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                                                             Abstract 

 

Heme (Hn) is an important iron source for Listeria monocytogenes, an intracellular 

pathogen that causes listeriosis. I characterized listerial Hn acquisition by two Fur-

regulated genetic systems: the hup region that produces an ABC transporter for Hn and 

hemoglobin (Hb) and the srtB region that produces an ABC transporter and other proteins 

with currently unknown functions. Intrinsic fluorescence titration assay showed HupD 

binds Hn with high affinity (Kd=40 nM). Western immunoblot analysis with listerial 

fractions identified its localization in the envelope of L. monocytogenes. Nutrition tests 

showed that the deletions in either hup region or the srtB region reduced the uptake of Hn 

and Hb. To quantitatively characterize Hn acquisition by L. monocytogenes, I synthesized 

[
59

Fe]-Hn and for the first time measured thermodynamic and kinetic parameters of its 

binding and transport. The [
59

Fe]-Hn binding and uptake assay showed that L. 

monocytogenes binds Hn with high affinity (Kd≈2 nM) and imports it with a Vmax (23 

pMol/10
9 

cells/min) comparable to those of ferric siderophore import systems. The Hup 

system was responsible for the majority of Hn uptake (Vmax=16 pMol/10
9
 cells/min). 

The residual uptake system (in Δhup) also had high affinity (Kd≈2 nM) but lower rate 

(Vmax=7 pMol/10
9
 cells/min). This quantitative assay also showed that the sortase B-

anchored protein Lmo2185 binds Hn and deletions of lmo2185 or srtB severely impaired 

the uptake of [
59

Fe]-Hn by L. monocytogenes at low concentrations (≤20 nM). However, 

at higher concentrations (≥50 nM), Hn directly adsorbs to its high affinity binding protein 

of cytoplasmic membrane transporter. Deletion of sortase A, on the other hand, had no 

effect on Hn/Hb acquisition, in nutrition tests or [
59

Fe]-Hn binding and uptake assay. 
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These data showed the participation of at least two cytoplasmic membrane permeases in 

Hn/Hb acquisition and the involvement of the SrtB-anchored cell envelope protein 

Lmo2185 in binding and uptake of Hn at low external concentrations. SrtA-anchored 

proteins, on the other hand, apparently do not function in Hn transport by L. 

monocytogenes. 

Intracellular Hn concentration is tightly regulated. To prevent Hn toxicity, bacteria export 

excess Hn. Deletion of lmo0641 rendered the mutant intolerant to a moderate 

concentration of Hn/Hb (2 uM), implying its defect in Hn detoxification. [
59

Fe]-Hn 

uptake assay supported the hypothesis that Lmo0641 functions as a heme exporter: 

∆lmo0641 accumulated intracellularly 1.6 fold higher amount of Hn than the wild type 

EGD-e did. [
59

Fe]-citrate uptake assay, on the other hand, displayed no difference in the 

ability of the two strains to uptake ferric citrate: the Vmax of [
59

Fe]-citrate uptake for 

EGD-e was 51.4 pMol/10
9
 cells/min and 55 pMol/10

9
 cells/min for Δ0641; the KM was 

44.2 nM for EGD-e and 48.4 nM for Δ0641.  

TonB has been proposed to be an energy transducer for the active transport of metal 

complexes across the OM of Gram-negative bacteria. Sequence analysis revealed 

homology in the TonB C terminus to E. coli YcfS, a proline-rich protein that contains the 

lysin (LysM) peptidoglycan-binding motif. My experiments confirmed that TonB 

physically binds to the peptidoglycan: the purified peptidoglycan precipitated MalE-

TonB69C from solution, but not MalE nor FepB.  
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                        Chapter 1 Introduction 

 

1.1 Cell envelopes of bacteria and bacterial iron transport systems 

 

Bacteria are classified into two categories based on whether or not they retain the crystal-

violet dye (Gram stain):Gram-negative bacteria and Gram-positive bacteria. Gram-

negative bacteria envelopes contain an outer membrane (OM), a periplasmic space (PP), 

and an inner membrane (IM, or cytoplasmic membrane). In the periplasmic space, a cell 

wall composed of 7 to 8 nm thick peptidoglycan layer is closely attached to the outer 

membrane (Vollmer and Holtje, 2004). Gram-positive bacteria, on the other hand, have 

no outer membrane, and the cytoplasmic membrane (CM) is surrounded by a much 

thicker cell wall (20 to 80 nanometers) (Navarre et al, 1999; Dmireiev et al, 1999) that 

makes Gram-positive bacteria susceptible to Gram stain. 

Besides its structural function, the cell envelope is an extremely important interface 

between the cell and its external surroundings. A cell relies on its envelope to sense and 

respond to the environmental changes, to acquire nutrients from and exclude toxic 

molecules or metabolic wastes to its surrounding environments. With few exceptions, 

iron is an essential nutrient to all organisms. Many important biological processes, such 

as energy generation, oxygen transport, DNA synthesis, photosynthesis and 

detoxification of oxygen radicals (Neilands, 1976; Neilands, 1995; Weinberg, 1990; 

Wrigglesworth and Baum, 1980), require iron or are regulated by iron. The iron 

requirement for maximal cell growth is 0.4 - 4.0 uM (Weinberg, 1978) and the minimal 

iron requirement is 10
-8

 M (Neilands, 1995; Braun and Killmann, 1999; Wandersman and 
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Delepelaire, 2004) in order to maintain the required 10
-6

 M internal concentration (Braun 

and Killmann, 1999). However, iron is not readily available despite being the second 

most abundant metal in the earth‟s crust. Under aerobic conditions, Fe
2+

 is readily 

oxidized to Fe
3+

 and then precipitates as hydroxide polymers, reducing the free iron 

concentration to 10
-18

 M (Schneider and Schwyn, 1987). In animal body fluids, iron is 

also sequestered by some eukaryotic iron-binding proteins, such as transferrin (Tfn), 

lactoferrin (Lfn), hemoglobin (Hb) and ferritin (Fn). This further reduces free iron 

concentration to about 10
-24

 M (Raymond et al, 2003). To overcome this iron acquisition 

barrier, efficient pathogens develop three ways. One way is to produce siderophores 

(Neilands, 1976; Neilands, 1995). Siderophores are low molecular weight organic 

compounds that have sufficient higher affinities to either scavenge free iron at very low 

concentrations or directly capture iron from iron-containing proteins. There are two major 

types of siderophores: catecholate and hydroxamate, based on the functional groups that 

chelate iron. Both types are given one example in Figure 1.1. A second way is to directly 

utilize eukaryotic iron-binding proteins like Hb, Tfn and Lfn as iron sources. The third 

way is to utilize insoluble ferric iron (Fe
3+

) by reducing it to ferrous iron (Fe
2+

). Among 

the three ways, the second one is a more common attribute among pathogenic bacteria 

(Cornelissen and Sparling, 1994). A brief description of the 3 iron acquisition ways is 

given below. 

For many bacteria, siderophore-mediated iron uptake is the main way to acquire iron and 

is well-studied in Gram-negative bacteria. One example is ferric enterobactin (FeEnt)   

uptake in Escherichia coli. Enterobactin is a catecholate type siderophore.The FeEnt 

uptake system of E. coli constitues an outer membrane receptor FepA, a periplasmic 
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binding protein FepB, and an ABC transporter FepCDG. Under low iron conditions, 

enterobactin is synthesized and excreted to the extracellular environment, where it 

chelates ferric iron with extremely high affinity (Kd=10
-52

M) (Carl and Raymond, 1979). 

FepA recognizes FeEnt and binds it with high affinity (Kd=10
-10

 M) (Newton et al, 1999). 

The translocation of FeEnt across the OM through FepA is believed to be energized by 

TonB, a potential energy transducer. However, the exact mechanism about how FeEnt is 

transported across the OM and how it is released from the periplasmic side still remains 

unclear. Comparison of the available structural data of FepA (Buchanan et al, 1999), 

ligand free and ferrichrome-bound FhuA (the OM receptor for ferrichrome) (Locher et al, 

1998) suggests that binding of FeEnt to FepA induces conformational change on the 

periplasmic side of FepA, promoting the interactions between the N-terminal “TonB box” 

of FepA and TonB. FeEnt is then transported across the OM through FepA.  Once inside 

the periplasmic space, it is bound by FepB and delivered to the inner membrane ABC 

transporter FepCDG. It is still not sure whether there is an interaction between FepA and 

FepB which helps delivery of FeEnt to FepB (Newton et al, 2010). FeEnt is then 

transported into the cytoplasm, degraded and iron is released. 

In addition to the secretion of siderophores, many bacteria also have the ability to directly 

utilize eukaryotic iron-containning proteins. In terms of iron availability for bacteria, 

animal body fluid is an extremely harsh environment. Virtually no free iron is available 

because most of the iron is sequestered by eukaryotic iron-binding proteins and 99% of 

total body iron is localized intracellularly (Stojiljkovic and Perkins-Balding, 2002). 

Usually these iron-binding proteins are only 30% to 40% saturated (Perkins-Balding et al, 

2004). To survive under this tough condition, bacteria have developed efficient ways to 
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directly utilize host iron-containing proteins as important iron sources. For example, 

Neisseria meningitidis, a Gram-negative bacterium, can strip iron from transferrin and 

lactoferrin. Extensive studies about iron uptake from Tf and Lfn in Neisseria 

meningitides have been conducted. It was reported that the OM receptors for Tf and Lfn 

consist of two protein components, with TbpA/TbpB for Tf and LbpA/LbpB for Lfn, 

respectively (Perkins-Balding et al, 2004). TbpA and LbpA are believed to be membrane 

proteins inserted into the OM while TbpB and LbpB are lipoproteins anchored to outer 

leaflet of the OM. Mutants deficient in TbpB (LbpB) are still able to utilize iron from Tf 

(Lfn) with a level significantly less than the wild type. However, mutants deficient in 

TbpA (LbpA) can no longer utilize Tf (Lfn) as an iron source (Perkins-Balding et al, 

2004). This indicates that TbpB (LbpB) play a facilitatory role in the usage of Tf (Lfn) as 

an iron source. Such kind of OM receptors with two protein components is not common 

in TonB-dependent iron transport systems. As iron sources, neither the whole Tf nor the 

whole Lfn is internalized across the OM. It was reported that binding of Tf (Lfn) to its 

receptor may cause conformational changes both in the ligand and the receptor, resulting 

in removal of iron from the ligand and binding of iron to the receptor (Perkins-Balding et 

al, 2004). Specific interactions between TbpB and Tf have been reported (Retzer et al, 

1999). The iron is then delivered to FbpA, a periplasmic iron-binding protein. A recent 

study using the closely related N. gonorrhoeae demonstrated that this iron transfer 

involves interaction between TbpA and FbpA (Siburt et al, 2009). It was also showed that 

TbpA interacts with apo-FbpA with higher affinity than holo-FbpA which could facilitate 

the dissociation of holo-FbpA from the TbpA/B receptor.The iron-FbpA complex is then 

bound by FbpB/FbpC complex, a putative inner membrane ABC transporter, and the 
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ferric iron is internalized across the IM through FbpB/FbpC (Perkins-Balding et al, 

2004). 

Besides the synthesis of siderophore and direct utilization of eukaryotic iron-containing 

proteins, some bacteria can reduce extracellular ferric iron to ferrous iron on the surface 

of cell envelope (Cartron et al, 2006; Deneer et al, 1995). However, little is known about 

the mechanism or components of extracellular-ferric iron reduction in bacteria. 

Unlike the ferric form, ferrous iron is relatively soluble (0.1 M at pH 7) (Cartron et al, 

2006). The feo system of E. coli K-12 was the first bacterial ferrous iron transport  

system reported (Hantke 1987).  

 

Figure 1.1 Structures of ferrichrome and ferric-enterobactin 

Left panel: apoferrichrome complexed with iron, apoferrichrome is a prototypical 

hydroxamate type siderophore; Right panel: enterobactin complexed with iron, 

enterobactin is a prototypical catecholate type siderophore (Neilands, 1995). 
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1.2 Heme uptake in bacteria   

 

A 70-kg adult human has an iron pool around 5g (Braun and Killmann, 1999) and heme 

iron source constitutes two thirds of it (Wandersman and Delepelaire, 2004). Most of 

heme is bound to either hemoglobin or myoglobin. Free heme or hemoglobin is scarce in 

animal body fluids. Spontaneous hemolysis or local hemolysis release heme or 

hemoglobin, but they are complexed immediately by hemopexin or haptoglobin with high 

affinity. Haptoglobin and hemopexin are glycoproteins found in serum or plasma, 

respectively. Heme is a hydrophobic molecule that can easily intercalate into membranes 

(Wandersman and Delepelaire, 2004). It also promotes redox reactions. Thus makes 

heme highly toxic. While micromolar iron is required for bacterial growth, nanomolar 

heme is sufficient (Wandersman and Delepelaire, 2004).  

1.2.1 Heme uptake in Gram-negative bacteria 

Heme-uptake systems in Gram-negative bacteria can be classified into two groups 

depending on whether hemophore, a protein secreted by bacteria to the extracellular 

environment to scavenge heme sources, is involved to mediate the uptake of heme. One 

group involves direct binding of heme or heme-containing host proteins to specific OM 

receptors while the other group relies on hemophores to present heme to the specific OM 

receptors. And then heme is transported across the cell envelope in a defined way.  

1.2.1.1 Hemophore-independent heme uptake 

This type of heme uptake systems in Gram-negative bacteria relies on their OM receptors 

to directly bind heme or heme-containing proteins. Basically all OM receptors for 

varying iron sources share some common characteristics. Although their primary 
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sequence homology is low with the amino terminus being the most conserved part, they 

all show a quite similar overall structure: a 22-stranded β-barrel with a N-terminal plug 

folded inside the barrel. For heme source OM receptors, there are 2 groups: one group 

recognizes diverse heme sources and the other only recognize and utilize one or two 

specific heme source (Wandersmann and Stojiljkovic, 2000). All known heme receptors 

share the conserved FRAP/NPL domain (Wandersmann and Stojiljkovic, 2000) and are 

all TonB-ExbB-ExbD dependent. 

 An example of the first group is HemR, the OM receptor of Y. enterocolitica. HemR can 

recognize many different heme-containing compounds, including heme, hemoglobin, 

myoglobin, hemoglobin-haptoglobin complex, heme-hemopexin complex, heme-albumin 

complex (Bracken et al, 1999). Site-directed mutagenesis have identified two conserved 

histidine residues, one located in the plug , most likely on one apex, and the other in the 

β-barrel on an extracellular loop, essential for heme acquisition by HemR (Bracken et al, 

1999). Examples of the second group include HutA and HmbR. HutA is the OM receptor 

for heme and hemoglobin in Vibrio cholera (Henderson and Payne, 1994). HmbR is the 

OM receptor for hemoglobin and heme in Neisseria meningitides (Stojiljkovic et al, 

1995; Stojiljkovic et al, 1996). In general, heme uptake in Gram-negative bacteria is 

similar with other OM receptor-mediated iron uptake process. Both of them are TonB-

ExbB-ExbD dependent.  

Two heme uptake systems have been identified in N. meningitides. One system involves 

HmbR which recognizes and binds hemoglobin with a high affinity, with a Kd around 13 

nM (Stojiljkovic et al, 1995). HmbR strips heme from Hb and transports it across the OM 

(Stojiljkovic et al, 1995). The other system involves HpuAB, the bipartite OM receptor 
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which recognizes and binds a broader spectrum of heme sources, including hemoglobin, 

haptoglobin and hemoglobin-haptoglobin complexes. Similar to other bipartite receptors 

TbpAB/LbpAB in Neisseria, HpuAB consists of a lipoprotein HpuA and a 

transmembrane protein HpuB (Perkins-Balding et al, 2004). While TbpB/LbpB is not 

essential for utilization of Tf/Lfn as an iron source, both HpuA and HpuB are required for 

Hb utilization (Stojiljkovic and Schryvers, 1999). During HmbR or HpuAB-mediated 

heme uptake process, only heme, but not heme-containing proteins, is internalized 

(Stojiljkovic et al, 1995). Both HmbR and HpuAB are TonB-ExbB-ExbD dependent. A 

specific interaction between HmbR and TonB has been reported (Perkins-Balding et al, 

2004). Little is known about the mechanism of heme transport from periplasm to 

cytoplasm. But the Fbp system is not involved (Khun et al, 1998). 

1.2.1.2 Hemophore-mediated heme uptake  

Hemophore is a small protein secreted by some Gram-negative bacteria through an ABC 

transporter under iron-deficient conditions (Letoffe et al, 1994). The secretion signal is 

located in the C-terminus (Letoffe et al, 1994). The first identified hemophore is HasA 

from S.marcescens (Letoffe et al, 1994; Arnoux et al, 1999; Arnoux et al, 2000). It 

consists of a β-sheet layer and a layer of 4 α-helices (Krieg et al, PNAS 2009). HasA 

binds b-type heme with high affinity (Kd~10
-11

 M) (Deniau et al, 2003). Its homologues 

have been found in P. aeruginosa (Letoffe et al, 1998; Letoffe et al, 2000), Pseudomonas 

fluorescens (Idei et al, 1999), Y. pestis (Rossi et al, 2001) and Y. enterocolitica 

(Stojiljkovic and Hantke, 1994). The OM receptor for HasA is HasR and the binding 

interaction between them was proposed to be HasB-dependent (HasB is a TonB-like 

protein) (Lefevre et al, 2008). The crystal structure of HasR-HasA complex has recently 
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been solved (Krieg et al, PNAS 2009). Like other TonB-dependent receptors, HasR 

consists of a C-terminal 22-stranded β-barrel and an N-terminal plug localized inside the 

β-barrel. HasR superimposes well with the known structures of other TonB-dependent 

receptors except for the extracellular loops. It binds heme with a significant lower affinity 

(Kd=10
-6

 M) (Letoffe et al, 2004) than HasA. The lower affinity of HasR raises a question 

about how HasR gets heme from HasA. The formation of HasR-HasA complex and 

interactions between HasR and holo-HasA have been reported (Izadi et al,1997; Letoffe 

et al,1999; Caillet-Saguy et al, 2006; Caillet-Saguy et al, 2009). HasR binds HasA with a 

Kd=7nM. It was proposed that once HasR binds holo-HasA, the equilibrium between 

high-spin species and low-spin species of heme shifts toward the high-spin species, 

inverting the affinity order of HasA and HasR for heme (Caillet-Saguy et al, 2006). As a 

result, heme transfers from HasA to HasR. It has been observed that holo-HasA docking 

to HasR breaks 1 of the 2 axial heme coordinations of HasA. The other axial coordination 

is then ruptured by subsequent displacement of heme by a HasR residue, leading to heme 

transfer into HasR. While heme transfer from HasA to HasR is energy-independent, heme 

transfer from HasR into the periplasm requires energy provided by HasB-ExbB-ExbD 

complex, just like other OM receptor-mediated iron uptake processes. Besides serving as 

hemophore receptors, HasR in S. marcescens also function as heme receptors by directly 

binding free heme and hemoglobin (Ghigo et al, 1997). There is also another uncommon 

type of hemophore: HxuA. HxuA was first identified in H. influenza (Hanson et al, 

1992). The main difference between HxuA and HasA is that HxuA only strips heme from 

heme-loaded hemopexin while HasA strips heme from a broad spectrum of heme sources 

(Wandersman and Delepelaire, 2004; Tong and Guo, 2009). HxuA binds heme-
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hemopexin suggesting heme transfer through protein-protein interactions (Hanson et al, 

1992). On the other hand, both coimmunoprecipitation and analytical ultracentrifugation 

methods failed to detect stable complexes between HasA and myoglobin or hemoglobin, 

suggesting a mechanism of heme transfer from these proteins to HasA by passive heme 

transfer because of the higher affinity of HasA (Wandersman and Delepelaire, 2004). 

While HxuA is absolutely required for heme uptake from hemopexin, HasA is not 

essential in the has system of S. marcescens (Stojiljkovic and Perkins-Balding, 2002). 

Under some conditions, HxuA itself also functions as a heme receptor (Cope et al, 1998; 

Wong et al, 1994; Cope et al, 1995). The molecular weight of HxuA is about 100 KDa, 5 

times larger than HasA (19 KDa) (Tong and Guo, 2009). 

Once heme inside the periplasm, it is believed that it uses a common heme transport 

system to deliver heme from periplasm into the cytoplasm. However, little is known 

about how heme is transported from periplasm into the cytoplasm. 

One well-studied periplasmic heme binding protein is PhuT from P. aeruginosa (Ho et al, 

2007). The phu locus in P.aeruginosa is involved in heme upate (Ochsner et al, 2000; 

Tong and Guo, 2007). It contains an OM heme receptor PhuR, a periplasmic heme 

binding protein PhuT, a putative IM ABC transporter PhuUVW and a putative 

cytoplasmic heme storage/chaperone protein PhuS (Tong and Guo, 2009). PhuR 

recognizes a broad spectrum of heme iron sources, including heme, hemoglobin, 

myoglobin, haptoglobin-hemoglobin, hemopexin (Tong and Guo, 2009). Heme is 

internalized into the periplasm through PhuR. PhuT is then proposed to bind and deliver 

heme to the IM permease PhuUVW through which heme is transported into the 

cytoplasm where it is bound by Phus (Tong and Guo, 2009). Recently, the crystal 
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structures of apo-PhuT and holo-PhuT have been solved (Ho et al, 2007). PhuT belongs 

to Class III periplasmic binding proteins (PBPs) which are featured by a long, rigid α-

helix joining two topologically similar globular domains (Borths et al, 2002; Karpowich 

et al, 2003; Quiocho and Ledvina et al, 1996). Members of this group with available 

crystal structures include BtuF (Borths et al, 2002; Karpowich et al, 2003) and FhuD 

(Clarke et al, 2000; Clarke et al, 2002), two E. coli periplasmic binding proteins that 

binds vitamin B12 and hydroxamate-type siderophores, respectively. Proteins of this 

group only show minor conformational changes upon ligand binding. For example, BtuF 

shows only 1Å shrinking of the B12 binding pocket upon B12 binding (Borths et al, 

2002; Karpowich et al, 2003). Another periplasmic heme binding protein, ShuT from 

Shigella dysenteriae, also has its crystal structure available at the same time as PhuT (Ho 

et al, 2007). The overall structures of PhuT and ShuT are quite similar, although the 

detailed architectures of the heme binding pockets in PhuT and ShuT are quite different 

(Ho et al, 2007). For both proteins, heme binds in a narrow cleft between the N- and C- 

terminal binding domains (Ho et al, 2007). It has been proposed that heme binding to 

PhuT/ShuT may only induce a minor conformational change in the heme binding pocket 

(Ho et al, 2007). The crystal structures of PhuT, BtuF and FhuD are shown in Figure 1.2. 

Once in the periplasm, the periplasmic heme binding protein shuttles heme between inner 

and outer membranes. Heme transport across the inner membrane involves an inner 

membrane permease and an ATPase on the cytoplasmic side. It is proposed that heme 

binding to its PBPs induces conformational changes in the PBPs, allowing interaction 

between PBPs and the IM permease. Heme is then delivered to the IM permease and 

transported across the IM at the expenditure of ATP (Tong and Guo, 2009). 
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Figure 1.2 Structure of PhuT compared with BtuF and FhuD (adapted from: Tong 

and Guo, 2009) 

The major elements of the secondary structure according to the BtuF structure are shown 

on the PhuT structure. The ligands for each protein are also shown right below.  

 

 

1.2.2 Heme uptake in Gram-positive bacteria 

1.2.2.1 Protein sorting to the cell wall in Gram-positive bacteria 

Gram-positive bacteria have no OM. Instead, they have a quite thick cell wall composed 

of the murein sacculus and the attached polysaccharides, teichoic acids, and cell wall 
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proteins (Navarre and Schneewind, 1999). The cell wall of Gram-positive bacteria lies at 

the interface of the interaction between the bacterial cell and its external environment. It 

is thus of unique importance for Gram-positive bacteria. Through the cell wall, Gram-

positive bacterial cells sense and respond to changes of their environment, and also 

exchange substances with their environment. All these must rely on cell wall proteins. 

This raised a series of interesting questions related to these cell wall proteins: How are 

they anchored? Where are they localized--exposed on the surface or buried inside the cell 

wall? What are the factors that determine their final destinations? Over the past decades, 

significant progress has been made to answer these questions. Several different 

mechanisms have been identified, including sortase-mediated covalent linking, binding to 

choline containing teichoic acids and binding to lipoteichoic acids (Ton-That et al, 2004). 

A brief review about sortase-mediated anchoring mechanism is provided as following. 

Sortase is a membrane-anchored transpeptidase (Marraffini et al, 2006). Many surface 

proteins, including some virulence factors, proteins involved in iron uptake, and the 

protein components of pilus, are anchored to the cell wall by sortases (Marraffini et al, 

2006). Sortase-anchored surface proteins typically contain an N-terminal signal peptide 

and a C-terminal sorting signal. The C-terminal sorting signal consists of a short 

pentapeptide motif, typically LPXTG, followed by a hydrophobic domain and a 

positively charged tail (Schneewind et al, 1992). Two sortases, SrtA and SrtB have been 

reported to be involved in iron uptake in Staphylococcus aureus (Mazmanian et al, 2003). 

Three residues in SrtA, His (120), Cys (184), and Arg (197), are absolutely conserved in 

sortase enzymes from Gram-positive bacteria (Zong et al, 2004). The anchoring reaction 

with SrtA starts with a nucleophilic attack of Cys (184) on the peptide bond between T 
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and G of the pentapeptide motif, LPXTG, giving rise to a thioester-linked acyl 

intermediate. This was followed by a second nucleophilic attack on the thioester bond 

performed by the amino group of the pentaglycine cross bridge of the cell wall. The 

enzyme is then regenerated and the surface protein is attached to the cell wall (Huang et 

al, 2003; Ton-That et al, 2000). On the other hand, SrtB, the other sortase involved in 

iron uptake in S. aureus, recognizes the sequence motif NPQTN and anchors IsdC, a 

heme-binding protein, to the cell wall (Mazmanian et al, 2001, 2002). The catalytic 

mechanisms of SrtA and SrtB are quite similar (Marraffini 2006). Both the two sortases 

have also been identified in Listeria monocytogenes (Bierne et al, 2002a, 2002b, 2004; 

Newton et al, 2005), a Gram-positive bacterium that is the subject of this study. L. 

monocytogenes internalin A (InlA), a known surface virulence factor, carrys a LPXTG 

motif and is the substrate of SrtA (Bierne et al, 2002a). Two proteins encoded by the srtB 

genetic locus of L. monocytogenes, Lmo2185 and Lmo2186, contain an NKVTN and an 

NAKTN motif, respectively (Newton et al, 2005). Both of them have been reported to be 

anchored to the cell wall by SrtB (Bierne et al, 2004; Pucciarelli et al, 2005).  

1.2.2.2 Heme uptake by S. aureus through Isd system 

While extensive studies have been carried out about heme transport in Gram-negative 

bacteria, only until recent ten years this research has been emerging in Gram-positive 

bacteria. Heme uptake systems have been reported in Gram-positive bacteria 

Corynebacterium diphtheriae (Burkhard and Wilks, 2008), Streptococcus pyogenes, 

group A streptococcus (GAS) (Bates et al, 2003; Lei et al, 2002; Lei et al, 2003) and 

S.aureus (Mazmanian et al, 2003; Skaar et al, 2004a). Relatively extensive studies have 

been conducted in S. aureus. The isd (iron-regulated surface determinant) locus in S. 
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aureus was identified to be involved in heme uptake (Mazmanian et al, 2003). This locus 

contains 8 genes (Figure 1.3) and all of them have been reported to be involved in heme 

iron source acquisition (Mazmanian et al, 2003; Marraffini et al, 2006). Except SrtB, all 

of them bound heme. Three proteins (IsdA, IsdB and IsdC) were tested to see if they bind 

human Hb, only IsdB bound. While IsdA, IsdB and IsdH contain LPXTG sorting signals 

and are anchored to the cell wall by sortase A, IsdC  contain NPQTN sorting signal and is 

anchored to the cell wall by sortase B. Proteinase K  susceptibility assay suggested that 

IsdB and IsdH were compeletely surface-exposed, IsdA partially exposed and IsdC  

compeletely buried  in the cell wall. IsdEF is a CM ABC transporter consisting of a 

putative lipoprotein IsdE and a permease IsdF. IsdD is thought to be inserted into the 

CM. Once inside cytoplasm, heme may be degraded by IsdG or IsdI, the heme 

oxygenases (Figure 1.3; Skaar et al, 2004b). Alternatively, heme may be directly 

incorporated into the respiratory proteins of  the bacterial membrane as an enzyme 

cofactor (Skaar et al, 2004a) or may be pumped out of the cell if the heme concentration 

is too high ( Friedman et al, 2006). Two genes located outside isd locus, isdH and isdI, 

encode two other proteins of the Isd system. IsdH was reported to bind haptoglobin and 

haptoglobin-hemoglobin (Dryla et al, 2003). A group led by Dr. Skaar at Vanderbilt 

University also reported that IsdB, but not IsdA or IsdH, binds hemoglobin on the 

bacterial surface and removes heme from hemoglobin (Torres et al, 2006). Recently they 

also reported that IsdA and IsdB were localized to discrete regions within the cell wall 

and the distribution of both IsdA and IsdB are iron-regulated (Pishchany et al, 2009). 

They also observed that IsdA and IsdB physically interact with each other as evidenced 

by the colocalization of IsdA and IsdB on the cell surface. Using electrospray ionization 
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mass spectrometry (ESI-MS) and magnetic circular dichroism (MCD), a recent report 

demonstrated that heme transfer occurred in a unidirectional pathway: either from IsdB to 

IsdA to IsdC then to IsdE or from IsdH to IsdA to IsdC then to IsdE (Muryoi et al, 2008). 

Specific protein-protein interactions were proposed for the transfer to occur. They also 

found that Heme can transfer bidirectionally between IsdH and IsdB. Another group led 

by Dr Lei at Montana State University also showed direct heme transfer from IsdA to 

IsdC through the formation of holo-IsdA-apo-IsdC complex, using stopped-flow 

spectrophotometer. This transfer is driven by the higher affinity of IsdC for heme (Liu et 

al, 2008). In another report, they further showed that IsdB directly capture hemin from 

metHb, suggesting formation of the complex metHb-apo-IsdB (Zhu et al, 2008). Hemin 

is then transferred either directly or through IsdA to IsdC, then to IsdE. These findings 

support a hypothesis that the locations of the Isd proteins in the cell envelope define the 

pathway of heme uptake (Figure 1.3; Grigg et al, 2010). The passage of heme across the 

cytoplasm membrane has been proposed to be mediated by IsdF, a putative CM permease 

(Figure 1.3; Mazmanian et al, 2003). The role of IsdD is still not clear.  
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Figure 1.3 Isd-mediated heme uptake in S. aureus (adapted from: Marraffini et al, 2006) 

A. The isd locus. B. A model for Isd-mediated heme uptake across the cell wall of S. 

aureus. IsdA, IsdB, and IsdH function as receptors for hemoprotein ligands, including 

haptoglobin (Hpt), hemoglobin (Hb), or heme. Upon binding to Isd receptors, heme is 

released from the hemoproteins by an unknown mechanism and passed through the cell 
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wall in an IsdC-dependent manner. The heme molecule is then transported through the 

membrane transport system composed of IsdDEF into the cytoplasm. Upon entry into the 

cytoplasm, heme is degraded by IsdG and IsdI heme monooxygenases. This leads to the 

release of free iron for use by the bacterium as a nutrient source (Marraffini et al, 2006). 

 

1.2.2.3 Crystal structures of Isd proteins 

4 proteins of the Isd system, IsdA, IsdB, IsdC and IsdH, are anchored to the cell wall. 

Each of them contains one to three copies of a conserved domain: NEAT (near iron 

transport) domain (Figure 1.4; Grigg et al, 2010). The domain acquired its name because 

the proteins featured by this domain are normally near putative ABC transporters of iron 

in Gram-positive bacteria, including Staphylococcus, Listeria, Streptococcus, Bacillus, 

and Clostridium species (Andrade et al, 2002).  

 

 

Figure 1.4 Schematic representation of Isd surface proteins (adapted from: Grigg et 

al, 2010)  

NEAT domains are indicated as IsdX-Ny, where „„X” indicates the unique protein 

designation, N indicates the NEAT domain and „„y” indicates the order of the NEAT 

domain numbered from the N-terminus of the protein (Andrade et al, 2002).  

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Grigg%20JC%22%5BAuthor%5D
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Structures of several NEAT domains in the Isd system have been reported, including  apo 

(1.6 A) and heme-bound IsdA-N1(1.9A) (Grigg et al, 2007a), the heme-bound IsdC-

N1(1.5A) (Sharp et al, 2007), apo and Zn
2+

-protoporphyrin IX IsdC-N1(Villareal et al, 

2008) , apo IsdH-N1, apo and  heme-bound IsdH-N3 (Pilpa et al, 2006; Watanabe et al, 

2008). All of these NEAT domains have a similar eight-stranded immunoglobulin-like β-

sandwich fold and are well superimposed. Heme is bound in the hydrophobic pockets of 

the NEAT domains through conserved contacts.  

The crystal structure of the soluble portion of the lipoprotein IsdE in complex with heme 

has been reported (Grigg et al, 2007b). This structure reveals a bi-lobed  topology formed 

by an N- and C-terminal domain bridged by a single a-helix, typical of Class III 

periplasmic binding protein family. Heme is bound to IsdE in a large groove of the 

domain interface. It has been demonstrated that there was minor conformational change 

between the heme-bound and heme-free IsdE (Pluym et al, 2007). 

The crystal structures of IsdG and IsdI are also available (Wu et al, 2005). Both IsdG and 

IsdI exist as homodimers. Their structures exibit a  ferredoxin-like α+β sandwich fold and 

a β-barrel is formed at the dimer interface, representing the emerging of a new family of 

heme oxygenase different from HmuO, the first identified bacterial heme-degrading 

enzyme from C. diphtheria (Schmitt, 1997). In contrast to IsdG/IsdI, HmuO exists as a 

monomer and adopts a predominantly α-helical fold (Unno et al, 2004). This structure is 

similar to vertebrate heme oxygenase (HO) (Schuller et al, 1999). While HO-like 

enzymes have been identified in both Gram-positive and Gram-negative bacteria, IsdG-

like enzymes have been exclusively identified in Gram-positive bacteria. Besides the 

structural difference between IsdG/IsdI and HO-like enzymes, their catalytic mechanisms 
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and degradation products are also different. For more information about heme oxygenase, 

please refer to (Grigg et al, 2010; Reniere et al, 2007; Wu et al, 2005; Lee et al, 2008; 

Unno et al, 2007). 

1.2.2.4 The Hts system is the primary membrane heme uptake system in S.aureus 

Although the Isd system is the first system identified in S.aureus to be involved in Hn/Hb 

uptake, it has been reported not to be the primary system. Using the technique of 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Skaar et al reported that 

S.aureus exhibited iron source preference for heme iron and identified a new heme 

uptake system, Hts (heme transport system) system,  responsible for this heme iron 

preference and as the primary membrane heme uptake system (Skaar et al, 2004b). 

However, the Hts system has been less well studied. It consists of a putative lipoprotein 

(HtsA) and two putative membrane permeases (HtsB and HtsC). Sequence analysis 

revealed that HtsB and HtsC closely resemble HemU and HmuU, the permease 

components of the heme transport systems in Yersinia enterocolitica (Stojiljkovic and 

Hantke, 1994) and Corynebacterium diphtheriae (Drazek et al, 2000), respectively. A 

canonical Fur box is immediately preceding HtsA. 

 

1.3 Heme toxicity and its detoxification 

 

Although heme is an essential element to almost all organisms and serves as a valuable 

iron source for microorganisms, heme is also highly toxic. Heme is a hydrophobic 

molecule with a molecular weight around 620 Da, rendering it capable of intercalating 

into membranes. This finally leads to damage of lipid bilayers and organelles (Ryter and 
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Tyrrell, 2000). Heme also catalyzes the Fenton reaction, generating highly reactive 

oxygen species which cause damage to proteins, lipids, nucleic acids (Everse and Hsia, 

1997). As a way of protection against heme toxicity, in vertebrates, most of the free heme 

or hemoglobin released into the plasma upon hemolysis are immediately complexed 

either by hemopexin, a 60-kDa plasma glycoprotein which binds heme with a high 

affinity (Kd~10
-12

M) (Zunszain et al, 2003), or by serum albumin, the most abundant 

plasma protein with a lower affinity (Kd~ 10
-8

M) for heme compared to hemopexin 

(Zunszain et al, 2003), or by haptoglobin, a serum glycoprotein which binds hemoglobin 

with high affinity (Kd~10
-12

 M) (Wejman et al,1984).Then they are transported to the 

liver, decomposed and removed. In bacteria, several ways to fight against heme toxicity 

at high concentration have been reported. Generally, there are three possible ways to deal 

with heme toxicity intracellularly: store it, degrade it, or export it. Degradation of heme 

with heme oxygenase has been described previously in this chapter. Storage of heme with 

heme storage proteins has not been unambiguously identified. It was reported that HmuS 

in Y pestis (Thompson et al, 1999; Wyckoffee et al, 1998) or HutZ in Vibrio cholerae 

(Wyckoffee et al, 2004) may function as heme storage proteins. However, further survey 

is needed to support that speculation. Recently a heme-regulated transport (Hrt) system 

has been identified in S. aureus (Friedman et al, 2006). Current data strongly suggest that 

this system functions as a heme exporter (Friedman et al, 2006; Torres et al, 2007; Stauff 

et al, 2007; Stauff et al, 2008). 

The Hrt system consists of a putative ATPase HrtA and a putative membrane permease 

HrtB. Exposure of S. aureus to 10 uM hemin increased the expression of HrtA 45-fold. 

Moreover, growth of either ∆hrtA or ∆hrtB with 10 uM hemin as the sole iron source was 
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severely inhibited. Interestingly, the Hrt system is neither iron- nor Fur-regulated. 

Instead, its expression is controlled by the heme sensor system (Hss) which responds to 

heme exposure (Torres et al, 2007). Hss is a two component system composed of HssR 

(Hss regulator) and HssS (Hss sensor, a histidine kinase). Inactivation of either HssR or 

HssS also severely impaired the growth of S.aureus with 10 uM hemin as the sole iron 

source. Furthermore, transcription of hrtA in the mutant strain ∆hssR upon hemin 

exposure was not detectable while providing a wild-type copy of hssR in trans restored 

hrtA transcription. Genomic analyses revealed that Hrt and Hss systems are highly 

conserved across Gram-positive bacteria, including Staphylococcus epidermidis, Bacillus 

anthracis, Listeria monocytogenes, and Enterococcus faecalis. A direct repeat DNA 

sequence within the hrtAB promoter essential for heme-induced, HssRS-dependent 

transcription of hrtAB has been identified (Stauff et al, 2007). Signaling between HssS 

and HssR is necessary for the regulated expression of hrtAB. Upon exposure of 

exogenous heme, HssS undergoes autophosphorylation and then phosphorylates HssR. 

Phosphorylated HssR binds the direct repeat DNA sequence, resulting in the activation of 

expression of hrtAB. This direct DNA repeat sequence is also conserved across Gram-

positive bacteria, including Staphylococcus epidermidis, Bacillus anthracis, Bacillus 

cereus, L.monocytogenes. Studies about the Hss and Hrt systems have been further 

extended by a recent report which demonstrated the ATPase activity of HrtA (Stauff et al, 

2008). 

. 
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1.4 Iron and Heme uptake regulation in bacteria 

 

As discussed previously, heme is a valuable nutrient with high toxicity for bacteria. 

Regulation of heme uptake by bacteria is thus necessary for bacterial cell metabolism. In 

bacteria, a common way to regulate iron/heme uptake is to modulate the function of the 

protein Fur (ferric iron uptake regulator), a global iron uptake regulator. The Fur protein 

was identified 30 years ago as a repressor of iron-regulated genes in Salmonella typhi and 

E.coli (Ernst et al, 1978; Hantke, 1981). It is a homodimer consisting of a N-terminal 

DNA binding domain and a C-terminal dimerization domain (Pohl et al, 2003). The 

function of Fur as the repressor of the expression of iron-regulated genes needs ferrous 

iron as a corepressor (Lavrrar et al, 2002). Under iron rich conditions, Fur is iron-loaded 

and capable of binding the Fur box, a well-conserved 19-bp DNA sequence 

(GATAATGATAATCATTATC) characteristic of iron-regulated genes (Stojiljkovic et 

al, 1994). The transcription of these genes is then inhibited by the binding of Fur to the 

Fur box. It was proposed that two Fur dimers bind at each Fur box on opposite faces of 

the DNA helix (Lavrrar et al, 2002). Under iron-starved conditions, Fur is free of iron and 

incapable of binding Fur box. RNA polymerase then gains access to the promoter region 

and transcription happens. 

Another repressor of iron/heme uptake genes, DtxR (diphtheria toxin repressor), was first 

identified in a Gram-positive bacterium Corynebacterium diphtheria (Schmitt et al, 1991) 

and later was found in both Gram-positive and Gram-negative bacteria (Hill et al, 1998; 

Brett et al, 2008). Despite little sequence homology, DtxR and Fur proteins show 

substantial structural similarities (Schiering et al, 1995;Pohl et al, 2003). Like Fur, DtxR 
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is also a homodimer and behaves similarly to Fur: it binds or dissociates from the DtxR 

box (also an AT-rich 19 bp sequence), depending on the  availability of ferrous iron in 

the cytoplasm (Wandersman and Delepelaire, 2004).  

As a global iron uptake regulator, Fur is capable of controlling the transcription of those 

genes involved in iron uptake not only directly (as described above) but also indirectly, 

through extra cytoplasmic function (ECF) sigma factors or through other factors. 

Because iron is an essential nutrient for most bacteria, they have different iron uptake 

systems corresponding to different iron sources. Certainly, it is a huge waste of material 

and energy to turn on all those systems in response to iron limitation irrespective of the 

nature of the iron source available. Indeed, many systems are positively regulated by their 

cognate iron source via a variety of regulatory mechanisms.  

A well studied way is to employ ECF sigma factors. Iron-responsive ECF sigma factors 

are highly conserved and form a distinct branch in the ECF sigma factor subfamily 

(Braun et al, 2003). Most ECF sigma factors are found associated with membrane-bound 

antisigma factors. 

A classical example of ECF sigma regulation of iron uptake is the E.coli ferric citrate 

uptake system (Braun et al, 2003). Transcription of the fecABCDE genes, which encode 

the ferric citrate transport system in E.coli, is positively regulated by FecIR whose 

encoding genes are located upstream of fecABCDE. A well conserved Fur box is present 

in the promoters of both the fecIR transcriptional unit and the fecABCDE transcriptional 

unit, enabling iron-loaded Fur to turn off their transcription when intracellular iron is 

abundant. Under iron strict conditions, however, transcription of fecABCDE doesn‟t 

necessarily happen, unless ferric citrate is present extracellularly. Iron starvation 
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derepresses the expression of FecIR, the iron-starvation ECF sigma factor (FecI) and 

anti-sigma factor (FecR). The binding of extracellular ferric citrate to its OM receptor, 

FecA, induces conformational changes in FecA. This leads to interaction between the N-

terminal extension of FecA and C-terminal extension of FecR, the IM-localized anti-

sigma factor. As a result, FecI dissociates from FecR and binds to the core RNA 

polymerase. Transcription of the fecABCDE then occurs. 

Similar regulation systems exist for heme uptake. In Bordetella pertussis and Bordetella 

bronchiseptica, the heme acquisition system and their corresponding regulation systems 

are encoded by the bhuRSTUV and hurIR loci, respectively (Brickman et al, 2007). 

Similar to the fec system described above, the transcription of the bhu locus is regulated 

by Fur, the ECF sigma factor (HurI), anti-sigma factor (HurR), the OM receptor (BhuR) 

of the Bhu system and heme. While transcription of hurIR is iron-regulated and heme-

independent, expression of bhuRSTUV requires both iron shortage and the presence of 

heme.  

 

1.5 Listeria monocytogenes  

 

Listeria monocytogenes is a rod-shaped Gram-positive bacterium. It was first described 

by Murray et al in 1926 based on six cases of sudden death in young rabbits (Murray et 

al, 1926).  L. monocytogenes has a very broad host range and is widely distributed in 

nature (Gray and Killinger, 1966). It has been found in at least 37 mammals, 17 fowls, 

ticks, fish, fly, crustaceans. It inhabits stream water, mud, sewage, raw milk, cheeses, raw 

vegetables. It is able to grow at 4
o
C. The best pH for its growth is neutral to slightly 
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alkaline but it still grows at pH as high as 9.6. At pH lower than 5.6, it dies (Gray and 

Killinger, 1966). All these together make L. monocytogenes one of the leading causes of 

many foodborne diseases. When grown at or below 30
o
C, L. monocytogenes synthesizes 

flagella responsible for its motility (Gray and Killinger, 1966). At 37
o
C, basically no 

flagellum is produced. However, L. monocytogenes moves within eukaryotic cells by 

polymerization of host cell‟s actin filaments (Lambrechts et al, 2008).  

L. monocytogenes causes many serious diseases. Listeriosis, a serious infection caused by 

eating food contaminated with the bacteria, has recently been recognized as an important 

public health problem in the United States. Up to 30 percent of the patients diagnosed 

with listeriosis finally die (Ramaswamy et al, 2007). The occurrence of listeriosis is 

especially high with newborns, pregnant women, immunocompromised people or elders 

(McLauchlin, 1990). Every year, in USA there are approximately 2500 illnesses and 500 

deaths caused by L. monocytogenes (Dharmarha, 2008). This high mortality rate of 

listeriosis is largely because the infection often leads to neurological damage. The two 

main clinical manifestations of listeriosis are sepsis and meningitis.  

L. monocytogenes is an intracellular pathogen. It proliferates in many types of 

mammalian cells, including macrophages and epithelial cells. The ability of Listria to 

evade attacks by its host immne system is a determinant of its pathogenicity. The life 

cycle of L. monocytogenes consists of three stages: adherence and entrance into the cell, 

escape from a vacuole, and cell to cell spread (Cossart, 2002; Kreft et al, 2002). The 

bacterium can invade a cell either by phagocytosis or by active invasion. It then escapes 

from a host vacuole, enters the cytoplasm and begins to grow rapidly. During the third 

stage, it utilizes host actin to move to the surface of the host cell, where a bacteria 
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containing protrusion forms and is engulfed by adjacent cells, including non-professional 

phagocytes (Mounier et al, 1990; Tilney et al, 1989). Then the bacterium escapes from 

the double membrane vacuole of the secondary cell and enters the cytoplasm again. By 

such a mechanism, direct cell-to-cell spread of Listeria in an infected tissue may occur 

without an extracellular stage. 

The entry of L. monocytogenes into nonphagocytic cells requires two major virulence 

factors, internalin A (InlA) and internalin B (InlB) (Vazquez-Boland et al, 2001). InlA 

and InlB recognize their host cell receptors to promote the entry of L. monocytogenes into 

cells (Bergmann et al, 2002; Dramsi et al, 1995; Bierne and Cossart, 2002). Once inside 

the cells, L. monocytogenes becomes trapped in phagosomes which are acidified by 

proton pumps. At acidic PH listeriolysin O (LLO) (Portnoy et al, 2002), a hemolytic 

exotoxin and a phosphatidyl-inositol phospholipase C (PI-PLC) (Marques et al, 1989) 

together disrupt the phagosomal membrane and release the bacteria. A membrane-

anchored protein, ActA, promotes the polymerization of host actin on the bacterial 

surface (Mounier et al, 1990; Tilney et al, 1989; Lambrechts et al, 2008). The bacteria 

then multiply and the growing actin sheet drives the bacteria across the cytoplasm until 

they finally reach the surface of the host cell. 

 

1.6 Iron transport systems in Listeria monocytogenes and their relevance 

to virulence  

 

Iron is an essential nutrient for the growth of pathogenic bacteria. Over past decades, the 

correlation between bacterial iron uptake and bacterial virulence has been well 
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established (Cornelissen and Sparling, 1994; Furman et al, 1994; Bearden et al, 1998; 

Pradel et al, 2000; Mazmanian et al, 2003; Stork et al, 2004; Skaar et al, 2004b; Braun, 

2005). The complete genome of L .monocytogenes has been available since 2001 (Glaser 

et al, 2001). Four loci in the genome, the fur-fhu region at 2.031 Mb, the feo region at 

2.184 Mb, the srtB region at 2.27 Mb and the hup region at 2.499 Mb, contain well-

conserved Fur boxes (Figure 1.5; Jin et al, 2006). The srtB locus was reported to be iron-

regulated and is similar to the isd locus in S.aureus (Newton et al, 2005). The hup locus 

and fur-fhu locus have been reported to be involved in iron uptake from Hn/Hb and ferric 

hydroxamates, respectively (Jin et al, 2006).The feo locus is potentially involved in 

ferrous iron uptake. Deletion of a gene in hup locus, lmo2429, decreased the virulence of 

L. monocytogenes 50-fold in mice. On the other hand, deletions in the srtB locus 

(∆lmo2185, ∆lmo2186 and ∆srtB), the fhu locus (∆lmo1959, ∆lmo1960) and the feo locus 

(∆lmo2105) displayed no impairment of their virulence in mice (Newton et al, 2005; Jin 

et al, 2006).   

 

 

Figure 1.5 Putative and demonstrated iron transport loci in the genome of L. 

monocytogene (adapted from: Jin et al, 2006) 
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1.7 Significance of this research  

 

Listeria monocytogenes is an intracellular pathogen. Listeriosis, a serious infection 

caused by eating food contaminated with L. monocytogenes, has recently been recognized 

as an important public health problem in the United States.  L. monocytogenes multiplys 

in a variety of mammalian cells and spreads from cell to cell. This suggests the bacterium 

readily acquires iron in the intracellular environment. Since the majority of intracellular 

iron source is heme iron, understanding the mechanism of heme utilization in L. 

monocytogenes is of great importance in both preventive and therapeutic aspects. During 

the past ten years, significant advances have been made to understand heme utilization in 

S. aureus, an important Gram-positive human pathogen and a close species of L. 

monocytogenes. Those studies are very suggestive to the understanding of heme 

utilization in L. monocytogenes. However, the research about heme utilization in L. 

monocytogenes is still indispensable, especially due to their fundamentally different 

pathogenic life cycle: intracellularly for L. monocytogenes and extracellularly for S. 

aureus. The overall goal of this research is to elucidate the mechanism of Hn/Hb 

transport in L. monocytogenes. The results will provide information about bacterial 

interactions with eukaryotic heme-containing proteins and define the mechanism for 

protein-mediated heme uptake through the listerial cell envelope. Lastly, the biochemical 

characterization of heme transporters in L. monocytogenes will provide a basis for 

comparison of their mechanisms, efficiencies, and specificities to that of other transport 

systems in Gram-positive and Gram-negative bacteria. 
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1.8 TonB in E.coli 

 

As discussed previously, TonB or TonB-like proteins are essential for many iron 

transport systems in Gram-negative bacteria, potentially providing energy required for 

active iron transport across the outer membrane. In E.coli, two cytoplasmic proteins, 

ExbB and ExbD, form a complex with TonB (Letain et al, 1997). The TonB protein of 

E.coli consists of 239 amino acid residues. It is anchored to the inner membrane through 

its N-terminal domain with the bulk of the protein extending into the periplasm (Ködding 

et al, 2005; Chang et al, 2001). Four highly conserved residues of the N-terminal anchor 

domain, the so-called “SHLS motif”, was found to be essential for the interaction with 

ExbB (Larsen and Postle, 2001). The C-terminal domain of TonB may directly contact 

TonB-dependent receptors in the OM (Heller et al, 1988; Gunter and Braun, 1990). In 

between the 2 domains is an intermediate domain with high proline content. Both the 

intermediate domain and the C-terminal domain contain ~100 residues. Currently the 

exact roles of TonB, ExbB and ExbD are still unknown. It was proposed that ExbB and 

ExbD may function as proton translocators and TonB as an energy transducer.  

Although much progress has been made during past decades, it still remains quite elusive 

about how TonB interacts with the TonB-dependent OM receptor. It has been reported 

that binding of ferrichrome to FhuA causes significant structural change in the region 

immediately C-terminal to the TonB box of FhuA from a helix packed against the β-

barrel to an extended conformation, presumably making the TonB box available for 

interaction with TonB (Locher et al, 1998).  It was proposed that TonB senses occupied 

OM receptor through its TonB box. This signaling cascade causes ExbB and ExbD 
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harvest the energy of proton motive force and promotes transfer of TonB from an 

unenergized form to energized form. TonB then transduces its stored energy to the OM 

receptors which then creates a channel for its cognate ligand to pass through. Currently 

there are two popular models for TonB-dependent energy transduction: the propeller 

model (Chang et al, 2001) and the shuttle model (Postle and Kadner, 2003). The 

propeller model was based on the crystal structure of the C-terminal domain of TonB 

(residues 164-239) which shows that this region forms a ββαβ motif and dimerizes 

(Chang et al, 2001). According to this model, the TonB N-terminus remains associated 

with the IM at all times. It was proposed that the proton motive force might cause a 

torsional motion which could be transduced to the TonB C-terminal domain through its 

central proline-rich domain. TonB C-terminus thus could interact with the OM receptors 

and promote internalization of the substrates of the OM receptors. The shuttle model, on 

the other hand, hypothesizes that TonB shuttles between the IM and OM, switching 

between an unenergized conformation and an energized conformation. ExbB/D harvests 

the energy of the IM proton motive force and uses it to convert TonB from an 

unenergized conformation to an energized conformation. Energized TonB then 

dissociates from the IM. When the OM receptors bind their cognate substrates, energized 

TonB associates with the OM receptors to provide energy required for internalization of 

substrates. For both models, once substrate is transported across the OM, TonB 

dissociates from the OM receptors and reassociates with ExbB and ExbD. 

Both the two models proposed for the action of TonB are still developing. A lot of related 

questions need to be addressed. For example, for the propeller model, how 

TonB/ExbB/ExbD harnesses the proton motive force? How the torsional motion is 
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propagated among TonB, ExbB, ExbD? Does the TonB/ExbB/ExbD complex keep 

rotating or only rotate when it senses the occupancy of the OM receptors by their cognate 

substrates? For the shuttle model, it was proposed based on the observation that TonB 

associated exclusively with the OM when both ExbB/ExbD and TolQ/TolR were absent 

(Letain and Postle, 1997). Then here comes a few questions: Is the TonB associated with 

the OM in an energized conformation? What is the energized conformation? Where does 

the energy come from? Undoubtedly, both models need lots of experimental data to 

address these questions. Based on structural homology between the TonB C-terminus and 

E. coli LysM (a lysin motif that confers affinity for peptidoglycan), Dr. Klebba proposed 

that TonB binds peptidoglycan. My experiments confirmed this idea: while purified 

peptidoglycan precipitated MalE-TonB69C, it did not precipitate MalE or FepB. Thus the 

affinity of TonB for peptidoglycan was not a general characteristic of periplasmic 

proteins, but a specific attribute of TonB itself. This result provides new perspective for 

understanding the mechanism of how TonB interacts with the outer membrane receptors 

and a membrane surveillance model of action was proposed (Kaserer et al, 2008). 
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                            Chapter 2 Materials and Methods 

 

2.1 Bacteria strains and plasmids 

 

All E. coli strains used in this study were E.coli k-12 derivatives. DH5α and XL-1 Blue 

were used as hosts for plasmids. BL21 were used for protein expression. SM10 was used 

in the complementation of ∆hupD as a donor strain of pPL2. AN102 was used for 

purification of enterobactin. All listerial strains used in this study were Listeria 

monocytogenes EGD-e derivatives.  
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Table 2.1 Bacterial strains and plasmids used in this study 

 

Strains, plasmids 

 

Genotype and characterization Source or reference 

E.coli   

DH5α 

 

supE44 ∆lacU169(Φ80lacZ ∆M15) 

hsdR17 recA1 endA1 gyra96 thi-1 

relA1 

(Hanahan,1983) 

XL-1 Blue 

 

recA1 endA1 gyrA96 thi-1 hsdR17 

supE44 relA1 lac 

Stratagene 

BL21 

 

F
-
dcm ompT hsdS(rB

-
 mB

-)
 gal Stratagene  

SM10 

 

F
-
thi-1 thr-1 leuB6 recA tonA21 

lacY1 supE44 (MuC
+
) λ

- 
Km

r 
Tra

+
 

(Lauer et al, 2002) 

AN102 

 

thi trp fep proC leu tonA (Yeowell and White, 

1982) 

L. monocytogenes   

EGD-e  wild type (Bierne et al, 2004) 

   

Plasmids   

pKSV7 

 

E.coli-L.monocytogenes shuttle 

vector 

(Smith and Youngman, 

1992) 

pPL2 

 

site-specific integration shuttle vector (Lauer et al, 2002) 

pET28a(+) 

 

His-tag protein fusion  vector Novagen 

pMAD 

 

E.coli-L.monocytogenes shuttle 

vector 

(Arnaud et al, 2004) 

pKSV7∆hupD encoding hupD deletion in 

L.monovytogenes 

This study 

pKSV7∆hupCDG encoding hupC, hupD, hupG 

deletions in L.monovytogenes 

This study 

pKSV7∆1960 encoding lmo1960 deletion in 

L.monovytogenes 

(Jin et al, 2006) 
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2.2 Growth media 
 

 

Luria-Bertani (LB) broth (Difco) and Brain Heart Infusion (BHI) broth were the iron-rich 

media for regular growing of E.coli and L.monocytogenes, respectively. T medium was 

used as iron-deficient medium for purification of enterobactin. KRM medium was used 

as iron-deficient medium for overexpression of iron-regulated proteins in Listeria. Two 

kinds of MOPS medium were used in this study, one was for growing of E.coli and was 

designated as regular MOPS medium, the other was specificially modified by Dr. Xiaoxu 

Jiang for growing of Listeria and was designated as MOPS-L medium (Jiang‟s 

dissertation, 2009). 

 

Table 2.2 Media used in this study 

 

Media References 

Luria-Bertani (LB) Broth  (Miller, 1972) 

Brain Heart Infusion (BHI) Broth Difco 

T medium (Klebba et al 1982) 

KRM medium (Newton et al, 2005) 

Regular MOPS medium (Neidhart et al, 1974) 

MOPS-L medium (Jiang‟s Ph.D dissertation, 2009) 
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2.3 Oligonucleotides 

 

Oligonucleotides were purchased from Invitrogen Corporation. Zymoclean
TM

 Gel DNA 

Recovery Kit was purchased from Zymo Research Corporation. Plasmid purification kits, 

enzymatic reaction clean kits were purchased from QIAGEN. Taq 2x master mix, 

restriction enzymes and ligases were purchased from New England Biolabs. 

 

Table 2.3 Primers used in this study 

Primer Name        Sequence (5’--3’) 

Primers for construction of ∆hupD 

DhupDHind1       TGTAAGCTTATTCGACAAACCGTGAAG 

DhupDXho2        GGGGGGCTCGAGTTCATAATTCCCCTCCACAACAC 

DhupDXho3        GGGCTCGAGCTAATGACAACTGTGAAG 

DhupDXba4         GGATCTAGACCAACTTCTAGCTGCTG 

DhupD Int chk1    CCCGACCGTGAACCATGTTAGAGTAG 

DhupD Int chk2    CTAATGCTGATTTCATGAAGCAACCCTC 

DhupDchk1          GACTGGGGGCATCGTTTCTTTGCA 

DhupDchk2          CGTAAAGGAGAAACGCCGCGATCCC 

Primers for construction of ∆hup 

DhupDHind1       TGTAAGCTTATTCGACAAACCGTGAAG 

DhupDXho2         GGGGGGCTCGAGTTCATAATTCCCCTCCACAACAC 

DhupXho3            GGGGGGCTCGAGTTAAAGAAAACAGAAAGAAG 

DhupXba4            GGGGGGTCTAGATCCGTTTAAATTGGTACGG 
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DhupInt1             CCCGACCGTGAACCATGTTAGAGTAG 

DhupInt2             GCTGCATTCCGTCGCCAAGCGGAT 

Dhupchk3            GACTGGGGGCATCGTTTCTTTGCA  

Dhupchk5            GCAAGCTTCCAAGCGATCCGATACTAATCC 

Primers for check EGD-e strain 

LLOchk5             ATGAAAAAAATAATGCTAGTTTTT 

LLOchk3             ACGGCCATACGCCACACTTGAGAT 

Primers for cloning of hupD into pET28a 

hupDpET5(18)     CCCCCCGGATCCTCGTGTGGAAATGATACGACAACTG 

hupDpET3           CCCCCCCTCGAGTTAGTTATCCACCTTATTTATCTCATCTGTC 

hupDpET5(20)    CCCCCCGGATCCGGAAATGATACGACAACTGATATGAAT 

Primers for complementation of ∆hupD 

Primers for cloning prohupD into pKSV7 

pKSVprohupD5  CCCCCCGGATCCTTTTCATCGCCTCCTTAAGTTAATTATAAAG 

pKSVhupD3        CCCCCCCTGCAGTTAGTTATCCACCTTATTTATCTCATCTGTC 

Primers for cloning prohupD into pPL2 

prohupDBamH5  CCCCCCGGATCCTTTTCATCGCCTCCTTAAGTTAATTATAAAG 

hupDPst3             CCCCCCCTGCAGTTAGTTATCCACCTTATTTATCTCATCTGTC 

prohupDPst5       CCCCCCCTGCAGTTTTCATCGCCTCCTTAAGTTAATTATAAAG 

hupDPst5            CCCCCCCTGCAGATGAAGAAAATAACTATATTGATGTTAAGT 

                            ATAACAGC 

hupDKpn3          CCCCCCGGTACCTTAGTTATCCACCTTATTTATCTCATCTGTC 

Primers for cloning prohupD into pMAD 
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prohupDBamH5  CCCCCCGGATCCTTTTCATCGCCTCCTTAAGTTAATTATAAAG 

hupDNco3           CCCCCCCCATGGTTAGTTATCCACCTTATTTATCTCATCTGTC 

Primers for replacing the natural promoter of the hup operon with clpB promoter (pclpB) 

pclpBBamH5    CCCCCCGGATCCGTCTAGTTAATGTGTAACGTAACATTAGC 

pclpBPst3          CCCCCCCTGCAGGATCCTTAATTATATTATAGTCCCAAT 

∆lmo0641 check primers 

D0641chk5       CCAGCAAGCTTCCAAACAGTGGTT 

D0641chk3      TAGAATTTTTGAACAGTACCAAGGTAAATCG 

∆lmo1960 check primers 

D1960chk5      CCCCACAGGCTTCATTCCAAGCAAAAC 

D1960chk3      CGTACCACTACCTGTAGCAATGACAATTG 

D1960Int5       GCGTAAGGAATTAACACAGTTGGCGC 

D1960Int3       GCGAATTGTCGAATTTGGGATATG 

∆lmo2183 check primers 

D2183chk5      GATCAGGTGAAGTCGAATGTGG 

FerDoCla         ACAGCTAGATCATCCTCCTTCG 

D2183Int1       GTGATGAGGAAAATGGCTGTCATATC  

D2183Int2       CCACTTCATAATTCGTTAAGCCCG 

∆lmo2185 check primers 

D2185Int1       GGAATTTGAAGATGAAAGATTACTACGAG 

D2185Int2       TTTCATCCAAATCATACACACGG   

D2185Chk5     GGGAAATCAACTGTTAGCTTGCAAGTG   

D2185Chk3     GGCTTCAACATCCGAATAATTTCC  
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Two primers for sequencing pPLprohupD 

SeqhupDdir    GTGCGTTCATTACTTGTTCTAGGAGC  

SeqhupDrev    CGACTTTTGGTCCTACCCCTTCC               

 

2.4 Preparation of chromosomal DNA from Listeria monocytogenes 

strain EGD-e 

 

EGD-e was grown in 25 mL BHI broth overnight. The cells were harvested next morning 

and were spun down at 8000 g for 12 minutes. The pellet was resuspended in 1 mL ice 

cold distilled water and the resuspended cells were broken by Fast Prep Bead-beater at 

intensity of 6.5 for 30 seconds with 3 cycles. In between 2 cycles, the cell suspension was 

immediately chilled on ice for 30 seconds upon completion of each cycle. After 3 cycles, 

the resulting mixture was immediately chilled on ice and the unbroken cells were spin 

down. The supernatant was transferred to a 2 mL eppendorf tube and 5M NaCl was 

added to it to reach a final concentration of 100mM. 1 volume of buffered-phenol was 

added to the supernatant and well mixed. The mixture was spun down at 14,000 rpm for 1 

minute and the supernatant was transferred to a fresh 2 mL eppendorf tube. The 

extraction with buffered-phenol was repeated once. The resulting supernatant was then 

extracted twice with chloroform/isoamyl-alchohol in the same way as with buffered-

phenol. 2 volumes of ethanol were added to the supernatant. Precipitated DNA was spun 

down at 14,000 rpm for 30 minutes and the pellet was washed with 70% ethanol and then 

resuspended in 100 uL TE buffer with 2 uL RNAse (0.5 mg/ml) added. All 

centrifugations were performed at 4
0
C. 
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2.5 Preparation of E.coli competent cells for electroporation 

 

Cells were inoculated in 5 mL LB broth overnight. In the next morning, 500 mL 

prewarmed LB broth was inoculated with the 5 mL overnight culture. The cell culture 

was chilled on ice for 5 minutes when its optical density (OD) at 600 nm reached 0.5. 

The cell culture was then spun down at 8000 g for 15 minutes. The pellet was gently 

resuspended with 500 mL ice cold distilled water and the cell resuspension was 

recentrifuged under the same condition as above. After repeating distilled water 

suspension and centrifugation one more time, the pellet was resuspended in 100 mL ice 

cold 10% glycerol and then recentrifuged. The resulting pellet was then resuspended in 2 

mL 10% glycerol and the suspension was aliquoted into microtubes with 40 uL for each. 

  

2.6 Preparation of competent cells of Listeria monocytogenes for 

electroporation 

 

Cells were inoculated in 25 mL BHI broth overnight. In the next morning, 500 mL BHI 

broth was inoculated with 10 mL overnight culture. Penicillin G was added to the culture 

to 0.12ug/mL when the OD at 600 nm reached 0.3. The cell culture was incubated around 

2 more hours until the OD reached 0.8-0.9. Cells were spun down and washed with the 

buffer of 1 mM hepes/500 mM sucrose, firstly 100 mL, secondly 50 mL, lastly 25 mL 

with 3 repeats. After the last centrifugation the pellet was resuspended in a mixture of 

500 uL 1 mM hepes/500 mM sucrose and 75uL glycerol. The resuspension was then 

aliquoted into microtubes with 100uL for each. 
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2.7 Site-directed chromosomal deletions in L. monocytogenes  

 

Site-directed chromosomal deletions in Listeria monocytogenes EGD-e or its mutant 

derivatives were generated by in vivo recombinations (Newton et al, 2005; Jin et al, 

2006). Two DNA fragments, upstream and downstream of the target gene to be deleted, 

were amplified by PCR using chromosomal DNA of Listeria as the template. Appropriate 

restriction digestion sites were added to both ends of the upstream and downstream DNA 

fragments. The upstream and downstream DNA fragments were then digested with 

appropriate restriction enzymes. At the same time, pKSV7, a thermosensitive and 

integrative E. coli-L. monocytogenes shuttle vector [ pKSV7 (AP
r
,
 
Cm

r
), Ap

r 
stands for 

ampicillin resistant, Cm
r 
stands for chloramphenicol  resistant] (Smith and Youngman, 1992), 

was also digested with appropriate restriction enzymes. The three fragments were then 

ligated together with T4 ligase. The ligations were purified and then electroporated into 

competent E. coli DH5α cells. The transformants were plated out onto LB plus ampicillin 

plates which were additionally coated with IPTG and X-gal for blue-white screen. 

Colony PCR was performed by resuspension of a small portion of a colony into a 30 uL 

PCR reaction containing appropriate primers. Colonies that gave positive PCR results 

were inoculated in LB plus ampicillin broth for purification of vectors. Purified vectors 

were then checked by PCR, restriction digestion and confirmed by DNA sequencing. A 

newly-constructed vector which contains a full deletion of the target gene(s) was then 

transferred into the competent EGD-e or its mutant derivatives. The transformants were 

grown at 30
0
C. Single colonies were picked and inoculated in BHI plus chloramphenicol 

broth at a non-permissive temperature (40
0
C) for pKSV7. Homologus recombination 
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took place because pKSV7 could not replicate by itself at temperatures above 30ºC but 

had to integrate into EGD-e chromosomal DNA to confer resistance to chloramphenicol. 

After 2 times of inoculation at 40
0
C in BHI plus chloramphenicol broth, the 

transformants were then inoculated at 37
0
C in BHI broth without chloramphenicol for 8-

10 passages. These successive passages in the absence of chloramphenicol allowed the 

rise of chloramphenicol sensitive derivatives resulting from another homologous 

recombination. These Cm sensitive derivatives were either the parental strain or the 

deletion mutant. Mutants were then identified by colony PCR test using two primers 

localized upstream and downstream of the target gene(s) and further confirmed by DNA 

sequencing.  

  

2.8 Complementation of ∆hupD  

 

The gene hupD was amplified together with its natural promoter by PCR with BamHI 

and PstI restriction sites at extremities. Both the amplified PCR product and the vector 

pKSV7 were double-digested by restriction enzymes BamHI and PstI and then were 

ligated together. The ligations were then electroporated into competent E. coli DH5α 

cells. Transformants were plated out onto LB plus ampicillin plates which were 

additionally coated with IPTG and X-gal for blue-white screen. Colony PCR was 

performed by resuspension of a small portion of a colony into a 30 uL PCR reaction 

containing appropriate primers. Colonies that gave positive PCR results were inoculated 

in LB plus ampicillin broth for purification of vectors. Purified vectors were then checked 

by PCR, restriction digestion and confirmed by DNA sequencing. A newly constructed 
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vector containing the DNA sequence of the gene hupD and its natural promoter was 

transferred to the lmo∆hupD mutant.The transformants were checked by PCR. The 

transformants were then grown at 40
0
C to allow intergration of the vector into  

lmo∆hupD chromosome. Integrants were picked from BHI plus chloramphenicol plates 

and verified by colony PCR. However, phenotype check with nutrition test showed both 

transformants (intergrated and non-intergrated) failed to complement the lmo∆hupD.  

Another try of complementation was performed with pPL2, a Listeria monocytogenes 

site-specific phage integration vector (Lauer et al, 2002). The vector pPL2 can be directly 

conjugated from E. coli into L. monocytogenes and forms stable, single-copy integrants. 

It utilizes the listeriophage PSA integrase and attachment site within an arginine tRNA 

gene for chromosomal insertion.  Just as the complementation with pKSV7, the gene 

hupD was PCR-amplified together with its natural promoter, double digested, and then 

ligated with pPL2. The ligations were then transferred into E. coli XL1-Blue competent 

cells. Transformants were picked and checked by PCR. A newly-constructed pPL2 

derivative vector containing the insertion of hupD and its natural promoter was purified 

from the transformants, sequenced and electroporated into E.coli SM10 competent cells. 

A streptomycin-resistant strain of lmo∆hupD was made for following conjugation. 5 mL 

of ∆hupD overnight culture was inoculated in 500 mL BHI. When OD at 600 nm was 

around 1, the culture was spun down and resuspended in 2.5 mL dH2O. The 

resuspensions were plated out onto BHI plus streptomycin plates with 250 uL for each. 

The plates were incubated at 37
0
C and spontaneous streptomycin-resistant mutants arose. 

For conjugation experiments, the E.coli SM10 carrying pPL2 which contains the 

insertion of hupD and its natural promoter was the donor strain and the streptomycin-
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resistant lmo∆hupD was the recipient strain. The SM10 donor strain was grown in LB 

plus 20 ug/mL chloramphenicol broth at 30
0
C and the lmo∆hupD strain was grown in 

BHI plus 100 ug/mL streptomycin broth at 30
0
C. The cells were grown untill OD at 600 

nm reached around 0.5. 2.5 mL donor culture was mixed with 1.5 mL recipient culture. 

The mixture was filtered with a Millipore 0.45 uM filter prewashed with 5 mL LB broth. 

The filter was then washed with 10 mL BHI broth and placed onto a fresh BHI plate at 

30
0
C for 2 hours. Then the cells were gently resuspended in 2.5 mL BHI and portions (25 

uL, 50 uL, 100 uL) were plated in LB soft agar on BHI plates containing 200 ug/mL 

streptomycin and 7.5 ug/mL chloramphenicol. The plates were incubated at 30
0
C 

overnight and then shifted to 37
0
C. New recombinant cells appeared and were picked. 

Colony PCR using appropriate primers was performed and the recombination was 

confirmed. However, phenotype check with nutrition test again showed this construction 

did not complement lmo∆hupD. 

While I was trying to complement lmo∆hupD, the lmo∆hupC was complemented with the 

same bacterial conjugation method using the same vector pPL2 (Jiang‟s Ph.D 

dissertation, 2009). Similarily, the gene hupC and its natural promoter was inserted into 

the pPL2 vector. Because the gene hupC is not directly linked to its promoter, they were 

amplified separately and ligated together through the PstI restriction site. At the ends of 

the inserted fragment are the BamHI and KpnI restriction sites. Since this construction 

was reported to be functional, another similar construction of pPL2 derivative with the 

insertion of the gene hupD and its natural promoter was made: a PstI restriction site was 

deliberately introduced inbetween the gene hupD and its natural promoter while the 

BamHI and KpnI restriction sites were added to the ends. After having confirmed by 
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DNA sequencing, this construct was transferred to lmo∆hupD and intergrated into the 

chromosomal DNA of lmo∆hupD. However, phenotype check with nutrition test again 

showed this construction did not complement lmo∆hupD. Another construction was made 

by replacing the natural promoter of the hup operon with pclpB, the promoter of the 

constitutively expressed Staphylococcus aureus clpB gene (Arnaud et al, 2004; Chastanet 

et al, 2003). Then this construction was transferred into lmo∆hupD but failed to 

complement it.  

One more construction was made with E.coli-L. monocytogenes shuttle vector pMAD 

(Arnaud et al, 2004) in a similar way as described for the construction with pKSV7. That 

is, the gene hupD and its natural promoter was inserted into the pMAD vector in one step. 

This construction was also transferred into lmo∆hupD. Again, nutrition test showed that 

the complementation did not work. 

 

2.9 Expression and purification of His-tagged HupD 

 

A BamHI-XhoI DNA fragment containing the gene hupD was PCR-amplified using 

EGD-e chromosomal DNA as the template. The fragment was digested with BamHI and 

XhoI.  A clone and expression vector, pET28a, was linearized by double digestion with 

BamHI and XhoI restriction enzymes. The enzyme-treated PCR fragment and pET28a 

were then ligated together and the ligations were transferred into E.coli DH5α. The 

transformants were plated out onto LB plus kanamycin plates. 20 transformants were 

picked and checked by colony PCR. Plasmids were purified from the cell cultures of the 
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transformants and one of them was sequenced. This sequence-verified vector was then 

transferred into E.coli BL21. 

For protein expression and purification, cells of E.coli BL21 harboring the newly-

constructed pET28a derivative were grown in LB plus kanamycin broth to mid-log phase 

(OD600 nm~0.5). IPTG was added to the culture and the growth continued for another 3-4 

hours. The culture was harvested by centrifugation and pelleted cells were resuspended in 

lysis buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, pH 8.0) with 10ug/mL 

RNase and DNase. Cells were then lysed by passage through a French pressure cell at 

14000 p.s.i. The lysate was subjected to centrifugation at 8000 g for 20 minutes. The 

resulting supernatant was transferred to another centrifuge tube and was spun at 30,000 

rpm for 1 hour. The pellet (membrane) was saved at -20
0
C and the supernatant 

(cytoplasm) was passed through a Ni-NTA column (Qiagen) equilibrated with lysis 

buffer. The column was firstly washed by 10 volumes of lysis buffer and then by 10 

volumes of wash buffer (50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole, pH 8.0). 

Absorbed proteins were then eluted with a linear gradient of imidazole (40-250 mM) 

which was achieved by mixing the lysis buffer and elution buffer (50 mM NaH2PO4, 300 

mM NaCl, 250 mM imidazole, pH 8.0) in varying ratios. Collected fractions were then 

subjected to SDS-PAGE. The fractions of purified HupD were then pooled and dialyzed 

against TBS buffer (Tris Buffer Saline: 150 mM NaCl, 50 mM Tris, pH 7.4). Protein 

concentration was determined by Bradford assay. 

Purified, pooled HupD fractions displayed colors varying from light yellow to brown: the 

more concentrated is the protein fraction, the darker is the color. Wavelength scan of the 

fractions from 200 nm to 700 nm displayed a Soret peak around 410 nm together with 2 

http://en.wikipedia.org/wiki/Tris


 

47 

 

Q bands, one around 530 nm and the other around 670 nm. This indicates HupD was 

purified bound with heme. Further dialysis did not remove heme from HupD. Gel 

filtration was then performed to separate HupD from its bound heme: The protein HupD 

was mixed with 1% SDS and 1% glycerol, boiled, and then applied to a Sephacryl S100 

HR gel filtration column pre-washed with 6 volumes of Tris buffer (10 mM Tris-Cl, 1% 

SDS, pH 8.0 ). The same buffer was used to elute the protein and the elution was 

collected with each fraction around 1 mL. Collected fractions were then subjected to 

optical density check both at 280 nm and 405 nm. HupD was separated from hemin. 

Although gel filtration separated HupD from its bound hemin, the protein was denatured. 

To separate HupD from hemin without denaturing HupD, anion-exchange was performed 

as following: HupD was loaded onto a DEAE Sepharose column prewashed with 10 

volumes of 10 mM, pH 8.0 Tris-Cl. The column was then washed with 5 volumes of 10 

mM, pH 8.0 Tris-Cl and eluted with a linear gradient of 0 to 1M NaCl. HupD eluted was 

dialyzed against Tris-HCl. OD check indicated that hemin dissociated from HupD. A 

pyridine hemochrome assay (Zhu H, Liu M, Lei B. 2008) was performed to measure the 

heme content for purified HupD. Briefly, HupD in 750 μLof Tris-HCl was mixed with 

175μL pyridine. 75 μL of 1 M NaOH and 2 mg sodium hydrosulfite was then 

immediately added to the mixture. The OD418 was then immediately recorded. The heme 

content was determined using the extinction coefficient ε418 = 191.5 mM
-1

 cm
-1

.  
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2.10 Nutrition test with Listeria monocytogenes 

 

Cells were grown in BHI broth overnight. In the next morning, 2.5x10
7 

cells from the 

overnight culture were inoculated in 20 mL BHI broth. Cells were grown until OD at 600 

nm reached 0.12~0.15. 1.5 mM bipyridyl was then added to the culture and the cells were 

grown until OD at 600 nm reached 0.6~0.7. 200 uL cells were withdrawn from the 

culture and mixed with 8 mL molten BHI top agar and 20 uL bypirydil. This mixture was 

poured onto a petri dish and allowed to solidify. Sterile paper disks were then placed on 

top of solidified agar and 10 uL siderophores or Hn/Hb of a certain concentration were 

loaded onto the center of  the paper discs. The plates were incubated at 37
0
C overnight.  

 

2.11 Synthesis of [
59

Fe]-hemin 

 

For the synthesis of [
59

Fe]-hemin, 
59

Fe was nonenzymatically incorporated into 

protoporhyrin IX (PPIX). The protocol reported by Babusiak et al (Babusiak et al, 2005) 

was strictly followed. 450 uL of glacial acetic acid was added to a 10 mL double-neck 

flask and nitrogen flowed through the flask at 60
0
C for 10 minutes. 50 uL of PPIX 

(Sigma-Aldrich) in a pyridine (Sigma-Aldrich) stock solution (6 mg/mL) was added to 

the glacial acetic acid. Thioglycolic acid (0.25 mL; Sigma-Aldrich) was added into the 

0.5 M HCl solution containing 30 ug of 
59

Fe and the resulting mixture was immediately 

injected into the prepared PPIX solution and held at 60
0
C for 30 min under a nitrogen 

atmosphere. Air was bubbled through the reaction mixture for 1.5 h at room temperature. 

The mixture was then transferred into 20 mL of ether and washed 6 times with 30 mL of 
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1 M HCl in order to remove the remaining protoporphyrin and iron. The ether fraction 

was dried overnight under a stream of gaseous nitrogen. Dried [
59

Fe]-hemin was 

dissolved in 400 uL of DMSO and the solution was stored at 4
0
C. 

The purity of the product was verified by thin layer chromatography on silica gel plates 

using 2,6-lutidine:H2O (5:3.5) mobile phase at room temperature. 

 

2.12 [
59

Fe]-hemin uptake in L. monocytogenes 

 

Listeria monocytogenes EGD-e and its mutant derivatives were inoculated in 10 mL BHI 

broth at 37
0
C overnight. In the next morning, 200 uL overnight BHI cultures were 

inoculated with 20 mL MOPS and were grown to stationary phase. 200 uL cell cultures 

were then reinoculated with 20 mL MOPS. Cultures were grown until OD at 600 nm 

reached around 0.8-1. Cells were then subjected to [
59

Fe]-hemin uptake assay: 100 uL 

cell cultures were mixed with 10 mL MOPS media prewarmed to 37
0
C; 100 uL [

59
Fe]-

hemin of varying concentrations ranging from 10 nM to 2 uM were immediately added to 

the mixture. After incubation at 37
0
C for 5 seconds or 1 minute, the reaction was filtered 

through a 0.2 um Durapore or Acetate Plus filter and washed with 10 mL ice cold wash 

buffer (50 mM Tris, 0.05% Tween-20, PH=9). The radiation of the filters was counted in 

a Packard Cobra Gamma counter. At each concentration, data were collected in triplicate 

and averaged. The 5 seconds radiation was subtracted from the 1 minute radiation. The 

Km and Vmax of transport were determined by using the “Enzyme Kinetics” equation of 

Grafit 5.09 (Erithacus, Middlesex, UK). 
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For [
59

Fe]-hemin uptake assay with the fixed concentration (200 nM), cells were prepared 

in the same way as described above. 1 mL cell culture and 1 mL [
59

Fe]-hemin (20 uM) 

were sequentially added to 100 mL MOPS prewarmed to 37
0
C. The resulting mixture 

was immediately incubated at 37
0
C. At indicated time points varying from 5 minutes to 1 

hour, 10 mL cell culture was withdrawn, filtered through an Acetate Plus filter and 

washed with 10 mL ice cold wash buffer (50 mM Tris, 0.05% Tween-20, PH=9). The 

radiation of the filters was counted in a Packard Cobra Gamma counter. For every strain 

at each time point, data were collected in triplicate and averaged. The 5 minutes radiation 

served as the background and was subtracted. The uptake rate was determined with 

cpm/10
9
 cells/min. 

 

2.13 Generation of polyclonal mouse anti-HupD antibody 

 

1 mL HupD of 0.37 mg/mL was mixed with 110 uL 10% SDS. The mixture was boiled 

for 5 minutes. 7.7 mL ice-cold acetone was then added to the boiled mixture.The 

resulting mixture was frozen at -20
0
C for 2 hours and then was spun at 7000g for 20 

minutes. The pellet was resuspended with 1 mL distilled water. 7 mL ice-cold acetone 

was added to the resuspension and then was frozen at -20
0
C for 30 minutes. The frozen 

was then spun at 7000g for 20 minutes. The resulting pellet was resuspended with 0.5 mL 

TBS. 0.5 mL native HupD of 0.37 mg/mL was mixed with the resuspension. 1 mL 

complete Freund‟s adjuvant was added to this 1 mL mixture, emulsified, and injected into 

mice with 200 uL for each. In the following 3 weeks, the mice were boosted on a weekly 

basis with the same amount of the mixture of native and denatured HupD. For the first 
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following week the mixture was emulsified with 1 mL incomplete Freund‟s adjuvant. For 

the next two weeks, 10 uL aluminum hydroxide gel adjuvant was added to the mixture, 

mixed through vortex, and then incubated on ice for 1 hour before injection. After 4 

weeks injection, mice were bleeded and the blood was collected in a sterile eppendorf 

tube. The blood collections were kept at 4
0
C overnight and then spun at 12000 rpm for 5 

minutes. The supernatants containing anti-HupD antibody were transferred to a clean 

eppendorf tube and stored at 4
0
C.  

 

2.14 Immunoblots with cell fractions of Listeria monocytogenes 

 

Listeria monocytogenes EGD-e and its derivatives were grown in BHI broth overnight. 

The overnight cultures were subcultured with a ratio of 1:100 in 500 mL BHI broth, BHI 

plus 1 mM bipyridyl broth (bipyridyl was added to the cultures when OD at 600 nm 

reached 0.1-0.2.), MOPS-L or KRM media and the cultures were grown to stationary 

phase. For the growth in MOPS-L or KRM media, cells were subcultured again and 

grown to stationary phase. The cells were then pelleted by centrifugation at 6000 g for 15 

min. The cell pellets were resuspended in 25 mL distilled water with 10ug/mL RNase and 

DNase. Cells were then lysed by 5 passages through a French pressure cell at 14000 p.s.i. 

The lysate was subjected to centrifugation at 8000 g for 20 minutes. The resulting 

supernatant was transferred to another centrifuge tube and was spun at 30,000 rpm for 1 

hour. The pellet (cell envelope fraction) was resuspended in 2mL Tris buffer (20 mM 

Tris-Cl, pH 8.0). Both the cell envelope fraction and the cytoplasm fraction (the 

supernatant) were then subjected to SDS-PAGE. After resolution by SDS-PAGE, 
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proteins were electrophoretically transferred to a nitrocellulose membrane (0.45 um, 

PROTRAN, Whatman) through a Semi-Dry Blotting Unit (FB-SDB-2020, Fisher 

Scientific). Upon completion of transfer, the membrane was soaked in the blocking buffer 

(TBS, 1% gelatin) for 15 minutes. The blocking buffer was poured off and the primary 

antibody (mouse anti-HupD antibody) was added to the membrane. The membrane was 

incubated with the primary antibody either at room temperature on a shaker for 3 hours or 

at 4
0
C overnight. The primary antibody was then poured off and saved. The membrane 

was washed 5 times with 0.05% Tween-20 in TBS. Secondary antibody (goat-anti-

mouse-IgG-alkaline phosphatase) was added to the membrane and incubated  at room 

temperature on a shaker for 2 hours or at 4
0
C overnight. After 5 times wash with 0.05% 

Tween-20 in TBS, the membrane was developed with bromochloroindoyl phosphate 

(BCIP) and nitroblue tetrazolium (NBT).  

 

2.15 Growth of Listeria monocytogenes in MOPS-L media 

 

Cells of Listeria monocytogenes EGD-e and its mutant derivatives were grown in BHI 

overnight. In the next morning, the overnight cultures were subcultured 1:100 into 

MOPS-L media. Cells were grown to stationary phase and then subcultured 1:100 again 

into MOPS-L with the addition of hemin of indicated concentrations. OD600 was then 

read at indicated time points for 36 hours 
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2.16 Intrinsic tryptophan fluorescence quenching 

 

The binding affinity of HupD for hemin was determined by intrinsic fluorescence 

quenching method using an SLM-AMINCO 8000 fluorimeter (Rochester, NY) upgraded 

to 8100 functionality. 33 nM apo-HupD in 3 mL TBS was added to a quartz cuvette and 

the fluorescence was recorded from 320 nm to 340 nm. A tiny stir bar was used to keep 

the solution well-mixed in the cuvette. Various concentrations of hemin solution in 

DMSO were added to the 3 mL HupD solution and the fluorescence was recorded for 

every addition of hemin. The background fluorescence (various concentrations of hemin 

in TBS) and volume changes were accounted and the data were analyzed with the bound 

(1-F/F0) versus total function of GraFit 5.09 (Erithacus Software Ltd., Middlesex, UK). 

 

2.17 Synthesis of [
59

Fe]-Ferric Citrate  

 

3 mL of 0.1M sodium citrate (pH=7) was mixed with 15 uL of 10 mM 
59

FeCl3 (in 0.5 M 

HCl solution) at room temperature, incubated for 1 hour (Braun and Herrmann, 2007). 

[
59

Fe]-Ferric Citrate was then ready for transport experiment.  

 

2.18 [
59

Fe]-Ferric Citrate uptake in Listeria monocytogenes 

  

Cells were prepared in the same way as described for [
59

Fe]-hemin uptake in Listeria 

monocytogenes. Briefly, cells were inoculated overnight in BHI, subcultured (1:100) 

twice in MOPS, and then subjected to [
59

Fe]-ferric citrate uptake assay: 100 uL cell 
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cultures were mixed with 10 mL MOPS media prewarmed to 37
0
C; 100 uL [

59
Fe]-ferric 

citrate of varying concentrations ranging from 100 nM to 20 uM were immediately added 

to the mixture. After incubation at 37
0
C for 5 seconds or 1 minute, the reaction was 

filtered and washed with 10 mL ice cold 0.9% LiCl. The radioactivity associated with the 

filters was counted in a Packard Cobra Gamma counter. At each concentration, data were 

collected in triplicate and averaged. The 5 seconds radiation was subtracted from the 1 

minute radiation. The Km and Vmax of transport were determined by using the “Enzyme 

Kinetics” equation of Grafit 5.09 (Erithacus, Middlesex, UK). 

 

2.19 Binding of peptidoglycan to TonB C-terminus 

 

Aliquots of purified peptidoglycan were mixed with 30 ug aliquots of purified proteins 

(MalE, MalE-TonB69C, and FepB) in 20 mM Tris-Cl, pH 8 (final volume of 100 uL) at 

room temperature for 30 min. The mixture was then centrifuged at 100000 g for 45 min 

in a Beckman Optima TL ultracentrifuge. Both the supernatants and the resuspended 

pellets were subjected to SDS-PAGE. The gels were stained with Coomassie blue, 

photographed, and analyzed by Image-Quant (Molecular Dynamics) to determine the 

amount of protein in the pellets and supernatants. 
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              Chapter 3 Site-directed Chromosomal Deletions in Listeria 
 

 

3.1 Target genes for deletion 
 

 

As mentioned in chapter 1, there are four potential or demonstrated Fur-regulated iron 

transport systems in Listeria. Two systems, the Hup system and the Fhu system, have 

been reported to be involved in Hn/Hb uptake and hydroxamate type siderophore uptake, 

respectively (Jin et al, 2006). However, it was not clear that whether Listeria has multiple 

Hn/Hb uptake systems until this study was conducted. Although the srtB locus of Listeria 

has been suspected to be involved in the uptake of Hn/Hb because of the high similarity 

between this locus and the isd locus of S. aureus (Newton et al, 2005; Shao‟s Ph.D 

dissertation, 2007), its involvement in Hn/Hb uptake has not been undoubtedly reported. 

The FhuB and FhuG proteins encoded by fur-fhu locus, on the other hand, show high 

similarity to the IM heme permease of the phu system in Pseudomonas aeruginosa, 

raising the possibility that fur-fhu locus plays a role in Hn/Hb uptake. To identify 

potential Hn/Hb uptake systems, I made a series of mutants as listed in the table below 

(Table 3.1).  
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Table 3.1 Chromosomal deletion mutants made for this study 

Strain Locus 

∆hupD (lmo2431) hupCDG 

∆hup (lmo2429, lmo2430, lmo2431) hupCDG 

∆svpA/∆hup (lmo2185,lmo2429, lmo2430, lmo2431) srtB, hupCDG 

∆2183/∆hup (lmo2183,lmo2429, lmo2430, lmo2431) srtB, hupCDG 

∆0641/∆hup (lmo0641,lmo2429, lmo2430, lmo2431) lmo0641, hupCDG 

∆fhuC/∆hup (lmo1960,lmo2429, lmo2430, lmo2431) fur-fhu, hupCDG 

∆2183/∆hup/∆fhuC (lmo2183,lmo2429, lmo2430, 

lmo2431, lmo1960) 

srtB, hupCDG, fur-fhu 

∆2183/∆fhuC (lmo2183, lmo1960) srtB, hupCDG, fur-fhu 
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3.2 Chromosomal deletions 

 

3.2.1 Deletion of hupD 

The hup operon in L. monocytogenes contains 3 genes. Its promoter contains a conserved 

“Fur box” (TGAAAATAATTCTCA).The ∆hupC (lmo2429) mutant has already been 

available and has been experimentally demonstrated to be involved in Hn/Hb uptake. 

Two other single deletion mutants in this operon were recently made and I created the 

∆hupD mutant by allelic replacement in vivo. 

As described in chapter 2, the deletion process began with the amplification of two PCR 

fragments. The two fragments, one upstream and the other downstream of the target gene, 

were ligated together. A new fragment was thus created and this fragment had two 

characteristics: 1). It was homologus to the region in the bacterial chromosome that 

contains the target gene for deletion; 2). the fragment itself doesn‟t contain the target 

gene. This fragment was then ligated into pKSV7, a thermo-sensitive vector that can 

shuttle between Gram-positive and Gram-negative bacteria. This construction 

(pKSV7∆hupD) was then introduced into Listeria at permissive temperature 30
o
C. At 

nonpermissive temperature above 37
o
C and under the antibiotic pressure, it intergrated 

into the chromosome of Listeria through homologous recombination. Successive 

passages at 37
o
C without the presence of the antibiotic allowed a second homologous 

recombination to occur, which gave rise to either the parental strain or the deletion 

derivative. A schematic representation of the detailed process of the construction of 

∆hupD is given below (Figure 3.1) 
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Figure 3.1 Schematic representation of the construction of ∆hupD 

 

A. The pictures of the two agarose gels on the right: the first 5 lanes of the top agarose 

gel are purified, newly-constructed pKSV7∆hupD; lanes 6 to 10 are PCR products (~1.5 

Kb) using the vector pKSV7∆hupD as the template and the primers DhupDHind1 and 

DhupDXho2 for PCR reaction; lane 11 is 1Kb DNA ladder (Gibco-BRL); the first 5 lanes 

of the bottom agarose gel are digestions of pKSV7∆hupD with restriction enzymes 

HindIII and XhoI (The size for the smaller fragment is ~600 bp); lanes 6 to 10 are 

digestions of pKSV7∆hupD with restriction enzymes XhoI and XbaI (The size for the 

smaller fragment is ~900 bp); lane 11 is 1Kb DNA ladder (Gibco-BRL). 
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Figure 3.1 Schematic representation of the construction of ∆hupD (continued) 

  

F. Agarose gel electrophoresis of the PCR products: the first 3 lanes are the reactions (0.7 

Kb) with the primers DhupDchk1 and DhupDchk2 and using boiled ∆hupD mutant as the 

template; lane 4 is the control reaction (1.5 Kb) with the primers DhupDchk1 and 

DhupDchk2 and using boiled EGD-e as the template; lane 5 is 1Kb DNA ladder (Gibco-

BRL).  
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3.2.2 Deletion of hupCDG 

The four primers designed for making the hupCDG deletion mutant were DhupDHind1, 

DhupDXho2, DhupXho3 and DhupXba4. The strategy used in this deletion was the same 

as the one used in deleting hupD. The construction of pKSV7∆hupCDG needed to ligate 

two fragments, one upstream and the other downstream of hupCDG, into pKSV7.  Since 

the vector pKSV7∆hupD already has the upstream fragment of hupCDG inserted into the 

vector pKSV7, I took advantage of it. That is: I PCR amplified the downstream fragment 

of  hupCDG, digested the vector pKSV7∆hupD and the upstream fragment with the same 

restriction enzymes XhoI and XbaI, and ligated them together. The expected ligation 

product was pKSV7∆hupCDG. In other words, the successful construction should have 

eliminated the hupCDG but contain its upstream and downstream fragments that were 

ligated tail to head. The ligation product was then purified and electroporated into E.coli 

DH5α. Host DH5α strains potentially harboring the right construction were screened by 

colony PCR (Figure 3.2 A; for methods, see Chapter 2). The vector was then extracted 

and its construction was confirmed by plasmid PCR (Figure 3.2 B) and DNA sequencing.  

The newly-constructed vector was then transferred into EGD-e (Figure 3.2 C). The same 

procedure as the construction of the ∆hupD mutant was performed. Intergration of the 

vector pKSV7∆hupCDG into EGD-e chromosome was checked by colony PCR (Figure 

3.2 D) and the intergrants were grown for 10 successive passages. After two events of 

homologous recombination, the ∆hup mutant was generated (Figure 3.2 E). 
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 Figure 3.2 Construction of ∆hupCDG  

 

A. Colony PCR to screen host strains harboring the right construction. For all PCR 

reactions, DH5α colonies picked from LB plus ampcillin plates were used as the 

template. The primers for all the 14 PCR reactions were DhupXho3 and DhupXba4. Lane 

1 was the Quick-load 1 Kb DNA ladder from New England Biolabs; lanes 2-15 were the 

PCR reactions. The size of the expected PCR products was ~0.9 kb. 

B. Plasmid PCR to verify the construction. For all the 4 PCR reactions, purified plasmids 

were used as the template and the primes were DhupDHind1 and DhupXba4. The size of 

the expected PCR products was ~1.5 kb. Lane 1 was the Quick-load 1 Kb DNA ladder 

from New England Biolabs; lanes 2-15 were the PCR reactions. 

C. Colony PCR to verify transformation of EGD-e with pKSV7∆hupCDG. 4 EGD-e 

transformants picked from BHI plus chloramphenicol plates were used as the template for 

all PCR reactions except the ones in lanes 2 and 7, which were the control PCR using 

EGD-e wild type as the template. Lane 1 was the Quick-load 1 Kb DNA ladder from 
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New England Biolabs; lanes 2-6 were the PCR reactions using the primers LLOchk3 and 

LLochk5, the size of the expected PCR product was ~700 bp; lanes 7-11 were the PCR 

reactions using the primers DhupDHind1 and DhupXba4; the size of the expected PCR 

product in lane 7 was ~4.5 kb, which was too big to amplify; the size of the expected 

PCR products in lanes 8-11 was 1.5 kb. 

D. Colony PCR to check intergration of pKSV7∆hupCDG into the chromosome of EGD-

e. 4 Potential intergrants picked from BHI plus chloramphenicol plates were used as the 

template for PCR reactions. Lane 1 was Quick-load 1kb DNA ladder from New England 

Biolabs. The primers for the PCR reactions: lanes 2-5, DhupInt1and DhupXba4; lanes 6-

9, primers DhupDHind1 and DhupInt2; lanes 10-13, primers DhupInt1 and DhupInt2. 

Since for one single colony, the intergration could happen only in one place, between the 

two PCR reactions using the same colony as the template but using two different groups 

of primers (DhupInt1+DhupXba4 vesus DhupDHind1+DhupInt2) only one PCR reaction 

product is expected. Both lanes 2 and 7 gave right size PCR products, indicating that this 

colony was not pure enough. No product is expected for the PCR reactions using primers 

DhupInt1 and DhupInt2.  

E. Colony PCR to verify the construction of ∆hupCDG. Lane 1 was the Quick-load 1 Kb 

DNA ladder from New England Biolabs; lanes 2-7 were the PCR reactions with the 

primers Dhupchk3 and Dhupchk5; the templates for the lanes 2-6 were the mutant 

∆hupCDG which would give a PCR product with the size around 700 bp, the template for 

lane 7 was the wild type EGD-e which would give a PCR product with the size around 

4.2 kb.  
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3.2.3 Construction of lmo∆2183/∆hupCDG 

The construction of lmo∆2183/∆hupCDG took advantage of the existing mutant 

lmo∆2183 and the newly constructed vector pKSV7∆hupCDG. The approach that we 

employed to make site-directed chromosomal deletions in L. monocytogenes has a 

advantage of allowing facile construction of multiple mutants. Additional deletions can 

be introduced into the chromosome of existing mutant strains by transforming the 

existing mutant strains with corresponding plasmids encoding those additional deletions, 

followed by allelic exchange. This strategy was applied in the construction of 

lmo∆2183/∆hupCDG. The vector pKSV7∆hupCDG was transferred into lmo∆2183 

(Figure 3.3 A) and then intergrated into its chromosome (Figure 3.3 B) through 

homologous recombination. The vector pKSV7 was excised from its chromosome in the 

second homologous recombination event and the double mutant was generated (Figure 

3.3 C).     
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            Figure 3.3 Construction of lmo∆2183/∆hupCDG  

 

A. Colony PCR to verify transformation of lmo∆2183 with pKSV7∆hupCDG. 4 

transformants picked from BHI plus chloramphenicol plates were used as the template for 

all PCR reactions. Lane 1 was the Quick-load 1 Kb DNA ladder from New England 

Biolabs; lanes 2-5 were the PCR reactions using the primers D2183Int1 and FerDoCla, 

the size of the expected PCR product was ~1.2 kb; lanes 6-9 were the PCR reactions 
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using the primers Dhupchk3 and Dhupchk5, the size of the expected PCR products was 

~700 bp. 

B. Colony PCR to check intergration of pKSV7∆hupCDG into the chromosome of 

lmo∆2183. 5 Potential intergrants picked from BHI plus chloramphenicol plates were 

used as the template for PCR reactions. Lane 1 was Quick-load 1kb DNA ladder from 

New England Biolabs. The primers for the PCR reactions: lanes 2-6, DhupInt1and 

DhupXba4; lanes 7-11, primers Dhupchk3 and DhupInt2. 

C. Colony PCR to verify the construction of lmo∆2183/∆hupCDG. Lane 1 was the 

Quick-load 1 Kb DNA ladder from New England Biolabs; lanes 2-6 were the PCR 

reactions with the primers Dhupchk3 and Dhupchk5; the templates for the lanes 2-5 were 

the double mutant lmo∆2183/∆hupCDG, the template for lane 6 was the single mutant 

lmo∆2183; the size of the expected PCR products in lanes 2-5 was ~700 bp and 4.2 kb in 

lane 6, which was too big to amplify. Lanes 7-11 were the PCR reactions using the 

primers D2183Int1 and FerDoCla, the templates for the lanes 7-10 were the double 

mutant lmo∆2183/∆hupCDG, the template for lane 11 was the single mutant lmo∆2183; 

the size of the expected PCR products in lanes 7-11 was ~1.2 kb. 
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3.2.4 Construction of lmo∆2185/∆hupCDG 

Just as the construction of lmo∆2183/∆hupCDG, I took advantage of the existing mutant 

lmo∆2185 and the newly constructed vector pKSV7∆hupCDG to make 

lmo∆2185/∆hupCDG. Briefly, the vector pKSV7∆hupCDG was transferred into 

lmo∆2185 (Figure 3.4 A) and then intergrated into its chromosome (Figure 3.4 B) 

through homologous recombination. The vector pKSV7 was excised from its 

chromosome in the second homologous recombination event and the double mutant 

lmo∆2185/∆hupCDG was generated (Figure 3.4 C).    

3.2.5 Construction of lmo∆0641/∆hupCDG 

This construction took advantage of the existing mutant lmo∆0641 (provided by Dr. 

Cormac). The vector pKSV7∆hupCDG was transferred into lmo∆0641 (Figure 3.5 A) 

and then intergrated into its chromosome (Figure 3.5 B). The double mutant 

lmo∆0641/∆hupCDG was generated (Figure 3.5 C) through a second homologous 

recombination. 
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Figure 3.4 Construction of lmo∆2185/∆hupCDG 

 

A. Colony PCR to verify transformation of lmo∆2185 with pKSV7∆hupCDG. 4 

transformants picked from BHI plus chloramphenicol plates were used as the template for 

all PCR reactions. Lane 1 was the Quick-load 1 Kb DNA ladder from New England 

Biolabs; lanes 2-5 were the PCR reactions using the primers D2185chk3 and D2185chk5, 

the size of the expected PCR product was ~800 bp; lanes 6-9 were the PCR reactions 

using the primers Dhupchk3 and Dhupchk5, the size of the expected PCR products was 

~700 bp. 
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B. Colony PCR to check intergration of pKSV7∆hupCDG into the chromosome of 

lmo∆2185. 5 Potential intergrants picked from BHI plus chloramphenicol plates were 

used as the template for PCR reactions. Lane 1 was Quick-load 1kb DNA ladder from 

New England Biolabs. The primers for the PCR reactions: lanes 2-6, DhupInt1and 

DhupXba4; lanes 7-11, primers Dhupchk3 and DhupInt2. 

C. Colony PCR to verify the construction of lmo∆2185/∆hupCDG. The templates for all 

PCR are the double mutant lmo∆2185/∆hupCDG. Lane 1 was the Quick-load 1 Kb DNA 

ladder from New England Biolabs; lanes 2-8 were the PCR reactions with the primers 

Dhupchk3 and Dhupchk5; the size of the expected PCR products in lanes 2-8 was ~700 

bp;  lanes 9-15 were the PCR reactions using the primers D2185chk3 and D2185chk5; 

the size of the expected PCR products in lanes 9-15 was ~800 bp. 
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Figure 3.5 Construction of lmo∆0641/∆hupCDG 

 

A. Colony PCR to verify transformation of lmo∆0641 with pKSV7∆hupCDG. 4 

transformants picked from BHI plus chloramphenicol plates were used as the template for 

all PCR reactions. Lane 9 was the Quick-load 1 Kb DNA ladder from New England 

Biolabs; lanes 1-4 were the PCR reactions using the primers D0641chk3 and D0641chk5, 

the size of the expected PCR product was ~650 bp; lanes 5-8 were the PCR reactions 

using the primers Dhupchk3 and Dhupchk5, the size of the expected PCR products was 

~700 bp. 
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B. Colony PCR to check intergration of pKSV7∆hupCDG into the chromosome of 

lmo∆0641. 5 Potential intergrants picked from BHI plus chloramphenicol plates were 

used as the template for PCR reactions. Lane 6 was Quick-load 1kb DNA ladder from 

New England Biolabs. The primers for the PCR reactions were DhupInt1and DhupXba4. 

C. Also colony PCR to check intergration of pKSV7∆hupCDG into the chromosome of 

lmo∆0641, but with different primers: Dhupchk3 and DhupInt2. The templates for the 

PCR reactions were the same as used in B. Lane 6 was Quick-load 1kb DNA ladder from 

New England Biolabs.  

D. Colony PCR to verify the construction of lmo∆0641/∆hupCDG. Lane 7 was the 

Quick-load 1 Kb DNA ladder from New England Biolabs; lanes 1-3 were the PCR 

reactions with the primers D0641chk3 and D0641chk5; the template for the PCR in lane 

1 was lmo∆0641; the templates for the PCRs in lanes 2 and 3 were  

lmo∆0641/∆hupCDG; the size of the expected PCR products in lanes 1-3 was ~650 bp;  

lanes 4-6 were the PCR reactions using the primers Dhupchk3 and Dhupchk5; the 

template for the PCR in lane 4 was lmo∆0641; the templates for the PCRs in lanes 5 and 

6 were  lmo∆0641/∆hupCDG;  the size of the expected PCR products in lanes 5 and 6 

was ~700 bp ;  the size of the expected PCR product in lane 4 was 4.2 kb (failed to 

amplify). 
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3.2.6 Construction of lmo∆1960/∆hupCDG 

This construction took advantage of the existing mutant lmo∆1960. The vector 

pKSV7∆hupCDG was transferred into lmo∆1960 (Figure 3.6 A) and then intergrated into 

its chromosome. The double mutant lmo∆1960/∆hupCDG was generated (Figure 3.6 B) 

through a second homologous recombination. 

3.2.7 Construction of lmo∆2183/∆hupCDG/∆1960 

This construction took advantage of the newly constructed mutant lmo∆2183/∆hupCDG 

and the existing construction pKSV7∆1960. The vector pKSV7∆1960 was transferred 

into  lmo∆2183/∆hupCDG (Figure 3.7 A) and then intergrated into its chromosome 

(Figure 3.7 B). The triple mutant lmo∆2183/∆hupCDG/∆1960 was generated (Figure 3.7 

C) through a second homologous recombination. 

3.2.8 Construction of lmo∆2183/∆1960 

This construction took advantage of the existing mutant lmo∆2183 and the existing 

construction pKSV7∆1960. The vector pKSV7∆1960 was transferred into lmo∆2183 

(Figure 3.8 A) and then intergrated into its chromosome (Figure 3.8 B). The double 

mutant lmo∆218/∆1960 was generated (Figure 3.8 C) through a second homologous 

recombination. 
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Figure 3.6 Construction of lmo∆1960/∆hupCDG 

 

A. Colony PCR to verify transformation of lmo∆1960 with pKSV7∆hupCDG. The 

templates for the PCR reactions were 3 transformants (lanes 2-4 and lanes 6-8) picked 

from BHI plus chloramphenicol plates and the mutant lmo∆1960 (lanes 5 and 9). Lane 1 

was the Quick-load 1 Kb DNA ladder from New England Biolabs; lanes 2-5 were the 

PCR reactions using the primers Dhupchk3 and Dhupchk5, the size of the expected PCR 

products in lanes 2-4 was ~700 bp and ~4.2 kb in lane 5 (too big to amplify); lanes 6-9 

were the PCR reactions using the primers D1960chk3 and D1960chk5, the size of the 

expected PCR products was ~700 bp. 
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B. Colony PCR to verify the construction of lmo∆1960/∆hupCDG. The templates for the 

PCRs were 6 chloramphenicol sensitive colonies. Lane 1 was the Quick-load 1 Kb DNA 

ladder from New England Biolabs; lanes 2-7 were the PCR reactions with the primers 

Dhupchk3 and Dhupchk5; the size of the expected PCR products in lanes 2-7 was ~700 

bp (lane 3 did not show PCR product and it turned out later that colony was the single 

mutant lmo∆1960). 
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Figure 3.7 Construction of lmo∆2183/∆hupCDG/∆1960 

 

A. Colony PCR to verify transformation of lmo∆2183/∆hupCDG with pKSV7∆1960. 4 

transformants picked from BHI plus chloramphenicol plates were used as the template for 

all PCR reactions. Lane 1 was the Quick-load 1 Kb DNA ladder from New England 

Biolabs; lanes 2-5 were the PCR reactions using the primers D1960chk3 and D1960chk5, 

the size of the expected PCR product was ~700 bp; lanes 6-9 were the PCR reactions 

using the primers D2183chk5 and FerDoCla, the size of the expected PCR product was 

~700 bp; lanes 10-13 were the PCR reactions using the primers Dhupchk3 and 

Dhupchk5, the size of the expected PCR products was ~700 bp. 

B. Colony PCR to check intergration of pKSV7∆1960 into the chromosome of 

lmo∆2183/∆hupCDG. 2 Potential intergrants picked from BHI plus chloramphenicol 

plates were used as the template for PCR reactions. Lane 1 was Quick-load 1kb DNA 

ladder from New England Biolabs. The primers for the PCR reactions: lanes 2-3, 

D1960Int5and D1960chk3; lanes 4-5, primers D1960chk5 and D1960Int3. 
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C. Colony PCR to verify the construction of lmo∆2183/∆hupCDG/∆1960. The templates 

for all PCRs were 2 colonies of the triple mutant lmo∆2183/∆hupCDG/∆1960. Lane 1 

was the Quick-load 1 Kb DNA ladder from New England Biolabs; lanes 2-3 were the 

PCR reactions with the primers D2183chk5 and FerDoCla; the size of the expected PCR 

products in lanes 2-3 was ~700 bp; lanes 4-5 were the PCR reactions using the primers 

Dhupchk3 and Dhupchk5; the size of the expected PCR products in lanes 4-5 was ~700 

bp; lanes 6-7 were the PCR reactions using the primers D1960chk3 and D1960chk5; the 

size of the expected PCR products in lanes 6-7 was ~700 bp. 
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Figure 3.8 Construction of lmo∆2183/∆1960 

 

A. Colony PCR to verify transformation of lmo∆2183 with pKSV7∆1960. 4 

transformants picked from BHI plus chloramphenicol plates were used as the template for 

all PCR reactions. Lane 1 was the Quick-load 1 Kb DNA ladder from New England 

Biolabs; lanes 2-5 were the PCR reactions using the primers D1960chk3 and D1960chk5, 

the size of the expected PCR product was ~700 bp; lanes 6-9 were the PCR reactions 

using the primers D2183chk5 and FerDoCla, the size of the expected PCR product was 

~700 bp. 

B. Colony PCR to check intergration of pKSV7∆1960 into the chromosome of 

lmo∆2183. 2 Potential intergrants picked from BHI plus chloramphenicol plates were 

used as the template for PCR reactions in lanes 6-9 (lanes 2-5 were PCRs to check 

intergration of pKSV7∆1960 into the chromosome of lmo∆2183/∆hupCDG, see Figure 

3.7 B). Lane 1 was Quick-load 1kb DNA ladder from New England Biolabs. The primers 

for the PCR reactions: lanes 6-7, D1960Int5and D1960chk3; lanes 8-9, primers 

D1960chk5 and D1960Int3. 
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C. Colony PCR to verify the construction of lmo∆2183/∆1960. The templates for all 

PCRs were 3 colonies of the double mutant lmo∆2183/∆1960. Lane 1 was the Quick-load 

1 Kb DNA ladder from New England Biolabs; lanes 2-4 were the PCR reactions with the 

primers D2183Int1 and FerDoCla; the size of the expected PCR products in lanes 2-4 was 

~1200 bp; lanes 5-7 were the PCR reactions using the primers D1960chk3 and 

D1960chk5; the size of the expected PCR products in lanes 5-7 was ~700 bp. 
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3.3 Complementation of ∆hupD 

 

To follow Koch‟s postulates, I tried to confirm the role of hupD in Hn/Hb uptake by 

introducing the wild type gene into the mutant ∆hupD to see whether the wild type ability 

to transport Hn/Hb could be restored.  

First I tried to clone the gene hupD together with its native promoter into the vector 

pKSV7 (Figure 3.9A-D). Then I transferred the newly constructed vector pKSVhupD 

into the mutant ∆hupD (Figure 3.9 E). However nutrition test with the transformants 

showed this construction failed to complement ∆hupD (data not shown). I then switched 

to another vector, pPL2, for the complementation clone. pPL2 is an E.coli-Listeria shuttle 

vector (Figure 3.10) and successful complementation with pPL2 has been reported 

(Riedel CU et al, 2007). As I did for the complementation clone of hupD with pKSV7, I 

cloned the gene hupD and its native promoter together into pPL2 (Figure 3.11 A-C), 

transferred this new construction to E.coli SM10 (Figure 3.11 D). Through conjugation, 

pPL2 was transferred from SM10 (donor cell) to Listeria (acceptor cell). pPL2 then 

integrated into the listerial chromosome at the PSA prophage attachment site (Figure 3.11 

E). Once integrated, it remains one copy and is highly stable even without the antibiotic 

pressure. Although the construction of pPL2-pro-hupD was confirmed by DNA 

sequencing (100% matched the original DNA sequence), nutrition tests showed that 

integration of pPL2-pro-hupD into the chromosome of ∆hupD still failed to restore the 

ability to uptake Hn/Hb (data not shown). While I was trying to complement ∆hupD with 

pPL2, a former graduate student, Dr. Xiaoxu Jiang, succeeded in complementing ∆hupC 

and ∆hupG. He cloned the native promoter into the vector pPL2 (we designated this new 
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construction pPro) and then inserted the gene hupC (or hupG) right after the native 

promoter. I utilized this new construction of pPro by inserting the gene hupD into the 

vector at the site right after the promoter of the hup operon (Figure 3.12 A ). The vector 

pPro-hupD was then purified, transferred to SM10 strain. However, integration of pPro-

hupD into the chromosome of ∆hupD still failed to complement the mutant (data not 

shown). I then replaced the native promoter of the hup operon by pclpB (Figure 3.12 B-

C). Again, this construction failed to complement the mutant ∆hupD. 

In addition to the complementation clone with pKSV7 and pPL2, I also cloned the gene 

hupD and its native promoter together into another temperature sensitive E.coli-Listeria 

shuttle vector pMAD (Figure 3.13). Still, this construction did not complement the 

mutant ∆hupD. 
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Figure 3.9 Complementation clone of hupD with pKSV7 

Note: All markers are Quick-load 1 Kb DNA ladder from New England Biolabs. 

A. Lane 1, 1 kb DNA ladder; lanes 2 and 3, purified pro-hupD fragment with BamHI and 

PstI restriction sites added to its extremities. 

B. Colony PCR to screen potential DH5α strains harboring the construction of pKSV7-

pro-hupD with primers pKSVprohupD5 and pKSVhupD3. Lanes 1-4 show right size 

PCR products. 

C. Plasmid PCR using purified vector pKSV7-pro-hupD as the template, the primers 

were pKSVprohupD5 and pKSVhupD3. All show right size PCR product. 
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D.Lanes 1-4 are digestions of purified pKSV7-pro-hupD with BamHI and PstI restriction 

enzymes. Lanes 6-9 are purified pPL2-pro-hupD. 

E.Colony PCR to verify transformation. 2 transformants picked from BHI plus 

chloramphenicol plate were used as the template; lanes 1-2 are PCRs with primers 

DhupDchk1 and DhupDchk2; lanes 3-4 are PCRs with primers pKSVprohupD5 and 

pKSVhupD3; lanes 5-6 are PCRs with primers LLOchk5 and LLOchk3.  

  

 

 

 
 

 

Figure 3.10 Plasmid map of pPL2 (Lauer et al, 2002) 
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Figure 3.11 Complementation clone with pPL2 

 

A.Lanes 1-2 , purified PCR fragment pro-2431 with BamHI and PstI restriction sites 

added to the extremities 

B.Sample lane, purified vector pPL2 

C.Colony PCR to screen potential XL1-Blue colonies harboring the construction of 

pPL2-pro-2431. 12 colonies were picked from LB plus chloramphenicol plates and 

served as templates for PCRs. The primers used for PCRs were pro-hupDBamH5 and 

hupDPst3. Lanes 2 and 12 showed PCR products with right size. 

D.Colony PCR to verify transformation of E.coli SM10 with pPL2-pro-2431. Four SM10 

colonies were picked from LB plus chloramphenicol plates to be used as the template for 

PCRS. The same primers as C were used. Lanes 1-3 gave right size PCR products. 

E.Colony PCR to check integration of pPL2-pro-2431 into the chromosome of ∆hupD. 4 

integrants were picked from BHI plus chloramphenicol and streptomycin plates, boiled 

and aliquoted to two different groups of PCR reactions. Lanes 1-4 were PCRS with 

primers DhupDchk1 and DhupDchk2 and lanes 5-9 were PCRs with primers NC16 and 

PL95. All lanes showed PCR products with right size. 
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Figure 3.12 Cloning of hupD into pPro and replacement of the native promoter 

 

A.Colony PCR to screen potential XL1-Blue colonies harboring pPro-hupD. 15 colonies 

picked from LB plus chloramphenicol plates were used as templates. The primers were 

hupDPst5 and hupDKpn3. Lanes 2,5,6,10,12,13,15 showed PCR products of right size.  

B.Lanes 1-4, purified pPL2-pclpB-hupD. 

C.Colony PCR to verify transformation of SM10 with pPL2-pclpB-hupD. Templates 

were SM1o colonies picked from LB plus chloramphenicol plates. The primers were 

pclpBBamH5 and Seq2431rev. All lanes showed right size PCR products. 
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Figure 3.13 Cloning hupD and its native promoter into pMAD 

    

      Note: The DNA marker in both gels were Quick Load 1 kb DNA ladder from New 

                 England Biolabs. 

A.The left sample lane was the vector pMAD, the right sample lane was the newly 

constructed vector pMAD-prohupD. 

B. Verify the construction of pMAD-prohupD by digestion with restriction enzymes 

BamHI and NcoI.  
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        Chapter 4 Characterization of Binding Specificity of HupD 

  

4.1 Expression and purification of HupD 

 

The N-terminus of HupD contains a signal peptidase II recognition sequence (Figure 4.1). 

In our lab, we previously overexpressed a hydroxymate siderophore binding protein by 

removing its N terminal signal peptide (Shao‟s Ph.D dissertation, 2007). I followed this 

strategy and removed the first eighteen residues of the N-terminus of HupD 

(MKKITILMLSITAALLLASC, the sequence underlined was removed). As described in 

“Materials and Methods” section, I used the vector pET28a for cloning and expression 

(Figure 4.2). Appropriate primers were designed for PCR and the resulting PCR product 

is a DNA fragment without the sequence encoding those eighteen residues (Figure 4.3A). 

The fragment was inserted into pET28a (Figure 4.3B, Figure 4.2) and the purified 

pEThupD∆18 was transferred into E.coli BL21 cells (Figure 4.3C). However, from the 

SDS-PAGE we did not see obvious expression of HupD when the cell culture of 

BL21/pEThupD∆18 was exposed to IPTG (data not shown). So I checked its expression 

by Western immunoblot with anti-Histag antibody and the immunoblot showed 

expression of HupD (Figure 4.4). We suspected the fact that HupD was not 

overexpressed was because of the Cys residue at position 20 of the N-terminus. HupD 

may be anchored to the cytoplasmic membrane through this Cys residue. When HupD 

was expressed in E.coli, anchoring of HupD to the cytoplasmic membrane of E.coli may 

damage the membrane. Thus makes HupD toxic to E.coli. To avoid this problem, I 

further removed 2 more residues (Figure 4.5). This resulted in high-level expression of 
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HupD as a soluble protein, which facilitated its Ni++-NTA chromatographic purification 

(Figure 4.6). 

 

A.Lipoprotein signal peptide 

 

                           ( Chem Rev.2002. 102(12):4549-80) 

B.N-terminus of HupD in EGD-e 

 

Figure 4.1 Signal peptidase II recognition sequence of HupD in EGD-e 

 

 



 

87 

 

 

        Figure 4.2 Schematic depiction of insertion of the hupD fragment into pET28a 

                            (The plasmid map is from Novagen) 
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Figure 4.3 Cloning of hupD into pET28a and transformation of BL21 with 

pEThupD∆18 

Note: all DNA markers are Quick Load 1 Kb DNA ladder from New England Biolabs 

A.Lanes 1-2, purified pET28a; lanes 3-4, purified PCR fragment hupD∆18. 

B.Colony PCR with primers hupDpET5(18) and hupDpET3; Templates were DH5α 

colonies picked from LB plus kanamycin plates; lanes 7,12,17,18 show right size PCR 

products 

C.Colony PCR to verify trasnsformation of BL21 with pEThupD∆18. Primers were 

hupDpET5(18) and hupDpET3; Templates were BL21 colonies picked from LB plus 

kanamycin plates; all lanes show right size PCR products. 
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 Figure 4.4 HupD expression check by Western Immunoblot with anti-Histag 

antibody  

(Lanes 1-12 were from cell lysates of BL21 harboring pEThupD∆18; lanes 13-14 were 

from cell lysates of BL21 harboring the empty vector pET28a; cells in odd number lanes 

were exposed to IPTG while cells in even number lanes were not.) 

 

Figure 4.5 Cloning of hupD into pET28a and transformation of BL21 with 

pEThupD∆20  

Note: all DNA markers are Quick Load 1 Kb DNA ladder from New England Biolabs 

A.Colony PCR with primers hupDpET5(20) and hupDpET3; Templates were DH5α 

colonies picked from LB plus kanamycin plates; lanes 11,15,20,21 show right size PCR 

products 

B.Colony PCR to verify trasnsformation of BL21 with pEThupD∆20. Primers were 

hupDpET5(20) and hupDpET3; Templates were BL21 colonies picked from LB plus 

kanamycin plates; all lanes show right size PCR products. 



 

90 

 

 

 
Figure 4.6 Expression and purification of HupD 

 
A.Lanes 1-2 were cell lysates of BL21 harboring the empty vector pET28a, cells from lane 2 

were exposed to IPTG while cells from lane 1 were not; lanes 3-5 were cell lysates of BL21 

harboring pEThupD∆20, cells from lanes 4-5 were exposed to IPTG while cells from lane 3 were 

not, cells from lane 4 were lysed by boiling while cells from lane 5 were lysed by French Press, 

lane 6 was cytoplasmic extract of BL21/pEThupD∆20 exposed to IPTG;  lanes 7-8 were flow 

through of the cytoplasmic extract from Ni
++

-NTA agarose; lanes 9-11, elution by 10 mM 

imidazole; lanes 12, elution by 50 mM imidazole. 

B.lanes 13-21, elution by 50 mM imidazole; lanes 22-24, elution by 100-250 mM imidazole. 
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4.2 Binding specificity of HupD 

 

Listeria HupD is related to E. coli FhuD [EcoFhuD; PDB 1ESZ (Clarke et al., 2002)]: 

they are 17% identical and 57% similar. Both E.coli FhuD and Listeria HupD contain 

Trp: LmoHupD at residue 280; EcoFhuD at residues 43, 68, 102, 210, 217, 255 and 273. 

EcoFhuD W273, which is situated in the solute binding site, aligns with W280 in 

LmoHupD. 

The presence of Trp in proximity to the binding cavity permitted fluorescence 

spectroscopic measurements of solute adsorption to purified LmoHupD. As demonstrated 

from Figure 4.8 B, purified LmoHupD was virtually monospecific: it bound Hn with high 

affinity (Kd = 40 nM), but did not measurably adsorb any of the other iron complexes that 

we tested (Fc, ferrichrome; FcA, ferrichrome A; FxB, ferrioxamine B; FeEnt, ferric 

enterobactin). Only PPIX also bound to LmoHupD, but with 30-fold lower affinity 

(Kd=1120 nM), indicating the importance of iron in the recognition reaction. To exclude 

the possibility that the high affinity of HupD for Hn resulted from the Histag, I also 

studied the binding specificity of another His-tagged listerial binding protein (LmoFhuD) 

for Hn. LmoFhuD is the listerial hydroxamate siderophore binding protein. Dr. Yi Shao, 

a former graduate student, characterized the binding specificity of LmoFhuD and found 

that the protein recognizes a variety of iron complexes, including Fc, FcA, FxB and 

FeEnt (Shao‟s dissertation, 2007; Figure 4.8 A). LmoFhuD showed recognition of Hn, 

but with a much lower affinity (Kd=2.9 uM) (Figure 4.8 A). Thus the high affinity of 

LmoHupD for Hn was not due to the Histag. 
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The high affinity of LmoHupD for Hn was apparent even during its purification. When 

expressed in E. coli DH5α and purified by Ni++-NTA chromatography, solutions of 

LmoHupD were yellow, red or brown, and their visible spectra showed a Soret peak and 

other two peaks characteristic of Hn (Figure 4.9). Removal of Hn from LmoHupD 

required either anion exchange chromatography or SDS-denaturation of the protein 

(Materials and Methods; Figure 4.7).  
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Figure 4.7 Separation of Hn from HupD by SDS-denaturation 

 

HupD fractions purified from Ni
++

-NTA agarose column were colored from yellow to 

brown. UV-visible wavelength scan indicated HupD purified with bound Hn (Figure 4.8). 

Removal of Hn from HupD required either anion exchange chromatography (data not 

shown) or SDS-denaturation of the protein (Materials and Methods). 
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Figure 4.8 Binding specificity of HupD 

L. monocytogenes FhuD (Histagged; Shao‟s dissertation, 2007) and HupD (Histagged) were tested for their 

ability to bind ferric siderophores and Hn, by monitoring quenching of Trp fluorescence. (Top panel) 

FhuD, the ferric hydroxamate binding protein, showed broad recognition of a variety of iron complexes, 

including Hn, whereas (bottom panel) HupD, the Hn binding protein, was virtually specific for its ligand to 

the exclusion of all other siderophores [(○) FxB; (∆) Fc; (  ) FcA; (◊) FeEnt; (●) Hn; (  ) PPIX]. Kd values 

of the binding interactions for HupD are provided in the text.  
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Figure 4.9 UV-visible wavelength scan of purified HupD 

Purified solutions of HupD were yellow, red or brown, and their visible spectra showed a 

Soret peak (~410 nm) and other two peaks (~530 nm and ~670 nm). Together these peaks 

suggested that the pigment was Hn. 
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   Chapter 5 Hemin Binding and Uptake by Listeria monocytogenes 

 

5.1 Putative or demonstrated Hemin uptake systems in Listeria 

monocytogenes 

 

L. monocytogenes actively utilizes both Hn and Hb, and their transport system contributes 

to its virulence (Jin et al., 2005). Putative or demonstrated Hn uptake systems exist in S. 

aureus (Grigg et al., 2010), Streptococcus pyogenes (Lei et al., 2002) and Bacillis 

anthracis (Tarlovsky et al., 2010). In S. aureus the isd locus has been demonstrated to be 

involved in Hn/Hb uptake (Mazmanian et al., 2003). It encodes sortase B, a sortase B 

dependent protein (IsdC), an ABC transporter and other sortase A-dependent PG-

associated proteins. The srtB locus of L. monocytogenes is very similar to the isd locus of 

S. aureus, but deletion within this locus did not noticeably influence either Hn or Hb 

uptake (Jin et al., 2005). For instance, elimination of the sortase B-dependent IsdC 

homolog Lmo2185 did not impair the ability of L. monocytogenes to utilize iron from Hn. 

Nor did it reduce the virulence of L. monocytogenes in a mouse model (Jin et al., 2005). 

Deletion of hupC within hup locus, on the other hand, impaired both Hn and Hb uptake 

and decreased virulence (Jin et al., 2005). 

The ambiguities in Hn transport pathway of Gram-positive bacteria necessitates further 

studies of Hn and Hb uptake by L. monocytogenes. We improved the sensitivity of 

nutrition test, developed protocols to quantitatively characterize the Hn binding and 

uptake by L. monocytogenes. All these efforts finally led to the identification of the 
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function of the srtB locus and the first report of the biochemical parameters of Hn 

utilization by bacteria. 

 

5.2 Nutrition tests  

  

Although nutrition test is just a qualitative assay, a nice nutrition test can provide us very 

useful information. We optimized the conditions for nutrition test and developed a new 

protocol. Comparing to the old protocol of nutrition test (Newton et al, 2005; Jin et al, 

2006), the new protocol has two major changes (See Materials and Methods). One is that 

I added more 2,2-bipyridyl to the media to render the media more iron-deficient. This 

creates a clean background for the nutrition test and makes the halos much more clear. 

The other change is about the solvent system for dissolving Hn. Instead of using 50 mM 

NaOH to dissolve Hn, we adapted to DMSO (Collier et al, 1979; Jiang‟s dissertation, 

2009). While in our previous studies only nutrition tests with relatively high 

concentrations of Hn [200 uM; (Newton et al, 2005; Jin et al., 2006)] displayed 

stimulation of the growth of EGD-e, the addition of more bipyridyl to the media and the 

adaptation to DMSO as the solvent allowed detection of growth stimulation at much 

lower concentrations (as low as 0.5 uM for EGD-e). The solubility of Hn in aqueous 

buffers is poor because Hn may dimerize and precipitate in aqueous solution (Collier et 

al., 1979, de Villiers et al., 2007, Asher et al, 2009). The use of a solvent/buffer system 

containing DMSO minimized dimerization of Hn, which improved its dissolution in 

culture media. The higher sensitivity of the nutrition tests made it possible to see the 

defects of some of EGD-e derivatives in the utilization of Hn. 
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5.2.1 Nutrition tests with ∆hupD and ∆hup 

Once I constructed ∆hupD, I did nutrition test to check whether it has defects in 

utilization of iron complexes. I tested its ability to utilize ferrichrome (Fc), ferrichrome A 

(FcA), ferrioxamine B (FxB), Hn and Hb (Figure 5.1). Comparing to the wild type EGD-

e, the mutant did not show any defects in utilization of hydroxamate type siderophores 

(Fc, FcA or FxB) but was severely impaired in Hn/Hb utilization. However, residual 

Hn/Hb utilization still remained for the mutant. Nutrition tests with the full hup operon 

deletion mutant, ∆hup, showed almost exactly the same phenotype with ∆hupD (Figure 

5.1). Together these data suggested a central role the hup operon plays in Hn/Hb uptake 

and the existence of secondary Hn/Hb uptake system(s). 
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Figure 5.1 Nutrition tests of EGD-e, ∆hupD and ∆hup 

EGD-e and mutant strains were grown in BHI, subjected to iron deprivation at mid-log 

by addition of 1.5 mM bipyridyl, and plated on BHI agar containing 0.25 mM bipyridyl 

(Materials and Methods). Paper discs were placed on the agar, and 10 µL of various iron 

compounds were applied to the discs. ∆hupD and ∆hup was severely impaired in their 

utilization of Hn and Hb but normally utilized the hydroxamate type siderophores Fc, 

FcA, FxB.  
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5.2.2 Nutrition tests with deletion mutants in srtB locus and fhu locus 

The improved sensitivity in nutrition tests provided an opportunity to characterize the 

deletion mutants that we were not be able to characterize before. Because of the 

similarity between the srtB locus of L. monocytogenes and isd locus of S.aureus and the 

sequence homology between FhuB/FhuG of L. monocytogenes and PhuU (Hn permease) 

of  Pseudomonas aeruginosa, I further tested Hn/Hb uptake by deletion mutants in both 

srtB locus (∆2183, ∆svpA, ∆srtB) and fhu locus (∆1959, ∆1960) with nutrition tests 

(Figure 5.2). All these deletion mutants and ∆2183/∆1960, the double mutant across the 

two locus, displayed obvious impairment in Hn/Hb utilization at 15 uM. While the 

growth of the wild type EGD-e was still stimulated by addition of either 1.5 uM or 0.5 

uM Hn/Hb to BHI top agar, I did not observe any growth stimulation for all these 

mutants under the same condition. Another mutant strain, ∆srtA (srtA is located outside 

the srtB and fhu locus), displayed wild type phenotype in Hn/Hb uptake. This suggests a 

role of srtB and fhu locus in Hn/Hb uptake by L. monocytogenes and the role of srtB 

locus was further confirmed by [
59

Fe]-Hn binding and uptake assays. 
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Figure 5.2 Nutrition tests with mutants in srtB and fhu loci 

EGD-e and mutant strains were grown in BHI, subjected to iron deprivation at mid-log 

by addition of 1.5 mM bipyridyl, and plated on BHI agar containing 0.25 mM bipyridyl 

(Materials and Methods). Paper discs were placed on the agar, and 10 µL of various iron 

compounds were applied to the discs. Mutants in the fhu and srtB operon had reduced 

iron supply from Hn and Hb, whereas ΔsrtA showed no reduction in this assay.  
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5.3 [
59

Fe]-Hn binding and uptake 
 

 

5.3.1 Development of the [
59

Fe]-Hn uptake protocol 

 

We followed Babusiak‟s protocol (Babusiak et al, 2005; Jiang‟s dissertation, 2009) for 

synthesis of [
59

Fe]-Hn. The specific activity of [
59

Fe]-Hn synthesized with this protocol 

ranged from 250 to 350 cpm/pico mole. This high specific activity of [
59

Fe]-Hn made it 

possible to quantitatively characterize [
59

Fe]-Hn binding and uptake by L. 

monocytogenes. 

I developed the [
59

Fe]-Hn uptake protocol. It was based on the protocol that Dr. Xiaoxu 

Jiang developed and used (Jiang‟s dissertation, 2009). There are two main differences 

between my protocol and Xiaoxu‟s protocol: one is the time allowed for bacteria to 

transport [
59

Fe]-Hn and the other is the concentrations of [
59

Fe]-Hn used for [
59

Fe]-Hn 

uptake assay. The deduction of transport time from 1 hour or 30 minutes to 1 minute 

eliminated the problem of substrate depletion which occurred at very low concentrations 

of  [
59

Fe]-Hn. This allowed me to observe substrate saturation at very low concentrations 

(< 5 nM). With 30 minutes or 1 hour transport, it is impossible to see this because the 

substrate depleted quickly and the transport rates dropped off dramastically as transport 

proceeded. As a result, the calculated transport rate is no longer the initial transport rate 

but is much less. The other change is that I did the uptake assay with [
59

Fe]-Hn 

concentrations ranging from 0.1 nM to 20 nM while Xiaoxu performed the experiments 

with [
59

Fe]-Hn concentrations ranging from 1 nM to 5000 nM. This change led to the 

identification of the role of srtB locus in Hn uptake by L. monocytogenes. Because Hn 

can diffuse through the peptidoglycan, at higher concentrations (>50 nM) of [
59

Fe]-Hn, 
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the role of SrtB-anchored Hn binding proteins was obscured because the amount of 

[
59

Fe]-Hn that diffused through peptidoglycan might be sufficient to saturate CM 

permease to transport it across the CM. At high concentrations of Hn, it is also possible 

that a lot of Hn could just intercalate into the CM because of the hydrophobicity and 

small size (~600 Da) of Hn. All these could obscure the active transport of Hn across the 

cell envelope.  

5.3.2 The hup operon in Hn binding and uptake 

I synthesized [
59

Fe]-Hn (Materials and Methods) and measured its binding and uptake by 

EGD-e and its derivatives with deletions in the hup operon (Figure 5.3; Table 3.1). When 

grown in MOPS-L the binding capacity of EGD-e for [
59

Fe]-Hn was 130 pMol/10
9
cells 

and the Kd of the binding interaction was 2.4 nM. Complete deletion of the hup operon 

did not eliminate Hn adsorption, but decreased binding capacity by ~20%, to 105 

pMol/10
9
cells.This result suggested the presence of secondary Hn/Hb uptake system(s), 

and [
59

Fe]-Hn uptake assay confirmed it. For EGD-e the Vmax of [
59

Fe]-Hn uptake was 

23 pMol/10
9
 cells, and its overall uptake KM was ~1 nM (Fig. 5.3; Table 3.1). As in 

[
59

Fe]-Hn binding assay, deletion of the hup operon did not eliminate [
59

Fe]-Hn uptake. 

Residual Hn uptake remained when the Hup system was destroyed, but Vmax decreased 

to 7.5 pMol/10
9
cells/min, 27% of the wild type rate. Nevertheless, the overall kinetic and 

thermodynamic properties of the residual system were similar to those of the wild-type: 

Vmax was lower, but KM was the same (~1 nM). Thus, Hup is not the only Hn uptake 

system in L. monocytogenes. Subtraction of the residual accumulation in Δhup from that 

of the wild-type gave an estimate of the Hup-dependent uptake rate: Vmax was 15.5 

pMol/10
9 
cells/min. 
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Figure 5.3 [
59

Fe]-Hn binding and uptake by EGD-e and its derivatives 

In panels A-C, wild type strain EGD-e (●) or its derivatives carrying the individual 

mutations Δhup (□), ΔsrtA (   ), Δlmo2185 (∆), ΔsrtB (   ) and ΔsrtAB (◊) were grown in 

BHI, subcultured twice in MOPS-L, and tested for their ability to bind or uptake 

(Materials & Methods). [
59

Fe]-Hn binding (A) and uptake (B) assays of L. 

monocytogenes revealed impaired Hn acquisition by Δhup, ΔsrtB, and Δlmo2185 at low 

concentrations of the iron porphyrin, but no obvious effect of Δlmo2185 at Hn 

concentrations ≥ 50 nM (C).  
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Table 5.1 Binding and transport properties of EGD-e and its mutant derivatives 

Strain  Binding  Transport  

       Kd  

      (nM)  

Capacity 

(pMol/10
9
 cells) 

    KM 

   (nM)  

         Vmax  

(pMol/10
9
 cells/min) 

EGD-e  2.4±0.47  129.5±5.6 1.2±0.2  22.2±0.9 

∆hup  2.5±0.45 105±4.2 1.1±0.2 7.5±0.3  

∆srtA  2.3±0.16 129±1.9 1.4±0.2 23.1±0.6 

∆srtB  9.9±1.3 18.7±0.9     NS NS 

∆srtAB  5.1±3 9±1.5     NS NS 

∆lmo2185 11.4±2.6 30.1±2.9     NS  NS  

 

NS: non-saturation uptake process 
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5.3.3 Sortase B and Lmo2185 in Hn binding and uptake 

The high specific activity of [
59

Fe]-Hn and the successful development of [
59

Fe]-Hn 

uptake protocol allowed further study of sortase-dependent proteins in Hn acquisition. 

The product of lmo2185 (formerly known as SvpA) is secreted into the extracellular 

environment, but a portion remains anchored to peptidoglycan by sortase B (Newton et 

al., 2005). Hn associates with Lmo2185 (Newton et al, 2005), so we determined the 

effect of the Δlmo2185 and ΔsrtB mutations on utilization of Hn. Their impact was 

unambiguous in quantitative binding and uptake assays (Figure 5.3; Table 3.1). 

Δlmo2185 and ΔsrtB reduced the Hn binding capacity to levels that were about 20% of 

those seen in EGD-e. At Hn concentrations ≤20 nM, both Δlmo2185 and ΔsrtB displayed 

no obvious uptake of Hn. However, at Hn concentrations ≥ 50 nM, no obvious defect in 

[
59

Fe]-Hn uptake was observed for Δlmo2185 (Figure 5.3 C). In the same tests ΔsrtA did 

not affect [
59

Fe]-Hn binding Kd nor capacity, nor its transport KM nor Vmax. The double 

mutant ΔsrtAB was indistinguishable from ΔsrtB alone (Figure 5.3; Table 3). Thus, at low 

concentrations Hn uptake in L. monocytogenes was srtA-independent, but srtB-

dependent. At higher concentrations (≥ 50 nM) Hn uptake is srtB-independent.  
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5.4 Expression and localization of HupD in Listeria monocytogenes 
 

I cloned HupD into pET28a, overexpressed it in Escherichia coli strain BL21, and 

purified it by Ni
++

-NTA chromatography (Materials and Methods). Mice were 

immunized with purified HupD and anti-HupD antibody was generated (Materials and 

Methods). 

I then performed Western immunoblots with anti-HupD antibody to evaluate HupD 

expression under different media conditions (Materials and Methods). The media used in 

this study included BHI broth, BHI broth plus 1 mM 2,2-bipyridyl, KRM and MOPS-L. 

Comparing to its expression in BHI broth, HupD was not overexpressed when EGD-e 

was grown in either KRM or MOPS (Figure 5.4 A). One slight difference observed is that 

when 1 mM 2,2-bipyridyl was added to BHI broth, the expression of HupD in cytoplasm 

doubled (Figure 5.4 A). This result also suggested that HupD was very likely localized in 

the cell envelope of L. monocytogenes. The appearance of HupD in the cytoplasmic 

extract of EGD-e was very likely due to the fact that proteins are synthesized in the 

cytoplasm.  

I also further confirmed deletion of hupD and hup operon by Western immunoblot 

(Figure 5.4 B). In agreement with the result of Figure 5.4 A, this result also showed that 

addition of 2,2-bipyridyl to BHI broth promoted HupD expreesion. Again, most of the 

protein HupD was found in the cell envelope extract. As expected, deletion of hupD or 

the hup operon eliminated HupD expression from both mutant strains.  
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Figure 5.4 Expression and localization of HupD in L. monocytogenes 

 

A.Cytoplasmic extracts (lanes 1-4) or cell envelope extracts (lanes 5-8) from EGD-e 

grown in BHI broth (lanes 1 and 5), BHI broth plus 2,2-bipyridyl (lanes 2 and 6), MOPS-

L (lanes 3 and 7) or KRM (lanes 4 and 8) were boiled, loaded to SDS-PAGE (Materials 
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and Methods). HupD expression was checked by Western immunoblot with anti-HupD 

antibody (Materials and Methods). 

B.Cells were grown either in BHI broth or BHI broth plus 2,2-bipyridyl, as indicated by 

the picture; cytoplasmic extracts or cell envelope extracts were prepared and subjected to 

Western immunoblot in the same way as A; lanes 1-3 and lanes 7-9 were cytoplasmic 

extracts; lanes 4-6 and lanes 10-12 were cell envelope extracts; lane 13 was purified 

HupD; materials in lane 1,4,7,10 were from ∆hup; materials in lanes 2,5,8,11 were from 

∆hupD; materials in lanes 3,6,9,12 were from EGD-e. 
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           Chapter 6 Heme export by Listeria monocytogenes 

 

6.1 Potential function of lmo0641 

 

According to its annotation, lmo0641 encodes a protein similar to heavy metal-

transporting ATPase (http://genolist.pasteur.fr/ListiList/). A research group led by Dr. 

Cormac Gahan at University College Cork in Ireland was interested in the function of 

lmo0641. They found a “Fur box” preceeding the gene lmo0641. So they suspected that 

Lmo0641 may be involved in iron transport. They made precise, clear deletion of 

lmo0641 (∆lmo0641) using site-directed chromosomal deletion approach (Materials and 

Methods). They also complemented the deletion (∆lmo0641/comp) with the vector pPL2 

(Materials and Methods). However, after a long time working on this project they still 

could not identify the function of Lmo0641. So they turned to us for help and I started to 

work on this project.  

 

6.2 Nutrition tests 

 

I did nutrition tests with the strains they provided to search potential defects in iron 

transport (Figure 6.1). Comparing to the wild type EGD-e, the mutant ∆lmo0641 

displayed no defect in the utilization of all iron complexes I tested, including Fc, FcA, 

FxB, Hn and Hb. However, we noticed that the halos from utilization of Hn and Hb were 

brighter in the complemented mutant than those in EGD-e. Thus we suspected that 

lmo0641 may encode a secondary Hn/Hb uptake system in EGD-e. To test this 

http://genolist.pasteur.fr/ListiList/
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hypothesis, I went ahead and made the double mutant ∆lmo0641/∆hup. However, 

nutrition tests with Hn/Hb displayed no difference between the single mutant ∆hup and 

the double mutant ∆lmo0641/∆hup (data not shown). 

 

 

Figure 6.1 Nutrition tests with EGD-e, ∆0641 and ∆0641/comp 

EGD-e and its derivatives were grown in BHI, subjected to iron deprivation at mid-log by 

addition of 1.5 mM bipyridyl, and plated on BHI agar containing 0.25 mM bipyridyl 

(Materials and Methods). Paper discs were placed on the agar, and 10 µL of various iron 

compounds were applied to the discs. ∆lmo0641 was indistinguishable from EGD-e, but 

its complemented strain showed brighter halo for Hn/Hb. 
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6.3 Growth assays 

 
 

I also tested the growth of those strains in liquid media, including BHI broth and MOPS-

L. Comparing to EGD-e and its complemented strain (∆lmo0641/comp), ∆lmo0641 

displayed minor defect in growth with BHI broth (Figure 6.2 D). When grown in the 

iron-deficient medium MOPS-L, the mutant behaved differently from EGD-e: while 

addition of all tested concentrations of Hn (0.2 uM, 2 uM) or Hb (0.02 uM, 2 uM) to the 

medium MOPS-L stimulated the growth of EGD-e, growth of ∆lmo0641 was promoted 

in BHI broth supplemented with 0.2 uM Hn or 0.02 uM Hb but was severely inhibited 

when the medium was supplemented with 2 uM Hn/Hb (Figure 6.2). On the other hand, 

under all the conditions tested, ∆lmo0641/comp behaved almost exactly the same as 

EGD-e did (Figure 6.2). This indicated defect of ∆lmo0641 in its detoxification of Hn.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

113 

 

 
 

 

Figure 6.2 Growth of EGD-e and its derivatives in BHI broth and MOPS-L 

 

Cells were grown in BHI overnight, subcultured (1%) into MOPS-L and grown to 

OD600=0.9-1, then subcultured (1%) again into MOPS-L in the presence Hn or Hb at the 

indicated concentrations. Growth was monitored by optical density at 600 nm. 
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6.4 Hn uptake 

 
 

∆lmo0641 was poisoned when grown in MOPS-L supplemented with 2 uM Hn or Hb. 

This could be due to defects in Hn degradation, Hn storage or active efflux of Hn. Since 

Lmo0641 has been annotated as a likely heavy metal-transporting ATPase, we suspected 

that lmo0641 may encode a heme exporter. To test this hypothesis, I synthesized [
59

Fe]-

Hn and performed [
59

Fe]-Hn uptake assay (Materials and Methods). As expected, the 

mutant ∆lmo0641 retained more [
59

Fe]-Hn than EGD-e did (Figure 6.3). This 1.6 fold 

increase in the Vmax of [
59

Fe]-Hn uptake for ∆lmo0641 is very likely resulting from the 

mutant‟s defect to actively pump out Hn.  The rationale for this is that if Lmo0641 is a 

heme oxygenase or heme storage protein, there should be either no difference in the 

Vmax of [
59

Fe]-Hn uptake between EGD-e and ∆lmo0641 (given the fact that the [
59

Fe]-

Hn uptake assay was performed in a way that only allowed 1 minute uptake to occur 

(Materials and Methods) ) or a smaller Vmax for the mutant ∆lmo0641 ( if the mutant 

senses the toxicity of [
59

Fe]-Hn and actively pumps it out of the cell). 

As a control, I also synthesized [
59

Fe]-citrate and performed its uptake experiments 

(Materials and Methods). As shown in Figure 6.4, the mutant Δ0641 was 

indistinguishable from EGD-e: the Vmax of [
59

Fe]-citrate uptake for EGD-e was 51.4 

pmol/10
9
 cells/min and 55 pmol/10

9
 cells/min for Δ0641; the KM was 44.2 nM for EGD-e 

and 48.4 nM for Δ0641.  
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Figure 6.3 [
59

Fe]-Hn uptake by EGD-e and ∆lmo0641  

Wild type strain EGD-e or the mutant Δ0641 were grown in BHI, subcultured twice in 

MOPS-L, and tested for their uptake [
59

Fe]-Hn (Materials & Methods).  The normalized 

data were from three separate experiments. The Vmaxs of the three experiments for 

EGD-e were 15.4, 21.2, 19.9 pmol/10
9
 cells/min and 27, 34.9, 29.9 pmol/10

9
 cells/min 

for Δ0641. The average of the 3 Vmaxs for EGD-e was 18.8 p mol/10
9
 cells/min and 30.6 

p mol/10
9
 cells/min for Δ0641. 
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Figure 6.4 [
59

Fe]-citrate uptake by EGD-e and ∆lmo0641  

Wild type strain EGD-e or the mutant Δ0641 were grown in BHI, subcultured twice in 

MOPS-L, and tested for their uptake of [
59

Fe]-citrate (Materials & Methods).  The data 

presented here were from the average of three separate experiments. The mutant Δ0641 

was indistinguishable from EGD-e. 
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                    Chapter 7 Discussion 

 

The comparative biochemistry of iron uptake through the Gram-positive and Gram-

negative cell envelopes is a question of interest. Toward that end the experiments 

quantitatively characterized, for the first time, the envelope Hn/Hb acquisition systems of 

L. monocytogenes. 

In the wild type strain the uptake process was similar to ferric siderophore transport. The 

steady state Hn uptake rate was nearly identical to that of the listerial CM Fc transporter 

(FhuDGC: Vmax=24 pMol/10
9
 cells/min; Jin et al., 2005), which is half the rate of 

enteric bacterial Fc transport (E. coli FhuA: Vmax=45 pMol/10
9
 cells/min; Newton et al., 

2010). The main mechanistic distinction of listerial iron acquisition was lower affinity. 

For Hn or Fc transport, Kd≈KM≈1 nM, 10-fold less than the affinity of ferric siderophore 

transport systems of E. coli [for ferric enterobactin or Fc, Kd≈KM≈0.1 nM (Newton et al., 

1999; Scott et al., 2001; Annamalai et al., 2004)]. The latter mechanisms begin with tight 

binding of metal complexes to the external surfaces of the OM proteins that transport 

them. My findings and other data (Lei et al., 2002, 2003; Mazmanian et al., 2002, 2003) 

demonstrate that despite their lack of an OM, Gram-positive cells also employ high-

affinity cell surface binding sites for adsorption of iron-containing compounds. The role 

of Lmo2185 in iron transport was previously in doubt, but the data reported here show 

that the sortase B-anchored protein adsorbs Hn during the uptake reaction. Therefore, we 

propose renaming Lmo2185 as Hbp (Hn/Hb binding protein). Nevertheless, the uptake 

process typified by Hbp is not all-inclusive in Gram-positive bacteria, as TonB-dependent 
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OM iron (III) transport systems are universal in Gram-negative bacteria. In L. 

monocytogenes ferric siderophores directly adsorb to their CM ABC-transporters (Jin et 

al., 2005), with about the same affinity as Hn binding to Hbp. 

In Gram-positive bacteria the PG matrix forms the biochemical interface with the 

environment. In S. aureus, B. anthracis, and S. pyogenes sortase-anchored proteins bind 

Hb in this framework, presumably increasing the efficiency of its capture and subsequent 

extraction of Hn for delivery to CM transporters. Sortases A and B assemble products of 

the isd locus in the staphylococcal cell envelope (Maresso et al., 2006, Mazmanian et al., 

2003). IsdB binds Hb, extracts Hn and transfers it to IsdC, which subsequently passes it 

to the CM ABC transporter IsdDEF (Mazmanian et al., 2003; Torres et al, 2006; Reniere 

et al., 2007). The LPXTG sorting signals of IsdA and IsdB make their attachment to PG 

sortase A-dependent, whereas the NPQTN motif of IsdC dictates its processing by sortase 

B. According to this scheme the Hn/Hb uptake system of S. aureus requires participation 

of both classes of sortase-anchored proteins. In the srtB locus of L. monocytogenes, 

lmo2186 and hbp encode proteins with the NPQTN SrtB sorting motif, that have 

sequence homology to IsdC (Bierne et al, 2004). Hbp is overproduced in iron-deficient 

environments and largely excreted, but a fraction becomes anchored to PG (Newton et 

al., 2005). Both Δhbp and ΔsrtB reduced Hn/Hb utilization in nutrition tests. Quantitative 

assay further determined that at lower concentrations ΔsrtB and Δhbp reduced the [
59

Fe]-

Hn binding capacity and uptake rate more than Δhup. The Δhbp mutant decreased 

capacity from 130 pMol/10
9
 cells to 30 pMol/10

9
 cells, while Δhup only dropped it to 105 

pMol/10
9
 cells. Thus, at low external concentrations Hbp is the primary Hn adsorption 

site, responsible for about 80% of Hn binding to L. monocytogenes. Direct Hn binding to 
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Hup accounts for the remaining 20%. Secondly, Δhbp caused a 5-fold reduction in Hn 

binding affinity (Kd increased from 2 nM to ~10 nM), whereas (likely because of its 

lower abundance) Δhup caused no observable change in affinity. So besides being the 

predominant cell envelope Hn binding constituent, Hbp is also the highest affinity 

component. Hup is 4-fold less abundant and manifests 5-fold lower affinity for Hn. The 

estimation of the amounts of Hbp and Hup from [
59

Fe]-Hn binding capacities agreed with 

immunoblots (Figure 5.4; Newton et al, 2005) and proteomics data (Ledala et al., 2010). 

The [
59

Fe]-Hn uptake results also corroborated our main conclusions from binding 

studies: when the external concentration of Hn was less than 20 nM, both ΔsrtB and Δhbp 

resulted in a non-saturable uptake process and only showed negligible Hn uptake. These 

data concur with postulates about the SrtB-dependence of Hn/Hb acquisition in S. aureus 

(Maresso et al., 2006, Mazmanian et al., 2003). Additionally, the ΔsrtA mutation did not 

influence listerial Hn/Hb uptake at any concentration in either nutrition tests or [
59

Fe]-Hn 

binding and transport measurements, demonstrating that sortase A-anchored proteins play 

no role in Hn acquisition.  

The fact that deletion of the hup operon or its individual membrane permease 

components decreased but did not eliminate Hn uptake implied the existence of 

secondary CM Hn uptake systems in L. monocytogenes. [
59

Fe]-Hn uptake assays showed 

residual uptake, for which Vmax was 7 pMol/10
9
 cells/min and KM≈1 nM. Subtraction of 

the uptake rates of Δhup from those of EGD-e allowed estimation of the kinetic and 

thermodynamic parameters of the hup system itself: Vmax = 16 pMol/10
9
 cells/min, and 

KM≈1 nM. Therefore, the Hup permease is the primary CM Hn transporter, in the sense 

that it‟s steady-state uptake rate is double that of the other system. A secondary CM 
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transporter exists, whose overall affinity for Hn is similar to that of HupDGC. A second 

carrier also exists in S. aureus, where both Isd and Hts Hn/Hb ABC transporters are 

thought to function (Skaar et al., 2004). In this sense it‟s relevant that HupD was 

monospecific for Hn, while FhuD was promiscuous for iron complexes, including Hn, 

raising the possibility that the CM ferric hydroxamate transporter (FhuBCDG) provides 

an auxiliary pathway for Hn uptake.  

HupD displayed high affinity for Hn: it was purified with bound Hn. Fluorescence 

titration assay further quantized the Hn-HupD interaction: the Kd was 40 nM. This 

affinity is very close to that of S. aureus FhuD1 and FhuD2 for ferrichrome (Kd=50 nM 

for FhuD1 and Kd=20 nM for FhuD2; Sebulsky et al, 2003, 2004) but significantly higher 

than that of E.coli periplasmic binding protein FhuD for ferrichrome (Kd=1 uM; 

Rohrbach et al, 1995). The similarity and difference in the affinity of these binding 

proteins for their cognate ligands suggest that Gram-positive bacteria and Gram-negative 

bacteria may employ different mechanisms of nutrients uptake, given the fundamentally 

different architecture of their cell envelope. In general, periplasmic binding proteins of 

Gram-negative bacteria do not have to evolve high affinity for their cognate ligands 

because they don‟t directly serve as surface receptors. On the other hand, the surface 

receptors anchored on the OM generally have high affinity for their substrates (FepA: 

Kd=0.1 nM; Newton et al,1999; FhuA: Kd=50 nM; Locher and Rosenbush, 1997). In the 

periplasm, the substrates are generally enriched. However, Gram-positive bacteria don‟t 

have a periplasm and their CM-anchored proteins may directly serve as surface receptors 

(Sebulsky et al, 2001, 2003, 2004). Therefore, it may be necessary for Gram-positive 

bacteria to have high affinity substrate binding proteins anchored on the CM to serve as 
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surface receptors. Due to high toxicity of Hn, in animal body fluids free Hn concentration 

has always been maintained at a low level (Wandersman and Delepelaire, 2004; Tong 

and Guo, 2009). This entails the high affinity of listerial HupD for Hn, if it serves as a 

surface receptor. Interestingly, both FhuD1 and FhuD2 are covalently attached to the CM 

of S.aureus (Sebulsky et al, 2001, 2003, 2004) through the Cys residue at the very end of 

their N-termini, which is likely also the case for HupD of L. monocytogenes. Taken 

together, the high affinity of these demonstrated or potentially CM-anchored binding 

proteins for their cognate ligands suggests that they may directly serve as surface 

receptors. In supporting this hypothesis, my binding and uptake data showed that when 

external Hn concentration is above 50 nM, ∆lmo2185 imported Hn as efficiently as the 

wild type EGD-e (Figure 5.3). Additionally, previous reports demonstrated that in L. 

monocytogenes and S.aureus ferrichrome directly adsorbed to its CM ABC-transporters 

(Jin et al., 2005; Sebulsky et al, 2003, 2004).   

While Hn is an indispensable cofactor for many enzymes, it is also highly toxic. 

Intracellular Hn concentration is thus tightly regulated. As an intracellular pathogen, L. 

monocytogenes may be exposed to high concentrations of heme iron sources, for 

example, upon erythrocyte lysis at the infection site. This could lead to rapid 

accumulation of intracellular Hn, necessitating its detoxification. While exposure of S. 

aureus ∆hrtA (or ∆hrtB) to 10 uM Hn in vitro severely inhibited its growth (Torres et al, 

2007), the growth of EGD-e ∆0641 was greatly inhibited when it was exposed to 2 uM 

Hn/Hb, suggesting its relatively higher sensitivity to Hn toxicity. Under the same 

conditions, ∆0641 accumulated 1.6 fold higher amount of [
59

Fe]-Hn (Figure 6.3) than that 

accumulated by the wild type EGD-e, suggesting deficiency in Hn export by ∆0641. The 
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identification of a potential Hn export in L. monocytogenes together with other findings 

in this study, including the demonstration of the role of the srtB locus in Hn/Hb uptake, 

and the primary cytoplasmic membrane Hn transport system (Hup system), suggested a 

conserved Hn utilization mechanism between L. monocytogenes and S.aureus. 
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                     Chapter 8 Binding of peptidoglycan to TonB 

 

 

8.1 Sequence relationship between TonB and YcfS 

 

Dr. Klebba made analysis of the sequence of the TonB C terminus and found homology 

to E. coli ycfS, which encodes a 320-amino-acid, proline-rich (8.4%) protein with a 

calculated mass of 34.6 kDa. YcfS is a member of a family of putative periplasmic 

proteins (Bateman and Bycroft, 2000) of unknown function that contains a signal peptide 

(residues 1 to 23) followed by a hydrophobic, potential IM anchor, a lysin (LysM) motif 

(residues 45 to 91) that confers affinity for PG (Bateman and Bycroft, 2000; Steen et al, 

2003), and a central proline-rich sequence. YcfS and its E. coli paralogs YnhG, YbiS, and 

ErfK form a family of cell envelope proteins. Each one, composed of approximately 320 

amino acids, has an N-terminal hydrophobic region (putative transmembrane helix), a 

PG-binding domain (LysM) in the first third of primary structure, and a high percentage 

of proline residues (8 to 10%, roughly twice that of most proteins and half as much as 

TonB).These attributes bear similarities to those of TonB, another proline-rich (16.7%) 

periplasmic protein that contains a hydrophobic N-terminal sequence, postulated to act as 

an IM anchor. CLUSTALW comparison of the E. coli LysM motif and the primary 

structure of TonB mapped a homologous region in the C terminus of TonB (residues 175 

to 231; Figure 8.1). Although the sequences of the 48-residue LysM motif and the C-

terminal 69 amino acids of TonB are not highly conserved (19% identity, 77% 

homology), low overall identity is typical among LysM-containing, PG-binding cell 

envelope proteins (Parsons et al, 2006; Steen et al, 2003). In this alignment, it was 

noteworthy that D11 in LysM, at the center of the PG-binding surface (Bateman and 
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Bycroft, 2000), corresponded with D189, on the exterior surface of the TonB C terminus. 

The structural homology between the LysM motif and regions of the TonB C terminus 

raised the possibility of an affiliation between TonB and the murein sacculus.  

 

8.2 Peptidoglycan precipitated MalE-TonB69C  

 

To test this prediction, we purified sacculi from E. coli by SDS extraction (Kaserer et al, 

2008) and evaluated their ability to adsorb MalE-TonB69C. The purified PG fraction was 

free of cell envelope proteins, including the major proteins and iron-regulated LGP, as 

indicated by SDS-PAGE (Figure 8.2) and by its transparency at 280 nm (data not shown). 

The purified sacculi precipitated MalE-TonB69C from solution, but not MalE nor FepB 

(Figure 8.2). The binding reaction manifested saturation behavior: increasing amounts of 

PG bound and precipitated increasing amounts of MalE-TonB69C to a plateau value. The 

control proteins were themselves biologically active: maltose-binding protein was 

purified by amylase affinity columns, and chromatographically purified FepB (Sprencel 

et al, 2000) bound FeEnt (data not shown). Therefore, the affinity of TonB for PG was 

not a general characteristic of periplasmic proteins, but a specific attribute of TonB itself. 
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Figure 8.1 CLUSTALW analysis of YcfS homologs (adapted from: Kaserer et al, 2008) 

 CLUSTALW was used to align the sequence of the LysM motif from the E. coli 

membrane-bound lytic murein transglycosylase D (MltD), which is structurally solved as 

an αβ domain (Bateman and Bycroft, 2000), to the E. coli proteins YcfS, YbiS, YnhG, 

ErfK, and to the TonB C terminus. The figure shows the alignment of the relevant 

regions of the four proteins, and the consensus sequence (Cons) from the analysis. 

Hydrophilic residues are colored green, acidic residues are blue, basic residues are 

magenta, and hydrophobic residues are red. The consensus is also aligned to the sequence 

of the crystallized LysM domain of MltD. LysM alignment to TonB identified a sequence 

relationship at the C terminus of TonB. Asp 11 in LysM (blue), which denotes the PG-

binding surface in its structure (Bateman and Bycroft, 2000), aligns with TonB residue 

Asp 189.  
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Figure 8.2 Affinity of the TonB C terminus for PG  

(A to F) Purified E coli PG was suspended in distilled water at 1.7 mg/ml. Increasing 

amounts of the PG solution were mixed with 30 µg of purified proteins MalETonB69C, 

MalE, and FepB in a final volume of 100 µL, incubated for 30 min at room temperature, 

and subjected to ultracentrifugation (100,000  g, 45 min). The pellets (A to C) and 
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supernatants (D to F) were resolved by SDS-PAGE, and the gels were stained with 

Coomassie blue. The positions of molecular size markers (m) (in kilodaltons), the 

BenchMark prestained protein ladder (Invitrogen), are shown to the left of the gels. 

Panels A and D are composite pictures from two separate experiments; the amount of 

added PG (in micrograms) is denoted beneath each lane. (G) SDS-PAGE of purified PG. 

Aliquots of the solution of purified sacculi were subjected to SDS-PAGE, and the gel was 

stained with Coomassie blue. The positions of molecular weight markers (m) (in 

kilodaltons), Precision Plus protein standards (Bio-Rad), are shown to the left of the gel. 

(H) Quantification of MalE-TonB69C precipitation in pellets and depletion from 

supernatants by PG. SDS-polyacrylamide gels were photographed, and the images were 

quantified using ImageQuant (Molecular Dynamics). Filled symbols are derived from 

analysis of pellets, while open symbols are derived from analysis of supernatants: MalE-

TonB69C (circles) was precipitated, while MalE (inverted triangles) and FepB (triangles) 

were not precipitated by PG. The quantities of protein and PG (in micrograms) are shown 

on the y and x axes. The graph depicts the means standard errors (error bars) from two 

experiments. 
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