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Abstract   

Spatio-temporally controlled release of therapeutic or diagnostic 

agents by the use of light has gained much attention in recent times. 

Controlled release of bioactive molecules and drugs is a critical issue for 

many biological applications. In cell biology, caged compounds (photo-

releasable compounds) have been used to study the molecular processes in 

biological systems. In drug delivery, controlled release of active form of drugs 

from inactive forms (prodrugs and nano-drug delivery carriers) is critical to 

achieve local expression of pharmacological action of the drug, especially 

toxic drugs such as anti-cancer drugs. Current strategies use UV light or 

short-visible light to release the active compounds. However, UV or short 

visible light can be used only at a cellular level. Its application at a 

tissue/animal level (in vivo) has been hampered by its limited tissue 

penetration. The other concern is the cellular damage by UV light itself.  

To address the above limitations, our strategy was to develop a 

releasing mechanism based on the unique reaction of singlet oxygen 

generated by a combination of photosensitizer and low light energy. To 

achieve this our first goal was to identify chemical bonds which can be 

cleaved by tissue penetrable low energy light. We therefore systemically 

examined various substituted olefins to find the optimal linker for our 

strategy. This screening led to vinyl dithioether and vinyl diether as potential 

singlet oxygen mediated cleavable linkers. Both vinyl dithioether and vinyl 
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diether were cleaved more than 80% by singlet oxygen within 15 min by the 

irradiation with 690 nm diode laser (200 mW/cm2) with a photosensitizer 

(core-modified porphyrin). Between the two, vinyl diether was our first choice 

because its photo-oxidation did not generate any side product. However, the 

synthetic methods for vinyl diether were limited to symmetric molecules, 

lengthy step and low yield. Due to such limitations of vinyl diether, the 

second screening was performed to identify better linker for our strategy. 

Among the screened linker candidates, aminoacrylate showed excellent 

characters: facile synthesis by a click chemistry, fast cleavage, and release 

of intact parent compound, stability in aqueous medium. We first introduced 

the concept of “photo-unclick chemistry” of aminoacrylate, where the 

aminoacrylate linker is synthesized by a click chemistry (amine-yne reaction) 

and intact drugs are released by irradiation.  

 A prodrug of drug-linker-photosensitizer CA4-L-PS was prepared to 

prove the photo-unclick chemistry in cells. The results obtained were 

consistent with our expectation. While the prodrug CA4-L-PS was 20 times 

less toxic than parent drug CA-4 without irradiation (IC50: 8 vs. 200 nM ). 

Photo-toxicity of CA4-L-PS was close to dark-toxicity of CA-4 (IC50: 6 vs. 8 

nM), presumably due to the released CA-4. In addition, I also confirmed that 

the linker in the conjugate system could be cleaved at low intensity light (1 

mW/cm2). It is a critical result to support the feasibility of photo-unclick 

chemistry at the systemic level because limited light intensity is the key 
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problem. We further investigated the cleavage of the linker  at systemic level 

(mouse) with a model compound PS-L-Rh, whose cleavage can be readily 

monitored by increase of Rh fluorescence. Light-dose dependent increase of 

Rh fluorescence was observed by IVIS bioluminescence imaging system in a 

nude mouse. The photo-unclick chemistry showed promising results. We 

envision that it could provide a novel releasing mechanism for spatio-

temporally controlled release of biological active molecules from various drug 

delivery systems such as prodrug and nano-drug delivery vehicles. 



 
 
 
 
Chapter 1. Introduction and Background  

The primary objective of drug delivery is the ability to control the drug 

dosing in terms of quantity, location and the time in order to maximize 

therapeutic effects and to minimize side effects by eliminating the potential 

for both under and overdosing. To achieve this objective especially in cancer 

treatment, various delivery systems have been developed such as dendritic 

macromolecules,1 liposomes,2 polymers,3 metal nanoparticles4 and viruses.5 

These carriers are decorated with targeting vectors for more specific delivery. 

To express activity, parent drugs should be released from the delivery 

vehicles. Thus, an effective release strategy is one of key issues to achieve 

spatial-temporally controlled delivery of drugs. 

Several strategies have been explored for spatio-temporally controlled 

release of biologically active molecules using either internal or external 

stimuli such as pH,6, 7  enzyme,8, 9 ultrasound,10-13 magnetism,14 and heat.15 

Most of these release mechanisms are passive, dependent on endogenous 

physicological factors and thus difficult to actively control release. Passive 

release mechanisms have also been found to be too slow to obtain optimal 

therapeutic effects. These challenges in current release strategies led to new 

approaches toward light-activated release mechanism that seek to improve 

drug release rate and maximize therapeutic effects. 
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Recently, light triggered release has gained much attention16-19 

because light as external signal is a very appealing tool for the spatio-

temporal release. Light has been explored for the release of therapeutic 

agents from delivery systems or as activation agents that produce cytotoxic 

species. Photochemical mechanism mediated by light has been applied in 

delivery purposes.20-22 There are also reports of caged compounds and 

photo-cleavable linker that decompose under photo-irradiation. Photocaging 

has served an important tool for spatio-temporal control of biological 

processes23-25 and release of therapeutic agents from nanoscale 

materials.26, 27 However, their applications have been limited mostly at the 

cellular level due to the use of high energy UV light causing cell damage and 

limited tissue penetration (< 1mm).28 To apply this exciting tool in clinic, new 

strategies should be invented where active compounds can be released by 

tissue penetrable low energy light (preferably, > 650 nm).29,30 Unfortunately, 

the energy of longer wavelength lights is too low to directly initiate cleavage 

of covalent bond.  

We address these issues by taking advantage of the unique reaction 

of singlet oxygen that can be generated by the combination of 

photosensitizer and low energy light. We envisioned that the olefinic bond 

cleavage reaction by singlet oxygen could be employed in controlling drug 

release. We hypothesized that spontaneous cleavage of dioxetane following 

2+2 cycloaddition reaction of singlet oxygen with olefins could be used for 
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releasing free drugs by the irradiation with low energy light. If therapeutic 

molecules can be released upon the irradiation of low energy light, it could 

provide two critical advantages. First, the release of free drug can be actively 

controlled by external light noninvasively (i.e., in a remote controlled 

manner). We can control the release dose by the irradiation dose. Second, 

the low energy light   (~650-800 nm) allows its application at the tissue level 

due to its high transparency.30 

 

1.1. Principles of photodynamic therapy (PDT) 

 

 

 

 

 

 

 

 

 

Figure 1. Modified Jablonski diagram. 

 

PDT employs three components: a photosensitizer (a drug for PDT), 

low energy light (visible and near IR, 690-800 nm) and oxygen (Fig. 1).31-
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34.The principle involves absorption of low energy light by a photosensitizer, 

which then reaches triplet state from ground state. This activated 

photosensitizer then converts surrounding non toxic molecular oxygen to 

singlet oxygen.35 The singlet state of molecular oxygen is highly reactive and 

can oxidize biomolecules such as lipids, proteins and nucleic acids.  It is this 

oxidation that results in cell death.36, 37 In vivo antitumor effect of PDT is a 

result of a combination of the following three mechanisms: direct damage on 

cancer cells, damage to vasculature in tumor tissue (antiangiogenic effect) 

and immunological response.31 PDT is an attractive modality due to its 

unique features such as selective, mild and rapid-acting to treat various 

cancers.38-40 Selectivity is achieved in two dimensions: firstly, there is some 

degree of localization of a photosensitizer in tumors and secondly, the 

focused irradiation with low energy light on/around the tumor. This results in 

the damage of only the irradiated area. The inherent low toxicity of PDT can 

be attributed to the fact that each component of PDT is less toxic unless the 

three components are combined at the same time. This makes PDT a mild 

treatment causing less side effects compared to chemotherapy and 

radiation.41. To enhance the response of PDT the treatment can be 

performed on multiple regions simultaneously and can also be repeated. The 

use of Photofrin (photosensitizer) for the treatment of esophageal cancer, 

endobronchial cancer and high-grade dysplasia in Barrett’s esophagus has 
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been approved.38, 42 Though PDT looks promising there are several aspects 

that need improvement to achieve higher efficacy and selectivity.  

Light delivery to larger and deeper residing tumors is one of the major 

challenges of PDT. Low energy light has a therapeutic depth of about 1 cm, 

which makes light delivery to tumors of internal organs very difficult. To 

address the challenge of light delivery inside the tumor mass or into the 

internal organs interstitial thin optical fiber has been developed.  43-45.Another 

issue PDT is the hypoxic nature of solid tumors.46-48 Spectroscopic detection 

technologies have been investigated to enable oxygen or generated singlet 

oxygen to be monitored.45, 49 Since the concentration of oxygen in tumor is 

limited procedures such as fractional or slow irradiation have been employed 

to allow supply of oxygen during treatment.31, 50.Of all the problems of PDT 

the most prominent is achieving selectivity of photosensitizer towards cancer 

cells. The lack of ability of singlet oxygen to distinguish cancer cells from 

normal surrounding cells makes selectivity of PDT to be considered two 

dimensional. This consequently leads to damage of normal tissue around the 

irradiated area. Hence there is a need to develop new photosensitizers with 

three dimensional selectivity towards cancer cells.51-54 

 

1.2. Singlet oxygen and typical reactions of singlet oxygen  

Singlet oxygen is a useful reagent in organic synthesis and plays an 

important role in biological systems55, 56 and therapeutic applications.31, 57 
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Singlet oxygen can be generated thermally by the decomposition of 

phosphate ozonides (or endoperoxides) or photochemically by the 

sensitization of a photosensitizer like rose bengal, methylene blue, or 

porphyrin.58 Typically, singlet oxygen reacts with olefins (C=C bonds) leading 

to ene, 1,2-cycloaddition, and 1,4-cycloaddition reactions. 1,2-Cycloaddition 

reaction generates dioxetane as an intermediate which decomposes to two 

carbonyl compounds (Fig. 2).56, 59-63 
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Figure 2. Typical reactions of singlet oxygen. 
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1.3. Current drug delivery systems   

1.3.1. Liposome drug delivery  

Liposome is composed of amphiphilic phopholipids and cholesterol 

that forms a bilayer with an encapsulated aqueous interior usually of size 

between 80 and 100 nm. Hydrophilic drugs are encapsulated in the aqueous 

interior while hydrophobic drugs are within the bilayer. Different methods 

have been used for the encapsulation such as gradient method for 

vincristine64 and ammonium sulfate method for doxorubicin.65 Interaction 

between liposome and plasma proteins is prevented by incorporation of 

hydrophilic polymer (polyethylene glycol, PEG) to reduce recognition by 

reticuloendothelial system66 and improve circulation lifetime. However, the 

major challenges of liposomal drug delivery are : difficulty for controlling the 

release of drugs from liposomes, extravasation from the blood and binding to 

cell surface receptors.67  

 

1.3.2. Polymer drug delivery  

The use of synthetic polymers as agents for targeted drug delivery has 

been widely explored. Most commonly used synthetic polymers are the 

aliphatic polyesters specifically hydrophobic polylactic acid (PLA), more 

hydrophilic polyglycolic acid (PGA), and copolymers polylactide-co-glycolide 

(PLGA). A unique property of polymer as drug delivery includes controllable 

release profile ranging from days (PGA) to months (PLA) by modification of 
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the ratio of PLA to PGA.68 Hydrophobic entrapment and conjugation to the 

polymer are some of the techniques for encapsulation of the drug. Sustained 

and controlled drug release from internalized or localized PLGA 

nanoparticles can be very useful as it provides ability to control the rate, 

duration and amount of intracellular drug concentration. The rate and extent 

of duration of release are critical determinants of efficacy. Some polypeptides 

still have limitations in their drug delivery potential such as limited sites for 

conjugation with drug and ineffective sustained release. 

 

1.3.3. Dendrimer drug delivery   

 Dendrimers are monodisperse macromolecules with repeated 

branching structures emanating from a central core.69 Drug molecules can be 

entrapped in the labyrinthine core created by the branches.70, 71 A typical 

example of dendrimers used for drug delivery and imaging application is 

polyamidoamine (PAMAM) which is made of repetitive addition of branching 

units to an amine core such as ethylenediamine. PAMAM core is used as a 

drug reservoir and has been applied for delivery of small molecules.70, 72 

Dendrimers have served as multifunctional agents due to the high number of 

functional groups on the termini. Beside its use as drug delivery tool, 

dendrimer has been explored for targeting, typically by conjugation to folic 

acid for targeting tumors,73 prostate-antigen-specific antibodies for targeting 

the prostate74 and peptides for targeting vascular endothelium75 and 
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intestinal epithelium.76 Although dendrimeric drug delivery improves 

selectivity and stability of therapeutic agents, there are still some difficulties 

such as reticuloendothelial system uptake, drug leakage, immunogenicity, 

hemolytic toxicity and hydrophobicity. 

 

1.4. Overall objective and hypothesis  

Current drug delivery systems (polymer, liposome and dendrimer) have a 

common objective of improvement of drug delivery by addressing the major 

challenges of drug delivery for reducing the toxicity of drug, improving their 

release profile and increasing absorption. Although significant advances 

have been made, controlling the release profile and reducing toxicity still 

remain major challenges. Hence new strategies for addressing these 

limitations of drug delivery need to be developed. My objective was to 

develop a new bio-orthogonal strategy using visible/near IR light for 

controlling/triggering drug release for drug delivery systems. One way for 

releasing drug is by cleaving a covalent bond between the delivery system 

and attached drug. While high energy UV can initiate the bond cleavage, low 

energy visible/near IR cannot directly cleave a covalent bond. To circumvent 

this problem, we take advantage of principles of PDT and the [2+2] reaction 

of single oxygen. The hypothesis was that drug can be released by 

visible/near IR light if drug is conjugated to the delivery systems via singlet 
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oxygen cleavable linker and PS is at the proximity to the linker. As a simple 

model system, we designed visible/near IR activatable prodrug (Fig. 3). 

 

 

 

 

 

 

 

 

 

 

Figure 3. Singlet oxygen cleavable prodrug. 
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Chapter 2. Screening for Potential Linkers  

2.1. Introduction  

There are several references to the kinetic study of reactions of singlet 

oxygen with olefins, but it was difficult to use these data because either the 

reaction conditions were not described in detail such as intensity and/or 

wavelength of the light at target samples or the reactions were performed 

under saturated oxygen conditions.77-80  To be applicable in a drug delivery 

system, an olefinic linker should produce a high yield of the photo-oxidation 

products within a short period of time under physiological conditions. No side 

reactions and/or products should be observed. In addition, a linker should be 

chemically stable in the ground state. Since intensity and wavelength of light 

are important for drug delivery applications, we (Dr. Rajesh Murthy and I) 

systemically examined various olefins to find the optimal linker for the 

strategy and to estimate rates of reaction.  

 

Figure 4. Olefins screened for photo-oxidation. 

11 
 



 
 
 
 

 

Figure 5. Photo-oxidation products of olefins 1-15 with hydrogen used for the 

quantification by 1H NMR. 

 

2.2. Experimental section 

2.2.1. Synthesis 

2.2.1.1. Synthesis of 35 and 36. Compound 8 was prepared based on 

reported method81 but the details of reaction conditions were not described 

therein. To a solution of 1,2-diphenoxy ethane (2.14 g, 10 mmol) in benzene 

(30 mL) was added tert-butoxy chloride (2.26 mL, 20 mmol) dropwise. The 

solution was stirred at room temperature and irradiated using a wavelength 

of 400-800 nm for 15 min. The reaction mixture was reduced under vacuum 

and the crude product was purified on a silica gel column using hexane:ethyl 

acetate (99:1). An inseparable mixture of 1-chloro-1,2-diphenoxy ethane (35, 
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0.96 g, 38%) and 1,2-dichlorodiphenoxy ethane (36, 0.60 g, 21%) was 

obtained. This mixture was then used for the next step.  

 

 

Scheme 1. Synthetic scheme for the preparation of 8. 

 

2.2.1.2. Synthesis of 8. To a stirred solution of potassium tert-butoxide (677 

mg, 6.3 mmol) in anhydrous ether at 0 °C was added a solution of the 

mixture of 35 and 36 (500 mg) in anhydrous ether dropwise. The reaction 

mixture was then stirred at room temperature for 4 h. The progress of the 

reaction was monitored by TLC. The starting material had completely 

disappeared with two close moving product spots. The reaction was stopped 

at this stage. The reaction mixture was diluted with ether and washed with 

water. The organic layer was separated and dried under vacuum. The crude 

product was purified on a silica gel column using hexane:ethyl acetate (99:1). 

The second fraction couldn’t be completely separated. A part of the second 

fraction was however obtained 3 mg as a pure compound 8 showing identical 

1H NMR data in a reference. Based on 1H NMR spectra the first fraction was 
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a mixture of products 37, 38 and 8 identified by their vinylic proton peaks as 

trans-diphenoxy ethylene (6.91 ppm), 1-chloro-1,2-diphenoxy ethylene (6.60 

ppm) and cis-diphenoxy ethylene (6.18 ppm), respectively. 

 

2.2.2. General photo-oxidation procedure 

Olefins 1-15 except 8 were purchased from Sigma-Aldrich Co. or 

Acros Organics, and used without purification. In a NMR tube, an olefin 

(0.0048 mmol)  and of 5,10,15-triphenyl-20-(4-hydroxyphenyl)-

21H,23Hporphyrin (TPP-OH) (3 mg, 0.0048 mmol) was dissolved in CDCl3 

(0.5 mL) and the reaction mixture was irradiated for 1 h using a filtered 

mercury xenon lamp (300 W). The filtered light intensity used was 200 

mW/cm2 at the target NMR tube and the whole sample solution was 

irradiated. Wavelength of the light was 400 – 800 nm after passing through 

two glass filters (FSQ-GG400 and FSQ-KG1, Newport Corporation) and a 

water filter to remove heat. The NMR tube was closed with a cap during the 

experiment to avoid solvent evaporation. The photo-oxidized mixture was 

analyzed by 1H NMR or HPLC. To maintain the significance for biological 

applications, we used low intensity light (200 mW/cm2) of wavelength of 400-

800 nm. At the standard condition, a reaction solution was irradiated for 1 h. 

The olefins were first irradiated without TPP-OH to observe their stability in 

the absence of singlet oxygen generation. 
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2.3. Results and discussion 

2.3.1. Synthesis and photo-oxidation 

Table 1. Photo-oxidation of various alkenes by singlet oxygen 

Olefin  Products (yields)a  Olefin  Products (yields)a  

1  1a (99%) 9b  9a (14%) 

2  2a (11 %) 10  10a (30%) 

3  3a (23 %) & 3b (18%) 11  11a (64%) 

4  4a (34%) & 4b (65%) 12c  - 

5  5a (77%) 13  13a (18%) 

6  6a (99%) 14  14a (1%) 

7  7a (22%) 15  15a (16%) 

8b  8a (80%) 
  

a Yields by NMR integration from photo mixture, except substrates 6, 13 and 

14 by HPLC. b Substrates irradiated only for 15 min. c Olefin peaks 

completely consumed but no aldehyde peak was observed on 1H NMR. 
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Figure 6. Comparison of kinetics of photo-oxidation of 8 and 9. 

 

The reactivity of the substrates with atmospheric oxygen was very 

negligible (< 1%). Another important study which was irradiation of the 

substrate without photosensitizer showed negligible reactivity except 

benzophenone oxime 13 which showed oxidation with about 7% conversion. 

This may be expected as there are reports of the slow conversion of 

benzophenone oxime to a mixture of benzophenone and nitric acid in the 

presence of oxygen and moisture. 

 The photo-oxidation of 2,3-dimethyl-2-butene 1 resulted in the 

formation of 3-hydroperoxy-2,3-dimethyl-1-butene 1a in 99% by ene 

reaction59, 82. The higher reactivity of 1 with singlet oxygen as compared to 

other substrates can be attributed to its electron-rich double bond. It has 

been shown by Kearns59 that substrate 1 has a lower πC=C ionization 

potential and hence has an increased reactivity towards singlet oxygen. 
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Substrate 2 was studied to observe 1,2-cycloaddition reaction with singlet 

oxygen yielding the dicarbonyl compounds as oxidative cleavage products. It 

also seemed interesting to study the effect of aryl groups as substituent's on 

the olefin. As previously reported by Rio and Berthelot83  the singlet oxygen 

reaction with aryl-substitued olefins doesn’t tend to be an accelerated 

process, due to its inability to act as an electron donating group when 

compared to hetero atoms or alkyl groups. Thus, benzaldehyde 2a was 

formed as the only photo product in a low yield.  

We then planned to study alkenes activated by hetero atoms. Substrates 3-6, 

belong to the family of vinyl ethers and diethers, whose reactions with singlet 

oxygen have been extensively studied by Schaap and co-workers. Substrate 

3 afforded the ene reaction product 3a due to the presence of three 

hydrogens at the allylic position. The hydroperoxide 3a was formed in 

competition with the dicarbonyl compounds as oxidative cleavage products 

via the 1,2-cycloaddition reaction. For the dicarbonyl compounds, we 

detected only ethyl formate 3b in the reaction mixture by 1H NMR. The other 

product, acetaldehyde, seemed to evaporate due to its low boiling point, 21 

°C. Dihydropyran 4 also exhibited a similar reactivity to the substrate 3, 

except that the 1,2-cycloaddition reaction product 4b was formed twice as 

higher as the ene reaction product 4a. It has been reported that for 

dihydropyran the solvent polarity plays an important role in determining the 

yield of 1,2-cycloaddition and ene reaction products.78, 84  It has been shown 
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that when dichlormethane is used as a solvent for the photo-oxygenation 

reaction the dicarbonyl compounds are 2.7 times more favored than the 

hydroperoxide.84 However, for substrate 3 the same explanation doesn’t hold 

true although the same solvent (CDCl3) was used for 3 and 4. Slower 

formation of the dioxetane intermediate from trans isomer of 3 can act as a 

plausible explanation for the lower yield of 3b as compared to 3a. Both 

substrates 5 and 6 on photo-oxidation gave high yields of the product esters 

5a and 6a, respectively. The strong electron donating effects of disubstituted 

hetero atoms O & S enhanced the reactivity with singlet oxygen.  

Substrate 7 is sulfur activated olefin and exhibited a comparatively lower 

reactivity than vinyl ethers 3 & 4. This could possibly be explained by the 

lower electron density on the π bond in substrate 7, since substrates 3 & 4 

are activated by the electron donating effect of alkyl groups. Substrates 8 & 9 

were chosen to compare the reactivities of dioxygen substituted olefins vs. 

dithio substituted olefins. Substrate 9 was synthesized by the method 

reported by Sales et al.81 Initially when we irradiated 8 & 9 the reaction 

mixtures showed complete conversion of the starting materials. Hence a time 

dependent study was conducted to analyze the reactivities of 8 & 9 in greater 

detail. Both the substrates 8 & 9 were irradiated for every 5 minutes and 

analyzed by 1H NMR each time. Analysis of reaction mixture showed that the 

formation of product 8a was directly proportional to the decrease of substrate 

8. However, the conversion of substrate 9 didn’t show a corresponding 
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increase of product 9a (Fig. 6). Thus product 9a was formed in much lesser 

yield although the starting material was consumed to a much greater extent. 

This could be possibly explained by the formation of dithiooxalate and 

disulfide as side products which cannot be detected by 1H NMR.  Hence 

substrate 8 seemed to be a better linker for our drug delivery system with 

respect to its reaction kinetics and absence of side reactions. 

 Further continuing with our series of hetero atom activated olefins, we 

photo-oxidized substrates 10-12. N-Methyl-N-vinyl acetamide 10 showed a 

reasonable reactivity with singlet oxygen as compared to vinyl ethers. This is 

probably due to the keto-amine resonance which can decrease the electron 

density of the π bond, thereby retarding the 1,2-cycloaddition reaction. 

Substrate 11 showed a higher reactivity with singlet oxygen possibly due to 

the availability of the lone pair electrons of nitrogen for enriching the double 

bond. Substrate 12 on irradiation showed complete disappearance of the 

starting material without any formation of the aldehyde product. However 

some unrecognizable products were obtained in the reaction mixture 

spectrum. It is possible that substrate 12 may have decomposed.  

Substrates 13-15 are examples of the reactivity of a π bond between carbon 

and nitrogen other than the olefins. Wamser and Herring85 have previously 

studied the photo-oxygenation of oximes and have shown that methyl 

substituted oxime 14 has a greater rate of reaction than the unsubstituted 

oxime 13 due to greater electron density on the π bond. However, in our 
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case substrate 13 was more reactive than 14. Wamser and Herring used 

saturated oxygen conditions for their photolysis with methanol as the solvent, 

whereas we studied our olefins under atmospheric conditions using CDCl3 as 

a solvent. Thus the availability of oxygen for the reaction is due to the 

dissolved oxygen in the solvent and oxygen from air. Imine 15 on photo-

oxidation yielded 16% of benzaldehyde. There is not much information 

available in the literature about the photo-oxidation of imines with singlet 

oxygen. Expectedly, 15 showed a similar reactivity to 13. 

 

2.4. Conclusion 

The screening of various substituted olefins resulted in the choice of vinyl 

diether 8 and vinyl dithioether 9 olefins for the singlet oxygen-liable linkers. 

Both can be cleaved more than 80% by the irradiation of 200 mW/cm2 light of 

400-800 nm within 15 min without oxygen saturation. However, vinyl diether 

8 was chosen because the cleavage reaction does not generate any side 

products. The potential of low energy light-induced C=C bond cleavage looks 

promising. 

 

Figure 7. [2+2] Oxidation of vinyl diether by singlet oxygen and subsequent 

cleavage of dioxetane for the release of drug. 
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Chapter 3 Aminoacrylate Linker for Visible Light-triggered Drug 

Release  

3.1. Introduction 

Our initial screening of various olefins resulted in the choice of vinyl 

diether 8 and vinyl dithioether 9 olefins as singlet oxygen mediated cleavable 

linkers. I and my colleagues in my lab (Dr. Praveen Pogula and Mr. Gregory 

Nkepang) tried to develop prodrugs [D-linker-PS (D=drug, PS: 

photosensitizer)] using vinyl diether. However, we encountered several 

problems. First, the synthetic methods for vinyl diether were very limited and 

the available reaction conditions were limited with low yield and non-

stereospecfic.81, 86, 87 Second, intact parent drug was not released after the 

photo-cleavage. Instead, formylated product was released (Fig. 7), which 

might attenuate the activity of the drug (e.g., Drug- CHO). 

  Due to these limitations of the vinyl diether linker, I started searching 

for new linkers and turned our attention to β-enamino ketone. In the previous 

screening, these linkers showed relatively fast photo-oxidation by singlet 

oxygen (11 & 12, 64 & ~ 100% in 1 h, Table 1).88  
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Figure 8. β-Amino ester and strategy for its synthesis. 

  

  Inspired by the oxidation rate of β-enamino ketone, I designed 

analogues of β-enamino ester (compounds 17 and 18, Fig. 8) as new linker 

candidates that could readily be prepared through high yield reactions 

[esterification and amine-yne reaction (a click chemistry)].89, 90 The 

esterification of 4-phenylphenol with propynoic acid was performed by the 

Steglich Esterification with DCC and DMAP at 0 oC (to RT) to give biphenyl 

propiolate 16.91 The thiol-yne type reaction of 16 with diethylamine or 
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piperidine gave 17 and 18 in 89% and 80% yields respectively at RT in 10-15 

min. 

To examine the scope of the preparation and photo-oxidation, I then 

prepared analogues by replacing the nitrogen with sulfur or oxygen [thio-

acrylate 19, 20 and oxy-acrylate 21, 22, and] or the oxygen with nitrogen or 

sulfur [amino-acrylthioate 23and aminoacrylamide 24] (Fig. 9). 

 

Figure 9. Reaction sequence and prepared substrates for 

heteroatomacrylate, aminoacylthioate and aminoacrylamide (B: 4-

phenylphenol, thiophenol, or aniline).  
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Since the aminoacrylates 17 and 18 showed fast reaction with singlet oxygen 

(62 and 72%) at comparable rate with the control (vinyl dithioether), I further 

designed model systems 25-28 with a spacer to accommodate two parts of 

alcohol (e.g., 4-phenylphenol and phenol). All were prepared using high yield 

click reaction (84-90%). Compounds 26 and 27 showed faster reaction than 

25, presumably due to weaker electron withdrawing effect of the ester bond 

to enamino group in 26 and 27. Using the spacers of 27 and 28, I tried to 

prepare prototypes (compounds 14 and 15) having both the linker and a 

photosensitizer (PS) in one molecule. Prototypes 29 and 30 were 

successfully prepared. Indeed, both showed much faster oxidation reaction 

(89% in 10 min for 29; and 79% in 15 min for 30) even faster than the control 

(87% in 25 min).  

 

 

Figure 10. Prepared model substrates and the prototype prodrug. 
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Scheme 2. Prepared substrates for heteroatomacrylate, aminoacylthioate 

and aminoacrylamide. 
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Scheme 3. Prepared model substrates and the prototype prodrug.  
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3.2. Experimental section 

3.2.1. Synthesis 

3.2.1.1. Biphenyl-4-yl propiolate (16). To an ice cooled and stirred solution 

of propargylic acid  (285 mg, 4.01 mmol) and 4-phenylphenol  (693 mg, 4.07 

mmol) in dry diethyl ether was added dropwise a solution of N,N'-

dicyclohexylcarbodiimide (DCC, 840 mg, 4.07 mmol) and 4-

dimethylaminopyridine (DMAP, 3.2 mg, 0.03 mmol) in dry diethyl ether (10 

mL) during 2 h under nitrogen atmosphere. Reaction mixture was then stirred 

at room temperature for 10 h, filtered and the solid was washed with diethyl 

ether. Then, the combined filtrate was washed with 1 N HCl solution followed 

by washing with brine and dried with anhydrous Na2SO4. The solvent was 

removed under reduced pressure to give the crude product that was then 

purified by column chromatography using ethyl acetate: hexane (1:9) as an 

eluant to give compound 16 (0.81 mg, 90 %). 1H NMR (400 MHz, CDCl3):  δ 

3.12 (s, 1H), 7.24 (s, 1H), 7.26 (s, 1H), 7.38 (s, 1H), 7.47 (t, J = 7.8 Hz, 2H), 

7.57 (s, 1H), 7.59 (s, 1H), 7.62 (s, 1H), 7.64 (s, 1H).  HRMS ESI (m/z): 

Calculated for C15H2O2 ([M+H]+): 223.0681; found: 223.0734. 

 

3.2.1.2. Biphenyl-4-yl 3-(diethylamino)acrylate (17). Diethylamine (66 mg, 

0.89 mmol) and compound 16 (200 mg, 0.89 mmol) were dissolved in dry 

THF (20 mL), and the solution was stirred at RT for 15 min. The solvent was 

removed under reduced pressure to give the crude product which was then 
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purified by column chromatography using ethyl acetate:hexane (7:3) to give 

compound 17 (237 mg, 89 %). 1H NMR (400 MHz, CDCl3) δ 1.24 (t, J = 7.0 

Hz, 6H), 3.28 (br. s ,  4H), 4.79 (d, J = 13.0 Hz, 1H), 7.20 (d, J = 8.6 Hz, 2H), 

7.36 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.8 Hz, 2H), 7.62 (m, 4H), 7.63 (d, J = 

13.0 Hz, 1H). HRMS ESI (m/z): Calculated for C19H22NO2 ([M+H]+):  

296.1572; found: 296.1647. 

 

3.2.1.3. Biphenyl-4-yl 3-(piperidin-1-yl)acrylate (18). The compound 18 

was prepared according to the method described for compound 17 

employing piperidine (77 mg, 0.89 mmol) and compound 16 (200 mg, 0.89 

mmol) to give white solid compound 18 (221 mg, 80%). 1H NMR (400 MHz, 

CDCl3) δ 1.67 (br s, 6H), 3.30 (s (b), 4H), 4.83 (d, J = 13.1 Hz, 1H), 7.19 (d, J 

= 8.6 Hz, 2H), 7.34 (t, J = 7.2 Hz, 1H), 7.44 (t, J = 7.8 Hz, 2H), 7.59 (m, 5H).  

HRMS ESI (m/z): Calculated for C20H22NO2 ([M+H]+):  308.1572; found: 

308.1646. 

 

3.2.1.4. Biphenyl-4-yl 3-(phenylthio)acrylate (19). To a stirred solution of 

1,4-diazabicyclo[2.2.2]octane (DABCO, 10 mg, 0.89 mmol) and thiophenol 

(99 mg, 0.89 mmol) in dry THF (20 mL) at RT was added compound 16 (200 

mg, 0.89) dissolved in dry THF (2 mL) through a syringe over 12 min. The 

reaction mixture was further stirred for 20 min. 10% NaOH(aq) was added. 

The combined organic layer was washed with brine, dried over anhydrous 
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Na2SO4, filtered and the solvent was removed by evaporation. The crude 

product was purified by column chromatography using ethyl acetate:hexane 

(2:8) as an eluent to give compound 19 (254 mg, 85 %). 1H NMR (400 MHz, 

CDCl3) δ 5.84 (d, J = 15.0 Hz, 1H), 7.18 (d, J = 8.6 Hz, 2H), 7.46 (m, 6H), 

7.58 (m, 6H), 8.05 (d, J = 15.0 Hz, 1H). HRMS ESI (m/z): Calculated for 

C21H17O2S ([M+H]+):  333.0871; found: 333.0852. 

 

3.2.1.5. Biphenyl-4-yl 3-(benzylthio)acrylate (20). The compound 20 was 

prepared according to the method described for compound 19 employing 

compound 16 (200 mg, 0.89 mmol) and benzylthiol (112 mg, 0.89 mmol) to 

give white solid compound 20 (284 mg, 91%). 1H NMR (300 MHz, CDCl3) δ 

4.10 (s, 2H), 6.02 (d, J = 15.1 Hz, 1H), 7.18 (d, J = 8.3 Hz, 2H), 7.39 (m, 8H), 

7.57 (t, J = 5.9 Hz, 4H), 7.94 (d, J = 15.1 Hz, 1H). HRMS ESI (m/z): 

Calculated for C22H19O2S ([M+H]+): 347.1028; found: 347.1101. 

 

3.2.1.6. Biphenyl-4-yl 3-phenoxyacrylate (21).  The compound 21 was 

prepared according to the method described for compound 19 employing 

compound 16 (435 mg, 2.15 mmol) and phenol (223 mg, 2.36 mmol) to give 

white solid compound 21 (510 mg, 80%). 1H NMR (300 MHz, CDCl3) δ 5.67 

(d, J = 12.2 Hz, 1H), 7.40 (d, J = 8.9 Hz, 2H), 7.11 (d, J = 8.5 Hz, 2H), 7.33 

(q, J = 7.9 Hz, 5H), 7.49 (t, J = 7.0 Hz, 5H), 7.92 (d, J = 12.2 Hz, 1H). HRMS 

ESI (m/z): Calculated for C21HI7O3 ([M+H]+):  317.1099; found: 317.1175. 
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3.2.1.7. Biphenyl-4-yl 3-(benzyloxy)acrylate (22). The compound 22 was 

prepared according to the method described for compound 19 employing 

compound 16 (300 mg, 1.34 mmol) and benzylalcohol (161 mg, 1.48 mmol) 

to give white solid compound 22 (419 mg, 94%). 1H NMR (400 MHz, CDCl3) 

δ 5.00 (s, 2H), 5.53 (d, J = 12.5 Hz, 1H), 7.18 (d, J = 8.2 Hz, 2H), 7.39 (m, 

8H), 7.57 (t, J = 4.8 Hz, 4H), 7.88 (d, J = 12.5 Hz, 1H). HRMS ESI (m/z): 

Calculated for C22H19O3 ([M+H]+):  331.1256; found: 331.1332 

 

3.2.1.8. (E)-S-Phenyl 3-(piperidin-1-yl)prop-2-enethioate (23). The 

compound 23 was prepared according to the method described for 

compound 18 employing piperidine (184 mg, 2.18 mmol) and compound 39 

(350 mg, 2.18 mmol) to give pale red solid compound 23 (507 mg, 95%). 1H 

NMR (300 MHz, CD2Cl2) δ 1.64 (s, 6H), 3.27 (s, 4H), 5.11 (d, J = 12.6 Hz, 

1H), 7.38 (s, 3H), 7.45 (d, J = 5.2 Hz, 1H), 7.48 (d, J = 12.6 Hz, 1H). HRMS 

ESI (m/z): Calculated for C14H18NOS ([M+H]+): 248.1031; found: 248.1125. 

 

3.2.1.9. (E)-N-Phenyl-3-(piperidin-1-yl)acrylamide (24). The compound 24 

was prepared according to the method described for compound 18 

employing piperidine (211 mg, 2.48 mmol) and compound 40 (360 mg, 2.48 

mmol) to give brown solid compound 24 (497 mg, 87 %). 1H NMR (300 MHz, 

CD2Cl2) δ 1.62 (s, 6H), 3.20 (s, 4H), 4.73 (d, J = 12.6 Hz, 1H), 6.89 (s, 1H), 

7.00 (t, J = 6.2 Hz, 1H), 7.27 (t, J = 6.9 Hz, 2H), 7.43 (d, J = 12.6 Hz, 1H), 
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7.51 (d, J = 6.9 Hz, 2H). HRMS ESI (m/z): Calculated for C14H19N2O 

([M+H]+): 231.1419; found: 231.1512. 

 

3.2.1.10. Phenyl 1-(3-(biphenyl-4-yloxy)-3-oxoprop-1-enyl)pyrrolidine-2-

carboxylate (25). The compound 25 was prepared according to the method 

described for compound 28 employing compound 43  (112 mg, 0.36 mmol), 

compound 16 (82 mg, 0.36 mmol) and 0.06 ml of N,N–diisopropylethylamine 

to give solid compound 25 (129 mg, 85 %). 1H NMR (400 MHz, CDCl3) δ 2.17 

(m, 2H, pro), 2.38  (br. s, 2H, pro), 3.28-3.83 (m, 2H, pro) 4.49 (br. s, 1H, 

pro), 4.87 (d, J = 12.0 Hz, 1H), 7.12 (d, J = 7.8 Hz, 2H), 7.18 (d, J = 8.5 Hz, 

2H), 7.31 (m, 2H), 7.41 (q, J = 7.5 Hz, 4H), 7.58 (s, 2H), 7.64 (s, 2H), 7.86 (d, 

J = 12.0 Hz, 1H).  HRMS ESI (m/z): Calculated for C26H24NO4 ([M+H]+):  

414.1627; found: 414.1697. 

 

3.2.1.11. Phenyl 1-(3-(biphenyl-4-yloxy)-3-oxoprop-1-enyl)pyrrolidine-3-

carboxylate (26). The compound 26 was prepared following all the steps 

described for compound 25 (137 mg, 90 %). 1H NMR (400 MHz, CDCl3) δ 

1.51-1.71 (m, 1H, pro), 2.45 (br. s, 2H, pro), 3.40-3.95 (m, 4H, pro), 4.78 (d, J 

= 13.0 Hz, 1H), 7.11 (d, J = 7.7 Hz, 2H), 7.20 (d, J = 8.6 Hz, 2H), 7.35 (s, 

1H), 7.44 (q, J = 7.6 Hz, 4H), 7.58 (s, 2H), 7.60 (s, 2H), 7.83 (d, J = 13.0 Hz, 

1H).  HRMS ESI (m/z): Calculated for C26H24NO4 ([M+H]+): 414.1627; found: 

414.1700. 
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3.2.1.12. (E)-Biphenyl-4-yl 3-(4-((2-phenoxyacetoxy)methyl)piperidin-1-

yl)acrylate (27). To a stirred solution of compound 56 (75 mg, 0.49 mmol) 

and compound 59  (250 mg, 0.74 mmol) in dry dichloromethane (DCM) was 

added dropwise a solution of DCC (407 mg, 1.98 mmol) and DMAP (60 mg, 

0.49 mmol ) in dry DCM (15 mL). Reaction mixture was then stirred at room 

temperature for 24 h.  The solvent was removed under reduced pressure to 

give the crude product that was then purified by column chromatography 

using ethyl acetate: hexane (6:4) as an eluant to give a white solid compound 

27 (279 mg, 80 %). 1H NMR (300 MHz, CD2Cl2) δ 1.11 (m, 1H), 1.33 (m, 2H), 

1.72 (t, J = 12.9 Hz, 2H), 1.90 (d, J = 9.9 Hz, 1H), 3.05 (br s, 1H), 3.58 (m, 

2H), 4.09 (d, J = 5.9, 2H), 4.68 (s, 2H), 4.83 (d, J = 13.0 Hz, 1H), 6.91 (d, J = 

7.9 Hz, 2H), 7.02 (t, J = 7.2, 1H), 7.15 (d, J = 8.3, 2H), 7.33 (m, 2H), 7.45 (t, J 

= 7.50, 2H),  7.59 (br s, 5H). HRMS ESI (m/z): Calculated for C29H30NO5 

([M+H]+):472.2046 ; found: 472.2118. 

 

3.2.1.13. Biphenyl-4-yl 3-(4-(3-phenoxypropyl)piperazin-1-yl)acrylate 

(28). Compound 50 (150 mg, 0.45 mmol) was dissolved in dry THF (20 mL) 

with stirring under nitrogen. N,N-diisopropylethylamine (0.08 mL) was added 

drop wise and then compound 16 (100 mg, 0.45 mmol) dissolved in dry THF 

(5 mL) was added. The reaction mixture was stirred at RT for 15 min. After 

the reaction was completed, solvent was removed under reduced pressure to 

give the crude product which was then purified by column chromatography 
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using ethyl acetate:hexane (4:6) to give product 28 (173 mg, 87 %). 1H NMR 

(300 MHz, CD2Cl2) δ 1.94 (m, 2H), 2.51 (m, 6H), 3.31 (s, 4H), 4.01 (t, J = 6.1 

Hz, 2H), 4.80 (d, J = 13.0 Hz, 1H), 6.89 (m, 3), 7.12 (d, J = 8.2 Hz, 2H), 7.26 

(t, J = 7.7 Hz, 2H) 7.32 (d, J = 6.2 Hz, 1H), 7.42 (t, J = 7.5 Hz, 2H), 7.51 (s, 

1H), 7.56 (m, 4H). HRMS ESI (m/z): Calculated for C28H31N2O3 ([M+H]+): 

443.2256; found: 443.2333. 

 

3.2.1.14. (E)-Biphenyl-4-yl3-(4-((2-phenoxy-10,15,20-triphenyl-21,23-

dithiaporphyrin acetoxy)methyl)piperidin-1-yl)acrylate (29). The 

compound 29 was prepared according to the method described for 

compound 27 employing compound 57 (80 mg, 0.11 mmol), compound 59  

(56 mg, 0.17 mmol), DCC (45 mg, 0.22 mmol) and DMAP (13 mg, 0.11 mmol 

) to give a solid red purple compound 29 (128 mg, 74%).1H NMR (300 MHz, 

CD2Cl2) δ 1.01 (m, 2H), 1.24 (m, 2H), 1.60 (m, 2H), 1.80 (d, J = 12.2 Hz, 2H), 

3.34 (m, 1H), 3.97 (br s, 1H), 4.14 (d, J = 5.9, 2H), 4.72 (d, J = 12.9 Hz, 1H), 

4.88 (s, 2H), 6.97 (d, J = 8.6 Hz, 2H), 7.32 (m, 3H), 7.45 (m, 5H),  7.74 (br s, 

9H),  8.16 (m, 8H), 8.62 (m, 4H), 9.64 (m, 4H). HRMS ESI (m/z): Calculated 

for C67H52N3O5S2 ([M+H]+): 1042.3270; found:1042.3343 . 

 

3.2.1.15. Biphenyl-4-yl3-(4-(3-(5-(4-phenoxy-10,15,20-triphenyl-21,23-

dithiaporphyrin propyl)piperazin-1-yl)acrylate (30). The compound 30 

was prepared following all the steps described for compound 28 (39 mg, 65 
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%). 1H NMR (300 MHz, CDCl3) δ 2.08 (br. s, 2H), 2.52 (br. s, 4H), 2.66 (br. s, 

2H), 3.33 (br. s, 2H), 4.15 (br. s, 4H), 4.80 (d, J = 13.3 Hz, 1H), 7.11 (d, J = 

8.4 Hz, 2H), 7.17 (s, 1H), 7.26 (m, 1H), 7.35 (t, J = 7.6 Hz, 2H), 7.49 (s, 2H), 

7.52 (s, 2H), 7.72 (s, 11H) 8.08 (d, J = 8.6 Hz, 2H), 8.17 (s,  6H), 8.61 (s,  

4H), 9.61 (s,  4H). HRMS ESI (m/z): Calculated for C66H53N4O3S2 ([M+H]+): 

1013.35; found: 1013.3565. 

 

3.2.1.16. (E)-((13S)-13-Methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-

decahydro-6H-cyclopenta[a]phenanthren-3-yl)3-(4-((2-phenoxy-

10,15,20-triphenyl-21,23-dithiaporphyrin acetoxy)methyl)piperidin-1-

yl)acrylate (31). The compound 31 was prepared according to the method 

described for compound 27 employing compound 57 (120 mg, 0.17 mmol), 

compound 60  (108 mg, 0.25 mmol), DCC (68 mg, 0.33 mmol) and DMAP 

(20 mg, 0.17 mmol ) to give a solid red purple compound 31 (211 mg, 75%). 

1H NMR (300 MHz, CD2Cl2) δ 0.77 (s, 3H), 1.95-1.08 (m, 3H), 1.18-1.39 (m, 

7H), 1.55-1.64 (m, 2H), 1.75-1.80 (m, 2H) 1.88-2.08 (m, 2H), 2.18-2.41 (m, 

1H), 2.72 (m, 2H), 3.00 (br s, 1H), 3.33 (m, 1H), 3.53 (m, 2H), 3.96 (m, 1H), 

4.13 (d, J = 6.1 Hz, 2H), 4.69 (d, J = 13.3 Hz, 1H), 4.87 (s, 2H), 6.62 (s, 2H), 

7.07 (d, J = 8.6, 1H), 7.29 (d, J = 8.6 Hz, 2H), 7.43 (d, J = 13.3 Hz, 1H), 7.74 

(br s, 9H), 8.12 (d, J = 8.6, 2H), 8.16 (m, 6H), 8.63 (m, 4H), 9.64 (m, 4H). 

HRMS ESI (m/z): Calculated for C73H64N3O6S2 ([M+H]+): 1142.4158; 

found:1142.4233. 
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3.2.1.17. S-Phenyl prop-2-ynethioate (39). The compound 39 was prepared 

according to the method described for compound 16 employing thiophenol 

(1g, 9.07 mmol), propargylic acid (0.64 g, 9.07 mmol), DCC (1.87g, 9.07 

mmol) and DMAP (7.3 mg, 0.06 mmol) to give brownish liquid compound 39 

(1.24 g, 84%). 1H NMR (300 MHz, CD2Cl2) δ 3.40 (s, 1H), 7.46 (s, 5H). 

 

3.2.1.18. N-Phenylpropiolamide (40). The compound 40 was prepared 

according to the method described for compound 16 employing aniline (1g, 

0.01mol), propargylic acid (0.76g, 0.01 mol), DCC (2.2g, 0.01) and DMAP 

(8.6 mg, 0.07 mmol) to give brown solid compound 40 (1.35 g, 87 %). 1H 

NMR (300 MHz, CD2Cl2) δ 2.93 (s, 1H), 7.15 (t, J = 6.9 Hz, 1H), 7.33 (t, J = 

7.5 Hz, 2H), 7.52 (t, J = 7.4 Hz, 2H), 7.79 (br s, 1H). 

 

3.2.1.19. 1-(tert-Butoxycarbonyl)pyrrolidine-2-carboxylic acid (41). (S)-

Proline (2.3 g, 20 mmol) was dissolved in 40 mL of DCM. To the solution, 

triethylamine (3.73 mL, 26 mmol) and di-tert-butyl dicarbonate (6.3 g, 28.9 

mmol) dissolved in DCM (5 mL) were added. The mixture was stirred at RT 

for 2.5 h. Then, the reaction was quenched with saturated aqueous citric acid 

solution (15 mL), washed with brine (30 mL) and water (20 mL). The organic 

layer was dried over anhydrous Na2SO4, filtered and the solvent removed by 

evaporation. The white crystallized solid formed was washed with hexane to 
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obtain compound 41 (3.85 g, 90 %). 1H NMR (400 MHz, CDCl3) δ 1.42 (s, 

2H), 1.75 – 2.39 (m, 4H), 3.22 – 3.54 (m, 2H), 4.21 – 4.39 (m, 1H). 

 

3.2.1.20. 1-tert-Butyl 2-phenyl pyrrolidine-1,2-dicarboxylate (42). 

Compound 41 (500 mg, 2.32 mmol) and DCC (523 mg, 2.53 mmol) in DCM 

(12 mL) were stirred at 0 oC for 30 min under argon atmosphere. To the 

solution, phenol (199 mg, 2.12 mmol) was added and stirred at RT for 24 h. 

The reaction mixture was diluted with ethyl acetate (30 mL) and filtered. The 

combined organic layer was dried over anhydrous sodium sulfate, filtered and 

the solvent removed by evaporation. The crude product was purified by 

column chromatography using ethyl acetate–hexane (4:6) to give compound 

42 as a white solid (492 mg, 80 %). 1H NMR (400 MHz, CDCl3) δ 1.46 (s, 

9H), 1.89 – 2.43 (m, 4H), 3.40 – 3.66 (m, 2H), 4.41 – 4.55 (m, 1H), 7.09 (m, 

2H), 7.22 (m, 1H), 7.37 (m, 2H). 

 

3.2.1.21. Phenyl pyrrolidine-2-carboxylate (43). Compound 42 (500 mg, 

1.71 mmol) was dissolved  in dry DCM (6 mL). Trifluoroacetic acid (0.66 mL, 

8.58 mmol) was then added to the solution at 0 0C and stirred under nitrogen 

for 1 h. The reaction mixture was then concentrated under vacuum and used 

directly in the next step without further purification. 
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3.2.1.22.  1-tert-Butyl 3-phenyl pyrrolidine-1,3-dicarboxylate (44). The 

compound 44 was prepared according to the method described for 

compound 42 employing 1-(tert-butoxycarbonyl)pyrrolidine-3-carboxylic acid 

(500 mg, 2.32 mmol), phenol (198 mg, 2.12 mmol) and DCC (522 mg, 2.53) 

to give pale white solid compound 44 (510 mg, 83 %).1H NMR (400 MHz, 

CDCl3) δ 1.40 (s, 9H), 1.84 – 1.57 (m, 1H), 2.21(m, 2H), 3.17-3.70 (m, 4H), 

7.00 (s, 1H), 7.02 (s, 1H), 7.17 (t, J = 7.8 Hz, 1H), 7.32 (t, J = 7.8 Hz, 2H). 

 

3.2.1.23. Phenyl pyrrolidine-3-carboxylate (45). The compound 45 was 

prepared according to the method described for compound 43 employing 

TFA  (0.66 mL, 8.58 mmol) and compound 44(500 mg, 1.71 mmol) to give 

white solid compound. Compound was used without further purification after 

solvent removal.  

 

3.2.1.24. (3-Bromopropoxy)benzene (46). Phenol (1.0 g, 10.6 mmol) was 

dissolved in acetone (20 mL). Anhydrous potassium carbonate (7.34 g, 53.1 

mmol) and 1,3-dibromopropane (8.58 g, 42.5 mmol) was added to the 

solution. The reaction mixture was refluxed in an oil bath for 12 h. After the 

reaction, the potassium carbonate was removed by suction filtration and 

solvent was removed under reduced pressure to give the crude product 

which was then purified by column chromatography using ethyl 

acetate:hexane (3:7) to give product 46 (2.05 g, 90 %). 1H NMR (400 MHz, 
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CDCl3) δ 2.24 (m, 2H), 3.54 (t, J = 6.4 Hz, 2H), 4.03 (t, J = 5.8 Hz, 2H), 6.86 

(m, 3H), 7.21 (m, 2H). 

 

3.2.1.25. 5-(3-Bromopropoxy)phenyl-10,15,20-triphenyl-21,13-

dithiaporphyrin (47).  Compound 47 was prepared according to the method 

described for compound 46 employing 5-(4-hydroxyphenyl)-10,15,20-

triphenyl-21,23dithiaporphyrin (300 mg, 0.45 mmol), 1,3-dibromopropane 

(364 mg, 1.81 mmol) and potassium carbonate (311 mg, 2.26) to give pale 

red solid compound 47 (301 mg, 85 %).1H NMR (300 MHz, CDCl3) δ 2.52 (m, 

2H), 3.79 (t, J = 6.3 Hz, 2H), 4.41 (t, J = 5.6 Hz, 2H), 7.36 (d, J = 8.3 Hz, 2H), 

7.81 (s, 9H), 8.19 (d, J = 8.3 Hz, 2H), 8.26 (d, J = 3.6 Hz, 6H), 8.68 (s, 3H), 

8.70 (s, 1H), 9.70 (s, 3H), 9.73 (s, 1H). 

 

3.2.1.26. tert-Butyl 4-(3-phenoxypropyl)piperazine-1-carboxylate (48). To 

a solution of n-Boc-piperazine (1.08 g, 5.80 mmol) in dry DMF (10 mL) were 

added anhydrous potassium carbonate (4.01 g,  29.04 mmol) and compound  

46  (1.5 g, 6.97 mmol). The reaction mixture was stirred at RT for 8 h. The 

potassium carbonate was removed by suction filtration and the solvent was 

removed under reduced pressure. The residue was dissolved with water and 

extracted with ethyl acetate. The combined organic layers were dried over 

anhydrous sodium sulfate and the solvent was removed by evaporation. The 

crude product was purified by column chromatography using ethyl 
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acetate:hexane (8:2) to give compound  48 (1.58 g, 85 %). 1H NMR (400 

MHz, CDCl3) δ 1.39 (s, 9H), 1.92 (s, 2H), 2.36 (s, 4H), 2.48 (s, 2H), 3.39 (s, 

4), 3.95 (m, 2), 6.83 (m, 2H), 7.19 (m, 3H). 

 

3.2.1.27. tert-Butyl 4-(5-(3-phenyl-10,15,20-triphenyl-21,13-

dithiaporphyrinoxypropyl)piperazine-1-carboxylate (49). The compound 

49 was prepared according to the method described for compound 48 

employing compound 47 (150 mg, 0.19 mmol), n-Boc-piperazine (29 mg, 

0.16 mmol) and potassium carbonate (110 mg, 0.80) to give pale red solid 

compound 49 (128 mg, 75 %). 1H NMR (300 MHz, CDCl3) δ 1.50 (s, 9H), 

2.25 (br s, 2H), 2.60 (br s, 4H), 2.77 (br s, 2H), 3.59 (br s, 4H), 4.33(br s, 2H), 

7.33 (d, J = 8.3 Hz, 2H), 7.80 (s, 9H), 8.16 (d, J = 8.3 Hz, 2H), 8.24 (d, J = 

4.0, 6H), 8.68 (s, 4H), 9.68 (s, 4H). 

 

3.2.1.28. 1-(3-Phenoxypropyl)piperazine (50). The compound 50 was 

prepared according to the method described for compound 43 employing 

TFA (6 mL) and compound 48 (550 mg, 1.72 mmol) to give white solid 

compound. Compound was used without further purification after solvent 

removal. 

 

3.2.1.29. 1-3(-(5-(4-Phenyl)-10,15,20-triphenyl-

21,23dithiaporphyrin)oxypropylpiperazine (51). Compound 49 (70 mg, 
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0.09  mmol) was dissolved  in dry DCM (6 mL). After trifluoroacetic acid (0.03 

mL) was added to the solution at 0 0C, it was stirred under nitrogen for 1 h. 

The reaction mixture was then concentrated under vacuum and then used 

directly in the next step. 

 

3.2.1.30. 5-(4-Methoxyphenyl)-10,15,20-triphenyl-21-23-dithiaporphyrin 

(52). Compound 52 was prepared following reference.92 

1H NMR (400 MHz, CDCl3) δ 4.11 (s, 3H), 7.36 (d, J = 8.4 Hz, 2H), 7.81 ( s, 

9H), 8.12 (d, J = 8.4 Hz, 2H), 8.16 (m, 6H), 8.63 (m, 4H), 9.64 (m, 4H). 

HRMS ESI (m/z): Calculated for C45H31N2OS2 ([M+H]+): 679.1878; found: 

679.186. 

 

3.2.1.31. 5-(4-Hydroxyphenyl)-10,15,20-triphenyl-21,23dithiaporphyrin 

(53). Compound 53 was prepared following reference.92 

1H NMR (400 MHz, CDCl3) δ 7.11 (d, J = 8.4 Hz, 2H), 7.63 (s, 9H), 8.10 (d, J 

= 8.4 Hz, 2H), 8.16 (m, 6H), 8.63 (m, 4H), 9.64 (m, 4H). HRMS ESI (m/z): 

Calculated for C44H29N2OS2 ([M+H]+): 665.1721; found: 665.1708. 

 

3.2.1.32. Ethyl 2-phenoxyacetate (54). The compound 54 was prepared 

according to the method described for compound 46 employing phenol (4.5 

g, 0.05 mol), ethyl bromoacetate (31 g, 0.19 mol) and potassium carbonate 

(33 g, 0.24 mol) to give a colorless oily compound 54 (6.9 g, 81 %). 1H NMR 
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(300 MHz, CD2Cl2) δ 1.30 (t, J = 7.0 Hz, 3H), 4.27 (q, J = 7.0 Hz, 2H), 4.62 

(s, 2H), 6.91 (d, J = 7.9 Hz, 2H), 6.99 (t, J = 7.0 Hz, 1H), 7.29 (t, J = 7.6 Hz, 

2H). 

 

3.2.1.33. Ethyl 5,10,15-triphenyl-20-(4-carboxylatomethoxy)phenyl-

21,23-dithiaporphyrin (55). The compound 55 was prepared according to 

the method described for compound 46 employing compound 53 (0.25 g, 

0.38 mol), ethyl bromoacetate (2.1 mL, 19 mmol) and potassium carbonate 

(2.6 g, 19 mmol) to give purple solid compound 55 (0.22 g, 78 %). 1H NMR 

(300 MHz, CD2Cl2) δ 1.42 (t, J = 7.0 Hz, 3H), 4.42 (q, J = 7.0 Hz, 2H), 4.92 

(s, 2H), 7.37 (d, J = 8.2, 2H), 7.81 (br s, 9H), 8.19 (d, J = 8.2, 2H), 8.26 (m, 

6H), 8.69 (m, 4H), 9.70 (m, 4H). HRMS ESI (m/z): Calculated for 

C48H35N2O3S2 ([M+H]+): 751.2011; found:751.2065 . 

 

3.2.1.34. 2-Phenoxyacetic acid (56). Compound 54 (2 g, 0.011 mol) was 

dissolved in 100 mL of THF, and 1 M NaOH (110 mL, 0.11 mol) was added. 

The reaction mixture was stirred at RT for 24 h. The solution was then 

acidified by the addition of 40 mL of acetic acid. The reaction mixture was 

diluted with 150 mL of H2O and the product was extracted with ethyl acetate.  

The organic extracts was dried over magnesium sulfate and concentrated. 

The crude product was washed several times with hexane:ethylacetate (9:1) 

to give a pale white solid (1.58 g, 94 %). 1H NMR (300 MHz, CD2Cl2) δ  4.69 
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(s, 2H), 6.92 (d, J = 8.2 Hz, 2H),  7.03 (t, J = 7.0 Hz, 1H), 7.32 (t, J = 7.6 Hz, 

2H), 

 

3.2.1.35. 5,10,15-Triphenyl-20-(4-carboxylatomethoxy)phenyl-21,23-

dithiaporphyrin (57). The compound 57 was prepared according to the 

method described for compound 56 employing compound 55 (0.18 g, 0.24 

mmol), 1 M NaOH (20 mL, 20 mmol) and 8 mL of acetic acid to a purple solid 

compound 57 (0.16 g, 92 %). 1H NMR (300 MHz, CD2Cl2) δ   5.00 (s, 2H), 

7.42 (d, J = 7.8, 2H), 7.80 (br s, 9H),  8.21 (br s, 8H), 8.67 (s, 4H), 9.70 (s, 

4H). 

 

3.2.1.36. (13S)-13-Methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-

6H-cyclopenta[a]phenanthren-3-ylpropiolate (58). The compound 58 was 

prepared according to the method described for compound 16 employing 

estrone (500 mg, 1.85 mmol), propargylic acid (262 mg, 3.69 mmol), DCC 

(763 mg, 3.69 mmol) and DMAP (2.98 mg, 0.03 mmol) and dry DMF (10 mL) 

to give white solid compound 58 (417 mg, 70%).  1H NMR (300 MHz, CD2Cl2) 

δ 0.84 (s, 3H), 1.52 (m, 5H), 1.85-2.51 (m, 8H), 2.84 (s, 2H), 2.99 (s, 1H), 

6.81 (s, 1H), 6.84 (d, J = 9.0 Hz, 1H), 7.24 (d, J = 8.9 Hz, 1H). HRMS ESI 

(m/z): Calculated for C21H23O3 ([M+H]+): 323.1569; found: 323.1660. 
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3.2.1.37. (E)-Biphenyl-4-yl 3-(4-(hydroxymethyl)piperidin-1-yl)acrylate 

(59). The compound 59 was prepared according to the method described for 

compound 17 employing piperidin-4-ylmethanol (900 mg, 4.05mmol) and 

compound 16 (466 mg, 4.05 mmol) to give white solid compound 59 (1.15 g, 

84%).1H NMR (300 MHz, CD2Cl2) δ 1.29 (m, 1H), 1.80 (m, 2H), 3.08 (br s, 

1H), 3.51 (s, 2H), 3.62 (d, J = 9.9 Hz, 2H), 4.82 (d, J = 13.0 Hz, 1H), 7.15 (d, 

J = 8.2 Hz, 2H), 7.35 (m, 1H), 7.45 (t, J = 7.0 Hz, 2H),  7.60 (br s, 5H). HRMS 

ESI (m/z): Calculated for C21H23NO3Na ([M+Na]+):338.1678 ; found: 

338.1751. 

 

3.2.1.38. (E)-((13S)-13-Methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-

decahydro-6H-cyclopenta[a]phenanthren-3-yl) 3-(4-

(hydroxymethyl)piperidin-1-yl)acrylate (60). The compound 60 was 

prepared according to the method described for compound 17 employing 

piperidin-4-ylmethanol (61 mg, 0.53 mmol) and compound 58 (170 mg, 0.53 

mmol) to give white solid compound 60 (212 mg, 92%).  1H NMR (300 MHz, 

CD2Cl2) δ 0.91 (s, 3H), 1.20-1.37 (m, 3H), 1.46 (s, 2H), 1.50 (s, 2H), 1.57-

1.74 (m, 4H) 1.79 (s, 1H), 1.83 (s, 1H), 1.91 (d, J = 11.4 Hz, 1H), 1.98-2.17 

(m, 3H), 2.24-2.54 (m, 3H), 2.90 (m, 2H), 3.01(s, 1H), 3.50(s, 2H), 3.60 (d, J 

= 11.1, 2H), 4.78 (d, J = 12.9 Hz, 1H), 6.79 (s, 2H), 7.26 (d, J = 8.1 Hz, 1H), 

7.53 (d, J = 12.9 Hz, 1H). HRMS ESI (m/z): Calculated for C27H35NO4Na 

([M+Na]+): 460.2566; found: 460.2452. 
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3.2.1.39. Sodium benzenethiolate (66). A solution of thiophenol (4.3 g, 39 

mmol) in 5mL of dry diethyl ether was added to a stirring suspension of 

sodium (0.45 g, 19.5 mmol) in 20 mL of diethyl ether. Stirring was continued 

until sodium could no longer be seen. The white solid product was filtered 

and washed with hexane to remove thiophenol and air dried in a desiccator 

to give compound 66 (2.31 g, 90 %). 

 

3.2.2.1. (Z)-1,2-Bis(phenylthio) ethene (control). A solution of (Z)-1,2-

dichloroethene (0.49 g, 5.04 mmol) and compound 66  (2.0 g, 15.15 mmol) in 

HMPA (10 mL) was stirred under nitrogen for 1 h. The solvent was removed 

under reduced pressure to give the crude product that was then purified by 

column chromatography using 100 % hexane as a solvent to give control 

(1.04 g, 85 %). 1H NMR (400 MHz, CDCl3) δ 6.55 (s, 2H), 7.29 (m, 2H), 7.35 

(t, J = 7.7 Hz, 4H), 7.43 (s, 2H), 7.44 (m, 2H). HRMS ESI (m/z): Calculated 

for C14H12S2 [M]+: 244.0380; found: 244.0377. 
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3.3. Results and discussion 

3.3.1 Synthesis and photo-oxidation 

Table 2. Yield of click reaction, rate of oxidation by singlet oxygen, and 

coupling constant of olefinic protons. 

Compd 

# 

yield of 

click 

reaction 

% of photo-

oxidation  

in 25 min 

coupling 

constant 

(J, Hz) 

control 85 87 - 

17 89 62 13.0 

18 

18a 

80 

- 

72 

31 

13.1 

- 

19 85 0 15.0 

20 91 0 15.1 

21 80 0 12.2 

22 

23 

24 

25 

26 

27 

28 

94 

95 

87 

85 

90 

84 

87 

0 

60 

100 

32 

62 

74 

50 

12.5 

12.6 

12.6 

12.0 

12.3 

13.0 

13.0 
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a DABCO was added in the reaction solution of 18, b oxidation rate in 15 min, 

c oxidation rate in 10 min 
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Figure 11. Time-dependent photo-oxidation of model compounds [control = 

(Z)-1,2-bis(phenylthio)ethylene]. 
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Table 3. Percentage of remaining compounds 17-31 at different time point 

during irradiation (690 nm diode laser, 200 mW/cm2; *: not determined). 

0 min 5 min 10 min 15 min 20 min 25 min 

control 100 70 59 41 23 13 

17 100 83 69 58 51 38 

18 100 77 62 51 42 28 

19 100 -* - - - 100 

20 100 - - - - 100 

21 100 - - - - 100 

22 100 - - - - 100 

23 100 - - - - 40 

24 100 - - - - 0 

25 100 - - - - 60 

26 100 - - - - 38 

27 100 - - - - 41 

28 100 - - - - 50 

29 100 62 11 - - - 

30 100 - 48 21 - - 

31 100 60 10 - - - 
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  To evaluate the rate of oxidation by singlet oxygen, the model 

compounds 17-22 were irradiated by a diode laser (690 nm, 200 mW/cm2, 25 

min) in the presence of a photosensitizer 5-(4-methoxyphenyl)-10,15,20-

tetraphenyl-21,23-dithiaporphyrin. These compounds were successfully 

prepared not only under mild and fast reaction conditions (RT, air, 15-20 min) 

but also gave excellent yields for all substrates (80-95%) with the exception 

of 30 that gave a lower isolated yield (65%) due to loss in the purification 

step. All the products from the click reaction step gave E isomers based on 

the coupling constant of two olefinic protons, J = 12-15 Hz.The reaction of 

olefins with singlet oxygen was monitored by the decrease of olefinic proton 

peaks in 1H-NMR spectra. While 19-22 did not show any reactivity (0 %), 

compounds 17 and 18 showed significant decrease of the olefinic proton 

peaks (62 and 72%) in 25 min of the irradiation. Oxidation of only the 

nitrogen analogues is probably due to electron donation from the nitrogen to 

the carbonyl group making the olefinic bond electron rich for attack by singlet 

oxygen. 

  The aminoarylthioate 23 and aminoacrylamide 24 were evaluated 

under the same oxidation condition. Interestingly enough, both 23 and 24 

also showed fast reaction with singlet oxygen, 60 and 100%, respectively. 

Among aminoacrylate 18, aminoarylathioate -23-, and aminoacrylamide -24-, 

Compound 24 showed the fastest reaction rate, 100% disappearance of 
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olefinic protons in 25 min. However, aminoacrylate linker system -18- was 

selected for further investigation because it gave the clean product, 4-

phenylphenol. To examine if the cleavage was mediated by singlet oxygen, 

compound 3 was tested with a singlet oxygen quencher (1,4-

diazabicyclo[2.2.2]octane, DABCO) -18a- (Fig. A6). It was observed that 

oxidation of the vinylic bond was greatly reduced (72% → 31%) suggesting 

the role of singlet oxygen. As an example of aminoacrylate linker with 

biologically relevant molecule, the model prodrug (compound 31) was 

prepared from estrone. It showed a photo-oxidation of 90% in 10 min. similar 

to compound 29. The compound 31 successfully released Estrone after 

irradiation (Fig. A17).93 

 

3.3.2. Analysis of cleavage products 

  The GC-MS analysis of the cleaved mixture of compound 23, apart 

from the expected cleavage product, thiophenol, diphenyl disulfide was also 

detected with a number of minor side products. Diphenyl disulfide seemed to 

be formed during the GC-MS experimental procedure since it was also 

observed in GC-MS data of thiophenol standard sample (Fig. A11). It was 

also supported by the fact that doublet peak at 7.5 ppm from diphenyl 

disulfide was not observed in the 1H-NMR of the cleaved mixture of 23. Even 

though 24 showed the fastest reaction with singlet oxygen, it gave even more 

number of side products in GC-MS than 23 (Fig. A15).  
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  One key requirement for delivery systems is re-generation of the 

active form of parent molecules after release. However, in the oxidative 

cleavage of vinyl diether linkers, two formyl products were produced which 

did not spontaneously decompose to give alcohol products (Fig. 7).19, 94 

Interestingly, from the model compound 18, we could recover 4-phenylphenol 

after the irradiation in addition to one aldehyde product, 1-formyl piperidine 

(Fig. A9). The two products were confirmed by GC-MS analysis (Fig. A9). 

The release of the parent phenolic compound was also confirmed from the 

cleavage of compounds 31 and 32. The masses of these isolated products 

were taken and confirmed (Figs. A17, A18, A19) 

 

3.3.3. Possible mechanism of the cleavage of aminoacrylate 

The oxidative cleavage of aminoacrylate  has not been well studied. 

Based on our experimental data and mechanism of simple substrate (vinyl 

diether), we developed two possible mechanisms (Fig. 12). We obtained two 

products, 3P1 and 3P2. However, there are still issues in both mechanisms. 

In the first mechanism, although 31A seemed to be stable, it was not 

detected. Thus, further degradation to the 3P1 is not understandable. On the 

other hand, in the second mechanism, the degradation of imminium ion (3IB) 

to the formylamine (3P2) is hard to imagine.95 Although we are more leaning 

toward the second mechanism, further detailed studies are necessary to 

understand the mechanism. 
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Possible mechanism 1 Possible mechanism 2 

 

 

Figure 12. Possible mechanism for the oxidative cleavage of aminoacrylate. 

 

3.4. Conclusion 

  In conclusion, we proposed and proved a concept of “click and photo-

unclick chemistry” using nucleophile-yne type reaction and photo-oxidative 

cleavage of electron-rich olefins using singlet oxygen. Among aminoacrylate, 

aminoacrylamide, and amioacrylthiolate, aminoacrylate seemed to be best 

suited for applications for the release of active compounds due to its fast 
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photo-oxidation without unnecessary oxidation products. In addition, we 

proved that the aminoacrylate linker was cleaved fast by the irradiation of 

long visible light (690 nm) and stable under dark in the biological medium. 

This combination of click and photo-unclick chemistry would find important 

applications in the spatio-temporal release of not only drugs but also other 

bioactive molecules. Since the release can be triggered by tissue penetrable 

low energy light, this simple but unique chemistry will be applicable in the 

visible light-controlled release of biologically important molecules at the 

tissue level. 

 

 

 

Figure 13. Facile synthesis and cleavage of aminoacrylate and release of a 

parent drug after its oxidative cleavage. 
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3.5. Potential for biological application 

  All the studies so far have been in organic solvent (chloroform, 

DMSO). However, for this strategy to be practically applicable to the real 

setting in biology, I needed to demonstrate the cleavage in an aqueous 

medium. To prove the cleavage in the aqueous medium, I synthesized PS-L-

Rh  and used FRET in monitoring the cleavage by fluorescence in 

Dulbecco's Modified Eagle Medium with 5% fetal bovine serum commonly 

used for tissue culture. 
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Scheme 5. Prepared PS-L-Rh conjugate for FRET studies. 

 

3.6. Experimental section  

3.6.1. Synthesis 
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3.6.1.1. PS-L-Rh (32). The compound 32 was prepared according to the 

method described for compound 27 employing compound 62 (100 mg, 0.12 

mmol), Rhodamine B  (58 mg, 0.12 mmol), DCC (99 mg, 0.48 mmol) and 

DMAP (13 mg, 0.01 mmol ) to give a solid red purple compound 32 (101 mg, 

65%).1H NMR (300 MHz, CD2Cl2) δ 1.14 (m, 6H), 1.36 (m, 3H), 1.65 (m, 3H), 

1.89 (m, 2H), 2.13 (s, 1H) 2.83 (s, 2H), 2.91 (s, 2H), 3.18(s, 1H), 3.22 (s, 1H), 

3.44 (m, 4H), 3.56 (m, 1H), 3.65 (s, 1H), 4.07 (s, 4H), 4.99 (d, J = 13.0 Hz, 

1H), 6.65 (s, 4H), 7.13 (d,  J = 9.1Hz, 1H) , 7.58 (d, J = 8.1 Hz, 2H), 7.74 (d, 

J = 13.0 Hz, 1H),  7.84 (s, 10H), 7.97 (s, 1H), 8.13 (d, J = 6.6  Hz, 1H), 8.27 

(m, 9H), 8.52 (d, J = 8.2 Hz, 1H)  8.71 (s, 3H), 8.76 (s, 1H), 9.73 (s, 3H), 9.79 

(s, 1H).  HRMS ESI (m/z): Calculated for C81H71ClN5O5S2 ([M+H]+-Cl): 

1256.998; found: 1256.4790. 

 

3.6.1.2. Compound 61. The compound 61 was prepared according to the 

method described for compound 16 employing compound 53 (600 mg, 0.902 

mmol), propargylic acid (320 mg, 4.51 mmol), DCC (930 mg, .4.51 mmol) 

and DMAP (11 mg, 0.09 mmol) and dry THF (10 mL) to give red purple solid 

compound 61 (400 mg, 70%). . 1H NMR (400 MHz, CDCl3) δ  3.1 (s, 1), 4.89 

(d, J = 12.8 Hz, 1H), 7.49 (d, J = 8.4 Hz, 2H) , 7.64 (d, J = 12.8 Hz, 1H), 7.75 

(m, 9H), 8.17 (m, 8H), 8.61 (m, 3H), 8.67 (d, J = 4.5 Hz, 1H)  9.63 (m, 3H) 

9.71 (d, J = 4.5 Hz, 1H). HRMS ESI (m/z): Calculated for C47H29N2O2S2 

([M+H]+): 717.1592; found: 717.1591. 
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3.6.1.3. Compound 62. The compound 62 was prepared according to the 

method described for compound 17 employing piperidin-4-ylmethanol (64 

mg, 0.56mmol) and compound 61 (400 mg, 0.56 mmol) to give red purple 

solid compound 62 (395 mg, 85%). 1H NMR (300 MHz, CD2Cl2) δ1.02 (m, 

2H), 1.26 (m, 2H), 1.59 (m, 2H), 1.79 (m, 2H), 3.34 (m, 1H) 3.45 (m, 1H), 

3.95 (s, 1), 4.89 (d, J = 12.8 Hz, 1H), 7.49 (d, J = 8.4 Hz, 2H) , 7.64 (d, J = 

12.8 Hz, 1H), 7.75 (m, 9H), 8.17 (m, 8H), 8.61 (m, 3H), 8.67 (d, J = 4.5 Hz, 

1H)  9.63 (m, 3H) 9.71 (d, J = 4.5 Hz, 1H). HRMS ESI (m/z): Calculated for 

C53H42N3O3S2 ([M+H]+): 832.2589; found: 832.2683. 

 

3.6.2. Procedure for monitoring the cleavage of the aminoacrylate linker 

by FRET 

Stock solutions of compound 32 (2 mM) was prepared in DMSO. 50 µL of 

stock solutions was then diluted with 950 µL either chloroform or Dulbecco's 

Modified Eagle Medium with 5% fetal bovine serum to give 100 µM solutions.  

The resulting solution was irradiated using a diode laser (690 nm, 200 

mW/cm2). 10 µL was taken every 10 min and 990 µL of chloroform was 

added. The solutions were excited at 525 nm and the fluorescence spectra 

were recorded from 550 to 750 nm. 
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3.7. Results and discussion 

3.7.1. Synthesis and photo-oxidation  

 

 

 

 

 

Figure 14.  Photocleavage of 32 in a medium: a) fluorescence intensity 

(excitation at 525 nm) after the irradiation, b) photocleavage of 32 with or 
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without irradiation in media: *the 32 kept 7 days in the media under dark 

before the experiment. 

  To examine photo-cleavage and stability of the linker in an aqueous 

solution (Dulbecco's Modified Eagle Medium with 5% fetal bovine serum) 

using FRET (fluorescence energy resonance transfer), compound 32 (PS-L-

Rh) was designed and prepared by conjugating two dyes [hydroxy-

dithiaporphyrin (PS) and rhoadmine B (RhB)] with the aminoacrylate linker 

(Fig. 14, Scheme 5).96 (For synthetic convenience the positions of Rh and Rh 

were switched.) In PS-L-Rh, Rh B is a donor and PS (dithiaporphyrin) is an 

acceptor of the FRET. Fluorescence (λem: 575 nm, excitation at 525 nm) of 

Rh is quenched by PS when they are close via the linker. However, once the 

two dyes are apart after the cleavage of the linker, the fluorescence intensity 

of Rh increases dramatically since the FRET is not possible. Irradiation time-

dependent increase of Rh emission upon irradiation (690 nm diode laser at 

200 mW/cm2) was first confirmed with PS-L-Rh in CHCl3. Complete (~100%) 

cleavage was achieved in 10 min, giving about 8-time increase in Rh 

fluorescence intensity. This rate is consistent with the cleavage data of 31 (in 

CDCl3, 90% cleavage in 10 min) monitored by NMR. Then, PS-L-Rh in 

media was irradiated using the same irradiation condition. It showed ~100 % 

cleavage in 30 min (Fig. 14). The slower cleavage in the medium may be, in 

part, due to the lower concentration of oxygen (0.27 mM in media vs. 2.4 mM 

in CHCl3 at the atmospheric pressure)97 and the shorter lifetime of singlet 
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oxygen (2 µs in media vs. 60 µs in CHCl3).58 The similar photocleavage 

profile of 7-day kept sample with that of fresh sample (Fig. 14) indicates that 

the aminoacrylate was stable in media at least up to 7 days under dark. 

 

3.8. Conclusion 

  The observation of the cleavage of PS-L-Rh in the aqueous medium 

is a critical result. This implies this strategy can be translated from the test 

tube to biological system. The use of FRET for monitoring the cleavage by 

fluorescence provided a very elegant and convenient method. 
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Chapter 4. Photocleavable Prodrug of Anticancer Drug Using the 

Photo-unclick Chemistry 

4.1. Introduction 

Cancer still remains one of the most challenging health issues of the 

21st century. In the U.S., cancer is the second leading cause of death. It is 

estimated that over half a million people would die of cancer and another 1.6 

million would be diagnosed with the disease in 2012 in the U.S. alone.98  

Chemotherapy is one of the three main treatment options for cancers such 

as chemotherapy, surgery and radiation.99 It is used for both systemic and 

local treatments to. To destroy wide-spread cancer cells, chemotherapeutic 

agents are administered after surgery (adjuvant therapy). It is also used 

locally to reduce larger tumor before surgery (neo-adjuvant therapy) and to 

kill residual cancer cells and cancer cells in lymph node after the surgery.100 

It is also used when cancer cells do not respond to hormonal therapy. 

Although chemotherapeutic agents are critical components in cancer 

treatment, their inability to differentiate tumor cells from healthy cells causes 

damage to healthy cells as well. This eventually leads to undesirable side 

effects because targets of these agents are critical components during the 

cellular proliferation such as topoisomerases, DNA, microtubules, etc. Thus, 

selective damage to cancer cells is the critical goal in anticancer drug 

development. One of the approaches to achieve the goal is to develop drug 

60 
 



 
 
 
 
delivery formulations that can specifically deliver the chemotherapeutic 

agents to tumor and release free drugs in tumor. As described in the 

introduction sections, some examples include polymers, liposomes, 

dendrimers, and etc. While the targeted delivery has been made some 

progress, effective means for the local release of free drugs in tumor are still 

greatly needed.  

I therefore decided to evaluate the photo-unclick chemistry for 

releasing anticancer drugs from delivery systems. My hypothesis was that 

the free drugs could be released from inactive/less active form of drug 

delivery systems upon irradiation if the drug is de-activated using the SO-

cleavable linker and the photosensitizer is close to the linker. CMP-L-CA4 

was designed as photo-activatable prodrug of anticancer drug, 

Combretastatin A4 (CA-4). 

CA-4 is a cytotoxic and antiangiogenic compound and its water-

soluble prodrug (CA-4 phosphate, fosbretabulin) is under clinical study for 

anticancer therapy. I synthesized a conjugate of CA-4 and hydroxyl-

dithiaporphyrin (a photosensitizer) linked through the aminoacrylate linker 

CA4-L-PS to study the release and cytotoxicity of the anticancer drug CA-4 

by NIR light irradiation. 
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4.2. Experimental section 
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Scheme 6. Synthesis of CA4.101 
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Scheme 7. Synthetic scheme for the preparation of CA4-L-PS. 

 

4.2.1. Synthesis  

4.2.1.1. Compound (34). The compound 34 was prepared according to the 

method described for compound 27 employing compound 57 (200 mg, 0.28 

mmol), compound 65  (267 mg, 0.55 mmol), DCC (228 mg, 1.11 mmol) and 

DMAP (67 mg, 33.7 mmol ) to give a solid red purple compound 34 (452 mg, 

69%). 1H NMR (300 MHz, CD2Cl2) δ 0.90 (m, 2H), 1.28 (m, 2H), 1.41 (m, 

2H), 1.87 (m, 1H), 3.09 (s, 1H), 3.66 (s, 6H), 3.75 (d, J = 6.4 Hz, 6H),  4.22 

(d, J = 5.2 Hz, 2H), 4.80 (d, J = 12.8 Hz, 1H), 4.96 (s, 2H), 6.44 (s, 2H), 6.52 

(s, 2H),  6.84 (d, J = 8.4 Hz, 1H), 6.97 (s, 1H), 7.09 (d, J = 6.2 Hz, 1H), 7.40 

(d, J = 7.7 Hz, 2H), 7.50 (d, J = 12.8 Hz, 1H), 7.54 (br s, 9H), 8.27 (m, 8), 
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8.72 (m, 4H), 9.74 (m, 4H). HRMS ESI (m/z): Calculated for C73H62N3O9S2 

([M+H]+): 1188.38; found:1188.3875. 

 

4.2.1.2. Compound 63. Combretastatin A4 (CA-4). Compound 63 was 

synthesized following reported reference.101,  1H NMR (300 MHz, CD2Cl2) δ 

3.70 (s, 6H), 3.84 (s, 3H), 3.87 (s, 3H), 5.53 (s, 1H), 6.41 (d, J = 12.3 Hz, 

1H), 6.47 (d, J = 12.3 Hz, 1H) 6.53 (s, 2H), 6.73 (d, J = 8.5 Hz, 1H), 6.80 (dd, 

J = 2.0, 2.0 Hz, 1H) 6.92 (d, J = 2.0 Hz, 1H). HRMS ESI (m/z): Calculated for 

C18H20O5Na ([M+Na]+): 339.13; found: 339.1206. 

 

The compound 64 was prepared according to the method described for 

compound 16 employing combretastatin A4 (CA-4)  (1.00 g, 3.16 mmol), 

propargylic acid (1.12 g, 15.80 mmol), DCC (3.26 g, 15.80 mmol) and DMAP 

(0.04 g, 0.32 mmol) and dry diethyl ether (25 mL) to give white solid 

compound 64 (0.86 g, 74%).  1H NMR (300 MHz, CD2Cl2) δ 3.03 (s, 1H), 3.70 

(s, 6H), 3.83 (d, J = 4.2 Hz, 6H), 6.47 (d, J = 3.8 Hz, 4H), 6.87 (d, J = 8.7 Hz, 

1H), 7.05 (s, 1H), 7.15 (d, J = 7.8 Hz, 1H). HRMS ESI (m/z): Calculated for 

C21H20O6Na ([M+Na]+): 391.13; found: 391.1147. 

 

4.2.1.3. Compound (65). The compound 65 was prepared according to the 

method described for compound 17 employing piperidin-4-ylmethanol (187 

mg, 1.63 mmol) and compound 64 (600 mg, 1.63 mmol) to give brown solid 
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compound 65 (740.32 mg, 94%).1H NMR (300 MHz, CD2Cl2) δ 1.29 (m, 2H), 

1.46 (m, 1H), 1.78 (m, 3H), 3.05 (s, 1H), 3.50 (m, 2H), 3.59 (m, 2H), 3.69 (s, 

6H), 3.76 (s, 3H), 3.79 (s, 3H), 4.77 (d, J = 13.6 Hz, 1H), 6.47 (d, J = 4.6 Hz, 

2H), 6.54 (s, 2H), 6.86 (d, J = 8.5 Hz, 1H), 7.00 (s, 1H), 7.10 (d, J = 8.2 Hz, 

1H), 7.50 (d, J = 13.6 Hz, 1H). HRMS ESI (m/z): Calculated for C27H33NO7 

Na ([M+Na]+):506.23 ; found: 506.2148. 

 

4.2.2. Intensity dependent cleavage of PS-L-Rh in an aqueous solution 

The cleavage at the tissue level could be a difficult task although we 

were using a tissue penetrable light. It is difficult to make high power density 

(e.g., > 5 mW/cm2) in tissue (not at the tip of a fiber but in the larger 

area/volume) due to the light reflection, scattering and absorption by tissue. 

We therefore decided to investigate the cleavage of aminoacrylate linker 

using PS-L-Rh in the medium at different light intensities (200, 50, 5, 1 

mW/cm2). To our surprise the rate of cleavage was not dependant on the 

light intensity and the linker was cleaved fast with a light intensity as low as 1 

mW/cm2 (Fig. 15). The observation of cleavage at 1 mW/cm2 in the medium 

was very exciting because it is a practically achievable intensity in tissue. 

This gives a strong basis for investigating  the cleavage at the tissue level. 

We used PS-L-Rh and nude mice to investigate the cleavage at the tissue 

level. Interestingly we observed the cleavage of PS-L-Rh at the tissue level. 
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Figure 15. Intensity dependent cleavage of PS-L-Rh in the medium. 

 

4.2.3. Biological studies 

4.2.3.1. Dark-toxicity of CA4-L-PS 

The cytotoxicity of CA4-L-PS without irradiation was determined. 

MCF-7 cells (5000 cells/well) were seeded on 96 well plates in the complete 

medium and then incubated for 24 h at 37 °C in 5 % CO2. 2 mM of CA4-L-PS 

stock was prepared by dissolving 3.108 mg in 1.308 mL of DMSO. The 

prepared stock was further diluted in the complete medium. 10 μL of the 

respective diluted solution was then added to 190 μL of the complete 

Fluorescence (A.U) 
2

50 mW/cm
2

5 mW/cm
2

1 mW/cm
2
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medium in each well  to achieve final concentrations of 2 nM, 10 nM, 20 nM, 

100 nM and 200 nM. The plates were then incubated for 24 h. On day 1 the 

plate was removed from the incubator and allowed to sit in a dark cabinet for 

a duration of 30 mins. Later the well plate was incubated at 37°C in 5 % CO2. 

Cell viability was determined after 3 days using MTT assay.  

 A 10 µL solution of MTT (10 mg in 1mL PBS buffer) was added to the 

wells and the plate was incubated for 4 h. After then, the MTT solution was 

removed and the cells were dissolved in 200 µL of DMSO and the 

absorbance was measured at 570 nm with background subtraction at 650 

nm. The cell viability was then quantified by measuring the absorbance of the 

treated wells, compared to that of the untreated wells (controls) and 

expressed as a percentage.  

 

4.2.3.2. Photo-toxicity of CA4-L-PS 

 

 

 

 

 

 

 

Figure 16.  Schematics of photo-toxicity and dark-toxicity experiments.  
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The cytotoxicity of CA4-L-PS with irradiation with 690 nm diode laser 

was determined. MCF-7 cells (5000 cells/well) were seeded on 96 well plates 

in the complete medium and then incubated for 24 h at 37 °C in 5 % CO2. 

The same concentrations as used in the dark-toxicity were used.  10 μL of 

the respective dilute solutions was then added to 190 μL of complete media 

in each well and the well plate was incubated for 24 h. After the incubation 

the well plate with the cover removed was placed on an orbital shaker (Lab-

line, Barnstead International, IA) and irradiated  using a diode laser (690 nm, 

5.6  mW/cm2) for 30 min.  To ensure uniformity of the light during the 

irradiation, the well plate was made to orbit gently on the shaker. After the 

irradiation, it was incubated 37 °C in 5 % CO2, for 3 days  after which the cell 

viability was determined by MTT assay and expressed as a percent of the 

controls, cells exposed to light but not treated with CA4-L-PS.103103, 104 

 

4.2.3.3. Modified procedure of photo-toxicity of CA-L-PS to eliminate 

PDT effect  

 add the conjugate

 

 

 

 

Figure 17. Schematics of photo-toxicity to eliminate PDT effect. 

incubate 24 hr incubate 3 day cell viability
assay

no irradiation

irradiate 30 min

30 min

transferPlate 1

Plate 2

68 
 



 
 
 
 

The cytotoxicity of CA4-L-PS with irradiation with 690 nm diode laser 

was determined. MCF-7 cells (5000 cells/well) were seeded on 96 well plates 

(plate-1) in the complete medium and then incubated for 24 h at 37 °C in 5 % 

CO2. CA4-L-PS of concentrations 4nM, 20nM, 40nM, 200nM, 400nM in 100 

µL of the complete medium in plate-2 was irradiated with 690 nm diode laser 

for 30min at 5.6 mW/cm2. 100 µL of the medium from plate-1 was removed 

and the total irradiated medium (100 µL) in each well of plate-2 was added to 

plate-1 to make a final concentrations of 2nM, 10nM, 20nM, 100nM, 200nM 

and final volume of 200 µL. It was then incubated 37 °C in 5 % CO2, for 3 

days, after which the cell viability was determined by MTT assay and 

expressed as a percent of the controls, cells exposed to light and without 

CA4-L-PS. 

 

4.2.3.4. In vitro toxic studies of CA4-L-PS 

The release of drug at the cellular level was investigated by preparing 

prodrug. MTT colorimetric assay and expression of the inhibitory 

concentration (IC50) values of the prototype CA4-L-PS without irradiation was 

compared to the prodrug prototype with irradiation. The results showed IC50 

values of CA4-L-PS after irradiation very close to IC50 of free drug (Fig. 18). 

A 20 times higher toxicity with irradiation compared to non-irradiation was 

obtained. While non-irradiated samples did not show any cell kill at 0.1 µM 

(~30 % cell kill at 0.2 µM), the irradiated samples showed 50% cell kill at 
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~0.01 µM. These results support the cleavage and release the free drug. 

From the experiment to avoid PDT effects (4.2.3.3), similar IC50 values were 

obtained for phototoxicity of CA4-L-Rh in consistent with the previous results.  
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Figure 18. In vitro dark and photo toxicities of CA4 and CA4-L-PS. 

 

4.2.3..5 Sub-cellular uptake of PS-L-Rh by fluorescence microsocpy 

MCF-7 cells were seeded at 2.0 - 3.0 × 104 cells/well in 24 well plates 

containing 12 mm diameter cover slips and then incubated for 24 h. PS-L-Rh 

diluted to the appropriate concentrations was then added to the wells . The 

final concentration in the well plate was 10 µM. The cells were incubated for 

8 h. After the incubation, the medium was removed and the cell monolayer 

was rinsed three times with 1 mL of the complete media.  The cover slip was 
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then mounted and the images were taken using a Leica DMI4000B 

fluorescence microscope fitted with a QImaging Fast 1394 camera and spot 

advance version 4.6 processing software. The images were modified for 

better visualization with Adobe Photoshop Element 5.0. The fluorescence 

images showed granular fluorescence associated with mitochondrial 

specificity.  L5 filter (excitation filter 480/40, emission filter 527/30) was used 

to capture signal from Rhodamine. TX2 filter (excitation filter 560/40, 

emission filter 645/75) over laps with the signal of Soret band of PS and part 

of the excitation spectrum of Rh. 

 

Figure 19. Sub-cellular uptake of PS-L-Rh. A: bright field B: L5-green filter C: 

TX2-red filter   

 

4.2.4. Cleavage of PS-L-Rh at the tissue level. 

4.2.4.1. Material and methods 

Female nu/nu mice were purchased from NCI (Federick, MD). Mice 

were housed and handled in the rodent barrier facility, University of 

Oklahoma Health Sciences Center, Oklahoma City, OK. All animal 
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experiments were approved by IACUC, University of Oklahoma Health 

science Center, Oklahoma City. 

 

4.2.4.2. Preparation of formulation   

All the chemicals used were of analytical grade. Power density was 

measured by thermal sensor (S302C, Thorlabs Inc., Newton NJ) and power 

meter (PM100D, Thorlabs Inc.). All the procedures beginning from weighing 

the compound till obtaining the in vivo data were done under dark condition. 

Formulation of PS-L-Rh was prepared by solubilizing PS-L-Rh in Tween 80 

(100µL) using a mortar and pestle to get a viscous paste. The paste was left 

for 4h. Then the viscous paste stirred well and extracted into 5% dextrose 

solution. The solution was filtered through a 0.2 µm sterile syringe filter. The 

concentration of the solution was determined by diluting the formulation in 

DMSO and the absorbance was measured using PerkinElmer UV-Vis 

Spectrophotometer LAMBDA 25. The concentration was calculated from the 

extinction coefficient of PS-L-Rh at 438 nm in DMSO (ε = 287,000 M-1cm-1) 

using Beer-lambert law.  
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4.2.4.3. In vivo imaging of the cleavage of PS-L-Rh 

 

 

Figure 20. Schematics of in vivo imaging. 

 

A four-week old female athymic nu/nu mouse (~20g) was used to 

investigate the cleavage of PS-L-Rh at the tissue level. Mice were irradiated 

with a 690 nm diode laser with light intensity 500 mW/cm2 at the neck region. 

The mouse was imaged using IVIS Imaging system. IVIS Imaging System 

(Caliper Life Sciences) consists of a cryogenically cooled imaging system 

coupled to a data acquisition computer running Living Image® software. 

Before imaging, the mouse was anesthetized in an acrylic chamber with 

2.5% isoflurane/air mixture1 h 30 min after the administration of PS-L-Rh (24 

µmol/kg, i.p.), the first image was taken (Fig. 21A). The same mouse was 

then irradiated for 10 min and another image was taken (Fig. 21B). Additional 
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two images were taken (Figs. 21C and D).  The following parameters were 

used to acquire images using Living imaging® software :  fluorescence 

mode, exposure time: 5 sec, binning: medium, F/Stop: 2, excitation: 535 nm 

and emission:  580 nm. During post processing, image counts were adjusted 

to 3 X 104 as minimum and 6.5 X 104 as maximum color scale using Living 

imaging software. 

The irradiation time-dependent increase of Rh fluorescence emission 

was observed (Fig. 21), indicating irradiation time-dependent cleavage of the 

aminoacrylate linker. There was no increased fluorescence signal from the 

mice. After irradiating the mice the irradiated region showed signal 

corresponding to the free Rhodamine release upon cleavage of the PS-L-Rh. 

The signal intensity increased with irradiation time at different time intervals. 

Absence of fluorescence signal when the mouse was not irradiated indicates 

that the PS-L-Rh was stable. Upon irradiation the PS-L-Rh got cleaved due 

to the cleavable linker and the released Rhodamine showed fluorescence 

signal. 
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A B 

C D 

Figure 21.  In vivo fluorescence images of the mouse after irradiation for 0 

(A), end of 30 (B), 40 (C) and 50 (D) min. 

 

4.3. Conclusion 

The cleavage of aminoacrylate linker in the cultured cells and tissue 

was demonstrated using CA4-L-Rh and PS-L-Rh. Based on the close IC50 

value of photo-toxicity of CA-L-Rh with IC50 and dark-toxicity of CA4, it was 

assumed that almost all CA4-L-Rh released CA4. The release could be 

controlled by the dose of the irradiation. Even though the in vivo experimental 

75 
 



 
 
 
 
conditions should be further optimized, the results clearly prove the cleavage 

of aminoacrylate linker in mouse. 
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Chapter 5. Conclusion 

The ultimate goal of this study was to develop new bio-orthogonal 

strategy using near IR for bioactive compound (drug) release from delivery 

vehicles (prodrugs, nano-drug delivery system: dendrimers, liposomes, 

polymer). The choice of light for remote-activation is due to highly specific 

spatial and temporal control of bioactive compound release. This will 

ultimately lead to address some of the unmet need of drug delivery: reducing 

the toxicity of drugs and improving their release profile.  However, the major 

hurdle for achieving our aim was identifying potential linker and development 

of facile synthesis for the linker.  

We therefore systemically examined various substituted olefins to find 

the optimal linker for our strategy and to estimate rates of photo-oxidation. 

This screening process led to the discovery of vinyl dithioether and vinyl 

diether as potential singlet oxygen mediated cleavable linker. This finding 

was very promising because both vinyl dithioether and vinyl diether were 

cleaved by singlet oxygen more than 80% within 15 min without oxygen 

saturation. The vinyl diether was our first choice because the photo oxidation 

did not generate any side product. However, the synthesis of vinyl diether 

was a big challenge, although, structurally it looks simple. Reported synthetic 

methods were limited only for symmetric molecules and resulted in low yield 

or non-stereospecificity. In addition, those required lengthy and multiple 

steps with some having harsh reaction conditions. 
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To overcome the above limitation, my colleagues (Dr. Pagula and Mr. 

Nkepang) and i developed a facile and versatile synthetic method for E-1,2-

diheteroatom-substituted electron-rich alkene. Even though our new 

synthetic method for vinyl diether was an improvement compared to previous 

reported method. There was a limitation that was the use of n-butyllithium in 

one of the steps. This made our developed synthetic method not practically 

useful for our purpose. 

We set out new conditions for the ideal linker, which were fast 

cleavage by singlet oxygen > 80 %/20 min, facile synthesis (mild reaction 

conditions, high yield), stability (against hydrolysis in various pH and 

metabolism), and regeneration of an intact form of drug without formylation, 

safety (non-toxicity by cleaved byproducts). I started searching for new 

linkers and my attention was drawn to β-Enamino ketone. Although it showed 

relatively fast photo-oxidation by singlet oxygen at the first screen, it was not 

selected for further investigation. β-Enamino group showed important 

properties as an ideal linker such as fast cleavage (> 80% in 10 min), facile 

synthesis by a click chemistry, regeneration of parent drugs without 

formylation, stability in water and medium in dark. Thus, we proposed the 

concept of click and photo-unclick chemistry for the synthesis and cleavage 

of the β-enamino ketone.  

With these interesting results in test tubes, the prodrug CA4-L-PS was 

prepared to test our concept of the photo-unclick chemistry in cultured cells. 

78 
 



 
 
 
 
The results obtained were consistent with our expectation. While the dark- 

toxicity of CA4-L-PS was about 20 times lower than that of free CA-4 (IC50: 

200 vs. 8 uM), photo-toxicity of CA4-L-PS was very close to that free CA-4 

(IC50: 6 vs. 8 uM). It makes sense based on other study in our group by Dr. 

Hossion, where near 100% of drugs were released from similar type of 

prodrugs by irradiation. We also confirmed that this photo-toxicity by CA4-L-

PS came from released CA-4, not from singlet oxygen (PDT effect). 

The next key question from the clinical point was whether the photo-

cleavage could be made at the tissues level. Attenuation of incident light by 

tissue is a key-limiting factor. From our previous study, we observed that 

about 2.6 ± 0.5 mW/cm2 was made at muscle about 3 mm below skin even 

when 200 mW/cm2 light (690 nm) was applied externally. Thus, we first 

determined light intensity-dependent rate of the cleavage of CMP-L-Rh, from 

200 – 1 mW/cm2 see if the cleavage occur by low intensity light. To our 

surprise, the cleavage was not much dependent on the light intensity at least 

within the tested range: We therefore set to investigate the cleavage in 

mouse. We used PS-L-Rh and a nude mouse to investigate the cleavage at 

the tissue level. Interestingly we observed sign of the light dose-dependent 

cleavage of PS-L-Rh. 

We envision that this linker and its click and photo-unclick chemistry 

can find many applications, not limited to anticancer drugs and prodrugs, for 

spatio-temporally controlled release of active compounds but delivery 
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vehicles liposomes, polymers, quantum dots, gold nanoparticle, carbon-

nanotube etc. 
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Appendix 
 

Figures 

A1. 1H NMR spectrum of the photolysis reaction mixture of 3. 

A2. 1H NMR spectrum of the photolysis reaction mixture of 4. 

 

4b characteristic peak = 9.82 ppm 

4a characteristic peaks = 5.43, 5.68, and 5.71 ppm

3b characteristic peak = 4.25 ppm 

3a characteristic peaks = 5.26, 5.40, 5.53 and 5.85 ppm
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A3. 1H NMR spectrum of the photolysis reaction mixtures of 8.  

 

A4. 1H NMR spectrum of the photolysis reaction mixtures of 9.  

 

9 h t i ti k 10 26

9 characteristic peak = 6.55 ppm

8 h t i ti k 8 34

8 characteristic peak = 6.18 ppm

hv = 15 min.

hv = 10 min.

hv = 5 min.

hv = 0 min.

hv = 15 min.

hv = 10 min.

hv = 5 min.

hv = 0 min.
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A5. 1H-NMR spectrum of the photo-oxidation of 18. 

 

 

A6. 1H-NMR spectrum of the photo-oxidation of 18 and DABCO. 

 

t = 25 min

t = 0 min

t = 0 min

t = 15 min

t = 25 min
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A7. 1H-NMR spectrum of the photo-oxidation of 24. 

 

 

A8. GC-MS spectrum of 4-phenylphenol standard sample (retention time = 

13.43 min, MW = 170). 

t = 0 min 

t = 25 min 
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A9. GC-MS spectrum of cleavage mixture of compound 18 (4-phenylphenol 

peak observed: retention time = 13.43 min, MW = 170).  

 

A10. GC-MS spectrum of thiophenol standard sample (retention time = 7.54 

min, MW = 110). 
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A11. GC-MS spectrum of thiophenol standard sample (diphenyl disulfide 

observed, retention time = 14.14 min, MW = 218). 

 

A12. GC-MS spectrum of the cleavage mixture of 23 (thiophenol observed: 

retention time = 7.55 min, MW = 110). 
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A13. GC-MS spectrum of the cleavage mixture of 23 (diphenyl disulfide 

observed: retention time = 14.14 min, MW = 218). 

 

 

A14. GC-MS spectrum of aniline standard sample (retention time =7.77 min, 

MW = 93). 
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A15. GC-MS spectrum of the cleavage mixture of 24 (aniline observed: 

retention time = 7.89 min, MW = 93). 

 

A16. GC-MS spectrum of Estrone standard sample (retention time = 19.51 

min, MW = 270). 
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A17. GC-MS spectrum of the cleavage mixture of 31 (Estrone observed: 

retention time = 19.6 min, MW = 270). 

 

A18. Mass spectrum of isolated cleaved product 5-(4-Hydroxyphenyl)-

10,15,20-triphenyl-21,23-dithiaporphyrin form the oxidation of 32 

Calculated for C44H29N2OS2 ([M+H]+):665.1643 ; found: 665.1717. 
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A19. Mass spectrum of isolated cleaved product N-(6-(diethylamino)-9-(2-

(((1-formylpiperidin-4-yl)methoxy)carbonyl)phenyl)-3H-xanthem-3-ylidene)-N-

ethylethanaminium chloride from the oxidation of 32. 

Calculated for C35H43ClN3O4 ([M+H]+-Cl):568.833 ; found: 568.3196 
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NMR  spectra 

1H NMR spectrum of compound 8.  
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* The peaks at 5.4 ppm were from a solvent: dichloromethane. 
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