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The heavens declare the glory of God; 
the skies proclaim the work of His hands. 

 
Day after day they pour forth speech; 

night after night they display knowledge. 
 

There is no speech or language 
where their voice is not heard. 

 
- Psalms 19:1-3, NIV
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ABSTRACT 

 

          Though assimilation of synthetically generated surface flux “observations” into 

numerical forecast models has been attempted, the topic of observed flux data 

assimilation over land has received little attention.  This may be partially due to the lack 

of available flux observations in most areas.  This study examines model analyses and 

observed data from the summer of 2004.  Sensible heat flux estimates are calculated from 

Oklahoma Mesonet observations of temperature and wind using an iterative profile 

method reliant on boundary layer similarity theory.  These sensible heat flux estimates 

are assimilated into the MM5 model, coupled with the Noah LSM, using an ensemble 

Kalman filter (EnKF) data assimilation scheme.  A forecast is run over a 48 h period, 

with EnKF updates to the model grids occurring every hour.  A control forecast with no 

assimilation is also run over the same 48 h period, as well as a forecast including the 

assimilation of standard surface data from the Oklahoma Mesonet.  Results from these 

three forecasts are compared and contrasted. 

     It is shown that the EnKF scheme correctly updates the model low level temperature 

and moisture fields according to the values of the various terms in the governing 

equations.  However, in the case of sensible heat flux data assimilation, model fields are 

sometimes updated in a way that creates analyses further from observed data rather than 

closer.  Several factors are noted that make assimilation of sensible heat flux a challenge.  

Large differences between Mesonet estimates of sensible heat flux and horizontally 

interpolated values from the model can result in changes to the model forecast fields that 

are far too great.  When combined with covariances generated by the model that are not 



ix 
 

physically based, the problem is amplified.  Consistency checks within the EnKF scheme 

show that the sensible heat flux observation error selected at the beginning of the study 

may be far too low, and that the ensemble spread is likely not nearly large enough to 

provide a reasonable estimate of the model error.  These issues will need to be addressed 

before sensible heat flux assimilation can be expected to consistently perform well.
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Chapter 1 

Introduction 

 

     The importance to human activities of the state of the atmosphere and its effects 

on the land surface below cannot be overestimated.  Spatial and temporal variations in 

temperature, atmospheric moisture content, wind and precipitation influence both 

business and recreational enterprises.  Accurate forecasts of near-surface atmospheric 

variables such as temperature and wind direction/speed do more than just inform the 

general public of the best days for having a picnic outdoors.  They also can mitigate 

large economic losses in various industries.  For example, when the temperature is 

near a critical value, even a small forecast error could result in severe crop losses or 

unnecessary time and expense being used to protect crops in the case of orchards 

(Katz et al. 1982, Stewart et al. 1984).  Errors in forecast wind direction/speed impact 

both aviation and electric power generation by wind turbines.  Although many of the 

impacts resulting from variations in atmospheric moisture content and precipitation 

are longer-term, these variables have important short-term impacts as well.  Taken 

together, accurate forecasts of near-surface variables also are crucial to the ability to 

correctly forecast episodes of destructive thunderstorms. 

     Numerical weather prediction (NWP) models simulate the evolution of the 

atmospheric state by starting with a set of initial conditions and numerically solving 
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the governing equations subject to boundary conditions.  Due to the approximations 

involved and to uncertainty in the initial conditions, forecasts produced by such 

models tend to diverge from reality with time.  Solutions to systems of non-linear 

differential equations, such as those that govern atmospheric evolution, can be 

extremely sensitive to small differences in initial conditions (Lorenz 1963).  In order 

to bring the trajectory of the model back toward the “truth” periodically, assimilation 

schemes have been devised which use observations of atmospheric, ocean and land 

surface variables to adjust the model state according to the estimated errors in the 

observations and in the model forecasts.  By improving the initial analyzed state of 

the atmosphere and the systems to which the atmosphere is coupled, such as the 

oceans and the land surface, the subsequent forecasts also should improve. 

     Surface observations are among the data available for assimilation into numerical 

models.  These include observations of both the near-surface atmosphere and 

characteristics of the land surface itself.  Assimilation of these observations can 

improve analyses of the low-level atmosphere and land surface.  Standard 

atmospheric surface observations include observations of variables such as 2 m air 

temperature, 10 m wind speed, 2 m dew point/mixing ratio/specific humidity and 

station air pressure.  Observations of land surface characteristics are far less common 

and include soil temperature and soil moisture at various depths, soil type and 

vegetation fraction.  Special surface observations may include components of the 

surface energy balance such as received shortwave and longwave radiation, reflected 

shortwave radiation, emitted longwave radiation and surface heat fluxes. 
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     Improvements in both analyses and forecasts have been realized by assimilating 

near surface atmospheric and land observations into NWP models (Crawford et al. 

2001; Kurkowski et al. 2003).  It would stand to reason that assimilation of additional 

surface observations not currently included in assimilation cycles could improve 

analyses and forecasts even further.  The Oklahoma Mesonet (Brock et al. 1995; 

McPherson et al. 2007) provides several observation types that are not collected by 

the standard national surface observing network operated by the National Weather 

Service (NWS).  These types include soil temperature and moisture observations from 

various depths, atmospheric radiation measurements, temperature and wind 

observations from a second level and surface heat flux measurements. 

     Soil temperature, and even more often soil moisture, observations have been 

assimilated into both simple and complex models of land surface processes for many 

years (Walker and Houser 2001; Crow and Wood 2003; Zhang and Fredericksen 

2003).  However, surface heat flux observations have not been assimilated directly 

into a coupled land-atmosphere model.  Also, aside from small networks of surface 

stations and field programs, most surface flux observations have been estimated via 

remote sensing of surface temperatures and reflectances (Xinmei et al. 1993; 

McNider et al. 1994; Friedl 1996; Kustas et al. 1999).  Despite the fact that satellite 

data have become available at higher and higher resolution, flux estimates are still 

often better using area-averaged data as the high-resolution data contain too many 

small-scale observation errors (Friedl 1996).  In contrast, the Oklahoma Mesonet 

estimates sensible heat fluxes using a gradient method (Brotzge and Crawford 2000) 

at around 100 sites.  Ground heat flux is estimated using two conducting plates 
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installed below ground at the same sites.  At approximately 10 sites, extra 

instrumentation is added allowing approximate closure of the surface energy budget.  

The closure is approximate because latent heat flux is estimated as a residual. 

     Estimates of surface fluxes obtained from in situ measurements at Oklahoma 

Mesonet stations could add valuable information to land surface and low-level 

atmospheric analyses which has not been utilized thus far.  This information could 

greatly improve the NWP model planetary boundary layer (PBL) initial state, which 

would improve modeling of atmospheric processes near the land surface.  One 

method by which these data may be assimilated into land surface models (LSMs) and 

NWP models is the ensemble Kalman filter (EnKF) (Evensen 1994).  The EnKF 

approach has many advantages over other data assimilation methods, including the 

ability to estimate the background error covariance matrix from the ensemble spread 

and easy parallel implementation on a supercomputer.  Estimation of the background 

error covariance matrix makes the EnKF less costly than the extended Kalman filter.  

The ensemble created for use by the EnKF can be used for more than just improving 

data assimilation; the ensemble mean is, on average, a more accurate forecast than 

any of the individual members (Leith 1974). 

     Using the ensemble Kalman filter to assimilate Oklahoma Mesonet observations 

offers a novel way to test the value of new observations for improving numerical 

model initial conditions and forecasts of near-surface variables.  In particular, this 

project will assess the assimilation of estimated sensible heat fluxes, in addition to 

standard surface observations. 
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Chapter 2 

Review of related work 

 

2.1     Ensemble forecasting 

 

     Deterministic forecasts of the evolution of the atmosphere over time inform the 

user of just one possible solution to the forecast problem.  Numerous characteristics 

of the atmosphere suggest that a stochastic approach to numerical weather prediction 

(NWP) is more appropriate than a deterministic one (Epstein 1969).  First, the initial 

state of the atmosphere can never be known exactly, even if observations are perfect.  

Whether NWP models represent the state of the atmosphere by a finite grid or using a 

superposition of waves, gaps exist both spatially and temporally in which the state of 

the atmosphere is unknown.  The chaotic nature of the atmosphere (Lorenz 1963) 

means that an infinitesimal change in the initial conditions used to solve the 

governing equations may result in an entirely different solution.  Therefore, accurate 

knowledge regarding the error distribution in the specified initial conditions is helpful 

for determining how much confidence may be placed in the initial analysis.  The 

model itself can be the source of further errors in the forecast, as no NWP model is 

perfect.  Sub-grid scale parameterizations of physical processes, as well as many 
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model parameters (constants), are approximations to reality and can cause the model 

to diverge from the true atmospheric state. 

     The idea of making stochastic weather forecasts has been around for decades.  

Epstein (1969) explored various methods of calculating uncertainty estimates as part 

of weather forecasts using the minimum hydrodynamic equations of Lorenz (1960).  

Since the prospect of integrating the continuity equation of probability density in full 

was not feasible, Epstein neglected third and higher moments to form a closed system 

of equations for the first and second moments.  He measured the performance of this 

system against the performance of a group of forecasts made from a Monte Carlo 

distribution of analyses with a specified mean and variance.  The validity of 

neglecting third moments as a closure assumption was investigated by Fleming 

(1971), who found that when third moments are important, neglecting them can 

eventually cause the estimate of the mean to drift away from the truth.  An analysis 

method was developed using uncertainties modeled with first and second moments 

(Epstein and Pitcher 1972), and this method was eventually used to analyze real data 

(Pitcher 1977).  Unfortunately, the stochastic dynamic forecast technique of directly 

solving an approximation to the continuity equation of probability was too 

computationally expensive for all but the very smallest model state vectors.  Another 

approach was needed if stochastic forecasting was to become feasible in an 

operational context. 

     The focus changed from solving the continuity equation of probability density to 

forming forecast ensembles by making Monte Carlo selections from initial conditions 

with a specified mean and variance and integrating these analyses forward with the 
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model equations.  This was the benchmark to which Epstein (1969) compared his 

stochastic dynamic forecasts.  Gleeson (1970) envisioned a group of parallel forecasts 

as being a cloud of points in a phase space with the number of dimensions of the 

model.  The density of the cloud of points at any given location and time was 

proportional to the probability of the atmospheric state being at that point in phase 

space.  Later, this idea was applied to a turbulence model, and the probability density 

function (PDF) of the forecast was approximated by the ensemble mean and the 

accompanying covariance matrix (Leith 1974).  Because the approximate PDF in 

such a system is defined by a mean and a variance, the PDF is assumed to be 

Gaussian.   

     Ensemble forecasts have many characteristics that make them an attractive 

alternative to deterministic or other stochastic forecasts.  For instance, ensemble 

forecasts provide information about the range of possible outcomes through an 

estimate of the forecast variance, but without the necessity of linearizations and 

closure assumptions that are inherent in solving stochastic dynamic equations.  The 

forecast PDF progresses forward in time according to the model equations, which are 

usually nonlinear.  Ensemble forecasts also do not use as much computer power as 

would be necessary to make stochastic dynamic forecasts for systems with large state 

vectors (Leith 1974). 

     The ensemble approach to forecasting offers improved skill relative to that of 

deterministic forecasts.  The ensemble mean forecast should have less error than the 

control (deterministic) forecast as long as the uncertainty in the initial analysis is 

properly represented (Epstein 1969; Leith 1974, Murphy 1988; Toth and Kalnay 
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1993).  Using ensembles of only two members each, the ensemble mean forecast of 

500 hPa streamfunction was shown to have less error than the control forecast, as 

long as the initial analysis errors were large enough (Houtekamer and Derome 1994).  

Many also relate the skill of the ensemble mean to the amount of spread among the 

ensemble members (Gleeson 1970; Murphy 1988; Houtekamer and Derome 1994; 

Buizza 1997; Hamill et al. 2000), but there is not always a straightforward 

relationship between these two elements of an ensemble forecast (Anderson 1996; 

Whitaker and Loughe 1998).  Additionally, Whitaker and Loughe (1998) found the 

ensemble spread to be most useful as a predictor of the skill of the mean when the 

spread was very small or very large, or in regions of large day-to-day variability of 

spread.   

      Though much of the testing of the ensemble technique has been conducted under 

the perfect model assumption (i.e., the model is an exact representation of physical 

processes), model error may also be accounted for in an ensemble (Houtekamer et al. 

1996; Houtekamer and Lefaivre 1997; Stensrud et al. 2000).  Zhu et al. (2002) 

discussed the benefits of the improved skill of ensemble forecasts from an economic 

viewpoint, performing cost-loss analyses on ensemble forecasts and finding their 

economic value to users to be much greater than that of deterministic forecasts.  

Others have also investigated the economic value of ensemble forecasts by varying 

ensemble size and creating user decision models (Richardson 2000; Palmer 2002). 

     Though much debate continues about the best way to construct perturbations to 

ensemble members, many assert that random perturbations do not result in a large 

enough ensemble spread when the number of ensemble members is limited (Toth and 
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Kalnay 1993; Houtekamer and Derome 1995; Buizza and Palmer 1995; Molteni et al. 

1996; Toth and Kalnay 1997).  One possible way to determine fast-growing 

perturbations to add to ensemble members is the so-called singular vector method 

(Buizza and Palmer 1995; Molteni et al. 1996; Palmer et al. 1998; Barkmeijer et al. 

1998).  In this method, perturbations are dynamically constrained by using a linear 

tangent and adjoint of the forecast model to find the fastest-growing perturbations 

over a specified time interval.  These perturbations are added to the model fields to 

form the ensemble members.  Another dynamically constrained method, which does 

not require the use of a linear tangent or adjoint model, is the breeding of growing 

modes (BGM) (Toth and Kalnay 1993; Tracton and Kalnay 1993; Toth and Kalnay 

1997).  The BGM technique involves adding an initial arbitrary perturbation to an 

analysis, integrating both the control and the perturbed analyses forward for a few 

hours, subtracting the control analysis from the perturbed analysis, then taking the 

result and scaling it back so that it has the same root-mean-square (rms) size as the 

initial arbitrary perturbation.  The rescaled difference is added back to the control as 

the new perturbation, and the process can be continued indefinitely.  Toth and Kalnay 

(1993) found that the growth rate of their BGM perturbations was not dependent on 

the initial perturbation after about three or four days.  By identifying the fastest-

growing perturbations in a model, both the singular vector and BGM methods aim to 

create ensembles which sample as much of the tails of the forecast PDF as possible. 

     Recent research indicates that Monte Carlo methods of generating perturbations 

may sometimes be preferable to dynamically constrained methods.  Hamill et al. 

(2000) discussed experiments for which the perturbed observation (PO) method, 
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where perturbed observations centered on the analysis PDF are added to first guess 

fields in parallel data assimilation cycles to initialize ensemble members for a 

forecast, performed better than either the BGM or singular vector methods despite the 

fact that the PO perturbations did not grow as fast.  The PO probabilistic forecasts 

were improved and the resultant spread-skill relationships were more meaningful.  

However, the experiments were run using a quasi-geostrophic model, and the PO 

method has yet to be proven operationally.  As an alternative, Hamill et al. (2000) 

suggested using different model configurations as in Stensrud et al. (1999), perturbing 

land surface variables, or adding stochastic forcing to the model equations.  The first 

two of these suggestions, along with the use of the BGM perturbation method, make 

up a relatively cost-effective way to generate ensemble members and make ensemble 

forecasts accounting for variability of initial conditions. 

     Ensemble forecasting techniques are currently being utilized for both short-range 

and small-scale forecasts.  A Short-Range Ensemble Forecasting (SREF) system was 

implemented operationally in May 2001 by the National Centers for Environmental 

Prediction (NCEP) (Du et al. 2006).  The SREF system is made up of ensemble 

members derived from varying atmospheric forecast models with different 

parameterization schemes, horizontal resolutions, and initial conditions.  Forecasts 

from the SREF system provide probabilistic guidance, which has been used with 

some success in the case of severe convective storms (Weiss et al. 2007; Guyer and 

Bright 2008). 

     Storm-scale ensembles have also been used in the deterministic prediction of 

thunderstorms (Kong et al. 2009; Xue et al. 2008).  During a NOAA Hazardous 
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Weather Testbed (HWT) Spring Experiment, Kong et al. (2009) produced a 

remarkably accurate 30 h forecast of composite reflectivity across the central and 

eastern continental United States with a multi-model, multi-parameterization scheme 

ensemble forecast system.  Because the ensemble mean tends to forecast too little 

precipitation, a technique known as probability matching was used to increase 

precipitation intensity while keeping the spatial distribution forecast by the ensemble 

mean.  Xue et al. (2008) examined two cases from an earlier HWT experiment to 

assess the forecast improvements resulting from the assimilation of radar data.  It was 

found that radar data assimilation had a positive effect on the forecast past 24 hours 

with weakly forced convection, but radar data had very little effect in strongly forced 

events. 

 

2.2 Ensemble Kalman filter scheme 

 

     In addition to the useful variance information ensembles provide along with their 

forecasts, the use of ensembles can also help to improve data assimilation.  Data 

assimilation systems are intended to solve the problem of finding the most likely state 

of the atmosphere given a background (first-guess) field and observations, both of 

which contain errors.  One data assimilation method that yields the optimal linear 

estimate of the initial conditions, as long as the first- and second-order statistics of the 

observations and background fields are correctly specified (Blanchet et al. 1997), is 

the Kalman filter (Kalman 1960).  The Kalman filter updates model fields according 

to the standard optimal interpolation (OI) analysis equation, 
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                                   (1) 

 

where xa is the analysis vector, xf is the background vector, Pf is the background error 

covariance matrix, HT is the linearized observation operator, R is the observation 

error covariance matrix, yo is the vector of observations, and H() denotes the full 

observation operator.  This notation follows that of Ide et al. (1997).  The background 

error covariance matrix within the Kalman filter contains covariances between each 

model grid point and all of the other model grid points.  Thus, the influence of an 

observation may be spread non-isotropically across the model grid.  Equation (1) can 

be simplified by defining the Kalman gain K, 

 

.                                                 (2) 

 

The background error covariance matrix, which partially determines the Kalman gain, 

may be updated as  

 

                                                           (3) 

 

if the forecast model is linear (Evensen 2003), where the subscripts are time indices, 

the linear forecast model is denoted F, and Q is the model error covariance matrix.  If 

the forecast model being used is nonlinear, the extended Kalman filter (EKF) may be 

used in lieu of the traditional Kalman filter (Reichle et al. 2002a), though the EKF 

tends to be unstable when the nonlinearity is strong (Miller et al. 1994).  The 
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background error covariance matrix is still updated using eq. (3), but with F being the 

linear tangent to the nonlinear model operator f(). 

     An alternative to the EKF for which linear tangent estimates to the forecast model 

are unnecessary is known as the ensemble Kalman filter (EnKF), first discussed by 

Evensen (1994).  Rather than calculating computationally expensive updates to Pf 

directly using eq. (3), the elements of Pf are estimated from the covariance 

information given by an ensemble of forecast states.  The true value of Pf is defined in 

the Kalman filter as 

 
,                                                       (4) 

 

where the superscript t denotes the true atmospheric state.  The EnKF estimate of Pf is 

 

,                                                   (5) 

 

where the subscript e denotes an ensemble estimate, is the vector of ensemble 

mean values, and the bar over the entire right-hand side of eq. (5) signifies the mean 

over all ensemble members i.  The estimated is substituted for in the 

calculation of the Kalman gain defined in eq. (2). 

     The EnKF data assimilation technique has many advantages over other commonly 

used techniques such as three-dimensional variational (3D-Var) algorithms (Lorenc 

1986; Parrish and Derber 1992) or four-dimensional variational (4D-Var) algorithms 

(Bennett et al. 1997; Rabier et al. 1998).  First of all, as discussed earlier, ensemble 

forecasts provide variance information that is not available from deterministic 
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forecasts.  The use of an ensemble to generate covariance information means that the 

covariances are flow-dependent, in contrast to the isotropic covariance structures 

typical of 3D-Var techniques.  No tangent linear or adjoint models are necessary for 

the EnKF.  These models can be costly to develop, and are typically used by both 

EKF and 4D-Var schemes.  Depending on the number of ensemble members used, 

the computational costs of EnKF and 4D-Var schemes can be similar (Lorenc 2003).  

The covariances are updated in the EnKF by the fully nonlinear model, in contrast to 

the tangent linear model used in the EKF (eq. (3)).  Solution of eq. (3) is not practical 

for high-dimensional state vectors, and the EnKF represents an approximation to the 

EKF that may improve operational data assimilation. 

     While EnKF schemes offer benefits that other schemes do not, their use also 

presents some unique challenges.  In theory, an infinite ensemble should exactly 

determine the background error covariances, but because ensembles are finite they 

only approximate the covariances.  Noisy or inaccurate spatial covariances can be 

calculated from finite ensembles, leading to strong correlations between distant 

locations.  To alleviate this problem, Houtekamer and Mitchell (1998) used an 

influence radius, ignoring background covariances between positions greater than a 

specified distance from each other.  Another approach has been to apply a Schur 

product (Houtekamer and Mitchell 2001; Hamill et al. 2001) by multiplying 

covariance estimates with a distance-dependent correlation function.  Such solutions 

reduce the effects of distant correlations, but they may still result in a choppy, 

discontinuous analysis (Evensen 2003).   
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     Lorenc (2003) pointed out some difficulties with the EnKF technique in the 

process of comparing it to 4D-Var.  The error probability distribution function (PDF) 

calculated with EnKF methods will be imprecise in situations when the actual error 

PDF is strongly non-Gaussian.  Quality control of observations is not as simple with a 

sequential algorithm used in the EnKF since all of the observations are not processed 

together.  Lorenc (2003) suggested that a hybrid EnKF-4D-Var scheme modeling the 

evolution of covariances within assimilation windows using a variational fit and 

between windows using an EnKF approach could lessen the effects of these 

difficulties.  Bennett et al. (1996) and Bennett et al. (1997) developed a four-

dimensional variational scheme known as the method of representers that can account 

for model error which is in principle equivalent to Kalman filtering (Kalnay 2003).  It 

is also faster than the traditional 4D-Var scheme because the work is done in 

observation space rather than model space.  This approach avoids model linearization, 

solving the nonlinear problem by iteration.  However, the method also carries many 

disadvantages that make use of the EnKF more practical (L. Leslie, personal 

communication). 

     Many types of EnKF algorithms exist that are suited for a wide range of data 

assimilation problems.  One algorithm involves the use of a pair of ensembles, with 

the covariances developed with one ensemble used to spread the influence of 

observations in the other ensemble (Houtekamer and Mitchell 1998; Mitchell and 

Houtekamer 2000; Houtekamer and Mitchell 2001; Houtekamer et al. 2005).  This 

algorithm was developed to avoid an inbreeding problem arising from updating an 

ensemble with covariances determined using the same ensemble.  Such a practice 



 
 

16 

could underestimate the uncertainty in a forecast (Houtekamer and Mitchell 1998).  

Evensen and van Leeuwen (2000) developed an ensemble Kalman smoother which 

propagates an EnKF solution backward in time using ensemble covariances; it is 

useful for computing climatologies, but not so much for forecasting.  The ensemble 

adjustment Kalman filter (EAKF; Anderson 2001) and the ensemble square root filter 

(EnSRF; Whitaker and Hamill 2002, Tippett et al. 2003, Xue et al. 2006) each avoid 

the use of perturbed observations in generating analyses.  This is an advantage since 

for finite ensembles, perturbed observations constitute an additional source of 

sampling error.  The ensemble transform Kalman filter (ETKF; Bishop et al. 2001, 

Wang and Bishop 2003) allows faster calculation of background covariances than the 

traditional EnKF and has been used for finding the spatial arrangement of 

observations that most reduces the forecast error variance.  Finally, hybrid schemes 

(Hamill and Snyder 2000; Bengtsson et al. 2003; Lorenc 2003) attempt to overcome 

some of the limitations of the EnKF while retaining its strengths. 

     Though a relatively recent innovation, the EnKF has already been used in a wide 

variety of applications.  The first general area to which the EnKF was applied was 

ocean data assimilation (Evensen 1994; Evensen and van Leeuwen 1996; Blanchet et 

al. 1997; Keppenne 2000; Keppenne and Rienecker 2002).  More recently, the EnKF 

has been the method of choice for many experiments in radar data assimiliation 

(Snyder and Zhang 2003; Dowell et al. 2004; Zhang et al. 2004; Caya et al. 2005; 

Tong and Xue 2005; Xue et al. 2006).  Most documented EnKF studies thus far have 

involved the assimilation of synthetically generated data, but some (e.g., Crow 2003, 

Dowell et al. 2004, Houtekamer et al. 2005, Fujita et al. 2007) have used real 
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observations as well.  The EnKF also has been applied to the assimilation of 

mesoscale and land surface data (e.g., Reichle et al. 2002a, Reichle et al. 2002b, 

Crow 2003, Zhang et al. 2006, Fujita et al. 2007).  Often, satellite microwave 

brightness temperature has been assimilated as a proxy for soil moisture or rainfall 

(Reichle et al. 2002a,b; Crow 2003).  Studies documented in the literature have only 

used synthetic and satellite observations of soil properties.  However, such 

measurements are not necessarily directly linked to soil moisture in heavily vegetated 

regions, and an in situ system would provide observations that would likely improve 

upon those from satellites.  The ability of EnKF-based schemes to account for various 

kinds of model error is a big advantage for soil moisture assimilation (Crow 2003), 

and the use of an EnKF scheme to assimilate real land surface observations from an 

in situ network has great potential for improvement over current operational methods. 

 

2.3     Land-atmosphere interactions 

 

     2.3.1     Surface energy budget 

 

     To adequately simulate atmospheric processes such as planetary boundary layer 

(PBL) evolution, the growth and decay of convective storms, and mesoscale 

circulations, the effects due to the coupling between the surface of the earth and the 

atmosphere must be taken into account.  In addition, the states of atmospheric 

variables such as temperature and mixing ratio near the ground are closely related to 
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the state of the land surface below.  Small-scale variability in atmospheric conditions 

can develop due to small-scale variability in the condition of the land surface. 

     The link between the land surface and the atmosphere can be partially understood 

in terms of the surface energy budget, which describes the partitioning of net radiative 

energy into various components.  Shortwave radiation from the sun enters Earth’s 

atmosphere, after which it may be reflected back to space or transmitted to and 

absorbed by Earth’s surface.  Earth emits longwave radiation to the atmosphere, and a 

portion of the emitted longwave radiation can be absorbed by clouds and re-emitted 

back to Earth’s surface.  The sum of these emissions and absorptions gives the net 

radiation absorbed by Earth’s surface.  The surface energy budget is balanced by 

three fluxes of energy, namely the sensible heat flux, latent heat flux, and ground (or 

soil) heat flux.  Sensible heat flux refers to a transfer of enthalpy from the land 

surface to the air, thus heating the air.  Latent heat flux refers to the transfer of energy 

from the land surface to the air due to the evaporation of water from lakes, oceans, 

vegetation, soil, etc.  The ground heat flux is that portion of the net radiation that 

results in a heating (or cooling) of sub-surface soil.  Each of these fluxes varies 

according to annual, intraseasonal, synoptic, and diurnal time scales (Smith et al. 

1992).  Changes in the thermodynamic profile of the atmosphere due to surface 

energy fluxes, as well as local-scale variability in the Bowen ratio (the ratio between 

sensible and latent heat flux), can affect the near-surface temperature, humidity and 

wind, in addition to cloudiness and precipitation. 

     The magnitudes and directions of the surface energy fluxes are affected by a 

multitude of factors, some atmospheric and some surface-based.  The surface albedo 
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determines the amount of solar radiation that is reflected to space, and therefore the 

amount of solar radiation that is absorbed by the earth and available to be partitioned 

into the various fluxes.  Cloudiness also affects the amount of radiation received by 

reflecting solar radiation to space as well as absorbing some of the earth’s radiation 

and re-emitting it back to the surface.  Soil type and texture help to determine how 

much water may be held by the soil (field capacity), the wilting point of vegetation, 

and the thermal and hydraulic conductivity.  The amount of evaporation from bare 

soil, and therefore the latent heat flux from such surfaces, is a nonlinear function of 

soil moisture and is often very sensitive to small changes in its magnitude (Entekhabi 

and Eagleson 1989).  The spatial and seasonal extent of vegetation also affects the 

components of the surface energy budget in many ways.  Different vegetation types 

have different albedos, the effect of which has been discussed previously.  Plants also 

regulate the amount of evaporation from the surface through their stomatal 

resistances, interception of precipitation by leaves, and according to the depth of their 

roots.  Subsequently, the Bowen ratio varies spatially and seasonally as well, 

affecting surface sensible heating and near-surface atmospheric moisture content. 

 

     2.3.2     Importance of surface-atmosphere coupling to forecasting 

 

     Land-atmosphere interactions are important on many different spatial and 

temporal scales, and modeling those interactions takes different forms depending on 

the scales of interest.  Land surface processes have been included in climate models 

for many years because parameters such as albedo, vegetation cover, land/water 
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distribution, and soil moisture vary widely on such long time scales (Entekhabi and 

Eagleson 1989; Sato et al. 1989; Koster and Suarez 1996).  Due to computer power 

limitations and the long time integrations necessary to model the earth’s climate, 

global climate models (GCMs) tend to have a relatively low resolution in space and 

time.  Land surface characteristics are highly variable spatially, so initial grid point 

values of these characteristics must be generated via some type of spatial averaging 

(Koster and Suarez 1992).  Variable results often are produced by different methods 

for calculating composite grid point values of land surface parameters (Abramopoulos 

et al. 1988; Koster and Suarez 1992; Bonan et al. 1993).   

     Using composite land surface parameter values in a hydrology model, 

Abramopoulos et al. (1988) found that as the size of their grid boxes decreased from 

8ºx10º to 1ºx1º, the composite values were less representative and higher resolution 

averaging methods were needed.  Koster and Suarez (1992) outlined two major 

approaches to sub-grid scale parameterization of surface vegetation: the “mixture” 

approach and the “mosaic” approach.  When the “mixture” approach is taken, a 

homogeneous mix of vegetation types is assumed over the entire grid box, while the 

“mosaic” approach allows the atmosphere to interact with each vegetation type 

separately.  The authors found that the “mixture” approach produced larger latent heat 

flux and total turbulent flux values when the resistances of the vegetation types 

differed by more than a factor of 2, but otherwise the choice of method was somewhat 

arbitrary.  The “mosaic” method may be preferable as it is more computationally 

efficient, and it also may more clearly model mesoscale circulations such as sea 

breezes (Avissar and Pielke 1989).  Bonan et al. (1993) measured the effects of 
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accounting for sub-grid scale heterogeneity in leaf area index, stomatal resistance, 

and soil moisture in terms of grid-scale fluxes. 

     Climate forecasts display a strong sensitivity to soil moisture variations, partially 

due to their long duration.  Soil moisture changes on scales of months (Paegle et al. 

1996; Beljaars et al. 1996) to years affect climate variability.  In addition, care must 

be taken when spatially averaging soil moisture over a grid box, since due to the 

nonlinear relationship between evaporation and soil moisture the evaporation for the 

average soil moisture condition is not necessarily equivalent to the average 

evaporation for the distribution of soil moisture conditions (Entekhabi and Eagleson 

1989).  Dirmeyer (1994) ran simulations with a model earth having one rectangular 

continent covered with prairie vegetation, finding that low initial soil moisture 

resulted in a decrease of precipitation.  The long-term persistence of soil moisture 

anomalies and their effects on atmospheric circulations and precipitation was the 

driving force behind the assimilation of remotely sensed soil moisture observations 

by Walker and Houser (2001).  Zhang and Fredericksen (2003), using a general 

circulation model, studied the effects on modeled precipitation patterns in China 

during the summer of 1998 due to initializing soil moisture with NCEP-NCAR 

reanalysis data.  They discovered that soil moisture anomalies had a direct impact on 

surface temperatures, but an indirect impact on precipitation in that the soil moisture 

anomalies altered the atmospheric circulation, bringing in additional moisture from 

other areas.  Soil moisture initialization provided more accurate temperature and 

precipitation forecasts than did sea surface temperature (SST) updating, even with a 

simple bucket soil model. 
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     Basic land surface parameters such as albedo and soil moisture (e.g., moisture 

availability, defined by Manabe (1969)) have been included in climate models for 

some time.  However, as computing capacity has increased, it has become possible to 

add further complexity to land surface models while still completing forecasts in a 

reasonable amount of time.  One ground hydrology model simulating major 

hydrologic processes for a GCM was most sensitive to fractional vegetation cover and 

canopy resistance, two variables that were neglected in most previous models 

(Abramopoulos et al. 1988).  Sato et al. (1989) used the Simple Biosphere (SiB) 

model (Sellers et al. 1986) with a GCM, comparing it to the use of a more standard 

land surface model for the time.  SiB produced a more realistic partitioning of the 

surface energy balance and modeled the interrelationships between albedo, surface 

roughness, and soil moisture instead of treating them as independent of each other.  

Later, SiB was improved (Sellers et al. 1996) by adding parameters for CO2 fluxes 

from the canopy and fractional snow cover.  Additionally, in order to accurately 

model the surface energy balance, mesoscale fluxes must be considered as well as 

turbulent fluxes (Pielke et al. 1991).  The inclusion of extra complexity in land 

surface models for use with GCMs has increased the accuracy of land surface process 

representations in many cases. 

     Though many land surface variables fluctuate on a long time scale, land-

atmosphere interactions are also important considerations in short-term mesoscale 

forecasts.  First of all, land surface conditions affect the initiation and the evolution of 

convective storms.  Benjamin and Carlson (1986) showed that the surface can 

influence convective initiation through sensible heating and evaporation by affecting 
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cloud and stability patterns.  They stated that an accurate representation of 

PBL/surface processes and topography can “provide significant improvement in 12-

36 h forecasts of an environment favorable for severe storms.”  In idealized two-

dimensional experiments, Benjamin (1986) found that the state of the elevated mixed 

layer (EML) over the U.S. Southern Plains depends on horizontal gradients of soil 

moisture, surface heating, and elevation.  The EML allows the air below to warm, 

delaying and focusing storm initiation.  Experiments carried out using four different 

soil moisture distributions in a mesoscale model showed that the distribution of soil 

moisture influences the EML, the dryline, precipitation amount, ageostrophic flow, 

and PBL instability (Lanicci et al. 1987).  With abundant atmospheric moisture, 

convective clouds tend to form first over areas where the Bowen ratio is the smallest, 

and vice versa for dry days (Rabin et al. 1990), in apparent contradiction to the 

Charney hypothesis (Charney 1975).  However, the clouds which formed on dry days 

were non-precipitating and increased the albedo.  Rabin et al. (1990) also pointed out 

that land surface effects tend to be most apparent on days with weak atmospheric 

forcing, and that the role of the land surface coupled with strong atmospheric forcing 

had not been determined. 

     Further research has continued to provide insight into the influence of the land 

surface on the development of convective storms.  Chang and Wetzel (1991) 

estimated soil moisture from antecedent precipitation and vegetation cover from 

NDVI, with the best simulation of a storm complex from 3-4 June 1980 resulting 

from the inclusion of soil moisture and vegetation variations.  These variations 

produced differential heating leading to thermally driven circulations which 
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subsequently influenced storm initiation.  Crook (1996) examined the sensitivity of 

convective storms to surface processes under weak atmospheric forcing, finding that 

these storms were sensitive to surface temperature and moisture dropoff (the 

difference between the surface potential temperature and moisture and those 

quantities in the well-mixed boundary layer).  This sensitivity indicates a benefit to 

improving analyses of surface temperature and moisture, and therefore fluxes of the 

same. 

     In situ land surface observational data have also been assimilated into models in an 

effort to improve convective forecasting.  Trier et al. (2004) used the MM5 model 

with the Grell cumulus parameterization and the Noah LSM to model development of 

convection over the Southern Plains in June 1998, assimilating soil moisture data 

with a high resolution land data assimilation system (LDAS).  Soil moisture 

variations result in differences in the partitioning of surface fluxes, which create 

differential heating leading to small-scale solenoidal circulations.  These circulations 

can help to initiate deep moist convection.  A comparative run with coarser soil 

moisture data drawn from the Eta Data Assimilation System (EDAS) failed to capture 

storm initiation at the correct locations despite forecasting a similar dryline structure 

to the high-resolution LDAS run.  Using various levels of complexity in their model 

as well as different initial soil moisture fields, Holt et al. (2006) demonstrated that 

more accurate land surface modeling could improve convective forecasts even in the 

presence of strong synoptic forcing.  However, even the most complex LSM with the 

best soil moisture initialization initiated convection about 2-3 h late.  The COAMPS 

model with the Weather Research and Forecasting (WRF) model version of the Noah 



 
 

25 

LSM was used to produce the convective forecasts for a case from the International 

H2O Project (IHOP) in May 2002.  Variations included using soil moisture fields 

from EDAS and from a higher-resolution source, adding a photosynthesis model to 

the LSM, and using a simple slab soil model. 

     The modeling of land surface characteristics such as soil moisture content and 

vegetation amount/type is also important to resolving mesoscale circulations and 

diagnosing mesoscale boundaries.  Inferring soil moisture from infrared satellite 

temperature measurements and assuming weak synoptic-scale forcing, Ookouchi et 

al. (1984) used the model described in Pielke (1974) to study the effects of mesoscale 

variability in soil moisture.  In their model, a substantial soil moisture contrast on flat 

terrain produced a circulation similar in strength to a sea breeze, showing that 

variations in the Bowen ratio may likely produce atmospheric circulations.  Other 

studies regarding the initiation of atmospheric circulations due to soil moisture 

contrasts have been done (Yan and Anthes 1988).  Work with a two-dimensional 

mesoscale model including detailed PBL, soil and vegetation parameterizations has 

shown that mesoscale circulations can be generated due to variations in soil texture 

alone because of their impact on moisture availability (Mahfouf et al. 1987).  The 

authors also simulated a boundary between bare soil and vegetation, finding that the 

boundary was a favored location for the initiation of moist convection due to the 

atmospheric circulations arising from the surface flux differences.  A similar study 

found that the effects of the land surface on atmospheric circulations were highly 

dependent on the extent of vegetated areas and on environmental conditions (Segal et 

al. 1988).  Pinty et al. (1989) pointed out that the response of the PBL to soil moisture 
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and vegetation gradients within a model is sensitive to the model parameters, such as 

whether the soil is moist or dry in general. Many models neglect the changes in 

mixed-layer depth due to sub-grid scale sensible heat flux variability, but it has been 

shown that these changes can be significant (Doran and Zhong 1995).  Accounting for 

the variability in mixed-layer depth with a simple average value is dangerous, as the 

distribution of depths tends to be bimodal. 

     Many studies have attempted to find mesoscale circulations appearing in model 

simulations present in actual observed data.  Instead of using prescribed vegetation 

grids as in much past modeling work, Segal et al. (1989) obtained a real-world 

vegetation-irrigation “map” of an area in northeastern Colorado from GOES satellite, 

aircraft, and surface observations.  The expected thermally driven circulations 

between dry and irrigated areas were only weakly reflected in the observations, but 

model simulations using the “map” showed that this was likely due to terrain effects 

and strong synoptic-scale flow.  Segal and Arritt (1992) defined nonclassical 

mesoscale circulations (NCMCs) as circulations caused by gradients in sensible heat 

flux that are not sea or lake breezes.  They explained that additional factors that can 

mask the presence of NCMCs in observations are the spatial and temporal non-

uniformity of sensible heat flux and the small-scale spatial variability in soil moisture 

and land use, both of which are difficult to account for in numerical models.  

Perturbed areas (PAs) with differing sensible heat flux from surrounding areas 

generate mesoscale circulations, with the most common PAs appearing due to 

cloudiness. 
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     Mesoscale boundaries and circulations observed in the atmosphere usually are not 

isolated, but instead multiple circulations and boundaries combine with each other to 

generate the actual observations.  Using the RAMS model to examine the 

characteristics of drylines, Shaw et al. (1997) derived soil moisture from antecedent 

precipitation and vegetation from the NDVI to examine how these parameters affect 

the dryline.  They concluded that soil moisture initialization is important to dryline 

formation and evolution in a model, but it is also true that the position of the dryline 

affects the soil moisture.  Grasso (2000) also used RAMS to simulate a dryline, and 

he found that the dryline did not even form under a uniform soil moisture distribution.  

Yet another circulation that falls under the category of NCMCs is the so-called “salt 

breeze” (Rife et al. 2002), which results from differential heating due to the 

contrasting land surface characteristics between salt flats and the surrounding sand.  

Rife et al. (2002) conducted experiments using the MM5 model coupled to an LSM to 

study the interactions between salt breezes and other mesoscale circulations in the 

area due to variable terrain and lakes, which also result from sensible heat flux 

gradients. 

     Examinations of the influence of the land surface on atmospheric structure and 

evolution show that the sensible, latent and ground heat fluxes are very important to 

the determination of near-surface weather variables such as temperature, water vapor 

mixing ratio and wind.  The partitioning of surface energy between sensible and latent 

heat fluxes is determined by factors such as the amount and type of vegetation, the 

soil type and the soil moisture.  Therefore, the quality of the initialization of such 
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fields in numerical models helps to determine the quality of forecasts of near-surface 

variables (Kurkowski et al. 2003; Marshall et al. 2003; Segele et al. 2005).   

     It has been stated that soil moisture is the single most important characteristic in 

determining the influence of the surface on the atmosphere (McCumber and Pielke 

1981).  Not only does soil moisture affect the near-surface mixing ratio, but it also 

affects the albedo and the soil thermal conductivity which help to determine the 

amount of surface energy available to be partitioned into fluxes.  Carlson and Boland 

(1978) found that the most important factors affecting near-surface temperature 

variation were thermal inertia and moisture availability, with moisture availability 

having a larger influence during the day and thermal inertia having a larger influence 

at night.  Surface heating affects PBL structure and wind circulations.  Mesoscale 

circulations simulated between irrigated land and dry areas, though sometimes 

masked by terrain effects and synoptic conditions in the actual observations, occur 

due to sensible heat flux gradients (Segal et al. 1989).  A connection was also found 

between evapotranspiration and precipitation through comparison of latent heat flux 

with rainfall amounts at the ARM-CART site in northern Oklahoma, though the 

relationship varied strongly with atmospheric circulation (Sud et al. 2001).  A much 

stronger relationship was seen for moist cases than for drought circulations.  Oncley 

and Dudhia (1995) performed a comparison of MM5 model output surface fluxes to 

observations, discovering that the model fluxes were most sensitive to the choices of 

surface roughness and moisture availability.  In order to more accurately model near-

surface weather conditions, therefore, modeling of these parameters was improved. 
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     2.3.3     Modeling of land surface processes 

 

     All of the parameters necessary to calculate the values of many land surface 

variables are not known exactly, so approximations to these variables must be made.  

Examples of approximations include various methods for estimating the evaporation 

from the land surface.  Penman (1948) combined turbulent transport and surface 

energy balance approaches to modeling evaporation, developing an equation that 

makes theoretical estimates of evaporation rates from standard meteorological data.  

This was a step on the way to the development of the Penman-Monteith evaporation 

model, first stated by Monteith (1965) as 

 

 .                                              (6) 

 

In eq. (6), Δ is the slope of the saturation vapor pressure curve with temperature, Rnet 

is the net radiation at the surface, G is the ground heat flux, ra and rc are the 

aerodynamic and canopy resistances, respectively, ρ is the air density, cp is the 

specific heat of air at constant pressure, δe is the air vapor pressure deficit, γ is the 

psychrometric constant, λ is the latent heat of vaporization, and λE is the latent heat 

flux.  Priestley and Taylor (1972) formulated a similar equation for the evaporation 

rate, 

 

,                                                    (7) 
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where α is the empirical Priestley-Taylor parameter, s is the slope of the saturation 

specific humidity curve with temperature, and the other symbols have the same 

meaning as in eq. (6).  Both eq. (6) and eq. (7) contain numerous assumptions, and 

the usefulness of each method varies depending on the application.  Comparison of 

these methods with respect to parameterization of sensible and latent heat fluxes was 

undertaken by de Bruin and Holtslag (1982), who used a Priestley-Taylor based 

formulation which showed similar skill to the Penman-Montieth method for a grass 

surface with an unstable PBL.  Only the air temperature, surface moisture, and net 

radiation were necessary inputs to run the parameterization.  

     The first LSMs were very basic with crude approximations to land surface 

processes, but many of those approximations are still used in current modeling 

efforts.  Pan (1990) pointed out that the National Meteorological Center (NMC) 

global spectral model was using the bucket model of Manabe (1969) to parameterize 

evapotranspiration up until the late 1980s and showed that improvements were made 

in the near surface moisture field by using an alternate parameterization based on the 

Penman-Monteith model.  An early effort at numerically modeling soil temperature 

and moisture was made by Philip (1957), who simulated the three stages of soil 

evaporation that he identified.  Nappo (1975) investigated two methods for the 

parameterization of evapotranspiration, one based on moisture availability and the 

other based on the relative humidity just above the surface.  Nickerson and Smiley 

(1975) developed an equation for the Monin-Obukhov length, parameterizing the 

latent heat flux, the ground heat flux and radiation terms to form the required inputs.  
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A parameterization of soil moisture content now known as the “force-restore” model 

(Deardorff 1977; Deardorff 1978) separated the soil into two layers so that the surface 

soil moisture content could be used as opposed to one bulk estimate, allowing 

evaporation to vary more realistically.  The moisture content of the surface layer was 

estimated using the soil surface evaporation rate minus the precipitation rate.  While 

the force-restore model accounted for variations in soil characteristics such as texture 

and type through the use of dimensionless empirical constants, McCumber and Pielke 

(1981) examined the sensitivity of their model to soil characteristics explicitly, 

finding soil moisture to be the most important factor in determining the influence of 

the land surface on the atmosphere.  Noilhan and Planton (1989) used Deardorff’s 

(1977) force-restore model to calculate soil properties as part of a broader 

parameterization which computed five prognostic land surface variables over time 

scales of a few days.  The basic effects of vegetation were included. 

     Studies have also been done in which the effects on atmospheric models due to 

variations in the parameterization of land surface processes are assessed.  Holtslag et 

al. (1990) designed a model initialized with radiosonde data to forecast lower level 

temperature and humidity profiles, PBL height and clouds.  The one-dimensional 

profiles generated by the model could be advected along trajectories calculated by a 

three-dimensional limited area model.  Clouds were allowed to affect the model’s 

surface flux calculations.  Scientists at the French Weather Service developed a new 

land surface parameterization with parameters derived from variables such as soil 

texture, soil type, albedo and dominant vegetation type (Bougeault et al. 1991a) and 

linked it to an atmospheric prediction model, comparing the output to data from a 
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field experiment conducted earlier (Bougeault et al. 1991b).  A forecast was run for a 

cloud-free day with “reasonable agreement” between the temperature, humidity and 

wind forecasts, and observations.  Argentini et al. (1992) used the one-dimensional 

PBL model of Zhang and Anthes (1982) to validate their new land surface 

parameterization prior to including it in a three-dimensional model.  They were able 

to eliminate some input parameters derived from poorly measured biophysical 

variables, finding that surface flux predictions were not sensitive to variations in the 

parameters.  Lakhtakia and Warner (1994) coupled different surface schemes to a 

one-dimensional PBL model in an effort to discover which situations could be 

modeled by a simple scheme and which situations required a more complex scheme.  

A time-independent slab model, a moisture availability parameter tied to 

precipitation, and the Biosphere-Atmosphere Transfer Scheme (BATS; Dickinson et 

al. 1986) were compared.  The results among the three schemes varied the most for 

large vegetation cover, high net surface radiation, and unsaturated soil. 

     Land surface models (LSMs), which may either run as a stand alone scheme with 

appropriate atmospheric boundary conditions or coupled to an atmospheric model, 

constitute another category of surface process parameterization.  The Simple 

Biosphere Model (SiB; Sellers et al. 1986, Sellers and Dorman 1987, Sellers et al. 

1996) includes vegetation canopy properties such as resistance to evaporation, 

radiative properties and interception of precipitation by leaves, in addition to multiple 

soil layers.  SiB is designed to be used by meteorologists and biophysicists alike.  

Since SiB is configured to be connected with GCMs, issues arise regarding sub-grid 

scale variability, for instance as it pertains to convective precipitation within a grid 
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cell (Sellers et al. 1986).  Surface fluxes measured by SiB during early testing (Sellers 

and Dorman 1987) compared favorably with micrometeorological observations, but 

large uncertainties appeared in evapotranspiration estimates.  Model flux calculations 

were found to be very sensitive to soil moisture variations, especially for dry soil.  To 

make it more helpful as a model coupled to GCMs, SiB was revised (SiB2; Sellers et 

al. 1996) to include CO2 flux from the canopy, satellite vegetation information, more 

accurate hydrological modeling and gradual albedo change due to snowmelt. 

     Other LSMs have been created to provide appropriate surface boundary conditions 

for atmospheric models.  The Project for Intercomparison of Land-surface 

Parameterization Schemes (PILPS; Henderson-Sellers et al. 1993) compared and 

contrasted various characteristics of twenty-five different LSMs, with completion of 

model sensitivity studies as a primary goal.  Chen et al. (1997) reported on results of 

comparing the PILPS models with observed meteorological variables, fluxes and net 

radiation at Cabauw, the Netherlands.  Accounting for stomatal resistance to 

evaporation was found to be an important factor, as the range in flux calculations was 

halved when the three schemes not accounting for stomatal resistance were dropped.  

Net radiation between the schemes did not vary by any greater amount than the 

observational error while phase shifts in the diurnal surface flux existed between 

schemes, possibly due to differing treatments of thermal inertia.  Wilson et al. (1987) 

conducted sensitivity tests on the BATS scheme, finding that it was highly sensitive 

to soil texture in contrast to the model run by Wetzel and Chang (1988).  The land 

surface and PBL schemes connected to the Eta model were improved between 1995 

and 1996, and Betts et al. (1997) compared forecasts from the two model versions.  
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They concluded that the new land surface scheme improved summer precipitation 

forecasts, but the flawed radiation scheme was unchanged between the two versions 

and flux calculations still had large inaccuracies.  The authors stated that modeling 

fluxes depends on three crucial factors: modeled radiation, green vegetation fraction 

and soil moisture.  

     Many of the early LSMs were appropriately designed for producing temporally 

long forecasts with low resolution, but the need was still present for LSMs providing 

boundary conditions for short-term mesoscale atmospheric modeling.  One model 

designed to be coupled with MM5 is the scheme created by Pleim and Xiu (1995), 

which includes a force-restore soil model and a hybrid PBL model combining 

nonlocal closure and eddy diffusion.  Like SiB, the Pleim-Xiu (PX) scheme includes 

a prognostic treatment of soil moisture and considers the effects of vegetation on 

transpiration, but the schemes differ in that SiB was intended for use with GCMs.  

Testing of the PX scheme took place later (Xiu and Pleim 2001) in the form of 

comparison with observations from the Wangara (Clarke et al. 1971) and FIFE 

(Sellers et al. 1988) experiments.  The PX scheme adjusted the near-surface output of 

the standard MM5 model toward the observed fluxes and surface temperature.  Soil 

moisture nudging was included as a technique in the PX scheme to improve analyzed 

fields (Pleim and Xiu 2003) based on biases in 2 m temperature and relative humidity 

calculated from model output and analyzed observations.  Nudging drastically 

decreased the spin-up time necessary to develop reasonable soil moisture fields, in 

addition to being computationally less expensive than other data assimilation schemes 

such as 4D-Var. 
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     Another approach to modeling the land surface is embodied by the Noah LSM, so 

named in recognition of the entities developing it (National Centers for 

Environmental Prediction (NCEP), Oregon State University (OSU), the Air Force, 

and the Hydrologic Research Lab (HRL)).  The modified OSU LSM (Pan and Mahrt 

1987), or Noah, was coupled to MM5 by Chen and Dudhia (2001a,b).  It included soil 

and vegetation information at 1 km resolution, allowing the representation of 

circulations unresolved by observing networks.  As part of the same study, the 

modified OSU LSM coupled to MM5 was tested under clear sky conditions, 

modeling surface fluxes more accurately than a slab model and therefore improving 

near-surface temperature and humidity predictions.  Noah was formed starting with 

the OSU LSM and has benefited from revisions and regular updates by the groups 

mentioned above (e.g., Chen et al. 1996, Schaake et al. 1996, Betts et al. 1997, Chen 

et al. 1997).  Improvements have included an increase from two to four soil layers, 

the use of Eta Data Assimilation System (EDAS) soil moisture and temperature data 

making nudging unnecessary, and vegetation changes.  Upgrades intended to more 

accurately model cold season processes were added by Ek et al. (2003) which 

improved near-surface temperature and relative humidity forecasts while not 

adversely affecting, and sometimes improving, upper air and precipitation forecasts.  

Cloudy conditions present challenges in modeling land surface processes such as 

fluxes, making the ability to accurately parameterize radiation, clouds, and stable 

PBL and surface-layer conditions very important. 
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     2.3.4     Observation and assimilation of land surface variables 

 

     Initialization and verification of land surface variable forecasts requires 

representative observational data, and these data are obtained through a variety of 

methods.  Remote sensing techniques allow the collection of observations worldwide.  

Radiative surface temperatures have been measured by satellite to infer surface 

parameters such as soil moisture (e.g., Schmugge 1978, Carlson et al. 1981, Price 

1982, Wetzel et al. 1984, Diak et al. 1986, Wetzel and Woodward 1987).  Schmugge 

(1978) measured microwave brightness temperature and radar backscatter as a proxy 

for soil moisture, with the microwave technique providing useful data on clear or 

cloudy days.  Carlson et al. (1981) asserted that warm nights over urban areas are due 

to low moisture availability rather than high thermal inertia using such a method.  

Price (1982) used thermal infrared (IR) images to calculate grid-scale surface fluxes 

for a GCM as the spatial integral of estimated fluxes at 600 m resolution across a grid 

box.  Wetzel et al. (1984) took advantage of GOES data whereas most other 

investigators had used data from polar-orbiting satellites, and they determined that the 

best predictor of soil moisture was mid-morning surface temperature differential with 

respect to absorbed solar radiation.  Subsequently, linear regressions of morning IR 

surface temperature change against soil moisture and other variables were performed 

by Wetzel and Woodward (1987) in an effort to isolate that portion of the temperature 

change that could be explained by soil moisture.  Diurnal surface temperature range 

forecast by the model used in Diak et al. (1986) was measured against satellite 

temperatures, resulting in a close match when the moisture availability was moderate 



 
 

37 

to high but in a poor match for most of the arid western U.S.  The collaborators also 

pointed out that remotely sensed data should ideally be evaluated against surface-

based measurements at some point to demonstrate the accuracy of using remote 

sensing techniques to infer land surface parameters.  Jones et al. (1998a) retrieved soil 

moisture by assimilating satellite-derived infrared heating rates.  These heating rates 

had a direct relationship with several model parameterization variables.  In a case 

study (Jones et al. 1998b), this method produced realistic soil moisture profiles.  The 

authors contended that more in situ soil moisture observations would be helpful for 

model validation.  

     Remotely sensed surface temperatures and reflectances have also been used to 

estimate various elements of the surface energy balance (Xinmei et al. 1993; Friedl 

1996; Kustas et al. 1999).  The estimation of surface fluxes using satellite data was 

conducted by Xinmei et al. (1993), who determined the sensible heat flux directly 

from the radiative temperature and calculated the latent heat flux as a residual by also 

utilizing red and near IR reflectances.  Friedl (1996) discussed the noisiness of high-

resolution surface flux proxy data from satellites and the fact that modeled and 

observed surface fluxes agreed well with each other when averaged over regional 

scales.  The author asserted that high-resolution flux values determined from remote 

sensing techniques may be calculated only approximately.  The estimation of surface 

fluxes using the values of surface layer or mixed-layer variables combined with 

radiometric temperature was explored by Kustas et al. (1999), who found that the 

mixed-layer method yielded reasonable flux estimates using data that were easier to 

obtain.  However, in cases for which a regional roughness length value was used with 
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local radiometric temperature, the mixed-layer method resulted in serious flux 

estimation errors. 

     Remotely sensed surface temperatures and reflectances are helpful in detecting 

soil moisture variability and estimating fluxes in a wide variety of locations, but in 

situ measurements of surface variables are essential in demonstrating the validity of 

LSMs and model parameterizations.  The measurement of surface variables such as 

fluxes can be difficult, as the fetch needed to make a reasonable surface flux estimate 

under stable PBL conditions is more than 100 times greater than the measurement 

height (Horst and Weil 1994).  Businger et al. (1990) described the measurement of 

surface fluxes of sensible heat, water vapor, and trace chemical species at the NCAR 

Atmosphere-Surface Turbulent Exchange Research (ASTER) facility.  The facility 

was birthed partially out of a need for ground truth in support of remote sensing from 

aircraft and satellites.  Xinmei and Lyons (1995) compared results generated by a 

one-dimensional soil-canopy-PBL model to observed flux data from locations with 

varying amounts of vegetation cover in Canada and France.  Measurement of surface 

fluxes has shown that flux observations are only representative over distances of 1 km 

or less, such as at the Southern Great Plains Atmospheric Radiation 

Measurement/Cloud and Radiation Testbed (ARM/CART) site (Gao et al. 1998). 

    Land surface data such as soil temperature, soil moisture and surface flux 

observations also have been collected as a result of various field experiments.  The 

Wangara experiment in southeastern Australia (Clarke et al. 1971) yielded quality 

data from the surface layer and the PBL used to test many numerical boundary layer 

simulations (Hess et al. 1981).  A team of scientists in France conducted the 
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Hydrologic Atmospheric Pilot Experiment-Modelisation du Bilan Hydrique 

(HAPEX-MOBILHY; Andrè et al. 1986) program to collect land surface and 

atmospheric data using both remote and in situ methods with a focus on developing 

land surface parameterizations for GCMs.  Since interactions between the atmosphere 

and the land surface require interdisciplinary cooperation to understand, the First 

International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment 

(FIFE; Sellers et al. 1988) was developed.  Scientists from many different fields 

worked with the land surface data collected during FIFE to better characterize the role 

of biology in land-atmosphere interactions and to evaluate the use of satellite 

observations to infer land surface parameters.  A temporary surface observing 

network was constructed on the steppe and irrigated farmland of northeastern Oregon 

in order to provide flux data for the testing of PBL forecasting models (Doran et al. 

1992).  Atmospheric soundings showed that the surface energy balance played a large 

role in determining the PBL depth, but advection of sensible heat flux from the steppe 

to the irrigated farmland and thermally driven mesoscale fluxes were also important 

(Doran et al. 1995).  Data including wind, radiation, soil temperature and surface 

fluxes were collected at Cabauw, the Netherlands in 1987 with the purpose of 

building a dataset by which land surface schemes could be tested (Beljaars and 

Bosveld 1997).  To form a continuous time series, missing observations were filled in 

by model output.  The Cabauw data were used to assess the spread and skill of 

predictions generated by the land surface schemes included in the PILPS study (Chen 

et al. 1997).  The Walnut River watershed in southeastern Kansas was heavily 

instrumented with land surface data collection equipment, including a soil moisture 
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array, for the Cooperative Atmosphere Surface Exchange Study and Atmosphere 

Boundary Layer Experiments (CASES and ABLE; LeMone et al. 2000) with the 

network intended for long-term use in addition to short, intense field programs.  The 

CASES project provided a unique opportunity for land surface scheme validation 

with the ARM/CART site, along with several radars and profilers, located nearby. 

     Not only has the obtaining of land surface field measurements provided data to 

which forecast model output may be compared, but these same measurements can be 

used to improve model analyses of the state of the land surface via assimilation.  In 

lieu of the assimilation of actual land surface observations, however, many surface 

parameters are often estimated using known quantities.  Holtslag and van Ulden 

(1983) described the estimation of surface fluxes from wind speed at one level, the 

screen temperature and cloud cover using similarity theory.  Though their net 

radiation and flux estimates greatly improved by using measured rather than 

calculated solar radiation, their scheme agreed well with observations on average.  

Spatially and temporally averaging both surface fluxes and gradients can produce 

counterintuitive results, so Mahrt (1987) used a small-scale model in individual grid 

boxes of a larger-scale numerical model to discover relationships between grid-

averaged surface fluxes and grid-averaged flux gradients.  A new formulation relating 

area-averaged quantities was developed, but at the time no datasets existed by which 

the formulation could be adequately tested.  Peters-Lidard et al. (1998) showed that 

errors in soil thermal conductivity caused errors in the ground heat flux, which 

primarily fed back into the sensible heat flux and the surface temperature.  They used 

a different thermal conductivity parameterization that reduced the ground heat flux 
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errors, as compared to data from FIFE (Sellers et al. 1988), resulting in better 

estimation of the components of the surface energy balance.   

     Soil moisture has also been initialized indirectly using conventional observations.  

Smith et al. (1994) indirectly determined soil moisture values by generating soil 

wetness fields using a hydrologic model.  Comparison with soil moisture observations 

showed that the fields derived by the hydrologic model were more realistic than 

climatological fields, but no verification of affected atmospheric model variables was 

conducted.  Calvet et al. (1998) attempted to retrieve the total soil moisture content 

and the field capacity from surface soil moisture and surface temperature, comparing 

their results to observations from a single site in France in 1995.  They pointed out 

that during wet conditions, this method would suffer because surface temperature is 

not very sensitive to total soil moisture content.  Soil moisture profiles obtained by 

Jones et al. (1998b) by assimilating satellite-derived heating rates into a three-

dimensional mesoscale model were found to be realistic when compared with 

microwave, precipitation, and radar data.  Xu and Zhou (2003) developed a simple 

linear regression method for retrieving soil water content from Oklahoma Mesonet 

soil temperature measurements at varying depths.  Comparisons against measured soil 

water content showed that root mean square (rms) differences between the 

measurements and the soil water content calculated using regression were smaller 

than the soil water content observation error. 

     In addition to estimating the values of land surface parameters using known 

quantities, indirect and direct assimilation of soil moisture estimates and 

measurements into land surface parameterizations and LSMs has been carried out in 
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an attempt to improve the simulation of land-atmosphere interactions.  Assimilation 

of soil moisture began with indirect methods.  Mahfouf (1991) assimilated soil 

moisture values, which were estimated from near-surface atmospheric parameters, 

using variational and sequential techniques into a one-dimensional model with an 

attached land surface parameterization.  Both methods produced soil moisture fields 

that converged to realistic values for clear-sky periods when compared to 

observations taken during the HAPEX-MOBILHY experiment (Andrè et al. 1986), 

favoring the use of the sequential method due to the lower computational cost.  

Exploration of the feasibility of the sequential method, or optimal interpolation (OI), 

for assimilating soil moisture was continued by Bouttier et al. (1993a), who found 

coefficients arising from the relationship between soil moisture and atmospheric 

parameters.  They discussed the sensitivity of low-level atmospheric parameters to 

soil and vegetation properties, finding that the OI coefficients were extremely 

sensitive to vegetation cover.  Bouttier et al. (1993b) also tested their assimilation 

method with a three-dimensional mesoscale model and found that their soil moisture 

analyses converged to reference values within around 48 h, despite the fact that the 

relationship between soil moisture and the atmosphere is nonlinear.  Convergence 

was the fastest for the deep soil reservoir over vegetated areas and for the surface soil 

reservoir over bare ground. 

     The development of indirect assimilation techniques for soil moisture and surface 

fluxes has continued as an alternative to initialization from climatological databases 

or previous forecasts.  Satellite-derived evaporation measurements were used to 

update soil moisture on a daily basis by van den Hurk et al. (1997), and model runs 
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incorporating these updates reduced low-level temperature and humidity biases when 

compared with forecasts from climatological soil moisture fields for a 7-day period 

on the Iberian Peninsula.  However, their model only included one soil layer, 

neglecting the long-term persistence of deep soil moisture.  Jones et al. (1998b) 

assimilated satellite-derived infrared heating rates into the Regional Atmospheric 

Modeling System (RAMS), which included eleven soil layers, in an effort to retrieve 

soil moisture fields.  Realistic soil moisture profiles were obtained that demonstrated 

the effectiveness of the surface parameterization, but a call for more case studies with 

a variety of conditions was made.             

     Land surface description in French global and limited area atmospheric models 

was upgraded from a simple scheme to the Interaction Soil Biosphere Atmosphere 

(ISBA) parameterization (Giard and Bazile 2000).  Soil moisture analyses under the 

ISBA parameterization are determined through an OI procedure using 2 m 

temperature and relative humidity observations, and the incorporation of ISBA 

resulted in substantial surface modeling improvements for short-term forecasts.  

Margulis and Entekhabi (2003) used a variational method to assimilate air 

temperature, humidity and radiometric surface temperature measurements into a one-

dimensional PBL model, finding that much improved estimates of surface fluxes were 

made by using both reference-level and surface data as opposed to either type by 

itself.  “Accurate and robust” surface flux values were calculated in tests with 

synthetic and FIFE data, including when factors not parameterized such as advection 

were important.  Soil moisture data from the NCEP-NCAR reanalysis were used by 

Zhang and Fredericksen (2003) in a Bureau of Meteorology Research Centre 
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(BMRC) GCM to examine the effects of replacing climatological soil fields on 

modeling of climate anomalies in surface temperature and rainfall.  They found that 

soil moisture anomalies had indirect effects on rainfall due to changed circulations in 

addition to the direct effects on localized surface temperature.  Rodell et al. (2004) 

described an offline land data assimilation system (LDAS) compiling high-resolution 

global land surface analyses from mostly satellite observations.  The LSMs used to 

generate analyses through assimilation techniques were forced with observation-

based atmospheric fields to avoid incorporating biases from atmospheric models. 

     Direct assimilation of land surface observations, as well as land data assimilation 

using Kalman filter-type approaches, has been shown to be feasible.  A 4D-Var 

method was used by Ruggiero et al. (1996) to assimilate surface observations at 

frequent intervals, and the influence of the changes in the background surface field 

were spread upward via the eddy diffusivity in a PBL adjustment scheme.  The more 

frequent PBL adjustment resulted in better analyses and forecasts from both 3 h and 

12 h assimilation cycles, indicating that such frequent surface assimilation could 

provide more accurate short-term predictions.  Alapaty et al. (2001) continuously 

assimilated analyses of surface temperature and mixing ratio into a one-dimensional 

model, correcting model sensible and latent heat fluxes using differences between 

observations and model results.  Since surface boundary conditions have a 

pronounced effect on the PBL, modifying surface flux values often according to 

frequent assimilation of surface temperature and mixing ratio resulted in improved 

lower atmospheric virtual potential temperature and mixing ratio profiles.  Three 

simulations with varying soil moisture over North America were run by Walker and 
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Houser (2001) to test the length of time needed for the assimilation of soil moisture 

data to reduce error in the model fields of a GCM.  In situ soil moisture data are not 

appropriate for a GCM due to their spatial variability, so remotely sensed data from 

the ISLSCP experiment were used.  Synthetic observations generated from the 

ISLSCP soil moisture data set were assimilated into a model run with arbitrarily high 

soil moisture continent-wide using a one-dimensional Kalman filter, and the resulting 

model fields matched closely with the ISLSCP fields within one month.  Crow and 

Wood (2003) assimilated remotely sensed brightness temperature observations, which 

can help to increase the vertical depth and horizontal resolution of soil moisture 

information, using an EnKF (Evensen 1994) method.  Though the EnKF method 

sometimes spuriously produced non-Gaussian error structures and biased forecasts of 

root-zone soil moisture, it was viewed by the investigators as an “effective and 

computationally competitive” land data assimilation method.  The assimilation of 

brightness temperature produced better soil moisture analyses than direct assimilation 

of satellite soil moisture or low-resolution precipitation data. 

     More recent experiments involving the assimilation of various types of land 

surface and near-surface observations have shown continued potential to improve 

both analyses and forecasts of near-surface atmospheric variables.  Hacker and 

Snyder (2005) assimilated simulated surface observations of screen-level potential 

temperature, wind speed, and mixing ratio into a one-dimensional PBL model using 

an EnKF approach to test the usefulness of such observations for improving the 

model estimate of the PBL state.  In their idealized experiment, they showed that the 

error in key PBL variables relative to their truth simulation was reduced when the 
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PBL was constrained by the EnKF assimilation.  Through observing system 

simulation experiments during a winter cyclogenesis event, Zhang et al. (2006) 

demonstrated the effectiveness of the EnKF in keeping analyses close to the truth 

simulation.  Simulated sounding and surface observations were assimilated over a 24 

h period, after which the domain-averaged root mean square error (rmse) of the wind 

and temperature fields was comparable to typical observation errors.  Godfrey (2006) 

replaced climatological soil and vegetation fields in the MM5 with analyzed fields 

created from soil observations from the Oklahoma Mesonet and observed vegetation 

information from the Advanced Very-High Resolution Radiometer (AVHRR), 

reporting the most substantial forecast improvements from runs using the new soil 

data.  Actual surface observations from across the United States were assimilated 

using an EnKF approach by Fujita et al. (2007) with the goal of improving short-

range forecasts of mesoscale features.  Three different ensembles were formed using 

different combinations of varying initial and boundary conditions and varying the 

physical parameterizations included.  The largest ensemble spread and the most 

accurate forecasts were achieved when varying both, with improvements in the 

forecasting of mesoscale boundaries and PBL structure especially important to 

making more useful short-term forecasts of severe weather. 
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Chapter 3  

Experiment setup 

 

     In an effort to meet the goal of improving initial analyses of near-surface variables 

derived from NWP models by including various observations obtained at the surface, 

data from the Oklahoma Mesonet (Brock et al. 1995; McPherson et al. 2007) are 

assimilated into the Fifth-Generation Pennsylvania State University-National Center 

for Atmospheric Research Mesoscale Model (MM5; Dudhia 1993) using an EnKF 

scheme.  Initial analyses are created on a domain covering the continental United 

States (CONUS) following the methodology of Fujita et al. (2007).  The ensemble 

members are initialized from Global Forecast System (GFS) analyses on a large grid 

covering much of the Northern Hemisphere including North America, northern South 

America, and parts of both the Atlantic and Pacific Ocean.  Bred modes are created 

via forecasts on this grid to develop perturbations among the members.  The model 

then is re-initialized with GFS data on a domain consisting of primarily the CONUS 

and the perturbations from the bred modes are added to the members.  Once this is 

done, 48 h forecasts are run on the CONUS domain.  One-way nesting is applied 

twice with additional 48 h forecasts integrated on two higher-resolution domains.  On 

the domain with the highest resolution, which encompasses the body of the state of 

Oklahoma, three 48 h forecasts are made: one with no assimilation, one with standard 
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Mesonet data assimilated every hour using the EnKF scheme, and a third with hourly 

assimilation of sensible heat flux estimates.  Each ensemble member uses perturbed 

boundary conditions as well as a unique set of initial conditions.  Analyses and 

forecasts generated with and without Mesonet data assimilation are then verified and 

compared with both NWS and Oklahoma Mesonet observations to test the 

effectiveness of the EnKF assimilation in reducing analysis error in low level 

temperature and mixing ratio. 

 

3.1     Data 

 

     3.1.1     Oklahoma Mesonet data 

 

     The Oklahoma Mesonet (Brock et al. 1995; McPherson et al. 2007) and the 

Oklahoma Atmospheric Surface-layer Instrumentation System (OASIS; Brotzge 

2000) provide a unique long-term data set of standard meteorological measurements 

as well as surface data such as soil temperature, soil moisture, net radiation and 

surface heat fluxes.  Standard measurements used in this study include temperature 

and relative humidity at 1.5 m, wind direction and wind speed at 10 m, and station 

pressure.  These measurements are taken from approximately 110 Mesonet sites.  In 

addition, soil temperature is measured at depths of 5 cm, 10 cm and 30 cm.  Soil 

moisture estimates at 90 OASIS Mesonet sites are determinable from the 

measurement of the calibrated change in temperature of the soil over time after a heat 

pulse is introduced (Oklahoma Climatological Survey 2005).  Sensors performing this 
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function are placed at 5 cm, 25 cm, 60 cm, and 75 cm depths.  Ground heat flux and 

skin temperature are measured at 84 OASIS sites.  Nine Mesonet sites are designated 

as OASIS super sites and measure sensible and latent heat flux using an eddy 

covariance technique.  However, directly estimated latent heat flux data are not 

released by the Oklahoma Climatological Survey (OCS), so the residual of the 

surface energy balance is used for the latent heat flux.  Four-component net radiation 

is also measured at the super sites.  A domeless net radiometer, the NR-Lite (Brotzge 

and Duchon 2000), measures total net radiation at the majority of the sites in the 

OASIS network.  Sensible heat flux can be estimated at around 100 sites using a 

gradient method, since temperature and wind sensors are placed at two heights 

(Brotzge and Crawford 2000). 

     These additional data observed by the OASIS network have been used in a number 

of applications.  Brotzge and Crawford (2000) confronted issues with estimating 

sensible heat flux using the gradient method including sensor errors and fetch 

variations.  They also compared profile sensible heat flux estimates to eddy 

correlation estimates, finding that conditions conducive to large radiational heating 

errors resulted in the largest differences between the flux estimates.  OASIS data were 

used to measure the effectiveness of the Interaction Soil Biosphere Atmosphere 

(ISBA) land surface parameterization (Noilhan and Planton 1989) within the 

Advanced Regional Prediction System (ARPS) run in 1-D vertical column mode by 

Brotzge and Weber (2002).  They were able to conclude that the sensitivity of ISBA 

to input parameters was detrimental to its use with a mesoscale/microscale model 

such as the ARPS.  OASIS data have been used to compare flux estimation methods 
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(Brotzge and Crawford 2003), to calculate spatial and temporal correlations between 

measurements at various Mesonet sites (Brotzge and Richardson 2003), to test the 

performance of the land surface parameterization in the operational Eta Model 

(Marshall et al. 2003), and to evaluate NCEP-NCAR reanalyses of the surface water 

and energy budgets (Brotzge 2004). 

 

     3.1.2     Sensible heat flux estimation method 

 

     With only nine Mesonet sites measuring sensible heat flux by way of an eddy 

covariance technique, an additional method is needed if enough sensible heat flux 

estimates to influence the entire model domain upon assimilation are to be generated.  

Brotzge and Crawford (2000) demonstrated that sensible heat flux estimates may be 

calculated from temperature and wind speed measured at two different levels.  For 

this study, sensible heat flux estimates are calculated using a variant of an iterative 

profile method.  The iterative profile method is applied to each five-minute 

observation within a 30 m time window, and these seven sensible heat flux estimates 

are averaged to come up with the estimate for inclusion in the EnKF assimilation 

process. 

     The underlying theory behind iterative profile methods for estimating surface 

fluxes is covered thoroughly in boundary layer meteorology textbooks (Stull 1988; 

Sorbjan 1989; Garratt 1994) and will not be repeated in full here.  However, one 

important assumption made in order to use this profile method that may affect the 

resultant flux estimates must be discussed.  Standard OASIS Mesonet sites do not 
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measure humidity at two levels, so the standard formulation of the iterative profile 

method must be simplified.  The equation for the Monin-Obukhov length may be 

written as 

 

                                                        (8) 

 

where L is the Monin-Obukhov length,  is the friction velocity, κ is the von 

Karman constant, g is the acceleration of gravity,  is the buoyancy parameter 

where θv0 is a reference value for virtual potential temperature,  is the temperature 

turbulence scale, and  is the humidity turbulence scale.  Since standard OASIS 

Mesonet sites do not measure humidity at two levels, it is necessary to neglect the 

humidity terms in eq. (8).  The new equation for Monin-Obukhov length thus reads 

 

                                                                  (9) 

 

with 

 

                                                                  (10) 

 

where T0  is a reference value of temperature, in this study taken to be the mean of the 

temperature measurements at both levels.  All other symbols have the same meaning 

as in eq. (8). 
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     The humidity turbulence scale ( ) tends to be negative during the day in summer, 

as atmospheric moisture decreases with height near the surface.  Therefore, 

neglecting the moisture term in eq. (8) will make the denominator of smaller 

magnitude, leading to larger negative values of L during the day when the surface 

layer is unstable.  This results in the effects of wind shear having incrementally more 

weight than they should versus the effects of buoyancy in determining the sensible 

heat flux.  The expressions for  and  are 

 

                                       (11) 

 

and 

 

                                       (12) 

 

where Δu = u2 - u1 is the difference between the two wind speed measurements, Δθ = 

θ2 - θ1 is the difference between the two temperature measurements, zux signifies the 

height of a wind measurement, zθx signifies the height of a temperature measurement, 

and Ψm and Ψh are deviations of the velocity and temperature profiles, respectively, 

from a logarithmic profile (Dyer and Hicks 1970; Dyer 1974).  These deviations are 

due to differences in stability. 
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FIG. 3.1: Mesonet sensible heat flux estimates calculated using a simple gradient method 
(black), the profile method explained in Section 3.1.2 (blue), and eddy correlation 
instrumentation (red), as well as sensible heat flux estimates from the Noah LSM (green). 
Values are for the location of the Mesonet station at Idabel in southeastern Oklahoma from 12 
UTC on 1 August 2004 to 12 UTC on 3 August. Sensible heat flux values along the y-axis are 
in W m-2, while time is designated along the x-axis. 
 
 
     This iterative profile algorithm yields lower values of sensible heat flux than a 

simple gradient method during peak boundary layer heating.  In addition, the values 

are acceptable at most sites when compared with eddy correlation estimates as well as 

flux values calculated by the Noah land surface scheme within MM5.  For example, 

sensible heat flux estimates from Idabel, OK in early August of 2004 (Fig. 3.1) are 

lower during the day calculated via the profile method or eddy correlation method 

compared with a simple gradient method.  Sensible heat flux estimates from the Noah 

LSM tend to be lower than any estimate using Mesonet data during the daylight 

hours.  At night, sensible heat flux estimates are near zero except when the simple 

gradient method is used. 
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3.2     Model 

 

     The atmospheric model chosen for this study, the MM5, is a three-dimensional 

nonhydrostatic sigma-vertical coordinate model that may be initialized by 

interpolating output from a coarser-grid model to a smaller grid area with higher 

spatial resolution (Dudhia 1993).  The MM5 modeling system includes both pre- and 

post-processing programs in addition to the actual code comprising the model itself.  

Terrain elevation of varying resolution, vegetation data and soil type data from the 

United States Geological Survey (USGS) are used to initialize the land surface 

characteristics in each domain.  Analyses at 1°X 1° horizontal resolution from the 

GFS, a model which is part of the NCEP operational model suite, are used in these 

experiments to initialize MM5 atmospheric variables.  Forecasts are generated on four 

nested domains; the horizontal resolutions of the four domains are 81 km, 27 km, 9 

km and 3 km, respectively.  The coarsest-domain forecasts include 24 sigma levels, 

with the number of levels increased in the boundary layer as the horizontal resolution 

increases such that domain 4 includes 26 sigma levels. 

     The MM5 modeling system is flexible in the number of parameterization schemes 

available to choose from.  The schemes cover convection, radiation, land surface 

processes, moisture physics and boundary layer processes.  For the largest domain 

encompassing all of North America and most of the north Atlantic and north Pacific 

oceans, the Betts-Miller-Janjic convective parameterization is chosen due to its 

suitability for coarse resolution forecasts (Dudhia et al. 2005).  Other 

parameterization schemes used include the MRF PBL scheme (Hong and Pan 1996), 
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a simple ice microphysics parameterization which explicitly predicts cloud and rain 

water but melts snow immediately below the freezing level (Dudhia 1989), and the 

NCAR CCM2 radiation scheme (Hack et al. 1993).  The CCM2 scheme is also 

chosen due to its suitability for larger grid scales.  For the next two domains, the 

Kain-Fritsch convective parameterization (Kain and Fritsch 1993) and the Dudhia 

cloud-radiation scheme (Dudhia 1989) are substituted for the Betts-Miller-Janjic 

convective parameterization and the CCM2 radiation scheme.  No convective 

parameterization is used for the fourth domain because the 3 km resolution makes the 

use of a convection scheme unnecessary. 

     In addition to atmospheric parameterization schemes designed to model processes 

occurring at the sub-grid-scale, a land surface parameterization is necessary to 

account for processes occurring on and below Earth’s surface.  The Noah LSM (Pan 

and Mahrt 1987; Chen et al. 1996; Schaake et al. 1996; Betts et al. 1997; Chen et al. 

1997; Chen and Dudhia 2001a,b; Ek et al. 2003) is used for all four domains in this 

study.  Additional input fields beyond those necessary for the initialization of MM5 

which Noah requires are annual mean deep-soil temperature, vegetation fraction, 

dominant soil and vegetation types, soil moisture and soil temperature at various 

depths, snow depth and sea ice.  Annual mean deep-soil temperature, vegetation 

fraction and soil/vegetation type data are acquired from the MM5 modeling system 

climatological data, while soil moisture and soil temperature data at 10 cm and 200 

cm are obtained from the GFS analyses.  A maximum snow albedo is used in the 

Noah LSM to prevent the albedo value from becoming too high in the presence of 

snow cover.  Noah outputs soil temperature and moisture at four levels (5, 25, 70, and 
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150 cm), canopy moisture and snow amount information, runoff accumulation both at 

the surface and below ground, and albedo.  The MRF PBL scheme passes surface-

layer exchange coefficients, radiative forcing and precipitation rate to Noah, and 

Noah outputs the values of the surface fluxes.  These data are then available to the 

MM5 for use in calculating the values of near-surface atmospheric variables. 

 

 
 

FIG. 3.2: Domain 1, used for the purpose of creating bred modes. 

 

3.3     Creation of bred modes 

 

     The coarsest model domain is a 110x171 point grid with an 81 km horizontal 

resolution and 24 sigma levels in the vertical covering much of the Western 

Hemisphere north of the equator (Fig. 3.2).  The model terrain and land use 

parameters are initialized from global data provided by the USGS.  The initial states 

of both atmospheric and land surface variables are created by interpolating data from 

GFS global analyses to the MM5 grid.  Boundary conditions also are created from 
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GFS analyses for the whole length of the forecast.  After the development of this 

initial control analysis, a Monte Carlo technique (Errico and Baumhefner 1987) is 

used to perturb temperature, U and V wind, height, specific humidity and sea level 

pressure.  Twenty-five perturbed initial pressure-level analyses are created via this 

technique.  Sigma-level analyses and perturbed boundary conditions for introduction 

into MM5 are formed from the perturbed analyses.  Once the analyses are created, a 

12 h MM5 forecast is run starting from the control analysis and each perturbed 

 

 

 

FIG. 3.3: Ensemble Kalman filter forecast one-way nested domains. 

 

analysis.  The values of the variables in the control forecast are then subtracted from 

each perturbation forecast, after which the differences are rescaled to the sizes of the 

initial perturbations and added back to the control forecast to create new perturbed 

analyses.  A new 12 h MM5 forecast is run following the re-scaling of perturbations, 
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and the cycle is repeated until stopped.  This methodology follows that of Fujita et al. 

(2007) and was developed from the earlier work of Toth and Kalnay (1993). 

     Once the BGM process ending at 84 h (3.5 days) has been run and the 

perturbations have been rescaled, the initial conditions and boundary conditions for 

the EnKF data assimilation period are created.  The initial number of perturbations is 

doubled by subtracting the existing perturbations from as well as adding them to the 

control analysis, enabling a run with 51 ensemble members (50 perturbations plus 

control).  A final forecast on the 81 km grid is run for the length of the EnKF data 

assimilation period for all 51 ensemble members.  Forecast atmospheric and land 

surface data are output and archived every 3 h.  Following their creation, the 

boundary condition files for each of the ensemble members are vertically interpolated 

back to pressure coordinates from sigma coordinates.  The pressure coordinate files 

are then horizontally interpolated to domain 2, a 110x171 grid with a 27 km 

 

 

 

FIG. 3.4: Schematic diagram showing how ensemble members are developed. 
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horizontal resolution covering the CONUS (Fig. 3.3).  After the horizontal 

interpolation to the finer grid, the pressure level data are interpolated back to sigma 

levels, of which there are 24 in the new domain.  A schematic diagramming the 

process of initializing the ensemble members is included in Figure 3.4. 

     Having the files necessary to initialize all of the ensemble members on the 

CONUS domain, the EnKF assimilation can begin. 

      

 

FIG. 3.5: Schematic diagram depicting process of initializing the 3 km (smallest) domain. 

 

     3.4     Ensemble Kalman filter assimilation 

 

     Surface observations from the Oklahoma Mesonet are the only data assimilated in 

these experiments, so a domain encompassing the body of the state of Oklahoma is 

chosen for the model runs including assimilation.  In order to obtain the desired initial 

conditions for a run on such a domain, a one-way nesting procedure is used.  

Atmospheric variables for the control run over domain 2, which has a 27 km 
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horizontal resolution and covers primarily the CONUS, are initialized from GFS 

analyses using the same approach as for the atmospheric variables on domain 1.  The 

other ensemble members are initialized similarly from the bred modes data.   

Forecasts spanning the entire length of the EnKF assimilation period are generated 

from the domain 2 initialization, after which initial conditions and boundary 

conditions are formed on a 9 km horizontal resolution (domain 3; Fig. 3.3) grid by 

horizontally interpolating from the coarse grid to the fine grid (Fig. 3.5).  Once again, 

forecasts over the EnKF assimilation period are run and horizontal interpolation takes 

place, this time to a 3 km horizontal resolution grid (domain 4; Fig. 3.3).  An 

additional sigma level is also added during both interpolations to increase the 

resolution in the PBL, and vertical interpolation from the coarse grid to the fine grid 

is used to create the new vertical profiles.  A 1 h forecast is run from the domain 4 

initial conditions, after which the assimilation of Mesonet data begins. 

     To prepare for comparison of the model output with observations, two-

dimensional model fields corresponding to Mesonet observations of 1.5 m 

temperature and 1.5 m relative humidity are calculated.  Other calculated fields which 

are needed prior to computing variable types corresponding to observations include 

total pressure on sigma levels, geopotential height and Monin-Obukhov length.  A 

background file is written with both three-dimensional and two-dimensional fields.  

Three-dimensional horizontal and vertical wind, temperature, water vapor mixing 

ratio, pressure perturbation and geopotential height are saved.  Additionally, the two-

dimensional p* field (an MM5 pressure variable), two layer soil temperature and 

three layer volumetric water content fields; sensible, latent and ground heat flux 
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fields; friction velocity and terrain height fields are retained.  With the exception of 

terrain height, these three- and two- dimensional fields are updated using the EnKF 

scheme. 

     Following the formation of the background file, model forecasts of each of the 

Mesonet variables chosen for assimilation are bilinearly interpolated from the grid to 

the observation locations.  Surface pressure observations are adjusted hypsometrically 

using a standard environmental lapse rate of 6.5 K/km to account for the difference 

between the terrain height interpolated from the grid and the actual terrain height at 

the observation location.  If the absolute value of the height difference is greater than 

300 m, the pressure observation is discarded.  The interpolated background values not 

in the units of the Mesonet observations are converted to allow direct comparison.  

Finally, a second file containing the Mesonet observations along with the converted, 

interpolated background values from the model grids is written. 

     Once the background and observations files are created, observations are 

assimilated sequentially to update the forecast fields.  Each observation alters the 

analysis, so variables such as Monin-Obukhov length, surface pressure, temperature, 

wind and mixing ratio must be re-calculated at grid points near the observation for 

each ensemble member before the observation is run through the Kalman filter.  The 

model background value of the observed variable at the observation location for each 

ensemble member is bilinearly interpolated from the nearby grid points to the 

observation point.  The ensemble average background value is computed once all of 

the background values have been calculated for each of the individual members.   
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     Five three-dimensional fields and ten two-dimensional fields are then updated 

using the EnKF scheme.  These fields include all of those contained in the 

background file with the exception of terrain height.  In particular, soil temperature 

values from the top two soil layers and soil moisture values from the top three soil 

layers in the Noah LSM are updated.  Soil temperature values from the lowest two 

soil layers, as well as soil moisture values from the lowest soil layer, change so little 

over a 48 h period that updating of these variables is omitted for the sake of saving 

computer time.  Each of the Mesonet observations is processed serially according to 

the following EnSRF (Whitaker and Hamill 2002) equations (Snyder and Zhang 

2003; Dowell et al. 2004; Fujita et al. 2007): 

 

                                                  (13) 

                                 (14) 

 

where an overbar denotes an ensemble mean value, n is an index pertaining to a 

particular ensemble member, xa is an analysis value from a model field, xf is a 

forecast (background) value from a model field, W is a smoothly-varying localization 

weight, yo is an observation at a single point, xf is a vector containing the values of all 

of the model background fields at all of the grid points, and H is an operator that both 

converts the units of model background variables into those used by the Mesonet and 

bilinearly interpolates the background values from grid points to observation 

locations. 
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     The weight W in eq. (13) and eq. (14) is proportional to the inverse of the 

exponential function and is used to decrease the magnitude of the change each 

observation makes to the background value as the distance from the observation 

location to the grid point increases.  A horizontal localization radius of 150 km is 

chosen based on the examination of spatial correlation structures plotted at 18 UTC 1 

August 2004; due to the use of a range factor of 1.5 grid points as far as 225 km from 

the observation location can still be slightly modified.  A vertical localization radius 

of ten grid points is selected to ensure that the near-surface observations can influence 

the analysis throughout the depth of the PBL.  Pressure observations are allowed to 

influence the analysis throughout the entire vertical column.   

     The Kalman gain K in eq. (13) and eq. (14) and the factor β in eq. (14) are given 

by 

 

                                   (15)                                                                     

                             (16) 

 

where N represents the total number of ensemble members, σo
2 is the observation 

error variance, and the other symbols have the same meaning as in eq. (13) and eq. 

(14).  The first term in the summation in the numerator of eq. (15) is the difference 
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between the value for ensemble member n and the ensemble mean value of a model 

background field at a specific grid point.  The second term is the difference between 

the value for ensemble member n and the ensemble mean value of the model 

background estimate of the variable being assimilated at the observation location.  

Therefore, the Kalman gain K at a point may be interpreted as the error covariance of 

the model background grid point value of the field being updated and the model 

background estimate of the observation being assimilated divided by the total 

(observation + background) error variance at the observation location.  If the 

covariance is large, the analysis increment will be larger, and vice versa.  The β term 

defined in eq. (16) appears in eq. (14) because EnSRF schemes do not use perturbed 

observations (Whitaker and Hamill 2002).  When σo
2 is large relative to the 

background error variance, β is small and eq. (14) tends toward using to 

calculate the innovation determined by the observation for each ensemble member.  

However, when σo
2 is small relative to the background error variance, β approaches 1 

and eq. (14) tends toward using to calculate each innovation. 

     Though model grid point sensible heat flux values will be re-calculated by the 

Noah land surface model during the first time step following assimilation, effectively 

eliminating the changes to model sensible heat fluxes resulting from the EnKF 

update, each Mesonet estimate is used to modify model fluxes in preparation for the 

assimilation of the next Mesonet estimate.  The EnKF scheme described in the 

preceding paragraphs updates the model fluxes in accordance with the covariance 

between the model sensible heat flux at the grid point being updated and the model 

estimate of the observed sensible heat flux.  In nature, sensible heat fluxes vary on a 
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much smaller scale than a model with 3 km horizontal grid spacing may reasonably 

resolve. 

 
 

FIG. 3.6: Schematic diagramming the EnKF data assimilation process. 
 

 

     As an alternative and for comparison with the “original” EnKF scheme, a 

physically-based “new” scheme provides another method by which to update the 

model sensible heat flux values with each assimilated Mesonet heat flux estimate.  

Through an analogy with Ohm’s law, the sensible heat flux at a point on Earth’s 

surface may be represented by the following equation: 

 

                                                 (17) 

 

where ρ is the density of air, cp is the specific heat of air at constant pressure, Ts is the 

temperature of the topmost soil layer, Ta is the near-surface air temperature, and ΩH is 
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a “resistance” dependent on the properties of the medium in which the flux is 

considered (Berkowicz and Prahm 1982).  The variables Ts  and Ta are updated using 

the EnKF scheme.  Making the assumption that ρ, cp and ΩH are constants, and 

denoting Ts - Ta by ΔT, model grid point sensible heat flux values are updated via the 

following relation: 

 

                                                     (18)                 

 

which, solving for the new sensible heat flux value, yields 

 

.                                                 (19) 

 

     After all of the valid Mesonet observations pass through the EnKF scheme, the 15 

model output fields from the 1 h forecast that were updated through assimilation are 

replaced with the newly analyzed fields.  Once a model restart file has been formed 

from the newly generated analyses and adjustments, MM5 may be restarted and run 

for another 1 h time period.  An overview of the EnKF assimilation process followed 

in this study can be referred to in Figure 3.6.  Mesonet observations are assimilated 

every hour during a 48 h period (12 UTC 1 August 2004 – 12 UTC 3 August 2004) to 

show their effect during two complete diurnal cycles. 

 



 
 

67 

 

 

 

Chapter 4 

Results from model simulations 

 

     The time period over which the EnKF assimilation scheme is tested extends from 

12 UTC 1 August – 12 UTC 3 August 2004.  The 500 mb geopotential height 

analysis from 12 UTC 1 August shows a broad ridge with an axis just east of the 

Rocky Mountains spreading over the central and southern Plains.  Some cloudiness 

was observed in far eastern Oklahoma during the afternoon of 1 August and limited 

high clouds were observed in northern and eastern Oklahoma on 2 August, but 

otherwise the sky was clear over the entire body of the state for the duration of the 

period.  Winds in Oklahoma were affected by the presence of a surface ridge centered 

in southern Missouri and Arkansas and the presence of a surface low pressure system 

centered in western Kansas.  Afternoon winds in most locations in eastern Oklahoma 

were between 0 and 6 kt with varying direction, with winds in western Oklahoma 

being more in the 10-20 kt range and mostly southerly to southwesterly.  Radiosonde 

observations from Norman, Oklahoma (KOUN) at 12 UTC on 1 and 2 August 

indicate that warming and drying of the already dry atmospheric column above 750 

mb took place during the period.  Below 750 mb, the atmosphere moistened in 

association with southerly winds.  At 12 UTC 2 August, winds veered from southerly 
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at 750 mb to northwesterly at 200 mb.  The PBL top at 00 UTC 2 August was at 850 

mb, with the atmosphere well-mixed below that level. 

 

4.1     Spatially averaged error statistics 

 

     In an effort to evaluate the changes made to analyses of near-surface atmospheric 

variables by assimilating observations, three different MM5 ensemble forecast runs 

are compared.  One run (CTRL) is a simple forecast over the period with no data 

assimilation, with the second run (STD) including hourly assimilation of over 100 

Mesonet observations of 1.5 m temperature, 1.5 m relative humidity, 10 m wind, and 

surface pressure.  The third run (FLUX) assimilates only sensible heat flux estimates 

calculated from observations of wind and temperature at two levels from roughly 90 

Oklahoma Mesonet sites.  Ensemble mean fields from the model at each hour both 

before and after data assimilation are compared to measurements from the NWS 

observing network by calculating bias and root mean square error (rmse) statistics 

from the observations and analysis values of 2 m temperature and 2 m mixing ratio. 

     Patterns emerge from the 2 m temperature rmse plot (Fig. 4.1a).  Sunrise in 

Oklahoma City occurred at 1139 UTC 1 August, just prior to the beginning of the 

model simulations.  Sunset was at 0133 UTC 2 August, and the next sunrise was at 

1140 UTC 2 August.  Sunset on the evening of 2 August and sunrise on the morning 

of 3 August were within a minute of these times.  Error minima are located just after 

sunset and just before sunrise, a characteristic that should not be surprising given the 

tendency toward a warm bias at night and a cool bias during the day (Fig. 4.2a).   
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(a) 

(b) 

 

FIG. 4.1: Root mean square error comparing MM5 forecast values from the CTRL (black), 
STD (blue), and FLUX (red) runs to NWS observations of (a) 2 m temperature in °C and (b) 
2 m mixing ratio in g kg-1. 
 

Additionally, substantial error increases often are noted in all three runs following 

sunrise and sunset.  These changes may be attributable to transitions between a stable 

and an unstable PBL.  As mentioned in Section 3.1.2, separate sets of equations are 

used by PBL parameterizations for stable and unstable conditions, and this can lead to 

abrupt changes in model near-surface variables. 

     Differences between the 2 m temperature rmse values from the CTRL and STD 

runs begin to appear around 03 UTC 2 August.  The rmse from the CTRL and STD 

runs follow a similar path until this time, after which the assimilation process keeps 



 
 

70 

(a) 

 

 

(b) 

 

FIG. 4.2: Bias in MM5 forecast values from the CTRL (black), STD (blue), and FLUX (red) 
runs when compared to NWS observations of (a) 2 m temperature in °C and (b) 2 m mixing 
ratio in g kg-1. 
 

the rmse from the STD run on a general decreasing trend while the rmse from the 

CTRL run increases to 4.5ºC by 10 UTC 2 August.  The STD run rmse is about 0.2º - 

0.5ºC greater than the CTRL run rmse just after sunset and just before sunrise, but 

otherwise the STD run rmse is below that of the CTRL run through the end of the 48 

h assimilation cycle. 
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     The rmse from the FLUX run exhibits different behavior than the rmse from the 

other two runs.  The FLUX run rmse is less than the STD run rmse until 16 UTC 1 

August, when the FLUX rmse increases rapidly to a value near 5ºC at 20 UTC 1 

August.  Between 16 and 20 UTC, the assimilation of sensible heat flux estimates 

adds error to the temperature analysis, with the forecasts between each hour acting to 

reduce the error.  The FLUX rmse then follows a decreasing trend and reaches a value 

of about 1.6ºC at 06 UTC 2 August, then increases slightly.  The point in time where 

the trend reverses coincides with the point where the bias changes from negative 

(cool) to positive (warm) (Fig. 4.2a).  The FLUX run again has a greater rmse than 

either the CTRL or STD runs during the day on 2 August, but with the maximum 

rmse reaching only about 3.75ºC.  The FLUX run rmse reaches a minimum around 

sunset similar to the CTRL and STD rmse values, then follows just under the CTRL 

rmse through the overnight and early morning hours on 3 August. 

     A pattern may also be distinguished in the plots of 2 m mixing ratio rmse (Fig. 

4.1b).  Apart from a large jump at 01 UTC 2 August, the 2 m mixing ratio rmse from 

the CTRL and STD runs is similar during both the daytime and nighttime hours on 

the first day.  On the second day, the rmse is greater during the day than at night.  

Maxima in rmse occur near 00 UTC on both 2 and 3 August, the first around  

2.3 g kg-1 and the second about 2.1 g kg-1.  The 2 m mixing ratio rmse of both the 

CTRL and STD runs drop by around 1-1.5 g kg-1 in the following two to three hours 

after 00 UTC on each day.  On the first day, the assimilation of standard Mesonet 

observations prevents an increase in 2 m mixing ratio rmse in the STD run that is 

noted in the CTRL run between 20 and 21 UTC.  Additionally, though the rmse in the 
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STD run is greater than the rmse in the CTRL run by about 0.4 g kg-1 prior to 

assimilation at 01 UTC on 2 August, running the filter does result in an rmse 

reduction of approximately the same magnitude.  The 2 m mixing ratio rmse from the 

STD run remains relatively close to the rmse from the CTRL run throughout the 

majority of the 48 h assimilation period. 

     The 2 m mixing ratio rmse plot from the FLUX run is markedly different from the 

rmse plots from the other two runs during the first twenty-four hour period, but shows 

similar tendencies during the second twenty-four hour period.  The FLUX rmse is 

very close to the CTRL rmse through mid-morning on 1 August, at which point it 

begins a steady increase.  The 2 m mixing ratio rmse from the FLUX run reaches a 

maximum value of around 3 g kg-1 at 03 UTC 2 August, while the rmse values from 

the CTRL and STD runs are near 1 g kg-1 at the same time.  The FLUX rmse does not 

begin to decrease consistently until after 06 UTC 2 August, and it remains well above 

the rmse values from the CTRL and STD runs through the vast majority of the 

overnight and early morning hours.  The 2 m mixing ratio rmse from the FLUX run is 

lower during the daylight hours on the second day than during the daylight hours on 

the first day, and decreases noticeably at around sunset on the second day in line with 

the rmse values from the CTRL and STD runs. 

     The 2 m mixing ratio bias from the FLUX run (Fig. 4.2b) also shows 

characteristics not displayed in the biases of the STD and CTRL runs.  Forecasts of 

the 2 m mixing ratio from all runs have a local maximum bias at 01 UTC 2 August, 

and all have a dry bias of about 1.5 g kg-1 during the morning of 2 August.  They are 

fairly close to one another during the last twenty-four hours of the assimilation 
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period.  However, the FLUX run has a dry bias between 0.5 and 2.5 g kg-1 greater 

than the biases from the STD and CTRL runs from mid-day on 1 August until early 

morning on 2 August.  The bias values from the CTRL and STD runs are 

predominately near zero through this period. 

 

4.2 Two-dimensional surface analyses  

 

     As noted earlier, error statistics for the 2 m temperature and mixing ratio from the 

FLUX run are much different than those from the CTRL and STD runs, especially 

during the first twenty-four hours of the assimilation period.  Assimilation of sensible 

heat flux estimates usually increases the root mean square error in 2 m temperature 

during the day on 1 August, sometimes by a large margin (Fig. 4.1a).  These error 

increases result from the filter cooling temperatures by too much on average (Fig. 

4.2a).  Spatially averaged error in 2 m mixing ratio is also typically increased during 

this time (Fig. 4.1b), sometimes (but not always) due to the filter excessively 

decreasing the mixing ratio (Fig. 4.2b).  An upward change in 2 m mixing ratio of 

greater than 1.5 g kg-1 is noted at 15 UTC on 1 August, followed by several hours of 

comparatively small changes, mostly downward. 

     To look in greater detail at a case when the assimilation of sensible heat flux 

estimates increases the spatially averaged error in near-surface temperature and dew 

point, Oklahoma Mesonet analyses, 1 hr model forecasts and model analyses 

produced following assimilation from 16 UTC on 1 August are compared.  An  
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(a) 

 

 
 

(b) 

 

FIG. 4.3: Objective analysis of 16 UTC 1 August Mesonet observations of (a) 1.5 m 
temperature and (b) 1.5 m dew point. Contours are drawn every 2°F. 
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analysis of 1.5 m air temperature measurements from the Oklahoma Mesonet at 16 

UTC on 1 August places the warmest temperatures of just above 90°F in the 

northwestern corner of Oklahoma, decreasing to between 82°F and 84°F in the 

northeastern and southeastern corners of the state (Fig. 4.3a).  The 1.5 m dew point 

temperature analysis identifies a near-surface moisture gradient oriented from 

northwest to southeast across Oklahoma, with dew points measured at Mesonet sites 

ranging from around 66°F in far northwestern Oklahoma to around 78°F in far 

southeastern Oklahoma (Fig. 4.3b). 

     Prior to examining results from the model, a few caveats must be noted for clarity.  

For the sake of convenience, Mesonet analyses as well as model analyses and 

forecasts of temperature and dew point are displayed in degrees Fahrenheit.  This 

does make direct comparison with the area-averaged statistics in Section 4.1 more 

difficult; however, the purpose of those statistics is mainly to display relative trends 

with less concern for exact magnitudes.  Also, Mesonet temperature and moisture 

measurements are made at a height of 1.5 m while the analogous model output near-

surface values are at 2 m.  Speaking of temperature, if density were to be constant 

with height near the ground everywhere resulting in an autoconvective (maximum) 

lapse rate of approximately 34°C km-1, this discrepancy would result in the Mesonet 

1.5 m temperature analyses being uniformly about 0.3°F warmer than concurrent 2 m 

analyses.  Potential discrepancies in moisture at the two levels are somewhat less 

clear.  Finally, two-dimensional model plots are from the twenty-second member of 

the ensemble and are not from the ensemble mean.  It will be shown later that this 

decision has very little impact on the interpretation of results. 
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(c) 

 

FIG. 4.4: MM5 output 2 m temperature at 16 UTC 1 August (a) from the CTRL run; (b) as a 
STD-CTRL run difference; (c) as a FLUX-CTRL run difference. Contours are drawn every 
2°F. The black dot in SE Oklahoma denotes the grid point chosen for further discussion in 
Section 4.3. 
 

     The 2 m temperature bias plot (Fig. 4.2a) from Section 4.1 shows a negative 

temperature bias from all three runs at 16 UTC 1 August, and this bias is clear from 

examination of two-dimensional model output.  Aside from far northwestern 

Oklahoma where temperatures are near to only slightly below those from the Mesonet 

analysis (Fig. 4.3a), lowest model level temperatures from the CTRL forecast are 

from 3°F to 5°F too cool (Fig. 4.4a).  One would expect hourly updates of model 

forecast variables using the EnKF scheme to result in a model temperature field that 

more closely resembles the Mesonet temperature analysis.  Except for in small 

portions of east central and far eastern Oklahoma, lowest model level temperatures 

from the STD run at 16 UTC on 1 August are near to about 2°F above those from the  
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(c) 

 

FIG. 4.5: FLUX run 2 m temperature at 16 UTC 1 August (a) prior to assimilation of fluxes; 
(b) after assimilation of fluxes; (c) the difference between the two. Contours are drawn every 
2°F. The black dot in SE Oklahoma denotes the grid point chosen for further discussion in 
Section 4.3. 
 
 
CTRL forecast (Fig. 4.4b), meaning that the EnKF scheme produces a temperature 

change in the correct direction.  However, assimilation of sensible heat flux estimates 

fails to yield the desired improvement in the low level temperature field.  As in the 

STD run, only modest differences between the CTRL forecast and the FLUX run are 

noted across the northwestern half of Oklahoma (Fig. 4.4c).  Contrary to expectations, 

temperatures from the FLUX run are as much as 14°F cooler than the CTRL forecast 

in southeastern Oklahoma, despite the fact that temperatures from the CTRL forecast 

are already too cool there (Fig. 4.4a). 

     Large magnitude errors, locally greater than 15°F relative to the Mesonet analysis 

of near-surface temperature, initially develop in the FLUX run at 16 UTC on 1  



 
 

80 

 

 
 

(a) 

 

 

 
 

(b) 

 

 



 
 

81 

 
 

(c) 

 

FIG. 4.6: MM5 output 2 m dew point at 16 UTC 1 August (a) from the CTRL run; (b) as a 
STD-CTRL run difference; (c) as a FLUX-CTRL run difference. Contours are drawn every 
2°F. The black dot in SE Oklahoma denotes the grid point chosen for further discussion in 
Section 4.3. 
 
 
August (Fig. 4.1a; Fig. 4.5).  The 16 UTC forecast from the FLUX run prior to 

applying the filter is in reasonable agreement with the CTRL forecast valid at the 

same time, with similar error characteristics (Fig. 4.5a; Fig. 4.4a).  The analysis 

resulting from application of the EnKF scheme contains temperature values much 

lower than those observed in southeastern Oklahoma, with a minimum value of 66°F 

in central Pittsburg County (Fig. 4.5b).  Temperature reductions of greater than 4°F 

are isolated to roughly the southeastern quarter of Oklahoma, with much smaller 

reductions and even some appropriate modest temperature increases occurring in the 

remainder of the state (Fig. 4.5c).   
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(c) 

 

FIG. 4.7: FLUX run 2 m dew point at 16 UTC 1 August (a) prior to assimilation of fluxes; (b) 
after assimilation of fluxes; (c) the difference between the two. Contours are drawn every 
2°F. The black dot in SE Oklahoma denotes the grid point chosen for further discussion in 
Section 4.3. 
 
 
     Similar to low-level temperature, additional details regarding changes in low-level 

moisture bias and rmse values at 16 UTC 1 August are revealed through examination 

of two-dimensional fields.  Moisture bias values from the CTRL and STD runs are 

near zero at this time, while a pronounced moist bias develops in the FLUX run (Fig. 

4.2b).  Minimal rmse changes are noted in all three runs, with the rmse from the 

FLUX run dropping slightly (Fig. 4.1b).  The four hour forecast of lowest model level 

dew point from the CTRL run (Fig. 4.6a) is from 4°F to 6°F lower than the Mesonet 

analysis (Fig. 4.3b) over much of the eastern half of Oklahoma, and from 2°F to 4°F 

lower over much of the western half.  The 16 UTC analysis from the STD run is 

barely different from the CTRL forecast (Fig. 4.6b).  In contrast, the 2 m dew points  
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FIG. 4.8: Correlation between the sensible heat flux at the designated point in southeastern 
Oklahoma and (a) 2 m temperature; (b) 2 m mixing ratio at all grid points. Contours are 
drawn at intervals of 0.2. Data for the calculation are taken from the FLUX run ensemble at 
16 UTC on 1 August. 
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FIG. 4.9: Objective analysis of 16 UTC 2 August Mesonet observations of 1.5 m temperature. 
Contours are drawn every 2°F. 
 
 
from the FLUX run analysis (Fig. 4.6c) are 3°F to 7°F higher than the CTRL forecast 

in the northwestern corner of Oklahoma, 4°F to 8°F lower in a portion of southeastern 

Oklahoma, and within 2°F of the CTRL forecast over most of the rest of the state. 

     The bias in the low level mixing ratio from the FLUX run increased by around 0.5 

g kg-1 at 16 UTC on 1 August (Fig. 4.2b), while there was a modest decrease in the 

rmse (Fig. 4.1b).  Forecast dew points from the FLUX run at 16 UTC before updating 

the moisture field with the Kalman filter are between 70°F and 72°F across nearly the 

entire domain, with a tight eastward-pointing moisture gradient in far northwestern 

Oklahoma (Fig. 4.7a).  Following the EnKF update, dew points are reduced to the 

upper 60s Fahrenheit across far northwestern and much of southern Oklahoma, while 

dew points are increased to the middle 70s Fahrenheit in east central Oklahoma (Fig.  
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4.7b).  Drying the model near-surface air in far northwestern Oklahoma and 

moistening the air in east central Oklahoma (Fig. 4.7c) bring the model moisture field 

closer to the values in the Mesonet analysis (Fig. 4.3b), while drying over southern 

portions of Oklahoma pushes the model farther from the Mesonet analysis.  

     Covariance diagrams help us to assess the effect of the EnKF scheme on low level 

temperature and moisture fields in the model due to the Kalman gain (eq. (15) from 

Section 3.4).  The covariances between the model sensible heat flux at a point in 

southeastern Oklahoma and the (a) model 2 m temperature and (b) model 2 m mixing 

ratio at all other grid points are plotted in Figure 4.8.  Recall from Section 3.1.2 that 

the iterative method for estimating sensible heat flux has a high bias.  For 

temperature, negative covariance values of magnitude 0.4 or greater stretch across 

southern Oklahoma and into far eastern Oklahoma (Fig. 4.8a), suggesting that one or 

more nearby Mesonet estimates of sensible heat flux much greater than the 

horizontally interpolated model value could at least partially be responsible for the 

drastic temperature decrease in southeastern Oklahoma (Fig. 4.5c).  Positive moisture 

covariances mostly from 0.2 - 0.4 prevail in the region of substantial moisture 

decrease (Fig. 4.8b; Fig. 4.7c).  However, again assuming nearby Mesonet sensible 

heat flux estimates are larger than model values, a positive covariance should lead to 

a positive Kalman gain and an increase in 2 m dew point. 

     In some cases (e.g., Fig. 4.6c, Fig. 4.8b) when physically inconsistent changes are 

made to model background fields as a result of the assimilation of sensible heat flux 

estimates, tight gradients develop near the boundaries of the model domain.  These 

gradients result from the large discrepancy between the GFS-based boundary  



 
 

87 

 
 

(a) 

 

 
 

(b) 

 

FIG. 4.10: FLUX run 2 m temperature at 16 UTC 2 August (a) prior to assimilation of fluxes; 
(b) change attributed to flux assimilation. Contours are drawn every 2°F. The black dot in SE 
Oklahoma denotes the grid point chosen for further discussion in Section 4.3. 
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(b) 

 
FIG. 4.11: Correlation between the sensible heat flux at the designated point in southeastern 
Oklahoma and (a) 2 m temperature; (b) 2 m mixing ratio at all grid points. Contours are 
drawn at intervals of 0.2. Data for the calculation are taken from the FLUX run ensemble at 
16 UTC on 2 August. 
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conditions and the updated model fields.  The tight gradients tend to remain near the 

boundary with time, not propagating into the model domain.  For instance, the 

boundary effects do not have any bearing on the large temperature decrease in 

southeastern Oklahoma. 

     Though large-magnitude degradations of low level temperature and moisture fields 

occasionally arise following EnKF assimilation of sensible heat flux estimates during 

the daylight hours on 1 August, such changes infrequently occur during the same 

period on 2 August (Fig. 4.1, 4.2).  At 16 UTC on 2 August, the forecast of lowest 

model level temperature from the FLUX run is cooler than the Mesonet temperature 

analysis by roughly 4°F - 8°F across the entire domain (Fig. 4.9; Fig. 4.10a).  

Excepting parts of south central and southeast Oklahoma where temperatures were 

raised by up to 2.5°F and a relatively small portion of northern Oklahoma where 

temperatures were lowered by 1°F - 2°F, temperatures were changed by less than 1°F 

as a result of sensible heat flux assimilation (Fig. 4.10b).  The spatial distribution of 

covariances between the sensible heat flux at the same southeastern Oklahoma point 

as on 1 August and the 2 m temperature at all other grid points suggests that the filter 

should not make large changes to the temperature field at this time (Fig. 4.11a).  

Application of the EnKF scheme at 16 UTC on 2 August produced 2 m dew point 

changes of less than 1°F everywhere (not shown) concurrent with small spatial 

covariance values between sensible heat flux and low level moisture (Fig. 4.11b).  

These results build confidence that the EnKF scheme is operating correctly. 
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Number   Site ID               Number   Site ID               Number     Site ID 
 

1      ANTL                     12      TISH                        23        HECT 
2         HUGO                    13      CALV                      24         BRIS 
3         CLOU                     14      WIST                       25         RING 
4         TALI                       15      ADAX                     26         BIXB 
5         IDAB                      16      OKEM                     27         CHAN 
6         MCAL                     17      BYAR                     28         TAHL 
7         WILB                      18      OKMU                    29         WASH 
8         DURA                     19      PAUL                      30         NRMN 
9         BROK                     20      HASK                      31         WEST 
10       CENT                      21      COOK                     32         OILT 
11       STUA                      22      SHAW                     33         SPEN 

 
TABLE 4.1: Oklahoma Mesonet observing sites contributing to the flux estimates assimilated 
by the EnKF scheme at the grid point of focus in southeastern Oklahoma at 16 UTC on 1 
August. Observing sites are ordered according to increasing distance from the grid point. 

Number   Site ID               Number   Site ID               Number     Site ID 
 

1 ADAX                     12      HASK                      23        STUA 
2 ANTL                      13      HUGO                     24         TAHL 
3 BIXB                       14       IDAB                      25         TALI 
4 BRIS                        15      MCAL                     26         TISH 
5 BYAR                      16      OILT                       27         WASH 
6 CALV                      17       OKEM                    28         WEST 
7 CENT                       18      OKMU                    29         WILB 
8 CHAN                      19       PAUL                     30         WIST 
9 CLOU                      20       RING                      31         HECT 
10 COOK                     21        SHAW                    32         NRMN 
11 DURA                      22       SPEN                      33         BROK 

 
TABLE 4.2: Oklahoma Mesonet observing sites contributing to the flux estimates assimilated 
by the EnKF scheme at the grid point of focus in southeastern Oklahoma at 16 UTC on 1 
August. Observing sites are arranged sequentially. 
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FIG. 4.12: Mesonet sensible heat flux estimates (black), model interpolated values using the 
original assimilation scheme (blue), and model interpolated values using the new scheme 
(red) at 16 UTC on 1 August. Values are from the grid point of focus in southeastern 
Oklahoma, and stations are ordered according to increasing distance from the grid point. 
Sensible heat flux values along the y-axis are in W m-2, while numbers along the x-axis refer 
to the Mesonet sites listed in Table 4.1. 
 
 
 
 
 

 

 
 

FIG. 4.13: Locations of Oklahoma Mesonet observing sites denoted by four-letter identifiers.  
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4.3 Point-specific analysis of EnKF equation terms 

 

     Though updates to model temperature and moisture fields from the FLUX run 

appear to be consistent with spatial covariances for the most part, the fact remains 

that use of the EnKF procedure to assimilate sensible heat flux estimates occasionally 

produces spurious and undesirable results.  At 16 UTC on 1 August, the EnKF 

scheme reduces the lowest model level temperature from the FLUX run 1 h forecast 

in much of southeastern Oklahoma from 5°F - 15°F despite Mesonet temperatures 

being warmer than the model temperatures (Fig. 4.3a).  Similarly, FLUX run lowest 

model level dew points are reduced in much of southeastern Oklahoma even though 

an analysis of Mesonet data shows dew points higher than the model forecast (Fig. 

4.3b).  Spatial covariances (Fig. 4.8) would assert that Mesonet sensible heat flux 

estimates much higher than model grid point values could lead to a large temperature 

decrease in southeastern Oklahoma, but should result in a dew point increase at the 

same time.  An examination of terms from the EnKF equations for individual 

observations will demonstrate that sensible heat flux estimates much larger than 

model background values have a profound effect on the resulting analyses of low 

level temperature and moisture fields. 

     Necessarily, a numerical model must check to make sure that the dew point is less 

than or equal to the temperature at all grid points prior to initiating a forecast run.  

Since two-dimensional plots of temperature and dew point after running the EnKF 

scheme are drawn from the first time step of the subsequent one-hour forecast, this 

check would have already been run.  This line of reasoning explains the dew point 



 
 

93 

decrease in southeastern Oklahoma at 16 UTC when by all other accounts there 

should be an increase.  Consequently, a look at specific terms from the Kalman filter 

equations for Mesonet observations both individually and collectively should show an 

increase in near-surface moisture in southeastern Oklahoma. 

     Hereafter, both the original and new EnKF update processes from Chapter 3 are 

closely examined at the same grid point in southeastern Oklahoma chosen for the 

generation of the covariance maps in Section 4.3.  Thirty-three Mesonet sensible heat 

flux estimates are used to update the model fields at 16 UTC on 1 August.  These 

Mesonet estimates, along with ensemble mean model values interpolated to Mesonet 

locations using the original and the new update schemes, are plotted in Figure 4.12.  

Mesonet sites are shown on a map in Figure 4.13, and Mesonet site identifiers from 

this map may be matched with numbers along the y-axis of Figure 4.12 using Table 

4.1.  Mesonet estimates of sensible heat flux regularly exceed model interpolated 

values, sometimes by more than 100 W m-2.   Twenty-four Mesonet estimates are 

above model interpolated values, while only nine estimates are below model values.  

Model fluxes vary mainly from 100 to 200 W m-2, while Mesonet estimates vary from 

100 to almost 350 W m-2.   

     Innovations (differences between Mesonet sensible heat flux estimates and model 

interpolated values) and modifications to model grid point sensible heat flux values 

vary more due to changes in the update scheme rather than between the ensemble 

mean and an individual member (Fig. 4.14a,b).  Innovation differences between the 

ensemble mean and the twenty-second member typically are less than 5 W m-2, but 

differences between the original and the new scheme run up to around 30 W m-2,  
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FIG. 4.14: Graphs of (a) innovations and (b) changes to sensible heat flux during the 
assimilation process from the ensemble mean using the original EnKF scheme (black), an 
individual ensemble member using the original scheme (blue), the ensemble mean using the 
new EnKF scheme (red), and the individual ensemble member using the new scheme (green) 
at 16 UTC on 1 August. All values are for the grid point of focus in southeastern Oklahoma, 
and stations are numbered according to increasing distance from the grid point. Sensible heat 
flux values along the y-axis are in W m-2, while numbers along the x-axis refer to the Mesonet 
sites listed in Table 4.1. 
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especially in the latter portion of the assimilation cycle.  Only five out of thirty-three 

Mesonet estimates (ANTL, CENT, DURA, HUGO, BROK) produce an innovation of 

greater than 100 W m-2 (Fig. 4.14a), and of those five two (ANTL and HUGO) are 

within 20 km of the grid point being modified (Fig. 4.13).  Increases greater than 10 

W m-2 in the grid point sensible heat flux resulting from a single observation are 

limited to ANTL, CENT and DURA, with most other observations changing the grid 

point flux by 5 W m-2 or less (Fig. 4.14b).  In accordance with the fact that most 

Mesonet estimates are greater than the corresponding model interpolated values, the 

model grid point sensible heat flux finishes the assimilation process between 70 and 

90 W m-2 larger than at the beginning (Fig. 4.15).  The new scheme increases the grid 

point flux value by around 12 W m-2 less than the original scheme. 

 

 
 

FIG. 4.15: Sensible heat flux values during the assimilation process from the ensemble mean 
using the original EnKF scheme (black), an individual ensemble member using the original 
scheme (blue), the ensemble mean using the new EnKF scheme (red), and the individual 
ensemble member using the new scheme (green) at 16 UTC on 1 August. All values are for 
the grid point of focus in southeastern Oklahoma, and stations are arranged sequentially. 
Sensible heat flux values along the y-axis are in W m-2, while numbers along the x-axis refer 
to the Mesonet sites listed in Table 4.2. 
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FIG. 4.16: Weight (W) from eq. (13) and (14) for individual Mesonet sites relative to the grid 
point of focus in southeastern Oklahoma, arranged according to increasing distance from the 
grid point. Weights are on the y-axis, while numbers along the x-axis refer to the Mesonet 
sites listed in Table 4.1. 
 

 

 

 
 

FIG. 4.17: Low level temperature Kalman gain multiplied by the weight (WK) from eq. (13) 
and (14) for individual Mesonet sites relative to the grid point of focus in southeastern 
Oklahoma, arranged according to increasing distance from the grid point. Values for the 
original EnKF scheme are in black, and values for the new EnKF scheme are in blue. Unitless 
WK-values are on the y-axis, while numbers along the x-axis refer to the Mesonet sites listed 
in Table 4.1. 
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     Equations (13) - (16) from Chapter 3 define the EnKF scheme used for this case.  

For each observation, the corresponding sensible heat flux innovation goes into  

eq. (13) as for the ensemble mean or into eq. (14) as 

 for an individual member.  The larger the innovation, 

the more the grid point variable being updated may be changed.  At 16 UTC on 1 

August, the value of β is less than or equal to 0.55 for every Mesonet sensible heat 

flux estimate such that the ensemble mean has a weight nearly equal to the weight of 

the individual ensemble member in calculating observation increments according to 

eq. (14).  The weights W (Fig. 4.16), proportional to the inverse of the exponential 

function, are merely based on distance from the Mesonet site to the grid point and are 

the same for each model variable updated.  Values of W vary from 0.0 to 1.0, but only 

four of the observations (HASK, OKEM, OKMU, PAUL) have a weight between 0.2 

and 0.8. 

     All of the temperature Kalman gain values from the original scheme are negative 

(Fig. 4.17).  For four of the Mesonet estimates (DURA, MCAL, WILB, WIST), the 

new assimilation scheme actually changes the sign of the Kalman gain from negative 

to positive.  Kalman gains in Figure 4.17 include the localization weight, representing 

the WK term from eq. (13) and eq. (14).  The number of negative Kalman gains 

should not be surprising given the propensity for Mesonet sensible heat flux estimates 

to be greater than model interpolated values (Fig. 4.12) and given the temperature 

covariance map for the grid point of focus (Fig. 4.8a). 
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FIG. 4.18: Changes to lowest model level temperature during the assimilation process from the 
ensemble mean using the original EnKF scheme (black), an individual ensemble member 
using the original scheme (blue), the ensemble mean using the new EnKF scheme (red), and 
the individual ensemble member using the new scheme (green) at 16 UTC on 1 August. All 
values are for the grid point of focus in southeastern Oklahoma, and stations are arranged in 
order of increasing distance from the grid point. Temperature values along the y-axis are in 
°F, while numbers along the x-axis refer to the Mesonet sites listed in Table 4.1. 
 
 
 
     As is the case for sensible heat flux, a very small subset of observations is 

responsible for the vast majority of the change in temperature by the assimilation 

schemes at the grid point of focus.  Four Mesonet sensible heat flux estimates 

decrease the low level temperature at the grid point of focus by more than 1°F: 

ANTL, CALV, HUGO and BROK (Fig. 4.18).  These four estimates contribute a 

staggering 65% of the temperature decrease, with the remaining twenty-nine 

estimates contributing the other 35%.  At each of these four Mesonet sites, an 

innovation of 100 W m-2 or greater combines with a “WK” term that is comparatively 

large to produce a substantial temperature drop.  The most negative “WK” term arises 

at CLOU, but with an observation increment less than 25 W m-2, the influence of this  
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FIG. 4.19: Actual lowest model temperature values during the assimilation process from the 
ensemble mean using the original EnKF scheme (black), an individual ensemble member 
using the original scheme (blue), the ensemble mean using the new EnKF scheme (red), and 
the individual ensemble member using the new scheme (green) at 16 UTC on 1 August. All 
values are for the grid point of focus in southeastern Oklahoma, and stations are arranged 
sequentially. Temperature values along the y-axis are in °F, while numbers along the x-axis 
refer to the Mesonet sites listed in Table 4.2. 
 
 
observation is limited.  Innovations at DURA exceed 100 W m-2; however, a “WK” 

term near zero means that this estimate modifies the temperature little. 

     At the grid point of focus, more variation in the 16 UTC total temperature change 

occurs between individual ensemble members and the ensemble mean than results 

from using the new scheme as opposed to the old scheme.  Figure 4.19 shows the path 

that the lowest model level temperature takes during the assimilation process.  The 

EnKF scheme makes only very small changes to the model forecast ground 

temperature while making much greater changes to the low level air temperature.  

This fact largely explains the minimal differences in temperature change between the 

old and new schemes.  Depending on the particular member or scheme chosen,  
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FIG. 4.20: Low level mixing ratio Kalman gain multiplied by the weight (WK) from eq. (8) 
and (9) for individual Mesonet sites relative to the grid point of focus in southeastern 
Oklahoma, arranged according to increasing distance from the grid point. Values for the 
original EnKF scheme are in black, and values for the new EnKF scheme are in blue. Unitless 
WK-values are on the y-axis, while numbers along the x-axis refer to the Mesonet sites listed 
in Table 4.1. 
 
 
assimilation of Mesonet sensible heat flux estimates drops the low level temperature 

by around 15°F despite the fact that the EnKF scheme is working correctly! 

     Mixing ratio Kalman gain values in Figure 4.20 include localization weights in the 

style of Figure 4.17.  Opposite to the Kalman gain for temperature, values for mixing 

ratio at the grid point of focus are predominantly positive when the original EnKF 

scheme is applied.  Some of the original Kalman gain values are near zero, with four 

of these (MCAL, TALI, WILB, WIST) becoming negative when the new assimilation 

scheme is used.  The signs of the Kalman gain values from the original EnKF scheme 

match well with the positive covariances between low level mixing ratio and the grid 

point sensible heat flux (Fig. 4.8b).      
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FIG. 4.21: Changes to lowest model level mixing ratio during the assimilation process from 
the ensemble mean using the original EnKF scheme (black), an individual ensemble member 
using the original scheme (blue), the ensemble mean using the new EnKF scheme (red), and 
the individual ensemble member using the new scheme (green) at 16 UTC on 1 August. All 
values are for the grid point of focus in southeastern Oklahoma, and stations are arranged in 
order of increasing distance from the grid point. Mixing ratio values along the y-axis are in  
g kg-1, while numbers along the x-axis refer to the Mesonet sites listed in Table 4.1. 

 

 
 

FIG. 4.22: Actual lowest model level mixing ratio values during the assimilation process from 
the ensemble mean using the original EnKF scheme (black), an individual ensemble member 
using the original scheme (blue), the ensemble mean using the new EnKF scheme (red), and 
the individual ensemble member using the new scheme (green) at 16 UTC on 1 August. All 
values are for the grid point of focus in southeastern Oklahoma, and stations are ordered 
sequentially. Mixing ratio values along the y-axis are in g kg-1, while numbers along the x-
axis refer to the Mesonet sites listed in Table 4.2. 
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     By examining changes made to the model low level mixing ratio field as a result 

of the assimilation of individual Mesonet sensible heat flux estimates, it becomes 

plain that erroneously dry model conditions in southeastern Oklahoma (Fig. 4.7b) 

should be blamed on the massive temperature decrease (Fig. 4.5b,c) due to 

application of the EnKF scheme and not on the EnKF modifications to the moisture 

field.  Addition of the mixing ratio changes at the grid point of focus resulting from 

the assimilation of all accepted Mesonet estimates (Fig. 4.21) totals between 3.25 and 

3.75 g kg-1.  Moisture is greater from the twenty-second ensemble member than from 

the ensemble mean at the grid point in question prior to assimilation, with a larger 

moisture increase in the ensemble mean narrowing the gap between the two by the 

end of the assimilation cycle (Fig. 4.22).  There is a difference of less than 0.1 g kg-1 

between the moisture changes resulting from the original and the new assimilation 

scheme.  The Mesonet flux estimate from ANTL is responsible for nearly 1.0 g kg-1 of 

the total increase in mixing ratio.  At ANTL, the second largest “WK” value from Fig. 

4.20 is paired with an innovation of approximately 130 W m-2.  Similar to 

temperature, five Mesonet estimates (ANTL, CALV, CENT, HUGO, BROK) are 

responsible for over 70% of the total change to the grid point mixing ratio. 
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Chapter 5 

Conclusions 

 

     Assimilation of sensible heat flux estimates calculated from observed data into 

coupled models of the land-atmosphere system using an ensemble Kalman filter 

presents some unique problems.  As evidenced by the example from 16 UTC on 1 

August 2004, very large differences between sensible heat flux estimates from 

observations and model values interpolated to the observation location can occur.  

Even if these differences are legitimate, model analyses of low level temperature and 

moisture produced by an EnKF scheme may still represent a departure from rather 

than a correction toward observations.  High covariance values between model 

sensible heat flux at the observation location and the model variable being updated at 

a grid point amplify the error due to extremely large innovations.  A judicious choice 

of the observation error variance (σ0
2

 from eq. (15) and eq. (16) in Chapter 3) could at 

least partially address these issues, but consistency ratio values from the EnKF 

scheme indicate that the optimal value of σ0
2 varies substantially and that this choice 

is difficult. 

     Multiple factors contribute to the existence of large sensible heat flux innovations.  

First of all, the iterative profile method used to calculate sensible heat flux estimates 

yields acceptable values when compared with eddy correlation estimates, but the 
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iterative method does tend to slightly overestimate fluxes.  However, a substantial 

part of the magnitude of large innovations likely stems from poor model forecasts of 

sensible heat flux.  The sensible heat flux is dependent on the gradient in low level 

wind speed, vegetation types and amounts, as well as soil types and moisture, all of 

which vary on small scales.  Therefore, the sensible heat flux itself exhibits spatial 

variability on a much smaller scale than the 3 km horizontal resolution of the model 

can adequately simulate. Even if only one or two innovations within the influence 

radius of a grid point are unusually large, this number may be all it takes to cause the 

EnKF scheme to make undesirable changes in the model low level temperature and 

moisture fields (Section 4.3).  

     Updates to model fields according to EnKF-generated covariances are often 

superior to those from an isotropic scheme such as 3D-Var as they tend to be more 

flow-dependent; however, covariances are purely statistical quantities that may or 

may not have a physical basis.  Correlations between sensible heat flux and other low 

level variables (Fig. 4.8a,b) show some consistent structure at a considerable distance 

from the grid point in southeastern Oklahoma.  Within the vicinity of this grid point, 

the correlation with low level moisture tends to be positive (Fig. 4.8b) while the 

correlation with low level temperature tends to be negative (Fig. 4.8a).  Combined 

with large positive innovations, the result is a large decrease in temperature 

concurrent with a large increase in moisture that is not physically possible.  With such 

large model error at just a few Mesonet sites, reasonably accurate Mesonet estimates 

of sensible heat flux can combine with large covariances (and, therefore, large 

Kalman gain values) to make unphysical changes to the model background fields. 
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     Choosing what number to use for the error variance (σo
2) of Mesonet sensible heat 

flux estimates is not straightforward.  One way to assess the appropriateness of the 

pre-determined value for σo
2 uses the fact that the variance in innovation equals the 

sum of the variance in observation error and the variance in model error 

 

                                                     (20) 

 

where d denotes the innovation, o denotes the observation, and f denotes the model 

forecast.  If assumptions regarding the observation and forecast errors are correct, the 

ratio of the right and left sides of eq. (20) should approximately equal unity.  

Averaging over all observations updating the model forecast fields (Dowell et al. 

2004) at 16 UTC on 1 August, this ratio equals roughly 0.08 with both the original 

and the new update schemes.  The ratio exhibits a diurnal trend, equaling near 1.0 

close to sunrise and sunset but bottoming out at around 0.04 in the early afternoon 

(not shown).  A very low ratio indicates that the observation error variance selected is 

much too low, the ensemble spread is much too low to be a good estimate of the 

model error, or both. 

     A number of tunable elements in this EnKF scheme could be modified in an effort 

to prevent unphysical and extreme updates to model low level temperature and 

moisture fields.   The inverse exponential weight from eq. (13) and eq. (14) is a 

function of both the distance from the observation location to the grid point being 

updated and a pre-selected localization radius.  The influence of distant high 

correlations between sensible heat flux and other low level variables having 



 
 

106 

questionable physical basis (Fig. 4.8a,b) could be tempered by decreasing the 

localization radius.  The adjustment factor (weight function) from this EnKF scheme 

produces nearly bi-modal weights at 16 UTC 1 August (Fig. 4.16).  Combining the 

choice of an alternate, more smoothly decreasing weight function curve with a 

reduction in the localization radius could limit the influence of observations relatively 

near a grid point while also limiting the influence of distant observations. 

     A more robust method for the quality control of flux observations as they enter the 

filter may also decrease the number of very large innovations and subsequent large 

changes to model fields.  In this study, a simple method accepts only those Mesonet 

flux estimates that simultaneously equal greater than half and less than double the 

background model interpolated flux.  This method may reject too many estimates 

when the magnitude of the flux is small, and too few when the magnitude is great.  

The high variability of sensible heat flux on a small spatial scale makes the use of a 

“buddy check” system somewhat problematic.  For sites where eddy correlation 

estimates of sensible heat flux exist, a quality control method based on comparison 

between the eddy correlation and profile estimates could be devised.  Unfortunately, 

in 2004 this included less than 10 sites. 

     Consistency ratios of less than 0.1 indicate that the prescribed observation error 

variance and the model forecast error variance estimated by the ensemble spread 

collectively are much too small.  Just as the consistency ratio follows a diurnal curve, 

the observation error could be prescribed to follow a diurnal curve as well.  In this 

case, the observation error would be relatively low around sunrise and sunset, and 

relatively high toward mid-day or early afternoon.  Comparisons between eddy 
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correlation and profile sensible heat flux estimates from the Oklahoma Mesonet in 

2004 do in fact show a maximum difference during the portion of the day when the 

sun angle is highest (not shown).  Ensemble spread shows an increasing trend from 

the first day of this study into the second day, with the rms error in low level 

temperature and moisture analyses resulting from the EnKF scheme decreasing on 2 

August when compared with 1 August (Fig. 4.1a,b).  The two days were 

meteorologically very similar to one another across the model domain.  Allowing the 

ensemble and the EnKF assimilation scheme to run for some time to allow the 

ensemble spread and therefore the estimated model error to increase would likely 

improve analyses, and would be preferable prior to initiating forecasts from these 

analyses. 

     Finally, increasing the number of ensemble members beyond the total of fifty-one 

used in this study could be beneficial.  More ensemble members may produce a larger 

spread and, consequently, a larger estimate of model error.  Additionally, a larger 

ensemble may be able to provide more accurate estimates of the magnitudes of 

relatively small covariances.  With only fifty-one ensemble members, the uncertainty 

especially in small covariance values is great, increasing the chances of ending up 

with a random high value that produces an unusually large innovation. 

     In spite of the numerous complicating factors associated with using an EnKF 

scheme to assimilate Mesonet estimates of sensible heat flux, the idea may still 

become a useful tool in the future.  It has been shown that the EnKF scheme is 

capable of making physically meaningful and observationally correct changes to 

model forecast fields.  Observing systems such as the Oklahoma Mesonet and the 
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nearby West Texas Mesonet (Schroeder et al. 2005), both measuring wind and 

temperature at two levels, are multiplying and expanding yielding a corresponding 

increase in available sensible heat flux estimates.   Finding workable solutions to the 

problems discussed here may permit improvements to analyses resulting from the use 

of the EnKF scheme to assimilate sensible heat flux.  Once the negative effects of the 

EnKF scheme are reduced and it consistently produces useful analyses, then 

producing forecasts from these analyses will become a viable option.  
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