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Abstract

In this dissertation, I consider a new nonlinear stochastic interest rate model

that is adapted from a stochastic population growth model and exhibits the

desirable properties of positivity of interest rates and mean reversion. We show

that in the constant parameter case this model falls within the paradigm of the

Rogers approach for generating positive interest rate models.

Moreover, motivated by a procedure initiated by Hull and White, we also

offer a variant of the model with a time-dependent parameter that allows cali-

bration of the model to a specified initial term structure when a trinomial-tree

method is implemented to obtain discrete approximations of the distributions

of the interest-rate process. Although nonlinear, our model has a closed form

solution, which facilitates the generation of sample paths by standard numeri-

cal methods. This allows us to carry out the trinomial-tree method to obtain

approximate distribution of the interest-rate process and compare that result

to the approximate distributions obtained by Monte Carlo simulation.

We incorporated the positive interest rate to derive the firm’s default prob-

ability, which thereby extends Qian’s work from a linear interest rate model

to a non-linear interest rate model. In the research, first comparing to Qian’s

method, we used the first passage time method based on the Fortet integral

equation to derive the firm’s default probability as driven by the Vasicek inter-

xi



est rate model.

As an alternative, we also proposed the coupled trinomial tree method to

derive the default probability. With the comparison of the numerical results

among the three methods, we successfully extended the coupled trinomial tree

algorithm for default probability from the linear model to a nonlinear model

and obtained reasonably consistent results.
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Chapter 1

Introduction

Rogers in (1997) [35] developed a very elegant and a useful framework called

the potential approach for systematically deriving many models for positive

short-term interest rates.(Also see Cairns(2004) [6]). A thorough and compre-

hensive review of the potential approach is contained in the recent thesis by

Parbhoo(2009) [29]; also refer to chapter 8 in Cairns(2004) [6].

In this dissertation, we investigate a nonlinear stochastic interest-rate model

that has desirable attributes of positivity of the resulting (short term) interest

rate and mean reversion. A version on this model has been used previously in a

biological context to model the growth of a population in a crowded stochastic

environment (see Chapter 5, Oksendal(2003) [28]). Typically, such models are

obtained by adding a (possibly time and/or state dependent) stochastic forc-

ing term. We will show that the stochastic differential equation (SDE) for the

population-growth model can also be used as a model for the short rate, and

that this model fits nicely into Rogers’ potential framework, at least in the case

where the parameters are constant. However, another desirable property of in-

terest rate models is the ability to calibrate the models to a specified initial

1



term structure. To incorporate this feature into our model, we will generalize

the SDE borrowed from the population growth application by allowing one of

the parameters to be non-random function of time. We show that this general-

ized model still admits a closed form solution (a feature already known for the

constant-parameter version of the model), which makes apparent the positivity

and mean reversion properties of the solutions. The closed-form solution for our

generalized model facilitates simulation via sample-path generation, but it does

not give direct information about the distribution of the short rate stochastic

process governed by the model. We also apply the well known trinomial-tree

discretization process to our model to obtain discrete approximations of its prob-

ability distributions. The trinomial-tree process is carried out in such a way as

to allow calibration of the model to an initial term structure in a manner similar

to that done by Hull and White(1994) [17].

Having obtained the distribution of the interest rate process, we will use it to

derive the default probability of the firm value that follows a stochastic process

(Acharya and Carpenter(2002) [1]) involving the interest rate process under a

risk-neutral measure. The unleveraged firm value is the expected future cash

flows discounted at an appropriate rate for an all-equity firm, while the levered

firm value is the sum of the unlevered firm value and the gain from leverage due

to a tax shield provided by the debt. In recent years, there have been several

studies of models of the firm value. Improved models for firm value were devel-

oped by Leland and Toft(1996) [24] and Qi(2007)[33] that address optimal cap-

ital structure, debt maturity and credit spreads. The importance of the interest

rate model studies has been enhanced with the growth of credit derivatives and

the credit crisis of 2007 to 2009. Our research will extend the work of Laksh-

mivarahan et. al.(2012) [22] et al., which derives the probability of default of a

2



firm following a common variety of narrow sense linear models(Arnold(1974) [2],

such models being commonly used for credit risk. In our work, we consider both

linear models and non-linear models. By transforming the coupled process into

independent processes, we derive two methods to obtain the default probability

of the firm value Vt: (1) derive the closed form expression of the firm value by

Ito’s formula and use the first passage time(Pierre Collin-Dufresne and Robert

S. Goldstein(2001) [32])to derive the default probability; (2) implement the tri-

nomial tree method for the coupled process, as motivated by Hull-White(1994b)

[18]. Here we implement both the Vasicek model and population growth model

as the interest rate model and compute the resulting default probabilities for

each model. These probabilities are presented over a 20 year period for various

values of the correlation ρ of the two underlying Brownian motion processes.

In Chapter 2, we will present the preliminaries. In Chapter 3 we provide

a short summary of the potential approach. Chapter 4 presents the derivation

of the positive interest model using the potential approach, and the utility of

the model for use as a short term interest rate. The calibration of the interest

rate model generated by our approach will be presented in Chapter 5. The

application of the above models for computing the firm’s default probability is

explored in Chapter 6. Concluding observations are contained in Chapter 7.

3



Chapter 2

Preliminaries

This chapter presents several important mathematical theories and financial

concepts which will be used in this dissertation. Some selected definitions and

results, such as martingale, Ito’s formula, and risk-neutral measure will be pro-

vided. In the last section, we will also introduce some basic financial theory for

the interest rate model. For succinctness, we will omit all proofs, and provide

references where appropriate. The more knowledgeable reader may omit this

chapter.

2.1 Stochastic Processes and Martingale The-

ory

This section is mostly taken from Protter(2003) [31] and Oksendal(2003) [28].

We begin with some definitions from basic probability theory and stochastic

processes. First, given a probability space (Ω,F ,P), we have following defini-

tion.
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Definition 2.1. Let p be a fixed real number such that p ≥ 1. Let f : Ω→ R

be a measurable function. Then f is said to be p− integrable if

∫
Ω

|f(ω)|pdP(w) <∞. (2.1.1)

We denote the set of p-integrable functions, the Lp − space, by Lp(Ω,F ,P).

Now given an increasing filtration {Ft}t≥0 of F , i.e. given a family of sub-

σ-algebras Ft of F such that Fs ⊂ Ft if s ≤ t, we define a desirable technical

property if a filtered probability space (Ω,F , {Ft}t≥0,P) as follows.

Definition 2.2. A filtered probability space is said to satisfy the “usual con-

ditions” if

i F0 contains the P-null sets of {F}t≥0, i.e. sets B ⊆ Ω for which ∃ A ∈ F

such that B ⊆ A and P(A) = 0;

ii {Ft}t≥0 is right-continuous, i.e. Ft =
⋂
u>tFu for all t ≥ 0.

Definition 2.3. A stochastic process X on (Ω,F ,P) is a collection of R-

valued or Rd-valued random variables (Xt) indexed by t ≥ 0. The process is

said to be adapted if Xt is Ft-measurable for each t ≥ 0.

Notation: For typographical considerations we may also denote stochastic

process random variables by X(t) and filtration σ-algebras by F(t).

Definition 2.4. Given two stochastic process X and Y , we say that X is a

modification of Y if Xt = Yt almost surely (a.s.), for each t. Two processes X

and Y are indistinguishable if for all t Xt = Yt a.s. .

Definition 2.5. A random variable T : Ω→ [0,∞) is a stopping time if the

event {T ≤ t} ∈ Ft, for every t ≥ 0.

5



Henceforth we assume the filtered probability space (Ω,F , {Ft}t≥0,P) satis-

fies the usual conditions. Next we will present the definition of martingale.

Definition 2.6. A real-valued, adapted process Xt for t ≥ 0 is a martingale

(resp. supermartingale, submartingale) with respect to the filtration {Ft}t≥0

if

(i) EP[|Xt|] <∞ for t ≥ 0,

(ii) if 0 ≤ s ≤ t, then EP[Xt|Fs] = Xs, a.s. (resp. EP[Xt|Fs] ≤ Xs, resp.

EP[Xt|Fs] ≥ Xs), where EP is the expectation under probability measure P, and

EP[Xt|Fs] is the conditional expectation of Xt given Fs.

As is well known, the expected value of a martingale is constant: EP[Xt] =

EP[X0] for t ≥ 0. Here we introduce the Martingale Convergence Theorem from

Oksendal(2003) [28].

Theorem 2.7. (Doob′s Martingale Convergence Theorem I) Let Xt be a

right continuous supermartingale with the property that

sup
t>0

E[X−t ] <∞, (2.1.2)

where X−t = max(−Xt, 0). Then the positive limit

X(ω) = lim
t→∞

Xt(ω) (2.1.3)

exists for almost all ω and E[X−] <∞.

However, note that the convergence need not be in L1(P ). In order to obtain

this we need uniform integrability:

Theorem 2.8. (Doob′s Martingale Convergence Theorem II) Let Xt be

6



a right continuous supermartingale. Then the following are equivalent:

(i) {Xt}t≥0 is uniformly integrable

(ii) There exists X ∈ L1(P ) such that Xt → X a.e. (P ) and Xt → X in L1(P ),

i.e.
∫
|Xt −X|dP → 0 as t→∞.

Definition 2.9. An adapted process X is a local martingale if there exists

a sequence of increasing stopping times, Tn, with limn→∞ Tn = ∞ a.s. such

that XT∧Tn1Tn>0 is a uniformly integrable martingale for each n, where 1Tn>0

denotes the indicator function of Tn > 0, and ∧ means minimum.

Definition 2.10. The quadratic variation of X, 〈X〉, is a process defined

as follows: let X be a continuous local martingale with respect to {Ft}t≥0.

We denote by 〈X〉 the unique continuous, increasing and adapted process with

〈X〉0 = 0 such that the process X2 − 〈X〉 is a continuous local martingale with

respect to {Ft}t≥0.

Definition 2.11. An adapted stochastic process X has finite variation if for

each t ≥ 0

Var[0,t](X) := sup
∆

n(∆)∑
i=1

|Xti −Xti−1
| <∞ P− a.s. (2.1.4)

where ∆ = 0 = t0 < t1 < ... < tn(∆) = t is a partition of the interval [0,t].

Definition 2.12. A stochastic process X = (Xt)t≥0 is called càdlàg if it almost

surely has sample paths which are right-continuous with left limits. A stochastic

process X = (Xt)t≥0 is called càglàd if it almost surely has sample paths which

are left-continuous with right limits.

Definition 2.13. A real-valued, continuous, adapted process X is a semi-

7



martingale if it admits the decomposition[31]

Xt = X0 +Mt + At (2.1.5)

where X0 is an F0-measurable random variable, M is a local martingale with

M0 = 0 and A is an adapted càdlàg process whose almost all sample paths are

of finite variation, with A0 = 0.

Definition 2.14. Let (Ω,F ,P) be a probability space, let T be a fixed position

number, and let {Ft}t≥0 be the filtration of F . We call an adapted stochastic

process X(t), 0 ≤ t ≤ T a Markov process if for all 0 ≤ s ≤ t ≤ T and

for every nonnegative, Borel-measurable function f , there is another Borel-

measurable function g such that

E[f(Xt)|Fs] = g(Xs) (2.1.6)

This concludes our basic definitions of martingale, supermartingale, sub-

martingale, local martingale, semimartingale and Markov process. For the fur-

ther properties of martingales, please refer to Protter(2003) [31].

2.2 Ito’s Formula, Change of Measure and Some

Basic Theory for Interest Rate Models

This section is mostly taken from Shreve(2004) [38] and Oksendal(2003) [28].

First, we introduce Brownian motion and Ito processes.

Definition 2.15. Let (Ω,F ,P) be a probability space. For each ω ∈ Ω, suppose

thereW (t) is a stochastic process with continuous sample paths. ThenW (t), t ≥

8



0, is a Brownian motion if W (0) = 0 and if for all 0 = t0 < t1 < ... < tm the

increments

W (t1) = W (t1)−W (t0),W (t2)−W (t1), ...,W (tm)−W (tm−1) (2.2.1)

are independent and each of these increments is normally distributed with

E[W (ti+1 −W (ti)] = 0, (2.2.2)

Var[W (ti+1 −W (ti)] = ti+1 − ti (2.2.3)

An associated filtration for Wt is a filtration {Ft}t≥0, which satisfies the

following conditions:

(i) Each Wt is Ft measurable.

(ii) s < t ⇒ Wt −Ws is independent of Fs.

Proposition 2.16. Given a filtered probability space (Ω,F , {Ft}t≥0,P) and a

Brownian motion (Wt)t≥0 w.r.t {Ft}t≥0. Assume the stochastic process ∆(t), t ≥

0 is adapted to {Ft}t≥0 and satisfies the square-integrability condition

EP[

∫ T

0

∆(t)2dt] <∞. (2.2.4)

Then there is a stochastic process I(t) =
∫ t

0
∆(u)dW (u) called the Ito integral

process of ∆ that has the following properties:

(i) (Continuity) As a function of the upper limit of integration t, the paths of

I(t) are continuous.

(ii) (Adaptivity) For each t, I(t) is F(t)-measurable.

(iii) (Linearity) If I(t) =
∫ t

0
∆(u)dW (u) and J(t) =

∫ t
0

Γ(u)dW (u), then I(t)±

9



J(t) =
∫ t

0
(∆(u)+Γ(u))dW (u), and for every constant c, cI(t) =

∫ t
0
c∆(u)dW (u).

(iv)(Martingale) I(t) is a martingale.

(v) (Ito isometry) EP[I2(t)] = EP[
∫ t

0
∆(u)2du].

(vi) (Quadratic variation) 〈I, I〉(t) =
∫ t

0
∆(u)2du.

Definition 2.17. A d-dimensional Brownian motion is a process

W (t) = (W1(t),W2(t), ...,Wd(t))

with the following properties.

(i) Each Wi(t) is a one-dimensional Brownian motion.

(ii) If i 6= j, then the processes Wi(t) and Wj(t) are independent.

Associated with a d-dimensional Brownian motion, we have a filtration {Ft}t≥0,

such that the following holds.

(iii) (Information accumulates) For 0 ≤ s < t, every set in Fs is also in Ft.

(iv)(Adaptivity) For each t ≥ 0, the random vector W (t) is Ft-measurable.

(v) (Independence of future increments) For 0 ≤ t < u, the vector of

increments W (u)−W (t) is independent of Ft.

Give these definitions and properties, we now introduce the notion of an Ito

process.

Definition 2.18. Given a filtered probability space (Ω,F , {Ft}t≥0,P) and a

d-dimension Brownian motion (Wt)t≥0 w.r.t Ft, an adapted continuous process

X is called an Ito process if it admits a representation

Xt = X0 +

∫ t

0

αudu+

∫ t

0

βudWu (2.2.5)

10



for all t ≥ 0, where α is a vector and β is a matrix, and both are adapted pro-

cesses and satisfy suitable conditions. An Ito process is usually also represented

as a stochastic differential of the form

dXt = αtdt+ βtdWt (2.2.6)

Theorem 2.19. (Ito′s Formula) Let X(t), t ≥ 0 be a d-dimensional Ito process

described in equation 2.2.6, while Xi is the component processes of X for each

i, and let f(Xt) be a function: Rd → R for which the partial derivatives fxi,

and fxixj are defined and continuous. Then for every T ≥ 0,

df(Xt) =
k∑
i=1

fxidXi(t) +
1

2

k∑
i,j=1

fxixjd〈Xi, Xj〉(t) (2.2.7)

More specifically, if for i = 1, 2, ..., k, each Xi is an Ito process, then

df(Xt) =
k∑
i=1

fxiαi(t)dt+
k∑
i=1

fxiβi(t)dWt +
1

2

k∑
i,j=1

fxixjβi(t)βj(t)dt (2.2.8)

Definition 2.20. A probability measure Q defined on (Ω,F) is absolutely

continuous with respect to P, and denoted by Q� P, if for all A ∈ F ,

P(A) = 0⇒ Q = 0. (2.2.9)

If Q � P and P � Q, then we say that P and Q are equivalent measures and

denote this by P ∼ Q.

Theorem 2.21. (Radon−Nikodym Theorem) Let Q be a probability mea-

sure defined on (Ω,F). If Q � P, then there exists an a.s. unique random
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variable ρ ≥ 0 which satisfies EP[ρ] = 1, such that for A ∈ F ,

Q(A) = EP[ρ1A] (2.2.10)

where 1A is the indicator of A. If P ∼ Q, then ρ > 0 a.s. .

Definition 2.22. Let Q be a probability measure defined on (Ω,F), such that

Q� P. The random variable ρ from the above theorem is known as the Radon-

Nikodym derivative of Q with respect to P and is denoted by ρ = dQ
dP .

Theorem 2.23. (Girsanov Theorem) Let T be a fixed positive time and

suppose that Θ = (Θ1, ...,Θd) is an d-dimensional adapted process. Define

Z(t) = e−
∫ t
0 Θ(u)·dW (u)− 1

2

∫ t
0 ||Θ(u)||2du (2.2.11)

W̃ (t) = W (t) +

∫ t

0

Θ(u)du, (2.2.12)

and assume that

E
∫ T

0

||Θ(u)||2Z2(u)du <∞. (2.2.13)

Set Z = Z(T ). Then EZ = 1, and under the probability measure P̃ given by

P̃(A) =

∫
A

Z(ω)dP(ω) for all A ∈ F (2.2.14)

the process W̃ (t) is a d-dimensional Brownian motion.

Theorem 2.24. (Exponential martingale) Let W (t), t ≥ 0, be a Brownian

motion with a filtration F(t), t ≥ 0, and let σ be a positive constant, The process

Zt, t ≥ 0, given by

Z(t) = eσW (t)−1/2σ2t. (2.2.15)
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is a martingale.

Theorem 2.25. (Reflection principle) For each Brownian motion path W (t)

that reaches a level m prior to time t but is at a level w below m at time t, there

is a “reflected path” that is at level 2m−w at time t. This leads to the reflection

equation

P [max
0≤s≤t

W (s) ≥ m,W (t) ≤ w] = P [W (t) ≥ 2m−w], w ≤ m,m > 0. (2.2.16)

Moreover, the joint density of (max0≤s≤tW (s),W (t)) is

f(t,m,w) =
2(2m− w)

t
√

2πt
e−

(2m−w)2

2t , w ≤ m,m > 0 (2.2.17)

Let W (t), 0 ≤ t ≤ T , be a Brownian motion on a filtered probability space

(Ω,F), {Ft}t≥0,P. Consider a stock price process whose differential is

dS(t) = α(t)S(t)dt+ σ(t)S(t)dW (t), 0 ≤ t ≤ T (2.2.18)

where the mean rate of return α(t) and the volatility σ(t) are allowed to be

adapted processes. Define the discount process (also known as the money

market account process) by

D(t) = e−
∫ t
0 R(s)ds, i.e. dDt = RtDtdt (2.2.19)

where R(s) is an adapted interest rate process. Then, by using Ito’s product

rule, we can express the discounted stock price process in differential form:

d(D(t)S(t)) = σ(t)D(t)S(t)[Θ(t)dt+ dW (t)] (2.2.20)
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where Θ(t) is the market price of risk defined by

Θ(t) =
α(t)−R(t)

σ(t)
(2.2.21)

Now introduce the probability measure P̃ defined in Girsanov’s Theorem, where

Θ(t) is as defined in (2.2.21). We call this probability measure P̃ the risk

neutral measure because it is equivalent to the original measure P and it ren-

ders the discounted stock price D(t)S(t) into a martingale. The risk-neutral

measure is heavily used in the pricing of financial derivatives due to the funda-

mental theorem of asset pricing.

Definition 2.26. An arbitrage is a portfolio value process X(t) satisfying

X(0) = 0 and also satisfying for some time T > 0

P{X(T ) ≥ 0} = 1, P{X(T ) > 0} > 0.

An arbitrage is a way of trading so that one starts with zero capital and

at some time point T is sure not to have lost money and furthermore has a

positive probability to earn money.

Definition 2.27. A complete market is one in which the complete set of

possible gambles on future states-of-the-world can be constructed with existing

assets without transaction costs.

In other words, for a complete market, all cash flows for a trading strategy

can be replicated using a similar synthetic trading strategy.

Theorem 2.28. If a market model has a risk-neutral probability measure, then

an arbitrage does not exist. Consider a market model that has a risk-neutral
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probability measure. The model is complete if and only if the risk-neutral prob-

ability measure is unique.

We end this section with some terminology from interest rate theory taken

from Cairns(2004) [6].

Definition 2.29. A T-maturity zero− coupon bond is a contract that guar-

antees its holder the payment of one unit of currency at time T, with no inter-

mediate payments. The contract value at time t < T , is denoted by P (t, T ).

Clearly, P (T, T ) = 1 for all T .

Definition 2.30. Let 0 < T < S. Then the forward rate at time t with

t < T < S(continuous compounding) which applies between times T and S is

defined as

F (t, T, S) =
1

S − T
log

P (t, T )

P (t, S)
. (2.2.22)

The instantaneous forward rate at time t

f(t, T ) = lim
S→T+

1

S − T
log

P (t, T )

P (t, S)
= −∂ logP (t, T )

∂T
. (2.2.23)

Equivalently, we have

P (t, T ) = e−
∫ T
t f(t,u)du. (2.2.24)

Definition 2.31. The short rate at time t is defined as the instantaneous

forward rate at time t for the maturity t, i.e. rt := f(t, t)

The short rate model can be classified as narrow sense linear, general linear,

or nonlinear models. The dynamics of the short term interest rate models under

the risk neutral measure, are modeled by a (scalar) SDE:

drt = α(rt, t)dt+ σ(rt, t)dWt, (2.2.25)
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where the instantaneous drift, α(rt, t), is a smooth function and the volatility,σ(rt, t),

denotes the volatility term (Cairns(2004) [6]).

The interest rate models can be classified into two broad classes: single factor

models and multi-factor models. In this dissertation we focus on the single

factor models which are further subdivided into linear and nonlinear models.

The model is called a nonlinear model if either α(rt, t) or σ(rt, t) are nonlinear

functions of the short rate rt. Furthermore, following Arnold (1974), the linear

models can be subdivided into two subclasses: narrow sense linear models if

α(rt, t) = a1(t)rt + a2(t), σ(rt, t) = σr(t)

and general linear models if α(rt, t) is of the form as above and

σ(rt, t) = b1(t)rt + b2(t),

where ai(t), bi(t), i = 1, 2 and σr(t) are smooth functions of time t. Here are

some examples of the above models in the table (2.1).

Table 2.1: Short rate model samples
Narrow sense linear models

Merton(1973) [26] drt = θdt+ σrdWr

Vasicek(1977) [39] drt = (θ − crt)dt+ σrdWr

Ho-Lee(1986) [15] drt = θ(t)dt+ σrdWr

Hull and White(1990) [16] drt = (θ(t)− crt)dt+ σrdWr

Generalized Hull and White [19] drt = (θ(t)− c(t)rt)dt+ σrdWr

General linear models
Brennan-Schwartz (1979) [5] drt = (θ(t)− crt)dt+ σrrtdWr

Non-linear models
Cox-Ingersoll-Ross(1985) [7] drt = θ(µ− rt)dt+ σr

√
rtdWr

The narrow sense linear models define Gaussian processes which allow neg-

ative interest rates. The general linear model of Brennan and Schwartz (1979)
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gives rise to lognormal processes. The nonlinear models of Cox, Ingersoll and

Ross (1985) define the so called square root processes. We will discuss these

models in the following chapters.

2.3 Transition Function and Kolmogorov’s Back-

ward Equation

For this section, we inroduce to use the transition probability and Kolmogorov’s

backward equation(Arnold(1974) [2]).

First, let’s review the definitions of transition probability and Chapman-

Kolmogorov equation.

Consider a filtered probability space (Ω, {F}t≥0,P). Let Xt, for t0 ≤ t ≤ T ,

denote a Markov process,

Definition 2.32. A function P (s, x, t, B) is called a transition probability

(transition function) of the markov process Xt if it has the following proper-

ties:

(a) For fixed s ≤ t and B ∈ Bd, we have with probability 1 that P (s,Xs, t, B) =

P (Xt ∈ B|Xs), where Bd the σ-algebra generated by the Borel sets in Rd.

(b) P (s, x, t, ·) is a probability measure on Bd for fixed s ≤ t and x ∈ Rd.

(c) P (s, ·, t, B) is Bd-measurable for fixed s ≤ t and B ∈ Bd.

(d) For t0 ≤ s ≤ u ≤ t ≤ T and B ∈ Bd and for all x ∈ Rd with the possible

exception of a set N ⊂ Rd such that P [Xs ∈ N ] = 0, we have the Chapman-

Kolmogorov equation.

P (s, x, t, B) =

∫
Rd
P (u, y, t, B)P (s, x, u, dy). (2.3.1)
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(e) For all s ∈ [t0, T ] and B ∈ Bd, we have

P (s, x, s, B) = IB(x) =

 1 for x ∈ B,

0 for x /∈ B.

Now, we introduce a family of operators associated with the Markov pro-

cesses in terms of which many important definitions and results follow. First,

denote by B(Rd) the space of bounded measurable scalar functions defined on

Rd equipped with the norm ‖g‖ = supx∈Rd |g(x)|.

Definition 2.33. Given a Markov process Xt, its family of transition oper-

ators, (Ts,t)0≤s≤t on the space B(Rd) , is defined by

(Ts,tf)(x) = EP[f(Xt)|Xs = x] =

∫
Rd
f(y)P (s, x, t, dy) (2.3.2)

for each f ∈ B(Rd) and x ∈ Rd. For the homogeneous case, by setting s = 0,

we denote the transition operator by Tt as follow

(Ttf)(x) = EP[f(Xt)|X0 = x] =

∫
Rd
f(y)P (0, x, t, dy). (2.3.3)

Definition 2.34. The infinitesimal operator(generator) A of a homoge-

neous Markov process Xt, for 0 ≤ t ≤ T , is defined by

Af(x) = lim
t→0

Ttf(x)− f(x)

t
, f ∈ B(Rd), (2.3.4)

where the limit is uniform with respect to x.

Definition 2.35. A Markov process Xt, for 0 ≤ t ≤ T , with values in Rd

and almost surely continuous sample functions is called a diffusion process if
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its transition probability P (s, x, t, B) satisfies the following three conditions for

every s ∈ [0, T ), x ∈ Rd, and ε > 0:

(a) limt→s
1
t−s

∫
|y−x|>ε P (s, x, t, dy) = 0;

(b) there exists an Rd-valued function f(s, x) such that

lim
t→s

1

t− s

∫
|y−x|≤ε

(y − x)P (s, x, t, dy) = f(s, x);

(c) there exists a d× d matrix-valued function B(s, x) such that

lim
t→s

1

t− s

∫
|y−x|≤ε

(y − x)(y − x)′P (s, x, t, dy) = B(s, x).

The functions f and B are called the coefficients of the diffusion process. Also,

f is called the drift vector, and B is called the diffusion matrix.

Using Kolmogorov’s criterion and some elementary reasoning, we can safely

choose Rd as the region of integration in conditions (b) and (c). So, we have the

first moment of the increment Xt − Xs under the condition Xs = x as t → s:

Es,x(Xt−Xs) = f(s, x)(t−s)+o(t−s) and the covariance matrix of Xt−Xs with

respect to the probability P (s, x, t, ·): Covs,x(Xt−Xs) = B(s, x)(t−s)+o(t−s).

Since we are only concerned with the distributions, we can resort to a first-order

approximation (in t − s) and assert that Xt satisfies the following stochastic

differential equation:

dXt = f(t,Xt)dt+G(t,Xt)dWt (2.3.5)

where GG′ = B and Wt is the Brownian motion process.

Before we introduce the backward equation, we assign the following second
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order differential operator for each diffusion process with coefficients f and

B = (bi,j)
n
i,j=1:

D ≡
d∑
i=1

fi(s, x)
∂

∂xi
+ 1/2

d∑
i=1

d∑
j=1

bi,j(s, x)
∂2

∂xi∂xj
. (2.3.6)

By means of Taylor expansion of f(s+ t, y) about (s, x) under the assumption

that f is defined and bounded on [t0, T ] × Rd and is twice differentiable with

respect to s, one can show that A = ∂
∂s

+D. Therefore, the diffusion process is

uniquely determined by f and B. Now let us look at Kolmogorov’s backward

equation.

Theorem 2.36. Let Xt, for t0 ≤ t ≤ T , denote a d-dimensional diffusion

process with continuous coefficients f(s, x) and B(s, x). The limit relations

in definition 2.35 hold uniformly in s ∈ [t0, T ]. Let f(x) denote a continuous

bounded scalar value function, fix t > t0 and for s < t and x ∈ Rd assume that

the function

u(s, x) = Es,xf(Xt) =

∫
Rd
f(y)P (s, x, t, dy)

is continuous and bounded, as well as its derivatives ∂u
∂xi

, and ∂2u
∂xi∂xj

for 1 ≤ i, j ≤

d. Then u(s, x) is differentiable with respect to s and satisfies Kolmogorov’s

backward equation

∂u

∂s
+Du = 0, (2.3.7)

where Du is the operator defined as above. with the end condition lims→t u(s, t) =

f(x).

Theorem 2.37. Suppose that the assumption of Theorem (2.36) regarding Xt

holds. If P (s, x, t, ·) has a density p(s, x, t, y) that is continuous with respect

20



to s and if the derivatives ∂p/∂xi and ∂2p/∂xi∂xj exist and are continuous

with respect to s, then p is called the fundamental solution of the backward

equation

∂p

∂s
+Dp = 0, (2.3.8)

that is, it satisfies the end condition

lim
s→t

p(s, x, t, y) = δ(x− y), (2.3.9)

where δ is Dirac’s delta function.

We will need these results to derive the corporate default probability in

Chapter 6. This concludes the preliminary results needed for this dissertation.

More details and proofs can be found in the references.
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Chapter 3

The Potential Approach

The earliest published paper using this approach appears to be Constantinides

(1992) [8]. Subsequently, variations of this approach were developed by Rogers

(1997) [35], Rutkowski(1997) [36], and Flesaker and Hughston(1996) [9].

3.1 Potentials

First, we discuss the pricing kernel and the construction of the positive interest

rate term structure. Consider the probability space (Ω,F , {Ft}05t5T ,P), where

{Ft}05t5T is the natural filtration generated by the Brownian motion B. Let

P (t, T ) denote the value at time t of a zero-coupon bond with maturity T . We

have discussed this in the previous chapter in equation (2.2.24). Here based on

the bond pricing formula and arbitrage pricing paradigm, the term structure

process is related to the short-rate process (rt)t≥0 by the formula:

P (t, T ) = E[e−
∫ T
t rsds|Ft] (3.1.1)
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where the underlying probability measure is assumed to be risk neutral.

Definition 3.1. (Meyer(1966) [25]) A positive right continuous supermartingale

tending to 0 in expectation as t→∞ is called a potential.

LetXt, for 0 ≤ t ≤ T , denote a d-dimensional Markov process and P (s, x, t, B)

be its transition probability(transition function), where s ≤ t, x ∈ Rd and

B ∈ Bd, the σ-algebra generated by the Borel sets in Rd.

Definition 3.2. (Arnold(1974) [2]) The family of transition operators,

(Ts,t)0≤s≤t on the space B(Rd), associated to the Markov process Xt is given by

(Ts,tf)(x) = EP [f(Xt)|Xs = x] =

∫
Rd
f(y)P (s, x, t, dy) (3.1.2)

for each f ∈ B(Rd) and x ∈ Rd, where B(Rd) is the linear space of all bounded

Borel measurable functions from Rd to R. For the homogeneous case, where Ts,t

depends only on the difference t − s, we denote the transition operator by Tt.

The infinitesimal operator(generator) g of a homogeneous Markov process

Xt, for 0 ≤ t ≤ T , is defined by

gf(x) = lim
t→0+

Ttf(x)− f(x)

t
, f ∈ B(Rd), (3.1.3)

where the limit is uniform with respect to x.

3.2 Pricing Kernels and the Rogers’ Frame-

work

Given a d-dimensional homogeneous Markov process Xt, given a positive Borel

measurable function g : Rd → [0,∞), and given λ > 0, we define an increasing
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process At by At =
∫ t

0
e−λsg(Xs)ds and set up a pricing kernel:

ςt = EPt [A∞]− At for t ≥ 0 (3.2.1)

where A∞ = limt→∞At. For λ > 0, we define the resolvent operator as follows:

Rλ = (λ− g)−1 =

∫ ∞
0

e−λtTtdt

Then it can be proved that the pricing kernel is of the form (Rogers(1997) [35])

ςt = e−λt
Rλg(Xt)

Rλg(X0)
(3.2.2)

while it is also easy to prove that ςt is a potential. Here Rλg(X0) acts as a

normalizing factor to ensure that ς0 = 1. Since this factor is trivial, we discount

it hereafter for convenience. Now, using the method in Glasserman(2001) [13],

the short rate can be derived by the dynamics of the pricing kernels as:

rt =
1

ςt
EPt
[
∂AT
∂T

]
|T=t =

1

ςt

[
∂At
∂t

]
=
e−λtg(Xt)

ςt
. (3.2.3)

From this, we obtain the short rate formula

rt =
g(Xt)

Rλg(Xt)
. (3.2.4)

By substitution of ςt into the bond pricing formula, we also have

P (t, T ) =
EPt [e−λ(T−t)Rλg(XT )]

Rλg(Xt)
. (3.2.5)
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Here is the algorithm to derive the interest rate models by the Rogers frame-

work(1997) [35]:

Step 1: Choose a Markov process (Xt)t≥0;

Step 2: Choose a positive twice differentiable function f defined in B(Rd) ,

select λ > 0 and define g by

g = (λ− g)f.

where g is the infinitesimal generator of the process (Xt)t≥0 Here we attempt to

choose λ to make g positive. Then we get f := Rλg;

Step 3: Compute the pricing kernel as follows:

ςt = e−λt
f(Xt)

f(X0)
;

Step 4: Substitution of the previous expression into the bond pricing formula

yields

P (t, T ) = e−λ(T−t)EPt [f(XT )]

f(Xt)
(3.2.6)

and the short rate by

rt =
(λ− g)f(Xt)

f(Xt)
=
g(Xt)

f(Xt)
. (3.2.7)

Rogers(1997) [35] applied this method to several classical Markov processes Xt,

including the Ornstein-Uhlenbeck process, the mean-reverting Bessel process,

and the univariate quadratic model. Also he examined various choices for the

function f including affine functions, quadratic functions, exponential linear

functions, exponential quadratic functions, and hyperbolic functions. In the

next section we will use the Rogers framework to investigate another class of
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models with a nonlinear drift process that have mean reversion properties, which

thereby have some intuitive appeal as interest rate models.
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Chapter 4

Derivation of a Class of

Nonlinear Interest-Rate Models

4.1 A Simple Example

4.1.1 Solution of the Process and the General Form of

the Infinitesimal Generator

Consider the Markov process

dXt = µdt+ αXtdBt (4.1.1)

where α is a real constant, µ ∈ Rd, Xt ∈ Rd and Bt ∈ R is standard Brown-

ian motion. (Note that this process is not among the examples presented by

Rogers).

Using the integrating factor Ft = e−αBt+
1
2
α2t and Ito’s formula, we obtain
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the closed form solution

Xt =

∫ t

0

µe−α(Bt−Bs)+ 1
2
α2(t−s)ds+

X0

Ft
=

∫ t

0

µ
Fs
Ft
ds+

X0

Ft
. (4.1.2)

We can see that in the scalar case (d = 1) this solution is already positive if

X0 > 0 and µ > 0 . Now, we will use Rogers’ method which will not only give

the expression of the pricing kernel, but also the bond price. To implement the

algorithm we discussed in the previous section, we first compute the infinitesimal

generator g for this process. For a general Ito process dXt = b(Xt)dt+σ(Xt)dBt,

where b(Xt) is a d-vector function of Xt and σ(Xt) is a d ×m matrix, Bt is a

m-dimensional Brownian motion, and Xt ∈ Rd , the formula for g is as follows:

(gf)(x) =
d∑
i=1

bi(x)
∂f

∂xi
+

1

2

d∑
i=1

d∑
j=1

(σ(x)σ(x)T )i,j(x)
∂2f

∂xi∂xj

for any bounded C2 function f .

So, for the simple process(4.1.1), we derive the infinitesimal generator g as

(gf)(x) = µ · ∇f +
1

2
tr[α2XtX

T
t ·Hf ] (4.1.3)

where ∇f is the gradient vector of f , Hf is the Hessian matrix of f and tr(·)

denotes the trace of the matrix.

4.1.2 Implementation of Different Functions f of the

Rogers’ Method for the Process(4.1.1)

Supposing the dynamics of (Xt)t≥0 are given by equation (4.1.1), we can im-

plement the algorithm with different choices of the function f : exponential
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quadratic function, exponential linear function, hyperbolic cosine function, lin-

ear function, and quadratic function. The results provide a useful comparison

with Rogers’ work(1997) [35].

First consider an exponential quadratic function function f of the form

f(Xt) = e
1
2

(Xt−c)TQ(Xt−c) (4.1.4)

where c is a d × 1 vector of real numbers and Q is a d × d positive-definite,

diagonal matrix. In order to derive the rt, recalling that rt = (λ−g)f(Xt)
f(Xt)

= g(Xt)
f(Xt)

for some λ, we need to derive the infinitesimal generator g. So, first we compute

∇f and Hf .

∇f = f(Xt)Q(Xt − c)

Hf = f(Xt)


q11 + q2

11(X1 − c1)2 . . . q11qdd(X1 − c1)(Xd − cd)
...

. . .
...

q11qdd(X1 − c1)(Xd − cd) . . . qdd + q2
dd(Xd − cd)2

 .
This leads to the infinitesimal generator:

(gf)(Xt) = µ · ∇f +
1

2
tr[(α2XtX

T
t ) ·Hf ]

= f(Xt)[µ
TQ(Xt − c) +

1

2
α2 ·XT

t (Q+Q(Xt − c)(Xt − c)TQ)Xt]

and the interest rate:

rt = λ− µTQ(Xt − c)−
1

2
α2 ·XT

t (Q+Q(Xt − c)(Xt − c)TQ)Xt. (4.1.5)

Rogers’s example with Ornstein-Uhlenbeck (OU) process dXt = k(θ −Xt)dt +
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dWt, and the same function (4.1.4) yields the interest rate

rt = λ− 1

2
tr(Q)− (θ −Xt)

TkTQ(Xt − c)−
1

2
(Xt − c)TQ2(Xt − c)

In our cases, we can see that rt as given in (4.1.5) is a fourth order function of

Xt, and we could try to choose the parameters such that rt is positive. Since

the OU process is a Gaussian process, the positivity of Xt is not assured, but it

is useful to have the quadratic term to make rt positive, like in this simple case.

But due to the fourth order appearance of Xt in (4.1.5) and the complicated

computation, we will not consider this case any further.

For the exponential linear function f of the form

f(Xt) = eγ
TXt (4.1.6)

where γ is a d× 1 vector, we have the infinitesimal generator:

(gf)(Xt) = f(Xt)[µ
Tγ +

1

2
(αXT

t γ)2]

and the interest rate:

rt = λ− µTγ − 1

2
(αXT

t γ)2. (4.1.7)

By comparison with the special Bessel process dXt = (a+KXt)dt+2
√
diag(Xt)dWt

in Rogers(1997), his result is

rt = λ− (a+KXt)
Tγ − 2

d∑
i=1

(γi)
2X

(i)
t .

From here we can see that Roger’s result is a linear function of Xt. Both
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Rogers’ Bessel process and our processes are positive processes, with simple

representations of rt, so it is convenient to run numerical experiments. For our

case, the rt derived from exponential linear function is a quadratic function of

Xt, which is also a very good fit with the positive interest rate if the parameters

are chosen wisely.

For the hyperbolic cosine function f of the form

f(Xt) = cosh(γ(Xt + c) (4.1.8)

where γ is a 1 × d vector and c is a d × 1 vector, a similar computation yields

the infinitesimal generator:

(gf)(Xt) = (γµ) sinh(γ(Xt + c)) +
1

2
α2(γXt)

2 cosh(γ(Xt + c))

and the interest rate:

rt = λ− 1

2
α2(γXt)

2 − (γµ) tanh(γ(Xt + c)). (4.1.9)

We compare this interest rate with the OU process in with Rogers(1997) and

the hyperbolic cosine function

rt = λ− 1

2
γ2 − γkXt tanh(γ(Xt + c)).

Consider the special case of c = 0 and λ = 1
2
γ2 for Rogers’ example: rt =

γkXt tanh(γ(Xt)), which is a combination of a Gaussian model and a squared-

Gaussian model with Xt taking the extreme value. For our case, setting c = 0

and noting that tanh(γXt) is bounded by -1 and 1, we see that rt is a function
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combining X2
t and tanh(γ(Xt + a)). When Xt is small, it is very complicated

to express the trend of rt; when γXt is large, it acts like the quadratic function.

We can simulate rt numerically after we choose the parameters of the process

and the function.

Next we consider a quadratic function f of the form

f(Xt) =
1

2
(Xt − c)TQ(Xt − c) + γ (4.1.10)

where γ is a 1× d vector, Q is a d× d positive-definite, diagonal matrix and c

is a d× 1 vector. We compute ∇f = Q(Xt − c), Hf = Q, and we derive

(gf)(Xt) = µTQ(Xt − c) +
1

2
tr(α2XtX

T
t Q) = µTQ(Xt − c) +

1

2
α2XT

t QXt.

Choosing γ = 1
2
vTSv−λcTQc−2µTQc

λ
, we get the interest rate:

rt =
(Xt − v)TS(Xt − v)

(Xt − c)TQ(Xt − c) + 2γ
. (4.1.11)

For the quadratic function, the form of rt is similar to that of Rogers’ example

but different from the choice of S and v. In Rogers’ example, S = λQ+kTQ+Qk

and v = S−1(λQc+ kTQc). From above we can see, with this different process,

the function choice may be varied to yield the positive interest rate property.

Lastly we will focus on the linear function f(Xt) = γTXt, where γ is a d× 1

vector. We compute the interest rate:

rt =
λγTXt − µTγ

γTXt

= λ− µTγ

γTXt

. (4.1.12)

Compare the interest rate of Rogers’ example with Bessel process using linear
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function:

dXt = (a+BXt)dt+ 2
√
diag(Xt)dWt, (4.1.13)

where rt =
−γT a+XT

t (λ−BT )γ

γTXt
. The rt in our case is simpler than Rogers’ example

with the Bessel process, and thus may provide an appealing alternative.

4.2 Application to the General Markov Pro-

cess

dXt = h(t,Xt)dt + c(t)XtdBt

4.2.1 Solution of the Process and the General Form of

the Infinitesimal Generator

Expanding on the idea of the first simple Markov process(4.1.1), we consider

the more general Markov process

dXt = h(t,Xt)dt+ c(t)XtdBt (4.2.1)

where Xt ∈ R is a scalar process, X0 = x, h(t,Xt) is a function of t and Xt, c(t)

is a function of t, and Bt ∈ R is standard Brownian motion.

Using the integrator factor Ft = e−
∫ t
0 c(s)dBs+

1
2

∫ t
0 c(s)

2ds and Ito’s formula, we

get

dFt = c(t)2Ftdt− c(t)F (t)dBt

d(FtXt) = XtdFt + FtdXt + dFtdXt = h(t,Xt)Ftdt

Defining Yt(ω) = Ft(ω)Xt(ω), i.e. Xt = F−1
t Yt and integrating both sides of
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above equation, we obtain an integral representation the solution:

Xt = X0 + F−1
t

∫ t

0

Fs · h(s,Xs)ds (4.2.2)

The infinitesimal generator is seen to be

(gf)(x) = h(t,Xt) · ∇f +
1

2
tr[c(t)2XtX

T
t ·Hf ]. (4.2.3)

Here are two examples with specific choices of the function h.

Example 1: h(t,Xt) = 1
Xt

and c(t) = α

Here we get the integrating factor Ft = e−αBt+
1
2
α2t and define Yt(ω) =

Ft(ω)Xt(ω). So, dYt
dt

= Ft · (F−1
t Yt)

−1, i.e. YtdYt = F 2
t dt. Integrating both

sides of this equation, we get

1

2
(Y 2

t − Y 2
0 ) =

∫ t

0

e−2αBs+α2sds

which yields the solution

Yt = (x2 + 2

∫ t

0

e−2αBs+α2sds)
1
2 (4.2.4)

i.e. ‖Yt‖2 = x2 + 2
∫ t

0
e−2αBs+α2sds.

Example 2: h(t,Xt) = Xγ
t and c(t) = α

Here we also get the integrating factor Ft = e−αBt+
1
2
α2t and define Yt(ω) =

Ft(ω)Xt(ω). So, dYt
dt

= Ft · (F−1
t Yt)

γ, i.e. Y −γt dYt = F−γ+1
t dt. If γ = 1, we get

the geometric Brownian motion. If γ 6= 1 we can integrate both sides to get

1

−γ + 1
(Y −γ+1

t − Y −γ+1
0 ) =

∫ t

0

F−γ+1
s ds
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which yields the solution

Yt = [x−γ+1 +
1

1− γ

∫ t

0

(e−αBs+
1
2
α2s)1−γds]

1
1−γ (4.2.5)

where Y0 = x.

4.2.2 Derivation of the Interest Rate rt

Here we will consider various choices of f for the infinitesimal generator (4.2.3)

to derive the interest rate rt. All of the results will be summarized in the table

(4.1) at the end of this chapter.

Exponential quadratic function

Suppose the dynamics of (Xt)t≥0 are given by equation (4.2.1), and f is an

exponential quadratic function of the form

f(Xt) = e
1
2

(Xt−a)TQ(Xt−a) (4.2.6)

where a is a d × 1 vector of real numbers and Q is a d × d positive-definite,

diagonal matrix.

In order to derive the rt, recalling rt = (λ−g)f(Xt)
f(Xt)

= g(Xt)
f(Xt)

for some λ, we need

to derive the infinitesimal generator g. So, first we compute ∇f and Hf .

∇f = f(Xt)Q(Xt − a)

Hf = f(Xt)


q11 + q2

11(X1 − a1)2 . . . q11qdd(X1 − a1)(Xd − ad)
...

. . .
...

q11qdd(X1 − a1)(Xd − ad) . . . qdd + q2
dd(Xd − ad)2

 .
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Similar to the previous section, we derive the infinitesimal generator:

(gf)(Xt) = f(Xt)[h(t,Xt)
TQ(Xt−a)+

1

2
c(t)2 ·XT

t (Q+Q(Xt−a)(Xt−a)TQ)Xt)]

(4.2.7)

and the interest rate:

rt = λ−h(t,Xt)
TQ(Xt−a)− 1

2
c(t)2 ·XT

t (Q+Q(Xt−a)(Xt−a)TQ)Xt) (4.2.8)

Exponential linear function

Suppose the dynamics of (Xt)t≥0 are given by equation (4.2.1), and f is an

exponential linear function of the form

f(Xt) = eγ
TXt (4.2.9)

where γ is a d× 1 vector.

By computing ∇f = f(Xt)γ and Hf = f(Xt)γγ
T , we have the infinitesimal

generator:

(gf)(Xt) = f(Xt)[h(t,Xt)
Tγ +

1

2
(c(t)XT

t γ)2] (4.2.10)

and the interest rate:

rt = λ− h(t,Xt)
Tγ − 1

2
(c(t)XT

t γ)2. (4.2.11)

Hyperbolic cosine function

Suppose the dynamics of (Xt)t≥0 are given by equation (4.2.1), and f is a

hyperbolic cosine function of the form

f(Xt) = cosh(γ(Xt + a) (4.2.12)
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where γ is a 1× d vector and a is a d× 1 vector.

First, for simplicity, we consider the case d = 1. By computing ∇f =

γ sinh(γ(Xt + c)) and Hf = γ2 cosh(γ(Xt + c)), we have the infinitesimal gen-

erator:

(gf)(Xt) = h(t,Xt)γ sinh(γ(Xt + a)) +
1

2
c(t)2γ2X2

t cosh(γ(Xt + a))

and the interest rate:

rt = λ− h(t,Xt)γ tanh(γ(Xt + a))− 1

2
c(t)2γ2X2

t . (4.2.13)

For general case of d, we have h(t,Xt) ∈ Rd and γT ∈ Rd. By comput-

ing ∇f = γ sinh(γ(Xt + a)) and Hf = γTγ cosh(γ(Xt + a)), we derive the

infinitesimal generator:

(gf)(Xt) = γh(t,Xt) sinh(γ(Xt + a)) +
1

2
c(t)2(γXt)

2 cosh(γ(Xt + a)) (4.2.14)

and the interest rate:

rt = λ− γh(t,Xt) tanh(γ(Xt + a))− 1

2
c(t)2(γXt)

2. (4.2.15)

Linear function

Suppose the dynamics of (Xt)t≥0 are given by equation (4.2.1), and f is a

linear function of the form

f(Xt) = γTXt (4.2.16)

where γ is a d× 1 vector.
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By computing ∇f = γ, Hf = 0, we derive

(gf)(Xt) = h(t,Xt)
Tγ (4.2.17)

and the interest rate:

rt =
λγTXt − h(t,Xt)

Tγ

γTXt

= λ− h(t,Xt)
Tγ

γTXt

. (4.2.18)

Quadratic function

Suppose the dynamics of (Xt)t≥0 are given by equation (4.2.1), and f is an

quadratic function of the form

f(Xt) =
1

2
(Xt − a)TQ(Xt − a) + γ (4.2.19)

where γ is a 1× d vector, Q is a d× d positive-definite, diagonal matrix and a

is a d× 1 vector.

By computing ∇f = Q(Xt − a), Hf = Q, we derive

(gf)(Xt) = h(t,Xt)
TQ(Xt − a) +

1

2
tr(c(t)2XtX

T
t Q)

= h(t,Xt)
TQ(Xt − a) +

1

2
c(t)2XT

t QXt.

The funcion g(Xt) can be computed as follows:

g(Xt) =λγ +
1

2
λaTQa+ h(t,Xt)

TQa+
1

2
(λ− c(t)2)XT

t QXt

− 1

2
λXT

t Qa−
1

2
(λaTQ+ 2h(t,Xt)

TQ)Xt

=λγ +
1

2
λaTQa+ h(t,Xt)

TQa+
1

2
(Xt − v)TS(Xt − v)− 1

2
vTSv
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where S = (λ− c(t)2)Q,v = S−1(λQa+Qh(t,Xt)).

The precise form of rt depends on h(t,Xt), which can vary depending on the

example. We will look at some specific examples in the following sections.

4.2.3 Results for Special Examples

With the above general form of infinitesimal generator 4.2.7,4.2.10,4.2.14, and

4.2.17, we apply Rogers’ algorithm to the following nonlinear examples and

derive the positive interest rate for each example. The results are summarized

in Table 4.1.

1. The following stochastic differential equation provides a model for the

growth of a population of size Xt in a stochastic crowded environment (Ok-

sendal(2003) [28]):

dXt = αXt(k −Xt)dt+ βXtdBt X0 = x > 0 (4.2.20)

where the constant k > 0 is called the carrying capacity of the environment, the

constant α ∈ R is a measure of the quality of the environment and the constant

β ∈ R is a measure of the size of noise in the system. To solve this system, we

will bring in the geometric Brownian motion

dSt = aStdBt + bStdt, S0 = 1

and the linear S.D.E

dYt = aYtdBt + (r + bYt)dt, Y0 = y.
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As we know, the solution of the G.B.M is St = e(b−1/2a2)t+aBt . Now, use the

2-dim Ito’s formula to Yt
St

, we get

d(
Yt
St

) = − Yt
S2
t

dSt +
1

St
dYt −

1

S2
t

dStdYt +
Yt
S3
t

dStdSt =
r

St
dt

So, we get

Yt = St(y + r

∫ t

0

1

Su
du)

Now if we take Y (t) = 1
Xt

for the SDE (4.2.20), and use Ito’s formula again,

we get

dYt =d
1

Xt

= − 1

X2
t

dXt +
1

X3
t

dXtdXt

=[α− (αk − β2)Yt]dt− βYtdBt.

Using the Yt solution with a = −β, r = α and b = β2 − αk, we can directly

derive the solution of the SDE (4.2.20):

Yt = e−βBt+( 1
2
β2−αk)t(x−1 + α

∫ t

0

eβBu+(αk− 1
2
β2)udu)

i.e. we get the closed form expression for the solution of model(4.2.20):

Xt =
eβBt+(αk− 1

2
β2)t

x−1 + α
∫ t

0
eβBu+(αk− 1

2
β2)udu

. (4.2.21)

From the result table (4.1) of rt for this model, due to the positivity of Xt, we

find that the result for a linear function 4.2.16 is very attractive. Indeed using

the formula 4.2.18 with h(t,Xt) = αXt(k − Xt) and the formula 4.2.21 for Xt
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we obtain the interest rate

rt = λ− kα +
αeβBt+(αk− 1

2
β2)t

x−1 + α
∫ t

0
eβBu+(αk− 1

2
β2)udu

. (4.2.22)

2. The spot freight rate model in shipping (geometric mean reversion pro-

cess): (Oksendal(2003) [28])

dXt = k(α− logXt)Xtdt+ σXtdBt X0 = x > 0 (4.2.23)

where k, α, σ and x are positive constants. Change variable by Yt = logXt, so

Y0 = log x, and use Ito’s formula to obtain

dYt =
1

Xt

dXt −
1

2

1

X2
t

dXtdXt

=[(kα− 1

2
σ2)− kYt]dt+ σdBt.

This is a narrow sense linear SDE, so by Arnold(1974) [2], we have the solution

as follows:

Yt = e−ktlogx+ (α− 1

2k
σ2)(1− e−kt) + σe−kt

∫ t

0

eksdBs

Thus, we get the closed form expression for the solution:

Xt = ee
−ktlogx+(α− 1

2k
σ2)(1−e−kt)+σe−kt

∫ t
0 e

ksdBsn (4.2.24)

Observe that Xt has a desirable geometric mean reversion property. Please

refer to the appendix for the computation of the expectation of Xt . Now

checking the result table (4.1), we find that rt with the choice of a linear function

41



of f has a nice form. We will use this linear function for the next step. First,

drt = kd(logXt). Then we use the same method that was used to solve the

SDE (4.2.23). Take Yt = log(Xt), so that rt = λ − kα + kYt and drt = kdYt.

Since Yt satisfies dYt = [(kα− 1
2
σ2)− kYt]dt+ σdBt, we get

drt = [(kλ− k

2
σ2)− krt)]dt+ kσdBt (4.2.25)

which is a narrow sense linear stochastic differential equation and has the solu-

tion

rt = λ− kα + k logXt

= λ− kα + k[e−kt log x+ (α− 1

2k
σ2)(1− e−kt) + σe−kt

∫ t

0

eksdBs].

By way of comparison we recall that Black and Karasinski(1991) [4] used a

general time-inhomogeneous SDE with Yt = logXt:

dYt = k(t)(log µ(t)− Yt)dt+ σ(t)dBt

where k(t), µ(t) and σ(t) are deterministic functions of time. Applying Ito’s

formula we get:

dXt = k(t)[log µ(t) +
σ(t)2

2k(t)
− logXt]Xtdt+ σ(t)XtdBt

So, the geometric mean reversion process is the time-homogeneous version of the

Black-Karasinski model with k(t) = k, σ(t) = σ and log µ(t) + σ(t)2

2k(t)
= α. Please

see Appendix A for more details of computing the expectation of geometric

mean reversion process. This model fits the historical data significantly better
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with its lognormal property, so we believe that it will be a very good research

model for the future work.

Finally we mention briefly two additional examples, but suppress any com-

putational details.

3. Brennan and Schwartz(1979) [28] model:

dXt = α(µ(t)−Xt)dt+ σ(t)XtdBt (4.2.26)

where α is positive constant, and µ(t) and σ(t) are time-dependent functions.

4. Brownian Motion on an ellipse:

dXt = −1

2
Xtdt+MXtdBt (4.2.27)

where M =

0 −a
b

b
a

0

 with the solution: Xt =

acosBt

bsinBt

.

We summarized all of the results in the following table(4.1) of rt for various

models and choices of the function f that we have considered. In our summary

we label the models we have considered as follows:

Model 1: Mean-reverting Ornstein-Uhlenbeck(OU) process, dXt = k(θ−Xt)dt+

dBt;

Model 2: Mean-reverting Bessel process, dXt = k(θ−Xt)dt+ Σ
√
diag(Xt)dBt;

Model 3: Brownian bridge, dXt = − b−Xt
1−t dt+ dBt;

Model 4: special Markov process, dXt = h(t,Xt)dt+ c(t)XtdBt:

Model 4.1: dXt = rdt+ αXtdBt;

Model 4.2: population growth model, dXt = αXt(k −Xt)dt+ βXtdBt;

Model 4.3: geometric mean reversion process, dXt = k(α−logXt)Xtdt+σXtdBt;
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Model 4.4: Brennan and Schwartz model, dXt = α(µ(t)−Xt)dt+ σ(t)XtdBt;

Model 4.5: Brownian Motion on ellipse, dXt = −1
2
Xtdt+MXtdBt.

Table 4.1: Table of Results(Forms of rt)
Exponential Quadratic Exponential linear

Model 1 λ− 1
2 tr(Q)− (θ−Xt)

T kTQ(Xt− c)−
1
2 (Xt − c)TQ2(Xt − c)

λ− (θ − x)T kT γ + 1
2 tr(γγ

T )

Model 2 no need(already positive) λ− γT (a+KXt)− 2
∑d
i=1(γ(i))2X

(i)
t

Model 3 λ+ b−Xt

1−t Q(Xt−a)− 1
2Q−

1
2Q

2(Xt−a)2 λ+ b−Xt

1−t γ −
1
2γ

2

Model 4.1 λ−µTQ(Xt−c)− 1
2α

2 ·XT
t (Q+Q(Xt−

c)(Xt − c)TQ)Xt

λ− µT γ − 1
2 (αXT

t γ)2

Model 4.2 λ − αQXt(k − Xt)(Xt − a) −
1
2β

2QX2
t (1 +Q(Xt − a)2)

λ− αγXt(k −Xt)− 1
2 (βγXt)

2

Model 4.3 λ − Qk(α − logXt)Xt(Xt − a) −
1
2σ

2QX2
t (1 +Q(Xt − a)2)

λ− γk(α− logXt)Xt − 1
2 (σγXt)

2

Model 4.4 λ − Qα(µ(t) − Xt)(Xt − a) −
1
2σ(t)2QX2

t (1 +Q(Xt − a)2)
λ− γα(µ(t)−Xt)− 1

2 (σ(t)γXt)
2

Model 4.5 λ+ 1
2X

T
t Q(Xt− a)− 1

2M
TMXT

t (Q+
Q(Xt − a)(Xt − a)TQ)Xt

λ+ 1
2γ

TXt − 1
2 (γTMXt)

2

Hyperbolic cosine(1-dim) Linear

Model 1: λ− 1
2γ

2 + γkXt tanh(γ(Xt + c)) −θkT γ+(λγT +γT k)Xt

γTXt

Model 2: λ− 1
2Σ2Xtγ

2 +XT
t k

T γ tanh(γ(Xt + c))
−γT a+XT

t (λ−KT )γ
γTXt

Model 3 λ+ b−Xt

1−t γ tanh(γ(Xt + a))− 1
2γ

2 λ− b−Xt

(1−t)Xt

Model 4.1 λ− 1
2α

2(γXt)
2 − (γµ) tanh(γ(Xt + c)) λ− µT γ

γTXt

Model 4.2 λ− γαXt(k −Xt) tanh(γ(Xt + a))− 1
2β

2(γXt)
2 λ− kα+ αXt

Model 4.3 λ− γk(α− logXt)Xt tanh(γ(Xt + a))− 1
2σ

2(γXt)
2 λ− kα+ k logXt

Model 4.4 λ− γα(µ(t)−Xt) tanh(γ(Xt + a))− 1
2σ(t)2(γXt)

2 λ+ α− αµ(t)
Xt

Model 4.5 λ+ 1
2γXt tanh(γ(Xt + a))− 1

2M
2(γXt)

2 λ+ 1
2

Quadratic: rt = (Xt−v)TS(Xt−v)
(Xt−a)TQ(Xt−a)+2γ

Model 1: S = λQ+ kTQ+Qk, v = S−1(αQa+ kTQa)

Model 2: λ− 2(θ−Xt)
T kTQ(Xt−c)+tr(ΣΣT diagXtQ)
(Xt−c)TQ(Xt−c)+2γ

Model 3 S = − 2Q
1−t , v = S−1(λa− a+b

1−t )Q)

Model 4.1 S = (λ− α2)Q, v = S−1(λaQ+ µTQ)

Model 4.2 rt = g(Xt)
f(Xt)

, complicated

Model 4.3 rt = g(Xt)
f(Xt)

, complicated

Model 4.4 S = (λ− β2 + α)Q, v = S−1(λa+ αa+ αµ(t)))
Model 4.5 S = (λ−MTM + 2)Q, v = S−1((λ+ 1

2 )aTQ)
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4.3 Generating Positive Interest-Rate Models

4.3.1 Selection of Model Parameters

To ensure the positivity of the interest rate rt, we need a judicious choice of

the parameters in the model for rt, such as λ,Q, c, , a and so on. While this is

not guaranteed to work in every case, here we consider some examples of one-

dimensional models where the proper selection of parameters yields positive

interest rates.

1. Exponential quadratic function with Model 1 from table(4.1)(Mean-

reverting OU process):

rt = λ− 1

2
Q− kQ(θ −Xt)(Xt − c)−

1

2
Q2(Xt − c)2.

If we take Q̃ = 2kQ − Q2, c̃ = (kQc + kQθ − Q2c)/Q̃, and λ = 1
2
Q − θkQc +

1
2
c2Q2+ 1

2
c̃2Q̃, then we will have: rt = 1

2
Q̃(Xt− c̃)2, which is a quadratic function

of a normally distributed variable. Such models, which are known as squared-

Gaussian models, guarantee positivity of interest rates if Q̃ > 0. These models

were first studied by Beaglehole and Tenney(1991) and Jamshidian(1996).

2. Exponential quadratic function with Model 3 from table(4.1)(Brownian

Bridge):

rt = λ+
b−Xt

1− t
Q(Xt − a)− 1

2
Q− 1

2
Q2(Xt − a)2.

If we take

λ =
1

2
Q+

1

2
Q2a2 +

abQ

1− t
− 1

2
Q

(a+b
1−t +Qa)2

Q+ 1
1−t

(4.3.1)

45



and Q
t−1
−Q2 ≥ 0, then we will have:

rt =
1

2
(
Q

t− 1
−Q2)(Xt −

a+b
1−t +Qa

Q+ 1
1−t

)2

which is quite similar to the model 1 case. However it is time-dependent, which

makes it complicated.

3. Exponential linear function with Model 2 from table(4.1)(Bessel process):

rt = λ− γ(a+KXt)− 2γ2Xt

If we choose γK + 2γ2 ≤ 0 and λ− γa ≥ 0, we will ensure the nonnegativity of

interest rates.

4. Exponential linear function with model 4.2 from table (4.1)(population

growth):

rt = λ− αγXt(k −Xt)−
1

2
(βγXt)

2

If we choose λ = α2γ2k2

4(αγ− 1
2
β2γ2)

and αγ − 1
2
β2γ2 ≥ 0, we have:

rt = αγ − 1

2
β2γ2[Xt −

αγk

2(αγ − 1
2
β2γ2)

]2. (4.3.2)

This is a quadratic function, which might guarantee the positivity if we choose

the right parameters. We can use this interest rate in future numerical experi-

ments.

5. Hyperbolic consine function with model 1 from table (4.1)(OU process):

rt = λ − 1
2
γ2 + γkXt tanh(γ(Xt + c)). Taking λ = 1

2
γ2 and c = 0, we have

rt = γkXt tanh(γ(Xt + c)), which is a positive model. For large value of γXt, as

tanh(γXt)→ 1, the models acts like a Gaussian model, but loses the positivity
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property. For Xt near zero, tanh(γXt) → γXt, the model acts like a squared-

Gaussian model.

6. Linear function:

Model 2: rt = −γT a+Xt(λ−K)γ
γXt

. We shall require of λ and γ that −γa ≥ 0 and

(λ−K)γ ≥ 0 for nonnegativity of the interest rate. This category is appealing

for further use in numerical experiments.

Model 4.1: rt = λ − µ
Xt

. The choices λ ≥ 0 and µ ≤ 0 ensure nonnegativity of

the interest rate.

Model 4.2: rt = λ − kα + αXt. The choices of λ − kα ≥ 0 and α ≥ 0 ensure

nonnegativity of the interest rate.

Model 4.4: rt = λ + α − αµ(t)
Xt

. The choices of λ + α ≥ 0 and αµt ≤ 0 ensure

nonnegativity of the interest rate.

7. Quadratic function: from the result table (4.1), we have specified S and

v in the expression of rt for different interest rate processes. This enables us

to make a proper selection of γ in order to guarantee the positivity of rt =

(Xt−v)TS(Xt−v)
(Xt−a)TQ(Xt−a)+2γ

. Here we summarize some appropriate values of γ for the

result table (4.1).

Model 1: γ = 1
2
(Q−Sv

2

α
− c2Q),

Model 3: γ =
v2S−(λa2− 2ab

1−t−1)

2λ
,

Model 4.1: γ = v2S−λc2Q−2cµQ
2λ

,

Model 4.4: γ = v2S−λa2Q−2aαQµt
2λ

,

Model 4.5: γ = v2S−λa2Q
2λ

.
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4.3.2 Deriving the Term Structure for the Positive In-

terest Models

In order to build the trinomial trees for our positive interest models, we can

apply Ito’s lemma to the expressions for our positive interest rates to get a pair

of stochastic differential equations for the interest rate rt and the underlying

Markov process Xt.

1. Exponential quadratic function with OU process:

rt =λ− 1

2
tr(Q)− (θ −Xt)

TkTQ(Xt − c)−
1

2
(Xt − c)TQ2(Xt − c)

dXt =k(θ −Xt)dt+ dBt

By proper selection of Q̃ and c̃, we can put rt in the form rt = 1
2
Q̃(Xt− c̃)2, and

then by Ito’s lemma, obtain

drt = [Q̃k(θ − c̃)
√

2rt/Q̃− 2krt + Q̃]dt+

√
2Q̃rtdBt. (4.3.3)

2. Exponential linear function with Bessel process:

rt =λ− γa− (γK + 2γ2)Xt

dXt =(a+KXt)dt+ 2
√
XTdWt

By Ito’s lemma, we get

drt = −(γB + 2γ2[(a+KXt)dt+ 2
√
XtdWt]. (4.3.4)
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3. Exponential linear function with population growth model(model 4.2):

rt =(αγ − 1/2β2γ2)[Xt −
αγk

(2αγ − β2γ2)
]2

dXt =dXt = αXt(k −Xt)dt+ βXtdBt

By setting Q = αγ − 1/2β2γ2 and c = αγk
(2αγ−β2γ2)

and using Ito’s lemma, we get

drt = (Q+α(2rt+c
√

2rtQ)(k−
√

2rt/Q−c))dt+β(2rt+c
√

2rtQ)dBt. (4.3.5)

4. Linear function with Bessel process: (set λ = B )

rt =− a/Xt

dXt =(a+BXt)dt+ 2
√
XTdWt

By Ito’s lemma, we get

drt = (r2
t − rt − 2r3

t /a
2)dt+ 2

√
−a/rtdWt. (4.3.6)

5. Linear function with model 4.1: (set λ = 0 )

rt =− µ/Xt

dXt =µdt+ αXtdBt

By Ito’s lemma, we get

drt = (r2
t − 2

r3
t

µ2
)dt− αµdBt. (4.3.7)
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6. Linear function with geometric mean-reversion model: (set λ = kα )

rt =λ− kα + k logXt

dXt =k(α− logXt)Xtdt+ σXtdBt

By Ito’s lemma, we get

drt = (kλ− k/2σ2 − krt)dt+ kσdBt. (4.3.8)

7. Linear function with Brennan-Schwartz model: ( set λ = −α )

rt =− αµt
Xt

dXt =dXt = α(µ(t)−Xt)dt+ σ(t)XtdBt

By Ito’s lemma, we get

drt = (r2
t + αrt −

2r3
t

α2µ2
t

)dt− σtαµt
rt

dBt. (4.3.9)

In the next chapter, we will focus on the model generated by linear function

for population growth model Xt in a stochastic crowded environment,which has

very good mean reversion and positivity properties:

dXt = αXt(k −Xt)dt+ βXtdBt X0 = x > 0.

Using a linear function with this model we have the interest rate rt = λ− kα+

αXt = αXt by choosing λ = kα. For convenience, we take β = σ and kα = θ(t),
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which yields

drt = rt(θ(t)− rt)dt+ σrtdBt. (4.3.10)

4.3.3 A General Expression for drt

From above analysis of the range of λ and other parameters, here is the general

form of rt based on the Markov process Xt with dXt = b(Xt)dt + σ(Xt)dBt in

the one-dimensional case. First, as we know, rt = g(Xt) where

g(x) = (λ− g)f(x)

=
λf(x)− b(x)f ′(x) + 1

2
σ(x)2f ′′(x)

f(x)

= λ− b(x)f ′(x)

f(x)
− σ(x)2f ′′(x)

2f(x)
.

So, we get

drt =
1

f(Xt)2

{
− [b(Xt)b

′(Xt) +
1

2
b′′(Xt)]f

′(Xt) + [b(Xt)
2 +

1

2
b′(Xt)]f

′(Xt)
2

− [b(Xt)
2 + b′(Xt) + b(Xt)σ(Xt)σ

′(Xt) +
1

2
σ′(Xt) +

1

2
σ(Xt)σ

′′(Xt)]f
′′(Xt)

+
1

4
σ(Xt)

2f ′′(Xt)
2 + [

1

2
b(Xt)σ(Xt)

2 + b(Xt) +
1

2
σ(Xt)σ

′(Xt)]f
′(Xt)f

′′(Xt)

− [
1

2
b(Xt) +

1

2
b(Xt)σ(Xt)

2 + σ(Xt)σ
′(Xt)]f

′′′(Xt) +
1

4
σ(Xt)

2f ′(Xt)f
′′′(Xt)

− 1

4
σ(Xt)

2f (4)(Xt) + 2
f ′(Xt)

2f(Xt)
[2b′(Xt)f

′(Xt)− 2b(Xt)f
′′(Xt)

2

+ 2(b(Xt) + σ(Xt)σ
′(Xt))f

′′(Xt)− σ(Xt)
2f ′(Xt)f

′′(Xt)

+ σ(Xt)
2f ′(Xt)f

′′(Xt) + σ(Xt)
2f ′′′(Xt)]

}
dt

+
1

f(Xt)2

{
− b′(Xt)σ(Xt)f

′(Xt) + b(Xt)σ(Xt)f
′(Xt)

2 − [b(Xt)σ(Xt)

+ σ(Xt)
2σ′(Xt)]f

′′(Xt) +
1

2
σ(Xt)

3f ′(Xt)f
′′(Xt)−

1

2
σ(Xt)

3f ′′′(Xt)

}
dBt.
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While this formula subsumes all of the cases we have previously considered,

it is clearly very complicated. However, we intend to analyze this formula in

more detail in future investigations to see if it might shed light on generating

additional positive interest rate models.
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Chapter 5

Calibration of the Interest Rate

Model

Here we generalize slightly the short rate model generated by Rogers’ method

in the previous section to allow for calibration of the model to a specified initial

term structure. Hull and White(1994) [17] have developed and implemented a

series of short-rate models with the mean reversion property. We take the basic

model(4.2.20) and set α = 1, β = σ, and replace the constant k by a nonrandom

function θ(t). The short rate rt = Xt is then governed by the SDE:

drt = rt(θ(t)− rt)dt+ σrtdBt. (5.0.1)

Using the substitution method xt = r0 ln rt suggested by Hull and White,

one can reduce this model to a model with constant volatility. We can apply

Ito’s lemma and obtain

dxt = r0(θ(t)− e
xt
r0 − 1

2
σ2)dt+ σr0dBt. (5.0.2)
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Then we can use the method for the constant volatility case to build the trino-

mial tree for the xt process and then transform back to rt. To build the tree for

the xt process, we choose a convenient ∆t and set ∆x = σr0

√
3∆t(as suggested

by Hull and White(1994) [17]).

5.1 Implementing Trinomial Trees

Now, let us recall the construction of the trinomial tree. For both of the binomial

and trinomial frameworks, there are two ways to implement the model. One

approach is to fix the time step ∆t and branching probabilities, which leaves

the freedom of adjusting the space step ∆x. The other approach is to fix both

∆t and ∆x, while choosing the branching probabilities so that the change over

each time interval ∆t has the correct mean and standard deviation.

For the process (5.0.2), the drift function contains an unknown function of

time θ(t) that permits calibration with the initial yield curve. Now introduce

the following notation as in Hull and White(1994) [17]:

θ(i ∗∆t): time-dependent θ at the i-th time step.

µi,j: the drift rate of r at node (i, j).

pi,j,k: probability of moving from (i, j) to (i + 1, k + ε), where ε = −1, 0, 1 and

k ∈ Z is chosen such that xk is the closest value to xj + µi,j∆t (the expected

value of x). To match the first and second moments in the change in x, the

equations must be satisfied are:

pi,j,k−1(k − j − 1)∆x+ pi,j,k(k − j)∆x+ pi,j,k+1(k − j + 1)∆x = µi,j

pi,j,k−1(k − j − 1)2∆x2 + pi,j,k(k − j)2∆x2 + pi,j,k+1(k − j + 1)2∆x2 = µ2
i,j + σ2∆t

pi,j,k−1 + pi,j,k + pi,j,k+1 = 1
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Straightforward computation yields the solution of these equations

pi,j,k−1 =
1

2
((k − j)2 + (k − j)− (1 + 2(k − j))µi,j

∆x
+
µ2
i,j

∆x2
+
σ2∆t

∆x2
) (5.1.1)

pi,j,k = 1− (k − j)2 + 2(k − j)µi,j
∆x
−

µ2
i,j

∆x2
− σ2∆t

∆x2
(5.1.2)

pi,j,k+1 =
1

2
((k − j)2 − (k − j)− (1− 2(k − j))µi,j

∆x
+
µ2
i,j

∆x2
+
σ2∆t

∆x2
) (5.1.3)

In our case, we have modeled the above trinomial tree equations for σ ∗ r0

instead of σ, which is the same process but with different symbols. From the

model we derived at the beginning, the expression for µi,j is

µi,j = r0(θ(i ∗∆t)− e
xi,j
r0 − 1

2
σ2)∆t (5.1.4)

where xi,j = x0+j∆x. To determine the values of θ(t) we use forward induction.

Assume the tree has been constructed up to time i∆t. For k ≤ i, define Q(k, j)

as the value at time 0 of a security that pays off 1 if node (k, j) is reached and

zero otherwise. Then Q(k, j) is calculated from the following relationship:

Q(k, j) =
∑
j∗

Q(k − 1, j∗)q(j∗, j)e−rk−1,j∗∆t (5.1.5)

where q(j∗, j) is the probability of moving from (k − 1, j∗) to node (k, j), and

rk−1,j∗ is the short rate at node (k− 1, j∗). So once we get Q(k, j) for all k ≤ i,

θ(i∆t) can be determined by the following scheme. The value at node (i, j) of

a bond maturing at time (i+ 2) ∆t is

e−ri,j∆tE[e−r(i+1)∆t|r(i) = ri,j],
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where E is the risk-neutral expectation operator and r(i) is the value of r at time

i∆t. So, the value at time zero of a discount bond maturing at time (i + 2)∆t

is given by

e−(i+2)R(i+2)∆t =
∑
j

Q(i, j)e−ri,j∆tE[e−r(i+1)∆t|r(i) = ri,j]

where R(i) is the term structure of the bond to calibrate. If we define

ε(i, j) = E[r(i+ 1)− r(i)|r(i) = ri,j],

then we get E[e−r(i+1)∆t|r(i) = ri,j] = e−ri,j∆t ∗ eε(i,j)∆t. By expanding e−ε(i,j)∆t

as a Taylor series, taking the expectation, and ignoring terms of higher order

than ∆t2, we get the following expression:

E[e−r(i+1)∆t|r(i) = ri,j] = e−ri,j∆t ∗ (1− µr,i,j∆t2).

So, for our model with µr,i,j = (θ(i ∗∆t)− ri,j)ri,j, which is the drift for the rt,

we can derive the expression of θ(i ∗∆t) as follows:

θ(i ∗∆t) =

∑
Q(i, j)e−2ri,j∆t(1 + r2

i,j∆t
2)− e−(i+2)R(i+2)∆t∑

Q(i, j)e−2ri,j∆tri,j∆t2
. (5.1.6)

At this point, we are all set to build the trinomial-tree-algorithm:

Step 1: From µi−1,j and the implied branching process create the short rate
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ri,j, xi,j and discount factors at time i. For any j at i,

xi,j = x0,0 + j∆x

ri,j = exi,j/r0

di,j = e−ri,j∆t

Step 2: Update the pure security prices for every node at time step i accord-

ing to the expression of Q(i, j) in equation(5.1.5).

Step 3: Determine θ(i ∗∆t) by equation(5.1.6).

Step 4: Using θ(i ∗∆t) and xi,j update µi,j for all j by equation(5.1.4).

Step 5: Decide the branching process to determine k.

Step 6: Calculate the branching probabilities using the solutions(5.1.1) to

(5.1.3).

Here we will implement the algorithm and compare the distribution result

with a Monte-Carlo simulation in the case where we have a constant θ in the

equation (5.1.4) for µ. For constant θ, we omit step 2 and step 3 from the above

algorithm. In the following figures, we only present results for the first 4 time

steps due to the limitation of space, but we will present the distribution in the

next subsection and compare it with the Monte Carlo method. Figure 5.1 is the

simple case of the trinomial tree generated for the trend of the rt with θ held

constant with value 0.1 and R0 held constant at 0.05. Figure 5.2 is the trinomial

tree generated for the trend of the rt with θ held constant with value 0.4 and

real market term structure R0. Figure 5.3 is the trinomial tree generated for the

trend of the rt with θ(t) time dependent, which we get by the above algorithm.
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5.2 Comparing Simulation Results with

the Closed Form Solution

Using a change of variable, we can find a closed form expression for the solution

rt of the modified population growth model(5.0.1):

drt = rt(θ(t)− rt)dt+ σrtdBt.

This is a bit different from the model(4.2.20) due to the presence of the

time-varying factor θ(t). Here we follow the method suggested in Chap.4 of

Gard(1988) [11]. Let Yt = f(t, rt) = e−σ
∫ rt
0

1
σu
du = 1

rt
, and use the Ito’s formula.

dYt = ftdt+ frdrt + 1/2frr(drt)
2

= (1− (θ(t)− σ2)Yt)dt− σYtdBt.

Now take Ft = e
∫ t
0 (θ(s)−1/2σ2)ds+σdBt , so we have

dFt = Ft[(θ(t)− 1/2σ2)dt+ σdBt].

Set Zt = FtYt and use the Ito’s formula again:

dZt = FtdYt + YtdFt + 1/2dFtdYt = Ftdt.

Integrating both sides and using Zt = FtYt, we obtain the solution:

rt =
eσBt+

∫ t
0 θ(s)ds−

1
2
σ2t

r−1
0 +

∫ t
0
eσBu+

∫ u
0 θ(s)ds− 1

2
β2udu

. (5.2.1)
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With this closed form solution, we can numerically generate the standard Brow-

nian motion Bt and thus simulate the expression of eσBt . Also, we use a step

function interpolation for θ(t). Our computations yield a pattern which is sim-

ilar to the trinomial tree result. Figure 5.4 is the numerical result generated by

this method for the trend of the rt. Figure 5.5 is the distribution of the rt at

time t = 3. The computation of the probabilities in the previous section of each

tranche at the final step yields:

P (r20 < 2.50%) = 0.084, P (2.50% ≤ r20 < 3.10%) = 0.481,

P (3.10% ≤ r20 < 3.60%) = 0.333, P (r20 ≥ 3.60%) = 0.101.

Compare these probabilities to the distribution generated by the Monte Carlo

method:

P (r20 < 2.477%) = 0.086, P (2.477% < r20 < 3.13%) = 0.482,

P (3.13% ≤ r20 < 3.658%) = 0.3211, P (r20 ≥ 3.658%) = 0.1105.

We can see that our trinomial tree distribution is very consistent with the

Monte Carlo simulation obtained via the closed form solution. By way of il-

lustration, we also present a comparison of numerical results in the case where

θ is constant. Figure 5.6 and Figure 5.7 provide graphical summaries of the

comparison simulations. The computation of the probabilities in the previous

section of each tranche at the final step for the case of constant θ, yield:

P (r20 < 3.24%) = 0.0332, P (3.24% ≤ r20 < 3.51%) = 0.3126,

P (3.51% ≤ r20 < 3.80%) = 0.4722, P (r20 ≥ 3.80%) = 0.181.
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Compare these probabilities to the distribution generated by the Monte Carlo

method:

P (r20 < 2.95%) = 0.059, P (2.50% < r20 < 3.00%) = 0.414,

P (3.00% ≤ r20 < 3.05%) = 0.46, P (r20 ≥ 3.05%) = 0.066.

We see that for constant θ, there is a small shift between trinomial tree method

and Monte Carlo method, but the distributions are otherwise very close.

Figure 5.1: rt generated by constant θ = 0.1 and R0 = 0.05 using trinomial tree
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Figure 5.2: rt generated by constant θ = 0.4 and R0 = 0.00175 using trinomial
tree
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Figure 5.3: rt generated by Rogers’ method using trinomial tree with θ(t)
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Figure 5.4: rt generated by closed formula with θ(t) using Monte Carlo method

Figure 5.5: rt Distribution at time 20 with θ(t)
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Figure 5.6: rt generated by closed formula using Monte Carlo method with theta
= 0.4

Figure 5.7: rt Distribution at time 20 with theta = 0.4
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Chapter 6

Application of the Interest Rate

Model to the Firm Default

Probability

6.1 Framework for Interest Rate and Firm Value

The simplest interest rate model for fixed income markets, under a risk-neutral

measure, is given by the following (scalar) stochastic differential equation (we

will use SDE for the abbreviation in this dissertation):

drt = α(rt, t)dt+ σ(rt, t)dWr, (6.1.1)

where the instantaneous drift, α(rt, t) and the volatility σ(rt, t) are smooth

functions with σ > 0(Cairns(2004) [6]). Sometimes (6.1.1) is called a short rate

model because rt is the interest rate for short-term borrowing.

Under a hypothetical risk-neutral measure, the dynamics of firm value, Vt,
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are routinely modeled by a linear, scalar SDE

dVt
Vt

= rtdt+ σv(t)dWv,t, (6.1.2)

where the instantaneous drift rt denotes the stochastic interest rate process

and σv(t) is the instantaneous volatility, which is a non-random function of

time.(Acharya and Carpenter(2002) [1]).

Moreover, suppose that the shocks to the firm fundamentals and the default-

free interest rates drive the variation of Vt. The shocks to the firm fundamentals

under the risk-neutral measure P̃ are modeled by the Brownian motion processes

dWv, while the shocks to the default-free interest rates are modeled by the

Brownian motion process dWr. The instantaneous correlation, ρt, between dWv

and dWr is assumed to be,

E[(dWv,t)(dWr,t)] = ρtdt (6.1.3)

with |ρt| < 1.

Now, setting gt = log Vt, and applying Itô’s formula, we get (Kloeden and

Platen(1992) [21])

dgt = [rt −
1

2
σ2
ν(t)]dt+ σν(t)dWν,t (6.1.4)

By the following manipulation, we can change the original correlated Brownian

motion processes Wr,t and Wν,t to independent Brownian motion processes W1,t

and W2,t, respectively. From now on assume ρt = ρ is a constant, set dWr,t =

dW1,t and dWν,t = ρdW1,t +
√

1− ρ2dW2,t (Shreve(2004) [38]). Levy’s theorem

implies W2,tis a Brownian motion process and a simple computation shows that
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W1,t and W2,t are uncorrelated. Then we can rewrite of the dynamics of interest

rate and firm value as

drt = α(rt, t)dt+ σr(rt, t)dW1,t,

dgt = [rt −
1

2
σ2
ν(t)]dt+ ν1(t)dW1,t + ν3(t)dW2,t

(6.1.5)

where ν1(t) = ρσv(t) and ν3(t) =
√

1− ρ2σν(t). Integrating the above equation

for gt, we obtain

gt = g0 +

∫ t

0

rsds− 1/2

∫ t

0

σ2
ν(s)ds+ xt + zt (6.1.6)

where xt =
∫ t

0
ν1(s)dW1,s, and zt =

∫ t
0
ν3(s)dW2,s .

We will use a narrow sense linear model for the interest rate dynamics.

Setting

α(rt, t) = θ(t)− c(t)rt and σr(rt, t) = σr(t), (6.1.7)

in (6.1.1), we get the narrow sense linear model (generalized Hull-White model

(2000) [19]) given by

drt = −c(t)rtdt+ θ(t)dt+ σr(t)dW1,t. (6.1.8)

Setting c(t) =
∫ t

0
c(s)ds, the solution of (6.1.7) is given by (Arnold(1974) [2])

rt = rt(det) + rt(ran), (6.1.9)
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where

rt(det) = e−c(t)r0 +

∫ t

0

e−[c(t)−c(s)]θ(s)ds

rt(ran) =

∫ t

0

ν2(u)dW1,u,

(6.1.10)

and ν2(u) = e−[c(t)−c(u)]σr(u). So, it follows that

∫ t

0

rsds =

∫ t

0

rs(det)ds+

∫ t

0

rs(ran)ds.

Here we observe that, by integration by parts, we have

∫ t

0

rs(ran)ds =

∫ t

0

(t− s)ν2(s)dW1,s.

Substituting the above result into (6.1.6), we get

gt − g0 = gt(det) + gt(ran), (6.1.11)

where

gt(det) =

∫ t

0

rs(det)ds− 1/2

∫ t

0

σ2
ν(s)ds

gt(ran) = [xt +

∫ t

0

rs(ran)ds] + zt.

(6.1.12)

By straightforward computation we see that gt−g0 follows a normal distribution,

gt − g0 ∼ N(µ(t), σ2(t)), (6.1.13)
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where µ(t) = gt(det) and σ2(t) = σ2
1(t) + σ2

2(t), with

σ2
1(t) =

∫ t

0

[ν1(s) + (t− s)ν2(s)]2ds

σ2
2(t) =

∫ t

0

ν2
3(s)ds.

(6.1.14)

Based on the time change properties of the Brownian motion process and its

relation with Itô integrals ((Shiryaev(1999) [37] ), we can get the formula for

Vt:

Vt/V0 = egt−g0 = e
∫ t
0 rs(det)ds−

1
2

∫ t
0 σν(s)2ds+

√
T1(t)
t

W1,t+

√
T2(t)
t

W2,t (6.1.15)

where

T1(t) =

∫ t

0

[ρσv(s) + (t− s)e−(c̄(t)−c̄(s))]2σr(s)
2ds

T2(t) =

∫ t

0

σν(s)
2(1− ρ2)ds.

From above, we can see the firm value follows the lognormal distribution.

Recalling that every Ito integral is equivalent to a time scaled Brownian motion

process(Shiryaev(1999) [37]), we can change the formula of gt(ran) in (6.1.11)

as

gt(ran) = B1(σ1(t)2) +B2(σ2(t)2) (6.1.16)

where B1 and B2 are two independent Brownian motion processes with

B1(σ1(t)2) =

∫ t

0

[ν1(s) + (t− s)ν2(s)]dW1,s, B2(σ2(t)2) =

∫ t

0

ν3(s)dW2,s

and σ1(t)2 and σ2(t)2 are given in (6.1.14). Since B1(t) and B2(t) are indepen-
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dent, there exists a Brownian motion process B(t) such that

gt(ran) = B(σ(t)2) (6.1.17)

where σ2(t) = σ2
1(t) + σ2

2(t).

Combining above results, we obtain that

gt − g0 = µ(t) +B(σ(t)), (6.1.18)

where µ(t) = gt(det) and σ(t) defined as above.

6.2 The Application of First Passage Time to

Firm Default Probability

6.2.1 Firm Default Probability

Definition 6.1. Default risk refers to the possibility that the issuer fails to

honor the agreement and obligation with respect to the timely payment of in-

terest and principal for a given period.

For our purpose a firm defaults when its value falls under a prescribed bar-

rier. There are two approaches to structurally modeling the occurrence of de-

fault: the classical approach by Merton(1974) [27] and the first-passage-time

approach by Black and Cox(1976) [3]. Consider a firm with market value

Vt = E + K at time t, where E is the equity value and K is the debt value.

Suppose the debt matures at time T , at which time the firm is obligated to re-

pay the amount K to bond holders. In the classical approach, default happens
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Figure 6.1: Default in the first-passage approach

when VT < K. The previous section’s discussion presents a model for which Vt

follows the geometric Brownian motion:

dVt
Vt

= µdt+ σvdWv,t, V0 > 0, (6.2.1)

where µ ∈ R is a drift term, σv > 0 is the volatility term and Wv,t is a stan-

dard Brownian motion. By Ito’s lemma, we can obtain the following default

probability result Pd(K,T ) due to Merton(1974) [27]:

Pd(K,T ) = P [VT < K] = P [σvWv,T < log
K

V0

− (µ− 1/2σ2
v)T ]

= Φ(
log K

V0
− (µ− 1/2σ2

v)T

σv
√
T

)

(6.2.2)

where Φ is the standard normal cumulative distribution function.
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In the classical approach, there is nothing to trigger the default event during

the time period prior to maturity. Black and Cox(1976) [3] and Giesecke(2004)

[12] propose that the default is allowed to occur before maturity when the value

of the firm falls below some specific level B prior to maturity (See figure 6.1).

Thus, Pd(B, T ) is the probability that the firm’s value is below B at some time

t < T , i.e.,

Pd(B, T ) = P [ min
{t<T}

Vt < B]. (6.2.3)

If we assume the firm value follows the same dynamics (6.2.1), then by using

the first passage time approach, the default probabilities can be determined as

in Giesecke(2004) [12]:

Pd(K,T ) = P [min
t<T

Vt < B] = P [min
t<T

((µ− 1/2σ2
v)t+ σvWv,s) < log

B

V0

]

= Φ(
log B

V0
− µ̄T

σv
√
T

) + (
B

V0

)
2µ̄

σ2
v Φ(

log B
V0

+ µ̄T

σv
√
T

)

(6.2.4)

where µ̄ = (µ− 1
2
σ2
v). In the next section, we will also propose an new alternative

algorithm to derive this default probability(6.2.4).

Now, suppose we allow either of the above default trigger events to occur

and define the probability, Pd(K,B, T ), that the firm’s value is either below B

at some time t < T or below K at time T , i.e.,

Pd(K,B, T ) = P [ min
{t<T}

Vt < B or VT < K]. (6.2.5)

Consequently, the default probability of the firm is essentially an instance of

the first passage time problem. With the same firm value dynamics (6.2.1), to

derive the default probabilities(6.2.5), we need to use the reflection principle

method (refer to Shreve(2004) [38]). Giesecke(2004) [12] has given the default
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probability result for this dynamics:

Pd(K,B, T ) = P [ min
{t<T}

Vt < B or VT < K]

= Φ(
log B

V0
− µ̄T

σv
√
T

) + (
B

V0

)
2µ̄

σ2
v Φ(

log B2

KV0
+ µ̄T

σv
√
T

).

(6.2.6)

In the work of Qian(2008) [34], the computation of this default probability was

generalized to allow a stochastic interest rate governed by the Vasicek model.

This computation relies on the solution of a first-passage-time problem for a

Brownian motion process with a linear (in time) drift term. Please see the figure

(6.3) for the default probability for condition (6.2.4) and condition (6.2.5). Our

next object is to indicate an approach to the first-passage-time problem for

Brownian motion process with nonlinear drift terms. Such a generalization

would allow the use of nonlinear interest rate models in the default probability

computation.

6.2.2 Discussion on the First Passage Time

Following the result of section 6.1 we saw that gt − g0 = µ(t) + B(σ(t)2). Let

τ = σ(t)2 for 0 ≤ t ≤ T . Note that σ(t)2 is generally a strictly increasing

function of t, so t 7→ σ(t)2 has a well defined inverse ξ, i.e. τ = σ(t)2 ⇔ t = ξ(τ)

with 0 ≤ τ ≤ σ(T )2, Then we obtain the following:

g(ξ(τ))− g0 = µ(ξ(τ)) +B(τ). (6.2.7)

Defining X(τ) = g(ξ(τ)) − g0 and λ(τ) = µ(ξ(τ)), we obtain a diffusion

process:

X(τ) = λ(τ) +B(τ).
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Now let us look at our default probability (6.2.5). As X(τ) = gt−g0 = log Vt
V0

,

to avoid default we need X(τ) ≥ logB − log V0. We set B = logB − log V0,

K = logK − log V0 and T̄ = σ(T )2. This results in equation (6.2.5) taking the

form:

Pd(K,B, T ) = P [ min
{0≤τ≤T̄}

X(τ) ≤ B or X(T̄ ) ≤ K] (6.2.8)

Without loss of generality, we can change the time variable τ to t from now

on, and change it back when we get the first passage probability, so the diffusion

process takes the form:

X(t) = λ(t) +B(t) i.e. dX(t) = λ̇(t)dt+ dB(t). (6.2.9)

Clearly, we can view this as a first passage time problem for a one-dimensional

Markov process. In Qian’s work(2008) [34], he derived the first passage time

probability for the special case where λ(t) is linear or constant. In that case,

the Girsanov’s theorem can be used to transfer the diffusion process (6.2.9) to

a standard Brownian motion, and then the reflection principle can be used to

compute the first passage time (default probability). Now let us consider the

general case where λ(t) is a smooth function. Define the exponential martingale

process

Λ(t) = e−
∫ t
0 λ̇(s)dBs−1/2

∫ t
0 λ̇

2(s)ds. (6.2.10)

By Radon-Nikodym theorem and Girsanov’s theorem, it defines a new equiva-

lent measure PΛ

dPΛ = Λ(T̄ )dP (6.2.11)
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so that X(t) is a Brownian motion process under the new measure PΛ. By

defining X̃(t) = −X(t), K̃ = −K̄, and B̃ = −B̄, we have following relations:

X(T̄ ) > K̄ ⇔ X̃(T̄ ) < K̃

min
{0≤t≤T̄}

X(t) = − max
{0≤t≤T̄}

(−X(t)) > B ⇔ max
{0≤t≤T̄}

X̃(t) < B̃.
(6.2.12)

So, the default probability (6.2.8) can be transformed to the following form:

Pd(K,B, T ) = 1− P [ min
{0≤t≤T̄}

X(t) > B, X(T̄ ) > K]

= 1− P [ max
{0≤t≤T̄}

X̃(t) < B̃, X̃(T̄ ) < K̃].

(6.2.13)

The joint density function of (max0≤t≤T̄ ) under PΛ can be obtained by the

joint density function (2.2.17) given in chapter 2. This allows us to compute

the probability (6.2.13):

P [ min
{0≤τ≤T̄}

X(τ) ≤ B or X(T̄ ) ≤ K]

= 1− E[I( max
{0≤t≤T̄}

X̃(t) < B̃, X̃(T̄ ) < K̃)]

= 1− EΛ[Λ(T )−1I( max
{0≤t≤T̄}

X̃(t) < B̃, X̃(T̄ ) < K̃)]

= 1−
∫ B̃

0

∫ K̃

∞
e
∫ T̄
0 λ̇(s)dBs+1/2

∫ T̄
0 λ̇2(s)dsf(T̄ , z, y)dzdy

(6.2.14)

where

f(T̄ , z, y) =
2(2z − y)

T̄
√

2πT̄
e−

(2z−y)2

2T̄

is the joint density function. Unfortunately the term
∫ T̄

0
λ̇(s)dBs prevents the

derivation of a closed form solution for the above probability. It is still feasible

to explore the use of numerical methods to approach the solution, which we
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leave for future work.

In light of these difficulties, another method is needed for the default prob-

ability computation involves a diffusion process with a nonlinear drift term. To

solve this nonlinear problem, we will implement the method of Fortet(1943)

[10]. He proposed an implicit formula for the probability density that the first

passage time through a constant boundary occurs at time s. Here we will first

consider the case of a one-factor continuous Markov process lt where in terms

of above notation lt = B −Xt.

Define pl(s, ls, T, lT ) as the free transition density for lt and k(0, l0, s, ls =

l) as the probability density that the first passage time through a constant

boundary l occurs at time s. Then the implicit formula proposed by Fortet is

expressed as:

pl(0, l0, T, lT ) =

∫ T

0

k(0, l0, s, ls = l)pl(s, ls = l, T, lT )ds ∀(lT > l > l0).

(6.2.15)

The transition density pl(s, ls, T, lT ) can be derived from the transition density

p(s, x, t, y) for Xt by using the change of variable lt = B−Xt. With the default

boundary at l = 0 and initial position l0 < 0, we obtain the desired default

probability by applying
∫∞

0
dlT to both sides of equation (6.2.15). Before doing

this, we need to use Kolmogorov’s backward equation to derive the transition

probability (Arnold(1974) [2]).

Now let us return to our first passage time problem and consider again the

diffusion process (6.2.9):

dX(s) = λ̇(s)ds+ dB(s).
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In our example, we consider the one-dimensional case and set f(s) = λ̇(s),

which we assume is a smooth function with respect to t. According the definition

of diffusion process, the drift vector is f(s), and the one-by-one diffusion matrix

is 1. Then using the Kolomogorov’s backward equation (2.3.7), and setting

τ = t− s, we get the following heat equation with time-dependent drift:

∂p

∂τ
= f(t− τ)

∂p

∂x
+ 1/2

∂2p

∂x2
(6.2.16)

with initial condition p(0, x) = δ(x− y).

To get the solution, we use the change of variables: x̃ = x +
∫ τ̃

0
f(t − u)du

and τ̃ = τ , which allows us to transform the PDE into a standard heat equation:

∂p

∂τ̃
= 1/2

∂2p

∂x̃2
.

Using the well known solution of standard heat equation, changing variables

x̃→ x, τ̃ → τ → t− s, and noting
∫ t−s

0
f(t− u)du = λ(t)− λ(s), for any fixed

t and y, we get the transition probability density function of (6.2.9 ):

p(s, x, t, y) =
1√

2π(t− s)
e−

(x+λ(t)−λ(s)−y)2

2(t−s) . (6.2.17)

Recalling the default probability (6.2.2), to get the probability P [XT <

K], we just need to take the integration of p(0, X0, T, y) by
∫ K
−∞ dy. For the

probability (6.2.4): P [min{t<T}Xt < B], we get the transition probability for lt

as follows:

pl(s, x, t, y) =
1√

2π(t− s)
e−

(x−λ(t)+λ(s)−y)2

2(t−s) . (6.2.18)

This transition probability can also be alternatively derived by the Independence
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Lemma, please refer to Shreve(2004) [38].

For the default probability (6.2.8), due to lack of independence, we are not

able to derive the joint distribution for (6.2.8). So, to approximate this joint

distribution, we will use a dynamic bounds condition to mimic the joint condi-

tions:

kt = v + φet (6.2.19)

where v is the lower bound B as defined in 6.2.4, φ is a constant such that

k(T ) = K. Here is the graph for this dynamic bound. We will implement the

following algorithm using this dynamic bound to compare the result with the

work of Qian(2008) [34].

Figure 6.2: Mimic Dynamic bound

First, let us look at how to implement Fortet’s method for P [min{t<T}Xt <

B]. With the default boundary at l = 0 and initial position l0 < 0, integrate
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both sides of equation (6.2.15) with
∫∞

0
dlT as follows:

∫ ∞
0

pl(0, l0, T, lT )dlT =

∫ ∞
0

∫ T

0

k(0, l0, s, 0)pl(s, 0, T, lT )dsdlT ∀(lT > l > l0).

(6.2.20)

By discretizing the above equation according to the method used in Collin-

Dufresne and Goldstein(2001) [32], we can obtain an approximate solution for

the first passage time density. Define Q(l0, T ) to be the risk-neutral probability

of the event [min{0≤t≤T} : X(t) ≤ B], i.e. the probability that default occurs

before time T . First, we discretize the time into n equal intervals with ∆t = T/n

and approximate the right hand side of equation (6.2.20) by estimating the

value of an integral over an interval using the value of the integrand at the

midpoint of the interval. More specifically, define M(t) =
∫∞

0
pl(0, l0, t, lt)dlt and

N(s, t) =
∫∞

0
pl(s, ls = l, t, lt)dlt. Then by taking ai = i∆t, we can approximate

the first two terms of the discretizing approximation of the equation (6.2.20) as:

M(a1) =

∫ ∞
0

∫ ∆t

0

k(0, l0, s, 0)pl(s, 0, t, lt)dsdlt

=∆tk(0, l0,∆t/2, 0)

∫ ∞
0

pl(∆t/2, 0,∆t, l∆t)dlt

≈∆tk(0, l0,∆t/2, 0)N(a1/2, a1)

M(a2) =(

∫ ∞
0

∫ ∆t

0

+

∫ ∞
0

∫ 2∆t

∆t

)k(0, l0, s, 0)pl(s, 0, t, lt)dsdlt

≈∆tk(0, l0,∆t/2, 0)N(a1/2, a2) + ∆tk(0, l0, 3∆t/2, 0)N(a3/2, a2).

(6.2.21)

Continuing this pattern, we can obtain n equations for the n unknowns:

k(0, l0, (i− 1/2)∆t, l(i−1/2))∆t = l), (6.2.22)

79



where i ∈ 1, ..., n. If we define

qi = ∆tk(0, l0, (i− 1/2)∆t, l(i−1/2))∆t = l). (6.2.23)

Then we can approximate the default probability as:

P̃[ min
{0≤t≤T}

: X(t) ≤ B] ≈ Q(l0, T ) =
n∑
i=1

qi, (6.2.24)

where

q1 = M(a1)/N(a1/2, a1), (6.2.25)

qi = (1/N(ai−1/2, ai)[M(ai)−
i−1∑
j=1

qjN(aj−1/2, ai)], for i = 2, 3, ..., n.

(6.2.26)

6.2.3 Application of the First Passage Time to the Va-

sicek Model

By introducing the log-firm value gt = log Vt and supposing the interest rate dy-

namics follow a narrow sense linear model, we get the Longstaff-Schwartz(1992)

[23] (LS) model specified under the risk-neutral measure. This model can be

characterized by the following Markov system:

dgt = [rt −
1

2
σ2
ν(t)]dt+ σν(t)dWν,t,

drt = −c(t)rtdt+ θ(t)dt+ σr(t)dWr,t.

(6.2.27)
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Here, we use a simple special case for rt: the Vasicek model,

drt = k(θ − rt)dt+ σr(t)dWr,t. (6.2.28)

So, c(t) = k and θ(t) = kθ. In this section, we will consider the dynamic bound

following the work of Pierre Collin Dufresne and Robert S. Goldstein(2001)[32]

and the dynamic bound (6.2.19).

First, consider that the log-default lower bound follows a dynamical system

of the form (Pierre Collin Dufresne and Robert S. Goldstein (2001)):

dkt = λ(gt − v − kt − φ(rt − θ))dt, (6.2.29)

where v is the target log-leverage-ratio and λ is constant factor of the firm debt.

This model can be interpreted that when kt is less than gt−v, the firm tends to

increase kt, and vice-versa. Generally, firms value tend to issue debt when their

log-leverage-ratio falls below v, and tend to replace maturing debt when their

log-leverage-ratio is above v. Here we also assume the threshold is a decreasing

function of the interest rate following the work of Pierre Collin Dufresne and

Robert S. Goldstein (2001).

Letting lt = kt − gt and applying Ito’s lemma, we get

dlt = λ(l(rt)− lt)dt− σνdWν,t (6.2.30)

where l(rt) = σ2
ν

2λ
− v + φθ − rt(

1
λ

+ φ), a decreasing function of rt. Now, set

dWr,t = dW1,t and Wν,t = ρdW1,t +
√

1− ρ2dW2,t (Shreve(2004) [38]), where

dW1,t and dW2,t are uncorrelated processes. Then we can rewrite the coupled
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dynamics of interest rate and firm value as

drt = k(θ − rt)dt+ σr(t)dW1,t,

dlt = (−(λφ+ 1)rt − λlt + λ(φθ − v) +
1

2
σν(t)

2)dt− ν1(t)dW1,t − ν3(t)dW2,t

(6.2.31)

where ν1(t) = ρσν(t) and ν3(t) =
√

1− ρ2σν(t).

Thus, we can write the coupled dynamics of rt, lt in matrix form as

drt
dlt

 = (

 −k 0

−(λφ+ 1) −λ


rt
lt

+

 kθ

λ(φθ − v) + 1
2
σν(t)

2

)dt

+

 σr(t) 0

−ν1(t) −ν3(t)


dW1,t

dW2,t

 .
(6.2.32)

We will use the notation

A =

 −k 0

−(λφ+ 1) −λ

 , Yt =

drt
dlt

 , a(t) =

 kθ

λ(φθ − v) + 1
2
σν(t)

2

 ,
B(t) =

 σr(t) 0

−ν1(t) −ν3(t)

 , dZT
t =

dW1,t

dW2,t

 , Y0 = c =

r0

l0

 .
Then we see that the the vector process Xt follows the narrow sense linear

stochastic differential equation:

dYt = (AYt + a(t))dt+BdZT , Yt0 = c.
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For t0 = u, we see by Arnold(1974) [2], the solution of the above SDE is

Yt = eA(t−u)c+

∫ t

u

eA(t−s)(a(s)ds+B(s)dZT ) (6.2.33)

where eA(t−u) =
∑∞

i=0A
i (t−u)i

i!
.

Here

A =

 −k 0

−(λφ+ 1) −λ


is a lower triangular matrix, so it is not hard to compute eA and eA(t−u). We

need to consider two case: I) k 6= λ; II) k = λ.

Case I k 6= λ: In this case, matrix A has two distinct eigenvectors, which

means A can always be diagonalized. Let

Q =

0 k−λ
1+λφ

1 1

 ,
the eigenvector matrix of A. Then the diagonalized matrix of A is

D = Q−1AQ =

−λ 0

0 −k

 .
Because QQ−1 = I, QD2Q−1 = QD(Q−1Q)DQ−1 = (QDQ−1)2 = A2, we get

QDiQ−1 = (QDQ−1)i = Ai. Consequently we have

eA = eQDQ
−1

=
∞∑
i=0

(QDQ−1)i

i!
=
∞∑
i=0

QDiQ−1

i!

= Q

∞∑
i=0

Di

i!
Q−1 = QeDQ−1
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Similarly, we get eA(t−u) = QeD(t−u)Q−1. For D, as

a 0

0 b


i

=

ai 0

0 bi

 ,
we get

eD(t−u) = exp

−λ(t− u) 0

0 −k(t− u)

 =

e−λ(t−u) 0

0 e−k(t−u)


which yields

eA(t−u) = QeD(t−u)Q−1 =

 e−k(t−u) 0

(1+λφ)(e−k(t−u)−e−λ(t−u))
k−λ e−λ(t−u).


Case II k = λ: For this case, the matrix A only has one independent eigen-

vector, which means it cannot be diagonalized. But we can rewrite A as:

 −k 0

−(1 + kφ) −k

 =

−k 0

0 −k

+

 0 0

−(1 + kφ) 0

 .
Due to the fact of

 0 0

−(1 + kφ)(t− u) 0


i

= 0, for i ≥ 2
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we see that

exp

 0 0

−(1 + kφ)(t− u) 0

 = I +

 0 0

−(1 + kφ)(t− u) 0


=

 1 0

−(1 + kφ)(t− u) 1

 .
Thus we obtain

eA(t−u) = exp

−k(t− u) 0

0 −k(t− u)

exp
 0 0

−(1 + kφ)(t− u) 0


=

e−k(t−u) 0

0 e−k(t−u)


 1 0

−(1 + kφ)(t− u) 1


=

 e−k(t−u) 0

−(1 + kφ)(t− u)ek(t−u) e−k(t−u)

 .
Since generically, we have k 6= λ, we first consider case I. Substitute eA(t−u)

into the solution of Y(t) (6.2.33) and t0 = 0, to get the solution of (6.2.31) as

given by:

rt = e−ktr0 +

∫ t

0

kθe−k(t−s)ds+

∫ t

0

σr(t)e
−k(t−s)dW1,t

lt = l(0)r0 + e−λtl0 +

∫ t

0

[kθl(s) + e−λ(t−s)(λ(φθ − v) +
1

2
σν(s)

2)]ds

+

∫ t

0

[l(s)σr(s)− e−λ(t−s)ν1(s)]dW1,s −
∫ t

0

e−λ(t−s)ν3(s)dW2,s

where l(0) = 1+λφ
k−λ (e−kt − e−λt).
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From above expression for lt we can write

lt = lt(det) + lt(ran) (6.2.34)

where

lt(det) =l(0)r0 + e−λtl0 +

∫ t

0

[kθl(s) + e−λ(t−s)(λ(φθ − v) +
1

2
σν(s)

2)]ds

lt(ran) =

∫ t

0

[l(s)σr(s)− e−λ(t−s)ν1(s)]dW1,s −
∫ t

0

e−λ(t−s)ν3(s)dW2,s.

From this expression we see that lt follows a normal distribution,

lt ∼ N(µ(t), σ(t)2), (6.2.35)

where µ(t) = lt(det), and σ(t)2 = σ1(t)2 + σ2(t)2, with

σ1(t)2 =
∫ t

0
[l(s)σr(s) − e−λ(t−s)ν1(s)]2ds, and σ2(t)2 =

∫ t
0
[e−λ(t−s)ν3(s)]2ds, and

where ν1(t) = ρσν(t), ν3(t) =
√

1− ρ2σν(t) and l(s) = 1+λφ
k−λ (e−k(t−s)− e−λ(t−s)).

Now, to compare the numerical result of Fortet’s method to Qian’s method,

let us look at the dynamic bound (6.2.19) that mimics the joint default condition

of Giesecke [12]. Letting lt = kt − gt = v + φet − gt and applying Ito’s lemma,

we get

dlt = (φet +
1

2
σv(t)

2 − rt)dt− σνdWν,t. (6.2.36)

Now, set dWr,t = dW1,t and Wν,t = ρdW1,t +
√

1− ρ2dW2,t (Shreve(2004) [38]),

so that dW1,t and dW2,t are uncorrelated processes. Then we can rewrite the
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coupled dynamics of interest rate and firm value as

drt = k(θ − rt)dt+ σr(t)dW1,t,

dlt = (φet +
1

2
σv(t)

2 − rt)dt− ν1(t)dW1,t − ν3(t)dW2,t

(6.2.37)

where ν1(t) = ρσν(t) and ν3(t) =
√

1− ρ2σν(t). Thus, we can write the coupled

dynamics of rt, lt in matrix form as

drt
dlt

 = (

−k 0

−1 0


rt
lt

+

 kθ

φet + 1
2
σν(t)

2

)dt+

 σr(t) 0

−ν1(t) −ν3(t)


dW1,t

dW2,t

 .
(6.2.38)

We will use the notation

A =

−k 0

−1 0

 , Yt =

drt
dlt

 , a(t) =

 kθ

φet + 1
2
σν(t)

2

 ,
B(t) =

 σr(t) 0

−ν1(t) −ν3(t)

 , dZT
t =

dW1,t

dW2,t

 , Y0 = c =

r0

l0

 .
Then we see that the the vector process Xt follows the narrow sense linear

stochastic differential equation:

dYt = (AYt + a(t))dt+BdZT , Yt0 = c.

For t0 = u, we see by Arnold(1974) [2], the solution of the above SDE is

Yt = eA(t−u)c+

∫ t

u

eA(t−s)(a(s)ds+B(s)dZT ). (6.2.39)
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Following the similar computation, we obtain

eA(t−u) = exp

−k(t− u) 0

0 0

exp
 0 0

−(t− u) 0


=

 e−k(t−u) 0

−(t− u) 1

 .
Substitute eA(t−u) into the solution of Y(t) (6.2.39) and t0 = 0, to get the

solution of (6.2.37) as given by:

rt = e−ktr0 +

∫ t

0

kθe−k(t−s)ds+

∫ t

0

σr(t)e
−k(t−s)dW1,t

lt = −r0t+ l0 +

∫ t

0

[−(t− s)kθ + φes +
1

2
σν(s)

2)]ds

−
∫ t

0

[(t− s)σr(s) + ν1(s)]dW1,s −
∫ t

0

ν3(s)dW2,s.

From this expression we see that lt follows a normal distribution,

lt ∼ N(µ(t), σ2(t)), (6.2.40)

where

µ(t) = −r0t+ l0 +

∫ t

0

[−(t− s)kθ + φes +
1

2
σν(s)

2)]ds

σ(t)2 =

∫ t

0

[(t− s)σr(s) + ν1(s)]2ds+

∫ t

0

[ν3(s)]2ds

and ν1(t) = ρσν(t), ν3(t) =
√

1− ρ2σν(t).

With above results (6.2.35) and (6.2.40), by using the algorithm introduced

by previous section from (6.2.21 ) to ( 6.2.24), and setting all the parameters
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to be the same as shown the figure (6.3), we get we get the default probability

figure (6.4). We also implemented the algorithm for the default probability

with the constant bound (6.2.4) P [min{t<T} Vt < B] and put these two results

together in the graph to compare them with the numerical result figure (6.3)

computed by Qian(2008) [34]. From the graph, we can see that the results

obtained by Fortet’s method and Qian’s method have similar patterns, while

the probabilities generated by Fortet’s method are a bit higher. In figure (6.7)

and figure (6.8), we will combine these two graphs with the graph generated by

trinomial tree method in the next section.

Also, using the dynamic bound from Pierre Collin Dufresne and Robert S.

Goldstein (2001), we get the figure (6.5). We can see that at the first stage,

the default probability increases rapidly. As the maturity becomes longer, the

default probability increases at a slower rate. Graphs of the default probability

as a function of the maturity for various values of ρ are presented in figure (6.5).

6.3 Firm Default Probability Using a Nonlin-

ear Interest Rate Model

In this section, we again consider the computation of the firm default proba-

bility, but here we replace the (linear) Vasicek model for rt by the previously

considered nonlinear model in Chap. 5. Following the same steps that led to

equation(6.2.31), we see that the dynamics of interest rates and firm values are
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as follows:

drt = (θ(t)− rt)rtdt+ σr(t)rtdW1,t,

dlt = (−(λφ+ 1)rt − λlt + λ(φθ − v) +
1

2
σν(t)

2)dt− ν1(t)dW1,t − ν3(t)dW2,t

(6.3.1)

where ν1(t) = ρσν(t) and ν3(t) =
√

1− ρ2σν(t).

Because of the nonlinear drift in the dynamics of rt, we are not able to derive

a closed form expression for the distribution of lt using the previous subsection’s

method. As a result we are also not able to derive the transition probability

for the lt process, which means we cannot apply the Fortet integral equation.

Consequently we resort to another approximation scheme and propose a new

algorithm for implementing a trinomial tree for the coupled process (rt, lt). We

describe this algorithm in terms of the general coupled process:

drt = α(rt, t)dt+ σ1dW1,t,

dlt = ξ(rt, lt)dt+ σ2dW̃2,t

whereW1,t and W̃2,t are correlated Brownian motion processes with dW1,tdW̃2,t =

ρdt(0 < ρ < 1) and the functions α, ξ, and the constants σ1 and σ2 are all ap-

propriate to our model. We can use the standard decomposition trick to rewrite

this system as

drt = α(rt, t)dt+ σ1dW1,t

dlt = ξ(rt, lt)dt+ σ2ρdW1,t + σ2

√
1− ρ2dW1,t

(6.3.2)

where W1,t and W2,t are independent Brownian motion processes. A discrete
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approximation to the system (6.3.2) can be expressed as

r(t+ ∆t)− r(t) ≈ α(rt, t)∆t+ σ1Z1

√
∆t

l(t+ ∆t)− l(t) ≈ ξ(r(t), l(t))∆t+ σ2ρZ1

√
∆t+ σ2

√
1− ρ2Z2

√
∆t

(6.3.3)

where Z1 and Z2 are independent standard normal random variables. Suppose

system (6.3.2) is initialized at (x0, l0) at time zero, choose a time-step ∆t > 0,

and set(following the Hull-White[18] suggestion for example)

∆r = σ1

√
3∆t, ∆l = σ2

√
1− ρ2

√
3∆t.

At each time step i = 1, 2, 3, ... the nodes of the tree are

(rj, lk), rj = r0 + j∆r, lk = l0 + k∆l, j, k ∈ integers.

Our goal is to build a tree to approximate the transition probabilities

p(r(i+ 1) = rj∗ , l(i+ 1) = lk∗|r(i) = rj, l(i) = lk)

In words, this is the probability that, conditioned on being at node (rj, lk) at

time i, we make a transition to node (rj∗ , lk∗) at time i+1. For convenience, we

write pi(rj∗ , lk∗|rj, lk) instead of p(r(i+1) = rj∗ , l(i+1) = lk∗|r(i) = rj, l(i) = lk).

Using the definition of conditional probability we can write

pi(rj∗ , lk∗|rj, lk) = pi(rj∗ , lk∗|rj∗ , rj, lk)pi(rj∗ , lk|rj, lk). (6.3.4)

Let us first focus on the second factor on the right-hand side of (6.3.4). Since

lkis unchanged in this transition and since the SDE for rk is decoupled from the
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SDE for lt, we have

pi(rj∗ , lk|rj, lk) = pi(rj∗ |rj).

This allows us to approximate the second factor on the right-hand side of (6.3.4)

by the trinomial-tree process we already used for the interest rate process by

itself. Having done this, the other transition probability pi(rj∗ , lk∗|rj∗ , rj, lk),

can be approximated by a trinomial-tree that is constructed by matching the

first and second conditional moments of the random variable l(t + ∆t) − l(t).

Specially, the branching probabilities for the l-process tree(conditioned on the

values of the interest rate obtained from the r-process tree) are obtained by

matching the conditional moments

E[l(t+∆t)−l(t)|r(t+∆t), r(t), l(t)] and E[(l(t+∆t)−l(t))2|r(t+∆t), r(t), l(t)].

We can compute the conditional moments by taking the conditional expecta-

tion on both sides of the second equation in (6.3.3) conditioned of the random

variables r(t+∆t), r(t) and l(t) and using the standard properties of conditional

expectation(independence and “taking out what is known”). To this end note

that: (1) ξ(r(t), l(t)) is “known” with respect to r(t + ∆t), r(t); (2) Z1 is also

“known” with respect to r(t + ∆t), r(t), and l(t) because of the first equation

in (6.3.3); (3) Z2 is also “known” with respect to r(t + ∆t), r(t), and l(t) be-

cause it is independent from r(t) and l(t) and Z1, and it is also independent

from r(t + ∆t), since r(t + ∆t) is a function of the random variables r(t) and

Z1. If we write EC as shorthand for the conditional expectation with respect to
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r(t+ ∆t), r(t), l(t), we apply EC to both sides of the second equation in (6.3.3):

EC [l(t+ ∆t)− l(t)] = EC [ξ(r(t), l(t))∆t+ σ2ρZ1

√
∆t+ σ2

√
1− ρ2Z2

√
∆t]

= ξ(r(t), l(t))∆t+ σ2ρZ1

√
∆t+ EC [σ2

√
1− ρ2Z2

√
∆t]

(taking out what is known)

= ξ(r(t), l(t))∆t+ σ2ρZ1

√
∆t+ σ2

√
1− ρ2

√
∆tE[Z2]

(EC [Z2] = E[Z2] by independence of Z2 from x(t+ ∆t), xt, l(t))

= ξ(r(t), l(t))∆t+ σ2ρZ1

√
∆t (since E[Z2] = 0).

A similar computation for the second conditional moment gives

EC [(l(t+ ∆t)− l(t))2] = (ξ(r(t), l(t))∆t+ σ2ρZ1

√
∆t)2 + σ2

2(1− ρ2)2∆t.

To approximate the first factor on the right-hand side of (6.3.4), we carry

out the following steps:

(1) Assume at time step i we are at node (rj, lk). Use the trinomial-tree algo-

rithm already devised to approximate the transition probabilities to approxi-

mate the transition probabilities of the r-process by itself. This means that we

will use a “branching process” to find the node rj∗ so that at time step i+1. The

r-process will be assumed to be at one of the three nodes rj∗−1, rj∗ , rj∗+1 and the

algorithm will also give us approximations to the three transition probabilities

pi(rj∗−1|rj), pi(rj∗ |rj), pi(rj∗+1|rj). (6.3.5)

This determines the second factor on the right-hand side of (6.3.4).

(2)Suppose for example we make a transition from rj to rj∗+1 with probability
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pi(rj∗+1|rj). Conditioned on this information, the first equation in (6.3.3) can

be written as

rj∗+1 − rj ≈ α(rj, i)∆t+ σ1Z1

√
∆t (6.3.6)

so this conditioning effectively determines the value of the random variable Z1

and we can solve for this value via equation (6.3.6).

(3) Now set t = i and r(t) = r(i) = rj in the second equation in (6.3.3) and view

the value of the random variable Z1 as being determined (and so a constant)

according to the previous step because we are conditioning on the three values

rj, rj∗+1 and lk. We get

l(i+ 1)− lk ≈ ξ(rj, lk)∆t+ σ2ρZ1

√
∆t+ σ2

√
1− ρ2Z2

√
∆t. (6.3.7)

It is important to note that although rj∗+1 does not seem to appear explicitly

in (6.3.7), this equation does in fact depend on rj∗+1 because we used that

value to determine Z1. Then we can use another one-dimensional trinomial tree

process to approximate the transition probabilities pi(rj∗ , lk∗|rj∗ , rj, lk). Specif-

ically, as we discussed above, use the branching process to determine k∗ so that

(conditioned on rj, rj∗+1, xj, and lk) we transition to one of the three nodes

lk∗−1, lk∗ , lk∗+1, with the transition probabilities

pi(rj∗+1, lk∗−1|rj∗ , rj, lk), pi(rj∗+1, lk∗ |rj∗ , rj, lk), pi(rj∗+1, lk∗+1|rj∗ , rj, lk). (6.3.8)

These probabilities can be computed as in the one-dimensional trinomial tree

process so as to match the first moment of (6.3.7)

ξ(rj, lk)∆t+ σ2ρZ1

√
∆t

94



and the second moment

(ξ(r(t), l(t))∆t+ σ2ρZ1

√
∆t)2 + σ2

2(1− ρ2)2∆t

(note that in (6.3.7) the only random quantity is Z2 due to the condition that

determines Z1).

So, by using (6.3.5) and (6.3.8) we can build a coupled tree that from the

node (rj, lk) at time step i allows transitions to 3 × 3 = 9 possible nodes at

time step i+ 1. Once we have the distribution of lt, we can compute the default

probability of the firm value at mature time T , denoting as PT . We refer to this

as the coupled-tree-algorithm.

Step 1: Following the trinomial-tree-algorithm generated by Chapter 5.1,

derive the trinomial tree for rt to get the probability Dr(i, jr) for each trinomial

tree node jr at time step i, for i ≤ T :

Dr(i, jr) =
∑
j

Dr(i− 1, j)pr(i− 1, j) (6.3.9)

where j is determined by the paths leading to node (i, jr), and pr(i−1, j) is the

probability from r(i− 1, j) leading to (i, jr).

Step 2: Similarly, by the trinomial-tree-algorithm as step 1, derive the tri-

nomial tree for lt to get the distribution Dl(i, jl) for each trinomial tree node jl

at time step i, for i ≤ T :

Dl(i, jl) =
∑
j

Dl(i− 1, j)pl(i− 1, j) (6.3.10)

where j is determined by the paths leading to node (i, jl), and pl(i− 1, j) is the
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probability from l(i− 1, j) leading to (i, jl).

Step 3: At time step i, we denote the coupled tree as (l, r), and compute to

get the distribution Dlr(i, jlr) for each tree node jlr at time step i, for i ≤ T :

Dlr(i, jlr) =
∑
j∗,j∗∗

Dr(i− 1, j∗)pr(i− 1, j∗)Dl(i− 1, j∗∗)pl(i− 1, j∗∗) (6.3.11)

where j∗ is the rt tree tranche path, and j∗∗ is the lt tree tranche path at time

step i−1 determined by the coupled-paths leading the (l, r) tree to node (i, jlr).

Step 4: At time step k, where 0 < k ≤ i, we compute the probability

Plrk = (1− Pk−1)
∑
j

Dlr(k, j) (6.3.12)

where j is summed over all the nodes such that lrk,j > 0, i.e. passing the bound.

Step 5: Finally, we have the recursive algorithm as follows to get PT .

PT = 1− (1− PT−1)(1− PlrT ). (6.3.13)

First, let us use the above coupled tree algorithm to compute the default

probability for constant bounds as previous sections. We implemented this al-

gorithm with Vasicek model using the same parameters as in the previous two

sections for Qian’s method and Fortet’s method. For the default conditions

(6.2.4) and (6.2.5), we have both of the results in figure (6.6). Then we com-

pare the three methods for the default conditions (6.2.4) in figure (6.7) and the

default conditions (6.2.5) in figure (6.8). We can see that results are quit con-

sistent. This provides some justification to apply it to the population growth

model.
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Also, with the dynamic bounds proposed in Fortet’s method and for different

values of ρ, we implemented this coupled trinomial tree with the Vasicek model.

Compared the result figure(6.5) and the figure (6.9) and we got from previous

section, we see the results are roughly consistent. But the computation time

of the coupled trinomial tree is much faster. Also, we derive the result for the

joint default probability (6.2.5) using coupled trinomial tree method in figure

(6.10).

Applying this approach to the population growth model which we proposed

in the previous chapter, we can see the default trend with Dufresne and Gold-

stein’s dynamic bound (6.2.29) and VT < K using our model. Similarly, we

also implement the algorithm for different values of ρ for comparison. To bet-

ter present our method, we use our model to calibrate the U.S. Treasury bond’s

term structure. The source of this term structure time series is MSCI’s database

and Yahoo Finance, and we linearly interpolate the curve into 20 one-year time

steps as follow:

Maturity 1 2 3 4 5 6 7 8 9 10

R (%) 0.175 0.258 0.354 0.471 0.616 0.783 0.968 1.16 1.356 1.554

Maturity 11 12 13 14 15 16 17 18 19 20

R (%) 1.748 1.914 2.053 2.164 2.252 2.319 2.365 2.404 2.441 2.478

Now, using the the rt distribution result computed by the algorithm from

Chapter 5, we get two comparison default probability time series. One is the

figure (6.11) with constant θ = 0.2, and the second one is the figure (6.12)

with θ(t) which calibrates to the U.S. Treasury bond’s term structure. We can

see both of these figures have the similar pattern as the Vasicek figure (6.9),
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with a very low default probability in the beginning stage, which then increases

rapidly in the short term, and then increases somewhat more slowly in the

long term. The default probabilities for the nonlinear interest rate model are

consistently higher over the entire time range than for the Vasicek model. This

is reasonable since the population growth model is a nonlinear model (which

has larger variance of the short rate when compared to the Vasicek model; refer

to Chapter 5, figure 5.3). The higher variance of the interest rate model will

cause the higher variance of the coupled process, which causes higher risk. Also,

we can see that the default probability pattern also reflects that the positive or

negative correlation coefficients will have similar effect on the result, which we

believe is reasonable for the risk factor.

Based on the above analysis, the method proposed in this chapter appears

to provide a good alternative to approximate the default probability if the first

passage time approach is infeasible.
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Figure 6.3: Default Probability of the firm using the Vasicek model and Qian’s
method, with all the parameters in the algorithm as follows: B = 75, V0 = 150,
K = 100, k = 0.5, θ = 0.04, σr = 0.04, σv = 0.2, ρ = 0, r0 = 0.04.

Figure 6.4: Default Probability of the firm using the Vasicek model and Fortet’s
method, with all the parameters in the algorithm as follows: B = 75, V0 = 150,
K = 100, k = 0.5, θ = 0.04, σr = 0.04, σv = 0.2, ρ = 0, r0 = 0.04, v = 75,
φ = 5.1529 ∗ 10−8.
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Figure 6.5: Default Probability of the firm using the Vasicek model and Fortet’s
method using Pierre Collin Dufresne and Robert S. Goldstein’s dynamic bound,
with all the parameters in the algorithm as follows: B = 75, V0 = 150, k = 0.5,
θ = 0.04, σr = 0.04, σv = 0.2, r0 = 0.04, v = 0.6, λ = 0.18, φ = 2.8.

Figure 6.6: Default Probability of the firm using the Vasicek model and trino-
mial tree method, with all the parameters in the algorithm as follows: B = 75,
V0 = 150, K = 100, k = 0.5, θ = 0.04, σr = 0.04, σv = 0.2, ρ = 0, r0 = 0.04.
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Figure 6.7: Default Probability Result Comparison using the Vasicek model
with all the parameters in the algorithm as follows: B = 75, V0 = 150, k = 0.5,
θ = 0.04, σr = 0.04, σv = 0.2, ρ = 0, r0 = 0.04.

Figure 6.8: Default Probability Result Comparison using the Vasicek model with
all the parameters in the algorithm as follows: B = 75, V0 = 150, K = 100,
k = 0.5, θ = 0.04, σr = 0.04, σv = 0.2, ρ = 0, r0 = 0.04.

101



Figure 6.9: Default probability with varying rho from -0.8 to 0.8 by 0.2 with
Pierre Collin Dufresne and Robert S. Goldstein’s dynamic bound for Vasicek
model using trinomial tree method, the parameters in the algorithm as follows
B = 75, V0 = 150, k = 0.5, θ = 0.04, σr = 0.04, σv = 0.2, r0 = 0.04, λ = 0.18,
φ = 2.8, v = 0.6, r0 = 0.06.

Figure 6.10: Default probability with varying rho from -0.8 to 0.8 by 0.2 with
Pierre Collin Dufresne and Robert S. Goldstein’s dynamic bound and VT < K
for Vasicek model using trinomial tree method, the parameters in the algorithm
as follows B = 75, V0 = 150, K = 100, k = 0.5, θ = 0.04, σr = 0.04, σv = 0.2,
r0 = 0.04, λ = 0.18, φ = 2.8, v = 0.6, r0 = 0.06.
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Figure 6.11: Default probability with varying rho from -0.8 to 0.8 by 0.2 with
Pierre Collin Dufresne and Robert S. Goldstein’s dynamic bound and VT < K
for population growth model with the θ = 0.2 using trinomial tree method, the
parameters in the algorithm as follows B = 75, V0 = 150, K = 100, θ = 0.2,
σr = 0.04, σv = 0.2, λ = 0.18, φ = 2.8, v = 0.6, R = 0.00175.

Figure 6.12: Default probability with varying rho from -0.8 to 0.8 by 0.2 with
Pierre Collin Dufresne and Robert S. Goldstein’s dynamic bound and VT < K
for population growth model with the θ(t) using trinomial tree method, the
parameters in the algorithm as follows B = 75, V0 = 150, K = 100, σr = 0.04,
σv = 0.2, λ = 0.18, φ = 2.8, v = 0.6, the term structure is as table(2.1).
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Chapter 7

Conclusion

In this dissertation I have investigated the use of a nonlinear stochastic pop-

ulation growth model as a stochastic model for the evolution of interest rates.

We find the model to be attractive because it yields positive interest rates with

mean reversion properties over time. In the constant parameter case we showed

that the model fits the Rogers’ scheme for the generation of positive interest rate

models. Moreover, we also considered a variant of the model with a non-random

time-dependent parameter, which allowed calibration of the model with respect

to a specified initial term structure through an adaptation of a method intro-

duced by Hull and White. Although the model is nonlinear, we were able to

derive closed form solutions for the model in both the constant and time-varying

parameter cases. For both of these cases we used a trinomial-tree discretization

process to obtain discrete approximations of the distributions of the interest

rates and we compared these results with approximate distributions obtained

via Monte-Carlo simulations. The favorable comparisons obtained provide evi-

dence of the validity of the application of the trinomial tree method to nonlinear

interest-rate processes.
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Moreover, we incorporated the positive interest rate to derive the firm’s

default probability, which thereby extends Qian’s work from a linear interest

rate model to a non-linear interest rate model. In order to get the distribution

of the firm value under a risk-neutral measure, we first used the first passage

time method based on the Fortet integral equation to derive the firm’s default

probability as driven by the Vasicek interest rate model. However, since the

Vasicek model yields an interest rate with a Gaussian distribution and can thus

assume negative values, we then proposed the population growth model. As we

discussed this model satisfies both the positivity and mean reversion properties.

Due to the nonlinearity, it was infeasible to use the first passage time approach

in its solution. As an alternative we proposed a new coupled trinomial tree

algorithm to derive the distribution of the firm value. To validate this algorithm,

we applied this revised trinomial tree method to the Vasicek model and obtained

reasonably consistent results. Given the success with this example, we should

be able to extend this approach to the other nonlinear positive interest rate

models.

In addition to the population growth model, Chapter 4 of this dissertation

examined a variety of other interest rate models that were derived in the context

of the Rogers’ framework and can yield positive interest rates with the appro-

priate selection of certain parameter values. For example, we noted that when

we applied the Rogers’ method to the geometric mean reversion process (4.2.23)

with a linear function f , the generated interest rate showed the potential for

giving a superior fit to the historical data due to its lognormal property. We

hope to analyze this model in more detail in future work. There are, of course,

any number of other Markov processes and functions f (such as the sigmoid

function) that would form the basis for future study and might offer a good fit
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to historical market data.

In the application of our nonlinear interest rate model to the computation

of default probabilities we tried to extend the method (based on the reflection

principle) of Giesecke (2004) [12] and Qian (2008) [34], but we were unsuccessful

in deriving a closed form solution for the distribution of corresponding first

passage time probability (6.2.14) due to the presence of an Ito integral that

made closed form evaluation of a certain integral infeasible. In future work we

hope to explore the use of numerical methods to obtain discrete approximations

of this probability distribution.

In our application of the Fortet integral equation approach we only derived

the default probability distribution for interest rate models with linear drift.

This is because the Fortet method requires explicit knowledge of the transition

function for the underlying Markov process. For nonlinear drift terms the de-

termination of the required transition functions appears to be quite challenging.

Another avenue for future work involves the application of our various models

to other topics of importance in fixed income research such as credit spreads,

credit grades, and bond pricing.
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Appendix A

Expectation of the Geometric

Mean Reversion Process

This process is of interest because of its geometric mean reversion property. As

we know, most of the market assumptions for bond prices have this property.

Now, let us look at the expectation of Xt. To get E[Xt], the key step is to

compute E[eσe
−kt ∫ t

0 e
ksdBs ]. From the form of Xt, it is a stochastic exponential.

We will use Novikov’s theorem to get the expectation. Set

Mt := σe−kt
∫ t

0

eksdBs,

and

Zt = e
∫ t
0 σe

k(s−t)dBs− 1
2

∫ t
0 [f(s)]2ds,

where f(s) is a measurable function on [0,∞) with
∫ t

0
[f(s)]2ds < ∞ for each

t > 0.
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Theorem A.1. Novikov Theorem: If

E[e
1
2
<M>T ] <∞,

then E[Zt] = 1, in which case (Zs)0≤s≤t is a martingale.

Then, in our example, set f(s) = σ2e2k(s−t). We get the following:

E[eσe
−kt ∫ t

0 e
ksdBs ] =E[Zt]E[e−

1
2

∫ t
0 [f(s)]2ds]

=
σ2

4k
(1− e−2kt).

Thus the expectation of Xt is:

E[Xt] = ee
−kt log x+(α−σ

2

2k
)(1−e−kt)+σ2(1−e−2kt)

2k . (A.0.1)
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