1 and S3 were simulated to 

experience very large slab rotations at the column face, whereas S2 and S4 were 

simulated to produce significant shear deformations near the column face. These 

are consistent with the test observations.  

 

Figure 5.10 Comparisons between experimental and analytical results for S2 

and S4 

 

 The damage patterns from numerical simulations and experiments are 

presented in Figures 5.11, 5.12 and 5.13 for S2 and S4, respectively. The 

available experimental data for S2 is also shown in Figure 5.12. The comparison 

between numerical simulation and experiment indicates a good agreement in 

terms of the location and pattern of cracks. 
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                                       (a)                                                            (b) 

Figure 5.11 Numerical damage pattern of S2 (South half of the original 

specimen); (a) perspective view and (b) plan view 
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Figure 5.12 Experimental damage pattern of S2 (Foutch et al., 1990) 
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                                       (a)                                                            (b) 

Figure 5.13 Numerical damage pattern of S4 (South half of the original 

specimen); (a) perspective view and (b) plan view 

 

 Tendon stress values at multiple locations in a tendon were evaluated. 

The uniform tendon stress readings throughout the entire length demonstrate that 

the strain field of unbonded tendon was properly simulated. Figure 5.14 plots the 

maximum tendon stress development with increasing moment for the specimens. 

The tendon stress increases were in very good agreement with experimentally 

monitored increases, validating that the spring system method for unbonded 

tendon modeling is robust and accurate. 
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Figure 5.14 Unbonded tendon stress increases versus applied moment 

 

5.2.4 Assessments of ACI 318-08 punching shear provisions 

Assessment of γv factor 

 Moment and shear transfers at slab-column connections are described in 

ACI 318-08, Section 11.11 (ACI 318-08, 2008). ACI 318 code provisions present 

an empirical model, the so-called eccentric shear stress model, for designing 

shear and moment transfer on a critical section located at (d/2) from the column 
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face. The sum of direct shear and eccentric shear due to a fraction of unbalanced 

moment transfer may cause punching shear failure. A fraction of unbalanced 

moment given by γfMu is considered to be transferred by flexure, which suggests 

that the rest of the unbalanced moment, γvMu, is assumed to be transferred by 

eccentric shear stress on the critical section. The fraction factors of γf and γv are 

given by ACI 318-08, Sections 13.5.3.2 and 11.11.7.1, respectively, as: 

( )1 2

1
1 (2 / 3) /

f
b b

γ =
+

                                         (5.1) 

(1 )v fγ γ= −                                                  (5.2) 

 

where b1 is the width of the critical section measured perpendicular to the axis 

about which the moment acts and b2 is the width of the critical section transverse 

to b1. For reinforced concrete slab-column connections, ACI 318 allows the 

fraction of the unbalanced moment being transferred in flexure to be increased 

for both exterior and interior connections with relatively small gravity shear. The 

fraction factor of γf may be increased up to 1.0 for edge connections and 1.25(γf) 

for interior connections, if their factored gravity shear ratio (Vu/φVc) is not more 

than 0.75 and 0.4, respectively (Section 13.5.3.3), where Vu is the factored direct 

shear force to be transferred from the slab to the column, φ is the strength 

reduction factor of 0.75 and Vc is the nominal shear capacity provided by 

concrete. Also, to apply for this provision, the net tensile strain (εt) at ultimate 

within the effective transfer slab width of an interior connection should not be 
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less than 0.01. This provision gives great flexibility in connection design. 

However, ACI 318-08 does not permit adjustments of γf or γv for prestressed 

(post-tensioned) connections. This calibration study aims to assess the validity of 

the model and provision, and to extend or improve the model, particularly the 

fraction factor of γv defined as part of the model. 

 Based on the well-developed finite element models, the value of γv has 

been evaluated for each PT specimen. The average shear stress along the slab 

thickness on a critical section has been monitored from integration points of the 5 

layers (elements) located at the front corner of the shear critical section (see 

Figure 5.15 (a)).  

 

Figure 5.15 Monitoring of direct and eccentric (torsional) shear stresses 

associated with the eccentric shear stress model 

 



67 

 

 The analysis found that the shear stress on the side face at the front or 

back corner of the critical section was always the largest. The previous finite 

element analysis for reinforced concrete exterior slab-column connections (e.g., 

Park and Choi, 2007) also reported similar results. The shear stress at this 

location, in accordance with ACI 318-08, is assumed to be equal to direct shear 

plus eccentric shear due to the fraction of unbalanced moment transfer (see 

Figure 5.15 (b)). The applied direct shear (Va) and unbalanced moment (Val’) 

were determined by statics, and the average shear stress (vu) was directly 

obtained from the finite element analysis (Figure 5.15 (a)), where l’ is the 

distance from the centroid of the critical section to loading point. The direct shear 

(Vsw) and unbalanced moment (Msw) due to self-weight were collected at the 

location of the column center prior to the monotonic analysis. Finally, the value 

of γv was determined from the following equations: 

( ) ( )sw a v sw sw a AB
u

c c

V V M V g V l cv
A J

γ ′+ − +
= +                             (5.3) 

' '( ) ( )sw a v sw sw a C D
u

c c

V V M V g V l cv
A J

γ ′+ − +
= −                           (5.4) 

 

where Ac is the area of shear critical section specified in ACI 318-08 (2008); g is 

the distance from the centroid of the critical section to the column center; ''DCc  = 

( CDc  minus one half the element dimension perpendicular to the slab edge at 

shear critical section = CDc  – 1.5 in.) [note that uv  is monitored slightly inside the 
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slab edge and see element j in Figure 5.15 (a)]; ABc  and CDc  are the distances 

from the centroid of the critical section to the perimeter of the critical section on 

the front end and back end (slab edge), respectively (see Figure 5.15 (b)); and Jc 

is the polar moment of inertia of the critical section (see Park and Gamble, 2000; 

Section 10.3.3). 

 Figure 5.16 illustrates values of vγ  monitored at each loading step. 

Because flexural yielding of the bonded steel occurred prior to (or without) 

punching failure, which is common in a typical PT design, vγ  values in the 

inelastic deformation range or at peak strength of these specimens are primarily 

of interest. Beyond yielding (after 1% drift ratio according to the paper by Foutch 

et al., 1990), the vγ  factor generally decreased as the load increased (i.e., 

interaction between moment and shear decreased). The values at peak and 

punching or tensile cracking failure were less than those specified in ACI 318-08 

(see dashed lines in Figure 5.16). For example, the monitored values were only 

about half the specified value at peak or punching. It is notable that the vγ  values 

obtained from the front and back sides of the critical section (i.e., from Equations 

5.3 and 5.4) are quite consistent, which indicates that the eccentric shear stress 

model is valid for PT edge slab-column connections and that there is a clear 

interaction between moment and shear at the PT edge connection, unlike the case 

of RC edge connections. Only the γv values at the front and back sides of S4 are 

quite different from each other, due to the small applied moment-to-shear ratio 
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(i.e., small l’; see Figure 5.4), which is unlikely to occur in real cases. For small 

unbalanced moment (Val’), the results are very sensitive to the variation of Va. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5.16 Numerical results of the fraction ( vγ ) of unbalanced moment 

transferred by eccentric shear for edge PT slab-column connections 

 

 According to the finite element results, S3 and S4 had quite large 

fractions ( vγ ) of the unbalanced moment transferred by eccentric shear at the 
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corner of the connection before yielding, whereas at peak or punching, the vγ  

values of S3 and S4 were substantially decreased. The higher vγ  at lower drifts 

was related to the tendon arrangement. The shear stress of τ23 (see Figure 5.15 

for notations) was relatively large before the redistribution of shear stress 

because of large initial prestress (normal stress) from banded tendons parallel to 

the slab edge, and it was verified that the vertical shear stress was proportional to 

the initial normal stress of the element at the location. After the stress 

redistribution, the simulated behavior was similar to S1 or S2. The tendons 

placed adjacent to the column produced higher shear stress on the side critical 

section of S3 than S1, but did not cause serious shear damage, possibly due to the 

confining effects. A similar behavior was obtained in S4, which failed in 

punching shear. Note that S4 resisted a maximum shear stress substantially 

higher than the concrete shear stress capacity with consideration of fpc (dotted 

lines in Figure 5.16). More discussions on the shear stress capacity are presented 

in the following section. 

 Although it may not be possible to make clear recommendations given 

the limited calibration exercise, application of reduced vγ  (e.g., by 50%) may be 

allowable for edge PT slab-column connections transferring moment normal to 

the slab edge. This exercise is highly intriguing, and there is significant potential 

in further assessment of more PT edge slab-column connections and PT 

connections with lower precompression in concrete, different aspect ratios and/or 

various loading and boundary conditions. 
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Assessment of punching shear stress capacity (vc) 

 ACI 318-08, Section 11.12.2.2 defines the punching shear strength of an 

interior PT slab-column connection as follows: 

( 0.3 )c p c pc o pv f f b d Vβ λ ′= + +                                 (5.5) 

 

where βp is the smaller of 3.5 and (αsd/bo + 1.5, with αs = 40, 30 and 20 for 

interior, exterior and corner connections, respectively), if f’c is in psi, λ is the 

lightweight concrete modification factor (λ for PT slabs with normal weight 

concrete = 1), bo is the perimeter of the assumed critical section, d is the effective 

depth, fpc is the average compressive stress in concrete due to the effective post-

tensioning force for the full specimen width, and Vp is the vertical component of 

all effective post-tensioning forces crossing the critical section. The Vp term is 

approximately neglected, as the tendon profile was relatively straight with almost 

zero eccentricity for the scaled edge connection with a very small tributary slab 

area. Equation 5.5 is not permitted if the following limits of ACI 318-08 Sections 

11.12.2.2(a), (b), and (c) are not satisfied: 

(a) No portion of the column cross section shall be closer to a discontinuous 

edge than four times the slab thickness; 

(b) The value of cf ′  used in Equations. 5.3 and 5.4 (in this dissertation) 

shall not be taken greater than 70 psi; and 
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(c) In each direction, fpc shall not be less than 125 psi, nor be taken greater 

than 500 psi. 

 The specimens tested by Foutch et al. (1990) do not satisfy most of these 

limits. Primarily, according to 11.12.2.2(a), an edge PT slab-column connection 

is assumed to have a smaller punching shear strength, which is equivalent to that 

of an RC slab-column connection without post-tensioning, than Equation 5.5. 

ACI 318-08 Commentary R11.11.2.2 states that the prestress is not fully 

effective around the perimeter of the critical section near the slab edge. In this 

calibration study, investigation is focused on whether the aforementioned 

statement is the case, and if not, on how much concrete shear stress can be 

exerted on the critical section prior to punching failure, following flexural failure. 

Note that most typical PT connections experience flexural yielding followed by 

punching shear, and that the punching failure without yielding of bonded steel is 

quite a rare case of design. 

 Previous experimental research (e.g., Smith and Burns, 1974; Trongtham 

and Hawkins, 1977; Foutch et al., 1990) attempted to obtain the punching shear 

capacity of individual PT slab-column connections (without shear reinforcement) 

by monitoring applied shear and moment (measured). However, actual stresses 

were not obtained from any of the previous tests due to the difficulty in 

monitoring the applied shear force or stress at a point inside the concrete slab. 

Furthermore, there have been significant uncertainties of the effective transfer 

slab width, the fraction factor of vγ  and the unbonded tendon stress at punching. 
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Well-developed nonlinear finite element modeling, along with documented 

experimental data, innovatively solves this problem. 

 Figure 5.17 illustrates the variation of average shear stresses (vu) at the 

front and back corner points of the critical section compared to the ACI 318 

shear stress capacities of PT interior and exterior connections (vc for exterior, 

shown using dots; and vc for interior, shown using dashed line). As depicted in 

Figure 5.15 (a), the average of the five layers’ shear stresses was directly 

obtained from the finite element analysis at each loading step. Specimen S1 

failed in a ductile manner with a very high moment-to-shear ratio (see Figure 

5.4). A flexural yield line was formed across the full width of the slab before the 

connection exhausted its capacity to transfer the unbalanced moment and shear. 

A rather ductile mode of tension cracking failure occurred on the top of the slab 

along the column face due to considerable slab folding. Specimens S3 and S4 

achieved higher shear stresses than those from Equation 5.5, and S2 almost 

reached the concrete stress capacity of (3.5 0.3 )c pcf f′ + . It is noted that actual 

shear stress capacity appears to be much larger than the maximum monitored vu, 

as the specimens except S4 failed in a ductile manner without or prior to 

punching. If the specimens (e.g., S1 and S2) would be designed with larger 

flexural capacity (e.g., by providing additional bonded steel), shear failure would 

occur at much higher vu (this has been confirmed from an additional analysis); 

however, such brittle design is not feasible in practice. 
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Although it appears that the PT specimens had a concrete shear capacity greater 

than Equation 5.5, additional studies on other PT edge connections would be 

needed to develop recommendations on the punching shear stress capacity of a 

PT edge connection or to relieve the limitation of cf ′  and/or fpc for PT 

connections. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5.17 Finite element results of average shear stress ( uv ) at the corner 

of the critical section for edge PT slab-column connections 

 

Assessment of ACI 318 punching shear provisions of PT edge connections 

 Table 5.1 summarizes the test results of direct shear and unbalanced 

moment at peaks of applied loads, as well as the values of vu calculated using 
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these experimentally measured values and Equations 5.3 and 5.4, and the values 

of 𝑉𝑐 based on Equation 5.5 and ACI 318 code provisions. When comparisons are 

made between the larger of the two values in Columns [11] and [12] of Table 5.1 

and the specified capacity in Column [13] (or Column [14] based on Equation 

5.5) of Table 5.1, it is apparent that the ACI 318 code provisions are overly 

conservative. Again, note that under applied direct shear and unbalanced moment, 

the specimens did not undergo punching prior to flexural failure. Furthermore, 

the back of the critical section (i.e., slab edge) was observed to be minimally 

damaged, as opposed to the values indicated in Table 5.1 (see Column [11] vs. 

Column [12]). If the vγ  factor is reduced to one-half of its specified value, the 

values would make more sense. This exercise validates the findings obtained 

from applying nonlinear finite element modeling.   
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Table 5.1 Shear stress demands and capacities calculated based on test data for PT specimens 

Specimens 
Vsw 

(kips) 
Va 

(kips) 
Msw 

(in.-kips) 
Ac 

(in2) 
l’ 

(in.) 
g 

(in.) 
 cAB 
(in.) 

cCD 
(in.) 

Jc 
(in4) 

vu_AB
‡ 

(psi) 
vu_CD

‡ 
(psi) 

vc
† 

(psi) 
vc

†† 
(psi) 

vu_AB
‡‡ 

(psi) 
vu_CD

‡‡ 
(psi) 

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] 
S1 1.45 12.21 38.3 140.6 44.7 3.28 4.37 9.28 2242.7 533.5 -767.2 341.8 433.4 315.3 -335 
S2 1.45 18.4 38.3 140.6 26.7 3.28 4.37 9.28 2242.7 533.3 -636.3 315 428 337.3 -247.6 
S3 1.45 14.52 38.3 140.6 26.7 3.28 4.37 9.28 2242.7 427.6 -498.4 312.4 370.1 270.6 -192.4 
S4 1.45 26.3 38.3 140.6 14.7 3.28 28,0 9.28 2242.7 508.6 -413.3 334.7 387.6 353 -107.9 

Notations are the same as used in Equations 5.3 and 5.4, except the following:  

(1) Vsw is the experimentally measured direct shear due to self-weight of the specimen and setup at the centroid of the 
critical section when Va was reached (Foutch et al., 1990) 

(2) Va is the peak applied load obtained from the experiment (Foutch et al., 1990) 
(3) Msw is the experimentally measured unbalanced moment due to self-weight of the specimen and setup at the 

centroid of the critical section when Va was reached (Foutch et al., 1990) 
‡ : Shear stress calculated using the values in Table 1 and Equation (5.3) and (5.4), with vγ  (= 0.386) 
‡‡ : Shear stress calculated using the values in Table 1 and Equation (5.3) and (5.4), with vγ  (= 0.5 x 0.386) 
† : Shear stress capacity calculated using the values from experiments and ACI 318-08 [= (4 )cf ′  psi] 
†† : Shear stress capacity calculated using the values from experiments and Equation (5.5) [= (3.5 0.3 )c pcf f′ +  psi] 
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5.2.5 Conclusion 

 Realistic modeling of unbonded post-tensioned slab-column connections 

is particularly challenging due to its complex three-dimensional stress states and 

non-conventional interaction between unbonded tendons and concrete. In this 

study, the spring system method along with other proposed modeling schemes 

have been employed to simulate unbonded post-tensioned connection behavior. 

Based on the modeling and calibration studies, the following conclusions were 

drawn: 

(1) The accuracy of the unbonded tendon modeling approach has been 

demonstrated through the direct comparison of overall behavior and damage 

patterns, moment-drift relations, and unbonded tendon stress increases. The 

developed nonlinear finite element model performed considerably well for all PT 

slab-column edge connections with two different tendon layouts (banded-

distributed and distributed-banded) and three different moment-to-shear ratios. 

(2) The fraction (γv) of the unbalanced moment being transferred by 

eccentric shear was estimated to be about half the ACI specified value at peak or 

punching for the edge PT slab-column connections. This indicates that there were 

moderate interactions between moment and shear, and thus a decrease in γv by 50% 

(or increase in γf by 50%) may be permitted for an edge PT slab-column 

connection. However, additional calibration work, perhaps using PT slabs tested 

by other investigators, would be needed for a thorough investigation on the γv 

factors of PT slab-column connections. 
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(3) The assessment of the γv factors indicates that the eccentric shear 

stress model is valid for PT edge slab-column connections and that there is a 

certain interaction between moment and shear at the PT edge connection, even 

though it is very small. 

(4) The punching shear capacity of edge PT slab-column connections 

appears to be benefitted by the prestress due to post-tensioning, as opposed to the 

ACI 318 code requirements and commentary (Section 11.11.2.2 and R11.11.2.2). 

This is the case for both banded-distributed and distributed-banded tendon 

arrangements. However, in order to apply Equation 5.5 for an edge PT 

connection, additional studies on other PT connections would be needed. 

Furthermore, the limitation of cf ′  and/or fpc for PT connections could be 

relieved. 

 

5.3 Numerical Simulations of Two Two-Way Unbonded PT Corner Slab-

Column Connections 

5.3.1 Description of specimens 

 Two isolated corner Specimens C1 and C2 tested by Martinez-Cruzado 

(1993) were selected to evaluate the proposed finite element modeling schemes 

and ACI 318-08 punching shear provisions (ACI 318-08, 2008). C1 and C2 have 

identical geometry and reinforcement whereas the only discrepancy between two 

specimens are different prestressing force, gravity load and test procedures. The 

following descriptions are based on C1. The prototype building was scaled down 
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to two 3/7 scale isolated corner connections with a termination boundary located 

at inflection points at the original building. Five 3/8 in. diameter prestressing 

strands were banded in the north-south direction concentrating at the column 

strip while another two prestressing strands were banded and three prestressing 

strands were uniformly distributed outside column strip along the east-west 

direction. All prestressing strands were inserted into flexible pvc tubes to 

maintain an unbonded interface between the strand and the concrete. Mild steel 

bars were provided only at the negative moment region around column. Details 

of dimensions and reinforcement are depicted in Figure 5.18. 
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Figure 5.18 Details of reinforcement and dimensions of Specimens C1 and 

C2 

 

 Columns were designed to stay in the elastic range even under the largest 

lateral load. The half-story column below slab was pinned at its end by a 

universal bearing and a vertical jack was installed under the universal bearing to 

adjust the gravity load during testing. Another half-story column above slab was 

pinned at an additional universal bearing which connects to two actuators at 
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north-south, east-west directions respectively. Slabs were pinned at three corners 

by vertical struts other than the location of the column to simulate the boundary 

condition at inflection points. A torsional restrain frame was installed parallel to 

the north-south direction in order to minimize the slab in-plane torsion when the 

lateral loading was carried out. Several lead ingots were placed at calculated 

positions to simulate required gravity load at initial. A schematic view and 

instruments setup are illustrated in Figure 5.19. A cloverleaf displacement 

loading pattern was applied to the column top for several drift ratio cycles in 

order to simulate the seismic loading. Experimental design drift ratios of 0.1%, 

0.2%, 0.5%, 1.0%, 1.5%, 3.0% were used for C1 and 0.2%, 0.4%, 0.8%, 1.6%, 

3.2% were applied to C2.  

 

Figure 5.19 Schematic view of test setup 
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5.3.2 Numerical models 

The modeling schemes used are the same as in the previous section, and the 

spring system approach is continued to be used in this section. A total of 27 

springs were used for each single tendon with a total of 270 springs were used for 

whole slab simulation as shown in Figure 5.20.  

      

Figure 5.20 Finite element mesh and spring system of C1 and C2 

 

 Since the original experiments were conducted as cyclic loading tests, 

necessary measures were taken to ensure the numerical simulations are under 

monotonic loading conditions. Although experiments involved a cloverleaf cyclic 

loading pattern for both C1 and C2, the numerical study only duplicates the first 

two steps of certain cycles, i.e., applying a displacement loading at the column 

top toward the south first then changing the loading direction to west (Figure 

5.21). The drift ratios chosen for numerical simulation were based on the 

response of lateral reaction vs. drift ratio plots in the experiment as shown in 

Figures 5.22 and 5.23. Possible punching shear failures occurred during the 

selected drift ratio loading processes. The actual drift ratios were determined 
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from experimental response of lateral reaction vs. drift ratio plots which differs 

from the experimental design drift ratio a little bit. Besides Specimens C1 and 

C2, two additional imaginary Specimens C1-2.5 and C2-2.5 were introduced in 

their simulation purely based on the numerical nature. They are as exactly same 

as C1 and C2 except the ingot weight applied on them is 2.5 times of that on 

experiment. The motivation of introducing two imaginary specimens is 

investigating shear redistribution along the critical section under larger gravity 

shear. There are two sets of analyses with different drift ratios for each specimen. 

Therefore, four total specimens were modeled and eight simulations were carried 

out. The detailed information with regard to drift ratios of eight total simulations 

are presented in Figure 5.21. 

 

Figure 5.21 Drift ratios for different numerical simulations 
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 The effective prestress ( pcf ) used in finite element analysis of each 

strand was determined from measured tendon force at the experiment. Prestress 

force was measured from the load cell of each tendon where load cells were 

installed at the slab free edge for banded tendons at opposite to the slab free edge 

for distributed tendons. The desired effective prestress level was achieved by 

several iterations of preliminary analyses via reducing the temperature field of 

tendon uniformly. Before lateral load analysis, three initial analysis steps were 

performed which were, in order, the prestressing step, self-weight step and ingot 

step. Prestressing was exerted by constraining only the column top and bottom 

because the deformation caused by prestressing was not constrained by  the 

experimental setup. Following the prestressing step, slab corners were 

constrained as pin connections, as in the experiment, to be ready to sustain self-

weight and ingot weight in subsequent steps. The lateral load analysis steps were 

performed after applying the ingot step which ensures both analytical and 

experimental conditions are as similar as possible. 

 

5.3.3 Numerical results and validations 

Lateral load versus drift ratio and damage pattern 

 Plots of lateral load versus drift ratio from C1 and C2 are compared to 

experimental data first. Generally, there would be some differences between 

experiments and analyses largely due to different loading conditions (cyclic vs. 

monotonic). The original tests employed cloverleaf displacement loading patterns 
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with several cycles of different drift ratios. Each cycle contains several steps to 

simulate cyclic loading conditions which begin with north to south (N-S) 

displacement loading followed by east to west (E-W) displacement loading. 

These first two steps were selected in finite element analyses as monotonically 

increasing loadings. The discrepancy is that the experiments involved unloading 

for each cycle and the specimens would be damaged after one cycle test which 

implies initial damage for the next cycle test. The initial damage, however, was 

not considered in analyses. Every numerical simulation was performed without 

initial damage. Although these differences were present, a reasonable agreement 

between experiment and numerical model is expected if finite element models 

are well developed. Generally in this case, numerical results at the N-S loading 

stage are expected to comply with the backbone curves of experiments while this 

is not true for E-W loading stage. The simple reason is that the initial E-W lateral 

reaction of each drift ratio cycle is different at the E-W loading stage. The 

aforementioned method is not justified for the E-W loading stages. Alternatively, 

a reasonable agreement of the E-W lateral reaction at the end of this loading 

stage is expected instead.  
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(a) 

 

(b) 

Figure 5.22 Global responses of numerical simulations related to C1 

 

 Figure 5.22 shows the N-S and E-W lateral reactions during the N-S and 

E-W lateral loading stages respective of c1a and c1b. The numerical results 

reasonably agreed with experiments at the N-S lateral loading stage. However, 

c1a predicted a lower lateral reaction while c1b predicted a higher lateral reaction 
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at the end of the E-W lateral loading stage. Figure 5.23 shows the N-S and E-W 

lateral reactions during the N-S and E-W lateral loading stages respective of c2a 

and c2b. Except for c2a, which underestimated lateral reaction at the end of E-W 

lateral loading stage, the rest of the models have good agreement with 

experiments. Specimens C1 and C2 have identical geometry, are reinforced with 

similar prestressing and have similar material properties though C1 has initial 

damage due to mishandling (cracks were found on the top surface at an angle of 

about 45 degrees with respect to the slab free edge). In addition, C1 has been 

tested with 11 repetitive cycles of cloverleaf loading. C1 would be severely 

damaged during tests which might be another reason why discrepancies were 

found at the E-W lateral reaction plots. In contrast, C2 with only 5 cycles of 

cloverleaf loading and without initial damage had fewer differences compared to 

numerical results.  

 

(a) 
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(b) 

Figure 5.23 Global responses of numerical simulations related to C2 

 

 The damage patterns of simulations c1b and c2b and their experimental 

counterparts are shown in Figure 5.24, 5.25, 5.26, and 5.27. Because c1b and c2b 

are the simulations closest to the experimental conditions, only they are 

compared with experiments. It is noted that the numerical simulations have much 

less damage than their experimental counterparts. In spite of the initial damages 

presented in C1 (Figure 5.28), several cycles of loading and unloading might 

cause the excessive damages in the experiments. The complicated experimental 

boundary condition and its simplification in numerical simulations might have 

played another role in causing the observed difference. Also, the concrete 

constitutive model could fail to handle such a complicated tri-axial stress state of 

concrete. Further investigation requires a thorough study of the concrete 
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constitutive model, complete modeling and simulation of the cyclic tests which is 

beyond the topic of this study. 

 

(a) 

 

                                  (b)                                                         (c) 

Figure 5.24 Damage pattern of simulation c1b (a) perspective view, (b) top 

view and (c) bottom view 
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Figure 5.25 Damage pattern of C1 at failure point (Martinez-Cruzado, 1993) 

 

 

(a) 
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                                (b)                                                              (c) 

Figure 5.26 Damage pattern of simulation c2b (a) perspective view, (b) top 

view and (c) bottom view 

 

 

Figure 5.27 Damage pattern of C2 at failure point (Martinez-Cruzado, 1993) 
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Figure 5.28 Damage pattern of C1 at initial stage (Martinez-Cruzado, 1993) 

 

Shear distribution along critical section 

 ACI 318-08, Section 11.11 describes moment and shear transfer at slab-

column connections. This empiric model considers designing shear and moment 

transfer on a critical section located at (d/2) from the column face. It assumes the 

total shear at this section is the sum of direct shear and eccentric shear due to a 

fraction of unbalanced moment transfer. The shear redistribution can be predicted 

through this model. In order to study the shear redistribution under varying direct 

shear load and unbalanced moment, the shear distribution along the shear critical 

section was plotted based on numerical results. The vertical shear stress 

distribution is not addressed in the eccentric shear stress model which assumes 

the shear stress is independent of vertical position. In order to comply with this 

assumption and obtain the general pattern of the shear redistribution along the 
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critical section, numerical shear stresses were exported from integration points of 

five vertical elements which are in the same location on the plan view. Shear 

stresses 12τ  and 23τ  were read from the east and north faces of the critical section 

respectively. The final plotted numerical shear stress is based on averaging the 

five layers shear stresses. Figure 5.29 shows the plan configuration of locations 

where average shear stresses were calculated and plotted. The East and North 

side of the critical section contains 8 locations to monitor the average shear.  

 

Figure 5.29 Computational points of shear stress in plan configuration 

 

 Figure 5.30 shows the shear redistribution histories of each location at the 

critical section of c1a analysis. The numerical shear stresses are plotted versus 

drift ratio which clearly presents variations of the shear stresses during lateral 
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loadings. The shear stress histories calculated from the eccentric shear stress 

model at location 1 (south corner), locations 8 and 9 (front corner), and location 

16 (west corner) are also included in Figure 5.30 as for comparison. It is obvious 

that numerical shear stress at the south corner particularly, the shear stress 

redistribution pattern, reasonably agrees with calculations from the eccentric 

shear stress model. However, a large difference of the initial shear stress is 

noticed at south corner. This is because the eccentric shear stress model only 

considers the direct shear and the unbalanced moment induced eccentric shear at 

initial, while for this case, initial shear stress due to prestress is considerable. 

Given the fact that tendons are banded in the N-S direction around column strip, 

the initial shear stress at the north side of the critical section due to prestress is 

much higher than that at the east side. As a result, the eccentric shear stress 

model presents a quite different value than the numerical one. The shear 

redistribution pattern of numerical results and the eccentric shear stress model 

predictions, however, are similar. Even though the numerical shear stress at the 

west corner does not decrease during E-W lateral loading, considering the 

possible influence by cracking and that the nearest two locations (location 14 and 

15) both present shear stress decrease after N-S lateral loading, the shear transfer 

mechanism described by the eccentric shear stress model seems to be reasonable. 

Be advised that the shear stresses at location 8 and location 9 represent 12τ  and 

23τ  of the front corner, respectively, which are assumed the same in the eccentric 

shear stress model. However, they are apparently not the same in the numerical 
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simulation. The shear stress 12τ  rises much more rapidly than the eccentric shear 

stress model prediction during the N-S lateral loading and decrease during the E-

W lateral loading. Nevertheless, 23τ  remains almost constant before the E-W 

lateral loading, followed by an increase during E-W lateral loading. Their 

patterns are quite different from each other. A possible explanation is that the 

gravity induced direct shear stresses are not evenly distributed; for this case, they 

might be concentrated at the front corner. In addition to this, the possible 

cracking makes the shear distribute along the critical section more randomly. 

Theoretically, most of them are flexural cracks around the north side of the 

column during the N-S lateral loading which might have most of the gravity 

shear transferred through the east side of the critical section. When the simulation 

proceeds to the E-W lateral loading, due to previous damage at the north side of 

the critical section, torsion induced eccentric shear stresses (shear stress caused 

by unbalanced moment) at this side should be smaller than the predictions of the 

eccentric shear stress model which assumes the elastic property of the slab-

column connection. This is more evident in c1b simulation which has much 

larger drift ratio at the loadings of both directions.  
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(a) 

 

(b) 

Figure 5.30 History of shear redistribution at computational points from 

simulation c1a 
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(a) 

 

(b) 

Figure 5.31 History of shear redistribution at computational points from 

simulation c1b 
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 Figure 5.31 shows the same content as Figure 5.30. The stress at the front 

corner is much smaller than the eccentric shear stress model prediction during the 

whole simulation which might imply a smaller unbalanced moment transfer ratio 

(more discussions about unbalanced moment transfer will be presented in the 

following section). The numerical results at both the south and west corners 

present similar patterns as the c1a simulation does. In fact, numerical shear 

redistributions of all rest analyses (see Figures 5.32 to 5.37) behave similarly to 

c1a and c1b which yield conclusions like the following: 1) the eccentric shear 

stress model predicts the shear stress transfer and redistribution reasonably if the 

cracking is mildly presented; 2) the shear stress calculated followed by the 

eccentric shear stress model could differ too much from the real case if a large 

initial shear stress is presented; and 3) a reduction of the unbalanced moment 

transfer ratio might be considered in the calculations when the slab-column 

connection is severely cracked (usually at the punching shear failure stage).  
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(a) 

 

(b) 

Figure 5.32 History of shear redistribution at computational points from 

simulation c2a 
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(a) 

 

(b) 

Figure 5.33 History of shear redistribution at computational points from 

simulation c2b 
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(a) 

 

(b) 

Figure 5.34 History of shear redistribution at computational points from 

simulation c1a-2.5 
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(a) 

 

(b) 

Figure 5.35 History of shear redistribution at computational points from 

simulation c1b-2.5 
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(a) 

 

(b) 

Figure 5.36 History of shear redistribution at computational points from 

simulation c2a-2.5 
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(a) 

 

(b) 

Figure 5.37 History of shear redistribution at computational points from 

simulation c2b-2.5 

 

 Figure 5.38 shows a three-dimensional plot of shear stress distribution 

along the critical section of each analysis. Only the shear stress distribution at the 
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initial and end stages of N-S lateral loading and E-W lateral loading are shown in 

this figure. 

 

Figure 5.38 Three dimensional plots of shear redistribution of all simulations 

 

5.3.4 Assessments of ACI 318-08 punching shear provisions 

 In this section, the description of the eccentric shear stress model is firstly 

presented, and then, the approach of calculating the design shear stress is 

introduced. Equations are evaluated associated with numerical simulations as 

well as experiments. Further analyses based on comparisons among design shear 

stress, numerical shear stress and ACI 318-08 permitted shear stress capacity are 

presented in this section which will finally yield suggestions to the currently 

adopted eccentric shear stress model in the code. The adjustment of unbalanced 

moment transfer factor fγ  is not permitted for prestressed slab-column 
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connections according to ACI 318-08. On the other hand, the prestressing effect 

is not taken into account when calculating the shear capacity of such corner 

connections as are presented in this study. In order to access the provisions above, 

the numerical shear stresses obtained along the critical section which will be used 

to derive vγ  and assess the shear capacity in the end. 

Evaluations of the eccentric shear stress model: 

 As discussed in the previous study the current building code ACI 318-08 

(2008) presents a model dealing with unbalanced moment shear transfer at slab 

column connections. A portion of unbalanced moment is assumed to be 

transferred by flexure, while the rest is transferred by the eccentric shear. The 

fraction of unbalanced moment transferred by flexure is given by fγ  defined by 

ACI 318-08, Sections 13.5.3.2 and 11.11.7.1, respectively, and as already shown 

in Equations 5.1 and 5.2. 

 According to the eccentric shear stress model presented in ACI 318-08, 

the shear stresses at critical sections for a corner connection can be determined 

by the following equations: 
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where d is the effective depth of the slab; and cxJ  and cyJ are polar moment of 

inertia of whole critical section with respect to axes of x and y respectively, and 

other definitions of  1g , 2g , ABc , CDc  are shown in Figure 5.39.  

 

Figure 5.39 Illustration of the eccentric shear stress model 
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 With the intention of evaluating the equations above (Equations 5.6 to 

5.10), stresses calculated at the front, south and west corners of critical section 

(see Figure 5.29) from both experimental and numerical data are compared to 

stress directly obtained in numerical simulations. For simulations of c1a, c1b, c2a, 

c2b, two stress calculation methods were applied as: 1) stress evaluated by purely 

numerical data; and 2) stress evaluated mainly by experimental data along with 

partially numerical data. Note that some data required to perform the calculation 

are not accessible through experiments. For example, the experimental column 

reaction plots are not legible for specified cycles. Therefore they were read from 

numerical simulations. These factors, however, make proportionally small 

contribution to uv  and the differences from the experiments should be small. The 

evaluations mainly based on experiments thus are still valid. The shear stress 𝑣𝑢 

directly read from numerical simulation, is obtained by averaging five layers’ 

shear stress along the vertical direction at specified locations as described in the 

former section. The illustration is shown in Figure 5.40. 



111 

 

 

Figure 5.40 Monitoring of direct and eccentric (torsional) shear stresses 

associated with the eccentric shear stress model 

 

 ACI 318-08, Section 11.11.2.2 defines the punching shear strength of an 

interior PT slab-column connection as mentioned in Equation 5.5. Recall that 

Equation 5.5 is not permitted if ACI 318-08 sections 11.11.2.2(a), (b), and (c) are 

not satisfied. If the limits are not satisfied, 11.11.2.1 shall apply which states Vc 

shall be the smallest of Equations 5.1, 5.2 and 5.3: 

(1)                                     dbfV cc 0'42 λ
β 








+=                              (5.12) 

where β  is the ratio of the long side to short side of the column, 

concentrated load or reaction area. λ  is the modification factor reflecting 

the reduced mechanical properties of lightweight concrete. 0b  is the 
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perimeter of critical section for shear in slabs. d is the effective depth of 

the slab. 

(2)                                   dbf
b

da
V c

s
c 0

0

'2 λ







+=                             (5.13) 

where sa  is 40 for interior columns, 30 for edge columns, 20 for corner 

columns;  

(3)                                          dbfV cc 0'4λ=                                     (5.14) 

 

 The specimens tested by Martinez-Cruzado (1993) do not satisfy limits (a) 

and (b) which implies the punching shear strength of these corner connections 

should be calculated using Equations 5.12 to 5.14 which is equivalent to that of 

an RC slab-column connection without post-tensioning. ACI 318-08 

Commentary R11.11.2.2 states that the prestress is not fully effective around the 

perimeter of the critical section near the slab edge. Therefore the prestress is not 

taken into account when calculating shear capacity. Previous research (Gardner 

and Kallage, 1998), however, did reveal shear capacity increases even if the 

critical section is near prestress anchorages. The following study will compare 

the shear stress calculated by the eccentric shear stress model at the critical 

section with shear stress capacity as per ACI 318-08 Sections 11.11.2.1 and 

11.11.2.2. 

  The focus of this numerical study is evaluating the eccentric shear stress 

model at the stage of punching shear failure which could produce the largest 
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shear stress in the critical section. The ends of N-S and E-W lateral loading are 

considered as possible experimental punching shear failure initializations, so the 

calculations were made at those points. The eccentric shear stress model aims to 

obtain maximum possible shear stress along the critical section and the maximum 

stress might not necessarily happen at the ends of both N-S and E-W lateral 

loading during simulations. Based on the numerical data, several points other 

than the ends of lateral loadings are also included in the calculations where the 

largest shear stress occurred along the critical section. Stresses only based on 

numerical data are evaluated among additional points.  

 Table 5.2 summarizes the stress calculations at possible experimental 

punching shear failure points for simulations of c1a, c1b, c2a and c2b. The 

notations of c1a’, c1b’, c2a’ and c2b’ represents the points at the ends of N-S 

lateral loading for c1a, c1b, c2a and c2b simulations, respectively. The largest 

shear stress is marked for each case and compared with shear stress capacity 1cv  

and 2cv  as per ACI 318-08 Sections 11.12.2.1 and 11.12.2.2. The ratio of 

maximum shear stress over 2cv  indicates that the shear stress predicted by the 

eccentric shear stress model underestimates actual punching shear capacity (Note 

that the stress calculated from method 2 in Table 5.2 is mostly based on 

experimental data). Given the fact that the actual experimental punching shear 

failures of Specimens C1 and C2 did occur beyond all the points in this table 

which means the specimens did not really fail at these points, either the eccentric 

shear stress model or punching shear capacity calculation is overly conservative. 
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As a comparison, stresses calculated by a reduced unbalanced moment transfer 

factor ( 3.0=vγ ) are also included in the table. Even the calculations with the 

reduced unbalanced moment transfer factor are still larger than shear stress 

capacity 2cv  in most cases. Table 5.3 summarizes the results in the same manner 

as Table 5.2 for simulations of c1a-2.5, c1b-2.5, c2a-2.5, and c2b-2.5. 
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Table 5.2 Summary of shear stresses calculated from different methods at various loading stages for simulations of c1a, 

c1b, c2a and c2b 

(a)  

possible experimental failure points V_direct Mx_unb My_unb 
front south west front* south* west* 

1cv  2cv  
1c

u

v
v

 
max shear stress/ 2cv  

4.0=vγ  3.0=vγ  4.0=vγ  3.0=vγ  

c1a 

FEA* 
NA 

257 82 -104 257 82 -104 

336 307 0.32 

front/vc2 front*/vc2 

FEA(max) 258 -516 -402 258 -516 -402   
method1 5766‡ 80614‡ 91888‡ 371† -81 -158 306† -33 -92 121% 100% 

method2 5766‡ 89089‡‡ 115064‡‡ 432† -81 -263 351† -34 -170 141% 114% 

c1a' 

FEA* 
NA 

179 -516 -181 179 -516 -181 

336 307 0.28 

south/vc2 south*/vc2 

FEA(max) 193 -516 -402 193 -516 -402   
method1 4977‡ 131638‡ 9038‡ 305 -529† 347 252 -373† 284 172% 121% 

method2 4977‡ 131170‡‡ 9038‡ 304 -526† 346 251 -371† 283 171% 121% 

c1b 

FEA* 
NA 

112 245 -85 112 245 -85 

336 307 0.38 

front/vc2 front*/vc2 

FEA(max) 218 -583 -402 218 -583 -402   
method1 6816‡ 77841‡ 122636‡ 432† 23 -293 357† 49 -188 141% 116% 

method2 6816‡ 84393‡‡ 95903‡‡ 394† -63 -142 328† -15 -74 128% 107% 

c1b' 

FEA* 
NA 

213 -214 -34 213 -214 -34 

336 307 0.32 

south/vc2 south*/vc2 

FEA(max) 218 -583 -402 218 -583 -402   
method1 5643‡ 161898‡ -7‡ 350 -685† 471 289 -487† 380 223% 159% 
method2 5643‡ 146700‡‡ -7‡ 321 -606† 442 268 -428† 358 197% 139% 
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(b) 

possible experimental failure points V_direct Mx_unb My_unb 
front south west front* south* west* 

1cv  2cv  
1c

u

v
v

 
max shear stress/ 2cv  

4.0=vγ  3.0=vγ  4.0=vγ  3.0=vγ  

c2a 

FEA* 
NA 

172 132 -94 172 132 -94 

336 313 0.32 

front/vc2 front*/vc2 

FEA(max) 200 -545 -361 200 -545 -361   
method1 5778‡ 87796‡ 88593‡ 379† -124 -127 311† -66 -68 121% 99% 

method2 5778‡ 111507‡‡ 119072‡‡ 482† -191 -241 389† -116 -153 154% 124% 

c2a' 

FEA* 
NA 

175 -542 -91 175 -542 -91 

336 313 0.28 

south/vc2 south*/vc2 

FEA(max) 183 -545 -361 183 -545 -361   
method1 4946‡ 143436‡ 369‡ 311 -608† 414 256 -433† 334 194% 138% 

method2 4946‡ 148954‡‡ 369‡ 321 -637† 424 264 -454† 342 203% 145% 

c2b 

FEA* 
NA 

164 258 -164 164 258 -164 

336 313 0.36 

front/vc2 front*/vc2 

FEA(max) 223 -552 -361 223 -552 -361   
method1 6395‡ 84882‡ 116584‡ 431† -38 -261 354† 2 -165 138% 113% 

method2 6395‡ 83015‡‡ 129717‡‡ 453† -3 -332 370† 28 -219 145% 118% 

c2b' 

FEA* 
NA 

214 -244 29 214 -244 29 

336 313 0.29 

south/vc2 south*/vc2 

FEA(max) 220 -552 -361 220 -552 -361   
method1 5200‡ 165440‡ -6531‡ 341 -729† 499 280 -522† 399 233% 167% 
method2 5200‡ 146387‡‡ -6531‡ 305 -629† 463 253 -448† 371 201% 143% 

 

‡ : Value from FEA 
‡‡ : Value from experiment 
† : Governing stress 

pccc ffv 3.05.3 '
1 +=        '

2 4 cc fv =  
Unit: lb – in.  
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Table 5.3 Summary of shear stresses calculated from different methods at various loading stages for simulations of c1a-2.5, 

c1b-2.5, c2a-2.5 and c2b-2.5 

(a) 

possible experimental failure points V_direct Mx_unb My_unb 
front south west front* south* west* 

1cv  2cv  
1c

u

v
v

 
max shear stress/ 2cv  

4.0=vγ  3.0=vγ  4.0=vγ  3.0=vγ  

c1a-2.5 

FEA* 
NA 

266 165 -74 266 165 -74 

336 307 0.49 

front/vc2 front*/vc2 

FEA(max) 328 -443 -418 328 -443 -418   
method1 8732 99635 105246 455† -69 -106 382† -11 -38 148% 125% 

c1a-2.5' 

FEA* 
NA 

295 -418 -47 295 -418 -47 

336 307 0.45 

south/vc2 south*/vc2 

FEA(max) 328 -443 -418 328 -443 -418   
method1 8103 151654 28140 403 -507† 376 340 -342† 320 165% 111% 

c1b-2.5 

FEA* 
NA 

153 218 -151 153 218 -151 

336 307 0.49 

front/vc2 front*/vc2 

FEA(max) 328 -441 -418 328 -441 -418   
method1 8805 47583 126484 397† 246 -314 339† 226 -194 129% 110% 

c1b-2.5' 

FEA* 
NA 

144 123 24 144 123 24 

336 307 0.45 

front/vc2 front*/vc2 

FEA(max) 328 -441 -418 328 -441 -418   
method1 8014 121976 43242 374† -279 248 318† -171 224 122% 104% 
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(b) 

possible experimental failure points V_direct Mx_unb My_unb 
front south west front* south* west* 

1cv  2cv  
1c

u

v
v

 
max shear stress/ 2cv  

4.0=vγ  3.0=vγ  4.0=vγ  3.0=vγ  

c2a-2.5 

FEA* 
NA 

233 228 -86 233 228 -86 

336 313 0.48 

front/vc2 front*/vc2 

FEA(max) 283 -446 -401 283 -446 -401   
method1 8470 103285 99775 450† -106 -78 377† -40 -19 144% 120% 

c2a-2.5' 

FEA* 
NA 

239 -366 19 239 -366 19 

336 313 0.44 

south/vc2 south*/vc2 

FEA(max) 283 -446 -401 283 -446 -401   
method1 7765 160048 14749 391 -586† 452 330 -403† 375 187% 129% 

c2b-2.5 

FEA* 
NA 

196 210 -116 196 210 -116 

336 313 0.47 

front/vc2 front*/vc2 

FEA(max) 276 -446 -401 276 -446 -401   
method1 8426 58752 122959 409† 170 -285 346† 167 -174 130% 111% 

c2b-2.5' 

FEA* 
NA 

173 108 23 173 108 23 

336 313 0.44 

south/vc2 front*/vc2 

FEA(max) 276 -446 -401 276 -446 -401   
method1 7762 134594 37582 386 -409† 284 326† -270 250 131% 104% 

 
† : Governing stress 

pccc ffv 3.05.3 '
1 +=        '

2 4 cc fv =  
Unit: lb – in.  
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 It is expected that with presence of a higher gravity load, stress at the 

front corner increases while stresses at the south and west corner decrease as a 

result of increase of direct shear stress. Even under higher gravity shear stress, 

the eccentric shear stress model and the punching shear capacity are still 

conservative. Also stresses calculated from reduced γv are included in the table 

for comparison which indicates that a smaller vγ  ( 3.0= ) might be more 

appropriate for square corner connections. The ‘FEA*’ and ‘FEA(max)’ 

represent the current and maximum shear stress readings, respectively, during the 

analysis. The larger discrepancy between ‘FEA*’ and ‘FEA(max)’ indicates the 

fact that the maximum numerical shear stress may not occur right at the ending 

of lateral loadings. The maximum shear stress actually occurred during the N-S 

lateral loading for all c1, c1-2.5, c2 and c2-2.5 simulations. Figures 5.41(a) and 

(b) show the maximum stress always occurs at south corner during the N-S 

lateral loading.  
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(a) 

 

(b) 

Figure 5.41 Normalized numerical shear stress vs. drift ratio at three critical 

points (from numerical simulations of c1b, c1b-2.5, c2b and c2b-2.5) 
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 It might be more proper to evaluate the eccentric shear stress model when 

the maximum shear stress appears in the critical section. Table 5.4 shows the 

evaluations made at those points, where the ‘FEA*’ and ‘FEA(max)’ are the 

same. Nevertheless, considering that the large initial shear stresses caused by 

prestress at the south and west corners is not considered in the eccentric shear 

stress model, the predicted shear stresses by the eccentric shear stress model 

would be much higher than the numerical shear stresses. Therefore, the results 

still yield the same conclusion that either the eccentric shear stress model or the 

shear stress capacity as per ACI 318-08 Sections 11.12.2.1 is conservative. The 

next section will discuss more about unbalanced moment transfer ratio ( vγ ). 
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Table 5.4 Summary of shear stresses calculated from different methods at various loading stages for c1b, c1b-2.5, c2b and 

c2b-2.5 

possible experimental failure points V_direct Mx_unb My_unb 
front south west front* south* west* 

1cv  2cv  
1c

u

v
v

 
max shear stress/ 2cv  

4.0=vγ  3.0=vγ  4.0=vγ  

c1b 
FEA* 

NA 
180 -583 -113 180 -583 -113 

336 307 0.49 

south/vc2 

FEA(max) 198 -583 -402 198 -583 -402  
method1 5069 137729 6560 347 -665† 449 286 -473† 362 217% 

c1b-2.5 
FEA* 

NA 
271 -441 -167 271 -441 -167 

336 307 0.45 

south/vc2 

FEA(max) 328 -441 -418 328 -441 -418  
method1 7999 145276 29269 392 -453† 329 331† -302 284 147% 

c2b 
FEA* 

NA 
186 -552 -102 186 -552 -102 

336 307 0.50 

south/vc2 

FEA(max) 196 -552 -361 196 -552 -361  
method1 4434 115002 11431 315 -631† 439 260 -449† 353 206% 

c2b-2.5 
FEA* 

NA 
258 -446 -159 258 -446 -159 

336 307 0.45 

south/vc2 

FEA(max) 266 -446 -401 266 -446 -401  
method1 7404 137962 27441 374 -468† 344 316† -316 293 153% 

 
 † : Governing stress 

 pccc ffv 3.05.3 '
1 +=        '

2 4 cc fv =  
 Unit: lb – in. 
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Assessment of the unbalanced moment transfer factor and the punching shear 

capacity 

 The assessment of γv is accomplished by substituting numerical shear 

stress vu into Equation 5.6. This assessment is purely based on numerical results. 

Because the initial shear stresses are very large at the south corner and west 

corner due to prestress, the initial shear stress of the west corner particularly 

differs from the eccentric shear stress model prediction so much, directly 

obtained vγ   is not reasonable. For that reason, only the front corner, which has 

relatively small initial shear stress due to prestress, is evaluated in this section. 

Figure 5.42 shows the derived vγ  from the method described above. All vγ  

values show a similar pattern (see Figure 5.42). They are always smaller than 0.3 

and tend to decrease as with drift ratios increase. This is consistent with the 

conclusion drawn from previous sections which clearly indicates that the vγ  is 

smaller than the eccentric shear stress model value when substantial damage is 

present. This is reasonable because the connection region might not be rigid 

elastic any more as the cracks progress. Subsequently, torsional resistance is 

reduced which leads to the reduction of unbalanced moment transferring by 

torsion. Although the vγ  is not obtained at the south and west corner, the stress 

calculation at previous sections implies a reduction of vγ  or increase of punching 

shear capacity. A conclusion can be drawn together with the analysis of this 

section that a reduction of vγ  to 0.3 is suggested. Even though analyses based on 
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both experimental and numerical data lead to the same conclusion as this study, 

more investigations of PT slab-column corner connections are of great need for 

further understanding of the punching shear failure mechanism. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5.42 Unbalanced moment transfer ratios derived from numerical data 

at the front corner of each simulation 
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5.3.5 Conclusion 

 The previously proposed finite element modeling schemes dealing with 

unbonded PT structures have been utilized in this study to investigate ACI 318-

08 punching shear provision applying to PT slab-column corner connections. 

Two corner specimens tested by Martinez-Cruzado were modeled. Reasonable 

agreements are achieved between numerical simulations and experiments while 

some discrepancies of Specimen C1 were expected due to initial damages. Based 

on the validated finite element model and the corresponding numerical 

simulations, the following conclusions can be drawn: 

(1) The initial shear stress due to prestress should be considered when 

employing the eccentric shear stress model to calculate shear stress along the 

critical section particularly in the direction where prestressing tendons are 

banded.  

(2) The shear stress transfer and redistribution are reasonably agreed with 

the eccentric shear stress model, especially in the elastic stage or with mild 

cracks formed in the connection. Otherwise interaction between moment and 

shear transfer is reduced when the connection is severely damaged. 

(3) Either the eccentric shear stress model or the shear stress capacity as 

per ACI 318-08 Sections 11.11.2.1 is too conservative at possible failure stages. 

Relief of the unbalanced moment transfer factor ( vγ ) and including prestress 

influence in the shear stress capacity at PT slab-column corner connections are 

suggested. 
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(4) Based on the eccentric shear stress model, unbalanced moment 

transfer factor ( vγ ) can be derived from numerical data. The vγ   vs. drift ratio 

plot was only made at the front corner due to its relatively small initial shear 

stress caused by prestress. All vγ   vs. drift ratio plots yield the same conclusion 

that vγ   never exceeded 0.3 in these analyses and decreased as cracks proceeded. 

A reduction of vγ  (for example, 3.0=vγ ) for PT slab-column corner connections 

could be permitted. However, more investigations on different PT slab-column 

corner connections are desired to verify these recommendations on a more 

general basis. 

 

5.4 Numerical Simulations of a Two-Way Bonded PT Interior Slab-

Column Connection 

5.4.1 Description of specimen 

 A two-way grout-bonded PT interior slab-column connection was tested 

by Prawatwong et al. (2007). The slab thickness was 4.7 in. The slab was 

extended to mid-span from the interior column and the column was extended 

above and below the slab to mid-height of one story, assuming that inflection 

points would be located at slab mid-span and column mid-height. The test slab 

had a footprint of 224.4 x 224.4 in. The rectangular column dimension was 19.7 

x 9.8 in. with a long side aligned with the lateral load direction. The slab was 

supported along two slab edges in the direction transverse to the lateral load 

direction, where five pin connections were used to simulate the boundary 



128 

 

condition of inflection points. They were located 94.5 in. away from the column 

center on each side. The column bottom end was set on a hinge connection 35.4 

in. away from the center of the slab. The column top was connected to an 

actuator at a distance of 35.4 in. from the slab center. Grade 270 seven-wire 

strands with a straight tendon profile were used for both directions as shown in 

Figure 5.43(a). The tendons in the direction transverse to lateral loading were 

located at the slab mid-depth, whereas the tendons in the direction of lateral 

loading were placed just above the transverse tendons. A total of eight tendons 

were provided in both directions, banded with spacing of 13.8 in. in the loading 

direction and distributed in the direction perpendicular to the loading with 

spacing of 27.6 in. No tendons were placed passing through the column. 

Approximately 80% of the ultimate strength was prestressed for each tendon, 

which was then grouted. 
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(a) 

 

(b) 

Figure 5.43 Grout-bonded PT slab-column connection; experiment 

conducted by Prawatwong et al. (2007) 
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 Bonded mild steel with a diameter of 0.39 in. and length of 78.7 in. also 

was provided at the top and bottom at the slab-column connection region. Eight 

and ten top bars were placed in the loading and transverse directions, 

respectively, at spacing of 3.15 in. and within the width of hc 32 + , where 2c  is 

the column dimension of 9.8 in. in the transverse direction and h is the slab 

thickness. The bottom mat of the same mild steel was placed throughout the 

whole slab at a spacing of 21.65 in. with only one continuous bottom bar placed 

within the column in each direction. The layouts of post-tensioning tendons and 

non-prestressed reinforcement are shown in Figure 5.43(a). Additional dead 

loads were applied to the slab using sand bags to obtain a desired gravity shear 

ratio of about 0.3 at the connection before lateral testing. The torsional 

deformation was restrained by a torsional restraining system. A typical 

displacement-controlled cyclic loading test was carried out with monotonically 

increasing drift levels of 0.25%, 0.5%, 0.75%, 1%, 1.25%, 1.5% and 2%. Two 

complete cyclic displacement loops were made for each drift ratio. Figure 5.43(b) 

shows the test setup, with more details available elsewhere (Pimanmas et al., 

2004; Warnitchai et al., 2004; Prawatwong et al., 2007). 

 

5.4.2 Numerical model 

 The contact formulation was employed to model the bonded PT system 

which cannot be simulated through the spring system method. As mentioned in 

the previous chapter, the prestressing stage was simulated under frictionless 
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contact which yields a perfect unbonded condition. After the prestressing, the 

tangential constitutive model of contact was switched to ‘tough’ where perfect 

bonding is achieved between the tendon and concrete. Typical dimension of 

elements in the modeling is 1 in. and five layers were arranged in the slab 

thickness direction as shown in Figure 5.44. A similar analysis approach used in 

the previous study towards to corner connections was applied here to treat the 

cyclic loading condition. Therefore, the column top was applied only by a 

monotonically increased displacement until the target drift ratio of 2% was 

reached in the simulations. For the purpose of validation of modeling schemes, 

the numerical global response of the specimen was compared to the backbone 

curve of the hysteresis loops obtained from the experiment. Furthermore, local 

behavior such as strains in mild steel bars and tendons were also compared to 

experimental data. In order to study the bonding influence of prestressing 

tendons, an identical imaginary specimen but with unbonded PT tendons was 

simulated and compared with the bonded counterpart in terms of flexural and 

punching shear behaviors.  



132 

 

 

(a) 

 

(b) 

Figure 5.44 Finite element mesh and reinforcement modeling for the slab 
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5.4.3 Numerical results and validations 

 The global load-displacement responses from the numerical simulations 

are compared with the backbone curve of the hysteresis loops. Figure 5.45 shows 

a good agreement between the modeling and testing, including the lateral 

stiffness and strength. A slight underestimation of the post-yield stiffness is the 

only aberration observed. The monotonic responses from the simulations of 

grout-bonded PT and unbonded PT connections are almost the same. Note that 

the only difference for the additional simulation was the change in bonding 

condition of prestressing tendons. 

 

 

Figure 5.45 Simulated backbone curve of a two-way bonded PT interior 

slab-column connection; experiment conducted by Prawatwong et al. (2007) 
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(a) 

 

(b) 

Figure 5.46 Crack pattern from perspective view; (a) bonded specimen and 

(b) unbonded specimen 
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(a) 

 

(b) 

Figure 5.47 Crack pattern from top view; (a) bonded specimen and (b) 

unbonded specimen 



136 

 

 

(a) 

 

(b) 

Figure 5.48 Crack pattern from bottom view; (a) bonded specimen and (b) 

unbonded specimen 
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 Since the experimental test was under cyclic loading, the damage pattern 

could be different from a simulation under monotonic loading. The damage 

patterns of two simulations are compared (Figures 5.46, 5.47 and 5.48). It is 

observed that even the global responses from two simulations have negligible 

differences; the local damage patterns are not the same (flexural cracks). The 

damaged area (black area) at the periphery of the unbonded slab is mainly 

tension splitting crack due to lack of anchorage reinforcement. 

Figures 5.49 and 5.50 present the strain change distributions of a top mild 

steel bar and a post-tensioning tendon placed near the column center at several 

locations and drift levels, both from the experimental data and numerical 

simulations. The comparisons between the experimental and numerical results 

indicate a reasonable agreement. The trends in strain change distributions along 

the length (in the longitudinal direction) are quite well reproduced. The 

discrepancies might be caused by the different loading conditions during testing 

(cyclic loading). Also, the higher simulated strain at the drift ratio of 2% 

compared with the measured value could be due to a perfect bonding assumption, 

which might not be the case at the ultimate stage. Overall, based on the global 

and local data comparisons, it is demonstrated that the contact formulation along 

with other proposed modeling schemes are capable of modeling grout-bonded PT 

two-way slabs and slab-column connections reasonably well. The experimental 

and numerical results can be used for better understanding the difference in 
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behavior between the two systems and development of related provisions of the 

code as described in the next section. 

 

Figure 5.49 Simulated and measured strains in top bonded mild steel 

(Prawatwong et al., 2007) 

 

 

Figure 5.50 Simulated and measured strains in grout-bonded PT tendon 

(Prawatwong et al., 2007) 
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5.4.4 Assessments of ACI 318-08 punching shear provisions and comparative 

study of bonding influence 

 ACI 318-08 (2008) code provides an empiric model (the so-called 

eccentric shear stress model) dealing with moment shear interactions at the slab-

column connections. This model was described in the previous numerical studies. 

The shear stresses on the critical section for an interior slab-column connection 

are assumed as a summation of direct shear and eccentric shear due to 

unbalanced moment transfer. Figure 5.51 shows the assumed shear stresses on 

the critical section of interior slab-column connections, as follows 

 

c

uv

c

g
u J

CM
A
V

V
γ

+=                                           (5.15) 

 

where gV  is the column reaction force; cA  is the area of the shear critical section 

specified in ACI 318-08;  C is the distance from the central line of the critical 

section (parallel to the axis of unbalanced moment) to the location where the 

shear stress is calculated; and cJ  is the polar moment of inertia of the critical 

section.  

 In order to assess the unbalanced moment transfer factor vγ  according to 

Equation 5.15, the shear stresses, uV , are extracted from four corner points of the 

critical section. The shear stresses of two points located on the same side (either 

the north or south side) of the critical section are identical to each other 
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according to the eccentric shear stress model. Therefore, shear stresses from two 

points are averaged to reflect the design shear stress on each side (both sides 

parallel to the axis of unbalanced moment). Furthermore, the shear stresses are 

assumed to be the same along the slab thickness direction in accordance with the 

eccentric shear stress model. The shear stresses extracted from five integration 

points of the simulations are further averaged. The shear stress extraction scheme 

is shown in Figure 5.51(a).  

 

Figure 5.51 The eccentric shear stress model and corresponding numerical 

shear stress extraction scheme for an interior slab-column connection 

 

 Figure 5.52 shows the processed shear stress extractions from both 

bonded and unbonded simulations. It should be noticed that the shear stresses on 

the south side have negative values (downward shear stress is assumed to be 
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positive); absolute values are presented in Figure 5.52 for the purpose of 

comparison. It is apparent that negligible difference exists between the bonded 

and unbonded condition in terms of shear redistribution. Both cases actually 

present similar shear stress conditions along the critical section. Following the 

aforementioned extraction scheme (averaging stresses from five layers), the shear 

stresses around the critical section are plotted at different drift ratios for both 

cases as shown in Figure 5.53. The initial shear stresses at a drift ratio of 0% are 

identical due to the fact that both bonded and unbonded slab were unbonded 

during prestressing. Along with a drift ratio up to 2%, slight differences are 

noticed which again indicates that the shear stresses along the critical section are 

hardly influenced by the bonding condition of prestressing tendons under similar 

two-way PT slab designs.  

 

Figure 5.52 Numerical shear redistribution at north side of the critical section 

from both simulations (bonded vs. unbonded) 
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Figure 5.53 3-D plot of numerical shear stress along critical section from 

both simulations (bonded vs. unbonded) 

 

 Following the previous procedures, the unbalanced moment transfer 

factor, vγ  was obtained via Equation 5.15. Figure 5.54 shows vγ  derived at the 

north and south sides separately from both bonded and unbonded simulations 

where negligible differences are observed. Very similar moment shear 

interactions at slab-column interior connections are suggested for both bonded 

and unbonded conditions. It is noticed that only one vγ  value is adopted in the 

design shear stress calculation as per the eccentric shear stress model, while vγ  

derived at the south side was slightly larger than that at the north side from the 

simulation. It could be explained that the north side suffered the most damages 
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when the lateral load was applied which led to a smaller moment shear 

interaction on this side. The less damaged south side, therefore, shows a higher 

unbalanced moment transfer ratio. In addition, both the shear capacity and 

unbalanced moment transfer ratio computed from ACI 318-08 show a reasonable 

agreement with the numerical results which are not the case in exterior and 

corner slab-column connections studied previously. Therefore, the suggestion of 

relief of unbalanced moment transfer ratio might not need to be applied to 

interior slab-column connections with a similar design.  

 

Figure 5.54 Numerical derived unbalanced moment transfer ratio from both 

simulations (bonded vs. unbonded) 
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5.4.5 Conclusion 

 An investigation of the influence of PT bonding conditions on the 

moment transfer mechanism at a PT interior slab-column connection was 

attempted using finite element modeling techniques. The direct contact 

formulation was employed to simulate the interaction between grout-bonded or 

unbonded tendons and sheathings. The modeling procedures were validated 

through numerical simulations against the well-documented experimental data. 

Very good agreement between the simulation and experiment was shown. The 

following conclusions were drawn based on this study: 

(1) The flexural strength and behavior of the two-way bonded PT slab 

with an interior slab-column connection appeared to be marginally influenced by 

the bonding condition of PT tendons. 

(2) The effect of the PT bonding condition on the moment transfer 

mechanism of a PT two-way slab-interior column connection also was apparently 

negligible prior to punching shear failures.  

(3) The unbalanced moment transfer ratio and shear capacity obtained 

from the numerical simulations comply well with ACI 318-08 provisions.  

(4) Further studies of the interior slab-column connection are needed to 

derive a general recommendation. 

 

 



145 

 

5.5 Numerical Simulations of Six One-Way PT Slabs and Three PT Beams 

5.5.1 Description of specimens 

PT One-way Beams with Different PT Bonding Conditions 

 Mattock et al. (1971) conducted an experimental study of seven simply 

supported and three continuous beams. The beams are categorized into four 

groups: T-beams (CB1, CU1, and CU2), continuous over two spans of 28 ft each; 

simply supported T-beams (TB1, TU1, and TU2) with 28 ft spans; simply 

supported rectangular-section beams (RB1, RU1, and RU2) with 28 ft spans; and 

a simply supported T-beam (TU3) identical to TU1 or TU2, except for the 

amount of bottom mild steel and the presence of a single 3/8 in. diameter non-

prestressed seven-wire strand provided as additional bonded bottom 

reinforcement. Specimens CB1, TB1, and RB1 contained grout-bonded PT 

tendons inside the corrugated ducts, and they are counterparts of CU1, TU1, and 

RU1 with unbonded PT tendons, respectively. 

 Each of them was prestressed by two 1/2 in. Grade 270 seven-wire 

strands. The tendons were draped parabolically in all simply supported beams 

with an effective depth of 10 in. at mid-span and zero eccentricity at the ends of 

the beam, except for RB1, RU1, and RU2 with 2 in. eccentricity at the end. In all 

continuous beams with two spans, the tendons were draped parabolically with an 

effective depth of 10 in. at both mid-span locations and zero eccentricity at the 

ends of the beams. 
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 In all beams, two #2 bars were placed at the top and bottom of the beam 

throughout the beam length, respectively. For CU1 and TU1, two additional #4 

bars and one #2 bar were placed in the same layer of bottom bonded 

reinforcement with a length of 20 ft, centered on the mid-span, while for 

CU2/TU2 and RU1/RU2, two #2 bars and a combination of two #3 and one #4 

bars were additionally provided, respectively. Also, two #3 and one #4 bars each 

20 ft long were provided at the top of the positive moment regions of continuous 

beams (CU1 and CU2), respectively. 

 The ultimate strength of the strands was 280 ksi, and the stress at one 

percent elongation was 255 ksi. The yield strengths of #2, #3 and #4 bars were 

54.7, 50 and 46.7 ksi, respectively. The concrete compressive strength was about 

4 ksi at testing. As all specimens were half-scaled, concrete blocks weighing up 

to 100% of the self-weight of the scaled beam were added. Each span was then 

subjected to four equal point external loads, which were applied at 1.5 and 5.5 ft. 

away from the mid-span on either side, monotonically, until the failure of the test 

beams. For the four point loading setup, a spreader beam was used. Details of 

reinforcement for Specimens RB1, RU1, and RU2 are shown in Figure 5.55. The 

three specimens were modeled in finite element packages for further comparative 

research of bonding influence. 
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Figure 5.55 Reinforcing details of grout-bonded and unbonded PT beams; 

experiments conducted by Mattock et al. (1971) 

 

PT One-way Slabs with Different PT Bonding Conditions 

     Cooke et al. (1981) tested twelve simply supported one-way PT slabs under 

two-point external loads. Nine of them were prestressed with unbonded tendons 

and the rest were prestressed with grout-bonded tendons. Of the nine unbonded 

slabs, three (Slab1, Slab2, and Slab3) had a length of 15 ft 9 in. with a span 

length of 15 ft 1-1/8 in.; three (Slab4, Slab5, and Slab6) had a length of 11 ft 9-

3/4 in. with a span length of 11 ft 1-3/4 in.; and three (Slab7, Slab8, and Slab9) 

had a length of 7 ft 10-1/2 in. with a span length of 7 ft 2-5/8 in. The three 

bonded slabs (SlabB4, SlabB5, and SlabB6) were identical to Slab4, Slab5, and 

Slab6, respectively, except the tendons were bonded to the concrete. The slabs in 

each unbonded group had transverse widths of 1 ft 1-7/8 in., 2 ft 3-3/4 in. and 3 ft 
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10-1/2 in., respectively. All slabs were 7-1/16 in. thick. The first two slabs in 

each group were prestressed with three straight tendons of 1/2 in. diameter, 

whereas the last slab in each group had three straight tendons of 5/8 in. diameter. 

All tendons were placed at an eccentricity of 4-3/4 in. No bonded reinforcement 

was provided to any of the slabs. 

 The target concrete compressive strength was 5 ksi for all slabs. The 

ultimate tensile strength for 1/2 in. and 5/8 in. tendons were 267 ksi and 256 ksi, 

respectively. All slabs were subjected to line loads applied at two points located 

at 4 ft 11-1/16 in. (Slab1, Slab2, and Slab3), 3 ft 7-5/16 in. (Slab4, Slab5, Slab6, 

SlabB4, SlabB5, and SlabB6) or 2 ft 3-9/16 in. (Slab7, Slab8, and Slab9) from 

each support center. The specimen was statically loaded in increments until 

failures occurred. Slabs4, Slab5, Slab6, SlabB4, SlabB5, and SlabB6 shown in 

Figure 5.56 were modeled and simulated for further studies. 

 

Figure 5.56 Reinforcing details of grout-bonded and unbonded PT one-way 

slabs; experiments conducted by Cooke et al. (1981) 
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5.5.2 Numerical models 

 Due to the presence of grout-bonded specimens, the PT system either 

with unbonded or bonded conditions was modeled by the contact formulation as 

employed in the previous study. In addition, two unbonded PT beams of RU1 

and RU2 and two unbonded PT one-way slabs of Slab4 and Slab5 were also 

modeled by the spring system method. Other modeling schemes were followed 

the same as previous numerical simulations. A typical finite element mesh for the 

one-way slabs and beams is shown in Figure 5.57. 
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Figure 5.57 Finite element mesh used for one-way PT slabs and simply 

supported beams 
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5.5.3 Numerical results and validations 

 Comparisons of applied load versus mid-span deflection were made 

between numerical simulations and experiments. The results are shown in Figure 

5.58. All simulations have a good agreement with experiments. Specimens RU1 

and RU2 were modeled by both contact formulation and spring method, and their 

corresponding numerical simulations showed that both approaches are valid. 

Figure 5.58 showing negligible difference between the two approaches and 

experiments, validates that both approaches are appropriate for simulating 

unbonded PT tendons in one-way PT members. Damage patterns are also 

compared with available experimental data (Figures 5.59, 5.60, and 5.61). Note 

that only simulations with the contact formulation are shown and compared. The 

numerical damage patterns show a good agreement with experiments. 

Particularly, the simulation with a bonded condition tends to develop cracks 

more uniformly along the beam than unbonded specimens which corresponds 

with experimental observations in practice. 

 

(a) 
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(b) 

 

(c) 

Figure 5.58 Comparisons of global responses between numerical simulations 

and experiments for unbonded PT beams; experiments conducted by Mattock et 

al. (1971) 
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Figure 5.59 Damage patterns of RB1; simulation with contact formulation 

(top) and experiment (bottom) 

 

 

Figure 5.60 Damage patterns of RU1; simulation with contact formulation 

(top) and experiment (bottom) 

 

 

Figure 5.61 Damage patterns of RU2; simulation with contact formulation 

(top) and experiment (bottom) 
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 The global responses of all unbonded slab and bonded slab simulations 

are shown in Figures 5.62 and 5.63, respectively. All simulations have good 

agreements with experiments including the damage patterns at ultimate stage 

(Slab6 and SlabB6 are extremely low reinforced, and the significant fluctuations 

of applied loads after brittle cracking is a nature of explicit dynamic analysis 

procedure). Specimens Slab4 and Slab5 were also modeled by the spring method. 

The global responses exhibit very similar to the modeling results based on the 

contact formulation. The damage pattern at the constant moment region from 

both simulations (contact formulation) and experiments are shown in Figures 

5.64 to 5.69. Generally, the patterns shown by numerical simulations are in good 

agreement with the corresponding experiments. All flexural cracks were 

developed at the constant moment regions, corresponding with experiments very 

well. 

 

(a) 
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(b) 

 

(c) 

Figure 5.62 Comparisons of global responses between numerical simulations 

and experiments for unbonded PT one-way slabs; experiments conducted by 

Cooke et al. (1981) 
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(a) 

 

(b) 

 

(c) 

Figure 5.63 Comparisons of global responses between numerical simulations 

and experiments for grout-bonded PT one-way slabs; experiments conducted by 

Cooke et al. (1981) 
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Figure 5.64 Damage patterns at constant moment region of Slab4; simulation 

with contact formulation (top) and experiment (bottom) 

 

 

Figure 5.65 Damage patterns at constant moment region of Slab5; simulation 

with contact formulation (top) and experiment (bottom) 
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Figure 5.66 Damage patterns at constant moment region of Slab6; simulation 

with contact formulation (top) and experiment (bottom) 

 

 

Figure 5.67 Damage patterns at constant moment region of SlabB4; 

simulation with contact formulation (top) and experiment (bottom) 
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Figure 5.68 Damage patterns at constant moment region of SlabB5; 

simulation with contact formulation (top) and experiment (bottom) 

 

 

Figure 5.69 Damage patterns at constant moment region of SlabB6; 

simulation with contact formulation (top) and experiment (bottom) 
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 Table 5.5 summaries the applied load of each specimen at experimental 

termination point of mid-span deflection. 

Table 5.5 Summary of applied load (kips) at experimental termination point 

of mid-span deflection 

 RB1 RU1† RU2† Slab4† Slab5† Slab6‡ SlabB4 SlabB5 SlabB6‡ 

FEA 8.93 8.06 7.83 15.85 18.7 10.32 17.34 20.58 10.77 

Experiment 9.9 8.02 7.7 17.07 17.8 7.87 16.64 18.31 8.85 

FEA/Expt
 

0.9 1.005 1.02 0.93 1.05 1.31 1.04 1.12 1.21 

 
† Data obtained from contact formulation 
‡ Applied load obtained at cracking point 
 

5.5.4 Comparative study of tendon stress and moment capacity at ultimate 

 The ultimate stress in tendons was monitored as well by comparison with 

experimental and theoretical calculations. For unbonded specimens, the stress is 

nearly uniformly distributed along the tendon due to a frictionless assumption. 

The ultimate tendon stress was read at the integration point where the largest 

stress appears from both bonded and unbonded simulations. The ultimate tendon 

stress psf  obtained by ACI 318-08, Yang and Kang’s method (Yang and Kang, 

2011), numerical readings as experimental data are presented in Table 5.6. ACI 

318-08 permits the ultimate tendon stress in an unbonded PT member with span-

to-depth ratio of 35 or less to be calculated as: 
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 where psf  should not be taken greater than the less of yf  and 60000+sef  

The Yang and Kang’s method predicts psf  as: 

        pyps f
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where 1A , 1B and 1C  are coefficients determined by reinforcement 

configurations, concrete and steel material properties as well as loading types. 

Details can be referred to Yang and Kang (2011). 

 ACI provides an equation to calculate ultimate tendon stress for members 

with bonded tendons as: 
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where ω  is 
cy ff 'ρ , 'ω  is 

cy ff ''ρ , and pγ  is 0.55 for pupy ff  not less than 

0.80; 0.40 for pupy ff  not less than 0.85; 0.28 for pupy ff  not less than 0.90. If 

any compression reinforcement is taken into account when calculating psf  by 

Equation 5.18, the term 
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shall be taken not less than 0.17 and 'd  shall be no greater than pd15.0 . 
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 According to Equations 5.16 and 5.17, ACI 318-08 predicts the closest 

psf  to experimental data comparing with numerical simulations and Yang and 

Kang’s method for unbonded PT beams of RU1 and RU2. The similar moment 

capacities of RU1 and RU2 are due to the similar configurations of 

reinforcement. It is noted that the corresponding moment capacity nM  of RB1 

obtained from both ACI 318 and numerical simulations are smaller than the test. 

It was explained by Mattock et al. (1971) that the steel tube used for bonded 

prestressing tendon acted as additional bonded reinforcement. Given the fact that 

there was more bonded reinforcement in RB1 than RU1 and RU2 in the test, 

similar moment strengths could be expected for a beam prestressed with bonded 

and unbonded tendons under the same amount of bonded reinforcement.   

 As shown in Table 5.6, ACI 318-08 predictions of psf  for unbonded 

Specimens Slab4 and Slab5 are the lowest compared with data obtained from 

experimental and other methods. Because the extremely low reinforcement 

configuration of Slab6 is an unlikely practical design, ACI 318-08 tends to 

overestimate the ultimate stress while the finite element analysis underestimates 

it. On the other hand, Yang and Kang’s method cannot be applied to predict 

ultimate stress for Slab6 due to the extremely low reinforcement ratio. The 

ultimate tendon stresses in bonded Specimens SlabB4, SlabB5 and SlabB6 

predicted by ACI 318-08 and finite element simulations are similar. The slightly 

higher stresses from finite element simulations could result from the assumption 

of perfect bonding in the modeling. The moment strengths calculated according 
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to corresponding psf  are close to experiments for bonded specimens. It is 

obvious that the experimental moment capacities of Slab4 and SlabB4, Slab5 and 

SlabB5 are similar. Even though the moment capacities calculated according to 

psf  of finite element simulations are slightly larger than their counterparts in 

bonded cases, the similar applied loads of specimens in pairs (Figures 5.62 and 

5.63) reveal that bonding of prestressing tendons is not a significant factor 

influencing moment capacity. The pair of Slab6 and SlabB6 is the only exception 

which has a relatively large difference in moment capacity. The reason is simply 

that the moment capacities of Slab6 and SlabB6 were controlled by the cracking 

moment due to extremely low reinforcement. For bonded Specimen SlabB6, the 

bonding between prestressing tendons and concrete resulted in a higher tendon 

stress than an unbonded one when dominant cracking occurred. Consequently, 

the cracking moment of SlabB6 was larger than Slab6. Similar moment strength 

could be expected if additional bonded reinforcement is added to both slabs. 
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Table 5.6 Summary of tendon stress and moment capacity at ultimate stage for each specimen 

Specimens 
 

pef  
(Expt) 

ksi 

psf  
(Expt) 

ksi 

psf  
(ACI 318) 

ksi 

psf  
(Yang & Kang) 

ksi 

psf  
(Analysis) 

ksi 

nM  ‡ 
(Expt) 

ksi 

nM  † 
(ACI 318) 

in.-kips 

nM  † 
(Yang & Kang) 

in.-kips 

nM  † 
(Analysis) 

in.-kips 
RB1 188.2 NA 250.7 NA 233.1 827 708.5 NA 672.1 
RU1 183.1 208 202.5 212.3 214 ∗ 707 655 674.9 677.8 
RU2 186.6 205 206 216.3 212 ∗ 689 650 669.3 661.8 
Slab4 169 200 190.3 215.5 210.5 ∗ 390 333.1 368.6 361.7 
Slab5 167 209 199.6 229.4 223 ∗ 422.4 378 429 417 
Slab6 177 228 237 NA 220.8 ∗ 184.8 198 NA 184.8 

SlabB4 174 NA 226.9 NA 227.8 382.8 382.5 NA 383.8 
SlabB5 169 NA 241.5 NA 248.1 441.6 448.6 NA 459.5 
SlabB6 180 NA 263.2 NA 273 224.4 219.9 NA 227.9 

 
       † nM  is calculated based on corresponding psf  
       ‡ nM  is obtained from experimental data 
       ∗ Obtained from analyses with contact formulation 
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5.5.5 Conclusion 

 The influence of bonding conditions of prestressing tendons on flexural 

strength of beams and one-way slabs was studied through finite element 

modeling. Direct contact formulation was employed in simulating the interaction 

between either bonded or unbonded tendons and sheathings. In addition, 

unbonded PT systems were also attempted to be modeled via the spring system 

method. Both modeling approaches were validated by several numerical 

simulations against documented experiments including members prestressed with 

either bonded or unbonded tendons. Good agreement between all simulations and 

experiments was observed. The primary variable investigated in this study is the 

bonding of prestressing tendons which can become either bonded or unbonded 

after prestressing. Particularly, the flexural strength of beams and one-way slabs 

with bonded or unbonded tendons was compared through numerical studies of 

documented tests. Furthermore, the tendon stresses at ultimate computed from 

various methods were summarized and compared to experimental data. Based on 

the numerical simulations, the following conclusions can be drawn: 

(1) The flexural strengths of the beams and one-way slabs are hardly 

influenced by the bonding condition of prestressing tendons. 

(2) The current finite element modeling schemes yield a slightly 

overestimated tendon stress at ultimate. This might result from the neglecting 

prestress loss and the assumption of uniformly distributed initial strain field of 

tendon due to prestress. 
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(3) Future projects are desired towards improving the modeling schemes 

of PT tendon systems which are able to incorporate the post-tensioning 

procedures in practice.  

 

5.6 Summary 

 This chapter presented the validation of the proposed numerical modeling 

schemes and the application to various engineering problems in practice such as 

the moment shear interaction of slab-column connections in two-way PT slabs, 

the PT structural performance under different PT tendon bonding conditions and 

the tendon stress at ultimate state. Overall, the proposed modeling schemes 

performed very well compared to documented experimental data and served as a 

powerful tool to assist solving complicated practical problems. Particularly, the 

moment shear interaction was investigated through four exterior connections, 

two corner connections and one interior connection. The punching shear 

provisions were heavily assessed and evaluated in terms of ACI 318-08 through 

numerous numerical simulations along with the experimental data. The 

conclusion drawn from the series of studies of ACI 318-08 is conservative of 

punching shear design with respect to exterior and corner connections in two-

way PT slabs. A relief of the unbalanced moment transfer ratio is suggested and 

several modifications of the eccentric shear stress model are recommended 

according to the analyses. The comparative studies of PT tendon bonding 

influence on structural performance led to the conclusion that the effect is 
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negligible in several types of structures (e.g., two-way PT slab, one-way PT slab 

and PT beam). The numerical simulations clearly indicated that both punching 

shear and flexural behaviors were barely affected by bonding conditions in these 

structural members. Even though the current modeling schemes based on general 

purpose finite element packages reproduced structural behavior very well, 

several limitations were noticed in terms of flexible modeling and reliable results. 

For instance, the current modeling scheme tends to overestimate stresses in PT 

tendons at ultimate state. The overestimation might result from an 

oversimplification of prestressing procedures where prestress loss is totally 

neglected. This becomes the motivation or developing more flexible and 

specialized finite element formulation towards simulating PT systems in the next 

chapter. Chapter 6 presents a robust and general but very flexible finite element 

frame work for modeling PT frame systems in bonded, partially bonded and 

unbonded conditions. 
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CHAPTER 6. A NONLINEAR FINITE ELEMENT 

FORMULATION FOR PT STRUCTURES 

6.1 Introduction 

 Chapter 4 described the modeling schemes applied to PT prestressed 

members via general purpose finite element packages. Based on the proposed 

methodology, a series of numerical studies were carried out and validated the 

modeling against experiments in Chapter 5. The performance and robustness of 

the proposed modeling schemes were justified. However, slightly inaccurate 

predictions of the local behavior of prestressing tendons were observed in the 

numerical studies and discussed in the last part of Chapter 5. Again, the 

simplification of PT prestressing procedure in the simulation might be the reason 

behind the discrepancy. The previously proposed modeling scheme assumes a 

uniformly distributed strain field of PT tendons which is caused by prestressing. 

Additionally, the short-term prestressing loss due to the effects of curved profile, 

tendon wobble and anchorage wedge seating loss are not addressed. In order to 

investigate local behaviors of prestressing tendons, such characteristics should be 

accounted for in numerical simulations. Therefore, a more flexible and 

specialized finite element formulation is proposed in this chapter.  

 The general frame work is shown in Figure 6.1. The proposed finite 

element formulation accounts for material nonlinearity (concrete crushing and 

cracking) and steel yielding (Section 6.5). The boundary nonlinearity introduced 
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from interface contact between tendons and corresponding sheathings is 

formulated through node-to-segment (NTS) contact elements (Section 6.2). The 

contact model is flexible enough to simulate perfectly unbonded, partially 

unbonded and bonded interface via developed proper constitutive relations of 

contact interfaces. The assembly of contact elements is automatically made 

through a contact search algorithm. Perfectly bonded mild steel bars are 

constrained by introducing embedding elements (Section 6.3), and the PT 

anchorage system is modeled through a special purpose element (Section 6.4). A 

nonlinear Euler-Bernoulli beam element is implemented for investigating slender 

PT beams in this study (Section 6.5). The elements proposed and developed are 

mostly engineering type which considerably saves computational powers. The 

Newton-Raphson method with line search technique is employed to solve 

nonlinear equations numerically (Section 6.6). Although the works presented in 

this chapter describe only a two-dimensional finite element formulation and its 

application is limited to PT beams with a large span-to-depth ratio, the general 

framework of the formulation is clearly stated and can be extended to other 

applications with trivial effort (e.g., analysis of deep beam can be approached by 

replacing the Euler-Bernoulli beam with Timoshenko beam element). Figure 6.2 

illustrates the modeling of a PT frame member through the proposed formulation. 
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Figure 6.1 General frame work of the proposed finite element formulation 

 

 

Figure 6.2 Illustration of the finite element discretization scheme 
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6.2 Contact Element 

6.2.1 Node-to-segment discretization 

The following NTS based formulation is a modification and application 

to structural analysis of the original work done by Wriggers (2008). The slip of 

tendons can be quite large at prestressing jacking and service stage. Accordingly, 

a contact discretization scheme which can handle finite sliding in the contact 

interface is considered. The most simplified discretization scheme to treat large 

sliding at the contact interface is the so called node-to-segment (NTS) 

formulation. One or several slave nodes are in contact with a master surface. 

Both the prestressing tendon and corresponding sheathing are discretized to two-

dimensional linear truss elements in this study. The nodes laying on the tendon 

elements are slave nodes and are in contact with the segments of sheathing in this 

case. A typical contact element contains one slave node and two master nodes 

which form the master surface as shown in Figure 6.3 (the node with position 

vector sX  represents the slave node and the straight line between the nodes with 

position vectors 1X  and 2X  forms the master surface of one sheathing element 

in this case). 
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Figure 6.3 Node-to-segment based contact element 

 

The node of prestressing tendon element given by the position vector sX  

comes into contact with the master surface formed by sheathing element nodes 

given by the position vectors 1X  and 2X . The unit normal and unit tangent 

vectors of the master surface are denoted as n and t, respectively. The deviation 

distance between the slave node and master surface is defined by a scalar denoted 

as Nsg , and the finite slip is defined by a scalar denoted as Tsg . With the above 

definition, the unit tangent vector on the master surface is computed as: 

( )
l

XXt 12 −
=                                                 (6.1) 

 

where l is the master segment length defined as: 

12 XXl −=                                                 (6.2) 
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The unit normal vector is computed as: 

ten ×= 3                                                 (6.3) 

 

where 3e  is the unit vector in the out of plane direction. 

Since linear truss elements are used to formulate tendon sheathing, any 

point on the master surface is known by a linear interpolation of 1X  and 2X with 

local surface coordinate ξ as: 

( ) ( ) 21 1 XXX +−= ξξ           10 ≤≤ ξ                       (6.4) 

 

The projection of a slave node onto the master surface is denoted by the local 

coordinate ξ  as: 

( )
l

tXX s ⋅−
= 1ξ                                           (6.5) 

 

The deviation distance Nsg  between the slave node and master surface is 

computed as: 

( )[ ] nXXXg sNs ⋅−−−= 211 ξξ                              (6.6) 

 

where s is the contact element label. 

The first variation of the distance function Nsg  is derived as: 

( )[ ] ng sNs ⋅−−−= 211 ηξηξηδ                                (6.7) 



175 

 

where sη , 1η  and 2η  are the displacement vectors of slave node and master 

nodes, respectively. 

 The slip distance function is derived as:  

( )lgTs   0ξξ −=                                           (6.8) 

 

where 0ξ  denotes the local surface coordinate of the slave node projected on the 

master surface at the initial configuration. 

With first variation, 

( ) llgTs   δξξξδδ 0−+=                                     (6.9) 

 

where 

( )[ ] [ ]
2

12211
l

ng
l

t Nss ⋅−
+

⋅−−−
=

ηηηξηξη
ξδ                    (6.10) 

[ ] tl ⋅−= 12 ηηδ   

 

Substituting Equation 6.10 into Equation 6.9, the first variation of Tsg  with 

respect to nodal displacement increments is derived as: 

( )[ ] [ ] [ ]
l

tg
l

ng
tg TsNs

sTs
⋅−

+
⋅−

+⋅−−−= 1212
211

ηηηη
ηξηξηδ      (6.11) 
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Equations 6.7 and 6.11 represent the essential kinematic relations of the contact 

element described in this study. By the finite element discretization, the virtual 

work from contact contribution is given as: 

( )∑
=

+=Π
cn

1s
 TsTsNsNs gTgP δδδ                                   (6.12) 

 

where NsP  and TsT  are the normal and tangential contact forces, respectively, and 

are determined by the constitutive equation chosen at the contact interface. cn  

represents the total number of contact elements. S represents the element label of 

contact elements. 

For this study, a hard contact formulation is introduced in the normal 

direction while a frictional contact associated with Coulomb’s law is employed in 

the tangential direction. The descriptions of two formulations are presented in the 

later section. The kinematic constraint appearing in the current finite element 

formulation is enforced by the penalty method in which very large penalty 

stiffness Nε  and Tε  are selected to compute the normal and tangential contact 

forces, respectively. The penalty factors are orders of magnitudes larger than 

typical stiffness in the beam such that the erroneous penetration and slip 

distances are miniscule. For an ideal bonded tendon system, stick behavior is 

observed in the tangential direction. Therefore, the contact forces are determined 

by the penalty method in both the normal and tangential directions. In the case of 

partially unbonded and perfectly unbonded systems, sliding occurs at the contact 
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interface of the tendon and corresponding sheathing. The tangential contact force 

is given by the integration of the friction law as described in Section 6.2.3. In the 

case of the stick, normal and tangential contact forces are given by: 

sNsNNs agP ε=                                             (6.13) 

sTsTTs agT ε=  

 

where sa  is the area of the contact element which is equal to length of the truss 

element that discretizes the tendon sheathing.  

In the case that multiple slave nodes in contact with the same master 

segment, the contact area sa  is no longer the whole length of the element. 

Instead, sa  is computed from the midpoints between the projections ξ  of the 

neighboring slave nodes as shown in Figure 6.4.  

 

Figure 6.4 Multiple slave nodes on one segment 
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6.2.2 Contact element residual force 

 Firstly, the element displacement vector of the contact element is defined 

as: 

( )T
21 ηηηη ss =                                         (6.14) 

 

Even though the tendon sheathing element is discretized into linear truss 

elements, each node contains the same three degrees-of-freedom as two 

translational degrees and one rotational degree. This ensures the compatibility of 

connecting the tendon sheathing to the beam by means of using an embedding 

element. The embedding element is modeled by the Euler-Bernoulli beam 

element which shares the nodes of the prestressed beam element and the tendon 

sheathing element as shown in Figure 6.3. Therefore, the displacement vector 

contains eight degrees-of-freedom in which two rotational degrees-of-freedom 

have nothing to do with the NTS formulation. Accordingly, the sN , sN 0 , sT  and 

sT0  matrices are defined as: 

( )[ ]T
ss nnnN 001 ξξ −−−=                             (6.15) 

 

[ ]T
ss n-nN 00000 =                                  (6.16) 

 

( )[ ]T
ss tttT 001 ξξ −−−=                              (6.17) 
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[ ]T
ss t-tT 00000 =                                   (6.18) 

 

The first variation of the penetration function is written as: 

ssNs Ng Tηδ =                                              (6.19) 

 

Using similar notation, the first variation of the tangential sliding function is 

written as: 

sss
Ts

s
Ns

ssTs TT
l

g
N

l
g

Tg ˆ
00

TT ηηδ =





 ++=                       (6.20) 

 

The discrete weak form of contact contribution in terms of virtual work is 

described as: 

 ( )TssNsssTsTsNsNs TTPNTgPg ˆ+=+ Tηδδ                             (6.21) 

 

Equation 6.21 yields the contact element residual force vector as: 

TssNsss TTPNG ˆ+=                                             (6.22) 

 

The residual force that comes from the contact contribution is summed up 

with other nodal forces at each node to compute nodal erroneous residual force 

after each iteration of the Newton-Raphson method. The solution algorithm of 

the Newton-Raphson method also requires the linearization of the contact 

residual which is described in Section 6.2.4. 
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6.2.3 Constitutive relation at the contact interface 

The hard contact is employed for normal contact, and the kinematic 

constraint ( 0 =Nsg ) is enforced by the penalty method. The penalty factor Nε  

has to be very large such that the contact penetration is relatively small (in the 

case of this study, the contact penetration stands for the deviation of the cross 

section centroid of a prestressing tendon from the cross section centroid of 

sheathing). In the case of PT members with perfectly bonded tendons, slave 

nodes are stick to tendon sheathing segments. The same penalty factor is applied 

to both the normal and tangential directions at the contact interface. In the case of 

PT members with perfectly unbonded tendons, the contact pressure is only 

presented in the direction of normal contact. Thus, the tangential part of the 

contact element residual and the corresponding tangential stiffness is omitted. In 

the case of partially bonding, which is the most realistic situation, the contact 

tangential force is determined from the integration of a chosen frictional law, 

since the constitutive behavior in the tangential direction is very complex, and 

the goal of this study zeros in on developing the fundamental framework. The 

simple Coulomb’s friction law is employed which assumes that the maximum 

tangential contact pressure is proportional to the normal contact pressure as: 

Npf µ=                                                 (6.23) 

 

where µ  is the frictional coefficient at the interface between the prestressing 

tendon and corresponding sheathing.  
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Accordingly, the slip determining function is defined as: 

   Slip if      ( ) 0ˆ >−= NnTTs pttf µ                               (6.24) 

 

where Tt  is the trial tangential contact pressure at current state. 

            The simple Coulomb model yields a non-smooth tangential pressure 

sliding relation describing stick/sliding behavior which leads to mathematical 

difficulties (Figure 6.5). To overcome this issue, the tangential motion is split 

into an elastic (stick) and plastic (slip) part. An updated algorithm is used to 

update the tangential contact stress 1+Tnt  at time step n+1. The details of the 

algorithm are described as follows: 

 

Figure 6.5 Coulomb’s frictional model 
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In the general frame work of the Newton-Raphson method, the increment 

of sliding within a time step 1+∆ nt  (time step 1+∆ nt  only represents one iteration 

process within a load increment. It has nothing to do with the time itself as no 

time-dependent effects are considered in this study) is given by: 

( ) 111 +++ −=∆ nnnTn tlg ξξ                                        (6.25) 

 

The stick/slip condition is unknown at this stage since this total increment has to 

be subdivided into an elastic (stick) and plastic (slip) part. For a typical 

simulation of PT unbonded beams, the initial slip s
Tg 0  at each tendon node is 

zero.  

s
TnTn

e
Tn ggg −= ++ 11                                      (6.26) 

 

where e
Tng 1+  represents the stick (elastic) part of the sliding at time n+1. s

Tng

represents the plastic (slip) part of the sliding at time n. 

 By assuming that only stick behavior is taking place, a trial tangential 

contact stress is computed as 

( )s
TnTnT

tr
tn ggct −= ++ 11                                    (6.27) 

 

where Tc  is a very large elastic constant due to the fact that the relative elastic 

sliding is usually very small (approximate stick behavior). In this study Tc  is 
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equal to normal contact penalty factor Nε . This trial stress is inserted into 

Equation 6.24 to determine the slip condition as: 

111 +++ −= Nn
tr
Tn

tr
sn ptf µ                                    (6.28) 

 

If 01 ≤+
tr

snf , no slip takes place and the tangential stress at time step 1+nt  is given 

by tr
tntn tt 11 ++ = . If the slip condition is not fulfilled at the time increment 1+∆ nt , then 

the tangential stress has to be projected onto the admissible region. There are a 

great variety of algorithms for solving plastic problems. In this case, the update 

of tangential stress and sliding is easily accomplished by using the implicit Euler 

scheme as: 

11 ++ += Tn
s
Tn

s
Tn ngg λ                                         (6.29) 

 

where 
T

T
T t

tn = . 

 The projected stress is defined as: 

111 +++ −= TnT
tr
TnTn nctt λ                                     (6.30) 

 

where tr
TnTn nn 11 ++ = . 

In the case where Coulomb’s law is employed for the tangential contact 

constitutive relation, λ  is explicitly computed as: 
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T

Nn
tr
tn

c

pt 11 ++ −
=

µ
λ                                        (6.31) 

 

Inserting Equation 6.31 into Equations 6.29 and 6.30, the updated plastic 

slip part of the total sliding and the tangential stress are computed as: 

( )
T

tr
TnNn

tr
tns

Tn
s
Tn c

npt
gg 111

1
+++

+

−
+=

µ
                            (6.32) 

tr
TnNnTn npt 111 +++ = µ  

 

The algorithm described above requires storing the solutions of plastic slip of 

slave nodes at each time increment 1+∆ nt . 

 

6.2.4 Solution algorithm 

The most commonly used solution algorithm for nonlinear problems is 

the Newton-Raphson scheme. This method requires a linearization of contact 

residual. For the normal part of the contact residual, the linearization considers 

the dependency of ξ  from the current displacements as well as the change of the 

normal vector n . For the penalty method, the tangential stiffness matrix of the 

normal contact is derived as: 















 ++−= TTTT

ss
Ns

ssss
Ns

sssN
c
Ns NN

l
g

NTTN
l

g
NNak 0000ε          (6.33) 
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Neglecting high order terms, it yields: 

T
sssN

c
Ns NNak ε=                                          (6.34) 

 

Similarly, if the stick behavior governs the tangential contact, by the penalty 

method, the tangential stiffness matrix of tangential contact is derived as 

( )












 ++++−= TTTTTT

ss
Ts

ssss
Ns

ssss
Ts

sssT
c
Ts NN

l
g

TNNT
l

g
NNNN

l
g

TTack 0000000
ˆˆ      

(6.35) 

 

Neglecting high order terms, it yields: 

T
sssT

c
Ts TTack ˆˆ=                                            (6.36) 

 

If sliding occurs and frictional laws are used to compute the slip and tangential 

stress, the global tangential stiffness matrix needs to be reassembled before the 

solution process. For the case of using Coulomb’s law to compute the plastic slip 

and tangential contact stress, the linearization of Equation 6.32 leads to the 

definition of the tangential stiffness matrix for the sliding part as: 

( )







++= TT

ssss
Ns

ssstsT
c
Ts TTNN

l
g

NTnnack ˆˆ
00µ                   (6.37) 
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where tn  stands for the current sliding direction and 
Ns

Ns
s g

g
n =  if  0≠Nsg , or 

1=sn .  

 Since the solution at each load step is either stick or slip, it is hard to 

determine the tangential stiffness in advance. Therefore, it is better to assume 

stick behavior of all contact elements at the beginning iteration of every load 

step. The algorithm of general computational procedures is described in Figure 

6.6. 

 

Figure 6.6 Flowchart of computational procedures 

 

6.3 Embedding Element 

The embedding element is essentially a two-node elastic Euler-Bernoulli 

beam element with very large axial and bending stiffness. The elastic constant 

EA  and EI  are sufficiently large such that the embedding element is treated as a 

rigid beam connecting the tendon sheathing and the reference axis of the PT 

frame member. The formulation of this embedding element follows the 
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formulation of the traditional elastic Euler-Bernoulli beam elements which is 

found in many literatures (e.g., Zienkiewicz and Taylor, 2005; Fish and 

Belytschko, 2007). Therefore, simple descriptions are given below. 

The configuration of the two-node elastic Euler-Bernoulli beam element 

is shown in Figure 6.7. It contains two nodes and of each have two translational 

degrees-of-freedom and one rotational degree-of-freedom. 

 

Figure 6.7 Two-node Euler-Bernoulli beam element 

 

The linear interpolation is used along the axial axis of the beam and the 

3rd order Hermite interpolation is used in interpolating transverse displacement. 

The element displacement vector is defined as: 

[ ]T
222111 θθ ηηηηηηη yxyx

e =                          (6.38) 

 

where e denotes the element label. 

 The differential equation (strong form) governing the axial deformation is 

described as: 
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lx0      ,0 <<=+





 b

dx
d

AE
dx
d xη

                            (6.39) 

 

where A  is the cross-section area, E  is the elastic constant and b  is the body 

force. 

Boundary conditions are specified as: 

( ) ( )
( ) t

A
P

dx
d

E
x

x −==





=

= 0
00

0

η
σ                             (6.40) 

( ) xx l ηη =  

 

where σ  represents the normal stress. t  represents the traction at boundary. η  

represents prescribed displacement vector at boundary. 

 The weak form is derived from the strong form as: 

( ) ∫∫ += =

l

x
x

l

wbdxtwAdx
dx

d
EA

dx
dw

0
0

0

η
                        (6.41) 

 

where w represents an arbitrary function (weighting function). 

The first order interpolation used for axial deformation is defined as: 








 −−
= 0000 12

axial e

e

e

e
e

l
xx

l
xxN                            (6.42) 
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where ex1  and ex2  are the global x-coordinates of the first and second nodes of the 

beam element. x represents the global x-coordinate of an arbitrary point on the 

beam element. 

The first derivative of the interpolation function is defined as: 

[ ]0010011
−== e

e
e

ldx
dN

B axial
axial                         (6.43) 

 

Using the shape functions as weighting functions (Galerkin, 1915) while the 

cross-section area and elastic constant are the same through the beam, the 

element stiffness matrix is derived as: 



























−

−

== ∫

000000
000000
001001
000000
000000
001001

0
e

l
eee

l
EAdxBEABk

e

T

axial                    (6.44) 

 

 For bending part, the governing differential equation is as follows: 

04

4

=− p
dx

d
EI yη

                                             (6.45) 

 

where P  is a uniform load on the beam. I is the second moment of area of the 

cross section. 

The boundary conditions are defined as: 
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ηyy Γon        ηη =                                           (6.46) 

m
y Γmn

dx
d

EImn   on      == 2

2η

 

θΓθ-
dx

dηy   on      =
 

s
y Γsn

dx
d

EIsn   on      =−= 3

3η

 

 

where n  is the normal, m  is the moment and s  is the shear on the boundary. θ  

represents the prescribed rotation at boundary. 

The weak form is derived as: 

( )
s

m

swm
dx
dwwpdxdx

dx
d

EI
dx

wd l
y

l

Γ
Γ

+





+= ∫∫

0
2

2

0
2

2 η
           (6.47) 

 

The 3rd order Hermite interpolation functions are defined as: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

T

2

2

2

2

bending

11
8

21
4
1

0

11
8

21
4
1

0































−+

−+

+−

+−

=

ξξ

ξξ

ξξ

ξξ

e

e

e

l

l

N                                 (6.48) 

 

where ξ  is the local coordinate of the beam element ( 11 ≤≤− ξ ). 
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The second derivative of the interpolation functions is derived as: 





 +−−== 136013601

2

2

ξξξξ
eee

e
e

llldx
Nd

B bending
bending         (6.49) 

 

Based on the Galerkin method (Galerkin, 1915) and constant elastic modulus and 

cross section area through the element, the element stiffness matrix is explicitly 

expressed as: 
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260460
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eeee

ee

eeee

ee

e

l
eee

llll
ll

llll
ll

l
EIdxBEIBk

e

T

bending            (6.50) 

 

 The embedding element stiffness matrix is the sum of the axial stiffness 

and bending stiffness as: 

eee kkk bendingaxialembedding +=                                   (6.51) 

 

Since the element behaves linearly, the tangential stiffness matrix is the same as 

the stiffness matrix derived above. 
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6.4 Anchorage Element 

6.4.1 Treatment for tendon jacking 

 Prestressing forces are enforced by the procedure of tendon jacking in 

practice. Several methods have been developed and successfully applied to 

numerical models for simulating jacking procedures by means of FEM (e.g., 

Nikolic and Mihanovic, 1996; Stavroulaki et al., 1997). A common treatment of 

tendon jacking is to connect prestressing tendons to the anchorages before 

applying prestressing force. An initial strain or stress field is directly applied to 

the elements of tendons afterwards. The initial strain or stress field can be 

approached directly or indirectly. The latter manipulates a temperature field 

around the tendon elements, usually by cooling down the tendon to achieve the 

desired prestressing level (Stavroulaki et al., 1997). In the case of simulating PT 

tendon jacking, the initial stress/strain field approach has a drawback that 

neglects the prestress loss during the tendon jacking procedure, as the initial 

strain generated around the tendon is uniformly distributed. To overcome this 

issue, another adopted approach is to simulate the mechanical behavior of tendon 

jacking in real practice (Vecchio et al., 2006). The simulation of tendon jacking 

and anchorage process introduces the so called boundary nonlinearity. In such a 

case, not only is a contact formulation required to imitate the real mechanical 

behavior but a special treatment also needs to be developed. In this study, a 

special procedure is introduced to deal with the boundary nonlinearity at the 
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anchorage zone. The treatment is enforced by a special anchorage element along 

with some modifications to the Newton-Raphson method.  

 

6.4.2 General procedures 

 The anchorage element is developed to serve as an interface element 

between a tendon element and an embedding element. This element is only 

effective after tendon jacking and the completion of anchorage wedge setting. 

The anchorage element comes into play as a very rigid spring between the anchor 

point and tendon end as shown in Figure 6.8. 

 

Figure 6.8 Anchorage element 

 

 Only the translational degrees-of-freedom of Node1 and Node2 are 

constrained to each other by the penalty method. Good accuracy is obtained if the 

penalty factor is sufficiently large to eliminate any relative motion between the 

tendon end and anchor point. In order to fully simulate the prestressing process, a 

typical finite element simulation is subdivided into four steps as follows: 1) 
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pulling out tendon; 2) anchorage wedge loss; 3) anchoring tendon; 4) service 

loading. At steps one and two, the tendon end node (for example, Node 1 in 

Figure 6.8) has an essential boundary condition, and a corresponding prescribed 

displacement load is applied to simulate the distance of the tendon pulling out 

and subsequent anchorage setting. At each iteration process, the reaction forces 

are computed at the tendon end node and applied to the embedding element node 

connecting to the tendon (for example, Node2 in Figure 6.8). This treatment 

ensures that the jacking reactions are applied to the PT member itself. The 

schematic view of this process is shown in Figure 6.9. 

 

Figure 6.9 Tendon jacking reactions transferred to PT members 

 

 Once equilibrium is achieved at the end of step two, a tendon end node 

and one embedding element node serve as anchor point that are supposed to be 

very close to each other. This is achieved by pre-calculating the desired tendon 

pulling force and anchorage slip. The pre-calculated distances are used to 
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determine the initial coordinates of the tendon end node such that after tendon 

pulling out and drawback, tendon end nodes are close to their corresponding 

anchor points. There will always be a small distance between the tendon end 

node and corresponding anchor point due to the difficulty of accurately 

determining the initial position of tendon end nodes. The x-component of this 

distance in global coordinates is depicted as ua  and y-component depicted as va  

in Figure 6.8. At step three, anchorage elements are added to the system. In the 

case of one end jacking, only one anchorage element is added to the formulation, 

otherwise two anchorage elements are inserted in the case of two end jacking. In 

addition, the essential boundary condition at tendon end and the corresponding 

reaction forces acting on anchor points are removed. Due to the stiffness of 

added anchorage elements being sufficiently large (typically one order of 

magnitude larger than the typical stiffness of the structural system), negligible 

relative motions are generated once the equilibrium is reached at the end of step 

three. At present, for any displacement increment occurs within and after step 

three, the added part of displacements are denoted as  xh  and yh . Therefore, the 

entire displacements of tendon end nodes are sub-divided into two parts as 

displacements generated at the end of step two, and the displacements generated 

after step two. The linear stiffness of the anchorage element is only related to the 

displacements generated after step two, which makes the constitutive equation of 

the anchorage element nonlinear. A linearization of element residual forces is 
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required to obtain the tangential stiffness matrix in the solution process. The 

general procedures of the special treatment are described in Figure 6.10. 

 

Figure 6.10 General procedure of tendon jacking and anchoring 

 

6.4.3 Anchorage element formulation 

The anchorage element contains two nodes. The first node is a tendon end 

node while the second node is an embedding element node. The displacement 

vector of one anchorage element is written as: 

[ ]T
222111 θθ ηηηηηηη yxyx

e =                             (6.52) 

 

where e denotes the element label. 

Let us denote the relative motion between tendon end node and 

corresponding embedding element node as xh  and yh  in the direction of global x 
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and y directions, respectively. At the end of analysis step two, the displacement 

vector of the anchorage element is defined as:  

[ ]T
222111 θθ ηηηηηη yxyx

e
ad =                            (6.53) 

 

Accordingly, 

( ) 1Ndh e
a

ee
x

T
−= η                                          (6.54) 

( ) 2Ndh e
a

ee
y

T
−= η  

 

[ ]T001011 −=N                                    (6.53) 

[ ]T010102 −=N  

 

If the penalty form is used, the virtual work contribution from one anchorage 

element is computed as: 

ee
yac

ee
xac NhNh ηεηεδ TT

21 +=Π                                  (6.56) 

 

where acε  is the penalty factor of anchorage element. 

The residual force vector of one anchorage element is written as: 

( )TTT
21 NhNhG e

yac
e
xace εε +=                               (6.57) 

 

Substituting Equation 6.54 into Equation 6.56 yields: 
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      ( ) ( )[ ]TTTTT
2211 NNdNNdG e

a
e

ac
e
a

e
ace −+−= ηεηε                   (6.58)             

 

Since the constitutive relation of the anchorage element is nonlinear, a 

linearization of Equation 6.58 is required to incorporate with the Newton-

Raphson method. By linearization of Equation 6.58, the tangential stiffness 

matrix of one anchorage element is derived as: 
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                  (6.59) 

 

6.5 Nonlinear Beam and Truss Elements 

6.5.1 Nonlinear RC beam elements 

In this section, a simple but powerful Euler-Bernoulli type beam element 

is introduced. It has two-nodes with three degrees-of-freedom per node. The 

proposed element is capable of considering material nonlinearity introduced by 

concrete cracking and reinforcement yielding. The tension stiffening effect is 

considered by modifying either the uniaxial stress-strain relation of concrete or 

mild steel. This effect, however, plays an insignificant role in numerical 

simulation of PT structures mostly due to the extremely low reinforcement ratio 

of typical PT structures. It also allows arbitrary shape of beam sections with 

arbitrary configurations of reinforcement, which however needs to be symmetric 
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in the out of plane direction due to the nature of a two-dimensional analysis. A 

fiber section model is adopted for the section integration and the numerical 

integration is performed along the longitudinal axis of the beam. It is 

computationally efficient compared to other types of elements while still meeting 

the practical engineering requirements of accuracy. The behavior of the element 

is modeled based on proper simplification of beam kinematics and actual 

material laws. The limitation of the beam element is as follows. 1) The concrete 

cracking is smeared throughout an element, thus no individual crack will be 

tracked during a simulation; 2) Perfect bonding is assumed between the concrete 

and mild steel; 3) Strain predictions of mild steel might deviate from the actual 

case at the ultimate stage due to this assumption. This strain deviation, however, 

has a minor effect on the simulation as the intent of this study is to focus on PT 

structures which are usually very lowly reinforced. 

 

6.5.2 Element formulation 

The nonlinear RC beam element introduced in this study is extended from 

a conventional Euler-Bernoulli elastic beam element which has two nodes with 

six degrees-of-freedom in a 2-D plane as shown in Figure 6.11. 
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Figure 6.11 Two-node beam element 

 

The transverse displacement is interpolated by the 3rd order Hermite 

polynomial, and a linear interpolation is employed for the axial deformation. It is 

noted that both the axial deformation and bending deformation depend on the 

axial strain interpolation. The axial strain interpolated from axial and bending 

deformation, therefore, should be in the same order. However, the linear 

interpolation in the axial direction results in a constant axial strain, whereas the 

axial strain interpolated from the 3rd order Hermite polynomial may not be the 

same. The effect of inconsistent interpolations of axial strain will be observed by 

a simulation with a coarse mesh but it will converge to a formulation with 

consistent axial strain when the number of elements increases. Considering the 

contact formulation introduced in the study, which approximates the tendon 

profile into several piecewise linear segments, the tendon geometry is recovered 

when the number of beam elements increases in a simulation as shown in Figure 
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6.12. Therefore, the combination of a linear and the 3rd order Hermite polynomial 

interpolations provide enough accuracy with a refined mesh from an engineering 

viewpoint. 

 

Figure 6.12 Piecewise linear tendon elements 

 

The displacement vector of the nonlinear RC beam element is defined as 

[ ]T
222111 θθ ηηηηηηη yxyx

e =                        (6.60) 

 

where e is the element label. 

 The weak forms for the axial and bending deformation are revoked as 

described in embedding element formulation. For axial deformation, 

( ) ∫∫ += =

l

x
x

l

wbdxtwAdx
dx

d
EA

dx
dw

0
0

0

η
                        (6.61) 

 

The first order interpolation used for axial deformation is defined as: 
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For bending deformation, 
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The 3rd order Hermite interpolation functions are defined as: 
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Consequently, the deferential operator matrix B is defined as: 
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The interpolation matrix N is defined as: 









=

6532

41

00
0000

NNNN
NN

N                         (6.66) 

 

The resultant force vector in a section is defined as: 









=
y

a

M
P

P                                               (6.67) 
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where aP  stands for the resultant axial force and yM  stands for the resultant 

moment in a section. 

 The body force vector as is defined as: 









=
z

x

q
q

q                                                 (6.68) 

 

where xq  represents the body force in the longitudinal direction. zq  represents 

the body force in the in-plane transverse direction. 

 Considering Equations 6.61 and 6.63, the finite element irreducible form 

for inelastic problems is derived and the element residual force vector is deduced 

from the virtual work contribution of beam element 

( )dxqNPB
el∫ −=Π TTTδηδ                                 (6.69) 

 

The element stiffness matrix is determined according to the principle of virtual 

work as: 

∫=
el

e
beam DBdxBk T                                            (6.70) 

 

where D is expressed as: 

∫ 







=

A EzzE
zEE

D 2                                           (6.71) 
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where A is the area of the section. E is the elastic modulus (reduced elastic 

modulus if material goes into inelastic range) obtained from local constitutive 

relations at each computation point in the section and z stands for the distance 

between the integration point and the reference axis of the beam (the sign of z 

depends on which side of reference axis the integration point is on according to 

the definition). 

A linearization of the element residual force vector yields the tangent 

stiffness matrix as: 

∫=
el T

e
beam BdxDBk T                                           (6.72) 

 

where TD  is expressed as: 

∫ 







=

A
TT

TT
T EzzE

zEE
D 2                                          (6.73) 

 

where TE  is the material tangent modulus obtained from the local constitutive 

relations at each computation point in the section. 

The matrices D and TD  are not diagonal if the material is inelastic or the 

reference axis of the beam is not on the center of gravity of the section. It is 

noted that if the reference axis refers to the centroidal axis and the material is 

elastic, matrix D becomes diagonal. 
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In order to compute D and TD  matrices, a fiber model is introduced to 

perform the discrete integration on the section. A beam section is divided into a 

number of sub-fiber sections. In this study, rectangular shaped fibers are used to 

approximate the beam section as shown in Figure 6.13. 

 

Figure 6.13 Approximated sub-fiber based section 

 

As shown in the figure, the discretely integrated area, the first moment of 

area, second moment of area (moment of inertia), elastic modulus and tangent 

modulus converge to the exact integration of the original section as the number 

of fibers n increases. Therefore, the integration of matrices D and TD  are 

approximated as: 

∑∫
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where TD  is expressed as: 

∑∫
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2                          (6.75) 

 

where S  is the first moment of area. I  is the second moment of area. n is the 

number of fibers in a section. 

 If there is reinforcement in the section, the mild steel bars are considered 

as separate individual fibers according to their positions. As a result, matrices D 

and TD  consist of contributions from both concrete and reinforcement as: 

sc DDD +=                                              (6.76) 

s
T

c
TT DDD +=   

 

where cD  and sD  are D  matrices constructed from concrete and steel 

reinforcement, respectively.  

The computation of section integration follows the same manner 

described above for both concrete and steel. The integration along the 

longitudinal direction of the beam is performed by the Gauss quadrature. Some 

researchers reported that a six points Gauss integration proved to be the optimum 

between computation time and accuracy of results for this type of a beam 

element (Pőttler and Swoboda, 1987). Considering a single element length is 

limited to a small value, but with a large number of elements assembled in the 

system, a two point Gauss integration yields sufficient accuracy. The two point 
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Gauss quadrature was selected and implemented in the program as Table 6.1 

shows the position and weighting of each integration point. 

 

    Table 6.1 Gauss-Legendre rule 

Number of points Points Weight Degree 
2 ±0.57735027 1 3 

3 0 0.88888889 5 
±0.77459667 0.55555555 

4 ±0.33998104 0.65214515 7 
±0.86113631 0.34785485 

5 
0 0.56888889 

9 ±0.53846931 0.47862867 
±0.90617985 0.23692689 

6 
±0.23861918 0.46791393 

11 ±0.66120939 0.36076157 
±0.93246951 0.17132449 

 

At this point, the element residual force vector and tangent stiffness 

matrix for one element are derived, and the Newton-Raphson type method is 

applied to obtain the solution. 

 

6.5.3 Constitutive relations for concrete and steel materials 

The aforementioned formulation requires the computation of elastic 

modulus, reduced elastic modulus and tangent modulus for each computation 

point in the section. These material parameters are obtained from uniaxial 

constitutive relations of both concrete and steel. Once the material goes into 
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inelastic state, the reduced elastic modulus is defined as the current stress divided 

by the current strain. The concrete uniaxial stress-strain relation in compression 

is determined by an empiric equation proposed by Carreria and Chu (1985). As 

for tension, concrete is considered elastic until tensile strength, crf  is reached. 

After cracking, stress drops to a very small value in order to maintain numerical 

stability. The tension stiffening effect is considered by modifying the descending 

portion of stress-strain relations after cracking. With typical non-prestressed RC 

structures, the tension stiffening effect is quite noticeable due to the large 

reinforcement ratio, in which case, the stress might linearly reduce to the residual 

stress after cracking at a strain of about ten times the strain at cracking. On the 

other hand, typical PT structures have very low reinforcing ratio in comparison 

with conventional RC structures. The tension stiffening effect is so miniscule that 

one can assume the stress in tension drops to the residual stress at a strain of 

about two times that at cracking. This assumption is consistent with simulations 

of PT slabs and beams carried out via general purpose finite element packages in 

Chapter 5. A typical concrete uniaxial stress-strain relation is shown in Figure 

6.14, and it is the basis of concrete material behavior in this research. 
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Figure 6.14 Uniaxial stress-strain relation assumed for concrete material 

 

As for mild steel bar, it is assumed that its behavior follows a bilinear 

relation as shown in Figure 6.15. Steel material remains elastic until yielding 

stress, yf  is reached. This assumption is fairly accurate for the current study as a 

yielding plateau is quite often observed in coupon tests of mild steel bars. Strain 

hardening is modeled since the implementation method chosen only requires a 

discrete stress-strain relation. Once the stress-strain relations are determined for 

both concrete and steel, a piecewise linear interpolation is made to the stress-

strain relations, and the corresponding elastic modulus (or reduced elastic 

modulus) and tangent modulus. 
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Figure 6.15 Uniaxial stress-strain relation assumed for steel material 

 

6.5.4 Solution process 

Once the uniaxial stress-strain relation of concrete and steel is 

determined, the elastic modulus or reduced elastic modulus and tangent modulus 

are computed at each computation point in a section. In the Newton-Raphson 

solving process, the strain and curvature at each integration point are measured 

based on the current displacement vector. Following the assumption that plane 

sections remain plane for a Euler-Bernoulli type beam, the strain distribution in a 

section is linear as shown in Figure 6.16. 
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Figure 6.16 Stress and strain distribution in a typical beam section 

 

The axial strain at each centroid of fiber sections is determined by: 

zκεε += 0                                                (6.77) 

 

where 0ε  and κ  are the axial strain and curvature measured at the reference axis 

of a section, respectively. z remains the same definition in Equation 6.71. 

Once strains at all fiber locations are known, interpolations are made to 

compute the element residual force vector as well as the tangent stiffness matrix. 

The residual force vector and tangent stiffness matrix are used to obtain the next 

displacement increment vector. 
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6.5.5 Tendon element 

The elements of prestressing tendons are conventional two-node truss 

elements limited to small strain and rotations. The formulation of the inelastic 

two-dimensional rod element is quite similar to the axial deformation that has 

been discussed in the nonlinear beam formulation. It is a two nodes element with 

four degrees-of-freedom as shown in Figure 6.17. 

 

Figure 6.17 Two-node truss element 

 

The displacement vector of the truss element is defined as: 

[ ]T
2211 yxyx

e ηηηηη =                                   (6.78) 

 

where e is the element label. 

 The stiffness matrix at current displacement is computed by a one point 

Gauss quadrature or analytical integration as: 
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where E is the elastic modulus or reduced elastic modulus obtained at the local 

constitutive relation. A is the area of the section of one truss element. el  is the 

element length.  

Similarly, the tangent stiffness matrix is derived as: 
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                        (6.80) 

 

where TE  is the tangent modulus obtained at the local constitutive relation. 

The proposed implementation method requires a uniaxial stress-strain 

relation defined for prestressing tendons. The stress-strain relation is either 

obtained from field tests or simply from empiric equations such as one developed 

by Devalapura and Tadros (1992) for Grade 270 seven-wire strands. A typical 

uniaxial stress-strain relation for Grade 270 seven-wire strands is shown in 

Figure 6.18. 
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Figure 6.18 Typical uniaxial stress-strain relation of the prestressing tendon 

 

6.6 Solution Method 

6.6.1 Solving method for nonlinear equations 

In solid mechanics, structural nonlinear finite element problems typically 

are categorized into three sources as material, geometrical and boundary 

nonlinearities. The most frequently applied solution scheme is the Newton-

Raphson algorithm and its numerous variants. This method is based on a Taylor 

series expansion at a known state. If the force equilibrium of a finite element 

system is expressed as: 

( ) 0 , =ληG                                                (6.81) 

 



215 

 

where η  is the state variable as displacement vector and λ  is the factor of load 

vector. 

Then, the Taylor series expansion of Equation 6.81 yields: 

( ) ( ) ( ) ( )ληηληληληη ,,, , kkkk rDGGG +∆+=∆+              (6.82) 

 

where ( )λη ,kDG  is the gradient of G  evaluated at λληη ==  ,k . ( )λη ,kr  is the 

residual part. 

The linearization of G yields a matrix, which is the Jacobian or also 

known as tangential stiffness matrix denoted TK . The residual vector ( )λη ,kr  of 

Equation 6.82 is neglected due to its higher order. By neglecting the high order 

term, a new equation is obtained as: 

( ) ( ) 0,, =∆+ ηληλη kk DGG                                 (6.83) 

 

Equation 6.83 becomes the basis of the following iterative algorithm for the 

solutions of nonlinear problems. The displacement increments, η∆ , at state k is 

computed by solving a set of linear algebraic equations. Therefore, the solution 

of the nonlinear algebraic equation set is converted to solving a series of linear 

algebraic equation sets. The treatment of boundary conditions in solving the 

linear system is described in a later section. In order to assemble the global 

tangential stiffness matrix, all sub-tangential stiffness matrices are summed 

together (tangential stiffness matrices from anchorage, beam, contact, 
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embedding, and tendon elements). For a variety of elements developed in this 

study, the corresponding analytically derived tangential stiffness matrices were 

already shown in previous sections. The quadratic convergence of the Newton-

Raphson scheme is only valid if the initial value is near the solution point 

(Wriggers, 2008). Therefore, to apply a load in several steps by a load factor λ  

usually ensures that the solution is converged locally and efficiently at each 

loading level. The Newton-Raphson scheme is illustrated in Figure 6.19. 

 

Figure 6.19 Illustration of Newton-Raphson scheme 

 

6.6.2 Line search modification 

The convergence rate of the Newton-Raphson scheme sometimes is very 

slow even if the load is applied in several steps. A diverged solution is more 
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likely obtained if a very high nonlinearity presents in the system. In order to 

increase the robustness of the Newton-Raphson scheme, the line search technique 

is applied to the solving process. The rationale behind this method is that the 

direction of the displacement increment vector η∆  found by the Newton-

Raphson scheme is often a good direction. The step size, however, is not optimal. 

It is cheaper to find the optimal step size within one step than to obtain a new 

direction by computing new tangential stiffness matrices. When a new 

displacement increment vector is obtained, the corresponding residual force 

vector is computed. Therefore, before proceeding to the next direction, the 

residual force vector is minimized by applying a factor γ  to the current 

displacement increments kη  at state k. In this study, the 2l  norm of the residual 

force vector is considered as the minimization measure. This is expressed as: 

( ) 0       ,    minimize
2

>∆+ γληγη
lkG                         (6.84) 

 

Once a measure of the residual force vector has been established, the line 

search is made with any of the methods for minimizing a function of a single 

parameter. The method of bisection is selected here for the current study. The 

implementation of this method is shown in Figure 6.20. 
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Figure 6.20 Flow chart of bisection method 
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6.6.3 Solution control and convergence criteria 

The termination of the iterative procedure in solution process by the 

Newton-Raphson method is determined by convergence criteria. The selected 

criteria for the current study are based on the magnitude of the residual force 

vector as well as the magnitude of the displacement increments vector. The 2l  

norm of residual force vector or displacement increment vector is computed and 

compared with the 2l  norm of the internal force vector or total displacement at 

each iteration process. The tolerance coefficient ε  of error determines the 

precision level of the computed displacement vector before terminating the 

iterative process. It is shown in Equation 6.85.  

22
int

1

2
l

n

a
al

frr ε≤= ∑
=

                             (6.85) 

and         ( )
22

1

2
l

n

a
al

ηεηη ≤∆=∆ ∑
=  

 

where a is the global degrees-of-freedom label and n is number of the degrees-of-

freedom in the system. r is the residual force. η∆  is the displacement increment. 

The convergence tolerance determines the computational work and 

accuracy. If it is too coarse, the solution might be quite inaccurate, while a too 

tight criterion results in unnecessary computational works. For reinforced 

concrete structural analysis, due to the nature of very high nonlinearity presented 

in concrete material, a good practice is %1=ε  from an engineering viewpoint. 
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6.6.4 Solution process of linear system equations 

Once the global tangential stiffness matrix and external force vector are 

assembled, a linear algebraic equation system is constructed as: 

fKT ∆=∆η                                                (6.86) 

 

where f∆  is the load increment vector. 

 The displacement increment vector is only computed after imposing 

appropriate essential boundary conditions (displacement boundary conditions). 

There are many approaches to inserting the displacement boundary conditions 

such as the partition method, penalty factor, etc. Here, the partition method was 

selected, as this method requires the global system to be partitioned based on 

whether the displacement at certain degrees-of-freedom of the node is prescribed. 

All degrees-of-freedom at boundaries are marked as either essential boundary 

conditions or natural boundary conditions. The former prescribes the 

displacement of corresponding degrees-of-freedom for the nodes. If the system 

has n unknown degrees-of-freedom, the original labels of algebraic equations is 

reordered such that all degrees-of-freedom on the essential boundaries are 

grouped together. The tangential stiffness matrix and external force increment 

vector are assembled according to this new order, and then Equation 6.86 is 

recast as: 
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where Eη  is the prescribed displacement vector on the essential boundaries; Fη∆  

is the unknown displacement increment vector to be solved; ER  is the unknown 

reaction forces on essential boundaries and FF∆  stands for the force increment 

vector exerted on the system. The second row of Equation 6.87 is rearranged as 

EEFFFF KFK ηη T−∆=∆                                       (6.88) 

 

All terms on the right hand side of Equation 6.88 are known. This linear 

algebraic system is efficiently solved by a variety of methods, and, the unknown 

displacement increment vector Fη∆  is computed. With the solution of Fη∆  and 

the first row of Equation 6.87, the reaction forces are found accordingly. Due to 

the tangential stiffness matrix generated by the frictional contact element being 

unsymmetrical in this study (Section 6.2), methods for symmetric coefficient 

matrix such as the Cholesky decomposition, conjugated gradients, etc. cannot be 

applied. However, many other schemes in the literature can be efficiently used to 

solve equation systems with an unsymmetrical coefficient matrix (Lewis et al., 

2006).  

 

6.7 Numerical Examples 

6.7.1 Ultimate moment capacity of RC beams 

One numerical simulation of an RC beams is presented to validate the 

formulation of the nonlinear RC beam elements. Frist, a simply supported RC 



222 

 

beam with a span of 50 ft is simulated. The rectangular section is reinforced by 

four #8 reinforcing bars with a yielding strength of 60 ksi at an effective depth of 

35 in. The concrete compressive strength is 4 ksi with a tensile strength of 472 

psi. A displacement controlled point load is applied at mid-span as shown in 

Figure 6.21. 

 

Figure 6.21 Simulated RC beam configuration 

 

The finite element mesh consists of 20 beam elements along with 20 

fibers for section discretization. This configuration yields 800 material 

computational points. It is sufficient for predicting cracking and ultimate load. 

The hand calculation is presented as follows: 

The cracking moment and the point load at cracking are calculated as: 

in.-lb 1258667
in. 20

in. 5333psi 472 4

=
×

==
b

gcr
cr y

If
M                 (6.89) 
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The ultimate moment capacity and the point load at ultimate are calculated as: 
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Table 6.2 shows the comparisons between the hand calculation and 

numerical simulation. 

Table 6.2 Hand calculation compared to numerical simulation results 

 crP  (kips) uP  (kips) 
Hand Calculation  8.4 40.7 

FEA  9.5 42.8 
FEA/Hand Calculation 1.13 1.05 
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            The numerical simulation agrees well with hand calculations in terms of 

cracking load and ultimate load capacity of the beam. Figure 6.22 plots the 

relation of applied load vs. mid-span deflection without reinforcement (i.e., plain 

concrete beam).  

 

Figure 6.22 Applied load vs. mid-span deflection of a plain concrete beam 

 

The damage pattern of the plain concrete beam is shown in Figure 6.23. 

Dominant cracks are developed at the mid-span region of the beam. Because 

cracks are assumed to be smeared along a beam element, the crack region is a 

little wide in the simulation. However, a more accurate local crack pattern will be 

obtained as the finite element mesh becomes finer. 
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Figure 6.23 Plain concrete beam damage pattern 

 

Figure 6.24 shows the overall relation of applied load vs. mid-span 

deflection with four #8 reinforcing bars added in. The applied load slightly 

increases as deflection increases. This might be as a result of using artificial 

tensile residual stress according to the concrete constitutive model to maintain 

numerical stability. The numerical simulation has been intentionally cut off at a 

deflection around 7 in. Furthermore, in the current proposed method, it is 

difficult to predict the ultimate failure point due to the basis of finite element 

analysis which originates from continuum mechanics, and material fractures are 

hard to handle by nature.  
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Figure 6.24 Applied load vs. mid-span deflection at ultimate state 

 

Figures 6.25 and 6.26 show the damage pattern and strain plots of 

concrete fibers right at the yielding point, and Figure 6.27 plots the beam 

deformation (scale factor: 5) at the termination point of the simulation which 

clearly shows a plastic hinge developed at mid-span. The flexural type of failure 

mode agreed with observations from many experimental programs.  

 

Figure 6.25 RC beam damage pattern at reinforcement yielding state 
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Figure 6.26 RC beam strain distribution of concrete fiber at reinforcement 

yielding state 

 

 

Figure 6.27 Beam deformation at termination point (deformation scale: 5) 
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6.7.2 Frictional loss of prestress in partially bonded PT beams 

This numerical example tends to examine the performance of the 

formulation of frictional contact. The simulated results are compared to Code-

permitted calculations. The imaginary beam is simply supported with a span of 

50 ft long. The rectangular beam section has a width of 10 in. and a height of 40 

in., and is reinforced only by Grade 270 seven-wire strands with an area of 1.53 

in2. The tendon profile is draped with zero eccentricity at both ends of the beam 

and 11 in. eccentricity at the mid-span. The tendon is unbonded and post-

tensioned with an effective prestress of 204 ksi (with consideration of friction). 

Concrete has compressive strength of 4 ksi and tensile strength of 472 psi. The 

cross section and reinforcement configuration are shown in Figure 6.28 

 

Figure 6.28 Details of simply supported beam 
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The finite element model contains 20 beam elements, 21 embedding 

elements, 21 truss elements, 20 contact elements and an anchorage element as 

shown in Figure 6.29. 

 

Figure 6.29 Finite element model for simply supported PT beam 

 

 A simulation is conducted of the two steps as prestressing and anchorage 

setting. The anchorage wedge setting was assumed to be about 0.02 in. in this 

case for illustrative purposes (typical wedge setting loss is much larger in 

practice). The frictional coefficient is assumed to be 0.3 for seven-wire strands, 

which yields a partially bonded interface between tendons and concrete in this 

simulation. The wobble effects are neglected in both simulation and hand 

calculation. The hand calculation is summarized first in the following 

paragraphs. 

 According to ACI 318-08, the prestress at any location of the beam is 

computed as: 

( ) ( ) ksi 2.195ksi 204 in. 600in. 600/in. 1183.0 2

=×== ×××−+− eePP pxppxKl
pjpx

αµ        (6.94) 
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The corresponding prestress loss is computed as: 

ksi 8.8ksi 2.195-ksi 204 ==−= pxpjloss PPP               (6.95)
 

 

 The frictional loss obtained from finite element analysis (FEA) is 9.8 ksi 

at the right end of the beam (non-jacking end). The frictional loss is computed as 

a function of the longitudinal location of the beam. The ACI 318 Code-based loss 

along the beam is plotted in Figure 6.30 and compared with the FEA result. 

 

Figure 6.30 Comparison of prestress loss after jacking between FEA and 

ACI 318-08 

 

 The reverse movement of tendons due to wedge setting leads to a 

prestress loss at the jacking end. This wedge setting typically will result in a 

prestress loss at a certain distance away from the jacking end, and this distance is 

typically smaller than the length of the structural member. Beyond that point, 

there is no anchorage wedge setting loss to the prestress. This distance is a 
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function of the anchorage wedge setting distance (slip), prestressing tendon’s 

elastic modulus, prestressing tendon total area, and initial prestress at jacking end 

as well as frictional coefficient and wobble factor. The distance is explicitly 

computed as: 

( )
in. 6.241

psi 204000in. 600 /in.1183.0
psi 28500000in 53.1in. 02.0

2

2

=
×××

××
=

∆
=

pj

pp
set P

EsA
I

µα
  (6.96)

 

 

The prestress loss due to anchorage wedge setting is computed as: 

( ) ksi .63in. 6.241in. 600/in. 1183.0psi 20400022 2 =×××××== setpjloss IPP µα
(6.97)

 
 

According to this result, the prestress loss is plotted along the beam and 

compared to the FEA result as shown in Figure 6.31. 

 

Figure 6.31 Comparison of prestress loss after anchorage wedge setting 

between FEA and ACI 318-08 
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 Figures 6.30 and 6.31 indicate very good agreement between the finite 

element prediction and code based calculation, which validates the formulation 

of frictional contact presented in Section 6.2. The prestress losses at both ends of 

the beam were summarized in Table 6.3. 

Table 6.3 Comparison of prestress loss 

 Prestress loss at  
jacking end † 

Prestress loss at  
other end ‡ 

Hand Calculation 3.5% 4.2% 
FEA 3.0% 4.8% 

FEA/Hand Calculation 0.86 1.14 
     

† Prestress loss is computed with respect to effective prestress pef  at jacking end 
after anchorage wedge setting 
‡ Prestress loss is computed with respect to effective prestress pef  at jacking end 
before anchorage wedge setting 
 

6.7.3 Ultimate moment capacity of perfectly unbonded PT beam  

A numerical simulation of an unbonded PT beam was conducted to 

investigate the performance of the truss element. The imaginary beam has the 

same geometry and reinforcement as the beam in the previous example in 

Section 6.7.2. Additionally, a point load is added at the middle span after post-

tensioning to investigate flexural capacity as shown in Figure 6.32.  
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Figure 6.32 Simulated PT beam configuration 

 

The single tendon is perfectly unbonded (frictional coefficient = 0) and 

post-tensioned to an effective prestress of 204 ksi. Concrete has a compressive 

strength of 4 ksi and a tensile strength of 472 psi. After post-tensioning, a 

displacement controlled point load is applied at mid-span until the flexural failure 

occurs. Numerical simulation is conducted and compared with the hand 

calculations. The finite element model contains 20 beam elements, 21 embedding 

elements, 21 truss elements, 20 contact elements and an anchorage element. 

Simulation is conducted by three steps as prestressing, prestressing setting, and 

applying service load. The frictional coefficient is zero which yields a perfectly 

unbonded interface between tendons and concrete in this simulation. The hand 

calculations are summarized in the followings. Hand calculations are made in 

terms of prestressing camber, beam ultimate load capacity, and tendon stress at 

ultimate stage according to ACI 318-08 (2008) in the following paragraphs. 
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By the load balancing method, the equivalent balancing load intensity 

resulting from the pressure of the parabolic draped tendon on the concrete is  

calculated as: 

( )
lb/in. 3.76

in. 600
in. 11ksi 204in 1.5388

2

2

2 =
×××

==
l

efA
w psps

             
(6.98)

 

 

The corresponding camber is calculated as: 

( ) in. 82.0
in 53333psi 2934439384

in. 600lb/in. 3.675
384

5
4

44

camber =
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××
==

cc IE
wlδ

           
(6.99)

 

 

where cE  is the initial tangent modulus of concrete obtained from the uniaxial 

stress-strain relation used in the simulation. 

 The tendon stress at ultimate stage is calculated as: 
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0.003825100
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The corresponding ultimate moment capacity and the point load at ultimate are 

calculated as: 

in. 1.10
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 Table 6.4 shows the comparisons between the hand calculation and 

numerical simulation. 

Table 6.4 Comparison between hand calculation and numerical simulation results 

 camberδ  (in.) uP  (kips) psf  (ksi) 
Hand Calculation 0.82 59.4 224.46 

FEA 0.88 56.1 226.55 
FEA/Hand Calculation 1.07 0.94 1.01 

 

The differences between the hand calculations and numerical predictions 

are quite small which implies the validity of the current finite element 

formulations for unbonded PT beams. Figure 6.33 plots the relation of applied 

load versus mid-span deflection. The tendon stress; psf   at ultimate state of the 

beam is measured at the point where the applied load reaches its maximum value 

in the numerical test. The maximum applied load is considered as the ultimate 

load capacity of the simulated beam. Figure 6.34 shows the deformation of the 

beam (deformation scale: 5) at yielding of the mild steel bars. 
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Figure 6.33 Applied load vs. mid-span deflection 

 

 

Figure 6.34 Beam deformation at reinforcement yielding (deformation scale: 5) 
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6.7.4 Ultimate moment capacity of unbonded PT beams with consideration of 

friction 

 This example allows comparison of the difference between the imaginary 

PT beam with and without consideration of friction between tendons and 

corresponding sheathings. All parameters are the same as in the example in 

Section 6.7.3, except that a friction coefficient of 0.3 is assumed and added to the 

model. The beam is post-tensioned to an effective prestress of 204 ksi measured 

at the jacking end. Anchorage setting loss is not considered in accordance with 

the previous example. The single point displacement load at mid-span is used to 

investigate the ultimate moment capacity. The relation of load displacement is 

plotted in Figure 6.35. The strain contours of concrete fibers are plotted 

immediately after post-tensioning and at ultimate stage (Figures 6.36, 6.37 and 

6.38).  

 

Figure 6.35 Comparison of global response between partial bonding and 

perfect bonding 



238 

 

 

 

Figure 6.36 Strain contours at post-tensioning stage 
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Figure 6.37 Strain contours at ultimate stage 

 

 The difference is negligible in the above figures, indicating that the 

frictional effect is neglected in terms of global response. The crack patterns 

obtained from both simulations show a similar style (Figure 6.38). 
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Figure 6.38 Comparison of failure patterns with and without friction 

 

 However, the local responses of prestressing steel are different at ultimate. 

Figure 6.39 shows the comparison of strain and stress of prestressing steel at 

ultimate where the prestress tends to be larger for the case of perfect bonding. 

Even at the mid-span section, the prestress with consideration of friction is 
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slightly smaller than its counterpart with perfect bonding condition. The greatest 

difference occurs at the both ends of the beam. This explains a phenomenon 

observed in the previous finite element analyses in Chapter 6 where the 

numerically predicted prestress is always larger than the observed values in the 

experiments. The reason behind the difference is the frictional effect. 

 

Figure 6.39 Comparison of prestressing tendon strain and stress at ultimate 

moment capacity 

 

6.7.5 Numerical simulation of one-way unbonded PT slabs  

 This example aims to conduct numerical simulations of Slab4 and Slab5 

which were tested by Cooke et al. (1981). The global responses were compared 

to both numerical simulations and experiments presented in Chapter 5. The 
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description of specimens and test configuration were described in Section 5.5. 

Due to the fact that global responses are barely influenced by the tendon bonding, 

and Slab4 and Slab5 have a relatively short span along with a straight tendon 

profile, the prestress loss was neglected in this example. 

 Figure 6.40 and 6.41 show the comparisons of global responses of Slab4 

and Slab5, respectively. The current finite element formulation predicted a 

perfect load-displacement relation for Slab4 while overestimated moment 

capacity of Slab5 by 11% compared to experiments. The possible explanation is 

that the reinforcement ratio of Slab5 is only about half that of Slab4, which 

resulted in a more concentrated cracking pattern against a distributed cracking 

pattern observed from Slab4 in the experiments. The current beam element 

formulation presented in Section 6.5 assumed smeared cracking along the beam 

element. Large and concentrated plastic hinge may not be accurately captured in 

the  current simulation. 

 

Figure 6.40 Comparison of global response of Slab4 
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Figure 6.41 Comparison of global response of Slab5 

 

 Table 6.5 provides the summary of applied load at the experimental 

termination point of mid-span deflection. 

 

Table 6.5 Comparison of applied load (kips) at experimental termination point of 

mid-span deflection 

 Slab4 Slab5 

Current FEA (kips) 17.07 19.44 
Chapter 5 analysis (kips) 15.85 18.71 

Experiment (kips) 17.05 17.51 
Current FEA/Experiment (%) 1.001 1.11 
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6.8 Summary 

 This chapter presented a general frame work of nonlinear finite element 

formulation towards simulating two-dimensional PT frames. The nonlinear 

natures of inelastic behavior due to material nonlinearity and large displacement 

were addressed in the formulation. Furthermore, the contact interface between 

tendons and corresponding sheathings are formulated directly via NTS 

discretization. Various elements were developed to assemble a complete PT 

system. The beam elements were used to simulate individual frame members. 

The Euler-Bernoulli type beam element was implemented in this study for the 

application of slender beam problems and for demonstration purpose. It required 

trivial work to implement other beam elements with higher order theory. The 

post-tensioning tendon was assembled via nonlinear truss element. 

Corresponding tendon sheathing was embedded into the parent frame member 

through the embedding element. The contact element forms the interface between 

the tendons and corresponding tendon sheathings. Contact constraints were 

enforced by the penalty form with the ability of considering both frictionless and 

frictional contacts. A special element dealing with PT tendon anchorage system 

was developed imitating the process of prestressing in practice. The Newton-

Raphson with line search modification was adopted as the numerical algorithm 

solving time independent problems. All formulations were implemented and 

programmed in MATLAB (2010b). The reliability and robustness of the 
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proposed formulations were validated through several numerical examples 

carried out in MATLAB. 
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CHAPTER 7. CONCLUSIONS 

 In this dissertation, the finite element modeling schemes and 

corresponding applications to bonded and unbonded PT structures have been 

discussed in depth. Part one of this dissertation discussed approaches of 

modeling PT structures via general purpose finite element packages. Among 

many excellent finite element packages, ABAQUS was selected as the platform 

to develop the numerical models for the following researches. Chapter 4 presents 

the backgrounds of modeling techniques and corresponding theories used to 

assemble a complete finite element model. The preferences for material 

constitutive models (concrete and steel), element library, concrete-steel 

interaction technique, and solving algorithm are thoroughly discussed in Chapter 

4. In particular, the research was zeroed in on the great challenge of modeling 

interactions between concrete and prestressing tendons. Two approaches were 

proposed, including the traditional spring system method and the more advanced 

contact formulation. Followed by a series of numerical studies in Chapter 5, the 

modeling methodology was well validated against experimental data. Three 

practical engineering problems were investigated through the numerical studies 

including 1) punching shear failure of two-way PT slabs; 2) stress increment in 

prestressing tendons at the failure of structural members; and 3) the influence of 

different PT systems (i.e., bonded PT vs. unbonded PT) on behaviors of PT 

structures. Some drawbacks of the generic modeling approaches were observed. 

Particularly, the desire of more efficient and accurate solution process and 
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modeling flexibility motivated the materials of part two in this dissertation 

(Chapter 6).  

In Chapter 6, an innovative nonlinear finite element formulation for two-

dimensional PT frames was developed to overcome the difficulties presented by 

the generic modeling schemes via general purpose finite element packages. The 

proposed formulation incorporated five different elements (most are engineering 

type) to assemble a complete PT frame system. The most critical developments 

lay on the contact element with finite sliding capability. In addition, an 

anchorage element was proposed to simplify the complicated prestressing 

procedure in practice. Other traditional nonlinear beam and truss elements were 

also presented in detail in Chapter 6. A series of numerical examples conducted 

at the end of this chapter validated the robustness of the formulation. The 

solutions were improved compared with the modeling approaches proposed in 

Chapter 5 in terms of efficiency and accuracy. 

Based on the discussions, analyses, and developments through Chapter 4 

to Chapter 6, the following verdicts were drawn with respect to the proposed 

finite element modeling schemes. 

(1) In the context of modeling via general purpose finite packages, the 

interaction between prestressing tendons and corresponding sheathings can be 

well simulated by either approximating the sliding behavior (spring method) or 

directly formulating contact interface in the numerical model (contact approach). 

Typically, the spring method yields cost-efficient modeling where the efficiency 
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of solution is greatly valued. However, it is limited to structures with thick 

concrete coverage over prestressing tendons. On the other hand, the 

computationally anxious contact approach has no limitations of the minimum 

concrete coverage and provides better modeling flexibility. The preference of the 

interaction models highly depends on individual problems. 

 (2) The proposed modeling schemes based on general purpose finite 

element packages tend to slightly overestimate stress in prestressing tendons at 

the limit state of structures. The possible cause might be the simplification 

assumed for the process of post-tensioning where frictional effects are neglected. 

The prestress loss, however, is observed in practice, especially for structures 

prestressed with long continuous prestressing tendons. It is suggested to apply 

the proposed model to large-scale PT structures with caution if frictional effects 

are left off. 

 (3) The proposed finite element modeling schemes via general purpose 

finite element packages are reliable and robust. It performed well to predict 

global flexural behaviors of various types of PT structures. However, there is still 

room for improvement regarding predictions of local behaviors and overall shear 

behaviors. Apparently, the computational anxiety becomes a big hurdle 

preventing the model from applying to large-scale structures. The modeling 

scheme based on general purpose finite element packages is mostly suitable and 

efficient for evaluating and analyzing a single PT structural member in 

substantial details. 
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(4) The proposed two-dimensional nonlinear finite element formulations 

for PT frames and corresponding implementations in MATLAB were validated 

to be very efficient and robust through a series of numerical simulations. The 

incorporation of the contact technique with engineering-type elements was 

successful. Particularly, improvement towards the prediction of the local 

behavior of prestressing tendons was accomplished in comparison with the 

modeling scheme on the basis of general purpose finite element packages. The 

largest merit of the proposed formulation is its computational friendliness, which 

is of great value for modeling large-scale PT structures. The proposed 

formulation is appropriate to aid the design and limit state analysis for PT 

frames. 

In addition to the discussions of finite element formulations regarding PT 

structures, investigations of three practical engineering problems were conducted 

based on the proposed FEM. The corresponding evaluations of the current 

building code, ACI 318, innovatively incorporated the numerical analyses and 

experimental data. The evaluation processes showed the efficiency of analyzing 

numerical data on an experimental basis. Many inaccessible data in experiments 

can be accessed in finite element models. Therefore, the assessments of ACI 318-

08 were conducted accordingly in Chapter 5. The conclusions of the evaluations 

are summarized as followings:  

(1) In the case of exterior and corner slab-column connections in two-way 

PT slabs, the unbalanced moment transfer ratio vγ  permitted in ACI 318-08 is 
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suggested to be relieved. In addition, the numerical simulations clearly indicated 

that the punching shear capacity cV  benefits from prestressing, even though the 

specimens were not permitted to include prestressing in the calculations of 

punching shear capacity as per ACI 318-08. More investigations are needed to 

evaluate and quantify the prestress effect on the punching shear capacity for PT 

slab-column connections. 

(2) In the case of corner slab-column connections in two-way PT slabs, 

the assessment of the eccentric shear stress model (ACI 318-08) indicated that 

the model is reasonably reliable for predicting shear redistribution on the 

periphery of slab-column connections with negligible to moderate initial 

prestress. It is recommended to include the initial prestress effect in the eccentric 

shear stress model if the slab has a large initial precompression force around the 

slab-column connections. 

(3) In the case of interior slab-column connections in two-way PT slabs, 

negligible difference was found between the bonded tendon systems and 

unbonded tendon systems in terms of flexural behavior. The shear redistributions 

on the periphery of the interior slab-column connection also showed similar 

behaviors in both PT systems. In the case of one-way PT slabs and beams 

designed under the guidelines of the current building code, the bonding condition 

of prestressing tendons barely influences the flexural behavior of structural 

members. The ultimate moment capacities were similar in both cases according 

to numerical simulations and experiments. Therefore, it is concluded that some 
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types of PT structures behave similarly in terms of flexural and shear 

performance. However, more research needs to be done to generalize the effect 

of bonding conditions on the flexural and shear behavior of various types of PT 

structures. 
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APPENDIX A: MATLAB SOURCE CODES 

 The main finite element solver contains 8 class objects and 40 sub-

routines. A pre-processing module and 3 post-processing modules were also 

developed to help quickly process examples in the study. All source codes were 

debugged in MATLAB (2010b) and shown below. 

Classes define: 
ClassAnchorElement.m 
% Define anchorage element class 
classdef ClassAnchorElement 
   properties 
      Nodes;              % Nonde labels within the element 
      Epsilon;            % Penalty stiffness factor 
   end 
end 
 
 
ClassBeamElement.m 
% Define Beam element class 
classdef ClassBeamElement 
   properties 
      Nodes;                             % Nonde labels within the element 
      Length;                            % Element length 
      A;                                 % Cross section area 
      S;                                 % Firs moment of ineratia 
      I;                                 % Secondary moment of ineratia 
      hf;                                % Distance between ref axis and each fiber centorid 
      n;                                 % Number of fiber sections 
      As;                                % Area of steel of each layer e.As = [layer1,layer2..] 
      Ss;                                % Firs moment of ineratia of steel layer 
      Is;                                % Second moment of ineratia of steel layer 
      zs;                                % Distance between each steel layer and ref axis 
   end 
end 
 
 
ClassContactElement.m 
% Define Contact element class 
classdef ClassContactElement 
   properties 
      Nodes;              % Nonde labels within the element 
      Epsilon;            % Penalty stiffness factor 
   end 
end 
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ClassEmbeddingElement.m 
% Define Embedding element class 
classdef ClassEmbeddingElement 
   properties 
      Nodes;              % Nonde labels within the element 
      Length;                            % Element length 
      A;                                 % Cross section area 
      E;                                 % Youngs' modulus 
      I;                                 % Secondary moment of ineratia 
   end 
end 
 
 
ClassMaterial.m 
% Define material library class 
classdef ClassMaterial 
   properties 
      Mu;              % Coulomb's frictional coefficient 
      Concrete;        % Concrete unaxial stress-strain data 
      Steel;           % Steel unaxial stress-strain data 
      Psteel;          % Prestressing steel unaxial stress-strain data       
      Ec;              % Concrete Young's modulus array 
      Ect;             % Concrete tangential stiffness array 
      Es;              % Steel Young's modulus array 
      Est;             % Steel tangential stiffness array 
      Eps;             % Prestressing steel stiffness array 
      Epst;            % Prestressing steel tangential stiffness array 
   end 
end 
 
 
ClassNode.m 
% Define node class 
classdef ClassNode 
   properties 
      X;                  % Position at global X axis 
      Y;                  % Position at global Y axis 
      U;                  % Displacement at global X axis 
      V;                  % Displacement at global Y axis 
      T;                  % Slop at global coordinate 
      Fx_residual;        % Residual force at global X axis 
      Fy_residual;        % Residual force at global Y axis 
      M_residual ;        % Residual Moment at global coordinate 
      Boundary;           % Flag of essential and natural boundary conditions 
      DOF;                % Degrees of freedom 
   end 
end 
 
 
ClassODB.m 
% Define Model Database 
classdef ClassODB 
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   properties 
      Node;                 
      BeamElement; 
      TrussElement; 
      AnchorElement; 
      ContactElement; 
      EmbeddingElement; 
      nd;                   % Number of degrees-of-freedom on the essential boundary 
      nnd;                  % Number of nodes in golbal system 
      neq;                  % Number of equations 
      ID;                   % Nodes mapping1 
      ID2;                  % Nodes mapping2 
      d_E;                  % Reordered essential boundary 
      anchor;               % 0--no anhor  1--anhor stage 
      anchor_u;             % relative u_disp between anchor nodes before prestressing 
      anchor_v;             % relative v_disp between anchor nodes before prestressing 
      slip;                 % node-slip array (plastic displacement due to slip) 
      Material;             % Material class for material parameters 
   end 
end 
ClassTrussElement.m 
% Define Truss element class 
classdef ClassTrussElement 
   properties 
      Nodes;              % Nonde labels within the element 
      Length;                            % Element length 
      A;                                 % Cross section area 
      E;                                 % Youngs' modulus 
   end 
end 
 
 
Functions: 
Assembly_F_aci.m 
% anchorage residual  
function F_ac = Assembly_F_aci(epsilon,x,y,u,v,ID,ID2,eleac,neq) 
  
F_ac = zeros(neq,1);  % Initialize contact residual from normal contact 
n1 = [1;0;-1;0;0]; 
n2 = [0;1;0;-1;0]; 
for i = 1 : size((eleac),1) 
     
    % current distance between two nodes substracting displace before 
    % prestressing stage 
    hx = x(eleac(i,2))-x(eleac(i,1))-u(i); 
    hy = y(eleac(i,2))-y(eleac(i,1))-v(i); 
    F_cie = epsilon*(hx*n1+hy*n2); 
  
    a = ID(ID2(eleac(i,1),1)); 
    b = ID(ID2(eleac(i,1),2)); 
    c = ID(ID2(eleac(i,2),1)); 
    d = ID(ID2(eleac(i,2),2)); 
    e = ID(ID2(eleac(i,2),3)); 
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    temp = [a,b,c,d,e]; 
    for n = 1:5 
        F_ac(temp(n)) = F_cie(n); 
    end 
end 
 
 
Assembly_F_ci.m 
% contact residual from normal and tangential contact 
function [F_ci,slip2] = Assembly_F_ci(epsilon,x,y,xi,yi,ID,ID2,elec,neq,slip,U,Mu) 
  
slip2 = slip; 
F_ci = zeros(neq,1);  % Initialize contact residual from normal contact 
for i = 1 : size((elec),1) 
     
    % current lengeth of one element 
    l = sqrt((y(elec(i,3))-y(elec(i,2)))^2+(x(elec(i,3))-x(elec(i,2)))^2); 
  
    % unit tangent vector 
    t(1) = (x(elec(i,3))-x(elec(i,2)))/l; 
    t(2) = (y(elec(i,3))-y(elec(i,2)))/l; 
  
    % unit normal vector 
    n(1) = -t(2); 
    n(2) = t(1); 
  
    Xi = 1/l*[x(elec(i,1))-x(elec(i,2)),y(elec(i,1))-y(elec(i,2))]*t'; 
    Xi0 = 1/l*[xi(elec(i,1))-xi(elec(i,2)),yi(elec(i,1))-yi(elec(i,2))]*t'; 
    Ns = [n,-(1-Xi)*n,0,-Xi*n,0]'; 
    N0s = [0,0,-n,0,n,0]'; 
    Ts = [t,-(1-Xi)*t,0,-Xi*t,0]'; 
    T0s = [0,0,-t,0,t,0]'; 
     
    temp = [x(elec(i,1));y(elec(i,1))]-(1-Xi)*[x(elec(i,2));y(elec(i,2))]-Xi*[x(elec(i,3));y(elec(i,3))]; 
    if temp(1)/t(2) < 0   
        gns = norm(temp,2); 
    else 
        gns = -norm(temp,2); 
    end 
  
    gts = (Xi-Xi0)*l; 
   
    % determint location of contact node in slip array 
    for j = 1:size(elec,1) 
        if elec(i,1) == slip(j,1) 
            gt_s = slip(j,2); 
            count = j; 
        end 
    end 
  
    t_tr = epsilon*(gts - gt_s); 
  
    % determine if slip occurs 
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    if gts == 0 
        nt = -1; 
    else 
        nt = abs(gts-slip(i,2))/(gts-slip(i,2)); 
    end 
  
    if abs(t_tr)-abs(Mu*epsilon*gns) <= 0 
        Tt = t_tr; 
        'stick'; 
    else 
        Tt = Mu*epsilon*abs(gns)*nt; 
        slip2(count,2) = gt_s+1/epsilon*(abs(t_tr)-abs(Mu*epsilon*gns))*nt; 
        'slip'; 
    end 
     
    F_cie = epsilon*gns*l*Ns+Tt*l*(Ts+gns/l*N0s+gts/l*T0s);   % l should be actual area of 
contact area within one element 
     
    a = ID(ID2(elec(i,1),1)); 
    b = ID(ID2(elec(i,1),2)); 
    c = ID(ID2(elec(i,2),1)); 
    d = ID(ID2(elec(i,2),2)); 
    e = ID(ID2(elec(i,2),3)); 
    f = ID(ID2(elec(i,3),1)); 
    g = ID(ID2(elec(i,3),2)); 
    h = ID(ID2(elec(i,3),3)); 
    temp = [a,b,c,d,e,f,g,h]; 
    for n = 1:8 
        F_ci(temp(n)) =F_ci(temp(n))+F_cie(n); 
    end 
end 
 
 
Assembly_F_ci2.m 
% contact residual from normal and tangential contact 
function [F_ci,slip2] = Assembly_F_ci2(epsilon,x,y,xi,yi,ID,ID2,elec,neq,slip,slip2,U,Mu) 
  
F_ci = zeros(neq,1);  % Initialize contact residual from normal contact 
for i = 1 : size((elec),1) 
     
    % current lengeth of one element 
    l = sqrt((y(elec(i,3))-y(elec(i,2)))^2+(x(elec(i,3))-x(elec(i,2)))^2); 
  
    % unit tangent vector 
    t(1) = (x(elec(i,3))-x(elec(i,2)))/l; 
    t(2) = (y(elec(i,3))-y(elec(i,2)))/l; 
  
    % unit normal vector 
    n(1) = -t(2); 
    n(2) = t(1); 
  
    Xi = 1/l*[x(elec(i,1))-x(elec(i,2)),y(elec(i,1))-y(elec(i,2))]*t'; 
    Xi0 = 1/l*[xi(elec(i,1))-xi(elec(i,2)),yi(elec(i,1))-yi(elec(i,2))]*t'; 
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    Ns = [n,-(1-Xi)*n,0,-Xi*n,0]'; 
    N0s = [0,0,-n,0,n,0]'; 
    Ts = [t,-(1-Xi)*t,0,-Xi*t,0]'; 
    T0s = [0,0,-t,0,t,0]'; 
     
    temp = [x(elec(i,1));y(elec(i,1))]-(1-Xi)*[x(elec(i,2));y(elec(i,2))]-Xi*[x(elec(i,3));y(elec(i,3))]; 
    if temp(1)/t(2) < 0   
        gns = norm(temp,2); 
    else 
        gns = -norm(temp,2); 
    end 
  
    gts = (Xi-Xi0)*l; 
    
    % determint location of contact node in slip array 
    for j = 1:size(elec,1) 
        if elec(i,1) == slip(j,1) 
            gt_s = slip(j,2); 
            count = j; 
        end 
    end 
  
    t_tr = epsilon*(gts - gt_s); 
  
    % determine if slip occurs 
    if gts == 0 
        nt = -1; 
    else 
        nt = abs(gts-slip(i,2))/(gts-slip(i,2)); 
    end 
  
    if abs(t_tr)-abs(Mu*epsilon*gns) <= 0 
        Tt = t_tr; 
        'stick'; 
    else 
        Tt = Mu*epsilon*abs(gns)*nt; 
        slip2(count,2) = gt_s+1/epsilon*(abs(t_tr)-abs(Mu*epsilon*gns))*nt; 
        'slip'; 
    end 
       
    F_cie = epsilon*gns*l*Ns+Tt*l*(Ts+gns/l*N0s+gts/l*T0s);   % l should be actual area of 
contact area within one element 
    a = ID(ID2(elec(i,1),1)); 
    b = ID(ID2(elec(i,1),2)); 
    c = ID(ID2(elec(i,2),1)); 
    d = ID(ID2(elec(i,2),2)); 
    e = ID(ID2(elec(i,2),3)); 
    f = ID(ID2(elec(i,3),1)); 
    g = ID(ID2(elec(i,3),2)); 
    h = ID(ID2(elec(i,3),3)); 
    temp = [a,b,c,d,e,f,g,h]; 
    for n = 1:8 
        F_ci(temp(n)) =F_ci(temp(n))+F_cie(n); 
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    end 
end 
 
 
Assembly_F_ci3.m 
% contact residual from normal contact 
function [F_ci,slip2] = Assembly_F_ci3(epsilon,x,y,xi,yi,ID,ID2,elec,neq,slip,slip2,U,Mu) 
  
% Mu = 1; % frictional coeficient 
F_ci = zeros(neq,1);  % Initialize contact residual from normal contact 
for i = 1 : size((elec),1) 
     
    % current lengeth of one element 
    l = sqrt((y(elec(i,3))-y(elec(i,2)))^2+(x(elec(i,3))-x(elec(i,2)))^2); 
  
    % unit tangent vector 
    t(1) = (x(elec(i,3))-x(elec(i,2)))/l; 
    t(2) = (y(elec(i,3))-y(elec(i,2)))/l; 
  
    % unit normal vector 
    n(1) = -t(2); 
    n(2) = t(1); 
  
    Xi = 1/l*[x(elec(i,1))-x(elec(i,2)),y(elec(i,1))-y(elec(i,2))]*t'; 
    Xi0 = 1/l*[xi(elec(i,1))-xi(elec(i,2)),yi(elec(i,1))-yi(elec(i,2))]*t'; 
    Ns = [n,-(1-Xi)*n,0,-Xi*n,0]'; 
    N0s = [0,0,-n,0,n,0]'; 
    Ts = [t,-(1-Xi)*t,0,-Xi*t,0]'; 
    T0s = [0,0,-t,0,t,0]'; 
     
    temp = [x(elec(i,1));y(elec(i,1))]-(1-Xi)*[x(elec(i,2));y(elec(i,2))]-Xi*[x(elec(i,3));y(elec(i,3))]; 
    if temp(1)/t(2) < 0   
        gns = norm(temp,2); 
    else 
        gns = -norm(temp,2); 
    end 
  
    gts = (Xi-Xi0)*l; 
    
    % determint location of contact node in slip array 
    for j = 1:size(elec,1) 
        if elec(i,1) == slip(j,1) 
            gt_s = slip(j,2); 
            count = j; 
        end 
    end 
  
    t_tr = epsilon*(gts - gt_s); 
  
    % determine if slip occurs 
    if gts == 0 
        nt = -1; 
    else 
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        nt = abs(gts-slip(i,2))/(gts-slip(i,2)); 
    end 
  
    if abs(t_tr)-abs(Mu*epsilon*gns) <= 0 
        Tt = t_tr; 
        'stick'; 
    else 
        Tt = Mu*epsilon*abs(gns)*nt; 
        slip2(count,2) = gt_s+1/epsilon*(abs(t_tr)-abs(Mu*epsilon*gns))*nt; 
        'slip'; 
    end 
     
    F_cie = epsilon*gns*l*Ns+Tt*l*(Ts+gns/l*N0s+gts/l*T0s);   % l should be actual area of 
contact area within one element  
    a = ID(ID2(elec(i,1),1)); 
    b = ID(ID2(elec(i,1),2)); 
    c = ID(ID2(elec(i,2),1)); 
    d = ID(ID2(elec(i,2),2)); 
    e = ID(ID2(elec(i,2),3)); 
    f = ID(ID2(elec(i,3),1)); 
    g = ID(ID2(elec(i,3),2)); 
    h = ID(ID2(elec(i,3),3)); 
    temp = [a,b,c,d,e,f,g,h]; 
    for n = 1:8 
        F_ci(temp(n)) =F_ci(temp(n))+F_cie(n); 
    end 
end 
 
 
Assembly_ka.m 
% tangent stiffness matrix from normal contact 
function Ka = Assembly_ka(x,y,Et,At,Eemb,Aemb,Iemb,Lt,Lemb,elet,eleemb,neq,ID,ID2,ODB) 
Ka = zeros(neq); % Initialize global tangent stiffness matrix 
x2 = ODB(1).Node.X; 
y2 = ODB(1).Node.Y; 
  
% Assemble embbeding beam element 
for i = 1 : size((eleemb),1) 
    xe = [x2(eleemb(i,1)),x2(eleemb(i,2))]; 
    ye = [y2(eleemb(i,1)),y2(eleemb(i,2))]; 
    if (xe(2) - xe(1)) >= 0; 
        a = 2*pi+atan((ye(2)-ye(1))/(xe(2)-xe(1))); 
    else 
        a = pi+atan((ye(2)-ye(1))/(xe(2)-xe(1))); 
    end 
    ke = [Eemb*Aemb/Lemb(i),0,0,-
Eemb*Aemb/Lemb(i),0,0;0,12*Eemb*Iemb/Lemb(i)^3,6*Eemb*Iemb/Lemb(i)^2,0,-
12*Eemb*Iemb/Lemb(i)^3,6*Eemb*Iemb/Lemb(i)^2;0,6*Eemb*Iemb/Lemb(i)^2,4*Eemb*Iemb
/Lemb(i),0,-6*Eemb*Iemb/Lemb(i)^2,2*Eemb*Iemb/Lemb(i);-
Eemb*Aemb/Lemb(i),0,0,Eemb*Aemb/Lemb(i),0,0;0,-12*Eemb*Iemb/Lemb(i)^3,-
6*Eemb*Iemb/Lemb(i)^2,0,12*Eemb*Iemb/Lemb(i)^3,-
6*Eemb*Iemb/Lemb(i)^2;0,6*Eemb*Iemb/Lemb(i)^2,2*Eemb*Iemb/Lemb(i),0,-
6*Eemb*Iemb/Lemb(i)^2,4*Eemb*Iemb/Lemb(i)]; 
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    ke = TransformB(a)'*ke*TransformB(a); 
    % Global element assembly for beam 
    a = ID(ID2(eleemb(i,1),1)); 
    b = ID(ID2(eleemb(i,1),2)); 
    c = ID(ID2(eleemb(i,1),3)); 
    d = ID(ID2(eleemb(i,2),1)); 
    e = ID(ID2(eleemb(i,2),2)); 
    f = ID(ID2(eleemb(i,2),3)); 
    temp = [a,b,c,d,e,f]; 
    for n = 1:6 
        for m = 1:6 
            Ka(temp(n),temp(m)) = Ka(temp(n),temp(m))+ke(n,m); 
        end 
    end 
end           
     
     
Assembly_kac.m 
% tangent stiffness matrix from anchorage constraint 
function Kac = Assembly_kac(eleac,episilon,ID,ID2,neq) 
  
Kac = zeros(neq); 
% Assemble embbeding beam element 
for i = 1 : size((eleac),1) 
    ke = episilon*[1,0,-1,0,0;0,1,0,-1,0;-1,0,1,0,0;0,-1,0,1,0;0,0,0,0,0]; 
    % Global element assembly for beam 
    a = ID(ID2(eleac(i,1),1)); 
    b = ID(ID2(eleac(i,1),2)); 
    c = ID(ID2(eleac(i,2),1)); 
    d = ID(ID2(eleac(i,2),2)); 
    e = ID(ID2(eleac(i,2),3)); 
    temp = [a,b,c,d,e]; 
    for n = 1:5 
        for m = 1:5 
            Kac(temp(n),temp(m)) = Kac(temp(n),temp(m))+ke(n,m); 
        end 
    end 
end           
Assembly_kb.m 
% assemble nonlinear beam stiffness matrix kc 
function Kb = 
Assembly_kb(ID,ID2,neq,x,y,eleb,Lb,U,concrete_stress,concrete_strain,A,S,I,hf,n,... 
    steel_stress,steel_strain,zs,As,Ss,Is,Ec,Esteel) 
Kb = zeros(neq); 
  
for i = 1 :size(eleb,1) 
     
    %transfor local coordinates to global coordinates 
    xe = [x(eleb(i,1)),x(eleb(i,2))]; 
    ye = [y(eleb(i,1)),y(eleb(i,2))]; 
    if (xe(2) - xe(1)) >= 0; 
        a = 2*pi+atan((ye(2)-ye(1))/(xe(2)-xe(1))); 
    else 
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        a = pi+atan((ye(2)-ye(1))/(xe(2)-xe(1))); 
    end 
     
    % extract displacement vector for each nonlinear beam element 
    Ue = TransformB(a)*[U(ID(ID2(eleb(i,1),1)));... 
        U(ID(ID2(eleb(i,1),2)));... 
        U(ID(ID2(eleb(i,1),3)));... 
        U(ID(ID2(eleb(i,2),1)));... 
        U(ID(ID2(eleb(i,2),2)));... 
        U(ID(ID2(eleb(i,2),3)))]; 
     
    le = Lb(i); 
     
    % compute B matrix for 6 Gauss pts within one element 
    B = zeros(2,6,2); 
    Xi = [-0.577350269,0.577350269]; % 2 pts Gauss quadrature 
    W = [1,1]; % weights 
    epsilon_e = zeros(2,2); 
    for loop3 = 1:2 
        B(:,:,loop3) = 1/le*[-1,0,0,1,0,0;0,6*Xi(loop3)/le,3*Xi(loop3)-1,0,-
6*Xi(loop3)/le,3*Xi(loop3)+1]; 
        epsilon_e(:,loop3) = B(:,:,loop3)*Ue; 
    end 
  
    epsilon_0 = epsilon_e(1,:)'*ones(1,n);  % axial strain on the ref axis (constant through one 
element) 
    culvature = epsilon_e(2,:); 
    epsilon_0s = epsilon_e(1,:)'*ones(1,size(zs,2));  
  
    epsilon_c = epsilon_0+[culvature(1)*hf;culvature(2)*hf];    % column stands for each fiber 
section, row stands for each integration pts 
    epsilon_s = epsilon_0s+[culvature(1)*zs;culvature(2)*zs];  
  
    E = interp1(Ec(2,:),Ec(1,:),epsilon_c); 
    Es = interp1(Esteel(2,:),Esteel(1,:),epsilon_s); 
  
    % compute D & Dt for 6 Gauss pts within one element 
    Dc = zeros(2,2,2); 
    for loop1 = 1:2 
        for loop2 = 1:n 
            Dc(:,:,loop1) = Dc(:,:,loop1)+E(loop1,loop2)*[A(loop2),S(loop2);S(loop2),I(loop2)]; 
        end 
    end 
     
    Ds = zeros(2,2,2); 
    for loop1 = 1:2 
        for loop2 = 1:size(zs,2) 
            Ds(:,:,loop1) = Ds(:,:,loop1)+Es(loop1,loop2)*[As(loop2),Ss(loop2);Ss(loop2),Is(loop2)]; 
        end 
    end 
  
    D = Dc+Ds; 
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    % compute element stiffness matrix and tangential matrix 
    ke = zeros(6,6); 
  
    for loop4 = 1:2 
        ke = ke+le/2*W(loop4)*B(:,:,loop4)'*D(:,:,loop4)*B(:,:,loop4); 
    end 
     
  
    ke = TransformB(a)'*ke*TransformB(a); 
     
    % Global element assembly for beam 
    a = ID(ID2(eleb(i,1),1)); 
    b = ID(ID2(eleb(i,1),2)); 
    c = ID(ID2(eleb(i,1),3)); 
    d = ID(ID2(eleb(i,2),1)); 
    e = ID(ID2(eleb(i,2),2)); 
    f = ID(ID2(eleb(i,2),3)); 
    temp = [a,b,c,d,e,f]; 
    for loop10 = 1:6 
        for loop11 = 1:6 
            Kb(temp(loop10),temp(loop11)) = Kb(temp(loop10),temp(loop11))+ke(loop10,loop11); 
        end 
    end 
end 
  
 
Assembly_kbkbt.m 
% assemble nonlinear beam stiffness matrix kc 
function [Kb,Kbt] = 
Assembly_kbkbt(ID,ID2,neq,x,y,eleb,Lb,U,concrete_stress,concrete_strain,A,S,I,hf,n,... 
    steel_stress,steel_strain,zs,As,Ss,Is) 
Kb = zeros(neq); 
Kbt = zeros(neq); 
  
Xi = [-0.577350269,0.577350269]; % 2 pts Gauss quadrature 
W = [1,1]; % weights 
  
for i = 1 :size(eleb,1) 
    % extract displacement vector for each nonlinear beam element 
    Ue = [U(ID(ID2(eleb(i,1),1)));... 
        U(ID(ID2(eleb(i,1),2)));... 
        U(ID(ID2(eleb(i,1),3)));... 
        U(ID(ID2(eleb(i,2),1)));... 
        U(ID(ID2(eleb(i,2),2)));... 
        U(ID(ID2(eleb(i,2),3)))]; 
     
    le = Lb(i); 
     
    % compute B matrix for 6 Gauss pts within one element 
    B = zeros(2,6,2); 
    epsilon_e = zeros(2,2); 
    for loop3 = 1:2 
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        B(:,:,loop3) = 1/le*[-1,0,0,1,0,0;0,6*Xi(loop3)/le,3*Xi(loop3)-1,0,-
6*Xi(loop3)/le,3*Xi(loop3)+1]; 
        epsilon_e(:,loop3) = B(:,:,loop3)*Ue; 
    end 
  
  
    epsilon_0 = epsilon_e(1,:)'*ones(1,n);  % axial strain on the ref axis (constant through one 
element) 
    culvature = epsilon_e(2,:); 
    epsilon_0s = epsilon_e(1,:)'*ones(1,size(zs,2));  
    epsilon_c = epsilon_0+[culvature(1)*hf;culvature(2)*hf];    % column stands for each fiber 
section, row stands for each integration pts 
    epsilon_s = epsilon_0s+[culvature(1)*zs;culvature(2)*zs];  
    E0 = interp1(concrete_strain,concrete_stress,0.0001)/0.0001;  % approximate initial Young's 
modulus from user stress-strain data 
    E0s = interp1(steel_strain,steel_stress,0.0001)/0.0001; 
    sigma_c = interp1(concrete_strain,concrete_stress,epsilon_c); 
    sigma_s = interp1(steel_strain,steel_stress,epsilon_s); 
    [E,Et] = slopinterpolator(sigma_c,epsilon_c,concrete_stress,concrete_strain,E0); 
    [Es,Ets] = slopinterpolator(sigma_s,epsilon_s,steel_stress,steel_strain,E0s); 
  
  
    % compute D & Dt for 6 Gauss pts within one element 
    Dc = zeros(2,2,2); 
    Dtc = zeros(2,2,2); 
     
    for loop1 = 1:2 
        for loop2 = 1:n 
            Dc(:,:,loop1) = Dc(:,:,loop1)+E(loop1,loop2)*[A(loop2),S(loop2);S(loop2),I(loop2)]; 
            Dtc(:,:,loop1) = Dtc(:,:,loop1)+Et(loop1,loop2)*[A(loop2),S(loop2);S(loop2),I(loop2)]; 
        end 
    end 
     
    Ds = zeros(2,2,2); 
    Dts = zeros(2,2,2); 
    for loop1 = 1:2 
        for loop2 = 1:size(zs,2) 
            Ds(:,:,loop1) = Ds(:,:,loop1)+Es(loop1,loop2)*[As(loop2),Ss(loop2);Ss(loop2),Is(loop2)]; 
            Dts(:,:,loop1) = 
Dts(:,:,loop1)+Ets(loop1,loop2)*[As(loop2),Ss(loop2);Ss(loop2),Is(loop2)]; 
        end 
    end 
  
    D = Dc+Ds; 
    Dt = Dtc+Dts; 
  
    % compute element stiffness matrix and tangential matrix 
    ke = zeros(6,6); 
    ket = zeros(6,6); 
    for loop4 = 1:2 
        ke = ke+le/2*W(loop4)*B(:,:,loop4)'*D(:,:,loop4)*B(:,:,loop4); 
        ket = ket+le/2*W(loop4)*B(:,:,loop4)'*Dt(:,:,loop4)*B(:,:,loop4); 
    end 



271 

 

     
    %transfor local coordinates to global coordinates 
    xe = [x(eleb(i,1)),x(eleb(i,2))]; 
    ye = [y(eleb(i,1)),y(eleb(i,2))]; 
    if (xe(2) - xe(1)) >= 0; 
        a = 2*pi+atan((ye(2)-ye(1))/(xe(2)-xe(1))); 
    else 
        a = pi+atan((ye(2)-ye(1))/(xe(2)-xe(1))); 
    end 
    ke = TransformB(a)'*ke*TransformB(a); 
    ket = TransformB(a)'*ket*TransformB(a); 
    % Global element assembly for beam 
  
    a = ID(ID2(eleb(i,1),1)); 
    b = ID(ID2(eleb(i,1),2)); 
    c = ID(ID2(eleb(i,1),3)); 
    d = ID(ID2(eleb(i,2),1)); 
    e = ID(ID2(eleb(i,2),2)); 
    f = ID(ID2(eleb(i,2),3)); 
    temp = [a,b,c,d,e,f]; 
    for loop10 = 1:6 
        for loop11 = 1:6 
            Kb(temp(loop10),temp(loop11)) = Kb(temp(loop10),temp(loop11))+ke(loop10,loop11); 
            Kbt(temp(loop10),temp(loop11)) = Kbt(temp(loop10),temp(loop11))+ket(loop10,loop11); 
        end 
    end 
end 
 
  
Assembly_kbt.m 
% assemble nonlinear beam stiffness matrix kc 
function Kbt = 
Assembly_kbt(ID,ID2,neq,x,y,eleb,Lb,U,concrete_stress,concrete_strain,A,S,I,hf,n,... 
    steel_stress,steel_strain,zs,As,Ss,Is,Ect,Est) 
Kbt = zeros(neq); 
  
for i = 1 :size(eleb,1) 
     
    %transfor local coordinates to global coordinates 
    xe = [x(eleb(i,1)),x(eleb(i,2))]; 
    ye = [y(eleb(i,1)),y(eleb(i,2))]; 
    if (xe(2) - xe(1)) >= 0; 
        a = 2*pi+atan((ye(2)-ye(1))/(xe(2)-xe(1))); 
    else 
        a = pi+atan((ye(2)-ye(1))/(xe(2)-xe(1))); 
    end 
    
    % extract displacement vector for each nonlinear beam element 
    Ue = TransformB(a)*[U(ID(ID2(eleb(i,1),1)));... 
        U(ID(ID2(eleb(i,1),2)));... 
        U(ID(ID2(eleb(i,1),3)));... 
        U(ID(ID2(eleb(i,2),1)));... 
        U(ID(ID2(eleb(i,2),2)));... 
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        U(ID(ID2(eleb(i,2),3)))]; 
     
    le = Lb(i); 
     
    % compute B matrix for 6 Gauss pts within one element 
    B = zeros(2,6,2); 
    Xi = [-0.577350269,0.577350269]; % 2 pts Gauss quadrature 
    W = [1,1]; % weights 
    epsilon_e = zeros(2,2); 
    for loop3 = 1:2 
        B(:,:,loop3) = 1/le*[-1,0,0,1,0,0;0,6*Xi(loop3)/le,3*Xi(loop3)-1,0,-
6*Xi(loop3)/le,3*Xi(loop3)+1]; 
        epsilon_e(:,loop3) = B(:,:,loop3)*Ue; 
    end 
  
  
    epsilon_0 = epsilon_e(1,:)'*ones(1,n);  % axial strain on the ref axis (constant through one 
element) 
    culvature = epsilon_e(2,:); 
    epsilon_0s = epsilon_e(1,:)'*ones(1,size(zs,2));  
    epsilon_c = epsilon_0+[culvature(1)*hf;culvature(2)*hf];    % column stands for each fiber 
section, row stands for each integration pts 
    epsilon_s = epsilon_0s+[culvature(1)*zs;culvature(2)*zs];  
  
    Et = interp1(Ect(2,:),Ect(1,:),epsilon_c); 
    Ets = interp1(Est(2,:),Est(1,:),epsilon_s); 
  
    % compute D & Dt for 6 Gauss pts within one element 
    Dtc = zeros(2,2,2); 
    for loop1 = 1:2 
        for loop2 = 1:n 
            Dtc(:,:,loop1) = Dtc(:,:,loop1)+Et(loop1,loop2)*[A(loop2),S(loop2);S(loop2),I(loop2)]; 
        end 
    end 
     
    Dts = zeros(2,2,2); 
    for loop1 = 1:2 
        for loop2 = 1:size(zs,2) 
            Dts(:,:,loop1) = 
Dts(:,:,loop1)+Ets(loop1,loop2)*[As(loop2),Ss(loop2);Ss(loop2),Is(loop2)]; 
        end 
    end 
  
    Dt = Dtc+Dts; 
  
    % compute element stiffness matrix and tangential matrix 
    ket = zeros(6,6); 
    for loop4 = 1:2 
        ket = ket+le/2*W(loop4)*B(:,:,loop4)'*Dt(:,:,loop4)*B(:,:,loop4); 
    end 
  
    ket = TransformB(a)'*ket*TransformB(a); 
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    % Global element assembly for beam 
  
    a = ID(ID2(eleb(i,1),1)); 
    b = ID(ID2(eleb(i,1),2)); 
    c = ID(ID2(eleb(i,1),3)); 
    d = ID(ID2(eleb(i,2),1)); 
    e = ID(ID2(eleb(i,2),2)); 
    f = ID(ID2(eleb(i,2),3)); 
    temp = [a,b,c,d,e,f]; 
    for loop10 = 1:6 
        for loop11 = 1:6 
            Kbt(temp(loop10),temp(loop11)) = Kbt(temp(loop10),temp(loop11))+ket(loop10,loop11); 
        end 
    end 
end 
 
 
Assembly_kns.m 
% tangent stiffness matrix from normal contact 
function Kns = Assembly_kns(epsilon,x,y,ID,ID2,elec,neq) 
  
Kns = zeros(neq);  % Initialize contact element tangent stiffness matrix 
for i = 1 : size((elec),1) 
     
    % current lengeth of one element 
    l = sqrt((y(elec(i,3))-y(elec(i,2)))^2+(x(elec(i,3))-x(elec(i,2)))^2); 
  
    % unit tangent vector 
    t(1) = (x(elec(i,3))-x(elec(i,2)))/l; 
    t(2) = (y(elec(i,3))-y(elec(i,2)))/l; 
  
    % unit normal vector 
    n(1) = -t(2); 
    n(2) = t(1); 
  
    Xi = 1/l*[x(elec(i,1))-x(elec(i,2)),y(elec(i,1))-y(elec(i,2))]*t'; 
    Ns = [n,-(1-Xi)*n,0,-Xi*n,0]'; 
    knse = epsilon*l*Ns*Ns'; 
  
    % Global element assembly 
    a = ID(ID2(elec(i,1),1)); 
    b = ID(ID2(elec(i,1),2)); 
    c = ID(ID2(elec(i,2),1)); 
    d = ID(ID2(elec(i,2),2)); 
    e = ID(ID2(elec(i,2),3)); 
    f = ID(ID2(elec(i,3),1)); 
    g = ID(ID2(elec(i,3),2)); 
    h = ID(ID2(elec(i,3),3)); 
    temp = [a,b,c,d,e,f,g,h]; 
    for n = 1:8 
        for m = 1:8 
            Kns(temp(n),temp(m)) = Kns(temp(n),temp(m))+knse(n,m); 
        end 
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    end 
end 
 
 
Assembly_kps.m 
% tangent stiffness maxtrix from prestress tendon 
function Kps = Assembly_kps(x,y,At,Lt,elet,neq,ID,ID2,Eps,U,ODB) 
Kps = zeros(neq);   % Initialize global tangent stiffness matrix 
  
x2 = ODB(1).Node.X; 
y2 = ODB(1).Node.Y; 
  
% Assemble truss element 
for i = 1 : size((elet),1) 
    xe = [x(elet(i,1)),x(elet(i,2))]; 
    ye = [y(elet(i,1)),y(elet(i,2))]; 
    if (xe(2) - xe(1)) >= 0; 
        a = 2*pi+atan((ye(2)-ye(1))/(xe(2)-xe(1))); 
    else 
        a = pi+atan((ye(2)-ye(1))/(xe(2)-xe(1))); 
    end 
     
        % extract displacement vector for each nonlinear beam element 
    Ue = TransformT(a)*[U(ID(ID2(elet(i,1),1)));... 
        U(ID(ID2(elet(i,1),2)));... 
        U(ID(ID2(elet(i,2),1)));... 
        U(ID(ID2(elet(i,2),2)))]; 
    e_truss = 1/Lt(i)*[-1,0,1,0]*Ue; 
  
    Et = interp1(Eps(2,:),Eps(1,:),e_truss);   
     
    if ID2(elet(i,1),3) > 0 || ID2(elet(i,2),3) > 0 
        ke = [Et*At/Lt(i),0,-Et*At/Lt(i),0,0;0,0,0,0,0;-
Et*At/Lt(i),0,Et*At/Lt(i),0,0;0,0,0,0,0;0,0,0,0,0]; 
        ke = TransformTB(a)'*ke*TransformTB(a);  
        % Global element assembly for truss-beam connection 
        if ID2(elet(i,1),3) == 0  
            a = ID(ID2(elet(i,1),1)); 
            b = ID(ID2(elet(i,1),2)); 
            c = ID(ID2(elet(i,2),1)); 
            d = ID(ID2(elet(i,2),2)); 
            e = ID(ID2(elet(i,2),3)); 
        else 
            a = ID(ID2(elet(i,2),1)); 
            b = ID(ID2(elet(i,2),2)); 
            c = ID(ID2(elet(i,1),1)); 
            d = ID(ID2(elet(i,1),2)); 
            e = ID(ID2(elet(i,1),3)); 
        end 
        temp = [a,b,c,d,e]; 
        for n = 1:5 
            for m = 1:5 
                Kps(temp(n),temp(m)) = Kps(temp(n),temp(m))+ke(n,m); 
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            end 
        end 
    else 
        ke = [Et*At/Lt(i),0,-Et*At/Lt(i),0;0,0,0,0;-Et*At/Lt(i),0,Et*At/Lt(i),0;0,0,0,0]; 
        ke = TransformT(a)'*ke*TransformT(a); 
        % Global element assembly for truss 
        a = ID(ID2(elet(i,1),1)); 
        b = ID(ID2(elet(i,1),2)); 
        c = ID(ID2(elet(i,2),1)); 
        d = ID(ID2(elet(i,2),2)); 
        temp = [a,b,c,d]; 
        for n = 1:4 
            for m = 1:4 
                Kps(temp(n),temp(m)) = Kps(temp(n),temp(m))+ke(n,m); 
            end 
        end 
    end           
end 
 
 
Assembly_kpst.m 
% tangent stiffness maxtrix from prestress tendon 
function Kpst = Assembly_kpst(x,y,At,Lt,elet,neq,ID,ID2,Epst) 
Kpst = zeros(neq);   % Initialize global tangent stiffness matrix 
  
% Assemble truss element 
for i = 1 : size((elet),1) 
    xe = [x(elet(i,1)),x(elet(i,2))]; 
    ye = [y(elet(i,1)),y(elet(i,2))]; 
    if (xe(2) - xe(1)) >= 0; 
        a = 2*pi+atan((ye(2)-ye(1))/(xe(2)-xe(1))); 
    else 
        a = pi+atan((ye(2)-ye(1))/(xe(2)-xe(1))); 
    end 
     
    current_leng = sqrt((ye(2)-ye(1))^2+(xe(2)-xe(1))^2); 
    e_truss = (current_leng-Lt(i))/Lt(i); 
    Et = interp1(Epst(2,:),Epst(1,:),e_truss); 
         
    if ID2(elet(i,1),3) > 0 || ID2(elet(i,2),3) > 0 
        ke = [Et*At/Lt(i),0,-Et*At/Lt(i),0,0;0,0,0,0,0;-
Et*At/Lt(i),0,Et*At/Lt(i),0,0;0,0,0,0,0;0,0,0,0,0]; 
        ke = TransformTB(a)'*ke*TransformTB(a);  
        % Global element assembly for truss-beam connection 
        if ID2(elet(i,1),3) == 0  
            a = ID(ID2(elet(i,1),1)); 
            b = ID(ID2(elet(i,1),2)); 
            c = ID(ID2(elet(i,2),1)); 
            d = ID(ID2(elet(i,2),2)); 
            e = ID(ID2(elet(i,2),3)); 
        else 
            a = ID(ID2(elet(i,2),1)); 
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            b = ID(ID2(elet(i,2),2)); 
            c = ID(ID2(elet(i,1),1)); 
            d = ID(ID2(elet(i,1),2)); 
            e = ID(ID2(elet(i,1),3)); 
        end 
        temp = [a,b,c,d,e]; 
        for n = 1:5 
            for m = 1:5 
                Kpst(temp(n),temp(m)) = Kpst(temp(n),temp(m))+ke(n,m); 
            end 
        end 
    else 
        ke = [Et*At/Lt(i),0,-Et*At/Lt(i),0;0,0,0,0;-Et*At/Lt(i),0,Et*At/Lt(i),0;0,0,0,0]; 
        ke = TransformT(a)'*ke*TransformT(a); 
        % Global element assembly for truss 
        a = ID(ID2(elet(i,1),1)); 
        b = ID(ID2(elet(i,1),2)); 
        c = ID(ID2(elet(i,2),1)); 
        d = ID(ID2(elet(i,2),2)); 
        temp = [a,b,c,d]; 
        for n = 1:4 
            for m = 1:4 
                Kpst(temp(n),temp(m)) = Kpst(temp(n),temp(m))+ke(n,m); 
            end 
        end 
    end           
end 
 
 
Assembly_kts.m 
% tangent stiffness matrix from tangential contact 
function Kts = Assembly_kts(epsilon,x,y,xi,yi,ID,ID2,elec,neq,Mu,slip) 
  
Kts = zeros(neq);  % Initialize contact element tangent stiffness matrix 
for i = 1 : size((elec),1) 
     
    % current lengeth of one element 
    l = sqrt((y(elec(i,3))-y(elec(i,2)))^2+(x(elec(i,3))-x(elec(i,2)))^2); 
  
    % unit tangent vector 
    t(1) = (x(elec(i,3))-x(elec(i,2)))/l; 
    t(2) = (y(elec(i,3))-y(elec(i,2)))/l; 
  
    % unit normal vector 
    % n(1) = sqrt(1/(1+(t(1)/t(2))^2)); 
    % n(2) = sqrt(1-n(1)^2); 
    n(1) = -t(2); 
    n(2) = t(1); 
  
    Xi = 1/l*[x(elec(i,1))-x(elec(i,2)),y(elec(i,1))-y(elec(i,2))]*t'; 
    Xi0 = 1/l*[xi(elec(i,1))-xi(elec(i,2)),yi(elec(i,1))-yi(elec(i,2))]*t'; 
    Ns = [n,-(1-Xi)*n,0,-Xi*n,0]'; 
    N0s = [0,0,-n,0,n,0]'; 
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    Ts = [t,-(1-Xi)*t,0,-Xi*t,0]'; 
    T0s = [0,0,-t,0,t,0]'; 
     
    temp = [x(elec(i,1));y(elec(i,1))]-(1-Xi)*[x(elec(i,2));y(elec(i,2))]-Xi*[x(elec(i,3));y(elec(i,3))]; 
    if temp(1)/t(2) < 0   
        gns = -norm(temp,2); 
    else 
        gns = norm(temp,2); 
    end 
  
    if gns == 0 
        ns = 1; 
    else 
        ns = abs(gns)/gns; 
    end 
     
    gts = (Xi-Xi0)*l; 
  
    Tss = (Ts+gns/l*N0s+gts/l*T0s); 
    if gts == 0 
        nt = 1; 
    else 
        nt = -abs(gts-slip(i,2))/(gts-slip(i,2)); 
    end 
  
    ktse = nt*Mu*epsilon*l*(ns*Tss*Ns'+abs(gns)/l*(N0s*Ns'+T0s*Tss')); 
     
% Global element assembly 
    a = ID(ID2(elec(i,1),1)); 
    b = ID(ID2(elec(i,1),2)); 
    c = ID(ID2(elec(i,2),1)); 
    d = ID(ID2(elec(i,2),2)); 
    e = ID(ID2(elec(i,2),3)); 
    f = ID(ID2(elec(i,3),1)); 
    g = ID(ID2(elec(i,3),2)); 
    h = ID(ID2(elec(i,3),3)); 
    temp = [a,b,c,d,e,f,g,h]; 
    for n = 1:8 
        for m = 1:8 
            Kts(temp(n),temp(m)) = Kts(temp(n),temp(m))+ktse(n,m); 
        end 
    end 
end 
 
 
Assembly_kts2.m 
% tangent stiffness matrix from tangential contact 
function Kts = Assembly_kts2(epsilon,x,y,xi,yi,ID,ID2,elec,neq,Mu,slip,slip2,count2) 
  
Kts = zeros(neq);  % Initialize contact element tangent stiffness matrix 
for i = 1 : size((elec),1) 
     
    % current lengeth of one element 
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    l = sqrt((y(elec(i,3))-y(elec(i,2)))^2+(x(elec(i,3))-x(elec(i,2)))^2); 
  
    % unit tangent vector 
    t(1) = (x(elec(i,3))-x(elec(i,2)))/l; 
    t(2) = (y(elec(i,3))-y(elec(i,2)))/l; 
  
    % unit normal vector 
    n(1) = -t(2); 
    n(2) = t(1); 
  
    Xi = 1/l*[x(elec(i,1))-x(elec(i,2)),y(elec(i,1))-y(elec(i,2))]*t'; 
    Xi0 = 1/l*[xi(elec(i,1))-xi(elec(i,2)),yi(elec(i,1))-yi(elec(i,2))]*t'; 
    Ns = [n,-(1-Xi)*n,0,-Xi*n,0]'; 
    N0s = [0,0,-n,0,n,0]'; 
    Ts = [t,-(1-Xi)*t,0,-Xi*t,0]'; 
    T0s = [0,0,-t,0,t,0]'; 
     
    temp = [x(elec(i,1));y(elec(i,1))]-(1-Xi)*[x(elec(i,2));y(elec(i,2))]-Xi*[x(elec(i,3));y(elec(i,3))]; 
    if temp(1)/t(2) < 0   
        gns = -norm(temp,2); 
    else 
        gns = norm(temp,2); 
    end 
  
    if gns == 0 
        ns = 1; 
    else 
        ns = abs(gns)/gns; 
    end 
     
    gts = (Xi-Xi0)*l; 
  
    Tss = (Ts+gns/l*N0s+gts/l*T0s); 
    if gts == 0 
        nt = 1; 
    else 
        nt = -abs(gts-slip(i,2))/(gts-slip(i,2)); 
    end 
   
    for j = 1:size(elec,1) 
        if elec(i,1) == slip2(j,1) 
            gt_s = slip2(j,2); 
            count = j; 
        end 
    end 
  
    t_tr = epsilon*(gts - gt_s); 
  
    if abs(t_tr)-abs(Mu*epsilon*gns) <= 0 && rem(count2/1,1) == 0 
        ktse = epsilon*l*(Tss*Tss'); 
        'stick'; 
    else 
        ktse = nt*Mu*epsilon*l*(ns*Tss*Ns'+abs(gns)/l*(N0s*Ns'+T0s*Tss')); 
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        'slip'; 
    end 
    
% Global element assembly 
    a = ID(ID2(elec(i,1),1)); 
    b = ID(ID2(elec(i,1),2)); 
    c = ID(ID2(elec(i,2),1)); 
    d = ID(ID2(elec(i,2),2)); 
    e = ID(ID2(elec(i,2),3)); 
    f = ID(ID2(elec(i,3),1)); 
    g = ID(ID2(elec(i,3),2)); 
    h = ID(ID2(elec(i,3),3)); 
    temp = [a,b,c,d,e,f,g,h]; 
    for n = 1:8 
        for m = 1:8 
            Kts(temp(n),temp(m)) = Kts(temp(n),temp(m))+ktse(n,m); 
        end 
    end 
end 
 
 
Assembly_kts3.m 
% tangent stiffness matrix from tangential contact 
function Kts = Assembly_kts3(epsilon,x,y,xi,yi,ID,ID2,elec,neq,Mu,slip) 
  
Kts = zeros(neq);  % Initialize contact element tangent stiffness matrix 
for i = 1 : size((elec),1) 
     
    % current lengeth of one element 
    l = sqrt((y(elec(i,3))-y(elec(i,2)))^2+(x(elec(i,3))-x(elec(i,2)))^2); 
  
    % unit tangent vector 
    t(1) = (x(elec(i,3))-x(elec(i,2)))/l; 
    t(2) = (y(elec(i,3))-y(elec(i,2)))/l; 
  
    % unit normal vector 
    n(1) = -t(2); 
    n(2) = t(1); 
  
    Xi = 1/l*[x(elec(i,1))-x(elec(i,2)),y(elec(i,1))-y(elec(i,2))]*t'; 
    Xi0 = 1/l*[xi(elec(i,1))-xi(elec(i,2)),yi(elec(i,1))-yi(elec(i,2))]*t'; 
    Ns = [n,-(1-Xi)*n,0,-Xi*n,0]'; 
    N0s = [0,0,-n,0,n,0]'; 
    Ts = [t,-(1-Xi)*t,0,-Xi*t,0]'; 
    T0s = [0,0,-t,0,t,0]'; 
     
    temp = [x(elec(i,1));y(elec(i,1))]-(1-Xi)*[x(elec(i,2));y(elec(i,2))]-Xi*[x(elec(i,3));y(elec(i,3))]; 
    if temp(1)/t(2) < 0   
        gns = -norm(temp,2); 
    else 
        gns = norm(temp,2); 
    end 
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    if gns == 0 
        ns = 1; 
    else 
        ns = abs(gns)/gns; 
    end 
  
    gts = (Xi-Xi0)*l; 
  
    Tss = (Ts+gns/l*N0s+gts/l*T0s); 
    if gts == 0 
        nt = 1; 
    else 
        nt = -abs(gts-slip(i,2))/(gts-slip(i,2)); 
    end 
  
    for j = 1:size(elec,1) 
        if elec(i,1) == slip(j,1) 
            gt_s = slip(j,2); 
            count = j; 
        end 
    end 
  
    t_tr = epsilon*(gts - gt_s); 
  
    ktse = epsilon*l*(Tss*Tss'); 
    
    % Global element assembly 
    a = ID(ID2(elec(i,1),1)); 
    b = ID(ID2(elec(i,1),2)); 
    c = ID(ID2(elec(i,2),1)); 
    d = ID(ID2(elec(i,2),2)); 
    e = ID(ID2(elec(i,2),3)); 
    f = ID(ID2(elec(i,3),1)); 
    g = ID(ID2(elec(i,3),2)); 
    h = ID(ID2(elec(i,3),3)); 
    temp = [a,b,c,d,e,f,g,h]; 
    for n = 1:8 
        for m = 1:8 
            Kts(temp(n),temp(m)) = Kts(temp(n),temp(m))+ktse(n,m); 
        end 
    end 
end 
 
 
Assembly_kts4.m 
% tangent stiffness matrix from tangential contact 
function Kts = Assembly_kts4(epsilon,x,y,xi,yi,ID,ID2,elec,neq,Mu,slip,slip2,count2) 
  
Kts = zeros(neq);  % Initialize contact element tangent stiffness matrix 
for i = 1 : size((elec),1) 
     
    % current lengeth of one element 
    l = sqrt((y(elec(i,3))-y(elec(i,2)))^2+(x(elec(i,3))-x(elec(i,2)))^2); 
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    % unit tangent vector 
    t(1) = (x(elec(i,3))-x(elec(i,2)))/l; 
    t(2) = (y(elec(i,3))-y(elec(i,2)))/l; 
  
    % unit normal vector 
    n(1) = -t(2); 
    n(2) = t(1); 
  
    Xi = 1/l*[x(elec(i,1))-x(elec(i,2)),y(elec(i,1))-y(elec(i,2))]*t'; 
    Xi0 = 1/l*[xi(elec(i,1))-xi(elec(i,2)),yi(elec(i,1))-yi(elec(i,2))]*t'; 
    Ns = [n,-(1-Xi)*n,0,-Xi*n,0]'; 
    N0s = [0,0,-n,0,n,0]'; 
    Ts = [t,-(1-Xi)*t,0,-Xi*t,0]'; 
    T0s = [0,0,-t,0,t,0]'; 
     
    temp = [x(elec(i,1));y(elec(i,1))]-(1-Xi)*[x(elec(i,2));y(elec(i,2))]-Xi*[x(elec(i,3));y(elec(i,3))]; 
    if temp(1)/t(2) < 0   
        gns = -norm(temp,2); 
    else 
        gns = norm(temp,2); 
    end 
  
    if gns == 0 
        ns = 1; 
    else 
        ns = abs(gns)/gns; 
    end 
  
    gts = (Xi-Xi0)*l; 
  
    Tss = (Ts+gns/l*N0s+gts/l*T0s); 
    if gts == 0 
        nt = 1; 
    else 
        nt = -abs(gts-slip(i,2))/(gts-slip(i,2)); 
    end 
     
    for j = 1:size(elec,1) 
        if elec(i,1) == slip(j,1) 
            gt_s = slip(j,2); 
            count = j; 
        end 
    end 
  
    t_tr = epsilon*(gts - gt_s); 
  
    if abs(t_tr)-abs(Mu*epsilon*gns) <= 0 && rem(count2/1,1) == 0 
        ktse = epsilon*l*(Tss*Tss'); 
        'stick'; 
    else 
        ktse = nt*Mu*epsilon*l*(ns*Tss*Ns'+abs(gns)/l*(N0s*Ns'+T0s*Tss')); 
        'slip'; 
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    end 
     
    % Global element assembly 
    a = ID(ID2(elec(i,1),1)); 
    b = ID(ID2(elec(i,1),2)); 
    c = ID(ID2(elec(i,2),1)); 
    d = ID(ID2(elec(i,2),2)); 
    e = ID(ID2(elec(i,2),3)); 
    f = ID(ID2(elec(i,3),1)); 
    g = ID(ID2(elec(i,3),2)); 
    h = ID(ID2(elec(i,3),3)); 
    temp = [a,b,c,d,e,f,g,h]; 
    for n = 1:8 
        for m = 1:8 
            Kts(temp(n),temp(m)) = Kts(temp(n),temp(m))+ktse(n,m); 
        end 
    end 
end 
 
 
Disp_residual.m 
% residual measure v0.1 
function normresidual = Disp_residual(U,d_F,alpha,nd,neq,xi,yi,ODB,step,... 
    epsilon,ID,ID2,elec,slip,Mu,Ka,F_jacking1,nnd,residual_Fi,epsilon2,anchor_u,anchor_v,eleac) 
  
% concrete unaxial stress-strain 
concrete_stress = ODB(step).Material.Concrete(:,1)'; 
concrete_strain = ODB(step).Material.Concrete(:,2)'; 
% extend stress-strain curve 
concrete_stress = [concrete_stress(1),concrete_stress,concrete_stress(size(concrete_stress,2))]; 
concrete_strain = 
[10*concrete_strain(1),concrete_strain,10*concrete_strain(size(concrete_strain,2))]; 
  
% concrete beam section geometry 
n_fiber = ODB(step).BeamElement.n; 
hf = ODB(step).BeamElement.hf; 
A = ODB(step).BeamElement.A; 
S = ODB(step).BeamElement.S; 
I = ODB(step).BeamElement.I; 
  
% non-prestressed steel unaxial stress-strain 
steel_stress = ODB(step).Material.Steel(:,1)'; 
steel_strain = ODB(step).Material.Steel(:,2)'; 
% extend stress-strain curve 
steel_stress = [steel_stress(1),steel_stress,steel_stress(size(steel_stress,2))]; 
steel_strain = [10*steel_strain(1),steel_strain,10*steel_strain(size(steel_strain,2))]; 
  
% non-prestressed steel geometry 
zs = ODB(step).BeamElement.zs; 
As = ODB(step).BeamElement.As; 
Ss = ODB(step).BeamElement.Ss; 
Is = ODB(step).BeamElement.Is; 
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Lb = ODB(step).BeamElement.Length; 
eleb = ODB(step).BeamElement.Nodes;  
  
Ec = ODB(step).Material.Ec; 
Es = ODB(step).Material.Es; 
  
% Determine if it is the first loop for displacement increase vector 
d_E = zeros(nd,1); 
  
% Calculate residual force vector f_F 
% Calculate current displacement U = U+d_F 
U2 = U+[d_E;alpha*d_F]; 
  
% Update current node position  
for i = 1:nnd 
    x2(i) = xi(i)+U2(ID(ID2(i,1))); 
    y2(i) = yi(i)+U2(ID(ID2(i,2))); 
end 
  
% Update residual force vector from anchorage contribution 
if ODB(step).anchor == 0 
    F_ac = zeros(neq,1); 
else 
    % Update residual force vector from anchorage contribution 
    F_ac = Assembly_F_aci(epsilon2,x2,y2,anchor_u,anchor_v,ID,ID2,eleac,neq); 
end 
  
[F_c,ODB(step).slip] = Assembly_F_ci(epsilon,x2,y2,xi,yi,ID,ID2,elec,neq,slip,U2,Mu);   
  
% Update stiffness maxtrix from nonlienar beam 
Kb = 
Assembly_kb(ID,ID2,neq,x2,y2,eleb,Lb,U2,concrete_stress,concrete_strain,A,S,I,hf,n_fiber,... 
    steel_stress,steel_strain,zs,As,Ss,Is,Ec,Es); 
  
% Update residual force vector from non-contact contribution 
F_nc = (Ka+Kb)*U2; 
F = -F_ac+F_c+F_nc; 
  
normresidual = norm(-F(nd+1:neq)+residual_Fi+F_jacking1(nd+1:neq)); 
 
 
ElementLength.m 
% Calculate element length 
function L = ElementLength(ElementNodes,NodeX,NodeY) % Node Label, X coordinates, Y 
coordinates) 
for i = 1:size(ElementNodes,1) 
    L(i) = sqrt((NodeX(ElementNodes(i,1))-
NodeX(ElementNodes(i,2)))^2+(NodeY(ElementNodes(i,1))-NodeY(ElementNodes(i,2)))^2); 
end 
ID_array.m 
% Genereate ID array 
function [ID,d] = ID_array(nd,neq,flags,e_bc) 
count = 0; 
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count1 = 0; 
for i = 1:neq 
   if flags(i) == 2               % check if essential boundary 
     count = count + 1; 
     ID(i) = count;               % number first the degrees-of-freedom on essential boundary 
     d(count)= e_bc(i);           % store the reordered values of essential B.C 
   else 
     count1 = count1 + 1; 
     ID(i) = nd + count1; 
   end 
end 
d = d'; 
 
 
ID2_array.m 
% Genereate ID2 array 
function ID2 = ID2_array(nnd,nddof) 
ID2 = zeros(nnd,3); 
count = 0; 
for i = 1:nnd 
    if nddof(i) == 2                % check if node on slide line 
        for j = 1:2    
            ID2(i,j) = count+1; 
            count = count+1; 
        end 
    else 
        for j = 1:3 
            ID2(i,j) = count+1; 
            count = count+1; 
        end 
    end 
end 
 
 
InitialCondition.m 
% Generate initial condition for residual force and displacement vector 
function newvector = InitialCondition(U,V,T,boundary) 
count = 0; 
oldvector = [U;V;T]; 
newvector = zeros(size(boundary,1)*3-sum(boundary(:) == 0),1);  % Prelocate newvector to 
increase speed 
for i = 1:size(boundary,1) 
    for j = 1:3 
        if boundary(i,j) > 0; 
            count = count+1; 
            newvector(count) = oldvector(j,i); 
        end 
    end 
end 
 
 
LineSearch.m 
% Line search (minimize residual_f by modify displacement increment vector) 
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function df_m = LineSearch(U,d_F,nd,neq,xi,yi,ODB,step,... 
    epsilon,ID,ID2,elec,slip,Mu,Ka,F_jacking1,nnd,residual_Fi,epsilon2,anchor_u,anchor_v,eleac) 
  
ctrl = 0.1; 
df_m = d_F; 
flag = 2; 
  
while flag > 1 
    Ftest_l = Disp_residual(U,df_m,1-ctrl,nd,neq,xi,yi,ODB,step,... 
        
epsilon,ID,ID2,elec,slip,Mu,Ka,F_jacking1,nnd,residual_Fi,epsilon2,anchor_u,anchor_v,eleac); 
    Ftest_m = Disp_residual(U,df_m,1,nd,neq,xi,yi,ODB,step,... 
        
epsilon,ID,ID2,elec,slip,Mu,Ka,F_jacking1,nnd,residual_Fi,epsilon2,anchor_u,anchor_v,eleac); 
    Ftest_r = Disp_residual(U,df_m,1+ctrl,nd,neq,xi,yi,ODB,step,... 
        
epsilon,ID,ID2,elec,slip,Mu,Ka,F_jacking1,nnd,residual_Fi,epsilon2,anchor_u,anchor_v,eleac); 
  
    if Ftest_l > Ftest_m && Ftest_m > Ftest_r 
        df_l = df_m; 
        count1 = 2; 
        while Ftest_l > Ftest_m 
            df_m = count1*df_m; 
            count1 = count1+1; 
            Ftest_l = Disp_residual(U,df_m,1-ctrl,nd,neq,xi,yi,ODB,step,... 
                
epsilon,ID,ID2,elec,slip,Mu,Ka,F_jacking1,nnd,residual_Fi,epsilon2,anchor_u,anchor_v,eleac); 
            Ftest_m = Disp_residual(U,df_m,1,nd,neq,xi,yi,ODB,step,... 
                
epsilon,ID,ID2,elec,slip,Mu,Ka,F_jacking1,nnd,residual_Fi,epsilon2,anchor_u,anchor_v,eleac); 
        end 
        df_r = df_m; 
        df_m = 0.5*(df_l+df_r); 
        flag = 2; 
  
    elseif Ftest_l < Ftest_m && Ftest_m < Ftest_r 
        df_r = df_m; 
        df_l = 0*df_m; 
        df_m = 0.5*(df_l+df_r); 
        flag = 3; 
        
    elseif Ftest_l < Ftest_m && Ftest_m > Ftest_r 
        if flag == 2 
            df_r = df_m; 
            df_m = 0.5*(df_l+df_r); 
        elseif flag == 3 
            df_l = df_m; 
            df_m = 0.5*(df_l+df_r); 
        end 
         
    elseif Ftest_l > Ftest_m && Ftest_m < Ftest_r 
        flag = 1; 
    end 
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end 
 
 
Solver for frictionless contact (perfectly unbonded condition) 
MainSolver1.m 
% Solver main function for frictionless contact and large slip frictional 
% contact 
function ODB = MainSolver1(ODB,step) 
xi = ODB(step).Node.X; 
yi = ODB(step).Node.Y; 
Et = ODB(step).TrussElement.E(1); 
At = ODB(step).TrussElement.A(1); 
Eemb = ODB(step).EmbeddingElement.E(1); 
Aemb = ODB(step).EmbeddingElement.A(1); 
Iemb = ODB(step).EmbeddingElement.I(1); 
Lt = ODB(step).TrussElement.Length; 
Lb = ODB(step).BeamElement.Length; 
Lemb = ODB(step).EmbeddingElement.Length; 
elet = ODB(step).TrussElement.Nodes; 
eleb = ODB(step).BeamElement.Nodes; 
eleac = ODB(step).AnchorElement.Nodes; 
elec = ODB(step).ContactElement.Nodes; 
eleemb = ODB(step).EmbeddingElement.Nodes; 
neq = ODB(step).neq; 
nd = ODB(step).nd; 
nnd = ODB(step).nnd; 
ID = ODB(step).ID; 
d_E = ODB(step).d_E; 
ID2 = ODB(step).ID2; 
slip = ODB(step).slip; 
Mu = ODB(step).Material.Mu; 
Uo = InitialCondition(ODB(step).Node.U,ODB(step).Node.V,... 
    ODB(step).Node.T,ODB(step).Node.Boundary); 
residual_Fo = InitialCondition(ODB(step).Node.Fx_residual,... 
    ODB(step).Node.Fy_residual,ODB(step).Node.M_residual,ODB(step).Node.Boundary); 
epsilon = ODB(step).ContactElement.Epsilon; 
epsilon2 = ODB(step).AnchorElement.Epsilon; 
x = xi; 
y = yi; 
  
% concrete unaxial stress-strain 
concrete_stress = ODB(step).Material.Concrete(:,1)'; 
concrete_strain = ODB(step).Material.Concrete(:,2)'; 
  
% concrete beam section geometry 
n_fiber = ODB(step).BeamElement.n; 
hf = ODB(step).BeamElement.hf; 
A = ODB(step).BeamElement.A; 
S = ODB(step).BeamElement.S; 
I = ODB(step).BeamElement.I; 
  
% non-prestressed steel unaxial stress-strain 
steel_stress = ODB(step).Material.Steel(:,1)'; 
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steel_strain = ODB(step).Material.Steel(:,2)'; 
  
Ec = ODB(step).Material.Ec; 
Es = ODB(step).Material.Es; 
Eps = ODB(step).Material.Eps; 
Ect = ODB(step).Material.Ect; 
Est = ODB(step).Material.Est; 
Epst = ODB(step).Material.Epst; 
  
% non-prestressed steel geometry 
zs = ODB(step).BeamElement.zs; 
As = ODB(step).BeamElement.As; 
Ss = ODB(step).BeamElement.Ss; 
Is = ODB(step).BeamElement.Is; 
  
if ODB(step).anchor == 1 && step == 2 
    for i = 1:size(eleac,1) 
        anchor_u(i) = x(eleac(i,2))+Uo(ID2(eleac(i,2),1))... 
            -x(eleac(i,1))-Uo(ID2(eleac(i,1),1)) 
        anchor_v(i) = y(eleac(i,2))+Uo(ID2(eleac(i,2),2))... 
            -y(eleac(i,1))-Uo(ID2(eleac(i,1),2)) 
    end 
elseif ODB(step).anchor == 0 
    anchor_u = zeros(size(eleac,1),1); 
    anchor_v = zeros(size(eleac,1),1); 
elseif step >= 3 
    anchor_u = ODB(2).anchor_u; 
    anchor_v = ODB(2).anchor_v;   
end 
ODB(step).anchor_u = anchor_u; 
ODB(step).anchor_v = anchor_v; 
  
% Transfer Uo residual_Fo from origional node ordering to new ordering 
U = Reorder(ID,Uo); 
residual_F = Reorder(ID,residual_Fo); 
residual_F = residual_F(nd+1:neq); 
residual_Fi = residual_F; 
  
% tangent stiffness matrix from anchorage 
if ODB(step).anchor == 0 
    Kac = zeros(neq); 
else 
    Kac = Assembly_kac(eleac,epsilon,ID,ID2,neq); 
end 
  
% tangent stiffness matrix from normal contact 
Kns = Assembly_kns(epsilon,x,y,ID,ID2,elec,neq); 
% tangent stiffness matrix from tagent contact (slip) 
Kts = Assembly_kts(epsilon,x,y,xi,yi,ID,ID2,elec,neq,Mu,slip); 
  
% Tangent stiffness matrix from linear elements (constant considering elasticity and linear 
geometry) 
Ka = Assembly_ka(x,y,Et,At,Eemb,Aemb,Iemb,Lt,Lemb,elet,eleemb,neq,ID,ID2,ODB); 
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% Tanget stiffness matrix from ptrestressed steel truss element 
Kpst = Assembly_kpst(x,y,At,Lt,elet,neq,ID,ID2,Epst); 
  
% Tangent stiffness matrix from nonlinear beam 
Kbt = 
Assembly_kbt(ID,ID2,neq,x,y,eleb,Lb,U,concrete_stress,concrete_strain,A,S,I,hf,n_fiber,... 
    steel_stress,steel_strain,zs,As,Ss,Is,Ect,Est); 
  
% Sum up tagent stiffness from contact and non-contact contribution 
K = Ka+Kns+Kts+Kac+Kbt+Kpst; 
  
% Evaluate tendon jacking reactions 
% Calculate displacement increase vector d_F  
if ODB(step).anchor == 0 
    K_EF = K(nd+1:neq,1:nd); 
    K_F = K(nd+1:neq,nd+1:neq); 
    f_F = residual_F;  
    d_F = K_F\(f_F-K_EF*d_E); 
  
    % Determine if it is the first loop for displacement increase vector 
    d_Ee = zeros(nd,1); 
  
    % Calculate residual force vector f_F 
    % Calculate current displacement U = U+d_F 
    Ue = U+[d_Ee;d_F]; 
  
    % Update current node position  
    for i = 1:nnd 
        xe(i) = xi(i)+U(ID(ID2(i,1))); 
        ye(i) = yi(i)+U(ID(ID2(i,2))); 
    end 
  
    [F_c,slip2] = Assembly_F_ci(epsilon,xe,ye,xi,yi,ID,ID2,elec,neq,slip,Ue,Mu); 
  
    Kps = Assembly_kps(x,y,At,Lt,elet,neq,ID,ID2,Eps,U,ODB); 
    Kb = 
Assembly_kb(ID,ID2,neq,xe,ye,eleb,Lb,Ue,concrete_stress,concrete_strain,A,S,I,hf,n_fiber,... 
    steel_stress,steel_strain,zs,As,Ss,Is,Ec,Es); 
    % Update residual force vector from non-contact contribution 
    F_nc = (Ka+Kb+Kps)*Ue; 
    F = F_c+F_nc; 
  
    % Update equavilent force from tendon jacking appled at beam 
    F_jacking1 = zeros(neq,1); 
    for i = 1:size(eleac,1) 
        F_jacking1(ID(ID2(eleac(i,2),1))) = -F_nc(ID(ID2(eleac(i,1),1))); 
        F_jacking1(ID(ID2(eleac(i,2),2))) = -F_nc(ID(ID2(eleac(i,1),2))); 
    end 
    residual_F = residual_Fi+F_jacking1(nd+1:neq); 
else 
    F_jacking1 = zeros(neq,1); 
end 
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% Newton-Rapshon solver 
normf = 1; 
normfinc = 1; 
normtest = 2; 
normtest2 = 1; 
flag2 = 0; 
count2 = 1; 
% eng_inter_I = 0; 
acur_ctrl = 0.005; 
F_norm_ratio = acur_ctrl+1; 
Disp_norm_ratio = acur_ctrl+1; 
% eng_ratio = acur_ctrl+0.1; 
Mu = ODB(step).Material.Mu; 
  
while (F_norm_ratio >= acur_ctrl || Disp_norm_ratio >= acur_ctrl) && count2 <= 500 && normf 
>= 1 
    if count2 > 1 
        d_E = zeros(nd,1); 
    end     
     
    % Calculate displacement increase vector d_F  
    K_EF = K(nd+1:neq,1:nd); 
    K_F = K(nd+1:neq,nd+1:neq); 
    f_F = residual_F;  
    d_F = K_F\(f_F-K_EF*d_E); 
  
% Linesearch code here 
%     if count2 >= 2 
%           d_F = LineSearch(U,d_F,nd,neq,xi,yi,ODB,step,... 
%               
epsilon,ID,ID2,elec,slip,Mu,Ka,F_jacking1,nnd,residual_Fi,epsilon2,anchor_u,anchor_v,eleac); 
%     end 
  
    U = U+[d_E;d_F]; 
  
    % Update current node position  
    for i = 1:nnd 
        x(i) = xi(i)+U(ID(ID2(i,1))); 
        y(i) = yi(i)+U(ID(ID2(i,2))); 
    end 
  
    if ODB(step).anchor == 0 
        Kac = zeros(neq); 
        F_ac = zeros(neq,1); 
    else 
        % Update current global stiffness matrix Kac from anchorage 
        Kac = Assembly_kac(eleac,epsilon2,ID,ID2,neq); 
        % Update residual force vector from anchorage contribution 
        F_ac = Assembly_F_aci(epsilon2,x,y,anchor_u,anchor_v,ID,ID2,eleac,neq); 
    end 
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    % Update current global stiffness matrix Kns & Kts from contact contribution 
    % tangent stiffness matrix from normal contact 
    Kns = Assembly_kns(epsilon,x,y,ID,ID2,elec,neq); 
    % tangetn stiffness matrix from tagent contact 
    Kts = Assembly_kts(epsilon,x,y,xi,yi,ID,ID2,elec,neq,Mu,slip); 
    % Update residual force vector from contact contribution 
    [F_c,slip2] = Assembly_F_ci(epsilon,x,y,xi,yi,ID,ID2,elec,neq,slip,U,Mu); 
     
    % Tangent stiffness matrix from truss (constant considering elasticity and linear geometry) 
    Kpst = Assembly_kpst(x,y,At,Lt,elet,neq,ID,ID2,Epst); 
    Kps = Assembly_kps(x,y,At,Lt,elet,neq,ID,ID2,Eps,U,ODB); 
     
    % Update tangential stiffness matrix from nonlinear beam element 
    % Update stiffness matrix from nonlinear beam element 
    Kbt = 
Assembly_kbt(ID,ID2,neq,x,y,eleb,Lb,U,concrete_stress,concrete_strain,A,S,I,hf,n_fiber,... 
    steel_stress,steel_strain,zs,As,Ss,Is,Ect,Est); 
    Kb = 
Assembly_kb(ID,ID2,neq,x,y,eleb,Lb,U,concrete_stress,concrete_strain,A,S,I,hf,n_fiber,... 
    steel_stress,steel_strain,zs,As,Ss,Is,Ec,Es); 
     
    % Update residual force vector from non-contact contribution 
    F_nc = (Ka+Kb+Kps)*U; 
    F = -F_ac+F_c+F_nc; 
  
    % Update equavilent force from tendon jacking appled at beam 
    F_jacking2 = zeros(neq,1); 
    if ODB(step).anchor == 0 
        for i = 1:size(eleac,1) 
            F_jacking2(ID(ID2(eleac(i,2),1))) = -F_nc(ID(ID2(eleac(i,1),1))); 
            F_jacking2(ID(ID2(eleac(i,2),2))) = -F_nc(ID(ID2(eleac(i,1),2))); 
        end 
    end 
     
    residual_F = -F(nd+1:neq)+residual_Fi+F_jacking1(nd+1:neq); 
    K = Ka+Kns+Kts+Kac+Kbt+Kpst;    
     
    % Convergence creteria 
    F_inter_norm = norm(F+F_ac); 
    F_err_norm = norm(residual_F); 
    Disp_all_norm = norm(U(nd+1:neq)); 
    Disp_inc_norm = norm(d_F); 
    F_norm_ratio = F_err_norm/F_inter_norm;  % monitor this ratio while iteration 
    if Disp_inc_norm == 0 || (Disp_inc_norm == Disp_all_norm && step >= 2) 
        Disp_norm_ratio = 0.9*acur_ctrl; 
        F_norm_ratio = 0.9*acur_ctrl; 
    else 
        Disp_norm_ratio = Disp_inc_norm/Disp_all_norm;  % monitor this ratio while iteration 
    end 
  
    F_jacking3 = F_jacking2-F_jacking1; 
    residual_Ftrial = residual_F-F_jacking3(nd+1:neq); 
    normf = norm(residual_F) 
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    if count2 > 1 
    normfinc = normf2 - normf; 
    end 
    normf2 = normf; 
    normtest2 = normtest; 
     
    if norm(residual_F)>0 
        residual_F = residual_Ftrial-F_jacking3(nd+1:neq); 
    end 
    F_jacking1 = F_jacking2; 
    count2 = count2+1 
end; 
  
  
if count2 < 500 && (normfinc > 0 || F_norm_ratio < acur_ctrl || normf < 100) 
    % Transfer U residual_F from new node ordering to origional ordering 
    Uo = Reorder2(ID,U); 
    residual_F2 = -F+[zeros(nd,1);residual_Fi]; 
    residual_Fo = Reorder2(ID,residual_F2); 
    ODB(step+1) = ODB(step); 
    ODB(step+1).slip = slip2; 
    ODB = ODBUpdate(ODB,step,Uo,residual_Fo); 
end 
 
 
Solver for frictional contact (partially unbonded and bonded condition) 
MainSolver2.m 
% Solver main function for frictional contact 
function ODB = MainSolver2(ODB,step) 
xi = ODB(step).Node.X; 
yi = ODB(step).Node.Y; 
Et = ODB(step).TrussElement.E(1); 
At = ODB(step).TrussElement.A(1); 
Eemb = ODB(step).EmbeddingElement.E(1); 
Aemb = ODB(step).EmbeddingElement.A(1); 
Iemb = ODB(step).EmbeddingElement.I(1); 
Lt = ODB(step).TrussElement.Length; 
Lb = ODB(step).BeamElement.Length; 
Lemb = ODB(step).EmbeddingElement.Length; 
elet = ODB(step).TrussElement.Nodes; 
eleb = ODB(step).BeamElement.Nodes; 
eleac = ODB(step).AnchorElement.Nodes; 
elec = ODB(step).ContactElement.Nodes; 
eleemb = ODB(step).EmbeddingElement.Nodes; 
neq = ODB(step).neq; 
nd = ODB(step).nd; 
nnd = ODB(step).nnd; 
ID = ODB(step).ID; 
d_E = ODB(step).d_E; 
ID2 = ODB(step).ID2; 
slip = ODB(step).slip; 
slip2 = slip; 
Mu = ODB(step).Material.Mu; 
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Uo = InitialCondition(ODB(step).Node.U,ODB(step).Node.V,... 
    ODB(step).Node.T,ODB(step).Node.Boundary); 
residual_Fo = InitialCondition(ODB(step).Node.Fx_residual,... 
    ODB(step).Node.Fy_residual,ODB(step).Node.M_residual,ODB(step).Node.Boundary); 
epsilon = ODB(step).ContactElement.Epsilon; 
epsilon2 = ODB(step).AnchorElement.Epsilon; 
x = xi; 
y = yi; 
  
% concrete unaxial stress-strain 
concrete_stress = ODB(step).Material.Concrete(:,1)'; 
concrete_strain = ODB(step).Material.Concrete(:,2)'; 
  
% concrete beam section geometry 
n_fiber = ODB(step).BeamElement.n; 
hf = ODB(step).BeamElement.hf; 
A = ODB(step).BeamElement.A; 
S = ODB(step).BeamElement.S; 
I = ODB(step).BeamElement.I; 
  
% non-prestressed steel unaxial stress-strain 
steel_stress = ODB(step).Material.Steel(:,1)'; 
steel_strain = ODB(step).Material.Steel(:,2)'; 
  
Ec = ODB(step).Material.Ec; 
Es = ODB(step).Material.Es; 
Eps = ODB(step).Material.Eps; 
Ect = ODB(step).Material.Ect; 
Est = ODB(step).Material.Est; 
Epst = ODB(step).Material.Epst; 
  
% non-prestressed steel geometry 
zs = ODB(step).BeamElement.zs; 
As = ODB(step).BeamElement.As; 
Ss = ODB(step).BeamElement.Ss; 
Is = ODB(step).BeamElement.Is; 
  
if ODB(step).anchor == 1 && step == 2 
    for i = 1:size(eleac,1) 
        anchor_u(i) = x(eleac(i,2))+Uo(ID2(eleac(i,2),1))... 
            -x(eleac(i,1))-Uo(ID2(eleac(i,1),1)) 
        anchor_v(i) = y(eleac(i,2))+Uo(ID2(eleac(i,2),2))... 
            -y(eleac(i,1))-Uo(ID2(eleac(i,1),2)) 
    end 
elseif ODB(step).anchor == 0 
    anchor_u = zeros(size(eleac,1),1); 
    anchor_v = zeros(size(eleac,1),1); 
elseif step >= 3 
    anchor_u = ODB(2).anchor_u; 
    anchor_v = ODB(2).anchor_v;   
end 
ODB(step).anchor_u = anchor_u; 
ODB(step).anchor_v = anchor_v; 
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% Transfer Uo residual_Fo from origional node ordering to new ordering 
U = Reorder(ID,Uo); 
residual_F = Reorder(ID,residual_Fo); 
residual_F = residual_F(nd+1:neq); 
residual_Fi = residual_F; 
  
for i = 1:nnd 
    x1(i) = xi(i)+U(ID(ID2(i,1))); 
    y1(i) = yi(i)+U(ID(ID2(i,2))); 
end 
  
% tangent stiffness matrix from anchorage 
if ODB(step).anchor == 0 
    Kac = zeros(neq); 
else 
    Kac = Assembly_kac(eleac,epsilon,ID,ID2,neq); 
end 
  
% tangent stiffness matrix from normal contact 
Kns = Assembly_kns(epsilon,x1,y1,ID,ID2,elec,neq); 
% tangent stiffness matrix from tagent contact (slip) 
Kts = Assembly_kts(epsilon,x1,y1,xi,yi,ID,ID2,elec,neq,Mu,slip); 
  
% Tangent stiffness matrix from linear elements (constant considering elasticity and linear 
geometry) 
Ka = Assembly_ka(x1,y1,Et,At,Eemb,Aemb,Iemb,Lt,Lemb,elet,eleemb,neq,ID,ID2,ODB); 
  
% Tanget stiffness matrix from ptrestressed steel truss element 
Kpst = Assembly_kpst(x1,y1,At,Lt,elet,neq,ID,ID2,Epst); 
  
% Tangent stiffness matrix from nonlinear beam 
Kbt = 
Assembly_kbt(ID,ID2,neq,x1,y1,eleb,Lb,U,concrete_stress,concrete_strain,A,S,I,hf,n_fiber,... 
    steel_stress,steel_strain,zs,As,Ss,Is,Ect,Est); 
  
% Sum up tagent stiffness from contact and non-contact contribution 
K = Ka+Kns+Kts+Kac+Kbt+Kpst; 
  
  
% Evaluate tendon jacking reactions 
% Calculate displacement increase vector d_F  
if ODB(step).anchor == 0 
    K_EF = K(nd+1:neq,1:nd); 
    K_F = K(nd+1:neq,nd+1:neq); 
    f_F = residual_F;  
    d_F = K_F\(f_F-K_EF*d_E); 
  
    % Determine if it is the first loop for displacement increase vector 
    d_Ee = zeros(nd,1); 
  
    % Calculate residual force vector f_F 
    % Calculate current displacement U = U+d_F 
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    Ue = U+[d_Ee;d_F]; 
  
    % Update current node position  
    for i = 1:nnd 
        xe(i) = xi(i)+U(ID(ID2(i,1))); 
        ye(i) = yi(i)+U(ID(ID2(i,2))); 
    end 
  
    [F_c,slip2] = Assembly_F_ci(epsilon,xe,ye,xi,yi,ID,ID2,elec,neq,slip,Ue,Mu); 
  
    Kps = Assembly_kps(xe,ye,At,Lt,elet,neq,ID,ID2,Eps,U,ODB); 
    Kb = 
Assembly_kb(ID,ID2,neq,xe,ye,eleb,Lb,Ue,concrete_stress,concrete_strain,A,S,I,hf,n_fiber,... 
    steel_stress,steel_strain,zs,As,Ss,Is,Ec,Es); 
    % Update residual force vector from non-contact contribution 
    F_nc = (Ka+Kb+Kps)*Ue; 
    F = F_c+F_nc; 
  
    % Update equavilent force from tendon jacking appled at beam 
    F_jacking1 = zeros(neq,1); 
    for i = 1:size(eleac,1) 
        F_jacking1(ID(ID2(eleac(i,2),1))) = -F_nc(ID(ID2(eleac(i,1),1))); 
        F_jacking1(ID(ID2(eleac(i,2),2))) = -F_nc(ID(ID2(eleac(i,1),2))); 
    end 
    residual_F = residual_Fi+F_jacking1(nd+1:neq); 
else 
    F_jacking1 = zeros(neq,1); 
end 
  
% tangent stiffness matrix from tagent contact (slip) 
Kts = Assembly_kts3(epsilon,x1,y1,xi,yi,ID,ID2,elec,neq,Mu,slip); 
  
% Sum up tagent stiffness from contact and non-contact contribution 
K = Ka+Kns+Kts+Kac+Kbt+Kpst; 
x-xi; 
y-yi; 
     
  
% Newton-Rapshon solver 
iter_loop1 = 50; 
iter_loop2 = 100; 
residual_Ftemp = residual_F; 
count5 = 1; 
acur_ctrl_min = 0.001; 
normf = 1; 
acur_ctrl = acur_ctrl_min; 
F_norm_ratio = acur_ctrl+1; 
Disp_norm_ratio = acur_ctrl+1; 
  
while (F_norm_ratio >= acur_ctrl || Disp_norm_ratio >= acur_ctrl) && count5 <= 10 && normf 
>= 1 
    normf = 1; 
    normfinc = 1; 
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    normtest = 2; 
    normtest2 = 1; 
    flag2 = 0; 
    count2 = 1; 
    acur_ctrl = acur_ctrl_min+0.001*(count5-1); 
    F_norm_ratio = acur_ctrl+1; 
    Disp_norm_ratio = acur_ctrl+1; 
     
    if count5 < 2 
        while (F_norm_ratio >= acur_ctrl || Disp_norm_ratio >= acur_ctrl) && count2 <= 
iter_loop1 && normf >= 1%&& normfinc > 0 
            if count2 > 1 
                d_E = zeros(nd,1); 
            end     
            K_EF = K(nd+1:neq,1:nd); 
            K_F = K(nd+1:neq,nd+1:neq); 
            f_F = residual_F;  
            d_F = K_F\(f_F-K_EF*d_E); 
            U = U+[d_E;d_F]; 
             
            % Update current node position  
            for i = 1:nnd 
                x(i) = xi(i)+U(ID(ID2(i,1))); 
                y(i) = yi(i)+U(ID(ID2(i,2))); 
            end 
  
            if ODB(step).anchor == 0 
                Kac = zeros(neq); 
                F_ac = zeros(neq,1); 
            else 
                % Update current global stiffness matrix Kac from anchorage 
                Kac = Assembly_kac(eleac,epsilon2,ID,ID2,neq); 
                % Update residual force vector from anchorage contribution 
                F_ac = Assembly_F_aci(epsilon2,x,y,anchor_u,anchor_v,ID,ID2,eleac,neq); 
            end 
  
            % Update current global stiffness matrix Kns & Kts from contact contribution 
            % tangent stiffness matrix from normal contact 
            Kns = Assembly_kns(epsilon,x,y,ID,ID2,elec,neq); 
  
            % Update residual force vector from contact contribution 
            [F_c,slip2] = Assembly_F_ci2(epsilon,x,y,xi,yi,ID,ID2,elec,neq,slip,slip2,U,Mu); 
  
            % tangetn stiffness matrix from tagent contact 
            Kts = Assembly_kts2(epsilon,x,y,xi,yi,ID,ID2,elec,neq,Mu,slip2,slip,count2); 
  
            Kpst = Assembly_kpst(x,y,At,Lt,elet,neq,ID,ID2,Epst); 
            Kps = Assembly_kps(x,y,At,Lt,elet,neq,ID,ID2,Eps,U,ODB); 
  
            % Update tangential stiffness matrix from nonlinear beam element 
            % Update stiffness matrix from nonlinear beam element 
            Kbt = 
Assembly_kbt(ID,ID2,neq,x,y,eleb,Lb,U,concrete_stress,concrete_strain,A,S,I,hf,n_fiber,... 
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            steel_stress,steel_strain,zs,As,Ss,Is,Ect,Est); 
            Kb = 
Assembly_kb(ID,ID2,neq,x,y,eleb,Lb,U,concrete_stress,concrete_strain,A,S,I,hf,n_fiber,... 
            steel_stress,steel_strain,zs,As,Ss,Is,Ec,Es); 
  
            F_nc = (Ka+Kb+Kps)*U; 
            F = -F_ac+F_c+F_nc; 
  
            % Update equavilent force from tendon jacking appled at beam 
            F_jacking2 = zeros(neq,1); 
            if ODB(step).anchor == 0 
                for i = 1:size(eleac,1) 
                    F_jacking2(ID(ID2(eleac(i,2),1))) = -F_nc(ID(ID2(eleac(i,1),1))); 
                    F_jacking2(ID(ID2(eleac(i,2),2))) = -F_nc(ID(ID2(eleac(i,1),2))); 
                end 
            end 
  
            residual_F = -F(nd+1:neq)+residual_Fi+F_jacking1(nd+1:neq); 
            K = Ka+Kns+Kts+Kac+Kbt+Kpst;    
  
            % Convergence creteria 
            F_inter_norm = norm(F+F_ac); 
            F_err_norm = norm(residual_F); 
            Disp_all_norm = norm(U(nd+1:neq)); 
            Disp_inc_norm = norm(d_F); 
            F_norm_ratio = F_err_norm/F_inter_norm; % monitor this ratio while iteration 
            if Disp_inc_norm == 0 || (Disp_inc_norm == Disp_all_norm && step >= 2) 
                Disp_norm_ratio = 0.9*acur_ctrl; 
                F_norm_ratio = 0.9*acur_ctrl; 
            else 
                Disp_norm_ratio = Disp_inc_norm/Disp_all_norm; % monitor this ratio while iteration 
            end 
  
            % search optimal residual force factor  
            F_jacking3 = F_jacking2-F_jacking1; 
  
            if count2 <= iter_loop1 
                count4 = 0; 
                normtest = norm(residual_F)+1; 
                while normtest >= norm(residual_F) && count4 < 4 && norm(residual_F)>0 || 
isfinite(normtest) == 0 
                    residual_Ftrial = 1/(10^count4)*residual_F-F_jacking3(nd+1:neq); 
                    if normtest2 < 1 || flag2 == 1; 
                        residual_Ftest = Residual_Ftest(residual_Ftrial,K,nd,neq,d_E,xi,yi,ODB,... 
                     
step,epsilon,ID,ID2,elec,slip,slip2,Mu,Ka,F_jacking2,U,nnd,residual_Fi,epsilon2,anchor_u,ancho
r_v,eleac); 
                    flag2 = 1; 
                    else 
                        residual_Ftest = Residual_Ftest(residual_Ftrial,K,nd,neq,d_E,xi,yi,ODB,... 
                         
step,epsilon,ID,ID2,elec,slip,slip2,Mu,Ka,F_jacking2,U,nnd,residual_Fi,epsilon2,anchor_u,ancho
r_v,eleac); 
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                    end 
                    count4 = count4+1 
                    normtest = norm(residual_Ftest); 
                end     
            else 
  
                residual_Ftrial2 = residual_F; 
                residual_Ftest = Residual_Ftest(residual_F-
F_jacking3(nd+1:neq),K,nd,neq,d_E,xi,yi,ODB,... 
                 
step,epsilon,ID,ID2,elec,slip,slip2,Mu,Ka,F_jacking2,U,nnd,residual_Fi,epsilon2,anchor_u,ancho
r_v,eleac); 
                flag = 0; 
                count3 = 1; 
                residual_l = 0; 
                residual_r = residual_Ftrial2; 
                while flag < 1 
                    residual_Ftest_r = Residual_Ftest(1.1*residual_Ftrial2-
F_jacking3(nd+1:neq),K,nd,neq,d_E,xi,yi,ODB,... 
                    
step,epsilon,ID,ID2,elec,slip,slip2,Mu,Ka,F_jacking2,U,nnd,residual_Fi,epsilon2,anchor_u,ancho
r_v,eleac); 
                    residual_Ftest_l = Residual_Ftest(0.9*residual_Ftrial2-
F_jacking3(nd+1:neq),K,nd,neq,d_E,xi,yi,ODB,... 
                    
step,epsilon,ID,ID2,elec,slip,slip2,Mu,Ka,F_jacking2,U,nnd,residual_Fi,epsilon2,anchor_u,ancho
r_v,eleac); 
                    normtest_r = norm(residual_Ftest_r); 
                    normtest_l = norm(residual_Ftest_l); 
                    normtest = norm(residual_Ftest); 
                    if normtest_r > normtest && normtest > normtest_l 
                        residual_r = residual_Ftrial2; 
                        residual_Ftest = Residual_Ftest(0.5*(residual_l+residual_r)-
F_jacking3(nd+1:neq),K,nd,neq,d_E,xi,yi,ODB,... 
                    
step,epsilon,ID,ID2,elec,slip,slip2,Mu,Ka,F_jacking2,U,nnd,residual_Fi,epsilon2,anchor_u,ancho
r_v,eleac); 
                        residual_Ftrial = 0.5*(residual_l+residual_r)-F_jacking3(nd+1:neq); 
                        residual_Ftrial2 = residual_Ftrial+F_jacking3(nd+1:neq); 
                    elseif normtest_r < normtest && normtest < normtest_l 
                        if count3 == 1 
                            count1 = 1; 
                            while normtest_r < normtest && normtest < normtest_l 
                                residual_r = 10^count1*residual_F; 
                                residual_Ftest = Residual_Ftest(residual_r-
F_jacking3(nd+1:neq),K,nd,neq,d_E,xi,yi,ODB,... 
                                  
step,epsilon,ID,ID2,elec,slip,slip2,Mu,Ka,F_jacking2,U,nnd,residual_Fi,epsilon2,anchor_u,ancho
r_v,eleac); 
                                residual_Ftest_r = Residual_Ftest(1.1*residual_r-
F_jacking3(nd+1:neq),K,nd,neq,d_E,xi,yi,ODB,... 
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step,epsilon,ID,ID2,elec,slip,slip2,Mu,Ka,F_jacking2,U,nnd,residual_Fi,epsilon2,anchor_u,ancho
r_v,eleac); 
                                residual_Ftest_l = Residual_Ftest(0.9*residual_r-
F_jacking3(nd+1:neq),K,nd,neq,d_E,xi,yi,ODB,... 
                                
step,epsilon,ID,ID2,elec,slip,slip2,Mu,Ka,F_jacking2,U,nnd,residual_Fi,epsilon2,anchor_u,ancho
r_v,eleac); 
                                normtest_r = norm(residual_Ftest_r); 
                                normtest_l = norm(residual_Ftest_l); 
                                normtest = norm(residual_Ftest); 
                                count1 = count1+1; 
                            end 
                            residual_Ftest = Residual_Ftest(0.5*(residual_F+residual_r)-
F_jacking3(nd+1:neq),K,nd,neq,d_E,xi,yi,ODB,... 
                        
step,epsilon,ID,ID2,elec,slip,slip2,Mu,Ka,F_jacking2,U,nnd,residual_Fi,epsilon2,anchor_u,ancho
r_v,eleac); 
                            residual_Ftrial = 0.5*(residual_F+residual_r)-F_jacking3(nd+1:neq); 
                            residual_Ftrial2 = residual_Ftrial+F_jacking3(nd+1:neq); 
                        else 
                            residual_l = residual_Ftrial2; 
                            residual_Ftest = Residual_Ftest(0.5*(residual_l+residual_r)-
F_jacking3(nd+1:neq),K,nd,neq,d_E,xi,yi,ODB,... 
                        
step,epsilon,ID,ID2,elec,slip,slip2,Mu,Ka,F_jacking2,U,nnd,residual_Fi,epsilon2,anchor_u,ancho
r_v,eleac); 
                            residual_Ftrial = 0.5*(residual_l+residual_r)-F_jacking3(nd+1:neq); 
                            residual_Ftrial2 = residual_Ftrial+F_jacking3(nd+1:neq); 
                        end 
                    else 
                        flag = 1; 
                    end 
                    count3 = count3+1; 
                end 
            end 
  
            normtest = norm(residual_Ftest) 
            normf = norm(residual_F) 
  
            if count2 > 1 
            normfinc = normf2 - normf; 
            end 
            normf2 = normf; 
            normtest2 = normtest; 
  
            if norm(residual_F)>0 
                residual_F = residual_Ftrial+F_jacking3(nd+1:neq); 
            end 
            F_jacking1 = F_jacking2; 
            count2 = count2+1 
        end; 
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    elseif count5 >= 2 
        while (F_norm_ratio >= acur_ctrl || Disp_norm_ratio >= acur_ctrl) && count2 <= 
iter_loop2 && normf >= 1 
            if count2 > 1 
                d_E = zeros(nd,1); 
            end     
             
            % Calculate displacement increase vector d_F  
            K_EF = K(nd+1:neq,1:nd); 
            K_F = K(nd+1:neq,nd+1:neq); 
            f_F = residual_F;  
            d_F = K_F\(f_F-K_EF*d_E); 
  
            % Calculate residual force vector f_F 
            % Calculate current displacement U = U+d_F 
            U = U+[d_E;d_F]; 
  
            % Update current node position  
            for i = 1:nnd 
                x(i) = xi(i)+U(ID(ID2(i,1))); 
                y(i) = yi(i)+U(ID(ID2(i,2))); 
            end 
  
            if ODB(step).anchor == 0 
                Kac = zeros(neq); 
                F_ac = zeros(neq,1); 
            else 
                % Update current global stiffness matrix Kac from anchorage 
                Kac = Assembly_kac(eleac,epsilon2,ID,ID2,neq); 
                % Update residual force vector from anchorage contribution 
                F_ac = Assembly_F_aci(epsilon2,x,y,anchor_u,anchor_v,ID,ID2,eleac,neq); 
            end 
  
            % Update current global stiffness matrix Kns & Kts from contact contribution 
            % tangent stiffness matrix from normal contact 
            Kns = Assembly_kns(epsilon,x,y,ID,ID2,elec,neq); 
  
            % Update residual force vector from contact contribution 
            [F_c,slip2] = Assembly_F_ci3(epsilon,x,y,xi,yi,ID,ID2,elec,neq,slip,slip2,U,Mu); 
  
            % tangetn stiffness matrix from tagent contact 
            Kts = Assembly_kts4(epsilon,x,y,xi,yi,ID,ID2,elec,neq,Mu,slip2,slip,count2); 
  
            % Tangent stiffness matrix from truss (constant considering elasticity and linear 
geometry) 
            Kpst = Assembly_kpst(x,y,At,Lt,elet,neq,ID,ID2,Epst); 
            Kps = Assembly_kps(x,y,At,Lt,elet,neq,ID,ID2,Eps,U,ODB); 
  
            % Update tangential stiffness matrix from nonlinear beam element 
            % Update stiffness matrix from nonlinear beam element 
            Kbt = 
Assembly_kbt(ID,ID2,neq,x,y,eleb,Lb,U,concrete_stress,concrete_strain,A,S,I,hf,n_fiber,... 
            steel_stress,steel_strain,zs,As,Ss,Is,Ect,Est); 
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            Kb = 
Assembly_kb(ID,ID2,neq,x,y,eleb,Lb,U,concrete_stress,concrete_strain,A,S,I,hf,n_fiber,... 
            steel_stress,steel_strain,zs,As,Ss,Is,Ec,Es); 
  
            % Update residual force vector from non-contact contribution 
            F_nc = (Ka+Kb+Kps)*U; 
            F = -F_ac+F_c+F_nc; 
  
            % Update equavilent force from tendon jacking appled at beam 
            F_jacking2 = zeros(neq,1); 
            if ODB(step).anchor == 0 
                for i = 1:size(eleac,1) 
                    F_jacking2(ID(ID2(eleac(i,2),1))) = -F_nc(ID(ID2(eleac(i,1),1))); 
                    F_jacking2(ID(ID2(eleac(i,2),2))) = -F_nc(ID(ID2(eleac(i,1),2))); 
                end 
            end 
             
            residual_F = -F(nd+1:neq)+residual_Fi+F_jacking1(nd+1:neq); 
            K = Ka+Kns+Kts+Kac+Kbt+Kpst;    
  
            % Convergence creteria 
            F_inter_norm = norm(F+F_ac); 
            F_err_norm = norm(residual_F); 
            Disp_all_norm = norm(U(nd+1:neq)); 
            Disp_inc_norm = norm(d_F); 
            F_norm_ratio = F_err_norm/F_inter_norm; % monitor this ratio while iteration 
            if Disp_inc_norm == 0 || (Disp_inc_norm == Disp_all_norm && step >= 2) 
                Disp_norm_ratio = 0.9*acur_ctrl; 
                F_norm_ratio = 0.9*acur_ctrl; 
            else 
                Disp_norm_ratio = Disp_inc_norm/Disp_all_norm; % monitor this ratio while iteration 
            end 
  
            % search optimal residual force factor  
            F_jacking3 = F_jacking2-F_jacking1; 
  
            if count2 <= iter_loop2 
  
                count4 = 0; 
                normtest = norm(residual_F)+1; 
                while normtest >= norm(residual_F) && count4 < 4 && norm(residual_F)>0 || 
isfinite(normtest) == 0 
                    residual_Ftrial = 1/(10^count4)*residual_F-F_jacking3(nd+1:neq); 
                    if normtest2 < 1 || flag2 == 1; 
                        residual_Ftest = Residual_Ftest(residual_Ftrial,K,nd,neq,d_E,xi,yi,ODB,... 
                     
step,epsilon,ID,ID2,elec,slip,slip2,Mu,Ka,F_jacking2,U,nnd,residual_Fi,epsilon2,anchor_u,ancho
r_v,eleac); 
                    flag2 = 1; 
                    else 
                        residual_Ftest = Residual_Ftest(residual_Ftrial,K,nd,neq,d_E,xi,yi,ODB,... 
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step,epsilon,ID,ID2,elec,slip,slip2,Mu,Ka,F_jacking2,U,nnd,residual_Fi,epsilon2,anchor_u,ancho
r_v,eleac); 
                    end 
                    count4 = count4+1 
                    normtest = norm(residual_Ftest); 
                    if count4 == 5 
                        count41 = 0; 
                        normtest = norm(residual_F)+1; 
                        while normtest >= norm(residual_F) && count41 < 3 
                            residual_Ftrial = count41*residual_F-F_jacking3(nd+1:neq); 
                            residual_Ftest = Residual_Ftest(residual_Ftrial,K,nd,neq,d_E,xi,yi,ODB,... 
                                
step,epsilon,ID,ID2,elec,slip,slip2,Mu,Ka,F_jacking2,U,nnd,residual_Fi,epsilon2,anchor_u,ancho
r_v,eleac); 
                                flag2 = 1; 
                            count41 = count41+1; 
                            normtest = norm(residual_Ftest); 
                        end 
                    end 
                end     
            else 
  
            % line search 
                residual_Ftrial2 = residual_F; 
                residual_Ftest = Residual_Ftest(residual_F-
F_jacking3(nd+1:neq),K,nd,neq,d_E,xi,yi,ODB,... 
                 
step,epsilon,ID,ID2,elec,slip,slip2,Mu,Ka,F_jacking2,U,nnd,residual_Fi,epsilon2,anchor_u,ancho
r_v,eleac); 
                flag = 0; 
                count3 = 1; 
                residual_l = 0; 
                residual_r = residual_Ftrial2; 
                while flag < 1 
                    residual_Ftest_r = Residual_Ftest(1.1*residual_Ftrial2-
F_jacking3(nd+1:neq),K,nd,neq,d_E,xi,yi,ODB,... 
                    
step,epsilon,ID,ID2,elec,slip,slip2,Mu,Ka,F_jacking2,U,nnd,residual_Fi,epsilon2,anchor_u,ancho
r_v,eleac); 
                    residual_Ftest_l = Residual_Ftest(0.9*residual_Ftrial2-
F_jacking3(nd+1:neq),K,nd,neq,d_E,xi,yi,ODB,... 
                    
step,epsilon,ID,ID2,elec,slip,slip2,Mu,Ka,F_jacking2,U,nnd,residual_Fi,epsilon2,anchor_u,ancho
r_v,eleac); 
                    normtest_r = norm(residual_Ftest_r); 
                    normtest_l = norm(residual_Ftest_l); 
                    normtest = norm(residual_Ftest); 
                    if normtest_r > normtest && normtest > normtest_l 
                        residual_r = residual_Ftrial2; 
                        residual_Ftest = Residual_Ftest(0.5*(residual_l+residual_r)-
F_jacking3(nd+1:neq),K,nd,neq,d_E,xi,yi,ODB,... 
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step,epsilon,ID,ID2,elec,slip,slip2,Mu,Ka,F_jacking2,U,nnd,residual_Fi,epsilon2,anchor_u,ancho
r_v,eleac); 
                        residual_Ftrial = 0.5*(residual_l+residual_r)-F_jacking3(nd+1:neq); 
                        residual_Ftrial2 = residual_Ftrial+F_jacking3(nd+1:neq); 
                    elseif normtest_r < normtest && normtest < normtest_l 
                        if count3 == 1 
                            count1 = 1; 
                            while normtest_r < normtest && normtest < normtest_l 
                                residual_r = 10^count1*residual_F; 
                                residual_Ftest = Residual_Ftest(residual_r-
F_jacking3(nd+1:neq),K,nd,neq,d_E,xi,yi,ODB,... 
                                  
step,epsilon,ID,ID2,elec,slip,slip2,Mu,Ka,F_jacking2,U,nnd,residual_Fi,epsilon2,anchor_u,ancho
r_v,eleac); 
                                residual_Ftest_r = Residual_Ftest(1.1*residual_r-
F_jacking3(nd+1:neq),K,nd,neq,d_E,xi,yi,ODB,... 
                                
step,epsilon,ID,ID2,elec,slip,slip2,Mu,Ka,F_jacking2,U,nnd,residual_Fi,epsilon2,anchor_u,ancho
r_v,eleac); 
                                residual_Ftest_l = Residual_Ftest(0.9*residual_r-
F_jacking3(nd+1:neq),K,nd,neq,d_E,xi,yi,ODB,... 
                                
step,epsilon,ID,ID2,elec,slip,slip2,Mu,Ka,F_jacking2,U,nnd,residual_Fi,epsilon2,anchor_u,ancho
r_v,eleac); 
                                normtest_r = norm(residual_Ftest_r); 
                                normtest_l = norm(residual_Ftest_l); 
                                normtest = norm(residual_Ftest); 
                                count1 = count1+1; 
                            end 
                            residual_Ftest = Residual_Ftest(0.5*(residual_F+residual_r)-
F_jacking3(nd+1:neq),K,nd,neq,d_E,xi,yi,ODB,... 
                        
step,epsilon,ID,ID2,elec,slip,slip2,Mu,Ka,F_jacking2,U,nnd,residual_Fi,epsilon2,anchor_u,ancho
r_v,eleac); 
                            residual_Ftrial = 0.5*(residual_F+residual_r)-F_jacking3(nd+1:neq); 
                            residual_Ftrial2 = residual_Ftrial+F_jacking3(nd+1:neq); 
                        else 
                            residual_l = residual_Ftrial2; 
                            residual_Ftest = Residual_Ftest(0.5*(residual_l+residual_r)-
F_jacking3(nd+1:neq),K,nd,neq,d_E,xi,yi,ODB,... 
                        
step,epsilon,ID,ID2,elec,slip,slip2,Mu,Ka,F_jacking2,U,nnd,residual_Fi,epsilon2,anchor_u,ancho
r_v,eleac); 
                            residual_Ftrial = 0.5*(residual_l+residual_r)-F_jacking3(nd+1:neq); 
                            residual_Ftrial2 = residual_Ftrial+F_jacking3(nd+1:neq); 
                        end 
                    else 
                        flag = 1; 
                    end 
                    count3 = count3+1; 
                end 
            end 
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            normtest = norm(residual_Ftest) 
            normf = norm(residual_F) 
  
            if count2 > 1 
            normfinc = normf2 - normf; 
            end 
            normf2 = normf; 
            normtest2 = normtest; 
  
            if norm(residual_F)>0 
                residual_F = residual_Ftrial+F_jacking3(nd+1:neq); 
            end 
            F_jacking1 = F_jacking2; 
            count2 = count2+1 
        end 
    end 
    count5 = count5+1 
end 
  
  
if count2 < iter_loop2 && (normfinc > 0 || F_norm_ratio < acur_ctrl || normf < 100)%&& 
normtest/normf > .001 %%&& normtest < 5000 
    % Transfer U residual_F from new node ordering to origional ordering 
    Uo = Reorder2(ID,U); 
    residual_F2 = -F+[zeros(nd,1);residual_Fi]; 
    residual_Fo = Reorder2(ID,residual_F2); 
  
    % Update new residual froce and displacement vector to model database (ODB) 
    % Update initial displacement vector 
    ODB(step+1) = ODB(step); 
    ODB(step+1).slip = slip2; 
    ODB = ODBUpdate(ODB,step,Uo,residual_Fo); 
end 
  
% test code added here:  
 
 
Na_matrixBeam.m 
% Shape functions of axial deformation in the natural coordinate s 
 function Na = Na_matrixBeam(s) 
     Na(1)=0.5*(1-s); 
     Na(2)=0; 
     Na(3)=0; 
     Na(4)=0.5*(s+1); 
     Na(5)=0; 
     Na(6)=0;    
 
 
NmatrixBeam.m 
% Shape functions in the natural coordinate s 
 function N = NmatrixBeam(s,L) 
     N(1)=0; 
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     N(2)=1/4*(1-s)^2*(2+s); 
     N(3)=L/8*(1-s)^2*(1+s); 
     N(4)=0; 
     N(5)=1/4*(1+s)^2*(2-s); 
     N(6)=L/8*(1+s)^2*(s-1);    
 
 
NmatrixBeam1.m 
% Shape functions in the natural coordinate s 
 function N = NmatrixBeam1(s,L) 
     N(1)=0; 
     N(2)=1/4*(3*s^2-3); 
     N(3)=L/8*(3*s^2-2*s+1); 
     N(4)=0; 
     N(5)=1/4*(-3*s^2+3); 
     N(6)=L/8*(3*s^2+2*s-1);    
 
 
NodeMapping.m 
% Genereate NodeMapping array 
function [ID,d] = NodeMapping(nnd,nd,dof,flags,e_bc) 
count = 0; 
count1 = 0; 
count2 = 1; 
for i = 1:nnd 
    for j = 1:dof(i) 
       if flags(i,j) == 2               % check if essential boundary 
         count = count + 1; 
         ID(count2) = count;               % number first the degrees-of-freedom on essential boundary 
         d(count)= e_bc(j,i);           % store the reordered values of essential B.C 
       elseif flags(i,j) == 1 
         count1 = count1 + 1; 
         ID(count2) = nd + count1; 
       end 
       count2 = count2 + 1; 
    end 
end 
d = d'; 
 
 
NodeMapping2.m 
% Genereate ID2 array 
function ID2 = NodeMapping2(nnd,dof) 
ID2 = zeros(nnd,3); 
count = 0; 
for i = 1:nnd 
    if dof(i) == 2                % check if node on slide line 
        for j = 1:2    
            ID2(i,j) = count+1; 
            count = count+1; 
        end 
    else 
        for j = 1:3 
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            ID2(i,j) = count+1; 
            count = count+1; 
        end 
    end 
end 
 
 
ODBUpdate.m 
% Update output database 
function ODB = ODBUpdate(ODB,step,Uo,residual_Fo) 
for i = 1 : ODB(step).nnd 
    if ODB(step).ID2(i,1)>0 && ODB(step).ID2(i,2)>0 && ODB(step).ID2(i,3)>0 
        ODB(step+1).Node.U(i) = Uo(ODB(step).ID2(i,1)); 
        ODB(step+1).Node.V(i) = Uo(ODB(step).ID2(i,2)); 
        ODB(step+1).Node.T(i) = Uo(ODB(step).ID2(i,3)); 
    else 
        ODB(step+1).Node.U(i) = Uo(ODB(step).ID2(i,1)); 
        ODB(step+1).Node.V(i) = Uo(ODB(step).ID2(i,2)); 
        ODB(step+1).Node.T(i) = 0; 
    end 
end 
  
for i = 1 : ODB(step).nnd 
    if ODB(step).ID2(i,1)>0 && ODB(step).ID2(i,2)>0 && ODB(step).ID2(i,3)>0 
        ODB(step+1).Node.Fx_residual(i) = residual_Fo(ODB(step).ID2(i,1)); 
        ODB(step+1).Node.Fy_residual(i) = residual_Fo(ODB(step).ID2(i,2)); 
        ODB(step+1).Node.M_residual(i) = residual_Fo(ODB(step).ID2(i,3)); 
    else 
        ODB(step+1).Node.Fx_residual(i) = residual_Fo(ODB(step).ID2(i,1)); 
        ODB(step+1).Node.Fy_residual(i) = residual_Fo(ODB(step).ID2(i,2)); 
        ODB(step+1).Node.M_residual(i) = 0; 
    end 
end 
 
 
Output_fps.m 
% Calculate stress in tendons.X 
function fps = Output_fps(ODB,step) %ElementNodes,NodeX,NodeY) % Node Label, X 
coordinates, Y coordinates) 
L_old = 
ElementLength(ODB(step).TrussElement.Nodes,ODB(step).Node.X,ODB(step).Node.Y); 
L_new = 
ElementLength(ODB(step).TrussElement.Nodes,ODB(step).Node.X+ODB(step).Node.U,ODB(st
ep).Node.Y+ODB(step).Node.V); 
for i = 1:size(ODB(step).TrussElement.Nodes,1) 
    fps(i) = (L_new(i)-L_old(i))/L_old(i)*ODB(step).TrussElement.E(i); 
end 
 
 
Reorder.m 
% Switch node ordering from initial oder to equation order 
function newordering = Reorder(ID,oldordering) 
for i = 1:size(oldordering,1) 
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    newordering(ID(i),1) = oldordering(i); 
end 
 
Reorder2.m 
% Switch node ordering from equation order to initial order 
function newordering = Reorder2(ID,oldordering) 
for i = 1:size(oldordering,1) 
    newordering(i,1) = oldordering(ID(i)); 
end 
 
 
Residual_Ftest.m 
% Nonlinear beam stiffness matrix is removed for speeding up 
function residual_Ftest = Residual_Ftest(residual_Ftrial,K,nd,neq,d_E,xi,yi,ODB,... 
    
step,epsilon,ID,ID2,elec,slip,slip2,Mu,Ka,F_jacking2,U,nnd,residual_Fi,epsilon2,anchor_u,ancho
r_v,eleac) 
        % concrete unaxial stress-strain 
        concrete_stress = ODB(step).Material.Concrete(:,1)'; 
        concrete_strain = ODB(step).Material.Concrete(:,2)'; 
        % extend stress-strain curve 
        concrete_stress = 
[concrete_stress(1),concrete_stress,concrete_stress(size(concrete_stress,2))]; 
        concrete_strain = 
[10*concrete_strain(1),concrete_strain,10*concrete_strain(size(concrete_strain,2))]; 
  
        % concrete beam section geometry 
        n_fiber = ODB(step).BeamElement.n; 
        hf = ODB(step).BeamElement.hf; 
        A = ODB(step).BeamElement.A; 
        S = ODB(step).BeamElement.S; 
        I = ODB(step).BeamElement.I; 
         
        % non-prestressed steel unaxial stress-strain 
        steel_stress = ODB(step).Material.Steel(:,1)'; 
        steel_strain = ODB(step).Material.Steel(:,2)'; 
        % extend stress-strain curve 
        steel_stress = [steel_stress(1),steel_stress,steel_stress(size(steel_stress,2))]; 
        steel_strain = [10*steel_strain(1),steel_strain,10*steel_strain(size(steel_strain,2))]; 
  
        % non-prestressed steel geometry 
        zs = ODB(step).BeamElement.zs; 
        As = ODB(step).BeamElement.As; 
        Ss = ODB(step).BeamElement.Ss; 
        Is = ODB(step).BeamElement.Is; 
         
        Ec = ODB(step).Material.Ec; 
        Es = ODB(step).Material.Es; 
        Eps = ODB(step).Material.Eps; 
         
        Lb = ODB(step).BeamElement.Length; 
        eleb = ODB(step).BeamElement.Nodes;  
         



307 

 

        Et = ODB(step).TrussElement.E(1); 
        At = ODB(step).TrussElement.A(1); 
        Eemb = ODB(step).EmbeddingElement.E(1); 
        Aemb = ODB(step).EmbeddingElement.A(1); 
        Iemb = ODB(step).EmbeddingElement.I(1); 
        Lt = ODB(step).TrussElement.Length; 
        Lemb = ODB(step).EmbeddingElement.Length; 
        elet = ODB(step).TrussElement.Nodes; 
        eleemb = ODB(step).EmbeddingElement.Nodes; 
         
        % Determine if it is the first loop for displacement increase vector 
        d_E = zeros(nd,1);         
  
        % Calculate displacement increase vector d_F  
        K_EF = K(nd+1:neq,1:nd); 
        K_F = K(nd+1:neq,nd+1:neq); 
        f_F = residual_Ftrial;  
        d_F = K_F\(f_F-K_EF*d_E); 
        d_Fftest = d_F; 
  
        % Calculate residual force vector f_F 
        % Calculate current displacement U = U+d_F 
        U2 = U+[d_E;d_F]; 
  
        % Update current node position  
        for i = 1:nnd 
            x2(i) = xi(i)+U2(ID(ID2(i,1))); 
            y2(i) = yi(i)+U2(ID(ID2(i,2))); 
        end 
  
        % Update residual force vector from anchorage contribution 
        if ODB(step).anchor == 0 
            F_ac = zeros(neq,1); 
        else 
            % Update residual force vector from anchorage contribution 
            F_ac = Assembly_F_aci(epsilon2,x2,y2,anchor_u,anchor_v,ID,ID2,eleac,neq); 
        end 
        %F_ac = Assembly_F_aci(epsilon2,x2,y2,anchor_u,anchor_v,ID,ID2,eleac,neq); 
        [F_c,slip3] = Assembly_F_ci2(epsilon,x2,y2,xi,yi,ID,ID2,elec,neq,slip,slip2,U2,Mu);   
         
        % Tangent stiffness matrix from truss (constant considering elasticity and linear geometry)         
        Kps = Assembly_kps(x2,y2,At,Lt,elet,neq,ID,ID2,Eps,U,ODB); 
  
        % Update stiffness maxtrix from nonlienar beam 
        Kb = 
Assembly_kb(ID,ID2,neq,x2,y2,eleb,Lb,U2,concrete_stress,concrete_strain,A,S,I,hf,n_fiber,... 
            steel_stress,steel_strain,zs,As,Ss,Is,Ec,Es); 
        % Update residual force vector from non-contact contribution 
        F_nc = (Ka+Kb+Kps)*U2; 
        F = -F_ac+F_c+F_nc; 
         
        % Update equavilent force from tendon jacking appled at beam 
        F_jacking2 = zeros(neq,1); 
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        if ODB(step).anchor == 0 
            for i = 1:size(eleac,1) 
                F_jacking2(ID(ID2(eleac(i,2),1))) = -F_nc(ID(ID2(eleac(i,1),1))); 
                F_jacking2(ID(ID2(eleac(i,2),2))) = -F_nc(ID(ID2(eleac(i,1),2))); 
            end 
        end 
         
        residual_Ftest = -F(nd+1:neq)+residual_Fi+F_jacking2(nd+1:neq); 
 
 
Slip_array.m 
% Initiate node-slip array 
function slip = Slip_array(ODB,step) 
  
for i = 1:size(ODB(step).ContactElement.Nodes,1) 
    slip(i,1) = ODB(step).ContactElement.Nodes(i,1); 
    slip(i,2) = 0; 
end 
  
 
slopinterpolator.m 
%stress-strain intepoator 
function [E,Et] = slopinterpolator(stress,strain,stress0,strain0,E0) 
E = zeros(2,size(stress,2)); 
Et = zeros(2,size(stress,2)); 
  
for loop1 = 1:2 
    for loop2 = 1:size(stress,2) 
        if strain(loop1,loop2) == 0  
            E(loop1,loop2) = E0; 
            Et(loop1,loop2) = E0; 
        else 
            E(loop1,loop2) = stress(loop1,loop2)/strain(loop1,loop2); 
            Et(loop1,loop2) = (interp1(strain0,stress0,strain(loop1,loop2)+0.000001)... 
                -interp1(strain0,stress0,strain(loop1,loop2)-0.000001))/0.000002; 
        end 
    end 
end 
 
 
SmatrixBeam.m 
% Second derivative of the shape functions with repsect to 's' in the natural coordinate s 
function B = SmatrixBeam(s,L) 
     B(1)=0; 
     B(2)=3/2*s; 
     B(3)=L*(3/4*s-1/4); 
     B(4)=0; 
     B(5)=-3/2*s; 
     B(6)=L*(3/4*s+1/4); 
 
 
Transform.m 
% Coordinates transformation matrix 
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function T = TransformB(a) 
    T = [cos(a),sin(a),0,0,0,0;-sin(a),cos(a),0,0,0,0;0,0,1,0,0,0;0,0,0,cos(a),sin(a),0;0,0,0,-
sin(a),cos(a),0;0,0,0,0,0,1]; 
 
 
TransformB.m 
% Coordinates transformation matrix 
function T = TransformB(a) 
    T = [cos(a),sin(a),0,0,0,0;-sin(a),cos(a),0,0,0,0;0,0,1,0,0,0;0,0,0,cos(a),sin(a),0;0,0,0,-
sin(a),cos(a),0;0,0,0,0,0,1]; 
 
 
TransformT.m 
% Coordinates transformation matrix 
function T = TransformT(a) 
    T = [cos(a),sin(a),0,0;-sin(a),cos(a),0,0;0,0,cos(a),sin(a);0,0,-sin(a),cos(a)]; 
 
 
TransformTB.m 
% Coordinates transformation matrix 
function T = TransformTB(a) 
    T = [cos(a),sin(a),0,0,0;-sin(a),cos(a),0,0,0;0,0,cos(a),sin(a),0;0,0,-sin(a),cos(a),0;0,0,0,0,1]; 
 
 
Post-processing: 
plotcrack.m 
% Postprocessing crack 
function  plotcrack(ODB,step,ten_limit,comp_limit) 
  
deformscale = 5; 
ID = ODB(step).ID; 
ID2 = ODB(step).ID2; 
eleb = ODB(step).BeamElement.Nodes; 
x = ODB(step).Node.X+ODB(step).Node.U; 
y = ODB(step).Node.Y+ODB(step).Node.V; 
xi = ODB(step).Node.X; 
Lb = ODB(step).BeamElement.Length; 
Uo = InitialCondition(ODB(step).Node.U,ODB(step).Node.V,... 
    ODB(step).Node.T,ODB(step).Node.Boundary); 
U = Reorder(ID,Uo); 
n = ODB(step).BeamElement.n; 
hf = ODB(step).BeamElement.hf; 
zs = ODB(step).BeamElement.zs; 
Ec = ODB(step).Material.Ec; 
Esteel = ODB(step).Material.Es; 
S_cm = zeros(2,n); 
  
fig1 = figure('Position',[100 100 1000 600]); 
  
  
for i = 1 :size(eleb,1) 
     
    %transfor local coordinates to global coordinates 
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    xe = [x(eleb(i,1)),x(eleb(i,2))]; 
    ye = [y(eleb(i,1)),y(eleb(i,2))]; 
    xei = [xi(eleb(i,1)),xi(eleb(i,2))]; 
    plotx = [(xei(1)+xei(2))/2*ones(1,n)-abs(xei(1)-
xei(2))/2*0.577350269;(xei(1)+xei(2))/2*ones(1,n)+abs(xei(1)-xei(2))/2*0.577350269]; 
    ploty = [-hf;-hf]; 
    if (xe(2) - xe(1)) >= 0; 
        a = 2*pi+atan((ye(2)-ye(1))/(xe(2)-xe(1))); 
    else 
        a = pi+atan((ye(2)-ye(1))/(xe(2)-xe(1))); 
    end 
     
    % extract displacement vector for each nonlinear beam element 
    Ue = TransformB(a)*[U(ID(ID2(eleb(i,1),1)));... 
        U(ID(ID2(eleb(i,1),2)));... 
        U(ID(ID2(eleb(i,1),3)));... 
        U(ID(ID2(eleb(i,2),1)));... 
        U(ID(ID2(eleb(i,2),2)));... 
        U(ID(ID2(eleb(i,2),3)))]; 
     
     Ue2 = [U(ID(ID2(eleb(i,1),1)));... 
        U(ID(ID2(eleb(i,1),2)));... 
        U(ID(ID2(eleb(i,1),3)));... 
        U(ID(ID2(eleb(i,2),1)));... 
        U(ID(ID2(eleb(i,2),2)));... 
        U(ID(ID2(eleb(i,2),3)))]; 
     
    le = Lb(i); 
     
    % compute B matrix for 6 Gauss pts within one element 
    B = zeros(2,6,2); 
    Xi = [-0.577350269,0.577350269]; % 2 pts Gauss quadrature 
    W = [1,1]; % weights 
     
    N1 = NmatrixBeam(Xi(1),le);              % shape functions of bending deformation 
    Ns1 = NmatrixBeam1(Xi(1),le);                 % shape functions of bending slop 
    Na1 = Na_matrixBeam(Xi(1));               % shape functions of axial deformation 
    N2 = NmatrixBeam(Xi(2),le);              % shape functions of bending deformation 
    Ns2 = NmatrixBeam1(Xi(2),le);                 % shape functions of bending slop 
    Na2 = Na_matrixBeam(Xi(2));               % shape functions of axial deformation 
     
    slop = [Ns1*Ue2, Ns2*Ue2]*2/le*deformscale; 
    xe2 = [Na1*Ue2, Na2*Ue2]*deformscale; 
    ye2 = [N1*Ue2, N2*Ue2]*deformscale; 
     
     
    if (xe(2) - xe(1)) >= 0; 
        plotx2 = [(xei(1)+xei(2))/2-0.577350269*abs(xei(1)-
xei(2))/2+xe2(1)*ones(1,n)+hf*slop(1)/sqrt(1+slop(1)^2);... 
        (xei(1)+xei(2))/2+0.577350269*abs(xei(1)-
xei(2))/2+xe2(2)*ones(1,n)+hf*slop(2)/sqrt(1+slop(2)^2)]; 
    else 
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        plotx2 = [(xei(1)+xei(2))/2-0.577350269*abs(xei(1)-xei(2))/2+xe2(1)*ones(1,n)-
hf*slop(1)/sqrt(1+slop(1)^2);... 
        (xei(1)+xei(2))/2+0.577350269*abs(xei(1)-xei(2))/2+xe2(2)*ones(1,n)-
hf*slop(2)/sqrt(1+slop(2)^2)]; 
    end 
     
    if slop(1) == 0 && slop(2) == 0 
        ploty2 = [ye2(1)*ones(1,n)-hf;ye2(2)*ones(1,n)-hf]; 
    else 
        if (ye(2) - ye(1)) >= 0; 
            ploty2 = [ye2(1)*ones(1,n)-hf*1/sqrt(1+slop(1)^2)*sign(slop(1));... 
                ye2(2)*ones(1,n)-hf*1/sqrt(1+slop(2)^2)*sign(slop(2))]; 
        else 
            ploty2 = [ye2(1)*ones(1,n)+hf*1/sqrt(1+slop(1)^2)*sign(slop(1));... 
                ye2(2)*ones(1,n)+hf*1/sqrt(1+slop(2)^2)*sign(slop(2))]; 
        end 
    end 
        
    epsilon_e = zeros(2,2); 
    for loop3 = 1:2 
        B(:,:,loop3) = 1/le*[-1,0,0,1,0,0;0,6*Xi(loop3)/le,3*Xi(loop3)-1,0,-
6*Xi(loop3)/le,3*Xi(loop3)+1]; 
        epsilon_e(:,loop3) = B(:,:,loop3)*Ue; 
    end 
  
    epsilon_0 = epsilon_e(1,:)'*ones(1,n);  % axial strain on the ref axis (constant through one 
element) 
    culvature = epsilon_e(2,:); 
    epsilon_0s = epsilon_e(1,:)'*ones(1,size(zs,2));  
  
    epsilon_c = epsilon_0+[culvature(1)*hf;culvature(2)*hf];    % column stands for each fiber 
section, row stands for each integration pts 
    epsilon_s = epsilon_0s+[culvature(1)*zs;culvature(2)*zs];  
  
    E = interp1(Ec(2,:),Ec(1,:),epsilon_c); 
    Es = interp1(Esteel(2,:),Esteel(1,:),epsilon_s); 
    S_c = epsilon_c.*E; 
  
    for loop10 = 1:2 
        for loop11 = 1:n 
            if epsilon_c(loop10,loop11) <= -comp_limit 
                S_cm(loop10,loop11) = 1; 
                
plot(plotx2(loop10,loop11),ploty2(loop10,loop11),'Marker','+','MarkerSize',6,'MarkerEdgeColor',
'r'); 
                hold on; 
            elseif epsilon_c(loop10,loop11) >= ten_limit 
                S_cm(loop10,loop11) = 2; 
                
plot(plotx2(loop10,loop11),ploty2(loop10,loop11),'Marker','+','MarkerSize',6,'MarkerEdgeColor',
'b'); 
                hold on; 
            else 
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plot(plotx2(loop10,loop11),ploty2(loop10,loop11),'Marker','+','MarkerSize',4,'MarkerEdgeColor',
[.5,.5,.5]); 
                hold on; 
            end 
        end 
    end 
end 
  
set(gca, 'XLim', [min(ODB(step).Node.X)-(max(ODB(step).Node.X)-
min(ODB(step).Node.X))/10,... 
    max(ODB(step).Node.X)+(max(ODB(step).Node.X)-min(ODB(step).Node.X))/10]); 
set(gca, 'YLim', [min(ODB(step).Node.Y)-(max(ODB(step).Node.Y)-
min(ODB(step).Node.Y))/.1,... 

max(ODB(step).Node.Y)+(max(ODB(step).Node.Y)-min(ODB(step).Node.Y))/.1]); 
 
 
plotdisp.m 
% plot displacement and tendon stress 
function  plotdisp(ODB,step) 
elet = ODB(step).TrussElement.Nodes; 
eleb = ODB(step).BeamElement.Nodes; 
eleemb = ODB(step).EmbeddingElement.Nodes; 
xi = ODB(1).Node.X; 
yi = ODB(1).Node.Y; 
  
ID = ODB(step).ID; 
ID2 = ODB(step).ID2; 
Lt = ODB(1).TrussElement.Length; 
U = ODB(step).Node.U; 
V = ODB(step).Node.V; 
  
x2 = ODB(1).Node.X; 
y2 = ODB(1).Node.Y; 
  
deformscale = 5; 
nplot = 10; 
figure(10) 
  
e_truss = zeros(size(ODB(step).TrussElement.Nodes,1),1); 
s_truss = zeros(size(ODB(step).TrussElement.Nodes,1),1); 
integ_pt_truss = zeros(size(ODB(step).TrussElement.Nodes,1),1); 
leng_truss_initial = 
ElementLength(ODB(step).TrussElement.Nodes,ODB(step).Node.X,ODB(step).Node.Y); 
leng_truss_current = 
ElementLength(ODB(step).TrussElement.Nodes,ODB(step).Node.X+ODB(step).Node.U,... 
    ODB(step).Node.Y+ODB(step).Node.V); 
colora = rand;colorb = rand;colorc = rand; 
for i = 1:size(elet,1) 
   plot1(1,1) = xi(elet(i,1))+deformscale*ODB(step).Node.U(elet(i,1)); 
   plot1(1,2) = yi(elet(i,1))+deformscale*ODB(step).Node.V(elet(i,1)); 
   plot1(2,1) = xi(elet(i,2))+deformscale*ODB(step).Node.U(elet(i,2)); 
   plot1(2,2) = yi(elet(i,2))+deformscale*ODB(step).Node.V(elet(i,2)); 
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   plot(plot1(:,1),plot1(:,2),'--rs','Marker','o','LineWidth',1,... 
                'MarkerEdgeColor','k',... 
                'MarkerFaceColor',[colora,colorb,colorc]); 
  
% linear geometry 
    xe = [x2(elet(i,1)),x2(elet(i,2))]; 
    ye = [y2(elet(i,1)),y2(elet(i,2))]; 
    if (xe(2) - xe(1)) >= 0; 
        a = 2*pi+atan((ye(2)-ye(1))/(xe(2)-xe(1))); 
    else 
        a = pi+atan((ye(2)-ye(1))/(xe(2)-xe(1))); 
    end 
  
    % extract displacement vector for each nonlinear beam element 
    Ue = TransformT(a)*[U(elet(i,1));... 
        V(elet(i,1));... 
        U(elet(i,2));... 
        V(elet(i,2))]; 
    e_truss(i) = 1/Lt(i)*[-1,0,1,0]*Ue; 
     
   s_truss(i) = e_truss(i)*ODB(step).TrussElement.E(i);      
   text(plot1(1,1)/2+plot1(2,1)/2,plot1(1,2)/2+plot1(2,2)/2+((max(ODB(step).Node.Y)... 
   -min(ODB(step).Node.Y))/10),num2str(round(s_truss(i))),'FontSize',6,'Color','blue') 
   text(plot1(1,1)/2+plot1(2,1)/2,plot1(1,2)/2+plot1(2,2)/2-((max(ODB(step).Node.Y)... 
   -min(ODB(step).Node.Y))/5),num2str(e_truss(i)),'FontSize',6,'Color','red') 
   integ_pt_truss(i) = 
(xi(elet(i,1))+ODB(step).Node.U(elet(i,1))+xi(elet(i,2))+ODB(step).Node.U(elet(i,2)))/2; 
   hold on; 
end 
  
for e = 1:size(eleemb,1)   
    de(:,1) = [ODB(step).Node.U(ODB(step).EmbeddingElement.Nodes(e,1));...      % extract 
element nodal displacements 
        ODB(step).Node.V(ODB(step).EmbeddingElement.Nodes(e,1));... 
        ODB(step).Node.T(ODB(step).EmbeddingElement.Nodes(e,1));...                  
        ODB(step).Node.U(ODB(step).EmbeddingElement.Nodes(e,2));... 
        ODB(step).Node.V(ODB(step).EmbeddingElement.Nodes(e,2));... 
        ODB(step).Node.T(ODB(step).EmbeddingElement.Nodes(e,2))];    
     
    IENe        = ODB(step).EmbeddingElement.Nodes(e,:);                % extract element 
connectivity information 
    xe          = xi(IENe);                 % extract element coordinates 
    ye          = yi(IENe);                 % extract element coordinates 
    J   = (xe(2) - xe(1))/2;                % Jacobian      
    plotgauss= (-1:2/(nplot-1):1); 
    J         = sqrt((xe(2) - xe(1))^2+(ye(2) - ye(1))^2)/2;    % compute Jacobian  
    Le = J*2;   % compute element length 
  
    if (xe(2) - xe(1)) >= 0; 
        a = 2*pi+atan((ye(2)-ye(1))/(xe(2)-xe(1))); 
    else 
        a = pi+atan((ye(2)-ye(1))/(xe(2)-xe(1))); 
    end 
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    initialx = xe(1); 
    initialy = ye(1); 
    intervalx = (xe(2)-xe(1))/(nplot-1); 
    intervaly = (ye(2)-ye(1))/(nplot-1); 
  
    for i = 1:nplot 
          s   = plotgauss(i); 
          N    = NmatrixBeam(s,Le);              % shape functions of bending deformation 
          Na   = Na_matrixBeam(s); 
          B    = SmatrixBeam(s,Le)*1/J^2;        % second derivative of shape functions  
          localx = Na*TransformB(a)*de; 
          localy = N*TransformB(a)*de; 
          globalx(i) = cos(a)*localx-sin(a)*localy; 
          globaly(i) = sin(a)*localx+cos(a)*localy; 
          Initialx(i) = initialx; 
          Initialy(i) = initialy; 
          initialx = initialx +intervalx; 
          initialy = initialy +intervaly; 
        end 
  
    p = plot(Initialx+globalx*deformscale,Initialy+globaly*deformscale); 
    hold on; 
    set(p,'Color',[.5,.5,.5],'LineWidth',0.5) 
end 
  
for e = 1:size(eleb,1)   
    de(:,1) = [ODB(step).Node.U(ODB(step).BeamElement.Nodes(e,1));...      % extract element 
nodal displacements 
        ODB(step).Node.V(ODB(step).BeamElement.Nodes(e,1));... 
        ODB(step).Node.T(ODB(step).BeamElement.Nodes(e,1));...                   
        ODB(step).Node.U(ODB(step).BeamElement.Nodes(e,2));... 
        ODB(step).Node.V(ODB(step).BeamElement.Nodes(e,2));... 
        ODB(step).Node.T(ODB(step).BeamElement.Nodes(e,2))];    
     
    IENe        = ODB(step).BeamElement.Nodes(e,:);                 % extract element connectivity 
information 
    xe          = xi(IENe);                 % extract element coordinates 
    ye          = yi(IENe);                 % extract element coordinates 
    J   = (xe(2) - xe(1))/2;                % Jacobian      
    plotgauss= (-1:2/(nplot-1):1); 
    J         = sqrt((xe(2) - xe(1))^2+(ye(2) - ye(1))^2)/2;    % compute Jacobian  
    Le = J*2;  % compute element length 
  
    if (xe(2) - xe(1)) >= 0; 
        a = 2*pi+atan((ye(2)-ye(1))/(xe(2)-xe(1))); 
    else 
        a = pi+atan((ye(2)-ye(1))/(xe(2)-xe(1))); 
    end 
  
    initialx = xe(1); 
    initialy = ye(1); 
    intervalx = (xe(2)-xe(1))/(nplot-1); 
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    intervaly = (ye(2)-ye(1))/(nplot-1); 
  
    for i = 1:nplot 
          s   = plotgauss(i); 
          N    = NmatrixBeam(s,Le);              % shape functions of bending deformation 
          Na   = Na_matrixBeam(s); 
          B    = SmatrixBeam(s,Le)*1/J^2;        % second derivative of shape functions   
          localx = Na*TransformB(a)*de; 
          localy = N*TransformB(a)*de; 
          globalx(i) = cos(a)*localx-sin(a)*localy; 
          globaly(i) = sin(a)*localx+cos(a)*localy; 
          Initialx(i) = initialx; 
          Initialy(i) = initialy; 
          initialx = initialx +intervalx; 
          initialy = initialy +intervaly; 
        end 
  
    p = plot(Initialx+globalx*deformscale,Initialy+globaly*deformscale); 
    set(p,'Color',[0,0,0],'LineWidth',1) 
     
%   set proper scale for plots 
    set(gca, 'XLim', [min(ODB(step).Node.X)-(max(ODB(step).Node.X)-
min(ODB(step).Node.X))/10,... 
        max(ODB(step).Node.X)+(max(ODB(step).Node.X)-min(ODB(step).Node.X))/10]); 
    set(gca, 'YLim', [min(ODB(step).Node.Y)-(max(ODB(step).Node.Y)-
min(ODB(step).Node.Y))/.2,... 
        max(ODB(step).Node.Y)+(max(ODB(step).Node.Y)-min(ODB(step).Node.Y))/.2]); 
end 
  
% label node number 
for i = 1:size(ODB(step).Node.X,2) 
    text(xi(i)+deformscale*ODB(step).Node.U(i)+((max(ODB(step).Node.Y)-
min(ODB(step).Node.Y))/0.5),... 
        yi(i)+deformscale*ODB(step).Node.V(i),num2str(i),'FontSize',6,'Color','black') 
end 
  
% plot tendon stress strain varations along beam span 
figure(20) 
subplot(2,1,1) 
plot(integ_pt_truss,e_truss) 
hold on; 
subplot(2,1,2) 
plot(integ_pt_truss,s_truss) 
hold on; 
  
 
plotstress.m 
% Post-processing stress contour fo beam 
function  plotstress(ODB,step,ten_limit,comp_limit) 
  
deformscale = 5; 
ID = ODB(step).ID; 
ID2 = ODB(step).ID2; 
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eleb = ODB(step).BeamElement.Nodes; 
x = ODB(step).Node.X+ODB(step).Node.U; 
y = ODB(step).Node.Y+ODB(step).Node.V; 
xi = ODB(step).Node.X; 
Lb = ODB(step).BeamElement.Length; 
Uo = InitialCondition(ODB(step).Node.U,ODB(step).Node.V,... 
    ODB(step).Node.T,ODB(step).Node.Boundary); 
U = Reorder(ID,Uo); 
n = ODB(step).BeamElement.n; 
hf = ODB(step).BeamElement.hf; 
zs = ODB(step).BeamElement.zs; 
Ec = ODB(step).Material.Ec; 
Esteel = ODB(step).Material.Es; 
S_cm = zeros(2,n); 
conx = []; 
cony = []; 
conz = []; 
  
for i = 1 :size(eleb,1) 
     
    %transfor local coordinates to global coordinates 
    xe = [x(eleb(i,1)),x(eleb(i,2))]; 
    ye = [y(eleb(i,1)),y(eleb(i,2))]; 
    xei = [xi(eleb(i,1)),xi(eleb(i,2))]; 
    plotx = [(xei(1)+xei(2))/2*ones(1,n)-abs(xei(1)-
xei(2))/2*0.577350269;(xei(1)+xei(2))/2*ones(1,n)+abs(xei(1)-xei(2))/2*0.577350269]; 
    ploty = [-hf;-hf]; 
    if (xe(2) - xe(1)) >= 0; 
        a = 2*pi+atan((ye(2)-ye(1))/(xe(2)-xe(1))); 
    else 
        a = pi+atan((ye(2)-ye(1))/(xe(2)-xe(1))); 
    end 
     
    % extract displacement vector for each nonlinear beam element 
    Ue = TransformB(a)*[U(ID(ID2(eleb(i,1),1)));... 
        U(ID(ID2(eleb(i,1),2)));... 
        U(ID(ID2(eleb(i,1),3)));... 
        U(ID(ID2(eleb(i,2),1)));... 
        U(ID(ID2(eleb(i,2),2)));... 
        U(ID(ID2(eleb(i,2),3)))]; 
     
     Ue2 = [U(ID(ID2(eleb(i,1),1)));... 
        U(ID(ID2(eleb(i,1),2)));... 
        U(ID(ID2(eleb(i,1),3)));... 
        U(ID(ID2(eleb(i,2),1)));... 
        U(ID(ID2(eleb(i,2),2)));... 
        U(ID(ID2(eleb(i,2),3)))]; 
     
    le = Lb(i); 
     
    % compute B matrix for 6 Gauss pts within one element 
    B = zeros(2,6,2); 
    Xi = [-0.577350269,0.577350269]; % 2 pts Gauss quadrature 
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    W = [1,1]; % weights 
     
    N1 = NmatrixBeam(Xi(1),le);              % shape functions of bending deformation 
    Ns1 = NmatrixBeam1(Xi(1),le);                 % shape functions of bending slop 
    Na1 = Na_matrixBeam(Xi(1));               % shape functions of axial deformation 
    N2 = NmatrixBeam(Xi(2),le);              % shape functions of bending deformation 
    Ns2 = NmatrixBeam1(Xi(2),le);                 % shape functions of bending slop 
    Na2 = Na_matrixBeam(Xi(2));               % shape functions of axial deformation 
     
    slop = [Ns1*Ue2, Ns2*Ue2]*2/le*deformscale; 
    xe2 = [Na1*Ue2, Na2*Ue2]*deformscale; 
    ye2 = [N1*Ue2, N2*Ue2]*deformscale; 
         
    if (xe(2) - xe(1)) >= 0; 
        plotx2 = [(xei(1)+xei(2))/2-0.577350269*abs(xei(1)-
xei(2))/2+xe2(1)*ones(1,n)+hf*slop(1)/sqrt(1+slop(1)^2);... 
        (xei(1)+xei(2))/2+0.577350269*abs(xei(1)-
xei(2))/2+xe2(2)*ones(1,n)+hf*slop(2)/sqrt(1+slop(2)^2)]; 
    else 
        plotx2 = [(xei(1)+xei(2))/2-0.577350269*abs(xei(1)-xei(2))/2+xe2(1)*ones(1,n)-
hf*slop(1)/sqrt(1+slop(1)^2);... 
        (xei(1)+xei(2))/2+0.577350269*abs(xei(1)-xei(2))/2+xe2(2)*ones(1,n)-
hf*slop(2)/sqrt(1+slop(2)^2)]; 
    end 
     
    if slop(1) == 0 && slop(2) == 0 
        ploty2 = [ye2(1)*ones(1,n)-hf;ye2(2)*ones(1,n)-hf]; 
    else 
        if (ye(2) - ye(1)) >= 0; 
            ploty2 = [ye2(1)*ones(1,n)-hf*1/sqrt(1+slop(1)^2)*sign(slop(1));... 
                ye2(2)*ones(1,n)-hf*1/sqrt(1+slop(2)^2)*sign(slop(2))]; 
        else 
            ploty2 = [ye2(1)*ones(1,n)+hf*1/sqrt(1+slop(1)^2)*sign(slop(1));... 
                ye2(2)*ones(1,n)+hf*1/sqrt(1+slop(2)^2)*sign(slop(2))]; 
        end 
    end 
        
    epsilon_e = zeros(2,2); 
    for loop3 = 1:2 
        B(:,:,loop3) = 1/le*[-1,0,0,1,0,0;0,6*Xi(loop3)/le,3*Xi(loop3)-1,0,-
6*Xi(loop3)/le,3*Xi(loop3)+1]; 
        epsilon_e(:,loop3) = B(:,:,loop3)*Ue; 
    end 
  
    epsilon_0 = epsilon_e(1,:)'*ones(1,n);  % axial strain on the ref axis (constant through one 
element) 
    culvature = epsilon_e(2,:); 
    epsilon_0s = epsilon_e(1,:)'*ones(1,size(zs,2));  
  
    epsilon_c = epsilon_0+[culvature(1)*hf;culvature(2)*hf];    % column stands for each fiber 
section, row stands for each integration pts 
    epsilon_s = epsilon_0s+[culvature(1)*zs;culvature(2)*zs];  
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    E = interp1(Ec(2,:),Ec(1,:),epsilon_c); 
    Es = interp1(Esteel(2,:),Esteel(1,:),epsilon_s); 
    S_c = epsilon_c.*E; 
  
    conx = [conx;plotx2]; 
    cony = [cony;ploty2]; 
    conz = [conz;S_c]; 
end 
  
for loop10 = 1:size(eleb,1)*2 
    for loop11 = 1:n 
        if conz(loop10,loop11) < -comp_limit 
            conz(loop10,loop11) = -comp_limit; 
        elseif conz(loop10,loop11) > ten_limit 
            conz(loop10,loop11) = ten_limit; 
        end 
    end 
end 
  
conx2 = conx'; 
cony2 = cony'; 
conz2 = conz'; 
  
figure('Position',[100 100 1000 600]); 
contourf(conx2,cony2,conz2,20); 
colorbar('east'); 
  
set(gca, 'XLim', [min(ODB(step).Node.X)-(max(ODB(step).Node.X)-
min(ODB(step).Node.X))/10,... 
    max(ODB(step).Node.X)+(max(ODB(step).Node.X)-min(ODB(step).Node.X))/10]); 
set(gca, 'YLim', [min(ODB(step).Node.Y)-(max(ODB(step).Node.Y)-
min(ODB(step).Node.Y))/.1,... 
    max(ODB(step).Node.Y)+(max(ODB(step).Node.Y)-min(ODB(step).Node.Y))/.1]); 
  
  
Pre-processing and input file (only example 6.7.1 is shown, while other 
example follows similar formart and input parameters) 
Example 6.7.1.m 
% preprocessor v0.1v generate mesh and input file for PT beam 
clear; clc; 
format short; 
Node = ClassNode;  
BeamElement = ClassBeamElement;  
TrussElement = ClassTrussElement;  
AnchorElement = ClassAnchorElement; 
ContactElement = ClassContactElement;  
EmbeddingElement = ClassEmbeddingElement;  
Material = ClassMaterial; 
ODB = ClassODB; 
  
step = 1; 
% define material & geometry properties 
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pt = [5,40;5,0]; 
hr = 20;               % distance between the extreme bottom fiber of corss section and reference axis 
BeamElement_n = 20;    % number of fiber along vertical direction of the corss section 
BeamElement_As = [3.16];  % area of each steel layer 
BeamElement_zs = [15]; % distance of each steel layer to ref axis (minus sign:above ref axis; 
postive sign:below ref axis) 
[BeamElement_A,BeamElement_S,BeamElement_I,BeamElement_hf,BeamElement_Ss,BeamEl
ement_Is]... 
    = Beamsection(pt,BeamElement_n,hr,BeamElement_As,BeamElement_zs); 
TrussElement_A = 0.0001; 
TrussElement_E = 28500000; 
EmbeddingElement_A = 450; 
EmbeddingElement_E = 4000000; 
EmbeddingElement_I = 337500; 
AnchorElement_Epsilon = 285000000; 
ContactElement_Epsilon = 28500000; 
Material.Mu = 0; 
% unaxial stress-strain   first coulumn:stress   second column:strain 
Material.Concrete = [-705,-0.1;-1128,-0.04;-2692,-0.01;-3600,-0.005;-4000,-0.003;-3887,-0.002;-
2934,-0.001;0,0;474,0.000162;20,0.0003;10,0.1]; 
Material.Steel = [-70000,-0.1;-60000,-0.002069;0,0;60000,0.002069;70000,0.1];     
Material.Psteel = [-281147,-0.04;-272273,-0.03;-263321,-0.02;-259418,-0.016;-252836,-0.012;-
243040,-0.01;-232836,-0.009;... 
    -216978,-0.008;-195394,-0.007;-169798,-0.006;-142232,-
0.005;0,0;142232,0.005;169798,0.006;195394,0.007;216978,0.008;... 
    
232836,0.009;243040,0.01;252836,0.012;259418,0.016;263321,0.02;272273,0.03;281147,0.04]; 
  
% define material interpolation grid 
grid = 0.00011; 
stress = Material.Concrete(:,1)'; 
strain = Material.Concrete(:,2)'; 
Material.Ec = 
[interp1(strain,stress,(strain(1):grid:strain(size(strain,2))))./(strain(1):grid:strain(size(strain,2)));str
ain(1):grid:strain(size(strain,2))]; 
Material.Ect = 
[diff(interp1(strain,stress,(strain(1):grid:strain(size(strain,2)))))./grid;(strain(1)+grid/2):grid:(strai
n(size(strain,2))-grid/2)]; 
  
steel_stress = Material.Steel(:,1)'; 
steel_strain = Material.Steel(:,2)'; 
Material.Es = 
[interp1(steel_strain,steel_stress,(steel_strain(1):grid:steel_strain(size(steel_strain,2))))./(steel_str
ain(1):grid:steel_strain(size(steel_strain,2)));steel_strain(1):grid:steel_strain(size(steel_strain,2))]; 
Material.Est = 
[diff(interp1(steel_strain,steel_stress,(steel_strain(1):grid:steel_strain(size(steel_strain,2)))))./grid
;(steel_strain(1)+grid/2):grid:(steel_strain(size(steel_strain,2))-grid/2)]; 
  
Psteel_stress = Material.Psteel(:,1)'; 
Psteel_strain = Material.Psteel(:,2)'; 
Material.Eps = 
[interp1(Psteel_strain,Psteel_stress,(Psteel_strain(1):grid:Psteel_strain(size(Psteel_strain,2))))./(P
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steel_strain(1):grid:Psteel_strain(size(Psteel_strain,2)));Psteel_strain(1):grid:Psteel_strain(size(Ps
teel_strain,2))]; 
Material.Epst = 
[diff(interp1(Psteel_strain,Psteel_stress,(Psteel_strain(1):grid:Psteel_strain(size(Psteel_strain,2)))
))./grid;(Psteel_strain(1)+grid/2):grid:(Psteel_strain(size(Psteel_strain,2))-grid/2)]; 
  
% define prestressing method: 1 end jacking; 2 end jacking 
jack_method = 'left';  % left -- left end jacking; right -- right end jacking; both -- both ends 
jacking 
jack_dts1 = 0;         % left jacking pulling out distance 
jack_dts2 = 0;         % right jacking pulling out distance 
% define mesh seed 
mesh_sd = 20; 
% define tendon profile control points and interpolation method 
inter_pts = [0,.1;300,-11;600,.1]; 
inter_method = 'cubic'; 
% define beam geometry 
span = 600; 
  
% define EmbbedingElement 
for loop1 = 1:mesh_sd+1 
    Node.X(2*loop1-1) =  span/mesh_sd*(loop1-1); 
    Node.Y(2*loop1-1) =  0; 
    Node.X(2*loop1) = span/mesh_sd*(loop1-1); 
    Node.Y(2*loop1) = interp1(inter_pts(:,1),inter_pts(:,2),span/mesh_sd*(loop1-1),inter_method); 
    EmbeddingElement.Nodes(loop1,:) = [2*loop1-1,2*loop1];     
    inter_pts2(loop1,1) = span/mesh_sd*(loop1-1); 
    inter_pts2(loop1,2) = interp1(inter_pts(:,1),inter_pts(:,2),span/mesh_sd*(loop1-
1),inter_method); 
end 
EmbeddingElement.Length = ElementLength(EmbeddingElement.Nodes,Node.X,Node.Y); 
EmbeddingElement.A = EmbeddingElement_A*ones(size(EmbeddingElement.Nodes,1),1); 
EmbeddingElement.E = EmbeddingElement_E*ones(size(EmbeddingElement.Nodes,1),1); 
EmbeddingElement.I = EmbeddingElement_I*ones(size(EmbeddingElement.Nodes,1),1); 
  
% define BeamElement 
for loop2 = 1:mesh_sd 
    Node.Y(2*loop2-1) = 0; 
    BeamElement.Nodes(loop2,:) = [2*loop2-1,2*loop2+1]; 
end 
BeamElement.Length = ElementLength(BeamElement.Nodes,Node.X,Node.Y); 
BeamElement.A = BeamElement_A; 
BeamElement.S = BeamElement_S; 
BeamElement.I = BeamElement_I; 
BeamElement.hf = BeamElement_hf; 
BeamElement.n = BeamElement_n; 
BeamElement.As = BeamElement_As; 
BeamElement.Ss = BeamElement_Ss; 
BeamElement.Is = BeamElement_Is; 
BeamElement.zs = BeamElement_zs; 
  
% define TrussElement 
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if strcmp(jack_method,'left') == 1 
    anchor_pts = 1; 
elseif strcmp(jack_method,'right') == 1 
    anchor_pts = 1; 
elseif strcmp(jack_method,'both') == 1 
    anchor_pts = 2; 
else 
    anchor_pts = 0; 
end 
  
for loop3 = 1:mesh_sd+1 
    if strcmp(jack_method,'left') == 1 && loop3 == 1 
        Node.X((mesh_sd+1)*2+1) = jack_dts1; 
        Node.Y((mesh_sd+1)*2+1) = interp1(inter_pts2(:,1),inter_pts2(:,2),jack_dts1); 
        TrussElement.Nodes(1,:) = [(mesh_sd+1)*2+1,(mesh_sd+1)*2+2]; 
         
    elseif strcmp(jack_method,'left') == 1 && loop3 == mesh_sd+1 
        Node.X((mesh_sd+1)*2+loop3) = (Node.X(BeamElement.Nodes(loop3-
1,1))+Node.X(BeamElement.Nodes(loop3-1,2)))/2; 
        Node.Y((mesh_sd+1)*2+loop3) = 
interp1(inter_pts2(:,1),inter_pts2(:,2),Node.X((mesh_sd+1)*2+loop3));  
        TrussElement.Nodes(loop3,:) = [(mesh_sd+1)*2+loop3,(mesh_sd+1)*2]; 
         
    elseif strcmp(jack_method,'right') == 1 && loop3 == 1 
        Node.X((mesh_sd+1)*2+1) = 
(Node.X(BeamElement.Nodes(1,1))+Node.X(BeamElement.Nodes(1,2)))/2; 
        Node.Y((mesh_sd+1)*2+1) = 
interp1(inter_pts2(:,1),inter_pts2(:,2),Node.X((mesh_sd+1)*2+1)); 
        TrussElement.Nodes(1,:) = [2,(mesh_sd+1)*2+1]; 
         
    elseif strcmp(jack_method,'right') == 1 && loop3 == mesh_sd+1 
        Node.X((mesh_sd+1)*2+loop3) = span-jack_dts2; 
        Node.Y((mesh_sd+1)*2+loop3) = interp1(inter_pts2(:,1),inter_pts2(:,2),span-jack_dts2); 
        TrussElement.Nodes(loop3,:) = [(mesh_sd+1)*2+loop3-1,(mesh_sd+1)*2+loop3]; 
         
    elseif strcmp(jack_method,'both') == 1 && loop3 == 1 
        Node.X((mesh_sd+1)*2+1) = jack_dts1; 
        Node.Y((mesh_sd+1)*2+1) = interp1(inter_pts2(:,1),inter_pts2(:,2),jack_dts1); 
        TrussElement.Nodes(1,:) = [(mesh_sd+1)*2+1,(mesh_sd+1)*2+2];   
                 
    else 
        if strcmp(jack_method,'left') == 1 
            Node.X((mesh_sd+1)*2+loop3) = (Node.X(BeamElement.Nodes(loop3-
1,1))+Node.X(BeamElement.Nodes(loop3-1,2)))/2; 
            TrussElement.Nodes(loop3,:) = [(mesh_sd+1)*2+loop3,(mesh_sd+1)*2+loop3+1];   
        elseif strcmp(jack_method,'right') == 1 
            Node.X((mesh_sd+1)*2+loop3) = 
(Node.X(BeamElement.Nodes(loop3,1))+Node.X(BeamElement.Nodes(loop3,2)))/2; 
            TrussElement.Nodes(loop3,:) = [(mesh_sd+1)*2+loop3-1,(mesh_sd+1)*2+loop3];   
        elseif strcmp(jack_method,'both') == 1 
            Node.X((mesh_sd+1)*2+loop3) = (Node.X(BeamElement.Nodes(loop3-
1,1))+Node.X(BeamElement.Nodes(loop3-1,2)))/2; 
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            TrussElement.Nodes(loop3,:) = [(mesh_sd+1)*2+loop3,(mesh_sd+1)*2+loop3+1];   
        end 
        Node.Y((mesh_sd+1)*2+loop3) = 
interp1(inter_pts2(:,1),inter_pts2(:,2),Node.X((mesh_sd+1)*2+loop3));  
    end 
end 
if strcmp(jack_method,'both') == 1 
    Node.X((mesh_sd+1)*2+mesh_sd+2) = span-jack_dts2; 
    Node.Y((mesh_sd+1)*2+mesh_sd+2) = interp1(inter_pts2(:,1),inter_pts2(:,2),span-jack_dts2); 
end 
TrussElement.Length = ElementLength(TrussElement.Nodes,Node.X,Node.Y); 
TrussElement.A = TrussElement_A*ones(size(TrussElement.Nodes,1),1); 
TrussElement.E = TrussElement_E*ones(size(TrussElement.Nodes,1),1); 
  
% define ContactElement 
for loop4 = 1:mesh_sd 
    ContactElement.Nodes(loop4,1) = TrussElement.Nodes(loop4,2); 
    ContactElement.Nodes(loop4,2) = EmbeddingElement.Nodes(loop4,2); 
    ContactElement.Nodes(loop4,3) = EmbeddingElement.Nodes(loop4+1,2); 
end 
ContactElement.Epsilon = ContactElement_Epsilon; 
     
% define AnchorElement 
if strcmp(jack_method,'left') == 1 
    AnchorElement.Nodes = [TrussElement.Nodes(1,1),2]; 
elseif strcmp(jack_method,'right') == 1 
    AnchorElement.Nodes = [TrussElement.Nodes(mesh_sd+1,2),(mesh_sd+1)*2]; 
elseif strcmp(jack_method,'both') == 1 
    AnchorElement.Nodes = 
[TrussElement.Nodes(1,1),2;TrussElement.Nodes(mesh_sd+1,2),(mesh_sd+1)*2]; 
end 
AnchorElement.Epsilon = AnchorElement_Epsilon; 
  
% define residual force & residual displacement 
Node.Fx_residual = zeros(size(Node.X));  
Node.Fy_residual = zeros(size(Node.X)); 
Node.M_residual = zeros(size(Node.X));    
Node.U = zeros(size(Node.X)); 
if strcmp(jack_method,'left') == 1 
    Node.U((mesh_sd+1)*2+1) = -jack_dts1; 
elseif strcmp(jack_method,'right') == 1 
    Node.U((mesh_sd+1)*2+mesh_sd+1) = jack_dts2; 
elseif strcmp(jack_method,'both') == 1 
    Node.U((mesh_sd+1)*2+1) = -jack_dts1; 
    Node.U((mesh_sd+1)*2+mesh_sd+2) = jack_dts2;  
end 
Node.V = zeros(size(Node.X));   
if strcmp(jack_method,'left') == 1 
    Node.V((mesh_sd+1)*2+1) = Node.Y(2)-Node.Y((mesh_sd+1)*2+1); 
elseif strcmp(jack_method,'right') == 1 
    Node.V((mesh_sd+1)*2+mesh_sd+1) = Node.Y((mesh_sd+1)*2)-
Node.Y((mesh_sd+1)*2+mesh_sd+1); 
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elseif strcmp(jack_method,'both') == 1 
    Node.V((mesh_sd+1)*2+1) = Node.Y(2)-Node.Y((mesh_sd+1)*2+1); 
    Node.V((mesh_sd+1)*2+mesh_sd+2) = Node.Y((mesh_sd+1)*2)-
Node.Y((mesh_sd+1)*2+mesh_sd+2); 
end 
Node.T = zeros(size(Node.X));  
  
% define boundary condition per each node 
for loop5 = 1:(mesh_sd+1)*2 
    Node.Boundary(loop5,:) = [1,1,1]; 
end 
Node.Boundary(1,:) = [2,2,1]; 
Node.Boundary((mesh_sd+1)*2-1,:) = [1,2,1]; 
if strcmp(jack_method,'left') == 1 
    Node.Boundary((mesh_sd+1)*2+1,:) = [2,2,0]; 
elseif strcmp(jack_method,'right') == 1 
    Node.Boundary((mesh_sd+1)*2+mesh_sd+1,:) = [2,2,0]; 
elseif strcmp(jack_method,'both') == 1 
    Node.Boundary((mesh_sd+1)*2+1,:) = [2,2,0]; 
    Node.Boundary((mesh_sd+1)*2+mesh_sd+2,:) = [2,2,0]; 
end 
  
if strcmp(jack_method,'left') == 1 
    for loop6 = 1:mesh_sd+1 
        Node.Boundary((mesh_sd+1)*2+loop6,:) = [1,1,0]; 
    end 
    Node.Boundary((mesh_sd+1)*2+1,:) = [2,2,0]; 
     
elseif strcmp(jack_method,'right') == 1 
    for loop6 = 1:mesh_sd+1 
        Node.Boundary((mesh_sd+1)*2+loop6,:) = [1,1,0]; 
    end 
    Node.Boundary((mesh_sd+1)*2+mesh_sd+1,:) = [2,2,0]; 
  
elseif strcmp(jack_method,'both') == 1 
    for loop6 = 1:mesh_sd+2 
        Node.Boundary((mesh_sd+1)*2+loop6,:) = [1,1,0]; 
    end 
    Node.Boundary((mesh_sd+1)*2+1,:) = [2,2,0]; 
    Node.Boundary((mesh_sd+1)*2+mesh_sd+2,:) = [2,2,0] ;    
else 
    for loop6 = 1:mesh_sd 
        Node.Boundary((mesh_sd+1)*2+loop6,:) = [1,1,0]; 
    end 
end 
  
% define degree of freedom per each node 
Node.DOF(1:(mesh_sd+1)*2) = 3*ones((mesh_sd+1)*2,1); 
if strcmp(jack_method,'left') == 1 || strcmp(jack_method,'right') == 1 
    Node.DOF((mesh_sd+1)*2+1:(mesh_sd+1)*2+mesh_sd+1) = 2*ones(mesh_sd+1,1); 
elseif strcmp(jack_method,'both') == 1 
    Node.DOF((mesh_sd+1)*2+1:(mesh_sd+1)*2+mesh_sd+2) = 2*ones(mesh_sd+2,1); 
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else 
    Node.DOF((mesh_sd+1)*2+1:(mesh_sd+1)*2+mesh_sd) = 2*ones(mesh_sd,1); 
end 
  
ODB(step).Node = Node; 
ODB(step).BeamElement = BeamElement; 
ODB(step).TrussElement = TrussElement; 
ODB(step).ContactElement = ContactElement; 
ODB(step).EmbeddingElement = EmbeddingElement; 
ODB(step).AnchorElement = AnchorElement; 
ODB(step).Material = Material; 
ODB(step).nd = sum(Node.Boundary(:) == 2);    % Number of degrees of freedom on the 
essential boundary 
ODB(step).nnd = size(Node.X,2);                                                         
ODB(step).neq = sum(Node.DOF); 
ODB(step).anchor = 0; 
  
% Generate NodeMapping & Essential boundary vector 
[ODB(step).ID,ODB(step).d_E] = 
NodeMapping(ODB(step).nnd,ODB(step).nd,ODB(step).Node.DOF,... 
    ODB(step).Node.Boundary,[ODB(step).Node.U;ODB(step).Node.V;ODB(step).Node.T]); 
% Generate NodeMapping2 
ID2 = NodeMapping2(ODB(step).nnd,Node.DOF); 
ODB(step).ID2 = ID2; 
% Initiate node-slip array 
ODB(step).slip = Slip_array(ODB,step); 
  
% Call MainSolver function calculating new residual force vector and 
ODB(step).Node.U((mesh_sd+1)*2+1) = 0.1*ODB(step).Node.U((mesh_sd+1)*2+1); 
ODB(step).Node.V((mesh_sd+1)*2+1) = 0.1*ODB(step).Node.V((mesh_sd+1)*2+1); 
temp1 = ODB(step).Node.U; 
temp2 = ODB(step).Node.V; 
  
[ODB(step).ID,ODB(step).d_E] = 
NodeMapping(ODB(step).nnd,ODB(step).nd,ODB(step).Node.DOF,... 
    ODB(step).Node.Boundary,[ODB(step).Node.U;ODB(step).Node.V;ODB(step).Node.T]); 
ODB(step).Node.U((mesh_sd+1)*2+1) = 0; 
ODB(step).Node.V((mesh_sd+1)*2+1) = 0; 
ODB = MainSolver3(ODB,step); 
  
% prestressing jacking (zero prestressing force) 
loadloop = 1; 
for i = 1:9 
    [ODB(2).ID,ODB(2).d_E] = NodeMapping(ODB(2).nnd,ODB(2).nd,ODB(2).Node.DOF,... 
        ODB(2).Node.Boundary,[temp1;temp2;zeros(1,size(ODB(1).Node.T,2))]); 
    ODB = MainSolver1(ODB,2); 
    str = ['step=',num2str(step+1),'    disp=',num2str(ODB(loadloop+1).Node.V(1+mesh_sd))]; 
    msgbox(str,'replace'); 
    ODB(2) = ODB(3); 
end 
plotdisp(ODB,2); 
ODB(3) = []; 
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% prestressing settle down (zero prestressing froce) 
step = 2; 
if strcmp(jack_method,'left') == 1 
    ODB(step).Node.Boundary((mesh_sd+1)*2+1,:) = [1,1,0]; 
elseif strcmp(jack_method,'right') == 1 
    ODB(step).Node.Boundary((mesh_sd+1)*2+mesh_sd+1,:) = [1,1,0]; 
elseif strcmp(jack_method,'both') == 1 
    ODB(step).Node.Boundary((mesh_sd+1)*2+1,:) = [1,1,0]; 
    ODB(step).Node.Boundary((mesh_sd+1)*2+mesh_sd+2,:) = [1,1,0]; 
end 
ODB(step).nd = sum(ODB(step).Node.Boundary(:) == 2);      % Number of degrees of freedom 
on the essential boundary 
ODB(step).anchor = 1; 
% Generate NodeMapping & Essential boundary vector 
[ODB(step).ID,ODB(step).d_E] = 
NodeMapping(ODB(step).nnd,ODB(step).nd,ODB(step).Node.DOF,... 
    ODB(step).Node.Boundary,[ODB(step).Node.U;ODB(step).Node.V;ODB(step).Node.T]); 
% Generate NodeMapping2 
ID2 = NodeMapping2(ODB(step).nnd,Node.DOF); 
ODB(step).ID2 = ID2; 
ODB = mainsolver1(ODB,step); 
plotdisp(ODB,3); 
  
% service load 
step = 3; 
ODB(step).Node.Boundary(1+mesh_sd,:) = [1,2,1];                                                     % Flags for 
types of boundary conditions (0: not existted  1: Natural  2: Essential) 
ODB(step).nd = sum(ODB(step).Node.Boundary(:) == 2);      % Number of degrees of freedom 
on the essential boundary 
ODB(step).anchor = 1; 
% Generate NodeMapping & Essential boundary vector 
[ODB(step).ID,ODB(step).d_E] = 
NodeMapping(ODB(step).nnd,ODB(step).nd,ODB(step).Node.DOF,... 
    ODB(step).Node.Boundary,[ODB(step).Node.U-ODB(step-1).Node.U;ODB(step).Node.V-
ODB(step-1).Node.V;... 
    ODB(step).Node.T-ODB(step-1).Node.T]); 
  
% Generate NodeMapping2 
ID2 = NodeMapping2(ODB(step).nnd,Node.DOF); 
ODB(step).ID2 = ID2; 
  
ODB = mainsolver1(ODB,step); 
  
for loadloop = 1:70 
    step = loadloop+3; 
    count1 = 0; 
    temp = ODB(step).Node.V(1+mesh_sd); 
    temp2 = ODB(step); 
    while size(ODB,2) == loadloop+3 && count1 < 3 
        ODB(step).Node.V(1+mesh_sd) = temp+(-.1)*0.1^count1;  % Only change the value at 
essential boundary!  
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        [ODB(step).ID,ODB(step).d_E] = 
NodeMapping(ODB(step).nnd,ODB(step).nd,ODB(step).Node.DOF,... 
            ODB(step).Node.Boundary,[ODB(step).Node.U-temp2.Node.U;ODB(step).Node.V-
temp2.Node.V;... 
            ODB(step).Node.T-temp2.Node.T]); 
        ODB(step).Node.V(1+mesh_sd) = temp;  % Only change the value at essential boundary!  
        ODB = mainsolver1(ODB,step); 
        count1 = count1+1 
    end 
  
    plotdisp(ODB,step+1); 
    str = ['step=',num2str(step+2),'    disp=',num2str(ODB(loadloop+4).Node.V(1+mesh_sd))]; 
    msgbox(str,'replace'); 
end 
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