

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

A METHODOLOGY FOR DEVELOPMENT OF DOMAIN SPECIFIC SIMULATION

APPLICATIONS AND ENVIRONMENTS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

KITTI SETAVORAPHAN
Norman, Oklahoma

2009

A METHODOLOGY FOR DEVELOPMENT OF DOMAIN SPECIFIC SIMULATION
APPLICATIONS AND ENVIRONMENTS

A DISSERTATION APPROVED FOR THE
SCHOOL OF INDUSTRIAL ENGINEERING

BY

Dr. F. Hank Grant, Chair

Dr. Scott A. Moses

Dr. Shivakumar Raman

Dr. Suleyman Karabuk

Dr. S. Lakshmivarahan

© Copyright by KITTI SETAVORAPHAN 2009
All Rights Reserved.

I would like to dedicate this dissertation to A. Alan B. Pritsker, whose unique insights
and methodology in modeling and simulation were inspirational to my advisor F. Hank
Grant, who in turn passed his knowledge on to me. Professor Pritsker’s thinking process
has become a model for my own thinking process. His tremendous contributions to the
field should not be forgotten, and future scholars should review his fundamental work in
the area.

 iv

ACKNOWLEDGEMENTS

First, I would like to express my gratitude to Dr. F. Hank Grant for being my

advisor and allowing me to work at the Center for the Study of Wireless Electromagnetic

Compatibility, and for everything he has taught me during the last four years at the

University of Oklahoma. He has inspired and motivated me to reach high standards for

being not only a proficient industrial engineer but also a better man. I am greatly honored

to be able to work with this outstanding professor whose wisdom and advice have

endlessly been given to me. His name will be recognized every step on my path to

success.

 I am also grateful to all of my dissertation committee members: Dr. Scott A.

Moses, Dr. Shivakumar Raman, Dr. Suleyman Karabuk, and Dr. S. Lakshmivarahan, for

their advice, guidance, and encouragement throughout my research. They have always

been there and served their best to push me to move forward.

 I would like to thank the following faculty members and staff in the School of

Industrial Engineering at the University of Oklahoma: Dr. Mary Court for offering me the

opportunity to pursue my doctoral degree; Dr. Randa Shehab for supporting me in many

aspects in every situation; Dr. Hillel Kumin for giving me important insights of being a

good problem solver; Dr. B. Mustafa Pulat for training me to be a Lean/Six Sigma Green

Belt industrial engineer; Dr. Chen Ling for being my advisor when I was the President of

Thai Student Association, Dr. Yongpei Guan for showing me the gaps I needed to fill in;

Dr. Kash Baker for offering me his help anytime I was confronting a problem; Cheryl

Carney for helping me handle all funding and sponsorship materials; Jean Shingledecker

 v

for helping me solve miscellaneous issues; and Amy Piper for facilitating me while being

in this Ph.D. program.

 I am thankful of Dr. Glenn Kuriger for training me to work at the Center for the

Study of Wireless Electromagnetic Compatibility and being a great partner. My

appreciation also goes to my good personal friends Dr. Kang-Hung Yang, Zhili Zhou,

and Chris Poyner, who gave me friendship, care, and support throughout these academics

years.

 For this achievement, I will always remember Dr. Ming Zhou, my thesis advisor

at Indiana State University, for training and encouraging me to breakthrough my

limitations. I would like to remember Dr. Qun Zhang with gratitude for his technical

assistance on my dissertation and his kindly supportive role that never let me down. And,

it would not have been possible for me to come this far if it had not been for all of the

guidance, support, and encouragement provided by Dr. Kittiphan Techakittiroj, my

undergraduate advisor at Assumption University, Thailand. I indeed appreciate their

superb backups and approachability.

 I could happily study and live at the University of Oklahoma because I have had a

group of amazing people who always supported and cheered me up. My special thanks go

to: Tinky, Jana, Pong, and Sak (Jana’s Restaurant); Mac and Pin (Panang Restaurant),

Dear, Evert, Sukhum, Pook, Tak, Bumbim, Nong, and Kaka (Thai Raja Restaurant); Eke,

Nong and Pundit (excellent neighborhood); Vee (mechanics); and Him (acquaintance). I

am also grateful of James Vernon for his special support in improving my English and

preparing me for entering real-world of industry.

 vi

 I am infinitely grateful of my life’s greatest blessings which are my adorable

parents: Pricha and Suwanna; my loving sisters: Nopparatna and Juree; and also my

heroic brothers: Sekson and Suntaya for their immense love and never-ending support.

Without them, I would not be who I am and I am going to be.

I would especially like to thank my be-soul-loved sweetheart, Dr. Emma

Asnachinda, for always being at my side in every moment of happiness and sadness. Her

smiling and warm-hearted feeling has inspired me to endure all the highs and lows that

occurred during my doctoral program. I would like to express my deepest appreciation to

Kritsa Chindanon for being my ever-best friend, cheering me up, and keeping up my

good spirits. He has made my study life in the United States unforgettable. It is also my

pleasure to remember Sethaphon, Prakaikaew, Suthum, Tippy, Neung, Peung, Dew,

Karin, and Mon for giving care and offering me their help whenever it was needed.

I would like to thank Lord Buddha for his wisdom enlightening my path to

consciousness and peace; and my Guardians and Holy Spirits for embracing me with

blessings and love.

Finally, as this is being, I see not only these letters typed on white space but also

all the memories through these many years that are flashing back like thousands of

movies showing on my computer screen. They are so many actors playing in my story,

and it is difficult for me to mention everyone’s names and thank them all individually. I

would like to say this, “You are apiece of my life, and I will never ever forget any of you.

Thank you very much for everything you have supported and done for me. With all, I’ll

never walk alone.”

 vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iv

TABLE OF CONTENTS .. vii

LIST OF TABLES ... xi

LIST OF FIGURES ... xiii

ABSTRACT ... xvi

CHAPTER 1 Introduction... 1

1-1. Overview of Research ... 1

1-2. Outline of the Dissertation ... 6

CHAPTER 2 Literature Review ... 7

2-1. Simulation .. 7

2-2. Structure of the Research ... 10

2-2-1. Conceptual Modeling ... 10

2-2-2. Domain Specific Simulation Environment .. 13

2-3. References ... 21

CHAPTER 3 Conceptual Simulation Modeling: The Structure of Domain Specific

Simulation Environment ... 25

Abstract ... 25

3-1. Introduction ... 25

3-2. Key Concepts ... 29

3-2-1. Decomposition Approach ... 29

3-2-2. Composition Approach .. 32

 viii

3-3. Illustration of a CSM prototype ... 35

3-3-1. Background of Study .. 35

3-3-2. General Structure .. 38

3-3-3. Demonstration .. 40

3-4. Conclusions ... 47

3-5. Acknowledgements ... 48

3-6. Appendices .. 49

3-7. References ... 51

3-8. Additional Works .. 58

3-8-1. New Demonstration .. 58

3-8-2. Initialization Layer (IL) .. 63

3-8-3. Termination Layer (TL) ... 66

3-8-4. Process Layer (PL) ... 69

3-9. Additional References ... 81

CHAPTER 4 Transformation of Conceptual Simulation Modeling 82

Abstract ... 82

4-1. Introduction ... 82

4-2. Key Concepts ... 85

4-2-1. Model Composability ... 86

4-2-2. Simulation Interoperability... 89

4-3. Related Technology-based Concepts ... 92

 ix

4-3-1. Ontology ... 93

4-3-2. XML ... 98

4-3-3. Simulation Reference Markup Language (SRML) 100

4-4. Model Transformation ... 103

4-4-1. Selection ... 107

4-4-2. Modularization ... 108

4-4-3. Integration .. 115

4-4-4. Revision .. 121

4-5. Conclusions ... 122

4-6. References ... 123

CHAPTER 5 Domain Specific Ontological Mapping: An Integrated Approach 129

Abstract ... 129

5-1. Introduction ... 129

5-2. Key Concepts ... 133

5-2-1. Ontology Mapping ... 133

5-2-2. Simulation Block Building ... 136

5-2-3. Visual Subnetwork Modeling ... 140

5-3. Concept Implementation.. 143

5-3-1. Mapping CSM with Visual SLAM .. 144

5-3-2. VSNs and DSSE ... 152

5-4. Conclusions ... 157

5-5. References ... 159

 x

CHAPTER 6 Case Study: DSSE Development Illustration ... 164

Abstract ... 164

6-1. Introduction ... 164

6-2. Problem Description .. 165

6-3. Methodology .. 168

6-3-1. Phase 1: Conceptualization of Problem Domain .. 169

6-3-2. Phase 2: Transformation of Conceptual Simulation Models........................ 181

6-3-3. Phase 3: Mapping and Building ... 188

6-4. Conclusions ... 203

6-5. References ... 203

CHAPTER 7 Conclusions and Future Research ... 205

7-1. General Conclusions .. 205

7-2. Comparison with Current Methods ... 211

7-3. Future Work ... 215

7-3-1. Phase I: User-friendly Software ... 216

7-3-2. Phase II: Embedded Simulation Software .. 217

7-3-3. Phase III: Automation .. 218

 xi

LIST OF TABLES

Table 3 - 1: Description of objects for DMSL: RINV. ... 50

Table 3 - 2: Description of operations for DMSL: RINV. .. 50

Table 3 - 3: Description of variables for DMSL: RINV. .. 51

Table 3 - 4: Description of data fields for parameterization ... 67

Table 3 - 5: Description of data fields for parameterization with assignments 68

Table 3 - 6: Description of Objects for DMSL: LCK ... 77

Table 3 - 7: Description of Operations for DMSL: LCK .. 77

Table 3 - 8: Description of Operations for DMSL: LCK (Cont.) 78

Table 4 - 1: Ontology to Object-oriented mapping………………………………………94

Table 4 - 2: Default-setting tags .. 108

Table 4 - 3: Referenced properties for DMSL: LCK .. 113

Table 5 - 1: Similarity Mapping Plane for CreateBargeTow()…………………………150

Table 6 - 1: Description of data fields for parameterization with assignments………...172

Table 6 - 2: Description of Objects for DMSL: LCK ... 178

Table 6 - 3: Description of Operations for DMSL: LCK .. 178

Table 6 - 4: Description of Operations for DMSL: LCK (Cont.) 179

Table 6 - 5: Referenced properties and callable functions for DMSL: LCK 181

Table 6 - 6: Similarity Mapping Plane for CreateBargeTow() 189

Table 6 - 7: Similar Mapping Plane for AssignBargeTow() ... 190

Table 6 - 8: Similar Mapping Plane for RouteBargeTow() .. 191

Table 6 - 9: Similar Mapping Plane for ProcessLock() .. 192

 xii

Table 6 - 10: Similar Mapping Plane for CollectTime() ... 193

Table 6 - 11: Similar Mapping Plane for CutBargeTow() .. 194

Table 6 - 12: The results from running the simulation model of Lock# 17 and Lock# 18

... 202

Table 7- 1: Subjective comparison between integrated and standard methodology 212

 xiii

LIST OF FIGURES

Figure 1 - 1: An overview of the methodology ... 5

Figure 3 - 1: The relationship between CM and DSSE .. 28

Figure 3 - 2: Three layers in ISAP with three phases ... 39

Figure 3 - 3: BUILD components for inventory system ... 41

Figure 3 - 4: General structure and an SMU example .. 42

Figure 3 - 5: A decomposition of SMU Make An Order of Radios 44

Figure 3 - 6: Some examples of notations for relations .. 44

Figure 3 - 7: Notations for the sequence-diagram section .. 45

Figure 3 - 8: An example of DMSL: RINV .. 49

Figure 3 - 9: An example of navigation lock system .. 59

Figure 3 - 10: A diagram representing initialization of Lock ... 65

Figure 3 - 11: A symbol for BUILD ... 70

Figure 3 - 12: A symbol for SPACE ... 70

Figure 3 - 13: A symbol of CROSS .. 71

Figure 3 - 14: An adjacency line ... 71

Figure 3 - 15: A precedence line ... 72

Figure 3 - 16: An assumed physical layout on the Mississippi River 72

Figure 3 - 17: A network of static symbolized components ... 72

Figure 3 - 18: DMSL: LCK; sub-folder# 0; page# 1 .. 74

Figure 3 - 19: DMSL: LCK; sub-folder# 2; page# 1 .. 75

Figure 3 - 20: DMSL: LCK; sub-folder# 2; page# 2 .. 76

 xiv

Figure 4 - 1: General approach of documentation for ISAP ... 104

Figure 4 - 2: Initial structure of a simulation module ... 105

Figure 4 - 3: A scenario of transformation process ... 106

Figure 5 - 1: Example of a set of model building blocks using building block elements

... 138

Figure 5 - 2: An example of mapping between an SMU and a VSN 147

Figure 5 - 3: The VSN named SLCK .. 153

Figure 5 - 4: The Visual SLAM network nodes within the VSN named SLCK 154

Figure 5 - 5: A combination that represents SMU XOR Decide Which Lockage Fits

Barge-tows’ Size ... 155

Figure 5 - 6: A set of the Visual SLAM network nodes that represent SMU Inform

Arrival of Barge-tows ... 155

Figure 5 - 7: The AweSim library of subnetworks for DMSL_LCK 156

Figure 5 - 8: The AweSim library of networks storing patterns 157

Figure 6 - 1: Locations of the locks on the MKARNS ... 167

Figure 6 - 2: A diagram representing initialization of Lock ... 170

Figure 6 - 3: A static modeling subsystem of the problem domain 173

Figure 6 - 4: DMSL: LCK; sub-folder# 0; page#1 ... 175

Figure 6 - 5: DMSL: LCK; sub-folder# 2; page# 1 .. 176

Figure 6 - 6: DMSL: LCK; sub-folder# 2; page# 2 .. 177

Figure 6 - 7: A simulation model for the lockage operations at Lock#17 195

Figure 6 - 8: Building block elements for the VSN: “ARV” .. 196

Figure 6 - 9: Building block elements for the VSN: “OPERATE” 196

 xv

Figure 6 - 10: Building block elements for the VSN: “SINGLE” 197

Figure 6 - 11: Building block elements for the VSN: “DOUBLE” 197

Figure 6 - 12: Building block elements for the VSN: “CLT” ... 197

Figure 6 - 13: Visual SLAM network and control statements for Lock#17 simulation

model... 198

Figure 6 - 14: Visual SLAM subnetwork statements for Lock#17 simulation model 199

Figure 6 - 15: A simulation model for the lockage operations at Lock# 17 and Lock# 18

... 200

Figure 6 - 16: Visual SLAM network and control statements for Lock# 17 and Lock# 18

simulation model ... 201

Figure 6 - 17: Extended Visual SLAM subnetwork statements for Lock# 17 and Lock#

18 simulation model .. 202

 xvi

ABSTRACT

In the modeling and simulation (M&S) arena, simulation developers have been exploring

the concepts that facilitate modeling real world elements using appropriate simulation

artifacts within the context of the domain of the application. However, there are some

critical issues that distort their effectiveness and efficiency. The first issue is the quantity

and quality of assumptions and constraints made during the M&S development,

concerning the completeness of simulation models to represent reality. The second issue

is the levels of model composability and simulation interoperability, affecting the

possibility of data exchange and reusability. The third issue is development of an

effective simulation-based environment such that the implementation of the concepts

effectively implemented. Thus, this research study aims to develop a methodology that

addresses these issues to improve the development of simulation models and the creation

of simulation modeling environments particular to specific domains. Conceptual

simulation modeling (CSM), model transformation, and domain specific simulation

environment (DSSE) create the foundations for this methodology to bridge the gap

between reality and simulation.

 1

CHAPTER 1

Introduction

1-1. Overview of Research

In general practice, simulation modeling is performed as a development process

focusing on design and experimentation of models on a computer. Often, the leading role

in defining specifications and requirements of the development process is weighed on the

side of the terms of simulation (e.g., languages, environments, and applications) rather

than modeling (e.g., concepts, formalisms, and representations). This is because modeling

is still viewed as more of an art than science, whereas simulation is considered as a solid

framework – that puts the development at ease with controllability (i.e., a property of a

system to be controlled by manipulating the initial state/inputs to the system to obtain the

desired state/outputs over a time interval). However, in many cases, the simulation

framework causes unnecessary constraints in representing the true characteristics and

semantics of reality – which reduces maintainability/sustainability (i.e., a property of a

system or its components/attributes to be reused or modified to adapt to a changed

environment) of the simulation models.

In the Modeling and Simulation (M&S) arena, the balance between controllability

and maintainability/sustainability is very crucial – in bridging the gap between reality and

simulation – when conducting a simulation modeling study. To achieve the goal, a

modeling framework needs to be independently developed as well as potentially mapped

into the simulation framework. The main purpose is to model real world elements by

using appropriate simulation artifacts effectively and efficiently. However, since the real

 2

world elements/systems continued to grow in size and complexity, the need for better

procedures and techniques for simulation modeling is more apparent. This research study,

therefore, is focused on three critical issues that lay out the foundations for improving the

future of M&S development.

The first issue is the quantity and quality of assumptions and constraints made

during the M&S development, concerning the completeness of simulation models to

represent reality. From a simulation perspective, this issue is focused on how well

information and knowledge in reality are conceptualized and transformed into simulation

modeling concepts. To facilitate the conceptualization and transformation of concepts

from one domain to another, the approach of conceptual simulation modeling (CSM) is

critical. CSM is also determined either as a mechanism capturing the structural and

behavioral characteristics of a problem domain or as an interface providing knowledge

representations for cross-domain communication – which results in creating a modeling

framework for a problem domain.

It is important to have maintainability/sustainability in modeling and gain

controllability in simulation. The modeling framework retrieved from CSM has become a

key to success. This is because the modeling framework is not only a process for parsing

the boundaries, requirements, and elements from reality to simulation but also a blueprint

for specifying the structures and environments for a simulation framework corresponding

to the problem domain. As a result, the potential of mapping between these frameworks

exists – which leads to another agenda lying within the first issue.

The completeness of simulation models to represent reality is an ideal concept to

bridge the gap between reality and simulation. The more positive the mapping, the more

 3

complete the simulation models. It follows that the next step is to develop a domain

specific simulation environment (DSSE). The DSSE can be viewed as an overlapping

framework of the modeling and simulation aspects, supporting using simulation artifacts

to model real world elements for such a specific problem domain. This also enables the

satisfactory of both controllability and maintainability/sustainability for the simulation

models. However, developing a DSSE from a scratch is indeed difficult, and probably

leads to the lost in translation of concepts from the target domain to the simulation

domain – which distorts its effectiveness and efficiency. It, thus, requires a documented

guideline to structure a DSSE. In this research study, the CSM approach is applied to

develop such documentation providing knowledge representations that describe the

structural and behavioral characteristics of the problem domain in terms of both real

world and simulation architecture and context. This aims not only to facilitate the

development of DSSEs but also to resolve the first issue.

The second issue is the levels of model composability and simulation

interoperability, affecting the possibility of reusability and data exchange of components.

This issue is a consequence from retrieving a conceptual simulation model. Practically,

the conceptual simulation model is unable to be implemented directly. This is because the

conceptual simulation model provides documentation of the model characteristics but is

not in an executable form. It, thus, still needs to be transformed from conceptual

components into executable components.

The transformation of conceptual simulation models is the process of data

exchange between the sources and targets, whose semantics are controlled by the levels

of model composability (for conceptualization) and simulation interoperability (for

 4

implementation). Failure in transferring true semantics of the conceptual simulation

models to the implementation details costly affect the development of DSSEs, including

general simulation modeling studies. The impact does not mean only errors in simulation

functionalities but infeasibilities in reusing those for future simulation projects.

Therefore, the conceptual simulation models need to be transformed into contextualized

documentation, so that their semantics of structural and behavioral contents can be

represented within a simulation context that is understandable and accessible by human

and computer. This is to ensure that the simulation contents targeting for implementation

are still specified within the modeling framework.

The third issue is the simulation-based environment that is the implementation of

the concepts developed. This issue is also considered as a deterministic problem when

having more than one choice of selection for mapping between conceptualization and

simulation. In general, a simulation model can be built on either a generic (e.g.,

commercial software like Arena, Visual SLAM, etc.) or a specific (e.g., SNAP)

simulation environment/host simulation language. They both contain and take advantages

and disadvantages from each other. Moreover, the selection is also depended on an

individual’s experience and expertise in simulation modeling and those choices – which

results in the expressiveness of use.

This issue inspires this research study to develop a methodology that facilitates

the mapping of concepts between two domains for implementation – at minimum

development cost. The methodology aims to develop a DSSE using a generic existing

simulation environment/host simulation language. The core idea behind the methodology

is that the individual can enforce his/her own modeling framework to match the

 5

requirements of the simulation environment/language (aka. framework) it is plugged into

– by normalizing them into a uniform representation. Obviously, most simulation

environments/languages are developed based on object orientation, which is similar to the

characteristics of the modeling framework developed by using CSM. Thus, an object is

used in common for their representation level.

Based on the object-oriented approach, it allows the individual to exploit the

aspects of an object to develop a simulation building block that represents a functionality

corresponding to both reality and simulation. Simulation building blocks are then

collected in libraries and linked together for testing simulation studies. Having a

reasonable number of simulation building block libraries, after creating, editing, and

reusing them for a period of time, the individual is able to establish his/her own DSSE on

the existing simulation environment/language for resolving similar problems within the

domain. Figure 1-1 illustrates the overview of using the methodology for the

development of simulation building blocks to create a DSSE. The detailed explanation

will be given in the following chapters of this dissertation.

Overview

Conceptual Simulation
Model

Contextualized
Documentation

Simulation
Building Block

Transformation Mapping

Determination

Figure 1 - 1: An overview of the methodology

 6

1-2. Outline of the Dissertation

This dissertation is written under a hybrid format that consists of a collection of

three stand-alone papers describing the methodologies critical for the entire research

study and four standard-written chapters providing general knowledge. One of the papers

has been published in a referee-reviewed conference, while the rest will be submitted to

publications in this area. This dissertation is organized as follows. Chapter 2 provides a

thorough review of related literature that is needed for understanding the core concepts of

this dissertation. Chapter 3 presents the methodology of conceptual simulation modeling

to structure a domain specific simulation environment. Chapter 4 presents the

methodology of transforming a conceptual simulation model into contextualized

documentation. Chapter 5 presents the methodology of mapping between

conceptualization and simulation. Chapter 6 provides a case study to demonstrate the

implementation of the methodologies developed in this dissertation onto a real world

application. Chapter 7 presents the general conclusions that can be drawn from this

research study and offers recommendations for further research.

 7

CHAPTER 2

Literature Review

 This chapter is designed to be a general overview to summarize the relevant

literature that explains the basic concepts and approaches used throughout this research

study – to layout a strong foundation for advanced studies (in the following chapters). In

addition to Chapter 3 – 5, each chapter also includes a section for literature review to

provide a background of study that leads to the development processes for each

methodology.

2-1. Simulation

A system is defined as a collection of items that are joined together to characterize

interaction or interdependence toward the accomplishment of study or interest (Banks

and Carson 1984; Graham et al. 2000). Law (2007) states that “most real-world systems

are too complex to allow realistic models to be evaluated analytically, and these models

must be studied by means of simulation.” Simulation is the process of designing a

mathematical-logical model that represents a real-world system by imitating the system’s

characteristics, often over time, and experimenting with this model on a computer

(Kelton et al. 2007; Pritsker and O’Reilly 1999). Essentially, computer simulation is seen

as a reliable and effective decision-support tool that decision makers use to “evaluate a

system numerically and provide data to estimate the desired true characteristics of the

system” (Law 2007). This allows decision makers to assess a variety of what-if scenarios

 8

to help enhance analysis of the entire system, without having to build, disrupting, and

destroying the system (Manivannan 1998; Pritsker and O’Reilly 1999).

According to Law (2007), from simulation modeling world view, models of

systems can be classified into three dimensions: static/dynamic; deterministic/stochastic;

and continuous/discrete. A static simulation model represents a system at a particular

time, while a dynamic simulation model represents a system involving over time. A

simulation model is called deterministic when it does not contain any probabilistic (i.e.,

random) components. However, many systems are modeled as having at least some

random input components, and these create stochastic simulation models. A discrete

simulation occurs when the dependent variables change only at specified points in

simulated time, referred to as event times, whereas in continuous simulation the

dependent variables change continuously over simulated time. This dissertation is

focused on a methodology that facilitates building dynamic, stochastic and discrete-event

simulation models for real world systems.

In the literature, different approaches have been proposed to build simulation

models focused on the main operational problems, for instance, queuing and bottleneck

problems, resource allocation and scheduling techniques, equipment utilization,

throughput, and operational efficiency in the domain systems. These simulation models

can be developed from a sequence of operational processes, using different simulation

languages (i.e., MODSIM II, SIMAN, and Visual SLAM) and programming languages

(i.e., Visual Basic, C, and C++). Usually, simulation models cover both the physical

resources (i.e., cranes and vehicles) and the components for control and strategies,

 9

providing a testing environment for algorithms and systems evaluation (Hartmann 2004).

Consequently, simulation projects can be carried out for a variety of specific purposes.

As discussed the literature, a simulation model must be reusable, flexible, and

extendable to support rapid changes and improved level of detail concerning the

operational behavior of the real world systems. To achieve that purpose, an object-

oriented modeling approach is used to facilitate the development of simulation models.

The structural and behavioral characteristics found in the system can be viewed as an

object. Each object contains necessary features that support data abstraction,

encapsulation (hiding information), inheritance, and dynamic binding (Rumbaugh et al.

1991; David 1996). These features provide modularity, composability, and reusability

essential in developing complex systems and in particular simulation models. The object-

oriented approach has been applied in modeling and simulating complex domain systems

such as a general port container terminal (Yun and Choi 1999) and the intermodal

exchange points in the transportation network (Mathew et al. 2005).

The object-oriented modeling approach has also been used as a concrete

foundation for further development of simulation modeling. The standard programming

languages, such as C++ and JAVA, provide a powerful framework that greatly facilitates

the implementation of object-oriented design and modeling methodology and its

capability for creating flexible, modular, and reusable simulation-related extensions.

Healy and Kilgore (1998) introduce SilkTM, a JAVA-based simulation, which represents a

unique combination of process-oriented modeling constructs and the object-oriented

features. SilkTM provides the power and flexibility to program within industry standard

development environments. In addition, extending the object-oriented modeling

 10

capabilities with a standard programming language also offers the design capabilities for

domain-specific simulation modeling (Ferayorni and Sarjoughian 2007).

2-2. Structure of the Research

 The main focus of this research study is to develop a methodology that is capable

of generalizing and accessing the structural and behavioral characteristics of the real

world systems to support the development of reusable and sustainable simulation models.

Conceptual modeling and domain specific simulation environments are determined as the

key approaches to lay out the backbone structure for developing the methodology.

2-2-1. Conceptual Modeling

 “The conceptual model is a non-software specific description of the simulation

model that is to be developed, describing the objectives, inputs, outputs, content,

assumptions and simplifications of the model” (Robinson 2004). Pace (2000) also defines

a conceptual model as “a simulation developer’s way of translating modeling

requirements… into a detailed design framework…, from which the software that will

make up the simulation can be built.” Furthermore, a summary of some key facets of

conceptual modeling and the definition of the definition of a conceptual model stated by

Robinson (2006) are as follows:

• Conceptual modeling is about transforming a problem situation into model

requirements to define what is going to be modeled and how;

• Conceptual modeling is iterative and repetitive throughout a modeling

study;

 11

• A conceptual model is a simplified representation of the real system;

• A conceptual model is independent of the model code or software,

whereas model design includes both conceptual model and the design of

the code; and

• The collaboration between the client (i.e., person for whom the model is

being built) and the modeler is needed in conceptual modeling.

In brief, conceptual modeling is seen as an approach used to translate the concepts from

the application domain into the simulation domain. This approach assists the model

developers in capturing the structural and behavioral characteristics of the domain by

developing logical and descriptive representations which create an interface representing

cross-domain communication between the application domain and the simulation domain.

 Zhou et al. (2006) state that “conceptual modeling (CM) has been recognized as a

critical step that directly affects the quality and efficiency of simulation projects. Good

CM practice significantly reduces communication barriers, shorten project time, and

improve the quality of simulation.” A conceptual model can be described by using

knowledge representation notations such as semantic/logical graphs, where the nodes

represent concepts (e.g., activities and states), and the arcs represent relationships among

concepts (Cyre 1999; Zhou et al. 2004). Nonetheless, there are few methods/tools

available to assist in the conceptual modeling phase.

Heavey and Ryan (2006) carry out a selective review of a number of current

process modeling methods/tools and categorize those into: formal methods and

descriptive methods. Formal methods, such as Petri Nets, Discrete Event System

 12

Specification (DEVS), and State Charts, provide a formal basis and numerous software

implementations of these methods. In contrast, descriptive methods have little formal

basis and are primarily descriptive software implementations including IDEF3, Integrated

Enterprise Modeling (IEM), CIMOSA, and UML State Charts. However, none of these

methods/tools are advances sufficiently to support the development of model constructs

for a domain specific simulation environment. This is because these current process

modeling methods/tools can only implement domain conceptualization but not the

simulation implementation.

 Setavoraphan (2005) developed a simulation modeling tool based on object-

oriented modeling approach and IDEF3 method. This tool represents both the process-

oriented view of the target domain and modeling elements (e.g., attribute and operation

aspects) required for the simulation implementation and to create a simulation modeling

instance for a particular application domain. Further, each simulation modeling instance

is able to deploy other object-oriented features such as polymorphism (e.g., methods and

procedures), aggregation (e.g., a-part-of relationship for decomposition/specialization),

and generalization (e.g., composition). These features provide not only the different

levels of representations of the application domain but also the reusability and flexibility

of the models, which are needed for developing model constructs used in a domain

specific simulation environment. Thus, the simulation modeling instance plays as a key

role in developing model constructs in this research study.

 13

2-2-2. Domain Specific Simulation Environment

 The same kind of questions exists in the characterization of the operations of a

system within a particular domain, and decision makers must answer these over and over

again. Verbraeck and Valentin (2002) observe that “often, however, new simulation

models are built for each question, if possible copying some parts of previous models.

Structured reuse of simulation components is rarely seen.” In most generic discrete-event

simulation environments, such as Arena, Promodel, and Automod, model developers

must translate their domain specific requirements into the general modeling components

such as queues and resources (Valentin and Verbraeck 2005). To facilitate the

development of models in a certain domain, domain-specific simulation languages may

be used to create simulation model development environments which provide model

constructs that represent domain specific system elements which are familiar to the

analyst.

“The idea behind domain-specific modeling languages is their ability to define

the relationships between concepts in a domain and specify key semantics and constraints

associated with those domain concepts” (Ferayorni and Sarjoughian 2007). The concepts

in the domain come from the knowledge acquisition processes which can be literature

review, domain expert interviews, and actual experience in the field of interest. The

concepts are categorized into two groups: basic and special concepts (Zhou et al. 2004).

Basic concepts are shared by all models of the domain and belong to the domain of

simulation knowledge. Special concepts are used to define and describe the unique

characteristics of different application systems, associating with particular domain

knowledge. As well, the key semantics that provide modeling elements and the

 14

constraints that set the boundaries in model are retrieved from the knowledge acquisition

process and translated into the simulation concepts.

Later, these simulation concepts can be further developed into a domain specific

simulation language – which generates a modeling tool for resolving specific and

repeated problems. The modeling tool, at a certain mature level of reusability,

sustainability, and efficiency, then becomes the core element of the architecture defining

and specifying requirements and constraints for designing a domain specific simulation

environment. A domain specific simulation language is as much concerned with

programming, whereas a domain specific simulation environment is considered as much

of a system that facilitates programming, running, and storing model constructs. Keep in

mind that a simulation modeling language is the foundation of the development of a

simulation environment, so understanding the characteristics of a simulation modeling

language is indeed critical – prior to the development of a domain specific simulation

environment. However, it is not such necessary to always develop a specific simulation

environment to support the domain specific simulation language. This is because the

language can be constructed in a simple programming-language environment such as

FORTRAN or Visual BASIC.

The development of domain specific simulation languages/environments has been

rare but instances have been seen over the years. Grant and Pritsker (1974) constructed

the Electroplating Simulation Program (ESP) as a domain specific simulation modeling

language for the evaluation of production, waste discharge and housekeeping aspects of

existing electroplating processes and also for the evaluation of potential changes in those

plating processes for improved pollution control. The Safeguards Network Analysis

 15

Procedure (SNAP) is another example of a domain specific simulation

language/environment used for evaluating the resistance of a fixed-site safeguards system

to sabotage or theft (Miner and Grant 1978). However, due to not only the limitations of

the domains themselves but also the requirements for advanced simulation skills, it seems

difficult to draw model developers’ interests to building a domain specific simulation

language/environment – that is not only time consuming but perhaps one-time use.

There have been several panel discussions, e.g., the Winter Simulation

Conferences, mentioning the use of domain specific simulation languages/environments

as the next step for discrete event simulation research. According to Valentin and

Verbraeck (2005), they conclude the advantages of applying the approach as follows:

• Problem owners have a better understanding of the simulation model

because the concepts of the conceptual model can be recognized in the

simulation;

• New simulation experiments are easy to generate;

• The simulation model is easier to validate because only the applicability of

the model constructs needs to be checked and not the inner-workings; and

• The simulation model needs less instances of model constructs, with

improved overview and model management.

These advantages support and encourage modern model developers to develop simulation

models using model constructs that represent domain specific system elements, which

allow them to carry out many simulation projects for common but complicated domains.

For example, a domain specific simulation environment for the Automatic Guided

 16

Vehicles (AGVs) system used between the airport Schiphol and the flower auction

Aalsmeer in the Netherlands has been developed to test an advanced control system

called TRACES, for the design of the terminals, the control mechanisms, and the AGVs

(Heijden et al. 2002). For airport terminal modeling, a domain specific simulation

environment can also be built to provide model constructs for different simulation studies

(Verbraeck and Valentin 2002).

The dissertation of Saanen (2004) also shows that a domain specific simulation

environment facilitates the model developer in instantiating and parameterizing particular

types of elements related to container terminal operations, such as container cranes, for

the simulation model instead of developing the detailed behavior of each crane. It is

clearly seen that the simulation modeling elements can be reused and implemented for

other specific projects under the certain domain. This helps the simulation model

developer or user shorten time consuming and reduce constraints for building a new

simulation model.

Although “domain specific simulation environments are often incomplete, hard to

maintain, and model developers need to overcome initial low trust for these

environments” (Valentin and Verbraeck 2005), the capabilities of domain specific

simulation modeling language to provide environments of reusability and faster model

development and experimentation are still crucial. To address these advantages, domain

specific simulation environments need to match a set of requirements suggested by

Valentin and Verbraeck (2005), as follows:

 17

a) Requirements for domain specific simulation environments:

• Usable within several simulation studies; A domain specific simulation

environment should not be used only in one case, but it should be suitable

for easily developing simulation models for several simulation studies.

• Usable at different levels of abstraction, or detail; A domain specific

simulation environment should provide several model constructs available

to represent one system element at different levels of abstraction by

representing different complexities.

• Clearly define the scope of applicability of the domain specific

environment so the user knows when to use and when not to use;

Adjusting the existing model constructs or developing new constructs

might be needed when the domain specific simulation environment is not

suited for use for a certain problem.

• Easily extendable with new model constructs; New model constructs can

be added to a domain specific simulation environment to represent system

elements at a different level of abstraction/detail.

• Support material to gain trust; Sufficient support material, e.g., a user

manual, online documentation, etc. should be available to show the users

of the domain specific simulation environment how system elements are to

be applied in developing model details.

• Additional analysis tools or instruments to support understanding of the

outcomes of simulation models; Output analysis tools should be provided

to enable model developers to analyze and observe the outcome of their

 18

simulation model that represents their system effective. These should

include statistical analysis as well as graphical analysis tools.

• Ability to easily build simulation models that are understandable for

problem owners and show valid behavior; A domain specific simulation

environment should consist of sufficient model constructs that can

represent the various system elements in a way understandable and easily

used by problem owner.

b) Requirements for model constructs in domain specific simulation

environments;

• Follow basic rules of systems thinking and software engineering; The

development of model constructs of domain specific simulation

environments should follow the concepts of decomposition and design of

interfaces.

• User interface for parameterization in terminology of problem owner and

problem domain; The user interfaces should contain terms that the

problem owner is used to and allow him/her to set parameters of the model

construct via the user interfaces.

• Not too much functionality in one model construct; Performance

indicators, parameters, and functionalities of a model construct should be

set appropriately and not be overly complex.

• Performance indicators that make sense to problem owners; The model

constructs should provide performance indicators that reflect the interests

 19

of the problem owners rather than just default statistics – to enable them to

trust the model and its outcomes.

• Model constructs separated for physical (the existing or planned system)

and control system (the logical elements which have no physical existence

and also control model execution details) elements; This separation makes

the model constructs easier to use and more flexible.

• Generate errors and warnings for model developers during model

development; This support is to give guidance if a model developer is

doing things that are not entitled or matching with the model constructs.

The model development process using domain specific environments will

automatically generate documentation that defines the model and makes it

easy to expand later, perhaps by other developers.

c) Requirements for supporting the design of domain specific simulation

environments;

• Support developers of domain specific simulation environments; The

design methodology should not make the process in building a domain

specific simulation environment unnecessarily difficult for the developers.

• Provide insight into the complexity of the domain for problem owners and

future model developers; Knowledge acquisition is needed for developers

to receive input from a problem owner to develop model constructs that

can be used in several simulation studies and represent system elements

valid and understandable.

 20

• Provide insight in required data/information/system knowledge; All kinds

of required domain knowledge should be provided by the problem owners

to developer in descriptive details. Metadata should be included in the

model development to enable self-documentation and future expansion.

• Provide definition and overview of deliverables; Deliverables of the

developer of the domain specific simulation environment during the

development process will enable trust and understanding between the

problem owners and model developers in the design of the domain

specific simulation environment.

d) Guidelines for use of domain specific simulation environment.

• Make sure that all steps of a simulation study are performed; It is

important to perform all process steps (i.e., formulate problem, specify

model, build model, simulate model, and use model) of a full simulation

study for it to be valid.

• Pay attention to trust of model developers in the domain specific

simulation environment; Ensure that the model constructs of the domain

specific simulation environment match with the problem within the

domain.

• Evaluate the selection of model constructs; Specifications should be

provided to the model developer with insight how to appropriately select

model constructs corresponding to different levels of abstraction/detail.

 21

The requirements stated above can be used to define reference architecture for developing

domain specific simulation environments, which facilitate the model developers to define

minimum configurations to design and use model constructs.

 This research seeks to provide a methodology for building domain specific

simulation environments. The goal is to use this methodology to build simulation

applications that are self documenting, easy to expand, and easy to use by users that go

beyond the model builder, as simulation application is today. To extend the research

discussed above and to accomplish this goal, the development processes of building

domain specific simulation environments have been organized into three steps:

conceptualization, documentation, and translation. Conceptualization involves defining

the elements of the domain important in models and their relationships. Documentation

provides the detail necessary to actually build a simulator. Translation is concerned with

linking the details developed in documentation to the components of an existing

modeling language such that the domain specific environment can be realized. The goals

are twofold: to easily build a “one time” use application that is well documented, and, to

build a reusable modeling environment that can solve future design problems as they

arise.

2-3. References

1. Banks, J. and J. S. Carson (1984). Discrete-Event System Simulation, Englewood

Cliffs, NJ: Prentice-Hall, Inc.

2. Cyre, W. R. 1999. Conceptual Modeling and Simulation. In Proceedings of the

1999 IEEE International Conference on Computer Design, 293-296.

 22

3. David, R.C.H. (1996). Object-Oriented Analysis and Simulation, 1st ed., Addison

Wesley Longman.

4. Ferrayorni, A.E., and H. S. Sarjoughian (2007). Domain driven simulation

modeling for software design, SCSC, 297-304.

5. Graham, D.W., Cassady, C.R., Bowden, R.O., and LeMay, S.A. (2000). Modeling

intermodal transportation systems: establishing a common language, The

Transportation Law Journal, 27, 55-68.

6. Grant, F.H. and Pritsker, A.A.B. (1974). Models of cadmium electroplating

processes. NSF(RANN) GRANT GI-35106, Purdue Univesity.

7. Hartmann, S. (2004). Generating scenarios for simulation and optimization of

container terminal logistics, OR Spectrum, 26, 171-192.

8. Healy, K.J. and Kilgore, R.A. (1998). Introduction to SILKTM and JAVA-based

simulation, Proceedings of the 1998 Winter Simulation Conference, 327-334.

9. Heavey, C. and J. Ryan. 2006. Process modeling support for the conceptual

modeling phase of a simulation project. In Proceedings of the 2006 Winter

Simulation Conference, ed. L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D.

M. Nicol, and R. M. Fujimoto. 801-808. Piscataway, New Jersey: Institute of

Electrical and Electronics Engineers, Inc.

10. Heijden, M.C. van der, van Harten, A., Ebben, M.J.R., Saanen, Y.A., Valentin,

E.C., and Verbraeck, A. (2002). Using simulation to design an automated

underground system for transporting freight around Schiphol Airport, Interfaces,

32 (4), 1-19.

 23

11. Kelton, W.D., Sadowski, R.P., and Sturrock, D.T. (2007). Simulation with Arena,

4th ed., Boston: McGraw Hill.

12. Law, A.M. (2007). Simulation Modeling and Analysis, 4th ed., Singaport:

McGraw Hill International.

13. Manivannan, M.S. (1998). Simulation of logistics and transportation systems. In

J. Banks (Ed.), Handbook of simulation, principles, methodology, advances,

applications, and practice (pp. 571 – 602). New York: John Wiley & Sons, Inc.

14. Mathew, R., Leathrum, J.F. Jr., Mazumdar, S., Frith, T., and Joines, J. (2005). An

object-oriented architecture for the simulation of networks of cargo terminal

operations, JDMS, 2 (2), 101-116.

15. Miner, R.J. and Grant, F.H. III. (1978). User’s guide for SNAP. Pritsker &

Associates, Inc.

16. Pace, D. K. 2000. Ideas about simulation conceptual model development. Johns

Hopkins APL Technical Digest 21: 327-336.

17. Pritsker, A.A. and O’Reilly, J.J. (1999). Simulation with Visual SLAM and

AweSim. 2nd ed., New York: John Wiley & Sons.

18. Robinson, S. 2004. Simulation: The practice of model development and use.

Wiley.

19. Robinson, S. 2006. Conceptual modeling for simulation: Issues and research

requirements. In Proceedings of the 2006 Winter Simulation Conference, ed. L. F.

Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto.

792-800. Piscataway, New Jersey: Institute of Electrical and Electronics

Engineers, Inc.

 24

20. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. (1991)

Object-oriented modeling and design, New York: Prentice Hall.

21. Saanen, Y.A., (2004). An approach for designing robotized marine container

terminals, Doctoral Dissertation, Delft University of Technology, Netherlands.

22. Setavoraphan, K. 2005. Conceptual simulation modeling for regional distribution

center systems, Thesis, Indiana State University, Indiana, USA.

23. Valentin, E.C. and Verbraeck, A. (2005). Requirements for domain specific

discrete event simulation environments, Proceedings of the 2005 Winter

Simulation Conference, 654-663.

24. Verbraeck, A. and Valentin, E. (2002). Simulation building blocks for airport

terminal modeling, Proceedings of the 2002 Winter Simulation Conference, 1199-

1206.

25. Yun, W.Y. and Choi, Y.S. (1999). A simulation model for container-terminal

operation analysis using an object-oriented approach, International Journal of

Production Economics, 59, 221-230.

26. Zhou, M., Son Y.J., and Chen, Z. (2004). Knowledge representation for

conceptual simulation modeling, Proceedings of the 2004 Winter Simulation

Conference. 450-458.

27. Zhou. M., Q. Zhang, and Z. Chen. 2006. What can be done to automate

conceptual simulation modeling?. In Proceedings of the 2006 Winter Simulation

Conference, ed. L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol,

and R. M. Fujimoto. 809-814. Piscataway, New Jersey: Institute of Electrical and

Electronics Engineers, Inc.

 25

CHAPTER 3

Conceptual Simulation Modeling: The Structure of Domain Specific Simulation

Environment

 “Reproduced with automatic permission from [Setavoraphan, K. and Grant, F. H. (2008) Conceptual simulation

modeling: The structure of domain specific simulation environment from The Winter Simulation Conference 2008,

975-986]. It has been modified somewhat to reflect current advances in this research.”

Abstract

This chapter focuses on the development of a conceptual simulation modeling tool that

can be used to structure a domain specific simulation environment. This approach can be

used to structure either the development of a single-application model or an environment

appropriate for building several models in a specific domain.

The issues in Software Engineering and Knowledge Engineering such as object-

oriented concepts and knowledge representations are addressed to identify and analyze

modeling frameworks and patterns of a specific problem domain. Thus, its structural and

behavioral characteristics can be conceptualized and described in terms of simulation

architecture and context. Moreover, symbols, notations, and diagrams are developed as a

communication tool that creates a blueprint to be seen and recognized by both domain

experts and simulation developers, which lead to the effectiveness and efficiency in the

simulation development of any specific domains.

3-1. Introduction

 In the past ten years, there have been several panel discussions at, e.g., the Winter

Simulation Conferences (Zhou, Son, and Chen 2004; Heavey and Ryan 2006; Robinson

 26

2006a), the OR Society Simulation Workshop (Robinson 2006b, Wang and Brooks

2006), and the BETADE Workshop (Verbraeck and Dahanayake 2002), which

acknowledge the use of conceptual modeling (CM) approach and domain specific

simulation environment (DSSE) approach as a critical step to improve the quality and

efficiency of discrete event simulation research studies/projects. The literature mainly

states that good practice of these two approaches significantly reduce communication

barriers, organize model structure, shorten project time, and improve simulation

development processes (Vreede, Verbraeck, and Eijck 2003; Valentin and Verbraeck

2005; Zhou, Zhang, and Chen 2006). Although their advantaged are addressed and

supported in the same direction by several simulation studies, CM and DSSE still have so

far received little attention from simulation developers because CM is viewed as more of

an art than science (Brooks 2006), while DSSE is lack of trust of those (Valentin and

Verbraeck 2005).

 Numerous articles of, for example, Cyre (1999); Deursen, Klint, and Visser

(2000); Pace (2000); Yilmaz and Oren (2004); Valentin and Verbraeck (2005); and

Robinson (2006a, 2006b), propose ideas on definitions, requirements, limitations, and

methods for the development of CM and DSSE to overcome the struggles in those

simulation developers’ mind. However, most of them are still reluctant to apply CM and

DSSE approach to develop their simulation projects. This is because only a few number

of literature demonstrate how to transform and develop those concepts into a standard

method/tool that can be used to capture and describe elements required for both CM and

DSSE. A research study by Teeuw and van den Berg (1997), for instance, introduces the

conceptual framework as developed in their testbed project by using symbols and

 27

notations to describe a system’s behaviors, relations, and entities. A conceptual model

can also be built by using knowledge representation notations such as semantic/logical

graphs, where the nodes represent concepts, and the arcs represent relationships among

concepts (Cyre 1999; Zhou, Son, and Chen 2004). Furthermore, a selective review of a

number of current modeling methods/tools carried out by Heavey and Ryan (2006) shows

that simulation developers have become more aware of using standard methods/tools

such as Petri Nets, DEVS, IDEF3, and UML, to develop their own conceptual models. As

well, simulation building block terminology is proposed by a research team, BETADE, at

Delft University of Technology, The Netherlands, in 2001 to provide a standard

methodology for the DSSE development (Verbraeck and Dahanayake 2002), instead of

relying on old-fashioned programming. It can be said that the trend of the CM and DSSE

research studies is moving forward to acquiring more sophisticated, universal, and user-

friendly methods/tools to serve both CM and DSSE requirements effectively and

efficiently. However, none of the available methods/tools exists to satisfy this demand.

 One of the critical reasons is that both CM and DSSE are viewed from different

perspectives that not only isolate them into two distinct disciplines but also eliminate an

opportunity for their collaborative modeling and representation formalisms in developing

simulation projects. The fact that the foundations of modeling concepts and processes for

CM and DSSE are similar allows them to overlap in some aspects (see Valentin and

Verbraeck 2002; Verbraeck and Valentin 2002; Vreede, Verbraeck, and Eijck 2003;

Zhou, Setavoraphan, and Chen 2005). The concepts developed by CM processes are

transformed into the logical and structural components for DSSE, whereas the result of

the implementation of those in DSSE becomes a feedback mechanism that provides a

 28

better understanding of both the problem owners to improve their conceptual models for

better DSSE (see Figure 3-1). This iterative CM and DSSE development process is

performed until DSSE generates a complete standard set of the specifications and patterns

– that can be transformed into basic building blocks. Then these building blocks are

integrated to form a stand-alone simulation template, which is capable of representing

systems as a domain specific simulation model for the simulation builders as well as a

domain specific conceptual model for the domain experts. Consequently, the simulation

template is delivered as the basic component to develop (commercial) simulation

software and a knowledge-based simulation system.

CM DSSE Simulation
Template

Transformation

Feedback Specification

Pattern

Figure 3 - 1: The relationship between CM and DSSE

The main idea of this research study is to focus CM concepts and techniques to

further its potentials in characterizing the general behavioral and structural characteristics

of a specific problem domain to generate a model that contains processes, elements,

controls and requirements for simulation. This is generally referred to as conceptual

simulation modeling (CSM). Thus, the CM approach is determined to be the backbone of

the development of a CSM tool that can be used to structure a DSSE for discrete-event

simulation modeling problems. Section 3-2 briefly describes the key concepts within

Software Engineering (SE) and Knowledge Engineering (KE) that comprise the baseline

foundations of CSM development. The concepts are formalized into different layers and

representations to construct standard symbols, notations, and diagrams to be used in

 29

CSM, which is illustrated in Section 3-3, including an example for illustration. Finally,

conclusions and further research ideas are given in Section 3-4.

3-2. Key Concepts

 The simulation development process is a kind of problem-solving process that

determines a context, environment, and boundary of a real-world problem domain to be

developed and used for experimentation. CSM plays a critical role as a specialized tool to

facilitate the understanding of the problem, support communication between domain

experts and simulation developers, and represent the knowledge needed by the simulation

system to simulate/solve the problem. CSM also uses the underlying convergent concepts

used to develop conceptual models from both SE and KE, which are: first, object-

oriented concepts from the discipline SE; and second, knowledge representations (or

“levels” in some literature) from the discipline KE (see more details about the CM

methods in Dieste et al. 2001). However, CSM requires more advanced approaches to

access, formalize, and use these concepts to overcome the barriers and drawbacks during

constructing and transforming a conceptual simulation model. These are decomposition

and composition approaches.

3-2-1. Decomposition Approach

 The significant problem found in applying object-oriented concepts and defining

knowledge representations is how to determine and represent the concepts derived from

both application knowledge and simulation knowledge (see Zhou, Son, and Chen 2004)

at an appropriate abstract level to satisfy the efficiency of CSM. The determination of the

 30

level of abstraction is strongly influenced by the objectives of the design or the questions

needed to be answered (Benjamin et al. 1993). Nevertheless, no single abstract model is

sufficient to be expressed at different levels of precision and to attack specific problems

(Booch, Jacobson, and Rumbaugh 1999).

 Decomposition is a crucial approach used to handle complexity and represent the

behavioral and structural characteristics of the target problem domain at an appropriate

level of detail (Zhou, Setavoraphan, and Chen 2005). Moreover, it is the paramount idea

of object-oriented concepts (Meyer 1997), which is used to formalize modeling

frameworks for CSM due to its inherent support for abstraction-centric, reusable, and

adaptable design (Zhou, Zhang, and Chen 2006). Using abstraction, aggregation, and

specialization aspects, the object orientation provides decomposition to the simulation

developers to capture descriptions at varying abstraction levels and integrate all those sub

domains into a comprehensive behavioral description for the problem domain.

The central idea of decomposition is to breakdown the complexity of a problem

domain into less complex sub domains by eliminating irrelevant details and highlighting

the important behavioral and structural characteristics (Hofmann 2004). The frames of

reference of these sub domains can be extended or modified to satisfy the objectives of

the design (Lee and Wyner 2003). This allows each sub domain to interact with a set of

other sub domains to provide complete representation and enable the modeling of the

domain (Davis 2001). For further benefits and criteria of decomposition, see the works by

Davis (2001) and Hofmann (2004).

 To avoid the tendency of characterizing CSM as “more of an art than science”,

the constraints of decomposition need to be specified to manage abstraction of the

 31

domain at hand. A proceeding paper (Zhou, Setavoraphan, and Chen 2005) proposes a set

of mathematics notations to describe the functions and constraints of two types of

decomposition: serial decomposition and parallel decomposition. In this chapter, a

process-oriented view is used to define a problem domain as a set of sequenced processes

in a generic level, which can be decomposed into (multi) sub lower-level processes,

controlled by constraints. These constraints are addressed here in narrative description

instead of mathematics notation.

First, serial decomposition must satisfy the following constraints:

• A top level process must be decomposed into sub processes in order to form a

serial-sequence order, and each sub process’ input and output specified must be

available when executed; and

• The set of sub processes must be a partition of its higher-level process, completely

dividing the functionality of the higher-level process; and

• Precedence relation is required among the sub processes; and

• The attributes defined for the sub processes and the aggregation of these sub

processes must be consistent with the attributes defined for the decomposed

process; and

• The input and output external to the set of sub processes must match the original

input and output associated with its higher-level process; and

• The total process time is a sum of sub process times.

Second, parallel decomposition mostly follows the constraints defined in serial

decomposition. The difference is that parallel decomposition requires Boolean logical

 32

operators, for example, AND, OR, and XOR, to support the functionalities of logical

branching out (e.g., deterministic branching or probabilistic branching) from the

predecessor of the original process. These logical operators allow decomposition to

specify several alternative combinations of causes and effects to extend the consequences

of the original process (Bell, Snooke, and Price 2005). As a result of decomposition, the

simulation developers are able to capture a set of sequential processes within the domain,

corresponding to the simulation requirements to create a conceptual simulation model at

the appropriate levels of detail.

3-2-2. Composition Approach

 Another encountered problem is that most of products (outcomes) from CSM fail

to be reused in new simulation applications. Reusability of models, modules, or elements

is a challenge not only at abstraction level (conceptual simulation models) but also at

implementation level (domain specific simulation environments). The failure of capturing

and explicitly representing specifications of constraints, objectives, features, and the

semantics of components at the conceptual level generates an incompatible framework of

those within the domain specific simulation environment, reducing the reusability of

model constructs. On the other hand, the incompleteness of encapsulating (modularizing)

and inheriting data (e.g., objects and processes) of the model constructs creates the loss of

the model functionalities and contexts at the implementation level, affecting the trust of

simulation developers in the conceptual simulation models, which reduces their

reusability. Thus, an approach is needed to support model reusability for these two levels.

 33

 Composability is described as an approach with compositional mechanisms that

provides “the ability to compose models/modules across a variety of application domains,

levels or resolution and time scales” (Kasputis and Ng 2000), plus “the capability to

select and assemble simulation components in various combinations into simulation

systems to satisfy user requirements” (Petty and Weisel 2003). Though, the current

capability in composability is limited (Kasputis and Ng 2000) due to the complexity of

the selection of components in the context of simulation (Winnell and Ladbrok 2003) and

is determined to be an NP-hard problem. Still the simulation developers can apply this

approach to design a frame of reference for the possible compositions to increase the

possibility of model for reuse in any environment.

 In general, there are two types of composability: syntactic composability and

semantic composability, used to represent the modeling formalism for the selection of

components (Petty and Weisel 2003). First, syntactic composability requires compatible

implementation details which include timing mechanisms and interface specifications for

all possible compositions. Second, semantic composability requires a meaningful/valid

composition. “Both syntactic and semantic composability are necessary for simulation

composability” (Bartholet et al. 2004) in terms of the development of the interfaces and

the component internals within the defined simulation framework.

 In addition, composability can be conducted in two dimensions which are referred

to as the horizontal and vertical dimension (Page and Opper 1999). In the horizontal

dimension, the components are applied in terms of peer-to-peer integration with respect

to the scope of the model by justifying a level of modeling abstraction with respect to a

set of modeling objectives, which is fundamentally hard to do correctly. This is because

 34

“the presence of multiple models and multiple levels of abstraction increases the

difficulty”, which has been referred to as the multiresolution modeling problem (Page and

Opper 1999). On the other hand, composability in the vertical dimension facilitates a

level of modeling abstraction through aggregation/disaggregation, which may in turn not

provide the best or even a valid solution. It can be seen that the vertical composability is

more flexible to facilitate the composition of decomposed components to create a model

corresponding to the specific requirements. Therefore, composability in the vertical

dimension is mainly applied in this study to avoid complexity, though, it may compensate

with the loss of validity.

 Butler (1998) identifies three crucial components: assembly, extension, and

parameterization, as follows:

• Assembly: connecting existing modeling components in possibly unique ways

through a common environment;

• Extension: modifying or extending the original functionality of an existing model

component through either function override or selective feature

activation/deactivation; and

• Parameterization: changing parameters which control the operational and

behavioral characteristics in an existing model component.

He also states the design requirements for composability to shape the technical and

operational approach in his work. Moreover, a number of research studies have been

conducted to investigate modeling formalism, context, dependency, and framework for

 35

model reuse (Yilmaz and Oren 2004; Spiegel, Reynolds and Brogan 2005; Sarjoughian

and Huang 2005) to improve and facilitate model composability.

 The results from these studies support not only the techniques of model

composability but also the impact of model composability choices in a variety of degrees

of model composition, limitation, and complexity. The idea behind these results shows

that the concepts, theories, and techniques of model composability consist of abstraction,

hierarchy (aggregation/disaggregation), and encapsulation that belong to the object-

oriented aspects (Sarjoughian and Huang 2005). Use of these aspects is crucial in

developing a framework that provides standardized patterns to define the scopes of

design and development of model components and representations for CSM and DSSE. It

must be kept in mind that as long as a set of the model components and representations

are a pattern-based development within the framework, the reusability of the conceptual

simulation models and the model constructs in DSSE is more flexible and more

meaningful when conducting a new simulation project. Moreover, it needs to make sure

that the composition of the model components and representations must be tested in the

level of CSM prior to implement those in DSSE to avoid the conflicts of functionalities

between these two levels.

3-3. Illustration of a CSM prototype

3-3-1. Background of Study

 In the previous section, the importance of the decomposition and composition

approach is illustrated by a means of the application and control to the use of the key

concepts: the object orientation and knowledge representation, in the development of a

 36

CSM tool. Less attention applied in the management of modeling complexity (levels of

detail) and the arrangement of modeling compatibility (levels of selection) results in

ineffectiveness and inefficiency of the overall modeling structure and context. Most of

the simulation developers know the basic object-oriented concepts described in many

publications (e.g., Rumbaugh et al. 1991, Coleman et al. 1993), but few of them

recognize the methods of formalism of these concepts to develop robust and reusable

knowledge representations as modeling frameworks for simulation (see Zhou, Zhang, and

Chen 2006). It has been found out that there are many generic (standard) methods/tools

that are available to support CM (e.g., IDEF3, DEVS, Petri Nets, and UML), but they fail

to accomplish bidirectional transference of concepts and information between application

domain and simulation domain. As a result, most of the time these methods/tools simply

create difficulties in the CSM and DSSE construction and translation rather than to

achieve the simulation-template’s goal.

 It can be said that there is a need for a defined simulation modeling framework

that facilitates not only domain conceptualization but also simulation implementation. A

thesis (Setavoraphan 2005) illustrates a CSM tool, called “Simulation Modeling UOB”

(SMU), used to formalize concepts into a simulation modeling framework. This tool is

developed from the transformation of knowledge representations in a platform of process

descriptions derived from IDEF3 method, collaborating with the object-oriented

approach. Each instance in SMU employs both process-oriented and component-based

view to represent the processes lying within the target problem domain and the

simulation modeling elements (e.g., entities, attributes, and functions) satisfying the

simulation requirements. Furthermore, it is able to apply the object-oriented features to

 37

facilitate modeling decomposition and composition. Having the capability to formalize

concepts at different levels of detail and to generate robust and reusable modeling

frameworks, SMU has been applied to develop conceptual simulation models for a

variety of application domains such as warehousing operations (Setavoraphan 2005) and

inland waterway lockage operations (Setavoraphan and Grant 2008). However, the

current capability of SMU is focused on delivering a detailed modeling framework that

provides both static and dynamic representations required for structuring DSSE.

 Some examples of simulation projects developed under the DSSE approach

include:

• Electroplating Simulation Program, ESP (Grant and Pritsker 1974) by using a

programming language;

• Safeguards Network Analysis Procedure, SNAP (Miner and Grant 1978) by

developing a network language;

• Airport Terminal Modeling of Amsterdam Airport Schiphol (Verbraeck and

Valentin 2002) and the Robotized Marine Container Terminals (Saanen 2004) by

using simulation building blocks.

Accordingly from above, it can be said that every single DSSE development

fundamentally consists of static modeling components (e.g., physical layouts) and

dynamic modeling components (e.g., entities). These fundamental concepts need to be

integrated into the CSM tool for better mapping and transforming concepts prior to

develop a simulation modeling framework. A research study by Iba, Matsuzawa, and

Aoyama (2004) emphasizes on the Model Driven Development created based on Model

 38

Driven Architecture and Executable UML to use high-level modeling languages to

enhance the capability of CM in representing the overall behavioral and structural

characteristics of a domain, including their interactions, from both static and dynamic

views. Their project development supports the idea of improving SMU, the existing CSM

tool, by integrating its original concepts with UML to cover its limitations and to be used

in this study.

3-3-2. General Structure

 The main purpose of this chapter is to deliver a concrete idea that integrates and

formalizes the concepts mentioned in the preceding sections by illustrating a CSM

prototype temporarily named as “Integrated Simulation Acknowledge Procedure”

(ISAP). ISAP is a tool for capturing the concepts in a specific problem domain and

transforming them into a set of descriptive processes, static and dynamic modeling

components, interactions, and rules/algorithms which are defined within a simulation

modeling framework. The framework created by ISAP consists of three layers: the

initialization layer (IL), the process layer (PL), and the termination layer (TL) (see Figure

3-2). First, IL provides initial information about the simulation experiment to be

performed (e.g., number of simulation runs, number of attributes/variables, and time to

begin/end simulation). Second, PL describes the behavioral and structural characteristics

of the problem domain and simulation domain. Third, TL sets the procedures of

terminating simulation and printing out a simulation output report. Each of these layers

consists of a group of ISAP symbols, notations, and diagrams which are arranged to

 39

define and represent modeling structures, elements, and relationships. Within the limited

space of this published paper, only the process layer is discussed.

Figure 3 - 2: Three layers in ISAP with three phases

The construction of ISAP is based on the modeling and simulation process

(Pritsker and O’Reilly 1999) and adapted into three phases: the design phase, the

development phase, and the edit phase (also see Figure 3-2). First, the design phase is to

formulate problem and specify model for PL according to the design objectives in IL and

TL. Second, the development phase is to build models individually for each layer. Third,

the edit phase is to test models and use their feedbacks to correct errors found in these

layers, and also this phase needs modification in IL and TL to satisfy the new

requirements for PL. Moreover, the construction of PL is divided into two subsystems:

static modeling subsystem and dynamic modeling subsystem. Both of them require the

use of symbols, notations, and diagrams for robust and reusable representations. An

example of an inventory system of a large discount house (Pritsker and O’ Reilly 1999) is

used to illustrate the construction of these two subsystems in PL.

ISAP

 40

3-3-3. Demonstration

 To illustrate these concepts described above, consider a large discount house that

is planning to install a periodic review-reorder point inventory system to control its in-

house inventory of a particular radio. This system is able to manage backorders in the

case where customers demand the radio when it is not in stock. 80 percent will go to

another discount house to find it, determined as lost sales, whereas the other 20 percent

will be put on the backorder list and wait for the next shipment arrival. The inventory

status is reviewed every four weeks to decide if an order should be placed. The company

policy is to order up to the stock control level of 72 radios whenever the inventory

position, consisting of the radios in stock plus the radios on order minus the radios on

backorder, is found to be less than or equal to the reorder point of 18 radios. The

procurement lead time requires constantly three weeks.

3-3-3-1. Static Modeling Subsystem

 The first step is to specify the physical characteristics in the target problem

domain. It can be seen that the inventory system consists of an actual (in-house)

inventory subsystem and a virtual (periodic review-reorder) inventory subsystem. ISAP

provides symbols and notations that represent different three static components: BUILD,

SPACE, and CROSS. A BUILD component is used to identify a point in a system where

some physical objects are moved through or changed their states. A SPACE component is

used to identify an area in the system through which physical objects may pass or

temporarily stay. A CROSS component is used to identify locations in the system which

is the physical objects engaged with multi cross-domain subsystems. In this example,

 41

only BUILD components are used to represent the actual inventory subsystem and the

virtual inventory subsystem, where the flows and transition states of e.g., demands and

order-signals, take place, shown in Figure 3-3. Each BUILD component is defined with

its identical component label that is connected to its dynamic modeling subsystem

containing the logical process flows and parameters needed. The connection is made

through “@” and followed by a specified dynamic modeling subsystem label (DMSL).

An arrow is used to indicate a precedence of movement that may occur in only one

direction between two physical components, which means there exists one or more

interchanges or flows of objects and information between the components. One of the

obvious benefits of having static (physical) components for CSM is a top-view

perspective that shows the core structures and the focused frames of the domain, which

can be further developed either as apiece (decomposition) or as a whole (composition)

within the defined domain structural boundaries.

Actual Inv.

@ INV

Virtual Inv.

@ RINV

Figure 3 - 3: BUILD components for inventory system

 42

3-3-3-2. Dynamic Modeling Subsystem

 The next step is to describe the dynamics of the domain in terms of application

knowledge and simulation knowledge, determined as the core of the ISAP development

process. Each dynamic modeling subsystem can be view as a document folder that has its

own label (DMSL), sub-folder(s) (Ref#), and page number ($ #). Each page is divided

into three sections: the SMU section, the relation section, and the sequence-diagram

section. The first section follows the major structure described in Setavoraphan (2005),

shown in Figure 3-4, whereas the rest of the sections apply the symbols, notations, and

diagrams which are adapted from the UML modeling approach (Booch, Jacobson, and

Rumbaugh 1999).

Make an order of
radios

2

EntSignal

ResRadio

SetOrder()
UpdateInventory()
RouteOrder()
RecordSaftyStock()
UpdateRadioStock()
TerminateSignal()

Process Description

Level of Abstraction

List of Entities

List of Resources

List of Operations

Figure 3 - 4: General structure and an SMU example

Each SMU is used to represent as an intimate simulation (block) module that

moves the entities through the process or change the entities’ transition states; calls the

resources required for the process; and executes the operations to complete the process.

As a module, an SMU can be decomposed into two or more sub SMUs to cover the

detailed levels of the process. For example, SMU Make An Order of Radios (Figure 3-4)

 43

can be decomposed into SMU Prepare An Order and SMU Make A Transshipment,

shown in Figure 3-5. At lower levels of decomposition, the reference number for level of

abstraction of a child SMU (X) consists of three distinct numbers separated by periods.

The first number is the last number in the reference number of X’s parent SMU. The

second number is the number assigned to the particular decomposition of the parent SMU

in which X occurs (Note: Numbers are assigned to a set of decompositions and SMUs in

order of different creations/points of view). Finally, the third number is an actual X’s

SMU reference number. The relationship between the parent SMU and child SMUs is

determined as a-part-of relationship or aggregation in which SMUs representing the

entities, resources, and operations of some processes are associated with an SMU

representing the entire assembly of processes. Thus, each decomposition must be taken

carefully to avoid the loss of details and the incompleteness of the process. As well, the

composition of the existing SMUs into a new SMU requires standard/common

parameters to reduce the invalidity of the model functionalities, which is similar to the

methods used in the object-oriented programming. Suppose that the SMUs in Figure 3-5

are individual SMUS. To compose these two SMUs into one, a crucial requirement is to

make sure that they assess the same entities, utilize the same resources, and execute the

operations with the same attributes and variables. Also, the flow of entities and

operations must be logical sequences.

 44

Prepare an order

2.1.4

EntSignal

ResRadio

SetOrder()
UpdateInventory()

Make a
transshipment

2.1.5

EntSignal

ResRadio

RouteOrder()
RecordSaftyStock()
UpdateRadioStock()
TerminateSignal()

Figure 3 - 5: A decomposition of SMU Make An Order of Radios

The relation section provides information of the conditions and decisions for

branching, preceding, and interacting between two SMUs. Figure 3-6 gives some

examples of notations.

Process-In Process-Out Relation-Frame

Precedence Precedence with condition(s)

[Condition(s)]

XOR-join XOR-split

Figure 3 - 6: Some examples of notations for relations

In the Relation-Frame, the precedence and logical relationships that tie SMUs (see Fig. 3-

8) represent the flow-paths for the entities, including the conditions that create the

alternative flow-paths. This relation-view provides the simulation developers the

 45

conceptual foresee of the entity flow in the sub-system, which supports the verification of

logic associated with SMUs.

 Finally, the sequence-diagram section shows a series of messages exchanged by a

selected set of objects in SMUs, with an emphasis on the chronological course of

communication between SMUs – which is used to indicate the status and the responding

sequences from taking an action (operation) of the objects related to SMUs. Some crucial

notations are shown in Figure 3-7.

Connection-Tube Division-Segment

Object: Status {Argument/Control Statement}

Precedence-Sequence

Object: Status {Argument/Control Statement}

Responding-Sequence

To Be Continued: $#

Derived from: $#

Forward-Connection

Backward-Connection

Figure 3 - 7: Notations for the sequence-diagram section

The sequence diagram, on the other hand, can be determined as a conceptual

simulation that illustrates a brief simulation run. It includes (see Fig. 3-8 for a better

understanding) both Begin and End runs, initial set-up for variables, entities and their

flows, resource utilization, variable changes, activities, and time sequences (divided by

division-segment and prioritized activity orders). This diagram is also used to pre-check

whether or not individual or a set of SMUs have sufficient parameters (e.g.,

 46

entity/resource types, variables, and operations) to fulfill the simulation requirements

prior to further DSSE development.

The later step is to provide the descriptions of the objects and operations used in

these sections in a tabular form (table). Each table gives not only an object’s generic

information (e.g., name, type, description, and associated parameters) but also its

extension (e.g., event state, rules, and algorithms) if needed. There is no specific

regulation in designing a table of description. The design is depended on the demand and

detailed level of information.

(Note: due to the size of the tables and figures, they are partially shown in the appendices

section for DMSL: RINV as an example)

The final step is to revise every section and connect them together by using

Connection-Tube. This line contains data given in each SMU and passes them throughout

its length. Thus, the simulation developers are able to keep track of every action and

transaction state of the objects, by following the lines (Top-to-Bottom or Bottom-to-Top

relation) and other associated notations (Left-to-Right or Right-to-Left relation), which

helps support their conceptual thinking. It is seen that the logic behind the development

of the ISAP process layer is to access a domain from a very generic component to sub-

components with different detailed levels and to maintain the completeness of

encapsulation and inheritance of component data for the component reusability. This

means that ISAP well deploys the decomposition approach to remove the complexity of

conceptual thinking as well as the composition approach to extend the scope of

conceptual thinking.

 47

The results of the connection and association of these SMUs, notations, and

descriptions are transformed into a network statement. Here is the network statement of

DMSL: RINV, as shown below.

Ref# 0:

1 SetReorderPoint, Reorder point;
2 CreateSignal, Arrival rate, Time of first arrival, Max # of demands;
3 CheckInventory, Resource#, File resource#, Inventory position;
4 Condition, INV_POS <= REORDER_PT;
5 SetOrder, Order quantity;
6 UpdateInventory, Inventory position;
7 RouteOrder, Lead time;
8 RecordSafetyStock, File#, Resource#, File resource#, Number of radios;
9 UpdateRadioStock, Resource#, File resource#, Number of radios;
10 TerminateSignal, Max# of signals;
11 Condition, INV_POS > REORDER_PT;
12 TerminateSignal, Max# of signals;

Each line of the network statement contains sequential-order numbers and

operation names with their parameters. Using a network statement is a basic idea found in

the structure of commercial simulation software such as Arena© (Kelton, Sadowski, and

Sadowski 2002) and AweSim© (Pritsker and O’Reilly 1999) to create simulation

modeling frameworks for the construction and control of simulation modules. Therefore,

a simulation modeling framework defined by the network statement and by other aspects

through the ISAP development process can be used to generate appropriate simulation

modules for the DSSE development.

3-4. Conclusions

 The specialization of the CM concepts and techniques is taken as the main idea of

this research study to improve the CSM approach. This is because CSM has been seen as

 48

a critical approach that is used to shorten gaps of communication between the domain

experts and the simulation developers and to reduce difficulties of transformation of the

concepts between two different domains of knowledge. However, CSM has been largely

ignored, especially when conducted the development of DSSE.

ISAP is a prototype that is developed based on the conceptual modeling approach

under the SE and KE disciplines to support the development of a conceptual simulation

model. Moreover, ISAP is designed to match with the structural and behavioral

characteristics of the DSSE development process. Simulation developers, thus, can apply

ISAP to generate robust and reusable simulation modeling frameworks that can be used

as blueprints giving designs and instructions for the specific simulation development

projects.

 Nevertheless, there is still more room for improvement for this ISAP prototype to

fulfill other simulation requirements, for example, dynamic parameter assignment,

random distributed data generation, database, and simulation-module interface. For this

study, the ISAP prototype is expected by the authors that it is able to encourage

simulation developers to enhance the current capability of the available modeling

methods/tools to take simulation development to the state-of-art level.

3-5. Acknowledgements

 The authors would like to thank the Center for Systems Modeling and Simulation

at Indiana State University, Kang-Hung Yang, and Zhilli Zhou (Computational

Optimization and Logistics Lab, the University of Oklahoma) for their help and

cooperation.

 49

3-6. Appendices

Enable periodic
review inventory

1

EntSignal

SetReorderPoint()
CreateSignal()

Make an order of
radios

2

EntSignal

ResRadio

SetOrder()
UpdateInventory()
RouteOrder()
RecordSafetyStock()
UpdateRadioStock()
TerminateSignal()

Stay on current
inventory

3

EntSignal

TerminateDemand()

[INV_POS <= REORDER_PT]

 XOR
 //Decide if an
 //order of radios is
 //needed
J1

EntSignal

ResRadio

CheckInventory()

[INV_POS > REORDER_PT]

Radio: Initial reorder-point setup {REORDER_PT = 18}

Radio: Reorder point

Initial: Started

Signal: Created

Radio: Inventory checked

Radio: Reordered {ORDER_QTY = SCL – INV_POS}

Radio: Routed

Radio: Safety stock recorded {NNRSC(RADIO)}

Radio: Inventory updated {INV_POS = SCL}

Radio: Stock updated {INV_POS = NNRSC(RADIO) + ORDER_QTY}

Signal: Terminated

Radio: Fail to reorder

Signal: Terminated

D
M

S
L

: R
IN

V

R
e

f# 0
; $

1

Figure 3 - 8: An example of DMSL: RINV

 50

Table 3 - 1: Description of objects for DMSL: RINV.

Object
Name

Type Description Parameters

EntSignal Entity This object represents a signal entity to enable the
periodic review-reorder inventory system.

: Arrival rate

ResRadio Resource This object represents radio resources that can be
altered corresponding to the inventory status.

: Resource#
: Resource capacity
: Queue#
: Queue capacity

Table 3 - 2: Description of operations for DMSL: RINV.

Operation Name Actor Description Attributes Global

Variables
CheckInventory() ResRadio An action is to determine

if radio is available to
satisfy a customer
demand.

N/A : Resource#
: File resource#
: Inventory
position

CreateSignal() EntSignal A signal entity is created
to the systems.

: Arrival rate
: Time of first
arrival
: Max# of signal
entities

SetReorderPoint() N/A An action is to set a
reorder point for the
inventory system.

N/A : Reorder point

SetOrder() N/A An action is to set a
quantity of order

N/A : Order quantity

RecordSafetyStock() ResRadio Number of radios are
available at that time of
arrival of shipment.

N/A : File#
: Resource#
: File resource#
: Number of
radios

RouteOrder() ResRadio A quantity of order is
transport to the discount
house’s inventory with a
lead time

N/A : Lead time

UpdateInventory() N/A Number of radios in the
inventory are updated

N/A : Inventory
position

UpdateRadioStock() ResRadio Number of radios are
updated.

N/A : Resource#
: File resource#
: Resource
capacity

TerminateSignal() EntSignal Each signal entity is
terminated.

N/A : Max# of
signals

 51

Table 3 - 3: Description of variables for DMSL: RINV.

Variable Equivalence Description

INV_POS Inventory position It contains the overall number of radios derived from both sub-
systems.

NNRS(RADIO) Number of radios It shows the exact number of radios at the physical inventory.
ORDER_QTY Order quantity It indicates the number of radios per an order.
REORDER_PT Reorder point It sets the minimum number of radios in the physical inventory

for reorder.
SCL Stock control level It limits the maximum number of radios in the physical

inventory.

3-7. References

1. Bartholet, R. G., D. C. Brogan, P. F. Jr. Reynolds, and J. C. Carnahan. 2004. In

search of the philosopher’s stone: Simulation composability versus component-

based software design, In Proceedings of the Fall 2004 Simulation

Interoperability Workshop, Orlando, Florida.

2. Bell, J., N. Snooke, and C. Price. 2005. Functional decomposition for

interpretation of model based simulation. In Proceedings of the 19th International

Workshop of Qualitative Reasoning, 192-198.

3. Benjamin, P. C., M. Blinn, F. Fillion, and R. J. Mayer. 1993. Intelligent support

for simulation modeling: a description-driven approach. In Proceedings of the

1993 Summer Computer Simulation Conference.

4. Booch, G., I. Jacobson, and J. Rumbaugh. 1999. The Unified Modeling Language

user guide. Massachusetts:Addison-Wesley.

5. Brooks, R. J. 2006. Some thoughts on conceptual modeling: Performance,

complexity and simplification. In Proceedings of the 2006 OR Society Simulation

Workshop.

 52

6. Butler, B. 1998. Simulation composability for JSIMS, In Proceedings of the 2nd

International Workshop on Distributed Interactive Simulation and Real-Time

Applications, 4-14.

7. Coleman, D., P. Arnold, S. Bodorff, C. Dollin, and H. Gilchrist. 1993. Object

oriented development: The fusion method. Prentice Hall.

8. Cyre, W. R. 1999. Conceptual Modeling and Simulation. In Proceedings of the

1999 IEEE International Conference on Computer Design, 293-296.

9. Davis, W. J. 2001. Distributed simulation and control: The foundations. In

Proceedings of the 2001 Winter Simulation Conference, ed. B. A. Peters, J. S.

Smith, D. J. Medeiros, and M. W. Rohrer. 187-198. Piscataway, New Jersey:

Institute of Electrical and Electronics Engineers, Inc.

10. Deursen, A. V., P. Klint, and J. Visser. 2000. Domain-specific languages: An

annotated bibliography. Available via <http://homepages.cwi.nl/

~arie/papers/dslbib/> [accessed February 14, 2008].

11. Dieste, O., N. Juristo, A. M. Moreno, and J. Pazos. 2001. Conceptual modeling in

software engineering and knowledge engineering: Concepts, Techniques and

trends. Handbook of Software Engineering & Knowledge Engineering 1: 733-766.

New Jersey: World Scientific.

12. Grant, F. H. and A. A. B. Pritsker. 1974. Models of cadmium electroplating

processes. NSF (RANN) GRANT GI-35106, Purdue University.

13. Heavey, C. and J. Ryan. 2006. Process modeling support for the conceptual

modeling phase of a simulation project. In Proceedings of the 2006 Winter

Simulation Conference, ed. L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D.

 53

M. Nicol, and R. M. Fujimoto. 801-808. Piscataway, New Jersey: Institute of

Electrical and Electronics Engineers, Inc.

14. Hofmann, M. A. 2004. Criteria for decomposing systems into components in

modeling and simulation: Lessons learned with military simulations. Simulation

80: 357-365.

15. Iba, T., Y. Matsuzawa, and N. Aoyama. 2004. From conceptual models to

simulation models: Model Driven Development of Agent-Based simulations. In

Proceedings of the 9th Workshop on Economics and Heterogeneous Interacting

Agents. 1-12 Kyoto, Japan.

16. Kasputis, S. and H. C. Ng. 2000. Composable simulations. In Proceedings of the

2000 Winter Simulation Conference, ed. J. A. Joines, R. R. Barton, K. Kang, and

P. A. Fishwick. 1577-1584. Piscataway, New Jersey: Institute of Electrical and

Electronics Engineers, Inc.

17. Kelton, W. D., R. P. Sadowski, and D. A. Sadowski. 2002. Simulation with

Arena. 2nd ed. New Yok: McGraw Hill.

18. Lee, J. and G. M. Wyner. 2003. Defining specialization for data flow diagrams.

Information Systems 28: 651-671.

19. Meyer, B. 1997. Object-oriented software construction. 2nd ed. London: Prentice

Hall.

20. Miner, R. J. and F. H. Grant. 1978. User’s guide for SNAP. Pritsker & Associates,

Inc.

21. Pace, D. K. 2000. Ideas about simulation conceptual model development. Johns

Hopkins APL Technical Digest 21: 327-336.

 54

22. Page, E. H. and J. M. Opper. 1999. Observations on the complexity of

composable simulation. In Proceedings of the 1999 Winter Simulation

Conference, ed. P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W.

Evans. 553-560. Piscataway, New Jersey: Institute of Electrical and Electronics

Engineers, Inc.

23. Petty, M. D. and E. W. Weisel. 2003. A composability lexicon, In Proceedings of

the Spring 2003 Simulation Interoperability Workshop, Orlando, Florida.

24. Pritsker, A. A. B. and J. J. O’Reilly. 1999. Simulation with Visual SLAM and

AweSim. 2nd ed. New York: John Wiley & Sons.

25. Robinson, S. 2006a. Conceptual modeling for simulation: Issues and research

requirements. In Proceedings of the 2006 Winter Simulation Conference, ed. L. F.

Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto.

792-800. Piscataway, New Jersey: Institute of Electrical and Electronics

Engineers, Inc.

26. Robinson, S. 2006b. Issues in conceptual modeling for simulation: Setting a

research agenda. In Proceedings of the 2006 OR Society Simulation Workshop.

27. Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. 1991.

Object-oriented modeling and design. New Jersey: Prentice Hall.

28. Saanen, Y. A. 2004. An approach for designing robotized marine container

terminals, Doctoral Dissertation, Delft University of Technology, Netherlands.

29. Sarjoughian, H. and D. Huang. 2005. A multi-formalism modeling composability

framework: Agent and discrete-event models. In Proceedings of the 9th IEEE

 55

International Symposium on Distributed Simulation and Real Time Applications.

249-256.

30. Setavoraphan, K. 2005. Conceptual simulation modeling for regional distribution

center systems, Thesis, Indiana State University, Indiana, USA.

31. Setavoraphan, K. and F. H. Grant. 2008. Simulation model for lockage operation,

contributed to the INFORMS Southwest Regional Conference, Texas A&M

University, Texas, USA.

32. Spiegel, M., P. F. Reynolds, and D. C. Brogan. 2005. A case study of model

context for simulation composability and reusability, In Proceedings of the 2005

Winter Simulation Conference, ed. M. E. Kuhl, N. M. Steiger, F. B. Armstrong,

and J. A. Joines. Piscataway, New Jersey: Institute of Electrical and Electronics

Engineers, Inc.

33. Teeuw, W. B. and H. van den Berg. 1997. On the quality of conceptual models.

Available on <http://osm7.cs.byu.edu/ER97/workshop4 /tvdb.html> [accessed

February 14, 2008].

34. Valentin, E. C. and A. Verbraeck. 2002. Guidelines for designing simulation

building blocks. In Proceedings of the 2002 Winter Simulation Conference, ed. E.

Yucesan, C. –H. Chen, J. L. Snowdon, and J. M. Charnes. 563-571. Piscataway,

New Jersey: Institute of Electrical and Electronics Engineers, Inc.

35. Valentin, E. C. and A. Verbraeck. 2005. Requirements for domain specific

discrete event simulation environments. In Proceedings of the 2005 Winter

Simulation Conference, ed. M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A.

 56

Joines. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers,

Inc.

36. Verbraeck, A. and A. Dahanayake. 2002. Building blocks for Effective Telematics

Appliation Development and Evaluation (BETADE), Delft University of

Technology, Netherlands.

37. Verbraeck, A. and E. Valentin. 2002. Simulation building blocks for airport

terminal modeling. In Proceedings of the 2002 Winter Simulation Conference, ed.

E. Yucesan, C. –H. Chen, J. L. Snowdon, and J. M. Charnes. 563-571.

Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

38. Vreede, G. J., A. Verbraeck, and D. T. T. V. Eikck. 2003. Integrating the

conceptualization and simulation of business processes: A modeling method and

arena template. SIMULATION 79: 43-55.

39. Wang, W. and R. J. Brooks. 2006. Improving the understanding of conceptual

modeling. In Proceedings of the 2006 OR Society Simulation Workshop.

40. Winnell, A. and J. Ladbrook. 2003. Towards composable simulation: Supporting

the design of engine assembly lines. In Proceedings of the 17th European

Simulation Multiconference, 431-436.

41. Yilmaz, L. and T. I. Oren. 2004. A conceptual model for reusable simulations

within a model –simulator-context framework. In Proceedings of the Conference

on Conceptual Modeling and Simulation, Part of the 13M – International

Mediterranean Modeling Multiconference. 235-241.

42. Zhou, M., Y. J. Son, and Z. Chen. 2004. Knowledge representation for conceptual

simulation modeling. In Proceedings of the 2004 Winter Simulation Conference,

 57

ed. R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters. 450-458.

Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

43. Zhou, M., K. Setavoraphan, and Z. Chen. 2005. Conceptual simulation modeling

of warehousing operations. In Proceedings of the 2005 Winter Simulation

Conference, ed. M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines.

1621-1626. Piscataway, New Jersey: Institute of Electrical and Electronics

Engineers, Inc.

44. Zhou. M., Q. Zhang, and Z. Chen. 2006. What can be done to automate

conceptual simulation modeling?. In Proceedings of the 2006 Winter Simulation

Conference, ed. L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol,

and R. M. Fujimoto. 809-814. Piscataway, New Jersey: Institute of Electrical and

Electronics Engineers, Inc.

 58

3-8. Additional Works

 The above material in Chapter 3 is entirely derived from the paper submitted to

the Winter Simulation Conference 2008. To expand on this and provide results of

additional research, we provide the following supplementary explanations for: 1) the

initialization layer (IL); 2) the termination layer (TL); and 3) the process layer (PL),

respectively. Moreover, a new example is given to support these extras. The purpose is to

provide the simulation developers a better understanding in applying a conceptual

simulation modeling tool such as ISAP in their simulation projects more effectively and

efficiently.

3-8-1. New Demonstration

 To illustrate an expanded level of detail concerning the concepts of ISAP,

consider a basic lockage operation that is generally found in most of the U.S. inland

waterways transportation systems. This example is more complicated so that the readers

can recognize how important each layer in ISAP is and how to utilize those available

symbols, notations, and diagrams to transform their conceptualization into knowledge

representations.

There appears to require a link between smaller regional ports and oversea ports,

delivering containers for deep-sea vessels. This is because there are some areas that the

deep-sea vessels are unable to access due to their capacity and size. Inland waterway

transportation is used as alternative to transport containers into the hinterland on rivers,

using inland barges. However, there are some locations where significant changes in

 59

water levels occur, which requires those vessels to use one or more locks to carry them

up or down from one pool to the next.

 According to the papers by the U.S. Army Corps of Engineers and Bandy (1987,

1988, 1991, 1996), the basic procedures for a lockage to service vessels traveling either

upstream or downstream are the same (see Figure 3-9 for an overview from

www.navlocks-hpo.usace.army.mil).

Figure 3 - 9: An example of navigation lock system

First, the water level inside the lock has to be the same as where vessels are

located before allowing the vessels to enter the lock. The underwater valves at both the

upstream and downstream gates are used to control the water elevation inside the lock by

using the advantages of the water-level differences and gravity to fill water in or drain

water out of the lock. It takes about 10-15 minutes to fill or empty a lock chamber, which

depends on the size of valve opening and the total change of elevation for the water

inside the lock. Second, the entrance gate is opened, while the gate on the other end of the

lock is closed to maintain the proper water level. The vessels sail into the lock. Third,

when the entrance gate is closed, the underwater valves at the other end of the lock are

 60

opened to allow the water elevation inside the lock to eventually equalize with that on the

other side of the exit gate. Fourth, the vessels sail out when the exit gate is opened to

continue their trips.

 Another issue related to the lock system is to fully utilize the lock’s capacity.

Because each lock has specific usable dimensions (width times length) that produce

limited space inside its chamber, the number of vessels that will fit in the lock plays a

role in operating a lockage. The size and shape of the vessels are taken into consideration

in terms of accessing a lockage and dealing with safety issues. Actually, traffic on the

waterway navigation systems consists of two main types of vessels: boats and barge tows.

Boats can be determined as e.g., passenger, fishing, or government owned vessels. A

barge tow consists of a tow boat and a set of barges (from one to sixteen or more barges)

that carry a variety of products, such as coal, sand, grain, and chemicals, and containers.

An average-size lock can handle twenty smaller boats, while only eight barges followed

by a tow boat within a 3x3 configuration can fit the lock. A barge tow having nine or

more barges or overall dimensions exceeding the usable dimensions of the lock cannot fit

into the lock for a single lockage. Therefore, two main types of lockage operations

associated with barge tows: a single lockage and a double lockage; are discussed, as the

main focus of this research.

 For a single lockage operation, there are two scenarios to be considered at the

lock. First, the barge tows have overall dimensions less than the usable dimensions of the

lock, which means they can fit into the lock as a single batch. Second, the barge tows

having an overall length exceeding the usable length of the lock require reconfiguration.

External force provided by electric wrenches that are located on shore both upstream and

 61

downstream of the lock is typically needed. A double lockage operation is required to

support the barge tows that consist of nine or more barges followed by the tow boat. They

are too big to fit into the lock for a single lockage. To operate a double lockage, these

barge tows move through the lock in the following manner (Bandy, 1996): a) The barge

tow is moved into the lock and the front barges are tied to the side of the lock. b) The

barge tow is separated and reconfigured in such a way that each of the two parts will fit

into the lock lengthwise. c) The back part of the barge tow is moved out of the lock by

the tow boat. d) The lockage for the front part is completed. e) An electric wrench is used

to pull the front part of the barge tow out of the lock. f) The water level inside the lock is

returned to the initial level. g) The tow boat moves the back part of the barge tow into the

lock. h) The second lockage is completed for the back part of the barge tow. i) The back

part of the barge tow moves into position behind the front part. j) The barge tow is tied

back together. k) The barge tow continues the journey. It can be noticed that the vessels

waiting on the other side are not allowed to enter the lock when the first lockage is

completed – due to the safety concerns.

 A lock on an inland waterway is determined a time-consuming operational system

that delay the transshipment of containers or products, which may affect not only a point

on the river but also the entire navigation network systems. A simulation model is then

made to model and simulate the current system to obtain statistical results for

performance analysis such as time in system, resource utilization, and waiting time.

However, in a long-term development process, this simulation model is possibly obsolete

sooner or later – due to conditional changes in the system (e.g., parameters and

processes). Furthermore, building a simulation model by using either programming

 62

languages or generic simulation environments is considered as a reluctant job. It is not

only a time and cost consuming activity but also a recurrent process. It, thus, is very

influential for the development of a domain specific simulation environment (DSSE) that

provides reusable/editable model constructs, including supportive libraries. All these

availabilities are particularly designed to match the requirements of the specific domain

so that a variety of simulation projects can be produced with a minimum of time, cost,

and recurrent development processes.

 As previously described, ISAP supports the simulation developers to structure a

simulation modeling framework by creating three different layers, following processes

under each construction phase. This demonstration, however, is not exhibited in detailed

steps-by-steps. It is aimed to illustrate how to use ISAP to create a blueprint providing

layouts and guidelines for designing control agent and logic/process agent – representing

basic mechanisms found in most generic simulation environments.

First, the control agent is required to define experimental conditions in terms of

initial parameters and output options for the simulation, corresponding to its modeling

objectives and constraints. This creates a frame of reference that manages and controls

model compatibility and interoperability of model constructs to be on the same

levels/meanings through the entire simulation environment. The control agent can be

portrayed in IL and TL. Second, the logic/process agent is required to support a flow of

entities through a network of interconnected processes that depicts the operation of the

system under study. This creates a simulation framework that sets relationships,

transitions (routing and branching points), and sequences of the network to be within a

significant boundary. The logic/process agent can be portrayed in PL.

 63

3-8-2. Initialization Layer (IL)

 Each simulation run requires an initial setup. It is necessary to define

experimental conditions to layout a frame of reference that any model constructs can

access and retrieve their execution references (e.g., run length and number of runs) or

initial references (e.g., queue populations and queuing priorities). Initialization is taken

into the first-time simulation run as a startup to detect any errors and to verify/validate

simulation. This leads to model improvement and correctness. Moreover, initialization is

considered a part of design of experiments for simulation, which can adversely influence

the estimators of steady-state performance (Pritsker and O’Reilly 1999). Therefore,

initialization is viewed as a process to design and define a set of parameterized references

whose settings can be modified per experimentation.

 In general, there are standard references regularly required for a basic startup or

setup; for example, number of runs to make, run length, beginning/ending time of a run,

and number of attributes/variables. However, the more complicated a simulation model

is, the more parameterized references for initialization are needed. The extension list of

initialization may include queuing priorities, initial variable values, and random number

seeds – requiring more careful attention in defining their statements. This is because a run

of simulation is controlled as a whole piece rather than as individuals. It, thus, is crucial

to avoid any conflicts that may affect model compatibility and interoperability levels

from using parameters (including attributes and variables) through interconnected model

constructs.

 To list and define parameterized references for initialization, not only are their

physical names and values needed but also are implicit and explicit relations of those

 64

references’ statement required. What the implicit relation means is the relevance of

elements defined within a statement of reference. For instance, “queuing priority”

reference requires file number of the target queue, priority rule to rank entities (e.g., FIFO

or LIFO), and expression to evaluate to determine ranking of entities. Its statement must

be able to clearly describe relations that the priority rule is selected to determine the value

in the specified expression to rank entities put in the target file number. On the other

hand, the explicit relation indicates the meaning (interoperability) of the physical names

used among references. For example, if “File#” in the statement of “queuing priority”

reference means the file number of a queue, it must specifically be used for this meaning

throughout other references. Having well-defined statements of initialization, therefore, is

essential to avoid any errors in simulation runs and experiments.

 ISAP provides a method/tool identically exploited in the initialization layer (IL)

to conceptualize and list necessary parameterized references of initialization for

simulation. In addition, a frame of reference, including statements and relations, can be

visually represented and easily viewed as either individuals or all. A graphical

representation created from a combination of Fishbone Diagram and UML Object

Diagram has been developed under the scopes of the ISAP prototype. The ideas behind

the combination of these two diagrams are:

• The Fishbone Diagram is a problem-analysis tool providing a systematic

(conceptual thinking) way in generating information, classifying information

types (e.g., cause-effect, topic-detail, or problem-solution), and prioritizing

importance of information. It is helpful for listing references demanded for

initialization.

 65

• The UML Object Diagram is a graphical representation for the static (structural)

view of the system using objects, attributes, and relations. It is useful for

clarifying and visualizing a reference’s statement within limited space.

An example of IL diagram designed for this problem is given in Figure 3-10.

Figure 3 - 10: A diagram representing initialization of Lock

 The IL diagram has a triangle at the right hand side, where the initialization to be

executed is written. LCK, in this case, is a destination assigned to the process layer (IL)

where these references are initiated. The main body of the diagram is a horizontal line

from which branches the references, represented as bones. These bones are drawn

towards the left-hand side of the main body and are each labeled with the reference

LCK

Simulation Run

: No. of run

Run = 1

: Run length

Period = 8 hrs.

Has

Set

Simulation

: Beginning time

Time = 8:00

: Ending time

Time = 16:00

Has

Has

Variables

: No. of arrays

Max = 10

: No. of attributes

Max = 15

Specify

Specify

Queuing Priority

: File or calendar

No. = 1

: Ranking

Rule = Lowest value first

: Expression

Function = Attribute (3)

Denote

Specify

Evaluate

IL: Lock; Date: 2/14/2009@0:00 pm; Design# 1

 66

names. Off each of the large bones, there may be one or more smaller bones attaching

with item boxes. Each item box contains an element name and its attribute value, and

combines together with other item boxes (if available) to make a statement for the

reference name. Above each smaller bone, a relation between the reference name and the

item box is defined – using a word of “transitive verb”. As a result, the entire section of a

big-bone branch (including smaller bones) can be translated into the reference’s

statement.

 Furthermore, a box under the IL diagram is available for recording information of

the diagram construction, which needs IL name, date/time, and design number. The

purpose is to keep track modification taken place at a time – to make a collection of

designs. It leads to reduce repetitiveness of defining initialization for not only simulation

models but also experimental designs. Afterward, the collection of designs will be

transformed into a standard initialization format available in DSSE.

3-8-3. Termination Layer (TL)

 A system has been viewed as a black box where selected inputs are processed to

generate desired outputs. In general, to decrease the degrees of being a black box, the

primary focus is on the development and improvement of the system’s processes.

However, defining parameters used in these processes are critical. Some parameters drive

the processes to function, whereas some force the processes to produce outputs. Often,

appropriate outputs are hardly achieved because of a lack of well-defined parameters.

Consequently, a frame of reference for outputs must be specified into a standard pattern.

It aims to eliminate irrelevant and unnecessary parameters that may cause any distortion

 67

in either processes or outputs. This concept can be applied to the development of

simulation by a means of determination of parameterization.

 Parameterization of the projected outputs can be portrayed in ISAP’s termination

layer (TL) by using a tabular-cell pattern. It simply forms a table for description of data

fields for parameterization, as shown in Table 3-4. The first data field (1) contains a

projected output’s label such as TIS (time in system), LUT (lock utilization), and WAT

(waiting time). Then, the later data field numbers (e.g., 2, 3, 4, and so on) include

parameters associated with each projected output. For example, to obtain a value of TIS,

these following parameters: Arrival time of entity and Departure time of entity must be

given.

Table 3 - 4: Description of data fields for parameterization

 Fields*

1 2 3 4 5 6 7
TIS

Arrival
time of
entity

Departure
time of
entity

LUT

 Lock
number

 Lock
busy time

Lock idle
time

 Total
simulation
run

WAT

 Queue
number

Arrival
time of
entity at
queue

Departure
time of
entity
from
queue

TER

 Maximum
entities

Time
limit

TL is also aimed to design a pattern for termination of simulation. Basically,

simulation is terminated when it reaches a specified number of maximum entities, time

limit, and customized condition. It needs to be noted here that a value set for time limit in

TL can be the same or different from one defined for run length in IL. This is because

 68

they both are used upon different basis. Run length is initiated to identify a timeframe for

a simulation run, whereas time limit is physically set to end a simulation run on a

purpose. Termination (TER) is given at the bottom of the table.

Moreover, it is able to advance the usage of this table by assigning attributes,

variables, or default values ‘{}’ that practically match those in a simulation language or

application to these parameters. Table 3-5 illustrates an example of data fields that

provide parameters with their assigned attributes/variables/defaults expected to be used in

Visual SLAM and AweSim network models (see Pritsker and O’Reilly 1999).

Table 3 - 5: Description of data fields for parameterization with assignments

 Fields*

1 2 3 4 5 6 7
TIS

Arrival
time of
entity

ATRIB[1]

Departure
time of
entity

TNOW

LUT

 Lock
number

 Lock
busy time

{0}

Lock idle
time

{0}

 Total
simulation
run

{∞}

WAT

 Queue
number

{0}

Arrival
time of
entity at
queue

ATRIB[2]

Departure
time of
entity
from
queue

TNOW

TER

 Maximum
entities

{∞}

Time
limit

 {∞}

Although the table above is unable to be applied directly into DSSE, it creates a good

structural view laying out a core design where parameterization and termination are well

determined.

 69

3-8-4. Process Layer (PL)

 When a draft design of the control agent: IL and TL, has been done, the next step

is to input all the frames of reference into a simulation framework being created in the

process layer (PL). To be more efficient and effective in the development of DSSE’s

logic/process agent, the construction of PL is divided into two modeling subsystems:

static modeling subsystem and dynamic modeling subsystem. Both of them require the

use of symbols, notations, and diagrams for robust and reusable representations of

physical and behavioral characteristics – related to the processes of the target domain.

3-8-4-1. Static Modeling Subsystem

 The first step is to specify the physical characteristics in the target problem

domain. Along a navigation system, there may exist one or more locks to operate, space

for waiting areas, and ports for operational transition – which need to be laid out within a

framework of simulation. ISAP provides symbols and notations that represent different

three static components: BUILD, SPACE, and CROSS.

A BUILD component is used to identify a point in a system where some physical

objects are moved through or changed their states. In this demonstration, each lock is a

point on the river that barge tows travel through and their statuses change (e.g., batched

or unbatched) depending on conditions. As well, the states of resources at the lock (e.g.,

lockage and wrench) alter (e.g., idle or busy) at a point of time. BUILD components are

used to represent locks and to identify their located points within the framework – that

reflects the reality.

 70

CLBL
@DMSL

Dynamic modeling
subsystem label

Component label

Figure 3 - 11: A symbol for BUILD

 A SPACE component is used to identify an area in the system through which

physical objects may pass or temporarily stay. It is seen that before entering a lock, barge

tows are required to wait in a reserved area for a permission signal from a lockage

controller. Thus, SPACE components are placed beside BUILD components to display

waiting areas for barge tows.

CLBL
@DMSL

Figure 3 - 12: A symbol for SPACE

 A CROSS component is used to identify locations in the system where the

physical objects engaged with multi cross-domain systems. A cross-domain system is a

system that possibly exploits similar parameterization, shares routing paths, or responds

to consequences related with one or more different systems. A port, for example, is

considered a cross-domain system because it engages with barge tows that travel from/to

other locks or ports (determined as different systems) located on the same navigation

system. Thus, to simulate this navigation system including a number of locks and ports, it

is necessary to share information among systems (or cross-domain communication) to

control interoperability of parameterization, layout design (e.g., routing), and dynamics

 71

of the system (e.g., sequences of entity flow). The idea of using a CROSS component is

to provide a better understanding in a mechanism of passing and returning parameters

and entities within and between modularity (e.g., submodels) – a key development of

simulation building blocks – which is discussed later in Chapter 5.

CLBL
@DMSL1; DMSL2; …

Figure 3 - 13: A symbol of CROSS

 Each static component is defined with its identical component label that is

connected to its dynamic modeling subsystem containing the logical process flows and

parameters needed. The connection is made through “@” and followed by a specified

dynamic modeling subsystem label (DMSL). There are two types of connections between

static components: adjacency and precedence. Adjacency is used to indicate that

movement may occur in either direction between two components. The symbol of

adjacency is a line (Figure 3-14).

Figure 3 - 14: An adjacency line

An arrow, as shown in Figure 3-15, is used to indicate a precedence of movement that

may occur in only one direction between two physical components. Movement may

occur only in the direction of the arrow head. These connections show that there exist one

or more interchanges or flows of objects and information between the components.

 72

Figure 3 - 15: A precedence line

 Figure 3-16 illustrates a physical layout on a navigation system, giving locations

of ports, locks, waiting areas, and sections on the Mississippi River.

Port 14

Port 15

LOCK

07

LOCK

08

LOCK

09

Area1

Area2

Area3

Area4
Area5

Area6

Area7

Area8

Area9

Area10 Area11

Area12

MSR1
MSR2

MSR3

Figure 3 - 16: An assumed physical layout on the Mississippi River

These physical locations can be transformed into static symbolized components, which

are connected together as a network, as shown in Figure 3-17.

LOCK
07

@LCK

PORT 14
@Load;
Unload

Area1
@Q

MSR1

Area2
@Q

Area3
@Q

Area4
@Q

MSR2

PORT 15
@Load;
Unload

Area5
@Q

Area6
@Q

LOCK
08

@LCK

Area7
@Q

Area8
@Q

MSR3

LOCK
09

@LCK

Area9
@Q

Area10
@Q

Area11
@Q

Area12
@Q

Figure 3 - 17: A network of static symbolized components

 73

3-8-4-2 Dynamic Modeling Subsystem

 The concepts of dynamic modeling subsystem have been already explained in

depth in the paper. For this supplementary section, the entire set of the PL representations

for the lockage operation is given in the following figures. It is necessary for the

simulation developers to understand how to create each section, how to decompose an

SMU, how to combine three sections, and what the entire page conceptually represents.

Following the figures, tables of descriptions of the objects and operations are provided.

There have been some changes in these tables to facilitate translating and mapping the

conceptual simulation model into a domain specific simulation environment. For

instance, operations are categorized into three different types: basic, extended, and

specific, supporting determination of levels of configuration to fit levels of availabilities

of parameters and functions in the target simulation programming or application.

 74

Initial: Started

Barge: Generated

Inform arrival of
barge-tows

1

EntBargeTow

CreateBargeTow()
AssignBargeTow(){…}
RouteBargeTow()

Operate lockage

2

EntBargeTow

ResLock

HoldBargeTow()
ProcessLock()
RouteBargeTow()

Set departure of
barge-tows

3

EntBargeTow

CollectTime()
RouteBargeTow()
TerminateBargeTow()

Barge: Moved

Lock: Freed {Offset = 0}

Lock: Operated

Lock: Completed

Barge: Moved

Barge: Time-Recorded

Lock: Freed {Offset = 0}

Barge: Routed||Terminated

Barge: Held

Lock: Occupied {Offset = 1}

D
M

S
L

: L
C

K

R
e

f# 0
; $

1

Figure 3 - 18: DMSL: LCK; sub-folder# 0; page# 1

 75

Lock: Selected

Barge: Hold

Operate lockage

2

EntBargeTow

ResLock

HoldBargeTow()
ProcessLock()
RouteBargeTow()

 XOR
 //Decide which
 // lockage fits
 //barge tows’ size
J2

EntBargeTow

CheckBargeTow()
SelectLockage()
BranchBargeTow()

Operate single
lockage

2.1.4

EntBargeTow

ResLock

SetLockState()
ProcessLock()
RouteBargeTow()

Operate double
lockage

2.1.5

EntBargeTow

ResLock
ResWrench

SetLockState()
CutBargeTow()
HoldBargeTow()
ProcessLock()
ProcessWrench()
AssembleBargeTow()
RouteBargeTow()

Lock: Freed {Offset = 0}

Lock: Single
Gate: Opened {Offset Enter Value = 0}

Lock: Occupied {Offset = 1}

Barge: Moved

Gate: Closed {Offset Enter Value = 1}
Lock: Operated

Gate: Opened {Offset Exit Value = 0}

Barge: Moved

Barge: Routed

Lock: Freed {Offset = 0}

To Be Continued: $2

[Number of Barges <= Capacity of Lock]

[Number of Barges >= Capacity of Lock]

D
M

S
L

: L
C

K

R
e

f# 2
; $

1

Figure 3 - 19: DMSL: LCK; sub-folder# 2; page# 1

 76

Operate lockage

2

EntBargeTow

ResLock

HoldBargeTow()
ProcessLock()
RouteBargeTow()

 XOR
 //Decide which
 // lockage fits
 //barge tows’ size
J2

EntBargeTow

CheckBargeTow()
SelectLockage()
BranchBargeTow()

Operate single
lockage

2.1.4

EntBargeTow

ResLock

SetLockState()
ProcessLock()
RouteBargeTow()

Operate double
lockage

2.1.5

EntBargeTow

ResLock
ResWrench

SetLockState()
CutBargeTow()
HoldBargeTow()
ProcessLock()
ProcessWrench()
AssembleBargeTow()
RouteBargeTow()

Gate: Opened {Offset Enter Value = 0}

Gate: Closed {Offset Enter Value = 1}
Lock: Operated

Gate: Opened {Offset Exit Value = 0}

Barge: Cut {Number of Barges < Capacity of Lock}

Barge: Moved

Lock: Occupied {Offset = 1}

Derived from: $1

Lock: Double

Wrench: Attached

Barge: Pulled

Barge: Pulled

Wrench: Released

Gate: Closed {Offset Exit Value = 1}

Lock: Operated

Lock: Operated

Barge: Moved
Barge: Assembled

Barge: Routed
Lock: Freed {Offset = 0}

[Number of Barges <= Capacity of Lock]

[Number of Barges >= Capacity of Lock]

Gate: Opened {Offset Enter Value = 0}

Gate: Closed {Offset Enter Value = 1}

Figure 3 - 20: DMSL: LCK; sub-folder# 2; page# 2

D
M

S
L

: L
C

K

R
e

f# 2
; $

2

 77

Table 3 - 6: Description of Objects for DMSL: LCK

Object Name Type Description Parameters
EntBargeTow Entity A barge-tow is represented as a target

entity to be observed in the inland
waterway system. A barge-tow entity
consists of a set of barges and a tow
boat.

: Identification#
: Number of barges
: Origin
: Destination
: Arrival time
: Speed

ResLock Resource A lock is a resource that takes an action
in raising or lowering barge-tow entities
by filling or draining water. Also, the
lock-enter allowance is controlled by its
gates. The gates can be determined as
internal or external resources.

: Name
: File#
: Resource#
: Capacity
: Activity time

ResWrench Resource An electric wrench is a resource used to
pull a section of barges that are cut for
the first lockage.

: File#
: Resource#
: Capacity
: Activity time

Table 3 - 7: Description of Operations for DMSL: LCK

Operation Name Type Actor Description Attributes Global
Variables

AssembleBargeTow() General/
Extended

EntBargeTow An action is to
accumulate one or
more set of barges
that are cut with a tow
boat into a single
entity

: Identical values
: Number of
barges

AssignBargeTow()
{…}

General EntBargeTow A simulation action is
to assign identical
attributes to define the
characteristics of each
barge-tow entity that
represent a set of
barges and a tow boat.

: Identification#
: Number of
barges
: Origin
: Destination
:Arrival time
: Speed

BranchBargeTow() General/
Extended

EntBargeTow A number of branches
are provided at a
location for an entity
to take upon
conditions or
probabilities

 : Condition
expression

CreateBargeTow() General/
Extended

EntBargeTow A barge-tow entity is
created by a mean of
containing a set of
barges and a tow boat.

: First arrival
: Arrival rate
:Current time
: Max# entities

CollectTime() General EntBargeTow Statistical data of time
spent in the system
are collected

: Travel time : ID
: Label

 78

Table 3 - 8: Description of Operations for DMSL: LCK (Cont.)

Operation Name Type Actor Description Attributes Global
Variables

CheckBargeTow() Extended EntBargeTow An action is to check
how many barges the
entity is containing to
make a decision for
selecting a lockage type.

: Number of
barges

CutBargeTow() Extended/
Specific

EntBargeTow An action is to split a
specific number of
barges that are allowed
to enter a lock. There
are many ways to cut,
upon policies and sizes
of each lock

: Identical
batch size
: Number of
barges

HoldBargeTow() General/
Extended

ResLock “Hold” can be
determined as an action
to control the flow of
entities.

 : Delay time

ProcessLock() General ResLock An action is taken at a
lock by a mean of delay-
activity time.

: Resource#
: Capacity of
lock

: Activity time

ProcessWrench() General ResWrench Electric wrench is used
when a double lockage
is required.

: Resource#

: Activity time

SelectLockage() Extended ResLock A decision-making
action is to select either
single or double lockage
configuration upon the
sizes of the barge-tow
entities

: Resource#
: Capacity of
lock

SetLockState() Extended ResLock An action (of sending a
signal) verifies a status
of the lock (e.g., busy or
idle)

: Resource# : Offset value

RouteBargeTow() General EntBargeTow Each barge-tow entity is
routed or moved
through the system on
designated routes. Delay
time might be specified
on each route.

 : Distance

TerminateBargeTow() General EntBargeTow Each barge-tow entity is
terminated when it
leaves the system

 79

Moreover, a full network statement of DMSL: LCK can be created by arranging

operations in those SMUs into sequential activities. To make a network statement, follow

these steps:

(1) Begin with Ref# 0 (the topmost level of decomposition) to check how many

SMUs (modules) are in this folder (level of decomposition).

(2) Start with the left-most SMU.

(3) Check if the SMU leads to a new Ref# by using its abstraction-level number to

search for a folder having the Ref# as same as the number.

• If no, go to Step (4).

• If yes, start with the new Ref# and go to Step (6).

(4) Transform the SMU’s operations into a statement format and put them in a

sequential order (stated in the sequence section).

(5) Check if there is another SMU next to it.

• If no, go to Step (8).

• If yes, go to Step (7).

(6) Repeat Step (2) until there is no further decomposition.

(7) Start with the next SMU and go to Step (3).

(8) End the network statement.

 80

According to the instructions above, the simulation developers are able to obtain such the

network statement as shown in DMSL: LCK.

DMSL: LCK; Ref# 0 – 2:

1 CreateBargeTow, First arrival, Arrival rate, Current time, Max# of
entities;

2 AssignBargeTow, Identification#, Number of barges, Origin, Destination,
Arrival time, Speed;

3 RouteBargeTow, Distance;
4 CheckBargeTow, Number of barges;
5 SelectLockage, Resource#, Capacity of lock, Number of barges;
6 SetLockState, Rerouce#, Offset value;
7 BranchBargeTow, Condition expression;
8 Condition, Number of barges <= Capacity of lock;
9 SetLockState, Resource#, Offset value;
10 RouteBargeTow, Distance;
11 ProcessLock, Resource#, Capacity of lock, Activity time;
12 RouteBargeTow, Distance;
13 SetLockState, Resource#, Offset value;
14 Condition, Number of barges >= Capacity of lock;
15 SetLockState, Resource#, Offset value;
16 CutBargeTow, Identical batch size, Number of barges;
17 HoldBargeTow, Delay time;
18 ProcessWrench, Resource#, Activity time;
19 ProcessLock, Resource#, Capacity of lock, Activity time;
20 RouteBargeTow, Distance;
21 SetLockState, Resource#, Offset value;
22 RouteBargeTow, Distance;
23 SetLockState, Resource#, Offset value;
24 ProcessLock, Resource#, Capacity of lock, Activity time;
25 RouteBargeTow, Distance;
26 AssembleBargeTow, Identical batchsize, Number of barges;
27 SetLockState, Resource#, Offset value;
28 RouteBargeTow, Distance;
29 CollectTime, Travel time, ID, Label;
30 RouteBargeTow, Distance;
31 TerminateBargeTow;

 81

The design of network statement is intended to increase the readability of the process

layer’s representations without encumbering the simulation developers with extraneous

information requirements (based on the idea of Pritsker and O’Reilly 1999).

3-9. Additional References

1. Bandy, D.B. (1987). Simulation of Fox River locks boat traffic. Presented at St.

Louis ORSA/TIMS Joint National Meeting.

2. Bandy, D.B. (1988). Fox River locks SLAM simulation model. Proceedings of

the 1988 Winter Simulation Conference, eds., M. Abrams, P. Haigh, and J.

Comfort, 815-820. San Diego, California.

3. Bandy, D.B. (1991). Simulation of Fox River locks boat lift. Proceedings of the

1991 Winter Simulation Conference, eds., B.L. Nelson, W.D. Kelton, and G.M.

Clark.

4. Bandy, D.B. (1996). Simulation of the Illinois waterway locks system.

Proceedings of the 1996 Winter Simulation Conference, eds., J.M. Charnes, D.J.

Morrice, D.T. Brunner, and J.J. Swain.

5. Pritsker, A. A. B. and J. J. O’Reilly. 1999. Simulation with Visual SLAM and

AweSim. 2nd ed. New York: John Wiley & Sons.

6. U.S. Army Corps of Engineers. (n.d.). Navigation. Retrieved October 15, 2006,

from http://www.swl.usace.army.mil/navigation/lock.html.

7. U.S. Army Corps of Engineers. (n.d.). Navigation. Retrieved November 27, 2007,

from http://www.navlocks-hpo.usace.army.mil.

 82

CHAPTER 4

Transformation of Conceptual Simulation Modeling

“Reproduced with automatic permission from [Setavoraphan, K. and Grant, F. H. (2009) Transformation of conceptual

simulation modeling submitted to Symposium on Theory of Modeling and Simulation (DEVS 2010)]. It has been

modified somewhat to reflect current advances in this research.”

Abstract

Conceptual simulation modeling (CSM) is a critical approach that breaks through the

barriers of cross-domain communication in Modeling and Simulation (M&S). However,

standard symbols, notation, and diagrams created in CSM need to be transformed into

contextualized documentation, so that their semantics of structural and behavioral

contents within a simulation context can be represented in a more executable and

readable form. The search for a formal transformation approach is crucial to establish a

bridge between human concepts and simulation content. This chapter includes a pilot

study on the transformation of a conceptual simulation model developed by Integrated

Simulation Acknowledge Procedure (ISAP), based on model composability and

simulation interoperability.

4-1. Introduction

In Modeling and Simulation (M&S), conceptual simulation modeling (CSM)

plays a significant role in breaking through communication barriers between domain

experts and simulation developers. The objective of CSM aims to deliver a robust and

reusable simulation modeling framework for a target domain, describing its structural and

 83

behavioral characteristics that represent both reality and simulation contents. Often this

framework is used as a blueprint for domain specific simulation development. However,

CSM is still based upon a human-to-human (readable/understandable) platform, which

creates challenges in transferring concepts and requirements to computer simulation-

based implementation.

 Even though a CSM framework provides a set of processes, objects, functions,

and relations needed to compose a simulation model, these can only be used at the

generic or basic levels by a means of logical flows and component/pattern designs – to

structure overall architecture but an independent-implementation environment for domain

specific simulation. CSM tools are still incapable of transforming their conceptual models

into executable simulation models automatically. This causes the information exchange

to be inaccurate and incomplete. However, the automatic transformation does not

guarantee that the information will not be lost when the concepts are transformed into

executable codes. This is because at transformation stage domain experts are no longer

involved in the process. In fact, it is important for the domain experts to check the entire

development process of both conceptual models and simulation models to confirm if they

still include all the aspects of their requirements.

The problem to be addressed is that most domain experts are unable to

read/understand not only the computer/simulation programming languages but also the

formal modeling languages available these days (Valenti, Panti, and Cucchiarelli 1998).

This requires that an individual take special training before being able to read/understand

such a modeling language. The main reason is that there are only a few modeling

languages that incorporate an explanation generation approach such as PPP (explanation

 84

component), as described in a study by Nijhuis (2005), to enrich conceptual models with

user interaction like, i.e., UML. User interaction consists of an explanation component

with natural language and a knowledgebase component, allowing the user (e.g., domain

expert and simulation developer) to ask a question and to answer follow-up questions;

and to store and get information from the knowledgebase. Another reason is that

conceptual models are directly translated into complex programming languages such as

C++ and JAVA when encoding a host simulation language (e.g., SIMAN/Arena and

Visual SLAM/AweSim). The difficulty exists not only for the domain experts but also for

the inexperienced simulation developers.

Based on these concerns, Setavoraphan and Grant (2008) proposed an Integrated

Simulation Acknowledge Procedure (ISAP) to enhance recent modeling methods and to

response the user’s requirements in domain specific simulation development. In the

paper, fundamental symbols, notation, and diagrams are represented in natural language,

which can be transformed into simulation-language-like statements. Unfortunately, the

paper is limited to cover all the aspects necessary to support the alignment of

conceptualization and implementation. Therefore, a simulation-contextual document has

been developed in this study to represent the transformation of ISAP using an

intermediate simulation language that supports both model composability and simulation

interoperability. This type of documentation aims at creating open space for the

development of domain specific simulation on any simulation environments.

 85

4-2. Key Concepts

 An initiative for facilitating better understanding of the transformation approach

is taken by distinguishing models and simulations. The Modeling and Simulation (M&S)

community defines this distinction by a means of metadata structures in support of the

development processes (Tolk and Turnitsa 2007). Models are the results of

conceptualization of a problem to be solved, while simulations are implementations of

models executable over time. Information generated and executed by these domains are

different, which initially generates a gap between them by a means of conceptualization

and implementation. Therefore, a need for information exchange between them becomes

crucial for reducing or eliminating this gap.

In fact, conceptual models in most cases are not technically captured in a

computable way. Hence, difficulties exist in evaluating if the information exchange can

be aligned conceptually or not (Davis and Anderson 2003). Only the alignment of

concepts, nevertheless, is not sufficient to fulfill the gap. The content of the information

exchange reference must also be specified as contextualized information, which is built

from a set of user declarations under a set of validity constraints (Analyti et al. 2007).

Given such a contextualized framework, specifications of conceptualizations can be

formalized into a context that simulation systems can really exchange and understand.

The context can be viewed as a knowledge representation providing a common language

for this cross-domain communication. Structuring a meaningful context, thus, leads to a

key approach in the transformation process.

According to Hemel, Kats, and Visser (2008), “the essence of the

(transformation) approach is to shift the knowledge about these implementation details

 86

from the minds of programmers to the templates of code generators that automatically

translate models into implementations.” This statement points out that the context for

transformation should initially be pursued at the conceptual level. The purpose is to

acknowledge and synergize the requirements and specifications of two domains so that

components that are created in the contextualized framework contain information easily

transformed across the domains. To achieve this goal, the implementation of two key

concepts: model composability and simulation interoperability, must be taken into

account.

4-2-1. Model Composability

 An interesting definition describing model composability can be found in the

literature by Morse et al. (2003):

“Given a set of components, structured descriptions or specifications of the components,

sometimes called meta-data or meta-models, can be used to guide the process of selecting

components for a specific purpose and determining if a set of components can be

effectively composed.”

In brief, composability is the process of combining and recombining components in

different compositions (Petty 2004). A summary of composability can be found in the

previous study (Setavoraphan and Grant 2008). However, details related to

transformation are not included.

 In general, syntactic and semantic composability are considered core concepts for

model composability. Syntactic composability is concerned with the compatibility of

implementation details (Petty and Weisel 2003); semantic composability, on the other

 87

hand, is concerned with validity of the composition (Weisel, Petty, and Mielke 2003).

However, as mentioned earlier, transformation is a process of structuring a context

understandable by simulation systems. Hence, another type of composability needs to be

addressed. Pragmatic composability is concerned with the context of the simulation and

with the determination of whether the composed simulation meets the intended purpose

of the modeler (Hofmann 2002).

In practice, semantic and pragmatic composability is a much harder problem

(Fishwick and Miller 2004; Moradi 2007) in conducting conceptual models, compared to

syntactic composability. One of the reasons is that the formats of conceptual models, in

general, are not designed to contain semantic and pragmatic information about what they

intend to simulate. This results in having a framework that provides interface

specifications and rules which only facilitate technical aspects of compositions (e.g.,

syntactic composability), for example, the High Level Architecture (HLA) (Moradi

2008). Within a poorly structured semantic and pragmatic format, there appear the

difficulties not only in reusing components but also in transforming these components

from conceptualization to implementation.

To handle this issue, the first step is to have a clear understanding of what is being

composed (e.g., components) and what is the result of composition (e.g., product from

the components). Based upon a number of answers found in the literature, they can be

referred to as levels of composability (Petty and Weisel 2003) as follows:

• Application: Applications such as simulations are composed together to build

simulation events, exercises or experiments.

 88

• Federate: Refer to specific HLA meanings, this level allows combining,

recombining, and editing simulations to build a set of distributed simulations that

communicate in run-time.

• Package: Simulations are composed by using pre-assembled packages of models

to form a subset of the specific domain.

• Parameter: This level is focused on configuration of pre-existing simulation by

using parameters.

• Module: Modules are composed into software executables.

• Model: Models of smaller scales are composed into composite models of larger

scales.

• Data: Databases are developed through composition of sets of different data (e.g.,

entities, sources, and aspects).

• Entity: Entities are composed into groupings, whereas groupings are composed

into higher level groupings.

• Behavior: Behaviors at lower level are composed into higher level behaviors,

which are to be executed by computer generated forces or in constructive

simulations.

The levels of composability provide information that help specify meanings,

characteristics, and requirements of sources (e.g., conceptual components) and targets

(e.g., executable components). Thus, the mappings and relations between component

types can be taken into management and control, which generates rules and constraints

for the specializations of transformations (Koch 2006).

 89

 The second step is to develop proper documentation used as guideline and control

for (re)configuration and adaptation in composability. Davis and Anderson (2003) point

out that in practice there is always a need for some degrees of component adjustment and

adaptation before being able to compose a set of components. It can be done through

reconfiguration of simulations by, for example, adjusting interfaces, making changes in

the existing simulation codes, etc. In either case, proper documentation is needed for the

adaptations (Fishwick and Miller 2004). “It is much easier for a human to read and

understand a textual description of a component than a program code, and use it as a

basis for selecting and adapting the component” (Moradi 2008). Hence, proper

documentation aims to provide a good support to pursue successful composability at the

conceptual and description level – in a formal way. Furthermore, an additional format for

architectures and environments that facilitate transformation of the components can be

created and implemented within documentation. This type of documentation brings

potential path to progress in the entire development process for domain specific

simulation. Documentation in this research study is developed upon technology-based

concepts, which are further explained in Section 4-3.

4-2-2. Simulation Interoperability

 Within the modeling and simulation (M&S) community, interoperability has been

of major concern to bridge the gap between implementation focused methods and

conceptual models (Tolk and Muguira 2003). Interoperability in M&S is closely related

to composability; thus, it is of interest to clarify its definitions. The IEEE defines

interoperability as “the ability of two or more systems or components to exchange

 90

information and to use the information that has been exchanged” (IEEE 1990).

Meanwhile, its definition in the M&S context has been described as the ability of

different simulations connected in a distributed system to collaboratively simulate a

common scenario (Petty 2002). Furthermore, the distinction between interoperability and

composability is defined in the literature by Page et al. (2004) as the following aspects:

• Interoperability deals with exchange of data elements based on a common

data interpretation related to implementation details, which can be mapped to

the levels of syntactic and semantic interoperability.

• Composability addresses the alignment of issues on the conceptual modeling

level to provide meaningful conceptualization used for being implemented by

the simulation systems.

The underlying idea of distinguishing between interoperability and composability is to

recognize what type components are (e.g., interoperable or composable) and what the

result of configuration of the components is (e.g., levels of interoperability and

composability). According to Petty (2002), components that are interoperable in one

configuration, but cannot be composed together in other ways are not composable.

Furthermore, having components with unbalance levels between interoperability and

composability makes the meanings and validations of transformation become infeasible.

 Originally, transformation is acknowledged as an approach dealing with

information exchange between two different systems, which requires an achievement of

meaningful interoperability as well. Hence, the focus is put on the specifications of what

type of interoperability being structured and what level of information being

 91

interchanged. First of all, similar to composability, there are two types of interoperability:

technical and substantive (Petty 2002). In technical interoperability, components require

to be compatible with an interoperability protocol which is responsible of exchange of

information between components. Technical interoperability is also called syntactic

interoperability. On the other hand, substantive or semantic interoperability is satisfied if

the exchanged information is semantically meaningful, which is based on the definition

settings. Furthermore, substantive interoperability is often collaborative along with

pragmatic interoperability when determine whether the exchanged information differs

from the intention (Pokraev et al. 2005).

 Second, in order to reach meaningful interoperability, the levels of information

being exchanged between two systems need to be managed at the conceptual level to

avoid ambiguous interpretation (Tolk and Muguira 2003). Five levels of interoperability

are defined in the literature as follows:

• Level 0 – System Specific Data: No interoperability exists between two

systems because data is specifically used within each system.

• Level 1 – Documented Data: Data is documented using a common protocol

and interface such as HLA.

• Level 2 – Aligned Static Data: Data is documented using a common reference

model such as ontology.

• Level 3 – Aligned Dynamic Data: The use of the data within the component is

well defined in standard documentation and is visible to the integrator such as

Unified Modeling Language (UML), Extensible Markup Language (XML) in

Simulation Reference Markup Language (SRML).

 92

• Level 4 – Harmonized Data: Conceptual model is documented to control the

consistency of semantic connections between unrelated data concerning the

executable code.

As obviously seen, to reach the higher level of interoperability that is related to the

availability and management of information exchange is relied on how well

documentation is made to capture and describe data.

The idea of documenting interoperability is similar to documentation for model

composability in which technology-based concepts are involved. A question here is that

how documentation based technological concepts can be created to support

transformation. A thought of what is the most critical requirement of the M&S

transformation process becomes a key to answering it. Intensively, transformation

requires the high-level collaboration between the “semantic” composition of components

and the “meaningful” interoperation of information. One of the technology-based

concepts found in a set of literature that show the success of transformation is Semantic

Web. Within the terminology of Semantic Web, new possibilities for documenting a

contextualized framework using its related concepts such as ontology, XML, and SRML,

to facilitate transforming conceptualization into implementation are conducted. These

concepts have been discussed in the section 4-3.

4-3. Related Technology-based Concepts

 According to the W3C director Berners-Lee (2001), the Semantic Web is an

extension of the current World Wide Web technology in which the semantics of

 93

information on the web is well defined. Through Semantic Web technologies, it is

possible to structure everything in languages to make formal description of contents,

understandable by people and computers. Hence, the Semantic Web is about a verbal

communication tool for collecting data relating to real world objects and exchanging the

data in a formal way.

 The reason behind the use of the Semantic Web in this study is to develop a

methodology that supports transforming conceptual models into simulations. Its potential

has inspired this work to document a contextualized framework using available

technologies and languages within the Semantic Web context for the transformation

process. The following sub-sections present an overview of the related technologies.

4-3-1. Ontology

 To achieve proper contextualized documentation for transformation, semantics of

composability and interoperability need to be well captured at the conceptual level.

Ontology is defined as a formalization of a specification of a conceptualization (Tolk and

Turnitsa 2007) in a sense to overcome the challenges of M&S composablity and

interoperability. Its formulation for practical applications is described: “if a formal

specification concisely and unambiguously defines concepts such that anyone interested

in the specified domain can consistently understand the concept’s meaning and its

suitable use, then that specification is an ontology” (Tolk and Blais 2005). Accordingly,

ontology aims at providing common and unambiguous meaning of information to

establish a joint terminology/frame of reference of conceptual meanings between

 94

components (e.g., entities) within a domain as well as their interactions between the

components (e.g., events).

The following example helps to visualize how ontology works. Ontology defines

that there is a concept of an object called Vehicle, and that a Vehicle requires fuel. This

object can then be declared with terms and properties in some formal way to convey that;

for instance, a Car is a Vehicle. Furthermore, using logical inference that a Car is a

Vehicle and Vehicles require fuel, it can be concluded that a Car requires fuel. According

to Moradi (2008):

“The point of declaring this type of ontology is so that if two entities (for example two

computers that try to mimic intelligence) have agreed upon using this ontology, and one

of the entities can mention the word Car, then the other entity knows that this Car they

are talking about is a Vehicle and nothing else.”

 Given its definition and example, it can be seen that ontology shares many

structural similarities with object orientation by a means of fundamental aspects such as

encapsulation, polymorphism, and inheritance.

Table 4 - 1: Ontology to Object-oriented mapping

Ontology Domain

(retrieved from Wikipedia 2008)

Object-oriented Domain

(Rumbaugh et al. 1991)

Individual concept (instance) Object

Collections/types of concepts Classes

Properties Attributes

Function terms Operations and methods

Relations Links and associations

 95

Ontology to Object-oriented mapping retrieved from the table above shows that a concept

can potentially be structured into a form of an object that has its own class and relations

between other objects/classes. Furthermore, its information (e.g., attributes,

characteristics, properties, etc.) can be captured, exchanged, specialized, inherited, and

reused within a specific domain (e.g., a frame of reference). Put together a set of objects,

classes, information, and relations, the concept becomes less abstract but more semantic

to be used in modeling.

Although the object orientation is (often) used as the fundamental methodology to

develop conceptual models, it still lacks mechanisms to control and formalize the levels

of semantics of conceptualizations. Vasilecas and Bugaite (2007) state that the

development of conceptual model using ontology based approach is needed because the

semantic content can be transformed into information system (e.g., simulation) artifacts.

Hence, the costs and time can be reduced not only in conceptual modeling but also in

simulation modeling.

Base Object Model (BOM), for example, has recently been developed using

ontology-based approach to provide a component framework for facilitating reusability,

composability, and interoperability (SISO 2006). A BOM is developed based on the

assumption that piece-parts of models and simulations can be extracted and reused as

modeling building-blocks and components. Specifically, BOMs are meant to provide an

end-state of a conceptual simulation model and to be used as a foundation for the design

of executable software code and integration of interoperable simulations. Based on the

aspects found in a BOM, concepts can be captured and described in terms of both static

(e.g., reality) and dynamic (e.g., interaction) view to support considering what the model

 96

or simulation will intend to do. Furthermore, a BOM is a document that defines not only

the template components for capturing the information needed to describe a simulation

component but also the XML schema for interchanging the information between

conceptual models and simulations. The concept of BOM brings an insight of applying

the ontology-based approach and XML to develop a conceptual simulation model

including simulation transformability. The implementation of this idea has been taken in

the entire research study so that ISAP is capable of constructing a process-oriented and

component-based framework to contain and represent sufficient semantics of simulation

components with respect to the ontology context. Therefore, there is the possibility for

ISAP to be documented by using XML to facilitate its transformation process. Detailed

discussion will be given in the section of model transformation.

Another interesting issue about ontology is the levels of abstraction. There are

three main levels: upper (foundation) ontology, core ontology, and domain (domain-

specific) ontology (Fishwick and Miller 2004). Upper ontology is a model that captures

basic concepts of real world. It provides a framework in which the building-blocks of

reality can be described, independent of any specific domain. Thus, concepts defined in

the upper ontology are generally applicable across a wide range of domain ontologies.

The upper ontology then can be used as a knowledge base for building more specialized

ontologies, which provides reusable knowledge and semantics to support interoperability

between different specialized ontologies. The core ontology captures concepts and their

relations in a field of practice. The domain ontology models a specific domain and

specializes the core ontologies.

 97

Moreover, the ontological spectrum introduced by Daconta et al. (2003) is used to

describe a range of semantic models of increasing expressiveness and complexity to

capture the information required, as shown in the following categories:

• Dictionaries and glossaries are lists of controlled vocabularies not underlying

concepts and are the weakest semantics in this spectrum.

• Thesauri are well known-order and structured controlled vocabularies that

facilitate retrieval of documents and achieve consistency in recorded

documents.

• Taxanomies are tree structures of classifications for a given set of objects,

which are the first form reflecting the idea of concepts.

• Ontologies represent the formalization of an exhaustive and rigorous

conceptual schema within a given domain, which are helpful for capturing the

meaning of the underlying concepts.

• Logical models are representing semantically the strongest methods of the

ontological spectrum, giving knowledge representations in particular.

The main purpose of using the ontological spectrum is to fill several gaps identified by

Robinson (2006) in modeling conceptualization and implementing models into

simulations. Hence, the use of a common language has been introduced for information

exchange to control and represent the levels of semantics between abstract and executable

thinking (Tolk and Turnitsa 2007). It exploits common artifacts in capturing and

providing information that not only human but also computer can read and understand.

Obviously, these common artifacts become particular definitions and supportive elements

 98

for transformations between domains. Among available languages, XML has been

selectively used as a common language in this study.

4-3-2. XML

 Extensible Markup Language (XML) is a markup language derived from Standard

Generalized Markup Language (SGML), originally designed for the exchange of data on

the Web (Quin 2003). XML is a simple and flexible text format for describing a class of

data objects called XML documents. XML documents consist of elements which contain

either parsed or unparsed data, specified using tags (words bracketed by ‘<’ and ‘>’).

Parsed data are made of characters that form character data (e.g., attributes) for

describing the elements and form markup for encoding the contents of document,

described by a-name-value pairs. XML provides this markup mechanism to impose

constraints on the document’s storage layout and logical structure. The example below

represents how the author can be described in an XML document.

<?xml version="1.0" encoding="UTF-8" ?>
<Author>
 <Name>Kitti Setavoraphan</Name>
 <Institution>
 <Name>University of Oklahoma</Name>
 <Location>
 <City>Norman</City>
 <State>Oklahoma</State>
 <Post>
 <Code>OK</Code>
 <Zip>73019</Zip>
 </Post>
 </State>
 <Country>USA</Country>
 </Location>
 </Institution>
</Author>

 99

 Using this tree-structured text style, related data and networked data can naturally

be described at various levels of complexity. The hierarchical structure in an XML

document is formed in a fashion similar to the object-oriented structures laying out the

foundation for the development of most simulation software packages. The most precise

semantic mapping of conceptual structures onto both the XML structures and object-

oriented structures is the Document Object Model (DOM). The DOM provides access to

the various nodes of a document such as document, element, and attribute, and to node

lists. Moreover, XML marks a shift toward data structures that can be defined by

grammars (Daum 2003), so that it has enough expressiveness to satisfy the requirements

of conceptualization-to-implementation communication in modeling and simulation.

Thus, XML becomes a preferred protocol for accessing and establishing simulation

modeling specifications (Lu, Qiao, and McLean 2003) regardless of simulation platform.

 As a grammar-driven language, XML allows a modeler to define his own tags

and structure of documents using an XML schema (Lim 2004). The schema can also be

viewed as a common vocabulary for a particular application that involves exchanging

documents (W3C 2002). The vocabulary aims at defining the structures of the XML

document in terms of constraints in a particular schema. There are two types of

constraints used in a schema: content definition and data type constraints (Walsh 1999).

Content definition constraints describe the order and the sequence of elements, whereas

data type constraints describe valid units of the data. An XML schema, thus, permits the

modeler to specify rules to structure the content of an XML document (e.g., elements,

attributes, relationships, and data types) that can be validated with simulation software

(Reichenthal 2002).

 100

Since its syntax is simple, an XML document can be read by both human and

computers (Fishwick 2002). Not only does transformability of the XML document

potentially emerge but also collaboration between the domain experts and the simulation

developers does improve. As a result, XML is considered as a core language suited for

documenting a contextualized framework to represent the contents of both domains at an

intermediate information-exchange level – that is a more computer-readable form.

4-3-3. Simulation Reference Markup Language (SRML)

 According to Reichenthal (2002), “simulation is a process that attempts to predict

aspects of the behavior of some system by creating an approximate model of it.” The

underlying concept here is that a model must contain the ability to describe behavior of

all items comprising a simulation. As mentioned above, an XML document is constructed

upon object-based descriptions to represent (physical) data structure of a particular

system. However, use of plain XML does not imply semantic behavior of the data (W3C

2002).

 The Simulation Reference Markup Language (SRML) is a formal language for

describing simulations using similar constructs of XML, developed by the Boeing

Company. Gustavson and Chase (2004) state that “SRML is like HTML in that it provides

for executable content using the same kinds of mechanisms such as object models,

scripting, plugs-in, and the ability to dynamically download and assemble content.”

SRML is designed to combine XML and those features, especially scripting, to encode

both structure and behavior of entire simulations using classes and scripts (Reichenthal

 101

2008). Moreover, simulations described in SRML can be executed in its runtime

environment, Simulation Reference Simulator (SR Simulator).

In an SRML document, the structure of XML constructs is organized in a way

that makes it practical to represent (Reichenthal and Johanson 2008):

• A set of interconnected items, both hierarchically and networked;

• Individual item behavior via scripts;

• Item classes, polymorphism, and multiple-inheritance;

• A means for synchronous, asynchronous, and scheduled communication; and

• Random events.

The example below illustrates how a simple SRML document is constructed.

<Simulation>
 <Script Type='text/javascript'>
 ...
 </Script>
 <ItemClass Name='Vehicle'>
 <Vehicle type="Passenger">
 <Script Type='text/javascript>
 ...
 </Script>
 </Vehicle>
 </ItemClass>
 <Vehicle Quantity='4'/>
</Simulation>

In general, SRML uses a set of tags as any other XML-based language to create

structured representations, including pre-designated attributes to describe abstract items.

Meanwhile, internal and external structures are described and validated by XML and

simulation-specific schemas (W3C 2002). For a better understanding, an explanation of

the basic tags used in the example above is given. The <Simulation></Simulation> tags

 102

encapsulate elements and scripts corresponding to an entire simulation. A simulation

element contains zero or more Script elements as children to specify the main simulation

behavior, using a <Script></Script> tag-set. This script can be written in JavaScript,

VBScript, or any other script-language; however, JavaScript is set by default for an

SRML script. The next part of the document is followed by a number of

<ItemClass></ItemClass> tags, which define the different types of items required for the

simulation. In the above example, a Vehicle is defined as an ItemClass element within a

<ItemClass> tag-set. Each ItemClass element can typically be created by defining

properties, structure, and behavior of the item. It can also contain zero or more Script

elements describing the functionality of the item defined. After the <ItemClass>-tags, a

set of instances of items that is being used in the simulation may or may not be specified.

The example above shows that four vehicles are created. In addition to these simple

constructs, the SRML document can contain other elements, for example, Links, Events,

and so forth to support specific domains under simulation. For more information on

SRML, see the W3C SRML website (http://www.w3.org/TR/SRML/).

To be concluded at this point, “SRML should not be considered a programming

language, but rather a composition language for integrating XML data models with

behavior” (Reinchenthal 2004). With these characteristics, SRML can provide enough

expressive power to model most anything for purposes of simulation by a means of

structural and behavioral documentation, which can be executed on computers.

Furthermore, simulation models constructed in this form of SRML document supports

both composability and interoperability as well. Hence, SRML has successfully been

used in transforming conceptual models such as BOMs into simulations (Gustavson and

 103

Chase 2004; Reichenthal, Gustavson, and Cruz 2003; Moradi, Nordvaller, and Ayani

2006; Moradi 2008).

Nevertheless, SRML includes a large number of features, some of which are not

applicable in the scope of this research study – especially with ISAP. At the beginning,

this research study has been set to avoid any burdens with designing complex high-level

definitions of any host simulation or programming languages. It is focused on providing a

friendly-user methodology that facilitates the development of domain specific simulation

environments. The transformation of conceptualization has become a part of the

methodology, creating a simulation document independently applied for implementation

on any simulation environments. Hence, only has the architecture of the SRML language

been utilized in documenting ISAP conceptual simulation models.

4-4. Model Transformation

 This section presents a methodology based on contextualized-framework

documentation to support the transformation of conceptual simulation models developed

under ISAP. The document follows the SRML-based architecture using XML and

JavaScript to capture and describe structural and behavioral components in a domain

specific simulation. Even though ISAP uses three layers (e.g., Initialization, Process, and

Termination) to represent a generic structure of the domain specific simulation, it is

possible to develop all-in-one-type documentation to satisfy the individual layers’

requirements. This type of documentation must allow selecting and representing the

information from ISAP that can potentially be exchanged and mapped into a simulation

environment on a conceptual level. The main purpose is to reduce some concerns related

 104

to constraints and knowledge in implementation, so that the document can encapsulate

the contents within the simulation context into an organized and easily-readable module.

 An advantage of documenting ISAP information into a form of modularization is

that each SMU can be transformed, integrated, distributed, and reused independently in

separate documents, by separate model developers.

<SMU1>

…

</SMU1>

Modeler#1

<SMU3>

…

</SMU3>

<SMU2>

…

</SMU2>

<SMU7>

…

</SMU7>

<SMU8>

…

</SMU8>

<SMU1>

…

</SMU1>

<SMU2>

…

</SMU2>

<SMU3>

…

</SMU3>

<SMU7>

…

</SMU7>

<SMU8>

…

</SMU8>

<DMSL1>

…

</DMSL1>

<DMSL2>

…

</DMSL2>

<SMU1>

…

</SMU1>

Modeler#2

SMU1 SMU3

SMU2 SMU7 SMU8

Transformation

Transformation

Composition of DMSL1 Composition of DMSL2

Figure 4 - 1: General approach of documentation for ISAP

A transformational module contains information not only from the targeted SMU but also

from surrounding information such as inputs, relations, and sequences, described in the

ISAP layers. This is to ensure that the transformational module provides sufficient

 105

semantics of its construction as well as a generic simulation module/building-block in

which the information are formalized into specific data components for future

applications. Figure 4-2 shows the initial data components and their relations of a

simulation module.

<Code>

….

</Code>

Input

Database

Module Type

File#

Variable#1

Variable#2

…….

…….

<Code1>

….

</Code1>

<Code2>

….

</Code2>

<Code N>

….

</Code N>

…………….

+ Read-in Data-exchange

INPUT DATA STRUCTURE PROCESS

Figure 4 - 2: Initial structure of a simulation module

 It is seen from the figure above that a simulation module is enabled by a

collaboration of three data components: inputs, data structure (e.g., arrays and

parameters), and process (e.g., functions). Its mechanisms require a set of instructions

(codes) that are iteratively used to:

• Receive input data;

• Create parameters and a one-dimensional array to store input data;

• Generate one or more processes to execute parameters; and

• Return new data set to the storage.

 106

Look at the mechanisms; it shows that all these instructions are written to describe how

the data exchange and the logical execution of the simulation module implicitly take

place. From this point of view, there are two major needs for an SMU to perform its

transformation process: data descriptions and behavioral functions. Refer to the SRML-

based architecture, data such as entities, properties, and logic can be described by XML,

whereas behavioral functions such as create, assign, and queue can be represented by

scripts (e.g., JavaScript). The illustration is given in Figure 4-3.

Process Description

Level of Abstraction

List of Entities

List of Resources

List of Operations

Descriptions

Behaviors

XML

JavaScript

Figure 4 - 3: A scenario of transformation process

Later, each individual transformational module needs to be coupled into a network

representing an entire simulation, which requires more additional descriptions and scripts

to make the connection between them. The following subsections demonstrate how to

apply this approach for the transformation of ISAP.

 107

4-4-1. Selection

 The transformation process starts with the selection of SMUs and their relevant

information at the lowest abstraction level. The idea is to provide true semantics of the

composition of transformational modules and the interoperation among them when put

together in documentation. In ISAP, an entire system is logically viewed as a document

folder so that the levels of abstraction can be decomposed into one or more sub-folders in

a tree-hierarchical order. However, due to the fact that decomposition in ISAP exploits

aggregation, the transformational module at the lowest level of abstraction may or may

not contain all the inherit properties from its root. A loss of information does affect the

completeness of implementation. Hence, it is necessary to derive and maintain

descriptions and behaviors from the origins within documentation.

 The lockage-operation example demonstrated in Chapter 3 is applied in this study

to represent a continuous development process – from CSM to contextualized

documentation. Basically, the selection begins at the network statement created from

ISAP. The network statement contains the information of operations that are arranged

based on logical sequences and decomposition levels. Then, it is to check back with its

DMSL to find which SMUs those operations belong to. Finally, a list of SMUs is taken

into consideration for the selection, which , in this example, consists of SMU Inform

Arrival of Barge-tows, XOR Decide Which Lockage Fits Barge tows’ size, SMU Operate

Single Lockage, and SMU Operate Double Lockage.

 108

4-4-2. Modularization

 The next step is to transform each SMU into a transformational module using

XML and JavaScript to specify its descriptive and behavioral characteristics.

XML allows the simulation developers to define their own tags to describe

elements, properties, relations, and so forth. However, to make consistency through this

research study, the following tags are set by defaults:

Table 4 - 2: Default-setting tags

Tag Name Description

<DMSL></DMSL> Encapsulate the entire dynamic modeling subsystem that
represents a domain specific simulation.

<SMU></SMU> Define different types of modules that need to be
transformed and are present in the simulation.

<Entity></Entity> Define different types of entities that contain their own
properties (e.g. attributes) and flow through the simulation

<Resource></Resource> Define different types of resources that contain their own
properties (e.g. attributes) and process the entities.

<Script></Script> Define different behaviors for the item corresponding to the
enclosing element (e.g. DMSL or SMU). Each script may
contain functions, procedures, or variables that override the
previous script.

<Attribute/> Define and assign attribute name and attribute type to the
element.

<Variable/> Define and assign global variable name and global variable
type to the element.

<Link></Link> Define relation types and destinations for the current SMU.

Assignment of properties to each element depends on what requirements are needed and

how to translate those requirements by using descriptions. Properties are necessary for

representing and, in some cases, adding more descriptions that cannot be covered by the

ISAP conceptual models. It needs to be realized that levels of complexity in describing

 109

properties are based on the quality and quantity of information that are derived from

conceptualization and required for simulation. In Listing 4-1, for example, properties

assigned to EntBargeTow and ResLock describe characteristics that specifically

distinguish between an entity-type element and a resource-type element, providing

acknowledgement of their contexts logically used for either within or separate modules

(SMUs) to be referenced by functions.

Listing 4 - 1: XML-based descriptions of entity and resource

 <Entity Name ="EntBargeTow">

 <Attribute atribname="Identification#" atribtype="interger"/>

 <Attribute atribname="NumberBarges" atribtype="integer"/>

 <Attribute atribname="Origin" atribtype="integer"/>

 <Attribute atribname="Destination" atribtype="integer"/>

 <Attribute atribname="ArrivalTime" atribtype="real"/>

 <Attribute atribname="Speed" atribtype="real">

 </Entity>

 <Resource Name ="ResLock">

 <Attribute atribname="Name" atribtype="string"/>

 <Attribute atribname="File#" atribtype="integer"/>

 <Attribute atribname="Resource#" atribtype="integer"/>

 <Attribute atribname="CapacityLock" atribtype="integer"/>

 <Attribute atribname="ActivityTime" atribtype="real"/>

 </Resource>

Properties described in XML terms must also be relevant and accessible for functions

specified in scripting – which is a critical concern for modularization by a means of

interoperable-connection mechanisms – that controls interoperation of modules in

separate development.

 110

 The previous study (Setavoraphan and Grant 2008) states that functions (or

operations) within an SMU can be used to create one or more simulation

modules/building-blocks as found in SIMAN and Visual SLAM. Furthermore, a study by

Reinchenthal and Gustavson (2003) shows the use of behavioral markup (JavaScript) in

SRML to describe the process blocks in SIMAN. As a result, each function attached to an

SMU can be viewed as a block that contains encapsulation of elements, parameters, and

sub-functions/methods as a self-describing process module. This block then can be

transformed into a simulation module/building-block that can be reused in other

compositions.

 However, there exists a difficulty in applying this transformation method. It is still

unable to avoid dealing with JavaScript and simulation programming which require

knowledge, skills, and experiences in creating a module to function as expected. To

encounter this difficulty, an approach to establish an intermediate simulation language

based on JavaScript and host simulation programming has been enforced to the study of

transformation. This language is not focused on implementation but rather on description

to specify transformations and mediations between domains. It offers more logical and

more flexible to create documentation that can be further developed in a host simulation

language or mapped into simulation building-blocks available in generic simulation

software. There is a question of whether documentation of transformation itself can be

implemented into a simulation. The answer is “yes” if it is created under the environment

runtime of a simulator such as Simulation Reference Simulator developed by Boeing (see

http://www.w3.org/TR/SRML/). However, the scope of this research study leads to a

finding of methodology that facilitates the development of a domain specific simulation

 111

environment rather than a finding of validation that approves the correctness of

documentation.

 To reduce the trade-off caused by this approach, simulation developers are

allowed to construct their own user-callable functions that can be used/reused and

expected to be available – in host simulaiton languages (e.g., SIMAN/Arena and Visual

SLAM/AweSim). User-callable functions are meant to work as a set of fundamental

support functions for performing all commonly encountered functions such as event

scheduling, statistics collection, and random sample generation. With these fundamental

user-callable functions, the simulation developers are able to reduce difficulties in

describing and specifying functions defined in the ISAP conceptual models by having

none or a minimum of coding. Moreover, mapping is easier to be made because there are

some common characteristics (similarities) between those in the intermediate simulation

language and the target-host simulation languages with respect to meanings and

specifications of functionalities that can be paired (more discussion in the next chapter).

 Although levels of appropriateness of specifying user-callable functions are relied

on the simulation developers’ expertise in host simulation languages, the key of creation

is to delivering a concrete perception of what each user-callable function is and how it

works. Thus, it is essential for the simulation developers to provide references for user-

callable functions in terms of function structures and descriptions, including properties

related. Also, object classes that are used to reference functions and properties need to be

defined. Visual SLAM, for example, includes VSLAM (the general simulator object),

VSENTITY (an object for referencing an entity), VSENTRY (an object which maintains

an entity’s position within a file), and VSNODE (an object used to reference the

 112

functions and properties of a network node) to support arguments to some of the

functions and properties (Pritsker and O’ Reilly 1999). Moreover, Visual SLAM allows

users to define their own object classes on purposes. Objects, in general, are referenced to

both functions and properties in the following manner: object.function and

object.property.

 In this study, the construction of fundamental user-callable functions have been

developed based on user-callable and user-written visual basic functions available in

Visual SLAM (Pritsker and O’ Reilly 1999). The purpose is to make contextualized

documentation for transformation more consistent and more effective. However, there is

only one general object class named IP and user-defined object class being used to

reference functions and properties – to decrease any complexity in exploitation. The

following table lists some properties and user-callable functions that have been used in

the documentation of DMSL: LCK and been generalized for other host simulation

languages.

 113

Table 4 - 3: Referenced properties for DMSL: LCK

References Description

NewEntity() Create a new entity.

CurrentEntity() Return the current entity.

CloneEntity() Clone the entity.

TerminateEntity() Terminate the entity.

Release(Resource#, Units) Release number of units of the resource#.

Seize(Resource#, Units) Allocate number of units of the resource#.

NARES(Resource#) Return the number of available units of the resource#.

NIUSE(Resource#) Return the number of busy units of the resource#.

Resource() Allocate a resource and assign its calling number

Schedule(Event, Entity, Time) Schedule an event of type Event to occur at time TNOW + Time
for the current entity.

Assign(Attribute 1, Attribute 2, …) Assign one or more attributes to the entity.

LocateEntity(Event, Resource, Entity) Locate the entity in the target resource

Intlc(run) Check the initial run

TNOW Current simulated time

Listing 4-2 shows the transformation of SMU Inform Arrival of Barge-tows into a

module in documentation using properties and user-callable functions in the able tables.

Listing 4 - 2: A transformational module of SMU Inform Arrival of Barge-tows

<SMU Name = "Inform arrival of barge-tows">

 <Entity Name = "EntBargeTow">

 <Attribute atribname="Identification#" atribtype="interger"/>

 <Attribute atribname="NumberBarges" atribtype="integer"/>

 <Attribute atribname="Origin" atribtype="integer"/>

 <Attribute atribname="Destination" atribtype="integer"/>

 <Attribute atribname="ArrivalTime" atribtype="real"/>

 <Attribute atribname="Speed" atribtype="real">

 </Entity>

 <Script Type="text/javascript">

 <![CDATA[

 114

 function CreateBargeTow()//Create and schedule entities

 {

 //Define variables used in this function

 var FirstArrival = 0;

 var ArrivalRate;

 var CurrentTime = TNOW;

 var MaxEntities;

 //Create a new entity

 set NewEntBargeTow = IP.NewEntity();

 set NewEntBargeTow.ArrivalTime = IP.TNOW;

 IP.Schedule("FirstArrival", NewEntBargeTow,
(NewEntBargeTow.ArrivalTime+ArrivalRate);

 //Schedule the next entities

 for (i=1; i<=Max# entities; i++)

 {

 set NextEntBargeTow = IP.CloneEntity();

 set NextEntBargeTow = IP.TNOW;

 IP.Schedule("NextArrival", NextEntBargeTow,
(NextEntBargeTow.ArrivalTime+ArrivalRate));

 }

 }

 function AssignBargeTow()//Assign attributes to the BargeTow
entities

 {

 var Identification#;

 var NumberBarges;

 var Origin;

 var Destination;

 var ArrivalTime;

 var Speed;

 //Define the current EntBargeTow entity and assign attributes to
it

 set CurrentEntBargeTow = IP.CurrentEntity();

 CurrentEntBargeTow.Assign(Identification#, NumberBarges, Origin,
Destination, ArrivalTime, Speed);

 115

 }

 function RouteBargeTow()//Schedule the current EntBargeTow entity
for travelling

 {

 var Distance;

 var Speed;

 var DelayTime = Distance/Speed;

 IP.Schedule("Decision", CurrentEntBargeTow,
CurrentEntBargeTow.DelayTime);

 }

]]>

 </Script>

4-4-3. Integration

 The final step is to combine a set of transformational modules and the root of a

dynamic modeling subsystem. Like a general simulation environment, it contains zero or

more global variables that can be accessed and used by its children, and specifies the

main simulation behavior or main function (script) that controls the overall operations of

the simulation. The integration of these elements leads to a complete simulation

documentation being used as the future reference for implementation. Listing 4-3

illustrates a sample of documentation for the lockage operation system, LCK.

Listing 4 - 3: Partial documentation for DMSL: LCK

<DMSL Name ="LCK">

 <Variable varname="Offset" vartype="boolean"/>

 <Variable varname="Offset enter value" vartype="boolean"/>

 <Variable varname="Offset exit value" vartype="boolean"/>

 <Script Type="text/javascript">

 <![CDATA[

 116

 //Initialize variables for the first run

 function Initial()

 {

 Intlc(run);//Check the initial run

 if (run = 1)

 {

 var Offset = 0;

 var Offset enter value = 0;

 var Offset exit value = 0;

 }

 }

]]>

 </Script>

 <SMU Name = "Inform arrival of barge-tows">

 <Entity Name = "EntBargeTow">

 <Attribute atribname="Identification#" atribtype="interger"/>

 <Attribute atribname="NumberBarges" atribtype="integer"/>

 <Attribute atribname="Origin" atribtype="integer"/>

 <Attribute atribname="Destination" atribtype="integer"/>

 <Attribute atribname="ArrivalTime" atribtype="real"/>

 <Attribute atribname="Speed" atribtype="real">

 </Entity>

 <Script Type="text/javascript">

 <![CDATA[

 function CreateBargeTow()//Create and schedule entities

 {

 //Define variables used in this function

 var FirstArrival = 0;

 var ArrivalRate;

 var CurrentTime = TNOW;

 var MaxEntities;

 //Create a new entity

 set NewEntBargeTow = IP.NewEntity();

 117

 set NewEntBargeTow.ArrivalTime = IP.TNOW;

 IP.Schedule("FirstArrival", NewEntBargeTow,
(NewEntBargeTow.ArrivalTime+ArrivalRate);

 //Schedule the next entities

 for (i=1; i<=Max# entities; i++)

 {

 set NextEntBargeTow = IP.CloneEntity();

 set NextEntBargeTow = IP.TNOW;

 IP.Schedule("NextArrival", NextEntBargeTow,
(NextEntBargeTow.ArrivalTime+ArrivalRate));

 }

 }

 function AssignBargeTow()//Assign attributes to the BargeTow
entities

 {

 var Identification#;

 var NumberBarges;

 var Origin;

 var Destination;

 var ArrivalTime;

 var Speed;

 //Define the current EntBargeTow entity and assign attributes to
it

 set CurrentEntBargeTow = IP.CurrentEntity();

 CurrentEntBargeTow.Assign(Identification#, NumberBarges, Origin,
Destination, ArrivalTime, Speed);

 }

 function RouteBargeTow()//Schedule the current EntBargeTow entity
for travelling

 {

 var Distance;

 var Speed;

 var DelayTime = Distance/Speed;

 IP.Schedule("Decision", CurrentEntBargeTow,
CurrentEntBargeTow.DelayTime);

 }

 118

]]>

 </Script>

 <Link Name="J2" Type="Precedence">

 <Link Target="XOR: Decide which lockage fits barge tows' size">

 </Link>

 </SMU>

 <SMU Name ="XOR: Decide which lockage fits barge tows' size">

 <Entity Name ="EntBargeTow">

 <Attribute atribname="Identification#" atribtype="interger"/>

 <Attribute atribname="NumberBarges" atribtype="integer"/>

 <Attribute atribname="Origin" atribtype="integer"/>

 <Attribute atribname="Destination" atribtype="integer"/>

 <Attribute atribname="ArrivalTime" atribtype="real"/>

 <Attribute atribname="Speed" atribtype="real">

 </Entity>

 <Resource Name ="ResLock">

 <Attribute atribname="Name" atribtype="string"/>

 <Attribute atribname="File#" atribtype="integer"/>

 <Attribute atribname="Resource#" atribtype="integer"/>

 <Attribute atribname="CapacityLock" atribtype="integer"/>

 <Attribute atribname="ActivityTime" atribtype="real"/>

 </Resource>

 <Script Type="text/javascript">

 <![CDATA[

 function CheckBargeTow()//Retrieve the value of number of barges
from the current EntBargeTow entity

 {

 var NumberBarges;

 set CheckNumberBarges = CurrentEntBargeTow.NumberBarges;

 }

 function SelectLockage()//Retrieve the capacity value from the lock
Resource#

 {

 119

 var LockCapacity;

 set ResLock = IP.Resource();

 set LockCapacity = ResLock.CapacityLock;

 }

 function BranchBargeTow()

 {

 var LockCapacity;

 if (CheckNumberBarges <= LockCapacity)

 IP.LocateEntity("Operate single lockage", ResLock,
CurrentEntBargeTow);

 else if (CheckNumberBarges > LockCapacity)

 IP.LocateEntity("Operate double lockage", ResLock,
CurrentEntBargeTow);

 }

]]>

 </Script>

 <Link Name="LockType" Type="Precedence with condition(s)">

 <Link Target="Operate single lockage"/>

 <Link Target="Operate double lockage"/>

 </Link>

 </SMU>

 <SMU Name ="Operate single lockage">

 <Entity Name ="EntBargeTow">

 <Attribute atribname="Identification#" atribtype="interger"/>

 <Attribute atribname="NumberBarges" atribtype="integer"/>

 <Attribute atribname="Origin" atribtype="integer"/>

 <Attribute atribname="Destination" atribtype="integer"/>

 <Attribute atribname="ArrivalTime" atribtype="real"/>

 <Attribute atribname="Speed" atribtype="real">

 </Entity>

 <Resource Name ="ResLock">

 <Attribute atribname="Name" atribtype="string"/>

 <Attribute atribname="File#" atribtype="integer"/>

 120

 <Attribute atribname="Resource#" atribtype="integer"/>

 <Attribute atribname="CapacityLock" atribtype="integer"/>

 <Attribute atribname="ActivityTime" atribtype="real"/>

 </Resource>

 <Script Type="text/javascript">

 <![CDATA[

 function SetLockState()

 {

 if (NIUSE(ResLock) >=1)//Lock is occopied

 {

 var Offset = 1;//State is busy

 var Offset enter value = 1;//Enter gate is closed

 var offset exit value = 1;//Exit gate is closed

 }

 else (NIUSE(ResLock) <=0)//Lock is available

 {

 var Offset = 0;//State is idle

 var Offset enter value = 0;//Enter gate is opened

 var Offset exit value = 0;//Exit gate is opened

 }

 }

 function ProcessLock()

 {

 var ActivityTime;

 if (NARES(ResLock) >0)

 {

 IP.Seize(ResLock, 1);

 IP.SetLockState();

 IP.Schedule("Lockage", CurrentEntBargeTow,
(CurrentEntBargeTow.TNOW+ActivityTime));

 IP.Release(Reslock, 1);

 }

 }

 function RouteBargeTow()//Schedule the current EntBargeTow entity
for exiting lockage

 121

 {

 var Distance;

 var Speed;

 var DelayTime = Distance/Speed;

 IP.Schedule("Exit", CurrentEntBargeTow,
CurrentEntBargeTow.DelayTime);

 }

]]>

 </Script>

 <Link Name="Exit" Type="Precedence">

 <Link Target="Set departure of barge-tows"/>

 </SMU>

//The rest of documentation includes the descriptions and

specifications of SMU Operate Double Lockage and SMU Set Departure of

Barge-tows. The construction follows the methodology described in these

sub sections. This listing is just aimed to show how documentation of

transformation is developed.

</DMSL>

4-4-4. Revision

 Like other documentation, a numerous iterative revisions and editions are very

vital in clarifying the semantics of a transformational document. These actions must be

taken within not only apiece of modules nor the entire document but also conceptual

models and simulations. The patterns of the actions are: a) Vertical search for

appropriateness of decomposition (top-down) and for semantics of composition (bottom-

up); and b) Horizontal search for degrees of implementation (left-to-right) and for levels

of communication (right-to-left). The purpose of following these patterns is to generate

 122

and keep up the semantics of model composability and simulation interoperability

throughout the development process for domain specific simulation. The final

documentation, hence, becomes a handbook to facilitate any construction of simulation

models under a specific domain.

4-5. Conclusions

 Many research studies have been found with their efforts to encourage the M&S

community to recognize the importance of semantics of model composability and

simulation interoperability when building conceptual models. They expect not only to

improve this cross-domain communicational tool but also to promote its potential

utilization in other applications. To satisfy these expectations, the use of contextualized-

framework documentation has been introduced to facilitate model transformation, which

leads conceptual models to have more expressive and meaningful representations in the

levels of implementation.

An Ontology-based approach has added the capability to documentation to

describe both structural and behavioral simulation characteristics in a more executable

and readable way, using the Semantic Web technologies like XML and SRML. The

derived concepts provide this study a thoughtful approach to develop an intermediate

simulation language to compose a transformational document. Furthermore, this type of

documentation contains a set of modules that can possibly be translated into composable

and reusable simulation modules/building-blocks or any host simulation languages, as

will be seen in this dissertation. However, it is not possible to translate all of the modules

in the document directly into those targets. Therefore, future research should be focused

 123

on finding a methodology to support the translation of documentation, based on ontology

mapping and knowledge-base selecting algorithms.

 The next chapter is focused on mapping the descriptions of systems developed

using Transformation into implemented simulation tools.

4-6. References

1. Analyti, A., M. Theodorakis, N. Spyrotos, and P. Constantopoulos. 2007.

Contextualization as an independent abstraction mechanism for conceptual

modeling. Accessed http://www.sciencedirect.com on November 17, 2008.

2. Berners-Lee, T. 2001. The Semantic Web. Scientific American, 284, issue 5:28.

3. Daconta, M. C., L. J. Obrst, K. T. Smith. 2003. The semantic web: A guide to the

future of XML, web services and knowledge management. John Wiley & Sons.

4. Daum, B. 2003. Modeling business objects with XML schema. Morgan

Kaufmann, 2003.

5. Davis, P. K. and R. H. Anderson. 2003. Improving the composability of

Department of Defense Models and Simulations. Prepared for the Defense

Modeling and Simulation Office.

6. IEEE Standard Computer Dictionary: A Compilation of IEEE Computer

Glossaries, New York: IEEE, 1990.

7. Fishwick, P. A. 2002. Using XML for simulation modeling. In Proceedings of the

2002 Winter Simulation Conference, 616-622.

8. Fishwick, P. A. and J. A. Miller. 2004. Ontologies for modeling and simulation:

issues and approaches. In Proceedings of the 2004 Winter Simulation Conference.

 124

9. Gustavson, P. and T. Chase. 2004. Using XML and BOMs to rapidly compose

simulations and simulation environments. In Proceedings of the 2004 Winter

Simulation Conference.

10. Hemel, Z., L. C. L. Kats, and E. Visser. 2008. Code generation by model

transformation. A Case Study in Transformation Modularity. In International

Conference on Model Transformation.

11. Hofmann. M. 2002. Introducing pragmatics into VV&A. In Proceedings of the

European Simulation Interoperability Workshop, London, UK.

12. Koch, N. 2006. Transformation techniques in the model-driven development

process of UWE. In ICWE 2006 Workshops.

13. Lim, N. 2004. RUBE_QM: A 3D simulation and modeling approach for Queuing

Systems. Master Thesis, University of Florida.

14. Lu, R. F., G. Qiao, and C. McLean. 2003. Nist XML simulation interface

specification at Boeing: A case study. In Proceedings of the 2003 Winter

Simulation Conference, ed. S. Chick, P. J. Sanchez, D. Ferrin, and D. J. Morrice.

1230-1237.

15. Moradi, F. 2007. Component-based simulation model development using BOMs

and web services. In Proceedings of the first Asia Modeling Symposium.

16. Moradi, F. 2008. A Framework for component based modeling and simulation

using BOMs and Semantic Web Technology. Doctoral Thesis, KTH Computer

Science and Communication.

 125

17. Moradi, F., P. Nordvaller, and R. Ayani. 2006. Simulation model composition

using BOMs. In Proceedings of the Tenth IEEE International Symposium on

Distributed Simulation and Real-Time Applications.

18. Morse. K., M. Petty, P. Reynolds, W.. Waite, P. Zimmerman. 2003. Findings and

recommendations from the 2003 Composable Mission Space Environments

Workshop.

19. Nijhuis. M. 2005. Generating natural language explanations for conceptual

models. In the 3rd Twente Student Conference on IT.

20. Page, E. H., R. Briggs, and J. A. Tufarolo. 2004. Toward a family of maturity

models for the simulation interconnection problem. In Proceedings of IEEE

Spring Simulation Interoperability Workshop.

21. Petty, M. D. 2002. Semantic Composability and XMSF. In XMSF Technical

Challenges Workshop 2002, Monterey, CA.

22. Petty, M. D. 2004. Simple composition suffices to assemble any composite

model. In Proceedings of the Spring 2004 Simulation Interoperability Workshop,

Orlando, Florida.

23. Petty, M. D. and E. W. Weisel. 2003. A composability lexicon. In Proceedings of

the Spring 2003 Simulation Interoperability Workshop, Orlando, Florida.

24. Pokraev, S., M. Reichert, M. W. A. Steen, and R. Wieringa. 2005. Semantic and

pragmatic interoperability: A model for understanding. EMOI-INTEROP, 2005.

25. Pritsker, A. A. B. and J. J. O’Reilly. 1999. Simulation with Visual SLAM and

AweSim. 2nd ed. New York: John Wiley & Sons.

 126

26. Quin, L. 2003. Extensible Markup Language (XML). Accessed

http://www.w3c.org/XML/ on October 28, 2008.

27. Reichenthal, S. W. 2002. Re-introducing web-based simulation. In Proceedings of

the 2002 Winter Simulation Conference.

28. Reichenthal, S. W. 2004. SRML Case study: Simple self-describing process

modeling and simulation. In Proceeding of the 2004 Winter Simulation

Conference.

29. Reichenthal, S. W. 2008. On the integration and distribution of XML-Based

simulations. From steven.w.reichenthal@boeing.com, on October 20, 2008.

30. Reichenthal, S. W. and P. L. Gustavson. 2003. Manufacturing BOMs with SRML

for process-oriented federations. Simulation Interoperability Standards

Organization. In Spring Simulation Interoperability Workshop, Orlando, Florida.

31. Reichenthal, S. W., P. L. Gustavson, and J. de la Cruz. 2003. Case study:

Prototyping a mega-BOM with SRML for next-generation combat support.

Simulation Interoperability Standards Organization. In Spring Simulation

Interoperability Workshop, Orlando, Florida.

32. Reichenthal, S. W. and B. E. Johanson. 2008. Case study: Lessons learned in

availability modeling. Retrieved from steven.w.reichenthal@boeing.com on

October 20, 2008.

33. Robinson. S. 2006. Issues in Conceptual Modeling for Simulation: Setting a

research agenda. In 2006 OR Society 3rd Simulation Workshop, Ashorne, UK.

34. Rumbaugh, J., M. Blaha, W. Premerani, F. Eddy, and W. Lorensen. 1991. Object-

oriented modeling and design, New York: Prentice Hall.

 127

35. Setavoraphan, K. and F.H. Grant. 2008. Conceptual Simulation Modeling: The

Structure of Domain Specific Simulation Environment. In Proceedings of the

2008 Winter Simulation Conference.

36. Simulation Interoperability Standards Organization. 2006. Base Object Model

(BOM) Template Specification. SISO-STD-003-2006.

37. Tolk, A. and C. L. Blais. 2005. Taxonomies, ontologies, and battle management

languages – recommendations for the Coalition BML Study Group. In

Proceedings of IEEE Spring Simulation Interoperability Workshop.

38. Tolk, A. and J. A. Muguira. 2003. The Levels of conceptual interoperability

model. In the 2003 Fall Simulation Interoperability Workshop, Orlando, Florida.

39. Tolk, A. and C. D. Turnitsa. 2007. Conceptual modeling of information exchange

requirements based on ontological means. In Proceedings of the 2007 Winter

Simulation Conference.

40. Valenti, S., M. Panti, and A. Cucchiarelli. 1998. Overcoming communication

obstacles in user-analyst Interaction for functional requirements elicitation. ACM

SIGSOFT Software Engineering Notes, 23, issue 1 (January): 50-55.

41. Vasilecas, O. and D. Bugaite. 2007. An algorithm for the automatic

transformation of ontology axioms into a rule model. CompSysTech, 2007.

42. W3C. 2002. Simulation Reference Markup Language element specification 3.0.

Accessed http://www.w3.org on November 17, 2008.

43. Walsh, N. 1999. Understanding XML Schemas. Accessed

http://www.xml.com/pub/a/1999/07/schemas/index.html on October 28, 2008.

 128

44. Weisel, E. W., M. D. Petty, and R. R. Mielke. 2003. Validity of models and

classes of models in semantic composability. In Proceedings of the Fall 2003

SIW, Orlando, Florida.

45. Wikipedia. 2008. Ontology (information science). Accessed

http://en.wikipedia.org/wiki/Ontology_(computer_science) on November 1, 2008.

 129

CHAPTER 5

Domain Specific Ontological Mapping: An Integrated Approach

“Reproduced with automatic permission from [Setavoraphan, K. and Grant, F. H. (2009) Domain specific ontological

mapping: An integrated approach, being in progress to submit to Journal of Computers & Industrial Engineering]. It

has been modified somewhat to reflect current advances in this research.”

Abstract

To establish a domain specific simulation environment (DSSE) from conceptual

simulation models (CSMs), one of the most efficient and easiest solutions is to map

CSMs onto an existing simulation environment or a host simulation language. Based on

this idea, a simulation developer can exploit available resources (e.g., building blocks or

callable functions) similar to the CSMs to develop his/her own domain specific

simulation environments that provide, e.g., reusable model constructs/functions and their

callable libraries. However, this mapping is not as easily done as it may seem. This is

because mapping requires not only a common layer for information/knowledge exchange

but also a framework and pattern for mapping. Methodologies such as ontology mapping,

simulation block building, and visual subnetwork modeling have been applied to develop

an integrated approach that facilitates mapping in this research study.

5-1. Introduction

The development of a domain specific simulation environment (DSSE) consists of

three major pieces: structure, content, and simulation environment application. First, the

structure of the DSSE can be laid out by using the conceptual simulation modeling

 130

(CSM) approach to generate a blueprint, describing physical and behavioral

characteristics of both reality and simulation domain. CSM also delivers a

communication tool for domain experts and simulation developers to support their

collaborations. Among CSM methods and tools available in Modeling and Simulation

(M&S) communities, Integrated Simulation Acknowledge Procedure (ISAP) has been

selected to manage and access critical aspects (e.g., static/dynamic components,

functional layers, and representations) required for structuring and composing DSSE (see

Setavoraphan and Grant (2008)). However, CSM itself is not complete enough to develop

DSSE because all the details of needed simulation components cannot be included within

this kind of knowledge-based representation – using symbols, notations, and diagrams.

To avoid inconsistency and invalidity in using conceptual simulation models,

those symbols, notations, and diagrams need to be transformed into a contextualized

document. This process aims to retrieve the appropriate simulation contents from CSMs.

Making contextualized documentation helps not only eliminate irrelevance but also

improve the semantics of the contents. To conduct such a transformational document, the

Semantic Web terminology has been used with the exploitation of an ontological analysis

approach, including a common language (e.g., XML) and an integrated descriptive and

behavioral language (e.g., SRML). This contextualized documentation later plays a

critical role together with CSMs in developing DSSE.

DSSE is determined as a simulation environment application that provides

reusable simulation model constructs to represent domain specific system elements.

Basically, a DSSE application can be developed under: a) an original simulation

environment where everything is uniquely created; or b) an existing simulation

 131

environment where the availability of resources exists for accessing and utilizing by the

simulation developers. Both conditions have advantages and disadvantages. However, the

focus of this study is to develop a methodology that facilitates the development of a

DSSE application – which not only minimizes cost and time but also maximizes

productivity and efficiency. Based on this methodology, it is assumed that the simulation

developers already have a simulation environment application for generic uses.

Theoretically, it is possible to transform the simulation environment application to be a

DSSE application by mapping the structure and simulation contents into those available

resources, so that the resources are caused to function as defined in specifications.

Mapping, thus, is seen as the key solution in developing a DSSE application under the

existing simulation environment.

Mapping is taken into consideration to enable individuals to keep their own world

views and at the same time to share knowledge across domains (Ehrig and Sure 2004).

By a means of sharing knowledge, mapping is required to deal with semantic

interoperability, the issue of allowing the exchange meaningful information/knowledge

between applications/domains (Bouquet et al. 2003). However, the problem here is that

the representations of information/knowledge in each domain are depicted in different

ways. To solve this problem, one needs to view the information/knowledge

representations in the framework of an ontology which provides a joint terminology and

frame of reference of specifications and semantics of conceptualization. The use of

ontologies helps create a common layer where the conceptualization of

information/knowledge can be transformed and categorized into a set of standard

representation elements such as entities, properties, and relations. When the

 132

information/knowledge from alternative domains is agreed in such a sense of semantic

similarities, it allows the individuals to recognize what to be mapped. However, to have

the efficient and correct exchange of information/knowledge between domains through

mapping, the framework and pattern of mapping must be clearly specified.

As described above, mapping by a means of ontology mapping is seen as a

solution to facilitate the exchange information/knowledge between domains. There are a

number of articles in the literature focusing on research in ontology mapping in different

areas to provide definitions, techniques, algorithms, and representations of mapping (see

Ehrig and Sure 2004; Marques 2005; Kalfoglou and Schorlemmer 2003). The concepts

retrieved from the literature are used to support creating a specific framework and pattern

of mapping to match the characteristics and requirements of the materials at hand (e.g.,

CSMs, contextualized documentation, and simulation environment application). This

means that mapping is not just about sharing information/knowledge between different

ontologies, but it also includes the levels of similarities in many aspects (e.g., structure,

contents, and representations). Therefore, the methodologies of simulation block building

and visual subnetwork modeling have been integrated into ontology mapping to construct

a solid and robust framework and pattern of mapping between conceptualization and a

simulation environment application – to generate a DSSE application.

This research study is organized as follows: Section 5-2 describes the key

concepts that include ontology mapping, simulation block building, and visual

subnetwork modeling. The implementation of the concepts is demonstrated in Section 5-

3. Finally, the conclusions and recommendations are given in Section 5-4.

 133

5-2. Key Concepts

 This section is aimed to provide a survey of the key concepts found in a number

of articles in the literature related to ontology mapping, simulation block building, and

visual subnetwork modeling. There is a particular purpose lying within each of these

concepts. Ontology mapping is important for transferring simulation contents between

domains. Simulation block building is applied to design the structure of the mapping

destination that will encapsulate the simulation contents being used in a simulation

environment application. Finally, visual subnetwork modeling provided in Visual SLAM

and AweSim is used to configure and enforce the simulation building blocks to function.

Moreover, the selection of definitions, methods, techniques, and tools provided

for the methodologies has been made based upon the overall framework designed for the

development of a DSSE application. This framework is expected to arrange and control

the similarities of structure, simulation contents, and simulation environment applications

for both conceptualization and application. The idea behind the framework of similarity

is to eliminate complexity, irrelevance, and inconsistency in transferring semantics of

information/knowledge during the transitions of representation formats from one to

another.

5-2-1. Ontology Mapping

“An ontology is an explicit, formal specification of a shared conceptualization of

a domain of interest” (Gruber 1993). The purpose of using a terminology of ontology is

to “reduce or eliminate conceptual and terminological confusion among the members of

a user community who need to share various kinds of (electronic) documents and

 134

information” (Navigli, Velardi, and Gangemi 2003). To accomplish this purpose, a set of

relevant concepts (e.g., entities, instances, relations, and properties) that characterize a

given domain needs to be identified and defined properly, which later becomes a mutual

point of interest for mapping of two ontologies.

 According to Rahm and Bernstein (2001), an ontology mapping process is defined

as a set of activities required to transform instances of a source ontology into instances of

a target ontology. For a clearer picture, Ehrig and Staab (2004) define the term of

ontology mapping: “Given two ontologies O1 and O2, mapping one ontology onto another

means that for each entity (concept C, relation R, or instance I) in ontology O1, we try to

find a correspond entity, which has the same intended meaning, in ontology O2.” Also,

ontology mapping can be defined in different terms such as alignment, merging,

articulation, fusion, integration, morphism, and so on, depending on the application and

intended outcome (see the details in Kalfoglou and Schorlemmer 2008).

 Recently, there are numerous frameworks that provide a methodological approach

to ontology mapping. For example, a cooperative framework for integrating ontologies

described by Breis and Bejar (2002) is a system having the algorithm that supports the

integration by using taxonomic features and synonymous concepts in the two ontologies.

Madhavan et al. (2002) develop a framework that enables mapping between ontologies in

different representation languages without first translating the ontologies into a common

language. A framework for ontological structures to support ontology sharing, namely

IFF, is proposed by Kent (2000), which represents ontologies as logics and ontology

sharing as a specifiable ontology extension hierarchy. Among the frameworks available

up to date, there exists a set of commonalities in their approaches and processes to

 135

ontology mapping. These commonalities are assembled and identified in the MAFRA

conceptual framework (Maedche et al. 2002), providing the critical clues that lead to the

possibilities for mapping between conceptualization and a simulation environment

application.

 Maedche and Staab (2000) develop MAFRA as a mapping framework for

distributed ontologies in the Semantic Web. MAFRA is built on the idea that mapping

existing ontology will be easier than creating a common ontology. This is because only a

smaller community is involved in the mapping process. Also, this framework aims to

detect similarities of entities contained in two different ontologies – being the critical

mechanisms of this mapping framework. Thus, the framework of MAFRA discovery

reveals the essential modules that support the exploitation of semantic similarities in

ontology mapping, as described in follows:

• Lift and Normalization: The main purpose of this module is to raise all data to be

mapped onto the same representation level, which copes with syntactical and

structural language heterogeneity (Visser et al. 1997). Maedche and Staab (2000)

states that “both ontologies must be normalized to a uniform representation, …,

thus eliminating syntax differences and making semantics differences between the

source and the target ontology more apparent.”

• Similarity: This module aims to support mapping discovery by establishing

similarities between entities from the source and target ontology. The mapping

approach is based on different similarity measures, which have been proposed in

the literature by Rahm and Bernstein (2001), Doan et al. (2002), and Maedche and

Staab (2000).

 136

• Semantic Bridging: This module is responsible for establishing correspondence

between entities from the source and target ontology based on the similarities

found between them. The goal in specifying the semantic bridge ontology is to

maintain and exploit the existent constructs and minimize extra constructs

(Maedche and Staab 2000).

Referring to the concepts of these modules, it can be concluded that the key role in

conducting ontology mapping is the ability to establish similarities between the source

and target ontology and to specify a common representation framework (or space) for

mapping these similarities. In Section 5-3, a work of ontology mapping based on the

similarity-centric approach is demonstrated.

5-2-2. Simulation Block Building

The BETADE program at Delft University of Technology, Netherland, has been

applied to support distributed working, designing, and modeling in order to construct

distributed applications or models entirely out of reusable building blocks. The working

definition used in the BETADE research program is (Verbraeck et al. 2002):

“A building block is a self-contained, interoperable, reusable, and replaceable unit,
encapsulating its internal structure and providing useful services or functionality to its
environment through precisely defined interfaces. A building block may be customized in
order to match the specific requirements of the environment in which it is ‘plugged’ or
used.”

To apply a building block in such an environment, it needs to clarify the

relationship between a building block and components or other related terms. Verbraeck

et al. (2002) states: “A component is the implementation of a building block in a software

 137

environment. The interface (functionality) of the building block and the component are

therefore different presentations of the same thing.” The authors also argue that a

building block on its own – without domain specific context, communicating, co-

operating or even competing with other building block – cannot provide the functionality

a user requires.

In order to provide functionality, an application is constructed by an aggregate of

more than one building block, where lower level building blocks are combined into new

higher level building blocks and interact each other to function as the user specifies. The

aggregation of building blocks is based on the object-oriented paradigm in order to

support reusability of building blocks in applications or models, which can be illustrated

as in Figure 5-1. It is seen that a set of building blocks consists of model building blocks

(1st level) that are constructed of building block elements (2nd level) (Verbraeck and

Valentin 2002). Each building block element communicates using a standard interface

used for formal entries for messages and entity passing and represents a specific

functionality. Therefore, different kinds of model building blocks can be designed and

constructed by using different building block elements.

 138

Model building
block
XYZ

Model building
block
XYZ’

BBE
A‐1

BBE
B‐1

BBE
C‐1

BBE
A‐1

BBE
C‐2

BBE
B‐1

Set of building blocks

Figure 5 - 1: Example of a set of model building blocks using building block elements (Valentin and

Verbraeck 2002, p567)

 Recently, building blocks have been applied in simulation studies to support the

development of discrete event simulation models (see examples in Verbraeck and

Versteegt 2000; Valentin 2002; and Saanen 2002). Similar model constructs are used

over and over again, especially when developing different simulation models within the

same domain. In this case, it seems very logical to structure and package the repetitive

model constructs into building blocks, and make them available for the modeler for

repeated use (Valentin 2002). Moreover, these building blocks can be collected together

in categorized libraries that emerge a set of specific vocabularies for future callable

references in simulation modeling – which later possibly turns into a domain specific

simulation language (DSSL).

 The main purpose in establishing a DSSL is to define and specify semantics,

relations, and constraints associated with those domain concepts in a representation

format of domain specific simulation elements – being used as interfaces of

communication. Like a natural language, when the popularity of using and creating

domain specific simulation elements within DSSL increases, it is able to create its own

 139

simulation environment (community) to support the development of simulation models

(communication) using those elements (vocabularies). This kind of simulation

environment can be determined as a domain specific simulation environment (DSSE).

Following this logical reasoning, it can be concluded that building blocks play a critical

role in the development of DSSE by a means of structuring, defining semantics, and

configuring functionalities.

 According to Snowdon et al. (1998), building blocks must support easy model

development, which means a set of building blocks can be viewed as a conceptual model

that can be reused and directly/easily transferred to the simulation model. The statement

leads this research study to find out a connection between conceptualization and

simulation, in which a building block becomes a data bridge of two different domains. In

addition to the characteristics as of DSSL, the building block is also capable of

communicating and translating concepts either implicitly or explicitly of its environment.

This allows the building block to merge with other existing DSSLs by

customization/configuration to match the specific requirements of the new environments.

As the result, it is not necessary to think of the development of building blocks in a

traditional way – which starts from a scratch.

 The literature by Verbraeck and Valentin (2001) shows that building blocks can

be developed in existing simulation environments such as Arena, Automod, eM-plant,

and Taylor ED, whose system architecture is based on object orientation. The authors

also define the characteristics of simulation building blocks used in the existing

simulation environments: “Building blocks can range from just one very basic

functionality (like executing a simple function) till very complex building blocks with

 140

hundreds of functionalities, no matter what kind of problem, and no matter how large the

set of available building blocks is.” Their statement substantiates that such an object-

oriented simulation environment is fit best with the characteristics of simulation building

blocks since it provides the most important mechanisms – composition. A simulation

building block can be composed of either basic simulation building block elements (e.g.,

create, queue, and resource) or customized/specialized simulation building block

elements (e.g., conveyor, crane, and AGV) in a specific way. However, configuration of

the building block is still needed to have well defined interface for connecting it to other

building blocks and to fit in its environments. Therefore, experiences and knowledge in

employing specific simulation environments are critical to succeed in composing

simulation building block elements and connecting them together to function.

 Based on the concepts described through this subsection, the author is able to

make a hypothesis that we have explored the successful development of simulation

building blocks using an existing object-oriented simulation environment. Visual SLAM

and AweSim, thus, have been chosen as a simulation modeling language/environment. A

brief discussion of Visual SLAM and AweSim, including its feature that supports

building simulation blocks, is given in the next subsection.

5-2-3. Visual Subnetwork Modeling

 Prior to have a better understanding why Visual SLAM and AweSim have been

selected for this research study, it is necessary to recognize the idea behind the

development of this simulation modeling language/environment. Pritsker and O’ Reilly

 141

(1999) provides an explanation related to their perspectives and essential concepts for

building blocks:

“For many years, it has been desired to develop a modeling language that is modular and
hierarchical. Modularity would allow submodels to be developed and used as building
blocks for a total systems model. Hierarchical models would display the aggregate
features of a model and allow the details to be viewed by driving the view to less
aggregate displays of the model. These properties would allow for the building of
submodels by team members which then could be integrated into a system model. To
achieve these capabilities, modeling languages were designed using object-oriented
concepts.”

This idea, thus, becomes a fact that the object orientation is taken in Visual SLAM. It

aims to employ object-oriented concepts and coding within the network worldview (or

objects) of the Visual SLAM simulation language. In the meantime, AweSim is a

simulation problem-solving environment for Visual SLAM, providing extensive input,

output, and integration capabilities to facilitate the use of Visual SLAM by users. For the

development of simulation building blocks, both Visual SLAM (modeling language) and

AweSim (mechanisms/environment) are needed.

 Since Visual SLAM employs object-oriented concepts, it allows for defining a

subnetwork as an object class. An entity is routed to the subnetwork for a particular

instance of that object class. For example, different machines that perform similarly to

process parts can be modeled as a subnetwork. The subnetwork for the processing to be

done by the specific machine is modeled by Visual SLAM network elements and by

passing parameters to define the node and activity characteristics for the subnetwork

instance. Because of the object nature of a subnetwork, it can be referred to as a visual

subnetwork or VSN.

 142

 Subnetworks always contain two important modeling aspects: modularity and

hierarchy. Each subnetwork encapsulates the data (e.g., subnetwork variables, entity

attributes, and parameters) in such a way that a self-contained block/module is created

and is able to connect with other subnetworks. Modularity allows for the subnetwork to

be reused in different locations within a large network model and to be built for use by

other modelers. Moreover, for the hierarchical modeling aspect, entities are transferred

from a calling network to a subnetwork. The calling network can be the main network or

a subnetwork that is one level higher than the subnetwork that it calls. The hierarchy is

also related to the different levels of detail specified in each subnetwork.

When looking at these capabilities, there appear similarities between VSNs and

simulation building blocks. The similarities by a means of the object-oriented world view

facilitate not only information mapping but also physical and behavioral modeling to

develop and use simulation building blocks through VSNs. Therefore, in practice, a VSN

can be generated as a model building block, whereas a network node/branch in Visual

SLAM network model can be used as a building block element.

 Moreover, the construction of VSNs is supported by mechanisms and tools

available in the simulation environment, AweSim. As a result, the simulation developers

do not need to worry whether the VSNs match with the requirements of their

environment. In another case, the simulation developers are also able to customize a VSN

in order to function as they require by creating user-written functions (user-codes) and

use them via the interface points called EVENT and ENTER nodes. This available

feature provides complete modeling flexibility for the configurations of VSNs. The

simulation building blocks created in Visual SLAM will be maintained in AweSim’s

 143

libraries, which allow the simulation developers to reuse, modify, add, and delete those

for the future simulation projects under the same domain. Later, the network libraries

become vocabularies that are used only in a domain specific simulation, which

automatically creates a simulation environment that supports modeling specific problems.

For the details of the syntax and semantics associated with VSNs, network nodes,

and user-written functions, see Simulation with Visual SLAM and AweSim, The User

Manual Guide, and Visual SLAM Quick Reference Manual by Pritsker and O’ Reilly

(1999).

5-3. Concept Implementation

 The concepts of ontology mapping, simulation block building, and visual

subnetwork modeling are integrated as a paramount approach for the development of a

domain specific simulation environment (DSSE) using Visual SLAM simulation

modeling language with AweSim mechanisms. This section is focused on the

demonstration of implementation of this approach, associating with the previous studies

of conceptual simulation modeling (CSM) and transformation of CSM. Moreover, this

demonstration still continues using the example of lockage operations found in Chapter 3

and 4, respectively, to close the series of development processes.

 Prior to start the demonstration, it must be clear that the key issue of this study is

to map the conceptual simulation models collaborated with their contextualized

documentation into components available in an existing simulation environment

application with respect to simulation requirements and constraints. Therefore, the

demonstration includes only the processes of mapping two ontologies and building

 144

simulation blocks by using VSNs. The expectation of this study is to illustrate the process

and to obtain a DSSE for lockage (inland waterway) operations.

5-3-1. Mapping CSM with Visual SLAM

 As discussed in Subsection 5-2-1, this study employs a similarity-centric

approach to perform ontology mapping between conceptualization and simulation. Using

this approach, the simulation developers must be able to establish similarities between the

source ontology (e.g., CSMs) and the target ontology (e.g., Visual SLAM) and specify a

common representation framework/space for mapping these similarities. However, it

must be understood by simulation developers that similarity mapping concerns not only

the concepts to be mapped but also the structure to be generated (for encapsulating the

concepts). The mapping between CSM and Visual SLAM, thus, means to the

transformation of both structure and semantics of SMUs into VSNs (as simulation

building blocks).

Both SMUs and VSNs are considered as objects having the aspects of modularity

and hierarchy, which can be constructed as building blocks at different levels of detail.

Therefore, it is critical to limit the detailed levels of their structures before mapping their

concepts. Refer to the structure of building blocks, there are only two levels: model

building blocks (1st level) and building block elements (2nd level). Technically, model

building blocks should be a direct translation of the defined instances from CSM (e.g.,

SMUs) because the model building blocks represent the world-view of the domain expert

in terms of standard functionalities used/reused in reality. Meanwhile, building block

elements are deterministically used as either internal or external functionalities of the

 145

model building blocks, providing the semantics of their construction and interconnection

to match the user requirements.

When considering and comparing the structures of SMUs and VSNs, it seems

possible to perform one-to-one mapping between them to generate model building blocks

and building block elements with respect to the levels of detail. In general, an SMU can

be viewed as a VSN as well as a model building block, whereas the operations within the

SMU can be transformed into a set of Visual SLAM network nodes that perform as

building block elements. For the structure mapping, however, it is natural to refine the

structure of CSMs by adding details (e.g., tools or structures) for implementation in order

to link them together for testing in a host simulation language. In this case, it is not

always necessary that the results of mapping between CSMs and Visual SLAM will

follow the same pattern previously described. This is because the status of being either a

model building block or a building block element of SMUs/VSNs is depended on the

correctness of implementation. A set of SMUs are only used as a core design for the

development of simulation building blocks, while adding the details for implementation

to create VSNs or network nodes is relied on the determination of the simulation

developers. The structure mapping, therefore, becomes a more or less abstraction issue

for future discussion.

To handle the problem caused by the structure mapping, a critical support role in

this similarity-centric approach is taken by ontology mapping. This study is set to apply

the framework of MAFRA (Maedche and Staab 2000) to deal with semantic similarities

of the concepts/ontologies between two domains. Focusing on similarities of semantics

rather than those of structures is helpful for making decision not only in proposing

 146

candidates for mapping but also in adding details for implementation (if necessary). As a

result, the simulation developers are able to determine which candidates can be used,

what levels of detail (e.g., model building block or building block element) they can be

constructed, and how they can be linked together for testing. This provides flexibility in

building simulation blocks on the host simulation language like Visual SLAM. However,

the MAFRA mapping framework contains some requirements prior to map semantic

similarities between ontologies.

The requirements have been described in terms of modules which include lift and

normalization, similarity, and semantic bridge. The main objective of these modules is to

facilitate defining and establishing a specific framework that fits the surroundings of both

source ontology and target ontology. There are three critical conditions to keep in mind.

First, both ontologies must be normalized to a uniform representation (or the same

representation level). Second, similarities between entities from the source and target

ontology must apparently be established. Third, there must be a space for the similarities

of two ontologies to be mapped. Following these conditions helps the author to develop a

tool, called Similarity Mapping Plane (SMP), to support ontology mapping between

conceptualization and simulation.

Prior to exploit SMP, it is important for the simulation developers to be able to

specify what source (ontology) to be mapped. On the other hand, it means how to

exchange information/data between ontologies. To deal with the information/data

exchange, the first step is to categorize the information/data into generic formats – which

are object and content formats – since the target of mapping, obviously, is simulation

 147

instances and simulation contents. The object format includes SMUs, VSNs, and network

nodes, whereas the content format contains descriptions, properties, and so on.

The next step is to select mapping objects. For example, SMU Inform Arrival of

Barge-tows is selected as an object to be constructed as a VSN. Meanwhile, its operations

such as CreateBargeTow(), AssignBargeTow(), and RouteBargeTow() are also set as

objects to be transformed into network nodes (as shown in Figure 5-2). In practice,

building a VSN begins with defining and specifying a set of network nodes and all the

required parsing parameters. This allows the simulation developers to perform mapping

at the second level (operations ↔ network nodes) prior to reach the first level (SMUs ↔

VSNs).

Inform arrival of
barge‐tows

1

EntBargeTow

CreateBargeTow()
AssignBargeTow(){…}
RouteBargeTow()

VSN

1 2 N

Network Nodes

Figure 5 - 2: An example of mapping between an SMU and a VSN

After the mapping objects have been selected, one or more candidates must be nominated

from the target of mapping per a selected mapping object by briefly scanning if there is

any semantic similarity by a means of functionalities. This would be the easiest way to

obtain a number of candidates. It seems to be a time-consuming activity and to require

experiencing in the host simulation language – to do manually searching. At this rate of

searching, each candidate is placed onto SMP as well as the selected mapping object.

 148

However, both of them cannot be completely mapped until their contents are provided in

the same representation level of similarities to be supportive decisions.

 In order to normalize the contents of two ontologies into a uniform representation,

a framework of similarities must be drawn from the contents available in the target of

mapping. The contents of the Visual SLAM network nodes, including Visual SLAM

(e.g., support, user-written, and user-callable) functions, are represented in terms of

descriptions, statement forms, input listings, and specifications within documentation (as

seen in the documents for Visual SLAM and AweSim by Pritsker and O’ Reilly). All the

contents described in the documentation are determined as entities of the target ontology

(as stated by Maedche and Staab 2002). With these entities, the simulation developers are

able to establish a scope of the similarity framework to seek for similar entities in the

source ontology. However, it needs to be noted here that the representation of those

entities in the source ontology must be on the same level as well as documentation.

 When considering the source ontology to be mapped, it is found out that the

entities retrieved from CSMs are also represented in a context of documentation as well.

For example, there appear the entities like description, property, input statement, and

function for CreateBargeTow() provided in descriptive tables, network statements, and,

especially, contextualized documentation for DMSL: LCK (see Chapter 3 and 4). The

entities from the source and target ontology, therefore, become normalized on the

documentation basis and ready for selection. The selection of entities is made on the

following criteria:

• The entities must clearly represent the main contents of both ontologies.

• The entities must be included in both ontologies and can be matched up directly.

 149

• The entities must provide details that facilitate the simulation developers to

measure or weigh the degrees of similarity between entities.

For the above example, there is only one candidate to be mapped with

CreateBargeTow(), which is the CREATE node. Table 5-1 shows how to construct SMP

and to weigh the degrees of similarity between entities from the source and target

ontology.

Apparently, the degrees of similarity can be weighed in a sense of scoring

numeric evaluation. The range of evaluation might be varied, depending on individuals’

judging criteria and experiences. However, to make this mapping example easy to

understand, the evaluation is set at three different degree levels of similarity with numeric

scores in (): none (0), likely similar (1), and similar (2). The scores given for each entity

are then summed up at the bottom of SMP. The more total score is; the higher possibility

of mapping is.

Moreover, the total score can be used as an indicator to consider if the target

ontology needs to be added by any other details for implementation. If so, there are three

methods for the simulation developers to add those details. The first method is to edit the

structure of the target ontology by adding partial specific functionalities to the origin

(e.g., modification of the network nodes). The second method is to recreate the target

ontology by making a new complete set of specific functionalities (e.g., simulation

programming for the functionalities). Finally, the third method is to add one or more

extra extensions to the target ontology for being used as supporting roles (or

 150

surroundings). This happens when the target ontology cannot be self-contained enough to

responding to the contents of the source ontology to be mapped or to developing itself

Table 5 - 1: Similarity Mapping Plane for CreateBargeTow()

Source Weight Target
Instance
Name: CreateBargeTow()

1 Node
Name: CREATE

Description
A barge‐tow entity is created by a mean of containing a set
of barges and a tow boat.

2 Description
Entities are generated within the network.

Properties
:First arrival
:Arrival rate
:Current time
:Max# entities

1 Inputs
:Time between creations (TBC)
:Time of first creation (TF)
:Maximum creations (MC)
:Mark variable which will store the time of creation (MV)
:Number of branches (M)

Input statement
CreateBargeTow, First arrival, Arrival rate, Current time,
Max# of signal entities;

1 Input format
CREATE, TBC, TF, MV, MC, M;

Explanation
function CreateBargeTow()
{
 var FirstArrival = 0;
 var ArrivalRate;
 var CurrentTime = TNOW;
 var MaxEntities;

 //Create a new entity

 Set NewEntBargeTow = IP.NewEntity();
 Set NewEntBargeTow.ArrivalTime = IP.TNOW;
 IP.Schedule("FirstArrival", NewEntBargeTow,
(NewEntBargeTow.ArrivalTime+ArrivalRate);

 //Schedule the next entities

 for (i=1; i<=Max# entities; i++)
 Set NextEntBargeTow = IP.CloneEntity();
 Set NextEntBargeTow = IP.TNOW;
 IP.Schedule("NextArrival", NextEntBargeTow,
(NextEntBargeTow.ArrivalTime+ArrivalRate));

}

1 Explanation
CREATE NODE
:The first entity is created at a time specified by the value
of TF;
:The time between creations of entities after the first is
specified by the variable TBC;
:The time at which the entity is created can be assigned
to a variable MV;
:Entities will continue to be created until a limit is
reached, specified by MC

Total scores

6/10 Likely similar

Weight by degrees of similarity (score): None (0); Likely similar (1); and Similar (2).

 151

into a stand-alone instance (e.g., network node or functional module). It can be seen in

many cases that to represent a true semantic of a specific function requires a composition

of a set of detailed functions; for instance, a PROCESS function is composed of SEIZE,

DELAY, and RELEASE function. Adding the details for implementation, the simulation

developers need to closely collaborate with the simulation experts for advising and

revising in their works.

In addition to facilitate the similarity mapping, SMP also provides an extra joint

entity, called Explanation, to support revealing the true semantics of simulation

functionalities for both ontologies. Explanation entity in the source ontology is derived

from its contextualized documentation, whereas the one in the target ontology may be

retrieved either from the documents for the host simulation language or from the

simulation developers’ understanding. Since most of the target ontologies are the Visual

SLAM network nodes which lack detailed explanation how they function, the simulation

developers are required to test each of them to have recognition of their functionalities

and usage. As a result, the simulation developers can describe these Visual SLAM

network nodes in terms of basic function procedures (or processing steps). For other

cases such as having simulation functionalities already described by the documents or

specifically created by the simulation developers, they can be directly put onto SMP for

comparing similarities with those descriptive functions from the contextualized

documentation. Providing the Explanation entity is very helpful not only for completing

the ontology mapping between conceptualization and simulation but also for making a

final decision whether to utilize the target ontology in developing a simulation building

block.

 152

5-3-2. VSNs and DSSE

 The ontology mapping between conceptualization and simulation results in

providing the definition of simulation building blocks for implementation. These

definitions help the simulation developers to specify an implementation framework for

considering which simulation functionality (e.g., network node) needs to be modeled and

how it can be tested in a demo (simulation) model. Having the implementation

framework is to ensure that every time new simulation building blocks being created

match the requirements of the simulation environment they are plugged into. It is

recommended to apply a black-box approach (Valentin and Verbraeck 2002) to select

functionalities and set up a starting environment for testing. This approach is to start

implementing the functionalities needed to get a working simulation building block in

details with respect to develop a test model. This helps the simulation developers to get

insight in the benefits or weaknesses of the simulation building blocks regarding

visualization, representation, ease-of-use, output, and use in model development process

(Valentin and Verbraeck 2002).

 In this research study, the implementation of simulation building blocks is

performed in the simulation environment of Visual SLAM and AweSim by using the

feature, called visual subnetwork modeling. It allows the simulation developers to

implement the definitions of simulation building blocks into the Visual SLAM network

elements and visual subnetworks (VSNs). The details of using the network modeling

language of Visual SLAM, however, will not be discussed here, so it is important to

study Simulation with Visual SLAM and AweSim (Pritsker and O’ Reilly 1999) prior to

have a better understanding of this demonstration.

 153

 Intuitively, the correctness of syntax of the simulation language seems to be the

most important issue in developing a VSN. However, this statement is not completely

correct. It is critical for the simulation developers to realize that the main purpose of

building a VSN as a simulation building block is to deliver the reusability and flexibility

in modeling. Moreover, the VSN must be understandable and accessible for both

simulation developers and domain experts. It will be useless if the VSN cannot represent

the true semantics of functionality corresponding to the real-world process. In reality,

there are a set of processes that keep specifically being reused in a domain – which are

recognized as standard routines. These standard routines later become callable references

used for communication not only in the problem domain but also in the simulation

domain. Therefore, each VSN must contain enough information/data to provide a

semantic functionality that matches the user requirements.

 Figure 5-3 depicts the VSN named SLCK that represents as a model building

block to function for the single lockage operation. Operating a single lockage occurs

when the number of barges is less than the capacity of the lock, which requires only one

lock resource. Within the VSN, as represented as building block elements, a set of the

Visual SLAM network nodes are created to convey the semantic of functionality of the

single lockage operation, as shown in Figure 5-4.

Figure 5 - 3: The VSN named SLCK

 154

Figure 5 - 4: The Visual SLAM network nodes within the VSN named SLCK

Nevertheless, some restrictions regarding nodes and statements for use within

VSNs are imposed in building the VSN (see Pritsker and O’ Reilly 1999). This creates

the difficulties in encapsulating all the information/data within the VSN as a complete

module to function as required. When encountering this kind of situation, the simulation

developers are allowed to separate some information/data from the original module and

place them aside (or surround) the modified module as the supportive options/extensions.

As the result, a combination of the supportive options/extensions and the modified

module can be viewed as a big module that still provides the same semantic as well as the

original one. Another case is that the original module cannot longer be a module after the

information/data have been separated apart. The separated information/data, thus, can be

arranged or grouped together as a set of information/data elements to represent the

original module instead. This idea not only offers flexibility but also reduces intensity in

building VSNs. However, to strengthen the idea, the decomposition and composition

approaches need to be strictly performed – to obtain the best combination or the most

appropriate set of information/data elements.

 An example of the combination of the supportive options/extensions and the

modified module is given in Figure 5-5. The original module is expected to represent

 155

SMU XOR Decide Which Lockage Fits Barge-tows’ Size, which can be replaced by the

combination of the Visual SLAM network nodes and a VSN.

Figure 5 - 5: A combination that represents SMU XOR Decide Which Lockage Fits Barge-tows’ Size

Another example is given in Figure 5-6 to show a set of the Visual SLAM network nodes

that covey the meaning of SMU Inform Arrival of Barge-tows.

Figure 5 - 6: A set of the Visual SLAM network nodes that represent SMU Inform Arrival of Barge-

tows

 Basically, the VSNs are collected and stored in the AweSim library of

subnetworks. The library provides the ability to reuse the VSNs in order to build

simulation models to solve other problems within the domain of lockage operation.

Moreover, it allows for the simulation developers to add, edit, or delete the VSNs in the

library with respect to the requirements of simulation modeling. For a period of time, the

collection of VSNs in the library will become vocabularies specifically used to describe

 156

this problem domain in many scenarios related. Figure 5-7 depicts the AweSim library of

subneetworks that stores the VSNs created for the lockage operation.

Figure 5 - 7: The AweSim library of subnetworks for DMSL_LCK

 Here is a question: How to reuse those combinations and information/data

elements in other simulation studies of this domain? It can be seen that the AweSim

library of subnetworks is available only for storing the VSNs. To resolve this problem, it

is critical for the simulation developers to employ the pattern-based approach. This

approach aims to define a framework of reusable solution to a commonly occurring

problem in modeling as a pattern. As a result, the simulation developers are able to

transform and maintain the combinations and information/data elements as patterns to be

reused in many situations. The patterns can be stored in the AweSim library of networks

as available networks (not considered as the main networks) for future references, shown

in Figure 5-8.

 157

Figure 5 - 8: The AweSim library of networks storing patterns

 Having the libraries for reusable VSNs and patterns available for modeling the

lockage problem, it leads to a point that the simulation developers are able to establish the

AweSim project as a domain specific simulation environment (DSSE). As obviously

seen, the DSSE named DMSL_LCK provides a variety of tools for the development of

simulation studies related to the lockage operation, facilitated by the Visual SLAM

simulation language and AweSim mechanisms. Based on this methodology, each

AweSim project can be developed at the level of DSSE for a particular problem domain –

as long as it contains enough tools for communication and reuse in modeling simulation

for the domain.

5-4. Conclusions

 The heart of this research study is to propose the integrated approach that

facilitates the development of a domain specific simulation environment (DSSE). Use of

the DSSE may be for one time use (application) or multiple uses (language like). The

 158

integrated approach consists of the methodologies of ontology mapping, simulation block

building, and visual subnetwork modeling, which also collaborates with the conceptual

simulation modeling (CSM) and transformation approach. The idea behind the integrated

approach is to design a framework and pattern of mapping between the structures and

contents derived from conceptualization and an existing simulation environment

application/host simulation language. This brings the simulation developers the abilities

to create their own simulation environments to support simulation modeling for a specific

problem domain. Not only flexibility in modeling will their DSSEs provide but also

reusability in generating simulation models related to the domain.

 Nevertheless, the idea of mapping and simulation block building has not received

extensive attentions from most simulation language developers. It seems difficult and

complicated for them to begin with laying out the structures by using conceptual

simulation models, defining and specifying the simulation contents by making

contextualized documentation, and encapsulating and mapping those information/data

into a module by constructing simulation building blocks. Often, they prefer to use

logical models and jump right away to develop simulation models. Programming is also

another choice of their preferences for modeling simulation for their particular problems.

It might be a comfort zone for them to deal with simulation modeling.

 Another reason is that to obtain good production from using the integrated

approach is depended on how detailed the source ontology (e.g., CSMs and

contextualized documentation) can be and how much expertise in simulation modeling

(including simulation environment applications and languages) the simulation developers

have. This is a big barrier that not only blocks them from using the approach effectively

 159

and efficiently but also enforces them to deny involving with it at the end. Moreover,

there is still room for improvement of the representations and applications to gain more

insights and effectiveness to the approach in terms of details for implementation. It is

found out that the simulation developers are lost in translation and unable to link the

elements for testing. To reach the optimum goal for this research study; therefore, it is

critical to have collaborations from individuals in different major areas such as domain

experts, simulation experts, software engineers, and computer programmers. The author

personally believes that this approach can be developed as a fundamental applied for the

Modeling and Simulation (M&S) communities.

5-5. References

1. AweSim: Total Simulation Project Support. 1999. User’s guide. Version 3.0.

Symix Systems.

2. Bouquet, P., B. Magnini, L. Serafini, and S. Zanobini. 2003. A SAT-based

algorithm for context matching. In IV International and Interdisciplinary

Conference on Modeling and Using Context, Standford University, California,

USA.

3. Breis, J. F. and R. M. Bejar. 2002. A cooperative framework for integrating

ontologies. International Journal of Human-Computer Studies, 46(6), 707-728.

4. Doan, A., J. Madhavan, P. Domingos, and A. Halevy. 2002. Learning to map

between ontologies on the semantic web. In Proceedings of WWW-2002, 11th

International WWW Conference, Hawaii.

 160

5. Ehrig, M. and S. Staab. 2004. QOM – Quick Ontology Mapping. In International

Semantic Web Conference, 683-697.

6. Ehrig, M. and Y. Sure. 2004. Ontology mapping – an integrated approach. In

ESWS 2004, 76-91.

7. Gruber, T. R. 1993. Towards principles for the design of ontologies used for

knowledge sharing. In Formal Ontology n Conceptual Analysis and Knowledge

Representation, Deventer, The Netherlands, Kluwer Acadmic Publishers.

8. Kalfoglou, Y. and M. Schorlemmer. 2003. Ontology mapping: the state of the art.

The Knowledge Engineering Review, 18(1), 1-31.

9. Kent, R. 2000. The information flow foundation for conceptual knowledge

organization. In Proceedings of the 6th International Conference of the

International Society for Knowledge Organization (ISKO), Toronto, Canada.

10. Madhavan, J., P. A. Bernstein, P. Domingos, and A. Halevy. 2002. Representing

and reasoning about mappings between domain models. In Proceedings of the

18th National Conference on Artificial Intelligence, Edmonton, Alberta, Canada.

11. Maedche,, A. and S. Staab. 2000. Semi-automatic engineering of ontologies from

texts. In Proceedings of the 12th International Conference on Software

Engineering and Knowledge Engineering, Chicago, IL, USA.

12. Maedche, A., B. Motik, N. Silva, and R. Volz. 2002. Mafra: A mapping

framework for distributed ontologies. In Proceedings of the 13th European

Conference and Knowledge Engineering and Knowledge Management, Madrid,

Spain.

 161

13. Marques, D. 2005. A survey of recent research in ontology mapping. Available

via <http://sfu.ca/~mhatala/iat881/2005/DM-OntologyMapping.pdf> [accessed

October 5, 2008].

14. Navigli, R., P. Velardi, and A. Gangemi. 2003. Ontology learning and its

application to automated terminology translation. IEEE Intelligent Systems, 18(1),

22-31.

15. Pritsker, A. A. B. and J. J. O’Reilly. 1999. Simulation with Visual SLAM and

AweSim. 2nd ed. New York: John Wiley & Sons.

16. Rahm, A. and A. Bernstein. 2001. A survey of approaches to automatic schema

matching. The Very Large Databases Journal, 10(4), 334-350.

17. Saanen, Y. A. 2002. Chapter16: The application of advanced simulations for the

engineering of logistic control systems. In A. Verbraeck, A. Dahanayake (Eds.).

Building blocks for effective telematics application development and evaluation.

Delft University of Technology, Natherlands.

18. Setavoraphan, K. and F. H. Grant. 2008. Conceptual simulation modeling: The

structure of domain specific simulation environment. In Proceedings of the 2008

Winter Simulation Conference. pp. 975-986.

19. Snowdon, J. L., S. El-Taji, M. Montevecchi, E. MacNair, C. A. Callery, and S.

Miller. 1998. In Proceedings of the 1998 Winter Simulation Conference.

20. Valentin, E. C. 2002. Chapter15: Building blocks for modeling of passengers at

airports. Building blocks for effective telematics application development and

evaluation. Delft University of Technology, Netherlands.

 162

21. Valentin, E. C. and A. Verbraeck. 2002. Guidelines for designing simulation

building blocks. In Proceedings of the 2002 Winter Simulation Conference, ed. E.

Yucesan, C. –H. Chen, J. L. Snowdon, and J. M. Charnes. pp. 563-571.

Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

22. Verbraeck, A. and E. Valentin. 2001. The use of building blocks to enhance

flexibility and maintainability of simulation models and simulation libraries. In:

N. Giambiasi, C. Frydman (Eds.), Proceedings ESS’2001 – 13th European

Simulation Symposium 2001, pp. 973-979.

23. Verbraeck, A. and E. Valentin. 2002. Simulation building blocks for airport

terminal modeling. In Proceedings of the 2002 Winter Simulation Conference, ed.

E. Yucesan, C. –H. Chen, J. L. Snowdon, and J. M. Charnes. pp. 563-571.

Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

24. Verbraeck, A. , Y. Saanen, Z. Stojanovic, E. Valentin, K. van der Meer, A.

Meijer, and B. Shishkov. 2002. Chapter 2: What are building blocks?. In A.

Verbraeck, A. Dahanayake (Eds.). Building blocks for effective telematics

application development and evaluation. Delft University of Technology, ISBN

90-5638-092-3. pp. 8-21.

25. Verbraeck, A. and C. Versteegt. 2000. A bridge between the design and

implementation of complex transportation systems – Linking simulation models

and physical systems. In: Dietmar P. F. Moller (Ed.), ESS 2000 – Simulation in

Industry, pp. 238-243 Ghent: SCS Publications.

26. Visual SLAM. 1997. Quick reference manual. Version 2.0. Pritsker Corporation.

 163

27. Visser, P. R. S., D. M. Jones, T. J. M. Bench-Capon, and M. J. R. Shave. 1997.

An analysis of ontology mismatches: Heterogeneity versus interoperability. In

AAAI 1997 Spring Symposium on Ontological Engineering, Stanford, CA, USA.

 164

CHAPTER 6

Case Study: DSSE Development Illustration

Abstract

This chapter is aimed at illustrating the methodology developed for developing domain

specific simulation environments (DSSEs). The methodology is an integration of

conceptual simulation modeling (CSM), contextualized documenting, ontology mapping,

simulation block building, and visual subnetwork modeling. To illustrate the use of the

methodology, the application of lockage operations on an inland waterway network on

the McClellan-Kerr Arkansas River is taken as a case study.

6-1. Introduction

There have been a number of simulation models developed to provide a variety of

scenarios and results for the analysis of lockage operations on inland waterway

navigation systems. However, none of them can be reused in other simulation studies,

though, they are in the same domain of interest. A lack of reusability in simulation

modeling leads to higher cost and more time when conducting a simulation study. To

solve this problem, we critically consider the approach of domain specific simulation

environments (DSSEs). The main purpose of the approach is to create a simulation

environment that is able to provide reusable and accessible tools (or structures) to

facilitate the development of simulation studies for a specific problem domain. To

develop such a DSSE, it requires using concepts, approaches, and applications related to

simulation and modeling. Here have been numerous attempts by researchers and

 165

simulation developers/modelers to develop methodologies and tools to support the

construction of DSSEs, giving alternative outcomes – depended on purposes,

requirements, and perspectives of the users.

In this study, the implementation of the methodology developed by the author is

applied in an application of lockage operations on an inland waterway system on the

McClellan-Kerr Arkansas River to illustrate how effective it will be in a simulation

practice. This methodology encourages a simulation developer to conduct the

development of a DSSE with recognition of structures, contents, and simulation

environment application. Therefore, to apply this methodology, the simulation developer

needs to complete three phases which are conceptualization, transformation, and

mapping, to accomplish the development.

This case study is focused only on a partial segment of the inland waterway

network on the McClellan-Kerr Arkansas River to minimize the size of model and

explanation. Also, we have attempted to make the demonstration as direct as possible to

illustrate the procedures. We also assume some knowledge of Visual SLAM and

Awesim.

6-2. Problem Description

 This problem statement is taken from the US Army Corps of Engineers (2008).

The McClellan-Kerr Arkansas River Navigation System (MKARNS) is reliable, year-

round waterway into the Southwest. On this 445-mile long waterway, there is a series of

navigation pools connected by 18 locks and dams to enable vessels to overcome a 420-

foot difference in elevation from the Mississippi River to the head of navigation at

 166

Catoosa, Oklahoma. The MKARNS was designed for ease of navigation by multi-barge

tows, with ample channel and lock dimensions and bridge clearances, where the locks

and dams are operated 24 hours a day by the Corps of Engineers. Figure 6-1 shows the

locations of the locks and dams on the MKARNS.

 The average size of locks is 110 ft. x 600 ft., which can accommodate eight jumbo

barges without double lockage. If there are more than eight barges in the group, double

lockage with tow haulage is needed. Tow haulage is a procedure for drawing barges

through a lock by using equipment (e.g., wrench) on the lock itself to minimize the

maneuvering of a towboat when a tow exceeds the length of the lock. (Note: see the

detailed descriptions of single and double lockage in Chapter 3).

 167

Figure 6 - 1: Locations of the locks on the MKARNS (U.S. Army Corps of Engineers 2008)

 168

 In this case study, the focus is on the general lockage operations that service

barge-tows travelling either upstream or downstream through the locks between Port of

Muskogee (downstream) and Tulsa Port of Catoosa (upstream) located in Oklahoma.

Generally, several barge-tows are found to have traveled at a maximum speed of 15 mph

and a top actual speed of around 7 mph along the river, whereas the average entrance

speed is around of 4 mph. There are two locks: Chouteau (#17) and Newt Graham (#18)

between these ports, with the in-between distance of around 7.6, 20.2, and 23.4 miles,

respectively (the US Army Corps of Engineers 2008). The average time of single lockage

operation is 10-15 minutes, while using tow haulage approximately takes 15-25 minutes

to complete. It is desired to simulate the operations of the locks for one-day period (24

hours) to obtain the average time in system and the average waiting time of each barge-

tow, including the average utilization of the locks.

6-3. Methodology

 This section represents how to develop a DSSE for the lockage operations on the

MKARNS by following the three-phase-design approach. Phase 1 is to develop

conceptual simulation models (CSMs) using ISAP to generate a blueprint of the overall

structure of the DSSE. The process of transformation of the CSMs will be illustrated in

Phase 2. Finally, in Phase 3, the mapping between conceptualization and simulation will

be taken to develop simulation building blocks using Visual SLAM and AweSim. These

three phases are not necessarily executed independently. In practice, there will be

significant overlaps and iterative feedback loops in the modeling and simulation process,

 169

which requires the simulation developers to solve different types of problem between

these phases.

6-3-1. Phase 1: Conceptualization of Problem Domain

 Prior to develop a DSSE for the lockage operations on the MKARNS, the

structure describing the physical and behavioral characteristics of the target domain is

needed. To obtain such an accurate structure of the domain, it is critical to limit and

describe how things work and what is to be solved within the domain by starting with a

problem domain (Valentin and Verbraeck 2002). To formulate the problem domain, the

simulation developers must be able to understand the problem context, set specific

modeling objectives, and define the system to be modeled. Problem descriptions, system

boundaries and components, and desired results are the outcomes of the formulation of

the problem domain, which is considered as conceptualization. In this case study,

Integrated Simulation Acknowledge Procedure (ISAP) is taken to support the

conceptualization of the problem domain to generate conceptual simulation models

(CSMs).

 According to Setavoraphan and Grant (2008), ISAP consists of three layers:

Initialization Layer (IL), Process Layer (PL), and Termination Layer (TL), which is

developed through three phases based on the simulation and modeling design approach.

The results of using ISAP are represented in the following CSMs according to each layer.

 170

6-3-1-1. Initialization Layer (IL)

 In IL, initial information about the simulation experiment to be performed such as

number of simulation runs, number of attributes/variables, and time to begin/end

simulation are specified. This is a process to design and define a set of parameterized

references whose settings can be modified per experimentation. Figure 6-2 illustrates the

design of IL: Lock.

LCK

Simulation Run

: No. of run

Run = 1

: Run length

Period = 24 hrs.

Has

Set

Simulation

: Beginning time

Time = 0:00

: Ending time

Time = 24:00

Has

Has

Variables

: No. of arrays

Max = 10

: No. of attributes

Max = 10

Specify

Specify

Queuing Priority

: File or calendar

No. = 1, 2,.., n

: Ranking

Rule = FIFO

: Expression

Function = None

Denote

Specify

Evaluate

IL: Lock; Date: 4/12/2009@13:00 pm; Design# 2

Figure 6 - 2: A diagram representing initialization of Lock

 171

Creating an IL seems to be difficult for a beginner to realize what to do and what

to input. The best suggestion is that he/she should find out which is the destination for

his/her DSSE to be built – a host simulation language or a simulation environment

application. In this case study, AweSim is our target, so we can deploy its structure and

input parameters as references for designing a parameterized framework. To avoid using

irrelevant parameters, filter and arrange them in categories that positively impact overall

experimentation and construction of his/her DSSE. Organize them within a diagram that

well conveys information to an individual’s perception in a way of a mind-map. Finally,

revise and update the diagram to response to correctness and modification of parameters.

After a few trials, IL can be designed on his/her own purpose, giving better initial

parameters that help specify and sharpen the scope of modeling.

6-3-1-2. Termination Layer (TL)

 TL is aimed to provide the setting procedures of terminating simulation and

printing out a simulation output report, which specifies a frame of reference for

parameterization and termination of simulation. The frame of reference can be portrayed

in a tabular-cell pattern that contains a set of data fields and information. Table 6-1 shows

the data fields for parameterization with assignments required for this case study.

 172

Table 6 - 1: Description of data fields for parameterization with assignments

Fields*

1 2 3 4 5 6 7
TIS

Arrival
time of
entity

ATRIB[1]

Departure
time of
entity

TNOW

LUT

 Lock
number

 Lock
busy time

{0}

Lock idle
time

{0}

 Total
simulation
run

{∞}

WAT

 Queue
number

{0}

Arrival
time of
entity at
queue

Departure
time of
entity
from
queue

TNOW

TER

 Maximum
entities

{∞}

Time
limit

 {∞}

Where,

TIS = Time in system of each barge-tow;

LUT = Utilization of each lock;

WAT = Waiting time of each barge-tow;

TER = Termination of simulation;

 The beginner can follow the guidelines previously mentioned in IL. Obtaining a

good list of output parameters and terminating criteria is depended upon how well his/her

modeling objectives are set. This requires not only the details of information from the

domain problems but also the individual’s experience in modeling. This means that good

communication between domain experts and simulation developers are critical for

exchange of information; however, the responsibility in translating the information into

simulation requirements belongs to the simulation developers. Therefore, the

 173

relationships among inputs, a simulation system, and outputs must be drawn as a big

picture to support the individual’s understanding in their effects and decision making for

the selection of appropriate parameters.

6-3-1-3. Process Layer (PL)

 PL becomes the most critical part of ISAP because the physical and structural

characteristics of the problem domain and simulation domain are formulated here to

generate the core structure of the DSSE, constructed under two different modeling

subsystems. The physical characteristics are described in the static modeling subsystem,

whereas the behavioral characteristics are represented in the dynamic modeling

subsystem. According to Figure 6-1, the static modeling subsystem representing the

physical layout of the locks and ports on the MKARNS can be created as shown in Figure

6-3.

LOCK
18

@LCK
Area
18

Lower

Area
17

Lower

MKARNS

LOCK
17

@LCK
Area
17

Upper

Area
18

Upper

Port Muskogee

Port Catoosa MKARNS

MKARNS

Figure 6 - 3: A static modeling subsystem of the problem domain

 174

 The static modeling subsystem provides an insight to determine which segment of

the physical layout needs to be processed. As seen in Figure 6-3, only at LOCK 17 and

LOCK 18 are the processes taken place for representing the lockage operations. It is

assumed that the same processes are operated at these two locks. The next step is to

specify and describe the lockage operations in a dynamic modeling subsystem to

represent, for example, relationships, attributes, and dynamic flows of those processes.

 The beginner can start with drawing a logical flow diagram to help organize ideas,

concepts, and information into a pattern of descriptive processes. Later, add details, e.g.,

entities, resources, sub-processes, and attributes, as needed to the logical flow diagram to

provide a better understanding of the processes. Revise it a few times before transforming

it into a dynamic modeling subsystem diagram. A good diagram should help the

individual visualize what happens in those dynamic flows of the processes. Losing a

focus in the details causes difficulties in translating and mapping conceptual simulation

models in later states.

 There is no restriction in using tools or software applications for developing

dynamic modeling subsystem diagrams, including other diagrams shown in this research

study. Microsoft Words, for example, might be convenient for many individuals but not

for everyone. Therefore, it needs to ensure that creating a diagram is not an obstacle in

using the integrated methodology. The following figures illustrate the dynamic modeling

subsystem, DMSL: LCK, built for this case study.

 175

Initial: Started

Barge: Generated

Inform arrival of
barge-tows

1

EntBargeTow

CreateBargeTow()
AssignBargeTow(){…}
RouteBargeTow()

Operate lockage

2

EntBargeTow

ResLock

HoldBargeTow()
ProcessLock()
RouteBargeTow()

Set departure of
barge-tows

3

EntBargeTow

CollectTime()
RouteBargeTow()
TerminateBargeTow()

Barge: Moved

Lock: Freed {Offset = 0}

Lock: Operated

Lock: Completed

Barge: Moved

Barge: Time-Recorded

Lock: Freed {Offset = 0}

Barge: Routed||Terminated

Barge: Held

Lock: Occupied {Offset = 1}

D
M

S
L

: L
C

K

R
e

f# 0
; $

1

Figure 6 - 4: DMSL: LCK; sub-folder# 0; page#1

 176

Lock: Selected

Barge: Hold

Operate lockage

2

EntBargeTow

ResLock

HoldBargeTow()
ProcessLock()
RouteBargeTow()

 XOR
 //Decide which
 // lockage fits
 //barge tows’ size
J2

EntBargeTow

CheckBargeTow()
SelectLockage()
BranchBargeTow()

Operate single
lockage

2.1.4

EntBargeTow

ResLock

SetLockState()
ProcessLock()
RouteBargeTow()

Operate double
lockage

2.1.5

EntBargeTow

ResLock
ResWrench

SetLockState()
CutBargeTow()
HoldBargeTow()
ProcessLock()
ProcessWrench()
AssembleBargeTow()
RouteBargeTow()

Lock: Freed {Offset = 0}

Lock: Single
Gate: Opened {Offset Enter Value = 0}

Lock: Occupied {Offset = 1}

Barge: Moved

Gate: Closed {Offset Enter Value = 1}
Lock: Operated

Gate: Opened {Offset Exit Value = 0}

Barge: Moved

Barge: Routed

Lock: Freed {Offset = 0}

To Be Continued: $2

[Number of Barges <= Capacity of Lock]

[Number of Barges >= Capacity of Lock]

D
M

S
L

: L
C

K

R
e

f# 2
; $

1

Figure 6 - 5: DMSL: LCK; sub-folder# 2; page# 1

 177

Operate lockage

2

EntBargeTow

ResLock

HoldBargeTow()
ProcessLock()
RouteBargeTow()

 XOR
 //Decide which
 // lockage fits
 //barge tows’ size
J2

EntBargeTow

CheckBargeTow()
SelectLockage()
BranchBargeTow()

Operate single
lockage

2.1.4

EntBargeTow

ResLock

SetLockState()
ProcessLock()
RouteBargeTow()

Operate double
lockage

2.1.5

EntBargeTow

ResLock
ResWrench

SetLockState()
CutBargeTow()
HoldBargeTow()
ProcessLock()
ProcessWrench()
AssembleBargeTow()
RouteBargeTow()

Gate: Opened {Offset Enter Value = 0}

Gate: Closed {Offset Enter Value = 1}
Lock: Operated

Gate: Opened {Offset Exit Value = 0}

Barge: Cut {Number of Barges < Capacity of Lock}

Barge: Moved

Lock: Occupied {Offset = 1}

Derived from: $1

Lock: Double

Wrench: Attached

Barge: Pulled

Barge: Pulled

Wrench: Released

Gate: Closed {Offset Exit Value = 1}

Lock: Operated

Lock: Operated

Barge: Moved
Barge: Assembled

Barge: Routed
Lock: Freed {Offset = 0}

[Number of Barges <= Capacity of Lock]

[Number of Barges >= Capacity of Lock]

Gate: Opened {Offset Enter Value = 0}

Gate: Closed {Offset Enter Value = 1}

Figure 6 - 6: DMSL: LCK; sub-folder# 2; page# 2

D
M

S
L

: L
C

K

R
e

f# 2
; $

2

 178

Following the figures, tables of descriptions of the objects and operations are provided to
support understanding of DMSL: LCK, as shown in Table 6-2, 6-3, and 6-4, respectively.

Table 6 - 2: Description of Objects for DMSL: LCK

Object Name Type Description Parameters

EntBargeTow Entity A barge-tow is represented as a target
entity to be observed in the inland
waterway system. A barge-tow entity
consists of a set of barges and a tow
boat.

: Identification#
: Number of barges
: Origin
: Destination
: Arrival time
: Speed

ResLock Resource A lock is a resource that takes an action
in raising or lowering barge-tow entities
by filling or draining water. Also, the
lock-enter allowance is controlled by its
gates. The gates can be determined as
internal or external resources.

: Name
: File#
: Resource#
: Capacity
: Activity time

ResWrench Resource An electric wrench is a resource used to
pull a section of barges that are cut for
the first lockage.

: File#
: Resource#
: Capacity
: Activity time

Table 6 - 3: Description of Operations for DMSL: LCK

Operation Name Type Actor Description Attributes Global

Variables
AssembleBargeTow() General/

Extended
EntBargeTow An action is to

accumulate one or
more set of barges
that are cut with a tow
boat into a single
entity

: Identical values
: Number of
barges

AssignBargeTow()
{…}

General EntBargeTow A simulation action is
to assign identical
attributes to define the
characteristics of each
barge-tow entity that
represent a set of
barges and a tow boat.

: Identification#
: Number of
barges
: Origin
: Destination
:Arrival time
: Speed

BranchBargeTow() General/
Extended

EntBargeTow A number of branches
are provided at a
location for an entity
to take upon
conditions or
probabilities

 : Condition
expression

CreateBargeTow() General/
Extended

EntBargeTow A barge-tow entity is
created by a mean of
containing a set of
barges and a tow boat.

: First arrival
: Arrival rate
:Current time
: Max# entities

CollectTime() General EntBargeTow Statistical data of time
spent in the system
are collected

: Travel time : ID
: Label

 179

Table 6 - 4: Description of Operations for DMSL: LCK (Cont.)

Operation Name Type Actor Description Attributes Global
Variables

CheckBargeTow() Extended EntBargeTow An action is to check
how many barges the
entity is containing to
make a decision for
selecting a lockage type.

: Number of
barges

CutBargeTow() Extended/
Specific

EntBargeTow An action is to split a
specific number of
barges that are allowed
to enter a lock. There
are many ways to cut,
upon policies and sizes
of each lock

: Identical
batch size
: Number of
barges

HoldBargeTow() General/
Extended

ResLock “Hold” can be
determined as an action
to control the flow of
entities.

 : Delay time

ProcessLock() General ResLock An action is taken at a
lock by a mean of delay-
activity time.

: Resource#
: Capacity of
lock

: Activity time

ProcessWrench() General ResWrench Electric wrench is used
when a double lockage
is required.

: Resource#

: Activity time

SelectLockage() Extended ResLock A decision-making
action is to select either
single or double lockage
configuration upon the
sizes of the barge-tow
entities

: Resource#
: Capacity of
lock

SetLockState() Extended ResLock An action (of sending a
signal) verifies a status
of the lock (e.g., busy or
idle)

: Resource# : Offset value

RouteBargeTow() General EntBargeTow Each barge-tow entity is
routed or moved
through the system on
designated routes. Delay
time might be specified
on each route.

 : Distance

TerminateBargeTow() General EntBargeTow Each barge-tow entity is
terminated when it
leaves the system

Descriptions should be concise enough to specify meanings and purposes of use of the

objects and operations identified in the dynamic modeling subsystem diagrams. Also,

labeling an object/operation should be meaningful and consistent so that it will not create

any conflicts when used in transformational documentation.

 180

The next step is to translate DMSL: LCK into a network statement to increase the

readability of the process layer’s representations, as shown below:

DMSL: LCK; Ref# 0 – 2:

1 CreateBargeTow, First arrival, Arrival rate, Current time, Max# of
entities;

2 AssignBargeTow, Identification#, Number of barges, Origin, Destination,
Arrival time, Speed;

3 RouteBargeTow, Distance;
4 CheckBargeTow, Number of barges;
5 SelectLockage, Resource#, Capacity of lock;
6 SetLockState, Rerouce#, Offset value;
7 BranchBargeTow, Condition expression;
8 Condition, Number of barges <= Capacity of lock;
9 SetLockState, Resource#, Offset value;
10 RouteBargeTow, Distance;
11 ProcessLock, Resource#, Capacity of lock, Activity time;
12 RouteBargeTow, Distance;
13 SetLockState, Resource#, Offset value;
14 Condition, Number of barges >= Capacity of lock;
15 SetLockState, Resource#, Offset value;
16 CutBargeTow, Identical batch size, Number of barges;
17 HoldBargeTow, Delay time;
18 ProcessWrench, Resource#, Activity time;
19 ProcessLock, Resource#, Capacity of lock, Activity time;
20 RouteBargeTow, Distance;
21 SetLockState, Resource#, Offset value;
22 RouteBargeTow, Distance;
23 SetLockState, Resource#, Offset value;
24 ProcessLock, Resource#, Capacity of lock, Activity time;
25 RouteBargeTow, Distance;
26 AssembleBargeTow, Identical batchsize, Number of barges;
27 SetLockState, Resource#, Offset value;
28 RouteBargeTow, Distance;
29 CollectTime, Travel time, ID, Label;
30 RouteBargeTow, Distance;
31 TerminateBargeTow;

 181

6-3-2. Phase 2: Transformation of Conceptual Simulation Models

 This phase is to transform the CSMs into contextualized documentation, so that

their semantics of structural and behavioral contents within a simulation context can be

represented in a more executable-readable form. The contextualized documentation is

developed by using the Semantic Web technologies such as XML and SRML. Moreover,

user-callable functions are created to support the explanation of the documentation, as

shown in Table 6-5.

Table 6 - 5: Referenced properties and callable functions for DMSL: LCK

References Description
NewEntity() Create a new entity.
CurrentEntity() Return the current entity.
CloneEntity() Clone the entity.
TerminateEntity() Terminate the entity.
Release(Resource#, Units) Release number of units of the resource#.
Seize(Resource#, Units) Allocate number of units of the resource#.
NARES(Resource#) Return the number of available units of the resource#.
NIUSE(Resource#) Return the number of busy units of the resource#.
Resource() Allocate a resource and assign its calling number
Schedule(Event, Entity, Time) Schedule an event of type Event to occur at time TNOW + Time

for the current entity.
Assign(Attribute 1, Attribute 2, …) Assign one or more attributes to the entity.
LocateEntity(Event, Resource, Entity) Locate the entity in the target resource
Intlc(run) Check the initial run
TNOW Current simulated time

 From DMSL: LCK, the contextualized documentation can be generated as shown below:

<DMSL Name ="LCK">
 <Variable varname="Offset" vartype="boolean"/>
 <Variable varname="Offset enter value" vartype="boolean"/>
 <Variable varname="Offset exit value" vartype="boolean"/>
 <Script Type="text/javascript">
 <![CDATA[

 //Initialize variables for the first run

 function Initial()
 {
 Intlc(run);//Check the initial run
 if (run = 1)
 {
 var Offset = 0;

 182

 var Offset enter value = 0;
 var Offset exit value = 0;
 }
 }
]]>
 </Script>

 <SMU Name = "Inform arrival of barge-tows">
 <Entity Name = "EntBargeTow">
 <Attribute atribname="Identification#" atribtype="interger"/>
 <Attribute atribname="NumberBarges" atribtype="integer"/>
 <Attribute atribname="Origin" atribtype="integer"/>
 <Attribute atribname="Destination" atribtype="integer"/>
 <Attribute atribname="ArrivalTime" atribtype="real"/>
 <Attribute atribname="Speed" atribtype="real">
 </Entity>

 <Script Type="text/javascript">
 <![CDATA[

 function CreateBargeTow()//Create and schedule entities
 {
 //Define variables used in this function
 var FirstArrival = 0;
 var ArrivalRate;
 var CurrentTime = TNOW;
 var MaxEntities;

 //Create a new entity
 set NewEntBargeTow = IP.NewEntity();
 set NewEntBargeTow.ArrivalTime = IP.TNOW;
 IP.Schedule("FirstArrival", NewEntBargeTow,
(NewEntBargeTow.ArrivalTime+ArrivalRate);

 //Schedule the next entities
 for (i=1; i<=Max# entities; i++)
 {
 set NextEntBargeTow = IP.CloneEntity();
 set NextEntBargeTow = IP.TNOW;
 IP.Schedule("NextArrival", NextEntBargeTow,
(NextEntBargeTow.ArrivalTime+ArrivalRate));
 }
 }

 function AssignBargeTow()//Assign attributes to the BargeTow
entities
 {
 var Identification#;
 var NumberBarges;
 var Origin;
 var Destination;
 var ArrivalTime;
 var Speed;

 //Define the current EntBargeTow entity and assign attributes to
it
 set CurrentEntBargeTow = IP.CurrentEntity();

 183

 CurrentEntBargeTow.Assign(Identification#, NumberBarges, Origin,
Destination, ArrivalTime, Speed);
 }

 function RouteBargeTow()//Schedule the current EntBargeTow entity
for travelling
 {
 var Distance;
 var Speed;
 var DelayTime = Distance/Speed;
 IP.Schedule("Decision", CurrentEntBargeTow,
CurrentEntBargeTow.DelayTime);
 }
]]>
 </Script>

 <Link Name="J2" Type="Precedence">
 <Link Target="XOR: Decide which lockage fits barge tows' size">
 </Link>
 </SMU>

 <SMU Name ="XOR: Decide which lockage fits barge tows' size">
 <Entity Name ="EntBargeTow">
 <Attribute atribname="Identification#" atribtype="interger"/>
 <Attribute atribname="NumberBarges" atribtype="integer"/>
 <Attribute atribname="Origin" atribtype="integer"/>
 <Attribute atribname="Destination" atribtype="integer"/>
 <Attribute atribname="ArrivalTime" atribtype="real"/>
 <Attribute atribname="Speed" atribtype="real">
 </Entity>

 <Resource Name ="ResLock">
 <Attribute atribname="Name" atribtype="string"/>
 <Attribute atribname="File#" atribtype="integer"/>
 <Attribute atribname="Resource#" atribtype="integer"/>
 <Attribute atribname="CapacityLock" atribtype="integer"/>
 <Attribute atribname="ActivityTime" atribtype="real"/>
 </Resource>
 <Script Type="text/javascript">
 <![CDATA[

 function CheckBargeTow()//Retrieve the value of number of barges
from the current EntBargeTow entity
 {
 var NumberBarges;
 set CheckNumberBarges = CurrentEntBargeTow.NumberBarges;
 }

 function SelectLockage()//Retrieve the capacity value from the lock
Resource#
 {
 var LockCapacity;
 set ResLock = IP.Resource();
 set LockCapacity = ResLock.CapacityLock;
 }

 function BranchBargeTow()

 184

 {
 var LockCapacity;
 if (CheckNumberBarges <= LockCapacity)
 IP.LocateEntity("Operate single lockage", ResLock,
CurrentEntBargeTow);
 else if (CheckNumberBarges > LockCapacity)
 IP.LocateEntity("Operate double lockage", ResLock,
CurrentEntBargeTow);
 }

]]>
 </Script>

 <Link Name="LockType" Type="Precedence with condition(s)">
 <Link Target="Operate single lockage"/>
 <Link Target="Operate double lockage"/>
 </Link>
 </SMU>

 <SMU Name ="Operate single lockage">
 <Entity Name ="EntBargeTow">
 <Attribute atribname="Identification#" atribtype="interger"/>
 <Attribute atribname="NumberBarges" atribtype="integer"/>
 <Attribute atribname="Origin" atribtype="integer"/>
 <Attribute atribname="Destination" atribtype="integer"/>
 <Attribute atribname="ArrivalTime" atribtype="real"/>
 <Attribute atribname="Speed" atribtype="real">
 </Entity>

 <Resource Name ="ResLock">
 <Attribute atribname="Name" atribtype="string"/>
 <Attribute atribname="File#" atribtype="integer"/>
 <Attribute atribname="Resource#" atribtype="integer"/>
 <Attribute atribname="CapacityLock" atribtype="integer"/>
 <Attribute atribname="ActivityTime" atribtype="real"/>
 </Resource>

 <Script Type="text/javascript">
 <![CDATA[
 function SetLockState()
 {
 if (NIUSE(ResLock) >=1)//Lock is occopied
 {
 var Offset = 1;//State is busy
 var Offset enter value = 1;//Enter gate is closed
 var offset exit value = 1;//Exit gate is closed
 }
 else (NIUSE(ResLock) <=0)//Lock is available
 {
 var Offset = 0;//State is idle
 var Offset enter value = 0;//Enter gate is opened
 var Offset exit value = 0;//Exit gate is opened
 }
 }

 function ProcessLock()
 {

 185

 var ActivityTime;
 if (NARES(ResLock) >0)
 {
 IP.Seize(ResLock, 1);
 IP.SetLockState();
 IP.Schedule("Lockage", CurrentEntBargeTow,
(CurrentEntBargeTow.TNOW+ActivityTime));
 IP.Release(Reslock, 1);
 }
 }

 function RouteBargeTow()//Schedule the current EntBargeTow entity
for exiting lockage
 {
 var Distance;
 var Speed;
 var DelayTime = Distance/Speed;
 IP.Schedule("Exit", CurrentEntBargeTow,
CurrentEntBargeTow.DelayTime);
 }

]]>
 </Script>
 <Link Name="Exit" Type="Precedence">
 <Link Target="Set departure of barge-tows"/>
 </SMU>

 <SMU Name ="Operate double lockage">
 <Entity Name ="EntBargeTow">
 <Attribute atribname="Identification#" atribtype="interger"/>
 <Attribute atribname="NumberBarges" atribtype="integer"/>
 <Attribute atribname="Origin" atribtype="integer"/>
 <Attribute atribname="Destination" atribtype="integer"/>
 <Attribute atribname="ArrivalTime" atribtype="real"/>
 <Attribute atribname="Speed" atribtype="real">
 </Entity>

 <Resource Name ="ResLock">
 <Attribute atribname="Name" atribtype="string"/>
 <Attribute atribname="File#" atribtype="integer"/>
 <Attribute atribname="Resource#" atribtype="integer"/>
 <Attribute atribname="CapacityLock" atribtype="integer"/>
 <Attribute atribname="ActivityTime" atribtype="real"/>
 </Resource>

 <Resource Name ="ResWrench">
 <Attibute atribname="File#" atribtype="integer"/>
 <Attribute atribname="Resource#" atribtype="integer"/>
 <Attribute atribname="CapacityWrench" atribtype="integer"/>
 <Attribute atribname="ActivityTime" atribtype="real"/>
 <Resource>

 <Script Type="text/javascript">
 <![CDATA[

 function SetLockState()
 {

 186

 if (NIUSE(ResLock) >=1)//Lock is occopied
 {
 var Offset = 1;//State is busy
 var Offset enter value = 1;//Enter gate is closed
 var offset exit value = 1;//Exit gate is closed
 }
 else (NIUSE(ResLock) <=0)//Lock is available
 {
 var Offset = 0;//State is idle
 var Offset enter value = 0;//Enter gate is opened
 var Offset exit value = 0;//Exit gate is opened
 }
 }

 function CutBargeTow()
 {
 var FirstBatchSize;
 var SecondBatchSize;
 var NumberBarges;
 if (NumberBarges > CapacityLock)
 {
 set FirstBatchSize = CapacityLock;
 set SecondBatchSize = NumberBarges - CapacityLock;
 }
 }

 function HoldBargeTow()
 {
 var DelayTime;
 IP.Schedule("ProcessLock", CurrentBargeTow.FirstBatchSize,
CurrentEntBargeTow.DelayTime);
 IP.Schedule("ProcessLock", CurrentBargeTow.SecondBatchSize,
CurrentEntBargeTow.DelayTime);
 }

 function ProcessLock()
 {
 var ActivityTime;
 if (NARES(ResLock) >0)
 {
 IP.Seize(ResLock, 1);
 IP.SetLockState();
 IP.Schedule("Lockage", CurrentEntBargeTow.FirstBatchSize,
(CurrentEntBargeTow.FirstBatchSize.TNOW+ActivityTime));
 IP.Release(ResLock, 1);
 }
 }

 function ProcessWrench()
 {
 var WrenchCapacity
 var ActivityTime;
 set ResWrench = Resource();
 set WrenchCapacity = ResWrench.CapacityWrench;
 if (NARES(ResWrench) > 0)
 {

 187

 IP.Seize(ResWrench, 1);
 IP.Schedule("Wrench", CurrentEntBargeTow.FirstBatchSize,
(CurrenEntBargeTow.FirstBatchSize.TNOW+ActivityTime));
 IP.Release(ResWrench, 1);
 }
 }

 function ProcessLock()
 {
 var ActivityTime;
 if (NARES(ResLock) >0)
 {
 IP.Seize(ResLock, 1);
 IP.SetLockState();
 IP.Schedule("Lockage", CurrentEntBargeTow.SecondBatchSize,
(CurrentEntBargeTow.SecondBatchSize.TNOW+ActivityTime));
 IP.Release(ResLock, 1);
 }
 }

 function AssembleBargeTow()
 {
 set CurrentEntBargeTow.NumberBarges =
CurrentEntBargeTow.FirstBatchSize + CurrentEntBargeTow.SecondBatchSize;
 }

 function RouteBargeTow()//Schedule the current EntBargeTow entity
for exiting lockage
 {
 var Distance;
 var Speed;
 var DelayTime = Distance/Speed;
 IP.Schedule("Exit", CurrentEntBargeTow,
CurrentEntBargeTow.DelayTime);
 }
]]>
 </Script>
 <Link Name="Exit" Type="Precedence">
 <Link Target="Set departure of barge-tows"/>

 </SMU>

 <SMU Name ="Set departure of barge-tows">
 <Entity Name ="EntBargeTow">
 <Attribute atribname="Identification#" atribtype="interger"/>
 <Attribute atribname="NumberBarges" atribtype="integer"/>
 <Attribute atribname="Origin" atribtype="integer"/>
 <Attribute atribname="Destination" atribtype="integer"/>
 <Attribute atribname="ArrivalTime" atribtype="real"/>
 <Attribute atribname="Speed" atribtype="real">
 </Entity>
 <Script Type="text/javascript">
 <![CDATA[

 function CollectTime()
 {
 var TravelTime;

 188

 var ID;
 var Label;
 set TravelTime = CurrentEntBargeTow.ArrivalTime - TNOW;
 IP.Collect(TravelTime, ID, Label);
 }

 function RouteBargeTow()
 {
 var Distance;
 var Speed;
 var DelayTime = Distance/Speed;
 IP.Schedule("Terminate", CurrentEntBargeTow,
CurrentEntBargeTow.DelayTime);
 }

 function TerminateBargeTow()
 {
 IP.TerminateEntity(CurrentEntBargeTow);
 }

]]>
 </Script>

 </SMU>

6-3-3. Phase 3: Mapping and Building

 In the final phase, the simulation developer is able to make the transition from

conceptualization to simulation. Using a tool, Similar Mapping Plane (SMP), is very

crucial for mapping between the source ontology (e.g., CSMs and contextualized

documentation) and the target ontology (e.g., Visual SLAM). SMP allows the simulation

developer to nominate candidates for mapping and determine which one is the most

appropriate selection for implementing in simulation. The following tables show how to

map two ontologies by using SMP.

 189

Table 6 - 6: Similarity Mapping Plane for CreateBargeTow()

Source Weight Target
Instance
Name: CreateBargeTow()

1 Node
Name: CREATE

Description
A barge-tow entity is created by a mean of containing a set
of barges and a tow boat

2 Description
Entities are generated within the network.

Properties
:First arrival
:Arrival rate
:Current time
:Max# entities

1 Inputs
:Time between creations (TBC)
:Time of first creation (TF)
:Maximum creations (MC)
:Mark variable which will store the time of creation (MV)
:Number of branches (M)

Input statement
CreateBargeTow, First arrival, Arrival rate, Current time,
Max# of signal entities;

1 Input format
CREATE, TBC, TF, MV, MC, M;

Explanation
function CreateBargeTow()
{
var FirstArrival = 0;
var ArrivalRate;
var CurrentTime = TNOW;
var MaxEntities;

 //Create a new entity

Set NewEntBargeTow = IP.NewEntity();
Set NewEntBargeTow.ArrivalTime = IP.TNOW;
IP.Schedule("FirstArrival",
NewEntBargeTow,
(NewEntBargeTow.ArrivalTime+ArrivalRate);

 //Schedule the next entities

for (i=1; i<=Max# entities; i++)
{
Set NextEntBargeTow = IP.CloneEntity();
Set NextEntBargeTow = IP.TNOW;
IP.Schedule("NextArrival",
NextEntBargeTow,
(NextEntBargeTow.ArrivalTime+ArrivalRate)
);
}
}

1 Explanation
CREATE NODE
:The first entity is created at a time specified by the value
of TF;
:The time between creations of entities after the first is
specified by the variable TBC;
:The time at which the entity is created can be assigned to
a variable MV;
:Entities will continue to be created until a limit is
reached, specified by MC

Total scores

6/10

Likely similar

Weight by degrees of similarity (score): None (0); Likely similar (1); and Similar (2).

 190

Table 6 - 7: Similar Mapping Plane for AssignBargeTow()

Source Weight Target
Instance
Name: AssignBargeTow()

1 Node
Name: ASSIGN

Description
A simulation action is to assign identical attributes to define
the characteristics of each barge-tow entity.

2 Description
Values are assigned to Visual SLAM variables at each
arrival of an entity to the node.

Properties
:Identification#
:Number of barges
:Origin
:Destination
:Arrival time
:Speed

1 Inputs
:Visual SLAM global or entity variable (VAR)
:Expression (VALUE)
:Number of branches (M)

Input statement
AssignBargeTow, Identification#, Number of barges, Origin,
Destination, Arrival time;

1 Input format
ASSIGN, {{VAR, VALUE}, repeats}, M;

Explanation
function AssignBargeTow()

//Assign attributes to the BargeTow
entities
{
var Identification#;
var NumberBarges;
var Origin;
var Destination;
var ArrivalTime;
var Speed;

//Define the current EntBargeTow entity
and assign attributes to it

Set CurrentEntBargeTow =
This.EntBargeTow.CloneEntity();

CurrentEntBargeTow.Assign(Identification#
, NumberBarges, Origin, Destination,
ArrivalTime, TravelTime, Speed);
}

1 Explanation
ASSIGN NODE
:Values are prescribed to the attributes of an entity passing
through the ASSIGN node; or
:Values are prescribed to the system variables that pertain
to the network in general

Total scores

6/10

Likely similar

Weight by degrees of similarity (score): None (0); Likely similar (1); and Similar (2).

(Note: In advanced modeling, READ node can be used to assign values from an external
file to attributes instead of ASSIGN node. However, to assign values to global variables
still needs using ASSIGN node. SetLockState() is also be mapped to this node.)

 191

Table 6 - 8: Similar Mapping Plane for RouteBargeTow()

Source Weight Target
Instance
Name: RouteBargeTow()

1 Node
Name: ACTIVITY

Description
Each barge-tow entity is routed or moved through the system
on designated routes.

2 Description
Branches are used to model activities. Only at branches
are explicit time delays prescribed for entities flowing
through the network.

Properties
:Distance

0 Inputs
:Activity number (A)
:Duration specified for the activity (DUR)
:Condition for selecting the activity and can be a
probability specification (COND)
:End node label (NLBL)
:Number of parallel identical servers (N)
:Activity identification (ID)

Input statement
RouteBargeTow, Distance;

0 Input format
ACTIVITY, A, DUR, CONDITION, NLBL, N, ID;

Explanation
function RouteBargeTow()

//Schedule the current EntBargeTow entity
for travelling
{
var Distance;
var Speed;
var DelayTime = Distance/SPEED;
IP.Schedule("Decision",
CurrentEntBargeTow,
CurrentEntBargeTow.DelayTime);
}

2 Explanation
ACTIVITY
:Branches emanate entities to simultaneously flow through
them;
:The duration of an activity is the time delay that an entity
encounters as it flows through the branch representing the
activity

Total scores

5/10

Likely similar

Weight by degrees of similarity (score): None (0); Likely similar (1); and Similar (2).

(Note: By the characteristics of ACTIVITY, it can also be used to function for
BranchBargeTow(), CheckBargeTow(), and SelectLockage() by defining expressions for
ACTIVITIES.)

 192

Table 6 - 9: Similar Mapping Plane for ProcessLock()

Source Weight Target
Instance
Name: ProcessLock()

1 Node
Name: AWAIT

Description
An action is taken at a lock by a mean of delay activity time.

2 Description
The AWAIT node is used to store entities waiting for UR
units of resource RES or waiting for gate GATE to open.

Properties
:Resource#
:Capacity of lock
:Activity time

1 Inputs
:File number (IFL)
:Label of a component previously defined with a
RESOURCE (RESORGATE)
:Units required (UR)
:Resource allocation rule (RULE)
:Queue capacity (QC)
:Condition of queue (FULLCOND)
:Number of branches (M)

Input statement
ProcessLock, Resource#, Capacity of lock, Activity time;

1 Input format
AWAIT, IFL, {{RESORGATE, UR}, repeats}, RULE,
QC, FULLCOND, M;

Explanation
function ProcessLock()
{
var ActivityTime;
if (NARES(ResLock) >0)
{
IP.Seize(ResLock,1);
IP.SetLockState();
IP.Schedule("Lockage", CurrentBargeTow,
(CurrentBargeTow.TNOW+ActivityTime));
IP.Release(ResLock, 1);
}
}

2 Explanation
AWAIT node
: The AWAIT node delays an entity in file IFL until UR
units of resource or group RES are available.
:When required resources are available, the entity seizes
the UR units of RES.

Total scores

7/10

Likely similar

Weight by degrees of similarity (score): None (0); Likely similar (1); and Similar (2).

(Note: To use AWAIT node, it also requires RESOURCE block and FREE node to
complete the process. ProcessWrench() can be mapped to this Visual SLAM nodes and
block as well.)

 193

Table 6 - 10: Similar Mapping Plane for CollectTime()

Source Weight Target
Instance
Name: CollectTime()

1 Node
Name: COLCT

Description
Statistical data for time spent in the system are collected.

2 Description
Statistics can be collected on any expression at a COLCT.

Properties
:Travel time
:ID
:Label

1 Inputs
: Statistics index (N)
:Expression whose value is to be observed (VARIABLE)
:Identifying label (ID)
:Number of histogram cells (NCEL)
:Lower limit of first cell (HLOW)
:Cell width (HWID)
:Number of branches (M)

Input statement
CollectTime, Travel time, ID, Label;

1 Input format
COLCT, N, VAR, “ID”, NCEL, HLOW, HWID, M;

Explanation
function CollectTime()
{
var TravelTime;
var ID;
var Label;
set TravelTime =
CurrentEntBargeTow.ArrivalTime - TNOW;
IP.Collect(TravelTime, ID, Label);
}

1 Explanation
COLCT node
:The value of a Visual SLAM expression is recorded as an
observation every time an entity arrives to the node.

Total scores

6/10

Likely similar

Weight by degrees of similarity (score): None (0); Likely similar (1); and Similar (2).

 194

Table 6 - 11: Similar Mapping Plane for CutBargeTow()

Source Weight Target
Instance
Name: CutBargeTow()

1 Node
Name: UNBATCH

Description
An action is to split a specific number of barges that are
allowed to enter a lock.

2 Description
An entity is split into multiple entities.

Properties
:Identical batch size
:Number of barges

1 Inputs
:Number of copies to make of the entity (NCLONE)
:Number of branches (M)

Input statement
CutBargeTow, Identical batch size, Number of barges;

1 Input format
UNBATCH, NCLONE, M;

Explanation
function CutBargeTow()
{
var FirstBatchSize;
var SecondBatchSize;
var NumberBarges;

if (NumberBarges > CapacityLock)
{
set FirstBatchSize = CapacityLock;
set SecondBatchSize = NumberBarges -
CapacityLock;
}
}

1 Explanation
UNBATCH node
:The arriving entity is duplicated and NCLONE identical
entities are released from the UNBATCH node.

Total scores

6/10

Likely similar

Weight by degrees of similarity (score): None (0); Likely similar (1); and Similar (2).

(Note: In practice, this function may or may not be required since it is possible to employ
the logic that one unit can be put in multi-processing instead of splitting it into two parts
for shortening the processes. Thus, AssembleBargeTow() that can possibly mapped into
BATCH node would be ignored. This helps make modeling less complicated.)

 195

The results of mapping ontologies on SMP help the DSSE developer to determine

which Visual SLAM network nodes or functions are best fit to the construction of

simulation building blocks by using the feature of visual subnetworks (VSNs). A

collection of the VSNs is created as a library for reusing and accessing for other

simulation studies under the same problem domain. However, as mentioned above, not

every mapping result can be linked and implemented for testing. It is important for the

simulation developer to add the details for implementation to those given products of

mapping to satisfy the requirements of the simulation. Moreover, configurations and

modifications in the Visual SLAM network nodes or functions are necessary for the

accomplishment of simulation modeling. Finally, the quality of the simulation model is

depended on the simulation developer’s experience and expertise in Visual SLAM and

AweSim, including logic and skills in simulation and modeling.

Figure 6-7 represents a simulation model for the travels of barge-tows from Port

Muskogee to Tulsa Port of Catoosa through Lock#17. This simulation model has been

developed from the results of mapping between conceptualization and simulation.

Figure 6 - 7: A simulation model for the lockage operations at Lock#17

 196

As mentioned in Chapter 5, due to some restrictions of using VSNs, there appear

combinations of the Visual SLAM network nodes and VSNs, patterns of the Visual

SLAM network nodes, and stand-alone VSNs in the model. Obviously, it is unable to

create simulation building blocks for representing every SMU retrieved from CSMs. The

following figures provide the structures (building block elements) of the VSNs: “ARV”,

“OPERATE”, “SINGLE”, “DOUBLE”, and “CLT”, respectively.

Figure 6 - 8: Building block elements for the VSN: “ARV”

Figure 6 - 9: Building block elements for the VSN: “OPERATE”

 197

Figure 6 - 10: Building block elements for the VSN: “SINGLE”

Figure 6 - 11: Building block elements for the VSN: “DOUBLE”

Figure 6 - 12: Building block elements for the VSN: “CLT”

 198

For this simulation model, the network statements and control statements are given in

Figure 6-13, whereas the subnetwork statements are provided in Figure 6-14.

Network statements:

INFORM_UP: CREATE,EXPON(35),0.0,,INF,1,,,,,,{50,110};
 ACTIVITY,,,,,,,,,,{1,3,,,};
ARRIVAL_UP: CALLVSN,"ARV",,{INT(UNFRM(2,15)),"MUSKOGEE","CATOOSA",3},1,,,,,,,{130,110};
 ACTIVITY,,,,"TOW_UP",,,,,,{3,-1,,,250,110};
LOCK17_CONTROL: CREATE,INF,0.0,,1,1,,,,,,{60,180};
 ACTIVITY,,,,,,,,,,{5,7,,,};
 ASSIGN,{{ETYPE,SIGNAL17},{LOCK17,LFREE}},1,,,,,,,,,{140,180};
 ACTIVITY,,,,"LOCK_ST_17",,,,,,{7,-1,,,250,180};
TOW_UP: QUEUE,1,0,INF,NONE,{ONE_SELECT_1},,,,,,{50,230};
 ;CONNECTOR{9,11}
ONE_SELECT_1: SELECT,LOWASSEMBLE(ETYPE),NONE,NONE,{TOW_UP,LOCK_ST_17},,,,,,,{100,260};
 ACTIVITY,,,,,,,,,,{11,13,,,};
 ASSIGN,{{LOCK17,BUSY}},1,,,,,,,,,{230,260};
 ACTIVITY,,,,,,,,,,{13,15,,,};
 CALLVSN,"OPERATE","LCK17",,1,,,,,,,{330,260};
 ACTIVITY,,,,,,,,,,{15,17,,,};
 ASSIGN,{{LOCK17,LFREE}},2,,,,,,,,,{430,260};
 ACTIVITY,,,,"LOCK_ST_17",,,,,,{17,-1,,,480,210,540,210};
 ACTIVITY,,,,,,,,,,{17,20,,,};
 CALLVSN,"CLT","LCK17",,1,,,,,,,{530,260};
 ACTIVITY,,,,,,,,,,{20,22,,,};
 TERMINATE,INF,,,,,,,,,,{630,260};
LOCK_ST_17: QUEUE,2,0,INF,NONE,{ONE_SELECT_1},,,,,,{50,290};
 ;CONNECTOR{23,11}

Control statements:

GEN,"Kitti Setavoraphan","MKARNS",4/9/09,1,YES,YES;
LIMITS,,10,,10,10,10;
INITIALIZE,0.0,1440,YES,,NO;
EQUIVALENCE,{{TOW,1},{SIGNAL17,17},{LFREE,0},{BUSY,1},{ARRIVAL,ATRIB[1]},{SPEED,ATRIB[2]}
,{ID,LTRIB[1]},{NO_BARGE,LTRIB[2]},{ORIGIN,STRIB[1]},{DESTINATION,STRIB[2]},{LOCK17,LL[0]
}};
INTLC,{{LL[0],0}};
NET;
FIN;

Figure 6 - 13: Visual SLAM network and control statements for Lock#17 simulation model

 199

Subnetwork statements:

VSN,ARV,{{INIT_BARGE,DOUBLEVAL,
},{ORIGIN_PORT,STRINGVAL,},{DEST_PORT,STRINGVAL,},{DISTANCE1,DOUBLEVAL,
}},,,,,,,,,{40,30};
 LIMITSVSN,-1,10,-1,-1,10,-1,,,,,{0,0};
ENTER1: ENTERVSN,,1,,,,,,,,,{50,90};
 ACTIVITY,,,,,,,,,,{3,5,,,};
 ASSIGN,{{LNTRIB[1],INIT_BARGE}},1,,,,,,,,,{80,90};
 ACTIVITY,,,,,,,,,,{5,7,,,};
 UNBATCH,LNTRIB[1],1,,,,,,,,,{220,90};
 ACTIVITY,,,,,,,,,,{7,9,,,};
 ASSIGN,{{ETYPE,TOW},{LNTRIB[0],LNTRIB[1]},{LNTRIB[2],1}},1,,,,,,,,,{290,90};
 ACTIVITY,,,,,,,,,,{9,11,,,};
 BATCH,0,LNTRIB[0],1,LAST,{LNTRIB[2]},YES,1,,,,{410,90};
 ACTIVITY,,,,,,,,,,{11,13,,,};

ASSIGN,{{ID,ID+1},{NO_BARGE,LNTRIB[2]},{ORIGIN,ORIGIN_PORT},{DESTINATION,DEST_PORT},{ARRI
VAL,TNOW},{SPEED,UNFRM(7,15)}},1,,,,,,,,,{500,90};
 ACTIVITY,,DISTANCE1/SPEED,,,,,,,,{13,15,,,};
 RETURNVSN,0.0,1,,,,,,,,,{680,90};
VSN,OPERATE,,,,,,,,,,{40,20};
 ENTERVSN,,1,,,,,,,,,{50,120};
 ACTIVITY,,,NO_BARGE<=8,,,,,,,{2,5,,,50,60};
 ACTIVITY,,,,"CASE_CALLVSN_1",,,,,,{2,8,,,50,180};
 CALLVSN,"SINGLE","LCK17",{1,15,4,4.6},1,,,,,,,{180,60};
 ACTIVITY,,,,,,,,,,{5,7,,,};
 RETURNVSN,0.0,1,,,,,,,,,{330,60};
CASE_CALLVSN_1: CALLVSN,"DOUBLE","LCK17",{1,15,1,25,4,4.6},1,,,,,,,{180,180};
 ACTIVITY,,,,,,,,,,{8,10,,,};
 RETURNVSN,0.0,1,,,,,,,,,{330,180};
VSN,SINGLE,{{LCKCAP,DOUBLEVAL,},{LCKTIME,DOUBLEVAL,},{SPEEDLCK,DOUBLEVAL,},{DISTANCELCK,D
OUBLEVAL,}},,,,,,,,,{40,30};
 RESOURCE,1,LOCKAGE,LCKCAP,{1},,,,,,,{40,60};
 ENTERVSN,,1,,,,,,,,,{50,110};
 ACTIVITY,,DISTANCELCK/SPEEDLCK,,,,,,,,{3,5,,,};
 AWAIT,1,{{LOCKAGE,1}},ALL,,NONE,1,,,,,{160,110};
 ACTIVITY,,LCKTIME,,,,,,,,{5,7,,,};
 FREE,{{LOCKAGE,1}},1,,,,,,,,,{280,110};
 ACTIVITY,,,,,,,,,,{7,9,,,};
 RETURNVSN,0.0,1,,,,,,,,,{380,110};
VSN,DOUBLE,{{LCKCAP,DOUBLEVAL,},{LCKTIME,DOUBLEVAL, },{WRENCHCAP,DOUBLEVAL,
},{WRENCHTIME,DOUBLEVAL, },{SPEEDLCK,DOUBLEVAL, },{DISTANCELCK,DOUBLEVAL,
}},,,,,,,,,{30,20};
 RESOURCE,1,LOCKAGE,LCKCAP,{1},,,,,,,{30,50};
 RESOURCE,2,WRENCH,WRENCHCAP,{2},,,,,,,{30,80};
 ENTERVSN,,1,,,,,,,,,{40,120};
 ACTIVITY,,DISTANCELCK/SPEEDLCK,,,,,,,,{4,6,,,};
 AWAIT,1,{{LOCKAGE,1}},ALL,,NONE,1,,,,,{150,120};
 ACTIVITY,,LCKTIME,,,,,,,,{6,8,,,};
 AWAIT,2,{{WRENCH,1}},ALL,,NONE,1,,,,,{260,120};
 ACTIVITY,,WRENCHTIME,,,,,,,,{8,10,,,};
 FREE,{{WRENCH,1}},1,,,,,,,,,{370,120};
 ACTIVITY,,LCKTIME,,,,,,,,{10,12,,,};
 GOON,1,,,,,,,,,,{480,120};
 ACTIVITY,,LCKTIME,,,,,,,,{12,14,,,};
 FREE,{{LOCKAGE,1}},1,,,,,,,,,{530,120};
 ACTIVITY,,,,,,,,,,{14,16,,,};
 RETURNVSN,0.0,1,,,,,,,,,{620,120};
VSN,CLT,,,,,,,,,,{41,33};
 ENTERVSN,,1,,,,,,,,,{50,80};
 ACTIVITY,,,,,,,,,,{2,4,,,};
 COLCT,,TNOW-ARRIVAL,"TIS",,,,1,,,,{120,80};
 ACTIVITY,,,,,,,,,,{4,6,,,};
 RETURNVSN,0.0,1,,,,,,,,,{260,80};

Figure 6 - 14: Visual SLAM subnetwork statements for Lock#17 simulation model

 200

Based on this methodology, the simulation developer can further develop a simulation

model for the lockage operations at both Lock# 17 and Lock# 18 in which the barge-tows

from the downstream of MKARNS travel, as shown in Figure 6-15.

Figure 6 - 15: A simulation model for the lockage operations at Lock# 17 and Lock# 18

As well, its network statements, control statements, and extended subnetwork statements

are given in the following figures:

 201

Network statements:

INFORM_UP: CREATE,EXPON(35),0.0,,INF,1,,,,,,{50,110};
 ACTIVITY,,,,,,,,,,{1,3,,,};
ARRIVAL_UP: CALLVSN,"ARV",,{INT(UNFRM(2,15)),"MUSKOGEE","CATOOSA",3},1,,,,,,,{130,110};
 ACTIVITY,,,,"TOW_17",,,,,,{3,-1,,,240,110};
LOCK17_CONTROL: CREATE,INF,0.0,,1,1,,,,,,{60,180};
 ACTIVITY,,,,,,,,,,{5,7,,,};
 ASSIGN,{{ETYPE,SIGNAL17},{LOCK17,LFREE}},1,,,,,,,,,{140,180};
 ACTIVITY,,,,"LOCK_ST_17",,,,,,{7,-1,,,250,180};
TOW_17: QUEUE,1,0,INF,NONE,{CASE_SELECT_1},,,,,,{50,230};
 ;CONNECTOR{9,11}
CASE_SELECT_1: SELECT,LOWASSEMBLE(ETYPE),NONE,NONE,{TOW_17,LOCK_ST_17},,,,,,,{100,260};
 ACTIVITY,,,,,,,,,,{11,13,,,};
 ASSIGN,{{LOCK17,BUSY}},1,,,,,,,,,{230,260};
 ACTIVITY,,,,,,,,,,{13,15,,,};
 CALLVSN,"OPERATE","LCK17",,1,,,,,,,{330,260};
 ACTIVITY,,,,,,,,,,{15,17,,,};
 ASSIGN,{{LOCK17,LFREE}},2,,,,,,,,,{430,260};
 ACTIVITY,,,,"LOCK_ST_17",,,,,,{17,-1,,,480,210,540,210};
 ACTIVITY,,,,,,,,,,{17,20,,,};
 CALLVSN,"CLT","LCK17",,1,,,,,,,{530,260};
 ACTIVITY,,16.4/SPEED,,"TOW_18",,,,,,{20,-1,,,660,260};
LOCK_ST_17: QUEUE,2,0,INF,NONE,{CASE_SELECT_1},,,,,,{50,290};
 ;CONNECTOR{22,11}
LOCK18_CONTROL: CREATE,INF,0.0,,1,1,,,,,,{60,370};
 ACTIVITY,,,,,,,,,,{24,26,,,};
 ASSIGN,{{ETYPE,SIGNAL18},{LOCK18,LFREE}},1,,,,,,,,,{140,370};
 ACTIVITY,,,,"LOCK_ST_18",,,,,,{26,-1,,,230,370,240,369};
TOW_18: QUEUE,3,0,INF,NONE,{TWO_SELECT_1},,,,,,{50,430};
 ;CONNECTOR{28,30}
TWO_SELECT_1: SELECT,LOWASSEMBLE(ETYPE),NONE,NONE,{TOW_18,LOCK_ST_18},,,,,,,{120,470};
 ACTIVITY,,,,,,,,,,{30,32,,,};
 ASSIGN,{{LOCK18,BUSY}},1,,,,,,,,,{240,470};
 ACTIVITY,,,,,,,,,,{32,34,,,};
 CALLVSN,"OPT18","LCK18",,1,,,,,,,{330,470};
 ACTIVITY,,,,,,,,,,{34,36,,,};
 ASSIGN,{{LOCK18,LFREE}},2,,,,,,,,,{430,470};
 ACTIVITY,,,,"LOCK_ST_18",,,,,,{36,-1,,,480,420,560,420};
 ACTIVITY,,23.4/SPEED,,,,,,,,{36,39,,,};
 CALLVSN,"CLT","LCK18",,1,,,,,,,{560,470};
 ACTIVITY,,,,,,,,,,{39,41,,,};
 TERMINATE,INF,,,,,,,,,,{660,470};
LOCK_ST_18: QUEUE,4,0,INF,NONE,{TWO_SELECT_1},,,,,,{50,490};
 ;CONNECTOR{42,30}

Control statements:

GEN,,,,1,YES,YES;
LIMITS,,10,,10,10,10;
INITIALIZE,0.0,1440,YES,,NO;
EQUIVALENCE,{{TOW,1},{SIGNAL17,17},{SIGNAL18,18},{LFREE,0},{BUSY,1},{ARRIVAL,ATRIB[1]},{S
PEED,ATRIB[2]},{ID,LTRIB[1]},{NO_BARGE,LTRIB[2]},{ORIGIN,STRIB[1]},{DESTINATION,STRIB[2]}
,{LOCK17,LL[0]},{LOCK18,LL[1]}};
INTLC,{{LL[0],0},{LL[1],0}};
NET;
FIN;

Figure 6 - 16: Visual SLAM network and control statements for Lock# 17 and Lock# 18 simulation

model

 202

VSN,OPT18,,,,,,,,,,{60,20};
 ENTERVSN,,1,,,,,,,,,{60,120};
 ACTIVITY,,,NO_BARGE<=8,,,,,,,{2,5,,,60,70};
 ACTIVITY,,,,"OPT18_CALLVSN_1",,,,,,{2,8,,,60,170};
 CALLVSN,"SGL18","LCK18",{1,10,4,4.2},1,,,,,,,{150,70};
 ACTIVITY,,,,,,,,,,{5,7,,,};
 RETURNVSN,0.0,1,,,,,,,,,{280,70};
 OPT18_CALLVSN_1: CALLVSN,"DBL18","LCK18",{1,10,1,20,4,4.2},1,,,,,,,{150,170};
 ACTIVITY,,,,,,,,,,{8,10,,,};
 RETURNVSN,0.0,1,,,,,,,,,{280,170};
VSN,SGL18,{{LCKCAP,DOUBLEVAL, },{LCKTIME,DOUBLEVAL, },{SPEEDLCK,DOUBLEVAL,
},{DISTANCELCK,DOUBLEVAL, }},,,,,,,,,{70,30};
 RESOURCE,3,LK18,LCKCAP,{3},,,,,,,{70,70};
 ENTERVSN,,1,,,,,,,,,{80,120};
 ACTIVITY,,DISTANCELCK/SPEEDLCK,,,,,,,,{3,5,,,};
 AWAIT,3,{{LK18,1}},ALL,,NONE,1,,,,,{200,120};
 ACTIVITY,,LCKTIME,,,,,,,,{5,7,,,};
 FREE,{{LK18,1}},1,,,,,,,,,{310,120};
 ACTIVITY,,,,,,,,,,{7,9,,,};
 RETURNVSN,0.0,1,,,,,,,,,{390,120};
VSN,DBL18,{{LCKCAP,DOUBLEVAL,},{LCKTIME,DOUBLEVAL,},{WRENCHCAP,DOUBLEVAL,},{WRENCHTIME,DO
UBLEVAL,},{SPEEDLCK,DOUBLEVAL,},{DISTANCELCK,DOUBLEVAL,}},,,,,,,,,{60,30};
 RESOURCE,3,LK18,LCKCAP,{3},,,,,,,{60,70};
 RESOURCE,4,WR18,WRENCHCAP,{4},,,,,,,{60,100};
 ENTERVSN,,1,,,,,,,,,{70,160};
 ACTIVITY,,DISTANCELCK/SPEEDLCK,,,,,,,,{4,6,,,};
 AWAIT,3,{{LK18,1}},ALL,,NONE,1,,,,,{190,160};
 ACTIVITY,,LCKTIME,,,,,,,,{6,8,,,};
 AWAIT,4,{{WR18,1}},ALL,,NONE,1,,,,,{290,160};
 ACTIVITY,,WRENCHTIME,,,,,,,,{8,10,,,};
 FREE,{{WR18,1}},1,,,,,,,,,{390,160};
 ACTIVITY,,LCKTIME,,,,,,,,{10,12,,,};
 GOON,1,,,,,,,,,,{490,160};
 ACTIVITY,,LCKTIME,,,,,,,,{12,14,,,};
 FREE,{{LK18,1}},1,,,,,,,,,{550,160};
 ACTIVITY,,,,,,,,,,{14,16,,,};
 RETURNVSN,0.0,1,,,,,,,,,{630,160};

Figure 6 - 17: Extended Visual SLAM subnetwork statements for Lock# 17 and Lock# 18 simulation

model

Finally, Table 6-12 represent a sample of results for the expected outputs (as designed in

Termination Layer) from running the simulation model for 24 hours.

Table 6 - 12: The results from running the simulation model of Lock# 17 and Lock# 18

Lock# Average Time in System Average Lock Utilization Average Waiting Time

17 255.493 minutes 82% 222.211 minutes

18 306.833 minutes 55% 14.489 minutes

 203

6-4. Conclusions

 The case study of the lockage operations on MKARNS illustrates that the

methodology developed is effective in supporting the development of simulation models.

It leads the processes of simulation and modeling to the effectiveness and efficiency in

not only generating simulation models but also improving an individual’s thinking and

decision making. This means that the methodology provides such standard tools and

procedures that facilitate communication and collaboration among team members (or

anyone involving) and specify frameworks for the development. With these tools,

frameworks, and procedures, the individual is able to develop his/her own simulation

environment to support simulation studies related to a specific domain such as the

lockage operations. While effective, considering the restrictions of Visual SLAM and

AweSim and the limitations of the individual (e.g., skills and knowledge), this

methodology could be made more applicable through the development of user-friendly

interface tools that are beyond the scope of this research.

6-5. References

1. AweSim: Total Simulation Project Support. 1999. User’s guide. Version 3.0.

Symix Systems.

2. Pritsker, A. A. B. and J. J. O’Reilly. 1999. Simulation with Visual SLAM and

AweSim. 2nd ed. New York: John Wiley & Sons.

3. Setavoraphan, K. and F. H. Grant. 2008. Conceptual simulation modeling:

The structure of domain specific simulation environment. In Proceedings of

the 2008 Winter Simulation Conference. pp. 975-986.

 204

4. U.S. Army Corps of Engineers. (2008). Navigation. Retrieved May 15, 2008,

from http://www.swl.usace.army.mil/navigation/lock.html.

5. U.S. Army Corps of Engineers. (2008). Navigation. Retrieved May 15, 2008,

from

http://www.swl.usace.army.mil/PROJMGT/ArkNav.Final_Report/Chapter_1_

.doc.

6. Valentin, E. C. and A. Verbraeck. 2002. Guidelines for designing simulation

building blocks. In Proceedings of the 2002 Winter Simulation Conference,

ed. E. Yucesan, C. –H. Chen, J. L. Snowdon, and J. M. Charnes. pp. 563-571.

Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

7. Visual SLAM. 1997. Quick reference manual. Version 2.0. Pritsker

Corporation.

 205

CHAPTER 7

Conclusions and Future Research

This chapter is divided into general conclusions, comparisons, and

recommendations for future research.

7-1. General Conclusions

The purpose of this research study was to provide a robust and rigid methodology

that enhanced the current modeling and simulation (M&S) knowledge for building

domain specific simulation environments (DSSEs). Three critical issues were addressed

to outline a direction and framework for this dissertation in order to develop the

methodology, which were: the appropriateness of conceptual simulation models; the

semantics of transformational conceptual simulation models; and the expressiveness of

use of simulation models. To address these issues, it was necessary not only to handle

each of them individually but also to resolve all of them together, including their

interactions. The methodology is decomposed into a trilogy of methodologies

corresponding to each issue as well as integrating them into a powerful M&S tool

corresponding to the entire development of DSSEs.

 At the beginning of study, the center focus was on a DSSE approach that allowed

simulation developers to obtain both maintainability/sustainability in modeling and

controllability in simulation. Under the DSSE approach, simulation developers were able

to include the entire development processes for a DSSE – from designing its overall

structure through controlling the semantics and contents of its model constructs until

 206

implementing the model constructs for a specific use. Moreover, the approach was not

restrictively applied to only create a new simulation language environment or application.

On the other hand, it can potentially be embedded into an existing simulation language

environment or application – to build a reusable modeling environment that can solve

future design problems as they arise. With this significant potential, the DSSE approach

is a key solution reducing not only the gap between reality and simulation but also the

barriers created by existing simulation technologies.

 As the research progressed, the DSSE approach involved the development of

particular methodologies that addressed the key components of Conceptualization,

Documentation, and Translation. Each methodology provided relevant concepts and

techniques to resolve a specific issue. In fact, each individual methodology can either be

directly applied or be initially disregarded in the development of a DSSE. However, to

represent the relationship, completeness, and correctness of structure, content, and

context of simulation in the DSSE, an integration of these methodologies was intensively

needed. This aimed to increase the levels of syntactic and semantic

interoperability/composability of data and components from conceptualization through

implementation.

 The first step of developing a DSSE using the integrated methodology initiated

with conceptualization of a domain problem. In the chapter 3, Integrated Simulation

Acknowledge Procedure (ISAP) was introduced to be as a conceptual simulation

modeling (CSM) tool for capturing and transforming the concepts in a specific problem

domain into a set of descriptive processes, static and dynamic modeling components,

interactions, and rules/algorithms defined within a simulation modeling framework. The

 207

center idea of ISAP was to provide not only an appropriate framework that specified both

structural and behavioral characteristics of a DSSE but also a blueprint that gave designs

and instructions for the development process.

 Under the ISAP framework, a DSSE can be divided into three layers:

Initialization Layer (IL), Process Layer (PL), and Termination Layer (TL) to match

characteristics and architecture of general host simulation languages/environments.

Frames of references defining experimental conditions, input and output parameters, and

process descriptions and interactions were portrayed by a means of knowledge

representations using symbols, notation, and diagrams for these layers. Using knowledge

representations was a key to success in reducing or eliminating complexities in capturing

real world concepts, communicating between simulation developers and domain experts,

and mapping the concepts into simulation concepts/requirements. As a result, errors from

the conceptualization process can be minimized, which helped save time and cost for

simulation projects.

 Even though, in many cases, conceptual simulation models can be directly used as

construction guidelines for building simulation models, there always appeared a trouble

called “lost in translation” of, e.g., semantics and contents of simulation during

transformation. This became another focus of this dissertation on bridging a gap between

conceptualization and implementation. Chapter 4 was dedicated to study key factors and

concepts in transforming CSMs into executable simulation models. A finding of the study

showed that in order to have more expressive and meaningful representations for

transformation of CSMs at the level of implementation, semantics of model

composability and simulation interoperation must be clearly specified at the conceptual

 208

level. Accordingly, the integrated methodology was initially designed to support this

continuous development process by representing CSMs in a pattern of descriptive model

components and using natural language for descriptions – which can be transformed into

simulation-like-language statements. The statements, therefore, became a data bridge that

facilitated controlling and transferring semantics of model composability and simulation

interoperability between conceptualization and implementation.

 However, to represent both structural and behavioral characteristics of simulation

in an executable way, the simulation-like-language statements needed to be translated

into programmable-and-simulation documentation that computer/simulation systems can

really exchange and understand. Also, to avoid the difficulty in reading/understanding the

documentation, an intermediate simulation language was developed for contextualizing

those statements in a more readable form – by using the Semantic Web languages such as

XML and SRML. In a consequence, it was able to create contextualized documentation

that included details of modeling transformation and supported semantics/data exchange

between conceptualization and implementation. The documentation then can be either

instantly implemented or ontologically mapped onto a host simulation language or a

simulation runtime environment.

 Instant implementation of contextualized documentation seemed to be a critical

resolution for the “lost in translation” problem. This was because all descriptions and

functionalities specified in simulation contexts can initially be executed by a simulation

system without any modifications. Nevertheless, there was a need for building a specific

simulator that contained, e.g., runtime environment, database, event calendar, and

libraries of callable functions, to support the implementation process, which was an

 209

unavoidable time-and-cost consuming activity. As a result, the resolution was switched to

focus on ontology mapping, described in Chapter 5.

 Having been developed by using the Semantic Web languages, this type of

contextualized documentation provided essential aspects of both object-orientation and

ontology. This allowed not only delivering unambiguous meaning of data of model

transformation but also representing semantic behavior and structure of data in a set of

component modules – that matched the common architecture of any host simulation

languages/environments. As a result, there was a possibility to translate these modules

into a set of simulation building blocks, creating a pattern and framework for mapping in

a sense of semantic similarities. With assistance of ontology mapping, most of the

conceptual modules specified in the contextualized documentation can be mapped onto

basic simulation components and be composed into simulation building blocks on a host

simulation language/environment.

 The integrated methodology was applied to build a DSSE for an inland waterway

(lockage) operation problem on Visual SLAM and AweSim, demonstrated in Chapter 6

The main reason for choosing this host simulation language/environment was that its

model components can be translated into network and control statements when

implementation. Also, its open-ended architecture allowed us to add specific components

to the simulation environment by using Visual Basic and C/C++ programming language

and to develop simulation building blocks by using the features of visual subnetworks

(VSNs). All these characteristics, including other integrating capabilities of AweSim,

e.g., to store, retrieve, browse, and communicate with externally written software

 210

applications, helped facilitate us in ontology mapping as well as building a set of libraries

of VSNs to be reused in the DSSE.

 The outcomes from exploiting the integrated methodology for the development of

DSSEs returned to us in many beneficial aspects. First, it helped improve both individual

and team’s thinking and decision making process in solving a variety of real world

problems, which CSM was the critical supporting mechanism in managing complexities

and communicating concepts. Second, it generated standard tools, frameworks, and

procedures that an individual can apply to develop his/her own DSSE corresponding to

resolve specific problems. This also helped enhance the capability of the existing host

simulation language/environment such as Visual SLAM and AweSim to be more

supportive for alternative simulation modeling. Finally, it led simulation developers to

focus more on optimizing performance of what simulation applications available in hands

rather than looking for new replacements. This study showed us that methodology was

more important than technology, and it just needed to be appropriately embedded into

one of the right technologies. If it can be done so, not only individuals but also

organizations can increase cost savings and confidence in applying simulation for

problem solving.

 The advantages mentioned above seemed to be the extraordinary results that

might create impacts to the M&S society in terms of either individuals or organizations.

However, the true contribution of this research study was a state-of-the-art methodology

used to build simulation applications that are self documenting, easy to expand, and easy

to use by users that go beyond the model builder, as simulation application is today. The

product can be either a one-time-use simulation application (model) or a reusable

 211

simulation modeling environment. In addition, this dissertation aimed to help improve the

quality of simulation training and education by illustrating the essential architecture and

behavior of simulation at conceptual levels which can reduce/eliminate difficulties in

learning and complexities in building simulation. Prospect or current simulation learners,

therefore, were less reluctant to learn/use simulation to solve their problems.

Nevertheless, the methodology seemed not to be the ultimate weapon breaking the

barriers between reality and simulation world because of some restrictions created by the

methodology itself, simulation technologies, and users’ skills and knowledge. Room for

improvement in many aspects, thus, was still opened for the future work.

7-2. Comparison with Current Methods

 It would be useful to consider how the proposed methodology works when

compared to standard approaches. This is, however, difficult, since the proposed

methodology does not have the advanced user interface tools which are typically

available and influence model development productivity. We can, however, consider

some general comparison characteristics to get an idea of how productivity can be

enhanced when applying the new technology.

To clarify the characteristics the proposed methodology possesses in breaking

through the limitations of modeling and simulation created by the current approaches, the

comparison can be divided into two categories: objective and subjective comparison.

Objective comparison requires numeric measurements, whereas subjective comparison

needs reasonable descriptions. Since we do not have details regarging model

 212

development productivity to be measured, the following discussion, thus, is given in

subjective terms for comparison.

 For decades, domain specific simulation applications/environments have been

strictly developed based on standard approaches similar to the conventional software

engineering processes, which can be categorized into two main streams: pure

programming and user-interface (e.g., nodes/blocks, tools) application. In either way of

creation, they both share one common – “sketch-to-ash” – framework. This means each

project originates from raw ideas which later are transformed into thousands of

programming-code patterns to create a complete domain specific simulation

application/environment for solving only one particular problem. Sooner or later the

product/software becomes obsolete because editing/configuring those programming

codes to match new requirements is a too complicated task and too risky investment for

time and budget.

However, the difficulty in programming is not a big concern for this comparison.

We rather focus on the differences in terms of the key modeling and simulation issues

that make impacts to both development and application of domain specific simulation.

Table 7- 1: Subjective comparison between integrated and standard methodology

Issues Integrated Methodology Standard Methodology
Controllability : Moderate control if built on existing

simulation host language/environment
: 100% control plus appropriate design if
newly built

: 100% control, but probably non-applicable

Reusability : Organized processes for modeling
: Retrievable components for remodeling

: Ad hoc
: Unorganized processes for modeling
: Required expert knowledge for remodeling

Maintainability : Well-documented for future reference
: Public accessed for maintenance

: Non-reference
: Private accessed for maintenance

Composability : Semantic composition
: Easy configuration

: Often syntactic composition
: Complicated configuration

Interoperability : Open platform for implementation : Limited platform for implementation

 213

As shown in Table 7-1, five issues that have been seriously discussed through this

dissertation are still determined to be critical characteristics for this subjective

comparison. This aims to illustrate how the integrated methodology has enhanced the

standard approaches.

 Under the integrated methodology, simulation developers are encouraged to

develop domain specific simulation on an existing simulation host language/environment,

which could limit controllability in simulation. Unlike the standard approaches, every

line of programming codes are written to fully support simulation controls. However, if

apply the integrated methodology for developing a new domain specific simulation

application/environment, what the simulation developers would obtain is not only 100%

of simulation controllability but also the appropriateness in designing simulation controls.

This is because domain experts are allowed to involve with the simulation developers

through the whole development process, in which a mutual understanding is created –

that keeps the simulation development being controllable and applicable. Without sharing

perspectives from both sides, the power of simulation controllability could be seemingly

useless.

 Next, reusability has become one of the most beneficial characteristics provided

by the integrated methodology. It offers well-organized processes for modeling

simulation components. Also, the idea of simulation block building helps the simulation

developers to be able to design architecture and patterns for configuring the simulation

components to be reusable and retrievable for remodeling. Meantime, having

unorganized modeling processes, the standard approaches seems to be ad hoc when

 214

modeling reusable simulation components. This becomes a too specific job that requires

expert knowledge for remodeling.

 For the maintenance of domain specific simulation, the integrated methodology

enforces the simulation developers to generate well-documented information that anyone

can use as reference. This makes the maintenance job easier and more precise. Unlikely,

the standard approaches are still relied on personal responsibility in maintaining

individual simulation projects. As a result, maintenance becomes a high cost and time

consuming activity.

 In applicable terms, the integrated methodology restrictedly specifies the

requirements for composing simulation components to create high productivity for

simulation implementation. The result is that it can reduce or eliminate numerous

compositions of the simulation components that do not give any semantics or solutions.

With strict control and management of composition, configuration of composed

simulation components can easily be performed. On the other hand, ignorance in

semantic composition is often allowed to occur in the simulation products created by the

standard approaches. Because of some limitations of programming languages or skills, it

is difficult to avoid having syntactic composition to accomplish a task. This, later, can

lead to troubles in configuration.

 Finally, the most obvious characteristic that the integrated methodology has

brought to the modeling and simulation community is the ability to build domain specific

simulation on any platform of programming languages, host simulation

languages/environments, or technologies. Even though the integrated methodology has

been only applied with Visual SLAM and AweSim, its concepts and processes are not

 215

limited to be applied for other implementation platforms. This is because ontological

mapping plays a key role in simulation interoperation, which cannot be found in the

standard approaches.

 Though it seems to be too subjective for comparison, if carefully determine, it is

found out that the integrated methodology shows numerous characteristics that benefit

the ways of modeling and simulation – which lacks in today’s approaches.

7-3. Future Work

Even though the framework of this research study was designed based on the

underlying convergent concepts of Software Engineering (SE) and Knowledge

Engineering (KE), the integrated methodology had only capacity for structuring and

displaying information as formalisms of knowledge representations. When considering

the development of a practical and user-friendly application, additional research is

recommended to reach the level necessary to deliver a complete M&S tool corresponding

to the requirements of non-expert simulation users. Additional research is suggested to

address the following:

• The process could be more efficient by the development of graphical interface

software to create graphical diagrams, notation, symbols, and tables, including

XML and JavaScript documentation;

• An integrated software system would be useful which multi software applications

such as Microsoft Office, Visual Studios, and AweSim, which creates and

maintains work files and verifies the correctness of information; and

 216

• Development of mechanisms facilitating connection, display, and storage for

knowledge representations, documentation, model components, and references to

be developed as knowledgebase for either current or prospect simulation projects.

These development topics will bring the integrated methodology to life and to

make it more easily used by engineers, basically research in software engineering. SE

could give us the power to enhance our current capability in representing the ideas and

concepts to become more realistic and more practical terms of applications. In addition,

SE could open space for others in different study areas to share their knowledge and

involve with the software development processes to create better solutions. Under the SE

umbrella, it allows us to come up with a three-phase development program that lays out

perspectives and guidelines for the future works.

7-3-1. Phase I: User-friendly Software

 The main task in this phase is to develop software that can assist simulation

developers to shorten processing time in creating knowledge representations and

documentation for a specific simulation project. Also, the software application could

allow them to store their works into categories which are ready to be called and restored

for modifications. To make a user-friendly software application, it is recommended to

build it in a window-type format that can be run on Microsoft Windows or Mac OS. This

application should provide a graphical interface that contains, e.g., function tools, icons,

and display areas, for specific tasking modes such as building diagrams for Initial Layer,

writing XML and JavaScript documentation, or updating callable user-function libraries.

 217

Basically, this software application could be developed as an environment similar

to, for example, Rhapsody C++® software by I-Logic Inc. which is used to support the

software development using UML, C++, and Java. This means that the software

environment could be designed to support not only basic functions but also programming

compilers. Other features, moreover, could be added if needed, for example, database

components and import/export links. The goal is to make software simple as possible for

every level of users to develop knowledge representations and documentation effectively

and efficiently.

7-3-2. Phase II: Embedded Simulation Software

 The product from Phase I could resolve the difficulties in building knowledge

representations and documentation. The next step is to embed the software application

into a simulation application such as AweSim, which makes it to be one of the

components (e.g., User Data, User Inserts, or Notes) displayed in the AweSim executive

window. After embedded, it should be easier for simulation developers to call references

from the (software) component for selecting and mapping network model components

available in AweSim. Furthermore, it could help save time creating historical records of

selection, mapping, and creation (in case of no match) for being used as future references.

The goal of this embedded simulation software is to provide simulation developers

convenience and accuracy in transferring conceptualization into simulation.

 218

7-3-3. Phase III: Automation

 The process of selecting and mapping in the embedded simulation software could

still be considered a time-consuming activity. With the SE capabilities, it is possible to go

beyond the current capacity of the embedded simulation software. Automation could be

added as a mechanism that automatically transforms knowledge representations into

XML and JavaScript documentation and translates documentation into model

components. Also, it could provide recommendations for mapping. However, automation

requires sophisticated algorithms to perform automatic transformation, translation, and

mapping, which could create errors and delays in processing and analyzing results. The

goal of automation is to shorten time for testing and verifying conceptualization in

simulation.

 This three-phase development program provides simulation developers a

spectacular insight and inspiration to enhance the capabilities of simulation we have

today and to go beyond the boundaries of any M&S methodologies. Finally, the

integrated methodology developed in this research study is expected to be a strong

stepping stone that leads both simulation application and education to be implemented in

higher levels.

