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Abstract 

Internal and external validities have been traditionally presented as two different topics.  

The present paper brings them together by showing how the two are related when the 

samples have been previously selected on a covariate. Selected samples are common in 

the social sciences.  We show in a computer simulation that the ANOVA fails both in 

terms of external and internal validities when performed in a selected sample.  On the 

other hand, when we use an ANCOVA in a randomized experiment the ANCOVA retains 

both internal validity as well as external validity.   The simulation was used to compare 

the performance of ANOVA and ANCOVA in random and nonrandom (selected) 

samples.  When the covariates that were related to the selection process were included in 

the ANCOVA, the ANCOVA outperformed the ANOVA in many of the situations 

studied.  When a covariate-by-treatment interaction was present, the treatment effects 

were overestimated by the ANOVAs and underestimated by the ANCOVAs that 

incorporated the interaction.    In addition, with selected samples, the covariate-by-

treatment interaction was hard to detect due to the lack of power.  Researchers working 

with selected samples should conduct an ANCOVA using covariates that are related to 

both selection and the dependent variable.   



Introduction 

     Campbell in 1957 famously articulated the distinction between internal and external 

validity.  He then quickly noted that “they are to some extent incompatible (pg. 297).”  

This incompatibility between internal validity, focusing on the causality of the effect, and 

external validity, the generalizability of the effect, has led to considerable study and 

discussion.   One area of discussion has been with regard to the external validity of 

laboratory studies and internal validity of field studies (e.g. Dipboye & Flanagan, 1979; 

Dobbins, Lane & Steiner, 1988; Gordon, Slade & Schmitt, 1986).  This present paper 

presents these two validities as two sides of the same coin; that both are dependent on 

conditional relationships in the data.   

     An example used to demonstrate these concepts through this paper will be the 

validities of the use of college students in the psychological laboratory.  It is generally 

assumed that laboratory studies are more internally but less externally valid (e.g. Lucas, 

2003; Gordon, and Slade & Schmitt, 1986).  However, Dipboye and Flanagan (1979) 

point out that the samples in both cases can be equally homogenous, limiting the 

assessment and generalization of effects in either case.  This homogeneity can occur 

because elements associated with quasi-experimental situations, such as non-random 

selection, often occur prior to random assignment in an experimental design.  This 

limitation is the standard critique of the generalizability of using homogeneous groups 

such as college students in psychological research. 

     The current study is focused on alternate analysis methods that may be useful to 

increase the generalizability of the results of randomized experiments.    In both the field 

and in the laboratory, selection can impact internal and external validity and occur at 
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multiple stages of a study.  In addition, selection can lead to violations of assumptions, 

such as heterogeneity of variances and normality.  While random selection provides the 

best conditions for inferences, in most cases random selection is rarely, if ever, possible.  

With nonrandom (selected) samples, the inferences to broader populations are conditional 

on the characteristics of the sample (Rosenbaum & Rubin, 1983).  Understanding the 

limitations of samples and implications of selection is crucial for both internal and 

external validities.  The issue then changes to from ‘if students are representative’ of the 

general population, to ‘what degree are they representative’, given the characteristics that 

led to their participation, and the data that is missing for a complete analysis.  The degree 

of representativeness is a function of the various forms of selection that serve as causes of 

the missing data.  While the trade-offs of heterogeneous versus homogenous samples 

have been discussed in the literature (e.g., Cook, Campbell & Paracchio, 1990; Calder, 

Phillips & Tybout, 1982; Lynch, 1983), the current paper expands on these concepts by 

showing how both external and internal validities are conditional processes.  Conditional 

analysis can, in some cases, be used as a more appropriate analysis than some 

traditionally employed models. While the approach presented here is not necessarily a 

traditional one in selection research, McCourt (1999) has found that methods of 

validation in practice often diverge from traditional academic models. 

     Researchers in both basic and applied fields in the social sciences are often interested 

in going beyond simple associations to determine the causes and effects of behavioral 

phenomena.   Cause and relationship assessment is not only necessary for theory 

advancement but for the development of effective interventions (clinical, educational, and 

professional).    The establishment of causal relationships, however, can be significantly 
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more complicated (and costly) than identifying associations.  There are several 

approaches for establishing causal relationships, varying in method and scope.  

     One of the most useful structures for developing the ideas of causality is known as the 

Rubin Causal Model (RCM) (Holland, 1986).  Viewing the concept of causal effects 

from a statistical framework, Rubin extended the logic of randomized experimentation 

into the formal RCM model.  The RCM model represents the causal relationships in 

randomized experiments and has even been used to extend causal inference to non-

randomized designs (Rosenbaum & Rubin, 1983). 

     The RCM starts by postulating that the strongest causal inference is drawn when a 

single unit is subject to both the treatment and non-treatment (control) conditions and the 

unit is identical when exposed to each condition.  As the subject is identical in all 

possible aspects, an observed difference on the outcome measure can be due only to the 

treatment effect.  The effect of t is given as the difference between the control and the 

treatment   

 ,                                                       (1) 

where the treatment (t) causes the difference on unit (u) relative to control (c).   

     This difference serves as a mythical logical starting point, as it is impossible to have 

exactly identical cases to expose one to treatment and the other to control conditions (it is 

not even approachable in the behavioral sciences). Also, it is not possible to 

simultaneously subject a single unit to two (or more) treatment conditions.  Holland 

(1986) refers to this impossibility as the “fundamental problem of causal inference” and 

suggests two possible solutions; the “scientific solution” and the “statistical solution.” 
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     The scientific solution utilizes various homogeneity or invariance assumptions -- 

assumptions that are often plausible but not testable.  One such assumption is unit 

homogeneity, where treatment differences between different units that appear identical in 

all relevant aspects are assessed (Holland, 1986).  Other assumptions include causal 

transience and temporal stability.  Causal transience is where the effect of exposure to 

one condition does not affect the impact of the next condition. Temporal stability is 

where the effects of the treatment (and measure) are independent of the time on which 

they are administered.  These assumptions address the nature of establishing causality 

within a single experiment and directly mirror the assumptions typically posed when 

making generalizations from experiments where non-random sampling has occurred. 

      Rather than relying on a series of assumptions of the characteristics of subjects, an 

alternate “statistical solution” (Holland, 1986) extends the logic of exposing identical 

units to exposing statistically equivalent groups to treatments.  As the ideal causal model 

at the individual (unit) level exists only in theory, the next logical step is to move up in 

terms of aggregation and consider causal effects averaged across subjects.  By studying 

groups of individuals who are, on average, equivalent on all variables (measured and 

unmeasured) average causal effects c e u s   an b  meas red a

                                                        (2) 

which, following the rules of expe n l o pressed as ctatio , can a s  be ex

  .                                                   (3) 

That is, causal effects can be measured as a difference between a treated population and a 

control population (at least on average).  

4 
 



     In practice not all members of a population are measured, so these measurements are 

actually conditional values; conditional given selection into a particular treatment 

condition.  If the assumption of independence is met, then the conditional probability is 

equal to the unconditional, that is 

 |                                                     (4) 

and 

 |  .                                                 (5) 

If the selection function S is a random process, then S will not be related statistically to Yt 

and Yc.  Because the selection process (or any other variable, on average) is not related to 

the dependent measures, then only the treatment is responsible for the effect. 

     When S is not a random process, the observed difference represents a difference in 

conditional values.  The RCM has been extended to include nonrandomized 

(nonexperimental) designs by using observed covariates to establish a conditional 

independence assumption.   The assignment to a treatment condition, t, given a set of 

covariates, Z can be represented by  

| .                                                                 (6) 

In a randomized experiment, f(x) is specified and not dependent on Z.  In 

nonexperimental designs, f(x) is most likely unknown, however may be estimated from 

the observed data using, say, a logit model.  Extending this logic of conditional 

independence in group assignment to conditional analyses for generalizable findings is a 

key point developed through this paper. 

     While issues of random assignment to treatment conditions and experimental control 

lay in the domain of internal validity issues, researchers are also concerned with issues of 
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external validity.  The process of research in the social sciences is typically a two-step 

process.  The investigation or intervention is planned based on theory and sound design 

principles.   Strong causal relationships are established with an experimental design, with 

strong internal validity.  In some situations because environmental, ethical or design 

restrictions exist that do not permit true experimentation, the focus turns to the 

assessment of associations.  Once a relationship is observed in a particular group or 

situation, it is then typically of interest to generalize the results beyond the groups 

studied.  Research studies are generally conducted not to confine the conclusions to the 

participants themselves, but to investigate how a phenomena would impact people with 

varying conditions and characteristics.  The utility of theory lies in the simplification of 

complex realities.  If a theory must be qualified for each subset, then the parsimony of the 

theory is reduced.  However, the generalizability of findings is difficult to quantify in 

many research situations. 

     The method for obtaining samples statistically determines the limits of the 

generalizability of the research findings beyond the groups studied.  Ideally, a research 

study clearly defines the target population and obtains a random sample from that 

population.  In such cases, the studied units are, on average, independent on all variables, 

including the dependent measure of interest.  For a variety of practical reasons, such a 

protocol is very often not possible in applied research.  Yet researchers generalize their 

findings (explicitly or implicitly) to a broader group than those studied.  In actuality, 

many samples are drawn from conveniently available pools, and their characteristics are 

often unknown.  Under these conditions, the appropriateness of generalizations is 

impossible to gauge.    
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     In the field of psychology, this problem manifests when research is conducted on the 

best available sample – for academic researchers, the most available source of subjects is 

often the undergraduate subject pool.  The subject pool is a self selected group of 

potential participants.  They are self- and organizationally-selected on known and 

unknown sets of nonrandom selection processes.  This selection process has led to 

research and conjecture on the applicability of findings based on college students to other 

populations (Gordon, Slade, & Schmitt, 1986; Farber, 1952). While this discussion has 

focused on the use of college students in applied research areas, the problem is a more 

general one.  Dipboye and Flanagan (1979) point out even a field study could have a very 

narrowly defined (selected) study group that may impair generalizations, despite the fact 

that it was conducted ‘in the field.’  Psychology is not the only field that has had such 

exchanges; for example, the use of college students in consumer research has also been 

subject of debate (Calder, Phillips & Tybout, 1983).   

A Selection Situation 

     Study participants can differ from nonparticipants in infinite ways and ultimately only 

the theory itself can provide initial guidance on whether certain background variables are 

relevant or not (Lucas, 2003; Lynch, 1982).  Whether in a university or an organizational 

setting, selection has already occurred on any number of variables, leading conceptually 

to missing subjects.  If a researcher is interested in generalizing beyond the current 

subject pool with their particular idiosyncrasies, then considering the nature of the sample 

can potentially provide further insight.  These concepts directly map back to the RCM; a 

random assignment process, in essence, represents an unconditional causal relationship 
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(Equation 3).  When assignment is non-random, the relationship (and inference) is 

conditional (Equation 6) on the covariates that may or may not be measurable. 

      

 

Figure 1. An example of a simple theoretical research paradigm.  

 

     Figure 1 depicts a simplified, familiar research design.  In the optimal design both 

selection processes (F1 and F2) are random.  If F2 is random, then the treatment effect 

for groups is unbiased.  If F1 is random, then effects observed in the sample generalize to 

the population.  As discussed, if F2 is not random, it is possible to establish independence 

conditionally by observing covariates related to F2.  Likewise, if F1 is not random, it is 

possible to use covariate information related to F1 to improve generalizations. 

 Figure 2 presents a research paradigm more typical of actual research scenarios, 

both academic and field studies.  Even here the design is a simplification of likely 

additional multiple selection functions (implicit and explicit) operating in real research 

situations.  In Figure 2, F2 remains the assignment-to-condition function as it was in 

Figure 1 and it is still possible to establish an unbiased treatment effect if F2 is 

independent of Y (or the strongly ignorable assumption holds, i.e., sufficient conditional 

independence).  Now, however, here there is an additional sample selection function, 

F1a.  Working back toward the general population, the first nonrandom function serves 
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as the ‘block’ to simple generalization, that is, generalization without conditioning.  Note 

that if F1b is not random, results may not easily generalize back to the subject pool itself, 

at least not without additional information on the selection variables. 

 

 

 

Figure 2.  An example of an organizational research paradigm.   

 

Selection and Individual Differences 

     The process whereby a particular individual becomes a member of a particular 

organization and, ultimately, a member of a subject pool is a function of a vast 

complexity of factors and relationships between the factors.  For a university student, 

these could include relevant variables such as prior education, abilities, interests, 

experience, age, health, SES, and geography.  Other, more serendipitous, variables may 

also play a role, including parental preference or affiliation, performance of athletic teams 

and a composite overall ‘feels right’ variable.  While these are clearly not all the 

potentially relevant variables (which may be different for many of the participants), the 

structure of the factors of the decision process is less of a concern than creating a simple 
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model of the probability of explicit and implicit selection.  Despite all the potentially 

relevant factors, many selection scenarios can be represented by a series of conditional 

decisions (probabilities).  First, the potential participant (applicant, R) chooses to apply to 

an organization.  Then, the organization makes a choice to accept the applicant (S|R); if 

accepted, the applicant makes a final choice to join the organization (A|R, S).  Because 

they are a proper subset, the probability of being present in an organization can be 

represented as a product of conditional probabilities 

 

                                      P(o) = P(R)*P(S|R)*P(A|R, S).                                         (7) 

 

     The probability of being a member of a particular organization is the product of the 

probability of applying to that organization P(R), times the probability of being selected 

by the organization given application P(S|R), times the probability of accepting the 

invitation to join the organization given application and selection.  This also highlights 

that the organization has its own set of criteria used to select applicants and these two sets 

(subject and organization) work in concert to ultimately determine the composition of the 

subject or incumbent pool.  McCourt (1999) presents this contingency perspective as an 

alternative that may account for the incongruence between selection research and 

organizational selection practice. 

     Prior to selection, we consider each individual I to have a set of inherent or acquired 

characteristics or covariates z1, z2, …, zq, x1, x2, …, xp and a dependent variable of interest 

y,   
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  I(z1, z2, … , zq,x1, x2, …, xp, y)= I(Z, X, Y).                                           (8) 

 

Here the individual is characterized by two sets of individual differences, Z and X. (This 

could have been one or more of these sets. To simplify matters, the focus here is only on 

one: X). When researchers select or exclude an individual on the basis of one of these 

covariates, they affect the distribution of these individual differences in our sample. They 

may find themselves working with a sample of individuals with a particular set of 

characteristics that is different from those of the general population, thus affecting the 

marginal distributions of these variables.  We may have, for example, a sample of 

teenagers or a sample of senior citizens.  This is not generally a problem as long as our 

generalizations are just confided to say teenagers.  The more restrictive or complex the 

selection process is, the more potential for restriction in the range of the covariates exists.  

If we want to make our generalizations to a broader set or population, we must account 

for those variables that are affected by selection.  

     When sampling has not been random, the argument for valid generalizations has 

traditionally been made from a theoretical perspective and not from a statistical one (e.g. 

Maxwell & Delany, 2000).  A statistical approach would require taking the perspective 

that generalization is similar to missing-data or missing-subject problem.  Consider that 

our usual experimental subjects, college students, are a subset of the general population 

that has been restricted on a particular set of variables through the process of selection.  

The selection is not random in that a college student self selects in applying, the 

institution selects to admit, and then the student decides whether or not to attend (a 

process mirrored in the business environment).  Identifying or estimating all of the 
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selection processes involved in the final decision could be very difficult, if not 

impossible, in many situations.  If we can identify the relevant variables involved in the 

selection process then it is possible to address the generalization issue from the 

perspective of missing information by using concepts from the RCM and missing data 

theory.  Looking to modern missing data methods gives us a useful perspective to address 

external validity and internal validity in nonrandom samples from the perspective of 

conditional probability.    

Missing Data as Missing Subjects 

     Missing data and statistically appropriate methods for accounting for missing data 

have received considerable attention in recent years (e.g., see Psychological Methods 

Special Section in Dec 2001, Shafer & Graham, 2002; Horton & Kleinman, 2007).  By 

conceptualizing problems of external validity as cases of missing data (or missing 

subjects), we can take advantage of the theory and, in some cases, the techniques.  One of 

the primary distinctions to make between the missing data methods is to address why 

and/or how the data are missing.  If the data are missing due to a random process, the data 

are considered missing completely at random (MCAR).  This is equivalent, in terms of 

sampling, to a randomly drawn sample.  By the characteristics of random sampling, 

MCAR data is generalizable to the sampled population.  MCAR also holds if the cause of 

missingness is unrelated to the dependent variable in the study, that is 

 

.                                           (9) 
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     If the data are missing due to a (selection) process that is related to a (measured) 

covariate, then the data can be considered missing at random (MAR). In the MAR 

condition, the missingness is random conditional on the covariate.  In a selection scenario 

where all applicants take  a selection test, but only the selected applicants become 

incumbents and are subsequently measured on  performance, the missing data on the 

performance measure would be MAR  (Mendoza, Mumford, Bard & Ang, 2004; 

Chasteen & Mendoza, 2003).  This would be equivalent to screening the applicant pool 

on a covariate.  The equation, in this case, being 

 

, |  .                                      (10) 

 

where the covariate X is always observed. 

     If the missing data are related to the dependent variable that is missing, then the data 

are missing not at random (MNAR).  This is equivalent to the external validity scenario 

where both the covariate and dependent variable information is missing for the larger 

population, in this case, 

 

, | .                                      (11) 

 

     In selection scenarios that would otherwise be MAR, with restricted information on X 

also related to missingness, it is likely necessary to assume the data are, to some degree, 

MNAR and some account of the selection function should be made.  Missing data 

methods, such as multiple imputation, are flexible in that they can use the available 
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covariate information to recreate the distribution of the missing information.  These 

methods do assume that the MAR condition has been met. If the data are MNAR, then 

the model of the data itself must take into account the missingness mechanism.  In terms 

of external validity, this means extending the traditional analysis to account for the 

missingness mechanism.  For experimental designs after nonrandom selection, this entails 

extending a traditional model (such as an ANOVA model) and incorporating effects into 

the model that are a function of selection, including conditional factors and potential 

interactions. 

Appropriate Analyses 

     While there are several important conditions to consider, the primary concern is that 

of the effect of organizational selection on the generalizability of the results of a 

randomized experiment.  Since a typical initial analysis in an experimental design is an 

ANOVA, this analysis method will be compared to a method not traditionally employed 

in randomized experiments, ANCOVA.  The hypothesis is that controlling for group 

differences between selected and non-selected participants allows for results to be 

conditionally generalized back to the pool of potential participants prior to any 

organizational selection.   

     The composition of the selection function as a conditional probability has been 

described. However, to examine the effect of selection, it is not necessary to model each 

stage of selection; but what is necessary is to include the relevant covariates and degree 

of restriction imposed by selection.  With the selection scenarios usually encountered by 

researchers, it is not possible to measure information on the unselected participants.  This 

lack of information has two effects; first, it prevents an estimation of the selection 
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function, eliminating a more straightforward analysis, such as a propensity score analysis.  

Second, it can impose range restriction on the covariate(s).  In some cases, however, the 

covariate information may be fully available, such as having applicant data for unselected 

applicants.  It is likely that a combination of restricted and unrestricted covariate 

information can be utilized (unrestricted covariates enables the use of missing data 

methods to reduce the impact of restriction in range of related restricted covariates).  In 

this study, the more likely condition of only having restricted covariate information 

available will be explored under several degrees of selection. 

Interactions between a Covariate and a Treatment Factor 

     In the presence of a covariate by treatment interaction, we can only speak of mean 

differences conditionally upon a particular value of the measured covariate, assuming 

here that the covariate is collected before the experiment and is not affected by the 

treatment.   Failing to test for an interaction between the treatment and the selection 

covariate could yield an inappropriate model and biased results.  Clearly, if the 

potentially relevant background variables are not measured, testing for these interactions 

is not possible.  Any selection that importantly restricts the range of the covariates may 

impede the exploration of slope differences and, accordingly, group differences.  A 

similar problem exists when using two covariates that have been restricted by the 

selection process to predict the dependent variable through their interaction. While the 

ANOVA in such a case would be employing the wrong model across the range of the 

covariate, generalizing from the ANCOVA would be extrapolating into areas where the 

model is not known to hold.  The restriction in range can, in addition, impact the 

normality of the variables, which additionally may impact the results.  Normality was 
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evaluated analytically and it was determined that range restrictions in the scenarios of this 

study would have to be very severe to impact the normality of the distributions to a 

degree that would likely exceed the robustness of the statistics.  These results are 

presented in Appendix A. 

Selection Scenarios as Degrees of Restriction 

     The present simulation study focuses on several selection scenarios likely to be 

encountered in practice.  Figure 3 depicts a simple selection scenario.  In this scenario, 

50% of Population A (the upper ellipse) is above the cut point (represented by the solid 

vertical line).  Likewise 50% of Population B is above the cut point.  Drawing 50% of the 

research sample from the restricted portion of Population A and 50% from the restricted 

portion of Population B will result in characteristics that will not be representative of the 

larger populations.  In this case, the variances will be restricted and the means will be 

affected.  Likewise, the restriction will result in a distribution that will be somewhat non-

normal.  All three of these effects will be exacerbated by the degree of restriction 

imposed on the populations.  Figure 3 presents the situation where there is a block effect, 

as there is a difference in the means of the populations prior to range restriction due to 

selection (represented by the horizontal dashed lines).  In this case, the size of the block 

effect remains constant after selection, while the unadjusted means increase (represented 

by the upward shift in the horizontal lines from the dashed lines to the solid lines). 
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Figure 3.  Two populations with relative cut point and block mean difference. 

 

     Figure 4 presents a slightly more complex situation.  Here only 30% of Population A 

is above the cut point, while 70% of Population B is above the cut point.  Again, the 

variances will be restricted, though Population A is affected to a much greater extent than 

Population B.  In this scenario, there originally was no difference in the population means 

(again represented by the horizontal dashed lines) however restriction has now created a 

mean difference.  This type of range restriction is an absolute cut point; the same cut 

point is applied to both distributions.  For example, in an educational situation using, say, 

males and females as the blocking variable, only applicants who score above a set score 

on a math test are available for the study, despite the fact that males and females may 

have different population means on the test.  A relative cut point would only, say, select 

the top 10% from each block.  Obviously the relative cut point would be much more 

difficult to implement, as it would require information on the distribution as a whole prior 

to selection.  Interestingly, when the means of the covariate of the two groups are equal, 

the relative and absolute cut points are the same (see Figure 3). 
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Figure 4.  Two populations with absolute cut point and no initial mean difference. 

 

    Figure 5 presents the case where a mean difference in the block effect exists prior to 

selection, but that mean difference is reduced due to selection.  In this scenario, both a 

group mean difference and a covariate mean difference existed prior to selection.   

 

 

Figure 5. Two populations with absolute cut point and an initial block mean difference. 

 

     The present study will consider the effects of these two scenarios.  The first is the 

more straightforward case (though likely the less prevalent case) where both groups have 

exactly equal means on the covariate measure (Figure 3).  The second scenario is 

represented in Figures 4 and 5, where the populations have different means on the 

covariate (this will be referred to in the study as the “shifted” distribution for simplicity 
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and clarity).  Both conditions will be subject to various block and treatment effects and 

treatment by covariate interactions. 

Simulations 

     A series of simulations will be used to compare analysis strategies. For each of the 

two scenarios (shift/no shift), a variety of combinations of effects and models will be 

studied.  First, three levels of effect size for the block effect (without a treatment effect) 

will be investigated.  Second, three levels of the treatment effect will be modeled. Finally, 

three levels of treatment effect will be modeled with a covariate by treatment interaction 

present.  All conditions will be run for three levels of a covariate/dependent variable 

correlation.  The result is a 2 x (3+6) x 3 condition design.  Each condition will be subject 

to non-selected (unrestricted) and selected (restricted) situations and analyzed using three 

models.  The result is 54 conditions under two selection situations (restricted/non-

restricted) analyzed with three models for a total of 324 cells.  The 54 conditions were 

treated as populations and simulated 50,000 times. 

     Corresponding to effect sizes proposed by Cohen (1988), three conditions of block 

and treatment effect magnitudes were studied.  Sample sizes and power to detect these 

effect sizes are presented in Table 1.  Originally, the design was to study conditions 

where power was set to 0.8 for all effects (so that the effect would be detected as 

significant 80% of the time).  However, the sample size necessary to detect the ‘small’ 

effect was N = 966 for the treatment effect, which, in the examples presented for 

psychological studies, is likely too large for a typical study from a research pool.  For this 

effect size, power was reduced to 0.5.  While this means that the true effect could be 

detected as significant only 50% of the time, this, unfortunately, may be more 
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representative of the actual state of psychological studies, at least for small effects (Rossi, 

1990; Maxwell, 2004).  

      The correlation between the covariate and dependent variable was determined by the 

small, medium and large effect sizes for correlations presented in Cohen (1988).  These 

combinations of effect sizes, power and sample sizes are presented in Table 1. 

     For cases with a shift in the distribution, the mean of the second distribution was 

shifted 1.0488.  The mean of the first distribution, A, was zero with a variance of 1.  The 

mean of the second distribution, B, was 1.0488 with a variance of 1.  The cutpoint was 

set at 0.5244.  This cut the distributions so that 30% of distribution A was above the 

cutpoint and 70% of distribution B was above the cutpoint. 

 

Table 1 

Summary of the Simulation Parameters 

           Sample Size
Effect 
Size f ρ Power Block Treatment 

Small 0.10 0.10 0.50 386 498 
Medium 0.25 0.30 0.80 128 156 
Large 0.40 0.50 0.80 52 64 

 

 

The Linear Models  

     When a linear model is defined in a subpopulation, we must take into consideration 

whether a factor is a treatment (manipulated) or blocked factor.  For example, if we are 

looking at existing differences among levels of a blocked factor (males vs. females), the 

groups could be unequally restricted, as they are in Figure 4.  In contrast to the 
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experimental factor in which subjects are randomized into treatments, in the non-

experimental factor the groups are likely to differ along the covariates (selection 

variables).  Throughout the discussion we will assume that the treatment (blocked or 

induced)  jπ  is not dependent on X, and if it is dependent, the dependence is manifested 

in the product jπ x. 

     ANOVA/Restricted ANOVA.  All conditions and restricted/unrestricted combinations 

were analyzed with three statistical models.  The first was a standard two-way ANOVA 

model representing the standard analysis tool for use with randomized experiments.  The 

difference between the results of the ANOVA model with a random sample (Random 

ANOVA) and a selected sample (Restricted ANOVA) is a key comparison in the study.  

The model with αj as the block effect, πk as the treatment and απj,k as the interaction term 

is given as 

 

kjikjkjkji ey ,,,,, ++++= αππαμ .                                      (12) 

 

     ANCOVA1/Restricted ANCOVA1.   The second analysis model studied was the 

standard ANCOVA model presented in Equation 13.  This model will be referred to as 

the ANCOVA1 model in the present study to distinguish it from the ANCOVA2 model to 

be presented next.  There are several important comparisons to be made with this analysis 

model.  First comparison is to determine if the restricted ANCOVA1 (Restricted 

ANCOVA1) results are representative of the unrestricted ANCOVA1 (Random 

ANCOVA1).  In addition, the consideration of whether the restricted ANCOVA1 is an 
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improvement over the restricted ANOVA in terms of representativeness of the 

unrestricted ANOVA will be important.  The model is given as 

 

kjikjikjkjkji exy ,,,,,,, +++++= βαππαμ .                                        (13) 

 

     ANCOVA2/Restricted ANCOVA2.   The final model to be analyzed is an ANCOVA 

model with a treatment by covariate interaction term presented in Equation 14.  This 

model, referred to as the ANCOVA2 model, is important for investigating the ability of 

an ANCOVA model in detecting the presence and effect size of this interaction, and is 

given by 

 

kjikjikikjikjkjkji exxy ,,,,,,,,, ++++++= πββαππαμ .                             (14) 

 

     ANCOVA1 example.  Consider an ANCOVA (without a block effect ) where a non-

interactive model holds in the unrestricted population, 

 

                kikikki exy ,,, +++= βπμ .                                               (15) 

 

Next, consider performing an ANOVA to compare groups using a sample that has being 

selected (explicitly or implicitly) using x.  Although the ANOVA is often used by 

researchers to compare existing groups, computing this analysis on an x-selected sample 

is not appropriate.  To understand why, we take the expected value of y at each 

(ANOVA) cell.  Because we are working with an x-selected sample (superscript ‘x’ 
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indicates selection on x), we take the expectation of y over the selected conditional 

subpopulation and find that the expected value of the cell mean is given by  

 

     .                                                 (16) k
x
xk

x
yk

x
y βμπμμ ++=

 

The model holds in the subpopulation, because kπ  is not dependent on x or e.  However, 

when there is no random assignment to treatment, the groups may differ along the x 

variable.  The difference would then be 
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μμβππβμπμβμπμμμ −+−=++−++=−  .   (17) 

 

We can see that the difference between the two y means reflects the effect as well as the 

differences between the restricted means along the x variable.  The ANOVA is 

inappropriate in that it ascribes differences between the cell means to the treatment effect, 

missing the differences along the x variable.   

     In addition, we can see that the MSE in the ANOVA under multivariate normality (in 

the general population) underestimates the variability in Y (refer to Appendix B).  Note 

that had we been able to randomize individuals into treatment as one would do on an 

experimental situation, the expected value of the differences between the two x means 

would be zero.  In this case, the cell means in the ANOVA would have reflected only 

treatment differences.  However, the MSE would still be based on the restricted marginal 

y-distribution yielding a biased MSE, and normality may be questionable.  Because the 

MSE underestimated the variability in Y, failing to reject the Null Hypothesis in the 

subpopulation implies failing to reject in the general population, if normality has not been 
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violated too badly.  However, rejection of the Null in the subpopulation does not 

guarantee its rejection on the general population.    

     When we are dealing with a selected sample, the ANCOVA is the appropriate analysis 

assuming that we covary on the selection variables and that these variables are correlated 

with Y.  The ANCOVA controlling for X is the appropriate design to assess treatment 

differences. The elegance of the ANCOVA is that it allows us to use a “biased” sample to 

make conditional inferences about the general population. 

     ANCOVA2 Example (Treatment by selection variable interaction).  Consider an 

ANCOVA (without block effect αj ) with a fixed treatment factor and the covariate x 

model, under this model,       

kikikikik
x
yki exxy ,,,, ++++= πββπμ  ,                                         (18) 

 

we have two important results.  When the subjects can be assigned at random to the 

levels of the treatment, each cell has the same expected value on X; that is,  

 

0)( ',, =− x
kx

x
kxE μμ .                                                           (19) 

 

 Also, the expected value of a cell mean is  
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It follows that the expected value of the difference between two cell means is  
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When dealing with a treatment factor, randomization reduces the difference to  
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ky ππμβππμμ −++−=− .                         (22) 

 

Then either under Equation 21 or 22, the ANOVA would incorrectly assign to treatment 

effect the differences between means.   On the other hand, an ANCOVA with X as a 

covariate would correctly identify the treatment effect.  However, the treatment effect 

would depend on the value of X.  If the full range of X is not represented in the selected 

sample then the results may not generalize to the general population.  If the interaction is 

present the researcher would have to go the general population to extend her results, 

especially if the interaction is disordinal.  This is because we can only speak of mean 

differences conditionally upon a particular x* value.   We are assuming here that X is 

collected before the experiment and that X is not affected by the treatment.     

     Unfortunately, an ANCOVA that fails to test the interaction between the treatment and 

the covariate would yield an inappropriate conclusion.  The ANCOVA model would have 

to include the interaction term to be appropriate.  Here testing for the interaction term is 

equivalent to the test of slope homogeneity.  When the slopes and intercepts are 

significantly different, the treatment difference must be assessed conditionally on a 

specific value of x*.  Any selection that importantly affects the range of x may impede 

the exploration of group differences.  Because the treatment differences depend on x* any 

statement about the magnitude of the effect would have to be conditional on x*.  A 

disordinal interaction would gravely impact on the generalizability of our results.  

     While the performance of the methods have been theoretically established, of 

particular applied interest is the impact of effect/sample size, degree of 

selection/restriction, type of restriction, and, as mentioned, presence of interactions on the 
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performance of the methods.  While the simulations cannot cover all potential research 

conditions, conditions likely to be found in practice were investigated using selection 

ratios previously described as present in practice (Alexander, Alliger, Carson & 

Cronshaw, 1989; Chasteen, & Mendoza, 2005) and effect sizes suggested by Cohen 

(1988).  The number of iterations for the simulations was determined by reviewing 

cumulative mean plots.  It was determined that convergence would occur prior to 50,000 

iterations, but the simulation was run out to 50,000 for each of the 54 study cells.  

Summary of Models 

     It is important to draw a distinction between the data generation models and the 

analysis models in the simulation.  Table 2 describes the data generation models for the 

various conditions.  Note that x’ indicates the case where the means of the covariates 

differ, creating a shift in the two block distributions (Figure 4). Magnitudes of the effects 

are abbreviated in the table as “S” for small, “M” for medium and “L” for large effects 

(as presented in Table 1). 

     The analysis models where the standard models a researcher may initially employ 

when analyzing the results of a study.  The ANOVA model applied to both the restricted 

and unrestricted data, (as presented in Equation 12) is  

 

kjikjkjkji ey ,,,,, ++++= αππαμ .                                         (23)                         

The ANCOVA analysis model, referred to in the study as the ANCOVA1 model is the 

standard two-way ANCOVA model, 

kjikjikjkjkji exy ,,,,,,, +++++= βαππαμ .                                    (24) 

The ANCOVA2 model employed for data analysis is 
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kjikikikjikjkjkji exxy ,,,,,,,, ++++++= πββαππαμ  .                      (25)     

 

 

Table 2 

Summary of the Data Generation Models and Descriptors Used in the Results 

Effect   Data Generation Model 

B
lock 

Treatm
ent

β
i π

k x
i,k  

Shift 

   

    

S       yi,j = μ + αj + βxi,j 
M       yi,j = μ + αj + βxi,j 
L       yi,j = μ + αj + βxi,j 
S    Y   yi,j = μ + αj + βx'i,j 
M    Y   yi,j = μ + αj + βx'i,j 
L    Y   yi,j = μ + αj + βx'i,j 

 S      yi,j = μ + πj + βxi,j 
 M      yi,j = μ + πj + βxi,j 
 L      yi,j = μ + πj + βxi,j 
 S   Y   yi,j = μ + πj + βx'i,j 
 M   Y   yi,j = μ + πj + βx'i,j 
 L   Y   yi,j = μ + πj + βx'i,j 
 S Y    yi,j = μ + πj + βxi,j + βiπkxi,k 

 M Y    yi,j = μ + πj + βxi,j + βiπkxi,k 

 L Y    yi,j = μ + πj + βxi,j + βiπkxi,k 

 S Y Y   yi,j = μ + πj + βx'i,j + βiπkx'i,k 

 M Y Y   yi,j = μ + πj + βx'i,j + βiπkx'i,k 

  L Y Y    yi,j = μ + πj + βx'i,j + βiπkx'i,k 
Notes: A “Y” indicates the presence of a given effect.  
S/M/L indicates the magnitude of the effect (“S”=Small, 
 “M”=Medium, “L”=Large).  Blanks in Effects column 
 indicate that effect is not present. 
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Results 
 
     The goal of the study was to consider the effect of range restriction on the ANOVA 

and ANCOVA techniques.  While there were many possible combinations of 

comparisons, several important ones are highlighted.  The first comparison looked at the 

differences between a restricted ANOVA and a (hypothetical) unrestricted one, providing 

a sense of the robustness of the ANOVA to range restriction. The second comparison 

assessed the differences between an ANCOVA computed on a restricted sample versus 

an ANOVA computed on a random sample, providing a sense of an “ANCOVA” fix.  

The third comparison looked at the differences between the restricted ANCOVA and a 

random one, showing us the disadvantages if any of the random ANOVA over our fix.  

These comparisons were made for the three selection scenarios presented in Figures 3, 4 

and 5.   

     These comparisons were made along several statistical criteria.  Initially the mean 

square error (MSE) results were compared.  Analyses of the block and treatment effects 

provided details on how range restriction affects these two different types of effects.   

Finally, the power of the ANCOVA2 to detect a covariate by dependent variable 

interaction was explored. 

Mean Square Error (MSE) 

     Table 3 gives us an indication of how the increase in homogeneity of the restricted 

sample when there was no interaction between the covariate and the treatment, led to a 

decrease in the ANOVA MSE.  The reduction in error associated with the restricted 

ANOVA was inversely related to the magnitude of the correlation between the covariate 

and the dependent variable. Note that in the restricted ANOVA the MSE decreased from 
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0.99 to 0.84 as the correlation increased; in the random ANOVA it was always 1.00.  As 

Table 3 highlights, the reduction in error associated with the ANCOVAs was also a 

function of the correlation.  The reduction for the random and the restricted ANCOVAs 

was always one minus the squared correlation.  Most importantly, the error of the 

restricted ANCOVAs was always equivalent to the unrestricted, showing that, indeed, the 

conditional analysis provided the correct MSE values with the restricted sample.  In 

addition, the reduction in error for the ANCOVAs was always greater than or equal to the 

reduction associated with the restricted ANOVA.   

     Results for the MSE values with the shift but no interaction were very similar to the 

results that have been presented in Table 3 (without the shift or interaction).  The only 

difference with the shift is that the restricted ANOVA did not have quite the same degree 

of reduction in error (the MSE values with shift were 0.99, 0.95 and 0.86 versus 0.99, 

0.94 and 0.84 without).  The MSE values for all remaining models were not affected. 

 

Table 3 

Mean Square Error Values for the Treatment Effect Condition 

Effect   Model 
Covariate 
Dependent 
Variable 

Correlation 

 ANOVA ANCOVA1 ANCOVA2 

  Random 
Case 

Restricted 
Case 

Random 
Case 

Restricted 
Case 

Random 
Case 

Restricted 
Case 

0.1  1.00 0.99 0.99 0.99 0.99 0.99 
0.3  1.00 0.94 0.91 0.91 0.91 0.91 
0.5   1.00 0.84 0.75 0.75 0.75 0.75 

Notes: Treatment Effect is “small”.  Other effects are not present. 
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Table 4 
 
MSE Values with Covariate Treatment Interaction Present and Shift not Present 
 

Effect  Model 

Treatment 
 ANOVA ANCOVA1 ANCOVA2 

 Random 
Case 

Restricted 
Case 

Random 
Case 

Restricted 
Case 

Random 
Case 

Restricted 
Case 

S  1.01 0.95 0.92 0.91 0.91 0.91 
M  1.06 0.97 0.97 0.93 0.91 0.91 
L  1.17 1.00 1.06 0.97 0.91 0.91 

Notes: S/M/L indicates the magnitude of the effect (“S”=Small, “M”=Medium, 
“L”=Large).  Covariate/dependent variable correlation is .3.  Block effect is null. 
 
 
     When focusing on the MSE values with the covariate/treatment interaction present, the 

correct model is the ANCOVA2.  Table 4 shows that the MSE values for the random and 

restricted ANCOVA2 model remained the same as when the interaction is not present (at 

0.91).  In addition, Table 4 shows there was an increase in error associated the other 

analyses.  The random ANOVA had a 17% increase in MSE values with a large treatment 

effect and the restricted ANOVA a 19% increase.  The random case ANCOVA1 showed 

a 41% increase in MSE values with a large treatment effect and the restricted ANCOVA1 

a 29% increase.  When the model did not include the interaction term and the interaction 

was present in the data, both random and restricted ANOVA and ANCOVA1 models’ 

MSE values were nearly always overestimated.  The introduction of the shift provided 

results very similar to those without the shift.  The interaction had a much greater impact 

on the MSE results than did the shift. 

       Despite the ANCOVA2 model being correct in the presence of the 

covariate/treatment interaction, there was some difficulty in the ability to detect the 

interaction.  Both the power to detect the interaction and the effect size were reduced for 

the restricted ANCOVA2.  Table 5 demonstrates this reduction in power.  When the 
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treatment effect was large, power dropped from 0.76 to 0.35 when the sample was 

restricted.  This highlights the difficulty for a researcher to correctly identify the 

ANCOVA2 as the appropriate model when working with selected samples.  The 

restriction increased the standard errors of both the estimates of , ,  and , , 

reducing the power of the restricted analysis. 

     The probability of Type I error was not affected by restriction.  Table 6 shows that the 

average interaction mean square values when the interaction was not present (the top six 

rows) were nearly always equal to one minus the correlation squared (.91, which was also 

the MSE values).  Despite the reduced effected sizes for the restricted ANCOVA2 for the 

interaction effect, the model did produce coefficient estimates that were accurate (Table 

7).     

    
 
Table 5 
 
 Power of ANCOVA2 Model to Detect Interaction Effect 
 
Effect     Model 

Treatment 
  ANCOVA2 

    
Random 

Case 
Restricted 

Case 
S   0.53 0.22 
M   0.81 0.38 
L    0.76 0.35 

Notes: S/M/L indicates the magnitude of the effect (“S”=Small, 
 “M”=Medium, “L”=Large).  Covariate/Dependent variable 
 correlation = .3. 
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Table 6  

Mean Squares for Covariate/Treatment Interaction Effect 

Effect  Model 

Treatm
ent 

β
i π

k x
i,k  

Shift 

 ANCOVA2 

  Random     
Case 

Selected 
Case 

S No No 0.91 0.91 
M No No 0.91 0.91 
L No No 0.91 0.92 
S No Yes 0.92 0.91 
M No Yes 0.91 0.91 
L No Yes 0.91 0.91 
S Yes No 3.38 1.79 
M Yes No 5.53 2.59 
L Yes No 5.30 2.49 
S Yes Yes 3.36 1.95 
M Yes Yes 5.53 2.87 
L Yes Yes 5.30 2.83 

Note:  Covariate/Dependent variable correlation = .3. 
 

Table 7 

Coefficient Estimates of the Interaction Effect 

Effect   Parameter   Model 

Treatment 
ANCOVA2 

Random Restricted 
Case   Case 

S -0.12 -0.12 -0.12 
M -0.31 -0.31 -0.31 
L   -0.49   -0.49 -0.49 

Notes: S/M/L indicates the magnitude of the effect (“S”=Small,  
“M”=Medium, “L”=Large). Covariate dependent variable correlation = .3. 
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Treatment Effect Size 

     Ultimately researchers are interested in obtaining representative effect sizes of the 

treatment effect.  Results of the simulation indicate that without a distribution shift 

(Figure 3) or covariate/treatment interaction that five of the six models reported very 

close to the nominal effect size.  The ANCOVA2 with a restricted sample returned 

reduced effect sizes (Table 8, last column).  The restriction in range on the covariate 

ultimately resulted in the reduced treatment effect for the ANCOVA2.  Table 8 presents 

the effect sizes for the case with a covariate/dependent variable correlation of 0.3; results 

for the other two correlations were very similar.   

     The power of the restricted ANOVA to detect the treatment effect was higher than the 

random ANOVA without the shift or interaction (4% higher with a small treatment effect 

(Table 9)).  This is due to the increase in homogeneity of the sample following 

restriction.  Only the ANCOVA1s were not affected by restriction. The random 

ANCOVA2 reported similar power as the ANCOVA1s (two of three conditions were 

equal), but the restricted ANCOVA2 reported substantially lower power (60% less with a 

small treatment effect).     

 
 
 
 
 
 
 
 
 
 
 
 
 
 

33 
 



Table 8 
 
 Partial Omega-Squared Values for the Treatment Effect without Treatment Covariate 
 Interaction and without Shift 
 

Effect  Parameter   Model 

Treatment 
    ANOVA ANCOVA1 ANCOVA2 
   

  
Random 

Case 
Restricted 

Case 
Random 

Case 
Restricted 

Case 
Random 

Case 
Restricted 

Case 
S  0.01   0.01 0.01 0.01 0.01 0.01 0 
M  0.06   0.06 0.06 0.06 0.06 0.06 0.02 
L  0.13   0.13 0.14 0.13 0.13 0.13 0.05 

Notes: S/M/L indicates the magnitude of the effect (“S”=Small, “M”=Medium, “L”=Large). 
Covariate dependent variable correlation = .3. 
 
 
 
Table 9 
 
Power to Detect Treatment Effect without Shift or Interaction 
 

Effect  
ANOVA 
Parameter  Model 

Treatment 
ANOVA ANCOVA1 ANCOVA2 

   
Random 

Case 
Selected 

Case 
Random 

Case 
Selected 

Case 
Random 

Case 
Selected 

Case 
S 0.50 0.50 0.52 0.54 0.54 0.54 0.22 
M 0.80 0.80 0.82 0.83 0.83 0.83 0.39 
L 0.80 0.80 0.82 0.83 0.83 0.81 0.37 

Notes: S/M/L indicates the magnitude of the effect (“S”=Small, “M”=Medium, “L”=Large). 
Covariate dependent variable correlation = .3. 
 
 
     When the shift in the distribution was introduced, the power of the restricted samples 

to detect the treatment effect was reduced.  Table 10 shows the power reduction for a 

small treatment effect dropped from 0.50 for the random case ANOVA to 0.45 for the 

restricted ANOVA.  Power for the restricted ANCOVA1 showed a 15% reduction, 

despite being the correct model.  The restriction increased the standard error of the 

estimate of β. leading to the reduction in power of the ANCOVA1.  The ANCOVA2 
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showed the greatest decrease among the models, 203%, as both β parameter estimates 

had restriction affecting them. 

 
 
Table 10 
 
Power to Detect Treatment Effect When Shift is Present 
 

Effect   ANOVA 
Parameter   Model 

Treatment 
ANOVA ANCOVA1 ANCOVA2 

      Random 
Case 

Selected 
Case 

Random 
Case 

Selected 
Case 

Random 
Case 

Selected 
Case 

S 0.50 0.50 0.45 0.54 0.47 0.43 0.13 
M 0.80 0.80 0.74 0.83 0.76 0.72 0.21 
L   0.80   0.80 0.76 0.83 0.77 0.70 0.20 

Notes: A “Y” indicates the presence of a given effect. S/M/L indicates the magnitude of the effect 
 (“S”=Small, “M”=Medium, “L”=Large).  Covariate dependent variable correlation = .3. 
 
     Despite the drops in power for the restricted ANOVA and ANCOVA1, restriction had 

little effect on the treatment effect sizes when the shift (without interaction) was present 

(Table 11).  The ANCOVA2 model did have reduced effect sizes, especially the 

restricted ANCOVA2.  Overall, for ANOVA and ANCOVA1, the primary effect of the 

shift on the treatment effect was a reduction in power, the effect size estimates remained 

nearly at the same magnitude as without a shift.  The ANCOVA2 did not perform as well, 

with both lowered power and effect size estimates. 
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Table 11 
 
Partial Omega-Squared Values for Treatment Effect with Shift Present 

Effect Parameter Model 

Treatment 
ANOVA ANCOVA1 ANCOVA2 

Random 
Case 

Selected 
Case 

Random 
Case 

Selected 
Case 

Random 
Case 

Selected 
Case 

S 0.01 0.01 0.01 0.01 0.01 0.01 0.00 
M 0.06 0.06 0.05 0.06 0.05 0.04 0.01 
L 0.13 0.13 0.12 0.13 0.12 0.10 0.02 

Notes: S/M/L indicates the magnitude of the effect (“S”=Small, “M”=Medium, “L”=Large).  
Covariate/Dependent variable correlation = .3. 

 
 

     Adding the covariate by treatment interaction led to some very interesting results 

under range restriction, showing that the treatment effect can’t be accurately estimated by 

any of the models.  These results are reported in Table 12.  The effect size estimates for 

the restricted ANOVA and restricted ANCOVA1 cases were about 2.8 times their 

unrestricted counterparts when the covariate/treatment interaction was present and the 

shift was not (items in bold). In contrast, both the restricted ANCOVA2 model and its 

random counterpart showed underestimation.  This underestimation was more 

pronounced in the restricted ANCOVA2 case.  Here the ANCOVA2 model is accounting 

for the interaction, but the restriction in range of the covariate leads to effect size 

reduction.    

     The bottom three rows of Table 12 show that the impact of a covariate/treatment 

interaction combined with a distribution shift can even affect the unrestricted cases (we 

also saw this in Table 4 with the MSE values).  In this situation, the effect sizes for the 

unrestricted ANOVA and ANCOVA1 models were about twice that of when the shift 

was not present.  The restricted ANOVA and ANCOVA1 models showed a compounding 

36 
 



effect, where the effect sizes were about 3.8 times larger, on average, than the original 

values.  Again, the ANCOVA2 models showed reduction, which was now apparent in the 

unrestricted case.   Despite the underestimation associated with the ANCOVA2 model, 

the random ANCOVA2 model performed the best (while erring on the conservative side), 

and is the correct model in this case.  The bottom six rows of Table 13 show how these 

effects are reflected in the mean square values.   In Table 13, the top three rows for the 

random cases show the baselines for the respective models for the rest of the table. 

 
Table 12 
 
 Partial Omega Squared Values for the Treatment Effect with Treatment-Covariate 
Interaction 
 

Effect Parameter Model 

Treatm
ent 

Shift 

  ANOVA ANCOVA1 ANCOVA2 
  

  

  

Random 
Case 

Restricted 
Case 

Random 
Case 

Restricted 
Case 

Random 
Case 

Restricted 
Case 

S No  0.01  0.01 0.03 0.01 0.03 0.01 0.00 
M No  0.06  0.06 0.17 0.05 0.17 0.05 0.02 
L No  0.13  0.12 0.33 0.11 0.32 0.11 0.03 
S Yes  0.01  0.02 0.05 0.02 0.05 0.01 0.00 
M Yes  0.06  0.12 0.21 0.12 0.21 0.04 0.01 
L Yes   0.13   0.23 0.37 0.22 0.37 0.07 0.01 

Notes: A “Y” indicates the presence of a given effect. S/M/L indicates the magnitude of the effect 
(“S”=Small, “M”=Medium, “L”=Large).  Covariate/dependent variable correlation = .3. 
 

 

 

 

 

 

37 
 



 

Table 13 

Treatment Mean Squares 

Effect Model 

Treatm
ent 

β
i π

k x
i,k  

Shift 

  ANOVA ANCOVA1 ANCOVA2 

  Random 
Case 

Selected 
Case 

Random 
Case 

Selected 
Case 

Random 
Case 

Selected 
Case 

S No No 3.50 3.42 3.40 3.39 3.39 1.81 
M No No 5.89 5.81 5.77 5.75 5.70 2.62 
L No No 6.01 6.01 5.84 5.89 5.67 2.59 
S No Yes 3.49 3.03 3.40 3.00 2.85 1.36 
M No Yes 5.86 5.01 5.74 4.96 4.64 1.76 
L No Yes 6.03 5.28 5.85 5.19 4.62 1.75 
S Yes No 3.50 8.99 3.41 8.93 3.39 1.80 
M Yes No 5.95 16.70 5.82 16.50 5.70 2.61 
L Yes No 6.19 17.28 6.03 16.84 5.69 2.58 
S Yes Yes 6.79 12.50 6.69 12.44 2.85 1.36 
M Yes Yes 12.39 23.52 12.24 23.31 4.65 1.76 
L Yes Yes 12.83 24.98 12.55 24.48 4.63 1.75 

Note: Block effect is null.  Treatment by covariate correlation = 0.3 

 

     While the ANCOVA2, especially the restricted ANCOVA2, underestimated the 

treatment effect, they both provided accurate estimates of the mean differences between 

the treatments when the interaction was present, whether or not the shift was also present.  

Table 14 demonstrates that with interaction, the restricted ANOVA and ANCOVA1 

overestimated the mean differences with and without the shift present.  This reflects the 

previously noted problem with the effect size estimates.  With both the shift and 

interaction together, the random ANOVA reported a mean difference over twice that of 

the actual parameter (-1.00 versus -.49).  It is important to note that the restricted 
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ANCOVA2 may have reduced effect sizes for the treatment effect, but did provide 

accurate coefficient estimates when the interaction was present. 

 

Table 14   

Treatment Mean Differences with Interaction Present 

Effect Parameter Model 

Treatm
ent

Shift 

ANOVA ANCOVA1 ANCOVA2 

   
Random 

Case 
Selected 

Case 
Random 

Case 
Selected 

Case 
Random 

Case 
Selected 

Case 

S No -0.12 -0.12 -0.22 -0.12 -0.22 -0.12 -0.12 
M No -0.31 -0.31 -0.55 -0.31 -0.55 -0.31 -0.31 
L No -0.49 -0.49 -0.88 -0.49 -0.87 -0.49 -0.49 
S Yes -0.12 -0.25 -0.31 -0.25 -0.31 -0.12 -0.12 
M Yes -0.31 -0.63 -0.78 -0.63 -0.78 -0.31 -0.31 
L Yes -0.49 -1.00 -1.25 -1.00 -1.24 -0.49 -0.49 

Note: Block effect is null.  Treatment by covariate correlation = 0.3 

 
 
Block Effect 
 
     The block effect sizes and power, in general, were not affected when there was not a 

shift in the distributions due to the difference in the means of the covariates (scenario 

corresponding to Figure 3).  As an example, the results for the power to detect the block 

effect with no shift or interaction were very similar to the results of the power to detect 

the treatment effect under the same conditions (treatment results were presented in Table 

9).  The main difference between the treatment results and the block results was that the 

restricted ANCOVA2 suffered no loss of power for detection of the block effect, as it did 

with the treatment effect. The results for power for detection of the block effect are 

presented in Table 15. 
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Table 15 
 
Power for Block Effect with No Distribution Shift 

 

Effect  
ANOVA 
Parameter  Model 

Block 

ANOVA ANCOVA1 ANCOVA2 

   
Random 

Case 
Selected 

Case 
Random 

Case 
Selected 

Case 
Random 

Case 
Selected 

Case 

S 0.5 0.50 0.52 0.54 0.54 0.54 0.54 
M 0.8 0.80 0.82 0.83 0.83 0.83 0.83 
L 0.8 0.80 0.83 0.83 0.83 0.81 0.81 

Notes: S/M/L indicates the magnitude of the effect (“S”=Small, “M”=Medium, “L”=Large).   
Covariate/Dependent variable correlation = .3. 

 
 
     When there is a shift due to a mean difference on the covariate, the situations 

correspond to those presented in Figures 4 and 5.  Figure 4 suggests that restriction will 

create a block effect when one did not exist prior to selection.  Table 16 reports the 

probability of Type I error for the two ANOVA cases for the block effect.  The shift in 

distributions did create an increase in the probability of Type I error for the restricted 

case (0.05 for the random ANOVA versus 0.53 for the restricted ANOVA when the 

correlation was 0.5).  The probability of Type I error for the restricted ANOVA decreased 

as the correlation decreased, though it did not quite reach 0.05, even when the correlation 

was equal to 0.1 (it did reach 0.07).  Figure 4 reflects a condition where the test of the 

block effect with the restricted ANOVA is biased when there is covariate /treatment 

correlation.  As the ANCOVAs estimate the conditional means, they can detect the shift 

in the distributions but not the block effect.  Therefore there is no unbiased test of the 

block effect when the sample is restricted. 

Table 16 
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Probability of Type I Error for Block Effect with Distribution Shift 
 

Effect   Parameter  Model 
Covariate/ 
Dependent 
Correlation 

ANOVA 

     
Random 

Case 
Restricted 

Case 
.1 0.05 0.05 0.07 
.3 0.05 0.05 0.21 
.5   0.05  0.05 0.53 

Notes: Magnitude of the treatment effect is Medium. 
 

 

     Table 17 shows the partial omega square values of the random and restricted 

ANCOVAs.  The effect sizes increased as the magnitude of the covariate/dependent 

variable correlation increased.  This is because if the correlation is zero and there is no 

block effect, there is no difference in the adjusted means (represented by the difference in 

diagonal lines in Figure 4).  As the correlation increased to 0.3, the partial omega-squares 

were between ‘small’ and ‘medium’ (0.02).  At a correlation of 0.5, the effect sizes 

increased to between 0.05 and 0.06.  The ANCOVAs are all ‘shifting’ in terms of 

adjusted mean differences as the correlation rises above 0.1.   

 
 
Table 17 
 
Partial Omega-Square of ‘Shift Effect’ When Block Effect is Null 
 

Effect   Model 
Covariate/ 
Dependent 
Correlation 

ANCOVA1 ANCOVA2 

  
Random 

Case 
Restricted 

Case 
Random 

Case 
Restricted 

Case 
.1 0 0 0 0 
.3 0.02 0.02 0.02 0.02 
.5   0.05 0.06 0.05 0.06 

Notes: Magnitude of the treatment effect is Medium. 
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     Table 18 shows that there is a reduction in the power to detect an existing block effect 

with a restricted ANOVA when the means of the covariate are not equal (when the 

correlation is 0.5, the restricted ANOVA had power 81% less than the random ANOVA).  

This can be inferred from Figure 5, where the restriction creates horizontal lines that are 

closer together than the horizontal lines associated with the unrestricted distributions.  It 

is clear that both the increase in the probability of Type I error (Table 16) and decrease in 

power (Table 18) were influenced by the magnitude of the covariate/dependent variable 

correlation, with a higher correlation having a greater negative impact. 

     The ANCOVA models in the Figure 5 scenario are again looking at the presence of 

the shift, however now one distribution is also ‘moved’ up because of the existing block 

effect.  In this situation, the greatest difference in the adjusted means occurs when the 

correlations are at their smallest level.  As the correlations increase, the distributions ‘line 

up’ so that the adjusted means are closer together.  We see this effect in Table 19.   Of 

particular importance is that the effects are the same regardless of whether range 

restriction is present or not.   

 
 
Table 18 
 
Power for Block Effect with Distribution Shift 
 

Effect   Parameter  Model 
Covariate/ 
Dependent 
Correlation 

ANOVA 

     
Random 

Case 
Selected 

Case 
.1 0.80 0.80 0.60 
.3 0.80 0.80 0.35 
.5   0.80  0.80 0.15 

Note: Magnitude of the block effect is Medium. 
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Table 19 
 
Power to Detect Distribution Shift with ANCOVA 
 

Effect   Model 
Covariate/ 
Dependent 
Correlation 

ANCOVA1 ANCOVA2 

  
Random 

Case 
Selected 

Case 
Random 

Case 
Selected 

Case 
.1 0.50 0.50 0.49 0.49 
.3 0.16 0.16 0.16 0.16 
.5   0.05 0.05 0.05 0.05 

Note: Magnitude of the block effect is Medium. 
 
 
 

Discussion 

ANOVA Questions   

     The results presented here leave researchers with questions about the appropriate use 

of ANOVA.  Although strictly speaking the ANOVA is not correct with selected samples 

if the selection variable is related to dependent variable Y, it may be acceptable if the 

correlation between the selection variable and Y is not above 0.1 when there is a mean 

difference on the covariate.  The ANOVA is especially troublesome when we were 

testing the blocked factor as opposed to a treatment factor.  It stands to reason that if the 

blocking is performed using anchors based on the full population distribution as opposed 

to only the restricted distribution, the results are less likely to be biased.  On the other 

hand, if it is not important that the test results generalize to the broader population then 

the selected ANOVA is quite appropriate (assuming that selection has not badly affected 

the normality of Y).  Some have justified the selected ANOVA by claiming that if one 

fails to reject the Null Hypothesis with homogenous subjects then one is less likely to 

reject it with heterogeneous subjects (Calder, Phillips & Tybout, 1982).   The problem 

with this argument is that if you reject the null with the homogenous subjects, then you 
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do not know whether you would reject it with heterogeneous subjects. You in essence 

would have to re-run the analysis for any generalizations.  In addition there is a bias 

issue; the test for the block effect will be confounded with the shift.  There is also a 

further weakness with this line of argument in situations where we look at the treatment 

effect; the possibility of interaction of the covariate and dependent variable can bias the 

results.  If the range of the  covariate  has been so restricted that investigating the 

interaction is not possible, we are less likely to detect an interaction between the 

treatment and the covariate (what Lynch, 1982, called background factors).  As we have 

seen here, this is not only an ANOVA problem, but it is also a problem with the 

ANCOVA.  In general, selection will restrict the background factors by making the 

subjects more homogeneous.   Because interactions affect our ability to interpret the main 

effects it is important that we identify them when present. This is almost an impossible 

task in a highly selected sample.  Not having adequate variability in the background 

factors is germane to the experiment, and a lack there of diminishes our ability to identify 

an interaction effect.  

     The issue of external validity in the ANCOVA becomes one of homogeneity of 

slopes. We have seen that this is a valid approach as long as there is no interaction 

between treatment and the selected variable.  If there is an interaction, it may be difficult 

to detect, and using an incorrect model can lead to overly conservative results.  If we fail 

to detect the interaction, the use an incorrect model (an ANOVA or ANCOVA1) can lead 

to overestimates.  If the slopes are not equal over the treatment conditions, then the 

results do not generalize across the covariate. Any treatment recommendations would 

have to take into account the covariate.  However, if the slopes are equal, then we would 
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be able to generalize our results across levels of the covariate.   The test of homogeneity 

of slopes can be conducted in the selected sample if there is “sufficient” range in the 

covariate; severe restriction will make the detection impossible.     

 
Conclusions 

 
     The present paper began by pointing out the problem often encountered in the social 

sciences with being unable to obtain a truly random sample. Under this situation we have 

seen that the usual ANOVA can be misleading.  Instead of the ANOVA, we have 

proposed employing an ANCOVA.  In a randomized experiment in which the restricted 

variable is included in the model, the ANCOVA will lead to more generalizable and less 

biased results. Without an interaction, the effect size estimates for randomized treatment 

effects for the restricted ANCOVA were similar to those if the random ANOVA, 

providing evidence of internal validity.  Without interaction, the effect size estimates of 

the restricted ANCOVA for the randomized treatment and block effects were similar to 

those of the random ANCOVA, demonstrating external validity. 

     In organizational settings, academic and applied, selection can occur in a variety of 

ways.  The selection may be complex involving direct and indirect methods and 

occurring at multiple levels.  The current study has provided some interesting 

observations and practical implications for researchers in spite of the fact that it focused 

on a simple case of direct restriction with a single covariate.  We have seen that when 

there is no ‘shift’ in the covariate, yielding the same means across the two groups, as 

depicted in Figure 3, all the methods performed well in terms of probability of Type I 

error, power and estimating effect size of the treatment and block effects when there was 

no interaction between the covariate and treatment.  Selection creates a more 
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homogeneous sample of subjects, impacting external validity.  In the case of Scenario 3 

the external validity is affected, but the tests results are not biased.  However, it is 

unlikely that this situation occurs in practice, when separate naturally occurring 

distributions have the same means on a selection covariate.  It is much more likely that 

the means would vary to some degree across groups, implying the scenarios in Figures 4 

and particularly 5, which has both shift and block effects. 

    In the situations corresponding to Figures 4 and 5, the only technique that correctly 

assessed the block effect was the random ANOVA.  The best case for the restricted 

ANOVA was when the selection variable had a very low correlation with the dependent 

variable.  Even when the correlation was as low 0.1, the probability of Type I error for 

the block effect in the restricted ANOVA was 0.07 (when it should have been 0.05) and 

power was .60 (when it should have been .80).  The restricted ANCOVA, on the other 

hand, provided estimates that were nearly equivalent to the unrestricted ANCOVA (in 

terms of both power and probability of Type I error).  A researcher can generally trust the 

results of a restricted ANCOVA but not those of a restricted ANOVA. Thus in scenarios 

in both Figures 4 and 5, there were not only generalizability issues but also effect biases.   

     When there was an interaction between the covariate and the treatment, both the 

ANOVA and ANCOVA models performed poorly in the restricted sample.  In fact, the 

MSE values when the interaction term was not appropriately included in the model were 

elevated by up to 17%.  On the other hand, when the interaction term was inappropriately 

included in the model and not present in the data, the treatment effects were 

underestimated by around 63%.  Furthermore, there is a difficulty in determining whether 

the interaction is present.  In restricted samples the power to detect the interaction was 

46 
 



very low.  It is important for researchers, when testing for interaction in a restricted 

space, to recognize that it is very difficult to detect.   

Recommendations 

    There are a couple of strategies that can be employed when one is interested in 

generalizing results obtained in a restricted sample.  Bringing in covariates related to 

selection into an ANCOVA provides similar or better results than using the traditional 

ANOVA.  However, we have seen that when a covariate by treatment interaction is 

present along with a ‘shift’, the treatment effects are generally overestimated with the 

ANOVA.  Unfortunately, detecting the interaction can be difficult, because the tests lack 

power, suggesting that testing the interaction using a more liberal test may be warranted.  

Using the ANCOVA with the interaction in the model provided conservative estimates of 

treatment effects. 

     Researchers employing the ANCOVA should pick covariates for an analysis that area 

related to the dependent variable as well as the selection process.  The approach 

presented here requires the researcher to step back and consider the nature of the 

selection to identify covariates related to both selection and the dependent variable.  That 

is, the identification of the covariate must take into consideration both theory and the 

variables responsible for selection to be able to generalize our results beyond the sample 

itself. 

     Internal and external validity have traditionally been presented in the social sciences 

as two separate and distinct concepts (e.g. Kirk, 1995).  However, this is not the case, 

simply because both rely on conditional characteristics of the data to draw valid 

conclusions.  We have seen in our results that both the block and treatment effects are 
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biased and lack power in selected situations thus affecting both internal and external 

validity.  In light of the RCM, missing data theory (selection), and the results of this 

study it becomes evident that the selection process can have significant impact on the 

generalizability of the study and accounting for variables related to selection is likely to 

improve its generalizability. 
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Appendix A 

     An issue that must be addressed is the impact of nonnormality.  When the samples 

have been shaped by a selection process, the samples can no longer be considered to be 

random samples from the (entire) normal population.  The selection itself can create a 

variety of distributions that can impact analyses and the validity of their assumptions. 

     To examine this question, it is important to consider who is typically available to 

participate in an experiment involving a subject pool.  Furthermore, to simplify this 

example bivariate normality for the X and Y variable in the general population is 

assumed.  The subject pool consists of students who applied, were selected by the 

organization and accepted the offer (and have not quit).  Next, assuming that selection 

(acceptance and the other factors) was a function of X, it is relatively easy to show that 

selection on X affects the joint distribution of X and Y rendering the selected population 

nonnormal. 

 Selection Process and Unconditional Normality 

     Although generally robust to violation of the normality assumption, the ANOVA 

assumes normality for the validity of the F-ratios.  It is well know that the F= MSB/MSE 

ratio in the ANOVA follows the F-distribution in random samples from a normal 

distribution.  The question that we must examine is whether the F-ratios in the ANOVA 

follows the F-distribution when the samples have been influenced by a selection process; 

that is, when the samples can no longer be considered to be random from the entire 

(normal) population.   

     To examine the question, we examine the individuals available for the experiment.  To 

simplify our discussion we will assume a bivariate situation with variables X and Y. A 
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similar argument could be made with three variables or more.  Next assume that P(o) is a 

function of X and that this probability follows the cumulative two-parameter logistic 

distribution.  Clearly, other probability distributions could be assumed.  Then P(o) is   

   

    baxe
xo /)(1

1)( −−+
=  .                                                   (1A) 

 

By carefully selecting a and b, we can obtain a variety of shapes for o(x) that could be 

used to describe an applicant-selection-acceptance process.  Figure 1A gives an example 

of a selection curve.  This curve describes a selection process in which most of the 

“selection” occurs to the right of -1, with the probability of selection increasing as we go 

from -1 to 1. 

 

   -3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1

Figure 1A.  o(x,) with a=0 and b=.3 

 

 

(If an organization has sufficient data this function could be estimated using a Poisson or 

Logistic regression. Once estimated the results could be used to calibrate the selected 
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distribution.)    Figure 2A shows a similar selection process shows that in this case most 

of the selection takes place to the right of zero. 
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Figure 2A.  o(x,) with a=1 and b=.3 

 

By carefully specifying a and b, we can describe a variety of alternate selection 

processes.   

     Next, assume that the selection process s(x,a,b) is applied to the standard normal 

distribution.  The density function for the selected (conditional) distribution in this case is 

given by 

 

   )1,0,(),,()/1()(' xnbaxskxf =                                           (2A) 

 

where k is the constant of integration, given by 

 

   .                                              (3A) ∫
∞

∞−
= dxxnbaxsa )1,0,(),,(
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     Now, consider the two selection function previously described in Figures 1A and 2A, 

s(x,0,.3) and s(x,1,.3), and applied them to the standard normal distribution.  The first 

density function  

 

   )1,0,()3,.0,()5./1()('0 xnxsxf =                                        (4A) 

 

describes the distribution in the selected population-- the subpopulation that one would 

had obtained had one applied the selection process to the entire population.  This selected 

distribution would look like  

 

     -3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3A. Selected Distribution with s(x, 0, 3) 

 

It is possible to see that the selected distribution is no longer symmetric and the shape of 

the distribution will vary with the selection function (with highly skewed distributions 

possible under extreme selection).  Next consider the other the selected distribution  

 

   )1,0,()3,.1,()188637./1()('1 xnxsxf = ;                                  (5A) 
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that is, 
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Figure 4A. Selected Distribution with with s(x, 1, 3) 

 

We can see that in this case the mode of the distribution shifted right to account for the 

more restrictive selection process.  The selected distribution is more skewed.  To 

illustrate, we plot the two selected distributions against the normal, 
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Figure 5A.  Overlay of functions 

 

     Given the more extreme selection function on the right, skewness has only increased 

to 1.14, which is moderate, but not as large as one might expect. 
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Appendix B 

     Regardless of the selection process assumed, once a selection process o(x) is applied 

to the general population the density function for the selected (subpopulation) distribution 

is  

 

   ),()()/1(),(' yxnxokyxf =                                         (1B) 

 

where k is the constant of integration,  

 

   .                                        (2B) ∫∫
∞

∞−

∞

∞−
∂∂= yxyxnxok ),()(

 

Assuming that the general population follows the standard bivariate normal distribution 

with mean zero, variance one, and covariance equal to .6 with o(x, a=0, b=.3), we 

numerically integrate Equation 1B to find the mean and variance of the subpopulation  
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Note that the means have been increased and variances have been reduced by the 

“selection” process o(x). 

     The MSE in an ANOVA conducted on a random sample of individuals from the 

subpopulation would reflect a variance of .819 instead of the correct variance of 1.  

Clearly, the magnitude of this difference is a function of the properties of o(x).  Subject 

homogeneity is likely to lead in this case to liberal rather than to conservative results.  In 

fact, we can show that 
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Note that whether we are dealing with a restricted x or an unrestricted one, under 

normality the variance of y given is  

 

            .                                           (6B) 64.)36(.12222
| =−=−= xyxy σβσσ

 

The ANOVA’s MSE would likely underestimate the MSE in the general population; 

whereas; the MSE in ANCOVA estimates the conditional variance whether it is 

performed in the general or subpopulation.  In this case, the ANCOVA would be 128% 

more efficient than the ANOVA. 

     The inadequacy of the ANOVA analysis can also be shown using a missing data 

argument.  The Y available data for the ANOVA are NI (not ignorable) on these 

situations, because  
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  P(R| Zobs, Zmis Xobs, Xmis Yobs, Ymis) ≠ P(R| Zobs, Xobs,Yobs).                        (7B) 

 

Selection Process and Conditional Normality 

     To develop a more appropriate analysis, consider again the organization function 

given as Equation 1A,  

baxe
xo /)(1

1)( −−+
= ,                                                        (8B) 

 

and apply it to the bivariate normal distribution.  Then to investigate the shape of Yx 

conditional on X, we find the conditional distribution of y given x*.  To this end we 

rewrite ),;,( Σμyxn  as 
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and substitute into the selected distribution given in Equation 8B,   
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Next note that for a fixed x*, o(x*) and  are constants; that is,  ),*,( 2
xxxn σμ
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The integral of  must now be set to one to define the conditional 

distribution.  Integrating it over y, we obtain 
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Then substituting into Equation (31), the conditional distribution of y given x* is  
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which is the conditional normal distribution of y given x*.   We have shown that an x-

selected function when applied to a multivariate normal does not affect the conditional 

distribution of y given x.  Note that the definition of the selection function o(x) is not 

important as long as it is solely a function of x (MAR).  As a function of x, o(x) will be a 

constant whenever x is fixed and the conditional normality will follow.    

     In terms of missing data theory, for conditional distribution n(y|z,x) the  
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 P(R| Zobs, Zmis Xobs, Xmis Yobs, Ymis)  =  P(R| Zobs, Xobs,Yobs).                 (14B) 

 

Under the conditional distribution the response pattern is not a function of the missing 

data.    


