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PREFACE 

In the summer of 1959 after one and one-half years of 

teaching experience, I applied for and received a General 

Electric Mathematics Fellowship to attend Stanford Univer

sity. During the six weeks I was there I had the opportunity 

and pleasure of taking a seminar in problem solving under 

the direction of Professor G. Polya. 

Professor Polya, though a man in his seventies, capti

vated the entire group with his enthusiasm and interest in 

everything connected with the teaching of mathematics. I 

suspect that all of us caught some of his enthusiasm; I 

know that I did, and I feel that my attitude toward teaching 

has been improved by that brief association. 

I would like to acknowledge gratefully my debt to 

Professor G. Polya. 

I would also like to acknowledge the valuble assistance 

of Miss Joanna Black of Eastern New Mexico University for 

proof-reading my manuscript; and Dr. James H. Zant, the 

Director of the NSF here at Oklahoma State University. 

My gratitude also goes to the National Science Foundation 

whose financial assistance made the year of study culminating 

in this report possible. 
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CHAPTER I 

INTRODUCTION 

Historically speaking, mathematics is somewhat singu-

lar among the sciences for the amount of important creative 

work which has been done by very young men. Many of them 

were in their twenties,· and some were still in their teens. 

Possibly the most notable of these was Carl Friedrich Gauss, 

but many others cquld be noted. Most authorities agree that 

creative work in mathematics is dependent on "inspired" 

guesswork, intuition or inductive techniques which are 

generally frowned on by proponents of rigorous formal mathe-

matics. 

For a high school student to solve many of the problems 

of algebra and geometry with which he is presented, it is 

frequently more natural for him to use intuition or induc

tive reasoning than formal deduction. Many people feel that 

it is at least as important to develop the inventive facil

ities of young students as to teach them the basic algebra 

and geometry. As Professor Polya of Stanford puts it in the 

preface to his book, How to Solve It, A great discovery ....--

solves a great problem, but there is a grain of discovery in 

the solution of any problem. 

1 
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In this study, the writer hopes to consider the teach

ing and learning ~f methods or approaches to solving prob

lems. I(ost people in this field have suggested methods on 

the basis of their own experience and observation of other 

problem solvers. Brief results of two experimental studies 

in this a.rea are included, but relatively little experimental 

work has been done. The reason for this lack is simple: very 

few people have any idea about how they solve a problem. 

Problem solving is a mental process, and until telepathy is 

~is@overed, there will be doubt about how it comes about. 

A discussion of intuition and inductive reasoning is 

included, since a concensus of opinion is that these are 

two ways that past experience is linked to a present problem 

in order to reach a solution. 

A history of problem solving, which is necessarily both 

brief and incomplete, is found in Chapter II, while modern 

approaches are found inChapterV, which is, perhaps, the 

heart of the study. 



CHAPTER II 

HIS'+ORICAL DEVELOPI\IBNT 

There are three "schools" of thought regarding the 

origin and nature of mathematics: Logisticism, !ntuitionism, 

and Formalism. Formalism' is probably best formulated in 

Principia Mathematica by Whitehead and Russell. Intuition

ism is usually thought of as being founded by the Dutch 

mathematician, L. E. J. Brouwer and Formalism is probably 

best exemplified by the work of D. Hilbert. (1). 

The three are- not schools in the usual sense, but rather 

ways of thought classification; mo·st mathematicians will 

partake of all three points of view. 

The "kernel-':' of Intui tionism is the notion of mathe

matics as a construction of the "intuitively given" natural 

numbers. Intuitionism recognizes the ability of an individ

ual to perform a series of mental acts consisting of a first 

act, then another and so on endlessly. In this way one 

attains fundamental series, the best knovm of which is the 

series of natural numbers. (1). 

The high school student has no interest, function or 

business with the ideas of strict mathematical intuition, 

(and it is both strict and mathematical), but he knows the 

term from hearing about "woman's intuition", which is not 
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too far away from Brouwer's idea. Many of the things which 

are "seen" as true, given in textual discussion as "obvi

ously" or "clearly", etc., are actually examples of an indi

vidual's mental operations. 

Intuitionism makes the point that mathematics is inde

pendent of language., For the communication of mathematics, 

the use of symbolic devices and ordinary language is nece

ssary, but their only function is communication. (1). 

Modern high school students have had experience in the 

type of mathematical construction implied by the Intuition

ists, in their progressive development of the real and com

plex number systems. In this sense the idea of mathematical 

intuition has a real and valuble place in high school mathe

matics. 

Intuitionist mathematics recognizes that mathematics 

has its origins in experience, but its modern abstract form

ulation is the product of the pure intellect, and has intui

tive, no·t merely formal context, (1). 

Without a doubt, all mathematical development has its 

psychological roots in more or less practical requirements. 

Once begun, however, it tends to forge ahead on its own, 

toward greater and greater abstraction. (2). 

Greek mathematics had its roots in the Babylonian and 

Egyptian practical mathematics. The Greeks were the first 

to formulate it into a science. The deductive-postulational 

trend in mathematics originated at the time of Eudoxus and 

crystallized in Euclid's Elements. Eudoxus' theory of the 



geometrical continuum was an, achievement paralleled only by 

the modern theory of irrational numbers more than two thous

and years later. (2). 

'J:'he Greeks were aware of the existence of "incommen-

surable quantities, and it may be that the difficulties 

connected with these quantities deterred the Greeks from 

developing the art of numerical reckoning achieved pre

viously in th·e· Orient. J:nstead, they forced their way through 

the thicket of pure axiomatic geometry. 

Since the Greek mathematical thinkers were to play such 

an imporibant role in the development of mathematics, we can 

say that this was the beginning of a two-thousand year 

''detou111 in the history of science. 

ihe weight of Greek geometrical tradition retarded the 
inevitable evolution of the number concept and of algebraic 
manipulation, which may be said to form the basis of modern 
science,. { 2). 

Af,ter a long period of preparation, the revolution in 

mathematical thought began its vigorous· phase in the seven

teenth and eighteenth centuries. Greek geome.try retained an 

important place, but the Greek ideal of axiomatic crystall

ization and systematic deduction seemed to disappear in a 

veritabl~ orgy of intuitive guesswork and cogent reasoning, 

interwoven with nonsensical mysticism. (2). 

In the ninteenth century, a need was felt for consol

idation and greater security in the extensions of higher 

learning. This naturally led to a revision of the foun

dations of the new mathematics, particularly of the 
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integral and differential calculu,.s and the underlying con

cept of lin.iit. The ~inteenth c·entury was thus characterized 

by a success·ful return to the classical ideal of precision 

and rigorous proof'. Once ID.ore, the pendulum swung toward 

the side of logical purity and abstraction. (2). 

At present we seem to be still in this period, though 

there are signs of disatis·faction among some mathematicians 

with the resulting u,.nfort11nate separation between pure mathe

matics and the vital applications. 

The writer does not·have the background, ability or 

inclination for a detailed philosophical or psychological 

analysis of mathematics; in any case,· this is· not the place 

for such a discussion. A number of people who have been 

studying mathematical creativity se·e a great danger in the 

prevailing overemphasis· on the deductive-postulational 

approach to mathematics, f·eeling that the current trend 

will tend to stifle creative work. 

Solving probl~s has, of course, fascinated many men 

in the history of mathematics· and science. A few such men 

whose ideas seem appropriate to this study will now be dis

cussed briefly, (in chronological order). 

PAPPUS, (ci:rca A. D. 300) 

In the seventh book of his Collectiones, Pappus reports on 

a branch of study which he calls Analyomenos, which can be 

translated as "Treasury of Analysis" or "Art of Solving 

Problems". (3). Pappus is not the author of this study, which 



he ascribes to Euclid, Apollonius of Perga, and Aristaeus 

the elder. The techniques described a.re those of Synthesis 

and Analysis. 

An excellent English translation of Pappus' text is 

available (4), but for our purposes, a paraphrase and con

densation is perhaps more desirable • 
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. Briefly, the two techniques (Analysis and Syntheses) 

are described as being useful for those who have studied the 

ordinary Euclid's elements and are desirous of acquiring the 

ability to solve mathematical problems. 

In ffi..nalysis, we begin with what is required, take it 

for granted and draw consequences from it, and consequences 

from the consequences, until we reach a consequence which 

is already known or admittedly true. This is called Analysis 

oz: "solution backward" or "regressive reasoning". ( 4). 

To put it more concretely, suppose we have a the0rem 

A, to prove or disprove,. We derive from A another theorem 

B. From B, another, C, and so on, until we come to a last 

theorem L, about which we have definite knowledge. If Lis 

true, A is true. If Lis false, A is false, provided all our 

derivations are reversible. 

The same procedure can be applied to a "problem to 

find". We are asked for an unknovm x satisfying a clearly 

stated condition. Assuming such an x exists, we derive a y, 

and so on, until we come to a last unknovm z, which we can 

find, or which clearly does not exist. If~ exists, we can 

retrace our steps and find x; if z does not exist, x does 
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not exist. Again, all derivations must be.reversible. 

This point on the reversibility of the derivations is 

carefully pointed out as a consequence of Aristotelian logic 

that correct conclusions can come from false hypotheses. (4). 

In Synthesis, we start from the point whioh we reached 

last of al:.l in the ~alysis, the thing already known or ad

mittedly true. We derive from it what preoeeded it in the 

analys~s, and go on making derivations until we arrive at 

what is required. This procedure is called Synthesis, or 

"constructive solution1' or "progressive reasoning". 

For a more complete discussion of Pappus' manuscript, 

with examples, the reader should see reference (3). 

KEPLER, (1571 - 1630) 

f:epler does not fit the usual picture of a scientist 

who makes world-famous discoveries. He waw a slow thinking 

~an, and an indifferent calculator; his successes came about 

through a number of facilities·, chief of which was unending 

patience. The thinking processes in problem solving accord

ing to Kepler are; 

l. Bold guessing as the basis for fertile suggestions. 
2. Erroneous guessing, for "all who discover truths 

must have reasoned.upon many errors to discover 
each truth." 

3. Skill in devising means of testing the truth of 
guesses. 

4. Willingness to abandon an erroneous guess or 
hypothesis. ( 5) • 
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DESCARTES, (159Q - 1650) 

Ren~ Descartes was a philosopher, as well as a mathe-

matician. It was his intention, it is thought, to give a 

universal method for solving problems. This plan never came 

to fruition, but parts of it are evident in several of his 

manuscripts and personal writings,. Best known of his writings 

in this area is probably Discours de la Th'Iethode, but ideas -- - ----
more directly applicable to problem solving may be found in 

Regulae ~ Directionem Ingenii, or Rules for the Direction of 

the Mind, a somewhat earlier manuscript. (4). 

The following lines of Descartes seem to describe the 

origin of the "rules": 

"As a young man, when I heard about ingenious inventions, 
I tried to invent thel!,l by myself, even without reading the 
author. In so doing, I perceived, by degrees, that I was 
making use of certain rules." (6). 

There were originally to be thirty-six rules, but only 

twenty-three exist, and some lack explanatory espositions. 

'The work is probably unfinished because of its defects such 

as rambling, repetition, and inconsistency, but it was written 

when Descartes was thirty-two years old, and he was still feel

ing his way. {6). Of the twenty-three existing rules, only 

I, II, III, IV, and VI actually need concern us here. The 

others are somewhat abstract philosophy. 

Rule I: The ultimate aim of study should be to guide 
the mind so that it can pass solid and true judgements on 
all that comes before it. (6). 

Rule II: We ought to study exclusively subjects which 
our mind seems compet~nt to know with a certainty beyond all 
doubt. ( 6). 



Rule II makes it clear that Descartes is interested 

only in intellectual activity, or science in the abstract. 

A far different view is ascribed to Professor EinBtein: 

"Insofar as the propositions of mathematics refer to 
reality, they are uncertain; and insofar as they are cer
tain, they do not refer to reality." (7). 
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Rule III: In whatever subject we thus propose, we must 

enquire not what others believe, but only what can be clearly 

perceived or with certainty inferred, these being the only 

ways in which genuine knowledge can be acquired. (6). 

The essence of Descartes method is: to admit no step 

which is not self-evident, and in moving from step to step, 

to follow the inevitable logical order. (6). 

Rule IV: We have next to consider why a method is 
necessary for investigating the truth of things, what it 
can hope to do, and on what rules it should proceed. 

In the exposition for this rule, Descartes warns that 

the most intricate problems should not be attacked until 

the elementary difficulties have been resolved. 

Rule VI: If we are to distinguish the most simple 
things from the most complex and to advance in the right 
order, we must proceed as follows: taking any sequence of 
truthsdeduced one from another, we must observe which is 
the simples, and how the rest are related to it - whether 
more, or less, or equally removed from it. (6). 

The exposition tor this rule brings us back to the 

original form of Descartes' method. It remains as always, 

the resolution of a complex into absolute simples, simply 

related. ( 6) • 



LEIBNITZ, (1646 - 1716) 

Leibnitz planned to write an "Art of Invention", but 

never carried through his plan. Numbers o:t fragments from 

his works show that he had· interesting ideas about the 

subject; the importance he attached to this field can be 

seen in this quotation: 

"Nothing is more impo~tant than to see the sources of 
invention, which are, in my opinion, more interesting than 
the inventions themselves." (I). 

WLZANO, {1781 - 1848) 
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Bolzano devoted an extensive part of his comprehensive 

presentation of logic, Wissenshaftslehre, to the subject of 

heuristic (vol. 3, pp. 293-575). lie writes of this section: 

"I do not think at all that I am able to present here 
any procedure of investigation that was not perceived long 
ago by all men of tallent •••• l shall take pains to state 
in clear words the rules and ways of investigation which are 
followed by all able men, who in most cases~ not even 
conscious of following: them. P "{"3") :-- · · · ·- -

In other wordf3, a person who has not discovered these 

universal procedures may be helped by consciously learning 

them; perhaps as a series of questions to be asked of ones

self or the student, as suggested by Professof Polya (3). 



CHAPTER III 

INDUCTIVE l-iliD INTUITIVE REASONING 

It is important to separate the two terms inductive 

reasoning, and mathematical induction. The si_milari ty in 

names in somewhat re~rettable, because there is little 

logica+ connection betwE':len the two. 

Induction is the pr~cess of discovering general laws 

by the observation and combination of particular instances. 

It is upon induction or inductive reasoning; that almost 

all actual life problems are solved. Mathematical induc

tion is a method of proving certain mathematical theorems. 

When correctly applied it gives as hard and fast a demon

stration as any method of formal proof. Another name for 

this procedure is "proof from n to n+lu or "passage to the 

next integer. '1 { 3). 

The ideas of inductive reasoning can, perhaps, best 

be explained by a few examples. First, let us be clear; 

inductive reasoning in no way proves anything. All such 

reasoning can do absolutely is disprove something. Dis

proving something by .:i,nduction· is known as finding a coun

ter-example. As far as positive proofs are concerned, induc

tion can present evidence of greater or lesser weight in favor 

of a particular conclusion. The point at which the evidence 

12 



becomes strong enough to convince will vary greatly. A 

strictt formal, mathematician will never be convinced. The 

ordinary person will probably be convinced rather quickly, 

and rather i:oc;, quickly many times. A balance between the 

extremes is necessary. 
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Perhaps one reason why formal :niath·ematicians will not 

recognize inductive evidence is summed up by the following: 

The element of constructive invention, of directing and 
motivating intuition is apt to evade a simple phil,osophical 
formulation; but it remains the core of any mathematical · 
achievement, even in the most abstract fields. If the crys
tallized deductive form is the goal, intuition and construc
ti<:m are at least the d:ri ving forces. ( 2) • 

Over and over again in historical and modern writings 

the theme is repeated: 

Mathematical truth is discovered inductively, requiring 
imagination and insight. This truth is then established 
deductively, requiring rtgor and care. (8). 

One must be open-minded about possibilities, and tough

minded about proof. 

J\n example of.inductive reasoning might be found in a 

person who picke up a magnet for the first time. Assuming 

that he is in a place where a nu.m.ber of ferrous metal objects 

are fixed in place, he would soon discover that the magnet 

would cling to each of them. Since the objects are all fixed, 

he might inductively conclµde that IQ.etals attract magnets. 

He wo"Q.ld, of course, be incorrect. He,!.! reasoning~ 122 
few and too special cases. When he finds a piece of small, 

"Unattached ferrous metal, he will discover the er:;ro~, and 

will be forced to modify his conclusion to magnets attract 
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metal,;;. He would again be incorrect, for when he came upon 

a piece of metal containing only, say, copper and tin, no 

attraction would take place. Again, a modification must 

take place in his conclusion. If he has sufficient knolwedge 

of metallurgy, he may soon reach a conclusion which is gener

ally correct" 

This example, simple and simplified as it is, brings out 

a number of important features about induction. First: the 

conclusion based on a small number of cases is we"ak. Yet, 

IIJ.ere numbers of cases are not the c1.nswer, because his con

clusions based on trying ten-thousand steel objects would 

still be wrong. Second: the more different the instances 

examined, the stronger the conclusion, and conversely. 

Tl:tird: the baseball advice to "stay loose'' is valuble, be

cause the next case may necessitate a change in the th,esry. 

ln general, the conclusion, once arrived at from a given 

number of cases, must be tested against new instances. The 

IIJ.ore different, new instances for which the conclusion holds, 

the more evidence fo~ the conclusion. 

·EULER 

As mentioned before, there was in the seventeenth and 

eighteenth cent~ries, among mathematicians na veritable 

orgy" of intui ti v·e guesswor~. It is the contention of Professor 

Polya that guess~·rk, If backed up by a good weight of 

plausible reasoning deserves very serious attention from 

creative mathematicians. 
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As a positive exara.ple of this type of research, we might 

look at some of the work of Leonhard Euler (1707 - 1783). 

A master of inductive research, 

He made important discoveries in theory of numbers, 
infinite series, and other branches of mathematics by induc
tion, that is, by observation, daring guess, and shrewd 
verification. (3). 

This does not, of course make his work unique, but he is al-

most unique in that he takes pains to present the relevant 

inductive evidence carefully, in detail and in good order. 

He was satisfied as to the truth of a proposition by a weight 

of inductive evidence and said so, while still trying for a 

demonstrative proof. In one exposition of such a discovery, 

for example, he notes: 

"We have thus discovered that these two infinite expression, 
are equal even though it has not been possible to demonstrate 
their equality. All conclusions which may be deduced from it 
will be the same, that is, true but not demonstrated." (3). 

AN "ALGEBRA"OF PLAUSIBLE REASONING 

Some of the objections of rigorous, demonstrative mathe

maticians to non-demonstrative methods of discovery and proof 

may be overcome by the development of an "algebra" of plaus

ible reasoning, or Heuristic. (A discussion of the meaning 

of the word heuristic will be given in Chapter V. Here it is 

simply a convenient title.) A development of this in any 

detail is both impossible and out of place in a discussion 

of this sort; however, a brief look seems indicated. The 

interested reader will find a thorough presentation in 

reference (9), chapter XIII. 



Traditional algebraic logic {demonstrative logic) has 

a pattern which is: 
A implies B 

B false 
A false 
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Now suppose we have A implies B, and Bis true. It is cer

tainly logical to ~ay that A, while not necessarily either 

true or false, is more credible. Let us put that as the 

conclusion: A more credible. 

Other comparisons between demonstrative and heuristic 

patterns, (demonstration on the left, heuristic on the right), 

are: 

A implied by B 
B true 
A true 

A implied by B 
B false 
A less credible 

Our confidence in a conjecture can only diminish when 

a possible ground for the conjecture is exploded. (9). 

A incompatible with B 
B true 

·A.false 

A incompatible with B 
B false 

A more credible 

Our confidence in a conjecture can only increase when 
an incompatible rival conjecture i·s exploded. ( 9). 

Important to the development of classical logic are the 

equivalence statements: A false equivalent non-A true; Aim

plies B equivalent non-B implies non-A and others. (9). The 

pattern excludes the two heuristic conclusions, more credible 

and less credible. However, by widening the domain of formal 

logic to include the equivalence "non-A more credible equiv-

alent A less credible", a pattern of shaded inference can be 

developed which is weaker than the demonstrative, but still 

useful. (9). 



CHAPTER IV 

EXPERIMENTAL STUDIES 

In general, problem solving is judged on the basis of 

the products, which are visible, tangible, and easily checked. 

To study productive thinking where it is most conspic
uoui:; in great achievements is certainly a great temptation. 
On the other hand, lightning is the mo·st striking example 
of electrical discharge,· but in the laboratory the laws 
behind such a di.splay ar·e better inve·stigated as sparks. (7). 

In a study of probleJI!. solving, we are not interested in the 

solutic;:m; we are interested in the mental processes which 

lead to the solution, and comparing these successful pro

cesses to unsuccessful ori:es. Profe·ssor Polya' s list of 

questions, which will be discussed in detail later, are 

designed to be indicative of certain mental processes which 

will frequently lead to correct results. 

Many times these·mental ·processes have been put forth 

on the basis of experience and observation. There have also 

been a few experimental studies designed to ''get at" these 

processes. 

One of these studies was made by Burack (10), who studied 

nine methods of attacking problems in reasoning. EA problem 
t I I I t non requiring reasoning rsno a problem, and can be handled 

by a machine.) The nine are; 
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1. Clear formulation of the problem. 
2. Preliminary survey of all aspects of the presented 

material. 
3. Analysis into major variables. 
4. Locating a crucial aspect of the problem. 
S. Application of· past experi·ence. · 
6. Varied trials. 
7. Control - holding one or more variables constant. 
8. Elimination of sources of error. 
9. Vi~ualization. 

Three problems we·re used. · One, and"induction" problem, 

involving selecting the groups of five letters whicn are not 

like the others. Two, a deduction problem, involving a detec

tive story, and three, a geometric figure puzzle problem. 

The idea was to discover which methods were used the. most 

on these problems, and how effective they were. 

Three of the methods were used on the induction problem. 

From three to eight were used on the deduction problem and 

from two to seven on the geometric figure problem. (10). 

This experiment was earried out on an undergraduate 

class in advanced psychology, and it was thus ·expected and 

found that the perc·entages and numbers of correct solutions 

were high. All of the methods studied were used at least 

once with some success. The least successful students were 

those who used only a few of ·the methods of attack. 

One very possible cause for this is that repeatedly 

starting a problem in a way which will either not help or 

actually hinder solution will quickly lead to boredom, giving 

up and wild guessing. 

Another revealing experimental study of problem solving 

was carried out by Bloom and Broder (11). 
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This study, which is perhaps a littl.e closer tQ home 

for high-school students because the subjects were freshmen 

and sophomores in college, used the well-known and widely 

used technique of having the students verbalize their mental 

processes as they attack' a problem. The method is not, 

of course, highly satisfactory because of the inability to 

make such verbalizations rapidly and in some cases at all. 

Nevertheless, some· interesting results comparing the 

successful with the non~succ·ess.ful problem solvers are 

brought out. Thetre comparisons are made in fou:r; categories: 

1. Understanding the nature of the problem. 
2. Understanding of the ideas· containetl in the problem. 
3. General approach to the solution of the preblem. 
4. Attitude toward the solution of the problem. 

In c:ategory one, differences were· found in two major 

points: in their ability to start a problem and in their 

ability to solve a problem in its own terms,. A non-success

ful problem-solver would be unable to pinpoint·a key word or 

ph~ase to startwith.· In c1:ddition,· the non-successful solver 

would frequently present an acceptable or correct solution 

to the problem he attacked which was not the given problem. 

In ~eneral these two dif·ficul ties arose because of inabil

ity or unwillingness to· read the directions with eare and 

understanding. 

In category two~ it was found that the non-successful 

problem-so-! vers frequently had all the background and infor

mation necessary to the solution, but seemed unable to relate 

the information to the problem, especially if the problem 
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material was in a form different from the form they had en

countered previously. This ability to put relevant knowledge 

to use is apparently related to the individual's self-confi-

dence. 

In category three, three basic differences were found: 

extent of thought about the problem, care and system in thought 

about the problem, and the ability to follow through on a pro-

cess of reasoning. The- non-successful group tended to be 

completely passive in their thinking about a problem and to 

select an answer because none of the others appeared attrac-

tive. Their attack tended to be random, and with no basic 

plan. In addition, they would frequently start correctly 

and, for no apparent reason, suddenly stop and give up. 

In category four, several differences came up. The 

non-successful problem-solvers were inclined to belie,re that 

a person knows an answer at once or not at all. They had 

little or no confidence in their ability, refusing to attack 

problems which appeared complex or abstract. Further, they 

were unable to maintain an objective attitude on certain 

problems because of personal opinions. (11). 

As an example of a problem which illustrates a diffi

culty for many people, let us look at the following. 

The problem consists of a square array of nine points. 
• • 

• • 

• • • 

The instruc:tions say to start at one of the points and connect 



all nine of them without raising the pencil and using only 

four straight line segments. 

Here is the corrE;lct solution. 

'I'he average person will assume that the lines must be 
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contained within the area of the square. There· is no basis --- ....._ ---- ---
for such~ assumption! Self-imposed restrictions are often 

the most weakening and frustrating of all. 



CHAPTER V 

CAN PROBLEM SOLVING BE TAUGHT? 

People who have worked in this field agree that prob-

lem solving can be taught - subject to a number of limita

tions. There is no way to teach a person with an IQ of 75 to 

solve problems in integral calculus. There are, however, tech

niques by which the problem solving ability of any person 

not already working at full capacity can be- improved; in some 

cases quite markedly. As far as the researcher could dis

cover, there is unanimous agreement· up to this point. 

i/Jhen we attempt to consider just how problem solving 

ability can be increa-sed, there·is still agreement, but in 

a more general way. The agre·ement is that problem solving 

abilities are increased by consciously learning and applying 

the methods which successful problem-solvers have found thei11s:elvi 

using through the years; the amount of improvement will be 

roughly equivalent to the extent the subject was not already 

using these principles. 

What are these principles? Well, as Hamlet said, that 

is the question. We will consider later two systems outlining 

such processes, which use two somewhat different viewpoints. 

Just not, however, let us look at three general approaches 

found in (12), (5) and (3). 
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Correct and skillful problem solving can be brought 
about through four mental attitudes. No one knows an abso
lute process for bringing about these attitudes, but recog
nizing th~ should be of assistance. The four: incentive, 
self-confidence, interest, and common sense. (12). 

These four points are certainly logical. Unless a 

person wants to solve a problem and has an interest in the 

solution, he is unlikely· to be successful. It is also fairly 

certain that a, person who doesn't think he can solve a problem, 

can't, because he won't start; the self-confidence must be 

tempered by critical judgement, naturally. 

Parker (5), gives the following suggest-ions for a teacher 

conducting problem solving lessons. 

1. Aid the pupils to defi:ne the problem clearly. 
2. Keep the problem clearly in mind. 
3. Stimulate suggestions: 

a) Analyze the problem into parts or elements. 
b) Recall previously known similar cases. 
c) Formulate definite hypotheses or tentative plans 

from vague guesses. 

Providing that pupils are seriously concern·ed with 
their problems, courageous guessing or leaps into mental 
darkness are to be encouraged. When a number of such guesses 
are accumulated, they can be called multiple hypotheses. 
These should then be investigated with an eye to verification 
or disproof. A good idea is to use "Occam's Razor"*, that is 
to prefer the simpler hypothesis until additional evidence 
one way or the other arises·. ( 5) • 

4. Evaluate suggestions: 
a) Be open-minded, maintain the state of doubt. 
b) Criticize all suggestions. 
c) Verify or discard solutions by reference to facts 

as revealed by IQ.iniature experiments· or in author
itative sources of information. 

The teacher must be a model of impartiality in taking 
and evaluating suggestions. · 

One of the most valuble results of problem solving lessons 

*'William of Occam, (1280 - 1349). English Schoolman, 
known as Venerablis I~ceptor. 
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can be the teaching of the student to criticize and antici
pate mentally the. consequences of a suggestion or scheme. ( 5). 

5. Keep th.e dis·cussion organized. 

The teacher must have a broad, flexible grasp of the 
problem example being considered and keep suggestions from 
going too far afield. (5). 

Polya (3) gives the most complete analysis of the role 

of a teacher trying to teach problem solving. The main 

points are: 

First, and most important, give the student a desire to 
solve.the problem. 

Second, the teacher should help, but not obtrusively, and 
not too much; the student should have a fair share of the work. 

Third, the help is best given by asking questions which 
could have·occured to the student alone. 

Fourth, problem solving is a practical skill, such as 
swimming. Any practical skill is learned by imitation and 
practice. (3). 

Dadourian (12) also compares problem solving to swimming, 

commenting on the analogy between fear of water before learning 

to swim, and fear of problems, before learning to solve them. 

Below are two quotes from (3), which pretty well sup up 

Professor Polya's ideas about teaching problem solving. 

The purposes of such teaching are two-fold: first, to 
help the student solve the problem at hand,· and second, to 
develop the student's ability so that he may solve future 
problems by himself. The questions and suggestions given 
have two characteristics in common - common sense and gener
ality •••• If a student succeeds in solving the problem at 
hand, he adds a little to his ability to solve problems. 

If the teacher wishes to develop in his students the 
mental operations which correspond to the questions and 
suggestions on our list, he puts these questions and sugges
tions to the students as often as he can do so naturally. 
Moreover, when the teacher solves a problem before the 9lass 
he should dramatize his ideas a little and put to himself 
the same questions and suggestions he uses with the student~. 
Thanks to such guidance, the student will eventually discover 
the right use of these questions and suggestions, and doing 
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so he will acquire something that is more important than the 
knowledge of any particular mathematical fact. (3). 

The writer would like to reconunend highly the book by 

Professor Polya, How to Solve It, (3), for all teachers. 

He gives a number of examples of dialog between teacher and 

students going over a problem. The idea is not new, but 

these dialogs are unique in the sense that Professor Polya 

recognizes that a teacher will quite often get no answer to 

his most provocative and well thought out question but a 

blank stare. 

The teacher trying to lead a class to a solution through 

questions must be prepared to meet the disconcerting silence 

of the students. To devise a successful plan takes former 

knowledge, good mental habits, concentration, and - good luck. (: 

SYSTEM NO. 1. H. M. DADOURIAN {5) 

General directions for solving problems. 

1. Don't be afraid of the problem. (Which is excellent 
advice, but perhaps a bit hard to follow. ) 

2. Read the problem carefully and determine what are 
given and wha.t are ,;,equ1rect. 

3. Restate the problem in its bare outlines, leaving 
out incidental details. 

4. Formulate a plan of action, a strate~y. 

5. Using an appropriate system of notation, assign 
a syrp.bol to each of the given and required magni
tudes. 

6. If the problem adrnits of a figure, draw a suitable 
one and label each of the given and required magni
tudes with its sY)l\bol. 
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7. Make a table of the given and required magnitudes. 

8. Write all of the principal equations necessary for 
the solution of the problem before manipulating any 
of them. 

9. Solve the equations simultaneously for the required 
magnitudes, and obtain an expression for each in 
terms of the given, and only the given, magnitudes. 

10. In case there is only one, or a principal required 
magnitude, start with its mathematical definition 
or expression when ever convenient. 

11. Write successive expressions of a required 1.11a.gni
tude in the "columnar" form. Follow the straight
line tnethod; avoid the zig-zag method. 

12. Before taking a new step in the analysis, put the 
last expression in as simple for as possible. 

13. Discuss the final literal equation which gives a 
required magnitude, in terms of the syinbols of the 
given magnitudes .. 

14. Solve numerical problems as litteral problems first, 
and introduce the numerical data after the final 
expressions of the required magnitudes are obtained 
in terms of the symbols of the given magnitudes. 

15. Use your common sense at every step of the analysis. 
At each step ask yourself if the step you have taken 
is sensible and then, at the end,· whether the final 
result is reasonable. 

S'ISTEi~ NO. 2. G. POLYA 

Professor PolYll's book, How to Solve ll (3) is the re

sult of his attempt to revive heuristic "in a modern and 

modest form". 

Heuristic or heuretic, or liars inveniendi" was the name 

of a certain branch of study, not very clearly circumscribed, 

belonging to logic, or to philosophy, often outlined, seldom 

presented in detail, and as good as forgotten today. TJ3ome 



important past studies were reviewed in chapter II.!.7 The 

aim of heuristic is to study the methods and rules of dis

covery and invention. (3). 
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Heuristic, as an adjective, means "serving to discover. '1 

Heuristic reasoning is reasoning not regarded as final 

and strict, but as provisional and plausible only, whose 

purpose is to discover the solution of the present problem. (3). 

Heuristic reasoning is good; everyone uses it to a greater 

or lesser extent. What is bad is an attempt to substitute 

heuristic reasoning for rigorous proof. Very few mathe:µiati

cians present or past, recognize the existence of heuristic 

arqu:µients; Eulei: · (see chapter III) was a notable exception. 

The study of heuristic should lead to a better under

standing of the mental processes typically useful in solving 

problems. It should, therefore, "exert some good influence on 

teaching, especially on the teaching of mathematics." (3). It 

should be noted that the generality of the subject applies to 

problems of any sort, up to and including crossword puzzles. 

If interested, the reader can find exai-nples in ( 3) • 

Professor Polya (3) divides the work in solving a problem 

into four parts; understanding the problem; devising a plan; 

carrying out the plan; and looking hack at the solution. (3). 

Every teacher has had experience with students who are 

able to give an answer to a problem seE3Iningly without inter

vening steps. Such ,:~bright ideas" are, 9£ course, extremely 

desirable as long as our interest is in the solution. How

ever, so often a classroom situation teaching mathematics is 

somewhat artificial in the sense that we may be interested 
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not in the answer, but the process by which we arrive at the 

answer. Therefore it would seem wise to bypass the "bright 

ideas" (without discouraging them, of course) and follow all 

the steps. 

The worst may happen if the student elubarks upon compu
tations or constructions without having understood the prob
lem. It is generally useless to carry out details without 
having.seem the main connection, or having made a sort of 
plan. ( 3). 

The most difficult part of the solution is found in 

devising a plan. In assisting, the teacher must be careful 

not to simply give a plan to the student. Unless he has had 

at least a part in devising the plan himself, he is likely 

to forget it, especially in a long and involved problem. 

In the list of suggested questions which follows, the idea 

of vaJ.;ying the problem, or changing the approach is very 

important. 

'Insistent' analyses of the situation, especially the 
endeavor to vary appropriate elements meaningfully sub-specie 
of the goal, must belong to the essential nature of a solution 
through thinl;:ing. We may call such relatively general pro
cedures Heuristic methods of thinking. (7). 

We again find agreement on looking back at the solution. 

Professor Polya i'S more insistent on this point than the others. 

It is valuble to consolidate our knowledge by trying to solve 

it another way, to check each step, to find uses and appli

cations for the problem in new problemE>. 

Good problems and mushrooms of certain kinds have some~ 
thing in common; they grow in clusters. Having found one, 
you should look around; there is a good chance that there are 
some more near. ( 3). 
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HOW TO SOLVE IT LIST (3). 

Under~tanding the problem 

First: You have to understand the problem. 

What is the unknown? What are the data? What is the condi
tion?· 

Is it possible to satisfy the condition? Is the condition 
f?Ufficient to determine the unknown? Or is it insufficient? 
Or redundant? Or contradictory? 

Draw a figure. Introdu,ce suitable notation. 

Sepal"ate the variow::i patts of the condition. Can y9u write 
them down? 

Devif!~Jlg a plan 

Second: Find the connection between the data and the unknown. 
Yoll. B1.ay be obliged to consider auxiliary problems if 
an immediate connection· cannot be found.- You should 
eventually obtain a plan of the·solution. 

Have Y9ll seen it before? Or have you seen the problem in a 
slightly different f9pn? 

Do y9-q know a related problem? Do you ~now a theorem that 
could be useful? 

Look at the unknown! And try to think of a familiar problem 
:having the same or a similar unknown. 

Here is 
yqu use 
method? 
to I11ake 

a problem related to yours and solved before. Could 
it? Could you use its result? Could you use its 
Should you introduce ::iome auxiliary element in order 

its use possible? 

Could you restate the probiem? C9uld you restate it still 
differently? Go back to definitions. 

If you cannot solve the proposed problem try to solve first 
some related problem. Could you imagine a more accessible 
related problem? A more general problem? A more special 
problem? An analogous problem? Could you solve a part of 
the problem? Keep only a pa~t :of the condition, drop the 
other part; .how far is the unknown then determined? How can 
it vary? Could you derive something useful from the data? 
Could you think of other data appropriate to detennine the 
unknown? Could you change the unknown or the data, or both 
if necessary, so that the new unknown and the new data are 
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are nearer to each other? 

l)id you use all the data? Did you use the whole co!ldition? 
Have you taken into account.all essential notions involved 
in the problem? 

Carryiilg out the plan. 

Third: Carry out your plan. 

Carrying out your plan of the solution, check: each step. 
Can you see clearly that the step is- correct? Can you prove 
that it is correct? 

Looking Back 

Fourth: Examine the solution obtained. 

Can you check the result? Can you check the argument? 

Can yc:;,u derive the result differently? Can you see it at 
a glance? 

Can you use the result, or the m.ethod for some other problem? 

EX.AMPLE 

It is the purpose here to show the solution of a prob

lem by conscious application of the techniques so graphi

cally described in How to So~ve It (3). 

The problem is one taken from Plane ~eomet:r-y by Welchons 

and krickenbe~ger, fourth edition. Th~ writer was once askeq. 

about th~ problem by a student in a class of plane geometry, 

but was una~~@ to dwell on it at that time. Thus, the solu-

tion was unknown at the beginning of this study. 

The problem is: there are two balls on a billiard table. 

Find the point on one bank that one ball must hit in order 

b>: rebound and hit the other. ( Figure 1) 

For our purposes the ball can be represented by a point, 
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and the bank by a straight line. The solution will then be 

a point on that straight line. It is necessary to assume the 

table perfectly level, and that no ·'english" is to be imparted 

to the ball. 

A 
• A 

8 
• 

The problem The unknm,m 

Figure 1 

Do you know a theorem,that can be useful/ Not exactly 

a thej,rem, but we do know that a ball will rebound from a 

bank in an angle equal to the angle at which it hits the 

bank. (Figure 2) 

Can we introduce some auxiliary elements to help in the 

solution? The point lies on a line segment formed by perpen

diculars to the bank from each ball. {figure 2) 

A 

B 

Angle a= angle b 

1 

Auxiliary elements 

Figure 2 
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Consider the extreme cases. These are two; one with the 

balls on a line parallel to the bank and another with one 

ball on the ~ank. (Figure 3) 

B A 

cas~ I case II 

Figure 3 

It is obvious from these two cases that the point is 

midway between the feet of the perpendiculars in case I, and 

"moves" toward the foot of the perpendicular from the ball 

which is closer to the bank. 

We can find the mid-point or divide the segment up into 

any given ratio, but the varia1;:ion here is continous and there 

is no apparent way to find·the correct ratio for a given 

position of B. Is there another way to find the midpoint? 

Yes, we can drop a perpendicular from the intersection of 

the diago~als of the rectangle AECD. (Figure 4) 

B . ~ A 

Figure 4 
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Can we make a conjecture applying to the general case? 

Well, the lines corresponding to the diagonals can be drawn, 

and their point of intersection used to find a point on the 

bank. (Figure 5) 

A A 
B 

B 

Three trials of our conjecture 

Figure 5 

fl 
/ 

Is this the solution? Well, it seems logical. It-

solves the ext:1:eme cases, and the point moves in the right 

direction as we move away from the extreme case. 

Is it proved? No. Trial and a scale drawing will give 

additional evidence, but they are not proof, of course. 

However, a geometric proof can be obtained. Figure 6 

gives the picture. It is possible to prove that triangles 

ADS and BCS are similar and therefore angle ASD is equal to 

angle BSC. The algebraic steps are not pertinent to our 

discussion are are omitted. 

E 
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Is there another way of finding the solution? Yes, there 

is. It can be found by trying to imagine a problem which is 

similar to ours, and with a similar solution. The rebound of 

the ball and the equality of the angles strongly suggest the 

angles of incidence and reflection of a ray of light from a 

reflecting surface. {Figure 7) 

/ 
/ 

/ 
/ t_ reflecting surface 

Figure 7 

This situation applys perfectly to our billiard table 

problem, and is actually an easier method. 

B 

/ 

C.. /5 D 
I / 

I/ 
• is 

Figure 8 

The proof this time is comparatively simple, and again 

omitted. 



CHAPTER VI 

SUlvIMARY AND CONCLUSION 

Any animal with any brain or facsimile therof has 

experience in and a history of solving problems. Existence 

itself is a problem; survival is a problem. 

Life is, of course, among other things, a sum total 
of solution-processes which refer to immediate problems, 
great and small. (7). 

Museums are full of fossil remains of creatures that 

do not today exist because they did not yesterday solve the 

problem of survival .. 

The most successful solutions to the problem of sur-

vival have been turned in by certain members of the so-

called "lower orders"c The turtle, the shark, and insects 

of various kinds are examples. These successful problem 

solvers lack, however, that quality which is commonly called 

intelligence; a term which will not be defined herein. This 

would seem to indicate that a "final" solution to the prob-

lem of survival, leads to a static existence, and either 

halts or greatly retards evolution. 

The animal that has evolved most rapidly is man himselfc 

He has never become a victim of the final solution to the prob-

lem of survival, but has evolved, (or obtained, or been given), 

35 
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an instrument especially for the purpose of providing solu

tions to any problems that come up. Presumably this instru

ment, (cailed the mind), can provide long-range solutions and 
~~ 

short term solutions. As we know, it can provide both good 

and bad solutions. The keyword in describing this mind's 

success as a problem-solver is Flexibility. 

It may be constructive to consider the procedure by 

which an ant attempts to solve a probleJn. The ant is an 

extremely well-adjusted-animal, and is occasionally pointed 

out in imaginative fiction as man's successor. 

Be that as it may, let us suppose that an ant is 

carrying some morsel of food back to the nest when he comes 

to a barrier over which he cannot climb without dropping the 

food. The persistent insect will try again and again, but 

each try will be a repeat of the last. It may occur to him 

to try to go around the barrie:r:; even so, he will often go 

back and again try to climb. Eventually, the ant will be 

able to soive most such problems, but 1:he key word in his 

procedure is patience,. If a man were willing to expend the 

same amount of patience on a comparable problem he would be 

as successful. However, man.'s strong point is not patience. 

On this we can agree, withot:Lt necessarily agreeing about what 

his stro~g points are. 

It is true that man tends to shy away from intellectual 

difficulties more than physical. There is a logical, though 

pre>bably unsound, biological reason advanced for this. The 
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brain is the last of the organs to evolve; therefore, man is 

nqt as effic:Lent in the use of his brain as his hands, because 

he has not had as much practice with the former. (12). 

Be that as it may, a man faced with a difficult problem, 

o:ri.e that is not readily· solved, with frequently give up, unless 

there are some definite signs of progress. We have looked 

briefly at some systems designed to give a probl·em-solver 

tools with which to attack a problem. With a wide repertoire 

of such devices, there is better chance for success because 

there will usually be some new way of starting. The lists 

of questions and rules contained herein were designed from 

observation, personal experience and occasionally from experi

mental data. Their aim is to lead ~he user to the correct 

mental attitudes that have been found successful in solving 

problen).s. No claims are made fo;r certainty; the concensus of 

opinion is that noµe is possible. 

Certain great men of science and/or mathematics who 

recognized the importance and the possibilities inherent in 

a systematic method for solving problems have been briefly 

reviewed. Several modern authors have been discussed. The 

unusual point about these attempts at systematizing problem 

solving is how similar they all are: no major disagreements 

a:ri.ywhere, and complete agreement in all .basic ideas. 

The individual systexµ. which seems to the writer to be 

the besi;. is that outlined by Professor Polya. This opinion 

which is purely subj~ctive of course, seems substantiated 

by the depth of thought·, the aptness of application and the 
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universality of the methods. 

That is, however, one of the basic tenets: the solution 

of most problems can be approached through many paths; though 

th.ere is a longest and shortest, there is no right way or 

wrong way. 
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