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ABSTRACT 

 

The overall objective in the Nicholas Group’s Amination Project is to develop 

new methodologies to form C-N bonds via C-H functionalization that utilize transition 

metal activation of non-polar and otherwise unreactive saturated and unsaturated 

hydrocarbons. Within this context, several new methodologies have been discovered and 

developed in the field of amination, and are presented within this document. For example, 

investigations aimed at the development of a mild allylic amination using nitroaromatics 

as N-source have resulted in a novel sodium borohydride and iron (II) phthalocyanine 

promoted reaction, the first example of microwave-assisted allylic amination, and a new 

Fe-Cu co-catalyst system that produces allylamine product in > 98% N-selectivity. In 

addition to allylic amination, we have developed a new iron (II) phthalocyanine catalyzed 

indolization of arylalkynes and N-aryhydroxylamines in order to form parent (NH) 

indoles efficiently in one-step. Several new indoles as well as some biologically relevant 

targets have been produced with this method. Finally, we have developed the first non-

transition-metal-catalyzed aminosulfonation of hydrocarbons. In addition, we have 

discovered the first protic acid-catalyzed amidation as well as a novel I2-catalyzed 

nitrenoid C-H insertion of benzylic, tertiary, and secondary saturated hydrocarbons. 

During mechanistic investigations of the iodine-promoted reaction, a novel aminating 

agent was discovered that is stable at < 0oC and efficiently produces aminosulfonated 

hydrocarbons under remarkably mild conditions.  
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CHAPTER 1 

 

INTRODUCTION AND BACKGROUND 

 

1.1 Synthesis of Amines in Organic Chemistry 

The nitrogen atom is an important fixture in nature, present in a wide variety 

of natural product families including amino acids, alkaloids, penicillins and 

porphyrins. It is generally incorporated via condensation reactions with pre-installed 

oxygen functionality through a biosynthetic pathway.1 In addition, nitrogen is of key 

importance in biology due to its flexibility, i.e. the ability to carry a positive charge, 

act as a hydrogen bond donor/acceptor, and possession of pKa values typically in the 

range of physiological pH. Due to these important factors, nitrogen containing 

functionalities are also ubiquitous in pharmaceutical drug compounds. In fact, 

synthetic drugs generally contain more nitrogen than natural products.2 Finally, 

nitrogen is essential to material science, as its presence in polymers and dyes can 

have large effects on their physical, surface, or electronic properties.3,4  

Due to the abundance and importance of amines and nitrogen-containing 

heterocycles as synthetic intermediates and end-products, the incorporation of 

nitrogen-containing functionalities via novel C-N bond forming methodologies has 

been and continues to be intensely investigated. Classical methods such as reductive 

carbonyl amination, nucleophilic displacement of a leaving group, or imine alkylation 

have been firmly established in organic synthesis.5 Modern amination methods such 

as allylic amination,6 hydroamination7 and diamination8 of alkenes, Buchwald-
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Hartwig C-N coupling,9,10 and metal-imido “nitrenoid” insertion11 have emerged as 

valuable tools due to the advent of transition metal-catalysis and are quickly joining 

the myriad of classical organic synthetic reactions.  

 

1.2 Classical and Modern Amination Methods 

Due to the importance of amines in a variety of fields, amination has been 

intensely investigated for well over 100 years. During this time, a number of well 

established, or  “classical”, methods have been produced. These methods are 

presented in Figure 1.1 and can be classified into three main areas: reduction (of a 

nitro or an imine),12 alkylation (of an imine or amine),13 and substitution (of an amine 

with an electrophile).13 The most common and straightforward route to forming C-N 

bonds is via direct N-alkylation of a primary amine with alkyl halides, though the 

method is substantially limited by overalkylation, giving rise to mixtures of primary, 

secondary, tertiary, and quaternary ammonium salts.13 The most important feature of 

all classical methods is the requirement of pre-functionalized starting materials 

including acyl (imine), alkyl halide, alkyl alcohols, and/or nitro units in order to 

proceed. In addition, the pre-existing group is exchanged for an amine, thus 

destroying the original functionality and decreasing the atom economy of the reaction 

relative to a method employing C-H activation.  
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Figure 1.1 

 

Modern amination methods have been developed largely within the last thirty 

years and have focused on improving the previous problems in amination of atom 

economy, chemo- and regioselectivity, and conservation of functional groups on the 

reactive substrates.14 One class of molecules that has proven quite flexible as a 

reactive partner in modern amination methodology is the alkene (Figure 1.2). 

Depending upon conditions, N-reagent, and catalyst, a number of useful 

transformations can occur with alkenes including: hydroamination,7 aziridination,15,16 

diamination,8 and allylic amination.6 Hydroamination, aziridination, and diamination 

all involve the loss of the C-C unsaturation, however allylic amination offers unique 

potential with regard to the conservation of a chemical handle for further reactivity. 

Allylic amination occurs via two main pathways: the nucleophilic substitution of a π-
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allyl complex (which can suffer from regioselectivity issues), and C-H allylic 

amination occurring via an “ene”-like transfer.6 Of these methods, the “ene” type 

allylic amination is more attractive as it is more atom-economical and does not 

require a pre-functionalized alkene. Progress in the field of allylic amination will be 

summarized in more detail in Section 1.2.1. 

 

MODERN AMINATION METHODS
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R
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R
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R

NHR'+
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(Nucleophilic allylic substitution)  

Figure 1.2 

 

In addition to alkenes, another class of molecules that has been intensely 

investigated recently as effective amination partners are aryl halides used in 

conjunction with N-nucleophiles and palladium or copper catalyst systems, in 

reactions typically referred to as Buchwald-Hartwig couplings (Figure 1.3).9,10 

Though the direct arylation of amines with aryl halides has been largely successful 

and has quickly become viewed as a standard synthetic method of amination, the 
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requirement of pre-functionalized aryl coupling partners presents a potential 

limitation to that of more recently developed C-H activations of aryl substrates via 

metal-imido or metal-nitride complexes.  

Finally, the most recently developed, and perhaps the amination method with 

the highest potential, is the direct C-H to C-N bond conversion via nitrenoid insertion 

(Figure 1.3).11 Like “ene” process allylic amination reactions, these systems do not 

result in transformaton (or destruction) of pre-existing functionalities. More 

importantly, this method also does not require pre-functionalization of the reacting 

hydrocarbon substrate. The –NR unit insertion via transition metal-catalyzed 

reactions of nitrenoid precursors will be discussed in more detail in Section 1.2.2.   
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Figure 1.3 
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1.2.1 Allylic Amination 

The allylamine motif represents an important building block in organic 

chemistry due to the possibility of further functionalization of the double bond. In 

addition to being important and versatile intermediates, the allylamine fragment can 

also be encountered intact in many natural products.6 The two main methods of 

synthesizing allylamines are shown in Figure 1.2. In the nucleophilic substitution 

method, a pre-formed allylic leaving group is required. Examples of this type of 

transformation are shown in Figure 1.4 and include the Mitsunobu reaction (allyl 

alcohols), Gabriel synthesis (allyl halides), and nucleophilic substitution of a 

transition-metal π-allyl complex formed from allyl halides or acetates (which can 

suffer from regioselectivity issues).6 Though some of these nucleophilic substitution 

systems can produce high yields and regioselectivities, they all require a pre-

functionalized allylic substrate, which detracts from their overall generality and atom 

economy.  

 

R

LGLG = OH

R

NHR'
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Gabriel
LG = X

R

Pd"Pd(0)" R'NH
R

NHR'

R

NHR'
+

Transition Metal-Catalyzed 
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NUCLEOPHILIC ALLYLIC SUBSTITUTION METHODS

 

Figure 1.4 
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In the second method of allylic amination, a simple allylic unit undergoes C-N 

bond formation via C-H activation through an “ene”-like process. Several N-transfer 

reagents have been developed for this type of “N-ene” reaction including nitroso 

compounds 1, electron-deficient azo compounds 2, and diimido complexes of sulfur 

and selenium 3 (Scheme 1.5).6,17 The nitroso compounds offer a distinct atom-

economical advantage over the diimido and azo reagents as the latter only form one 

C-N bond from the two reactive nitrogens of the reagent, with the other being cleaved 

in a separate step to produce the amine.   

 

R

R

NHR'

H

R' N

O

R'

N X N

R'

R'

N N

R'

R

N

R' NR'

R

N
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1 2 3
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1

2

3

ALLYLIC AMINATION VIA "ENE" PROCESSES

R'

N X
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Figure 1.5 

 

Beginning in the early 1990s, the majority of developments in the field of 

intermolecular allylic C-H activation-amination have been presented by Nicholas and 
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Srivastava. In their work, molybdenum(VI),18-20 iron(II,III)21,22 and copper(I)23,24 

catalysts have promoted C-H amination of simple alkenes with employment of 

arylhydroxylamines as the N-aminating reagent. The arylhydroxylamines are oxidized 

in situ to nitrosoaryls, which can then undergo a nitroso-ene reaction,17 and the 

resulting allylic hydroxyamine is reduced in situ to regenerate the catalyst and 

produce the allylamine. Though the amination occurs with high regioselectivity at the 

less substituted carbon, modest yields with somewhat limited substrate scopes are 

obtained by employment of an excess of alkene substrate, thus limiting the overall 

synthetic potential of the method. The arylhydroxylamine systems are described in 

more detail in Chapter 3, Section 3.1.1. In addition to arylhydroxylamines, catalytic 

systems employing more stable and commercially available nitroaryl substrates have 

also been developed by Nicholas and Srivastava.25 These systems are discussed in 

detail in Chapter 2, Section 2.1.1. To date, disadvantages of the reductive nitroaryl 

system include harsh reaction conditions including high temperatures and high CO 

pressure. 

Perhaps a more promising result with regard to the development of a more 

general reaction has been reported within the last few years by the M. C. White 

Group. An initial investigation was conducted of an intramolecular palladium-

catalyzed allylic C-H activation system in which N-tosylcarbamates such as 4 are 

converted to oxazolidinones 5 with high regioselectivity (Scheme 1.6).26 
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Following the intramolecular report, an intermolecular version was designed 

by Reed and White employing terminal olefins (Figure 1.7).27 In the reaction, a 

combination of Pd(OAc)2-bis-sulfoxide and Cr(III) complex transform terminal 

olefins used in stoichiometric amounts into linear (E)-allylic amines with excellent 

regio- and stereoselectivity (linear: branched amines = >20:1; (E) : (Z) olefins = >20 : 

1). The reaction appears to accommodate a wide range of functionalities, though it 

appears that the system may be limited to the use of terminal olefins as allylic 

substrates. In addition, Liu et al. have reported an analogous system in which 

intermolecular allylic amination results are obtained with similar tolerance to 

functionality and regioselectivity (Scheme 1.7).28 In this system, Pd(OAc)2 and 

sodium acetate under an O2 atmosphere facilitate amination of a N-tosyl-carbamate in 

the presence of maleic anhydride. The reaction proceeds with lower efficiency than 

the Pd-Cr bimetallic system, as three equivalents of alkene or 20 mol% of palladium 

catalyst are necessary to ensure good yields. 
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1.2.2 Transition Metal-Catalyzed Amidation of Hydrocarbons via 

Nitrenoid Precursors 

Similar to allylic amination methods involving an “ene” process, the ability to 

directly replace a hydrogen with an amino group via a transition metal-catalyzed 

nitrenoid transfer is an extremely attractive method of amination as it does not require 

a pre-functionalized substrate, and generally does not destroy any pre-existing 

functionality on the reactive molecule. Following the seminal work in the early 1980s 

on the rhodium-catalyzed intramolecular amidation of hydrocarbons by Breslow29 

and the intermolecular version by Mansuy,30 a large number of N-aminating agents 

have been developed in conjunction with transition metal-catalysts in order to 

facilitate efficient C-H bond amination. To date, transition metal-catalysts employed 

include those of rhodium,31-40 ruthenium,41-44 cobalt,45-47 manganese,41,42,48,49 silver,50 
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gold,51 palladium,52,53 iron,54 and copper.55-59 Commonly exploited C-H bonds include 

those with lower dissociation energies, such as benzylic, allylic, and α-ethereal 

positions, though reactivity has been demonstrated with a broad variety of higher 

energy C-H bonds (Figure 1.8). With current methods producing highly regio- and 

chemoselective C-H insertion reactions, applications of these systems have been 

steadily increasing and should continue to receive attention in synthetic organic 

chemistry in the future.  
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Figure 1.8 

 

1.2.2.1 Common Nitrenoid Precursors  

In general, the three main types of aminating agents that are used in 

conjunction with transition metal-catalysts in direct C-H amination reactions of 

hydrocarbons are I-N iodonium ylides 10 (commonly referred to as 
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imidoiodinanes),60 N-halogenated amido sodium salts 11 (shown in Figure 1.9 as 

commercially available chloramine-T), and azides 12. 
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Figure 1.9 

 

To date, the imidoiodinanes have received the majority of attention in C-H 

insertion reactions due to their higher reactivity and the recently developed method of 

in situ preparation41 from a combination of commercially available sulfonamide, 

PhI(OAc)2, and MgO. The first example of an iodonium imide to be synthesized was 

derived from methanesulfonamide and was reported by Abramovitch in 1974,61 

though many attribute Yamada’s 1975 isolation of [N-(p-

toluenesulfonyl)imino]phenyliodinane (PhI=NTs) as the seminal report on 

imidoiodinanes.62 Since that time, several varieties of sulfamates, ureas, guanidines, 

carbamates, and sulfamides have been used in conjunction with hypervalent iodine 

reagents in the presence of transition metal catalysts to provide intra- and 

intermolecular C-H functionalization.11 Though frequently employed, the 

imidoiodinanes suffer from a number of notable drawbacks, including the 
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employment of an oxiding agent such as PhI(OAc)2 typically in excess, and the 

production of toxic iodobenzene as main by-product.60 

As “greener” alternatives to imidoiodinanes, azides (producing N2 as by-

product) and commercially available chloramine-T trihydrate (producing innocuous 

NaCl as by-product) have also been employed, though in surprisingly relatively few 

studies given their potential. Along with imidoiodinanes, these N-aminating agents 

were initially employed for aziridination reactions of olefins,60 but in the last ten 

years have been shown to be suitable for C-H insertion reactions when employed with 

transition metal-catalysts.56,58 More recently, Lebel et al. introduced the use of N-

tosyloxycarbamates (Troc-NH-OTs, 13), which release a tosylate salt easily removed 

by aqueous workup (Figure 1.10).63 

Finally, chiral versions of nitrene precursors have also been developed by 

Dauban and Dodd and used in stoichiometric amount in conjunction with a chiral 

rhodium catalyst in order to produce diastereoselective C-H insertions.36,38 These 

chiral iminoiodinanes 14 (Figure 1.10) are formed from sulfonimidamides utilizing an 

in situ oxidation via PhI(O2CtBu)2. 
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1.2.2.2 Transition Metal Nitride Complexes 

Nitrenoid precursors are generally believed to form reactive metal-imido 

complexes in situ in the presence of redox-active transition metal-catalysts (Figure 

1.11).  

 

TsNNaCl
or PhI=NTs

M + M=NTs" "
+  PhI

metal-imido species  

Figure 1.11 

 

Structurally related and potentially similar in reactivity are the more thoroughly 

characterized and extensively studied transition metal nitride complexes (Figure 

1.12). Complexes have been synthesized from a wide variety of high oxidation state 

transition metals including chromium, manganese, molybdenum, osmium, tantalum, 

rhenium, vanadium, ruthenium, technetium, and tungsten.14 Well over 30 different N-

atom sources have been applied to form metal nitrides as well, due to the lack of a 

general preparation.14  

Lx M N

Transition-metal nitride species
M = Cr, Mo, Mn, Os, Re, W, Ta, Ru, V, Tc  

Figure 1.12 

 

The metal-nitride structural motif has been employed in nitrogen-transfer 

reactions to both inorganic and organic acceptors with several of these complexes, 

with the most notable examples found in aziridination reactions employing 
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manganese salen or porphyrin complexes. Asymmetric versions of the aziridination 

reaction have also been developed utilizing chiral complexes such as 1564 (Figure 

1.13) resulting in very high ee’s ( > 90%). The asymmetric amination has additionally 

been extended to silyl enol ethers resulting in enantioselectivity up to 79% ee.64 

Although nitrido complexes are typically stable and easy to prepare and handle, the 

current disadvantage lies in the need for stoichiometric amounts of the complex in 

order for nitrogen transfer to proceed. Much more catalytically relevant are the metal-

imido species that can be generated via the use of nitrenoid precursors.   
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1.2.2.3 Intramolecular Transition Metal-Catalyzed Amidation of 

Hydrocarbons via Nitrenoid Precursors 

Generally investigated before or concurrently with respective intermolecular 

counterparts, several intramolecular systems have been developed using nitrene 

precursors to induce selective C-H bond amination following Breslow’s seminal work 

in the early 1980s. The first major advance of Breslow’s system was reported by 

Espino and Du Bois in 2004 in which an internal delivery of a formal nitrenoid unit 

formed in situ by the combination of PhI(OAc)2 and MgO in the presence of a 
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rhodium catalyst resulted in highly regioselective insertion into C-H bonds.34 It was 

observed that utilization of Rh2(tpa)4 (tpa = triphenylacetate) as catalyst resulted in 

carbamates selectively inserting into the β C-H, and sulfamates into the γ−position 

(Figure 1.14). Due to electronic effects, the preferred reacting positions are α-

ethereal, tertiary, and benzylic sites.  
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Figure 1.14 

 

 

Following this initial breakthrough, most advances to improve the reaction 

scope have come by means of either new catalyst development or the utilization of 

new nitrene precursors. Due to difficulties arising from catalyst degradation in their 

previous system, Du Bois et al. have designed a more robust catalyst, Rh2(esp)2 (22), 

from two identical bidentate ligands comprised of m-benzenedipropionic acid.34 This 

catalyst has allowed for the extension of the substrate scope to include ureas, 



 17 

guanidines,65 and sulfamides66 as well as 1,2-diamines via a sulfamate derived from 

hydroxylamines of type 20 (Figure 1.15).67 
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In addition to catalyst design, other major advances have arisen from the 

development and utilization of “greener” nitrene precursors, due to imidoiodinanes 

release of a stoichiometric amount of iodobenzene. In 2005, Lebel et al. introduced 

the more innocuous Troc-NH-OTs 13, and results from this rhodium-promoted 

system are comparable to those derived from hypervalent iodine reagents in regard to 

chemo- and regioselectivity, yields, and even enantioselectivity when employing a 

chiral rhodium catalyst.40,63 In addition, Lebel’s Troc-NH-OTs system displays the 

rare capability of a nitrenoid C-H insertion into a primary position (Figure 1.16, 25). 
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The potential for catalytic asymmetric induction has been addressed recently 

by several groups via the design and employment of various chiral ligands. Most of 

the success to date has come from rhodium-catalyzed systems, such as Du Bois’ 

Rh2(S-nap)4, in which an amide-derived RhII complex 26 was used for the first time in 

C-H amination resulting in ee’s typically in the 60-99% range (Figure 1.17).68 In 

addition to the success of RhII systems, chiral ruthenium porphyrins have induced 

asymmetric nitrenoid C-H insertions in up to 87% ee.42 Due to the difficulty of chiral 

porphyrin preparation, Blakey et al. designed a cationic RuII pybox complex 27 that 

displayed comparable efficiency to that of the rhodium-catalyzed systems (Figure 

1.17).69 Though success has been found with benzylic and allylic substrates, 

asymmetric induction has been thus far limited to these positions.  
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Lastly, several applications of the methodology have recently been employed 

in the production of simple and complex natural products.11 These reports serve to 

illustrate the emergence of intramolecular nitrenoid insertion into C-H bonds as a 

standard C-N bond forming reaction. As an example of the high regioselectivity that 

can be attained even on complex substrates, Che’s selective functionalization of the 

deoxoartemisinin motif 32 is shown in Figure 1.18.70   
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1.2.2.4 Intermolecular Benzylic C-H Amidation 

Though intramolecular methodologies have displayed excellent chemo- and 

regioselectivity and even high enantioselectivity when employing chiral ligands, the 

hydrocarbon substrates require pre-functionalization in order to proceed. Perhaps 

more desirable, but more challenging, is the intermolecular version of the nitrenoid 

insertion reaction (Figure 1.19).  
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Difficulties to overcome regarding the efficiency of these reactions include the 

lowered regioselective discrimination due to the inability to position the reactive sites 

in close proximity to each other, and increased formation of over-oxidized by-

products.11 In early examples, these problems were partially overcome by the 

utilization of substrates in large excess, high temperatures, and/or utilization of more 

activated C-H bonds, such as electron rich benzylic and allylic positions. Almost 

every intermolecular system that has been investigated to date displays high reactivity 

with benzylic substrates. Typically, secondary benzylics are more active than primary 

or tertiary positions as a compromise of steric and electronic effects. In fact, the 

functionalization of primary and/or tertiary benzylic substrates is relatively rare and 

often results in low yields of aminated products. Results from typically employed 

representative benzylic substrates have been compiled and are summarized in Table 

1.1.  

In 1997 imidioiodinanes re-emerged as effective aminating agents of C-H 

bonds in the presence of a transition metal-catalysts when Muller reported the 

utilization of PhI=NNs and catalytic Rh2(OAc)4 to aminate a variety of hydrocarbons 

through what was determined to be an asynchronous concerted mechanism.31 Several 

benzylic substrates were employed resulting in moderate-good yields of secondary 

benzylic amidated products. The system proved ineffective for primary and tertiary 

benzylic substrates however, resulting in < 10% yields from the reaction with either 

toluene or cumene. 

Another major advance in intermolecular nitrenoid insertion was reported by 

Che in 2000.41 In the study, ruthenium and manganese porphyrins were used 
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catalytically to amidate a variety of hydrocarbons with PhI=NTs, producing high 

yields up to 86% of benzylic and allylic substrates employed in stoichiometric 

amount. More importantly, the report marked the first in situ formation of the 

nitrenoid precursor from a variety of commercially available sulfonamides, 

PhI(OAc)2, and an inorganic base such as NaOH or Na2CO3. The ruthenium- or 

manganese-promoted amidation using the in situ system produced similar results as 

that with pre-formed PhI=NTs when employed with a set of the same representative 

hydrocarbons. This procedure would inspire numerous inter- and intramolecular 

formal nitrene transfers from a wide range of N-functionalities, including some that 

are unstable with hypervalent iodine reagents such as carboxamides.71  

Among the numerous nitrenoid insertion reactions that have been reported, 

perhaps the most recognizable system to date (though mainly for the intramolecular 

version) has been developed by Du Bois.37 In the intermolecular reaction, an in situ 

method of nitrenoid formation is employed with Tces-NH2 (Tces = 

trichloroethylsulfamate), slow addition of PhI(O2CtBu)2, and 2 mol% Rh2(esp)2 22 at 

room temperature. Benzylic substrates when used in stoichiometric amount are 

amidated in moderate-good yields as high as 74%. As of yet, enantioselective 

induction using a chiral version of the catalyst has been met with limited success with 

ee’s in the 20% range. 

Other nitrenoid insertion reactions catalyzed by rhodium include Hashimoto’s 

enantioselective system with PhI=NTs,33 Davies’ in situ nitrenoid formation from 

NsNH2/PhI(OAc)2,35 Dauban’s system which utilizes chiral N-substrate 14 in 

stoichiometric amount to undergo diastereoselective insertions with a chiral catalyst 
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in excellent yields and % de,36,38 and Lebel’s “greener” Troc-NH-OTs system.40 All 

display good-excellent regio- and chemoselectivity for a variety of secondary 

benzylic substrates with yields of typically 60-90%. 

While rhodium complexes have been employed most frequently in –NR unit 

insertion reactions of benzylic hydrocarbons, several other transition metals have 

been successfully employed with a variety of nitrenoid precursors. Efficient systems 

employing catalytic amount of copper were reported by both Powell in 200657 and 

Nicholas in 2007.58 In Powell’s Cu(II)-promoted system, sulfonamides are used in 

conjunction with tBuOOAc to produce benzylic-substituted products in moderate-

good yields, including good yields from electron-deficient substrates. In the “greener” 

system developed by Bhuyan and Nicholas, dehydrated chloramine-T is employed in 

conjunction with catalytic amount of inexpensive Cu(I) salts to produce efficient 

product formation from a variety of primary, secondary, and even tertiary benzylic 

substrates, though efficiency is lower with electron deficient substrates.  

In addition to copper, Co(II) porphyrins have been used with azides by 

Cenini,45 and with Bromamine-T by Zhang47 in “greener” formal nitrenoid insertion 

reactions of benzylics. Though Cenini’s amination is a rare example that employs 

attractive azide reagents, the system has several drawbacks including low yields due 

to deleterious by-product formation and the requirement of elevated temperatures 

(75oC). Zhang’s system, reported in 2007, is the only example in which Bromamine-

T (Figure 1.2, 11; typically employed in aziridination reactions) was employed for 

benzylic C-H insertion. Good yields can be obtained from sterically accessible 

benzylic C-H positions, though the substrate scope of the reaction is relatively small.  
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Finally, the He Group has employed more exotic gold and silver catalysts for 

benzylic amidation, with moderate-good results obtained from the silver-catalyzed 

system,50 though the system requires pre-formation of a silver-phenanthroline 

complex in order to proceed efficiently. The AuCl3-catalyzed reaction of PhI=NNs 

occurs with low-moderate efficiency for secondary or tertiary benzylic C-H bonds 

due to a large amount of arene C-H insertion.51 Lastly, Fe(II) salts were employed 

with N-bromosuccinimide (NBS) and a variety of amides/sulfonamides by Zhao in 

2008.54 Good yields are obtained with a limited range of hydrocarbon substrates at 

50oC with the employment of 1.1 equivalents of NBS through what is believed to be 

an iron-nitrene complex formed in situ from N-bromosulfonamide (resulting from 

NBS bromination).  
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R
2

Entry         System                                                                                          % yield

                                                                                                   35              36            37            38

1     PhI=NNs, Rh2(OAc)2                                                         50              69            57              8

       [Muller, 1997]

2     Chloramine-T (hydrate), Cu(OTf)2                                     -                 -              46              -

       [Taylor, 1998]

3     PhI=NTs, [Ru(TPFPP)(CO)] - (or Mn)                              34              72              -               -

       [Che, 2000]

4     PhI=NTs, Mn(salen)                                                            -                70             67             -

       [Katsuki, 2001]                                                                                (43% ee)  (77% ee)  

5     PhI=NNs, Rh2(S-TCPTTL)4                                               61              82             88             -

       [Hashimoto, 2002]                                                          (33% ee)   (70% ee)  (76% ee) 

6     4-NO2PhN3, [Co(p-ClTPP)]                                                25               -               -              53a

       [Cenini, 2003]

7     PhI(OCOtBu)2, 14, Rh2(S-nttl)4                                          73              88             80             -

       [Dauban, 2006]                                                               (97% de)   (99% de)  (96% de)

8     NsNH2/PhI(OAc)2, Rh2(S-TCPTAD)4                                86               -              82             -

       [Davies, 2006]                                                                (74% ee)                    (73% ee)

9     RNHSO2R', tBuOOAc, Cu(OTf)2, 1,10-phen                     60               -              54             -

       [Powell, 2006]

10   PhI=NTs, TpBr3Cu(NCMe)                                                 56               -                -             30a

       [Perez, 2006]

11   PhI=NNs, (AgOTf)/4,7-diphenyl-1,10-phen                        -               68             70            57b

       [He, 2007]

12   PhI=NNs, AuCl3                                                                   -               29             36             -

       [He, 2007]

13   Tces-NH2, PhI(O2CtBu)2, Rh2(esp)2                                   72              72              -              -

       [Du Bois, 2007]

14   Bromamine-T, Co(TDClPP)                                                 -               73             66             -

       [Zhang, 2007]

15   Chloramine-T (anhydrous), Cu(CH3CN)4PF6                     69              64              -             39a

       [Nicholas, 2007]

16   R-NH2, NBS, FeCl2                                                             64               -                -              -

       [Zhao, 2008]

17   Troc-NH-OTs, K2CO3, Rh2(S-nttl)4                                    71              75               -              -

       [Lebel, 2008]

NHR
1

NHR NHR
NHR

35 36 37 38

Amidated Products of Commonly Employed Benzylic Substrates

a R2 = H  b R2 = iPr  

Table 1.1 
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1.2.2.5 Intermolecular Allylic C-H Amidation 

Several systems (as listed in Table 1.2) have employed a representative olefin 

to investigate the potential for allylic C-H amination. While some methods such as 

Muller’s produce aziridination products in minor or major amounts with cyclic or 

linear terminal alkenes,31 other procedures are highly selective for allylic amination, 

such as Dauban’s rhodium-promoted system,36,38 and have been employed with a 

wide variety of cyclic and linear alkenes. In addition to aziridination side-products, 

other potential by-products are illustrated in the Nicholas chloramine-T/Cu(I) 

promoted reaction in which allylic amination 42 occurs as major product with 

cyclohexene 41, but 1,2-chloroamidated products are seen from 1-octene 44 and 

cyclohexene (Figure 1.20, 43, 45).58  
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Figure 1.20 

 

Attempts to develop highly enantioselective allylic amination reactions of 

simple olefins have thus far been met with limited success, with ee’s typically ranging 

from 10-70%.33,36,48 As of yet, the scope of substrates used in most systems has been 

largely confined to one or two cyclic alkenes (such as cyclohexene), with the 
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exception being Dauban’s investigation in 2007.38 As this represents a reaction that 

retains the C-C unsaturation in the amidated product, it is surprising that more 

attention has not been paid to a full investigation of allylic C-H functionalization via 

nitrenoid precursors.  

 

Entry                   System                                                                        

                                                                                                    

  1     PhI=NNs, Rh2(OAc)2                                                         57    

         [Muller, 1997]

  2     Chloramine-T (hydrate), Cu(OTf)2                                    22             

         [Taylor, 1998]

  3     PhI=NTs, [Ru(TPFPP)(CO)] - (or Mn)                              86           

         [Che, 2000]

  4     PhI=NTs, Mn(salen)                                                           44             

         [Katsuki, 2001]                                                              (67% ee)       

  5     PhI=NNs, Rh2(S-TCPTTL)4                                               54      

         [Hashimoto, 2002]                                                         (19% ee)    

  6     PhI(OCOtBu)2, 14, Rh2(S-nttl)4                                          75        

         [Dauban, 2006]                                                              (38% ee)    

  7     RNHSO2R', tBuOOAc, Cu(OTf)2, 1,10-phen                     75          

         [Powell, 2006]

  8     Chloramine-T (anhydrous), Cu(CH3CN)4PF6                     58         

         [Nicholas, 2007]

Amidation of a Commonly Employed Allylic Substrate (Cyclohexene)

NHR% Yield

 

Table 1.2 

 

1.2.2.6 Intermolecular Saturated Hydrocarbon 3o and 2o (sp3) C-H 

Amidation 

In attempts to make progress towards one of the “holy grails” of organic 

chemistry, i.e. the selective functionalization of simple alkanes, several 
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intermolecular catalytic systems employing nitrenoid precursors have utilized simple 

cyclic and linear saturated alkanes (as summarized in Table 1.3) in addition to 

benzylic and allylic substrates.  

The tertiary sp3 C-H amidation of adamantane can be accomplished by a 

variety of methods in good yields,31,36,40,41,57 though tertiary amidation is almost 

always accompanied by a minor amount of secondary sp3 C-H amidation product. An 

even simpler cyclic alkane that is commonly employed as a representative 

hydrocarbon is cyclohexane. Muller first reported the amidation of cyclohexane with 

PhI=NNs/Rh2(OAc)4, though the reaction was performed at elevated temperatures 

(83oC).31 In 2003, Perez reported the room temperature amidation of cyclohexane 

used as solvent in 65% yield by reaction of PhI=NTs with an exotic copper 

scorpionate complex.72 The first report of a highly efficient amidation of a range of 

simple cyclic hydrocarbons was presented by Dauban and Dodd in 2007 using their 

sulfonimidamide reagent 14, PhI(O2CtBu)2, and Rh2[(S)-nttl]4.38 Yields ranging from 

85-96% were obtained from saturated C5-C8 cyclic hydrocarbons when the alkane 

was used in excess of 5 equivalents. Moderate success was even obtained from a 

linear alkane, 2-methylbutane, with amidation at the tertiary C-H position occurring 

in 36% yield. 

He’s silver-promoted amidation also allowed for extension of substrate scope 

to include simple cyclic hydrocarbons, though yields were mainly in the 30-40% 

range.50 An excellent yield (95%) of cyclohexane amidation 47 is reported by Du 

Bois’ Rh2(esp)2-promoted reaction when cyclohexane is used in 5 equivalents, but 

efficiency is lowered to 38% when the hydrocarbon is employed in 1 equivalent.37 In 



 29 

addition, a 46% yield of amidated product is obtained from 1,4-dimethylcyclohexane 

exclusively at the tertiary C-H position. Lastly, Lebel reported the amidation of 

simple saturated hydrocarbons using the Troc-NH-OTs/Rh2[(S)-nttl]4 system.40 

Reactions were conducted at room temperature with 5 equivalents of hydrocarbon 

substrate producing yields ranging from 50-80%. 

 

Entry                   System                                                       % Yield             

                                                                                             46         47

  1     PhI=NNs, Rh2(OAc)2                                                 71         30

         [Muller, 1997]

  2     PhI=NTs, [Ru(TPFPP)(CO)] - (or Mn)                      79          -           

         [Che, 2000] 

  3     PhI(OCOtBu)2, 14, Rh2(S-nta)4                                  94         85        

         [Dauban, 2006]                                              

  4     RNHSO2R', tBuOOAc, Cu(OTf)2, 1,10-phen            56          -      

         [Powell, 2006]

  5     PhI=NTs, TpBr3Cu(NCMe)                                          -          65      

         [Perez, 2006] 

  6     PhI=NNs, (AgOTf)/4,7-diphenyl-1,10-phen                -          40    

         [He, 2007]  

  7     Tces-NH2, PhI(O2CtBu)2, Rh2(esp)2                            -          95     

         [Du Bois, 2007]

  8     Troc-NH-OTs, K2CO3, Rh2(S-nttl)4                            70        80         

         [Lebel, 2008]

Amidation of Commonly Employed Saturated Hydrocarbon Substrates

NHR

NHR

46 47

 

Table 1.3 
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1.2.2.7  Aromatic (sp2) C-H Amidation 

To date, very few examples of arene C-H insertion have been reported 

utilizing nitrenoid precursors. The systems reported to date suffer from poor yields, 

exotic catalysts, poor regioselectivity, and/or the stoichiometric use of palladium. A 

more efficient and economical method is still desirable, as other methods of 

intermolecular arene C-H bond insertion such as that of Buchwald73 and Shi74 employ 

stoichiometric amounts of Cu as oxidant. 

  Intramolecular methods of arene C-H amidation via nitrenoid precursors have 

been developed recently which allow for highly regioselective insertion due to a 

metal-coordinating scaffold that places the catalyst in close proximity to a specific 

arene C-H bond. In 2007, Sanford reported the PhI=NTs-mediated amination of 

benzo[h]quinoline palladacycles 48.53 After hydrolytic cleavage with HCl, the C-H 

aminated product 50 can be isolated in good yields, though the reaction remains 

stoichiometric in palladiumII complexes (Figure 1.21). 

 

N
Pd

Cl 2
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 pyridine

2. 1.3 equiv 
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N

Pd
Cl

NTs

Py
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5 equiv HCl

N

NHTs

50, 100%
48  

Figure 1.21 

 

Intermolecular arene C-H functionalization via nitrenoid precursors remains 

an elusive but highly desirable approach to the amination of bulk feed stocks such as 
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benzene. As early as 2003, Perez reported the amidation of benzene with PhI=NTs (or 

chloramine-T), and a scorpionate ligand in combination with Cu (I) salts.72 The 

reaction at room temperature produces 40% of amidated product, and 80% at 85oC. In 

addition, amidation of electron-deficient pyridine occurs at the 2-position in 35% 

yield at 80oC.56  

Lastly, He reported in 2007 the amination of electron-rich tri-, tetra-, or penta-

substituted arenes used in excess with PhI=NNs and catalyzed by AuCl3.51 Of 

particular interest in this system is the preferential amination of aryl C-H bonds over 

primary or secondary benzylic C-H positions (Figure 1.22; 52, 54).  
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Figure 1.22 

 

1.3 Synthesis of Indoles in Organic Chemistry 

In addition to amines, N-containing heterocycles are also valuable targets for 

the design and development of new C-N bond forming methodologies via C-H 
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activation from unsaturated hydrocarbons. Indoles are an important class of N-

heterocycle due to their frequent occurrence in natural products and bioactive 

compounds. As electron-rich heterocycles, indoles are capable of a wide range of 

bioactivity due mainly to their ability to serve as useful ligands for a wide variety of 

receptors.75 A few examples of bioactive indoles are presented in Figure 1.23, the 

most famous of which is the amino acid tryptophan.  
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The indole framework consists of a benzene ring fused to a pyrrole ring, 

resulting in a 10 electron aromatic structure. Due to this fact, most synthetic 

methodologies exploit the resulting aromaticity of the product indole in order to 

facilitate annulation. Other physical properties of the indole framework include a low 

basicity (pKa of the conjugate acid is -2.4) similar to that of pyrrole, due to the 

compromise of aromaticity.75 In fact, protonation or oxidation of indole typically 

occurs at the C-3 instead of the N-1 position. Typically, functionalization of the 

indole framework is more readily obtained at C-2 and C-3 positions, while selective 

functionalization of the benzene unit (C-4,5,6,7) is more difficult.75   
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Figure 1.24 

 

1.3.1   Classical and Modern Indolization Methods 

Though some indoles occur naturally in coal tar, most complex indoles are 

produced by synthetic methods.75 Many methods have been developed for their 

preparation in a wide variety of annulating approaches which mainly consist of either 

the formation of the pyrrole unit from an aryl precursor or vice versa (Figure 1.25).75 

Despite numerous methodologies, new systems and improvements are still being 
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sought which employ more accessible starting materials, milder reaction conditions, 

are functional group tolerant, and achieve improved regioselectivity. 
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The first preparation of indole was reported in 1866,75 and the Fischer indole 

synthesis, which is the most versatile and widely used indole forming method, was 

first reported in 1883.76 In the Fischer indole synthesis, an arylhydrazone formed 
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from an aldehyde or ketone cyclizes via a sigmatropic rearrangement ortho to the 

initial hydrazine (Figure 1.27). Indolization is then driven to completion by loss of 

ammonia and the consequent generation of aromaticity. Potential drawbacks to the 

method include the use of protic or Lewis acids (which can prohibit certain 

functionalitites), and the formation of regioisomers from the use of unsymmetrical 

ketones or substituted aryl hydrazines.    

The continued search for a general and efficient annulation method has 

spawned several transition metal-promoted routes to indoles, though most of these are 

intramolecular cyclizations requiring an ortho-substituted N-aromatic substrate.75 The 

most widely used and recognized of these methods are related to pathway B shown in 

Figure 1.26. Variations include an ortho-nitro phenylacetylene 61 (with reduction of 

the nitro to aniline 62 and subsequent annulation), and the Stille and Larock 

variations in which the ortho-alkynyl aniline 62 is formed in situ via palladium-

mediated insertion into an ortho-halogenated aniline such as 63 and 64.75 

Disadvantages of these methods include the requirement of more highly 

functionalized N-aryl substrates. 
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Figure 1.26 

 

1.3.2   Non-Directed Intermolecular Methods 

Especially attractive, but relatively rare, are methods which produce indoles 

by annulation of simple mono-substituted N-aromatic precursors in highly convergent 

and atom-economical methods (as highlighted in Figure 1.25). To date, a wide range 

of N-aryl precursors have been utilized for this type of method including 

arylhydrazines, -hydroxylamines, -amines, and -chloroamines as well as nitro- and 

nitrosoaromatics.75,77,78 The most widely recognized and used of these methods is the 

Fischer indole synthesis, shown in Figure 1.27 as Path F.  
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In the Bartoli indole synthesis (Path A, Figure 1.27),79 a nitroaromatic is 

reacted with three equivalents of vinyl Grignard at low temperatures to produce 

indole. A unique advantage of the Bartoli reaction lies in the ability of the method to 

form C-2 and C-3 unsubstituted indoles. Another method that can directly produce 

indole from widely available nitroaromatics is the iron- or ruthenium-catalyzed 

Nicholas-Penoni alkyne annulation shown as Pathway G.77,78 This reaction is 

discussed in detail in Chapter 3, Section 3.1.2. 

In the Bischler synthesis (Path B), α-haloacetophenones are reacted with 

anilines at 200-250oC to produce indole through the formation of an imine which can 
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isomerize to an aldimine intermediate, producing the 2-substituted indole.75 The 

Sugasawa reaction (Path C) proceeds by conversion of anilines to indoles via BCl3-

directed ortho-chloroacetylation, and cyclization is completed by reduction with 

NaBH4.80 Typically, an additional Lewis acid such as TiCl4 or AlCl3 is needed. 

Aniline is also employed as N-substrate in the Gassman synthesis (Path D).81 The 

reaction involves a sigmatropic rearrangement of anilinosulfonium ylides prepared 

from aniline and a chlorosulfonium salt (or from N-chloroanilines and α-

thiomethylketones) to form thioindoles that can be desulfurized with Raney nickel. 

Lastly, the oxygen analogue of the Fischer indole cyclization (arylhydroxylamine) 

has been shown to readily form indole with vinyl acetate or electrophilic allenes (Path 

E),82 but is much less accessible than analogous arylhydrazone.  

 

1.4      Reduction of Aromatic Nitro Groups in Organic Chemistry 

Nitroaromatics represent attractive N-aminating reagents in C-H activation 

reactions due to their widespread availability and robust nature. As opposed to 

amines, the nitro functionality is not nucleophilic or basic, and is tolerant of a wide 

variety of conditions. Due to their high potential as aminating reagents, the 

transformation of the nitro group to other functionalities has been investigated for 

over 100 years.83 Transformations obtained via nitroaromatic reduction will be 

grouped into two categories: functionalities arising from C-N bond formation (such as 

reductive carbonylation or alkylation), and functionalities arising from N-N, N-O, or 

N-H bond formation (via metal-hydride or acidic reduction). By careful selection of 

catalysts, conditions, and reagents, transformations can be highly selective for the 
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formation of a specific product, though in most cases reactions are almost always 

accompanied by the standard by-products of nitro reduction, such as azo, azoxy, and 

amino compounds (Figure 1.28).  

 

PhNO2

PhNHOH

PhNH2

PhNO

Ph-N=N-Ph

Azobenzene
Azoxybenzene

Ph N N Ph

O

 

Figure 1.28 

 

As of yet, no method is known to selectively reduce a nitroaromatic to a 

nitrosoaromatic without the intervention of metal-coordination. This is due to the 

lower reduction potential of nitroso relative to nitro.84 While nitroso can be 

implicated as a transient intermediate in nitro reduction since it can be trapped in 

some examples,85,86 it has not been isolated in its free state and thus, is not included as 

a viable product of nitro reduction. 

 Carbon monoxide is an important reagent used in the transformation of a wide 

range of unsaturated functionalities. Although CO is a toxic gas, it remains 

industrially important due to its low cost, accessibility, and wide range of uses.83 

Along with alkylative methods including the use of Grignard reagents (such as the 

Bartoli indole synthesis),12 transition metal-catalyzed carbonylation of nitroaromatics 

using CO comprises the majority of methods to form C-N bond containing functional 
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groups.83 Functional groups that can be produced include isocyanates, carbamates, 

ureas, and primary-, secondary-, and tertiary amines (Figure 1.29).12,21,77,83  
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Figure 1.29 

 

Standard by-products such as azo and azoxy compounds are frequently 

observed in minor amounts. Isocyanates, carbamates, and ureas are important 

substrates used in the production of herbicides and polyurethanes, and other methods 

of production typically employ extremely toxic and corrosive phosgene.83 Lastly, 

Nicholas and others have shown the ability to form secondary amines or N-

heterocycles via C-H activation from metal-coordinated N-aminating species 

produced in the reduction of nitroaromatics.21,77  

In the second and more recognizable category of nitroaromatic reduction, 

functional groups capable of being produced include aniline, hydroxylamine, azo, 

hydrazo, and azoxy compounds.87 Many of these products are formed using similar 

catalysts and reagents, with selective production being obtained by careful 
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manipulation of conditions. For example, metal hydrides such as LiAlH4 typically 

produce azo products,12 but when a milder metal hydride such as NaBH4 is used in 

conjunction with a transition-metal phthalocyanine or porphyrin,12 aniline is produced 

in major amount.  

Classical methods of reduction of nitroaromatics to anilines include:12,87 

catalytic hydrogenation via palladium, platinum, or nickel catalysts, iron in acidic 

media (Bechamp reduction), sulfides and sulfites, and the employment of a variety of 

additional metals including tin, titanium, zinc, samarium, selenium, and tellurium. N-

Arylhydroxylamines are typically produced by reduction with zinc metal in aqueous 

acidic media,88 though over reduction to hydrazo compounds can occur when using 

excess zinc.89 Additional methods of N-arylhydroxylamine production include 

reduction via NaBH4/Teo or Seo,90,91 hydrazine/Raney nickel,12 electrolytic 

conditions,92 and even baker’s yeast.93 As most arylhydroxylamines are thermally 

unstable, care in most cases must be given to maintaining low temperatures 

throughout the typically exothermic reactions.   

 

1.5   Project Objectives 

The overall objective in the Nicholas Group’s Amination Project is to develop 

new methodologies to form C-N bonds via C-H functionalization that utilize 

transition metal activation of non-polar and otherwise unreactive saturated and 

unsaturated hydrocarbons. In addition, we aim to utilize stable, readily available, 

inexpensive nitrogen sources for atom-economical, regioselective reactions. Finally, 

we aim to mechanistically explore these new methodologies in order to understand 
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the reactivity, and potentially to create more reactive or selective systems for 

application towards highly desirable target compounds. 

Within this context, the three main areas of amination that have been 

investigated by the author can be separated according to the level of unsaturation of 

the reacting hydrocarbon (Figure 1.30): nitrenoid C-H insertion (alkanes), allylic 

amination (alkenes), and indole annulation (alkynes). The three areas will be 

presented and discussed in the chronological order that they were investigated. In the 

first, the exploration for a new method of the allylic amination of unfunctionalized 

olefins via nitroaryl reduction is presented. With an eye to developing milder reaction 

conditions, new catalysts, additives, and/or stoichiometric reducing agents are 

explored. The second area of research involves the design and development of a one-

pot indolization of arylalkynes and arylhydroxylamines in order to form unprotected 

(NH) indoles in an efficient and convenient manner. Finally, methods of direct C-N 

bond formation from saturated alkanes by employment of new catalysts and 

aminating agents are presented along with mechanistic investigations.  

 



 43 

R1 R3

R2 Z-NO2, CO

MLn

R1 R3

R2

NHZ

Z-NXY
H

NHZ

NHOH

R

R'

N
H

R

R
1

MLn

 !

+

Transition Metal-Catalyzed Allylic Amination of Nitroaromatics and 
Unfunctionalized Alkenes

Nitrenoid Precursor C-H Insertion of Saturated Benzylic and Non-
Benzylic Alkanes

Transition Metal-Catalyzed Annulation to Form Parent (NH) Indoles from 
Arylhydroxylamines and Alkynes

 

Figure 1.30 

 

 

 

 

 

 

 

 

 



 44 

CHAPTER 2 

 

SYNTHESIS OF ALLYLIC AMINES VIA NITROARYL 

REDUCTION: TOWARDS IMPROVED REACTION 

CONDITIONS 

 

2.1 Introduction and Background 

The nitro group represents a very attractive functionality for use as a potential 

N-aminating agent due to its widespread abundance in commercial compounds and 

robust nature. For this reason, the development of new C-N bond forming 

methodologies via C-H activation employing nitroaromatics as the N-source have 

been recently investigated in allylic amination reactions, and further improvements 

are still greatly desired.  

 

R
ArHN RArNO2

2 CO

+

+

Fp-Z

(50 atm, 160oC)

            or

(5 atm, hv, 100oC)

+   2 CO2

Fp-Z = [CpFe(CO)2]2 , CpFe(CO)2CH2Ph, [(C5Me5)Fe(CO)2]2  

Figure 2.1 

 

To date, the iron/ruthenium-catalyzed deoxygenation and subsequent 

activation of nitroaromatics towards C-N bond formation (Figure 2.1) requires 
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relatively harsh conditions such as high pressures (40-60 atm) of toxic carbon 

monoxide, long reaction times, and high temperatures (>150o).25,94-97 In order to 

obtain milder, less energy intensive, and more convenient conditions to allow for 

general use in a laboratory environment, we aimed to discover a new methodology to 

complement previous contributions to the field made by the Nicholas and Cenini 

Groups.25,94-97 Our investigations focused mainly on the search for new catalysts 

and/or stoichiometric reducing agents to provide for more reactive and/or selective 

systems. 

    

2.1.1 Modern Allylic Amination via Nitroaryl Reduction 

To date, only two allylic amination systems that employ nitroaryls as the N-

aminating reagent have been discovered and investigated. Reported by Cenini et al. in 

1996,94 the first intermolecular system of allylic amination of an unactivated alkene 

(cyclohexene 41, neat) by nitroaryls was conducted under reducing conditions of 40 

atm CO and 160oC, and catalyzed by Ru3(CO)12 in the presence of DIAN-R 67 

(Figure 2.2). 
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Figure 2.2 
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In subsequent substrate scope expansion and mechanistic studies,95 a variety 

of nitroarenes were employed with best results being obtained from those with 

electron-withdrawing substituents. In addition, a small sampling of olefins was also 

tested resulting in moderate allylamine N-selectivity (37-57%) and incomplete 

nitroarene conversion. Finally, it was determined that the amination reaction 

proceeded through an “on-the-metal” mechanistic pathway involving preliminary 

coordination of the alkene (70), followed by coordination and reduction of the 

nitroaryl to a ruthenium-oxaziridine (Figure 2.3). Complex 71 could then undergo 

oxidative addition to the alkene followed by reductive elimination to form the 

allylamine. By-products could be obtained through reductive pathways in which the 

alkene was not coordinated to the ruthenium (via Complex 69), either from complete 

deoxygenation to the aniline, or by release of a free nitrosoarene to form azo and 

azoxy compounds. 
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In the second system, Nicholas et al. describe a more efficient amination that 

employs nitroaromatics as aminating agents in conjunction with a slight excess of 

olefin and inexpensive [CpFe(CO)2]2 as catalyst.25,97 Though conditions of 50-75 atm 

CO and 150-180oC are similar to the Cenini reaction, mechanistic differences were 

observed to verify the iron-catalyzed system as a distinctly unique method. For 

example, employment of 2,3-dimethylbutadiene 72 as a hetero-Diels-Alder trapping 

agent was conducted as an experimental test for the intermediacy of nitrosobenzene. 

In Cenini’s system, the hetero-Diels-Alder product 74 was observed,95 whereas it was 

not in the iron-catalyzed system25 (Figure 2.4).   
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Figure 2.4 

 

Using optimized conditions of 5 mol% [CpFe(CO)2]2, one equivalent of 

nitrobenzene, 1.3 equivalents of olefin, 900-1000 psi CO, and heated to 160-180oC in 

dioxane for 24 hours, a series of representative olefins and nitroarenes were employed 

(Table 2.1).25 In all examples, regioselectivity of the reaction resembled that of an 

“ene” process with the amination occurring at the less substituted olefinic carbon. 

Electron-withdrawing and –donating groups are tolerated on the nitroarene, though 
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yields are decreased as compared to unsubstituted nitrobenzene, and substantially 

decreased (2% isolated) when an electron-donating substituent is present. Finally, a 

photoassisted procedure was developed that allowed for allylic amination of olefins 

with nitrobenzene catalyzed by 10 mol% of either [CpFe(CO)2]2, [(C5Me5)Fe(CO)2]2, 

or [(C5Me5)Ru(CO)2]2 to be conducted under 3-6 atm CO at 80-120oC in a glass 

Fisher-Porter bottle, with lower yields relative to the high pressure thermal reaction.96  

 

Ph

Ph

Ph

Ph

NHPh

NHPh

NHPh

NHPh

NHPh

Entry        Alkene                    Allylamine                  Yieldb

Allylic Amination of Nitrobenzene with Various Alkenes 

Catalyzed by [CpFe(CO)2]2
a

a Conditions: 5 mol% catalyst, 1 equiv PhNO2, 1.3 equiv 

alkene, CO (900-1000 psi), 160-180oC, dioxane, 24 hours
b GC yield calculated using naphthalene as internal standard

1                                                                                     92

2                                                                                     64

3                                                                                     27

4                                                                                     10

5                                                                                     13

 

Table 2.125 
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2.2 Results and Discussion 

2.2.1 Attempts to Discover Milder Conditions for Nitroaromatic 

Reduction with Subsequent Allylic Amination 

In our attempts to develop milder catalytic conditions for the allylic amination 

of olefins via nitroaromatic reduction, a large number of heterogeneous and 

homogeneous catalytic and stoichiometric systems were investigated. Systems that 

were chosen for investigation had shown the ability in previous reports to either 

deoxygenate nitro, nitroso, or other loosely related functional groups such as epoxides 

or carbonyls. Fundamentally, our strategy could be divided into two main areas: 

employment of systems that produce a metal-coordinated species from nitroaromatic 

reduction, and utilization of systems that reduce nitroaromatics to azoxy, azo, or 

aniline compounds. In the first strategic area, allylic amination is envisioned by 

reaction of a metal-coordinated N-species of nitroaryl reduction directly with an 

olefin, or through a “nitroso-ene” reaction from the forced release of a reactive N-

species, such as a nitrosoaromatic, from the metal-complex. The second area is 

comprised mainly of heterogeneous systems in which the trapping of a “free” 

nitrosoaryl as an intermediate in nitroaryl reduction with an olefin through a “nitroso-

ene” reaction is envisioned.  

 

2.2.1.1  Metal-Complex Screening 

The first system to be tested involved a stoichiometric amount of Fe(salen) 

complex 77 (Figure 2.5) that has been shown to deoxygenate nitrosoaryls as well as 

secondary N-hydroxylamines under relatively mild conditions.98 It was not reported, 
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however, that the Fe(salen) would deoxygenate nitro compounds. Upon preparation 

of the complex,99 a series of reactions to test for nitroaryl reduction were conducted 

by the employment of two equivalents of the Fe(salen) along with nitrobenzene and 

excess α-methylstyrene in either THF or DMF at temperatures ranging from 22-

110oC. No detection (by GC) of N-phenylallylamine or nitrobenzene reduction 

products were observed under any of the reaction conditions.   

In somewhat similarly reactive systems reported by Kochi85 and O’Connor86, 

either Ni or Co metal complexes have been shown to stoichiometrically reduce 

nitrobenzene under mild conditions to form side-on coordinated nitroso-metal 

complexes (such as 76 and 80). We aimed to develop a catalytic nitroaryl reduction 

process from these complexes by attempting to react the coordinated nitrosoaromatic 

with an olefin. Both systems were initially tested by employment of the reactive metal 

complex (Figure 2.5, 75, 79) in a catalytic amount in the presence of nitrobenzene 

with a slight excess of α-methylstyrene using benzene as solvent with temperatures 

ranging from 22-60oC. The N-phenylallylamine product was not detected by GC, and 

little reduction of nitrobenzene was observed by either metal complex.  
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Figure 2.5 

 

The final homogeneous catalyst to be tested was {[Ph4(η5-

C4CO)]2H]}Ru2(CO)4(µ-H), or Shvo’s catalyst 78,100 shown in Figure 2.5. The 

ruthenium complex has been shown to hydrogenate a number of functional groups 

including ketones, though the reduction of nitro groups has not been previously 

reported. Due to the possession of a metal-hydride and an acidic proton on the 

complex, reduction of the nitro group was envisioned by which the loss of water 

could form a nitrosoaromatic (Figure 2.6). Unfortunately, no reduction of 

nitrobenzene was detected in test reactions using a stoichiometric amount of the 

ruthenium complex at 22oC or at elevated temperatures.  
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2.2.1.2 Heterogeneous System Screening 

Numerous reductions or hydrogenations of nitroaromatics are known to 

generate either azo, azoxy, or aniline products. In attempts to induce the allylic 

amination of an olefin with “free” nitrosoaromatic formed as a potential intermediate 

from one of these reductions, a series of stoichiometric or catalytic systems were 

investigated. In almost all of these systems, a strategy involving an initial one (or 

two) electron reduction of a nitroaromatic followed by the removal of an oxygen 

atom to generate free nitroso-aromatic (or hydroxylamine) in the presence of an olefin 

(which could then undergo an ene reaction) was envisioned. Systems tested that 

employed milder conditions by utilizing a different stoichiometric reducing agent 

and/or oxygen acceptor than CO are shown in Table 2.2.    

 



 53 

Entry     Equiv      Equiv       Reducing        Literature                    Observation

             PhNO2     AMS          Agents          Reference

    1           1.2          2         (Mg, Mn, Zn)           -             Multiple products, dimerization

                                              + TMSCl                                of styrene, no observable 81

    

    2           1.2          2          (Zn, TiCl3)             101         No apparent reduction of PhNO2,

                                      + TMSCl or HMDS     102                       no observable 81

    3             1          1.3      Na2Te or NaHTe      103               Formation of azoxy- and  

                                                                                             azobenzene, no observable 81

    4             1           5          Smo, TMSBr          104                Formation of azoxy- and  

                                                                                             azobenzene, no observable 81

    5             1          10          RuCl3, H2O,          105                      No observable 81

                                                indoline

    6             1           1     Fe(Pc) or Fe(TPP)Cl    106               Formation of azoxybenzene

                                                +  NaBH4            107        AMS dimer, and trace amount of 81

Initial Screening for Allylic Amination by Reduction of Nitrobenzene 

 in the Presence of !-Methylstyrenea

Ph-NO2   + Ph

Reducing
System Ph N

H

Ph

81

+   By-products of

    PhNO2 reduction(AMS)

a Procedures are presented in the Experimental Section  
 

Table 2.2 
 

2.2.2 NaBH4/Fe(Pc) Promoted Allylic Amination of α-Methylstyrene by 

Nitrobenzene  

Of the systems tested, some initial success was only exhibited by the 

Fe(Pc)/NaBH4 reduction of nitrobenzene conducted without the use of CO and at 

relatively mild temperatures. The overall reaction was originally envisioned as the 

combination of two known reactions that were both promoted by the same 

commercially available catalyst, the first step being the selective reduction of 
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nitrobenzene to PhNHOH with NaBH4,106 and the second being the allylic amination 

of PhNHOH and olefins.6 An initial catalyst screening was conducted of metal salts 

and complexes that have been reported to undergo at least one of the two previously 

described reaction steps (Table 2.3). 

 

Initial Screening for the Transition-Metal Catalyzed Reduction of Nitrobenzene 

with NaBH4 in the Presence of !-Methylstyrene

entry              catalyst           GC Detectiona         GC Detectiona

                                                    of 81               of nitro reduction

1              CuCl (anhyd)              ND                     Moderate

2             CuCl2 (anhyd)              ND                        None

3             CuCl2 . 2 H2O              ND                         High

4            Cu(CH3CN)4PF6           ND                         Low

5              FeCl2 (anhyd)              ND                        High

6              FeCl3 (anhyd)              ND                     Moderate

7             9:1 FeCl2/FeCl3            ND                     Moderate

8                  FeII(Pc)                  Trace                       Low

9                FeIII(Pc)Cl                  ND                    Mod-High

a  Confirmed by GC-MS  b Significant reduction of AMS

Ph-NO2   + Ph

1 equiv 5 equiv

+   NaBH4

     2 equiv

10 mol% 
catalyst

80oC, 24 hrs

dioxane

Ph N
H

Ph

81

+   By-products of

    PhNO2 reduction

10            SnCl2 (anhyd)               ND                         Low

11            SnCl2 . 2 H2O               ND                         Lowb

12                 CoII(Pc)                   ND                     Moderate

13              MnIII(Pc)Cl                ND                     Moderate

 

Table 2.3 

 

Upon detection of N-phenylallylamine by GC-MS from the reaction catalyzed 

by Fe(Pc), a screening of solvents was performed including toluene, tetrahydrofuran, 

dichloromethane, diglyme, diglyme-10% MeOH, and dioxane. No reduction of 
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nitrobenzene was observed in toluene or dichloromethane likely due to insolubility of 

NaBH4, and aniline was seen as the main product when diglyme or the diglyme-

MeOH solvents were employed. Using refluxing dry tetrahydrofuran, however, 

produced the N-phenylallylamine along with a large amount of what was identified by 

GC-MS and previous reports108 as a dimerized hydrocarbon formed from two 

equivalents of α-methylstyrene (Table 2.4, 82). The reaction systems as performed in 

either refluxing dioxane or THF were then investigated further in an attempted 

optimization. 

 During the early stages of optimization, it was observed that the reaction 

performed in refluxing THF was complete in two hours, producing a 5-10% yield of 

allylamine. The reaction employing refluxing dioxane as solvent produced a 6% yield 

in 20 hours. Therefore the majority of the optimization process utilized THF due to 

the more expedient completion of the reactions. Neither increased catalyst loading nor 

application of techniques such as slow addition of reagents had any positive effect on 

the reactions either in THF or in dioxane. In addition, additives such as PPh3, N-

methylimidazole, and Sc(OTf)3 also had no positive effect on the reaction. The 

reaction performed in dioxane produces large amounts of azoxybenzene 83 in all 

cases, and the reaction in THF produces large amounts of dimerized α-methylstyrene 

82. Only slight improvements in terms of limiting the aforementioned major products 

from the initial conditions were observed by the stoichiometric manipulation of the 

reactions in either THF or dioxane (Table 2.4). The best conditions employing THF 

as solvent (2 hours refluxing or 5 days at room temperature) produced an 

approximately 10% yield of allylamine  81 from a 20 equivalents excess of 
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nitrobenzene, one equivalent AMS, 10 mol% Fe(Pc), and 2 equivalents NaBH4. In 

refluxing dioxane, however, it was observed that the azoxybenzene produced as 

major product could be limited by utilizing conditions of one equivalent of PhNO2, 10 

equivalents of AMS, 10 mol% Fe(Pc), and 2 equivalents NaBH4, producing the 

allylamine in 12% yield. Phenylacetylene and 2-methyl-2-heptene were both 

employed as representative unsaturated hydrocarbons in order to test the generality of 

the reaction. However, neither reagent resulted in a product of amination. 

 

N

N

N

N

N

N

N

N

Fe

Iron Phthalocyanine
[Fe(Pc)]

NO2

+

NaBH4

10 mol% Fe(Pc)

Ph

H
N

Ph

Ph Ph

Ph N

N

O

Ph

+
82 83

81

Solvent Time
Product Ratios

Dioxane

THF

Equiv

PhNO2

Equiv
AMS

20 1 2 hrs (reflux)
5 days (rt)

24 hrs (reflux)

     1      :    4     :      2

 1     :    1     :      31 10

1 1 Dioxane 24 hrs (reflux) trace majorminor

THF1 1 2 hrs (reflux) major minortrace

82 8381

Optimization Summary of the Allylic Amination of !-Methylstyrene 
by Nitrobenzene

Entry

1

2a

3

4a

a Both reactions result in 10-12% yield (GC) of N-phenylallylamine 81

 

Table 2.4 
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In attempts to explore the reaction mechanism, known trapping experiments 

were conducted to attempt to detect either free nitroso or nitrene as intermediates in 

the reduction of nitrobenzene by NaBH4/Fe(Pc) (Figure 2.7). Employment of 5 

equivalents of 2,3-dimethylbutadiene 72 in the reaction conditions resulted in no 

formation of hetero-Diels-Alder product 74 or allylic amine 73, thus implicating that 

a free nirosobenzene is not present in the mechanistic pathway. In addition, 

employment of 2-phenyl-nitrobenzene 84 did not result in the formation of carbazole 

85, only 2-phenyl-aniline 86 was observed by isolation. Therefore it can be concluded 

that the reduction of nitrobenzene does not produce a nitrene intermediate species 

during deoxygenation.  

 

NaBH4  

+  10 mol% Fe(Pc)

+  Ph-NO2

N

O

PhHN

Ph

or

NO2

Ph

NH2
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Figure 2.7 

 

Finally, the state of the Fe(Pc) might be circumstantially characterized by the 

appearance of the dark heterogeneous mixture at various stages in the reaction. 

FeII(Pc) is dark blue in solution, and upon addition of NaBH4 and heating, the mixture 

turns a dark wine red in THF, which is indicative of FeI(Pc).109 Finally, upon 

exposure to air or cooling of the mixture, the color changes to dark green, which is 
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indicative of FeIII(Pc). Therefore, it is presumed that the NaBH4 acts to initiate the 

reaction by forming the reduced FeI(Pc), which can transfer an electron to the 

nitrobenzene to form a nitrobenzene anion radical that is subsequently deoxygenated 

by the catalyst. It is also presumed that the addition of the olefin substrate to the N-

aminating species occurs on-the-metal in an unknown process, as no free 

nitrosobenzene could be trapped with known methods.    

In summary, the allylic amination of α-methylstyrene via NaBH4/Fe(Pc) 

promoted reduction of nitrobenzene in either dioxane or THF produced in all cases N-

phenylallylamine as a minor product, with unavoidable formation of dimer 82 or 

azoxybenzene as major products. In addition, the reaction did not appear to be 

applicable to alkenes or alkynes other than α-methylstyrene. Despite these 

shortcomings, the reaction as described represents the first example of allylic 

amination of an olefin employing nitroaromatics as the N-aminating reagent without 

the use of CO in high pressure autoclaves, and performed at temperatures lower than 

the previously reported 100-180oC. Investigations were discontinued mainly due to 

the inability to optimize the system to a synthetically useful or general reaction. 

Though a novel system, the inability to identify the role of the active catalyst in order 

to more fully understand the reaction also contributed to its abandonment. 

   

2.2.3   Utilization of Conventional Microwave Oven 

 In addition to efforts made in regard to the development of new catalytic 

systems of nitroaryl reduction and subsequent allylic amination, attention was also 

paid to modifying the existing system in order to obtain more convenient reaction 
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conditions. An approach to conduct reactions outside of high-pressure stainless steel 

autoclave reactors was envisioned in which conventional microwaves were used in 

conjunction with thick-walled Teflon screw-top vessels. While procedures are 

available for the modification of conventional microwaves to allow for the regulation 

of reaction temperatures,110 the conventional microwaves that were used in our study 

were used without any modification. Due to the lack of temperature regulation, a 

typical reaction procedure involved pulsing with the microwave for 2-4 minutes, upon 

which the vessel was removed from the microwave, stirred (shaken), and allowed to 

cool 2-4 minutes. Failure to agitate the mixture or allow the solution to cool could 

result in plating of the transition metal-catalyst (or free metal) on the vessel wall, 

which creates an area of supercritical heat that can crack the reaction vessel, resulting 

in a deafening explosion of the vessel and the microwave oven.  

Initial reactions were conducted using an excess of α-methylstyrene, one 

equivalent of nitrobenzene, and 10 mol% [CpFe(CO)2]2 (Fp2) without the use of a 

solvent or stoichiometric source of CO, though it was quickly observed that a source 

of CO is needed in order to obtain a catalytic reaction. Stoichiometric sources of CO 

for use in microwave reactions are known such as Mo(CO)6,111 though it was deemed 

economically unacceptable for the allylic amination reaction, considering that a 

stoichiometric amount of Fp2 (used in the reaction as a catalyst) is less expensive than 

Mo(CO)6. Therefore, attempts to utilize inexpensive sources of CO such as CO gas 

(1-4 atm), formamide,112 and Fe(CO)5
113 were explored. Some success was obtained 

using CO gas and/or Fe(CO)5 as stoichiometric CO sources. However, the 
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employment of formamide was less fruitful due to catalyst poisoning from the 

production of ammonia.  

In attempts to optimize a microwave-assisted reaction, it was observed that 

reactions generally required 80-120 minutes of microwave heating (in four minute 

intervals) in order for > 90% conversion of nitrobenzene (Figure 2.8). 

 

 

Figure 2.8 

 

It was also observed that lower yields were consistently obtained by employment of 

benzene as solvent. Best results were obtained by using one equivalent nitrobenzene 

in 6 equivalents of α-methylstyrene, with one atm CO and/or 1-2 equivalents of 

Fe(CO)5 and 0.1 equivalents of Fp2. After microwave heating a total of 80-120 



 61 

minutes, yields of N-phenylallylamine were typically modest (6-21%) as determined 

by GC. Though a source of CO was deemed necessary for a catalytic reaction, the 

variation of amounts of Fe(CO)5 or CO seemed to have little effect on product yield 

(Table 2.5, entries 3-7). Additionally, the allylamine product was consistently 

accompanied by large amounts of by-products of nitrobenzene reduction including 

azoxybenzene (10-30%), aniline (10-30%), and azobenzene (5-15%). 

 

NO2

1 atm CO
or

1 eq. Fe(CO)5

10 mol% [CpFe(CO)2]2

(Fp2)

+ Ph

H
N

Ph

Fe-Catalyzed Microwave Assisted Allylic Amination of Nitrobenzene 
and !-Methylstyrene

Entry  Amount    Equiv     Equiv      Time      Solvent    GC Yield

             of CO   Fe(CO)5     Fp2    (Minutes)                      81 (%)

1           0             0            1            80        Benzene          8

2           0            10          0.1         120       Benzene          6  

3           0             2           0.1          80           neat             19

4           0             1           0.1          80           neat             18

5           0            0.5         0.1          88           neat             15

6        1 atm         1           0.1          88           neat             21 

7      2-4 atm        0           0.1         122          neat             17

81

 

Table 2.5 

 

With the appearance of a seemingly maximum product yield in the initial 

optimization attempts, analogous thermal reactions were investigated at 100oC 

employing Fe(CO)5 as stoichiometric source of CO, and/or lower atmospheric 

pressure of CO gas (~7 atm). The milder thermal reactions were envisioned to 
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determine typical product ratios that are observed without the employment of high 

pressures of CO (50-70 atm) and high temperatures (160-180oC) used in the standard 

reaction conditions. Upon varying amounts of [CpFe(CO)2]2 (Fp2) catalyst, Fe(CO)5, 

and CO pressure (Table 2.6), it was determined that yields ranging from 19-24% are 

in fact typical of milder conditions. Additionally, the thermal and microwave-assisted 

methods produce similar amounts of by-products of nitrobenzene reduction including 

azoxybenzene (10-30%), aniline (10-30%), and azobenzene (5-15%). Thus, it was 

determined that while conventional microwave-assisted conditions can provide 

shorter reaction times as well as a more accessible reaction vessel, reactivity and 

consequently product yields are not enhanced as compared to the high pressure 

thermal reaction. Though yields are modest, this system represents the first example 

of a microwave-assisted allylic amination of an olefin from a nitroaromatic.  

 

NO2

~7 atm CO

and/or

1 eq. Fe(CO)5

cat. Fp2, benzene

+
Ph

H
N

Ph

Fe-Catalyzed Thermal Allylic Amination of Nitrobenzene 
and !-Methylstyrene

Entry  Amount    Equiv     Equiv      Time     GC Yield

             of CO   Fe(CO)5     Fp2      (Hours)     81 (%)

1           0             1           0.1          72             19

2       7 atm          1           0.1          72             22  

3       7 atm          1            0            72           trace

4       7 atm          1          0.25         72             23

5       7 atm         0.1         0.1          72             22

6       7 atm          0           0.1          70             24

81

 

Table 2.6 
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2.2.4 Additive Effects: An Fe-Cu Co-Catalyst System 

In addition to the use of microwave-assisted conditions in order to develop a 

milder, more convenient reductive nitroaromatic allylic amination procedure, several 

additives were also tested with the Fp2-catalyzed reaction. Among the additives 

and/or ligands that were initially tested in conjunction with a catalytic amount of Fp2 

at 100oC and 150 psi (~10 atm) CO were pyridine, bipyridine, triphenylphosphine, 

phenanthroline, and CuBr. Of these, only CuBr produced an observable positive 

effect on the reaction. The choice of CuBr as an additive was originally made due to 

the previously unpublished observation within the Nicholas Group that the addition of 

halides increased the product selectivity, but decreased the reaction rate. As most 

common sources of halides such as ammonium halide salts are not stable to 

prolonged exposure at higher temperatures, CuBr was originally viewed as a 

potentially thermally innocuous source of halide.  

In the standard Fp2-catalyzed reaction conducted at higher temperatures and 

pressures of CO, N-selectivity of the allylamine product is typically 60-85% due to 

the deleterious formation of by-products such as azoxy, azo, and aniline compounds. 

However, it was observed that addition of a catalytic amount of CuBr increased the 

N-selectivity of the allylamine product relative to the other observable (by GC) N-

containing by-products to levels >98%. An initial co-catalyst screening was 

conducted of various copper salts and [CpFe(CO)2]2, [(C5Me5)Fe(CO)2]2, or 

[(C5Me5)Ru(CO)2]2 complexes (Table 2.7).  
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Entry   Catalyst Aa   Catalyst B                 Solvent    Temp     Time     GC Yield    N-Selectivity

              (mol %)        (mol %)                                    (
oC)     (hours)      81 (%)             (%)

    1         Fp2 (5)           none                     Benzene    160         96             24                  64

    2          none          CuBr (10)                Benzene    100         72              0                   

    3         Fp2 (5)        CuBr (5)                 Benzene     100         72             19                 >98

    4         Fp2 (5)   Cu(CH3CN)4PF6 (5)    Benzene    100         45             13                  99

    5         Fp2 (5)       CuBr2 (5)                 Benzene    100         72              0

    6         Fp2 (5)         CuI (5)                   Dioxane     100         92             19                  98

    7         Fp2 (5)        CuBr (5)                 Dioxane     100        114            21                  94

    8        Fp*2 (5)        CuBr (5)                Dioxane     100        114            11                 

    9        Ru*2 (5)       CuBr (5)                 Dioxane     100        114             2

NO2

10 atm CO

Cat. A, Cat. B
+

Ph

H
N

Ph

1 mmol 5 mmol

a Fp2 = [CpFe(CO)2]2; Fp*2 = [(C5Me5)Fe(CO)2]2; Ru*2 =  [(C5Me5)Ru(CO)2]2

Co-Catalyst Screening of Allylic Amination of Nitrobenzene and !-Methylstyrene

81

 

Table 2.7 

 

In the first of two control reactions, an experiment was performed without 

CuBr (entry 1), and it was observed that a low yield of N-phenylallylamine (24%) is 

obtained under 10 atm CO and 160oC, with an N-selectivity of only 64%. In the 

second control reaction, Fp2 was excluded from the reaction (entry 2), resulting in 

very little reduction of nitrobenzene and no detectable product formation. As these 

results verified the necessity of both Fp2 and CuBr for production of high N-

selectivity (entry 3), the nature of the copper salt was then investigated. To attempt to 

determine if the counter-anion halide is necessary or responsible for the observed 
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increase in selectivity, Cu[(CH3CN)4]PF6 was employed as catalyst (entry 4), and 

high selectivity was still observed, thus implicating a role of CuI in the reactive 

catalytic complex. Employment of CuBr2 in the reaction (entry 5) resulted in 

reduction of nitrobenzene as well as the olefin, with no observable formation of N-

phenylallylamine product. Lastly, an additional CuI salt (CuI) was employed with 

similar success (entry 6). 

In addition to varying the copper salt catalysts, attempts were also made to 

improve the efficiency of the reaction by varying the iron (or ruthenium) catalyst 

complexes. Since it has been shown in previous studies77,96 that employment of 

[(C5Me5)Fe(CO)2]2 or [(C5Me5)Ru(CO)2]2 can have positive effects on the efficiency 

of C-N bond forming reactions via nitroaryl reduction, the aforementioned complexes 

were employed in conjunction with catalytic amount of CuBr (entries 8-9). 

Interestingly, the catalysts that were shown to be more effective in previously 

reported studies produced less efficient results than Fp2 in side-by-side reactions 

(entries 7-9). This may either be due to electronic effects, as the pentamethyl-

cyclopentadienyl ligand would provide more electron donation to the metal, or 

potentially due to steric effects of the bulkier Cp* ligand that may prevent a 

potentially reactive Fe-Cu or Ru-Cu complexation. 

Using the best results and most convenient catalysts from the catalyst 

screening, an optimization of stoichiometry and reaction conditions was then 

performed (Table 2.8). As our initial goals were to develop a milder system 

employing lower reaction temperatures and CO pressures, a reaction was performed 

at 75oC and 10 atm CO resulting in little conversion of nitrobenzene to the product 
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allylamine, even over a period of 6 days (entry 1). The role of reaction temperature at 

lower CO pressures was further investigated by conducting reactions at 100o and 

160oC (entries 2-3). It was observed that product yield increases as temperature 

increases, and N-selectivity remains high even at higher temperatures. Dioxane was 

determined to be a better solvent than benzene for the reaction (entries 3-4), and 

though yields are improved (39%, 96% N-selectivity), they still remain modest 

relative to the high pressure (900-1000 psi CO) conditions.25 In an attempt to 

determine if the Fe/Cu co-catalyst system could be applied to high pressure and 

temperature conditions in order to achieve high yield and high N-selectivity, an 

experiment was conducted at 160oC and 48 atm CO (entry 5). Strangely, the system 

actually produced a lower yield (16%) and slightly decreased selectivity. Finally, by 

employing a larger excess of olefin in the reaction stoichiometry, moderate yields 

with excellent selectivity were obtained at the lower temperature of 100oC and 10 atm 

CO (entry 6). Though modest, this result is in fact comparable to that obtained from 

the Fp2-catalyzed (without CuI) reaction at higher temperatures and pressures of CO 

(entry 9).   
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Entry    mmol    mmol    Solvent    Temp     Time     CO    GC Yield    N-Selectivity

            PhNO2   AMS                      (
oC)     (hours)  (atm)     81 (%)             (%)

    1          2          10       Dioxane      75        144        10           7                  

    2          1           5        Benzene     100        72         10          19                  >98 

    3          1           5        Benzene     160        96         10          29                   94 

    4          1           5        Dioxane     160       112        10          39                   96

    5          1           5        Benzene     160        72         48          16                   88 

    6          1          15       Dioxane     100        92         10          41                   97 

    7a         1          15       Dioxane     100       112        10          26                   96

    8b         1          15       Dioxane     100       112        10           8                    99

    9c         2         2.6       Dioxane     160        90         51          47                   86

NO2  CO

5 mol% Fp2,

5 mol% CuBr+
Ph

H
N

Ph

a 15 mol% of each catalyst b 2 mol% of each catalyst, incomplete nitrobenzene conv.
c Reaction conducted without using CuBr as co-catalyst

Optimization of CuI/Fp2-Catalyzed Allylic Amination of Nitrobenzene 

and !-Methylstyrene

(AMS)
81

 

Table 2.8 

 

With an eye to determining the role of the Cu1 salt in the reaction, attempts 

were made to spectroscopically detect a potential bi-metallic complex using IR. The 

IR spectrum of solid [CpFe(CO)2]2 in KBr has two ν(CO) peaks at 1934 

[corresponding to the terminal (η1-CO) groups] and 1756, corresponding to the 

bridging (η2−CO) groups. In dioxane solution, three ν(CO) peaks from [CpFe(CO)2]2 

are observed at 1994, 1953, and 1779. Upon heating one equivalent Fp2 with one 

equivalent CuBr in dioxane at 100oC under 10 atm CO for 48 hours, an aliquot was 
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withdrawn from the autoclave reactor via diptube and analyzed by IR. In addition to 

the known three ν(CO) peaks from [CpFe(CO)2]2 at 1995, 1952, and 1779, a new 

peak at 2045 was observed. After an additional 24 hours of heating (3 days total), 

another new ν(CO) peak at 1984 emerged. Thus, after subtraction of the known three 

ν(CO) peaks from [CpFe(CO)2]2 in dioxane, two new ν(CO) peaks at 2045 and 1984 

are observed, likely from the coordination of CuBr in some manner to the Fp2. A 

number of possible complexes similar in structure to reported species formed from 

the additions of halides114 and ligands115 to Fp2 are envisioned (Figure 2.9). It is 

difficult to definitively claim that these ν(CO) peaks can be attributed to a possible 

reactive bimetallic species responsible for the selective formation of allylamine since 

all IR spectra were obtained after the samples were cooled to room temperature and 

released to atmospheric pressure of air. For further verification, IR measurement 

taken under reaction conditions (100oC, 10 atm CO) would be desirable.  
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 Finally, the discrepancy that lies in the mass balance from the reactions in 

which almost complete nitrobenzene conversion (>95%) is accompanied by excellent 

N-selectivity (>95%), but low product yield (~40%) is of concern. The N-selectivity 

of the product allylamine as it is discussed in this context and in comparison to 

previous reports only considers the additional N-containing by-products that can be 

detected by GC, including aniline, azobenzene, and azoxybenzene. Other potential 

by-products that may be responsible for a large portion of the N-containing products 

of nitrobenzene reduction include N,N-diphenylurea (as previously reported25) and/or 

polymerized nitrobenzene or polyaniline.116  

The investigation was discontinued mainly due to the emergence of other 

more promising systems, which are discussed in the next two chapters. In addition, 

the optimized reaction in its present form was not considered synthetically useful, 

though further improvements could be made to the system in order to achieve 

sufficient product yield (~60%). For example, employment of the alkene substrate as 

solvent could conceivably increase the yield from 41% to a value similar to that 

produced by the photoassisted method.96 Additional attempts to characterize the 

nitrobenzene by-products as well as the potential bi-metallic complex using MS-ESI 

would also add to the value of the novel system.  

  

2.3 Summary and Conclusions 

In summary, our attempts to develop a new catalytic allylic amination from 

nitrobenzene without the use of high pressures of CO and high temperatures were met 

with moderate success in the NaBH4/Fe(Pc) promoted reaction. Though large 
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amounts of deleterious by-products always accompanied low yields of allylamine 

product and substrate scope appeared limited to α-methylstyrene, the reaction still 

represents the first example of a bench-top allylic amination from nitroaromatics 

without the requirement of stoichiometric CO. In addition, the first microwave-

assisted preparation of allylic amines from nitroaromatics was developed by 

employing either one atm CO, or one equivalent Fe(CO)5 as a stoichiometric CO 

source. Yields obtained were relatively low (~20%), though the procedure allows for 

employment of a more widely available reactor as well as shorter reaction times than 

the previously reported high pressure and temperature system. Finally, a more N-

selective co-catalytic system was developed by employing CuBr with [CpFe(CO)2]2 

under milder conditions such as 1000C and 10 atm CO pressure. These conditions are 

very close to those allowing for the reaction to be conducted in Fisher-Porter vessels, 

and slight improvements in the allylamine product yield (from 41%) could make this 

a synthetically applicable system due to the ease of purification of the crude mixtures 

that are already 95-99% pure due to the high N-selectivity of the system. Further 

attempts to elucidate the role of CuI in the catalytic system could also prove fruitful in 

developing an even more reactive system.  

 

2.4  Experimental 

2.4.1 General Considerations 

Commercial reagents were purchased from Sigma Aldrich, Strem, Alfa Aesar, or 

GFS. Fe(salen)99,  Ni(PPh3)4
117, CpCo(PPh3)2

118, {[Ph4(η5-C4CO)]2H]}Ru2(CO)4(µ-

H)119, and Na2Te103 were prepared by literature procedures without modification and 
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each compound was determined pure by comparison to individual known data. 

Purchased nitrobenzene, 2,3-dimethylbutadiene, 2-methyl-2-heptene, and α-

methylstyrene were purified by distillation before use. Products including β-

methylene-N-phenylbenzene-ethanamine 81,120 1,1’-(1,1,2,2-tetramethyl-1,2-

ethanediyl)bis-benzene 82,108 azoxybenzene, azobenzene, and aniline are reported 

compounds, and 1H NMR spectra and GC-MS data were compared to literature data. 

Toluene, benzene, tetrahydrofuran, and dioxane were distilled prior to use over 

Na/benzophenone. Dichloromethane and acetonitrile were distilled over CaH2 before 

use. All other solvents including those used in chromatography were used without 

any purification. Visualization of the developed chromatogram was performed under 

UV light or I2 stain. 1H NMR spectra were obtained at 300 MHz; NMR spectra were 

internally referenced to residual protio solvent signals. Mass spectra were acquired 

either in methanol or acetonitrile solution by ESI, or by GC-MS (EI) dissolved in 

hexanes. Naphthalene was used as an internal standard for GC yield determinations. 

 

2.4.2 Procedures for Metal-Complex and Heterogeneous System 

Screening for Milder Methods of Allylic Amination of Nitrobenzene and 

α-Methylstyrene 

 

Fe(salen) [77] 

To a 100 mL round bottom flask was added ~30 mL of THF (or DMF) and magnetic 

stir bar. Then Fe(salen) (0.195 g, 0.600 mmol), nitrobenzene (30 µL, 0.30 mmol), 

naphthalene (~30 mg), and α-methylstyrene (390 µL, 3.0 mmol) was added at once. 
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The reaction mixtures were stirred under argon for 2-4 hours, then heated to reflux up 

to 24 hours. Samples taken for GC were cooled and diluted with hexanes and passed 

through a small pipette silica gel plug to remove metal precipitates, followed by GC 

injection in order to determine product yields using naphthalene as internal standard. 

 

Ni(PPh3)4 [79] 

To a flask in a nitrogen atmosphere glovebox was added freshly prepared 

Ni(PPh3)4 (0.080 g, 0.072 mmol) and the flask was sealed with a septum. To this was 

added 5 mL of dry THF and nitrobenzene (29.5 µL, 0.289 mmol) and the reaction 

was stirred at room temperature under nitrogen for 1 hour. Then α-methylstyrene (39 

µL, 0.30 mmol) was added through the septum and the reaction was stirred at room 

temperature overnight. During this time, aliquats were withdrawn for product 

detection by GC. The reaction was then heated to ~40oC for an additional 6 hours. 

Samples taken for GC were cooled and diluted with hexanes and passed through a 

small pipette silica gel plug to remove metal precipitates, followed by GC injection in 

order to determine product yields using naphthalene as internal standard.  

 

CpCo(PPh3)2 [75] 

To a flask in a nitrogen atmosphere glovebox was added freshly prepared 

CpCo(PPh3)2 (0.228 g, 0.351 mmol) and the flask was sealed with a septum. To this 

was added either 10 mL of dry benzene or acetonitrile, nitrobenzene (110 µL, 1.07 

mmol), and α-methylstyrene (787 µL, 5.00 mmol) by oven-dried glass syringe. The 

reaction was stirred at room temperature under nitrogen for 24 hours. During this 
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time, aliquots were withdrawn for product detection by GC. The mixture was then 

heated to 60oC for an additional 18 hours. Samples taken for GC were cooled and 

diluted with hexanes and passed through a small pipette silica gel plug to remove 

metal precipitates, followed by GC injection in order to determine product yields 

using naphthalene as internal standard. 

 

{[Ph4(η5-C4CO)]2H]}Ru2(CO)4(µ-H) [78] 

To a flask in a nitrogen atmosphere glovebox was added freshly prepared 

{[Ph4(η5-C4CO)]2H]}Ru2(CO)4(µ-H) (0.150 g, 0.138 mmol) and the flask was sealed 

with a septum. To this was added 25 mL of dry dichloromethane and nitrobenzene 

(30.0 µL, 0.276 mmol) and the reaction was stirred at room temperature under 

nitrogen for 20 hours. During which, samples were withdrawn for product detection 

of nitrobenzene reduction by GC. Then α-methylstyrene (22.0 µL, 0.138 mmol) was 

added through the septum and the reaction was stirred at room temperature 6 hours, 

followed by reflux overnight. Samples taken for GC were cooled and diluted with 

hexanes and passed through a small pipette silica gel plug to remove metal 

precipitates, followed by GC injection in order to determine product yields using 

naphthalene as internal standard. 

 

(Mg, Mn, Zn) and TMSCl 

In individual test tubes, reaction screening was conducted using nitrobenzene 

(125 µL, 1.22 mmol), α-methylstyrene (316 µL, 2.00 mmol), and 4 mL of dry 

dioxane. To these separate test tubes was added either Mgo, Mno, or Zno (2.44 mmol), 
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trimethylsilylchloride (190 µL, 1.5 mmol), and in some reactions Cp2TiCl2 (61 mg, 

0.24 mmol). The reactions were heated to 75oC under a nitrogen atmosphere for 24 

hours and samples taken for GC were cooled and diluted with hexanes and passed 

through a small pipette silica gel plug to remove metal precipitates, followed by GC 

injection in order to determine product yields using naphthalene as internal standard. 

 

Zn, TiCl3, and TMSCl (or HMDS) 

In individual test tubes, reaction screening was conducted using nitrobenzene 

(125 µL, 1.22 mmol), either α-methylstyrene or 2-methyl-2-heptene (2.0 mmol), and 

10 mL of either acetonitrile or DMF. To these separate test tubes was added Zno 

(160.0 mg, 2.440 mmol), either trimethylsilylchloride or hexamethyldisilane (2.5 

mmol), and either Cp2TiCl2 or TiCl3 (0.244 mmol). The reactions were stirred at 

room temperature for 24 hours, then heated to 40oC for an additional 20 hours. 

Samples taken for GC were cooled and diluted with hexanes and passed through a 

small pipette silica gel plug to remove metal precipitates, followed by GC injection in 

order to determine product yields using naphthalene as internal standard. 

 

Na2Te or NaHTe 

To a flask in a nitrogen atmosphere glovebox was added tellurium powder 

(0.258 g, 2.00 mmol) and sodium hydride (0.100 g, 4.20 mmol) and the flask was 

sealed with a septum. To this was added 3.5 mL of DMF and the reaction was heated 

to 100oC. Upon formation of a pale yellow solution, nitrobenzene (103 µL, 1.00 

mmol), and α-methylstyrene (169 µL, 1.30 mmol) were added by oven-dried glass 
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syringe. The reaction was stirred at reflux overnight. Samples taken for GC were 

cooled and added to 5-10 mL of saturated NaCl solution, then extracted with diethyl 

ether and followed by GC injection in order to determine product yields using 

naphthalene as internal standard. 

 

Smo and TMSBr 

To an oven-dried flask was added 25 mL of dry acetonitrile, 

trimethylsilylbromide (524 µL, 4.00 mmol), and samarium metal (0.301 g, 2.00 

mmol). The mixture was then stirred under N2 for 5 hours at room temperature. Then 

nitrobenzene (103 µL, 1.00 mmol) and α-methylstyrene (650 µL, 5.0 mmol) were 

added by oven-dried glass syringe, upon which the dark green solution turned to a 

light beige. The reaction was stirred at room temperature overnight. Samples taken 

for GC were cooled and added to 1-2 mL of saturated NaCl solution, then extracted 

with diethyl ether and followed by GC injection in order to determine product yields 

using naphthalene as internal standard. 

 

RuCl3/H2O/indoline 

To an oven-dried side-arm flask was added 4 mL of dry toluene, RuCl3 
. H2O 

(41.5 mg, 0.200 mmol), indoline (336 µL, 3.00 mmol), nitrobenzene (103 µL, 1.00 

mmol) and α-methylstyrene (1.57 mL, 10.0 mmol).  The flask was then sealed and 

evacuated under high vacuum two times, and sealed while under vacuum. The 

reaction was then stirred and heated to reflux overnight. Samples taken for GC were 

cooled and diluted with hexanes and passed through a small pipette silica gel plug to 
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remove metal precipitates, followed by GC injection in order to determine product 

yields using naphthalene as internal standard. 

 

2.4.3  Procedure for the NaBH4/Fe(Pc) Promoted Allylic Amination of 

α-Methylstyrene by Nitrobenzene in Dioxane 

To an oven-dried 50 mL round-bottom flask and magnetic stir bar was added 

iron phthalocyanine [Fe(Pc)] (28.4 mg, 0.050 mmol), naphthalene (~60 mg as internal 

standard for GC), and sodium borohydride (37.8 mg, 1.00 mmol). The flask was then 

placed under high vacuum to remove air and purged with argon. Dry dioxane (10 mL) 

was then added by syringe through a septum on the flask, and the flask was purged 

with argon again. Then α-methylstyrene (650 µL, 5.0 mmol) was added by an oven-

dried glass 1 mL syringe, followed by addition of nitrobenzene (51.7 µL, 0.500 

mmol) while stirring. An oven-dried condenser with a septum and argon balloon was 

then attached to the flask, and the setup was flushed with argon a final time. The 

reaction mixture (dark blue, then dark green) was then refluxed for 20-24 hours. 

Samples taken for GC were diluted with hexanes and passed through a small pipette 

silica gel plug to remove metal precipitates, followed by GC injection in order to 

determine product yields using naphthalene as internal standard.  
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2.4.4  Procedure for the NaBH4/Fe(Pc) Promoted Allylic Amination of 

α-Methylstyrene by Nitrobenzene in Tetrahydrofuran 

To an oven-dried 50 mL round-bottom flask and magnetic stir bar was added 

iron phthalocyanine [Fe(Pc)] (28.4 mg, 0.050 mmol), naphthalene (~60 mg as internal 

standard for GC), and sodium borohydride (37.8 mg, 1.00 mmol). The flask was then 

placed under high vacuum to remove air and purged with argon. Dry THF (10 mL) 

was then added by syringe through a septum on the flask, and the flask was purged 

with argon a second time. Then α-methylstyrene (65 µL, 0.50 mmol) was added by 

an oven-dried glass 1 mL syringe, followed by addition of nitrobenzene (1.03 mL, 

10.0 mmol) while stirring. An oven-dried condenser with a septum and argon balloon 

was then attached to the flask, and the setup was flushed with argon a final time. The 

reaction mixture (dark blue, then dark red, and finally dark green) was then refluxed 

for 2 hours. Samples taken for GC were diluted with hexanes and passed through a 

small pipette silica gel plug to remove metal precipitates, followed by GC injection in 

order to determine product yields using naphthalene as internal standard. 

 

2.4.5 Mechanistic Test for the Presence of Free Nitrosobenzene as an 

Intermediate in the NaBH4/Fe(Pc) Promoted Allylic Amination of α-

Methylstyrene by Nitrobenzene  

The reaction was conducted according to the procedure described in 2.4.2 by 

employing Fe(Pc) (28.4 mg, 0.050 mmol), naphthalene (56.6 mg, 0.442 mmol), 

NaBH4 (37.8 mg, 1.00 mmol), nitrobenzene (51.7 µL, 0.500 mmol), 2,3-
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dimethylbutadiene (282 µL, 2.50 mmol), and 15 mL dry THF. Product 

characterization of the crude material was determined by GC-MS and compared to 

that of a known isolated sample of 4,5-dimethyl-2-phenyl-3,6-dihydro-2H-1,2-

oxazine. 

 

2.4.6 Mechanistic Test for the Formation of Nitrene in the NaBH4/Fe(Pc) 

Promoted Allylic Amination of α-Methylstyrene by Nitrobenzene 

The reaction was conducted according to the procedure described in 2.4.2 by 

employing Fe(Pc) (56.8 mg, 0.100 mmol), naphthalene (66.7 mg, 0.521 mmol), 

NaBH4 (75.6 mg, 2.00 mmol), 2-nitrobiphenyl (189 mg, 1.00 mmol), and 25 mL dry 

THF. Product characterization of the crude mixture was determined by GC-MS, and 

2-aminobiphenyl was then isolated by flash chromatography of the residue over silica 

gel (20% EtOAc/hexane eluant; Rf = 0.55), and characterization by 1H NMR matched 

reported spectra. 

 

2.4.7 General Procedure for the Microwave-Assisted Allylic Amination 

of α-Methylstyrene by Nitrobenzene  

To a mixture of nitrobenzene (103 µL, 1.00 mmol) and α-methylstyrene (800 

µL, 6 mmol) in a thick-walled Teflon screw-top reaction vessel was added 

[CpFe(CO)2]2 (35.4 mg, 0.100 mmol) and naphthalene (as internal standard, 20-40 

mg). To this heterogenous mixture was added either iron pentacarbonyl (132 µL, 1.00 

mmol) and/or 1 atmosphere carbon monoxide gas added by bubbling directly into the 
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mixture for 15 minutes via a balloon connected to a long syringe, through a septum 

attached to the reaction vial with an additional venting needle – CAUTION – only 

perform in a fume hood. The vessel was then sealed and placed in a conventional 

microwave oven and heated in 4-minute intervals, followed each time by 4-5 minutes 

of cooling and manual agitation of the slurry. Finally, an aliquot was diluted with 

hexanes and passed through a small pipette silica gel plug to remove metal 

precipitates, followed by GC injection in order to determine product yields using 

naphthalene as internal standard. 

 

2.4.8 General Procedure for the Fp2/CuI Co-Catalyzed Allylic Amination 

of α-Methylstyrene by Nitrobenzene 

To a solution of nitrobenzene (103 µL, 1.00 mmol), α-methylstyrene (670 µL, 

5.0 mmol), and dry dioxane (6-8 mL) in the glass liner of a stainless steel autoclave 

was added [CpFe(CO)2]2 (16.7 mg, 0.050 mmol), naphthalene (as internal standard, 

20-40 mg), and CuBr (7.2 mg, 0.05 mmol). The autoclave was purged three times 

with CO, then finally charged with 150 psi CO and heated with stirring to 100oC for 

3-4 days. During this time, aliquats were withdrawn via dip tube for GC analysis. 

Upon observation of complete conversion of the nitrobenzene, the autoclave was 

cooled and vented in a fume hood. Samples for GC were diluted with hexanes and 

passed through a small pipette silica gel plug to remove metal precipitates. Yields of 

N-phenylallylamine and by-products were determined by GC using naphthalene as 

internal standard.  
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2.4.9 Procedure for Infrared Characterization of a Potential Fp2/CuBr 

Complex 

To 8 mL of dry dioxane in the glass liner of a stainless steel autoclave was 

added [CpFe(CO)2]2 (167 mg, 0.500 mmol) and CuBr (72 mg, 0.50 mmol). The 

autoclave was purged three times with CO, then finally charged with 150 psi CO and 

heated with stirring to 100oC for 3-4 days. During this time, samples were withdrawn 

via dip tube and cooled to room temperature for direct IR analysis. 
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CHAPTER 3 

 

DIRECT SYNTHESIS OF 3-ARYLINDOLES VIA ANNULATION 

OF ARYLHYDROXYLAMINES WITH ALKYNES 

 

3.1 Introduction 

In addition to the utilization of alkenes to produce allyl amines, the recent 

discoveries of indole-forming reactions of alkynes with nitro-77,121 and 

nitroso78,122,123-aromatics (Figure 3.1) has stemmed from the Nicholas Group’s 

ongoing interest in metal-promoted nitrogenation reactions of unsaturated 

hydrocarbons. The indole skeleton in each of these reactions is formed via a novel 

thermally driven cycloaddition of a nitrosoarene with an aryl or acyl alkyne.124 The 

intermediate labile N-hydroxy indole can either be efficiently trapped and isolated as 

the N-methoxy indole121 or reduced in situ in a second step with either 

CO/[Cp*Ru(CO)2]2 or H2 and Pd/C to the parent (NH) indole.77,78,121 The one step, 

metal-catalyzed indolization from nitroarenes ((i) a=2) requires both high 

temperatures (150-200 oC) and high pressures of the CO reductant, resulting in 

modest yields. 
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Figure 3.1 
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In order to broaden the scope of N-aromatic precursors from nitro- and 

nitrosoaryls, arylhydroxylamines were considered attractive candidates due to their 

ability to be oxidized in situ to nitrosoaromatics. In addition, we aimed to develop a 

more efficient one-step method to produce the parent (NH) indoles that did not 

require the use of high-pressures of CO and high temperatures (>1500C). Since redox 

metal-catalyzed allylic aminations of olefins with arylhydroxylamines6 involve in situ 

hydroxylamine oxidation, ene reaction of the resulting nitrosoarene,17 and reduction 

of the allyl hydroxylamine, we envisioned a similar catalytic pathway for alkyne 

indolization by arylhydroxylamines via nitrosoarene and N-hydroxyindole 

intermediates. 

 

3.1.1 Transition-Metal Catalyzed Allylic Amination of 

Arylhydroxylamines 

The stoichiometric allylic amination of 2-methyl-2-hexene by a 

molybdooxaziridine was first reported in 1978 by Liebeskind, et al.125 The d0 

metallooxaziridines 92 were formed by reaction of an arylhydroxylamine with a 

dioxomolybdenum (VI) complex, or transversely by addition of a nitrosoaryl to an 

oxomolybdenum (IV) complex. In the initial report, the allylic amination 94 occurred 

in 55-57% yield without aziridination 93 of the alkene or observation of the allylic 

hydroxylamine. (Figure 3.2) Formation of the original dioxomolybdenum (VI) 

complex 95 was observed, prompting the possibility of efficient molybdenum-

catalyzed reactions.  
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Figure 3.2 

 

The first catalytic investigation of metal-catalyzed allylic amination of 

arylhydroxylamines was reported by Nicholas in 1992.18 In the study, the 

arylhydroxylamine was slowly added to a refluxing dioxane solution of 1-10% 

dioxomolybdenum (VI) catalyst and an excess of alkene. Moderate yields of 

representative alkenes were displayed. From mechanistic investigations,19 it was 

concluded that the key step of the reaction was a “nitroso-ene” reaction involving the 

alkene and free nitrosoaryl generated by the molybooxaziridine 96, evidenced by 

hetero-Diels-Alder addition of PhNO to 2,3-dimethylbutadiene (Figure 3.3, 74).  
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Figure 3.3 

 

In the postulated mechanism (Figure 3.4), the PhNHOH 97 is first oxidized to 

a coordinated PhNO with concomitant reduction of the molybdenum complex, 

followed by release of the nitrosobenzene 98 that undergoes the ene reaction. The 
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intermediate allyl hydroxylamine 100 is then reduced by the oxomolybdenum (IV) 

species to regenerate the dioxomolybdenum (VI) catalyst, producing the allyl amine 

101 with a high degree of regiocontrol.  

 

NHOH

X

NO

X

MoIVO

MoIVO

R

R

NX

OH

R

NHX

MoVIO2

97
98 99

100

101  

Figure 3.4 

 

 In subsequent studies,20,21,23,126-128 several metal catalysts have been shown to 

be effective in the allylic amination of various alkenes utilizing arylhydroxylamines 

(Table 3.1). To date, Fe complexes and salts have displayed higher yields and lower 

amounts of nitrogen-containing by-products from arylhydroxylamines (such as 

aniline, azoxybenzene, and azobenzene) than the molybdenum or copper catalysts. 
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FeCl2 + FeCl3
(9:1)

[CuI(CH3CN)4]PF6 CuCl2 
. 2H2O

Fe(Pc)
(dipic)MoO2(HMPA)

102                               103                                104                    105                    106                     107

2+

2 FeCl4
-

 

Entry         Alkene           Allyl Amine                              Catalyst (% yield)
                                                                          102     103     104     105     106    107

Comparison of the Allylic Amination of Various Alkenes by PhNHOH Catalyzed by 102-107

1

2

3

4

Ph

Ph

NHPh

Ph

NHPh

Ph

NHPh

NHPh

76         -        42       41       30      40  

 -         88       52       72       38       -

22         -         -         13       10       9

30         -        11       22         -        -

 

Table 3.1 (Compiled from References 6, 24, and 128) 

 

In mechanistic investigations, the molybdenum complexes19 along with Fe(Pc)127 

were believed to proceed through “off-the-metal” nitroso-ene reactions, while the 

FeII/FeIII salts22 and CuI salt systems24 are believed to be C-nitroso “on-the-metal” 

processes, as nitroso adduct complexes have been isolated and shown to react with 

alkenes in each respective case.129,130 
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3.1.2 Nitroso-Alkyne Intermolecular Thermal Annulation 

A novel synthetic approach to 3-substituted indoles was discovered by Penoni 

and Nicholas in 2002 involving the reductive annulation of nitroarenes with alkynes 

under high pressures of CO and catalytic [CpFe(CO)2]2, [(C5Me5)Fe(CO)2]2, or 

[(C5Me5)Ru(CO)2]2.77 This reaction was a rare example of direct indole formation 

from a commercially available N-aromatic precursor, such as the Fischer-indole 

synthesis76 involving the condensation of aromatic hydrazines and ketones. In 

addition, the transformation did not require ortho-substitution of the N-aromatic as 

other commonly employed metal-catalyzed intramolecular cyclizations such as the 

Larock indole synthesis.131  

Strategically similar to the Fp2 or [Cp*Ru(CO)2]2 catalyzed reductive 

nitroaromatic allylic amination reaction, the utilization of alkynes under the same 

reductive conditions was initially anticipated to produce a new route to propargyl- 

108 or allenylamines 109, but in fact produced 3-substituted indoles 110 with a high 

degree of regioselectivity. The reaction (Figure 3.5) provided modest yields (23-53%) 

of substituted 3-phenylindoles by employing either [CpFe(CO)2]2, 

[(C5Me5)Fe(CO)2]2, or [(C5Me5)Ru(CO)2]2 as catalyst (5 mol%), under CO pressure 

(dioxane or benzene, 1700C, 750 psi, 24-120 h).  
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Figure 3.5 
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The reaction proceeds well with a slight excess of internal or terminal aryl alkynes, 

though only a trace of indole was formed from reaction with 2-octyne. Both electron-

donating and -withdrawing groups are tolerated on the nitroaromatic substrate, though 

the reaction proceeds more rapidly with electron-neutral or -deficient species. An 

unsymmetrical meta-substituted nitroarene produced a 3:2 mixture of regioisomers, 

though the 3-aryl regiospecificity remained intact. Lastly, employment of a 

nitropyridine substrate led to direct formation of an azaindole in 53% yield, which is 

of notable importance due to the role of azaindoles as clinical, fluorescent, and metal-

complexing agents.132  

 Suspecting the role of either free or complexed nitrosoarenes as intermediates 

in the reductive nitroaromatic reaction, nitrosoaryls were employed using the same 

conditions and were found to produce similar yields of the respective indoles.78 More 

importantly, a mild, uncatalyzed thermal reaction of nitrosoaromatics and alkynes 

was shown to produce N-hydroxyindoles (Figure 3.6).  
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Figure 3.6 

 

Due to the relative instability and difficulty of isolation of these products, in situ 

reduction by means of either hydrogenation under one atm H2 and 10% Pd/C, or 5 
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atm CO at 80oC and 10 mol% [(C5H5)Ru(CO)2]2 was developed to allow for isolation 

of the more stable parent (NH) indoles. This modification resulted in improved yields 

of the parent indoles (29-64%), as well as expansion of alkyne scope to include 

terminal and internal propiolic esters and the aliphatic 1-octyne. In addition to the aryl 

alkynes, the acyl- and aliphatic alkynes employed also exhibited highly regioselective 

3-substituted indole products. 

 The efficiency of the thermal ArNO-alkyne reaction was then improved in 

2006 by the alkylative trapping of the intermediate N-hydroxyindoles with K2CO3-

Me2SO4.122 The N-methoxyindoles which are produced in moderate to excellent 

yields (41-99%) by the trapping procedure are comparitively very stable and can be 

easily isolated. The N-methoxyindoles can also be reduced to the parent (NH) indole 

by the same means as that of the N-hydroxyindoles in a second step. The 

effectiveness of this method was illustrated most clearly by the one-step production of 

3-carboxy-N-alkoxyindole analogues, which occur naturally in Wasabi 

phytoalexins.133  

 Most recently, the nitroso-alkyne annulation was applied towards the 

synthesis of biologically active indoles.123 Meridianins and their analogues A-G are 

marine indole alkaloids and have proven to be potent kinase inhibitors (Figure 3.7).134  
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Meridianin D     R1=R2=R4=H; R3=Br

Meridianin E     R1=OH; R2=R3=H; R4=Br

Meridianin F     R1=R4=H; R2=R3=Br

Meridianin G    R1=R2=R3=R4=H

 

Figure 3.7123 

 

Using several nitrosoarenes with 2-chloro-4-ethynylpyrimidine resulted in efficient 

production (19-71%) of meridianin analogue precursors. The meridianin analogues 

were also prepared more directly by reaction of nitrosoarenes and 2-amino-4-

ethynylpyrimidine, resulting in yields ranging from 28-99%. Of particular interest in 

this system is the ability to use a 1:1 stoichiometry of ArNO to alkyne, as the product 

indoles are generally insoluble in the reaction media and can be isolated in some 

cases without further purification. In addition, only the parent (NH) indoles were 

isolated as opposed to previous systems in which N-hydroxy- or N-methoxyindoles 

were major products. The reasons for the differences in reactivity are presently 

unknown.  

 A mechanistic investigation was conducted and reported in 2009 concerning 

the nature of the uncatalyzed thermal annulation by Penoni, et al.124 It was concluded 

through experimental and calculational results that the reaction most likely proceeds 

through a stepwise mechanism initiated by rate-limiting bond-formation between the 

terminal alkyne C and the nitrosoaryl N, forming a polar diradical intermediate 111 in 

conjugation with the alkynyl substituent. This intermediate can then rapidly cyclize to 
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form a C-C bond and generate a cyclohexadienyl nitroxyl radical 112 which can 

rapidly tautomerize to form the N-hydroxyindole 113 (Figure 3.8).  
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Figure 3.8 

 

3.2  Results and Discussion 

The following results described in this chapter have been published in Tetrahedron, 

2009, 65, 3829. 

 

3.2.1  Catalyst Screening and Optimization 

 Beginning with reaction conditions similar to those previously reported,122 (20 

equiv. alkyne, refluxing benzene) along with 10 mol% Mo(dtc)2O2 and one equiv. 

PhNHOH, the product indole was detected by GC in <10%. Due to the detection of a 

large amount of azoxybenzene by GC, it was reasoned that the reaction conditions 

would benefit from a slow addition of PhNHOH, similar to the Mo-catalyzed allylic 

amination of alkenes by PhNHOH.18 Using a syringe pump in order to add 0.5 mmol 

PhNHOH in 6-7 mL of solvent increased the yield of indole to 51%. Some 

decomposition of PhNHOH in the syringe at room temperature can be observed by 

the darkening of the faint yellow solution. During additions of > 8 hours, the 

decomposition becomes more apparent; therefore it was determined that reactions 
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should be run with addition times between 5-8 hours. A survey and initial 

optimization study (Table 3.2) was conducted on the reaction of PhNHOH with 

excess phenylacetylene in the presence of various redox-active complexes that have 

been used in the allylic amination of alkenes by PhNHOH (Table 3.1), including 

Mo(dtc)2O2, (dipic)MoO2(HMPA), FeCl2/FeCl3, Cu(CH3CN)4PF6, CuCl2
.2H2O and 

Fe(Pc) (dtc=N,N-diethyl dithiocarbamate, dipic=2,6-pyridinedicarboxylate, 

HMPA=hexamethyl phosphortriamide, Pc=phthalocyanine), and solvents (benzene, 

dioxane, toluene, 1,2-dichloroethane, EtOH, CH3CN, i-PrOH, t-BuOH, and 

chlorobenzene).  

 

Transition-metal catalyzed indolization of phenylacetylene 

and N-phenylhydroxylaminea

entry              solvent                     catalystb               yield (%)c

1                  benzene                 Mo(dtc)2O2                  51

2                  benzene          (dipic)MoO2(HMPA)         11

3                  benzene              9:1 FeCl2/FeCl3              34d

4                  benzene             Cu(CH3CN)4PF6             15

5                  benzene                  CuCl2
.H2O                 19

6                  benzene                      Fe(Pc)                     66

7                  dioxane                      Fe(Pc)                     70

8                  toluene                       Fe(Pc)                     84

9                  toluene                       Fe(Pc)                     70e

a  0.5 mmol phenylhydroxylamine added by syringe pump 

(7-8 h), 10 mmol phenylacetylene, Ar, reflux.  b 10 mol% cat. 
c GC yield using naphthalene as internal standard. d Anhydrous 

Fe salts or FeXn hydrates. e 5 mol% Fe(Pc).
 

Table 3.2 
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GC, GC-MS and TLC analysis indicated the production of 3-phenylindole 

with several of these systems with the best results being obtained with inexpensive 

commercial Fe(Pc) as catalyst. By slowly adding PhNHOH (0.5 mmol in 5-6 mL 

toluene, 7-8 h) to a refluxing solution of phenylacetylene 114 (10 mmol), 15 mL 

toluene, and Fe(Pc) (0.05 mmol) an 84% yield of 3-phenylindole 116 (GC) was 

obtained. Minor products include azoxybenzene (3-10%), azobenzene (0-2%), and 

aniline (0-15%). As water is formed in the reaction, there was no difference in yield 

when using either anhydrous FeII/III salts or FeII/III salt hydrates.  

Using a chemical simplex method135 an attempt was made to further optimize 

the reaction conditions. In this method, a set of pre-determined variables are all 

changed for an individual reaction, as opposed to altering one variable at a time as in 

a more classical optimization. After an initial set (number of variables plus one), a 

“simplex” is calculated to determine the next set of conditions. When the “simplex” is 

not producing a higher yield than what has already been produced, the local 

maximum, or optimized conditions has been found. In the optimization, temperature 

and solvent were not considered variables, as a minimum of 70oC appears to be 

necessary to avoid large amounts of azoxybenzene. Variables that were randomly 

adjusted include: catalyst loading, excess equivalents of alkyne, mL of benzene 

(optimization was conducted prior to testing in dioxane or toluene) in the reaction pot, 

and the rate of addition of 0.5 mmol PhNHOH (Table 3.3). It was quickly determined 

that conditions closest to our initial set was in fact optimized.  
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Simplex Method Optimization

Ph PhNHOH+
cat. Fe(Pc)

refluxing benzene
Ar N

H

Ph

(1 equiv)

                                                             Variables                                                
Entry                      1                        2                     3                     4                   GC
                    (Cat. loading)   (Equiv alkyne)  (ml solvent)  (rate of addn)        Yield

1                       10%                    20                     9              405 min.              64

2                        2%                     25                    20             486 min.              42 

3                        7%                     15                     5              568 min.              40

4                       13%                    12                     9              162 min.              36

5                        5%                      5                      9              324 min.              42

6                        2%                   18.8                   12             616 min.              57

7                        6%                     16                    11             446 min.              58

Initial

Simplex 1

Simplex 2

114
115 116

 

Table 3.3 

 

3.2.2 Fe(Pc)-Catalyzed Preparation of Indoles from Phenylacetylene and 

Various N-Arylhydroxylamines 

 Using the optimized conditions, a series of substituted N-arylhydroxylamines 

were then tested with phenylacetylene in the indolization reaction (Figure 3.9, Table 

3.4). During isolation, the parent (NH) indoles are easily recognizable by detection of 

the characteristic broad N-H 1HNMR singlet typically found between 8.0-9.0 ppm 

(see experimental section).  
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entry       A         X         Y        Z        B             Isolated Yield

1               
2               
3              
4              
5               
6

7

8

9

H
Me
CN
Cl
H
H

H

Cl

H

H
H
H
H
H

Me

CF3

Cl

H
H
H
H

Me
H

H

H

81
55
55
38
45
47

65

55

37

Fe(Pc)-catalyzed preparation of indoles from phenylacetylene 

and N-arylhydroxylaminesa (Scheme 3.8)

a 10 mol% Fe(Pc), refluxing toluene, 7-8 h addition of 

arylhydroxylamine (procedure in experimental section)

(4-Me:6-Me = 27:20)

(4-CF3:6-CF3 = 34:31)

(4,5-Cl:5,6-Cl = 34:21)
-C4H4-

115
117
119
121
123
125

128

131

134

116
118
120
122
124

126,127

129,130

132,133

135

 

Table 3.4 

 

Arylhydroxylamines with either electron-donating or -withdrawing groups are 

effective reaction partners. In fact, there appears to be little preference in reactivity 

with regard to the electronic nature of the arylhydroxylamine, as the electron-

donating 4-methyl-phenylhydroxylamine 117 and the electron-withdrawing 4-cyano-

phenylhydroxylamine 119 both produce a 55% yield of the respective indole (entries 

2-3, 118, 120). In terms of regioselectivity of the alkyne cycloaddition, 3-aryl isomers 

are solely detected in all cases. From meta-substituted N-arylhydroxylamine 
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substrates (entries 6-8), mixtures of 4- and 6-substituted indoles were obtained, with 

the 4-substituted indole slightly favored in each case. Determination of indoles 129 

and 130 resulted from comparison to known 1H NMR spectra. In addition, 

determination of 133 (vs. 132) resulted from the observation of two singlets that each 

integrate 1H at 7.99 and 7.55 ppm from the C-4 and C-7 protons (see Experimental 

Section).   Structural characterization of regioisomers 126 and 127 is currently 

tentative. A benzoindole  135 (entry 9) was also produced regioselectively from the 

annulation of phenylacetylene with 1-hydroxylamino-naphthalene 134. Yields of 

indoles from the current one-step procedure are comparable (3-15% lower) to those 

produced by the two-step method from the nitrosoarene via the N-hydroxyindole and 

its reduction (H2/10% Pd/C) to the free indole.78 In addition, the yields of indoles are 

also generally increased 20-40% over those produced by the one-step method 

utilizing nitroaromatics and high CO pressures and temperatures.77 

 

3.2.3 Fe(Pc)-Catalyzed Preparation of Indoles from N-    

Phenylhydroxylamine and Various Aryl Alkynes 

Due to the unfortunate side-reaction82 of arylhydroxylamines with ethyl 

propiolate (Table 3.5, entry 17), our focus shifted towards utilization of aryl alkynes 

as effective annulating partners.  Representative terminal and internal aryl alkynes 

displayed varying levels of success with good to excellent yields produced from 

terminal alkynes (Table 3.4, entry 1) and poor to moderate yields from internal 

alkynes (Table 3.5, entry 10-11). The 2-Me-3-Ph-indole 137 is isolated exclusively 

from reaction with 1-phenylpropyne 136, further demonstrating the 3-aryl 
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regioselectivity of the reaction. A scale-up reaction using 2.0 mmol of PhNHOH and 

10 equiv. 3,4-OMe-phenylacetylene 142 resulted in a nearly identical yield (55% 143, 

entry 13), with ~98% of the unreacted alkyne recovered. In addition to aryl alkynes, 

some representative aliphatic alkynes were also attempted (entries 15-16), though 

previous studies have indicated low reactivity with this class of substrate. An attempt 

to utilize a cyclic and potentially strained aliphatic alkyne, cyclooctyne 146, as a 

substrate in order to generate a precursor to the drug iprindole136 resulted in 

cyclotrimerization 147137,138 in either refluxing toluene or benzene, with no indole 

formed. Reaction with 1-octyne 148 either in refluxing toluene or neat resulted in 

only trace indole formation according to GC-MS. Electron-donating groups on the 

terminal aryl alkyne are tolerated and appear to result in more efficient product indole 

formation (Table 3.4 entry 1, Table 3.5 entry 12).  
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entry           Alkyne                  Major Product          Isolated Yield
                                                                                      of Indole

10

11

12

13c

14d

15

16

17

Fe(Pc)-catalyzed preparationa of indoles from 

alkynes and 115 (N-phenylhydroxylamine) (Scheme 3.8)

a 10 mol% Fe(Pc), refluxing toluene, 7-8 h addition of 115. 
b Scale-up reaction: 10 equiv. alkyne, 32 h addition of 115.  
c 17 equiv. alkyne, reaction run in dark. d No indole detected.

Ph Me

MeO

MeO

MeO

N

N
H

Ph

Me

N
H

OMe

N
H

OMe

OMe

N
H

N

25

---

trace

(GC-MS)

88

57

(55)b

72

>50

---

trace

(GC-MS)

---

trace

(GC-MS)

136

140

142

144

146

137

141

147

145

143

Ph Ph

H C6H13

H COOEt
N

COOEt

H

O

OEt
H

151

138

148

150

N
H

Ph

Ph

139

N
H

C6H13

149

 

Table 3.5 
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Several previously untested alkynes were utilized in this study as a result of 

the affinity for aryl alkynes in the annulation reaction, resulting in new pathways to 

indoles 143 and 145. These indoles are otherwise produced by relatively limited 

synthetic approaches139-142 that include expensive catalysts or substrates, long reaction 

times (as much as 30 days), electrochemical conditions, multiple steps, and/or 

moderate yields. Both indoles appear to present high degrees of bioactivity as indole 

143 was recently investigated143 for antitumor activity, and 145 possesses interesting 

bioactivity as a Rho-kinase inhibitor144 as well as inosine monophosphate 

dehydrogenase inhibitor.145 Using our new method, the target indole and potentially a 

wide variety of analogues can be prepared in one step in good yield from inexpensive, 

readily available substrates and catalyst. It is noteworthy that indole 145 is produced 

in 72% yield despite employing a potentially N-coordinating alkyne in excess.  

 

3.2.4  Mechanistic Investigation 

 To address the issue of whether the free nitrosoarene was generated in the 

Fe(Pc)-catalyzed reactions, the trapping experiment shown in Figure 3.10 was 

conducted. When the PhNHOH/PhC≡CH reaction was conducted in the presence of 

2,3-dimethyl-1,3-butadiene 72 (10 equiv. diene, 10 equiv. alkyne), none of the indole 

116 was detected, but rather the hetero Diels-Alder product 74146 was formed and 

verified by 1H NMR and GC-MS. This result strongly suggests the intermediacy of 

PhNO in the Fe(Pc)-catalyzed reaction. Interestingly, when the same experiment is 

conducted using FeII/FeIII salts as catalyst, the same result occurs, i.e. “free” PhNO 

appears to be the reactive pathway (though this catalyst system is believed to occur 
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through a C-nitroso complex “on-the-metal” pathway in related allylic amination of 

alkenes22).  
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Figure 3.10 

 

The catalytic reaction pathway is thus suggested to proceed via PhNHOH oxidation to 

PhNO 98 by a FeIII(Pc) species127 (which can be initially generated from FeII(Pc) by 

reduction of some PhNHOH), nitrosoarene/alkyne cycloaddition to the N-

hydroxyindole 152, and reduction of the latter to the indole 153 by FeII(Pc) (Figure 

3.11).  
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3.3  Summary and Conclusions 

In summary, we have developed a new metal-catalyzed indolization reaction 

to produce 3-arylindoles from arylhydroxylamines and alkynes in moderate to 

excellent yields. In the study, we were able to successfully address the challenge of 

developing a one-step procedure that utilizes convenient laboratory conditions in 

order to efficiently produce parent (NH) indoles. Using a method of slow addition, 

electron-donating and –withdrawing N-arylhydroxylamines can be included. A 

variety of aryl alkynes can serve as effective coupling partners, including one with N-

coordinating ability, though aliphatic alkynes and propiolic esters were largely 

unsuccessful. Terminal and internal aryl alkynes can be applied with exceptional 

regioselectivity to 3-aryl products. Though the alkynes are used in excess (15-20 

equiv), in most cases the alkyne could be recovered. Another advantage of the system 

includes the use of inexpensive commercial catalysts such as Fe(Pc), FeII/III salts, and 

CuI/II salts, as well as easily prepared and inexpensive Mo complexes. The N-

arylhydroxylamines used are conveniently prepared in one step via reduction of 

nitroaromatics, and purified by recrystallization. In contrast, the nitrosoaromatics 

utilized in previous methods are formed in one step via oxidation of amines with 

purification generally by column chromatography. Owing to the technical ease of 

isolation of the parent (NH) indoles using the present one-step procedure, several 

previously untested N-aromatic substrates and/or alkynes were utilized in this study 

resulting in new indoles 126, 127, 132, 133, 135, 143, and 145. Moreover, in this 

annulation reaction, an ortho-substituted arene or activated scaffold is not required, 

resulting in a highly efficient and convergent generation of the indole skeleton.  
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3.4  Experimental 

3.4.1  General Considerations 

 Commercial reagents were purchased from Sigma Aldrich, Alfa Aesar, or GFS. 

Nitroaromatics employed in reduction to N-arylhydroxylamines were used without 

any purification. Mo(dtc)2O2
147 and (dipic)MoO2(HMPA)125 were prepared by 

individual literature procedures without modification and each compound was 

determined pure by comparison to individual known data. All N-arylhydroxylamines 

were stored under argon and kept below 0oC. Purchased alkynes were purified by 

distillation before use. Toluene, benzene, and dioxane were distilled prior to use over 

Na/benzophenone. All other solvents including those used in chromatography were 

used without any purification. Visualization of the developed chromatogram was 

performed under UV light or I2 stain. 1H NMR spectra were obtained at 300 MHz and 

13C NMR spectra at 60 MHz; NMR spectra were internally referenced to residual 

protio solvent signals. Data for 1H NMR data are reported as follows: chemical shift 

(δ shift), multiplicity (br=broad, s=singlet, d=doublet, t=triplet, m=multiplet, 

dd=doublet of doublets), coupling constant (Hz), integration, and assignment. Data 

for 13C NMR are reported in terms of chemical shift (δ ppm). Mass spectra were 

acquired in methanol or acetonitrile solution by ESI. Naphthalene was used as an 

internal standard for GC yield determinations. 
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3.4.2 Preparation of N-Arylhydroxylamines 

Phenylhydroxylamine (115) 

The title compound was prepared in 58% yield by the reaction of nitrobenzene, zinc 

powder, and NH4Cl according to procedure found in literature reference 88. 1H NMR 

(CDCl3, 300 MHz) δ 7.30 (m, 2H), 7.01 (m, 3H), 6.45 (br s, 2H). 

 

4-Methyl-phenylhydroxylamine (117) 

The title compound was prepared in 50% yield by the reaction of 4-nitrotoluene, zinc 

powder, and NH4Cl according to procedure found in literature reference 88. 1H NMR 

(CDCl3, 300 MHz) δ 7.10 (d, 2H), 6.90 (d, 2H), 5.55 (br s, 2H), 2.28 (s, 3H). 

 

4-Cyano-phenylhydroxylamine (119)148 

The title compound was prepared the reaction of 4-cyano-nitrobenzene, sodium 

borohydride, and catalytic selenium powder according to procedure found in 

literature reference 90. 1H NMR (CDCl3, 300 MHz) δ 7.55 (d, 2H), 7.01 (m, 3H), 

5.23 (d, J=2.4Hz, 1H). 

 

4-Chloro-phenylhydroxylamine (121) 

The title compound was prepared in 35% yield by by the reaction of 4-chloro-

nitrobenzene, sodium borohydride, and catalytic tellurium powder according to 

procedure found in literature reference 91. 1H NMR (CDCl3, 300 MHz) δ 7.20 (d, 

2H), 7.15 (s, 1H), 6.85 (d, 2H), 6.74 (s, 1H). 
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2-Methyl-phenylhydroxylamine (123) 

The title compound was prepared in 19% yield by the reaction of 2-nitrotoluene, zinc 

powder, and NH4Cl according to procedure found in literature reference 88. 1H NMR 

(CDCl3, 300 MHz) δ 7.28 (m, 1H), 7.21 (m, 1H), 7.10 (d, J=3.6 Hz, 1H), 6.90 (t, 

J=6.6 Hz, 1H), 6.77 (br s, 1H), 5.22 (br s , 1H), 2.18 (s, 3H). 

 

3-Methyl-phenylhydroxylamine (125) 

The title compound was prepared in 10% yield by the reaction of 3-nitrotoluene, zinc 

powder, and NH4Cl according to procedure found in literature reference 88. 1H NMR 

(CDCl3, 300 MHz) δ 7.16 (t, J=10.2 Hz, 1H), 6.80-6.72 (m, 2H), 6.70 (br s, 1H), 5.08 

(s, 1H), 2.30 (s, 3H). 

 

3-Trifluoromethyl-phenylhydroxylamine (128)149 

The title compound was prepared in 18% yield by the reaction of 3-nitro-

trifluorotoluene, zinc powder, and NH4Cl according to procedure found in literature 

reference 88. 1H NMR (CDCl3, 300 MHz) δ 7.36 (t, J=8.1 Hz, 1H), 7.20 (d, J=7.5 

Hz, 1H), 7.05 (d, J=8.4 Hz, 1H), 6.83 (br s, 1H), 5.18 (s, 1H). 

 

3,4-Dichloro-phenylhydroxylamine (131)150 

The title compound was prepared in 43% yield by the reaction of 3,4-dichloro-

nitrobenzene, zinc powder, and NH4Cl according to procedure found in literature 

reference 88. 1H NMR (CDCl3, 300 MHz) δ 7.28 (d, J=8.7 Hz, 1H), 7.12 (d, J=2.1 
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Hz,  1H), 6.80-6.72 (m, 2H), 5.12 (d, J=2.4 Hz,  1H); 13C NMR (CDCl3, 300 MHz) δ 

149.5, 133.1, 130.7, 125.1, 116.2, 113.8. 

 

N-1-Naphthyl-hydroxylamine (134)151 

The title compound was prepared by the reaction of 1-nitronaphthalene, zinc powder, 

and NH4Cl according to procedure found in literature reference 88. 1H NMR (CDCl3, 

300 MHz) δ 7.85-7.80 (m, 1H), 7.77-7.70 (m, 1H), 7.50-7.32 (m, 6H), 5.14 (s, 1H). 

 

3.4.3 Preparation of Alkynes 

1-Phenylpropyne (136)152 

The title compound was prepared in 40% yield from phenylacetylene, potassium tert-

butoxide, and methyl iodide according to procedure found in literature reference 152. 

1H NMR (CDCl3, 300 MHz) δ 7.48-7.02 (m, 5H), 1.97 (s, 3H). 

 

3,4-Dimethoxyphenylacetylene (142)153 

First, 1,1-dibromo-2-(3,4-dimethoxyphenyl)ethane was prepared in 58% yield from 

triphenylphosphine, carbon tetrabromide, and 3,4-dimethoxybenzaldehyde according 

to procedure found in literature reference 153. The title compound was then prepared 

in 76% yield (44% overall) from 1,1-dibromo-2-(3,4-dimethoxyphenyl)ethane and 

nBuLi according to the procedure found in reference 153.  1H NMR (CDCl3, 300 

MHz) δ 7.08 (d, J=8.4 Hz, 1H), 6.97 (s, 1H), 6.80 (d, J=8.4 Hz, 1H), 3.87 (s, 3H), 

3.85 (s, 3H), 2.98 (s, 1H). 
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4-Ethynylpyridine (144)154 

The title compound was prepared from 4-bromopyridine hydrochloride, 

triethylamine, trimethylsilylacetylene, and catalytic PdCl2(PPh3)2, CuI, and 

triphenylphosphine according to procedure found in literature reference 154. 1H NMR 

(CDCl3, 300 MHz) δ 8.59 (d, J=6.3 Hz, 2H), 7.32 (d, J=6.3 Hz, 2H), 3.27 (s, 1H). 

 

Cyclooctyne (146)155-156 

First, 1-bromocyclooctene was prepared in 60% yield from 1,2-dibromooctane, 

morpholine, and DMSO according to procedure Method A found in literature 

reference 156. Then the title compound was prepared in 64% yield (38% overall) 

from 1-bromocyclooctene and lithium diisopropylamide according to the procedure 

found in literature reference 155. 1H NMR (CDCl3, 300 MHz) δ 2.19 (m, 4H), 1.88 

(m, 4H), 1.61 (m, 4H). 

 

3.4.4 General Procedure for the Preparation of 3-Arylindoles 

 A mixture of 0.050 mmol Fe(Pc), 10.0 mmol alkyne and 15 mL toluene was 

stirred at reflux under argon and to this was added 0.500 mmol of the N-

arylhydroxylamine in 5-6 mL toluene by syringe pump (7-8 h). After the addition was 

complete, reflux was continued overnight (8-12 h). After cooling, the mixture was 

evaporated to a solid under vacuum. Flash chromatography of the residue over silica 

gel (20% EtOAc/hexane eluant) afforded the indole products, typically as solids. 
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3-Phenylindole (116)78 

Indole 116 was prepared according to the general procedure from N-

phenylhydroxylamine and phenylacetylene to provide the title compound as a white 

solid (78.2 mg, 0.405 mmol) in 81% yield: 1H NMR (CDCl3, 300 MHz) δ 8.22 (br s, 

1H, NH), 7.96 (d, J=7.8 Hz, 1H), 7.70 (d, J=8.1 Hz, 2H), 7.43 (t, J=8.4 Hz, 3H), 7.38 

(d, J=2.1 Hz, 1H), 7.30 (m, 1H), 7.20 (m, 2H); GC-MS (EI) 193 (M+) 

 

5-Methyl-3-phenylindole (118)121 

Indole 118 was prepared according to the general procedure from 4-methyl-N-

phenylhydroxylamine (55.7 mg, 0.45 mmol) dissolved in 6 mL toluene, Fe(Pc) (25.5 

mg, 0.045 mmol), phenylacetylene (0.918 g, 9 mmol), and toluene (15 mL) to provide 

the title compound as a solid (51.3 mg, 0.248 mmol) in 55% yield: 1H NMR (CDCl3, 

300 MHz) δ 8.13 (br s, 1H, NH), 7.74 (s, 1H), 7.67 (d, J=7.2 Hz, 2H), 7.43 (t, J=7.2 

Hz, 2H), 7.30 (m, 3H), 7.08 (dd, J=8.4 Hz, J=1.5 Hz, 1H), 2.49 (s, 3H); GC-MS (EI) 

207 (M+) 

 

5-Cyano-3-phenylindole (120)77 

Indole 120 was prepared according to the general procedure from 4-cyano-

phenylhydroxylamine (72 mg, 0.50 mmol) dissolved in 6 mL dioxane, Fe(Pc) (28 mg, 

0.050 mmol), phenyl acetylene (1.1 mL, 10 mmol), and dioxane (15 mL) to provide 

the title compound (60.1 mg, 0.276 mmol) in 55% yield: 1H NMR (CDCl3, 300 MHz) 

δ 8.63 (br s, 1H, NH), 8.28 (s, 1H), 7.62 (d, J=6.6 Hz, 2H), 7.50 (m, 5H), 7.38 (t, 

J=7.5 Hz, 1H); LRMS (ESI) 241 (M + Na+) 
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5-Chloro-3-phenylindole (122)78 

Indole 122 was prepared according to the general procedure from 4-chloro-N-

phenylhydroxylamine and phenylacetylene to provide the title compound as a solid 

(43 mg, 0.190 mmol) in 38% yield: 1H NMR (CDCl3, 300 MHz) δ 8.26 (br s, 1H, 

NH), 7.90 (s, 1H), 7.62 (d, J=7.2 Hz, 2H), 7.43 (t, J=7.8 Hz, 2H), 7.33 (m, 2H), 7.20 

(m, 2H), 7.20; GC-MS (EI) 227 (M+) 

 

7-Methyl-3-phenylindole (124)157 

Indole 124 was prepared according to the general procedure from 2-methyl-N-

phenylhydroxylamine and phenylacetylene to provide the title compound as a solid 

(46.7 mg, 0.225 mmol) in 45% yield: 1H NMR (CDCl3, 300 MHz) δ 8.17 (br s, 1H, 

NH), 7.78 (d, J=7.2 Hz, 1H), 7.64 (d, J=8.1 Hz, 2H), 7.41 (t, J=8.1 Hz, 2H), 7.38 (d, 

J=2.4 Hz, 1H), 7.28 (d, J=7.2 Hz, 1H), 7.08 (m, 2H), 2.52 (s, 3H); GC-MS (EI) 207 

(M+) 

 

4-Methyl-3-phenylindole (126) 

Indole 126 was prepared according to the general procedure from 3-methyl-N-

phenylhydroxylamine (61.5 mg, 0.50 mmol) dissolved in 6 mL toluene, Fe(Pc) (28 

mg, 0.05 mmol), phenyl acetylene (1.1 mL, 10 mmol), and toluene (15 mL) to 

provide the title compound as a tan solid (28 mg, 0.135 mmol) in 27% yield: 1H NMR 

(CDCl3, 300 MHz) δ 8.13 (br s, 1H, NH), 7.84 (d, J=8.4 Hz, 1H), 7.68 (dd, J=8.1 and 

0.9 Hz, 2H), 7.45 (t, J=6.6 Hz, 2H), 7.29 (m, 3H), 7.05 (dd, J=8.4 and 1.2 Hz, 1H), 

2.50 (s, 3H); 13C NMR (CDCl3, 300 MHz) δ 137.3, 135.9, 132.5, 128.9, 127.6, 126.1, 
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123.8, 122.3, 121.3, 119.7, 118.4, 111.5, 21.9; HRMS (ESI) calculated for C15NH13
 

(M+H+) requires m/z 208.1126, found m/z 208.1186. 
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6-Methyl-3-phenylindole (127)  

Indole 127 was prepared according to the general procedure from 3-methyl-N-

phenylhydroxylamine (61.5 mg, 0.5 mmol) dissolved in 6 mL toluene, Fe(Pc) (28 mg, 

0.05 mmol), phenyl acetylene (1.1 mL, 10 mmol), and toluene (15 mL) to provide the 

title compound as an orange solid (21 mg, 0.101 mmol) in 20% yield: 1H NMR 

(CDCl3, 300 MHz) δ 8.19 (br s, 1H, NH), 7.47-7.23 (m, 6H) 7.14 (t, J=4.8 Hz, 2H), 

6.89 (dd, J=6.9 and 0.9 Hz, 1H), 2.28 (s, 3H); 13C NMR (CDCl3, 300 MHz) δ 137.2, 

136.4, 131.5, 130.9, 127.8, 126.6, 125.4, 123.1, 122.6, 121.8, 119.9, 109.2, 21.0; 

LRMS (EI) m/z 207. 
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4-Trifluoromethyl-3-phenylindole (129)77 

Indole 129 was prepared according to the general procedure from 3-trifluoromethyl-

N-phenylhydroxylamine and phenylacetylene to provide the title compound as a solid 

(44.9 mg, 0.170 mmol) in 34% yield: 1H NMR (CDCl3, 300 MHz) δ 8.46 (br s, 1H, 

NH), 7.60 (d, J=8.4 Hz, 1H), 7.48 (d, J=7.8 Hz, 1H), 7.38 (m, 5H), 7.25 (d, J=7.8 Hz, 

1H), 7.21 (m, 1H); GC-MS (EI) 261 (M+) 

 

6-Trifluoromethyl-3-phenylindole (130)77 

Indole 130 was prepared according to the general procedure from 3-trifluoromethy-N-

phenylhydroxylamine and phenylacetylene to provide the title compound as a solid 

(40.0 mg, 0.155 mmol) in 31% yield: 1H NMR (CDCl3, 300 MHz) δ 8.46 (br s, 1H, 

NH), 8.01 (d, J=8.7 Hz, 1H), 7.73 (s, 1H), 7.64 (d, J=7.8 Hz, 2H), 7.46 (m, 4H), 7.36 

(t, J=7.5 Hz, 1H); MS (ESI) 284 (M + Na+) 
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4,5-Dichloro-3-phenylindole (132) 

Indole 132 was prepared according to the general procedure from 3,4-dichloro-N-

phenylhydroxylamine (89 mg, 0.5 mmol) dissolved in 6 mL toluene, Fe(Pc) (28 mg, 

0.05 mmol), phenyl acetylene (1.1 mL, 10 mmol), and toluene (15 mL) to provide the 

title compound as a beige solid (44.3 mg, 0.169 mmol) in 34% yield: 1H NMR 

(CDCl3, 300 MHz) δ 8.23 (br s, 1H, NH), 7.40 (dd, J=7.8 and 1.8 Hz, 2H), 7.34-7.27 

(m, 3H), 7.23-7.16 (m, 2H), 7.11 (d, J=2.7 Hz, 1H); 13C NMR (CDCl3, 300 MHz) δ 

135.6, 134.8, 131.2, 127.6, 126.9, 125.6, 124.9, 124.7, 124.6, 124.1, 119.7, 110.9; 

HRMS (ESI) calculated for C14NCl2H9 (M+Na+) requires m/z 284.0010, found m/z 

284.0034. 
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5,6-Dichloro-3-phenylindole (133) 

Indole 133 was prepared according to the general procedure from 3,4-dichloro-N-

phenylhydroxylamine (89 mg, 0.5 mmol) dissolved in 6 mL toluene, Fe(Pc) (28 mg, 

0.05 mmol), phenyl acetylene (1.1 mL, 10 mmol), and toluene (15 mL) to provide the 

title compound as a white solid (28 mg, 0.107 mmol) in 21% yield: 1H NMR (CDCl3, 

300 MHz) δ 8.26 (br s, 1H, NH), 7.99 (s, 1H), 7.61 (dd, J=8.3 and 1.2 Hz, 2H), 7.55 

(s, 1H), 7.47 (t, J=7.2 Hz, 2H), 7.40 (d, J=2.7 Hz, 1H), 7.33 (t, J=7.2 Hz, 1H); 13C 

NMR (CDCl3, 300 MHz) δ 135.5, 134.5, 129.2, 127.6, 126.8, 126.5, 125.8, 124.7, 

123.6, 121.1, 118.5, 113.0; LRMS (EI) m/z 261, 263. 
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3-Phenyl-benz[g]indole (135) 

Indole 135 was prepared according to the general procedure from N-1-naphthyl-

hydroxylamine (79.5 mg, 0.5 mmol) dissolved in 6 mL toluene, Fe(Pc) (28 mg, 

0.05 mmol), phenyl acetylene (1.1 mL, 10 mmol), and toluene (15 mL) to provide the 

title compound as a gray solid (45 mg, 0.185 mmol) in 37% yield: 1H NMR (CDCl3, 

300 MHz) δ 8.97 (br s, 1H, NH), 8.06-7.96 (m, 3H), 7.74 (d, J=8.4 Hz, 2H), 7.60-

7.44 (m, 6H), 7.34 (t, J=7.8 Hz, 1H); 13C NMR (CDCl3, 300 MHz) δ 135.5, 131.3, 

130.5, 128.9, 128.8, 127.8, 126.2, 125.6, 124.2, 121.8, 121.6, 121.2, 120.3, 119.8, 

119.6, 119.3; HRMS (ESI) calculated for C18NH13 (M+Na+) requires m/z 266.0946, 

found m/z 266.0996. 
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2-Methyl-3-phenylindole (137)78 

Indole 137 was prepared according to the general procedure from N-

phenylhydroxylamine and 1-phenylpropyne to provide the title compound as an oily 

red solid (25.6 mg, 0.125 mmol) in 25% yield: 1H NMR (CDCl3, 300 MHz) δ 7.96 (br 

s, 1H, NH), 7.68 (d, J=8.1 Hz, 1H), 7.50 (m, 4H), 7.32 (m, 2H), 7.15 (m, 2H), 2.52 (s, 

3H); GC-MS (EI) 207 (M+) 

 

2,3-Diphenylindole (139)158 

Indole 139 was prepared according to the general procedure from N-

phenylhydroxylamine and 1,3-diphenylacetylene to provide the title compound (not 

isolated) in trace yield: GC-MS (EI) 269 (M+) 
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3-(4-Methoxyphenyl)indole (141)159 

Indole 141 was prepared according to the general procedure from N-

phenylhydroxylamine and 4-methoxy-phenylacetylene to provide the title compound 

as a white solid (98 mg, 0.440 mmol) in 88% yield: 1H NMR (CDCl3, 300 MHz) δ 

8.19 (br s, 1H, NH), 7.90 (d, J=8.1 Hz, 1H), 7.60 (d, J=9.0 Hz, 2H), 7.43 (d, J=8.4 

Hz, 1H), 7.20 (m, 3H), 7.01 (d, J=9.0 Hz, 2H), 3.86 (s, 3H); GC-MS (EI) 223 (M+) 

 

3-(3,4-Dimethoxyphenyl)indole (143) 

Indole 143 was prepared according to the general procedure from N-

phenylhydroxylamine (30 mg, 0.27 mmol) dissolved in 5 mL toluene, Fe(Pc) (17 mg, 

0.03 mmol), 3,4-dimethoxy-phenylacetylene (0.972 g, 6 mmol), and toluene (10 mL) 

to provide the title compound as a yellow solid (38.6 mg, 0.153 mmol) in 57% yield: 

1H NMR (CDCl3, 300 MHz) δ 8.23 (br s, 1H, NH), 7.92 (d, J=7.8 Hz, 1H), 7.45 (d, 

J=7.5 Hz, 1H), 7.34 (d, J=2.4 Hz, 1H), 7.30-7.18 (m, 4H), 6.99 (d, J=8.1 Hz, 1H), 

3.97 (s, 3H), 3.95 (s, 3H); 13C NMR (CDCl3, 300 MHz) δ 149.3, 147.7, 136.8, 128.6, 

126.1, 122.6, 121.5, 120.4, 119.9, 119.8, 118.4, 111.8, 111.6, 111.3, 56.2, 56.1; 

HRMS (ESI) calculated for C16O2NH15 (M+Na+) requires m/z 276.1000, found m/z 

276.0898. 
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Scale-up reaction for indole (143) 

Indole 143 was prepared by four sequential 7-8 hour additions (~30 hours total) of N-

phenylhydroxylamine (4 portions of 50 mg, 0.45 mmol, 200 mg and 1.8 mmol total) 

dissolved in 6 mL toluene each, Fe(Pc) (113 mg, 0.2 mmol), 3,4-dimethoxy-

phenylacetylene (3.24 g, 20 mmol), and toluene (35 mL) followed by additional 8 

hours reflux to provide the title compound as a yellow solid (249 mg, 0.984 mmol) in 

55% yield. 3.085 g (19.04 mmol) of unreacted alkyne was recovered from column 

chromatography isolation.  

 

3-(4-Pyridyl)indole (145) 

Indole 145 was prepared according to the general procedure (with protection from 

light during reaction) from N-phenylhydroxylamine (33 mg, 0.3 mmol) dissolved in 5 

mL toluene, Fe(Pc) (17 mg, 0.03 mmol), 4-ethynylpyridine (525 mg, 5.1 mmol), and 

toluene (10 mL) to provide the title compound as a greenish-white solid (41.8 mg, 

0.215 mmol) in 72% yield (isolated from preparative TLC using EtOAc): 1H NMR 

(CDCl3, 300 MHz) δ 8.72 (br s, 1H, NH), 8.64 (d, J=5.1 Hz, 2H), 8.01 (d, J=7.5 Hz, 

1H), 7.63-7.58 (m, 3H), 7.48 (d, J=7.8 Hz, 1H) 7.34-7.24 (m, 2H); 1H NMR (DMSO, 

300 MHz) δ 11.69 (s, 1H, NH), 8.53 (d, J=4.5 Hz, 2H), 8.03 (d, J=2.7 Hz, 1H), 7.98 

(d, J=8.1 Hz, 1H), 7.77 (d, J=4.5 Hz, 2H) 7.48 (d, J=7.8 Hz, 1H), 7.18 (m, 2H); 13C 

NMR (CDCl3, 300 MHz) δ 150.2, 143.8, 137.1, 125.3, 123.8, 123.2, 121.8, 121.3, 

119.8, 115.6, 112.0; HRMS (ESI) calculated for C13N2H10 (M+H+) requires m/z 

195.0922, found m/z 195.0902, HRMS (ESI) calculated for C13N2H10 (M+Na+) 

requires m/z 217.0742, found m/z 217.0727. 
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3-Hexylindole (149)160 

Indole 149 was prepared according to the general procedure from N-

phenylhydroxylamine and 1-octyne to provide the title compound (not isolated) in 

trace yield: GC-MS (EI) 201 (M+) 

 

1H-Indole-3-carboxylic acid, 1-(3-ethoxy-3-oxo-1-propen-1-yl)-, ethyl ester (151) 

Indole 151 was prepared according to the general procedure from N-

phenylhydroxylamine and ethyl propiolate to provide the title compound (not 

isolated) in trace yield: GC-MS (EI) 287 (M+) 

 

Octadecahydrobenzotriscyclooctene (147)161 

1H NMR (CDCl3, 300 MHz) δ 2.86 (m, 12H), 1.64 (m, 12H), 1.38 (m, 12H); 13C 

NMR (CDCl3, 300 MHz) δ 136.7, 31.5, 28.3, 27.0. 
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3.4.5 Nitrosoarene Trapping Experiment 

 A mixture of 0.05 mmol Fe(Pc), 5 mmol phenyl acetylene, 5 mmol  2,3-

dimethyl-1,3-butadiene, and 15 mL benzene was stirred at reflux under argon and to 

this was added 0.50 mmol of the N-aryl hydroxylamine in 5-6 mL benzene by syringe 

pump (7-8 h). After the addition was complete, reflux was continued overnight (8-12 

h). After cooling, the mixture was evaporated to a solid under vacuum. No indole was 

detected by GC or by isolation.  

 

4,5-Dimethyl-2-phenyl-3,6-dihydro-2H-1,2-oxazine (74)146 

1H NMR (CDCl3, 300 MHz) δ 7.20 (dt, J=7.5 Hz, J=1.5 Hz, 2H), 6.74 (t, J=7.5 Hz, 

1H), 6.63 (d, J=7.5 Hz, 2H), 4.20 (s, 2H), 3.75 (s, 2H), 1.83 (s, 6H). 
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CHAPTER 4 

 

NON-TRANSITION METAL CATALYZED INTERMOLECULAR 

AMINOSULFONATION OF HYDROCARBONS BY 

IMIDOIODINANES 

 

4.1 Introduction 

The direct and selective nitrenoid insertion into a C-H bond is an attractive 

method of amination because it does not require another functional group to be 

present or installed on a hydrocarbon substrate prior to the amine forming step. Over 

the last ten years, numerous transition metal-catalyzed methods have been discovered 

and investigated involving efficient and regioselective nitrenoid insertion processes 

(described in Section 1.3.2). These systems generally utilize one or more of a variety 

of nitrenoid precursors. Intrigued by the potential of an atom-economical, direct 

amination of C-H bonds, the Nicholas Group began an investigation in 2007 using 

dehydrated commercially available chloramine-T hydrate58 (summarized in section 

1.3.2.2).  

Upon completion of the study of CuI-promoted amidation of benzylic C-H 

bonds by anhydrous chloramine-T, focus turned to developing a more reactive system 

in order to amidate C-H bonds beyond the range of benzylic or ethereal substrates. 

Several representative hydrocarbons were marked as targets (Figure 4.1), including 

those containing unactivated tertiary sp3, secondary sp3, sp2, and/or propargylic C-H 
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bonds. In order to accomplish this goal, we aimed to discover and investigate new 

transition metal (or non-metal) catalysts, and/or new nitrenoid precursor aminating 

agents, preferably air stable and prepared from inexpensive and readily available 

starting materials. In addition, we also aimed to gain mechanistic insight into a 

nitrenoid insertion reaction, as details concerning the reactive nature of many of these 

processes are currently lacking. 

2o sp3 3o sp3sp2 propargylic  

Figure 4.1 

 

4.1.1  Mechanistic Studies of Intermolecular Transition Metal-Catalyzed 

Aminosulfonation of Hydrocarbons  

In contrast to the large number of systems that have been discovered and 

developed for amidation of hydrocarbons promoted by transition metals (section 

1.3.2), relatively few mechanistic studies on the intermolecular C-H insertions have 

been reported. Mechanistic probes typically employed in these studies have been 

kinetic isotope effects, Hammett substituent effect studies, radical clocks, and regio- 

and stereochemical test substrates. 

The first system to be fully explored mechanistically was reported in 1997 by 

the Muller Group.31 A series of mechanistic probes were conducted and the results 
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were consistent with a direct nitrenoid insertion mechanism. In order to differentiate a 

one-step direct insertion pathway from a potential two-step (radical or cationic) 

mechanistic pathway, a series of radical clock (cyclopropyl containing) substrates 

(154, 155, 156) of increasing rate of ring opening were tested (Figure 4.2). In all 

examples, the ring-opened product that would result from a radical pathway could not 

be detected. 

 

k = 1x105s-1

NHNs(not observed)

NHNs

k = 2x107s-1

k = 2x1010s-1
Ph

Ph

(not observed)

(not observed)

Ph

Ph

Ph

Ph

Ph

Ph

84%

21%

5%

Radical clock test substrates used in reaction with PhI=NNs and cat. Rh2(OAc)4

154

155

156
 

Figure 4.231 

 

 As further validation of a direct insertion mechanism, (R)-2-phenylbutane 157 was 

utilized as a stereochemical test substrate with PhI=NNs in the Rh2(OAc)4-promoted 

amidation reaction, producing only (S)-N-(l-Methyl-1-phenylpropyl)-4-

nitrobenzenesulfonamide 158, demonstrating retention of configuration in the 

insertion (Figure 4.3). 
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Ph

Me

+   PhI=NNs
cat. Rh2(OAc)4

Ph

Me NHNs

(R)-2-phenylbutane
157

(S)-158    (3% yield)
no observation of (R)-158

 

Figure 4.331 

 

In addition, a Hammett plot for sulfonamidation of 4-substituted ethylbenzene 

substrates with PhI=NNs/[Rh2(OAc)4] resulted in a ρ-value of -0.898 when plotted 

using σ+ parameters, indicating a slightly (+) charged transition state. Finally, a 

kinetic isotope effect was determined by reaction of PhI=NNs/[Rh2(OAc)4] with (1,3-

D2)-adamantane, which was chosen as a substrate due to its high product formation at 

a tertiary C-H bond. The intramolecular kinetic isotope effect was then determined to 

be a primary isotope effect with a value of 3.5 after correction for 100% D-content.162  

 The first report of a hydrocarbon amidating system that involved a radical 

intermediate pathway was investigated by the Che Group in 1999.163 Though the 

focus of the investigation was on the aziridination of alkenes with [RuVI(TPP)(NTs)2] 

complexes, the C-H amidation of representative benzylic and saturated 2o and 3o C-H 

bonds was also performed and the reaction was mechanistically studied. As evidence 

of a radical pathway, a kH/kD of 11 was determined, identical with that obtained in the 

oxidation of C-H bonds by RuVI porphyrins via radical intermediates. In addition, a 

Hammett analysis of p-substituted ethylbenzene substrates gave evidence of 

promotion of the reaction by both electron-donating and –withdrawing groups. When 

the relative reactivity data (log kR) was plotted against TE (total effect) parameters 
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calculated by Wu specifically for radical intermediates,164 a ρΤΕ . value of +0.62 was 

obtained with exceptional linearity (r2 = 0.99).  

 In a mechanistic study performed by Ragaini et al. in 2003 on the Co(TPP)-

promoted C-H insertion of aryl azides,45 similar data to that of Che’s study was 

obtained, resulting in the interpretation of the reaction proceeding through a 

carboradical intermediate pathway. A high kinetic isotope effect value of 14 was 

obtained, potentially elevated due to the high temperature of the reaction, or by a 

quantum mechanical tunneling effect.165 In addition, a Hammett analysis was 

conducted and reactivity data was plotted against a radical parameter set (σJJ
.) with 

addition of small polar effect (σ), and a ρJJ
. value of +1.248 and ρ of +0.10 was 

obtained with good linearity (0.9887). When the same TE parameters used by Che 

were employed, lower linearity was observed. 

In 2007, Fiori and Du Bois reported a mechanistic study of the intermolecular 

amidation of 3o and benzylic C-H bonds.37 In Du Bois’ system, 

trichloroethylsulfamate (TcesNH2) is oxidized in situ by PhI(O2CtBu)2 and C-H 

insertion is promoted by 2 mol% Rh2(esp)2. To attempt to differentiate a stepwise 

versus a concerted mechanistic pathway, a cyclopropyl clock substrate 159 was used 

in the standard reaction conditions, resulting in no observed ring-opening (Figure 

4.4). In addition, stereochemical tests were also performed and the retention of 

configuration that was observed is indicative of a direct, concerted, insertion 

mechanism (Figure 4.4). Lastly, the electronic nature of the transition state was 

assessed by Hammett analysis through competition experiments with p-substituted 
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ethylbenzene substrates (plotted versus σ+). A ρ-value of -0.73 was obtained, 

indicating small cationic charge development in the transition state. 

 

Ph

Rh2(esp)2

TcesNH2

PhI(O2CtBu)2

C6H6, 23oC

Ph

NHTces

no ring opening
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Me
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OAc
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NHTces
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Rh2(esp)2
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PhI(O2CtBu)2

C6H6, 23oC
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159

161

 

Figure 4.437 

 

In a chemoselective test using a substrate possessing both benzylic and 3o C-H bonds, 

the benzylic C-H was favored 7 : 1 in the intermolecular amidation, as opposed to the 

intramolecular reaction which favored the 3o C-H bond in a ratio 7 : 1 (Figure 4.5). 

This disparity in chemoselectivity is somewhat puzzling as both reactions (intra- and 

intermolecular) were shown to proceed through asynchronous concerted mechanistic 

pathways. It was therefore reasoned that the selectivity is a function of the rate in 
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which the oxidant is trapped by the substrate (two benzylic C-H bonds to one tertiary 

C-H) versus the rate at which it decomposes through non-productive pathways.  
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Figure 4.537 

 

 The most recently published study occurred in 2008 when Huard and Lebel 

reported a mechanistic study of the Rh2(tpa)4-promoted TrocNH-OTs amidation of 3o  

and 2o sp3, as well as benzylic C-H bonds.40 Using the same stereochemical test 

substrate as Du Bois (163, Figure 4.5) resulted in retention of configuration of the 

Troc-protected amine (45% yield). In a radical clock experiment utilizing substrate 

159, no ring-opening products accompanied the 51% yield of Troc-protected amine. 

In a similar Hammett analysis to that of Muller and Du Bois, a ρ-value of -0.47 was 

obtained, indicating even smaller cationic charge development in the transition state 

in comparison to previous studies. Lastly, a competition experiment between 

cyclohexane and deuterated cyclohexane was performed to study the kinetic isotope 

effect of the C-H insertion step, resulting in a primary isotope effect of ~5. Overall, 

these data suggested a concerted asynchronous transition state similar to that of the 



 130 

other Rh-catalyzed systems of Muller and Du Bois. Comparable results of the 

reported systems are summarized in Table 4.1. 

 

Rh2(esp)2, TcesNH2,

PhI(O2CtBu)2

C6H6, 23oC

(Du Bois)

Rh2(OAc)4, 

PhI=NNs,

23oC

(Muller)

Rh2(tpa)4, 

TrocNH-OTs,

K2CO3 23oC

(Lebel)

Hammett Analysis         ! = -0.73 ("+)       ! = -0.90 ("+)        ! = -0.47 ("+)   ! = +0.62 (#$.)        !JJ. = +1.25,   

                                                                                                                                                        ! = 0.10  ("JJ., ")

            

Radical Clock                 No Opening          No Opening            No Opening            NDa                      NDa

Stereochemical Tests        Retention              Retention               Retention               NDa                      NDa

   

Kinetic Isotope Effect           NDa                      3.5                           5                        11                         14   

Mechanism                 Asynch Concert    Asynch Concert      Asynch Concert       Radical                 Radical

  a ND = Not Determined

[RhVI(TPP)(NTs)2]

23oC

(Che)

CoII(TPP), ArN3,

75oC

(Cenini)

 

Table 4.1 (Compiled from References 31,37,40,45,163) 

 

 Most recently, in soon-to-be published results that have been generated in the 

Nicholas Group concurrently to results that will be discussed within this chapter, the 

CuI-promoted amidation of benzylic hydrocarbons in the presence of diimine ligands 

has been shown to occur through a radical (stepwise) pathway. In a mechanistic study 

that was accompanied by computational results from a collaboration of Prof. Nicholas 

and Prof. K. Houk, a kinetic isotope effect of 4.6 was experimentally obtained. In 

addition, utilization of a benzylic radical clock substrate 165 resulted in observance of 

a ring-opened product 167, consistent with a radical process (Figure 4.6). Finally, in a 

stereochemical test with substrate 168, C-H insertion occurred without retention of 
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configuration, further support for the calculational results that suggest a triplet radical 

pathway is lowest in energy.  

Ph
Ph

Chloramine-T,
cat. Cu-(di-imine) Ph

Ph

NHTces

Radical Clock Substrate Test

Stereochemical Test Substrates

Ph
Ph

NHTs

+

Ph

t
Bu

H

H

Chloramine-T,
cat. Cu-(di-imine) +

Approx. 1:1

165 166 167

168 169 170

Ph

t
Bu

H

TsHN

NHTs

tBu

H

Ph

 

Figure 4.6 

 

4.1.2 Non-Metal Catalyzed Amidation of Hydrocarbons 

Over the last ten years, amidation of hydrocarbons via nitrenoid precursors by 

transition metal promoted systems has received a large amount of attention. However, 

apart from investigations performed in the Nicholas Group, only one other example 

of transition-metal-free intermolecular amination by means other than generation of a 

free nitrene166 is known. In a study that was being conducted concurrently to that 

being presented within this chapter, Fan et al. report the amination of secondary 

benzylic hydrocarbons by various sulfonamides and PhI(OAc)2 that is promoted not 

by transition metals, but by one equivalent of I2.167 In the report, amination of 

ethylbenzene with TsNH2/PhI(OAc)2 was initially observed in low yield in the 
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presence of I2 (Figure 4.7). A control reaction was performed of 

ethylbenzene/PhI=NTs and I2 under the same conditions, and curiously, no amination 

was observed.  

 

+

NHTs OAc

+  TsNH2

1 equiv PhI(OAc)2

1 equiv I2

ClCH2CH2Cl, 50oC

172, 4%171, 5%  

Figure 4.7 

 

Intrigued by the potential of the reaction and in order to inhibit undesired 

acetoxylation, an optimization of the conditions was conducted with ethylbenzene 

and TsNH2 in which the best results were obtained by employing 3 equivalents of 

PhI(OAc)2, 0.5 equivalents of I2, and no solvent (48 hrs, 50oC). Acetoxylated by-

product was observed in all cases in yield ranging from 2-98%. It is noteworthy that 

using the same conditions at room temperature, the reaction proceeded sluggishly, 

only producing an 8% yield of aminosulfonated ethylbenzene.  

With an optimized set of conditions, the substrate scope was explored with a 

range of benzylic hydrocarbons and sulfonamides and is summarized in Table 4.2. 

  

 



 133 

Ph

MeO

Br

PhCH3

Ph

NHTs

MeO

Br

PhCH2NHTs

NHTs

NHTs

Entry          Substrate                          Product              Isol. % Yield

1

2

3

4

5

6

7
8
9
10
11

95

88

92

45

 0

 0

98
97
96
98
75

Ph Ph

Ph

Ph

OAc

H3C

Ph Ph

Ph

Ph

OAc

CH3

NHR2

NHTs

NHTs

R2= Ts

R2= 4-ClC6H4SO2

R2= PhSO2

R2= CH3SO2

R2= t-BuSO2

a Reaction conditions: benzylic substrate (3.0 mmol), TsNH2 (0.3 mmol), 

PhI(OAc)2 (0.9 mmol), I2 (0.15 mmol), 50oC, 48-56 h.

Ar R1

Ar R1

NHR2

+  R2NH2

3 equiv PhI(OAc)2

1 equiv I2

50oC

Amidation Reaction of Benzylic Substrates with Sulfonamidesa

 

Table 4.2167 

 

Moderate to excellent yields are obtained from secondary benzylic substrates, 

however, the primary benzylic C-H containing toluene was amidated in moderate 

yield (entry 4), and tertiary benzylic substrates were unreactive (entries 5 and 6). 

Hydrocarbons without a benzylic C-H such as hexene and cyclohexane resulted in 
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complicated reactions and no detection of amidated products. Mechanistically, it was 

tentatively postulated that a sulfonamidyl radical 174 generated from the combination 

of sulfonamide and acetyl hypoiodite is the reactive intermediate (Figure 4.8).    

 

TsNH2

PhI(OAc)2 + I2

- PhI

AcOI

AcOH

TsHN I
!

ArCH2R1

TsNH2

ArCHR1

173 174
173

174

Ar R1

I

175

AcOH

TsNH2

HI

PhI(OAc)2

I2

Ar R1

OAc

176

Ar R1

NHTs

177

TsNH

 

Figure 4.8167 

 

4.2 Zinc Halide Catalyzed Aminosulfonation of Hydrocarbons 

The following results described in this section have been published as Kalita, B.; 

Lamar, A. A.; Nicholas, K. M. Chem. Commun., 2008, 4291. 

 

4.2.1  Catalyst Survey and Optimization 

In the search for new transition metal catalysts to effect direct benzylic 

amidation via nitrenoid precursors, Dr. Biswajit Kalita, a post-doctoral fellow in the 
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Nicholas Group, performed a catalyst survey with an array of transition and non-

transition metal catalysts. Using the chloramine-T and CuI catalyzed amidation 

reaction58 previously reported by Bhuyan and Nicholas as inspiration, isoelectronic 

but presumably redox-inactive ZnII salts were tested. To the Nicholas Group’s 

surprise and satisfaction, the reaction between anhydrous chloramine-T and 

ethylbenzene (1.2:1) was catalyzed by 15 mol% ZnBr2 (CH3CN, 70oC, 12 hr) 

producing the benzylic sulfonamide in 25% yield with TsNH2 as major by-product 

(Figure 4.9).  

The reaction conditions were then optimized by Dr. Kalita using 4-

ethylanisole as a test substrate in conjunction with a survey of N-reagents, group 12 

salts, solvents, temperature and stoichiometry. Interestingly, ZnII halides, CdCl2, and 

HgCl2 all promoted amidation, but Zn(OTf)2 and neutral bromide ion sources such as 

Bu4N+Br- and NaBr were all ineffective.  The best conditions were found to produce 

71% isolated yield of benzylic sulfonamide by utilizing 2-3 equivalents of PhI=NTs, 

15 mol% ZnBr2, oven dried (110oC) 4Å molecular sieves in benzene at rt (24-30 hr) 

or at 50oC (12 hr). 

 

TsNNaCl

or PhI=NTs

cat. 

ZnBr2

NHTs

+ + PhI

178 171  

Figure 4.9 

 

 Though product yields of representative benzylic hydrocarbons using this ZnII 

catalyzed method are not as high as in a variety of transition metal-catalyzed methods 
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(Section 1.3.2), this system represents an important breakthrough in the perceived 

nature of the active amidating species in reactions utilizing “nitrenoid” precursors. To 

date, the active aminating species in transition metal-catalyzed amidations is still 

unknown, but it has been often perceived to be a “metal-netrenoid” 179 formed from 

redox transformations of the transition metal complexes with the nitrene precursor 

reagent (Figure 4.10). This catalytic ZnII system thus represented the first example of 

hydrocarbon C-H amidations catalyzed by non-transition metal (redox-inactive) salts.  

 

TsNNaCl

or PhI=NTs
M + M=NTs

" "
+  PhI

179  

Figure 4.10 

 

4.2.2  Representative Scope 

 Utilizing the optimized conditions, a survey of the reactions with other 

hydrocarbon substrates was conducted by Dr. Kalita (Table 4.3).   
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NHTs

NHTs

I
I

NHTs

O2N
O2N

NHTs

MeO
MeO

NHTs

NHTs

NHTs

CH

NHTs

NHTs

C NHTs

NHTs

Br

NHTs

ZnII Catalyzed Aminosulfonation of Representative Hydrocarbons

Entry        Substrate                         Product                      Temp. (oC)     Yielda (conv)b

1                                                                                             RT                    71 (81)

2                                                                                             RT                     40

                                                                                               50                      48 (75)

3                                                                                             50                      52 (75)

4                                                                                             50                      42 (50)

5                                                                                             50                      10

6                                                                                             50                      41

7                                                                                             50                      38

8                                                                                             50                      38

9                                                                                             50                      28

10                                                                                           50                   50 (40,10)

11                                                                                           50                      22

a % isolated yield; b % conversion of hydrocarbon substrate

180

178

182

184

186

188

190

192

194

41

198

181

171

183

185

187

189

191

193

195

+

196

197

199

 

Table 4.3 
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Secondary benzylic substrates are moderately effective and highly regioselective as 

reactants (Table 4.3, entries 1-6), though complete conversion of the limiting 

hydrocarbon reagent is not always observed. Substrates with p-electron-donating 

substituents (entries 1 and 3) tend to produce higher yields and conversions along 

with faster reaction times than the p-electron-withdrawing substrates (entries 4 and 5). 

As a display of the regioselectivity of the Zn-promoted system, 4-ethyltoluene 182 

produced only secondary benzylic amidation 183, though the substrate also contains 

primary benzylic C-H bonds (entry 3). The main by-product in all cases was TsNH2, 

and the observed amount of by-product increased in reactions utilizing less efficient 

substrates such as entry 5. Hydrocarbon substrates 190 and 192 containing tertiary 

benzylic C-H bonds were also amidated with moderate efficiency (38%, entries 7 and 

8). No observed dehydrogenation of cumene 190 was observed in this system, as 

opposed to the Cu1-catalyzed chloramine-T reaction.58  

 In addition to benzylic substrates, the ZnII-catalyzed system was shown to 

aminate a small sample of representative alkenes. Allylic substrates such as 

cyclohexene 41 and 1,3-diphenylpropene 194 primarily undergo allylic amination as 

opposed to aziridination across the double bond, which is often seen in transition 

metal-catalyzed reactions. Most interestingly, the system was capable of amidating 

the tertiary C-H bond of adamantane 198 in 22% yield, a substrate that had proven 

unsuccessful in the CuI-promoted amidation reaction. Unfortunately, when benzene 

and cyclohexane were tested as substrates, no amidated products could be observed. 
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4.3  Results and Discussion 

The following results described in this section have been published as Kalita, B.; 

Lamar, A. A.; Nicholas, K. M. Chem. Commun., 2008, 4291. 

 

4.3.1  Optimization Utilizing Hydrous Conditions 

 Due to the large undesired formation of TsNH2, an investigation was 

undertaken to improve the reaction efficiency, gain mechanistic insight, and 

determine the source of the by-product. Suspecting the unintentional incorporation of 

water into the PhI=NTs reagent (which is prepared by precipitation out of water), the 

reaction of ethylbenzene, PhI=NTs, and catalytic ZnBr2 in benzene was tested using 

rigorously dried 4Å molecular sieves (heating in conventional microwave oven 

followed by immediate placement in vacuo). To our great surprise, the reaction only 

produced a trace amount of the ethylbenzene sulfonamide product by GC (Figure 

4.11). The same result occurred when the reaction was conducted under anhydrous 

conditions without the use of any 4Å molecular sieves. However, when the reaction 

was performed using either oven dried 4Å molecular sieves, or with addition of one 

equivalent of H2O to an anhydrous reaction (without molecular sieves), the 

aminosulfonated product could be detected in 15-20% yield. 

PhI=NTs+NHTs NHTs

PhI  +

+  PhI

(cat. ZnII)

oven dried molec.

sieves, or 1 equiv

H2O

(cat. ZnII)

rigorously

activated molec.

sieves

< 3% 15-20%

(or without
molec. sieves)

 

Figure 4.11 
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From these experimental results, it was concluded that the reaction actually required 

water, and that the oven dried (110oC) 4Å molecular sieves were in fact providing the 

necessary amount of water for product formation under Dr. Kalita’s optimized 

conditions. With this knowledge, we then set out to re-optimize the reaction 

conditions using ethylbenzene, PhI=NTs, and catalytic ZnBr2 to allow for a more 

reproducible system that incorporated the necessary water in a more controllable 

fashion (Table 4.4).  

 

Re-Optimization of Benzylic Amidation of Ethylbenzene

with PhI=NTs and Catalytic Hydrous-ZnX2
a

Entry     PhI=NTs    Ethylbenzene    0.15 equiv     H2O     GC % Yield

                (equiv)          (equiv)           Catalyst     (equiv)

1                  1b                  1                   ZnBr2          2               17        

2                  2b                  1                   ZnBr2          2               20           

3                  2                    1                   ZnBr2         1               26    

4                  2b                  1                   ZnBr2         0.5             17    

5                  2b                  1                   ZnBr2         0.2             13    

6                  2                    1                   ZnCl2         1               12    

7                  2                    1                    ZnI2           1               36       

8                  1                   10                  ZnBr2         0.2             20    

9                  1                   10                  ZnBr2          1               45 

10                1                   10                   ZnI2            1               27

a 50-55oC in benzene, 12 hrs b Added in two portions with second 

addition occurring after ~5 hrs.
 

Table 4.4 
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Upon completion, it was found that a 45% yield of aminosulfonated ethylbenzene 

(comparable to the 48% yield obtained using 2-3 equivalents of PhI=NTs and oven 

dried molecular sieves) could be obtained from a more economical use of PhI=NTs (1 

: 10 iodinane-hydrocarbon), 15 mol% ZnBr2, and 1 equivalent water in benzene 

(50oC, 12 hr). Using these conditions, 4-ethylanisole was aminosulfonated in 54% 

yield, and amidation of adamantane was improved from 22% (previous conditions) to 

32%.      

 

4.3.2  Mechanistic Investigation 

 As part of Dr. Kalita’s initial investigation into the active aminating agent in 

the Zn-promoted aminosulfonation, the reaction of ZnBr2 with PhI=NTs in benzene 

(in the absence of a benzylic substrate) was conducted at 20-50oC in order to probe 

for the existence of free nitrene in the system. Free TsN: is itself known to produce 

azepine 201 and/or PhNHTs 200 by undergoing C-H insertion and/or addition 

reactions with benzene168-172 (Figure 4.12). Neither of the trapping products were 

observed, supporting the argument against the presence of free nitrene in the system.  

 

PhI=NTs  +  ZnBr2

benzene

NHTs

NTs+

200 201  

Figure 4.12 
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In addition to Dr. Kalita’s investigation, an experiment was conducted in which a 

commonly employed radical reaction inhibitor, p-methoxyphenol, was added to the 

reaction medium resulting in almost complete inhibition of the hydrous ZnBr2-

PhI=NTs amidation of ethylbenzene, a result suggestive of a radical process.173 A 

potential mechanistic pathway is shown in Figure 4.13. 

 

Z N=IPh

ZnX
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IPh

Z N

ZnX
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C H

C NHZ
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- X .
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B

C

..
X- X-

Z N .

ZnX

..
SET

- PhI

C H

D

ZnII or H+

203

205

206

204

207  

Figure 4.13 

 

Association of the imido-iodinane with Zn2+ or H+ could produce an electrophilic 

species 202 that attacks the substrate C-H, effecting insertion in a stepwise or 

concerted fashion (path A). Alternatively, internal electron transfer from the counter-

anion (shown as a halide) in 202 and loss of PhI would generate N-radical 204 which 

could undergo C-H insertion (path B). Elimination of PhI from 202 would produce 
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nitrenium ion 205 that could also insert to form the amine (path C). Finally, iodine 

atom dissociation from 205 would form nitrene radical cation 206 which could 

undergo C-H insertion (path D).  

 

4.3.3  Acid-Catalyzed Amidation of Benzylic Hydrocarbons 

 Due to the ability of ZnII-H2O-containing systems to be acidic (Figure 4.14), a 

survey of protic acids of varying pKa value was conducted in the amidation of 

ethylbenzene by PhI=NTs (Table 4.5).  

 

ZnBr2 + 2H2O               Zn(OH)2 + 2HBr  

Figure 4.14 

 

In each example, one equivalent of water was either added as needed or existed in the 

composition of the concentrated acid being employed. In addition, the acids were all 

utilized in catalytic amount (15-20 mol%). Yields range from trace amount of product 

(entry 1) up to 32% by employment of hydriodic acid (entry 10). It is of interest that 

the trend of anionic halide in the ZnII salt catalyzed reactions mirror that seen in the 

protic acid-catalyzed reactions; i.e., the yield of product increased in the order Cl- < 

Br- < I-.  Thus, these results represent the first example of protic acid-catalyzed C-H 

amidation of a hydrocarbon.   
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Protic Acid-Catalyzed Benzylic Amidation of Ethylbenzene

with PhI=NTsa

Entry               Acid (0.15 equiv)              GC % Yield

1                           H3CCOOH                       trace

2                              Tartaric                             6           

3                               H3PO4                              7

4                            F3CCOOH                          8

5                                HNO3                              5

6                               H2SO4                              9

7                                 HCl                               14

8                              HBr/H2O                         10

9                        HBr/ H3CCOOH                   19 

10                                 HI                               32

a 10 equiv. ethylbenzene, 50oC in benzene, 12 hrs  

Table 4.5 

 

4.4  Iodine Catalyzed Aminosulfonation of Hydrocarbons – Results 

and Discussion 

 

4.4.1  Survey and Optimization 

  In keeping with our initial goal of expanding the amination substrate scope 

beyond benzylic and allylic hydrocarbons, we turned our attention toward improving 

the modest results using the saturated adamantane that were obtained in the hydrous 

zinc halide-catalyzed aminosulfonation reaction. Viewing adamantane as a 
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representative 3o sp3 C-H bond possessing substrate, we envisioned the possibility of 

an efficient optimization by utilizing Bronsted-Lowry acid catalysis due to the 

technical ease of the reactions. In our initial catalyst screening using adamantane, we 

observed yields of 208 comparable to the hydrous zinc-catalyzed system using a 

catalytic amount of aqueous hydriodic acid (Table 4.6, Entries 1-7). Similar results to 

those obtained at 45oC were observed at room temperature using HI as catalyst, but 

the yield was not improved by raising the temperature to 70oC (entries 4-6). Slightly 

better yields were obtained by using anhydrous CH2Cl2 instead of benzene (entries 2 

and 4). In addition to HI, hydrous InI3 appeared to be a more efficient catalyst than 

ZnBr2, resulting in a 49% yield (Table 4.6, Entry 8). Due to the color change over the 

course of the reaction from red to yellow and finally back to dark red, a possible role 

of trace amounts of free I2 acting as the catalytic species in the HI and InI3 systems 

was suspected. Iodine itself (20 mol %) was then tested as a catalyst (Entry 9). To our 

surprise and satisfaction, the reaction resulted in an improved yield (55%) of 208 with 

the inexpensive and easy to handle iodine. Though the reaction proceeds with only 5 

mol% I2, optimum yield was obtained using 20 mol% as catalyst (entries 9-11). 
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Entry       Equiv.              1 Equiv.       Temp.             Equiv.           Solvent        Time        Yield (%)

          Adamantane          PhI=NZ         (oC)              Catalyst                             (hours)         208

1             10                    Z=Ts             55              0.2 HI (aq)      Benzene         12              28a

2              5                     Z=Ts             45              0.2 HI (aq)      Benzene         12              20a

 

3              5                     Z=Ts             45              0.2 HI (aq)       CH3CN         12            trace

4              5                     Z=Ts             45              0.2 HI (aq)       CH2Cl2         12              34a

5              5                     Z=Ts            RT              0.2 HI (aq)       CH2Cl2         12              31b

 

6              5                     Z=Ts            70c              0.2 HI (aq)       CH2Cl2         12              23b

7              5                     Z=Ts            50               0.15 ZnBr2
d     Benzene        12              32a

                                                                      

8              5                     Z=Ts            45                0.15 InI3
d        CH2Cl2         12              49b

                                                             

9              5                     Z=Ts            45                    0.2 I2           CH2Cl2           8              55b

10            5                     Z=Ts            45                   0.05 I2          CH2Cl2           8              34b

11            5                     Z=Ts            45                    0.5 I2           CH2Cl2           8              45b

12            1                     Z=Tse           45                    0.2 I2           CH2Cl2           8              82b

13            5                     Z=Ts            RT                   0.2 I2           CH2Cl2           2           63a, 66b

14            5                     Z=Ns            RT                   0.2 I2           CH2Cl2           2              97a

15            5                     Z=Ns            RT                   0.2 I2       wet CH2Cl2        2           97b, 86b,f

(a) Isolated yield   (b) Calculated by GC using naphthalene as internal standard  (c) Sealed tube 

(d) Plus 1 equiv. H2O  (e) 2 equiv.  (f) Open to air

NHZ
+   PhI=NZ

catalyst

Ar, stirH

Catalyst screening and initial optimization of the aminosulfonation of adamantane 
with imido-iodinanes

198 208

 

Table 4.6 

After optimization of reaction time, temperature, solvent, and stoichiometry, it 

was determined that the most efficient conditions were as follows: 5 equiv. 
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hydrocarbon (good yields can also be obtained using hydrocarbon as limiting reagent 

– entry 12), one equiv. imidoiodinane added all at once, 0.2 equiv. I2, room 

temperature under argon for 2 hours. Using PhI=NNs as the aminating agent, a nearly 

quantitative yield of 208 was isolated (entry 14). This appears to be the most efficient 

one-step formation of a precursor to the antiviral drug amantadine174 using an 

imidoiodinane (see Section 1.3.2.4). The reaction is highly regioselective for the 

tertiary C-H of adamantane with no 2o C-H aminated product detected, in contrast to 

some transition-metal-catalyzed systems in which ratios of 3-15 : 1 of 3o : 2o aminated 

products is exhibited.31,40,57 An additional interesting feature of the reaction is that it 

does not require anhydrous solvents or anaerobic conditions (Table 4.6, Entry 15). 

 

4.4.2  Substrate Scope 

 With a general procedure in hand, the scope of the iodine catalyzed 

aminosulfonation reaction was investigated and the results are summarized in Tables 

4.7 and 4.8. In addition to an excellent isolated yield obtained using adamantane, 

benzylic substrates generally gave moderate to excellent yields with formation of 

sulfonamide as main by-product (Table 4.7). In almost all cases of benzylic 

substrates, the I2-catalyzed system appears to be more efficient than our previously 

reported Zn-catalyzed system.175  



 148 

I2-Catalyzed Aminosulfonation of Representative Benzylic Hydrocarbonsa

Entry      PhI=NZ          Substrate                          Product                  Isolated Yield
                                                                                                                      (%)

1           Z = Ts                                                                  171 = Ts            78
             Z = Ns                                                                  209 = Ns           73

2           Z = Ts                                                                  181 = Ts            91
             Z = Ns                                                                  210 = Ns           80

3           Z = Ts                                                                  189 = Ts            72
             Z = Ns                                                                  211 = Ns           60

4           Z = Ns                                                                     212                 50

5           Z = Ns                                                                     213                 57

6           Z = Ns                                                                     215                  6

7           Z = Ns                                                                     217                 24     

8           Z = Ns                                                                                        218 = 40
                                                                                                                219 = 14

9            Z = Ns                                                                     220                24

10           Z = Ns                                                                     222               13

NHZ

MeO
MeO

NHZ

NHZ

I
I

NHZ

NHNs

I

NHNs

+

NHZ

NHZ

Ph

Ph

Ph

H

Ph

Ph

Ph

NHNs

(a) 5 equiv. hydrocarbon, 1 equiv. PhI=NZ, 0.2 equiv. I2, CH2Cl2, Ar, rt, 2-6 hrs

MeOOC
MeOOC

NHZ

NHNs

214

216

218 219

221

178

180

188

182

184

190

192

 

Table 4.7 

 

Substrates with electron-donating as well as –withdrawing groups are reactive 

with 2o benzylics, though the reaction is distinctly more efficient for electron rich 
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substrates (entries 1-6). Using PhI=NTs as substrate generally produced slightly more 

efficient 2o benzylic C-H amidation than PhI=NNs. However, PhI=NTs either 

produced complex mixtures or little reaction with 1o and 3o benzylic C-H bonds, such 

as toluene 221 and cumene 190. The utilization of PhI=NNs with the aforementioned 

benzylic hydrocarbons did, however, result in amidated products, albeit in modest 

yields (entries 8 and 10). The amidation of toluene, having a primary benzylic C-H 

bond, gave a low yield (Table 4.7, Entry 10, 222), but a number of representative 3o 

benzylic substrates proved more reactive employing PhI=NNs as the amidating agent 

(entries 7-9). Modest yields were obtained of the tertiary C-H amidated products 217, 

218, and 220 as well as the 1,2-difunctionalized product 219 (14%) derived from 

cumene, which was not produced in the Zn-catalyzed system. This provides a rare 

example of 1,2-difunctionalization of C-H bonds in an unactivated saturated 

hydrocarbon,176-178 and the first example of this reactivity to occur via 

imidoiodinanes. The chemo- and regioselectivity for the present I2-catalyzed reactions 

appear to be similar to their Zn-catalyzed counterparts, as 2o benzylic C-H bonds are 

selectively amidated over 1o, as is shown in the reaction with 4-ethyltoluene (Table 

4.7, entry 5). Also, 3o C-H bonds are selectively amidated in the presence of 2o and 1o 

(entries 7 and 8), leading to an overall trend of 3o > 2o > 1o.  

Similar to 1o and 3o benzylics, other saturated hydrocarbons such as 

cyclohexane 226 and norbornane 224 produced complex mixtures or little reactivity 

when PhI=NTs was employed. By utilizing PhI=NNs, however, amidated products 

were obtained in low yields (Table 4.8).  A single isomer, identified by comparison to 

known 1H NMR data as the 2-exo derivative 225, was isolated from the amidation of 
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norbornane 224 (Table 4.8, entry 2). Similar to Muller’s Rh-catalyzed system,31 no 

reaction is observed at the bridgehead of norbornane, but occurs exclusively at the 

C(2) position. The reaction with cyclohexane provided another example of novel 1,2-

difunctionalization, i.e. the iodoamidated derivative 227, potentially the result of 

initial dehydrogenation via alkyl radical disproportionation or carbocation 

deprotonation to an intermediate alkene.179 The variable and curious specificity of 

these reactions towards different saturated hydrocarbons (e.g. entries 1, 2, 3) is further 

highlighted by the absence of appreciable mono-amidation product in the reaction 

with cis-decalin 231 or endo-tetrahydro-dicyclopentadiene 230 (entries 5 and 6).  
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I2-Catalyzed Aminosulfonation of Representative Non-Benzylic Hydrocarbonsa

Entry      PhI=NZ          Substrate                          Product                  Isolated Yield
                                                                                                                      (%)

1           Z = Ts                                                                  199 = Ts           63

             Z = Ns                                                                  223 = Ns          97

2           Z = Ns                                                                  225                   20

3b          Z = Ns                                                                  227               17 (83)c

4           Z = Ns                                                                                        10, 14d

             Z = Ts                                                                                        20, 19e

5f           Z = Ns                                                                              Complex Mixture

6f           Z = Ns                                                                              Complex Mixture

7f           Z = Ns                                                                                           NR

8            Z = Ns                                                                            Rapid Decomposition

9f        Z = Ns or Ts                                                                                     NR

NHZH

NHNs

NHZ

229, Ns
196, Ts

227, Ns
228, Ts

+

(a) 5 equiv. hydrocarbon, 1 equiv. PhI=NZ, 0.2 equiv. I2, CH2Cl2, Ar, rt, 2-6 hrs (b) DCE,

75oC  (c) relative to I2   (d) ratio of 227 : 229 determined by 1H NMR  (e) ratio of 228 : 196

determined by 1H NMR (f) reactions run at both room temperature and elevated 

temperatures (50-75oC)

I

NHNs

H

H

Co2(CO)6

230

231

232

233

234

198

224

226

41

I

NHNs

 

Table 4.8 

A small number of representative unsaturated hydrocarbons were also tested 

in the reaction (entries 4, 7-9). Using cyclohexene 41 as a representative alkene, the 
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reaction produced an inseparable (by chromatography) ~1:1 mixture of allylic 

amination product (196 or 229) and the corresponding 1,2-iodoamidated product (227 

or 228) as determined by 1H NMR, but without detectable formation of an aziridine 

(entry 4). In an attempt to functionalize the propargyl position of 4,4-dimethylpentyne 

232, PhIN=Ns was used at both room temperature and refluxing temperatures, 

resulting in no discernable aminosulfonated products. In an attempt to further activate 

the propargyl position by complexation with dicobalt hexacarbonyl, 233 was utilized 

as substrate. Upon addition of I2 at room temperature, gas evolution could be 

observed, presumably from production of CO due to decomposition of the complex. 

Upon addition of PhI=NNs, bubbling intensified and the reaction mixture became a 

dark reddish brown, and no amidation of the alkyne could be observed. Finally, 

benzene, either in CH2Cl2 or neat, did not lead to any insertion products at room 

temperature or reflux with either of the imidoiodinane reagents.  

 

4.4.3  Mechanistic Investigation 

In addition to the negative result from the “free” nitrene test conducted by 

employment of benzene as substrate, further efforts to explore the reaction 

mechanistic pathway and especially to gain insight into the nature of the active 

aminating agent were made. Due to the higher reactivity of PhI=NNs with 3o benzylic 

and/or non-benzylic C-H bonds, PhI=NNs was primarily used in mechanistic 

investigations.  
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4.4.3.1 Kinetic Isotope Effect 

Due to the high reactivity of the system with adamantane, the same 

intramolecular kinetic isotope effect experiment as in Muller’s study was envisioned. 

1,3-d2-Adamantane 235 was prepared from 1,3-dibromoadamantane and LiAlD4 and 

determined by 1H NMR integration to be 98.4% D2-enriched (see Experimental 

Section). A 2 : 1 ratio of  1,3-d2-adamantane to PhI=NNs was allowed to react to 

completion resulting in a 55% yield of sulfonamidated product. After redissolving the 

isolated product in MeOH multiple times (to exchange a potential ND for NH), MS-

ESI was employed to determine the D2-D1 ratio, resulting in a preliminary 

experimental kH/kD value of 2.51. After calculational correction as outlined by 

Meunier162 due to the biased ratio of [D2-D1]-adamantane starting material, a value of 

2.68 was obtained (Figure 4.15). Using similar conditions with PhI=NTs gave a 52% 

isolated yield of sulfonamidated products 236 and 237 and a preliminary 

experimental kH/kD value of 4.55. After calculational correction, a value of 5.12 was 

obtained. Both results are indicative of a primary isotope effect, with the C-H (D) 

bond breaking involved in the rate limiting step. The values are also similar to the 

KIE value of 3.5 that was obtained on the same substrate by Muller31 in the 

PhI=NNs/Rh2(OAc)4-promoted reaction. The larger value obtained for PhI=NTs 

could indicate that the bond breaking step has a more symmetrical transition state 

than that for PhI=NNs.  
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Intramolecular Kinetic Isotope Effect

235

Z = Ts

D1-238 D2-239Z = Ns  

Figure 4.15 

 

4.4.3.2  Hammett Competition Experiment 

The electronic nature of the transition state was investigated by a series of 

competition experiments of ethylbenzene and various p-substituted-ethylbenzene 

substrates. In the experiments, 5 equivalents of both ethylbenzene and a p-substituted-

ethylbenzene substrate was reacted with one equivalent of PhI=NNs and 20 mol% I2 

at room temperature and allowed to proceed to completion. The ratio of 

aminosulfonated products was then determined by GC integration. A moderate 

preference for electron-rich substrates is exhibited by the reaction. Using the same 

Hammett parameters as Du Bois and Lebel (σ+) resulted in a ρ-value with poor 

linearity. In addition, the radical parameters employed by Cenini and Che also 

resulted in poor linearity. Finally, it was determined that the best linear fit (R2 = 

0.976) was achieved by utilization of standard σP parameters, producing a ρ-value of 

-2.77, indicating a considerable cationic charge development in a transition state 

(Figure 4.16).  



 155 

VS

X

                  Product Ratios

X = OMe        5.4 : 1        H

        Me             2 : 1        H

          I               1 : 2.8     H

    CO2Me          1 : ~25    H

5 equiv 5 equiv

 

 

Figure 4.16 

 

4.4.3.3  Radical Clock Substrate Experiment 

Due to the ambiguity of the Hammett and KIE results with regard to 

differentiating a concerted (one-step) insertion versus a two-step radical or cationic 

producing pathway, a radical clock substrate was employed using standard 

conditions. [(2-Phenylcyclopropyl)methyl]-benzene 165 was selected as the radical 

clock substrate due to the presence of a reactive 2o benzylic C-H bond, as well as for 
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ease of preparation. Upon reaction with PhI=NNs and I2, pyrrolidine 241 was isolated 

in 14% yield (69% relative to I2) without the isolation of any other aminosulfonated 

products (Figure 4.17). The product 241 was identified by comparison to known 

pyrrolidine compounds very similar in structure (substituting -Ns for –Ts).180 In 

addition, NOESY 1H NMR experiments were conducted in order to determine 

stereochemistry by correlation of proton signals on the pyrrolidine ring (see 

Experimental Section). At this time, it appears to be evidence of a two-step process, 

either by hydrogen or hydride abstraction, as both the benzyl radical and benzyl 

cation that could form would result in a ring-opened product. The resulting alkenyl 

sulfonamide could then add as nucleophile in the presence of I2 (via an iodonium 

intermediate).180 No evidence has been found in the literature in support of an iodine 

assisted intramolecular nucleophilic opening of a cyclopropyl unit, though it cannot 

be definitively ruled out at this time.  

Ph

Ph
N

Ph

NHNs

Ph

I

Ph Ph

PhI=NNs, 0.2 equiv I2

Ns

241, 14%

165

240  

Figure 4.17 

 

4.4.3.4  Stereochemical Tests 

In order to determine if the reaction is proceeding through a concerted (one-

step) or stepwise insertion pathway, cis-168 was envisioned as a benzylic 
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stereochemical test substrate. There was some initial concern as to whether or not the 

potential formation of an alkene (as is seen with another tertiary benzylic, cumene) 

could add difficulty to the interpretation of potential results. Upon completion of the 

reaction of PhI=NNs, 20 mol% I2, and [cis-4-(tert-butyl)cyclohexyl]-benzene 168, 

there did appear to be some formation of alkene as we had feared. However, a more 

interesting result was obtained by the isolation of only one isomer of amidated 

benzylic product (Scheme 4.16). This seemed to imply that the reaction is in fact a 

one-step, or concerted, process despite the indirect mechanistic evidence to the 

contrary (such as the formation of alkene and ring-opened radical clock). To attempt 

to verify this result the [trans-4-(tert-butyl)cyclohexyl]-benzene 244 substrate was 

employed under the same conditions, but no reaction was found to occur, either at 

room temperature or heated to 40oC (Figure 4.18). The lack of reactivity of the axial 

benzylic C-H of the trans-244 could be due to steric hindrance of the approaching 

aminating species, whereas the equatorial benzylic C-H of the cis-168 is more 

accommodating.  
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H
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Figure 4.18 
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An additional stereochemical test to verify this finding could be conducted 

using an enantiopure substrate of another tertiary benzylic hydrocarbon that has 

demonstrated sufficient effectiveness using the present reaction conditions. After 

observing a 24% yield of 3o aminosulfonated product 217 from a reaction using 

racemic 2-butylbenzene as substrate without an appreciable amount of 1,2-

difunctionalized product, the same stereochemical test employed by Muller using 

enantiopure (R)-2-butylbenzene 157 was envisioned (Figure 4.19). Preparation of 157 

for use as an additional stereochemical test substrate is in progress. 

 

Ph

Me

+   PhI=NNs
0.2 equiv I2

Ph

Me NHNs

(R)-2-phenylbutane
157 1 or 2 isomers?

Ph

O

OH

Me

245

158

 

Figure 4.19 

 

4.4.3.5  Isolation of an Active Aminating Agent  

In addition to attempting to discern the mechanistic pathway, identification of 

the active aminating agent was also desired. Using 1H NMR as a tool to gain 

information into the effect of iodine on the imidoiodinane reagent, a series of 

experiments was performed in which the addition of reagents was separated in 

distinct stages (Figure 4.20). First, PhI=NNs was stirred alone at room temperature in 

CD2Cl2, and the 1H NMR analysis of the mixture indicated a very low solubility of 

the imidoiodinane reagent. Upon addition of I2 to the insoluble slurry, the mixture 

slowly became a dark red heterogenous solution containing a pinkish orange 
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insoluble powder. After 15 minutes, 1H NMR analysis of the solution clearly showed 

the appearance of iodobenzene, and very little else. To this mixture was added one 

equivalent of adamantane, and the mixture was allowed to stir for 15 minutes. During 

this time, the insoluble powder became more soluble, and the solution became more 

homogenous dark red. 1H NMR analysis showed the emergence of aminosulfonated 

adamantane product as well as NsNH2. After ~2 hours, an 1H NMR spectrum of the 

now completely homogenous dark red solution showed a roughly 2 : 1 ratio of 

aminosulfonated adamantane product to NsNH2. From this experimental series, we 

can determine that the I2 acts to form an insoluble (in CH2Cl2) powder via 

decomposition and/or complexation of the imidoiodinane reagent with release of PhI 

prior to amination of C-H bonds.  

I
N S

O

O

NO2

PhI

+  I2

Insoluble in CD2Cl2

Adamantane

NHNs

+  NsNH2

Orange Solid "(N-Ns)3I4"

N3I4

246

Adamantane

(Stable for weeks < 0oC)

Unknown 

(N-Ns)nIn

Ratio determined by
elemental analysis

 

Figure 4.20 

 

Having determined that iodine acts to form the active aminating agent in situ 

by release of PhI from the imidoiodinane reagent, attempts were made to structurally 

characterize the insoluble powder that forms upon addition of iodine to PhI=NNs. 

The solid is easily prepared and stable when stored < 0oC. It can be dissolved in 
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DMSO, and 1H NMR analysis in this solvent only displays two doublets in the 

aromatic region with no indication of an NH peak. When the solid itself was added to 

adamantane in CD2Cl2, 1H NMR analysis indicated the formation of roughly a 5 : 2 

ratio of aminosulfonated adamantane product to NsNH2 (Figure 4.20). It was 

observed that upon stirring of the solid with adamantane, the solution became a dark 

red, indicative of I2. In order to determine if iodine was complexed with the –NNs 

unit, a UV-Vis determination of the presence of free I2 was conducted. In a UV-Vis 

cuvette, the orange solid was added to adamantane in CH2Cl2 and absorbances were 

measured every 5 minutes (Figure 4.21).  

 

Figure 4.21 

 

The absorbance at 504 λ-max of iodine increases from 0.25 to 1.33 in 40 minutes. 

From this we can determine that the liberation of approximately 1.35 mg of iodine 

from 5.0 mg of the orange solid is complete at ~40 minutes, though this does not 
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necessarily indicate that the amidation reaction is complete at this time. In addition, it 

provides evidence in support of a complexed iodine-NNs structure, and represents a 

distinctly new, isolable, and air-stable nitrogenation agent that will react with C-H 

bonds at room temperature within minutes and produces only NsNH2 and I2 as by-

products. Unsuccessful in our attempts to acquire MS-ESI data on the solid, we 

turned to elemental analysis for structural information. From results of the analysis, a 

3 : 4 ratio of –NNs to I was determined. Attempts to crystallize the solid are 

underway, but as of yet, the structure remains unknown.  Potential structures that 

could be envisioned must satisfy the ratio of –NNs to I determined by elemental 

analysis in addition to the observation of only two aromatic doublets in the 1H NMR 

spectrum. Thus, known coumpounds such as N,N-di-iodosulfonamide can be 

excluded. A possible structure, 246, is shown in Figure 4.22. As of yet, no literature 

precedent for such a structure is known. 
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Figure 4.22 

 

4.4.3.6  Mechanistic Summary 

In summary, a clearer picture of the reaction mechanistic pathway can be 

drawn due to several experimental findings (Figure 4.23). It appears that the role of 
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iodine in the reaction is to promote in situ formation of the reactive (N-Ns)3I4 solid by 

cleavage of PhI from the imidoiodinane (Path A). This reactive species can then 

effect C-H insertion by either a one-step (Path B) or two-step process (Paths D and E) 

with the C-H bond breakage occurring in the rate-limiting step (Path C), as is evinced 

by a primary kinetic isotope effect. The two-step process could occur either through a 

fast rebound mechanism of a radical or cation with 247 (Path D), or from the addition 

to a second equivalent of 246 (Path E). The formation of free nitrene is not observed 

in the system. In addition, a considerable cationic charge development in a transition 

state or intermediate is observed by a ρ-value of -2.77 obtained by Hammett 

competition experiments. Finally, the differentiation between a one-step or two-step 

process is still somewhat ambiguous. Indirect evidence such as the formation of an 

alkene and the ring-opened pyrrolidine product from a radical clock substrate indicate 

a two-step process involving the abstraction of a hydrogen or hydride from the 

hydrocarbon, followed by C-N bond formation. The stereochemical result, however, 

indicates a concerted, or one-step process by the isolation of only one isomer 242, 

though alkene is formed likely from a two-step process in the same reaction. Most 

likely is that the reaction can operate through either a one-step or two-step process, 

and the electronic effects of the hydrocarbon substrate play a role in determining 

which is dominant.  
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Figure 4.23 

 

4.5   Summary and Conclusions 

In summary, the first non-transition metal as well as the first non-metal 

catalyzed amidation of benzylic and simple saturated hydrocarbons has been 

developed. In the PhI=NTs/zinc-catalyzed system, it was discovered that water is 

needed in the reaction in order to facilitate a zinc-aquo or acid-catalyzed reaction. 

Moderate to good yields were obtained from a variety of benzylic substrates, as well 

as a saturated sp3 C-H containing hydrocarbon, adamantane, by employment of an 

excess of the inexpensive hydrocarbon substrate. Even the simple employment of 

protic acids was shown to catalyze amidation of benzylic hydrocarbons with the best 

results being produced by 20 mol% of hydriodic acid. 

In addition, we have found that 1o, 2o, and 3o benzylic substrates along with 

some saturated and unsaturated hydrocarbons can be amino-functionalized by 
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reaction of PhI=NZ catalyzed by inexpensive I2. The resulting system is an 

operationally simple reaction conducted under very mild conditions that includes the 

employment of wet solvents at room temperature. Good to excellent yields of 

amidated products are obtained from secondary benzylic C-H containing substrates, 

with moderate-poor yields resulting from tertiary and primary benzylics. A number of 

saturated hydrocarbons also proved reactive, including the highest reported yield of a 

precursor to amantidine being obtained from the reaction of adamantane and 

PhI=NNs catalyzed by 20 mol% I2. In addition, the first examples of 1,2-

functionalization of unactivated C-H bonds in a single reaction using imido-iodinanes 

as aminating agents have been observed.  

Mechanistic investigations of the I2-catalyzed system have resulted in the 

isolation of a new and stable aminating reagent that can directly insert into benzylic 

and tertiary C-H bonds while only producing innocuous I2 as by-product, as opposed 

to the production of toxic iodobenzene from employment of imidoiodinanes. In 

addition, mechanistic results such as the generation of alkenes from saturated 

hydrocarbons, formation of a pyrrolidine product from the radical clock experiment, 

and the detection of a relatively large ρ-value of -2.77 from a Hammett competition 

experiment, indicate a highly reactive two-step process in which hydrogen or hydride 

is abstracted and C-N bond formation quickly follows. The stereochemical result in 

which only one isomer was produced (indicating a concerted insertion) remains 

mysterious along with the nature of the solid aminating agent, though attempts to 

crystallize the compound may result in a more definitive elucidation. 
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4.6 Experimental 

4.6.1 General Considerations 

Commercial reagents were purchased from Sigma Aldrich, Alfa Aesar, or TCI 

America. Hydrocarbons used in production of aminosulfonated compounds were used 

without any purification. Compounds cis-168 and trans-244 were prepared within the 

Nicholas Group by reported procedure and were determined pure by comparison to 

known data.181 Toluene and benzene were distilled prior to use over 

Na/benzophenone. Dichloromethane, acetonitrile, and dichloroethane were all 

distilled prior to use over CaH2. All other solvents including those used in 

chromatography were used without any purification. Visualization of the developed 

chromatogram was performed under UV light or I2 stain. 1H NMR spectra were 

obtained at 300 MHz and 13C NMR spectra at 75 MHz. NMR spectra were internally 

referenced to residual protio solvent signals. Data for 1H NMR data are reported as 

follows: chemical shift (δ shift), multiplicity (br=broad, s=singlet, d=doublet, 

t=triplet, q=quartet, m=multiplet, dd=doublet of doublets, dt=doublet of triplets), 

coupling constant (Hz), integration, and assignment. Data for 13C NMR are reported 

in terms of chemical shift (δ ppm). Mass spectra were acquired in methanol or 

CH2Cl2 solution by ESI. Naphthalene was used as an internal standard for GC yield 

determinations. 
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4.6.2 Preparation of Starting Materials 

[{(p-Toluene)sulfonyl}imino]phenyliodinane (PhI=NTs)62,182 

Method A: The title compound was prepared from PhI(OAc)2, TsNH2, and KOH in a 

MeOH solution and crystallized from H2O without modification according to the 

procedure found in Reference 62. 

 

Method B: The title compound was prepared from PhI(OAc)2, TsNH2, and KOH in a 

MeOH solution (with the temperature never rising >10oC) without modification 

according to the procedure found in Reference 182. 

 

1H NMR (DMSO-d-6, 300 MHz) δ 7.69 (d, 2H), 7.43 (m, 3H), 7.28 (t, 2H), 7.05 (d, 

2H), 2.25 (s, 3H). 

 

[{(4-Nitrophenyl)sulfonyl}imino]phenyliodinane (PhI=NNs)183 

The title compound was prepared from PhI(OAc)2, NsNH2, and KOH in methanol 

and crystallized from H2O without modification according to the procedure found in 

Reference 183. 1H NMR (DMSO-d-6, 300 MHz) δ 8.04 (d, J=8.7 Hz, 2H), 7.74 (m, 

4H), 7.42 (t, J=6.9 Hz, 1H), 7.24 (m, 2H).  

 

Methyl 4-ethylbenzoate (214)184 

The title compound was prepared in nearly quantitative yield from a mixture of 4-

ethylbenzoic acid (1.00 g, 6.66 mmol), Fe2(SO4)3 
. 5H2O (80 mg, 0.2 mmol), and 6 µL 

of conc. sulfuric acid stirred at room temperature overnight in MeOH (12.5 mL). 
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Solvent was removed in vacuo to yield the title compound as a colorless oil. 1H NMR 

(CDCl3, 300 MHz) δ 7.89 (dd, J=4.5 Hz, J=1.2 Hz, 2H), 7.19 (dd, J=4.5 Hz, J=1.2 

Hz, 2H), 3.83 (s, 3H), 2.63 (q, J=5.7 Hz, 2H), 1.19 (t, J=5.7 Hz, 3H). 

 

(1,3-D2) Tricyclo[3.3.1.13,7]decane (235)31,162 

The title compound was prepared in nearly quantitative yield from 1,3-dibromo-

adamantane (450 mg, 1.3 mmol), LiAlD4 (56.3 mg, 1.31 mmol), nBu3SnCl (141 µL, 

0.450 mmol), and 7 mL diethyl ether without modification according to procedure 

found in Reference 162. Deuterium enrichment of the product was determined by 1H 

NMR integration by comparison to adamantane. 1H NMR (CDCl3, 300 MHz) δ 1.88 

(br m, 2H), 1.74 (d, J=3.3 Hz, 12H). 

  

[(2-Phenylcyclopropyl)methyl]-benzene (165)185 

First, trans-1,3-diphenylpropene was prepared in 68% yield from phenylacetaldehyde 

(6.04 g, 50.2 mmol) and KOH pellets (3.00 g, 53.4 mmol) in 20 mL ethanol without 

modification using a procedure found in Reference 186. Then, the title compound was 

prepared from trans-1,3-diphenylpropene (1.94 g, 10.0 mmol), Et2Zn in hexanes 

(33.3 mL of 0.6M solution, 20.0 mmol), trifluoroacetic acid (1.54 mL, 20.0 mmol), 

and diiodomethane (1.61 mL, 20.0 mmol) in CH2Cl2 according to procedure found in 

Reference 187. After failed separation of the cyclopropane product and the trans-1,3-

diphenylpropene by flash chromatography, the inseparable mixture was added to a 

40% aq. NaOH solution containing tBuOH and excess KMnO4. The mixture was 

stirred at room temperature overnight and the crude mixture was extracted with 
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diethyl ether, hexanes, then diethyl ether again and solvent was removed. The crude 

product was then passed through a short silica plug using hexanes as eluant to remove 

a brown impurity and after removal of solvent, the cyclopropyl product was pure by 

1H NMR without further distillation or chromatography necessary. 1H NMR (CDCl3, 

300 MHz) δ 7.28-6.96 (m, 10H), 2.80-2.58 (m, 2H), 1.72 (m, 1H), 1.26 (m, 1H), 0.88 

(m, 2H). GCMS (EI) 208 (M+) 

 

Hexacarbonyl[µ-{(2,3-η : 2,3-η)-4,4-dimethyl-2-pentyne}]dicobalt (Co-Co) (233) 

The title compound was prepared from 4,4-dimethyl-2-pentyne (200 µL, 1.5 mmol) 

and dicobalt octacarbonyl (1.3 g, 3.0 mmol) in 10 mL CH2Cl2 following a procedure 

found in Reference 188. The mixture was stirred 30 minutes at room temperature, 

then solvent was removed. The solid was dissolved in hexanes and filtered with a 

basic alumina plug. The solution was then filtered through a silica plug and the 

solvent was removed. 1H NMR (CDCl3, 300 MHz) δ 2.69 (s, 3H), 1.29 (s, 9H). – 

shifted from 1.78 and 1.19 –  
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4.6.3 General Procedure for the Zinc-Catalyzed Aminosulfonation of 

Hydrocarbons Using Oven-Dried 4Å Molecular Sieves 

 To an oven-dried Schlenk tube (or a test tube) under N2 was transferred 

anhydrous ZnBr2 (15-20 mol% of the substrate) and 2 mL of dry benzene. To this 

was added TsN=IPh (1.0 mmol), oven dried (110oC) 4 Å molecular sieves, 

hydrocarbon substrate (0.50 mmol), and another 3 mL of dry benzene by syringe. The 

suspension was stirred at room temperature (or at 50oC, Table 4.3) under N2.  Another 

0.5 mmol of TsN=IPh was added to the reaction mixture under N2 atmosphere after 5-

6 h and stirring was continued for 6-24 additional hours during which the reaction 

mixture became almost homogenous and the color changed into dark brown. When 

TLC analysis indicated no further conversion, the reaction mixture was filtered 
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through filter paper, washed with CHCl3 (~15-20 ml) and the solvent removed by 

rotary evaporation. The crude residue was then purified by flash column 

chromatography or preparative thin layer chromatography by elution with ethyl 

acetate/petroleum ether mixtures. 

 

4.6.4 General Procedure for the Hydrous Zinc-Catalyzed 

Aminosulfonation of Hydrocarbons  

To an oven-dried test tube under N2 was transferred anhydrous ZnBr2 (15-20 

mol% of the substrate) and 1 mL of dry benzene. To this was added TsN=IPh (0.50 

mmol) all at once, hydrocarbon substrate (5.0 mmol), 1 equivalent H2O (~9.0 µL) and 

another 2-3 mL of dry benzene by syringe. The suspension was stirred at 50oC under 

argon overnight. When TLC analysis indicated no further conversion, the reaction 

mixture was filtered through filter paper, washed with CHCl3 (~15-20 ml) and the 

solvent removed by rotary evaporation. The crude residue was then purified by flash 

column chromatography or preparative thin layer chromatography by elution with 

ethyl acetate/hexane mixtures. 

 

[4-Methyl-N-(1-phenylethyl)-benzenesulfonamide] (171)175 

The title compound was prepared in 45% yield by the general procedure (Method B) 

from ethylbenzene, PhI=NTs (prepared by Method B), ZnBr2, and 1 equivalent H2O 

in benzene at 50oC. 1H NMR (CDCl3, 300 MHz) δ 7.60 (d, J=7.5 Hz, 2H), 7.18 (m, 

5H), 7.09 (m, 2H), 4.96 (d, J=6.6 Hz, 1H, NH), 4.45 (m, J=7.2 Hz, 1H), 2.37 (s, 3H), 

1.41 (d, J=6.9 Hz, 3H). LRMS (ESI) 298 (M + Na+). 
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N-[1-(4-Methoxyphenyl)ethyl]-4-methyl-benzenesulfonamide (181)175 

The title compound was prepared in 54% yield by the general procedure (Method B) 

from 4-ethylanisole, PhI=NTs (prepared by Method B), ZnBr2, and 1 equivalent H2O 

in benzene at 50oC. 1H NMR (CDCl3, 300 MHz) δ 7.63 (dd, J=8.4 Hz, J=1.6 Hz, 2H), 

7.21 (d, J=7.8 Hz, 2H), 7.01 (d, J=7.8 Hz, 2H), 6.73 (dd, J=9.0 Hz, J=2.7 Hz, 2H), 

4.58 (m, 1H, NH), 4.42 (m, J=7.2 Hz, 1H), 3.77 (s, 3H). 2.41 (s, 3H), 1.42 (d, J=6.9 

Hz, 3H). LRMS (ESI) 328 (M + Na+). 

 

N-Adamantan-1-yl-4-methyl-benzenesulfonamide (199)175 

The title compound was prepared in 32% yield by the general procedure (Method B) 

from adamantane, PhI=NTs (prepared by Method B), ZnBr2, and 1 equivalent H2O in 

benzene at 50oC. 1H NMR (CDCl3, 300 MHz) δ 7.78 (d, J=8.1 Hz, 2H), 7.26 (d, 

J=7.5 Hz, 2H), 4.64 (s, 1H, NH), 2.41 (s, 3H), 1.99 (br s, 3H), 1.77 (d, J=3.0 Hz, 6H), 

1.57 (m, 6H). GCMS (EI) 305 (M+). 

 

4.6.5 Radical Inhibition Experiment with p-Methoxyphenol 

To an oven-dried test tube under N2 was transferred anhydrous ZnBr2 (16.9 

mg, 0.075 mmol) and 1.0 mL of dry benzene. To this was added TsN=IPh (187 mg, 

0.50 mmol) all at once, ethylbenzene (620 µL, 5.0 mmol), 1.0 equivalent H2O (9 µL, 

0.5 mmol), naphthalene (10.0 mg, 1.28 mmol), p-methoxyphenol (62 mg, 0.5 mmol), 

and another 2-3 mL of dry benzene by syringe. The suspension was stirred at 55oC 

under argon. Samples were taken for GC yield determination at one hour, 5 hrs, and 
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~18 hrs. The yield of the aminosulfonated ethyl benzene product was determined by 

GC using naphthalene as internal standard to be 1% at each time period. 

  

4.6.6 General Procedure for the Acid-Catalyzed Aminosulfonation of 

Ethylbenzene 

To an oven-dried test tube under N2 was transferred 1 mL of dry benzene. To 

this was added TsN=IPh (187 mg, 0.50 mmol) all at once, ethylbenzene (620 µL, 5.0 

mmol), concentrated acid (0.05 mmol), the remainder of 1 equivalent H2O, 

naphthalene (4.8-5.7 mg), and another 2-3 mL of dry benzene by syringe. The 

suspension was stirred at 55oC under argon overnight. Samples were taken for GC 

yield determination at ~14 hrs.  

 

4.6.7 General Procedure for the Iodine-Catalyzed Aminosulfonation of 

Hydrocarbons 

To a mixture of 1.25 mmol hydrocarbon, 0.050 mmol I2, and 1-2 mL CH2Cl2 

was added 0.250 mmol PhI=NZ (Z=Ts, Ns) all at once. The reaction vessel was then 

flushed with argon and stirred at room temperature 2-6 hours. Upon completion of the 

reaction, solvent was removed under vacuum and the crude mixture was isolated via 

flash chromatography over silica gel with CH2Cl2 as eluant (Rf of product typically 

0.3-0.5), affording the amidated products, typically as solids.  
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N-Adamantan-1-yl-4-methyl-benzenesulfonamide (199)175 

The title compound was prepared in 63% yield by the general procedure from 

adamantane, PhI=NTs (prepared by Method A), and I2 in CH2Cl2 at room 

temperature. 1H NMR (CDCl3, 300 MHz) δ 7.78 (d, J=8.1 Hz, 2H), 7.26 (d, J=7.5 

Hz, 2H), 4.64 (s, 1H, NH), 2.41 (s, 3H), 1.99 (br s, 3H), 1.77 (d, J=3.0 Hz, 6H), 1.57 

(m, 6H). GCMS (EI) 305 (M+). 

 

N-Adamantan-1-yl-4-nitro-benzenesulfonamide (223)31 

The title compound was prepared in 97% yield by the general procedure from 

adamantane, PhI=NNs, and I2 in CH2Cl2 at room temperature. 1H NMR (CDCl3, 300 

MHz) δ 8.29 (dd, J=6.9 Hz, J=1.9 Hz, 2H), 8.02 (d, J=7.6 Hz, J=8.1 Hz, J=2.1 Hz, 

2H), 4.79 (s, 1H, NH), 1.96 (br s, 3H), 1.73 (d, J=2.7 Hz, 6H), 1.54 (m, 6H). LRMS 

(ESI) 359 (M + Na+). 

 

[4-Methyl-N-(1-phenylethyl)-benzenesulfonamide] (171)175 

The title compound was prepared in 78% yield by the general procedure from 

ethylbenzene, PhI=NTs (prepared by Method A), and I2 in CH2Cl2 at room 

temperature. 1H NMR (CDCl3, 300 MHz) δ 7.60 (d, J=7.5 Hz, 2H), 7.18 (m, 5H), 

7.09 (m, 2H), 4.96 (d, J=6.6 Hz, 1H, NH), 4.45 (m, J=7.2 Hz, 1H), 2.37 (s, 3H), 1.41 

(d, J=6.9 Hz, 3H). LRMS (ESI) 298 (M + Na+). 
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[4-Nitro-N-(1-phenylethyl)-benzenesulfonamide] (209)31 

The title compound was prepared in 73% yield by the general procedure from 

ethylbenzene, PhI=NNs, and I2 in CH2Cl2 at room temperature. 1H NMR (CDCl3, 300 

MHz) δ 8.06 (dd, J=6.9 Hz, J=1.8 Hz, 2H), 7.70 (d, J=6.3 Hz, J=2.4 Hz, 2H), 7.08 

(m, 3H), 6.96 (m, 2H), 5.19 (d, J=7.2 Hz, 1H, NH), 4.53 (m, J=6.9 Hz, 1H), 1.41 (d, 

J=7.2 Hz, 3H). LRMS (ESI) 329 (M + Na+). 

 

N-[1-(4-Methoxyphenyl)ethyl]-4-methyl-benzenesulfonamide (181)175 

The title compound was prepared in 91% yield by the general procedure from 4-

ethylanisole, PhI=NTs (prepared by Method A), and I2 in CH2Cl2 at room 

temperature. 1H NMR (CDCl3, 300 MHz) δ 7.63 (dd, J=8.4 Hz, J=1.6 Hz, 2H), 7.21 

(d, J=7.8 Hz, 2H), 7.01 (d, J=7.8 Hz, 2H), 6.73 (dd, J=9.0 Hz, J=2.7 Hz, 2H), 4.58 

(m, 1H, NH), 4.42 (m, J=7.2 Hz, 1H), 3.77 (s, 3H). 2.41 (s, 3H), 1.42 (d, J=6.9 Hz, 

3H). LRMS (ESI) 328 (M + Na+). 

 

N-[1-(4-Methoxyphenyl)ethyl]-4-nitro-benzenesulfonamide (210)31 

The title compound was prepared in 80% yield by the general procedure from 4-

ethylanisole, PhI=NNs, and I2 in CH2Cl2 at room temperature.  1H NMR (CDCl3, 300 

MHz) δ 8.12 (d, J=9.0 Hz, 2H), 7.76 (d, J=8.7 Hz, 2H), 6.93 (d, J=8.1 Hz, 2H), 6.62 

(d, J=8.4 Hz, 2H), 5.18 (d, J=6.3 Hz, 1H, NH), 4.52 (m, J=6.7 Hz, 1H), 3.96 (s, 3H). 

1.43 (d, J=7.2 Hz, 3H). LRMS (ESI) 359 (M + Na+). 
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N-Indan-1-yl-4-methyl-benzenesulfonamide (189)175 

The title compound was prepared in 72% yield by the general procedure from indan, 

PhI=NTs (prepared by Method A), and I2 in CH2Cl2 at room temperature.  1H NMR 

(CDCl3, 300 MHz) δ 7.83 (d, J=8.4 Hz, 2H), 7.33 (d, J=8.4 Hz, 2H), 7.13 (m, 4H), 

4.80 (m, 2H), 2.90 (m, 1H), 2.76 (m, 1H), 2.45 (s, 3H). 2.30 (m, 1H), 1.76 (m, 1H). 

LRMS (ESI) 310 (M + Na+). 

 

N-Indan-1-yl-4-nitro-benzenesulfonamide (211)31 

The title compound was prepared in 60% yield by the general procedure from indan, 

PhI=NNs, and I2 in CH2Cl2 at room temperature.  1H NMR (CDCl3, 300 MHz) δ 8.34 

(dd, J=8.7 Hz, J=2.4 Hz, 2H), 8.05 (d, J=8.7 Hz, J=2.4 Hz, 2H), 7.18 (m, 4H), 4.84 

(m, 2H), 2.85 (m, 1H), 2.71 (m, 1H), 2.31 (m, 1H). 1.71 (m, 1H). LRMS (ESI) 341 

(M + Na+). 

 

4-Methyl-N-(1-p-nitrophenyl-ethyl)-benzenesulfonamide (212)31 

The title compound was prepared in 50% yield by the general procedure from 4-

ethyltoluene, PhI=NNs, and I2 in CH2Cl2 at room temperature.  1H NMR (CDCl3, 300 

MHz) δ 8.06 (d, J=9.0 Hz, 2H), 7.70 (d, J=8.1 Hz, 2H), 6.86 (m, 4H), 5.12 (d, J=7.2 

Hz, 1H, NH), 4.48 (m, J=7.2 Hz, 1H), 2.17 (s, 3H), 1.39 (d, J=7.5 Hz, 3H). LRMS 

(ESI) 343 (M + Na+). 

 

4-Nitro-N-[1-(4-Iodo-phenyl)-ethyl]-benzenesulfonamide (213) 
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The title compound (white solid) was prepared in 57% yield by the general procedure 

from 4-iodo-ethylbenzene, PhI=NNs, and I2 in CH2Cl2 at room temperature.  m.p. 

192-194 °C. 1H NMR (CDCl3, 300 MHz) δ 8.13 (dd, 2H, J=8.1 and 1.8 Hz), 7.73 (dd, 

2H, J=7.8 and 2.4 Hz), 7.43 (dd, 2H, J=6.6 and 1.8 Hz), 6.76 (dd, 2H, J=6.6 and 1.8 

Hz), 4.85 (d, 1H, J=6.3 Hz), 4.51-4.46 (m, 1H), 1.38 (d, 3H, J=6.9 Hz). 13C NMR 

(CDCl3 75 MHz) δ 146.4, 140.6, 137.7, 128.2, 124.1, 110.0, 93.4, 53.7, 23.4. HRMS 

(ESI) calculated for C14IN2SO4H13 (M+Na+) requires m/z 454.9538, found m/z 

454.9560.  
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4-Nitro-N-(1-methyl-1-phenyl-ethyl)-benzenesulfonamide (218)31 

The title compound was prepared in 40% yield by the general procedure from 

cumene, PhI=NNs, and I2 in CH2Cl2 at room temperature.  1H NMR (CDCl3, 300 

MHz) δ 8.13 (d, J=8.1 Hz, 2H), 7.67 (d, J=8.1 Hz, 2H), 7.20 (dd, J=8.1 Hz, J=2.4 Hz, 

2H), 7.12 (m, 3H), 5.30 (s, 1H, NH), 1.70 (s, 6H). LRMS (ESI) 343 (M + Na+). 

 

4-Nitro-N-(1-methyl-1-phenyl-2-iodoethyl)-benzenesulfonamide (219) 

The title compound (tan solid) was prepared in 14% yield by the general procedure 

from cumene, PhI=NNs, and I2 in CH2Cl2 at room temperature.  m.p. 133-135 °C. 1H 

NMR (CDCl3, 300 MHz) δ 8.12 (d, 2H, J=9.3 Hz), 7.69 (d, 2H, J=9.0 Hz), 7.19-7.13 

(m, 5H), 5.29 (s, 1H), 3.78 (d, 1H, J=10.8 Hz), 3.52 (d, 1H, J=10.5 Hz), 1.76 (s, 3H). 

13C NMR (CDCl3 75 MHz) δ 152.3, 150.2, 142.0, 131.2, 131.0, 129.0, 127.1, 126.6, 

62.9, 29.9, 23.1.  HRMS (ESI) calculated for C15IN2SO4H15 (M+Na+) requires m/z 

468.9695, found m/z 468.9667.  
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N-(1-Methyl-1-phenylpropyl)-4-nitrobenzenesulfonamide (217)31 

The title compound was prepared in 24% yield by the general procedure from 2-

butylbenzene, PhI=NNs, and I2 in CH2Cl2 at room temperature.  1H NMR (CDCl3, 

300 MHz) δ 8.03 (d, J=8.4 Hz, 2H), 7.59 (dd, J=6.6 Hz, J=1.8 Hz, 2H), 7.04 (m, 5H), 

5.11 (s, 1H, NH), 1.89 (m, 2H), 1.63 (s, 3H), 0.68 (t, J=7.5 Hz, 3H). LRMS (ESI) 357 

(M + Na+). 

 

Methyl-[4-{1-(4-nitrophenyl)sulfonylimino}ethyl]-benzoate (215) 

The title compound was prepared in 6% yield by the general procedure from methyl-

4-ethylbenzoate, PhI=NNs, and I2 in CH2Cl2 at room temperature.  1H NMR (CDCl3, 

300 MHz) δ 8.22 (d, J=7.8 Hz, 2H), 7.88 (m, 5H), 7.43 (d, J=8.4 Hz, 2H), 5.73 (q, 

J=7.8 Hz, 1H), 3.91 (s, 3H), 1.69 (d, J=6.9 Hz, 3H).  
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4-Nitro-N-(phenylmethyl)benzenesulfonamide (222)31 

The title compound was prepared in 13% yield by the general procedure from dry 

toluene, PhI=NNs, and I2 in CH2Cl2 at room temperature.  1H NMR (CDCl3, 300 

MHz) δ 8.25 (dd, J=7.2 Hz, J=1.8 Hz, 2H), 7.93 (dd, J=7.2 Hz, J=1.8 Hz, 2H), 7.20 

(m, 3H), 7.10 (m, 2H), 4.87 (br t, 1H, NH), 4.17 (d, J=6.3 Hz, 2H). LRMS (ESI) 315 

(M + Na+). 

 

4-Nitro-N-trityl-benzenesulfonamide (220) 

The title compound was prepared in 24% yield by the general procedure from 

triphenylmethane, PhI=NNs, and I2 in CH2Cl2 at room temperature.  1H NMR 

(CDCl3, 300 MHz) δ 7.73 (d, J=8.1 Hz, 2H), 7.51 (t, J=6.9 Hz, 1H), 7.40 (t, J=7.5 

Hz, 2H), 7.20 (m, 14H), 2.76 (s, 1H, NH).  
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N-(Bicyclo[2.2.1]hept-2-exo-yl)-4-nitrobenzenesulfonamide (225)31 

The title compound was prepared in 20% yield by the general procedure from 

norbornane, PhI=NNs, and I2 in CH2Cl2 at room temperature.  1H NMR (CDCl3, 300 

MHz) δ 8.30 (d, J=8.7 Hz, 2H), 7.99 (d, J=8.4 Hz, 2H), 4.51 (d, J=7.5 Hz, 1H, NH), 

3.16 (dt, J=7.5 Hz, J=3.0 Hz, 1H), 2.17 (br s, 1H), 2.04 (br s, 1H), 1.59 (m, 1H), 1.45-

0.99 (m, 7H). LRMS (ESI) 319 (M + Na+). 

 

N-Cyclohex-2-enyl-4-nitrobenzenesulfonamide (229)31 

The title compound was prepared as an inseparable mixture with 227 in 24% total 

yield (in a 3 : 2 ratio of 229/227 as determined by 1H NMR analysis) by the general 

procedure from cyclohexene, PhI=NNs, and I2 in CH2Cl2 at room temperature.  1H 

NMR (CDCl3, 300 MHz) δ 8.31* (d, 2H), 8.31 (d, 2H), 8.02* (d, 2H), 8.02 (d, 2H), 

5.78* (m, 1H), 5.28* (m, 1H), 4.80 (d, J=7.5 Hz, 1H), 4.61* (d, J=6.6 Hz, 1H), 3.82* 

(m, 1H), 3.81 (m, 1H), 3.20 (m, 1H), 2.42-2.20 (m, 2H), 2.00-1.83 (m, 1H), 1.95* (m, 

2H), 1.78* (m, 1H), 1.75 (m, 1H), 1.50* (m, 3H), 1.48 (m, 1H), 1.40-1.10 (m, 3H). 

(NOTE – peaks marked * correspond to 229) 

 

N-Cyclohex-2-enyl-4-methyl-benzenesulfonamide (196)175 

The title compound was prepared as an inseparable mixture with 228 in 39% total 

yield (in a 1 : 1 ratio of 196/228 as determined by 1HNMR) by the general procedure 

from cyclohexene, PhI=NTs (prepared by Method A), and I2 in CH2Cl2 at room 

temperature.  1H NMR (CDCl3, 300 MHz) δ 7.72* (d, 2H), 7.70 (d, 2H), 7.24* (d, 

2H), 7.21 (d, 2H), 5.69* (m, 1H), 5.28* (m, 1H), 4.87 (d, J=6.3 Hz, 1H, NH), 4.54* 
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(d, J=9.9 Hz, 1H, NH), 3.90 (m, 1H), 3.75* (m, 1H), 3.19 (m, 1H), 2.39* (s, 3H), 

2.39 (s, 3H), 2.21 (m, 2H), 1.90* (m, 2H), 1.88-1.20 (m, 6H), 1.71* (m, 1H), 1.52* 

(m, 3H). (NOTE – peaks marked * correspond to 196) 

 

N-(2-Iodo-cyclohexyl)-4-nitro-benzenesulfonamide (227) 

The title compound (white solid) was prepared in 17% yield by the general procedure 

from cyclohexane, PhI=NNs, and I2 in DCE at 75oC.  m.p. 177-180 °C. 1H NMR 

(CDCl3, 300 MHz) δ 8.31 (d, 2H, J=9.0 Hz), 8.02 (d, 2H, J=9.9 Hz), 4.73 (d, 1H, 

J=10.2 Hz), 3.84-3.75 (dt, 1H, J=10.8 and 3.9 Hz), 3.25-3.16 (m, 1H), 2.42-2.20 (m, 

2H), 2.00-1.83 (m, 1H), 1.79-1.70 (m, 1H), 1.48 (m, 1H), 1.40-1.10 (m, 3H). 13C 

NMR (CD2Cl2 75 MHz) δ 148.7, 131.4, 127.0, 126.9, 63.1, 42.0, 37.6, 37.2, 30.0, 

26.9. HRMS (ESI) calculated for C12IN2SO4H15 (M+Na+) requires m/z 432.9695, 

found m/z 432.9696. It remains difficult to definitively state whether the vicinal 

substitution is cis or trans. Observed coupling values could be within the range of 

either, and no additional investigation was conducted.  
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4.6.8 General Procedures for the Mechanistic Experiments 

Kinetic Isotope Experiment 

To a mixture of 1,3-d2-adamantane 235 (40.0 mg, 0.290 mmol), iodine (7.4 

mg, 0.029 mmol), and 1-1.5 mL of anhydrous CH2Cl2 was added PhI=NZ (Z = Ns, 59 

mg; Z = Ts, 54 mg; 0.145 mmol) under argon at room temperature and stirred 

overnight. Upon completion of the reaction, solvent was removed under vacuum and 

the crude mixture was isolated via flash chromatography over silica gel with CH2Cl2 

as eluant. The isolated white solid was then dissolved in MeOH and the solvent 

removed via rotary evaporator a series of five times. The solid was then analyzed by 

MS-ESI, and the theoretical natural abundance isotopic contribution of pure D1-Ad-

NHZ (as calculated by Dr. Foster) was subtracted from the overall abundance of D2- 

Ad-NHZ.   

D

H

H

H

D

D

H

H

(1-y)

y

1-Ad-NHZ-d0     (weight = a)

1-Ad-NHZ-d1     (weight = b)

1-Ad-NHZ-d2     (weight = c)

kD

3kH

2kD

2kH

1.6% Ad-d1

98.4% Ad-d2

a = (1-y)kD

b = 3(1-y)kH + 2ykD

c = 2ykH

b/c = 3(1-y)/2y + kD/kH

kH/kD = 1/[b/c - 3(1-y)/2y]

 

Figure 4.24162 

[D1-D2]-236,237 (Ts)  

MS-ESI observed abundances: D1-236 [329 (M + Na+)] = 8930. Theoretical isotopic 

natural abundance contribution of D1-236 to D2-237 = 20.49% (1829.8). D2-237 [330 
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(M + Na+)] = 42500 (40670 after subtraction of natural contribution). kH/kD = D2/D1 = 

40670/8930 = 4.55     (82% D2-237, 18% D1-236) 

Calculational correction: kH/kD = 1/[(8930/40670) – 3(0.016)/2(0.984)] = 5.123 

 

[D1-D2]-238,239 (Ns)  

MS-ESI observed abundances: D1-238 [360 (M + Na+)] = 3590. Theoretical isotopic 

natural abundance contribution of D1-238 to D2-239 = 19.77% (709.7). D2-239 [361 

(M + Na+)] = 9730 (9021 after subtraction of natural contribution). kH/kD = D2/D1 = 

9021/3590 = 2.51   (72% D2-239, 28% D1-238)   

Calculational correction: kH/kD = 1/[(3590/9021) – 3(0.016)/2(0.984)] = 2.68 

 

Hammett Analysis via Competition Experiments of Ethylbenzene versus 

p-Substituted Ethylbenzene Substrates 

To a mixture of 1.25 mmol p-substituted ethylbenzene, 1.25 mmol 

ethylbenzene, 0.050 mmol I2, and 1-2 mL CH2Cl2 was added 0.250 mmol PhI=NNs 

all at once. The reaction vessel was then flushed with argon and stirred overnight. 

Upon completion of the reaction, samples were taken for GC yield determination. The 

ratio of aminosulfonated products was determined by GC using previously 

determined mass ratios of both products as well as using naphthalene as internal 

standard. 
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Radical Clock Substrate Test Reaction 

To a mixture of [(2-phenylcyclopropyl)methyl]-benzene (131 mg, 0.625 

mmol), iodine (6.8 mg, 0.025 mmol), and 1-2 mL CH2Cl2 was added PhI=NNs (51.0 

mg, 0.125 mmol) all at once. The reaction vessel was then flushed with argon and 

stirred at room temperature overnight. Upon completion of the reaction, solvent was 

removed under vacuum and the crude mixture was isolated via preparatory TLC with 

CH2Cl2 as eluant, affording the pyrrolidine product as a white solid in 14% yield (or 

69% relative to I2) without observation of any other amidated products. 

 

3-Iodo-2,5-diphenyl-1-nosylpyrrolidine (241) 

1H NMR (CDCl3, 300 MHz) δ 7.91 (dd, J=11.1 Hz, J=2.4 Hz, 2H), 7.30 (m, 9H), 

7.16 (m, 3H), 5.41 (d, J=2.4 Hz, 1H), 5.22 (dd, J=9.3 Hz, J=5.4 Hz, 1H), 4.36 (dt, 

J=7.2 Hz, J=7.8 Hz, J=4.5 Hz, 1H), 3.19 (m, 1H), 2.50 (dt, J=20.7 Hz, J=5.4 Hz, 

J=4.5 Hz, 1H). 13C NMR (CDCl3 75 MHz) δ 164.7, 149.1, 146.7, 138.8, 138.6, 129.3, 

128.9, 128.6, 128.3, 128.1, 126.8, 123.3, 77.8. 65.5, 45.5, 24.5. HRMS (ESI) 

calculated for C22IN2SO4H19 (M+Na+) requires m/z 557.0008, found m/z 556.9981. In 

the NOESY spectrum of 241, cross-peaks were observed between H-A/H-E, H-D/H-

B, and H-E/H-C. 
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Stereochemical Test of cis-168 with PhI=NNs 

To a mixture of [cis-4-(tert-butyl)cyclohexyl]-benzene 168 (135 mg, 0.625 

mmol), iodine (6.8 mg, 0.025 mmol), and 1-2 mL CH2Cl2 was added PhI=NNs (50.5 

mg, 0.125 mmol) all at once. The reaction vessel was then flushed with argon and 

stirred at room temperature overnight. Upon completion of the reaction, solvent was 

removed under vacuum and the crude mixture was isolated via preparatory TLC with 

CH2Cl2 as eluant, affording the aminosulfonated product 242 as a white solid in 15% 

yield. 1H NMR (CDCl3, 300 MHz) δ 7.91 (d, J=6.0 Hz, 2H), 7.33 (d, J=6.0 Hz, 2H), 

7.11 (d, J=6.0 Hz, 2H), 6.99 (m, 3H), 4.82 (s, 1H, NH), 2.76 (d, J=8.4 Hz, 2H), 1.75 

(t, J=5.6 Hz, 2H), 1.59 (d, J=10.2 Hz, 2H), 1.04 (m, 1H), 0.84 (m, 3H), 0.64 (s, 9H). 

13C NMR (CDCl3 75 MHz) δ 149.0, 147.7, 137.5, 128.2, 128.1, 127.8, 127.6, 123.4, 

61.0, 47.5, 38.3, 32.2, 27.4, 23.7. LRMS (ESI) 471 (M + Na+). 
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1H NMR Experiment for Isolation of Solid (N-Ns)3I4 

To a vial containing 1.5 mL of CD2Cl2 was added PhI=NNs (20 mg, 0.05 

mmol), and the insoluble slurry was stirred 15 minutes at room temperature in the air 

before the entire sample was subjected to 1H NMR analysis (labeled ICA-80-1). 

Iodine (12.6 mg, 0.050 mmol) was then added and the mixture was stirred in air an 

additional 15 minutes before 1H NMR analysis (labeled ICA-80-2). To the reaction 

mixture was then added adamantane (6.3 mg, 0.050 mmol) and the mixture was 

stirred 15 minutes at room temperature in air before a 1H NMR spectra was obtained 

(labeled ICA-80-3). After stirring the mixture an additional 1.5 hrs, another 1H NMR 

spectrum was obtained (labeled ICA-80-4), and finally after allowing the reaction to 

stir overnight, an 1H NMR spectrum was obtained and labeled ICA-80-5.  
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Isolation of Solid (N-Ns)3I4 

To a heterogeneous mixture of PhI=NNs (100 mg, 0.25 mmol) in 3-4 mL CH2Cl2 was 

added iodine (63 mg, 0.25 mmol) and the mixture was stirred at room temperature in 

air 15 minutes. The dark orange precipitate was then filtered in air and rinsed three 

times with CH2Cl2 to remove any residual PhI and/or I2. The solid (~65 mg) was then 

dried in vacuo and flushed with argon before storage < 0oC. 1H NMR (DMSO-d-6, 

300 MHz) δ 8.47 (dd, J=7.8 Hz, J=2.4 Hz, 2H), 8.15 (dd, J=7.8 Hz, J=1.8 Hz, 2H). 

Elemental Analysis: 16.0% C, 5.93% N, 0.99% H, 36.10% I; 1.49 : 1 ratio of N to I; 

ratios of 4I, 6N, 18C, 12H. 
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Reaction of Solid (N-Ns)3I4 with Adamantane 

To adamantane (8.4 mg) in 1.5 mL CD2Cl2 was added 7.8 mg of orange solid (N-

Ns)3I4 and the heterogeneous mixture was stirred at room temperature in air 2 hours. 

The mixture became a dark red homogeneous solution and 1H NMR analysis was 

performed directly on the crude solution (labeled ICA-82-1).  

 

Procedure for UV-Vis Detection of Iodine from Reaction of Adamantane 

with Solid (N-Ns)3I4 

 To a quartz UV-Vis cuvette was added 5.4 mg of adamantane, 3-4 mL of wet 

CH2Cl2, and 5.0 mg of orange solid (N-Ns)3I4. Absorbance (at 504.2 λ-max) was 

measured at time 0 minutes, then the mixture was stirred in air at room temperature. 

Absorbance was measured every 5 minutes, and solvent was added as needed (due to 

evaporation) to maintain a full cuvette.  
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CHAPTER 5 

 

PROJECT SUMMARY AND FUTURE PLANS 

 

5.1 Project Summary 

As a result of our investigations into the discovery of new methodologies to 

form C-N bonds from transition metal-catalyzed C-H activation of hydrocarbons, we 

were able to successfully contribute to three areas of our overall project, i.e. milder 

allylic amination using nitroaromatics, N-containing heterocycle formation, and the 

direct amination of saturated hydrocarbons via nitrenoid precursors. Several of the 

developments made in these areas could additionally serve as platforms for further 

investigation and application within the context of the overall research project. 

Our attempts to develop a new catalytic allylic amination from nitrobenzene 

without the use of high pressures of CO and high temperatures were met with 

moderate success. Initially discovered by screening a number of heterogeous and 

homogeneous catalysts, the NaBH4/Fe(Pc) promoted reaction represents the first 

example of a mild bench-top allylic amination from nitroaromatics without the 

requirement of stoichiometric CO (Figure 5.1). The allylic amination of α-

methylstyrene resulted in low yields of the desired product (10-15%) and was 

consistently accompanied by large amounts of deleterious by-products. Though 

inefficient, the reaction remains novel and further investigation into the nature of the 

active catalyst could result in a synthetically useful reaction.  
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Figure 5.1 

 

In addition to the development of new catalytic methods of nitroaromatic 

reductive allylic amination, attempts to improve the conditions of the current high 

pressure and temperature system were also met with success. For example, the first 

microwave-assisted procedure for allylic amination from nitroaromatics was 

developed by employing either one atm CO, or one equivalent Fe(CO)5 as 

stoichiometric CO source (Figure 5.2). Yields obtained were relatively low (~20%), 

however, the procedure is performed in a more widely available reactor and requires 

shorter reaction times than the previously reported high pressure and temperature 

system. 
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Ph
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Fe-Catalyzed Microwave Assisted Allylic Amination of Nitrobenzene 
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81, 21%
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Figure 5.2 
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In addition, a more N-selective co-catalytic system was developed by employing 

CuBr with [CpFe(CO)2]2 under milder conditions such as 1000C and 10 atm CO 

pressure (Figure 5.3). These conditions enable the reaction to be conducted in Fisher-

Porter glass vessels, and slight improvements in the allylamine product yield (from 

41%) could make this a synthetically useful system due to the ease of purification 

from the high N-selectivity of the system. Further attempts to elucidate the role of CuI 

in the catalytic system could also prove fruitful in developing an even more reactive 

system. 

 

NO2

10 atm CO,

100oC

5 mol% Fp2,

5 mol% CuBr

+ Ph

H
N

Ph

CuI/Fp2-Catalyzed Allylic Amination of Nitrobenzene and !-Methylstyrene

81, 41%, 97% N-sel  

Figure 5.3 

 

In regard to our aim to investigate new methodologies of N-containing 

heterocycle formation, we have developed a new metal-catalyzed indolization 

reaction to produce 3-arylindoles from aryl hydroxylamines and alkynes in moderate 

to excellent yields (Figure 5.4). In the study, we were able to successfully address the 

challenge of developing a one-step procedure that utilizes convenient laboratory 

conditions in order to efficiently produce parent (NH) indoles. Using a procedure of 

slow addition of the aminating reagent, electron-donating and –withdrawing N-aryl 

hydroxylamines are both effective in the reaction. The N-aryl hydroxylamines used 
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are conveniently prepared in one step via reduction of nitroaromatics, and purified by 

recrystallization. In contrast, the nitrosoaromatics utilized in previous methods are 

formed in one step via oxidation of amines with purification generally by column 

chromatography. A variety of aryl alkynes can serve as effective coupling partners, 

including one with N-coordinating ability (4-ethynylpyridine), though aliphatic 

alkynes and propiolic esters were largely unsuccessful. Terminal and internal aryl 

alkynes can be converted with exceptional regioselectivity to 3-aryl products. Though 

the alkynes are used in excess (15-20 equiv), in most cases the alkyne could be almost 

completely recovered.  

 

Ar
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+

Y
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(Y)

Y
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Fe(Pc)-Catalyzed Parent (NH) Indole Formation from 
N-Arylhydroxylamines and Aryl Alkynes

 

Figure 5.4 

 

Another advantage of the system includes the use of inexpensive commercial 

catalysts such as Fe(Pc), FeII/III salts, and CuI/II salts, as well as easily prepared and 

inexpensive MoVI complexes. Owing to the technical ease of isolation of the parent 

(NH) indoles using the present one-step procedure, several previously untested N-

aromatic substrates and/or alkynes were utilized in this study resulting in several new 

indoles. Moreover, in this annulation reaction, an ortho-substituted arene or activated 
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scaffold is not required, resulting in a highly efficient and convergent generation of 

the indole skeleton. 

Finally, in our exploration of new methodologies for direct C-H insertion 

employing nitrenoid precursors, we were able to discover multiple novel systems. For 

example, the first non-transition metal as well as the first non-metal catalyzed 

amidation of benzylic and simple saturated hydrocarbons has been developed (Figure 

5.5). In the PhI=NTs/zinc-catalyzed system, it was discovered that water is necessary 

in the reaction in order to facilitate a zinc-aquo or acid-catalyzed reaction. Moderate 

to good yields were obtained from a variety of benzylic substrates, as well as a 

saturated sp3 C-H containing hydrocarbon, adamantane, by employment of an excess 

of the inexpensive hydrocarbon substrate. In addition to a zinc-aquo catalyzed 

reaction, the first example of the simple employment of protic acids was shown to 

catalyze amidation of ethylbenzene in as high as 32% (un-optimized) by 0.2 

equivalents of hydriodic acid. 

 

ZnII-aquo or Acid-Catalyzed Aminosulfonation of Benzylic and 3o Hydrocarbons 

with Imidoiodinanes

X

+ PhI=NTs

15 mol% ZnBr2, 

1 equiv H2O

or 15 mol% acid

Benzene, 45oC X

NHTs

+ Ph-I

 

Figure 5.5 

 

Our initial investigation into non-transition metal-catalyzed amidation then led 

us to develop an improved system. In our subsequent exploration, we have found that 
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1o, 2o, and 3o benzylic substrates along with some saturated and unsaturated 

hydrocarbons can be amino-functionalized by reaction of PhI=NZ catalyzed by 

inexpensive I2 (Figure 5.6). The resulting system is an operationally simple reaction 

conducted under very mild conditions that includes the employment of wet solvents at 

room temperature. Good to excellent yields of amidated products are obtained from 

secondary benzylic C-H containing substrates, with moderate-poor yields resulting 

from tertiary and primary benzylics. A number of saturated hydrocarbons also proved 

reactive, including the highest reported yield of a precursor to amantidine being 

obtained from the reaction of adamantane and PhI=NNs catalyzed by 20 mol% I2. In 

addition, the first examples of 1,2-functionalization of unactivated C-H bonds in a 

single reaction using imido-iodinanes as aminating agents have been observed.  
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I2-Catalyzed Aminosulfonation of Benzylic, 3o, and 2o Saturated 

Hydrocarbons with Imidoiodinanes

 

Figure 5.6 

 

Mechanistic investigations of the I2-catalyzed system have resulted in the 

isolation of a new and stable aminating reagent that can directly insert into benzylic 

and tertiary C-H bonds. In addition, mechanistic results such as the generation of 

alkenes from saturated hydrocarbons, formation of a pyrrolidine product from the 
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radical clock experiment, and the detection of a relatively large ρ-value of -2.77 from 

a Hammett competition experiment, indicate a highly reactive two-step process in 

which hydrogen or hydride is abstracted and C-N bond formation quickly follows. 

The stereochemical result in which only one isomer was produced (indicating a 

concerted insertion) remains mysterious along with the nature of the solid aminating 

agent, though attempts to crystallize the compound may result in a more definitive 

elucidation. 

 

5.2 Future Directions 

In the context of the overall Nicholas Group Amination Project goals, there 

are several areas of research remaining that could be identified as high priority. 

Investigations in the future could in fact be divided into two groups; more challenging 

problems such as catalyst design or methodology discovery (higher risk, higher 

reward), and lower risk studies such as the extension or improvement of our 

previously discovered methodologies into new areas and/or applications. In addition, 

future plans within each of the three areas of the project (allylic amination, indole 

formation, and nitrenoid insertion) are envisioned and will be discussed in a general 

sense. 

 

5.2.1 Allylic Amination via Nitroaromatic Reduction 

With the re-emergence of interest in allylic amination via C-H activation in 

the last few years (M. C. White’s bi-metallic system), more advances in the field may 

potentially come to light in the near future. In that time, it is the author’s opinion that 
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the most significant contribution that could be made still lies in the use of 

nitroaromatics as N-aminating agents in an intermolecular reaction. In order to 

overcome the harsh conditions associated with reduction of the nitro compound, a 

new or different strategy than that which is described in Chapter 2 is needed. A more 

in-depth investigation into either the Ni(PPh3)4
85 or CpCo(PPh3)2

86 complexes that are 

known to produce a metallo-oxaziridine from the stoichiometric reduction of a 

nitroaromatic at ambient temperatures is desired. A more complete study of the 

reactivity of the nitroso-coordinated metal complexes with olefins or nucleophiles 

under various conditions (thermal, photoassisted) or modification of the Ni(PPh3)4 or 

CpCo(PPh3)2 complexes may lead eventually to a new and mild catalytic system 

(Figure 5.7).    
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Figure 5.7 

 

In addition, the design of a new catalyst for nitroaromatic reduction is also 

envisioned. The currently employed [CpFe(CO)2]2 catalyst is particularly attractive as 

it is commercially available, however, modification of the Cp ligand for electronic or 

steric effects must be done synthetically since a variety of Cp dimers are not available 
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commercially. More desirable would be a metal complex in which adjustments 

towards the aforementioned effects could be easily made. For this purpose the 

synthesis of a series of novel tris-pyrazolylborate metal dimers189 or TpM(CO)n 

complexes190 for use as catalysts in the allylic amination from nitroaromatics reaction 

would be ideal (Figure 5.8). Replacing the Cp unit for Tp should allow for a tunable 

ligand system that could potentially be employed to reduce the conditions from 160oC 

and 700 psi of CO to a level that can be employed on a common bench top. 
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Figure 5.8 

 

5.2.2 Indole Formation 

The thermal nitroso/alkyne intermolecular annulation that has been discovered 

and investigated within the last eight years in the Nicholas Group is particularly 

attractive as a highly convergent reaction. The reaction employs relatively simple 

reagents that do not require additional ortho-functionalization of the N-aryl substrate, 

which is commonly found in transition metal-catalyzed methods. Though several 

improvements to the efficiency of the reaction have been developed, the system 

currently has limitations in regard to the range of alkynes that can be used. It has been 

shown through mechanistic calculations that a vinyl radical is present in the 
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mechanism.124 To date, the reaction has mainly only been shown to be effective with 

either acyl or aryl alkynes (both substituents are known to help stabilize vinyl 

radicals). Therefore, the use of transition metals to help stabilize the radical character 

of the intermediate may allow for a much wider range of alkyne to be employed, and 

potentially reduce the required reaction conditions from 80oC (Figure 5.9).  

N

R

O
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N

O

O
O

NR2

[M]

"Stabilized" Approach  

Figure 5.9 

 

In addition to attempts to improve the reaction, further application of the 

current system towards natural products or other indole-containing frameworks, such 

as indolocarbazoles, could be a fruitful area of investigation. The synthesis of 

carbazoles is an area of increasing intensity as the framework is found in numerous 

natural products, photochromic, and biologically active compounds.191 Currently, an 

efficient strategy to produce unsymmetrical indolocarbazoles is lacking. Employing 

our current indole-forming methods, the production of unsymmetrical carbazoles as 

well as other frameworks could be envisioned and investigated (Figure 5.10).  
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5.2.3 Nitrenoid C-H Insertion 

While the inter- and intramolecular insertion of nitrenoid precursors into 

benzylic C-H bonds has been shown to be a very valuable addition to amination 

methodology over the last ten years, several aspects of the generality of the 

transformation are still lacking. For example, chemo- and regioselective amination of 

aryl C-H bonds (such as in benzene) is still without an efficient catalytic method (see 

Chapter 1.2.2.7). To overcome this challenge, investigations employing an 

intramolecular directing group on an aryl substrate may serve to facilitate amidation 

and provide incremental advances towards discovery of a more reactive system 

(Figure 5.11). Another area requiring more attention is the functionalization of simple 

cyclic or linear alkanes (Chapter 1.2.2.6). In order to address this issue, the discovery 

and/or development of new, more reactive aminating reagents will most likely lead to 

the most significant advances.  
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The design of new aminating reagents should focus on the production of 

stable, electron-deficient, and “greener” substrates from commercially available 

sources. To date, very little attention has been given to the employment of azides in 

the nitrenoid precursor insertion reactions. Though potentially explosive, azides 

provide a “greener” approach to the transformation, and with the correct design could 

produce highly reactive N-sources. In addition, the development of a catalytic nitrido 

aminating system would be very interesting. Currently, the nitrido-metal complexes 

have only been shown to perform aziridination or C-H insertion reactions 

stoichiometrically. The systems remain intriguing due to the possible methods of 

production of the nitrido-metal complexes, which can include employment of 

ammonia as the stoichiometric N-source. Potentially with the design of a more 

reactive metal complex, the development of a catalytic system could be within reach. 

As extensions of our recently discovered methodologies within the Nicholas 

Group, several studies could be envisioned in order to develop more reactive systems, 

or to apply the current processes towards compounds of interest. For example, the 

chemo- and regioselective application of an intermolecular C-H insertion method to a 
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complex molecule in the synthesis of a natural product or analogue thereof has yet to 

be demonstrated as opposed to the numerous examples of the intramolecular version. 

By selection of the right complex molecule, this application should be able to be 

effectively illustrated. Another area deserving a more complete investigation lies 

within the chemoselectivity discrepancies of nitrenoid precursor reactivity with 

olefins (which can result in aziridination, allylic amination, or halo-amination). An 

effective study could lead to the development of a highly desirable more 

chemospecific catalytic method of allylic amination via C-H activation. In addition, 

the development of an enantioselective allylic amination is also attractive, though 

challenging, as current reported methods only provide low-moderate ee’s (see 

Chapter 1.2.2.5). 

Finally, to further investigate the recently developed I2-catalyzed amidation of 

hydrocarbons by imidoiodinanes, attempts could be made to elucidate the structure of 

the solid aminating agent in order to develop a more reactive species. Potential 

advances could also be made by the simple exploration of mixed halogens (such as I-

Br, I-Cl, etc.) instead of I2, different imidoiodinanes, or system additives in 

conjunction with representative hydrocarbons.  
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