UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE

GEOMETRY OF HOUGHTON'S GROUPS

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the
Degree of DOCTOR OF PHILOSOPHY

By
SANG RAE LEE
Norman, Oklahoma
2012

A DISSERTATION APPROVED FOR THE DEPARTMENT OF MATHEMATICS

BY

Dr. Noel Brady, Chair

Dr. Murad Ozaydin
Dr. Max Forester

Dr. Ralf Schmidt

Dr. Doo Hun Lim
© Copyright by SANG RAE LEE 2012 All rights reserved.

Acknowledgements

First, I wish to express my sincere gratitude to my advisor Prof. Noel Brady for the continuous support of my Ph.D study and research, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my Ph.D study.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Doo Hun Lim, Prof. Murad Ozaydin, Prof. Ralph Schmidt, and Prof. Max Forester for their encouragement and insightful comments.

I thank my fellow graduate students: Taechang Byun, William Carter, James Dover, Injo Hur, Kashyap Rajeevsarathy, Scott Thuong, Quan Tran for the stimulating discussions, for the sleepless nights when we were working together before deadlines, and for all the fun we have had together.

Last but not the least, I would like to thank my wife Yu Jeong Yang for unconditional support during all the years since our marriage.

Contents

1 Abstract 1
2 Houghton's Groups \mathcal{H}_{n} 6
2.1 Definition of \mathcal{H}_{n} 6
2.2 Abelianization of \mathcal{H}_{n} 7
2.3 Finite Presentations for $\mathcal{H}_{n}(n \geq 3)$ 9
2.4 Further properties of \mathcal{H}_{n} 25
3 A cubing for \mathcal{H}_{n} 27
3.1 Definition of the cubing X_{n} 27
3.2 Properties of the monoid \mathcal{M}_{n} 38
$3.3 X_{n}$ is CAT(0) 46
3.3.1 Gromov link condition 46
3.3.2 Cayley graph \mathcal{C}_{n} is a median graph 49
3.4 Properties of the action of \mathcal{H}_{n} on X_{n} 60
3.5 Finiteness Properties of \mathcal{H}_{n} 66
4 Isoperimetric inequalities for \mathcal{H}_{n} 70
4.1 Dehn functions of finitely presented groups 70
4.2 Exponential isoperimetric inequalities for \mathcal{H}_{n} 71
5 Related problems of \mathcal{H}_{n} 81

Chapter 1

Abstract

One of the major paradigms in geometric group theory is the idea that one can understand algebraic properties of groups by studying their actions on geometric spaces. There is a basic geometric object that one can associate to any finitely generated group: its Cayley graph with the word metric.

Every pair (G, S) of a group and its finite generating set S has an associated word metric. The distance $d(g, h)$ between elements $g, h \in G$ is defined to be the length of the shortest word in $S \cup S^{-1}$ which is equal to $g^{-1} h$ in G. The Cayley graph $\Gamma(G, S)$ of a pair (G, S) has G as its vertex set, and a vertex g_{1} is connected to another vertex g_{2} by an edge labeled by s if $g_{2}=g_{1} s$ for some $s \in S$. A word metric on a pair (G, S) extends to a metric on $\Gamma(G, S)$ provided one declares each edge in $\Gamma(G, S)$ has length 1 . The action of G on itself by left multiplication extends naturally to an isometric action on the Cayley graph (with fixed generating set S).

We can use a Cayley graph $\Gamma(G, S)$ to define geometric properties of a group G. One such property is the number of ends $e(G)$ of G. Roughly speaking, the number of ends $e(G)$ of a finitely generated group G measures the number of "connected components of G at infinity". For a finitely generated group $G, e(G)$ is determined
by the number of ends $e(\Gamma)$, of a Cayley graph Γ of G, which can be defined as follows. To find $e(\Gamma)$, remove a compact set K from Γ, and count the number of unbounded components of $\Gamma-K$. The number $e(\Gamma)$ is defined to be the supremum of this number over all compact sets. Finally it can be shown that $e(\Gamma)$ is independent of the choice of a finite generating set S used in the construction of Γ ([21]). So it makes sense to define $e(G)=e(\Gamma)$.

In [20], Stallings showed that, for a finitely generated group G, the geometric condition of having more than one end is equivalent to the algebraic condition that G splits (that is, G can be written as a free product with amalgamation or HNN extension) over a finite subgroup. On the other hand, the theory of Bass-Serre relates the algebraic condition that G splits to certain types of actions of G on a tree. In view of Bass-Serre theory, Stallings' theorem can be restated as follows.

Theorem 1.1. A finitely generated group G satisfies $e(G)>1$ if and only if G acts on a tree (without inversion) with finite edge-stabilizers.

There is a generalization of Theorem 1.1, which replaces the tree by a possibly higher dimensional space and uses a more general notion of ends than $e(G)$. In [12], C. H. Houghton introduced the concept of the number of ends $e(G, H)$ of a finitely generated group with respect to a subgroup $H \leq G$. Being a subgroup of G, H acts on a Cayley graph Γ of G by the left multiplication. Now define $e(G, H)$ to be the number of ends of the quotient graph Γ / H. Again, one can show that this is independent of the particular finite generating set S used in the construction of Γ ([19]). A group G is called multi-ended if $e(G, H)>1$ for some subgroup H.

Roughly speaking, a piecewise Euclidean (PE) cubical complex is built from a collection of a regular Euclidean cubes by glueing their faces via isometries. A cubing is a 1-connected PE cubical complex satisfying some additional non-positive curvature conditions. We will make this notion precise in Section 3.3.

One dimensional cubes are just unit length line segments, and so a 1-dimensional cubical complex is simply a graph. The condition of being simply connected means that the graph is a tree. Therefore one can think of cubings as generalizations of trees.

In [18], Sageev proved the following remarkable generalization of Stallings' result.

Theorem 1.2. A finitely generated group G is multi-ended if and only if G acts 'essentially' on a cubing.

This theorem includes the possibility that the cubing is infinite dimensional. An essential action means that the action has an unbounded orbit provided the cubing is finite dimensional.

Non-positively curved cubical complexes play a central role in low-dimensional topology and geometric group theory. A striking example of their importance is given by Agol's recent proof [1] of the Virtual Haken Conjecture and the Virtual Fibration Conjecture in 3-manifold topology. Agol's proof relies on results of Haglund and Wise which concern fundamental groups of a speical class of non-positively curved cubical complexes. In [11], Haglund and Wise showed if the fundamental group of a special cubical complex is word-hyperbolic then every quasiconvex subgroup is separable.

This thesis explores geometric properties of a particular class of groups, termed Houghton's groups, introduced in [13]. Roughly speaking, Houghton's group \mathcal{H}_{n} ($n \in \mathbb{N}$) is the group of permutations of n rays of discrete points which are eventual translations (each permutation acts as a translation along each ray outside a finite set). See Section 2.1 for details.

There are n canonical copies of \mathcal{H}_{n-1} inside \mathcal{H}_{n}, and \mathcal{H}_{n} is multi-ended with respect to each of them. The $i^{t h}$ subgroup, $1 \leq i \leq n$, is obtained by restricting to permutations which fix $i^{\text {th }}$ ray pointwise. One of the main results of this thesis
is to produce an action of \mathcal{H}_{n} on a n-dimensional cubing X_{n}. Note that depending on subgroups which are taken into account, there are various cubings on which \mathcal{H}_{n} acts. One feature of our cubing is that X_{n} encodes all of those subgroups \mathcal{H}_{n-1} at once.

Theorem A. For each integer $n \geq 1$, there exists a n-dimensional cubing X_{n} and a Morse function $h: X_{n} \rightarrow \mathbb{R}_{\geq 0}$ such that \mathcal{H}_{n} acts on X_{n} properly (but not cocompactly) by height-preserving semi-simple isometries. Furthermore, for each $r \in \mathbb{R}_{\geq 0}$ the action of \mathcal{H}_{n} restricted to the level set $h^{-1}(r)$ is cocompact.

An additional feature of X_{n} is that it comes equipped with a height function (Morse function) to the non-negative reals. The group \mathcal{H}_{n} acts as a height-preserving fashion, and the quotient of any level set by \mathcal{H}_{n} is cocompact. As an application we recover Brown's results for finiteness properties of \mathcal{H}_{n}.

Corollary B. For $n \geq 2, \mathcal{H}_{n}$ is of type $F P_{n-1}$ but not $F P_{n}$, it is finitely presented for $n \geq 3$.

Knowing that \mathcal{H}_{n} is finitely presented for $n \geq 3$ prompts a natural question. What are explicit presentations for the \mathcal{H}_{n} ? In [15], Johnson answered this for \mathcal{H}_{3}. Another main result of this thesis provides explicit presentations for all $\mathcal{H}_{n}(n \geq 3)$.

Theorem C. For $n \geq 3, \mathcal{H}_{n}$ is generated by $g_{1}, \cdots, g_{n-1}, \alpha$ with relators

$$
\alpha^{2}=1,\left(\alpha \alpha^{g_{1}}\right)^{3}=1,\left[\alpha, \alpha^{g_{1}^{2}}\right]=1, \alpha=\left[g_{i}, g_{j}\right], \quad \alpha^{g_{i}^{-1}}=\alpha^{g_{i}^{-1}} \text { for } 1 \leq i \neq j \leq n-1 .
$$

Finally we determine bounds for the Dehn functions of \mathcal{H}_{n}. We give a formal definition of Dehn functions in Chapter 4. Intuitively, given a finite presentation $P=\langle A \mid R\rangle$ for a group G, and given a word w representing the identity in G with $|w| \leq x$, the Dehn function of a presentation $P, \delta_{P}(x)$, measures the least upper bound on the number of relations in term of x, which one must apply to check
$w=1$. Although the function $\delta_{P}(x)$ depends on the presentation, the growth type of this function is independent of choice of a finite presentation for $G([3])$. The Dehn function of a finitely presented group G is defined to be the growth type of $\delta_{P}(x)$. See Section 4.1 for details. An isoperimetric function for a group is an upper bound of the Dehn function. In Chapter 4 we establish isoperimetric inequalities for \mathcal{H}_{n} for $n \geq 3$.

Theorem D. For any $n \geq 3$ the Dehn function $\delta_{\mathcal{H}_{n}}(x)$ of \mathcal{H}_{n} satisfies

$$
\delta_{\mathcal{H}_{n}}(x) \preccurlyeq e^{x} .
$$

Chapter 2

Houghton's Groups \mathcal{H}_{n}

2.1 Definition of \mathcal{H}_{n}

Fix an integer $n \geq 1$. Let \mathbb{N} be the positive integers. For each $k, 1 \leq k \leq n$, let

$$
R_{k}=\left\{m e^{i \theta}: m \in \mathbb{N}, \theta=\pi / 2+2 \pi(k-1) / n\right\} \subset \mathbb{C} .
$$

and let $Y_{n}=\bigcup_{k=1}^{n} R_{k}$ be the disjoint union of n copies of \mathbb{N}, each arranged along a ray emanating from the origin in the plane. We shall use the notation $\{1, \cdots, n\} \times \mathbb{N}$ for Y_{n}, letting (k, p) denote the point of R_{k} with distance p from the origin. A bijection $g: Y_{n} \rightarrow Y_{n}$ is called an eventual translation if it acts as a translation on each R_{k} outside a finite set. More precisely g is an eventual translation if the following holds:
\star There is an n-tuple $\left(m_{1}, \cdots, m_{n}\right) \in \mathbb{Z}^{n}$ and a finite set $K_{g} \subset Y_{n}$ such that $(k, p) \cdot g=\left(k, p+m_{k}\right)$ for all $(k, p) \in Y_{n}-K_{g}$.

Definition 2.1. For an integer $n \geq 1$, Houghton's group \mathcal{H}_{n} is defined to be the group of all eventual translations of Y_{n}.

As indicated in the definition \star, Houghton's group \mathcal{H}_{n} acts on Y_{n} on the right; thus $g h$ denotes g followed by h for $g, h \in \mathcal{H}_{n}$. For notational convenience we denote
g^{-1} by \bar{g}.
Let g_{i} be the translation on the ray of $R_{1} \cup R_{i+1}$, from R_{1} to R_{i+1} by 1 for $1 \leq i \leq n-1$. More precisely, g_{i} is defined by

$$
(j, p) g_{i}= \begin{cases}(1, p-1) & \text { if } j=1 \text { and } p \geq 2 \tag{2.1}\\ (i+1,1) & \text { if }(j, p)=(1,1) \\ (i+1, p+1) & \text { if } j=i+1 \\ (j, p) & \text { otherwise }\end{cases}
$$

Figure 2.1 illustrates some examples of elements of \mathcal{H}_{n}, where points which do not involve arrows are meant to be fixed, and points of each finite set K are indicated by circles. Finite sets $K_{g_{i}}$ and $K_{g_{j}}$ are singleton sets. After simple computation, one can check that the commutator of g_{i} and $g_{j}(i \neq j)$ is the transposition exchanging $(1,1)$ and $(1,2)$. The last element g is rather generic and K_{g} consists of eight points (circles).

Figure 2.1: Some elements of \mathcal{H}_{n}

2.2 Abelianization of \mathcal{H}_{n}

Assigning an n-tuple $\left(m_{1}, \cdots, m_{n}\right) \in \mathbb{Z}^{n}$ to each $g \in \mathcal{H}_{n}$ defines a homomorphism $\varphi: \mathcal{H}_{n} \rightarrow \mathbb{Z}^{n}$. Let $\Sigma_{n, \infty}$ denote the infinite symmetric group consisting of all permutations of Y_{n} with finite support.

Lemma 2.2. For $n \in \mathbb{N}, \Sigma_{n, \infty} \leq \mathcal{H}_{n}$.

Proof. Every element $f \in \Sigma_{n, \infty}$ has a finite support. This means there exists a finite set $K \subset Y_{n}$ such that f acts on each $R_{i} \subset Y_{n}$ as the identity outside K. So $f \in \mathcal{H}_{n}$.

Lemma 2.3. For $n \geq 3$, $\operatorname{ker} \varphi=\Sigma_{n, \infty}=\left[\mathcal{H}_{n}, \mathcal{H}_{n}\right]$.

Proof. Fix $n \geq 3$. We show the equalities by verifying a chain of inclusions. Each element $g \in \operatorname{ker} \varphi$ acts on Y_{n} as the identity outside a finite set $K \subset Y_{n}$. This means that g is a permutation on K, and so $g \in \Sigma_{n, \infty}$. The claim in the proof of Lemma 2.7 implies that every element with finite support is a product of conjugations of $\left[g_{i}, g_{j}\right]$ $(i \neq j)$. Suppose $g \in\left[\mathcal{H}_{n}, \mathcal{H}_{n}\right]$. Lemma 2.7 says \mathcal{H}_{n} is generated by g_{1}, \cdots, g_{n-1} if $n \geq 3$. Take an expression for g in letters g_{1}, \cdots, g_{n-1}. Since $g \in\left[\mathcal{H}_{n}, \mathcal{H}_{n}\right]$, the sum of powers of g_{i} 's in this expression is 0 for each $i=1, \cdots, n-1$. So $g \in k e r \varphi$.

In Section 2.3, we shall see that \mathcal{H}_{n} is generated by g_{1}, \cdots, g_{n-1} defined in equation (2.1). Note that $\varphi\left(g_{i}\right) \in \mathbb{Z}^{n}$ has only two nonzero values -1 , 1 , and

$$
\varphi\left(g_{i}\right)=(-1,0, \cdots, 0,1,0, \cdots, 0)
$$

where 1 occurs in $(i+1)^{\text {th }}$ component. The image of \mathcal{H}_{n} is generated by those elements and $\varphi\left(\mathcal{H}_{n}\right)=\left\{\left(m_{1}, \cdots, m_{n}\right) \mid \sum m_{i}=0\right\}$ is free abelian of rank $n-1$.

Corollary 2.4. For $n \geq 3$, the ablelianization of \mathcal{H}_{n} is given by the following short exact sequence.

$$
\begin{equation*}
1 \rightarrow\left[\mathcal{H}_{n}, \mathcal{H}_{n}\right] \rightarrow \mathcal{H}_{n} \xrightarrow{\varphi} \mathbb{Z}^{n-1} \rightarrow 1 \tag{2.2}
\end{equation*}
$$

The above result was originally shown by C. H. Houghton in [13]. Note that the group \mathcal{H}_{n} has the property that the rank of the abelianization is one less than the number of rays of the space Y_{n} (namely, the number of ends of Y_{n} with respect to
the action) on which \mathcal{H}_{n} acts transitively. This was the main reason that Houghton introduced and studied a family of groups $\left\{\mathcal{H}_{n}\right\}_{n \in \mathbb{N}}$ in the same paper.

Remark 2.5. For $n \geq 3$, by replacing the commutator subgroup by $\Sigma_{n, \infty}$ in the short exact sequence (2.2), we have the following short exact sequence.

$$
\begin{equation*}
1 \rightarrow \Sigma_{n, \infty} \rightarrow \mathcal{H}_{n} \xrightarrow{\varphi} \mathbb{Z}^{n-1} \rightarrow 1 \tag{2.3}
\end{equation*}
$$

The embedding $\Sigma_{n, \infty} \hookrightarrow \mathcal{H}_{n}$ is crucial for our study in two directions. Firstly, it gives rise to finite presentation for \mathcal{H}_{n} for $n \geq 3$ (Section 2.3). Secondly, this inclusion is used to construct exponential isoperimetric inequalities for $\mathcal{H}_{n} n \geq 3$ (Section 4.2).

We suppress n in $\Sigma_{n, \infty}$ when the underlying set Y_{n} is clear from the context.

2.3 Finite Presentations for $\mathcal{H}_{n}(n \geq 3)$

Note that every element of \mathcal{H}_{1} acts on $Y_{1}=\mathbb{N}$ by the identity outside a finite set. If the element acted as a non-trivial translation outside of a finite set, then it would fail to be a bijection of Y_{1}. So $\mathcal{H}_{1} \subset \Sigma_{1, \infty}$. The converse inclusion is obvious, therefore \mathcal{H}_{1} is the infinite symmetric group $\Sigma_{1, \infty}$ of all permutations of \mathbb{N} with finite support. By considering elements with successively larger supports, one can argue that $\Sigma_{1, \infty}$ is not finitely generated. It is known [7] that \mathcal{H}_{2} is finitely generated but not finitely presented, and that \mathcal{H}_{n} is finitely presented for $n \geq 3$. Brown showed more than just finite presentedenss, and in Section 3.5, we will give a precise statement and a new proof of Brown's result about the finiteness properties of \mathcal{H}_{n} (Corollary B). In this section we will provide explicit finite presentations for $\mathcal{H}_{n}(n \geq 3)$.

Finite generating sets for $\mathcal{H}_{n}(n \geq 2)$.
We begin by proving that \mathcal{H}_{2} is generated by two elements. Many of the techniques
in this argument extend to the \mathcal{H}_{n} for $n \geq 3$. Consider the two elements $g_{1}, \beta \in \mathcal{H}_{2}$ where g_{1} is defined by equation (2.1) and β is the transposition exchanging $(1,1)$ and $(2,1)$ as depicted in Figure 2.2.

Figure 2.2: \mathcal{H}_{2} is generated by g_{1} and β

Suppose $g \in \mathcal{H}_{2}$. Since $\varphi\left(g_{1}\right)$ generates the image $\varphi\left(\mathcal{H}_{2}\right) \cong \mathbb{Z}$ there exists $k \in \mathbb{Z}$ such that the given g and g_{1}^{k} agree on $Y_{2}-K$ for some finite set $K \subset Y_{2}$. So we have

$$
\bar{g}_{1}^{k} g=f \text { or } g=g_{1}^{k} f
$$

where $f \in \operatorname{Perm}(K)$. One can take suitable conjugates $\bar{g}_{1}^{k^{\prime}} \beta g_{1}^{k^{\prime}}$ to express transpositions exchanging two consecutive points of Y_{2}. For example, $\bar{g}_{1}^{3} \beta g_{1}^{3}$ is the transposition swapping $(2,3)$ and $(2,4)$. Since any permutation of a finite set K can be written as a product of those transpositions, f can be written as a product of conjugations of β. So $g=g_{1}^{k} f \in \mathcal{H}_{2}$.

Remark 2.6. The conjugation $\bar{h} g h$ is denoted by g^{h}. Note that $(i, p) g=(j, q)$ is equivalent to $(i, p) h g^{h}=(j, q) h$. The following observation is quite elementary but useful: If β is a transposition exchanging two points (i, p) and (j, q) then β^{h} is the transposition exchanging $(i, p) h$ and $(j, q) h$.

We have seen that a translation and a transposition are sufficient to generate all of \mathcal{H}_{2}. Moreover, we have seen from the third example of Figure 2.1 that $\left[g_{i}, g_{j}\right]$ is a transposition on Y_{n} for $1 \leq i \neq j \leq n-1$. So the following lemma should not be a surprise.

Lemma 2.7. \mathcal{H}_{n} is generated by g_{1}, \cdots, g_{n-1} for $n \geq 3$.

Proof. Let $g \in \mathcal{H}_{n}$ and $\varphi(g)=\left(m_{1}, \cdots, m_{n}\right)$. Note that $m_{1}=-\left(m_{2}+\cdots+m_{n}\right)$. Consider the element $g^{\prime} \in \mathcal{H}_{n}$ given by

$$
g^{\prime}=g_{1}^{m_{2}} g_{2}^{m_{3}} \cdots g_{n-1}^{m_{n}} .
$$

By construction, $\varphi\left(g^{\prime}\right)=\varphi(g)$, and so two element g^{\prime} and g agree on $Y_{n}-K$ for some finite set K. This means there exists $f \in \operatorname{Perm}(K)$ such that $g=g^{\prime} f$. So it suffices to show that every finite permutation can be written as a product of the $g_{i}^{ \pm 1}, i=1, \cdots, n-1$.

Claim: Any transposition of Y_{n} is a conjugation of $\left[g_{1}, g_{2}\right]=g_{1} g_{2} \bar{g}_{1} \bar{g}_{2}$ by a product of g_{i} 's. First we express transpositions exchanging points of R_{1} in this manner. We already saw that $\alpha=\left[g_{1}, g_{2}\right]$ is the transposition exchanging $(1,1)$ and $(1,2)$.

Consider the following elements $h_{1}, h_{2} \in \mathcal{H}_{n}$:

$$
h_{1}=\alpha^{g_{1} \overline{\bar{g}}_{2}^{(p-2)} \bar{g}_{1}} \text { and } h_{2}=\alpha^{g_{1} \overline{\bar{g}}_{2}^{(q-2)} \bar{g}_{1}}
$$

where $p, q \geq 2$ are integers. By the observation in Remark 2.6, h_{1} is the transposition exchanging $(1,1)$ and $(1, p)$. By the same reason, one sees h_{2} is the transposition swapping $(1,1)$ and $(1, q)$. Therefore the permutation exchanging $(1, p)$ and $(1, q)$ can be expresses by the conjugation $h_{1}^{h_{2}}$. This allows one to express transpositions of R_{i+1} for all i by conjugations $h_{1}^{h_{2} g_{i}^{m}}$ for some $m \in \mathbb{N}$.

Next we show that transpositions exchanging points of different rays can be expressed in a similar fashion. Set $2 \leq i \neq j \leq n$ and $q, r \in \mathbb{N}$. The permutations h_{3}, h_{4} given by

$$
h_{3}=\alpha^{g_{j} g_{i}^{q} \bar{g}_{j}} \text { and } h_{4}=\alpha^{g_{i} g_{j}^{r} \bar{g}_{i}}
$$

are the transpositions swapping $(1,1)$ and (i, q) and swapping $(1,1)$ and (j, r) re-

Figure 2.3: Transpositions are conjugations of $\left[g_{i}, g_{j}\right]$
spectively. Thus the conjugation $h_{1}^{h_{3}}$ represents the transposition exchanging $(1, p)$ and (i, q). Similarly the conjugation $h_{3}^{h_{4}}$ represents the transposition swapping (i, q) and (j, r). Figure 2.3 illustrates various transpositions of Y_{n} given by conjugations of α. Our claim follows since i, j, p, q and r are arbitrary. So we are done because any finite permutation $f \in \operatorname{Perm}(K)$ above can be written as a product of transpositions.

Finite presentation for \mathcal{H}_{3}.

In [15], Johnson provided a finite presentation for \mathcal{H}_{3}.

Theorem 2.8. The Houghton's group \mathcal{H}_{3} is isomorphic to H_{3} presented by

$$
\begin{equation*}
H_{3}=\left\langle g_{1}, g_{2}, \alpha \mid r_{1}, \cdots, r_{5}\right\rangle \tag{2.4}
\end{equation*}
$$

$$
\begin{aligned}
r_{1} & : \alpha^{2}=1 \\
r_{2} & :\left(\alpha \alpha^{\bar{g}_{1}}\right)^{3}=1 \\
r_{3} & :\left[\alpha, \alpha^{\bar{g}_{1}^{2}}\right]=1 \\
r_{4} & :\left[g_{1}, g_{2}\right]=\alpha, \\
r_{5} & : \alpha^{\bar{g}_{1}}=\alpha^{\bar{g}_{2}} .
\end{aligned}
$$

Note that there is a map ψ from an abstract group H_{3} to \mathcal{H}_{3} such that $\psi\left(g_{i}\right)$ is the translation g_{i} defined in equation $(2.1)(i=1,2)$ and $\psi(\alpha)$ is the transposition $\alpha=\left[g_{1}, g_{2}\right]$. Observe that relations r_{1}, r_{2} and r_{3} are reminiscent relations of Coxeter
systems for finite symmetric groups. It is easy to check that \mathcal{H}_{3} satisfies those five relations. Johnson showed that the group H_{3} fits into the short exact sequence of (2.3) with the normal subgroup generated by α, and that $\psi: H_{3} \rightarrow \mathcal{H}_{3}$ induces isomorphisms between the normal subgroups and the quotients. So the following diagram commute. The Five Lemma completes the proof.

Finite presentations for $\mathcal{H}_{n}(n \geq 3)$.
We extend the previous argument to find finite presentations for \mathcal{H}_{n} for all $n \geq 3$. The first step is to establish appropriate presentations for symmetric groups on finite balls of Y_{n} by applying Tietze transformation to the Coxeter systems for finite symmetric groups.

Fix positive integers $n, r \in \mathbb{N}$. Let $B_{n, r}$ denote the ball of Y_{n} centered at the origin with radius r, i.e., $B_{n, r}=\left\{(i, p) \in Y_{n}: 1 \leq i \leq n, 1 \leq p \leq r\right\}$. The ball $B_{n, r}$ contains $n r$ points which can be identified to the points of $\{1,2, \cdots, r, \cdots, 2 r, \cdots, n r\} \subset$ \mathbb{N} via $\chi: B_{n, r} \rightarrow \mathbb{N}$ defined by

$$
\chi(i, p)=(i-1) r+p .
$$

Recall the following Coxeter system for the symmetric group $S_{n r}$ on $\{1,2, \cdots, n r\}$

$$
\begin{equation*}
\left.S_{n r}=\left\langle\sigma_{1}, \cdots, \sigma_{n r-1}\right| \sigma_{k}^{2},\left(\sigma_{k} \sigma_{k+1}\right)^{3},\left[\sigma_{k}, \sigma_{k^{\prime}}\right] \text { for }\left|k-k^{\prime}\right| \geq 2\right\rangle \tag{2.5}
\end{equation*}
$$

Remark 2.9. One can interpret the above three types of relators respectively as follows;

- generators are involutions,
- two generators with overlapping support satisfy braid relations,
- two generators commute if they have disjoint supports.

Note that every collection of transpositions of $S_{n r}$ satisfies the three types of relations. We shall see in Theorem 2.10 that a 'reasonable' set of transpositions satisfying the above relations provides a presentation for the symmetric group $S_{n r}$.

The arrangement of Y_{n} in the plane is different than the arrangement of $n r$ points $\{1,2, \cdots, n r\}$ in \mathbb{N}. In particular, the adjacency is different. By a pair of two adjacent points in Y_{n}, we mean either a pair of two consecutive points in a ray of Y_{n} or a pair of $(1,1)$ and $(j+1,1)$ for $1 \leq j \leq n-1$. We aim to produce a new presentation for the symmetric group $\Sigma_{n, r}$ on $B_{n, r}$ with a generating set which consists of the transpositions exchanging all pairs of adjacent points in Y_{n}. More precisely we need the following $n r-1$ transpositions

$$
\begin{aligned}
& \alpha_{p}^{i}, \text { exchanging }(i, p) \text { and }(i, p+1) \text { for } 1 \leq i \leq n \text { and } 1 \leq p \leq r-1 \\
& \alpha_{0}^{j+1}, \text { exchanging }(1,1) \text { and }(j+1,1) \text { for } 1 \leq j \leq n-1 .
\end{aligned}
$$

For an element $\sigma \in S_{n r}$ consider the element of $\operatorname{Perm}\left(B_{n, r}\right)$ given by

$$
(\sigma)^{\chi^{-1}}=\chi(\sigma) \chi^{-1}
$$

which stands for the composition $B_{n, r} \xrightarrow{\chi}\{1, \cdots, n r\} \xrightarrow{\sigma}\{1, \cdots, n r\} \xrightarrow{\chi^{-1}} B_{n, r}$. Let us denote the induced element by $\chi^{*}(\sigma)$. New generators of the first type are defined by χ^{*} as follows.

$$
\begin{equation*}
\alpha_{p}^{i}:=\chi^{*}\left(\sigma_{(i-1) r+p}\right) \tag{2.6}
\end{equation*}
$$

for $1 \leq i \leq n$ and $1 \leq p \leq r-1$. Note χ^{*} defines a bijection

$$
\left\{\sigma_{1}, \cdots, \widehat{\sigma_{r}}, \cdots, \widehat{\sigma_{2 r}}, \cdots, \widehat{\sigma_{(n-1) r}}, \cdots, \sigma_{n r-1}\right\} \leftrightarrow\left\{\alpha_{p}^{i} \mid 1 \leq i \leq n, 1 \leq p \leq r-1\right\}
$$

(^denotes deletion).
Replace $\sigma_{(i-1) r+p}$ by α_{p}^{i} in the Coxeter system (2.5), $1 \leq i \leq n$ and $1 \leq p \leq r-1$. Then (2.5) becomes

$$
\begin{equation*}
S_{n r}=\left\langle\alpha_{p}^{i}, \sigma_{j r} \mid R\right\rangle 1 \leq i \leq n, 1 \leq p \leq r-1, \text { and } 1 \leq j \leq n-1, \tag{2.7}
\end{equation*}
$$

where R consisting of

$$
\begin{aligned}
& R_{1}:\left(\alpha_{p}^{i}\right)^{2},\left(\sigma_{j r}\right)^{2}, \forall i, p, j \\
& R_{2}:\left[\alpha_{p}^{i}, \alpha_{q}^{i}\right], \forall i,|p-q| \geq 2 \\
& R_{3}:\left[\alpha_{p}^{i}, \alpha_{p}^{i^{\prime}}\right], \forall p, q, i \neq i^{\prime} \\
& R_{4}:\left[\alpha_{p}^{i}, \sigma_{j r}\right], \forall j,(i-1) r+p \neq j r \pm 1 \\
& R_{5}:\left[\sigma_{j r}, \sigma_{j^{\prime} r}\right], \quad j \neq j^{\prime} \\
& R_{6}:\left(\alpha_{p}^{i} \alpha_{p+1}^{i}\right)^{3}, \forall i, 1 \leq p \leq r-2 \\
& R_{7}:\left(\alpha_{p}^{i} \sigma_{j r}\right)^{3}, \forall j,(i-1) r+p=j r \pm 1 .
\end{aligned}
$$

Note that the difference in presentations (2.5) and (2.7) is just notation and the set R of relations exhibits the same idea of Remark 2.9. We also want to replace $\sigma_{j r}$ by α_{0}^{j+1} for $j=1, \cdots, n-1$ as follows. For each j, α_{0}^{j+1} corresponds, under χ^{*}, to the transposition (1 $j r+1$) of $S_{n r}$. Observe that the transposition (1 $j r+1$) of $S_{n r}$ can be expressed as $\left(\sigma_{j r}\right)^{\overline{w_{j r-1}}}$ where $w_{k}=\sigma_{1} \sigma_{2} \cdots \sigma_{k}$.

As in (2.6), define new generators of the second type by

$$
\begin{equation*}
\alpha_{0}^{j+1}:=\chi^{*}\left(\left(\sigma_{j r}\right)^{\overline{w_{j r-1}}}\right) \text { for } j=1, \cdots, n-1 . \tag{2.8}
\end{equation*}
$$

Figure 2.4 illustrates how one transforms the generating set of $S_{n r}$ to a new generating set.

Figure 2.4: Correspondence between two generating sets via χ^{*}

Consider the group $\Sigma_{n, r}$ presented by

$$
\begin{equation*}
\Sigma_{n, r}=\left\langle\alpha_{p}^{i}, \alpha_{0}^{j+1} \mid R\right\rangle 1 \leq i \leq n, 1 \leq p \leq r-1, \text { and } 1 \leq j \leq n-1, \tag{2.9}
\end{equation*}
$$

where R^{\prime} consists of

$$
\begin{aligned}
& R_{1}^{\prime}:\left(\alpha_{p}^{i}\right)^{2},\left(\alpha_{0}^{j}\right)^{2}, \forall i, p, j \\
& R_{2}^{\prime}:\left[\alpha_{p}^{i}, \alpha_{q}^{i}\right], \forall i,|p-q| \geq 2 \\
& R_{3}^{\prime}:\left[\alpha_{p}^{i}, \alpha_{p}^{i^{\prime}}\right], \forall p, q, i \neq i^{\prime} \\
& R_{4}^{\prime}:\left[\alpha_{p}^{i}, \alpha_{0}^{j+1}\right], \forall j, \alpha_{p}^{i} \neq \alpha_{1}^{1}, \alpha_{1}^{j+1} \\
& R_{5}^{\prime}:\left(\alpha_{p}^{i} \alpha_{p+1}^{i}\right)^{3}, \forall i, 1 \leq p \leq r-2 \\
& R_{6}^{\prime}:\left(\alpha_{1}^{1} \alpha_{0}^{j+1}\right)^{3},\left(\alpha_{1}^{j+1} \alpha_{0}^{j}\right)^{3} .
\end{aligned}
$$

Note that R and R^{\prime} share the same idea described in Remark 2.9. Expecting R^{\prime} to replace the original relators of R is reasonable.

Theorem 2.10. With the above definition, $\Sigma_{n, r} \cong S_{n r}$ for all integers $n, r \geq 1$.

Proof. First we show $\langle\langle R\rangle\rangle \leq\left\langle\left\langle R^{\prime}\right\rangle\right\rangle$. It is clear $\left\langle\left\langle R_{1}\right\rangle\right\rangle \leq\left\langle\left\langle R_{1}^{\prime}\right\rangle\right\rangle$. Basic idea is to use appropriate conjugation relations between $\sigma_{j r}$ and α_{0}^{j+1} given by (2.8).

In order to proceed we need the following identities for $j=1,2, \cdots, n-1$

$$
\begin{gather*}
{\left[\sigma_{j r}, \alpha_{p}^{i}\right]=\left[\alpha_{0}^{j+1}, \alpha_{p}^{i}\right]^{w_{j r-1}} \text { if }(i-1) r+p \geq j r+2,} \tag{2.10}\\
{\left[\sigma_{j r}, \alpha_{p}^{i}\right]=\left[\alpha_{0}^{j+1}, \alpha_{p+1}^{i}\right]^{w_{j r-1}} \text { if }(i-1) r+p \leq j r-2,} \tag{2.11}\\
{\left[\sigma_{j r}, \sigma_{j^{\prime} r}\right]=\left[\alpha_{0}^{j+1}, \alpha_{1}^{j^{\prime}+1}\right]^{w_{j r-1}} \text { if } j^{\prime}<j+1,} \tag{2.12}\\
\left(\alpha_{1}^{j+1} \sigma_{j r}\right)^{3}=\left(\left(\alpha_{1}^{j+1} \alpha_{0}^{j+1}\right)^{3}\right)^{w_{j r-1}} \tag{2.13}\\
\left(\alpha_{r-1}^{j} \sigma_{j r}\right)^{3}=\left(\left(\alpha_{1}^{1} \alpha_{0}^{j+1}\right)^{3}\right)^{w_{j r-1} w_{j r-2}} \tag{2.14}
\end{gather*}
$$

$$
\begin{equation*}
\left(\alpha_{1}^{1}\right)^{w_{j r-1} w_{j r-2}}=\alpha_{r-1}^{j} \tag{2.15}
\end{equation*}
$$

First we apply an induction argument on j to verify (2.10), (2.11) and (2.13). The induction assumption for (2.10) together with relators of R_{3}^{\prime} yields $\alpha_{p}^{i}=\left(\alpha_{p}^{i}\right)^{w_{j r-1}}$ if $(i-1) r+p \geq j r+2$. So (2.10) follows from (2.8). Similarly one can verify (2.11) by using (2.10) together with R_{2}^{\prime} and R_{5}^{\prime}. The identity (2.13) follows from (2.10), R_{2}^{\prime} and R_{3}^{\prime}.

For (2.12), (2.14) and (2.15) we apply simultaneous induction on j together with (2.10), (2.11) and (2.13). The base case of (2.12) holds trivially. The relation (2.15) is clear when $j=1$, which establishes the base case of (2.14). Suppose (2.12), (2.14)
and (2.15) hold for $j=k$. Observe that

$$
\begin{align*}
& w_{(k+1) r-1} w_{(k+1) r-2} \\
= & \left(\sigma_{1} \cdots \sigma_{k r} \sigma_{k r+1} \cdots \sigma_{(k+1) r-1}\right)\left(\sigma_{1} \sigma_{2} \cdots \sigma_{k r} \sigma_{k r+1} \cdots \sigma_{(k+1) r-2}\right) \\
= & \left(\sigma_{1} \cdots \sigma_{k r}\right)\left(\sigma_{1} \sigma_{2} \cdots \sigma_{k r-1}\right)\left(\sigma_{k r+1} \cdots \sigma_{(k+1) r-1}\right) \\
& \left(\sigma_{k r} \sigma_{k r+1} \cdots \sigma_{(k+1) r-2}\right) \tag{2.12}\\
= & \left(\sigma_{1} \cdots \sigma_{k r-1}\right)\left(\sigma_{1} \sigma_{2} \cdots \sigma_{k r-2} \sigma_{k r} \sigma_{k r-1}\right)\left(\sigma_{k r+1} \cdots \sigma_{(k+1) r-1}\right) \\
& \left(\sigma_{k r} \sigma_{k r+1} \cdots \sigma_{(k+1) r-2}\right) \tag{2.11}
\end{align*}
$$

Thus we have

$$
\begin{align*}
\left(\alpha_{1}^{1}\right)^{w_{(k+1) r-1} w_{(k+1) r-2}} & =\left(\alpha_{r-1}^{k}\right)^{\left(\sigma_{k r} \sigma_{k r-1} \sigma_{k r+1} \cdots \sigma_{(k+1) r-1}\right)\left(\sigma_{k r} \sigma_{k r+1} \cdots \sigma_{(k+1) r-2}\right)} \tag{2.14}\\
& =\left(\sigma_{k r}\right)^{\left(\sigma_{k r+1} \cdots \sigma_{(k+1) r-1}\right)\left(\sigma_{k r} \sigma_{k r+1} \cdots \sigma_{(k+1) r-2}\right)} \tag{2.13}\\
& =\left(\sigma_{k r}\right)^{\left(\sigma_{k r+1} \sigma_{k r} \sigma_{k r+2} \cdots \sigma_{(k+1) r-1}\right)\left(\sigma_{k r+1} \cdots \sigma_{(k+1) r-2}\right)} \tag{2.13}\\
& =\left(\alpha_{1}^{k+1}\right)^{\left(\sigma_{k r+2} \cdots \sigma_{(k+1) r-1}\right)\left(\sigma_{k r+1} \cdots \sigma_{(k+1) r-2}\right)} \tag{2.13}\\
& =\cdots=\alpha_{r-1}^{k+1}
\end{align*}
$$

$R_{2}^{\prime}, R_{5}^{\prime}$

So we have verified the statement (2.14) with $j=k+1$ which imply (2.13) for $j=k+1$. For (2.12) we need to check $\left(\alpha_{1}^{j^{\prime}+1}\right)^{w_{(k+1) r-1}}=\sigma_{j^{\prime} r}$ if $j^{\prime}<k+2$;

$$
\begin{array}{rlr}
\left(\alpha_{1}^{j^{\prime}+1}\right)^{w_{(k+1) r-1}} & =\left(\alpha_{1}^{j^{\prime}+1}\right)^{\sigma_{1} \sigma_{2} \cdots \sigma_{j^{\prime} r} \sigma_{j^{\prime} r+1} \cdots \sigma_{(k+1) r-1}} & \text { definition of } w_{(k+1) r-1} \\
& =\left(\alpha_{1}^{j^{\prime}+1}\right)^{\sigma_{j^{\prime} r} \sigma_{j^{\prime} r+1} \cdots \sigma_{(k+1) r-1}} \\
& =\left(\sigma_{\left(j^{\prime}+1\right) r}\right)^{\sigma_{j^{\prime} r+2} \cdots \sigma_{(k+1) r-1}} \\
& =\cdots=\sigma_{\left(j^{\prime}+1\right) r} & (2.10), R_{3}^{\prime} \tag{2.10}
\end{array}
$$

Now we see that identities (2.10)-(2.14) imply $\langle\langle R\rangle\rangle \leq\left\langle\left\langle R^{\prime}\right\rangle\right\rangle$. On the other hand,

Remark 2.9 guarantees $\left\langle\left\langle R^{\prime}\right\rangle\right\rangle \leq\langle\langle R\rangle\rangle$. So we have $\left\langle\left\langle R^{\prime}\right\rangle\right\rangle=\langle\langle R\rangle\rangle$
The next step is to apply Tietze transformations to the presentation (2.7) which is identical to the Coxeter presentation (2.5) up to notation for generators. First adjoin extra letters α_{0}^{j+1},s to get the following presentation

$$
\begin{equation*}
\left\langle\alpha_{p}^{i}, \sigma_{j r}, \alpha_{0}^{j+1} \mid R \cup R_{\beta}\right\rangle \tag{2.16}
\end{equation*}
$$

where R_{β} consists of words of the form

$$
\overline{\left(\alpha_{0}^{j+1}\right)}\left(\sigma_{j r}\right)^{\overline{w_{j r-1}}}
$$

corresponding to (2.8). Then replace $R \cup R_{\beta}$ by $R^{\prime} \cup R_{\beta}$ in (2.16). This is legitimate since two normal closures $\langle\langle R\rangle\rangle$ and $\left\langle\left\langle R^{\prime}\right\rangle\right\rangle$ are the same. Finally we remove $\sigma_{j r}$'s from the generating set and R_{β} from the relators simultaneously to get the presentation $\Sigma_{n, r}$. In all, $\Sigma_{n, r}$ and $S_{n r}$ are isomorphic.

Let n be a positive integer. From Theorem 2.10 we have a sequence of symmetric groups $\Sigma_{n, r}=\left\langle A_{n, r} \mid Q_{n, r}\right\rangle$ on $B_{n, r} \subset Y_{n}$, where $A_{n, r}$ and $Q_{n, r}$ denote the generators and relators in (2.9) respectively. The natural inclusion $B_{n, r} \hookrightarrow B_{n, r+1}$ induces an inclusion $i_{r}: \Sigma_{n, r} \hookrightarrow \Sigma_{n, r+1}$ such that

$$
A_{n, r} \hookrightarrow A_{n, r+1} \text { and } Q_{n, r} \hookrightarrow Q_{n, r+1}
$$

for $r \in \mathbb{N}$. The direct limit $\underline{\longrightarrow i m}_{r} \Sigma_{n, r}$ with respect to inclusions i_{r} is nothing but the infinite symmetric group $\Sigma_{n, \infty}$ on Y_{n} consisting of permutations with finite support.

Lemma 2.11. For each $n \in \mathbb{N}, \Sigma_{n, \infty} \cong\left\langle A_{n} \mid Q_{n}\right\rangle$, where $A_{n}=\cup_{r} A_{n, r}$ and $Q_{n}=$ $\cup_{r} Q_{n, r}$.

Proof. For each $k \in \mathbb{N}$ we have a commuting diagram

The isomorphism on the right follows from the fact that the left map is an isomorphism and that the two horizontal maps are inclusions.

The previous Lemma implies that one can get a presentation for $\Sigma_{n, \infty}$ by allowing the subscript p to be any positive integer in (2.9). We keep the same notation $R_{1}^{\prime}-R_{6}^{\prime}$ to indicate relators of the same type in Q_{n}.

Recall elements g_{1}, \cdots, g_{n-1} of \mathcal{H}_{n} defined in (2.1), and it is easy to see that

$$
\left[g_{i}, g_{j}\right]=\alpha_{1}^{1}
$$

for $i \neq j$. Now consider the action of g_{1}, \cdots, g_{n-1} on A_{n}.

$$
\begin{gathered}
\left(\alpha_{p}^{1}\right)^{g_{k}^{-m}}=\alpha_{p+m}^{1}, \quad\left(\alpha_{1}^{1}\right)^{g_{k}}=\alpha_{0}^{k}, \text { for } p, m \in \mathbb{N}, 1 \leq k \leq n-1 \\
\left(\alpha_{0}^{k}\right)^{g_{k}}=\alpha_{1}^{k+1}, \text { for } 1 \leq k \leq n-1 \\
\left(\alpha_{0}^{k}\right)^{g_{k^{\prime}}^{-1}}=\left(\alpha_{0}^{k}\right)^{\alpha_{1}^{1}},\left(\alpha_{0}^{k}\right)^{g_{k^{\prime}}}=\left(\alpha_{0}^{k}\right)^{\alpha_{0}^{k^{\prime}}}, \text { for } 1 \leq k \neq k^{\prime} \leq n-1 \\
\left(\alpha_{p}^{i}\right)^{g_{i-1}^{m}}=\left(\alpha_{p+m}^{i}\right),\left(\alpha_{p}^{i}\right)^{g_{j}^{-m}}=\left(\alpha_{p}^{i}\right)^{g_{j}^{m}}=\left(\alpha_{p}^{i}\right), \text { for } p, m \in \mathbb{N}, 2 \leq i \leq n \text { and } j \neq i-1
\end{gathered}
$$

Let Q_{n}^{\prime} be the relators corresponding to the above action. For $n \geq 3$, consider the group H_{n} defined by

$$
\begin{equation*}
H_{n}=\left\langle g_{1}, \cdots, g_{n-1}, A_{n} \mid Q_{n}, Q_{n}^{\prime},\left(\alpha_{1}^{1}\right)^{-1}\left[g_{i}, g_{j}\right]\right\rangle, 1 \leq i<j \leq n-1 \tag{2.17}
\end{equation*}
$$

Lemma 2.12. We have a short exact sequence for each n;

$$
\begin{equation*}
1 \rightarrow\left\langle\mathcal{A}_{n}\right\rangle \rightarrow H_{n} \rightarrow \mathbb{Z}^{n-1} \rightarrow 1 \tag{2.18}
\end{equation*}
$$

Proof. Note that the relations Q_{n}^{\prime} ensure that $\left\langle A_{n}\right\rangle$ is a normal subgroup of H_{n}. Clearly the set of relations Q_{n} becomes trivial in the quotient $H_{n} /\left\langle A_{n}\right\rangle$. Likewise, the relations in Q_{n}^{\prime} all become trivial in the quotient $H_{n} /\left\langle A_{n}\right\rangle$. The extra relator $\left(\alpha_{1}^{1}\right)^{-1}\left[g_{i}, g_{j}\right]$ implies that g_{i} and g_{j} commute in $H_{n} /\left\langle\mathcal{A}_{n}\right\rangle(i \neq j)$, so the quotient is the free abelian group generated by g_{1}, \cdots, g_{n-1}.

Lemma 2.13. For $n \geq 3, H_{n} \cong \mathcal{H}_{n}$.
Proof. As in Johnson's argument for $n=3$, there exists a homomorphism $\psi: H_{n} \rightarrow$ \mathcal{H}_{n} defined by

$$
\psi\left(g_{i}\right)=g_{i} \text { and } \psi(\alpha)=\alpha
$$

So we have a commutative diagram with exact rows.

The existence of the top row and the isomorphism $H_{n} /\left\langle A_{n}\right\rangle \simeq \mathbb{Z}^{n-1}$ are the result of Lemma 2.12. The bottom row is given by Corollary 2.4, and the isomorphism $\left\langle A_{n}\right\rangle \simeq\left[H_{n}, H_{n}\right]$ follows from Lemma 2.3 and Lemma 2.11. As the outer four vertical maps are isomorphisms, so is the inner one by the Five lemma.

Theorem 2.14. For $n \geq 3, H_{n}$ has a finite presentation

$$
\begin{equation*}
H_{n} \cong\left\langle g_{1}, \cdots, g_{n-1}, \alpha \mid P_{n}\right\rangle \tag{2.19}
\end{equation*}
$$

where P_{n} consists of

$$
\begin{aligned}
r_{1}^{\prime} & : \alpha^{2}=1, \\
r_{2}^{\prime} & : \\
r_{3}^{\prime} & \left.: \alpha \alpha^{g_{1}}\right)^{3}=1, \\
r_{4}^{\prime} & : \quad\left[g_{i}, g_{j}\right]=\alpha, \text { for } 1 \leq i<j \leq n-1, \\
r_{5}^{\prime} & : \alpha^{\bar{g}_{i}}=\alpha^{\bar{g}_{j}}, \text { for } 1 \leq i<j \leq n-1
\end{aligned}
$$

(\sim denotes commutation).

Proof. P_{n} already contains $\left(\alpha_{1}^{1}\right)^{-1}\left[g_{i}, g_{j}\right]$ for $1 \leq i<j \leq n-1$. We show $\left\langle\left\langle P_{n}\right\rangle\right\rangle$ contains $\left\langle\left\langle\mathcal{Q}_{n}^{\prime} \cup \mathcal{Q}_{n}\right\rangle\right\rangle$ for all $n \geq 3$ by induction on n. The base case is established by Theorem 2.8. Assume H_{n} has the presentation as in 2.19 for $n \geq 3$. Obviously g_{1}, \cdots, g_{n} and α generate \mathcal{H}_{n+1}. Consider the natural inclusion of $\iota: Y_{n} \rightarrow Y_{n+1}$ such that $\iota\left(R_{i}\right)$ is the $i^{\text {th }}$ ray of Y_{n+1}. This induces an embedding $\iota: H_{n} \rightarrow H_{n+1}$, and $\mathcal{Q}^{\prime}{ }_{n+1}$ contains relations corresponding the action of g_{n} on α_{0}^{n} and α_{p}^{n+1} 's:

$$
\begin{equation*}
\left(\alpha_{0}^{n}\right)^{g_{n}}=\alpha_{1}^{n+1},\left(\alpha_{0}^{n}\right)^{\bar{g}_{n}}=\alpha_{1}^{1},\left(\alpha_{p}^{n+1}\right)^{g_{n}}=\alpha_{p+1}^{n+1} \tag{2.20}
\end{equation*}
$$

for $p \in \mathbb{N}$. This implies $\left\langle\left\langle\iota\left(\mathcal{Q}_{n}\right)\right\rangle\right\rangle=\left\langle\left\langle\mathcal{Q}_{n+1}\right\rangle\right\rangle$ in H_{n+1}. So the normal closure of P_{n+1} contains $\left\langle\left\langle\mathcal{Q}_{n+1}\right\rangle\right\rangle$ by the induction assumption.

We must examine the action of g_{1}, \cdots, g_{n} on \mathcal{A}_{n} 's:

$$
\begin{gather*}
\left(\alpha_{p}^{1}\right)^{\bar{g}_{n}}=\left(\alpha_{p}^{1}\right)^{\bar{g}_{i}}, k \in \mathbb{N}, 1 \leq i \leq n-1, \tag{2.21}\\
\left(\alpha_{p}^{i}\right)^{g_{n}}=\alpha_{p}^{i}, p \in \mathbb{N}, 2 \leq i \leq n-1, \tag{2.22}\\
\left(\alpha_{0}^{i}\right)^{g_{n}}=\left(\alpha_{0}^{i}\right)^{\alpha_{0}^{n}},\left(\alpha_{0}^{i}\right)^{\bar{g}_{n}}=\left(\alpha_{0}^{i}\right)^{\alpha_{1}^{1}}, 1 \leq i \leq n-1, \tag{2.23}\\
\left(\alpha_{0}^{n}\right)^{\bar{g}_{i}}=\left(\alpha_{0}^{n}\right)^{\alpha_{1}^{1}},\left(\alpha_{0}^{n}\right)^{g_{i}}=\left(\alpha_{0}^{n+1}\right)^{\alpha_{0}^{i}}, 1 \leq i \leq n-1, \tag{2.24}\\
\left(\alpha_{p}^{n+1}\right)^{g_{i}}=\alpha_{p}^{n+1}, k \in \mathbb{N}, 1 \leq i \leq n-1, \tag{2.25}
\end{gather*}
$$

together with (2.20) and $\iota\left(Q_{n}^{\prime}\right)$. From Lemma 2.15 we see that P_{n+1} implies

$$
\begin{gather*}
\alpha \sim\left(\bar{g}_{n}\right)^{\bar{g}_{i}^{2}}, \alpha \sim\left(\bar{g}_{i}\right)^{\bar{g}_{n}^{2}}, 1 \leq i \leq n-1, \tag{2.26}\\
\alpha^{\bar{g}_{i}^{k}}=\alpha^{\bar{g}_{n}^{k}}, \alpha \sim \alpha^{\bar{g}_{i}^{(k+1)}}, k \in \mathbb{N}, 1 \leq i \leq n-1 \tag{2.27}
\end{gather*}
$$

We want to establish identities (2.21)-(2.25) from (2.26), (2.27) and P_{n+1}. The identity (2.21) is a part of (2.27). Observe that, by using (2.20), one can reduce (2.22) and (2.25) respectively, as follows

$$
\begin{equation*}
\alpha^{g_{i}^{k+1}} \sim g_{n}, \alpha^{g_{n}^{k+1}} \sim g_{i}, 2 \leq i \leq n-1, k \in \mathbb{N} \tag{2.28}
\end{equation*}
$$

One can verify (2.28) by inductions based on (2.26) as follows. The identity (2.26) provides the base cases. Assume $\alpha^{g_{i}^{k+1}} \sim g_{n}$ for $k \geq 1$. Then r_{1} and r_{2} of P_{n+1} imply

$$
\alpha^{g_{i}^{k+2}} \sim \bar{g}_{i} g_{n} g_{i}=\bar{g}_{i} \alpha g_{i} g_{n}=\alpha^{g_{i}} g_{n}
$$

On the other hand, $\alpha^{g_{i}^{k+2}} \sim \alpha^{g_{i}}$ by (2.27). Thus $\alpha^{g_{i}^{k+2}} \sim g_{n}$. An analogous argument verifies the second identity of (2.28).

Note that (2.23) and (2.24) are equivalent to

$$
\alpha^{g_{i}} \sim \bar{g}_{n} \alpha, \alpha^{g_{n}} \sim \alpha g_{i}, 1 \leq i \leq n-1,
$$

which are immediate consequence of (2.26).
In all, $\left\langle\left\langle P_{n+1}\right\rangle\right\rangle$ also contains $\left\langle\left\langle\mathcal{Q}_{n+1}^{\prime}\right\rangle\right\rangle$. So P_{n+1} is enough for relators in H_{n+1}, and hence H_{n} has the presentation (2.19) for $n \geq 3$.

Lemma 2.15. P_{n} implies the following identities

$$
\begin{equation*}
\alpha \sim\left(\bar{g}_{n-1}\right)^{\bar{g}_{i}^{2}}, \alpha \sim\left(\bar{g}_{i}\right)^{\bar{g}_{n-1}^{2}}, 1 \leq i \leq n-2, \tag{2.29}
\end{equation*}
$$

$$
\begin{equation*}
\alpha^{\bar{g}_{i}^{k}}=\alpha^{\bar{g}_{n-1}^{k}}, \alpha \sim \alpha^{\bar{g}_{i}^{(k+1)}}, k \in \mathbb{N}, 1 \leq i \leq n-2 \tag{2.30}
\end{equation*}
$$

Proof. From r_{1}, r_{2} and r_{5} we have

$$
\alpha \alpha^{\bar{g}_{i}} \alpha=\alpha^{\bar{g}_{i}} \alpha \alpha^{\bar{g}_{i}} \Rightarrow \alpha^{\bar{g}_{i} \alpha}=\alpha^{g_{i} \alpha \bar{g}_{i}} \Rightarrow \alpha^{g_{i} \alpha}=\alpha^{\bar{g}_{i} \alpha g_{i}}=\alpha^{g_{n-1}^{-1} \alpha g_{i}}=\alpha^{g_{i} \bar{g}_{n-1}} .
$$

Thus,

$$
\alpha^{g_{i}} \sim \bar{g}_{n-1} \bar{\alpha}=g_{i} \bar{g}_{n-1} \bar{g}_{i} \Rightarrow \alpha \sim\left(\bar{g}_{n-1}\right)^{\bar{g}_{i}^{2}} .
$$

One obtains $\alpha \sim\left(\bar{g}_{i}\right)^{\bar{g}_{n-1}^{2}}$ by using an analogous argument. Next, to establish (2.30), we use simultaneous induction on k together with (2.29). Observe that r_{4} and r_{5} provide the base case $k=1$ and that $\alpha^{\bar{g}_{i}^{k}}=\alpha^{\bar{g}_{n-1}^{k}}$ holds trivially when $k=0$. Now assume

$$
\begin{equation*}
\alpha^{\bar{g}_{i}^{(k-2)}}=\alpha^{\bar{g}_{n-1}^{(k-2)}}, \alpha^{\bar{g}_{i}^{(k-1)}}=\alpha^{\bar{g}_{n-1}^{(k-1)}}, \alpha \sim \alpha^{\bar{g}_{i}^{k}} \tag{2.31}
\end{equation*}
$$

for $k \geq 2$. From r_{1} and (2.30),

$$
\alpha^{\bar{g}_{i}^{k}}=\alpha^{\bar{g}_{i}^{k} \alpha}=\alpha^{\bar{g}_{n-1}^{(k-1)} \bar{g}_{i} \alpha}=\alpha^{\bar{g}_{n-1}^{(k-2)} \bar{g}_{i} \bar{g}_{n-1}}=\alpha^{\bar{g}_{i}^{(k-1)} \bar{g}_{i} \bar{g}_{n-1}}=\alpha^{\bar{g}_{n-1}^{k}} .
$$

For the second assertion, note that r_{4} and the first identity of (2.29) imply that $\alpha^{g_{i}^{2}}$ commute with both α and g_{n-1}^{-1}. So we have

$$
\alpha^{g_{i}^{2}} \sim \alpha^{\overline{\bar{g}}_{n-1}^{(k-1)}}=\alpha^{\bar{g}_{i}^{(k-1)}}
$$

or equivalently,

$$
\alpha \sim \alpha^{\bar{g}_{i}^{(k+1)}}
$$

As a consequence of Lemma 2.13 and Theorem 2.14 we have

Theorem C. For $n \geq 3, \mathcal{H}_{n}$ has a finite presentation

$$
\begin{equation*}
\mathcal{H}_{n} \cong\left\langle g_{1}, \cdots, g_{n-1}, \alpha \mid P_{n}\right\rangle \tag{2.32}
\end{equation*}
$$

where P_{n} is the same as in the presentation (2.19) of Theorem 2.14.

2.4 Further properties of \mathcal{H}_{n}

Definition 2.16 (Amenable and a-T-menable groups). A (discrete) group G is called amenable if it has a $F ø$ lner sequence, i.e., there exists a sequence $\left\{F_{i}\right\}_{i \in \mathbb{N}}$ of finite subsets of G such that

$$
\frac{\left|g \cdot F_{i} \triangle F_{i}\right|}{\left|F_{i}\right|}
$$

tends to 0 for each $g \in G$.
A group G is called a-T-menable if there is a proper continuous affine action of G on a Hilbert space.

Recall the following known fact about amenable groups ([17]).

Theorem 2.17. The class of amenable group contains abelian groups, and locally finite groups. An extension of an amenable group by another amenable group is again amenable.

The above facts together with the short exact sequence (2.3) implies amenability of \mathcal{H}_{n}.

$$
1 \rightarrow \Sigma_{n, \infty} \rightarrow \mathcal{H}_{n} \xrightarrow{\varphi} \mathbb{Z}^{n-1} \rightarrow 1,
$$

Theorem 2.18. \mathcal{H}_{n} is amenable for all n.

The class of amenable groups contains the class of a-T-menable groups.

Corollary 2.19. \mathcal{H}_{n} is a-T-amenable for all n. As a consequence, Houghton's groups satisfy the Baum-Connes conjecture.

Chapter 3

A cubing for \mathcal{H}_{n}

3.1 Definition of the cubing X_{n}

In [7], Ken Brown constructed an infinite dimensional cell complex on which \mathcal{H}_{n} acts by taking the geometric realization of a poset, which is defined using factorizations in a monoid \mathcal{M}_{n} containing \mathcal{H}_{n}. In this section we modify his idea to construct an n-dimensional cubical complex X_{n} on which \mathcal{H}_{n} acts. It turns out that X_{n} is a cubing for all $n \in \mathbb{N}$. We discuss this in detail in Section 3.3.

Two monoids \mathcal{M}_{n} and \mathcal{T}_{n} are important for the construction. Fix a positive integer $n \in \mathbb{N}$. Let \mathcal{M}_{n} be the monoid of injective maps $Y_{n} \rightarrow Y_{n}$ which behave as eventual translations, i.e., each $\alpha \in \mathcal{M}_{n}$ satisfies
\star There is an n-tuple $\left(m_{1}, \cdots, m_{n}\right) \in \mathbb{Z}^{n}$ and a finite set $K \subset Y_{n}$ such that $(k, p) \alpha=\left(k, p+m_{k}\right)$ for all $(k, p) \in Y_{n}-K$.

The group homomorphism $\varphi: \mathcal{H}_{n} \rightarrow \mathbb{Z}^{n}$ naturally extends to a monoid homomorphism $\varphi: \mathcal{M}_{n} \rightarrow \mathbb{Z}^{n}$ and $\varphi(\alpha)=\left(m_{1}, \cdots, m_{n}\right)$. A monoid homomorphism $h: \mathcal{M}_{n} \rightarrow \mathbb{Z}_{\geq 0}$ is defined by $h(\alpha)=\sum m_{i}$. This map h is called the height function on \mathcal{M}_{n}. For convenience let $S(\alpha)$ denote the discrete set $Y_{n}-\left(Y_{n}\right) \alpha$. One can readily check that $h(\alpha)=|S(\alpha)|$ and that $\mathcal{H}_{n}=h^{-1}(0)$.

Consider elements t_{1}, \cdots, t_{n} of \mathcal{M}_{n} where t_{i} is the translation by 1 on the $i^{t h}$ ray, i.e.,

$$
(j, p) t_{i}= \begin{cases}(j, p+1) & \text { if } j=i \\ (j, p) & \text { if } j \neq i\end{cases}
$$

for all $p \in \mathbb{N}$. Let $\mathcal{T}_{n} \subset \mathcal{M}_{n}$ be the commutative submonoid generated by t_{1}, \cdots, t_{n}.
Figure 3.1 illustrates some examples of \mathcal{M}_{n}, as before, where points which do not involve arrows are meant to be fixed, points of each finite set K are indicated by circles. The left most one is a generator t_{i} of \mathcal{T}_{n} which behaves as the translation on R_{i} by 1 and fixes $Y_{n}-R_{i}$ pointwise. The next example shows the commutativity of $\mathcal{T}_{n} ; t_{i} t_{j}=t_{j} t_{i}$. In the third figure, $\alpha=\left[g_{1}, g_{2}\right]$ as before. The last element g is rather generic one with $h(g)=1$.

Figure 3.1: Some elements of \mathcal{M}_{n}

One crucial feature of \mathcal{T}_{n} is that it is commutative. \mathcal{T}_{n} acts on \mathcal{M}_{n} by left multiplication (pre-composition). This action induces a relation \geq on \mathcal{M}_{n}, i.e.,

$$
\begin{equation*}
\alpha_{1} \geq \alpha_{2} \text { if } \alpha_{1}=t \alpha_{2} \text { for some } t \in \mathcal{T}_{n} \tag{3.1}
\end{equation*}
$$

for all $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathcal{M}_{n}$

Proposition 3.1. The relation \geq on \mathcal{M}_{n} is a partial order, i.e., it satisfies for all $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathcal{M}_{n}$,

- $\alpha_{1} \geq \alpha_{1}$,
- if $\alpha_{1} \geq \alpha_{2}$ and $\alpha_{2} \geq \alpha_{1}$ then $\alpha_{1}=\alpha_{2}$,
- if $\alpha_{1} \geq \alpha_{2}$ and $\alpha_{2} \geq \alpha_{3}$ then $\alpha_{1} \geq \alpha_{3}$.

Proof. Reflexivity can by verified by using $t=1 \in \mathcal{T}_{n}$ in equation 3.1. The condition that $\alpha_{1} \geq \alpha_{2}$ and $\alpha_{2} \geq \alpha_{1}$ implies that $h\left(\alpha_{1}\right)=h\left(\alpha_{2}\right)$ and so $t=1$ is the only candidate for t in inequalities $\alpha_{1}=t \alpha_{2}$ and $\alpha_{2}=t \alpha_{1}$. So we have antisymmetry. One can check transitivity by taking an obvious composition of t 's in the two inequalities.

Being a submonoid, \mathcal{H}_{n} acts on \mathcal{M}_{n}. In this paper, we focus on the action of \mathcal{H}_{n} on \mathcal{M}_{n} by right multiplication (post-composition).

Remark 3.2. The two actions of \mathcal{H}_{n} and \mathcal{T}_{n} on \mathcal{M}_{n} commute.

A chain $\alpha_{0} \leq \alpha_{1} \leq \cdots \leq \alpha_{k}$ corresponds to a k-simplex in the the geometric realization $\left\|\mathcal{M}_{n}\right\|$. The lengths of chains are not bounded and hence the dimension of $\left\|\mathcal{M}_{n}\right\|$ is infinite. To show the finiteness properties of \mathcal{H}_{n} (Corollary B), Brown studied the action of \mathcal{H}_{n} on $\left\|\mathcal{M}_{n}\right\|$ equipped with a filtration satisfying the condition of Theorem 3.51.

Instead, for the construction of desired complex X_{n}, we want to start with Cayley graph of \mathcal{M}_{n} with respect to the generating set $\left\{t_{1}, \cdots, t_{n}\right\}$ for \mathcal{T}_{n}. Recall the Cayley graph $\Gamma(G, S)$ of a group G with respect to a generating set S is the metric graph whose vertices are in $1-1$ correspondence with the elements of G and which has an edge (labelled by s) of length 1 joining g to $g s$ for each $g \in G$ and $s \in S$.

Definition 3.3 (Cayley graph \mathcal{C}_{n}). Associated to the monoid \mathcal{M}_{n}, a directed graph \mathcal{C}_{n} is defined by

- The vertex set $\mathcal{C}_{n}^{(0)}$ is in $1-1$ correspondence with the elements of \mathcal{M}_{n}. By abusing notation, let α denote the vertex of \mathcal{C}_{n} corresponding the same element of \mathcal{M}_{n}.
- A vertex α is joined to another vertex β by an edge e (of length 1) labelled by t_{i} if $\beta=t_{i} \alpha$ for some t_{i}; we assume all edges are directed, i.e., directed from α to β.

The monoid homomorphism $h: \mathcal{M}_{n} \rightarrow \mathbb{Z}_{\geq 0}$ can be extended linearly to a map $h: \mathcal{C}_{n} \rightarrow \mathbb{R}_{\geq 0}$. Note that $h(\beta)=h(\alpha)+1$ if $\beta=t_{i} \alpha$ for some t_{i}. In this situation, we say that the edge $e_{t_{i}}$ is directed "upward" with respect to the height function h.

Remark 3.4. For a vertex β and a fixed $i(1 \leq i \leq n)$, there is unique edge labelled by t_{i} whose initial vertex is β; namely, the edge which ends in the uniquely determined vertex $t_{i} \beta$.

Least upper bound in \mathcal{M}_{n}.

Lemma 3.5. For $\alpha_{1}, \alpha_{2} \in \mathcal{M}_{n}$, there exists a unique element β such that

- $\beta \geq \alpha_{1}$ and $\beta \geq \alpha_{2}$, and
- if $\beta^{\prime} \geq \alpha_{1}$ and $\beta^{\prime} \geq \alpha_{2}$, then $\beta^{\prime} \geq \beta$.

Proof. Suppose $\varphi\left(\alpha_{1}\right)=\left(m_{1}, \cdots, m_{n}\right)$ and $\varphi\left(\alpha_{2}\right)=\left(m_{1}^{\prime}, \cdots, m_{n}^{\prime}\right)$. Consider the restrictions $\alpha_{1 \mid R_{i}}$ and $\alpha_{2 \mid R_{i}}$ for $i=1, \cdots, n$. One can find smallest non-negative integers k_{i}, k_{i}^{\prime} so that

$$
\begin{equation*}
t_{i}^{k_{i}} \alpha_{1 \mid R_{i}}=t_{i}^{k_{i}^{\prime}} \alpha_{2 \mid R_{i}} \tag{3.2}
\end{equation*}
$$

for each i as follows. If $m_{i}>m_{i}^{\prime}$ then there exists smallest $p_{0} \in \mathbb{N} \cup\{0\}$ such that

$$
(i, p) \alpha_{1}=(i, p) t_{i}^{m_{i}-m_{i}^{\prime}} \alpha_{2}
$$

for all $p>p_{0}$. The existence of p_{0} is obvious. On R_{i}, α_{1} and $t_{i}^{m_{i}-m_{i}^{\prime}} \alpha_{2}$ agree outside a finite set L (this set L can be smaller than the finite set in the definition of \mathcal{M}_{n}). The integer k_{0} is determined by the point in $L \cap R_{i}$ with the largest distance from the origin (if the intersection is trivial then $p_{0}=0$). Set $k_{i}=p_{0}$ and $k_{i}^{\prime}=m_{i}-m_{i}^{\prime}+p_{0}$. The integers k_{i} and k_{i}^{\prime} are desired powers for t_{i} satisfying (3.2). One can find appropriate k_{i} and k_{i}^{\prime} in a similar way in case $m_{i}<m_{i}^{\prime}$. If $m_{i}=m_{i}^{\prime}$ then set $k_{i}=k_{i}^{\prime}=p_{0}$. Apply this process to get k_{i} 's and k_{i}^{\prime} 's for all $i=1, \cdots, n$.

Now set $\beta=t_{1}^{k_{1}} \cdots t_{n}^{k_{n}} \alpha_{1}=t_{1}^{k_{1}^{\prime}} \cdots t_{n}^{k_{n}^{\prime}} \alpha_{2}$. The first condition clearly holds. The definition of \geq together with the minimality of the k_{i} and k_{i}^{\prime} ensure that if $\beta^{\prime} \geq \alpha$ and $\beta^{\prime} \geq \alpha^{\prime}$, then $\beta^{\prime} \geq \beta$, and hence condition two holds. Finally, the uniqueness of β follows from the second condition together with the antisymmetry of \geq. (Proposition 3.1).

Definition 3.6 (Least upper bound). An element β is called an upper bound of α_{1} and α_{2} if it satisfies the first condition of Lemma 3.5. If β is the unique element satisfying both conditions of Lemma 3.5, then it is called the least upper bound (simply lub) of α_{1} and α_{2} and is denoted by $\alpha_{1} \wedge \alpha_{2}$.

Figure 3.2: β is an upper bound of α_{1}, α_{2} and α_{3}

Figure 3.2 shows some elements of \mathcal{M}_{n} with their upper bound; β is an upper bound of α_{1}, α_{2} and α_{3}. Note that, in the right figure, edges directed into the vertex β are not necessarily labelled by distinct generators of \mathcal{T}_{n}. The reader should
contrast this with the situation of edges directed away from a vertex as described in Remark 3.4.

The following proposition implies that the notion of $l u b$ for a finite collection of \mathcal{M}_{n} is well-defined.

Proposition 3.7. Suppose $\left\{\alpha_{1}, \cdots, \alpha_{\ell}\right\} \subset \mathcal{M}_{n}$. There exists lub of those finite elements, i.e. there exists a unique element β satisfying

- $\beta \geq \alpha_{j}, j=1, \cdots, \ell$,
- if $\beta^{\prime} \geq \alpha_{j}$ for all j then $\beta^{\prime} \geq \beta$.

Proof. We extend the idea in the proof of Lemma 3.5 to find β with desired properties. Fix $i(1 \leq i \leq n)$. Suppose the translation lengths of α_{j} 'at infinity' is $m_{i, j}$ (i.e., α_{j} has image $m_{i, j}$ under the composition $\mathcal{M}_{n} \xrightarrow{\varphi} \mathbb{Z}^{n} \xrightarrow{\pi_{i}} \mathbb{Z}$ where π_{i} is the projection to the $i^{\text {th }}$ component). We want to find smallest non-negative integers $k_{i, 1}, \cdots, k_{i, \ell}$ so that

$$
t_{i}^{k_{i, j}} \alpha_{j \mid R_{i}}=t_{i}^{k_{i, j^{\prime}}} \alpha_{j^{\prime} \mid R_{i}}
$$

for all $j, j^{\prime} \in\{1, \cdots, \ell\}$. Let $M_{i}=\max \left\{m_{i, 1}, \cdots, m_{i, \ell}\right\}$. Observe that, for $j=$ $1, \cdots, \ell$, elements $t_{i}^{M_{i}-m_{i, j}} \alpha_{j}$ act as a translation on R_{i} by M_{i} outside a finite set K. They agree on R_{i} outside a finite set L (as in the proof Lemma 3.5, L can be smaller than $K)$. So there exists smallest $p_{0} \in \mathbb{N} \cup\{0\}$ such that

$$
(i, p) \alpha_{j}=(i, p) \alpha_{j^{\prime}}
$$

for all $p>p_{0}$ and $j, j^{\prime} \in\{1, \cdots, \ell\}$. Now set $k_{i, j}=M_{i}-m_{j}+p_{0}$ for $j=1, \cdots, \ell$. Apply this process to find $k_{i, j}$ for all $i=1, \cdots, n$. As before, we define

$$
\begin{equation*}
\beta=t_{1}^{k_{1, j}} t_{2}^{k_{2, j}} \cdots t_{n}^{k_{n, j}} \alpha_{j} \tag{3.3}
\end{equation*}
$$

for some $j \in\{1, \cdots, \ell\}$. Note it is well-defined because $t_{1}^{k_{1, j}} \cdots t_{n}^{k_{n, j}} \alpha_{j}=t_{1}^{k_{1, j^{\prime}}} \cdots t_{n}^{k_{n, j^{\prime}}} \alpha_{j^{\prime}}$ for any $j^{\prime} \in\{1, \cdots, \ell\}$. The rest of the argument is analogous to the proof of Lemma 3.5. By the definition (3.3) of β it satisfies the first condition. The second condition is also satisfied by the minimality of powers $k_{i, j}$. Finally, the uniqueness follows from the antisymmetry of \geq.

Remark 3.8. The operator $l u b$ preserves the inclusion between finite sets of \mathcal{M}_{n}, i.e.,

$$
\operatorname{lub}\left(C_{1}\right) \leq \operatorname{lub}\left(C_{2}\right)
$$

if $C_{1} \subset C_{2} \subset \mathcal{M}_{n}$.

Cubical structure of \mathcal{C}_{n} and the definition of X_{n}.

Commutativity of \mathcal{T}_{n} plays an important role in the construction of X_{n}; any permutation in the product $t_{1} t_{2} \cdots t_{k}, k \leq n$, represents the same element in \mathcal{T}_{n}. Yet each variation in the expression $t_{1} t_{2} \cdots t_{k}$ determines a path from α_{1} to $t_{1} t_{2} \cdots t_{k} \alpha_{1}$. These k ! paths form the 1 -skeleton of a k-cube. Figure 3.3 illustrates 3 ! paths form the 1 -skeleton of a 3 -cube having β and $t_{i} t_{j} t_{k} \beta$ as its bottom and top vertex respectively.

Figure 3.3: Three distinct generators t_{i}, t_{j}, t_{k} determine a 3 -cube in X_{n}.

Definition 3.9 (Cubical complex X_{n}). For each $n \in \mathbb{N} X_{n}$ is defined inductively as follows
(1) $X_{n}^{(1)}:=\mathcal{C}_{n}$,
(2) for each $k \geq 2, X_{n}^{(k)}$ is obtained from $X_{n}^{(k-1)}$ by attaching a k-cube along every copy of the boundary of a k-cube in $X_{n}^{(k-1)}$.

The height function $h: \mathcal{C}_{n} \rightarrow \mathbb{R}_{\geq 0}$ extends linearly to a Morse function h : $X_{n} \rightarrow \mathbb{R}_{\geq 0}$ (see Definition 3.43). In our study, a Morse function h is roughly a height function which restricts to each k-cube to give the standard height function. Let \square^{k} denote the standard k-cube, i.e., $\square^{k}=\left\{\left(x_{1}, \cdots, x_{k}\right) \in \mathbb{R}^{k} \mid 0 \leq x_{i} \leq 1\right\}$. The standard height function $\bar{h}: \square^{k} \rightarrow \mathbb{R}$ is defined by $\bar{h}\left(x_{1}, \cdots x_{k}\right)=\sum x_{i}$. Our Morse function h can be described as follows. Let $\sigma_{j}^{k} \subset X_{n}$ be a k-cube and let $\varphi_{j}: \square^{k} \rightarrow \sigma^{k} \subset X_{n}$ denote the attaching map (isometric embedding) for σ_{j}^{k} used in the construction of X_{n}. The image of $\sigma_{j}^{k}=\varphi_{j}\left(\square^{k}\right)$ under h is the translation of $\bar{h}\left(\square^{k}\right)$ by $h \varphi_{j}(0)$. In other words, the following diagram commutes.

Figure 3.4: A Morse function h restricted to a cube is the standard height function up to a translation.

Two actions of \mathcal{H}_{n} and \mathcal{T}_{n} on \mathcal{M}_{n} extend to actions on X_{n}. Note that cell(cube) structure of X_{n} is completely determined by \mathcal{T}_{n} whose action commutes with the action of \mathcal{H}_{n}. So the action of \mathcal{H}_{n} on X_{n} is cellular, i.e., it preserves cell structure. If a cube σ is spanned by a collection of vertices $\left\{\alpha_{1}, \cdots, \alpha_{m}\right\}$, then the cube $\sigma \cdot g$ is the same dimensional cube spanned by $\left\{\alpha_{1} g, \cdots, \alpha_{m} g\right\}$.

Intuitively the action of \mathcal{H}_{n} can be considered as a 'horizontal' action. Each $g \in \mathcal{H}_{n}$ preserves the height. By contrast, the action of \mathcal{T}_{n} is 'vertical'. Each non
trivial element of \mathcal{T}_{n} increases the height under the action (see Remark 3.44). We discuss these actions on X_{n} further in section 3.4.

Lemma 3.10. The graph \mathcal{C}_{n} is simplicial and connected for all $n \in \mathbb{N}$.

Proof. Connectedness is an immediate consequence of the existence of an upper bound for any pair of vertices in \mathcal{M}_{n} (Lemma 3.5). Suppose α_{1} and α_{2} are vertices of \mathcal{C}_{n}. Let β be a vertex with

$$
\beta=\tau_{1} \alpha_{1} \text { and } \beta=\tau_{2} \alpha_{2}
$$

for some $\tau_{1}, \tau_{2} \in \mathcal{T}_{n}$. Observe that τ_{1} and τ_{2} define paths p_{1} and p_{2} where p_{i} joins α_{i} to $\beta, i=1,2$. So α_{1} and α_{2} are connected by the concatenation of the two paths.

If an edge connects two vertices β_{1} and β_{2} then their heights differ by 1 . So no edge in \mathcal{C}_{n} starts and ends at the same vertex. Finally we want to show there is no bigon in C_{n}. Suppose two distinct edges share two vertices β_{1} and β_{2}. Again,those two vertices can not have the same height and so we may assume $\beta_{1} \geq \beta_{2}$. Our claim is that those two edges are labelled by one generater of \mathcal{T}_{n}. If two edges were labelled by two distinct generators t_{i} and t_{j}, then we would have $\beta_{1}=t_{i} \beta_{2}$ and $\beta_{1}=t_{j} \beta_{2}$. This contradicts the fact that β_{1} is injective because

$$
(i, 1) \beta_{1}=(i, 1) t_{i} \beta_{2}=(i, 2) \beta_{2} \text { but }(i, 1) \beta_{1}=(i, 1) t_{j} \beta_{2}=(i, 1) \beta_{2} .
$$

Therefore the two edges are labelled by a generater of \mathcal{T}_{n}. This means

$$
\begin{equation*}
\beta_{1}=t_{i} \beta_{2} \tag{3.4}
\end{equation*}
$$

for some t_{i}. By Remark 3.4, there is only one edge connecting β_{1} and β_{2} satisfying (3.4). So no two distinct edges share two vertices in \mathcal{C}_{n}.

Lemma 3.11. The graph X_{1} is simply connected.

Proof. Suppose ℓ is a loop in X_{1}. Consider the image of ℓ under a Morse function h. The image $h(\ell)=[a, b]$ is a compact interval. Using the homotopy constructed in Lemma 2.3 of [2] if necessary, we may assume that a and b are integers. Note that if $a=b$ then ℓ is the constant loop at a vertex of X_{1}, so we may also assume that $b-a \geq 1$. Let $\ell \cap h^{-1}(a)=\left\{\alpha_{1}, \cdots, \alpha_{k}\right\}$. By Remark 3.4, there exists an unique edge e_{j} emanating from each $\alpha_{j}(1 \leq j \leq k)$. Observe that the loop ℓ contains those edges and that ℓ is homotopy equivalent to $\ell-\cup_{j} e_{j}$ (Indeed, what we remove is not a whole edge but an edge minus the top vertex). Under this homotopy equivalence one can homotope ℓ to another loop ℓ^{\prime} such that $h\left(\ell^{\prime}\right)=[a+1, b]$. Essentially, in the passage from ℓ to ℓ^{\prime}, we removed back-trackings involving vertices $\alpha_{1}, \cdots, \alpha_{k}$. Apply the same process to establish homotopy equivalence between ℓ and a vertex with height b. It can be shown that $h^{-1}(b)$ is a singleton set even if it is not clear a priori. After applying the above homotopy equivalences up to $b-a$ steps one obtains homotopy equivalence between the loop ℓ and $\ell \cap h^{-1}(b)$. If the preimage $h^{-1}(b)$ consisted of multiple number of vertices then ℓ was homotopic to a discrete set $h^{-1}(b)$. We have shown that ℓ is null homotopic.

Lifting across a square. Fix $n \geq 2$. Suppose β is a vertex of X_{n}. For a pair of generators t_{i} and $t_{j}(i \neq j)$, there exists a unique square σ containing four vertices $\beta, t_{i} \beta, t_{j} \beta$ and $t_{i} t_{j} \beta$. Consider the path p with length 2 , joining two vertices $t_{i} \beta$ and $t_{j} \beta$, consisting of two lower edges of the square σ. We say a path p has a turn at β. This path p is homotopic to a path \tilde{p} rel two ends vertices which consists of two upper edges of σ. Figure 3.5 illustrates this idea. We say \tilde{p} is a lifting of p (across a square σ). The notion of lifting is useful in proving Lemma 3.12 as well as amenability of \mathcal{C}_{n} in Section 3.3.2.

Lemma 3.12. For all $n \geq 2, X_{n}$ is simply connected.

Figure 3.5: A path with a turn at β lifts to a path \tilde{p}.

Proof. Suppose $\ell: \mathbb{S}^{1} \rightarrow X_{n}$ is a loop in X_{n} for $n \geq 2$. We may assume that ℓ lies in 1-skeleton of X_{n} and that $h(\ell)=[a, b]$ for some non negative integers $a<b$. We may further assume that ℓ does not contain back-trackings. As in the proof of Lemma 3.11, we may assume that ℓ lies in the 1 -skeleton of X_{n}, and that $h(\ell)=[a, b]$ for nonnegative integers $a \leq b$. Note that if $a=b$ then ℓ is a constant loop at some vertex of X_{n}, so we may assume that $a<b$. Let $\alpha_{1}, \ldots, \alpha_{k}$ be the vertices of ℓ. By Proposition 3.7, there exists a unique $\operatorname{lub} \beta=\operatorname{lub}\left\{\alpha_{1}, \cdots, \alpha_{k}\right\}$. We want to establish a homotopy equivalence between ℓ and the trivial loop β by applying liftings across squares. We start with vertices in $\ell \cap h^{-1}(a)=\left\{\beta_{1}, \cdots, \beta_{k^{\prime}}\right\}$. The loop ℓ may intersect multiple number of squares even for a single vertex $\beta_{j} \in h^{-1}(a)$. Let $\ell^{-1}\left(\beta_{j}\right)=\left\{v_{j, 1}, \cdots v_{j, r_{j}}\right\} \subset \mathbb{S}^{1}$ for $j=1, \cdots, k^{\prime}$. From the fact that ℓ does not contain back-tracking, we have the following crucial observation for each j.
(1) Each preimage $v_{j, m}$ belongs to an interval $I_{j, m}$ such that $\ell\left(I_{j, m}\right)$ is a path having a turn at β_{j},
(2) the two end vertices of $\ell\left(I_{j, m}\right)$ are given by $t_{i} \beta_{j}$ and $t_{i^{\prime}} \beta_{j}$ for distinct generators t_{i} and $t_{i^{\prime}}$ of \mathcal{T}_{n}.

So each interval $I_{j, m}$ determines a square $\sigma_{j, m}$ whose bottom vertex is β_{j}. Now take liftings of $\ell\left(I_{j, m}\right)$ for all j and $m\left(1 \leq j \leq k^{\prime}, 1 \leq m \leq r\right)$. The resulting loop ℓ^{\prime} is homotopy equivalent to ℓ. Another important observation is that the top vertex
$w_{j, m}$ of a square $\sigma_{j, m}$ in which lifting occured satisfies

$$
\begin{equation*}
\beta \geq w_{j, m} \tag{3.5}
\end{equation*}
$$

Indeed, three vertices on $\ell\left(I_{j, m}\right)$ were already vertices of the loop ℓ. The top vertex $w_{j, m}$ is the lub of those three vertices. By Remark 3.8, each vertex $w_{j, m}$ satisfies $\beta \geq w_{j, m}$. This means that in the passage from ℓ to ℓ^{\prime} vertices of $\ell \cap h^{-1}(a)$ were replaced by some vertices satisfying equation (3.5). So β is still an upper bound of the vertices of ℓ^{\prime}. Observe that $h\left(\ell^{\prime}\right)=[a+1, b]$.

Apply the same process consecutively to vertices with smallest height in each step. The property given by equation (3.5) ensures that this procedure stops after finitely many $(h(\beta)-a)$ steps. In all, the given loop ℓ converges to β.

3.2 Properties of the monoid \mathcal{M}_{n}

In this section we study some algebraic properties which are useful for us to study geometry of X_{n} in the sequel.

Lemma 3.13. $\mathcal{M}_{n}=\mathcal{T}_{n} \mathcal{H}_{n}=\left\{t g \mid t \in \mathcal{T}_{n}, g \in \mathcal{H}_{n}\right\}$
Proof. Suppose $\beta \in \mathcal{M}_{n}$ and $\varphi(\beta)=\left(m_{1}, \cdots, m_{n}\right)$. There exist $t \in \mathcal{T}_{n}$ and $g \in \mathcal{H}_{n}$ such that $h(t)=h(\alpha)$ and $\varphi(\beta)=\varphi(t g)$. Thus β and $t g$ agree on $Y_{n}-K$ for some finite set K. We want to find $f \in \mathcal{H}_{n}$ such that $\beta=\operatorname{tg} f$. Existence of such f comes from the fact that being injections, β and $t g$ have right inverses f_{1} and f_{2} respectively (i.e., left inverses in the composition of functions). Consider those right inverses f_{1} and f_{2}

$$
f_{1}:(K) \beta \rightarrow K \text { and } f_{2}:(K) t g \rightarrow K .
$$

By definition, $\beta f_{1}=\operatorname{tg} f_{2}$ on K. Observe that one can turn $f_{2} f_{1}^{-1}$ into an element $f \in \mathcal{H}_{n}$ with $\operatorname{supp}(f) \subset(K) t g \cup(K) \beta$. For example, one can extend $f_{2} f_{1}^{-1}:(K) t g \rightarrow$
$(K) \beta$ to $f:(K) t g \cup(K) \beta \rightarrow(K) \operatorname{tg} \cup(K) \beta$ by a bijection $f^{\prime}:(K) \beta-(K) t g \rightarrow$ $(K) t g-(K) \beta$. More precisely, f is defined by

$$
f= \begin{cases}f_{2} f_{1}^{-1} & \text { on }(K) t g \\ f^{\prime} & \text { on }(K) \beta-(K) t g\end{cases}
$$

where f^{\prime} is a bijection between congruent finite sets $(K) \beta-(K) t g$ and $(K) t g-$ (K) β.

Definition 3.14 (Greatest lower bound). An element β is called a lower bound of α_{1} and α_{2} if it satisfies the first condition below, and is called the greatest lower bound (simply glb) if it satisfies the second condition as well.

- $\beta \leq \alpha_{1}$ and $\beta \leq \alpha_{2}$,
- If $\beta^{\prime} \leq \alpha_{1}$ and $\beta^{\prime} \leq \alpha_{2}$ then $\beta^{\prime} \leq \beta$.

The $g l b$ of α_{1} and α_{2} is denoted by $\alpha_{1} \vee \alpha_{2}$.
Note that not every pair of vertices admits a lower bound (and in particular greatest lower bound). For example, the right figure in Figure 3.6 describes α_{1} and α_{3} which do not have a lower bound. If there was a common lower bound γ^{\prime} then we would be forced to have $(2,1) \gamma^{\prime}=(1,1) \gamma^{\prime}$, contradicting the injectivity of γ^{\prime}. The geometric interpretation of this is that there is no square containing α_{1} and α_{3}. However, if one replaces α_{1} by α_{2} then there exists a common lower bound (indeed $\left.\alpha_{2} \vee \alpha_{3}\right)$ for α_{2} and α_{3} as illustrated in the left figure. Note that $(1,1) \alpha_{2} \neq(2,1) \alpha_{3}$ but $(1,1) \alpha_{1}=(1,1)=(2,1) \alpha_{3}$. Lemma 3.22 states that such equation determines the existence of $g l b$ of those pairs. In general, existence of a common lower bound guarantees the existence of glb.

Lemma 3.15. For any $\alpha_{1}, \alpha_{2} \in \mathcal{M}_{n}, \alpha_{1} \vee \alpha_{2}$ exists and unique if there is a lower bound of α_{1} and α_{2}.

Figure 3.6: Examples $\alpha_{1}, \alpha_{2}, \alpha_{3}$ where $\alpha_{2} \vee \alpha_{3}=\gamma$ exists, but $\alpha_{1} \vee \alpha_{3}$ does not exist.

Proof. Suppose γ is a lower bound of α_{1} and α_{2}. Then there exist $\tau=t_{1}^{k_{1}}, \cdots, t_{n}^{k_{n}}$ and $\tau^{\prime}=t_{1}^{k_{1}^{\prime}}, \cdots, t_{n}^{k_{n}^{\prime}}$ satisfying

$$
\alpha_{1}=\tau \gamma \text { and } \alpha_{2}=\tau^{\prime} \gamma .
$$

Claim: $\beta:=t_{1}^{m_{1}} \cdots t_{n}^{m_{n}} \gamma$ is the $g l b$, where $m_{i}=\min \left\{k_{i}, k_{i}^{\prime}\right\}$.
The commutativity of \mathcal{T}_{n} implies that

$$
\alpha_{1}=t_{1}^{l_{1}}, \cdots, t_{n}^{l_{n}} \beta \text { and } \alpha_{2}=t_{1}^{l_{1}^{\prime}}, \cdots, t_{n}^{l_{n}^{\prime}} \beta
$$

where $l_{i}=\max \left\{k_{i}-k_{i}^{\prime}, 0\right\}$ and $l_{i}^{\prime}=\max \left\{k_{i}^{\prime}-k_{i}, 0\right\}$. So β satisfies the first condition. Observe that $l_{i} l_{i}^{\prime}=0$ for each i. This means that either

$$
\alpha_{1 \mid R_{i}}=\beta_{\mid R_{i}} \text { or } \alpha_{2 \mid R_{i}}=\beta_{\mid R_{i}}
$$

for each i. Suppose β^{\prime} is another element with $\alpha_{1}=\tau_{1} \beta^{\prime}$ and $\alpha_{2}=\tau_{2} \beta^{\prime}$ for some
$\tau_{1}, \tau_{2} \in \mathcal{T}_{n}$. Then we have

$$
\left(\tau_{1} \beta^{\prime}\right)_{\mid R_{i}}=\beta_{\mid R_{i}} \text { or }\left(\tau_{2} \beta^{\prime}\right)_{\mid R_{i}}=\beta_{\mid R_{i}}
$$

for each i. So $\beta^{\prime} \leq \beta$. Uniqueness of the glb follows from the second condition in Definition 3.14 together with antisymmetry of \geq (Proposition 3.1).

Corollary 3.16. If $\alpha_{1}, \alpha_{2} \in \mathcal{T}_{n}$ then $\alpha_{1} \vee \alpha_{2}$ always exists.
Proof. If two elements α_{1} and α_{2} belong to \mathcal{T}_{n}, then they have a common lower bound $1_{\mathcal{M}_{n}}$, namely the identity map on Y_{n}. By Lemma $3.15, \alpha_{1} \vee \alpha_{2}$ exists.

Lemma 3.17. For a pair of elements $\alpha_{1}, \alpha_{2} \in \mathcal{M}_{n}$, the lub and glb of the pair can be characterized by height function as follows.
(1) β is the lub of α_{1}, α_{2} if β is an upper bound and β has the smallest height among the upper bounds;
(2) β is the glb of α_{1}, α_{2} if β is a lower bound and β has the largest height among the lower bounds.

Proof. Suppose β is an element satisfying the condition (1) above. We want to show $\beta=\alpha_{1} \wedge \alpha_{2}$. By the definition of $\alpha_{1} \wedge \alpha_{2}$ it is obvious that $h(\beta)=h\left(\alpha_{1} \wedge \alpha_{2}\right)$. By Lemma 3.15, $\beta \vee\left(\alpha_{1} \wedge \alpha_{2}\right)$ exists since β and $\alpha_{1} \wedge \alpha_{2}$ have common lower bounds α_{1} and α_{2}. Note that $\beta \vee\left(\alpha_{1} \wedge \alpha_{2}\right)$ is an upper bound of α_{1} and α_{2}. If $\beta \neq \alpha_{1} \wedge \alpha_{2}$ then $h\left(\beta \vee\left(\alpha_{1} \wedge \alpha_{2}\right)\right)<h(\beta)$, contradicting to our choice of β. So $\beta=\alpha_{1} \wedge \alpha_{2}$. Analogous argument can be applied to the case of $g l b$. One can draw a contradiction by assuming $\beta \neq\left(\alpha_{1} \vee \alpha_{2}\right)$ for an element β satisfying the condition of (2) above.

The following specifies the relationship between $l u b$ and $g l b$ under assumption on existence of $g l b$.

Proposition 3.18. Suppose, for $\alpha_{1}, \alpha_{2} \in \mathcal{M}_{n}, \tau \alpha_{1}=\alpha_{1} \wedge \alpha_{2}=\tau^{\prime} \alpha_{2}$ where $\tau=t_{1}^{k_{1}} \cdots t_{n}^{k_{n}}$ and $\tau^{\prime}=t_{1}^{k_{1}^{\prime}} \cdots t_{n}^{k_{n}^{\prime}}$. Then $\alpha_{1} \vee \alpha_{2}$ exists if and only if the following conditions are satisfied for all $i=1,2, \cdots, n$

- there is no common generater t_{i} in τ and τ^{\prime}, i.e., $k_{i} k_{i}^{\prime}=0$,
- $\left(\bigcup_{p \leq k_{i}}(i, p) \alpha_{1}\right) \cap\left(\bigcup_{p \leq k_{i}^{\prime}}(i, p) \alpha_{2}\right)=\emptyset$.

Moreover, we have

$$
\begin{equation*}
\tau^{\prime}\left(\alpha_{1} \vee \alpha_{2}\right)=\alpha_{1} \text { and } \tau\left(\alpha_{1} \vee \alpha_{2}\right)=\alpha_{2} \tag{3.6}
\end{equation*}
$$

Proof. First we construct $\gamma=\alpha_{1} \vee \alpha_{2}$ by using the conditions. Define γ by

$$
(i, p) \gamma= \begin{cases}(i, p) \alpha_{1} & \text { if } k_{i}^{\prime}=0 \\ (i, p) \alpha_{2} & \text { if } k_{i}=0\end{cases}
$$

for each $i=1, \cdots, n$. This is well defined since $k_{i} k_{i}^{\prime}=0$, and if $k_{1}=k_{i}^{\prime}=0$ then we have $(i, p) \alpha_{1}=(i, p) \tau \alpha_{1}=(i, p) \tau^{\prime} \alpha_{2}=(i, p) \alpha_{2}$ for all $p \in N$. One can verify γ is the desired element as follows.

Claim 1: $\tau^{\prime} \gamma=\alpha_{1}$ and $\tau \gamma=\alpha_{1}$.
Fix i. Suppose $k_{i}^{\prime}=0$. For all $p \in N$, we have $(i, p) \tau^{\prime} \gamma=(i, p) t_{i}^{k_{i}^{\prime}} \gamma=(i, p) \gamma=$ $(i, p) \alpha_{1}$. Suppose $k_{i}^{\prime} \neq 0$. This means $k_{i}=0$ and so we have

$$
\begin{aligned}
(i, p) \tau^{\prime} \gamma & =(i, p) t_{i}^{k_{i}^{\prime}} \gamma=\left(i, p+k_{i}^{\prime}\right) \gamma=\left(i, p+k_{i}^{\prime}\right) \alpha_{2}=(i, p) t_{i}^{k_{i}^{\prime}} \alpha_{2} \\
& =(i, p) \tau^{\prime} \alpha_{2}=(i, p) \tau \alpha_{1}=(i, p) t_{i}^{k_{i}} \alpha_{1}=(i, p) \alpha_{1},
\end{aligned}
$$

for all $p \in N$. Since the above identities hold for every i, we have verified $\tau^{\prime} \gamma=\alpha_{1}$. A similar argument shows that $\tau \gamma=\alpha_{1}$.

Claim 2: $\gamma \in \mathcal{M}_{n}$. We need to verify injectivity. The image $\left(Y_{n}\right) \gamma$ coincides
with $\left(Y_{n}\right) \alpha_{1}$ up to a finite set. We already know that $(i, p) \gamma=(i, p) \alpha_{1}$ if $k_{i}^{\prime}=0$ $(p \in \mathbb{N})$. If $k_{i}^{\prime} \neq 0$ then $\left(i, p+k_{i}^{\prime}\right) \gamma=(i, p) \alpha_{1}(p \in \mathbb{N})$. If suffices to show, for i with $k_{i}^{\prime} \neq 0$, that $(i, p) \gamma \notin\left(Y_{n}\right) \alpha_{1}$ for all $p \leq k_{i}^{\prime}$. This is clear from the second condition of the Lemma because $(i, p) \gamma \in \bigcup_{p \leq k_{i}^{\prime}}(i, p) \alpha_{2}$.

Figure 3.7: 'Big rectangle': if $\alpha_{1} \vee \alpha_{2}$ exists $\alpha_{1} \wedge \alpha_{2}$ determines $\alpha_{1} \vee \alpha_{2}$, vice versa.

Claim 3: $\gamma=\alpha_{1} \vee \alpha_{2}$. The lower bound γ has the largest height among lower bounds of α_{1} and α_{2}. If there was another lower bound γ^{\prime} of α_{1} and α_{2} with $h\left(\gamma^{\prime}\right)>h(\gamma)$ then there would be $\tau_{1}, \tau_{2} \in \mathcal{T}_{n}$ such that

$$
\tau_{1} \gamma^{\prime}=\alpha_{1}, \tau_{2} \gamma^{\prime}=\alpha_{2} \text { and }\left|\tau_{1}\right|<\left|\tau^{\prime}\right| .
$$

This implies α_{1} and α_{2} have an upper bound $\tau_{2} \alpha_{1}=\tau_{1} \alpha_{2}$ such that $h\left(\tau_{1} \alpha_{2}\right)=$ $\left(\tau_{1}\right)+h\left(\alpha_{2}\right)$ is strictly smaller than $h\left(\alpha_{1} \wedge \alpha_{2}\right)=h\left(\tau^{\prime}\right)+h\left(\alpha_{2}\right)$ (see Figure 3.7). This contradicts the fact that $\alpha_{1} \wedge \alpha_{2}$ has the smallest height among upper bounds of α_{1} and α_{2} (Lemma 3.17). So the lower bound γ attains maximum height among lower bounds of α_{1} and α_{2}. By Lemma 3.17, $\gamma=\alpha_{1} \vee \alpha_{2}$.

The converse statement is rather easy to check. Suppose that $\alpha_{1} \vee \alpha_{2}$ exists and that

$$
\begin{equation*}
\tau_{1}\left(\alpha_{1} \vee \alpha_{2}\right)=\alpha_{1} \text { and } \tau_{2}\left(\alpha_{1} \vee \alpha_{2}\right)=\alpha_{2} \tag{3.7}
\end{equation*}
$$

for some $\tau_{1}, \tau_{2} \in \mathcal{T}_{n}$. As in the proof of Lemma 3.15, we see that there is no common
generator in τ_{1} and τ_{2}. So the first condition is satisfied. Injectivity of γ together with equation (3.7) guarantees the second condition.

Finally, the argument in Claim 3 above says that $\alpha_{1} \vee \alpha_{2}$ determines $\alpha_{1} \wedge \alpha_{2}$. If $\alpha_{1} \vee \alpha_{2}$ satisfies equation (3.7) then we have

$$
\tau_{1} \tau=\tau_{2} \tau^{\prime}
$$

Now the condition that there is no common generator in pairs τ and τ^{\prime}, and τ_{1} and τ_{2} enables one to conclude that $\tau_{1}=\tau^{\prime}$ and $\tau_{2}=\tau$. Hence equation (3.6) follows.

Definition 3.19 (Maximal elements). For $\beta \in \mathcal{M}_{n}, \alpha$ is called a maximal element of β if it satisfies

$$
\begin{equation*}
\beta=t_{i} \alpha \tag{3.8}
\end{equation*}
$$

for some generator t_{i} of \mathcal{T}_{n}.

The following Lemma says the number of maximal elements of β varies depending on the height of β.

Lemma 3.20. Suppose $h(\beta)=h$. There exists $n \times h$ many maximal elements of β.

Proof. Fix i. The identity (3.8) determines α completely except $(i, 1) \alpha$. It also implies $\left(Y_{n}-(i, 1)\right) \alpha=\left(Y_{n}\right) \beta$. So there are precisely $|S(\beta)|=\left|Y_{n}-\left(Y_{n}\right) \beta\right|=h$ many choices for $(i, 1) \alpha$. It turns out any of these choice defines an injective map α. Consider elements $\alpha_{1}, \cdots, \alpha_{h}$ defined by

$$
(j, p) \alpha_{k}= \begin{cases}(j, p) \beta & \text { if } j \neq i, p \in \mathbb{N} \\ (i, p+1) \beta & \text { if } j=i, p \in \mathbb{N}\end{cases}
$$

and $(i, 1) \alpha_{k} \in S(\beta)$. They are all desired h many injective maps.

Remark 3.21. The argument of Lemma 3.20 implies that, each maximal element α_{k} of β is labelled by t_{i} as well as a point of $S(\beta)$. Figures 3.2 and 3.6 illustrate this idea for $\beta=t_{1} t_{2}$. Note that $S(\beta)=\{(1,1),(1,2)\}$. In those figures maximal elements α_{1}, α_{2} and α_{3} are labelled by

$$
\alpha_{1} \leftrightarrow\left(t_{1},(1,1)\right), \alpha_{2} \leftrightarrow\left(t_{1},(1,2)\right), \alpha_{3} \leftrightarrow\left(t_{2},(1,1)\right) .
$$

In general, for $\beta \in \mathcal{M}_{n}$, the set of maximal elements of β is in 1-to- 1 correspondence with $\{1, \cdots, n\} \times S(\beta)$.

The corollaries below follows from Proposition 3.18. They provide criterions when a collection of maximal elements form squares and k-cubes respectively.

Corollary 3.22. Suppose $t_{i} \alpha_{1}=t_{j} \alpha_{2}(i \neq j)$. There exists $\alpha_{1} \vee \alpha_{2}$ if and only if the first coordinates are distinct and the second coordinates are distinct (using the ordered pair notation introduced in Remark 3.21).

Proof. This is a special case of Proposition 3.18, with the two conditions of that proposition rephrased in terms of the coordinates introduced in Remark 3.21.

Corollary 3.23. Suppose $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right\}$ is a collection of maximal elements of β. There exists $g l b\left(\alpha_{1}, \cdots, \alpha_{k}\right)$ if and only if the first coordinates are all distinct and the second coordinates are all distinct (using the ordered pair notation introduced in Remark 3.21).

Proof. We construct $g l b$ inductively with the base case $k=2$, which is done in Corollary 3.22. Assume the statement holds for k maximal vertices of β. Say the glb of those vertices is γ. Note that the information of k vertices encoded in the coordinates completely determine γ. Now apply Proposition 3.18 to γ and α_{k+1} to check the existence of $\gamma \vee \alpha_{k+1}$. Note that $\gamma \wedge \alpha_{k+1}=\beta$. The condition on distinct first coordinates implies there is no common generater t_{i} in the two paths. The
condition on the other coordinates implies the second condition of Proposition 3.18. So $\gamma \vee \alpha_{k+1}$ exists.

Conversely, the existence of glb directly implies there exists a cube whose top vertex is β. So the condition on coordinates is satisfied.

$3.3 X_{n}$ is $\operatorname{CAT}(0)$

In this chapter we show X_{n} is a cubing for each $n \in N$, i.e., X_{n} is a 1-connected non positively curved cubical complex. There are several ways to think about this result.

By Lemma 3.12, X_{n} is simply connected. In Subsection 3.3.1, we prove X_{n} is non positively curved by using Gromov's link condition.

Another way to see X_{n} is a cubing is to use the fact ([8], [16]) that there is 1-to-1 correspondence

$$
\text { the class of cubings } \leftrightarrow \text { the class of median graphs }
$$

One associates a median graph to a cubing by considering the 1 -skeleton of the cubing. In the reverse direction, one thinks of a median graph as the 1-skeleton of a cubing, and defines the cubing inductively on skeleta, as in Definition 3.9. In Subsection 3.3.2 we prove \mathcal{C}_{n} is a median graph for all $n \in \mathbb{N}$.

3.3.1 Gromov link condition

Definition 3.24 (cubical complex). Intuitively, a cubical complex is a regular CW-complex, except that it is built out of Euclidean cubes I^{k} instead of balls. More precisely, a cubical complex X is a CW-complex where for each k-cell $\sigma_{j}^{k} \subset X$ its attaching map $\varphi_{j}: \partial I^{k} \rightarrow X^{n-1}$ satisfies the following conditions:
(1) the restriction of φ_{j} to each face of I^{k} is a linear homeomorphism onto a cube of one lower dimension,
(2) φ_{j} is a homeomorphism onto its image.

We give X the standard CW-topology.

The non-positive curvature condition we will use is a local condition captured by conditions on the link of a vertex.

Definition 3.25 (Link of a vertex). The link of a vertex v in I^{k}, denoted by $L k\left(v, I^{k}\right)$, is defined to be intersection of the cube I^{k} and the unit sphere \mathbb{S}^{k-1} centered at v with respect to L^{1} metric. Note that $L k\left(v, I^{k}\right)$ is the standard simplex of dimension $k-1$. For a vertex $\alpha \in X$ and a cell σ_{j}^{k} containing α, the link of α in σ_{j}^{k} is defined to be the image $\varphi_{j}\left(\operatorname{Lk}\left(v, I^{k}\right)\right)$, where $\varphi_{j}(v)=\alpha$. The link of α in X, denoted by $L k(\alpha, X)$, is defined to be the union of all links of α in cells containing α.

Definition 3.26 (Ascending/Descending links of a vertex). For a vertex α of a cubical complex X equipped with a Morse function h, the descending link $L k_{\downarrow}(\alpha, X)$ is defined by

$$
L k_{\downarrow}(\alpha, X)=\bigcup\left\{\varphi_{j}\left(L k\left(v, \sigma_{j}^{k}\right): h \varphi_{j} \text { attains maximum at } v, \varphi_{j}(v)=\alpha\right\} .\right.
$$

Likewise, the ascending link $L k_{\uparrow}(\alpha, X)$ is defined by

$$
L k_{\uparrow}(\alpha, X)=\bigcup\left\{\varphi_{j}\left(L k\left(v, \sigma_{j}^{k}\right): h \varphi_{j} \text { attains minimum at } v, \varphi_{j}(v)=\alpha\right\} .\right.
$$

Definition 3.27 (Flag complex). A simplicial complex L is said to be a flag complex if every collection of pairwise adjacent vertices of L spans a simplex of L.

Definition 3.28 (Gromov's condition). A cubical complex X satisfies the Gromov's condition if $L k(\alpha, X)$ is a flag complex for each $\alpha \in X^{(0)}$.

Following Gromov, we say that a cubical complex X is non positively curved (simply NPC) if it satisfies the Gromov's condition.

From the way we constructed X_{n}, we see that any vertex of $\mathrm{Lk}_{\downarrow}\left(\alpha, X_{n},\right)$ corresponds to a vertex β such that $\alpha=t_{i} \beta$ for some generator $t_{i} \in \mathcal{T}_{n}$. By Remark 3.21, there exists a bijection

$$
\left\{\beta \mid \alpha=t_{i} \beta \text { for some } t_{i}\right\} \leftrightarrow\{i \mid 1 \leq i \leq n\} \times S(\alpha)
$$

Identify the later set with $\{(i, k) \in \mathbb{N} \times \mathbb{N} \mid 1 \leq i \leq n, 1 \leq k \leq h(\alpha)\}$. Under this (composition of) identification, points $\{(i, k)|1 \leq k \leq h(\alpha)|\}$ correspond to vertices in $\operatorname{Lk}_{\downarrow}\left(\alpha, X_{n}\right.$, $)$ which are joined to α by edges labelled by t_{i}. Consider the simplicial complex $L_{n, h}$ for $h \in \mathbb{N}$ defined by
(1) vertices: $L_{n, h}^{(0)}=\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid 1 \leq i \leq n, 1 \leq k \leq h\}$
(2) simplexes: A collection of vertices $\left\{\left(x_{0}, y_{0}\right), \cdots,\left(x_{k}, y_{k}\right)\right\}$ form a k-simplex if x_{i} 's are all distinct and y_{i} 's are all distinct.

Remark 3.29. By Corollary 3.23 , we see that $L_{n, h}$ and $L k_{\downarrow}\left(\alpha, X_{n}\right)$ are identical if $h=h(\alpha)$. Note that $L_{n, h}$ is flag for all $n, h \in \mathbb{N}$. If two vertices of $L_{n, h}$ are connected by an edge, their first coordinates are distinct and second coordinates are distinct. This means that any collection $C \subset L_{n, h}^{(0)}$ of pairwise adjacent vertices satisfy the condition (2) of definition of $L_{n, h}$ above. So a collection C forms a simplex of $L_{n, h}$.

Lemma 3.30. For every vertex $\alpha \in X_{n}, \operatorname{Lk}\left(\alpha, X_{n}\right)$ is flag.

Proof. Suppose C is a collection of pairwise adjacent vertices of $L k\left(\alpha, X_{n}\right)$. We may assume $C=\left\{z_{1}, \cdots, z_{k}\right\} \cup\left\{z_{1}^{\prime}, \cdots, z_{k^{\prime}}^{\prime}\right\}$ where $z_{i} \in L k_{\uparrow}\left(\alpha, X_{n}\right)$ and $z_{j}^{\prime} \in L k_{\downarrow}\left(\alpha, X_{n}\right)$.

For each vertex $\alpha \in X_{n}$, there exists unique n-cube having α as the bottom vertex. So $\mathrm{Lk}_{\uparrow}\left(\alpha, X_{n},\right)$ is simply the standard ($n-1$)-simplex. By Remark $3.29 L k_{\downarrow}\left(\alpha, X_{n}\right)$ is also flag. So those subcollections of C form a $(k-1)$-simplex σ and a ($k^{\prime}-1$)-simplex σ^{\prime} respectively in the ambient complexes.

Our claim is that there exist $\left(k+k^{\prime}\right)$-cube which contributes $\left(k+k^{\prime}-1\right)$ simplex $\sigma * \sigma^{\prime}$ to $L k\left(\alpha, X_{n}\right)$. Consider the ordered pair notation introduced in Remark 3.21 for $\left\{z_{1}, \cdots, z_{k}\right\}$. Let $T_{1}=\left\{t_{i_{1}}, \cdots, t_{i_{k}}\right\} \subset\left\{t_{1}, \cdots, t_{n}\right\}$ denote the set consisting of first coordinates of vertices $\left\{z_{1}, \cdots, z_{k}\right\}$. Likewise let $T_{2}=\left\{t_{j_{1}}, \cdots, t_{j_{k^{\prime}}}\right\}$ be the set corresponding to $\left\{z_{1}^{\prime}, \cdots, z_{k^{\prime}}^{\prime}\right\}$. Observe that the $(k-1)$-simplex $\sigma \subset L k_{\downarrow}\left(\alpha, X_{n}\right)$ corresponds to k-cube ρ with top vertex α, which is generated by T_{1}. Similarly, $\sigma^{\prime} \subset L k_{\uparrow}\left(\alpha, X_{n}\right)$ corresponds to k^{\prime}-cube ρ^{\prime} which is generated by T_{2}, whose bottom vertex is α. Since T_{1} and T_{2} disjoint, the k-cube ρ together with edges labelled by T_{2} spans a $\left(k+k^{\prime}\right)$-cube. This cube is the desired cube containing ρ and ρ^{\prime}, and so α as well. So a collection C forms a simplex $\sigma * \sigma^{\prime}$ in $L k\left(\alpha, X_{n}\right)$.

By Lemma 3.12 and Lemma 3.30 we have the following Theorem.
Theorem 3.31. For all $n \in \mathbb{N}, X_{n}$ is a cubing.
The following is known facts for a cubing, and proofs can be found in [4].
Corollary 3.32. For all $n \in \mathbb{N}, X_{n}$ is uniquely geodesic and is contractible.

3.3.2 Cayley graph \mathcal{C}_{n} is a median graph

For an edge e of \mathcal{C}_{n}, let $\partial_{-} e$ and $\partial_{+} e$ denote the initial and terminal vertices of e. Although generators of \mathcal{T}_{n} do not have inverses, we can consider the reverse edge of e. Let \bar{e} denote the reverse edge of an edge e, i.e., $\partial_{-} \bar{e}=\partial_{+} e$ and $\partial_{+} \bar{e}=\partial_{-} e$. Note that $\overline{\bar{e}}=e$.

By a path we mean an edge path; concatenation of edges (including reverse edges) e_{1}, \cdots, e_{k} where $\partial_{+}\left(e_{i}\right)=\partial_{-}\left(e_{i+1}\right)$ for $i=1,2, \cdots, k-1$. If a path p is a
concatenation of edges e_{1}, \cdots, e_{k} in order, we write this path as $p=e_{1} \cdots e_{k}$ and the reverse path \bar{p} of p is defined by $\bar{p}=\bar{e}_{k} \cdots \bar{e}_{1}$.

A path is called ascending if it does not contain reverse edges. Similarly a path is called descending it consists of only reverse edges. Obviously the reverse path of an ascending path is descending and vice versa. Suppose p is an ascending path joining α to $\tau \alpha$ for some $\tau \in \mathcal{T}_{n}$. One reads the edge labeling of p in order to form a word $\tau=\tau_{1} \cdots \tau_{k}, \tau_{i} \in\left\{t_{1}, \cdots, t_{n}\right\}$. The expression for τ is not unique in (\mathcal{T}_{n}) because of commutativity of \mathcal{T}_{n}. Indeed permutations of generators in τ produce a class of paths rel two end vertices α and $\tau \alpha$. In the sequel, a choice of such path is less relevant. Instead we will be interested in two end vertices of an ascending path. When we say a path p given by $\tau \in \mathcal{T}_{n}$, we mean a choice from the class of paths rel two end vertices α and $\tau \alpha$, and write $p \simeq \tau$.

For a pair of vertices α and β, the distance in \mathcal{C}_{n} is the smallest length of paths joining them. We denote the distance by $d(\cdot, \cdot)$. A geodesic $[\alpha, \beta]$ joining vertices α and β is a path whose length is $d(\alpha, \beta)$.

Remark 3.33. Note that $d(\alpha, \beta) \geq|h(\alpha)-h(\beta)|$. Every ascending/descending path is a geodesic. If p is an ascending/descending path joining α to β then $d(\alpha, \beta)=$ $|h(\beta)-h(\alpha)|$.

Standard geodesics in \mathcal{C}_{n}.

We say a path p has a turn if p contains $\bar{e}_{t_{i}} e_{t_{j}}$ for some i, j. One can apply liftings (finitely many times) to transform p to a path of the form

$$
\begin{equation*}
e_{t_{i_{1}}} \cdots e_{t_{i_{k}}} \bar{e}_{t_{j_{1}}} \cdots \bar{e}_{t_{j_{\ell}}}(k, \ell \geq 0) \tag{3.9}
\end{equation*}
$$

Such path is called standard, i.e., a path is standard if it is a concatenation of one ascending path and one descending path where the ascending path occurs first. Figure 3.8 illustrates liftings of paths. Note that the length of paths does not increase
under liftings. As before, for a standard path p given by $(\tau)\left(\bar{\tau}^{\prime}\right)$ joining α to β, there are many expressions (determined by permutations in each parenthesis). However every such choice shares important information: initial vertex α, terminal vertex β and the top vertex. We write $p \simeq \tau \cdot \bar{\tau}^{\prime}$ and we mean p is a concatenation of one ascending path and one descending path which are determined by choices in τ and τ^{\prime} respectively.

Figure 3.8: Every path can be transformed to a standard path via liftings

Remark 3.34. Note that the top vertex of a standard path is a common upper bound of the two end vertices. By Lemma 3.17, a standard path $\pi \cdot \overline{\pi^{\prime}}$ joining α to β is a geodesic if and only if $\pi \alpha=\alpha \wedge \beta=\pi^{\prime} \beta$.

A standard path is called a standard geodesic if it is a geodesic.
Definition 3.35 (Median graph). The geodesic interval $\mathcal{I}[\alpha, \beta]$ is the collection of vertices lying on geodesics $[\alpha, \beta]$. A graph is called a median if, for each triple of vertices α, β, γ, the geodesic intervals $[\alpha, \beta],[\beta, \gamma]$ and $[\gamma, \alpha]$ have a unique common point.

Proposition 3.36. $\gamma \in \mathcal{I}[\alpha, \beta]$ if and only if $d(\alpha, \beta)=d(\alpha, \gamma)+d(\gamma, \beta)$.
Proof. Suppose $\gamma \in \mathcal{I}[\alpha, \beta]$. There exists a geodesic joining α and β that contains γ. So γ determines two subpaths which are geodesics joining α to γ, and γ to β respectively. Thus $d(\alpha, \beta)=d(\alpha, \gamma)+d(\gamma, \beta)$. Conversely, if $d(\alpha, \beta)=d(\alpha, \gamma)+$ $d(\gamma, \beta)$ then any concatenation of two geodesics $[\alpha, \gamma]$ and $[\gamma, \beta]$ is again a geodesic containing γ and hence $\gamma \in \mathcal{I}[\alpha, \beta]$.

Lemma 3.37. If $\gamma \in \mathcal{I}[\alpha, \beta]$ then

$$
\mathcal{I}[\alpha, \beta] \cap \mathcal{I}[\beta, \gamma] \cap \mathcal{I}[\gamma, \alpha]=\{\gamma\} .
$$

Proof. Obviously γ is in the intersection if $\gamma \in \mathcal{I}[\alpha, \beta]$. Suppose the intersection contains other point γ^{\prime}. From Proposition 3.36, we have

$$
\begin{array}{rlrl}
d(\alpha, \beta) & =d(\alpha, \gamma)+d(\gamma, \beta) & \\
& =d\left(\alpha, \gamma^{\prime}\right)+d\left(\gamma^{\prime}, \gamma\right)+d\left(\gamma, \gamma^{\prime}\right)+d\left(\gamma^{\prime}, \beta\right) & \left(\gamma^{\prime} \in \mathcal{I}[\alpha, \gamma], \gamma^{\prime} \in \mathcal{I}[\beta, \gamma]\right) \\
& =d\left(\alpha, \gamma^{\prime}\right)+d\left(\gamma^{\prime}, \beta\right)+2 d\left(\gamma^{\prime}, \gamma\right) & & \left(\gamma^{\prime} \in \mathcal{I}[\alpha, \beta]\right) \\
& =d(\alpha, \beta)+2 d\left(\gamma^{\prime}, \gamma\right) . &
\end{array}
$$

So $d\left(\gamma^{\prime}, \gamma\right)=0$ or $\gamma^{\prime}=\gamma$.

We will need the following two lemmas.

Lemma 3.38. Suppose $\gamma, \gamma^{\prime} \in \mathcal{I}[\alpha, \beta]$. Then $\gamma \wedge \gamma^{\prime} \in \mathcal{I}[\alpha, \beta]$. Moreover if there exists a lower bound of γ and γ^{\prime} then $\gamma \vee \gamma^{\prime} \in \mathcal{I}[\alpha, \beta]$

Proof. Suppose $\gamma, \gamma^{\prime} \in \mathcal{I}[\alpha, \beta]$. We first construct a geodesic joining α to β which passes $\gamma \wedge \gamma^{\prime}$. Consider elements $\pi, \pi^{\prime}, \tau, \tau^{\prime}, \sigma, \sigma^{\prime}, \rho, \rho^{\prime} \in \mathcal{T}_{n}$ to express $\alpha \wedge \gamma, \alpha \wedge$ $\gamma^{\prime}, \gamma \wedge \beta$, and $\gamma^{\prime} \wedge \beta$ as follows
$\pi \alpha=\alpha \wedge \gamma=\tau \gamma, \pi^{\prime} \alpha=\alpha \wedge \gamma^{\prime}=\tau^{\prime} \gamma^{\prime}, \sigma \gamma=\gamma \wedge \beta=\rho \beta$, and $\rho^{\prime} \gamma^{\prime}=\gamma^{\prime} \wedge \beta=\rho^{\prime} \beta$.
By Remark 3.34, the following standard paths are all geodesic: $\pi \cdot \bar{\tau}$ joining α and $\gamma ; \sigma \cdot \bar{\rho}$ joining γ and $\beta ; \pi^{\prime} \cdot \overline{\tau^{\prime}}$ joining α and $\gamma^{\prime} ; \sigma^{\prime} \cdot \overline{\rho^{\prime}}$ joining γ^{\prime} and β. Figure 3.9 illustrates those standard paths.

Claim 1: $\gamma \wedge \gamma^{\prime} \leq \alpha \wedge \beta$. The standard path $\pi \bar{\tau}$ connecting α to γ is a geodesic by Remark 3.34. By the same reason, the standard path $\sigma \bar{\tau}$ connecting γ to β is a

Figure 3.9: Two geodesics $p_{1} \simeq \pi \cdot \bar{\tau} \cdot \sigma \cdot \bar{\rho}$ and $p_{2} \simeq \pi^{\prime} \cdot \overline{\tau^{\prime}} \cdot \sigma^{\prime} \cdot \overline{\rho^{\prime}}$ of α and β passing γ and γ^{\prime} respectively
geodesic. Consider the path p_{1} defined by the concatenation of $\pi \cdot \bar{\tau}$ and $\sigma \cdot \bar{\rho}$,

$$
p_{1} \simeq \pi \cdot \bar{\tau} \cdot \sigma \cdot \bar{\rho}
$$

By Proposition 3.36, this path p_{1} is a geodesic since $\gamma \in \mathcal{I}[\alpha, \beta]$. Similarly we have a geodesic p_{2} of α and β which passes γ^{\prime} given by

$$
p_{2} \simeq \pi^{\prime} \cdot \overline{\tau^{\prime}} \cdot \sigma^{\prime} \cdot \overline{\rho^{\prime}}
$$

By applying liftings to p_{1} and p_{2} one obtains geodesics $\tilde{p_{1}}$ and $\tilde{p_{2}}$ given by

$$
\tilde{p}_{1} \simeq \pi \cdot \sigma \cdot \bar{\tau} \cdot \bar{\rho}, \tilde{p}_{2} \simeq \pi^{\prime} \cdot \sigma^{\prime} \cdot \overline{\tau^{\prime}} \cdot \overline{\rho^{\prime}}
$$

From Remark 3.34, we see that the top vertex of these paths is $\alpha \wedge \beta$. Thus $\alpha \wedge \beta=$ $\pi \sigma \alpha=\tau \sigma \gamma$ and $\alpha \wedge \beta=\pi^{\prime} \sigma^{\prime} \alpha=\tau^{\prime} \sigma^{\prime} \gamma^{\prime}$. So $\alpha \wedge \beta \geq \gamma$ and $\alpha \wedge \beta \geq \gamma^{\prime}$, and Claim 1 is verified.

A chain $\gamma \leq\left(\gamma \wedge \gamma^{\prime}\right) \leq(\alpha \wedge \beta)$ allows one to decompose τ and σ as $\tau=\tau_{1} \tau_{2}$ and
$\sigma=\sigma_{1} \sigma_{2}$ so that

$$
\begin{equation*}
\tau_{1} \sigma_{1} \gamma=\gamma \wedge \gamma^{\prime}, \quad \tau_{2} \sigma_{2}\left(\gamma \wedge \gamma^{\prime}\right)=\alpha \wedge \beta \tag{3.10}
\end{equation*}
$$

Figure 3.10 illustrates this decomposition. Consider the path connecting α to $\gamma \wedge \gamma^{\prime}$ and then to β defined by

$$
p_{3} \simeq \pi \cdot \sigma_{1} \cdot \overline{\tau_{2}} \cdot \sigma_{2} \cdot \overline{\tau_{1}} \cdot \bar{\rho}
$$

Figure 3.10: A geodesic $p_{3} \simeq \pi \cdot \sigma_{1} \cdot \overline{\tau_{2}} \cdot \sigma_{2} \overline{\tau_{1}} \cdot \bar{\rho}$ of α and β passing $\gamma \wedge \gamma^{\prime}$.

Apply appropriate liftings to the path p_{3} to obtain the geodesic $\tilde{p_{1}}$. Since liftings do not increase lengths, two paths $\tilde{p_{1}}$ and p_{3} have the same length. Thus p_{3} is a geodesic joining α to β, which passes $\gamma \wedge \gamma^{\prime}$. Therefore $\gamma \wedge \gamma^{\prime} \in \mathcal{I}[\alpha, \beta]$.

For the second assertion of the Lemma, we assume the existence of $\gamma \vee \gamma^{\prime}$. As before, use a chain $\gamma^{\prime} \leq\left(\gamma \wedge \gamma^{\prime}\right) \leq(\alpha \wedge \beta)$ to get the decomposition of τ^{\prime} and σ^{\prime}; $\tau^{\prime}=\tau_{1}^{\prime} \tau_{2}^{\prime}, \sigma^{\prime}=\sigma_{1}^{\prime} \sigma_{2}^{\prime}$ such that

$$
\begin{equation*}
\tau_{1}^{\prime} \sigma_{1}^{\prime} \gamma=\gamma \wedge \gamma^{\prime}, \quad \tau_{2}^{\prime} \sigma_{2}^{\prime}\left(\gamma \wedge \gamma^{\prime}\right)=\alpha \wedge \beta \tag{3.11}
\end{equation*}
$$

From identities (3.10) and (3.11) we have $\tau_{2} \sigma_{2}=\tau_{2}^{\prime} \sigma_{2}^{\prime}$. Proposition 3.18 together
with the existence of $\gamma \vee \gamma^{\prime}$ implies that

$$
\tau_{1}^{\prime} \sigma_{1}^{\prime}\left(\gamma \vee \gamma^{\prime}\right)=\gamma, \text { and } \tau_{1} \sigma_{1}\left(\gamma \vee \gamma^{\prime}\right)=\gamma^{\prime}
$$

Claim 2: $\tau_{2}=\tau_{2}^{\prime}$ and $\sigma_{2}=\sigma_{2}^{\prime}$. Look at the loop ℓ_{1} formed by two ascending paths $\tau \sigma$ and $\sigma \tau$ emanating from γ. We first show ℓ_{1} fits into the situation described in Proposition 3.18, i.e., $(\alpha \wedge \gamma) \wedge(\gamma \wedge \beta)=\alpha \wedge \beta$ and $(\alpha \wedge \gamma) \vee(\gamma \wedge \beta)=\gamma$. This loop has γ and $\alpha \wedge \beta$ as bottom and top vertices respectively. Recall that the path $p_{1} \simeq \pi \cdot \bar{\tau} \cdot \sigma \cdot \bar{\rho}$ is a geodesic of α and β. The restriction p_{4} of p_{1} defined by

$$
p_{4} \simeq \bar{\tau} \cdot \sigma
$$

is also a geodesic joining $\alpha \wedge \gamma$ and $\gamma \wedge \beta$. Consider the standard geodesic p_{5}, joining α to β, defined by

$$
p_{5} \simeq \pi \cdot \sigma \cdot \bar{\tau} \cdot \bar{\rho}
$$

This geodesic p_{5} also passes $\alpha \wedge \gamma$ and $\gamma \wedge \beta$. So the restriction p_{6} of p_{5} defined by

$$
p_{6} \simeq \sigma \cdot \bar{\tau}
$$

is a standard geodesic connecting $\alpha \wedge \gamma$ to $\gamma \wedge \beta$. By Remark 3.34, $(\alpha \wedge \gamma) \wedge(\gamma \wedge \beta)=$ $\alpha \wedge \beta$. Moreover, by Proposition 3.18, $(\alpha \wedge \gamma) \vee(\gamma \wedge \beta)=\gamma$.

There is another loop ℓ_{2} formed by two ascending paths $\tau^{\prime} \sigma^{\prime}$ and $\sigma^{\prime} \tau^{\prime}$ emanating from γ^{\prime}. This loop ℓ_{2} has $\alpha \wedge \beta$ as top vertex and γ^{\prime} as bottom vertex. By an analogous argument that we applied to the loop ℓ_{1}, one can show

$$
\left(\alpha \wedge \gamma^{\prime}\right) \wedge\left(\gamma^{\prime} \wedge \beta\right)=\alpha \wedge \beta,\left(\alpha \wedge \gamma^{\prime}\right) \vee\left(\gamma^{\prime} \wedge \beta\right)=\gamma^{\prime}
$$

Again, one can deduce the following fact from ℓ_{3}, formed by two ascending paths
$\tau_{1}^{\prime} \sigma_{1}^{\prime} \tau \sigma$ and $\tau_{1} \sigma_{1} \sigma^{\prime} \tau^{\prime}$ emanating from $\gamma \vee \gamma^{\prime}$.

$$
(\alpha \wedge \gamma) \wedge\left(\gamma^{\prime} \wedge \beta\right)=\alpha \wedge \beta,(\alpha \wedge \gamma) \vee\left(\gamma^{\prime} \wedge \beta\right)=\gamma \vee \gamma^{\prime}
$$

Now Proposition 3.18 implies that σ and τ do not share a letter t_{i}. Similarly there is no common letter between σ^{\prime} and τ^{\prime}, and σ and τ^{\prime}. So we have $\tau_{2}=\tau_{2}^{\prime}$ and $\sigma_{2}=\sigma_{2}^{\prime}$ from the identity $\tau_{2} \sigma_{2}=\tau_{2}^{\prime} \sigma_{2}^{\prime}$.

Claim $3 \tau_{1}=\sigma_{1}^{\prime}=1$. Apply Proposition 3.18 to the loop ℓ_{3} again to see that two diagonal edges of ℓ_{3} are given by the same element of \mathcal{T}_{n}. In particular we have

$$
\begin{equation*}
\sigma=\tau_{1} \sigma_{1} \sigma^{\prime} \tag{3.12}
\end{equation*}
$$

This means

$$
\sigma=\sigma_{1} \sigma_{2}=\tau_{1} \sigma_{1} \sigma_{1}^{\prime} \sigma_{2}^{\prime}
$$

By Claim 2 we have $\tau_{1} \sigma_{1}^{\prime}=1$. This completes the proof since the path $p \simeq$ $\pi \bar{\tau} \overline{\tau_{1}^{\prime}} \sigma_{1} \sigma^{\prime} \overline{\rho^{\prime}}$ passes $\gamma \vee \gamma^{\prime}$ and lifts to the geodesic p_{3};

$$
\begin{aligned}
p & \simeq \pi \overline{\tau_{2}} \overline{\tau_{1}^{\prime}} \sigma_{1} \sigma_{2}^{\prime} \overline{\rho^{\prime}} \\
& \simeq \pi \overline{\tau_{2}} \sigma_{1} \overline{\tau_{1}^{\prime}} \sigma_{2}^{\prime} \overline{\rho^{\prime}} \\
& \simeq \pi \sigma_{1} \overline{\tau_{2}} \sigma_{2} \overline{\tau_{1}} \overline{\rho^{\prime}}
\end{aligned}
$$

Corollary 3.39. For any vertices $\alpha, \beta, \mathcal{I}[\alpha, \beta]$ is convex in $\mathcal{C}_{n}^{(0)}$, i.e., for any $\gamma, \gamma^{\prime} \in$ $\mathcal{I}[\alpha, \beta], \mathcal{I}\left[\gamma, \gamma^{\prime}\right] \subset \mathcal{I}[\alpha, \beta]$.

Proof. In case of $\gamma \leq \gamma^{\prime}$, one can show that $\mathcal{I}\left[\gamma, \gamma^{\prime}\right] \subset \mathcal{I}[\alpha, \beta]$ by using Proposition 3.18 and Lemma 3.38. For the general case, use induction on the distance between γ and γ^{\prime} together with Lemma 3.38 and the previous observation to the pais of
vertices

$$
\gamma \leq \gamma \wedge \gamma^{\prime}, \gamma^{\prime} \leq \gamma \wedge \gamma^{\prime}, \gamma \vee \gamma^{\prime} \leq \gamma, \text { and } \gamma \vee \gamma^{\prime} \leq \gamma^{\prime}
$$

The following notion of orthant of a vertex is useful for us to examine the structure of $\mathcal{C}_{n}^{(0)}$ carefully. For a vertex $\alpha \in \mathcal{C}_{n}^{(0)}$, orthant $\mathcal{O}(\alpha)$ of α is defined by

$$
\begin{equation*}
\mathcal{O}(\alpha)=\{\beta \mid \beta \geq \alpha\} \tag{3.13}
\end{equation*}
$$

Note that $\mathcal{O}(\alpha)$ is also convex in $\mathcal{C}_{n}^{(0)}$ for any vertex α.

Lemma 3.40. Suppose $\mathcal{O}(\gamma) \cap \mathcal{I}[\alpha, \beta] \neq \emptyset$ for some $\gamma \notin \mathcal{I}[\alpha, \beta]$. There exists unique $\delta_{0} \in \mathcal{O}(\gamma) \cap \mathcal{I}[\alpha, \beta]$ with smallest distance from γ. Moreover $d(\alpha, \gamma)=$ $d\left(\alpha, \delta_{0}\right)+d\left(\delta_{0}, \gamma\right)$.

Proof. Suppose $\gamma \notin \mathcal{I}[\alpha, \beta]$ and $\mathcal{O}(\gamma) \cap \mathcal{I}[\alpha, \beta]=\left\{\delta_{1}, \cdots \delta_{k}\right\}$. Since γ is a common lower bound of those elements, there exists $g l b$ of $\left\{\delta_{1}, \cdots \delta_{k}\right\}$. Let δ_{0} denote the $g l b$. The Claim 1 in proof of Theorem 3.41 shows that δ_{0} is the unique vertex in $\mathcal{I}[\alpha, \beta]$ with the smallest distance from γ. If $d(\alpha, \gamma)>d\left(\alpha, \delta_{0}\right)+d\left(\delta_{0}, \gamma\right)$ then it is not difficult to show there exists another vertex $\delta^{\prime} \in \mathcal{O}(\gamma) \cap \mathcal{I}[\alpha, \beta]$ with smaller distance. So δ_{0} satisfies the equality.

Theorem 3.41. \mathcal{C}_{n} is a median graph for any $n \in \mathbb{N}$.

Proof. From Lemma 3.37, it suffices to show $\mathcal{I}[\alpha, \beta] \cap \mathcal{I}[\beta, \gamma] \cap \mathcal{I}[\gamma, \alpha]$ is a singleton set for any α, β and $\gamma \notin \mathcal{I}[\alpha, \beta]$.

Case 1: $\mathcal{O}(\gamma) \cap \mathcal{I}[\alpha, \beta] \neq \emptyset$. From Lemma 3.40, we see that there exists unique $\delta_{0} \in \mathcal{O}(\gamma)$ with smallest distance from γ. We want to show $\mathcal{I}[\alpha, \beta] \cap \mathcal{I}[\beta, \gamma] \cap \mathcal{I}[\gamma, \alpha]=$ $\left\{\delta_{0}\right\}$. From Lemma 3.40 (the second assertion), a concatenation of two geodesics
joining α to δ_{0} and δ_{0} to γ is again a geodesic. Thus the intersection of three intervals contains δ_{0}. Suppose the intersection contains another vertex w.

Figure 3.11: $\delta_{0} \in \mathcal{O}(\gamma)$ with $d(w, \gamma)>d\left(\delta_{0}, \gamma\right)$

Claim 1: $d(w, \gamma)>d\left(\delta_{0}, \gamma\right)$. Say p_{1}, p_{2}, p_{3} are standard geodesics joining α to δ_{0}, α to w and w to γ respectively, given by

$$
p_{1}=\pi_{1} \bar{\pi}_{2}, p_{2}=\pi_{1}^{\prime} \bar{\pi}_{2}^{\prime}, p_{3}=\tau_{1} \bar{\tau}_{2}
$$

and $\delta_{0}=\tau \gamma$ for some $\pi_{1}, \pi_{2}, \pi_{1}^{\prime}, \pi_{2}^{\prime}, \tau_{1}, \tau_{2}, \tau \in \mathcal{T}_{n}$. Figure 3.11 illustrates this situation for those paths $p_{1}($ solid red $), p_{2}\left(\right.$ solid blue) and p_{3} (solid black). Since the concatenation $p_{2} p_{3}$ is a geodesic joining α to γ, after applying liftings to $p_{2} p_{3}$, one obtains a standard geodesic passing $\alpha \wedge \gamma$. Consider the ascending path joining w to $\alpha \wedge \gamma$ given by $\tau_{1} \pi_{2}^{\prime}$. This passes $w \wedge \gamma$ an so $w \wedge \gamma \in \mathcal{I}[\alpha, \beta]$ by Corollary 3.39. Since $w \wedge \gamma \geq \gamma$ we see that $w \wedge \gamma \geq \delta_{0}$ and $w \wedge \gamma \neq \delta_{0}$ by the definition of δ_{0}. Thus $d(w, \gamma)=d(w, w \wedge \gamma)+d(w \wedge \gamma, \gamma)>\left|\tau_{2}\right|>|\tau|=d\left(\delta_{0}, \gamma\right)$.

Claim 2: $w \notin \in \mathcal{I}[\alpha, \beta] \cap \mathcal{I}[\beta, \gamma] \cap \mathcal{I}[\gamma, \alpha]$. Say p_{4} and p_{5} are standard geodesics
joining δ_{0} to β, w to β respectively given by

$$
p_{4}=\rho_{1} \bar{\rho}_{2}, p_{5}=\rho_{1}^{\prime} \bar{\rho}_{2}^{\prime}
$$

Since δ_{0} belongs to the intersection the concatenation $p_{1} p_{4}$ is a geodesic with length $d(\alpha, \beta)$. If w belongs to the intersection then the concatenation $p_{2} p_{5}$ is a geodesic with the same length. So we must have

$$
\left|\pi_{1}\right|+\left|\pi_{2}\right|+|\tau|=d(\alpha, \gamma)=\left|\pi_{1}^{\prime}\right|+\left|\pi_{2}^{\prime}\right|+\left|\tau_{1}^{\prime}\right|+\left|\tau_{2}^{\prime}\right|
$$

and

$$
\left|\pi_{1}\right|+\left|\pi_{2}\right|+\left|\rho_{1}\right|+\left|\rho_{2}\right|=\left|\pi_{1}^{\prime}\right|+\left|\pi_{2}^{\prime}\right|+\left|\rho_{1}^{\prime}\right|+\left|\rho_{2}^{\prime}\right| .
$$

However claim 1 implies that $\left|\tau_{1}^{\prime}\right|+\left|\tau_{2}^{\prime}\right|>|\tau|$ and hence $\left|\pi_{1}\right|+\left|\pi_{2}\right|>\left|\pi_{1}^{\prime}\right|+\left|\pi_{2}^{\prime}\right|$. So we have $\left|\rho_{1}^{\prime}\right|+\left|\rho_{2}^{\prime}\right|>\left|\rho_{1}\right|+\left|\rho_{2}\right|$. This means that any standard path of the concatenation $\bar{p}_{3} p_{5}$ does not path $\gamma \wedge \beta$. So the path $\bar{p}_{3} p_{5}$ is not a geodesic. Since paths p_{3} and p_{5} are arbitrary, $w \notin \mathcal{I}[\gamma, \beta]$.

Case 2: $\mathcal{O}(\gamma) \cap \mathcal{I}[\alpha, \beta]=\emptyset$. Obviously $d(\mathcal{O}(\gamma), \mathcal{I}[\alpha, \beta])=\min \{d(u, v) \mid u \in$ $\mathcal{O}(\gamma), v \in \mathcal{I}[\alpha, \beta]\}>0$. Say the distance is $d>0$. Let $D \subset \mathcal{O}(\gamma)$ denote the set of all vertices of $\mathcal{O}(\gamma)$ realizing d. Note that the cardinality of D is finite (there are finitely many elements in $\mathcal{O}(\gamma)$ whose height is less than $h(\alpha \wedge \beta)$ and, by the argument showing δ_{0} is unique (Lemma 3.40), there are finitely many vertices realizing d whose height is greater than $h(\alpha \wedge \beta))$. Take $g l b$ over D and let ϵ denote this unique element. Say $\epsilon^{\prime} \in \mathcal{I}[\alpha, \beta]$ is unique vertex with $d\left(\epsilon^{\prime}, \epsilon\right)=d$ (uniqueness follows from the argument in the proof of Lemma 3.40). See Figure 3.12.

Claim 3: $d\left(\alpha, \epsilon^{\prime}\right)+d+d(\epsilon, \gamma)=d(\alpha, \gamma)$ and $d\left(\beta, \epsilon^{\prime}\right)+d+d(\epsilon, \gamma)=d(\beta, \gamma)$. Pick any standard geodesics $q_{1} \overline{q_{2}}$ connecting α to ϵ^{\prime} and ascending paths q_{3} and q_{4} joining ϵ^{\prime} to ϵ, and γ to ϵ^{\prime} respectively. Then the concatenation $q_{1} \bar{q}_{2} q_{3} \bar{q}_{4}$ is a
geodesic. Consider the standard path $q_{1} q_{2} \bar{q}_{3} \bar{q}_{4}$. Observe that the ascending path $q_{1} q_{2}$ connecting α to $\alpha \wedge \gamma$ realizes the distance $d(\alpha, \mathcal{O}(\gamma))$. Thus any standard path given by $q_{1} q_{2} \bar{q}_{3} \bar{q}_{4}$ is a geodesic. Similar argument shows that $d\left(\beta, \epsilon^{\prime}\right)+d+d(\epsilon, \gamma)=d(\beta, \gamma)$. So ϵ^{\prime} belongs to the intersection $\mathcal{I}[\alpha, \beta] \cap \mathcal{I}[\beta, \gamma] \cap \mathcal{I}[\gamma, \alpha]$.

Figure 3.12: Vertices ϵ and ϵ^{\prime} with $d\left(\epsilon^{\prime}, \epsilon\right)=d(\mathcal{O}(\gamma), \mathcal{I}[\alpha, \beta])$

Claim 4: $\mathcal{I}[\alpha, \beta] \cap \mathcal{I}[\beta, \gamma] \cap \mathcal{I}[\gamma, \alpha]=\left\{\epsilon^{\prime}\right\}$. Suppose the intersection contains another vertex $w \in \mathcal{I}[\alpha, \beta]$. We apply an analogous trick as in Case 2: with small difference with $d(w, \gamma)>d+d(\epsilon, \gamma)$. One can show this inequality together with

$$
d(\alpha, \gamma)=d(\alpha, w)+d(w, \gamma)
$$

yields

$$
d(\beta, \gamma)>d(\beta, w)+d(w, \gamma)
$$

3.4 Properties of the action of \mathcal{H}_{n} on X_{n}

In this section we examine the action of \mathcal{H}_{n} on X_{n}. First we examine that the stabilizer of every cell is a finite symmetric group.

Lemma 3.42. Suppose α is a vertex of X_{n} with $h(\alpha)=h$. Then the stabilizer of α is the finite symmetric group Σ_{h} on h points.

Proof. Let $\Sigma_{h} \leq \mathcal{H}_{n}$ denote the symmetric group on a finite set $S(\alpha)=Y_{n}-\left(Y_{n}\right) \alpha$. We show the stabilizer of α is simply $\Sigma_{h} \leq \mathcal{H}_{n}$. If $g \in \Sigma$ then $\alpha g=\alpha$. Conversely, if $g \in \mathcal{H}_{n}$ and $\alpha g=\alpha$ then g restricted to the set $\left(Y_{n}\right) \alpha$ must be the identity. So $\operatorname{supp}(g) \subset(\alpha)$ and hence $g \in \Sigma_{h}$.

Recall the following definition of a Morse function defined on a (affine) CWcomplex complex X where $\varphi_{j}: \square^{k} \rightarrow \sigma_{j}^{k} \subset X^{k}$ denote the attaching map of k-cell σ_{j}^{k}.

Definition 3.43 (Morse function). A map $f: X \rightarrow \mathbb{R}$ is a Morse function if

- for every cell $\varphi_{j}\left(\square^{k}\right)$ of $X f \varphi_{j}: \square^{k} \rightarrow \mathbb{R}$ extends to an affine map $\mathbb{R}^{m} \rightarrow \mathbb{R}$ and $f \varphi_{j}$ is constant only when $k=0$ and
- the image of the 0 -skeleton is discrete in \mathbb{R}.

Note that the map h defined on a cubing X_{n} has the property that $h \varphi_{j}: \square^{k} \rightarrow \mathbb{R}$ extends to the standard height function $\mathbb{R}^{k} \rightarrow \mathbb{R}$ up to the translation by $h \varphi(0)$ (see Figure 3.4). Note also that $h \varphi_{j}: \square^{k} \rightarrow \mathbb{R}$ is trivial only when $k=0$ for all j. Moreover, the image $h\left(X_{n}^{(0)}\right)$ is just $h\left(\mathcal{C}_{n}\right)=h\left(\mathcal{M}_{n}\right)=\mathbb{Z}_{\geq 0}$. Therefore the map h is a Morse function.

Remark 3.44. The map $h: X_{n} \rightarrow \mathbb{R}_{\geq 0}$ satisfies the following

$$
h(\alpha g)=h(\alpha) \text { and } h(t \alpha)=h(t)+h(\alpha)
$$

for all $g \in \mathcal{H}_{n}$ and $t \in \mathcal{T}_{n}$. In that sense, the action of \mathcal{H}_{n} is 'horizontal' and the action of \mathcal{T}_{n} is 'vertical'.

Let $X_{n, r}$ denote the subcomplex of X_{n} consisting of cubes up to height r, i.e.,

$$
X_{n, r}:=\left\{\sigma \in X_{n} \mid h(\sigma) \subset[0, r]\right\} .
$$

Lemma 3.45. Suppose a k-cube $\sigma \subset X_{n}$ is generated by $T=\left\{\tau_{i}, \cdots, \tau_{k}\right\} \subset$ $\left\{t_{1}, \cdots, t_{n}\right\}$ with bottom vertex α. There exists $g \in \mathcal{H}_{n}$ such that $\sigma \cdot g$ is the k cube generated by T with bottom vertex $t_{1}^{h(\alpha)}$.

Proof. From the proof of Lemma 3.13, we see that there exists an element $g \in \mathcal{H}_{n}$ such that $\alpha g=t_{1}^{h(\alpha)}$. Since the action of \mathcal{H}_{n} on X_{n} is cellular, a cube σg is the desired cube bottom vertex $t_{1}^{h(\alpha)}$.

Corollary 3.46. For $r \in \mathbb{Z}_{\geq 0}, \mathcal{H}_{n}$ acts on $X_{n, r}$ cocompactly.

Proof. Fix $r \in \mathbb{Z}_{\geq 0}$. There are finitely many k-cubes with bottom vertex $t_{1}^{r^{\prime}}$ for $1 \leq r^{\prime} \leq r$ and $0 \leq k \leq n$. Lemma 3.45 implies that for any cube $\sigma \subset X_{n, r}$ there exists $g \in \mathcal{H}_{n}$ such that $\sigma \cdot g$ is a k-cube with bottom vertex $t_{1}^{r^{\prime}}$ for some $r^{\prime} \leq r$. So the quotient $X_{n, r} / \mathcal{H}_{n}$ is finite.

Definition 3.47 (Semi-simple group action). Let X be a metric space and let g be an isometry of X. The displacement function of g is the function d_{g} : $X \rightarrow \mathbb{R}_{\geq 0}$ defined by $d_{g}(x)=d(x, x . g)$. The translation length of d_{g} is the number $\left|d_{g}\right|:=\inf \left\{d_{g}(x) \mid x \in X\right\}$. The set of points where d_{g} attains this infimum will be denoted $\operatorname{Min}\left(d_{g}\right)$. More generally, if G is a group acting by isometries on X, then $\operatorname{Min}(G):=\cap_{g \in G} \operatorname{Min}\left(d_{g}\right)$. An isometry d_{g} is called semi-simple if $\operatorname{Min}\left(d_{g}\right)$ is non-empty. An action of a group by isometries of X is called semi-simple if all of its elements are semi-simple.

The following theorem summarizes the action of \mathcal{H}_{n} on X_{n}, see Figure 3.13 for the underlying theme.

Theorem A. For each integer $n \geq 1$, there exists a n-dimensional cubing X_{n} and a Morse function $h: X_{n} \rightarrow \mathbb{R}_{\geq 0}$ such that \mathcal{H}_{n} acts on X_{n} properly (but not cocompactly) by height-preserving semi-simple isometries. Furthermore, for each $r \in \mathbb{R}_{\geq 0}$ the action of \mathcal{H}_{n} restricted to the level set $h^{-1}(r)$ is cocompact.

Figure 3.13: A Morse function h on a CAT(0) cubical complex X

Proof. Proper action. We want show that, for $\alpha, \beta \in X_{n}^{(0)}$ the set $S(\alpha, \beta):=$ $\left\{g \in \mathcal{H}_{n} \mid \alpha g=\beta\right\}$ is finite. An element α has the right inverse (left inverse in composition of functions) $\alpha^{-1}:\left(Y_{n}\right) \alpha \rightarrow Y_{n}$. So if $g \in S(\alpha, \beta)$ then $g_{\mid\left(Y_{n}\right) \alpha}$ is completely determined by

$$
g=\alpha^{-1} \beta
$$

This means that one can decompose g by

$$
g= \begin{cases}\alpha^{-1} \beta & \text { on }\left(Y_{n}\right) \alpha \\ f & \text { on } S(\alpha)\end{cases}
$$

for some $f \in \mathcal{H}_{n}$ with $\operatorname{supp}(f) \subset S(\alpha)$. Since there are finitely many f with $\operatorname{supp}(f) \subset S(\alpha), S(\alpha, \beta)$ is finite. Note that if $\alpha=\beta$ then $S(\alpha, \beta)$ is simply the finite symmetric group on $h(\alpha)=h(\beta)$ points that we discussed in Lemma 3.42. Now suppose σ is a cube with vertices $\left\{\alpha_{1}, \cdots, \alpha_{k}\right\}$. If σg intersects σ non trivially then $g \in S\left(\alpha_{i}, \alpha_{j}\right)$ for some $1 \leq i, j \leq k$. Therefore the action is proper.

Height-preserving isometries. The action preserves height by Remark 3.44. To show the action in question is by isometries, we want to use the fact that two actions of \mathcal{T}_{n} and \mathcal{H}_{n} on X_{n} commute. Suppose $\alpha, \beta \in X_{n}^{(0)}$. Consider the smallest convex set H containing α and β, i.e., the intersection of all convex sets containing α and β. Observe that the cell structure of X_{n} is completely determined by the action of \mathcal{T}_{n} on $X_{n}^{(0)}$. Since the two actions of \mathcal{T}_{n} and \mathcal{H}_{n} on X_{n} commute, $H g$ is a convex set with the same cell structure of H. By Corollary 3.32, α and β are joined by the unique geodesic ℓ, which lies in H. The image ℓg is the local geodesic (in $H g)$ joining αg and βg. Since $H g$ is convex ℓg is the global geodesic. So we have $d(\alpha, \beta)=d(\alpha g, \beta g)$ for $\alpha, \beta \in X_{n}^{(0)}$ and $g \in \mathcal{H}_{n}$.

Semi-simple action. For any element $f \in \mathcal{H}_{n}$ with finite order, it is not difficult to check that $d_{f}=0$ and $\operatorname{Min}\left(d_{g}\right)$ is non empty. For example one can take $\alpha \in \mathcal{M}_{n}$ such that $\operatorname{supp}(f) \subset S(\alpha)$ to see $d(\alpha f, \alpha)=0$ and $\alpha \in \operatorname{Min}\left(d_{f}\right)$. Suppose $g \in \mathcal{H}_{n}$ with $\varphi(g)=\left(m_{1}, \cdots, m_{n}\right) \neq \overrightarrow{0}\left(m_{1}=-\left(m_{2}+\cdots+m_{n}\right)\right)$.

Claim: $d_{g}=\sqrt{\sum m_{i}^{2}}$. We want to find explicit element $\alpha \in X_{n}^{(0)}$ realizing d_{g}. The idea is to choose a vertex α with big enough height so that 'translation' by g is realized clearly. Consider the element $g^{\prime}=g_{1}^{m_{2}} g_{2}^{m_{3}} \cdots g_{n-1}^{m_{n}}$. Since $\varphi(g)=\varphi(g)^{\prime}$, there exists $f \in \mathcal{H}_{n}$ such that $g=f g^{\prime}$ and that $\operatorname{supp}(f) \subset B_{n, r}$ where $B_{n, r} \subset Y_{n}$ is the ball centered at the origin of radius r. Set $r^{\prime}=\max \left\{r, \sum\left|m_{i}\right|\right\}$ and consider the element $\alpha=t_{1}^{r^{\prime}} t_{2}^{r^{\prime}} \cdots t_{n}^{r^{\prime}}$. The maximality of r^{\prime} ensures that $\alpha, \alpha g^{\prime} \in \mathcal{T}_{n}$. By Corollary 3.16, there exists $\alpha \vee \alpha g^{\prime}$. It is possible to find explicit expression for $\alpha \wedge \alpha g^{\prime}$ as follows. Define $k_{i}, k_{i}^{\prime} \in Z, i=1, \cdots, n$ by

$$
\begin{aligned}
k_{1} & =\max \left\{0,-\sum_{2}^{n} m_{i}\right\}, k_{1}^{\prime}=\max \left\{0, \sum_{2}^{n} m_{i}\right\} \text { and } \\
k_{i} & =\max \left\{0, m_{i}\right\}, k_{i}=\max \left\{0,-m_{i}\right\} \text { for } 2 \leq i \leq n .
\end{aligned}
$$

Since $\varphi(\alpha)=\left(r^{\prime}, \cdots, r^{\prime}\right)$ and $\varphi\left(\alpha g^{\prime}\right)=\left(r^{\prime}+m_{1}, r^{\prime}+m_{2}, \cdots, r^{\prime}+m_{n}\right)$, the top vertex
is given by

$$
\begin{equation*}
\tau \alpha=\alpha \wedge\left(\alpha g^{\prime}\right)=\tau^{\prime}\left(\alpha g^{\prime}\right) \tag{3.14}
\end{equation*}
$$

where $\tau=t_{1}^{k_{1}} \cdots t_{n}^{k_{n}}$ and $\tau^{\prime}=t_{1}^{k_{1}} \cdots t_{n}^{k_{n}}$. By Proposition 3.18, $\alpha \vee \alpha g^{\prime}$ satisfies

$$
\begin{equation*}
\alpha=\tau^{\prime}\left(\alpha \vee \alpha g^{\prime}\right) \text { and } \alpha g^{\prime}=\tau\left(\alpha \vee \alpha g^{\prime}\right) \tag{3.15}
\end{equation*}
$$

Figure 3.14: If $h(\alpha)$ is big enough, the translation by g is realized in a 'big rectangle' R

Equalities (3.14) and (3.14) imply that there exists a 'big rectangle' R which contains $\alpha \wedge \alpha g^{\prime}$ and $\alpha \vee \alpha g^{\prime}$ as its top and bottom vertices respectively (as described in Proposition 3.18). See Figure 3.14. Observe that R is the convex hull of two vertices α and αg^{\prime}. The diagonal of R joining α and αg^{\prime} has length $\sqrt{\sum m_{i}^{2}}$. The diagonal is the geodesic joining α to αg^{\prime} because no smaller cube contains those two vertices. So we have

$$
d(\alpha, \alpha g)=d\left(\alpha, \alpha f g^{\prime}\right)=d\left(\alpha, \alpha g^{\prime}\right)=\sqrt{\sum m_{i}^{2}}
$$

Note that the size of R is determined by $\varphi(g)=\left(m_{1}, \cdots, m_{n}\right)$ and that R has the smallest size among convex hulls containing β and βg for $\beta \in X_{n}^{(0)}$. This means $d_{g} \geq d(\alpha, \alpha g)$. Therefore d_{g} attains minimum at α and $\alpha \in \operatorname{Min}\left(d_{f}\right)$.

Cocompact action. Note that $h^{-1}(r) \subset X_{n, r^{\prime}}$ for $r \in \mathbb{R}$ and $r \leq r^{\prime} \in \mathbb{Z}$. By

Remark 3.46, the action on the level set is cocompact for each $r \in Z_{\geq 0}$.

3.5 Finiteness Properties of \mathcal{H}_{n}

In this section we discuss finite properties of \mathcal{H}_{n}. We first recall properties F_{n} and $F P_{n}$ (see [6],[9]) which are generalized concepts of being finitely generated and finitely presented of groups.

We say a group $G=\langle\mathcal{A} \mid \mathcal{R}\rangle$ is finitely generated if \mathcal{A} is finite and finitely presented if both \mathcal{A} and \mathcal{R} are finite. These finite conditions can be interpreted topologically via presentaion 2-complex (Cayley complex) $K=K(\mathcal{A} ; \mathcal{R})$. K has one vertex and it has one edge e_{a}^{1} (oriented and labelled by a) for each generator $a \in \mathcal{A}$. The 2-cells e_{r}^{2} of K are indexed by the relators $r \in \mathcal{R}$; if $r=a_{1} \cdots a_{k}$ then σ_{r} is attached along the loop labelled by $a_{1} \cdots a_{k}$. From the construction of K we see that it has finite 1 -skeleton if G is finitely generated and it has finite 2 -skeleton as well if G is finite presented. By the Seifert-Van Kampen theorem we have $\pi_{1}(K) \cong G$. Note that the existence of a complex K with finite 2-skeleton with $\pi_{1}(K) \cong G$ guarantees finite presentedness of a group G.

More general finiteness properties are based on $K(G, 1)$ spaces (Eilenberg-Mac Lane complex). For a group G, a complex K is called a $K(G, 1)$ complex if $\pi_{1}(K) \cong$ G and the universal cover \widetilde{K} is contractible. It is known that for a group G there exists unique $K(G, 1)$ complex having one vertex up to homotopy.

Definition 3.48 (Property F_{n}). We say a group G has type F_{n} if there exists a $K(G, 1)$ complex having finite n-skeleton.

Consider the augmented chain complex $C_{*}(\widetilde{K} ; \mathbb{Z})$ of the universal cover of a $K(G, 1)$ complex K.

$$
\cdots \xrightarrow{\partial_{3}} C_{2}(\widetilde{K} ; \mathbb{Z}) \xrightarrow{\partial_{2}} C_{1}(\widetilde{K} ; \mathbb{Z}) \xrightarrow{\partial_{1}} C_{0}(\widetilde{K} ; \mathbb{Z}) \xrightarrow{\epsilon} \mathbb{Z} \rightarrow 0 .
$$

This is unique free $\mathbb{Z} G$-resolution of \mathbb{Z} up to chain homotopy. Note that each $C_{i}(\widetilde{K} ; \mathbb{Z})$ is finitely generated free $\mathbb{Z} G$-module if K has finite i-skeleton. A module is projective if it is a direct summand of a free module.

Definition 3.49 (Property $F P_{n}$). We say a group G has type $F P_{n}$ if there exists a projective $\mathbb{Z} G$-resolution of \mathbb{Z} which is finitely generated in dimensions $\leq n$.

Remark 3.50. An immediate consequence is that if a group G is has type F_{n} then it has type $F P_{n}$ for integers $n \in \mathbb{N}$.

A G-CW complex is a complex K together with a homomorphism $G \rightarrow A u t K$. A G-filtration of a CW complex K is a countable collection of G-subcomplexes $K_{0} \subset K_{1} \subset \cdots$ such that $K=\bigcup K_{i}$.

Let K be a contractible G-CW complex which admits a G-filtration $\left\{K_{i}\right\}$ satisfying

- the stabilizer of every cell is finitely presented and has type $F P_{n}$ for all n
- each K_{i} is finite $\bmod G$
- for all sufficiently large j, K_{j+1} is obtained from K_{j} by the adjunctions of n-cells, up to homotopy.

Theorem 3.51 (Brown's Criterion). With the above assumption, G has type $F P_{n-1}$ but not $F P_{n}$. If $n \geq 3$ then G is finitely presented.

Brown show the following finiteness properties of \mathcal{H}_{n} by constructing a CW complexes satisfying the above criterion ([7]). By Theorem A, a cubing $X_{n}, n \geq 1$, satisfies the criterion above, Remark 3.46.

Corollary B. For $n \geq 2, \mathcal{H}_{n}$ is of type $F P_{n-1}$ but not $F P_{n}$, it is finitely presented for $n \geq 3$.

Proof. We show our X_{n} satisfies the above Brown's criterion. By Corollary 3.32, X_{n} is contractible. Lemma 3.42 implies the first condition is satisfied since a finite symmetric group satisfies required finiteness properties. The second condition follows from Remark 3.46. With respect to a Morse function $h: X_{n} \rightarrow \mathbb{R}$, each descending link of a vertex $v \in X_{n}$ is homotopic to bouquet of spheres \mathbb{S}^{n-1} if the height of $h(v) \geq 2 n-1$ (Lemma 3.52). This means that the passage from $X_{n, h}$ to $X_{n, h+1}$ consists of the adjunction of n-cubes, up to homotopy. The theorem therefore follows from the criterion Theorem 3.51.

Lemma 3.52. If $h \geq 2 n-1$ then $L_{n, h}$ homotopic to a bouquet of spheres \mathbb{S}^{n-1}.

Proof. We argue by induction on n. If $n=1$, then $L_{n, h}$ is a bouquet of spheres \mathbb{S}^{0}, provided $h \geq 2 \cdot 1-1$. Assume $L_{n-1, k}$ is homotopy equivalent to a bouquet of copies of \mathbb{S}^{n-2} if $k \geq 2 h-1$ and $n \geq 2$.

We use Betvina-Brady Morse theory to understand the topology. Equip $L=L_{n, h}$ with a Morse function $f: L \rightarrow[0,2] \subset \mathbb{R}$ as follows. First consider the partition of the vertex set of $L_{n, h}: L_{0}=\{(x, y) \mid x \geq 2, y \geq 2\} \cup\{(1,1)\}, L_{1}=\{(1, y) \mid y \geq 2\}$ and $L_{2}=\{(x, 1) \mid x \geq 2\}$. Arrange the vertices so that $f(x, y)=h$ if $(x, y) \in L_{h}$, $h=0,1,2$. See Figure 3.15.

Figure 3.15: The complex $L_{n, h}$ equipped with a Morse function $f: L_{n, h} \rightarrow[0,2]$

It is clear that $f^{-1}(0)$ is a cone on $L_{n-1, h-1}$ and so it is contractible. Note that even if there are horizontal cells at height 0 it is still true that $f^{-1}[0,1]$ is
homotopy equivalent to $f^{-1}(0)$ with the copies of $L k_{\downarrow}((1, y), L)$ conned off $((1, y) \in$ $\left.L_{1}\right)$. Observe that the descending link of a vertex $(1, y) \in L_{1}($ in $L)$ is spanned by vertices $\left(x, y^{\prime}\right) \in L_{0}$ with $y^{\prime} \neq y$. Now $L k_{\downarrow}((1, y), L) \simeq L_{n-1, h-2}, f^{-1}[0,1]$ is obtained from $f^{-1}(0)$ by adjoining, for each $(1, y)$, a cone over $L_{n-1, h-2}$. In view of inductive hypothesis, $f^{-1}[0,1]$ is homotopy equivalent to a bouquet of spheres \mathbb{S}^{n-1}.

Observe that $L k_{\downarrow}((x, 1), L) \simeq L_{n-1, h-1}$ for each vertex $(x, 1) \in L_{2}$. So, by the inductive hypothesis again, the complex $L=f^{-1}[0,2]$ is homotopy equivalent to $f^{-1}[0,1]$ with the copies of spheres \mathbb{S}^{n-2} conned off. (Similar proof can be found in [7].)

Chapter 4

Isoperimetric inequalities for \mathcal{H}_{n}

4.1 Dehn functions of finitely presented groups

We recall the (algebraic) definition of Dehn function of a group from [3]. Let $P=$ $\langle\mathcal{A} \mid \mathcal{R}\rangle$ be a finite presentation for a group G with the identity 1_{G}. A word w is an element of the free monoid with the generating set $\mathcal{A} \cup \mathcal{A}^{-1}$. Denote the length of w by $|w|_{G}$. We say w is null-homotopic when $w=1_{G}$, i.e., w lies in the normal closure of \mathcal{R} in the free group $F(\mathcal{A})$. We define the area of a null-homotopic word w to be

$$
\operatorname{Area}(w):=\min \left\{N \mid w={ }^{\text {free }} \prod_{i=1}^{N} u_{i}^{-1} r_{i} u_{i} \text { with } u_{i} \in F(\mathcal{A}), r_{i} \in \mathcal{R}^{ \pm 1}\right\}
$$

The Dehn function of P is the function $\delta_{P}: \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
\delta_{P}(x):=\max \left\{\operatorname{Area}(w)\left|w=1_{G},|w|_{G} \leq x\right\}\right.
$$

Although the Dehn function $\delta_{P}(x)$ depends on the presentation P, asymptotic growth type of $\delta_{P}(x)$ (as x tends to infinity) only depends on G up to the equivalence relation \simeq defined as follows (see [3]). Two functions $f, g: \mathbb{N} \rightarrow[0, \infty)$ are said to
be \simeq equivalent if $f \preceq g$ and $g \preceq f$, where $f \preceq g$ means that there exists a constant $C>0$ such that $f(x) \leq C g(C x+C)+C x+C$ for all $x \in \mathbb{N}$. Up to this equivalence relation, any finite presentation P of a group G determines the same asymptotic growth type, which is called the Dehn function of G. The Dehn function of G is denoted by $\delta_{G}(x)$. The Dehn function is an important invariant of group theory. If a group G is $\operatorname{CAT}(0)$, the $\delta_{G}(x)$ is bounded above by x^{2}, see [5]. A group G is hyperbolic if and only if $\delta_{G}(x) \simeq x$, see [10]. In particular, every finite group has a linear Dehn function.

Remark 4.1. For any $m \in \mathbb{N}$ the symmetric group Σ_{m} on $\{1,2, \cdots, m\}$ satisfies $\delta_{\Sigma_{k}}(x) \leq C x+C$ for some $C>0$. Note that the constant C depends on the group Σ_{m} and hence on m. We need an upper bound for $\delta_{\Sigma_{m}}(x)$ which only depends on x (see Lemma 4.3).

4.2 Exponential isoperimetric inequalities for \mathcal{H}_{n}

In this section we aim to establish exponential upper bounds for $\delta_{\mathcal{H}_{n}}$ for $n \geq 3$.

Theorem D. For $n \geq 3$, the Dehn function $\delta_{\mathcal{H}_{n}}(x)$ satisfies

$$
\delta_{\mathcal{H}_{n}}(x) \preceq e^{x} .
$$

We start with the case $n=3$. Let $B_{3, x} \subset Y_{3}$ centered at the origin with radius $x \in N$. Let $\Sigma_{3, x} \leq \mathcal{H}_{3}$ denote the finite symmetric group on $B_{3, x}$ given by (2.9). The following is an outline for the proof.

1. For a given word $w=1 \in \mathcal{H}_{3}$ with $|w| \leq x$, rewrite w by $w^{\prime} \in \Sigma_{3 x}$ by using a canonical way such that
$-\left|w^{\prime}\right|_{\Sigma_{3, x}} \leq x^{5}$,

- the gap between w and w^{\prime} is filled with area $\leq x^{2}$.

2. Establish a cubic upper bound for $\delta_{\Sigma_{3, x}}(x)$.
3. Bound $\operatorname{Area}_{\mathcal{H}_{3}}(r)$ for all relators r of $\Sigma_{3, x}$ by e^{x},

Figure 4.1: Sketch of the proof for $\delta_{\mathcal{H}_{3}}(x) \preccurlyeq e^{x}$

Figure 4.1 illustrates the strategy. Now we have a desired upper bound for the area of w since

$$
\begin{equation*}
\operatorname{Area}_{\mathcal{H}_{3}}(w) \leq\left(x^{5}\right)^{3} \cdot e^{A x+A}+x^{2} \leq e^{(A+18) x+A}+x^{2} \preccurlyeq e^{x} . \tag{4.1}
\end{equation*}
$$

We remark that, in each step, any bound not exceeding exponential function is good enough for us. We have established exponential upper bound for $\delta_{\mathcal{H}_{3}}(x)$ up to those claims.

First we establish a cubic upper bound for $\delta_{\Sigma_{3, x}}(x)$ by using the following fact. Let S_{m} denote the finite symmetric group on m points with the Coxeter presentation given in (2.5), where $\left\{\sigma_{1}, \cdots, \sigma_{m-1}\right\}$ is the generating set. Let $s_{i}=\sigma_{\phi(i)}$ for some $\phi: \mathbb{N} \rightarrow\{1,2, \cdots, m-1\}$.

Theorem 4.2 (Deletion Theorem, [14]). Suppose $w=s_{1} s_{2} \cdots s_{k}$. If $|w|<k$ then there exists i and $j(1 \leq i<j \leq k)$ such that

$$
\begin{equation*}
s_{i+1} s_{i+2} \cdots s_{j}=s_{i} s_{i+1} \cdots s_{j-1}, \tag{4.2}
\end{equation*}
$$

and so

$$
w=s_{1} s_{2} \cdots \widehat{s}_{i} \cdots \widehat{s}_{j} \cdots s_{k}
$$

Lemma 4.3. For any $m \in \mathbb{N}$, a null-homotopic word $w \in \S_{m}$ with $|w| \leq x$ satisfies $\operatorname{Area}(w) \leq x^{3}$.

Proof. We first show any word $w \in \S_{m}$ given by the form

$$
s_{j}=s_{i}^{s_{i+1} s_{i+2} \cdots s_{j-1}}
$$

as in (4.2) has at most quadratic area in $|j-i| . \quad\left(g^{h}:=h^{-1} g h.\right)$ Suppose $w=$ $s_{k+1}\left(\bar{s}_{0}{ }^{s_{1} \cdots s_{k}}\right)$ represents the identity of Σ_{m}. We want to show $\operatorname{Area}(w) \leq k^{2}$ by induction on k.

The base case is obvious since $s_{2}\left(\bar{s}_{0}{ }^{s_{1}}\right)=1$ is a single commutation relation. We may assume no two consecutive letters in w are the same. Now suppose $w=$ $s_{k+2}\left(\bar{s}_{0}{ }^{s_{1} \cdots s_{k+1}}\right)$ is null-homotopic. We consider two cases.

Case 1. There exists $i_{0}\left(k+2 \geq i_{0} \geq 1\right)$ such that either

$$
\begin{equation*}
\left[s_{i_{0}}, s_{i}\right]=1 \text { for all } i_{0}>i \geq 0 \tag{4.3}
\end{equation*}
$$

or

$$
\begin{equation*}
\left[s_{i_{0}}, s_{i}\right]=1 \text { for all } k+2 \geq i>i_{0} \tag{4.4}
\end{equation*}
$$

If the condition (4.3) holds then one can apply commutation relations consecutively to decompose the diagram of w into a $s_{i_{0}}$-corridor with length $2\left(i_{0}-1\right)+1$
and a diagram of $w^{\prime}=s_{k+1}\left(\bar{s}_{0}{ }^{s_{1} \cdots \widehat{s}_{i_{0}} \cdots s_{k}}\right)$. (See Figure 4.2) Thus, by induction assumption, we have

$$
\operatorname{Area}(w) \leq \operatorname{Area}\left(w^{\prime}\right)+2\left(i_{0}-1\right)+1<(k+1)^{2} .
$$

By using an analogous argument together with condition (4.4), one can draw the same upper bound.

Figure 4.2: The diagram for w can be reduced by commutation relations in Case 1.

Case 2. For each $k+1 \geq i \geq 1$ there exists $i^{\prime \prime}>i>i^{\prime}$ such that

$$
\begin{equation*}
\left[s_{i^{\prime \prime}}, s_{i}\right] \neq 1 \text { and }\left[s_{i}, s_{i^{\prime}}\right] \neq 1 \tag{4.5}
\end{equation*}
$$

The above condition simply says that $\sigma\left(i^{\prime \prime}\right)=\sigma(i) \pm 1$ and $\sigma\left(i^{\prime}\right)=\sigma(i) \pm 1$. We need to examine subwords of w. Let w_{j} denote the subword $\bar{s}_{0}{ }^{s_{1} \cdots s_{j}}$ for $j=1, \cdots, k+1$. For $j=0, w_{0}$ is simply defined to be s_{0}. Note that each w_{j} is a transposition since it is a conjugation of a transposition s_{0}. For a transposition $s \in \Sigma_{m}$ let $d_{+}(s)$ and $d_{-}(s)$ denote the two points of $\operatorname{supp}(s)$ with $d_{+}(s)>d_{-}(s)$. The function $d:\{0,1, \cdots, k+1\} \rightarrow \mathbb{N}$ measures the difference $d_{+}-d_{-}$, i.e., $d(j)=d_{+}\left(w_{j}\right)-d_{-}\left(w_{j}\right)$ for $j=0,1, \cdots k+1$. Set $D(j)=\left\{d_{-}\left(w_{j}\right), d_{-}\left(w_{j}\right)+1, \cdots, d_{+}\left(w_{j}\right)\right\}$. Note that $d(0)=d(k+1)=1$. So there exists i such that $d(i+1) \leq d(i)$, say i_{0} is the smallest such number. Observe that $|d(j)-d(j+1)| \leq 1$ for all j since conjugating by s_{j} introduces at most one point to $D(j-1)$. The following observation is crucial to
establish desired bound;

$$
d\left(w_{i_{0}}\right)=i_{0}+1
$$

This identity implies there is 1 -to- 1 correspondence between

$$
\begin{equation*}
D\left(i_{0}\right)-D(0) \text { and }\left\{s_{1}, s_{2}, \cdots, s_{i_{0}}\right\} . \tag{4.6}
\end{equation*}
$$

This bijection and the condition (4.5) implies

$$
\begin{equation*}
d_{+}\left(s_{i}\right)=d_{+}\left(s_{j}\right)+1 \Rightarrow i>j \tag{4.7}
\end{equation*}
$$

for all i with $i_{0} \leq i \leq 1$.
From the 1-to-1 correspondence (4.6) and the fact that $D\left(s_{i_{0}+1}\right) \subset D\left(w_{i_{0}}\right)$, there exists unique $i_{0}>i^{\prime} \geq 0$ such that $s_{i_{0}+1}=s_{i^{\prime}}$. Say $s_{i_{0}+1}=s_{i^{\prime}}=(p p+1)$, transposition exchanging p and $p+1$. On the other hand, if $d_{-}\left(s_{i_{0}+1}\right) \geq d_{+}\left(s_{0}\right)$ then, from (4.7), we see that there exists unique $i^{\prime \prime}$ with $i_{0} \geq i^{\prime \prime}>i^{\prime}$ such that $s_{i^{\prime \prime}}=(p+1 p+2)$. Observe that $s_{i_{0}+1}$ commutes with s_{i} for all i with $i_{0} \geq i>i^{\prime \prime}$ and that $s_{i^{\prime}}$ commute with s_{j} for all j with $i^{\prime \prime}>j \geq i^{\prime}$. Apply those commutation relations to rearrange letters in the expression of $w=s_{k+2}\left(\bar{S}_{0}{ }^{s_{1} \cdots s_{k+1}}\right)$ so that $s_{i_{0}+1}$, $s_{i^{\prime \prime}}$ and $s_{i^{\prime}}$ show up in a row. Then apply the relation

$$
s_{i_{0}+1} s_{i^{\prime \prime}} s_{i^{\prime}}=s_{i^{\prime}} s_{i^{\prime \prime}} s_{i^{\prime}}=s_{i^{\prime \prime}} s_{i^{\prime}} s_{i^{\prime \prime}}
$$

where the second identity comes from the braid relation $((p p+1)(p+1 p+2))^{3}=1$. Now one applies the argument of Case 1 since $s_{i^{\prime \prime}}$ commute with all s_{i} for $i \leq i^{\prime \prime}$. In all, from

$$
\begin{aligned}
s_{1} \cdots s_{i_{0}} s_{i_{0}+1} & =s_{1} \cdots s_{i^{\prime}} \cdots s_{i^{\prime \prime}} \cdots s_{i_{0}} s_{i_{0}+1} \\
& =s_{1} \cdots \widehat{s}_{i^{\prime}} \cdots s_{i^{\prime \prime}-1}\left(s_{i^{\prime}} s_{i^{\prime \prime}} s_{i_{0}+1}\right) s_{i^{\prime \prime}+1} \cdots s_{i_{0}} \\
& =s_{1} \cdots \widehat{s}_{i^{\prime}} \cdots s_{i^{\prime \prime}-1}\left(s_{i^{\prime \prime}} s_{i^{\prime}} s_{i^{\prime \prime}}\right) s_{i^{\prime \prime}+1} \cdots s_{i_{0}} \\
& =s_{i^{\prime \prime}} s_{1} \cdots \widehat{s}_{i^{\prime}} \cdots s_{i^{\prime \prime}-1}\left(s_{i^{\prime}} s_{i^{\prime \prime}}\right) s_{i^{\prime \prime}+1} \cdots s_{i_{0}}
\end{aligned}
$$

we have

$$
w=s_{k+2}\left(\bar{s}_{0}^{s_{1} \cdots s_{i^{\prime \prime}} \cdots s_{k+1}}\right)=s_{k+2}\left(\overline{0}_{0}^{s_{i^{\prime \prime}} s_{1} \cdots \widehat{s}_{i^{\prime \prime}} \cdots s_{k+1}}\right)=s_{k+2}\left(\bar{s}_{0}{ }^{s_{1} \cdots \widehat{s}_{i^{\prime \prime}} \cdots s_{k+1}}\right)
$$

The number of required relators in the above process is at most

$$
2\left\{\left(i_{0}-i^{\prime \prime}-1\right)+\left(i^{\prime \prime}-i^{\prime}-1\right)+1+i^{\prime \prime}\right\}+k^{2} \leq k^{2}+2 k<(k+1)^{2}
$$

since $i_{0} \leq \frac{k}{2}$. So we have shown any word in the form of (4.2) has area at most $|j-i|^{2} \leq k^{2}$.

This means whenever one applies the identity (4.2) to a null-homotopic word $s_{1} \cdots s_{x} \in \Sigma_{m}$, the number of relators is bounded by x^{2}. At the same time one can reduce the number of generators in the expression by two. So we have $\delta_{\Sigma_{m}}(x) \leq$ x^{3}.

As discussed in Remark 2.3, one of important feature of \mathcal{H}_{n} is $\Sigma_{n, \infty} \hookrightarrow \mathcal{H}_{n}$ when $n \geq 3$. If a word $w \in \mathcal{H}_{3}$ is null-homotopic then $w \in \Sigma_{3, \infty}=\cup_{r} \Sigma_{3, r}$ (Lemma 2.11) It is natural to ask the minimum r so that $w \in \Sigma_{3, r}$. We have a reasonable bound for r as well as the length of w in $\Sigma_{3, r}$.

Lemma 4.4. There is a canonical way so that any null-homotopic word $w \in \mathcal{H}_{3}$ with $|w| \leq x$ can be written as a word $w^{\prime} \in \Sigma_{3, x}$ with length at most $O\left(x^{5}\right)$.

Proof. Suppose $w \in \mathcal{H}_{3}$ is a null homotopic word with $|w|_{\mathcal{H}_{3}}=x$. Then w can be written as $w=g_{1}^{m_{1}} g_{2}^{n_{1}} \alpha^{\epsilon_{1}} \cdots g_{1}^{m_{k}} g_{2}^{n_{k}} \alpha^{\epsilon_{k}}$ for some $m_{i}, n_{i} \in \mathbb{Z}, \epsilon_{i} \in\{-1,0,1\}$.

Use the identity

$$
\begin{equation*}
g \alpha \equiv \alpha^{g^{-1}} g \tag{4.8}
\end{equation*}
$$

to rewrite w as

$$
\begin{equation*}
w \equiv f g_{1}^{m_{1}} g_{2}^{n_{1}} \cdots g_{1}^{m_{k}} g_{2}^{n_{k}}, \tag{4.9}
\end{equation*}
$$

where f is a product of at most $k(<x)$ many transpositions whose supports belong to the ball $B_{3, x}$ of radius x. The symbol \equiv indicates that no relators are required in the above rewriting. The identity in free group $\left[g_{1}, g_{2}\right]=g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}=\alpha$ allows one to exchange g_{1} and g_{2};

$$
\begin{gather*}
g_{2} g_{1}=\alpha^{-1} g_{1} g_{2}, g_{2} g_{1}^{-1}=\alpha^{g_{1}} g_{1}^{-1} g_{2}, \tag{4.10}\\
g_{2}^{-1} g_{1}=\alpha^{g_{1} g_{2} g_{1}^{-1}} g_{1} g_{2}^{-1}, \text { and } g_{2}^{-1} g_{1}^{-1}=\left(\alpha^{-1}\right)^{g_{2} g_{1}} g_{1}^{-1} g_{2}^{-1} . \tag{4.11}
\end{gather*}
$$

Use identities (4.10) and (4.11) together with (4.8) to rewrite (4.9) again as

$$
\begin{equation*}
w=f f_{1} f_{2} \cdots f_{\ell} g_{1}^{0} g_{2}^{0} \tag{4.12}
\end{equation*}
$$

where each f_{i} is a transposition of $B_{3, x}$. By applying identities (4.10) and (4.11) consecutively one can show that $g_{2}^{n_{i}} g_{1}^{m_{j}}$ can be written as $f^{\prime} g_{1}^{m_{j}} g_{2}^{n_{i}}$ and that f^{\prime} is a product of at most $\left|n_{i} m_{j}\right|$ transpositions of $B_{3, x}$. This means that the number ℓ in expression (4.12) is bounded by

$$
\left(\sum\left|m_{j}\right|\right)\left(\sum\left|n_{i}\right|\right) \leq x^{2}
$$

We need to bound the length of transpositions f_{i} 's in (4.12), $i=1, \cdots, \ell$. The
isomorphism $\chi^{*}: \Sigma_{3, x} \cong S_{3 x}$ (Theorem 2.10) transforms each $f_{i} \in \Sigma_{3, x}$ into a transposition $\chi^{*}\left(f_{i}\right)$ of the set $\{1, \cdots, 3 x\}$. By Lemma 4.6, $\chi^{*}\left(f_{i}\right)$ has length at most $O\left(x^{2}\right)$ in $S_{3 x}$. Since each generator of $S_{3 x}$ becomes a word of $S_{3 x}$ of length $\leq 2 x$ under $\chi^{*}, \chi^{*}\left(f_{i}\right)$ correspond to a word of $\Sigma_{3, x}$ with length at most $O\left(x^{3}\right)$. In all, the element $f f_{1} f_{2} \cdots f_{\ell}$ in the expression (4.12) has length at most $O\left(x^{5}\right)$.

Finally we need to calculate the area between two loops, namely one given by w and the other one given by w^{\prime}. Let $B>0$ denote the maximum number of relations that we used in (4.10) and (4.11). Note that whenever one exchanges g_{1} and g_{2} by applying an identity of (4.10) and (4.11), a transposition is produced. We already calculated the number of those exchanges of two generators, which is bounded by x^{2}.

The argument if the proof of the above lemma extends to general cases $n \geq 4$.

Lemma 4.5. There is a canonical way so that any null-homotopic word $w \in \mathcal{H}_{n}$ with $|w| \leq x$ can be written as a word in $\Sigma_{n, x}$ with length at most $O\left(x^{5}\right)$.

Proof. Identities (4.8)(4.10)(4.11) holds for $g \in \mathcal{H}_{n}$ and for all pair of generators g_{i}, g_{j} of \mathcal{H}_{n}. Moreover the isomorphism between $\Sigma_{3, x}$ and $S_{3 x}$ (Theorem 2.10) allows one to bound the length of each transposition of $B_{n, r}$ by $O\left(x^{3}\right)$. As before we establish an upper bounds: $O\left(x^{5}\right)$ for the length of rewritten word w^{\prime}, and x^{2} for the area between two loops w and w^{\prime}.

The following fact can be found in [14].

Lemma 4.6. Let S_{m} be the finite symmetric group with the Coxeter system. For $\sigma \in S_{m}$, set $r_{i}(\sigma)=\mid\{j: i<j$ but $\sigma(i)>\sigma(j)\} \mid$. The length of an element σ is given by $\sum_{1}^{m} r_{i}(\sigma)$. In particular, there exist a unique element with the largest length $\sum_{1}^{m-1} i$.

Lemma 4.7. Any relator R of $\Sigma_{3, r}$ requires at most $O\left(e^{x}\right)$ relators of \mathcal{H}_{n}.

Proof. Each generator of $\Sigma_{3, r}$ is an involution. Observe that this can be expressed as appropriate conjugation of $\alpha^{2}=1$ in \mathcal{H}_{3}. Similarly a braid relator $\left(\sigma_{i} \sigma_{i+1}\right)^{3}=1$ can be expressed by conjugation of the relator $\left(\alpha \alpha^{g_{1}}\right)^{3}$. Thus each relator of two types of $\Sigma_{3, r}$ requires area only 1 in \mathcal{H}_{n}. For commutation relator of $S_{n, r}$ we need to examine two sequences of words $u_{k}=\alpha^{\bar{g}_{1}^{k}} \alpha^{\bar{g}_{2}^{k}}$ and $v_{k}=\left[\alpha, \alpha^{\bar{g}_{1}^{k+1}}\right]$. Note that we already check u_{k} and u_{k} represent the identity in Lemma 2.15. One can use simultaneous induction on k together with the argument in the proof of Lemma 2.15 to show areas of u_{k} and v_{k} are bounded above by $O\left(e^{x}\right)$. The fillings depicted in Figure 4.3 require $O\left(e^{x}\right)$ relators. Since one can produce all commutation relation of $\Sigma_{3, r}$ by taking appropriate conjugation of v_{k}, all the relators of $\Sigma_{3, r}$ require at most $\mathcal{O}\left(e^{x}\right)$ relators of \mathcal{H}_{n}.

Figure 4.3: Diagrams of $u_{k}=\alpha^{\bar{g}_{1}^{k}} \alpha^{\bar{g}_{2}^{k}}$ and $v_{k}=\left[\alpha, \alpha^{\bar{g}_{1}^{k+1}}\right]\left(A: \alpha^{g_{1}^{-2} g_{2}}=\alpha^{g_{1}^{-2}}\right)$

Proof of Theorem D. Fix $n \geq 4$. We follow the 3 -step plan that we applied to \mathcal{H}_{3}. For Step 1, Lemma 4.5 provides the same upper bounds: $O\left(x^{5}\right)$ for the length of rewritten word, and $O\left(x^{2}\right)$ for the gap between two words. The upper bound established in Lemma 4.3 does not depend on the subscript. This means we still have the same cubic upper bound for $\delta_{\Sigma_{n, x}}(x)$. One can show first two types of relations of $\Sigma_{n, x}$ require area 1 by taking appropriate conjugations as before. Note
that there are variations of words u_{k} and v_{k} in \mathcal{H}_{n}. Instead of using g_{1} and g_{2} one can use g_{i} and $g_{i}(1 \leq i<j \leq n-1)$ to generate commutation relations of $\Sigma_{n, x}$. Again, exponential upper bounds for those words can be established by simultaneous induction on the length of two sequences of words. In all, we establish exponential upper bound for \mathcal{H}_{n}.

Remark 4.8. We remark that if words u_{k} and v_{k} (and their variations for general cases) have exponential areas then exponential upper bounds for $\delta_{\mathcal{H}_{3}}\left(\delta_{\mathcal{H}_{3}}\right)$ is sharp.

Chapter 5

Related problems of \mathcal{H}_{n}

Level sets of cubings X_{n} associated to \mathcal{H}_{n} are typically $(n-2)$-connected. There are a number of higher dimensional Dehn functions $\delta_{\mathcal{H}_{n}}^{k}(x)$ of \mathcal{H}_{n} yet to explore ($k \leq n-2$).

Question 1. Find $\delta_{\mathcal{H}_{n}}^{k}(x)$ of \mathcal{H}_{n}.
The following is from M. Bestvina's list of open questions

Question 2. Are there groups of type $F_{n}\left(F P_{n}\right)$ but not $F_{n+1}\left(F P_{n+1}\right)$ which do not contain \mathbb{Z}^{2} subgroup $(n \geq 3)$?

All known examples contain \mathbb{Z}^{2}. Houghton's groups \mathcal{H}_{n} have potential to contain interesting subgroups providing a positive answer to this question. It is easy to find subgroups of $\mathcal{H}_{n}(n \geq 3)$ which do not contain \mathbb{Z}^{2} subgroups. \mathcal{H}_{n} also has many subgroups with restrictive finiteness properties. A good goal would be to find subgroups belonging to both families.

Bibliography

[1] Ian Agol, Daniel Groves, and Jason Manning. The virtual haken conjecture. arXiv:1204.2810, 2012.
[2] Mladen Bestvina and Noel Brady. Morse theory and finiteness properties of groups. Invent. Math., 129(3):445-470, 1997.
[3] Martin R. Bridson. The geometry of the word problem. In Invitations to geometry and topology, volume 7 of Oxf. Grad. Texts Math., pages 29-91. Oxford Univ. Press, Oxford, 2002.
[4] Martin R. Bridson and André Haefliger. Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999.
[5] Martin R. Bridson and André Haefliger. Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999.
[6] Kenneth S. Brown. Cohomology of groups, volume 87 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1982.
[7] Kenneth S. Brown. Finiteness properties of groups. In Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985), volume 44, pages 45-75, 1987.
[8] Victor Chepoi. Graphs of some CAT(0) complexes. Adv. in Appl. Math., 24(2):125-179, 2000.
[9] Ross Geoghegan. Topological methods in group theory, volume 243 of Graduate Texts in Mathematics. Springer, New York, 2008.
[10] M. Gromov. Hyperbolic groups. In Essays in group theory, volume 8 of Math. Sci. Res. Inst. Publ., pages 75-263. Springer, New York, 1987.
[11] Frédéric Haglund and Daniel T. Wise. Special cube complexes. Geom. Funct. Anal., 17(5):1551-1620, 2008.
[12] C. H. Houghton. Ends of locally compact groups and their coset spaces. J. Austral. Math. Soc., 17:274-284, 1974. Collection of articles dedicated to the memory of Hanna Neumann, VII.
[13] C. H. Houghton. The first cohomology of a group with permutation module coefficients. Arch. Math. (Basel), 31(3):254-258, 1978/79.
[14] James E. Humphreys. Reflection groups and Coxeter groups, volume 29 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1990.
[15] D. L. Johnson. Embedding some recursively presented groups. In Groups St. Andrews 1997 in Bath, II, volume 261 of London Math. Soc. Lecture Note Ser., pages 410-416. Cambridge Univ. Press, Cambridge, 1999.
[16] M Roller. Poc sets, median algebras and group actions. Preprint, 1998.
[17] Volker Runde. Lectures on amenability, volume 1774 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002.
[18] Michah Sageev. Ends of group pairs and non-positively curved cube complexes. Proc. London Math. Soc. (3), 71(3):585-617, 1995.
[19] Peter Scott. Ends of pairs of groups. J. Pure Appl. Algebra, 11(1-3):179-198, 1977/78.
[20] John Stallings. Group theory and three-dimensional manifolds. Yale University Press, New Haven, Conn., 1971. A James K. Whittemore Lecture in Mathematics given at Yale University, 1969, Yale Mathematical Monographs, 4.
[21] John R. Stallings. On torsion-free groups with infinitely many ends. Ann. of Math. (2), 88:312-334, 1968.

