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Abstract 

A data stream is a sequence of items that arrive in a timely order. Different 

from data in traditional static databases, data streams are continuous, unbounded, 

usually come with high speed, and have a data value distribution that often changes 

with time (Guha, 2001). As more applications such as web transactions, telephone 

records, and network flows generate a large number of data streams every day, 

efficient knowledge discovery of data streams is an active and growing research area 

in data mining with broad applications. Traditional data mining algorithms are 

developed to work on a complete static dataset and, thus, cannot be applied directly 

in data stream applications.  

One area of data mining research is to mine association relationship in a data 

set. Most of association mining techniques for data streams can be categorized into 

two types: those developed based on frequent patterns and those developed based on 

closed patterns. Due to the number of frequent patterns are often huge and redundant, 

non-informative patterns are contained in frequent patterns. An alternative way is to 

develop the association mining approaches for data streaming applications based on 

closed patterns, which generally represent a small subset of all frequent patterns, but 

provide complete and condensed information. In these researches, the closed pattern 

mining is the prerequisite condition for non-redundant and informative association 

mining. 
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In this dissertation, a sliding window technique for dynamic mining of closed 

patterns in data streams is proposed, and an approach of mining non-redundant and 

informative associations based on the discovered closed patterns is developed. The 

closed pattern and relevant association mining techniques are selected research area 

in this dissertation. First, the closed patterns for a given collection of data are 

currently the most compact data knowledge that can provide complete support 

information for all data patterns. Compared with other techniques, the proposed 

closed pattern mining technique has potential to largely decrease the number of 

subsequent combinatorial calculations performed on the data patterns. Second, the 

memory requirement to store the closed patterns and relevant associations is 

generally lower than the corresponding frequent patterns and associations. In some 

data streaming applications, memory usage is an important measurement, because in 

these applications memory usage is the bottleneck for knowledge discovery. Third, 

the associations generated for data streams are the knowledge used to identify the 

relations within the data. The discovered relations can find their wide applications in 

many data streaming environments.  

Different from the closed pattern mining techniques on traditional databases, 

which require multiple scans of the entire database, the proposed technique 

determines the closed patterns with a single scan. It is an incremental mining 

process; as the sliding window advances, new data transactions enter and old data 

transactions exit the window. But instead of regenerating closed patterns from the 

entire window, the proposed technique updates the old set of closed patterns 
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whenever a new transaction arrives and/or an old transaction leaves the sliding 

window to obtain the current set of closed patterns. This incremental feature allows 

the user to get the most recent updated closed patterns without rescanning the entire 

updated database, which saves not only the computation time, but more importantly, 

the I/O operating time to load and write data from database to memory. Third, the 

proposed sliding window technique can handle both the insertion and deletion 

operations independently, which allows the user to adjust the sliding window size in 

different application environments. Furthermore, the proposed interesting patterns 

and association mining framework can handle different users’ requests at the same 

time at their specified support and confidence thresholds, and interested input and 

output patterns. 

The research includes both theoretical proofs of correctness for the proposed 

algorithms and simulation experiments to compare the proposed techniques with 

those existing in the literature using synthetic and real datasets. The utility of the 

proposed technique is applied to sensor network databases of a traffic management 

and an environmental monitoring site for missing data estimation purpose. 
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1 Introduction 

1.1 Problem Definition 

1.1.1 Data Mining and Knowledge Discovery 

The term ‘data mining’ refers to a process of nontrivial extraction of implicit, 

previously unknown, and potentially useful information (such as knowledge rules, 

regularities and outliers) from data in databases (Tan, 2005). The term ‘knowledge 

discovery’ is more general than the term ‘data mining’. Data mining is usually 

viewed as a step in the process of knowledge discovery (Han, 2001). The entire life 

cycle of knowledge discovery includes steps such as data cleaning, data integration, 

data selection, data transformation, data mining, pattern evaluation, and knowledge 

presentation.  

Briefly stated, Knowledge Discovery in Database (KDD) is the rapidly 

growing inter-disciplinary field that merges together database management, 

statistics, and machine leaning and aims to extract useful and understandable 

knowledge from large volumes of data. Data mining is a critical step of the KDD 

process that performs the extraction of unknown knowledge in data. Data mining can 

be performed on a variety of data stores, including relational databases, transactional 

databases, data warehouses, and data streams. A comprehensive data mining system 

usually provides multiple mining functions. Association mining is one of the key 

features that can be found in such systems. 
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1.1.2 Data Streaming Application 

A data stream is a sequence of items that arrive in a timed order. Different 

from data in traditional static databases, data streams are continuous, unbounded, 

usually arrive with high speed, and have a data value distribution that often changes 

with time (Guha, 2001).  A data stream is represented mathematically as an ordered 

pair (r, ∆) where: r is a sequence of tuples, ∆ is the sequence of time intervals (i.e. 

rational or real numbers) and each ∆i > 0.  

Applications that reply on data streams can be classified into offline and 

online streaming. Offline streaming applications are characterized by regular bulk 

arrivals (Manku, 2002). Generating reports based on accumulated web log streams is 

an example of mining offline data streams because most of reports are made based 

on log data that is collected over a relatively large period of time. Online streaming 

applications are characterized by real-time updated data that needs to be quickly 

processed as the data is arrived. Predicting frequency of Internet packet streams is an 

application of mining online data streams because the prediction needs to be made in 

real time. Other potential online data streaming applications include stock tickers, 

network measurements, and evaluation of sensor data. In online data streaming 

applications, data is often discarded soon after it arrives and has been processed, 

because of the high update rate and huge resulting amount of data. Therefore, unlike 

offline data streaming applications, bulk processing a large portion of received data 

is not appropriate for online data streaming applications.  
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1.1.3 Association Rule and Association Mining 

An association rule is an implication of the form X ⇒ Y (s, c), where X and Y 

are frequent sets of items (also called itemsets) in a database, and X ∩ Y = φ. The 

parameter s, support of the rule, represents the percentage of records that contain 

both X and Y in the database. The parameter c, confidence of the rule, is the 

percentage of records containing X that also contain Y. An association rule is said to 

hold if both s and c are above or equal to a user-specified minimum support and 

confidence (Agrawal, 1993). 

Association mining, also called association rule mining, searches for 

interesting relationships among items in a given database and displays them in rule 

form, for example X ⇒ Y. In practice, association mining involves finding 

association rules, the support and confidence of which are above or equal to a user-

specified minimum support and confidence, respectively (Agrawal, 1993).  

With the massive amounts of data continuously being collected and stored in 

databases, many industries are becoming interested in mining associations. Below is 

a typical market basket analysis example of association mining. 

Example 1.1 Suppose, as a manager of a supermarket, you would like to 

learn more about the buying habits of your customers. Specifically, you may wonder 

“Which groups or sets of items are customers likely to purchase on a given trip to the 

supermarket?” To answer your question, association mining can be performed on the 

retail data of customer transactions at your supermarket. The knowledge that 
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customers who purchase bread also tend to buy milk at the same time is represented 

in the association rule below. 

bread ⇒ milk (s = 2%, c = 60%) 

Support and confidence are two measures of rule interestingness. In the 

above association rule, the support of 2% means that 2% of all the transactions under 

analysis show that bread and milk are purchased together. The confidence of 60% 

means that 60% of the customers who purchase bread also buy milk. For this 

example, it should be noticed that the association rule: milk ⇒ bread, has the same 

support, but not necessarily the same confidence as the association rule: bread ⇒ 

milk. In short, support represents the percentage of data samples that the given rule 

satisfies and confidence assesses the degree of certainty of the detected association. 

Support and confidence thresholds are usually set by users or domain experts. 

Association rule mining is typically considered to be a two-step process 

(Agrawal, 1993).  

Step 1:  Find all frequent patterns. By definition, each of these patterns will 

occur at least as frequently as a user-specified minimum support 

count.  

Step 2: Generate strong association rules above user-specified support and 

confidence thresholds from the frequent patterns.  
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Frequent pattern mining (Step 1) is a crucial step of the process, and its 

computational efficiency strongly impacts the overall performance of mining 

association rules (Agrawal, 1994). 

1.1.4 Frequent Itemsets and Closed Itemsets 

An itemset is frequent if its support is above or equal to a user-specified 

support threshold. An itemset is closed if none of its proper supersets has the same 

support as it has (a formal mathematical definition of a closed itemset is given in 

Chapter 3). A closed frequent itemset is an itemset that is both frequent and closed.  

1.1.5 Frequent Pattern Mining and Closed Pattern Mining 

As discussed in Section 1.1.3, frequent pattern mining is a crucial step of 

mining associations. A number of methods have been proposed and developed for 

frequent pattern mining in various kinds of databases, including transaction 

databases and time series databases. These methods can be roughly classified into 

two groups: frequent pattern mining and closed pattern mining. 

The process of discovering the entire collection of frequent itemsets is called 

frequent pattern mining. Mining all frequent patterns often generates a large number 

of frequent itemsets due to the following combinatorial reality: for any collection of 

frequent itemsets, their subsets are also frequent. For example, assume the itemset 

{ a, b} has a frequency of three. Therefore, the subsets of this itemset, which are {a} 

and {b}, also are frequent patterns with a support of at least three. 
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Closed pattern mining is a process of discovering the entire collection of 

closed frequent itemsets, which is generally a small subset of the complete set of 

frequent itemsets (Pasquier, 1999). Referring back to the example in the previous 

paragraph, because items {a} and {b} both have a support of three, and the itemset 

{ a, b} also has a support of three, then we conclude that the items {a} and {b} are 

not closed relative to a support value of three. 

1.1.6 Association Mining in Data Streams based on Closed Pattern 

Mining 

From the above discussions, we can see that the purpose of association 

mining in data streams based on closed pattern mining is to discover interesting 

associations among closed patterns in a given data stream. Similar with the process 

of discovering associations based on frequent pattern mining, it is a two-step process.  

Step 1: Find all closed patterns. By definition, each of these closed patterns 

will occur at least as frequently as a user-specified minimum support 

count.  

Step 2: Generate strong association rules above user-specified support and 

confidence thresholds from the closed patterns.  

Closed pattern mining (Step 1) is a crucial step of the process, and its computational 

efficiency strongly impacts the overall performance of the mining process.  
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Many researchers have been discussing the theoretical foundations and 

complexity of closed pattern and association mining including (Zaki 1998, Wijsen 

1998, Angiulli 2004, Yang 2004). In the following study, we focus is not on 

asymptotic complexity analysis, but rather we focus on discovering and applying the 

closed pattern and association mining in practical data streaming applications. 

1.2 Motivation 

As the number of data streaming applications grows, there is an increasing 

need to perform association mining in data streams. One example application is to 

estimate missing data in sensor networks (Halatchev, 2005). Another example 

application is to predict frequency of Internet packet streams (Demaine, 2002). In the 

MAIDS project (Cai, 2004), an association mining technique is used to find alarming 

incidents from data streams. Association mining can also be applied to monitor 

manufacturing flows (Kargupta, 2004) to predict failures or generate reports based 

on accumulated web log streams. 

Traditional association mining algorithms are developed to work on a 

complete static dataset and, thus, cannot be applied directly to mine associations in 

data streams. A number of association mining techniques for data streams have been 

developed recently, and most of them are based on mining frequent patterns, the 

number of which might be huge due to the number of redundant and non-informative 

patterns that they contain. Thus, these types of approaches are not always efficient 

for data streaming applications. An alternative approach is to mine closed patterns, 
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which generally represent a small subset of all corresponding frequent patterns, but 

provide complete and condensed information. Once the closed patterns are 

determined, then non-redundant and informative associations can be found based on 

these closed patterns. 

Our motivation for developing the proposed closed pattern and association 

mining technique are as follows. First, the number of closed patterns for a given 

collection of data items is generally much smaller than the corresponding set of 

frequent patterns for the same data items. Thus the approach has potential to largely 

decrease the number of subsequent combinatorial calculations performed on the 

patterns. Second, because the number of closed patterns is generally smaller than the 

corresponding number of frequent patterns, memory usage is reduced. Third, 

associations generated from closed patterns contain non-redundant information, 

which is more easily understandable. Therefore, the objective of this study is to 

develop an efficient closed pattern mining technique for data streams, and to derive 

non-redundant and informative association rules based on the discovered closed 

patterns. 

Due to the characteristics of streaming data, there are some inherent 

challenges and issues need to be considered for association mining in data streams. 

First, due to the continuous, unbounded, and high speed characteristics of data 

streams (Guha, 2001), they contain a huge amount of data, and thus, there is usually 

not enough time to rescan the whole database or perform multiple scans whenever an 
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update occurs, as in traditional data mining algorithms. This is especially true in 

online data streaming applications, which require real-time updated results. 

Furthermore, there is often not enough space to store all the streaming data for 

processing over the entire dataset. Therefore, the single scan of data and compact 

memory usage of the association mining technique are preferable. Second, the 

mining method of data streams needs to adapt to the changing data value 

distribution; otherwise, it may result in what is known as the “concept drifting 

problem” (Wang, 2003) – as new streaming data arrives, the patterns which are 

previously frequent or closed may become infrequent and unclosed, and vice versa – 

and not perform well when the mining concepts changes dramatically. Third, due to 

the high speed characteristics of online data streams, they need to be processed as 

fast as possible; the speed of the mining algorithm should be faster than the data 

input rate. Otherwise, data approximation techniques, such as sampling and load 

shedding, must be applied and these generally decrease the accuracy of the mining 

results. Fourth, due to the high update rate characteristics of streaming data, mining 

of data streams is better performed as an incremental process. In other words, the 

new iterations of mining results are incrementally built based on old mining results 

combined with newly received items so that the results will not have to completely 

be recalculated each time a user’s querying request is received.  

The proposed technique is applied to sensor network databases of a traffic 

management and an environmental monitoring site for missing data estimation 
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purpose, in which data missing by a sensor is estimated using the data generated by 

its related sensors. 

1.3 Research Contributions 

In this research we developed an incremental closed pattern mining technique 

for data streams. By mining closed patterns, which are generally much smaller 

subsets of the corresponding frequent patterns, this technique has potential to largely 

decrease the size of the subsequent combinatorial calculation performed on the 

patterns, which could be more serious in the streaming environment because of the 

huge amount of streaming data. Also, by storing complete and compact information, 

the technique reduces memory usage while still providing complete information to 

fulfill different users’ requests. Different from the closed pattern mining techniques 

on traditional databases, which require multiple scans of the entire database, the 

proposed technique determines the closed patterns with a single scan. It is an 

incremental mining process; as the sliding window advances, new data items enter 

and old data items exit the window. But instead of regenerating closed patterns from 

the entire window, it updates the old set of closed patterns whenever a new 

transaction arrives and/or an old transaction leaves the sliding window to obtain the 

current closed patterns. This incremental feature allows the user to get the most 

recent updated closed patterns without rescanning the entire updated database, which 

saves not only the computation time, but more importantly, the I/O operating time to 

load and write data from database to memory. Furthermore, the proposed sliding 
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window technique can handle both the insertion and deletion operations 

independently, which allows the user to adjust the sliding window size in different 

application environments.  

We then developed an association mining framework in data streams to 

derive interesting associations based on the discovered closed patterns. The 

associations generated from closed patterns contain non-redundant and complete 

information, which are more useful and concise for data analysis than the 

associations generated based on frequent patterns (Zaki, 2000). Based on the users’ 

querying requests, different sets of non-redundant and correlated association rules 

which contains user interested input and output patterns can be generated at the same 

time with users’ specified support and confidence thresholds. 

Furthermore, a data estimation algorithm based on our proposed association 

rule mining technique is developed for sensor network database applications of a 

traffic management and an environmental monitoring site to first identify the related 

sensors, and then compute the estimated values of missing data from a sensor by 

using the data generated by its related sensors. This technique enables us to find out 

the relationships between two or more sensors when they have the same or different 

values, therefore it can improve the estimation accuracy compared to the existing 

technique in the literature which tracks relationships between two sensors when they 

report the same value, while still achieving both time and space efficiency. 
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1.4 Dissertation Structure 

The rest of this dissertation is arranged as follows. Chapter 2 reviews the 

related work. This chapter is divided into three major sections that correspond to the 

background materials relevant to the work presented in Chapters 4, 5, and 6, 

respectively. Chapter 3 presents preliminary concepts and definitions that are used 

throughout the remainder of the dissertation. Chapter 4 introduces the main 

contribution of the dissertation, which is the development of the sliding window 

algorithm for closed pattern mining in data streams. Chapter 5 describes the 

association mining framework based on closed pattern mining developed in Chapter 

4. Chapter 6 illustrates how the association mining based on closed patterns can be 

applied to sensor network database applications for missing data estimation purpose. 

Chapter 7 describes the simulation experiment results of the proposed work and 

comparing it with the existing literatures. Chapter 8 summarizes the work that has 

been done, outlines directions of future work, and concludes the dissertation.  
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2 Related Work 

In this chapter, the existing literatures are reviewed for three main areas: data 

pattern mining, association mining, and missing data estimation. These are covered 

in three sections, and provide the relevant background for the discussions in Chapters 

4, 5 and 6, respectively.  

2.1 Data Pattern Mining 

2.1.1 Frequent Pattern Mining on Static Data 

Traditional frequent pattern mining algorithms are developed to work on 

static data and, thus, are not suitable to be used for frequent pattern mining in online 

data streaming applications. The first recognized frequent pattern mining algorithm 

for traditional databases is Apriori (Agrawal, 1993). The Apriori Algorithm finds the 

frequent patterns by repeating the following steps through multiple scans of the 

database. At step k, it finds the frequent k-itemsets. The set of all frequent k-itemsets 

is denoted by Lk. Then the candidate k+1 frequent itemsets, denoted by Ck+1, are 

generated by combining all combinations of itemsets in Lk. Finally, in the prune 

phase, any k-itemset that is not frequent and cannot be included in Lk+1 is removed 

from Ck+1. 

Before describing the Apriori Algorithm further, we introduce standard 

notation for itemsets and frequent itemsets. For convenience, an itemset {a, b} is 
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denoted simply as ab. Furthermore, if the itemset {a, b} has a frequency of 3, then 

this is conveyed using the notation ab3. 

To illustrate the Apriori Algorithm, let us examine the following example. 

Assume that we have a transaction database ST1 as in Table 2-1, and the user-

specified support threshold is 2, which corresponds to 40% in this case because there 

are five transactions. During the first scan of the database, we find the set of all the 

frequent 1-itemsets, which is denoted by L1. L1 contains all the frequent 1-itemsets 

whose frequency are equal or above the user-specified threshold 2, in this case L1 = 

{ a3, c4, d2, e4, f4}. Then the candidates of frequent 2-itemsets are generated by 

combining all combinations of itemsets in L1. The candidate set is denoted as C2, in 

this case C2 = {ac, ad, ae, af, cd, ce, cf, de, df, ef}. Next, in the prune phase, we find 

the counts of itemsets in C2: {ac2, ad2, ae2, af2, cd2, ce3, cf3, de1, df2, ef3}.  Any 2-

itemset that is not frequent and cannot be included in L2 is removed from C2. The 

resulting set of L2 is as follows: {ac2, ad2, ae2, af2, cd2, ce3, cf4, df2, ef3}. Repeating 

the same operations, we get the result set for L3 as {acd2, acf2, adf2, cdf2, cef3}, L4 as 

{ acdf2}, and L5 as φ. The Apriori Algorithm terminates when the resulting set 

reaches empty. Combining all the frequent patterns derived, we get the set of 

frequent patterns for database ST1: {acdf2, acd2, acf2, adf2, cdf2, cef3, ac2, ad2, ae2, 

af2, cd2, ce3, cf4, df2, ef3, a3, c4, d2, e4, f4}. 
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Transaction ID Items in Transaction 

1 a, c, d, e, f 

2 a, b, e 

3 c, e, f 

4 a, c, d, f 

5 c, e, f 

 
Table 2-1: Sample transaction database ST1 

 

After Apriori Algorithm was introduced in 1993 (Agrawal, 1993), many 

other algorithms based on the ideas of Apriori were developed for performance 

improvement (Agrawal 1994, Inokuchi 2000, Yoshio 2002). Apriori-based 

algorithms require multiple scans of the entire database, which lead to high CPU and 

I/O costs. Therefore, they are not usually suitable for online data streaming 

applications, in which data is generally scanned and/or processed only once.  

Another category of frequent pattern mining algorithms for traditional 

databases proposed by Han and Pei (Han, 2000) are those using a frequent pattern 

tree (FP-tree) data structure and an FP-growth Algorithm, which allows mining of 

frequent itemsets without generating candidate itemsets. In the FP-growth 

Algorithm, the FP-tree is used to store the compressed and important information 

about frequent patterns. FP-growth is an FP-tree-based mining method for mining 

the entire collection of frequent patterns by pattern growth. 

To illustrate the FP-tree data structure and the FP-growth Algorithm, let us 

consider the application of the FP-growth Algorithm on the same transaction 
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database ST1 as defined in Table 2-1. Also, as was previously the case, we assume 

the user-specified support threshold is 2. During the first scan of the database, the 

algorithm collects the count for each item and eliminates those items whose supports 

do not pass the user-specified support threshold. The resulting set after the first step 

is as follows: {a3, c4, d2, e4, f4}. Then the database ST1 is scanned a second time. For 

each transaction, the algorithm filters out the infrequent items and sorts the 

remaining ones in frequency descending order, and the revised patterns are inserted 

into the FP-tree as a branch. In this case the patterns stored in the FP-tree are shown 

in Figure 2-1.  

Before describing the FP-growth Algorithm further, we introduce the 

standard notation for patterns stored in an FP-tree. For convenience, an item a with 

support 1 is denoted simply as a1. Furthermore, when the items in a branch of FP-

tree have the same or different support as shown in Figure 2-1, we denote the 

patterns stored in the FP-tree as: {f4e3c3a1d1, f4c1a1d1, e1a1}. 

 

Figure 2-1: The FP-tree structure 
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The constructed FP-tree is then mined from bottom to top. Starting from d, 

for each frequent 1-itemset, its conditional pattern base is constructed. A conditional 

pattern base for an itemset contains the transactions that end with that itemset. Then 

the conditional pattern base is regarded as a transaction database and based on that, 

the conditional FP-tree is built.  

Take item d as an example. Item d’s conditional pattern base is: {f1e1c1a1, 

f1c1a1}. In this conditional pattern base, e occurs only once and thus is eliminated. 

The conditional FP-tree is constructed as {f2c2a2}. There is only one branch in d’s 

conditional FP-tree. The possible combinations are {fcad2, cad2, fad2, ad2, fcd2, cd2, 

fd2}. In the same way, we can get item a’s conditional FP-tree and generate the 

frequent patterns as {fca2, ca2, ea2, fa2}. The frequent patterns generated based on 

item c’s conditional FP-tree are {fec3, ec3, fc4}, and the frequent patterns generated 

based on item e’s conditional FP-tree are {fe3}. Combining the frequent 1-itemsets 

generated during the first database scan, we get the same set of frequent patterns for 

transactional database ST1: {fcad2, cad2, fad2, ad2, fcd2, cd2, fd2, d2, fca2, ca2, ea2, 

fa2, a3, fec3, ec3, fc4, c4, fe3, e4, f4}. 

There are two advantages of the FP-growth Algorithm compared to the 

Apriori Algorithm. First, the FP-tree is usually smaller than the original database and 

thus, saves the costly database scans in the mining process. Second, it applies a 

pattern growth method that avoids candidate generation. Compared with Apriori-

based algorithms, the FP-growth Algorithm achieves higher performance by 
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avoiding iterative candidate generations. However, it still is not practical to mine 

associations in data streaming applications because the construction of FP-tree 

requires two scans of the entire dataset. 

2.1.2 Frequent Items Mining on Streaming Data 

One of the most basic problems associated with mining streaming data is to 

find the most frequently occurring items in a data stream. It is a challenge to find and 

maintain frequent items over a data stream because the stream of data can be huge 

and comes continuously, so memory intensive solutions associated with traditional 

approaches, such as keeping a counter for each distinct element (like in the Apriori 

Algorithm) or sorting the stream (required by the FP-growth Algorithm), are 

infeasible. Furthermore, the stream of data often comes with rapid speed, and thus, it 

is desirable that the analysis can be done online in one pass as the data arrives.  

The Frequent Algorithm (Karp 2003) is a two pass, exact algorithm for 

finding frequent items above a user-specified threshold s. It is noted that the 

Frequent Algorithm does not find frequent itemsets, but only finds frequent 

(individual) items, i.e., 1-itemsets. The Frequent Algorithm requires that the total 

number of items to be processed, denoted by N, is known. The first pass can be 

processed as an online processing algorithm; after the first pass over the N data 

items, the set of candidate items, denoted as K, is found, which contains items with 

frequency over the user-specified threshold s, possibly among other items. Once the 
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set K is determined in the first pass, with a second pass, the items in K that have 

frequency less than sN are deleted. 

Take the sample transaction database ST2 of Table 2-2 as an example. In this 

context, there are 6 transactions in ST2, and assume that the user-specified threshold 

s is 25%. That means we want to find all those transactions that appear more than 

25% of the time. The sampling-based Frequent Algorithm identifies a set K of 1/s 

symbols, in this case 1/0.25 = 4 memory cells. During the first step, it sets up a 

counter for each transaction {a1, f1, c1, d1}. When the 5th transaction arrives, the 

count of f increases, and the set K contains: {a1, f2, c1, d1}. When the 6th transaction 

arrives, the set of K is updated as: {a1, f2, c1, d1, g1}. As the memory cells exceed 4 

and go to 5, the algorithm decreases each counter by 1, and eliminates the cells 

whose counts are zeros. Therefore the resulting set K is {f1}. During a second scan of 

the database, we can find f’s exact support, which is s = 2/6 = 33.3%. 

Transaction ID Items in Transaction 

1 a 

2 f 

3 c 

4 d 

5  f 

6 g 

Table 2-2: Sample transaction database ST2 
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From the above discussion, we see that the Frequent Algorithm requires two 

passes of the data. It can maintain the possibly frequent items dynamically online, 

but cannot provide the exact frequent items and their counts dynamically online. The 

Frequent Algorithm cannot handle deletion operation in data streams, because the 

counters are incremented whenever their corresponding items are observed and 

decremented when the size of K is greater than 1/s, and it preserves only a part of 

sample data. Furthermore, the length of the data stream couldn’t be too long for the 

second offline algorithm to run, due to the corresponding memory or hard disk space 

it needs to store the data stream offline. Therefore, it is undesirable for the time 

sensitive applications, especially in the online data streaming applications. 

Count Sketch Algorithm, proposed in (Charikar, 2004), is a single pass 

algorithm for estimating the most frequent items in a data stream using limited 

storage space. It can estimate the frequencies of all the items in a data stream using a 

data structure called Count Sketch. It returns the items whose frequencies satisfy a 

user-specified threshold with high probability. For each element, the algorithm uses 

the Count Sketch data structure to estimate its count, and keeps a heap of the top k 

elements seen so far. 

Count Sketch Algorithm is a hash-based algorithm. It needs one pass over the 

data. The output of the Count Sketch Algorithm is approximate; however, a user-

specified output error is guaranteed. The user needs to define pre-specified 
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parameters before running the algorithm, which are the maximum allowable error ε, 

and the heap parameter k.  

Count Sketch Algorithm requires the user to know the data range of the input 

data stream, which is not applicable in some cases where the received data range is 

not known. Also, the Count Sketch Algorithm does not handle deletion operation 

because it preserves only a part of the sample data which is the top k frequent items. 

Suppose that an item that is currently frequent is subject to a number of deletions so 

that it is no longer among the most frequent items. In this case, it is not possible, 

using this algorithm, to retrieve items from the past that have consequently become 

frequent. 

2.1.3 Frequent Itemsets Mining on Streaming Data 

In (Manku 2002, Chang 2003, Jin 2003, Yang 2004, Dang 2007), the authors 

proposed algorithms to find frequent patterns over the entire history of data streams. 

In (Giannella 2003, Chang 2004, Lin 2005, Mozafari 2008), the authors use different 

sliding window models to find recently frequent patterns in data streams. These 

algorithms focus on mining frequent patterns, instead of closed patterns, with one 

scan over the entire data stream. 

Lossy Counting Algorithm is proposed in (Manku, 2002). It is a one pass, 

landmark model1, incremental algorithm using an in-memory data structure. The 

                                                 
1 The landmark model mines all frequent itemsets over the entire history of streaming data from a 
specific time point called landmark to the present [Zhu, 2002]. 
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mining result is approximate, and the error is guaranteed through a user-specified 

error parameter. The algorithm proceeds as follows. 

The data structure D is a set of entries of the form (x, f, e), where x is an 

element in the stream, f is an integer representing its estimated frequency, and e is 

the maximum possible error in f. Initially, D is empty. The user-specified parameters 

are a support threshold s∈(0, 1), and an error parameter ε∈(0, 1), such that ε << s. N 

denotes the current length of the stream. The Lossy Counting Algorithm divides the 

incoming transaction stream into buckets, where each bucket consists of w = 





ε 

1
  

transactions. Buckets are labeled with bucket identifiers, starting from 1. The current 

bucket identifier is denoted by bcurrent. Whenever a new element x arrives, the 

algorithm first determines whether an entry for x already exists or not. If the look up 

succeeds, it updates the entry by incrementing its frequency f by one. Otherwise, it 

creates a new entry of the form (x, 1, bcurrent – 1). It also prunes D, by deleting some 

of its entries at bucket boundaries, i.e., whenever N = 0 mod w. The rule for deletion 

is: an entry (x, f, e) is deleted if f + e ≤ bcurrent. When a user requests a list of items 

with threshold s, it outputs those entries in D where f ≥ (s-ε) N.  

The Lossy Counting Algorithm computes frequency counts in a single pass 

with the output error guaranteed not to exceed a user-specified parameter ε. It is an 

incremental algorithm. The disadvantage of the Lossy Counting Algorithm is that its 

output is approximate, and the users need to define the pre-specified parameters 
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before running this algorithm, which are the minimum support s, the maximum 

allowable error ε, and the probability parameter e.  

In the estDec Algorithm (Chang, 2003), a method of finding recent frequent 

itemsets adaptively over an online data stream is proposed. It uses a one pass 

algorithm to maintain the occurrence count of a significant itemset that appears in 

each transaction using a prefix-tree lattice structure in main memory. The effect of 

old transactions on the current mining result is diminished by decaying the old 

occurrence count of each itemset as time goes by.  

In the estDec data structure, every node in a monitoring lattice maintains a 

triple (cnt, err, MRtid) for its corresponding itemset X. The count of the itemset X is 

denoted by cnt. The maximum error count of the itemset X is denoted by err. Finally, 

the transaction identifier of the most recent transaction that contains the itemset X is 

denoted by MRtid. The estDec method is composed of four phases: parameter 

updating phase, count updating phase, delayed-insertion phase and frequent itemset 

selection phase. When a new transaction is generated in a data stream, the total 

number of transactions in the current data stream is updated in the parameter 

updating phase. In the count updating phase, the counts of those itemsets in a 

monitoring lattice that appear in the new transaction are updated. After all of these 

itemsets are updated, the delayed-insertion phase is started in order to find any new 

itemset that has a high possibility to become a frequent itemset in the near future. 

The frequent itemset selection phase is performed only when the mining result of the 
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current dataset is required. A force-pruning operation is performed periodically or 

when the current size of a monitoring lattice reaches a user-specified threshold to 

prune all insignificant itemsets. 

With the estDec Algorithm, the recent change of information in a data stream 

can be adaptively reflected to the current mining results of the data streams. The 

weight of information in a transaction of a data stream is gradually reduced as time 

goes by while its reduction rate can be flexibly controlled. Due to this reason, no 

transaction needs to be maintained physically. The disadvantage of the estDec 

Algorithm is that it is an approximate algorithm; its processing time is flexibly 

controlled while sacrificing its accuracy. Also its output error is not guaranteed.  

The hCount Algorithm is proposed in (Jin, 2003). It maintains a hash table 

and uses h hash functions to map a digit from (0..M-1) to (0..m-1) uniformly and 

independently. The algorithm checks and outputs the itemsets with frequency above 

a user-specified threshold s along with their estimated frequencies.  

The hCount Algorithm can output a list of most frequent itemsets with a 

relatively small usage of memory space. It can handle both insertion and deletion of 

itemsets, and does not request the pre-knowledge on the value range of a data stream. 

The disadvantage of the hCount Algorithm is that its output is approximate, and 

users need to define pre-specified parameters before running the algorithm, which 

are the frequency threshold and the maximum allowable error. 
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In (Yang, 2004), the authors proposed an algorithm that uses limited 

computer memory to keep frequency counts of all short itemsets. Its objective is to 

find those frequent itemsets and association rules, the lengths of which are not longer 

than a pre-defined length k. It introduces a method to keep frequency counts of all 

short itemsets and to discover association rules from the short frequent itemsets. This 

method uses an array to keep frequency counts of all short itemsets. A bijection 

between itemsets and array elements is set up. Itemsets are arranged in the array so 

that new items can be inserted at any time during the mining process. 

Given n items, there are C(n, k) k-itemsets and ∑
=

k

i

inC
0

),( up-to-k-itemsets, 

which denote any i-itemset where i ≤ k. With a 32-bit modern computer which 

addresses 4GB memory space, k can be chosen as up to 3 when the value n is less 

than 1,800. The frequency counts of all up-to-k-itemsets are stored in memory. They 

are arranged in a pre-defined order and then an array is used to keep these frequency 

counts. With this pre-defined order, when inserting a new item, it only needs to 

extend the list of itemsets at its end to include the up-to-k-itemsets containing the 

new itemset. The ranks of all existing itemsets in the order do not need any change. 

This method is simple, fast, and capable of online and data stream mining. It 

takes one pass over the data, and keeps all the short itemsets (itemsets with k ≤ 3, 

where k is the maximum size of frequent itemsets) and their frequency counts in 

memory. The drawback of this algorithm is that it is only suitable for mining small 

database which n is less than 1,800 and k ≤ 3. 
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 In (Lin, 2005), the authors propose an approach for frequent pattern mining 

in data streams based on a time-sensitive sliding window model. It consists of a 

storage structure that captures all possible frequent itemsets and a table providing 

approximate counts of the expired data itemsets, the size of which can be adjusted by 

the available storage space. 

A data structure called Discounting Table (DT) is devised to retain the 

frequent itemsets with their support counts in the individual basic blocks of the 

current time-sensitive sliding window. Another data structure named Potentially 

Frequent-itemset Pool (PFP) is used to keep the potential frequent itemsets, which 

are not frequent in the last time-sensitive sliding window, but are frequent in the 

current transaction block. The time-sensitive sliding window model divides the data 

stream into blocks by time. The support count threshold for each basic block is 

computed and stored into an entry in the Threshold Array (TA). Only sliding 

window size entries are maintained in the TA. An algorithm to mine frequent 

itemsets is applied to the transactions in the buffer. Each frequent itemset is inserted 

into PFP in the form of (ID, Items, Acount, Pcount), recording a unique identifier, the 

items in it, the accumulated count, and the potential count, respectively. Each itemset 

in PFP is inserted into Discounting Table (DT) in the form of (B_ID, ID, B_count), 

recording the serial number of the current basic block, the identifier in PFP, and its 

support count in the current basic block. Basically there are five steps to run this 

algorithm: In Step 1, the incoming data are stored in the buffer; in Step 2, the 

itemsets are discounting by DT, the min or max function is used to maintain the DT 
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through self adjustment-merge. In Step 3, new itemsets are inserted and old itemsets 

are updated; in Step 4, the potential counts are estimated by TA and TA is updated; 

and finally in Step 5, the frequent itemsets are output. 

The time-sensitive sliding window approach takes one pass over the raw data. 

It uses a time-sensitive sliding window model, which can answer time-sensitive 

queries asked by the user within the time sliding window, and guarantees no false 

dismissal or false alarm of the mining result. A mechanism to self-adjust the DT 

under the memory limitation is presented. It can handle both insertion and deletion of 

the data transactions, and the output error is guaranteed. The disadvantage of the 

time-sensitive sliding window approach is that it stores duplicate information in 

different data structures (DT and PFP) for each itemset, which will take more space 

to store the redundant information. Although the authors developed a mechanism to 

adjust the DT when memory is limited, it sacrifices the accuracy of this algorithm. 

In (Dang, 2007), the authors propose an algorithm called EStream that allows 

online processing of streaming data and guarantees the support error of frequent 

patterns within a user-specified threshold. In (Mozafari, 2008), the authors propose 

frequent itemset mining method for sliding windows by using a verification 

technique, called verifier. Two verifiers and a hybrid verifier are used to mine 

frequent itemsets.  
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All the above algorithms focus on mining frequent itemsets, instead of closed 

frequent itemsets over streaming data, which could result in redundancy on both the 

data patterns and the derived associations based on these data patterns. 

2.1.4 Closed Pattern Mining on Static Data 

The concept of closed frequent itemsets was first introduced by Pasquier et al 

in 1999 (Pasquier, 1999). It is well known that mining the entire collection of 

frequent patterns often generates a large number of frequent itemsets, among which 

users have to search through to find useful ones. For example, the set of frequent 

patterns {a3, b3, ab3} can be more simply represented by {ab3}, from which we can 

observe that the total number of closed frequent itemsets is a smaller subset of their 

corresponding frequent itemsets. Furthermore, all frequent itemsets can be derived 

from closed frequent itemsets. Because a frequent itemset must be a subset of one (or 

more) closed frequent itemset(s), and its support is equal to the maximal support of 

those closed itemsets that contain the frequent itemset, mining frequent closed 

itemsets provides complete and condensed information for frequent pattern analysis. 

More importantly, associations extracted from closed sets have been shown to be 

more meaningful for analysis because all redundancies are discarded (Zaki, 2000). 

A-close (Pasquier, 1999) is a variation of Apriori. It adopts the Apriori 

framework, but looks for frequent closed itemsets and prunes the frequent itemsets 

that are not closed. The mining process of A-close is as follows. First, A-close scans 

the database and finds all frequent itemsets. Then, the Apriori heuristic is applied to 



 

   29

generate all candidate 2-itemsets. In the second scan of the database, A-close counts 

the supports of candidate 2-itemsets and derives the frequent 2-itemstes. Itemsets 

that are not frequent are pruned during this scan. In the third scan of the database, A-

close collects the supports for the candidate 3-itemsets and finds that they are 

frequent or not. The iterative candidate generation-and-testing process terminates 

until no frequent itemsets are found. In order to generate the frequent closed 

itemsets, A-close applies one more scan to compute the closures for all of the 

surviving frequent itemsets. The closure of a frequent itemset is the intersection of 

all transactions containing the itemset. The set of closures, after removing 

duplications, is the set of frequent closed itemsets. 

A-close scans the transaction database multiple times. The major cost of the 

A-close is from two aspects. First, it has to generate a lot of candidates and scan the 

transaction database multiple times to count candidates. Second, in the last scan to 

compute closures, there could be a large number of surviving frequent itemsets. This 

makes the closure computation costly. 

Charm (Zaki, 2002) is another algorithm to find closed frequent itemsets. 

Different from A-close, Charm explores a vertical data format, i.e., each item is 

associated with a set of transaction identifiers (tid for short). Charm does not use the 

Apriori framework. Initially, Charm builds a tree with multiple branches, 

corresponding to the number of frequent items. The item, as well as the transaction 

identifiers in which the item appears, is registered in the corresponding node. Then 
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Charm attempts to combine items in the same layer to form itemsets. When it 

combines, it computes the intersection of the sets of transaction identifiers of the two 

itemsets (called tid set). If the combined itemset does not have enough support, it is 

pruned. The efficiency of Charm is from the fact that the tid set of a superset itemset 

is derived from those of its subsets. It is easy to check whether they are identical. 

The major cost of Charm originates from the fact that it has to compute intersections 

of tid sets repeatedly in each combination step. 

Closet (Pei, 2003) is an algorithm proposed for mining closed frequent 

itemsets. In the first step, it finds frequent items by scanning the entire database. The 

items are sorted in descending support order. Then, it divides the search space. All 

the frequent closed itemsets can be divided into non-overlapping subsets based on 

the item list derived in the first step. In the third step, it mines the subsets of frequent 

closed itemsets by constructing corresponding conditional pattern bases and mining 

each recursively. 

All the above works are developed to mine closed itemsets for traditional 

static databases, where multiple scans are needed and whenever new transactions 

arrive, additional scans must be performed on the updated transaction database. 

Therefore, they are not suitable for data stream mining.  

2.1.5 Closed Pattern Mining on Streaming Data 

In (Chi, 2004), Chi et al considers the problem of mining closed frequent 

itemsets over a data stream sliding window in the Moment Algorithm. A synopsis 
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data structure is designed to monitor transactions in the sliding window so that it can 

output the current closed frequent itemsets at any time. A compact data structure, the 

Closed Enumeration Tree (CET) is introduced to maintain a dynamically selected set 

of itemsets over a sliding window. Moment Algorithm visits itemsets in 

lexicographical order. If a node is found to be infrequent, then it is marked as an 

infrequent gateway node. The support and tid_sum of an infrequent gateway node 

have to be stored because they will provide important information during a CET 

update when an infrequent itemset can potentially become frequent. When an itemset 

I is found to be non-closed because of another lexicographically smaller itemset, then 

nI is an unpromising gateway node. In Explore, leftcheck(nI) checks if nI is an 

unpromising gateway node. It looks up the hash table to see if there exists a 

previously discovered closed itemset that has the same support as nI and also 

subsumes I. And if so, it returns true (in this case nI is an unpromising gateway 

node); otherwise, it returns false (in this case nI is a promising node). If a node nI is 

found to be neither infrequent nor unpromising, then the algorithm explores its 

descendants. After that, it can be determined if nI is an intermediate node or a closed 

node. 

Moment is an incremental algorithm. It takes one pass over the raw data, and 

can handle both addition and deletion of the data transactions. The output error is 

guaranteed. The disadvantage of Moment Algorithm is that it maintains not only 

closed frequent itemsets, but also additional boundary nodes which increase the 

memory usage as well as the computation time. And in (Li, 2006), the authors 
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proposed the NewMoment Algorithm which uses a bit-sequence representation of 

items to reduce the time and memory needed.  

In Chapter 4, we propose an algorithm called CFI-Stream (Jiang, 2006), to 

directly compute closed itemsets online and incrementally without the help of any 

support information. Nothing other than closed itemsets is maintained in the derived 

data structure. When a new transaction arrives, it performs the closure check on the 

fly; only associated closed itemsets and their support information are incrementally 

updated. The current closed frequent itemsets can be output in real time based on any 

user-specified thresholds. And in (Li, 2008), Li et al proposed to improve the CFI-

stream Algorithm with bitmap coding named CLIMB (Closed Itemset Mining with 

Bitmap) over data stream’s sliding window to reduce the memory cost. We then use 

the discovered closed frequent itemsets to mine associations in data streams.  

2.2 Association Mining 

2.2.1 Association Mining based on Frequent Pattern Mining 

There has been a lot of research in developing efficient association mining 

algorithms for static data. The first recognized association mining algorithm for 

traditional databases is Apriori (Agrawal, 1993).  

Apriori is an influential algorithm for mining association rules, and a step-

wise algorithm. It generates the candidate itemsets to be counted in the pass by using 

only the itemsets found frequently in the previous pass. The algorithm consists of 
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two steps, a join step and a prune step. In the join step, join Lk-1 with Lk-1. In the 

prune step, delete all itemsets X ∈ Ck such that some (k-1)-subset of X is not in Lk-1. 

During each iteration, only candidates found to be frequent in the previous iteration 

are used to generate a new candidate set during the next iteration. The candidate 

itemsets having k items (called candidate k-itemset) can be generated by joining 

frequent itemsets having k-1 items and deleting those itemsets that contain any 

subset that is not frequent. The algorithm terminates when there are no frequent k-

itemsets. Apriori-based algorithms require multiple scans of the original database, 

which lead to high CPU and I/O costs. Therefore, they are not suitable for the data 

streaming environment, in which data can be scanned only once.  

From the above discussions, we can see that traditional association mining 

techniques are not suitable for the data streaming environment due to several 

reasons. First, a huge amount of streaming data continuously arrives which produces 

massive rules; the cost of calculation to find association rules is high and they may 

not reflect the current situation. Second, traditional association rule mining 

algorithms perform multiple scans over the database, which is not suitable to apply 

to the data streaming environment that prefers a single scan. Furthermore, due to the 

continuous, unbounded, and high speed characteristics of data streams, there is a 

huge amount of data in both offline and online data streaming applications, and thus, 

there is not enough time to rescan the whole database or perform a multi-scan as in 

traditional data mining algorithms whenever an update occurs. Third, the mining 
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method of data streams needs to adapt to their changing data value distribution 

because the streaming data value distribution is usually changing with time. 

Association mining technique based on frequent patterns produces many 

rules. With a large amount of rules being produced, the cost of calculation to find 

association rules is high. Also, it is difficult to evaluate the large amount of 

associations which may or may not all be meaningful to the end users. To solve these 

problems, many studies have been done. In (Toivonen 1995, Liu 1999), the authors 

proposed techniques to prune and summarize the discovered associations. In 

(Klemettinen 1994, Ng 1998, Liu 1999, Bayardo 1999), the authors proposed 

techniques to mine the most interesting rules incorporated with the user-specified 

constrains or defined by the object metrics of interest. But still they are aimed for the 

traditional databases and, thus, do not fit the data streaming environment. 

Furthermore, they do not address rule redundancy. 

2.2.2 Association Mining based on Closed Pattern Mining 

In (Bastide, 2000), the authors proposed the concept to mine minimal 

antecedent and maximal consequent association rules with the same support and 

same confidence. Using the closure of the Galois connection (Taouil, 2000), a 

generating set for all valid association rules with the support and confidence is setup 

using frequent closed itemsets and their generators; they consist of the non-redundant 

association rules having minimal antecedents and maximal consequents. This 

concept indicates to generate only the most informative rules. 
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In (Li, 2004), the authors proposed a technique to mine minimal non-

redundant association rules from a quantitative closed itemset lattice. However, the 

algorithm is based on a landmark data processing model and no deletion operation 

can be performed over the entire history of data streams. Thus, when the amount of 

data streams is high, the closed itemset lattice can grow rapidly. 

In (Zaki, 2005), Zaki et al proposed the concept to mine non-redundant 

association rules with minimal antecedent and minimal consequent with the same 

support and same confidence. However, all these association rule mining algorithms 

are based on the traditional association rule mining framework and require multiple 

scans, which are not suitable for the stream mining environment.  

In (Yang, 2004), (Halatchev, 2005), and (Shin, 2007), the authors proposed 

using two, three, and multiple frequent pattern based methods to perform association 

rule mining. Instead of using frequent pattern mining, we proposed to perform 

association rule mining based on closed pattern mining technique we discussed in 

Chapter 4, where the rule generation is based on the current closed itemsets in data 

streams which are a condensed representation of the whole streaming data. 

Furthermore, the rule can be generated on demand, at different users' querying 

requests which is preferable in the distributed query processing data streaming 

environment.  
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2.3 Missing Data Estimation 

Many articles have been published to deal with the missing data problem, and 

a lot of software has been developed based on these methods. Some of the methods 

totally delete the missing data before analyzing them, like listwise and pairwise 

deletion (Wilkinson, 1999), while other methods focus on estimating the missing 

data based on the available information. The most popular statistical estimation 

methods include mean substitution, imputation by regression (Cool, 2000), hot deck 

imputation (Iannacchione, 1982), cold deck imputation, expectation maximization 

(EM) (McLachlan, 1997), multiple imputations (Rubin 1987, Shafer 1995), etc. 

Mean Substitution (Cool, 2000) replaces all missing instances of a given 

variable with the mean value for that variable. It is a good solution when data is both 

Missing At Random (MAR) and somewhat normally distributed. If we assume that a 

missing value for an individual on a given variable is best estimated by the mean for 

the non-missing observations of that variable, that is to say, for a given item, simply 

substitute the mean response of all valid cases providing data on that item. 

The advantage of this method is that it is easy to implement, while the 

disadvantage of this method is that the sample size is overestimated. Also, the 

distribution of new values is an incorrect representation of the population values 

because the shape of the distribution is distorted by adding values equal to the mean. 

Imputation by Regression (Cool, 2000) is the prediction of the missing data 

based on a regression equation that uses all other relevant variables as predictors. 
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The advantage of this method is that it preserves the variance and covariance of the 

variables with missing data. The disadvantage of this method is that if standard 

errors are ignored when predicting the missing values, it may inflate the predictive 

power of the model because the missing values of the dependent variables are 

presented as perfectly predicted.  

We can also perform the estimation by developing a regression equation to 

predict the criterion of a variable with missing data using valid cases, and then apply 

the equation to the valid scores on other variables of missing scores for that given 

variable. This estimation is more sophisticated because it takes into account 

relationships among the variables. 

Regression methods rely on the information contained in the non-missing 

values of variables to provide estimates of the missing values for the variable of 

interest. Each variable with a missing value, in turn, is treated as a criterion variable 

and is regressed onto all the other variables having observed values to predict the 

criterion variable. 

The Hot Deck Imputation (Iannacchione, 1982) replaces the missing values 

with randomly selected values presented in a pool of similar complete cases. Because 

the replacement values are randomly selected, hot deck imputation introduces the 

variations seen in the pool of complete cases resulting in fewer tendencies toward the 

mean. There are two main areas of concern: selecting valid characteristic sets for 

identifying the potential pools containing values with reasonable variance, and 
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ensuring that characteristic sets will allow for large enough donor pools with 

reasonable variance. The technique has been used extensively by government 

agencies and has been widely accepted as providing accurate samples of study 

population. The Cold Deck Imputation replaces the missing value by a value that is 

independent of the dataset. For example, we can replace the missing value with 

population mean, or expected value under random response.  

Expectation Maximization (EM) Algorithm (McLachlan, 1997) is a two step 

iterative approach that estimates the parameters of a model starting from an initial 

guess. Each iteration consists of two steps: an expectation step that finds the 

distribution for the missing data based on the known values for the observed 

variables and the current estimate of the parameters, and a maximization step that 

substitutes the missing data with the expected value. The procedure iterates through 

these two steps until convergence is obtained. Convergence occurs when the change 

of the parameter estimates from iteration to iteration becomes negligible.  

But none of the above approaches is suitable for wireless sensor network 

environment, where streams of data are constantly sent from the sensors to the 

server, due to several reasons. First, how much old information should be based on to 

get the associated information for the missing data estimation? Using all of the old 

readings to perform the estimation is unreasonable, especially when using an 

iteration procedure until convergence to get the estimation like in the EM Algorithm. 

On the other hand, using only the previous round of sensor readings to perform the 



 

   39

estimation is also not a good choice because data streams often have a changing data 

distribution. Some of the statistical methods use all of the available data points in a 

database to construct the best possible results, in the wireless sensor networks, the 

missing sensor data may or may not be related to all of the available information, 

thus using all of the available information to process the result is not an optimal 

choice and would consume more time and memory space than necessary. 

Second, which information should be used to perform the missing data 

estimation? In the wireless sensor network, data is collected within certain scopes 

and reported to the server during a certain period of time. Different sensors have 

different readings at different time periods. The current readings of one sensor may 

relate not only to its previous readings, but also to other sensors’ previous or current 

readings. Therefore, it is difficult to replace the missing values with randomly 

selected values presented in a pool of similar complete cases or with a value which is 

independent of the dataset like in the hot/cold deck imputation. This is because even 

though we may get the complete set of information of a certain wireless sensor 

network, it is not easy to decide which information is similar to the current round of 

missing sensor’s information. In other words, it is hard to draw the pool for a certain 

sensor’s certain round of readings when the application needs to perform the data 

estimation. 

Third, the missing data may or may not miss at random, while most of the 

statistical techniques are based on the MAR assumption. According to the definition 
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in (Little, 1987), Data on Y are missing at random if the probability that Y is missing 

does not depend on the value of Y after controlling other observed variables X. For 

example, we are modeling weight Y as a function of gender X. One gender may be 

less likely to disclose its weight, that is, the probability that Y is missing depends 

only on the value of X. Such data are MAR. 

In (Deshpande, 2005), the authors proposed a model, called BBQ to provide 

efficient query answers in sensor networks. They use probabilistic models to answer 

queries. Such models can be learned from historical data using standard algorithms, 

e.g. (Mitchell, 1997). The basic model used in BBQ is a time-varying multivate 

Gaussians. A multivate Gaussian is the natural extension of the familiar 

unidimensional normal Probability Density Function (PDF). First, the historical data 

is used to construct the initial representation of the PDF. Once the initial PDF is 

constructed, the answer queries can be answered using the model. The model is 

updated as new observations are obtained from the sensor network, and as time 

passes. There are various different models that may be more suitable in different 

environments and for different classes of queries. 

There are also some drawbacks of using the probabilistic models to answer 

the query. First, the probabilistic models are learned from some set of training data. 

The training data needs to be captured in advance before the model can be used to 

predict values. In general, a probabilistic model is only as good at prediction as the 

data used to train it. For models to perform accurate predictions, they must be trained 



 

   41

in the kind of environment where they will be used. Second, the model needs to be 

continuously updated as time goes by. Third, the suitable model needs to be selected, 

choosing the best model for the given queries, and environment is another issue that 

needs to be considered when using this approach. 

As more and more data streaming applications emerge, proper data 

estimation algorithms for streaming data are needed.  In (Papadimitriou, 2005), the 

authors proposed using pattern discovery in multiple time-series to estimate missing 

data, but it’s not well suited for sensor networks, where the relationships between 

sensors are decided not only by the time trends, but also by some other factors, like 

locations and so on.  

In (Halatchev, 2005), the authors proposed the Window Association Rule 

Mining (WARM) Algorithm for estimating missing sensor data. WARM uses a 

modified Apriori Algorithm for association rule mining to identify sensors that report 

the same data for a number of times in a sliding window, called related sensors, and 

then estimates the missing data from a sensor by using the data reported by its related 

sensors. WARM has been reported to perform better than the mean substitution 

approach where the average value reported by all sensors in the window is used for 

estimation. However, there exist some limitations in WARM. First, it is based on 2-

frequent itemsets modified Apriori association rule mining algorithm, which means it 

can discover relationships only between two sensors and ignores the cases where 

missing values are related with multiple sensors. Second, it finds those relationships 
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only when both sensors report the same value and ignores the cases where missing 

values can be estimated by the relationships between sensors that report different 

values. In (Gruenwald, 2007), the authors propose to use two frequent itemset 

mining technique to perform estimation based on relationship between two sensors. 

In (Tarui, 2007), the author discussed how to find a duplicate and a single missing 

item in a stream. 

In view of the above challenges, based on our proposed closed pattern and 

association mining technique discussed in Chapter 4 and 5, we develop a technique 

to perform missing data estimation based on the relationship between multiple sensor 

readings. Since as discussed before, association rules based on the closed patterns in 

data streams contain non-redundant and complete information, based on which 

relationships between sensor values in data streams can be derived.   

2.4 Summary 

Table 2-3, Table 2-4 and Table 2-5 summarize the features of the discussed 

algorithms in Section 2.1, 2.2, and 2.3 respectively.  
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Mining 
Strategy 

Mining 
Process 

Data 
Stream 
Support 

Scan  

Mining 
Frequent Item 

Static Data Karp 03 
Sampling 
based 

Offline No Two 

Stream 
Data 

Charikar 04 Hash based Online Yes Single 

Mining 
Frequent 
Itemsets  

Static Data 

Agrawal 93,  
Agrawal 94 

Candidate 
based 

Offline No Multiple 

Han 00 
Non-
candidate 
based 

Offline No Two 

Stream 
Data 

Manku 02, 
Chang 03, Jin 
03, Yang 04, 
Dang 07 

Landmark 
based 

Online Yes Single 

Giannella 03, 
Chang 04, Lin 
05, Mozafari 
08 

Sliding 
window 
based 

Online Yes Single 

Mining Closed 
Itemsets 

 Static Data 
Pasquier 99 

Key Pattern 
Browsing 

Offline No Multiple 

Pei 00, Zaki 
02, Pei 03 

Closure 
Climbing 

Online No Multiple 

Stream Data 
Chi 04, Li 06 Indirect Online Yes Single 

Proposed 06, 
Li 08 

Direct Online Yes Single 

Table 2-3: Data pattern mining approaches 
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Number of 
Itemsets 

Mining 
Process 

Data 
Stream 
Support 

Scan  

Mining 
Association 
Rule 

Static 
Data 

Frequent 
Itemsets 

Agrawal 
93, 
Agrawal 
94, Liu 99, 
Han 00 

Multiple Offline No Multiple 

Closed 
Itemsets 

Bastide 00,  
Li 04, Zaki 
05 

Multiple Offline No Multiple 

Stream 
Data 

Frequent 
Itemsets 

Yang 04, 
Halatchev 
05 

Two/Three/
Multiple 

Online Yes Single 

Closed 
Itemsets 

Proposed 
07 

Multiple Online Yes Single 

Table 2-4: Association mining approaches 

 

 
Number of 
Itemsets 

Data 
Stream 
Support 

Data 

Estimation 

Static 

Data Statistics 
Iannacchione 82, 
Rubin 96, Shafer 95, 
Cool 00 

N/A No 

Stream 

Data 

Probabilistic 
Models 

Deshpande 05 N/A Yes 

Time Series Papadimitriou 05 N/A Yes 

Pattern and 
Association 
Mining 

Tarui 07 One Yes 

Halatchev 05, 
Gruenwald 07 

Two Yes 

Proposed 07 Multiple Yes 

Table 2-5: Data estimation approaches 
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3 Preliminary Concepts 
 

In this chapter, we describe the notations and definitions that are used 

throughout this dissertation. 

Let I = {i1, i2, …, in} be a set of n items. A subset X ⊆ I is called an itemset. 

A k-subset is called a k-itemset. Each transaction t is a set of items from I. Given a 

set of transactions T, the support of an itemset X is the percentage of transactions 

that contain X. A frequent itemset is an itemset the support of which is above or 

equal to a user-specified support threshold.  

Let T and X be subsets of all the transactions and items appearing in a data 

stream S, respectively. The concept of a closed itemset is based on the two 

following functions, f and g: f(T) = {i ∈ I | ∀ t ∈ T, i ∈ t} and g(X) = {t ∈ T  | ∀ i ∈ 

X, i ∈ t}. Function f returns the set of itemsets included in all the transactions 

belonging to T, while function g returns the set of transactions containing a given 

itemset X. 

An itemset X is said to be closed if and only if C(X) = f(g(X)) = f•g(X) = X 

where the composite function C = f•g is called Galois operator or closure operator 

(Taouil, 2000).  

Example 3.1 Let I = {a, b, c, d} be a set of 4 items, and T = {cd, ab, abc, 

abc} be a set of transactions in data streams, then the closed itemsets are {c3, ab3, 

cd1, abc2}. Each of the closed itemsets X satisfies C(X) = f(g(X)) = f•g(X) = X. Take 
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ab as an example, g(ab) = {ab, abc, abc}, f•g(ab) = ab, so C(ab) = f(g(ab)) = f• 

g(ab) = ab. If the user-specified absolute support threshold is two, then the frequent 

closed itemsets are {c3, ab3, abc2}. The frequent itemsets are {a3, b3, c3, ab3, ac2, 

bc2, abc2}, from which we can see that closed frequent itemsets are a smaller 

subsets of frequent itemsets and contain all itemsets and support information in the 

frequent itemsets. 

From the above discussion, we can see that a closed itemset X is an itemset 

whose closure C(X) is equal to itself (C(X) = X). The closure check is to check the 

closure of an itemset X to see whether or not it is equal to itself, i.e., whether or not 

it is a closed itemset. We define a smallest itemset X1 that satisfies C(X1) = X2, is 

called a minimum generator of X2. 

An association rule is an expression X → cs, Y, where X and Y are 

interesting itemsets, and X ∩ Y = φ. The parameter s represents the support of the 

rule which is the percentage of records that contain both X and Y in the database (s = 

s(X∪Y) = |g(X∪Y)|/|T|), and c is the percentage of records containing X that also 

contain Y, called the confidence of the rule (c = s(X∪Y)/s(X) = |g(X∪Y)|/|g(X)|). 

Association mining is to find all association rules, the support and confidence of 

which are above or equal to a user-specified minimum support and confidence, 

respectively (Agrawal, 1993).  

An association rule X1 → 1,1 cs Y1 is equivalent to an association rule X2 

 → 2,2 cs Y2, if and only if X2  → 2,2 cs Y2 can be derived from X1 → 1,1 cs Y1, and 
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s1=s2, c1=c2 (Zaki, 2005). If X1 → cs,  X2, X3 → cs,  X4, X1 ⊆ X3, and X4 ⊆ X2, we 

say association rule X3 → cs,  X4 is redundant (Bastide, 2000).  
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4 Closed Pattern Mining in Data Streams  

In this Chapter we introduce the proposed method to mine closed frequent 

itemsets in data streams. First, we give an overview of the proposed algorithm and a 

data structure, called DIrect Update lattice (DIU), to mine closed frequent itemsets in 

data streams. Then, the conditions that are needed to check for closed itemsets and 

how to check for them when performing insertion and deletion operations on the 

DIU are discussed. Based on this, an online algorithm to discover and incrementally 

update closed itemsets is developed. 

4.1 Overview 

The proposed algorithm employs a sliding window, which is a buffer that 

holds a specified number of transactions that arrive from the input data stream. When 

a new transaction enters (and/or a previously stored transaction leaves) the sliding 

window, the algorithm updates the status of all associated closed itemsets’ support 

values, on-the-fly. Current closed itemsets are maintained and updated in real time 

using a newly proposed data structure, the DIU. The closed frequent itemsets can be 

output at any time at user-specified thresholds by browsing the DIU. 

Different from previous closure check techniques, which require multiple 

scans over data (Pasquier 1999, Pei 2000, Zaki 2002, Pei 2003), our proposed 

method performs the closure check on-the-fly with only one scan over the window. It 

updates only the supports of the closed itemsets associated with the entering (or 
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exiting) transactions, and it is able to provide real time updated results. The proposed 

algorithm is an incremental algorithm where we check for closed itemsets and update 

their associated supports based largely on the previously computed results, thus 

increasing efficiency and reducing computational and I/O costs.   

In contrast with other data stream mining techniques (Manku 2002, Chi 2004, 

Lin 2005) , the proposed algorithm only stores the information of current closed 

itemsets in the DIU, which is a compact and complete representation of all itemsets 

and their support information. The current closed frequent itemsets can be output in 

real time based on users’ specified thresholds by browsing the DIU. Also, the 

proposed algorithm solves the concept-drifting problem (Wang, 2003) in data 

streams by storing all current closed itemsets in the DIU from which all itemsets and 

their support information can be incrementally updated. We discuss the update of the 

DIU data structure and the closure check procedures for insertion and deletion 

operations in Section 4.2. 

4.2 The Proposed Data Structure 

4.2.1 The Direct Update Lattice 

A lexicographical ordered direct update lattice is used to maintain the current 

closed itemsets. Each node in the DIU represents a closed itemset. There are k levels 

in the DIU, each level i stores the closed i-itemsets. The parameter k is maximum 

size of the current closed itemset. Each node in the DIU stores a closed itemset, its 
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current support information, and the links to its immediate parent and child nodes. 

Figure 4-1 illustrates the DIU after four transactions arrive. The support of each node 

is labeled in the upper right corner of the node itself. The figure shows that currently 

there are 4 closed itemsets c, ab, cd, abc in the DIU, and their associated supports are 

3, 3, 1, and 2, respectively. 

tid
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itemsets
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a, b
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ab3 cd1
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Figure 4-1: The lexicographical ordered direct update lattice 

 
All transactions in the current sliding window are stored in a (FIFO) queue 

data structure; when the number of transactions exceeds the size of the sliding 

window, the first transaction that comes into the queue exits the queue to make room 

for the next arriving transaction to enter the queue. 

4.2.2 Insert a Transaction to the DIU 

In this subsection, the update and maintenance of the DIU when a new 

transaction arrives is discussed. The basic result is the derivation of conditions that 

define which itemsets, in the new transaction, need to be checked for closure and 

how to decide if it is closed and need to be inserted to the DIU. The efficiency of the 
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algorithm comes from the fact that not all itemsets need to be checked, but only a 

subset of itemsets that are related to the arriving transaction.   

4.2.2.1 Conditions to Check for Closed Itemsets 

First, we define and prove the following conditions in which we need to 

check whether an itemset is closed or not when a new transaction t arrives in the 

current sliding window.  

Table 4-1 shows the following conditions we classify to decide if a closure 

check is needed when perform the addition operation. 

Cases/Conditions Closure Check 

Case 1 
Case 1.A 

Case 1.A.1 No 

Case 1.A.2 Yes 

Case 1.B No 

Case 2 

Case 2.A 
Case 2.A.1 Yes 

Case 2.A.2 No 

Case 2.B 
Case 2.B.1 No 

Case 2.B.2 No 

Table 4-1: Conditions to check for insertion operation 

From the above table, we can see that there are two conditions we need to 

perform closure check, which are as follows. 

Condition 1 (Case 1.A.2): When the newly arrived transaction t equals { X},  

X is not closed but has a support larger than zero in the old sliding window. If X is 

currently closed and exists in the DIU, then no closure check is necessary. If X does 

not currently exist in the DIU, then check all of X’s subsets Y to see whether they are 
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closed or not in the new sliding window (mathematically, the condition of Case 

1.A.2 can be expressed as: gT1(X) ≠ φ, gT1(Y) ≠ φ, CT1(X) ⊃ X, CT1(Y) ⊃ Y and Y ⊂ X). 

Condition 2 (Case 2.A.1): When the newly arrived transaction t equals {X}, X 

has a support of zero in the old sliding window. Check all of X’s subsets Y to 

determine whether they are closed or not (mathematically, the condition of Case 

2.A.1 can be expressed as: gT1(X) = φ, gT1(Y) ≠ φ, CT1(Y) ⊃ Y and Y ⊆ X). 

Below we prove why we only need to perform closure checks for the itemsets 

specified in the above two conditions, and why we do not need to perform closure 

check in other conditions. We will use the Lemma 4.1 and Corollary 4.1 in 

subsequent proofs. The proof of Lemma 4.1 is given in (Lucchese, 2006); we use 

Lemma 4.1 in the proof of Corollary 4.1. 

Lemma 4.1 Given an itemset X and an item i ∈ I, g(X) ⊆ g(i) ⇔ i ∈ C(X).  

Corollary 4.1 Assume CT(X) is X’s closure within transaction set T. If CT(X) 

= X and if there exists a subset Y ⊂ X such that CT(Y) ⊃ Y in transaction set T,  then 

there exists an item i, where i ∈ CT(Y), i ∉ Y, such that i ∈ X and CT(Y) ⊆ X.  

Proof: Because Y ⊂ X, we have gT(X) ⊆ gT(Y). If i ∈ CT(Y), from Lemma 4.1, 

we have gT(Y) ⊆ gT(i). Therefore, we have gT(X) ⊆ gT(i). Again from Lemma 4.1, we 

have i ∈ CT(X). So if i ∉ X, we have CT(X) ≠ X, which is a contradiction with the 

given condition. Therefore, we have i ∈ X. Because i ∈ CT(Y), i ∉ Y, Y ⊂ X , we have 

CT(Y) ⊆ X. � 
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When a new transaction t in the data streams arrives, if t equals {X}, depends 

on whether X has or does not have a support larger than zero in the old  transaction 

set there are two conditions. Below we discuss the update and maintenance rules 

under these two conditions. In the following proof, we assume X and Y are itemsets, 

T1 is the old set of transactions, T2 is the set of transactions after t arrives, CT1(X) is 

X’s closure in transaction set T1, and CT2(Y) is Y’s closure in the transaction set T2. 

Case 1: When X has a support larger than zero in the old transaction set T1 

For any new coming transaction t with the largest itemset X that already 

exists in the old transaction set T1, we have gT1(X) ≠ φ.  When gT1(X) ≠ φ,  for any 

itemset Y and Y ⊂ X, if gT1(Y) = φ. We have Y ⊂ X ⇒ gT1(Y) ⊃ gT1(X) ≠ φ.  This is a 

contradiction with gT1(Y) = φ. Therefore, if Y ⊂ X, the condition gT1(Y) = φ does not 

need to be discussed. If Y ⊄ X ⇒ gT2(Y) = gT1(Y) = φ. Y’s support is zero in T2. Thus, 

in both the cases Y ⊂ X and Y ⊄ X, we do not need to discuss the case when gT1(Y) = 

φ. When gT1(X) ≠ φ and gT1(Y) ≠ φ, we examine cases according to the following 

conditions: Y ⊄ X and Y ⊆ X. 

Case 1.A: When Y is a subset of X 

When Y is a subset of X, Y ⊆ X, we divide it into two subconditions to 

analyze: X is or is not in the DIU. 

Case 1.A.1: When X is in the old DIU 

When X is in the old DIU, it is a closed itemset, therefore CT1(X) = X. We 

have the following Lemma 4.2 and Lemma 4.3. From these two lemmas, we show 
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that if a closed itemset X, which already exists in the old DIU, arrives, for any 

itemset Y, Y ⊆ X, if Y is originally closed, it will remain closed; if Y is originally 

unclosed, Y will remain unclosed, and we only need to update Y’s support. Therefore, 

for most of the existing closed itemsets, we do not need to update the DIU structure; 

we simply update their supports, which consume a small amount of time. 

Lemma 4.2 Given T2 = T1 ∪ {X}, if CT1(X) = X and Y ⊆ X and CT1(Y) = Y, 

then we have CT2(Y) = Y.  

In this lemma we prove that if both X and Y are closed itemsets in the old set 

of transactions T1, and Y ⊆ X, we have Y is also a closed itemset in the new 

transaction set T2. 

Proof: Since gT2(Y) = gT1(Y) ∪ {X}, we have CT2(Y) = f• gT2(Y) = f(gT1(Y) ∪ 

{ X}). Because Y ⊆ X, f(gT1(Y) ∪ {X}) = f(gT1(Y)) ∩ f({ X}) =  CT1(Y) ∩ X = Y ∩ X = 

Y. � 

Lemma 4.3 Given T2 = T1 ∪ {X}, if CT1(X) = X and Y ⊂ X and CT1(Y) ⊃ Y, 

then we have CT2(Y) ⊃ Y.  

In this lemma we prove that if X is a closed itemset in transaction set T1, and 

Y is not a closed itemset in transaction set T1, Y ⊂ X, we have Y is not a closed 

itemset in transaction T2. 

Proof:  CT2(Y) = f(gT2(Y)) = f(gT1(Y)) ∩ f({ X}) = CT1(Y) ∩ {X}. From 

Corollary 4.1, If CT1(X) = X, Y ⊂ X, CT1(Y) ⊃ Y. Given an item i, i ∈ CT1(Y), i ∉ Y, 

we have i ∈ X. Therefore, CT2(Y) = CT1(Y) ∩ {X} ⊇ Y ∪ { i} ⊃ Y. � 
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From Lemma 4.2, we know that if Y is a closed itemset in transaction set T1 

before X comes, and Y ⊆ X, Y will remain closed after X comes in transaction set T2. 

From Lemma 4.3, we know that if a closed itemset X which already exists on the 

DIU tree comes, its subset Y which originally unclosed will remain unclosed. 

Case 1.A.2: When X is not in the old DIU 

When X is not in the old DIU, it is not a closed itemset, therefore CT1(X) ⊃ X.  

Similarly, we have the following Lemma 4.4 and Lemma 4.5. From Lemma 4.4, we 

show that if a new closed itemset, which is not originally in the old DIU, arrives and 

if its subsets are already in the DIU, they will remain closed, and thus we simply 

need to update their supports. From Lemma 4.5, we show that if a new closed 

itemset, which is not originally in the old DIU, arrives, then we need to insert it as a 

new closed itemset to the DIU. 

Lemma 4.4 Given T2 = T1 ∪ {X}, if CT1(X) ⊃ X and Y ⊂ X and CT1(Y) = Y, 

then we have CT2(Y) = Y. 

In this lemma, we prove that when X is not a closed itemset, if Y is closed 

itemsets in the old set of transactions T1, and Y ⊂ X, we have Y is also closed itemset 

in the new transaction set T2. 

Proof: Since gT2(Y)=gT1(Y) ∪ {X}, we have CT2(Y) = f•gT2(Y) = f(gT1(Y) ∪ 

{ X}). Because Y ⊂ X, f(gT1(Y) ∪ {X}) = f(gT1(Y)) ∩ f({ X}) =  CT1(Y) ∩ X = Y ∩ X = 

Y. � 

From Lemma 4.5, we show that if a new closed itemset which is not 

originally in DIU arrives, we need to add itself as a new closed itemset in the DIU. 
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Lemma 4.5 Given T2 = T1 ∪ {X}, if CT1(X) ⊃ X and Y = X, then we have 
CT2(Y) = Y = X.  
 

In this lemma, we prove that when X is not a closed itemset in the old 

transaction set T1, if Y = X, so Y is not a closed itemsets in the old set of transactions 

T1, we have Y is a closed itemset in the new transaction set T2. 

Proof: CT2(Y) = f•gT2(Y) = f(gT1(Y) ∪ {X}) = f(gT1(X)) ∩ f({ X}) = CT1(X) ∩ 

f({ X}) = CT1(X) ∩ X = Y = X. � 

When CT1(X) ⊃ X, CT1(Y) ⊃ Y and Y ⊂ X, we will perform the closure check 

to decide Y’s closure, which will be discussed further in Section 4.2.2.2. 

Case 1.B: When Y is not a subset of X 

When Y is not a subset of X, Y ⊄ X, we have the following Lemma 4.6. In 

Lemma 4.6, we show that if Y is not a subset of X, Y’s closure does not change. That 

is to say that if Y is an unclosed itemset before X arrives, then Y will remain unclosed 

after X arrives; and, if Y is a closed itemset before X arrives, then Y will remain 

closed after X arrives. Thus, the DIU structure does not need to be updated, and we 

only need to update Y’s support. 

Lemma 4.6 Given T2 = T1 ∪ {X}, if Y ⊄ X, then we have CT2(Y) = CT1(Y).  

In this lemma we prove that when Y is not a subset of X, Y’s closure doesn’t 

change in transaction set T2. 

Proof: If Y ⊄ X, T2 = T1 ∪ {X}, we have gT2(Y) = gT1(Y). Because CT2(Y) = f• 

gT2(Y), CT1(Y) = f• gT1(Y), gT2(Y) = gT1(Y), we have CT2(Y) = CT1(Y). � 

Case 2: When X has a support equals to zero in the old transaction set T1 
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For any new coming transaction t with the largest itemset X that  has not 

already appeared in the old transaction set T1, we have gT1(X) = φ. We discuss two 

sub cases according to the following conditions: Y ⊄ X and Y ⊆ X. 

Case 2.A: When Y is a subset of X 

When Y is a subset of X, Y ⊆ X, we divide it into two subconditions to 

discuss: Y has a support greater than zero in the old transaction set T1 or Y’s support 

equals to zero in the old transaction set T1. 

Case 2.A.1: When Y has a support greater than zero in the old transaction set T1 

When Y is already in the old transaction set T1, then gT1(Y) ≠ φ. Because Y ⊆ 

X, we have gT2(Y) = gT1(Y) ∪ {X}. Therefore, CT2(Y) = CT1(Y) ∩ {X}. If CT1(Y) = Y, 

we have CT2(Y) = Y that means Y is also closed in T2. If CT1(Y) ⊃ Y, we will perform 

the closure check to decide Y’s closure, which will be discussed further in Section 

4.2.2.2. 

Case 2.A.2: When Y has a support equal to zero in the old transaction set T1 

When Y does not have a support greater than zero in the old transaction set 

T1, then gT1(Y) = φ. We have the following Lemma 4.7. In this lemma, we prove that 

when Y is a subset of X, if Y = X, then Y is a closed itemset in the new transaction set 

T2; and, if Y ⊂ X, then Y is not a closed itemset in the new transaction set T2. 

Lemma 4.7 Given T2 = T1 ∪ {X}, if Y = X, then we have CT2(Y) = Y; if Y ⊂ 

X, then we have CT2(Y) ⊃ Y.  
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In this lemma we prove that when Y is a subset of X, if Y = X, Y is a closed 

itemset in transaction set T2; if Y ⊂ X, Y is not a closed itemset in transaction set T2. 

Proof: If Y = X, then gT2(Y) = gT2(X) = {X}, from the given condition, we 

know gT1(X) = φ. Therefore after X arrives, we have support(Y) = support(X) =1. 

Because gT1(X) = φ, all X’s supersets’ supports = 0; from the definition of closed 

itemset, we have Y is a closed itemset after X arrives. If Y ⊂ X, then gT2(Y) = gT2(X) = 

{ X}, from the given condition, we know gT1(X) = φ. Therefore we have support(Y) = 

support(X) = 1. Because X is a Y’s superset, and they have the same support, we have 

Y as unclosed in transaction set T2. � 

Case 2.B: When Y is not a subset of X 

When Y is not a subset of X, Y ⊄ X, we divide it into two subconditions to 

discuss: Y has a support greater than zero in the old transaction set T1 or Y’s support 

equals to zero in the old transaction set T1. 

Case 2.B.1: When Y has a support greater than zero in the old transaction set T1 

If Y is already in the old transaction set T1, then gT1(Y) ≠ φ. We have the 

following Lemma 4.8.  

Lemma 4.8 Given T2 = T1 ∪ {X}, if Y ⊄ X, then CT2(Y) = CT1(Y).  

In this lemma we prove that when Y is not a subset of X, Y’s closure doesn’t 

change in transaction set T2. 

Proof: If Y ⊄ X, Y ≠ X, we have gT2(Y)=gT1(Y). Because CT2(Y) = f• gT2(Y), 

CT1(Y) = f• gT1(Y), gT2(Y) = gT1(Y), we have CT2(Y) = CT1(Y). � 
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Therefore, Y’s closure doesn’t change. That is to say if Y is an unclosed 

itemset before X comes, Y will remain unclosed after X comes; if Y is a closed 

itemset before X comes, Y will remain closed after X comes. 

 
Case 2.B.2: When Y has a support equal to zero in the old transaction set T1 

If Y is not in the old transaction set, then gT1(Y) = φ. If Y ⊄ X, we have gT2(Y) 

= gT1(Y) = φ, which does not need to be discussed. 

From the above proofs, we can see that when a new transaction arrives, for 

most of the above discussed cases, the DIU structure does not change and we only 

need to update the associated closed itemsets’ supports in the DIU, which thus 

reduces the processing costs. There are only two cases out of thirteen total cases that 

we need to perform the closure check:  

(1) Case 1.A.2: when gT1(X) ≠ φ, gT1(Y) ≠ φ, CT1(X) ⊃ X, CT1(Y) ⊃ Y and Y ⊂ 

X; and  

(2) Case 2.A.1: when gT1(X) = φ, gT1(Y) ≠ φ, CT1(Y) ⊃ Y and Y ⊆ X.  

We will discuss how to check for closed itemsets in the following Section 4.2.2.2. 

4.2.2.2 Closure Check for Insertion 

The CFI-Stream Algorithm checks whether an itemset is closed or not on the 

fly and incrementally updates the DIU based on the previous mining results with one 

scan of data streams. Below, we discuss the checking procedure when performing 

the insertion operation on the DIU. In the following Theorem 1, we show that for any 
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entering unclosed itemset Y, we can always find one and only one closed itemset Xc 

in the DIU that equals to Y’s closure, i.e.,  Xc = C(Y). 

Theorem 4.1 For any itemset Y that satisfies with C(Y) ⊃ Y and g(Y) ≠ φ, 

there exists one and only one closed itemset Xc ∈ C, where C is a set of existing 

closed itemsets, that satisfies with C(Y) = Xc, where Y ⊂ Xc.  

Proof: To find Xc, we first find X1, such that X1 ⊃ Y, and support(X1) = 

support(Y). According to the definition of closed itemsets, X1 always exists. If X1 is 

not closed, we can find X2, where X2 ⊃ X1 and support(X1) = support(X2). Continuing 

this until we can find one Xc which is a closed itemset. This Xc is the itemset that 

satisfies C(Y) = Xc.  

We also want to prove that there is only one such Xc, where support(Xc) = 

support(Y) in the existing closed itemsets. Assume there is another Xc2, where 

support(Xc2) = support(Y) in the existing closed itemsets. We know that for two 

different closed itemset Xc, and Xc2, g(Xc) ≠ g(Xc2). Because Y ⊂ Xc and Y ⊂ Xc2, we 

also know that g(Y) ⊇ g(Xc) and g(Y) ⊇ g(Xc2). Therefore, g(Y) ⊇ g(Xc) ∪ g(Xc2). The 

Xc2 that we can find in the existing closed itemsets should satisfy with g(Y) ⊇ g(Xc) 

∪ g(Xc2), g(Y) = g(Xc). From this we have g(Xc) ⊃ g(Xc2) because g(Xc) ≠ g(Xc2), then 

this Xc2 cannot have the same support as Xc. This conflicts with our assumption, 

support(Xc) = support(Y); so we could not find Xc2, thus Xc is unique. 

We now prove C(Y) = Xc. For any i ∈ C(Y), i ∉ Y, from Lemma 4.1 we have 

g(Y) ⊆ g(i). Because Y ⊂ Xc, we have g(Y) ⊇ g(Xc). Therefore, we have g(i) ⊇ g(Xc). 
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From Lemma 4.1, we have i ∈ C(Xc) = Xc, therefore we have C(Y) ⊆ Xc. For any i ∈ 

Xc, i ∉ Y, because support(Y) = support(Xc), and from the given conditions we know 

Y ⊂ Xc, so we have g(Y) = g(Xc). Also because i ∈ Xc, from Lemma 4.1, we have g(i) 

⊇ g(Xc) = g(Y). Therefore, we have g(i) ⊇ g(Y). Again from Lemma 4.1 we know i ∈ 

C(Y), thus we have Xc ⊆ C(Y). From the above discussion, C(Y) ⊆ Xc and Xc ⊆ C(Y), 

we have Xc = C(Y). � 

From Theorem 4.1, we know that for any itemset Y that satisfies C(Y) ⊃ Y, 

we can find Xc with a minimum number of items in it and Xc ⊃ Y. For any other Xc1 ⊃ 

Y, from the above discussion we know that g(Xc) ⊃ g(Xc1). Because Y ⊂ Xc, then g(Y) 

⊇ g(Xc) ⊃ g(Xc1). To find Xc = C(Xc) ⊆ C(Y), we have g(Xc) = g(Y); only Xc will 

fulfill this requirement. In this way, C(Y) can be found in the old transaction set T1. 

Below, we show how we use this C(Y) to check if Y is a closed itemset in transaction 

set T2 after X arrives. 

Corollary 4.2 Given T2 = T1 ∪ {X}, if gT1(Y) ≠ φ , Y ⊆ X, CT1(Y) ⊃ Y, 

(CT1(Y)/Y) ∩ X = φ, then we have CT2(Y) = Y.  

Proof: CT2(Y) = f• gT2(Y) = f(gT1(Y) ∪ {X}) = f(gT1(Y)) ∩ f({ X}) = CT1(Y) ∩ 

f({ X}) = CT1(Y) ∩ X = Y. �  

From Corollary 4.2, we derive a way to check whether Y is closed in 

transaction T2 or not. If (CT1(Y)/Y) ∩ X = φ, then Y is a closed itemset in T2. We use 

this condition to perform the closed itemset check on the fly when a new transaction 

in the data streams arrives. 
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4.2.3 Delete a Transaction from the DIU 

In this subsection, the update and maintenance of the DIU for the deletion 

operation, which occurs when a transaction leaves the sliding window is discussed. 

The result of the research is to define the conditions under which closed itemsets, 

currently stored in the DIU, need to be checked for closure when the old transaction 

leaves the current sliding window.  

4.2.3.1 Conditions to Check for Closed Itemsets 

First, we define and prove the following condition in which we need to check 

whether an itemset is closed or not when an old transaction X leaves the current 

sliding window. 

Table 4-2 shows the conditions we classify to decide if a closure check is 

needed when perform the deletion operation. 

 

 

Cases/Conditions Closure Check 

Case 1  No 

Case 2 

Case 2. A Case 2.A.1 No 

Case 2. B 
Case 2.B.1 Yes 

Case 2.B.2 No 

Table 4-2: Conditions to check for deletion operation 

From the above table, we can see that there is one condition we need to 

perform closure check, which is as in the following statement. 
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Condition1 (Case 2.B.1): When the number of the transactions with same 

itemset as X is equal to zero, for all subsets Y of X, where the number of transactions 

with same itemset as Y is equal to zero, and Y is a closed itemset in the old 

transaction set, we need to check whether Y remains closed or not (mathematically, 

when {X} ∉ T2, Y ⊆ X, {Y} ∉ T2, and CT1(Y) = Y). 

Below, we prove why we only need to perform closure check for closed 

itemsets specified in the above condition. In the following proof, we assume X and Y 

are itemsets,  T1 is the old set of transactions,  T2 is the new set of transactions after 

itemset X leaves,  CT1(X) is X’s closure within transaction set T1, and CT2(Y) is Y’s 

closure under transaction set T2. 

Case 1: When the number of the transactions with the same itemset X is greater than 

zero 

When the number of transactions with the same itemset of X is greater than 

zero, we have the following Lemma 4.9. From this lemma, we know that Y’s closure 

does not change when the number of transactions with the same itemset of X is 

greater than zero. That is to say that if Y is an unclosed itemset before X leaves, Y 

will remain unclosed after X leaves; and, if Y is a closed itemset before X leaves, Y 

will remain closed after X leaves. 

Lemma 4.9 Given T2 = T1 \ {X}, { X} ∈ T2, we have CT2(Y) = CT1(Y).  

In this lemma we prove that when the number of the transactions with same 

itemset of X is greater than zero, Y’s closure doesn’t change in transaction set T2. 
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Proof: Because {X} ∈ T2, if gT2(X) \ {X} ≠ φ, we have f(gT2(X)) = f(gT2(X) \ 

{ X}) ∩ X, so CT2(X) = f(gT2(X) \ {X}) ∩ X ⊆ X. According to the definition, CT2(X) ⊇ 

X. Therefore, we have CT2(X) = X. If gT2(X) \ {X} = φ,  we have gT2(X) = {X}, 

f(gT2(X)) = f({ X}), and CT2(X) = X. Therefore, we have CT2(X) = X. 

(a) For Y = X, we have CT2(Y) = Y, Y is a closed itemset in the transaction set 

T2. 

(b) For Y ⊂ X, because CT2(X) = X, Y ⊂ X, for CT2(Y) = Y, we have CT2(Y) ⊂ 

X; for CT2(Y) ⊃ Y, from Corollary 4.1, we have CT2(Y) ⊂ X. Therefore, 

gT1(Y) = gT2(Y) ∪ {X}, so CT1(Y) = CT2(Y) ∩ {X}. Because CT2(Y) ⊂ X, 

CT2(Y) ∩ {X} = CT2(Y). Therefore, we have CT2(Y) = CT1(Y). 

(c) For Y ⊄ X, Y ≠ X, we have gT2(Y)=gT1(Y). Because CT2(Y) = f• gT2(Y), 

CT1(Y) = f• gT1(Y), gT2(Y) = gT1(Y), we have CT2(Y) = CT1(Y). � 

Therefore, Y’s closure doesn’t change when the number of the transactions 

with same itemset of X is greater than zero. That is to say if Y was an unclosed 

itemset before X leaves, Y will remain unclosed after X leaves; if Y was a closed 

itemset before X leaves, Y will remain closed after X leaves. 
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Case 2: When the number of transactions with the same itemset X is equal to zero 

When the number of the transactions with same itemset of X is equal to zero, 

{ X} ∉ T2, we divide this condition into the following two subconditions to discuss: 

Y is not a subset of X or Y is a subset of X.  

Case 2.A: When Y is not a subset of X 

If Y is not a subset of X, we have the following Lemma 4.10. In this lemma, 

we prove that when {X} no longer exists in transaction set T2, and Y is not a subset 

of X, Y’s closure does not change in transaction set T2.  

Lemma 4.10 Given T2 = T1 \ {X}, if { X} ∉ T2, Y ⊄ X, Y ≠ X, then CT2(Y) = 

CT1(Y).  

In this lemma we prove that when {X} is no longer exist in the transaction set 

T2, Y is not a subset of X, Y’s closure doesn’t change in transaction set T2. 

Proof: If {X} ∉ T2, Y ⊄ X, Y ≠ X, we have gT2(Y) = gT1(Y). Because CT2(Y) = 

f• gT2(Y), CT1(Y) = f• gT1(Y), gT2(Y) = gT1(Y), we have CT2(Y) = CT1(Y). � 

Therefore, Y’s closure doesn’t change. That is to say if Y was an unclosed 

itemset before X leaves, Y will remain unclosed after X leaves; if Y was a closed 

itemset before X leaves, Y will remain closed after X leaves. 

Case 2.B: When Y is a subset of X 

If Y is a subset of X, we discuss according to the following subconditions: Y 

is a closed itemset in transaction set T1 and Y is not a closed itemset in transaction 

set T1. 
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Case 2.B.1: When Y is a closed itemset in transaction set T1 

In the following Lemma 4.11, we prove that when Y is a subset of X, Y ⊂ X, 

{ Y} ∈ T2. Y is a closed itemset in transaction set T2. 

Lemma 4.11 For any itemset Y, if Y ⊂ X, {Y} ∈ T2, we have CT2(Y) = Y.  

In this lemma we prove that when Y is a subset of X, Y ⊂ X, {Y} ∈ T2. Y is a 

closed itemset in transaction set T2. 

Proof: Because gT2(Y) = {Y} ∪ (gT2(Y) \ {Y}), we have CT2(Y) = f({ Y}) ∩ 

f(gT2(Y) \ {Y}) ⊆ Y. Also because CT2(Y) ⊇ Y, we have CT2(Y) = Y. � 

From the above discussion, we can see that in the condition that we need to 

perform the closure check for the deletion operation, if {Y} ∈ T2, the Y is closed in 

the new transaction set T2. When Y is a closed itemset in the transaction set T1, that 

is to say when Y ⊆ X, CT1(Y) = Y, and {Y} ∉ T2, we need to perform the closure 

check, which we will discuss further in Section 4.2.3.2. 

Case 2.B.2: When Y is not a closed itemset in transaction set T1 

When Y is not a closed itemset in transaction set T1, we have the following 

Lemma 4.12.  

Lemma 4.12 Given T2 = T1 \ {X}, if Y ⊂ X, CT1(Y) ⊂ Y, then CT2(Y) ⊂ Y.  

In this lemma we prove that when Y is a subset of X, Y ⊂ X, and CT1(Y) ⊂ Y , 

then Y is not a closed itemset in transaction set T2. 
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Proof: Because Y ⊂ X, gT1(Y) = gT2(Y) ∪ {X}, CT1(Y) = f• gT1(Y) = f(gT2(Y) ∪ 

{ X}) = CT2(Y) ∩ {X}. Because CT1(Y) ⊃ Y, Y ⊂ X, we have CT2(Y) ∩ {X} ⊃ Y. 

Therefore, CT2(Y) ⊃ Y. � 

From the above discussion, we can see that when an old transaction leaves 

the current sliding window, for most cases in the above discussions, the DIU 

structure does not change, and we need to update only the associated closed itemsets’ 

supports, which thus reduces the update costs. There is only one case out of five total 

cases that we need to perform the closure check when an old transaction {X} leaves 

the current sliding window: when {X} ∉ T2, Y ⊆ X, and {Y} ∉ T2, and CT1(Y) = Y. 

We will discuss how to check for closed itemsets in the following section. 

4.2.3.2 Closure Check for Deletion 

The CFI-Stream Algorithm checks whether an itemset is closed or not on the 

fly, and incrementally updates the DIU based on the previous mining results with 

one scan of data streams. Below, we discuss the checking procedure for the deletion 

operation. In the following Theorem 4.2, we show that for any itemset Y, if Y ⊆ X, 

CT1(Y) = Y, {X} ∉ T2, then we can always find CT2(Y) in the original closed itemsets. 

Theorem 4.2 For any itemset Y, if Y ⊆ X, CT1(Y) = Y, {X} ∉ T2, then CT2(Y) 

∈ CT1. That is to say, we can always find CT2(Y)  in CT1.  

  Proof: CT1(CT2(Y)) = f(gT1(f(gT1(Y) \ {X}))) 
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Because {X} ∉ T2, there is one {X} transaction in T1, we have gT1(Y) \ {X} ⊆ 

gT1(f(gT1(Y) \ {X})) ⊆ gT1(Y). So we have either gT1(f(gT1(Y) \ {X})) = gT1(Y) \ {X} or 

gT1(f(gT1(Y) \ {X})) = gT1(Y). 

In the first case, gT1(f(gT1(Y) \ {X})) = gT1(Y) \ {X}.  Because CT1(CT2(Y)) = 

f(gT1(f(gT1(Y) \ {X}))) = f(gT1(Y) \ {X}) = CT2(Y), we have CT2(Y) as a closed itemset 

in CT1. 

In the second case, gT1(f(gT1(Y) \ {X})) = gT1(Y). Because CT1(CT2(Y)) = 

f(gT1(Y)) = CT1(Y) = Y. So we have CT2(Y) ⊆ Y. Also because Y ⊆ CT2(Y), so we have 

CT2(Y) = Y. So CT2(Y) is a closed itemset in CT1. 

Hence, for both cases CT2(Y) ∈ CT1, we definitely can find CT2(Y) in CT1. 

Below, we show how we perform the closure check when {Y} ∉ T2 and to 

see if Y is a closed itemset in transaction set T2 after X leaves. 

Corollary 4.3 If Y ⊆ X, {Y} ∉ T2, for all u1, u2, …, ui, …, un which satisfies 

CT2(ui) = ui , Y ⊂ ui, we have  CT2(Y) = u1 ∩ u2 ∩ …∩ ui ∩ …∩ un. 

Proof: First, we prove CT2(Y) ⊆ u1 ∩ u2 ∩ …∩ ui ∩ …∩ un. Because Y ⊂ ui, 

CT2(ui) = ui  according to Corollary 4.1, CT2(Y) ⊆ ui. Therefore CT2(Y) ⊆ u1 ∩ u2 ∩ 

…∩ ui ∩ …∩ un. 

Next, we prove CT2(Y) ⊇ u1 ∩ u2 ∩ …∩ ui ∩ …∩ un.  For any transaction t, t 

∈ T2, Y ∈ t. Because {Y} ∉ T2, so we can find Z ⊃ Y, Z ∈ t. We know CT2(Z) ⊇ Z ⊃ 

Y, CT2(Z) ∈ CT2. Because u1, u2, …, ui, …, un are all itemsets in CT2 which includes Y. 

So we can assume CT2(Z) = uk, so gT2(uk) = gT2(Z). So t ∈ gT2(Z), t ∈  gT2(uk). 
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Therefore, we have gT2(Y) ⊆ gT2(u1) ∪ gT2(u2) ∪ …∪ gT2(ui) ∪ …∪ gT2(un). So 

CT2(Y) ⊇ CT2(u1) ∩ CT2(u2 ) ∩ …∩ CT2(ui) ∩ …∩ CT2(un) = u1 ∩ u2 ∩ …∩ ui ∩ …∩ 

un. 

Therefore, we have CT2(Y) = u1 ∩ u2 ∩ …∩ ui ∩ …∩ un. � 

From Corollary 4.3, we derive a way to check Y’s closure:  if CT2(Y) = u1 ∩ 

u2 ∩ … ∩ ui ∩ … ∩ un = Y, then Y is a closed itemset. We use this rule to perform 

the closure check in the CFI-Stream Algorithm on the fly when an old transaction 

leaves the current sliding window. 

4.3 The Proposed CFI-Stream Algorithm 

Based on our above discussions, we derive an algorithm to perform online 

checking for closed itemsets over data streams. The CFI-Stream Algorithm performs 

an insertion operation when a new transaction arrives and a deletion operation when 

an old transaction leaves the current sliding window.  

When a transaction arrives or leaves the current data stream sliding window, 

by performing the insertion and deletion operations, the CFI-Stream Algorithm 

checks each itemset in the transaction on the fly and updates the associated closed 

itemsets’ supports. Current closed itemsets are maintained and updated in real time 

in the DIU. The closed frequent itemsets can be output at any time at users’ specified 

thresholds by browsing the DIU. 
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4.3.1 The Insertion Procedure 

The insertion procedure in Figure 4-2 illustrates the insertion process when 

an itemset X arrives.  The algorithm first checks if X is in the current closed itemsets 

set C. If X is in C, it updates X’s support, and for all X’s subsets Y belonging to C, it 

updates Y’s supports (lines 3 to 8). Otherwise, if X is not in C and X has been 

included by at least one transaction in the old transaction set, it checks whether it is a 

closed itemset for itself and all its subsets after the new transaction arrives (lines 9 to 

36); and, it updates the associated supports for all the closed itemsets (lines 37 to 40). 

If X is a newly arrived closed itemset and does not exist in the DIU, the algorithm 

inserts it as a new node to the DIU (lines 27 to 31). Otherwise, it inserts X into the 

closed itemset (lines 10-15); if X is the subset of the inserted transaction, a closure 

check is performed (lines 16-24). In the following algorithm description, X and Y 

represent itemsets, Xs and Ys represent X’s support and Y’s support, len(X) represents 

the length of the itemset X, which is the number of items in an itemset X, C 

represents the original closed itemsets in the DIU, and Cnew represents new closed 

itemsets in the DIU after itemset X arrives.  

CFI-Stream – Insertion 

1 X_close = true; Cnew = φ; 
2 procedure Insert(X, C, Cnew) 
3     if (X ∈ C)                                                                
4         for all (Y ⊆ X and Y ∈C) 
5              Ys   support(Y, C) + 1;        
6         end for 
7        if (X_close = true)  return; 
8     else  
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9          if (support(X, C) > 0 ) 
10                 if(Cnew = φ )             
11                       X0  X; 
12                       Cnew  X; 
13                       X_close = false; 
14                       Xs   support (X, C) + 1; 
15                  else                       
16                       Xc = φ; 
17                       M = I; 
18                       for all ( K ⊃ X and K ∈ C) 
19                          if (len(K)<len(M)) M=K; 
20                       end for 
21                       Xc  M;                      
22                       if ((Xc\X) ∩ X0 = φ and Xc ≠ φ )  
23                           Cnew  Cnew ∪ X; 
24                           Xs  support(X, C) + 1; 
25                       end if 
26                  end if 
27          else  
28                 if (Cnew = φ )       
29                     X0  X; 
30                     Cnew  X; 
31                      Xs = 1; 
32                 end if 
33          end if 
34      end if 
35       for all (m ⊂ X and Len(m) = Len(X)-1) 
36                    call Insert(m, C, Cnew); 
37       end for 
38       if (X = X0) 
39           C  C ∪ Cnew; 
40           support(X, C) = Xs; 
41       end if 
42 end procedure  

Figure 4-2: CFI-Stream algorithm – insertion 

4.3.2 The Deletion Procedure 

The deletion procedure in Figure 4-3 illustrates the procedure to perform the 

deletion operation when an itemset X leaves the current sliding window. CFI-Stream 
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first checks if X is in the current closed itemsets set C and its count is greater or 

equal to two; if so, it updates X’s support and X’s subsets’ support belonging to C 

(lines 3 to 6). Otherwise, it checks the itemset X and all its subsets, which are in the 

current closed itemset set C, to see whether they are still closed itemsets (lines 8 to 

26) and updates the support for all its subsets that are in the current closed itemsets 

(lines 28 to 29). If the subset Y exists in the transaction, Y should keep closed (lines 

11-13); otherwise a closure check for the subset Y is performed (lines 14-22). In the 

following Figure 4-3, Cobsolete represents the itemsets that are no longer closed after 

transaction {X} leaves. 

CFI-Stream – Deletion 

1 Cobsolete = φ; 
2 procedure Delete (X, C, Cobsolete) 
3     if (count({X}) ≥ 2)         
4         for all (Y ⊆ X and Y ∈C) 
5              Ys   support(Y, C) – 1; 
6         end for 
7     else  
8            length = len(X); 
9            while (length ≥ 1) 
10                 for all ( Y ⊆ X and Y ∈C and len(Y) = length)  
11                      if (count({Y}) ≥ 2)  
12                         Ys   support(Y, C) – 1;                      
13                      else  
14                         M = I; 
15                         for all ( U ⊃ Y and U ∈C) 
16                              M = M ∩ U; 
17                         end for 
18                         if (M = Y)  
19                             Ys   support(Y, C) – 1; 
20                         else 
21                             Cobsolete= Cobsolete ∪ Y; 
22                         end if 
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23                       end if 
24                   end for 
25                   length = length-1; 
26             end while 
27       end if 
28       C  C \ Cobsolete 
29       support(Y, C) = Ys; 
30 end procedure 

Figure 4-3: CFI-Stream algorithm – deletion 

4.4 Comparing with Existing Literature 

Table 4-3 summarizes the recent closed pattern mining approaches. From 

which we can see that according to different mining strategies, the proposed methods 

perform single or multiple scan through the entire dataset. In the data stream 

environment, as we discussed in Section 1.2, the single scan of data and compact 

memory usage of the mining technique are preferable. Chi et al proposed the 

Moment Algorithm to judge the closed itemsets indirectly through node property 

checking and excludes them from the other three types of boundary nodes stored in 

the data structure. And in (Li, 2006), the authors proposed the NewMoment 

Algorithm which uses a bit-sequence representation of items to reduce the time and 

memory needed. We proposed the CFI-Stream Algorithm in (Jiang, 2006) to directly 

compute the closed itemses online and incrementally without the help of any support 

information. In (Li, 2008), Li et al proposed to improve the CFI-Stream Algorithm 

with bitmap coding named CLIMB (Closed Itemset Mining with Bitmap) over data 

stream’s sliding window to reduce the memory cost. 
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Mining 
Strategy 

Mining 
Process 

Data 
Stream 
Support 

Scan  

Mining Closed 
Patterns 

 Static Data 
Pasquier 99 

Key Pattern 
Browsing 

Offline No Multiple 

Pei 00, Zaki 
02, Pei 03 

Closure 
Climbing 

Online No Multiple 

Stream Data 
Chi 04, Li 06 Indirect Online Yes Single 

Proposed 06, 
Li 08 

Direct Online Yes Single 

Table 4-3: Recent closed pattern mining approaches 

 

4.5 Summary 

In this chapter an algorithm called CFI-Stream is proposed to directly 

compute closed itemsets online and incrementally, without requiring the user to 

provide support information. Once the closed itemsets are determined, the user’s 

support information can be used to easily retrieve the desired frequent itemsets.  

An in-memory data structure DIU is proposed to store and monitor the closed 

patterns in the current sliding window. Nothing other than closed itemsets and their 

support is maintained in the DIU. The proposed CFI-Stream Algorithm is a sliding 

window approach to maintain the DIU in an incremental fashion. When a new 

transaction arrives, it performs the closure check on the fly; only associated closed 

itemsets and their support information are incrementally updated. This achieves both 

time and space efficiency compared with the state of the art algorithm for closed 

pattern mining in data streams (Chi, 2004). The current closed itemsets can be output 

in real time based on any user’s specified support thresholds.  
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5 Association Mining in Data Streams based on Closed 

Pattern Mining 

Association mining can produce many association rules. It is widely 

recognized that the set of association rules can rapidly grow to be unwieldy, 

especially when the support requirements are relatively low. In general, mining a 

large set of frequent itemsets leads to a large number of rules being presented to the 

user, many of which are redundant and difficult to analyze.  A primary goal of the 

proposed approach is to reduce the number and redundancy of the rules provided to 

the user. 

Many researchers have considered various kinds of solutions to the above 

problem, and these can be divided into the following three categories: First is 

efficient association mining based on frequent itemsets. This category’s research 

objective is to enumerate all frequent itemsets, and to produce association rules 

based on the derived frequent itemsets. Second is mining interesting association 

rules. This category’s research objective is to incorporate user-specified constraints 

on the kind of rules generated or to define objective metrics of interest. Third is 

mining non-redundant association rules. This category’s research objectives include 

the generation of non-redundant association rules. 

In this research we focus on the combination of the second and third 

approaches, to mine non-redundant and informative association rules that match the 
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user interests. The generated association rules are evaluated by users for data 

analysis. Because the cost of evaluating a large number of rules can be very high, we 

attempt to reduce the non-informative association rules by generating only non-

redundant association rules that match the user’s interests. 

5.1 Overview 

The goal of association rule mining is to discover interesting associations and 

correlation relationships among a large set of items. With massive amounts of data 

continuously arriving in a data stream environment, it is possible for a huge number 

of rules to be generated continuously.  

Although there are a lot of existing studies on association rule mining, 

traditional association rule mining techniques are not suitable for a data stream 

environment due to several reasons. These reasons are outlined in detail in Section 

2.2.1. Different from the previous non-redundant association rule generation 

techniques that have been studied for the traditional database (Bastide, 2000, Zaki 

2005), the proposed technique is to generate association rules with a single scan 

based on the closed pattern mining method we proposed in Chapter 4. The rule 

generation is based on the current closed itemsets in data streams derived from the 

DIU, which are a condensed representation of the whole stream data without loss of 

information. Compared with (Li 2004), the proposed technique involves the mining 

of minimal non-redundant association rules from the DIU based on a sliding window 

model, instead of a quantitative closed itemset lattice based on a landmark data 
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processing model as we discussed in Section 2.1.3. Thus both insertion and deletion 

operation can be performed on the data streams. Furthermore, the DIU contains all 

the closed patterns in the current sliding window. Therefore, the rules can be 

generated on demand, at different user-specified support and confidence thresholds.  

Theoretical analysis and experimental results are also performed to show that 

our proposed technique can efficiently produce non-redundant rules in data streams, 

which provide a condensed set of association rules among itemsets in data streams 

and make it easier for data analysis. In addition, only correlated relationships are 

developed and user interest patterns are output from the pattern filters. The rules can 

be generated for multiple user query requests with different thresholds and pattern 

requirements which are especially suitable for the distributed data stream query 

environment. 

5.2 The Proposed Rule Mining Framework based on Closed 
Pattern Mining 
 

In this section, we present an online non-redundant and informative 

association rule mining framework based on the closed pattern mining method in 

data streams we proposed in Chapter 4. We first briefly describe the framework we 

are going to use to compute the closed frequent itemsets and mine non-redundant 

association rules in data streams. Then we discuss how we mine non-redundant and 

informative association rules based on the discovered closed patterns. 
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As illustrated in Figure 5-1, when data stream comes and leaves the server, 

the CFI-Stream Algorithm checks each itemset in the transaction on the fly and 

updates the associated closed itemsets’ supports. Current closed itemsets are 

maintained and their support values are updated in real time in the DIU. We mine the 

minimal non-redundant association rules based on the closed patterns maintained in 

the lexicographical ordered direct update lattice. The derived rule set then goes 

through the correlation filter to leave out any non-correlated associations into user 

consideration. Based on different users’ requests on interested patterns, minimum 

support and confidence thresholds, different association rule sets are output through 

the pattern filter. 

 
 

Figure 5-1: The proposed association mining framework based on closed pattern 
mining 
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5.3 Mining Informative Associations based on Closed Pattern 
Mining 
 

It is widely recognized that the set of association rules can rapidly grow to be 

unwieldy, especially when support requirements are low. In this section, we show 

how frequent closed itemsets can help us form a basic set of rules, from which all 

other association rules can be inferred. Thus only a small and understandable set of 

rules need to be presented to the user that can later selectively derive other rules of 

interest. We show that the derived association rules in data streams are non-

redundant rules that provide a minimum set of association rules among itemsets in 

data streams and make it easier for data analysis. 

Lemma 5.1 The support of an itemset X is equal to the support of its closure, 

i.e. s(X) = s(C(X)).  

This lemma, reported in (Pasquier, 1999) and (Zaki, 2000), states that all 

frequent itemsets are uniquely determined by the frequent closed itemsets. From 

Lemma 5.1, we know that the support of an itemset X equals the support of its 

closure C(X). Thus it suffices to consider rules only among the frequent closed 

itemsets (Zaki, 2000). We show that they are equivalent in the following Lemma 5.2. 

In the following proofs, we use |g(X)| to represent the number of transactions in g(X). 

 
Lemma 5.2 The rule X1 → cs,  X2 is equivalent to the rule 

C(X1) → cs, C(X2).  
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Proof: For support we have s = s(X1 ∪ X2) = |g(X1 ∪ X2)| = |g(X1) ∩ g(X2)|. 

By Lemma 5.1, we have s = |g(C(X1)) ∩ g(C(X2))|, because the support of an itemset 

and its closure is the same. The last expression can be rewritten as s = |g(C(X1) ∪ 

C(X2))| = s(C(X1) ∪ C(X2)). For confidence, we have c = s/|g(X1)| = s/|g(C(X1))|. 

Therefore, the rule X1 → cs,  X2 is equivalent to the rule C(X1) → cs, C(X2).  

Lemma 5.3 (Zaki, 2000) The rule X1 → cs,  X2 is equivalent to the rule X1 

→ 1,1 cs X1 ∪ X2, i.e., s = s1 and c = c1. 

Proof: For support we have s = |g(X1 ∪ X2)| = |g(X1 ∪ (X1 ∪ X2))| = s1. For 

confidence, we have c = s/|g(X1)| = s1/|g(X1)| = c1. Therefore, the rule X1 → cs,  X2 

is equivalent to the rule X1 → 1,1 cs X1 ∪ X2, i.e., s = s1 and c = c1. 

In the following discussions, we consider two cases of association rules, 

those with 100% confidence, i.e. with c = 1.0, and those with c < 1.0. 

Case 1: Rule with confidence = 100% 

Lemma 5.4 The rule X1  → = 0.1,cs  X1 ∪ X2 is equivalent to the rule 

X1  → = 0.11,1 cs C(X1 ∪ X2), i.e., s = s1 and c = c1. 

Proof:  

(a) Because X1  → = 0.1,cs  X1 ∪ X2, we have c = |g(X1 ∪ (X1 ∪ X2))|/|g(X1)| 

= 1.0. Therefore, we have |g(X1 ∪ X2)|/|g(X1)|=1.0. 

(b) Now let’s look at the rule X1  → = 0.11,1 cs C(X1 ∪ X2). For the 

confidence, c1 = |g(X1 ∪ C(X1 ∪ X2))|/|g(X1)| = |g(C(X1 ∪ X2))|/|g(X1)|. From 

Lemma 5.1, s(C(X1 ∪ X2)) = s(X1 ∪ X2), we have |g(X1 ∪ X2)|= |g(C(X1 ∪ 
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X2))|. Therefore, c1 = |g(X1 ∪ C(X1 ∪ X2))|/|g(X1)| = |g(C(X1 ∪ X2))|/|g(X1)| = 

|g(X1 ∪ X2)|/|g(X1)|=1.0 = c. For the support, s1 = |g(C(X1 ∪ X2))| = |g(X1 ∪ 

X2)| = s. Therefore, the rule X1  → = 0.1,cs  X1 ∪ X2 is equivalent to the rule 

X1  → = 0.1,cs C(X1 ∪ X2). 

Lemma 5.5 The rule X1  → = 0.1,cs  X2 is equivalent to the rule 

X1  → = 0.1,cs C(X1), and also the rule X1  → = 0.1,cs  X2 is redundant. 

Proof: 

(a) From Lemma 5.3, we have X1 → cs,  X2 is equivalent to the rule X1 

→ 1,1 cs X1 ∪ X2. From (Luxenburger, 1991), we know that an association 

rule X1 → cs,  X2 has confidence c = 1.0 if and only if g(X1) ⊆ g(X2), or 

equivalently if and only if C(X2) ⊆ C(X1). Therefore, we have rule X1 → cs,  

X1 ∪ X2 has confidence c = 1.0 if and only if g(X1) ⊆ g(X1 ∪ X2), or 

equivalently if and only if C(X1 ∪ X2) ⊆ C(X1). 

(b) Because X1 ⊆ X1 ∪ X2, from the monotonicity property of Galois 

connection (Luxenburger, 1991), we have C(X1) ⊆ C(X1 ∪ X2). 

(c) From (a) and (b) we know that C(X1) = C(X1 ∪ X2), also from Lemma 

5.3, we have X1 → cs,  X2 is equivalent to the rule X1 → cs, X1 ∪ X2. From 

Lemma 5.4, we have rule X1  → = 0.1,cs X1 ∪ X2 is equivalent to the rule X1 

 → = 0.1,cs C(X1 ∪ X2). Therefore, we have the rule X1  → = 0.1,cs  X2 is 

equivalent to the rule X1  → = 0.1,cs C(X1 ∪ X2). Also because C(X1) = C(X1 ∪ 
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X2), we have the rule X1  → = 0.1,cs  X2 is equivalent to the rule 

X1  → = 0.1,cs C(X1). 

From Lemma 5.5, we proved that any association rule X1  → = 0.1,cs  X2 is 

equivalent to the rule X1  → = 0.1,cs C(X1). Therefore, the set of association rules in the 

format X1  → = 0.1,cs C(X1) is complete. Because C(X1) = C(X1 ∪ X2), and from the 

extension property of Galois connection X ⊆ C(X), we have X2 ⊆ C(X2) ⊆ C(X1). 

Thus, from the rule redundancy definition in Chapter 3, the rule X1  → = 0.1,cs  X2 is 

redundant. 

In the following Lemma 5.6, we prove that the rules from all non-minimum 

generators to its closure are redundant. 

Lemma 5.6 The rules X1  → = 0.1,cs C(X1), X1 is not a minimum generator, are 

redundant. 

Proof:  From the minimum generator definition in Chapter 3, we know that 

the smallest itemset X1 that satisfies with C(X1) = X2, is called X2’s minimum 

generator. If X1 is not the minimum generator, we can find a minimum generator X1’, 

such that X1’  → = 0.1,cs C(X1).  s’ = s(X1’∪C(X1)) = |g(X1’∪C(X1))| = |g(X1’) ∩ 

g(C(X1))| = | g(C(X1))| = |g(X1)∪g(C(X1))| = s, and c’ = |g(X1’∪C(X1))| / |g(X1’) | = 

|g(X1∪C(X1))| / |g(X1) | = c . Therefore, the rules X1  → = 0.1,cs C(X1) are equivalent 

with the rules X1’  → = 0.1,cs C(X1). Also because X1’ ⊆ X1, the rules from non-

minimum generator X1  → = 0.1,cs C(X1) are redundant. 
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We use the method in (Li, 2004) to find the minimum generator of a given 

closed itemset. In the following Lemma 5.7, we prove that all association rules from 

the minimum generator to closed itemsets are non-redundant. 

Lemma 5.7 The rules X1  → = 0.1,cs C(X1), X1 is a minimum generator, are 

non-redundant. 

Proof: Assume that we have two rules X1  → = 0.1,cs C(X1), and 

X2  → = 0.1,cs C(X2). If X1 ⊃ X2, and C(X1) ⊂ C(X2), then X1 � C(X1) is redundant. We 

show this is impossible. Because X1 and X2 are minimum generators, if X1 ⊃ X2, from 

the monotonicity of Galois connection property (Luxenburger, 1991), we have C(X1) 

⊃ C(X2). This is contrary with the given assumption C(X1) ⊂ C(X2). Therefore the 

rules X1 � C(X1) are non-redundant. 

From the above discussions, we show that when confidence of the association 

rule is equal to 1, the set of association rules in the format  X1  → = 0.1,cs C(X1), X1 is a 

minimum generator, is complete and non-redundant. In the following, we discuss the 

conditions when the confidence of the rule is less than 1. 

Case 2: Rule with confidence < 100% 

Lemma 5.8 The rule X1  → < 0.1,cs  X2 is equivalent to the rule 

X1  → < 0.1,cs C(X1 ∪ X2), and X1 ⊂ C(X1 ∪ X2). 

Proof: For the rule X1  → < 0.1,cs  X2, the support s = s(X1∪X2)) = |g(X1∪X2)|, 

the confidence c = |g(X1∪X2)| / |g(X1) |. For the rule X1  → < 0.1,cs C(X1 ∪ X2), we have 

its support is s(X1∪C(X1 ∪ X2)) = |g(X1∪C(X1 ∪ X2))| = | g(X1) ∩ g(C(X1 ∪ X2))| = | 
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g(X1) ∩ g(X1 ∪ X2)| = | g(X1) ∩ g(X1) ∩ g(X2)| = | g(X1) ∩ g(X2)| = |g(X1∪X2)| = s, the 

confidence is |g(X1∪C(X1 ∪ X2))|/ |g(X1) | = |g(X1∪X2)| / |g(X1) | = c. In all above 

association rules, c is less than 1, the support of X1 is greater than the support of C(X1 

∪ X2), therefore we have X1 ⊂ C(X1 ∪ X2). From the above discussion, we proved 

that any association rule X1  → < 0.1,cs  X2 is equivalent to the rule X1  → < 0.1,cs C(X1 

∪ X2), and X1 ⊂ C(X1 ∪ X2). Therefore, if we can find all association rules with the 

format of X1  → < 0.1,cs C(X1 ∪ X2), X1 ⊂ C(X1 ∪ X2), these association rules should 

provide complete information. 

Lemma 5.9 The rules X1  → < 0.1,cs C(X1 ∪ X2), X1 ⊂ C(X1 ∪ X2), X1 is not a 

minimum generator, are redundant. 

Proof: From the definition of minimum generator in Chapter 3, we know that 

the most minimal generator X1 is the itemset that satisfies with C(X1) = X2. If X1 is 

not the minimum generator, we can find a minimum generator X1’, such that 

X1’  → < 0.1,cs C(X1 ∪ X2).  s’ = |g(X1’∪C(X1 ∪ X2))| = |g(X1’) ∩g(C(X1 ∪ X2))| = 

|g(X1’)∩g(X1)∩g(X2)| = |g(X1)∩g(X2)| = s , and c’ = |g(X1’)∪C(X1 ∪ X2)|/|g(X1)| = 

|g(X1’)∩g(X1)∩g(X2)| /|g(X1)| = |g(X1∪X2)|/ |g(X1)| = c. Also because X1’ ⊆ X1, the 

rules from non-minimum generator X1  → < 0.1,cs C(X1 ∪ X2), X1 ⊂ C(X1 ∪ X2), are 

redundant. 

In the following Lemma 5.10, we prove that all association rules from the 

minimum generators to their closed supersets are non-redundant. 
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Lemma 5.10 The rules X1  → < 0.1,cs C(X1 ∪ X2), X1 ⊂ C(X1 ∪ X2), X1 is a 

minimum generator, are non-redundant. 

Proof: Assume that we have two rules X1  → < 0.1,cs C(X1 ∪ X2), and 

X1’  → < 0.1,cs C(X1 ∪ X2), X1 ⊂ C(X1 ∪ X2). If X1 ⊃ X1’, then X1 � C(X2) is 

redundant. We show this is impossible. Because X1 and X1’ are generators, if X1 ⊃ 

X1’, from the monotonicity property of Galois connection, we have C(X1) ⊃ C(X1’). 

This is contrary with the given condition that both X1 and X1’ are generators of the 

same close itemset, i.e. C(X1) = C(X1’). Therefore the rules X1 � C(X1 ∪ X2), X1 ⊂ 

C(X1 ∪ X2), X1 is minimum generator are non-redundant. 

From the above discussions, we show that when confidence of the association 

rule is less than 1, the set of association rules in the format X1  → < 0.1,cs C(X1 ∪ X2), 

X1 ⊂ C(X1 ∪ X2) and X1 is minimum generator, is a complete and non-redundant 

association rule. In this relationship, C(X1 ∪ X2) is X1’s closed supersets. From (Zaki 

2005), we know that for closed itemsets related by the subset relation, it is sufficient 

to consider rules among adjacent closed itemsets, since other rules can be inferred by 

transitivity (Luxenburger, 1991). Therefore, in our proposed algorithm, we derive 

rules only among immediate parent and child nodes. 

Not all association rules are correlated with each other, to determine all the 

correlated association rules, we introduce the lift formula to calculate the correlation 

of two closed patterns. The lift of two closed patterns X and Y can be measured as 

lift( X, Y) = s(X ∪ Y) / s(X)s(Y) = |g(X ∪ Y)| /|g(X)||g(Y)|. As discussed in (Han, 2001), 
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if the resulting value is less than 1, then the occurrence of X is negatively correlated 

with the occurrence of Y. Otherwise if the resulting value is greater than 1, then X 

and Y are positively correlated. If the resulting value is equal to 1, then X and Y are 

independent and there is no correlation between them. We calculate and output all 

the positively correlated rules, having lift values greater than 1.  

Furthermore, different users often have different query requests at the same 

time to the same stream of data. This is due to the fact that each user may have 

different needs and interest information. To match different users’ query requests at 

the server, we derive mechanism to output only the rule sets that match different 

user-specified support and confidence thresholds. We also include a pattern filter in 

the proposed association rule mining framework, which outputs the particular 

patterns that the user interests about. For example, the electronic department 

manager of a wholesale store may particular interests about the rule sets that imply 

the following information: if a customer buys a camera, what other products that he 

or she may also want to buy?  In this specific query, camera is the user interest input 

pattern. Based on this information, we derive the rule sets that match the input and 

output patterns specified by different users. Figure 5-2 shows how we mine the non-

redundant and informative association rules in data streams from the DIU.  

_________________________________________________________________ 

Input:  (1) DIU: All closed itemsets in the DIU 
            (2) Sspecify: the user-specified minimum support 
            (3) Cspecify: the user-specified minimum confidence  
            (4) Pin: the user-specified input pattern 
            (5) Pout: the user-specified output pattern 
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Output:  R: The output informative association rule set 

Method: 

1 for each node X in the DIU 
2  if (S(X) ≥ Sspecify) 
3   find X’s minimum generator Y 
4   for each Y, and Pin ⊆ Y  
5                if (Y ≠ X and Pout ⊆ X and lift(Y, X) > 1) 
6                    R = R ∪ (Y � X) 
7                    S = S(X) 
8                    C = 1 
9                    for each X’s immediate upper-level node Xp 
10                         if (S(Xp) ≥ Sspecify and S(Xp)/S(X) ≥ Cspecify   
                                                              and Pout ⊆ Xp and lift(Y, Xp) > 1) 
11                               R = R ∪ Y � Xp 
12                              S = S(Xp) 
13                               C = S(Xp)/S(X) 
14       end if 
15                     end for 
16                 end if 
17                 if (Y = X and Pout ⊆ X and lift(Y, X) > 1) 
18                   for each X’s immediate upper-level node Xp 
19       if (S(Xp) ≥ Sspecify and S(Xp)/S(X) ≥ Cspecify  
                                                              and Pout ⊆ Xp and lift(Y, Xp) > 1) 
20                               R = R ∪ Y � Xp 
21                               S = S(Xp) 
22                               C = S(Xp)/S(X) 
23                           end if 
24                       end for 
25                      end if 
26                 end for 
27           end if 
28 end for 

________________________________________________________________ 

Figure 5-2: The informative association mining algorithm 
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5.4 Comparing with Existing Literature 

Table 5-1 summarizes recent association rule mining approaches. The mining 

algorithms can be categorized based on the mining processes, the number of itemsets 

the association rule mines, the number of scans the algorithm performs, etc. 

Traditional rule mining algorithms based on frequent and closed patterns are 

performed offline and need multiple scans over the entire dataset. In (Yang, 2004), 

(Halatchev, 2005), and (Shin, 2007), the authors proposed using two, three, and 

multiple frequent pattern based methods to perform association rule mining. Instead 

of using frequent pattern mining, we proposed to perform association rule mining 

based on closed pattern mining technique we discussed in Chapter 4, which is a 

multiple closed pattern mining based algorithm, and be able to answer multiple 

requests from different users’ specified interest query criteria at the same time. 

 
Number of 
Itemsets 

Mining 
Process 

Data 
Stream 
Support 

Scan  

Mining 
Association 
Rule 

Static 
Data 

Frequent 
Itemsets 

Agrawal 93, 
Agrawal 94, 
Liu 99, Han 
00 

Multiple Offline No Multiple 

Closed 
Itemsets 

Bastide 00, 
Li 04, Zaki 
05 

Multiple Offline No Multiple 

Stream 
Data 

Frequent 
Itemsets 

Yang 04, 
Halatchev 
05, Shin 07 

Two/Three/
Multiple 

Online Yes Single 

Closed 
Itemsets 

Proposed 07 Multiple Online Yes Single 

Table 5-1: Recent association mining approaches 
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5.5 Summary 

In this chapter we propose a framework to produce non-redundant and 

informative association rules based on closed itemset mining in data streams. Based 

on the discovered closed itemsets derived and maintained in DIU, we perform non-

redundant association and informative rule mining using an association mining 

framework. Theoretical analysis and experimental results show that our proposed 

technique can efficiently produce non-redundant rules in data streams that provide a 

minimum set of association rules among itemsets in data streams and thus make it 

easier for data analysis. Furthermore, the rules can be generated on demand, at 

different users' request thresholds, and different input and output patterns.  
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6 Missing Data Estimation in a Sensor Network Database 

Based on Closed Pattern Association Mining 

In this chapter, a data estimation technique is developed based on association 

rules derived from closed frequent patterns generated by sensors, to discover 

relationships between sensors and use them to perform missing data estimation. By 

discovering the relationships between multiple sensors when they have the same or 

different values, this technique can perform data estimation for more cases than the 

state of the art technique (Halatchev, 2005) and improve the estimation accuracy.  

6.1 Overview 

Recent advances in sensor technology have made possible the development 

of relatively low cost and low-energy-consumption micro sensors which can be 

integrated in a wireless sensor network. These devices - Wireless Integrated Network 

Sensors (WINS) - will enable fundamental changes in applications spanning the 

home, office, clinic, factory, vehicle, metropolitan area, and the global environment 

(Asada, 1998). 

Many research projects have been conducted by different organizations 

regarding wireless sensor networks; however, few of them discuss how to estimate 

the missing data when data is lost or corrupted. Traditional methods to handle the 

situation when data is missing are to ignore the missing data, make sensors send 

them again or use some statistical methods to perform the estimation.  As we 
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discussed in Chapter 2.3, these methods are not especially suited for wireless sensor 

networks.  

In this chapter, a data estimation technique is developed using Closed 

Association Rule Mining (CARM) on stream data to discover relationships between 

sensors and use them to compensate for missing and corrupted data. Different from 

other existing techniques (Dempster 1977, Gelman 1995, Halatchev 2005, 

McLachlan 1997, Rubin 1996), CARM can find out the relationships between two or 

more sensors when they have the same or different values. The derived association 

rules provide complete and non-redundant information; therefore it can improve the 

estimation accuracy and achieve both time and space efficiency. Furthermore, 

CARM is an online and incremental algorithm, which is especially beneficial when 

users have different specified support thresholds in their online queries. 

6.2 The Data Structure and Online Closed Pattern Association 
Mining in Data Streams 
 

In this section, an online data estimation technique called CARM is 

developed based on the closed frequent pattern mining algorithm we proposed. 

When a transaction arrives or leaves the current data stream sliding window, the 

proposed closed pattern mining algorithm checks each itemset in the transaction on 

the fly and updates the associated closed itemsets’ supports. The current closed 

itemsets are maintained and updated in real time in the DIU, and can be output at any 

time at users’ specified thresholds by browsing the DIU. 



 

   92

A lexicographical ordered direct update lattice is used to maintain the current 

closed itemsets. Each node in the DIU represents a closed itemset. There are k levels 

in the DIU, where each level i stores the closed i-itemsets. The parameter k is the 

maximum length of the current closed itemsets. Each node in the DIU stores a closed 

itemset, its current support information, and the links to its immediate parent and 

child nodes. We assume in this chapter that all current closed itemsets are already 

derived, and based on these closed itemsets, we generate association rules for data 

estimation. 

6.3 Missing Data Estimation based on Closed Pattern Association 
Mining 
 

The closed itemset mining provides the foundation for our data estimation 

algorithm, CARM. The reason we based CARM on the closed itemsets mining is 

because not only it forms a non-redundant set of association rules (Zaki, 2000), 

which helps to achieve the time and space efficiency, but also it provides compact 

and complete information, which helps to achieve the estimation accuracy. Because 

without losing any information, we are able to find out all the relationships (rules) 

between sensors. 

Lemma 6.1 The support of an itemset X is equal to the support of its closure, 

i.e. s(X) = s(C(X)).  

This lemma, reported in (Pasquier, 1999) and (Zaki, 2000), states that all 

frequent itemsets are uniquely determined by the frequent closed itemsets.  
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From Lemma 6.1, we can derive all itemsets’ supports through their closed 

itemsets’ supports in the DIU. 

Lemma 6.2 The rule X1 → cs,  X2 is equivalent to the rule 

C(X1) → cs, C(X2).  

             Proof: For support we have s = s(X1 ∪ X2) = |g(X1 ∪ X2)| = |g(X1) ∩ g(X2)|. 

By Lemma 6.1, we have s = |g(C(X1)) ∩ g(C(X2))|, because the support of an itemset 

and its closure is the same. The last expression can be rewritten as s = |g(C(X1) ∪ 

C(X2))| = s(C(X1) ∪ C(X2)). For confidence, we have c = s/|g(X1)| = s/|g(C(X1))|. 

From Lemma 6.2, we can derive all association rules between itemsets 

through their closed itemsets in the DIU. 

Instead of generating all possible association rules, we generate the rules that 

have strong relationships with the current round of sensor readings where one or 

more readings are missing. We achieve this through browsing the DIU, which stores 

all of the closed itemsets. Based on the users’ specified support and confidence 

thresholds, we find out rules through paths (links) of closed itemsets that suit the 

users’ needs, i.e., satisfy the users’ specified support and confidence thresholds. The 

mining process is online and incremental, which is especially beneficial when the 

users have different specified threshold criteria in their online queries. The CARM 

Algorithm is shown in Figure 6-1.  

CARM proceeds in the following manner. First, it checks if there are missing 

values in the current round of readings of stream data.  If yes, it uses the current 

round of readings X that contains the missing items to find out its closure online. If 
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the rules from X to its immediate upper level supersets satisfy the user-specified 

support and confidence criteria, these upper level supersets are treated as starting 

points to explore more potential itemsets until CARM estimates all missing sensor 

data. Following this method, CARM continues to explore and find all closed itemsets 

that can generate association rules satisfying the users’ specified support and 

confidence criteria. All these closed itemsets are the supersets of the exploration set 

and have the support and confidence along the path above or equal to the users’ 

specified support and confidence thresholds.  

CARM generates the estimated value based on the rules and selected closed 

itemsets, which contain item value(s) that are not included in the original readings X. 

It weighs each rule by its confidence and calculates the summation of these weights 

multiplied with their associated item values as the final estimated result. These item 

values can be expected as the missing item values with the  support and confidence 

values equal to or greater than  the users’ specified thresholds. In this way, CARM 

takes into consideration all the possible relationships between the sensor readings 

and weighs each possible missing value by the strength (confidence) of each 

relationship (rule). This enables CARM to produce a final estimated result near the 

actual sensor value based on all of the previous sensor relationships information.  

Before introducing the CARM Algorithm, we define the symbols to be used 

in the algorithm. Let D = {d1, d2,…, dn} be a set of n item identifiers, and V = {v1, 

v2,…, vm} be a set of m item values. An item J is a combination of D and V, denoted 
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as J = D.V. For example, dn.vm means that an item with identifier dn has the value 

vm. In the following figure, X is the itemset in the current round of sensor readings, Y 

represents all supersets of X, Confy represents the strength of the rule from itemset X 

to Y, support(X) represents X’s support, closure(X) is the closure of itemset X in the 

current transaction sets, min(X) represents X’s immediate upper level supersets in 

the DIU, S represents the support of association rule, C represents the confidence of 

association rule, V(N) represents the value V(N)  of sensor identifier S(N), Xestimate 

represents the returned estimation itemset which contains the senor identifiers with 

missing values in the current round of readings of stream data and their 

corresponding estimated values. Sspecify represents the user-specified support, and 

Cspecify represents the user-specified confidence.  

______________________________________________________ 
Input:      (1)Xinput: the current round of sensor readings that contains missing 
                              values 
                (2)Sspecify: the user-specified minimum support  

                (3)Cspecify: the user-specified minimum confidence  

 Output:    Xestimate: a set containing the senor ids with missing values in the current 
                          round of sensor readings and their corresponding estimated values 

 Method: 

1 Xestimate=φ; 
2 Cinput=1; 
3 Procedure Estimate(Xinput, Cinput, Sspecify, Cspecify) 
4       if (Xinput ≠ φ and Xinput =C(Xinput)) 
5 C=Cinput; 
6 for all (Y = min( Xinput )) 
7   C=C*(S(Y)/S(Xinput)) ; 
8   Xnew=Y\ Xinput; 

9     if (S(Y)> Sspecify and C>Cspecify and Xnew ≠ φ) 
10     for all (Z∈Xnew, Z’s new value V) 
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11       N=index(Z); 
12       V(N)= V(N)+C*value(Z) ; 
13      end for 
14     Estimate(Y, C, Sspecify, Cspecify) ; 
15                          end if 
16                      end for 
17       end if 

18       if (Xinput ≠ φ and Xinput ≠ C(Xinput)) 
19 Y=closure(Xinput) ; 
20 Xnew=Y\ Xinput; 
21 C=1; 

22 if (S(Y)> Sspecify and C>Cspecify and Xnew ≠ φ) 
23    for all (Z∈Xnew , Z’s new value V)   
24     N=index(Z) ; 
25     V(N)= V(N)+C*value(Z) ; 
26         end for 
27       Estimate(Y, C, Sspecify, Cspecify) ; 
28 end if 
29         end if   
30         Xestimate = Xinput ∪ Xnew 
31 end procedure 

Figure 6-1: The online data estimation algorithm 

6.4 Comparing with Existing Literature 

Table 6-1 summarizes the recent data estimation approaches, which can be 

categorized according to the different methodologies. As we discussed in Section 

2.3, the traditional statistical methods do not suitable to be used in the data stream 

environment. Methods based on time series estimate the missing data based on its 

time trends, but in the sensor stream database, sensor data is not only related with 

time trends, other factors such as location can also affect the data relationships. 

Methods based on pattern and association mining can discover implicit relationships 
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between data. In (Tarui, 2007), the author discussed how to find a duplicate and a 

single missing item in a stream. In (Halatchev, 2005) (Gruenwald, 2007), the authors 

propose to use two frequent itemset mining technique to perform estimation based on 

relationship between two sensors. Based on our proposed pattern and association 

mining technique discussed in Chapter 4 and 5, we developed a technique to perform 

missing data estimation considering the relationship between multiple sensor 

readings. 

 
Number of 
Itemsets 

Data 
Stream 
Support 

Data 

Estimation 

Static 

Data Statistics 
Iannacchione 82, 
Rubin 96, Shafer 95, 
Cool 00 

N/A No 

Stream 

Data 

Time Series Papadimitriou 05 N/A Yes 

Pattern and 
Association 
Mining 

Tarui 07 One Yes 

Halatchev 05, 
Gruenwald 07 

Two Yes 

Proposed 07 Multiple Yes 

Table 6-1: Recent data estimation approaches 

6.5 Summary 

 In this chapter we proposed a novel algorithm, called CARM, to perform data 

estimation in sensor network databases based on closed pattern mining in sensor 

streams. The algorithm offers an online method to derive association rules based on 

the discovered closed itemsets, and estimates the missing sensor values based on the 

derived association rules. It can find out the relationships between multiple sensors 
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not only when they report the same sensor readings but also when they report 

different sensor readings.  
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7 Performance Study 

7.1 Overview 

In this chapter, we describe experimental study and results of our proposed 

techniques. Section 7.2, 7.3 and 7.4 describe the performance study and analysis for 

the content discussed in Chapter 4, 5, and 6 respectively. Section 7.5 summarizes this 

chapter.  

For the performance study, nine synthetic datasets T5.I6.D1K, T5I6D10K, 

T5I6D20K, T5I6D100K, T5I10D10K, T5I12D10K, T10I6D10K, T12I6D10K, 

T5.I6.D10K-AB and two real datasets are used to evaluate the performance of 

proposed techniques. Each synthetic dataset is generated by the same method as 

described in (Agrawal 1993), where the three numbers of each dataset denote the 

average transaction size (T), the average maximal potential frequent itemset size (I) 

and the total number of transactions (D), respectively. The first real dataset was 

collected in year 2000 at various locations throughout the city of Austin, Texas. The 

data represents the current location, the time interval, and the number of vehicles 

detected during this interval. All sensor nodes report to a single server. The sensors 

are deployed on city streets, collect and store the number of the vehicles detected for 

a given time interval. The vehicle counts taken as sensor readings that are used as 

input for our simulation experiments are traffic data provided by (Austin, 2003). The 

second real dataset was sensor data collected in the Huntington Botanical Garden in 
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Sam Marino, California (Huntington, 2008). The sensor reports the air temperature 

of several places in the gardens for different time intervals. In the experiments, the 

transactions of each dataset are looked up one by one in sequence to simulate the 

environment of an online data stream. All our experiments were done on a 1.60 GHz 

Intel Core 2 CPU with 2GB memory. 

7.2 Performance Study for Closed Pattern Mining 

We compare our algorithm with Moment (Chi 2004), which is the state-of-

the-art algorithm to mine closed itemsets in data streams and closet+ (Pei 2003), 

which is the state-of-the-art closed itemsets mining algorithm for traditional 

databases. For the performance study, synthetic datasets T5.I6.D1K, T5I6D10K, 

T5I6D100K, T5I10D10K, T5I12D10K, T10I6D10K, T12I6D10K, T5.I6.D10K-AB are 

used to evaluate the performance of the CFI-Stream Algorithm. The figures and 

tables in this section show the average running time per transaction and memory 

usage in terms of the number of stored itemsets in the above synthetic datasets. 

7.2.1 Performance under Different Total Number of Transactions 

In this experiment, we compare CFI-Stream, Moment (Chi 2004) and Closet+ 

(Pei 2003) under different total number of transactions. As shown in Figure 7-1 and 

Table 7-1, as the total number of transaction size increases, the running time per 

transaction of CFI-Stream, Moment and Closet+ fluctuate in a certain range, among 

which Closet+ fluctuates the most. From Figure 7-1, we can also see that for the 
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given three datasets with specified parameters, CFI-Stream gives the fast running 

time, follows by Closet+ and Moment. 

 
 

Figure 7-1: Running time per transaction under different total number of transaction 
size in seconds 

 

  T5I6D1K T5I6D10K T5I6D100K 
CFI-Stream 0.000303 0.000997 0.00205596 
Moment 0.09875 0.09444 0.0676 
Closet+ 0.022188 0.0213424 0.01635217 

 

Table 7-1: Running time per transaction under different total number of transaction 
size in seconds 

 
Figure 7-2 and Table 7-2 show that as the total number of transaction size 

increases, for CFI-Stream and Closet+, the number of itemsets stored in the memory 

is the same as the number of closed itemsets, which increases when the transaction 

size increases. While for Moment, the memory space usage increased faster than 

CFI-Stream and Closet+; this is because the Moment Algorithm needs to store all the 
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boundary nodes, which include all the infrequent gateway nodes, unpromising 

gateway nodes, intermediate nodes, and closed nodes. The number of boundary 

nodes as well as the closed nodes increase while the total number of transaction size 

increases.  

 
 
Figure 7-2: Memory usage in terms of number of stored itemsets under different total 

number of transaction size 

  T5I6D1K T5I6D10K T5I6D100K 
CFI-Stream 1925 18728 134010 
Moment 21198 91000 391456 
Closet+ 1925 18728 134010 

Table 7-2: Memory usage in terms of number of stored itemsets under different total 
number of transaction size 

 

7.2.2 Performance under Different Sliding Window Size 

In this experiment, we compare CFI-Stream, Moment (Chi 2004) under 

different sliding window sizes. As shown in Figure 7-3 and Table 7-3, as the sliding 

window size increases, the running time per transaction of CFI-Stream and Moment 
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fluctuate in a certain range. Also we can see from Figure 7-3 and Table 7-3 that CFI-

Stream runs faster than Moment when processing the closed pattern mining with 

different sliding window size under the given datasets and parameters.  

 
 

Figure 7-3: Running time per transaction under different sliding window size in 
seconds 

 

  
T5I6D10K 

(w=1K) 
T5I6D10K 

(w=2K) 
T5I6D10K 

(w=4K) 
CFI-Stream 0.0027569 0.0043946 0.0064299 
Moment 0.09929 0.10713 0.06874 

Table 7-3: Running time per transaction under different sliding window size in 
seconds 

 
Figure 7-4 and Table 7-4 show that as the sliding window size increases, for 

CFI-Stream, the number of itemsets stored in the memory is the same as the number 

of closed itemsets, which increases when the transaction size increases. While for 

Moment, the memory space usage increased faster than CFI-Stream; this is because 

the Moment Algorithm needs to store all the boundary nodes, which include the 
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infrequent gateway nodes, unpromising gateway nodes, intermediate nodes, and 

closed nodes. The number of boundary nodes as well as the closed nodes increases 

when the sliding window size increases.  

 
 

Figure 7-4: Memory usage in terms of number of stored itemsets under different 
sliding window size 

 
 
 

  

 
Table 7-4: Memory usage in terms of number of stored itemsets under different 

sliding window size 

 

7.2.3 Performance under Different Minimum Support Threshold 

Figure 7-5 and Table 7-5 show the average processing time per transaction 

for Closet+, Moment and CFI-Stream under different minimum support thresholds. 

As the minimum support threshold decreases, the running time per transaction for 

  
T5I6D10K 

(w=1K) 
T5I6D10K 

(w=2K) 
T5I6D10K 

(w=4K) 
CFI-Stream 1768 4810 7660 
Moment 21198 31271 52878 
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Moment, CFI-Stream and Closet+ decreases as illustrated in Figure 7-5 for the given 

datasets and parameters.  

 

Figure 7-5: Running time per transaction under different minimum support threshold 
in seconds 

 

 
T5I6D10K 

(s=1%) 
T5I6D10K 

(s=3%) 
T5I6D10K 

(s=5%) 
CFI-Stream 0.0009549 0.0009521 0.0004796 
Moment 0.06848 0.05752 0.05479 
Closet+ 0.000138 0.0000077 0.00000355 

Table 7-5: Running time per transaction under different minimum support threshold 
in seconds 

 
 

Figure 7-6 and Table 7-6 show the memory usage in terms of the number of 

stored itemsets of Closet+, Moment and CFI-Stream under different minimum 

support thresholds. As shown in this figure, the memory usage for Closet+ and 

Moment decreases when the minimum support threshold increases. This is because 

the number of itemsets it keeps track of decreases. For CFI-Stream, it keeps track of 
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all the current closed itemsets independent of support information, therefore the 

number of stored itemsets did not change with the support information. 

 

Figure 7-6: Memory usage in terms of number of stored itemsets under different 
minimum support threshold 

  

  
T5I6D10K 

(s=1%) 
T5I6D10K 

(s=3%) 
T5I6D10K 

(s=5%) 
CFI-Stream 18728 18728 18728 
Moment 14926 11424 10801 
Closet+ 3608 1019 581 

Table 7-6: Memory usage in terms of number of stored itemsets under different 
minimum support threshold 

 

7.2.4 Performance under Different Average Transaction Size 

Figure 7-7 and Table 7-7 show the average processing time for Closet+, 

Moment and CFI-Stream under different average transaction sizes. As the average 

transaction size increases, the running time for CFI-Stream, Moment and Closet+ 

increases as illustrated in Figure 7-7. 
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Figure 7-7: Running time per transaction under different average transaction size in 
seconds 

 
  T5I6D10K T10I6D10K T12I6D10K 
CFI-Stream 0.000997 0.445898 3.55638 
Moment 0.09444 1.87323 6.56796 
Closet+ 0.0213424 0.644135 1.9165038 

Table 7-7: Running time per transaction under different average transaction size in 
seconds 

 
Figure 7-8 and Table 7-8 show the memory usage in terms of the number of 

stored itemsets of Closet+, Moment and CFI-Stream while the average transaction 

size increases. As shown in this figure, the memory usage for the three algorithms 

increases when the average transaction size increases. This is because the number of 

itemsets it keeps track of increases. Also we can see from the figure that the CFI-

Stream and Closet+ Algorithm consumes less memory space than the Moment 

Algorithm, because they only need to keep track of the closed itemsets. While 
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Moment keeps track of all the infrequent gateway nodes, unpromising gateway 

nodes, intermediate nodes, and closed nodes.  

 
 

Figure 7-8: Memory usage in terms of number of stored itemsets under different 
average transaction size 

 
  T5I6D10K T10I6D10K T12I6D10K 
CFI-Stream 18728 512923 1583586 
Moment 91000 1472744 4667617 
Closet+ 18728 512923 1583586 

 
Table 7-8: Memory usage in terms of number of stored itemsets under different 

average transaction size 

 

7.2.5 Performance under Different Average Maximal Potential Frequent 

Itemset Size 

Figure 7-9 and Table 7-9 show the running time for Closet+, Moment and 

CFI-Stream under different average maximal potential frequent itemset sizes. As the 

average maximal potential frequent itemset size increases, the running time for CFI-
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Stream, Moment and Closet+ increases as illustrated in Figure 7-9 with the given 

datasets and parameters. 

 

Figure 7-9: Running time per transaction under different average maximal potential 
frequent itemset size in seconds 

 
  T5I6D10K T5I10D10K T5I12D10K 

CFI-Stream 0.000997 0.0422233 0.023927 
Moment 0.09444 0.64178 3.39715 
Closet+ 0.0213424 0.1622659 0.0704573 

 

Table 7-9: Running time per transaction under different average maximal potential 
frequent itemset size in seconds 

 
Figure 7-10 and Table 7-10 show the memory usage in terms of the number 

of stored itemsets of Closet+, Moment and CFI-Stream under different average 

maximal potential frequent itemset sizes. As shown in this figure, the memory usage 

for the three algorithms increases when the average maximal potential frequent 

itemset size increases. This is because the number of itemsets it keeps track of 

increases. Also we can see from the figure that the CFI-Stream and Closet+ 
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Algorithm consume less memory space than the Moment Algorithm, because they 

only need to keep track of the closed itemsets. While Moment keeps track of all the 

infrequent gateway nodes, unpromising gateway nodes, intermediate nodes, and 

closed nodes.  

 
 

Figure 7-10: Memory usage in terms of number of stored itemsets under different 
average maximal potential frequent itemset size 

  

  T5I6D10K T5I10D10K T5I12D10K 
CFI-Stream 18728 138363 58785 

Moment 91000 388602 353126 
Closet+ 18728 138363 58785 

 
Table 7-10: Memory usage in terms of number of stored itemsets under different 

average maximal potential frequent itemset size 

 

7.2.6 Performance under Data Variation 

Figure and Table 7-11 and 7-12 show the adaptability of the CFI-Stream 

method to the change in data streams. In this experiment, the dataset T5I6D10K and 
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(%)100×
|R|

X  setitem anby  induced itemsets frequent closed of #

T5.I6.D10K-AB is used. The dataset T5.I6.D10K-AB is composed of two consecutive 

subparts. The first part is a set of 5,000 transactions generated by an item set A, while 

the second part is a set of 5,000 transactions generated by an item set B. There are no 

common items in the item sets A and B. We use the coverage rate CR(X) proposed by 

Chang et al in (Chang, 2003) to illustrate the concept drift property of dataset 

T5.I6.D10K-AB. CR(X) denotes the ratio of closed frequent itemsets introduced by 

an item set X in all closed frequent itemsets as follows:  

 

where |R| denotes the total number of closed frequent itemsets in a data stream. In the 

first 5,000 transactions, which are generated by an item set A, all the new coming 

closed frequent itemsets are introduced by the item set A, therefore the coverage rate 

CR(A) is a hundred percent, while the coverage rate CR(B) is zero. In the second 

5,000 transactions, all closed itemsets are generated by the item set B, not containing 

any item from set A, therefore the final coverage rate CR(A) is 50%, and CR(B) is 

50%. From Figure 7-11 and 7-12, we can see that the running time and memory 

space consumption of CFI-Stream didn’t fluctuate much while using the dataset with 

concept drift, which is favorable when processing data streams with different data 

distribution. 

CR(X)  =                                   
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Figure 7-11: Running time per transaction under data variation in seconds 

 
 T5I6D10K T5I6D10K-AB 
CFI-Stream 0.000997 0.0009332 
Moment 0.09444 0.08734 
Closet+ 0.0213424 0.0224317 

Table 7-11: Running time per transaction under data variation in seconds 
 

 
 

Figure 7-12: Memory usage in terms of number of stored itemsets under data 
variation 
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  T5I6D10K T5I6D10K-AB 
CFI-Stream 18728 19767 
Moment 91000 100038 
Closet+ 18728 19767 

  

Table 7-12: Memory usage in terms of number of stored itemsets under different data 
variation 

 

7.3 Performance Study for Association Mining 

In this section, we describe the experimental study and results of the 

proposed informative association mining framework. We compare our algorithm in 

the proposed association mining framework with the fast implementation of the 

Apriori Algorithm presented in (Fedor 2003), and the Charm Algorithm, which is a 

non-redundant association rule mining algorithm for traditional databases proposed 

in (Zaki, 2005) in traditional association mining framework. For the performance 

study, synthetic datasets T5.I6.D1K, T5I6D10K, T5I6D20K, T5I10D10K, 

T10I6D10K, T5.I6.D10K-AB are used to evaluate the performance of the informative 

association rule mining algorithm. The dataset is generated by the same method as 

described in (Agrawal, 1994), where the three numbers of each dataset denote the 

average transaction size (T), the average maximal potential frequent itemset size (I) 

and the total number of transactions (D), respectively. In each of the following 

studies, we compare the number of rules generated and the computation time under 

different experimental parameters. The figures and tables in this section show the 

total running time and number of generated rules performance under different 

association frameworks in the above synthetic datasets. In our proposed association 
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mining framework as described in Chapter 5, we calculate the average running time 

for each transaction to update the DIU, and the total association mining time for the 

above synthetic datasets. In the comparing traditional sequential association mining 

framework, we calculate the total running time to generate frequent or closed 

itemsets and associations in the above synthetic datasets. 

7.3.1 Performance under Different Total Number of Transactions 

From Figure 7-13 and Table 7-13, we can see that as the total number of 

transaction size increases, the number of rules generated by the three comparing 

algorithms increases. The number of rules generated by CFI-R is less than the 

number of rules generated by Charm and is much smaller than those generated by 

Apriori. This is because CFI-R and Charm derived the non-redundant association 

rules using the closed frequent itemsets according to different non-redundant rule 

definitions, while Apriori uses all the frequent itemsets to generate association rules, 

which contain a lot of redundant information (Zaki, 2000).  
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Figure 7-13: Number of rules generated under different total number of transactions 

 
  T5I6D1K T5I6D10K T5I6D20K 
CFI-R 10397 123688 233931 
Charm 20986 194798 372276 
Apriori 421822 944569 998049 

 
Table 7-13: Number of rules generated under different total number of transactions 

 
 

From Figure 7-14 and Table 7-14, we can see that the running time of Apriori 

is smaller than Charm and CFI-R. That is because the rules generated by Apriori 

directly come from all frequent itemsets, while both Charm and CFI-R need to 

generate closed frequent itemsets to produce the non-redundant association rules. 

Therefore the calculation time increases.  
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Figure 7-14: Running time under different total number of transactions in seconds 

  T5I6D1K T5I6D10K T5I6D20K 
CFI-R 0.183303 2.812997 5.83540325 
Charm 1.11934 13.16552 25.04471 
Apriori 0.06 0.14 0.17 

Table 7-14: Running time under different total number of transactions in seconds 

 

7.3.2 Performance under Different Minimum Support Threshold 

Figure 7-15 and Table 7-15 show that the number of rules generated 

decreases as the minimum support threshold increases in Apriori, Charm and CFI-R, 

because when the user-specified support threshold increases, the number of rules that 

satisfy the criteria will decrease as well. 
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Figure 7-15: Number of rules generated under different minimum support threshold 
 

  
T5I6D10K 

(s=1%) 
T5I6D10K 

(s=3%) 
T5I6D10K 

(s=5%) 
CFI-R 16430 4111 2110 
Charm 16430 4110 2110 
Apriori 62453 22624 15351 

 

Table 7-15: Number of rules generated under different minimum support threshold 
 
 

Figure 7-16 and Table 7-16 show that for both Apriori and Charm, the 

running time decreases as the user-specified support threshold increases. That is 

because when the user-specified support threshold increases, the number of rules 

generated will be decreased, and therefore the calculation time decreases as well. 

The running time for CFI-R didn’t change much because it finds out complete closed 

itemsets independent of support information, and in the rule mining stage it filters 

out the rules whose support and confidence is less than the user-specified thresholds. 
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Figure 7-16: Running time under different minimum support threshold in seconds 

  
T5I6D10K 

(s=1%) 
T5I6D10K 

(s=3%) 
T5I6D10K 

(s=5%) 
CFI-R 0.265997 0.265997 0.281997 
Charm 1.537489 0.430442 0.29365 
Apriori 0.05 0.03 0.04 

Table 7-16: Running time under different minimum support threshold in seconds 

 

7.3.3 Performance under Different Minimum Confidence Threshold 

From Figure 7-17 and Table 7-17, we can see that the number of rules 

generated decreases under different minimum confidence thresholds. Because when 

the user-specified confidence threshold increases, the number of rules that satisfies 

the query criteria will decrease. The amount of rules generated by Apriori Algorithm 

is largest, because it is generated based on frequent itemsets. The number of rules 

generated by Charm and CFI-R Algorithms are smaller, because they are generated 

based on closed itemsets.  
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Figure 7-17: Number of rules generated under different minimum confidence 
threshold 

 

  
T5I6D10K 
(c=10%) 

T5I6D10K 
(c=30%) 

T5I6D10K 
(c=50%) 

CFI-R 117941 109407 106375 
Charm 188039 178616 174830 
Apriori 324121 275989 257584 

 
Table 7-17: Number of rules generated under different minimum confidence 

threshold 
 

 
Figure 7-18 and Table 7-18 illustrate the running time under different 

minimum confidence thresholds. We can see that the running time for Charm and 

CFI-R Algorithm is greater than the Apriori Algorithm. This is because both Charm 

and CFI-R need to generate closed frequent itemsets to produce the non-redundant 

association rules. Therefore the calculation time increases. 
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Figure 7-18: Running time under different minimum confidence threshold in seconds 

 

  
T5I6D10K 
(c=10%) 

T5I6D10K 
(c=30%) 

T5I6D10K 
(c=50%) 

CFI-R 0.265997 0.266997 0.281997 
Charm 12.98839 12.68256 12.51883 
Apriori 0.04 0.04 0.04 

Table 7-18: Running time under different minimum confidence threshold in seconds 

 

7.3.4 Performance under Different Average Transaction Size 

Figure 7-19 and Table 7-19 show the number of rules generated under 

different average transaction sizes. We can see that for all three algorithms the 

number of rules generated increases when the average transaction size increases, 

because the number of frequent and closed itemsets increases as the average 

transaction size increases. 
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Figure 7-19: Number of rules generated under different average transaction size in 
seconds 

  T5I6D10K T10I6D10K 
CFI-R 123688 4887155 
Charm 194798 5112739 
Apriori 944569 1981482 

Table 7-19: Number of rules generated under different average transaction size in 
seconds 

 
 

Figure 7-20 and Table 7-20 show the running time under different average 

transaction sizes for CFI-R, Charm and Apriori Algorithm. We can see that as the 

average transaction size increases, the running time increases for all three algorithms. 

This is because both the number of closed itemsets and frequent itemsets increase 

while the average transaction size increases, and the calculation time increases with 

the increment of the number of frequent and closed itemsets. 
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Figure 7-20: Running time under different average transaction size in seconds 

  T5I6D10K T10I6D10K 
CFI-R 0.265997 19.040898 
Charm 13.16552 868.031 
Apriori 0.14 0.24 

Table 7-20: Running time under different average transaction size in seconds 

7.3.5 Performance under Different Average Maximal Potential Frequent 

Itemset Size 

Figure 7-21 and Table 7-21 show the number of rules generated under 

different average maximal potential frequent itemset sizes for CFI-R, Charm and 

Apriori Algorithm. We can see that as the average maximal potential frequent 

itemset size increases, the number of rules generated increases for all three 

algorithms. This is because both the number of closed itemsets and frequent itemsets 

increase while the average maximal potential frequent itemset size increases. 
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Figure 7-21: Number of rules generated under different average maximal potential 
frequent itemset size 

 
  T5I6D10K T5I10D10K 
CFI-R 123688 1503616 
Charm 194798 1546412 
Apriori 944569 5302210 

 

Table 7-21: Number of rules generated under different average maximal potential 
frequent itemset size 

 
 

Figure 7-22 and Table 7-22 show the running time under different average 

maximal potential frequent itemset sizes for CFI-R, Charm and Apriori Algorithm. 

We can see that as the average maximal potential frequent itemset size increases, the 

running time increases for all three algorithms. This is because both the number of 

closed itemsets and frequent itemsets increase while the average maximal potential 

frequent itemset size increases, and the calculation time increases with the increment 

of the number of frequent and closed itemsets. 
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Figure 7-22: Running time under different average maximal potential frequent 
itemset size in seconds 

 
  T5I6D10K T5I10D10K 
CFI-R 0.265997 3.3812233 
Charm 13.16552 189.1896 
Apriori 0.14 1.15 

 
Table 7-22: Running time under different average maximal potential frequent 

itemset size in seconds 
 

7.3.6 Performance under Data Variation 

Figure and Table 7-23 and 7-24 show that number of rules generated and 

running time for CFI-R, Charm, and Apriori Algorithm. We can see that the 

performance of CFI-R Algorithm didn’t fluctuate much under the data variation, 

which is a preferable characteristic in data streaming applications. 
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Figure 7-23: Number of rules generated under data variation 

  T5I6D10K T5I6D10K-AB 
CFI-R 123688 126918 
Charm 194798 32454 
Apriori 944569 3071352 

Table 7-23: Number of rules generated under data variation 

 

Figure 7-24: Running time under data variation in seconds 

 



 

   126

  T5I6D10K T5I6D10K-AB 
CFI-R 0.265997 0.2819332 
Charm 13.16552 2.572267 
Apriori 0.14 1.17 

Table 7-24: Running time under data variation in seconds 

 

7.4 Performance Study for Missing Data Estimation 

The performance of our proposed approach, CARM, is studied by means of 

simulation. Several different simulation experiments are conducted in order to 

evaluate the proposed technique and compare it with the Average Window Size 

(AWS) approach, the linear interpolation approach, the linear trend approach, and 

with the WARM approach, the state-of-the-art data estimation algorithm in sensor 

databases using 2-frequent itemsets based association mining (Halatchev, 2005). We 

compared the estimation accuracy, running time and memory space usage when 

applying different methods to each application dataset. 

The first dataset was collected in year 2000 at various locations throughout 

the city of Austin, Texas. The data represents the current location, the time interval, 

and the number of vehicles detected during this interval. All sensor nodes report to a 

single server. The sensors are deployed on city streets, collect and store the number 

of the vehicles detected for a given time interval. The vehicle counts taken as sensor 

readings that are used as input for our simulation experiments are traffic data 

provided by (Austin, 2003).  
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A second experiment was performed over sensor data collected in the 

Huntington Botanical Garden in Sam Marino, California (Huntington, 2008). The 

simulation data of the environmental monitoring application was collected in year 

2008 at various locations throughout the sensor network in Huntington Botanical 

Garden. The data represents the current location, the time interval, and the air 

temperature of detected environment during this interval. All sensor nodes report to a 

single server. The sensors are deployed on different places of the botanical garden, 

collect and store the air temperature detected for a given time interval. The air 

temperatures are taken as sensor readings that are used as input for our simulation 

experiment.  

7.4.1 Performance Study of Estimation Accuracy 

The evaluation of the estimation accuracy of the missing values is done by 

using the average Root Mean Square Error (RMSE): 
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where Xai and Xei are the actual value and the estimated value, respectively; 

#estimations is the number of estimations performed in a simulation run; and 

numStates is the number of subsets, in which the actual readings are distributed.  

The expression
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− represents the standard error and is an estimate of the 

standard deviation under the assumption that the errors in the estimated values (i.e. 
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Xai - Xei) are normally distributed. From the definition, we can see the smaller the 

RMSE, the better the estimation accuracy.  

From Figure 7-25 and Table 7-25, we can see that CARM gives the best 

average estimation result of the above approaches regarding the accuracy, followed 

by the WARM approach. The linear interpolation, AWS, and linear trend approaches 

perform no better than WARM and CARM approaches. From Figure 7-25, we can 

also see that CARM gives the best estimation result on the maximum estimation 

accuracy, which is the root square error for the maximum difference between the 

estimated and accurate values. 

 

Figure 7-25: Performance study of average and maximum estimation accuracy for 
traffic monitoring application 
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 Average Maximum 
WARM 0.1266228 0.6 
CARM 0.021517 0.1 
AWS 0.144978 0.5 
Linear Interpolation 0.138109 0.6 
Linear Trend 0.145933 0.5 

 

Table 7-25: Performance study of average and maximum estimation accuracy for 
traffic monitoring application 

 
 

From Figure 7-26 and Table 7-26, we can see that CARM gives the best 

result of the above approaches regarding the estimation accuracy. The linear 

interpolation, AWS, and linear trend approaches perform no better than CARM 

approach. 

 

Figure 7-26: Performance study of average estimation accuracy for environmental 
monitoring application 
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CARM 0 
AWS 3 
Linear Interpolation   
Linear Trend 1 

   

Table 7-26: Performance study of average estimation accuracy for environmental 
monitoring application 

 
 

7.4.2 Performance Study of Running Time 

Figure 7-27 and Table 7-27 illustrate the running time in seconds of AWS, 

linear interpolation, linear trend, WARM and CARM approaches. The experimental 

results show that in terms of running time, the WARM and CARM approaches are 

outperformed by AWS, linear interpolation and linear trend approaches. The CARM 

approach is faster than the WARM technique.  

 

Figure 7-27: Performance study of running time for traffic monitoring application in 
seconds 
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WARM 0.026222222 
CARM 0.018046296 
AWS 0.001388889 
Linear Interpolation 0.002314815 
Linear Trend 0.0025 

 
Table 7-27: Performance study of running time in seconds for traffic monitoring 

application in seconds 

 
 

Figure 7-28 and Table 7-28 illustrate the running time in seconds of AWS, 

linear interpolation, linear trend, and CARM approaches. The experimental results 

show that in terms of running time, the CARM approach is outperformed by AWS, 

linear interpolation and linear trend approaches.  

 

 
Figure 7-28: Performance study of running time for environmental monitoring 

application in seconds 
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CARM 0.185 
AWS 0.04 
Linear Interpolation 0.17 
Linear Trend 0.09 

   

Table 7-28: Performance study of running time for environmental monitoring 
application in seconds 

 
 

7.4.3 Performance Study of Memory Usage 

Figure 7-29 and Table 7-29 illustrate the memory usage of AWS, linear 

interpolation, linear trend, WARM and CARM approaches in MB. The experimental 

results show that in terms of memory space, the WARM approach is outperformed 

by all the other four approaches. The results of the simulation experiments show that 

for 108 sensors the needed memory space using WARM is much higher than that 

using CARM. This is because the DIU data structure uses less memory space than 

the cube data structures, and it only stores the condensed closed itemsets 

information.  

 

Figure 7-29: Performance study of memory usage for traffic monitoring application 
in MB 
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WARM 14.463792 
CARM 0.153084 
AWS 0.080352 
Linear Interpolation 0.080352 
Linear Trend 0.080352 

   

Table 7-29: Performance study of memory usage for traffic monitoring 
application in MB 

 
 

Figure 7-30 and Table 7-30 illustrate the memory usage of AWS, linear 

interpolation, linear trend, and CARM approaches in MB. The experimental results 

show that in terms of memory space, the CARM approach is outperformed by all the 

other three approaches.  

 
 

Figure 7-30: Performance study of memory usage for environmental monitoring 
application in MB 
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CARM 0.153084 
AWS 0.080352 
Linear Interpolation 0.080352 
Linear Trend 0.080352 

   

Table 7-30: Performance study of memory usage for environmental monitoring 
application in MB 

 

7.5 Summary 

In this chapter we perform different simulation experiments to study the 

performance of proposed algorithms and comparing them with the state-of-art 

algorithms in the literature.   

The CFI-Stream Algorithm is an incremental method to check and maintain 

closed itemsets online. It mines and maintains a pool of current closed itemsets in the 

DIU. The performance study demonstrates the performance advantage of the 

proposed technique in terms of both computation time and memory usage to mine 

closed itemsets. Its maintained sets remain the same independent of the support 

threshold, which could be a disadvantage in application on single user query request 

with high support threshold, since it’s designed to mine complete information and be 

able to fulfill multiple support thresholds at the same time.  

The performance study of the association mining framework based on closed 

pattern mining shows that our proposed technique can efficiently produce a 

minimum set of non-redundant association rules in data streams and thus makes it 

easier for data analysis. Furthermore, the rules can be generated on demand, at 

different users' request thresholds, and different input and output patterns. The 
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proposed association mining framework is especially suitable for a distributed data 

stream query environment. 

Our performance study shows that the application of closed pattern based 

association mining to estimate missing sensor data online is an area worth to explore. 

Our designed algorithm CARM is able to estimate missing sensor value with both 

time and space efficiency, and greatly improves the estimation accuracy. 
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8 Conclusions and Future Work 

In this dissertation, a novel algorithm, CFI-Stream, is developed to perform 

closure check and discover closed patterns in the current data stream sliding 

window. The algorithm offers an incremental method to check and maintain closed 

patterns online. All closed frequent itemsets in data streams can be output in real 

time based on different users’ specified thresholds.  

The performance studies show that this algorithm is able to mine data streams 

online with both time and space efficiency independent of support information, and 

it can adapt to the concept drift in data streams. Experimental results show that our 

method can achieve better performance than a representation algorithm for the state-

of-the-art approaches in terms of both time and space overhead. In the future, we 

plan to extend our proposed algorithm to different data streaming applications. 

Also, a framework is developed to mine non-redundant and informative 

associations based on the derived closed itemsets in data streams. The rule 

generation is based on the current closed itemsets in data streams which are a 

condensed representation of the stream data. Theoretical analysis and experimental 

results show that our proposed framework can efficiently produce non-redundant 

association rules in data streams which provide a minimum set of associations 

among itemsets in data streams and thus make it easier for data analysis. 

Furthermore, the association rules can be generated on demand, at different users’ 
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request support and confidence thresholds, and input and output patterns, which is 

especially suitable for the distributed data stream query environment.  

Finally, a novel algorithm, called CARM, is proposed to perform data 

estimation in sensor network databases based on closed pattern association mining 

in sensor streams. The algorithm offers an online method to derive association rules 

based on the discovered closed patterns, and estimates the missing values based on 

derived associations. It can find out the relationships between multiple sensors not 

only when they report the same sensor readings but also when they report different 

sensor readings. Our performance study shows that CARM is able to estimate 

missing sensor readings online with both time and space efficiency, and greatly 

improves the estimation accuracy. 

There are more future works can be done in this research area. For example, 

to develop more data mining techniques for stream data, such as clustering, 

classification, and finding outliers in data streams. Also these derived techniques 

can be applied to more data streams applications. Some applications have special 

processing needs, for example, mining the stream sequence, time series in data 

streams and so on. 
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