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ABSTRACT 

In the modeling and simulation (M&S) arena, simulation developers have been exploring 

the concepts that facilitate modeling real world elements using appropriate simulation 

artifacts within the context of the domain of the application. However, there are some 

critical issues that distort their effectiveness and efficiency. The first issue is the quantity 

and quality of assumptions and constraints made during the M&S development, 

concerning the completeness of simulation models to represent reality. The second issue 

is the levels of model composability and simulation interoperability, affecting the 

possibility of data exchange and reusability. The third issue is development of an 

effective simulation-based environment such that the implementation of the concepts 

effectively implemented. Thus, this research study aims to develop a methodology that 

addresses these issues to improve the development of simulation models and the creation 

of simulation modeling environments particular to specific domains. Conceptual 

simulation modeling (CSM), model transformation, and domain specific simulation 

environment (DSSE) create the foundations for this methodology to bridge the gap 

between reality and simulation.  
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CHAPTER 1 

Introduction 

 

1-1. Overview of Research 

In general practice, simulation modeling is performed as a development process 

focusing on design and experimentation of models on a computer. Often, the leading role 

in defining specifications and requirements of the development process is weighed on the 

side of the terms of simulation (e.g., languages, environments, and applications) rather 

than modeling (e.g., concepts, formalisms, and representations). This is because modeling 

is still viewed as more of an art than science, whereas simulation is considered as a solid 

framework – that puts the development at ease with controllability (i.e., a property of a 

system to be controlled by manipulating the initial state/inputs to the system to obtain the 

desired state/outputs over a time interval). However, in many cases, the simulation 

framework causes unnecessary constraints in representing the true characteristics and 

semantics of reality – which reduces maintainability/sustainability (i.e., a property of a 

system or its components/attributes to be reused or modified to adapt to a changed 

environment) of the simulation models.  

In the Modeling and Simulation (M&S) arena, the balance between controllability 

and maintainability/sustainability is very crucial – in bridging the gap between reality and 

simulation – when conducting a simulation modeling study. To achieve the goal, a 

modeling framework needs to be independently developed as well as potentially mapped 

into the simulation framework. The main purpose is to model real world elements by 

using appropriate simulation artifacts effectively and efficiently. However, since the real 
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world elements/systems continued to grow in size and complexity, the need for better 

procedures and techniques for simulation modeling is more apparent. This research study, 

therefore, is focused on three critical issues that lay out the foundations for improving the 

future of M&S development.  

The first issue is the quantity and quality of assumptions and constraints made 

during the M&S development, concerning the completeness of simulation models to 

represent reality. From a simulation perspective, this issue is focused on how well 

information and knowledge in reality are conceptualized and transformed into simulation 

modeling concepts. To facilitate the conceptualization and transformation of concepts 

from one domain to another, the approach of conceptual simulation modeling (CSM) is 

critical. CSM is also determined either as a mechanism capturing the structural and 

behavioral characteristics of a problem domain or as an interface providing knowledge 

representations for cross-domain communication – which results in creating a modeling 

framework for a problem domain.  

It is important to have maintainability/sustainability in modeling and gain 

controllability in simulation. The modeling framework retrieved from CSM has become a 

key to success. This is because the modeling framework is not only a process for parsing 

the boundaries, requirements, and elements from reality to simulation but also a blueprint 

for specifying the structures and environments for a simulation framework corresponding 

to the problem domain. As a result, the potential of mapping between these frameworks 

exists – which leads to another agenda lying within the first issue.  

The completeness of simulation models to represent reality is an ideal concept to 

bridge the gap between reality and simulation. The more positive the mapping, the more 
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complete the simulation models. It follows that the next step is to develop a domain 

specific simulation environment (DSSE). The DSSE can be viewed as an overlapping 

framework of the modeling and simulation aspects, supporting using simulation artifacts 

to model real world elements for such a specific problem domain. This also enables the 

satisfactory of both controllability and maintainability/sustainability for the simulation 

models. However, developing a DSSE from a scratch is indeed difficult, and probably 

leads to the lost in translation of concepts from the target domain to the simulation 

domain – which distorts its effectiveness and efficiency. It, thus, requires a documented 

guideline to structure a DSSE. In this research study, the CSM approach is applied to 

develop such documentation providing knowledge representations that describe the 

structural and behavioral characteristics of the problem domain in terms of both real 

world and simulation architecture and context. This aims not only to facilitate the 

development of DSSEs but also to resolve the first issue. 

The second issue is the levels of model composability and simulation 

interoperability, affecting the possibility of reusability and data exchange of components. 

This issue is a consequence from retrieving a conceptual simulation model. Practically, 

the conceptual simulation model is unable to be implemented directly. This is because the 

conceptual simulation model provides documentation of the model characteristics but is 

not in an executable form. It, thus, still needs to be transformed from conceptual 

components into executable components.  

The transformation of conceptual simulation models is the process of data 

exchange between the sources and targets, whose semantics are controlled by the levels 

of model composability (for conceptualization) and simulation interoperability (for 
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implementation). Failure in transferring true semantics of the conceptual simulation 

models to the implementation details costly affect the development of DSSEs, including 

general simulation modeling studies. The impact does not mean only errors in simulation 

functionalities but infeasibilities in reusing those for future simulation projects. 

Therefore, the conceptual simulation models need to be transformed into contextualized 

documentation, so that their semantics of structural and behavioral contents can be 

represented within a simulation context that is understandable and accessible by human 

and computer. This is to ensure that the simulation contents targeting for implementation 

are still specified within the modeling framework.  

The third issue is the simulation-based environment that is the implementation of 

the concepts developed. This issue is also considered as a deterministic problem when 

having more than one choice of selection for mapping between conceptualization and 

simulation. In general, a simulation model can be built on either a generic (e.g., 

commercial software like Arena, Visual SLAM, etc.) or a specific (e.g., SNAP) 

simulation environment/host simulation language. They both contain and take advantages 

and disadvantages from each other. Moreover, the selection is also depended on an 

individual’s experience and expertise in simulation modeling and those choices – which 

results in the expressiveness of use.  

This issue inspires this research study to develop a methodology that facilitates 

the mapping of concepts between two domains for implementation – at minimum 

development cost. The methodology aims to develop a DSSE using a generic existing 

simulation environment/host simulation language. The core idea behind the methodology 

is that the individual can enforce his/her own modeling framework to match the 
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requirements of the simulation environment/language (aka. framework) it is plugged into 

– by normalizing them into a uniform representation. Obviously, most simulation 

environments/languages are developed based on object orientation, which is similar to the 

characteristics of the modeling framework developed by using CSM. Thus, an object is 

used in common for their representation level. 

Based on the object-oriented approach, it allows the individual to exploit the 

aspects of an object to develop a simulation building block that represents a functionality 

corresponding to both reality and simulation. Simulation building blocks are then 

collected in libraries and linked together for testing simulation studies. Having a 

reasonable number of simulation building block libraries, after creating, editing, and 

reusing them for a period of time, the individual is able to establish his/her own DSSE on 

the existing simulation environment/language for resolving similar problems within the 

domain. Figure 1-1 illustrates the overview of using the methodology for the 

development of simulation building blocks to create a DSSE. The detailed explanation 

will be given in the following chapters of this dissertation. 

 

Overview 

Conceptual Simulation 
Model

Contextualized 
Documentation

Simulation 
Building Block

Transformation Mapping

Determination

 
Figure 1 - 1: An overview of the methodology 
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1-2. Outline of the Dissertation 

This dissertation is written under a hybrid format that consists of a collection of 

three stand-alone papers describing the methodologies critical for the entire research 

study and four standard-written chapters providing general knowledge. One of the papers 

has been published in a referee-reviewed conference, while the rest will be submitted to 

publications in this area. This dissertation is organized as follows. Chapter 2 provides a 

thorough review of related literature that is needed for understanding the core concepts of 

this dissertation. Chapter 3 presents the methodology of conceptual simulation modeling 

to structure a domain specific simulation environment. Chapter 4 presents the 

methodology of transforming a conceptual simulation model into contextualized 

documentation. Chapter 5 presents the methodology of mapping between 

conceptualization and simulation. Chapter 6 provides a case study to demonstrate the 

implementation of the methodologies developed in this dissertation onto a real world 

application. Chapter 7 presents the general conclusions that can be drawn from this 

research study and offers recommendations for further research.  
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CHAPTER 2  

Literature Review 

 

 This chapter is designed to be a general overview to summarize the relevant 

literature that explains the basic concepts and approaches used throughout this research 

study – to layout a strong foundation for advanced studies (in the following chapters). In 

addition to Chapter 3 – 5, each chapter also includes a section for literature review to 

provide a background of study that leads to the development processes for each 

methodology. 

 

2-1. Simulation 

A system is defined as a collection of items that are joined together to characterize 

interaction or interdependence toward the accomplishment of study or interest (Banks 

and Carson 1984; Graham et al. 2000). Law (2007) states that “most real-world systems 

are too complex to allow realistic models to be evaluated analytically, and these models 

must be studied by means of simulation.” Simulation is the process of designing a 

mathematical-logical model that represents a real-world system by imitating the system’s 

characteristics, often over time, and experimenting with this model on a computer 

(Kelton et al. 2007; Pritsker and O’Reilly 1999). Essentially, computer simulation is seen 

as a reliable and effective decision-support tool that decision makers use to “evaluate a 

system numerically and provide data to estimate the desired true characteristics of the 

system” (Law 2007). This allows decision makers to assess a variety of what-if scenarios 
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to help enhance analysis of the entire system, without having to build, disrupting, and 

destroying the system (Manivannan 1998; Pritsker and O’Reilly 1999).  

According to Law (2007), from simulation modeling world view, models of 

systems can be classified into three dimensions: static/dynamic; deterministic/stochastic; 

and continuous/discrete. A static simulation model represents a system at a particular 

time, while a dynamic simulation model represents a system involving over time. A 

simulation model is called deterministic when it does not contain any probabilistic (i.e., 

random) components. However, many systems are modeled as having at least some 

random input components, and these create stochastic simulation models. A discrete 

simulation occurs when the dependent variables change only at specified points in 

simulated time, referred to as event times, whereas in continuous simulation the 

dependent variables change continuously over simulated time. This dissertation is 

focused on a methodology that facilitates building dynamic, stochastic and discrete-event 

simulation models for real world systems.  

In the literature, different approaches have been proposed to build simulation 

models focused on the main operational problems, for instance, queuing and bottleneck 

problems, resource allocation and scheduling techniques, equipment utilization, 

throughput, and operational efficiency in the domain systems. These simulation models 

can be developed from a sequence of operational processes, using different simulation 

languages (i.e., MODSIM II, SIMAN, and Visual SLAM) and programming languages 

(i.e., Visual Basic, C, and C++). Usually, simulation models cover both the physical 

resources (i.e., cranes and vehicles) and the components for control and strategies, 
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providing a testing environment for algorithms and systems evaluation (Hartmann 2004). 

Consequently, simulation projects can be carried out for a variety of specific purposes.  

As discussed the literature, a simulation model must be reusable, flexible, and 

extendable to support rapid changes and improved level of detail concerning the 

operational behavior of the real world systems. To achieve that purpose, an object-

oriented modeling approach is used to facilitate the development of simulation models. 

The structural and behavioral characteristics found in the system can be viewed as an 

object. Each object contains necessary features that support data abstraction, 

encapsulation (hiding information), inheritance, and dynamic binding (Rumbaugh et al. 

1991; David 1996). These features provide modularity, composability, and reusability 

essential in developing complex systems and in particular simulation models. The object-

oriented approach has been applied in modeling and simulating complex domain systems 

such as a general port container terminal (Yun and Choi 1999) and the intermodal 

exchange points in the transportation network (Mathew et al. 2005). 

The object-oriented modeling approach has also been used as a concrete 

foundation for further development of simulation modeling. The standard programming 

languages, such as C++ and JAVA, provide a powerful framework that greatly facilitates 

the implementation of object-oriented design and modeling methodology and its 

capability for creating flexible, modular, and reusable simulation-related extensions. 

Healy and Kilgore (1998) introduce SilkTM, a JAVA-based simulation, which represents a 

unique combination of process-oriented modeling constructs and the object-oriented 

features. SilkTM provides the power and flexibility to program within industry standard 

development environments. In addition, extending the object-oriented modeling 
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capabilities with a standard programming language also offers the design capabilities for 

domain-specific simulation modeling (Ferayorni and Sarjoughian 2007).  

 

2-2. Structure of the Research 

 The main focus of this research study is to develop a methodology that is capable 

of generalizing and accessing the structural and behavioral characteristics of the real 

world systems to support the development of reusable and sustainable simulation models. 

Conceptual modeling and domain specific simulation environments are determined as the 

key approaches to lay out the backbone structure for developing the methodology. 

 

2-2-1. Conceptual Modeling 

 “The conceptual model is a non-software specific description of the simulation 

model that is to be developed, describing the objectives, inputs, outputs, content, 

assumptions and simplifications of the model” (Robinson 2004). Pace (2000) also defines 

a conceptual model as “a simulation developer’s way of translating modeling 

requirements… into a detailed design framework…, from which the software that will 

make up the simulation can be built.” Furthermore, a summary of some key facets of 

conceptual modeling and the definition of the definition of a conceptual model stated by 

Robinson (2006) are as follows: 

• Conceptual modeling is about transforming a problem situation into model 

requirements to define what is going to be modeled and how; 

• Conceptual modeling is iterative and repetitive throughout a modeling 

study; 
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• A conceptual model is a simplified representation of the real system;  

• A conceptual model is independent of the model code or software, 

whereas model design includes both conceptual model and the design of 

the code; and 

• The collaboration between the client (i.e., person for whom the model is 

being built) and the modeler is needed in conceptual modeling. 

 

In brief, conceptual modeling is seen as an approach used to translate the concepts from 

the application domain into the simulation domain. This approach assists the model 

developers in capturing the structural and behavioral characteristics of the domain by 

developing logical and descriptive representations which create an interface representing 

cross-domain communication between the application domain and the simulation domain. 

 Zhou et al. (2006) state that “conceptual modeling (CM) has been recognized as a 

critical step that directly affects the quality and efficiency of simulation projects. Good 

CM practice significantly reduces communication barriers, shorten project time, and 

improve the quality of simulation.” A conceptual model can be described by using 

knowledge representation notations such as semantic/logical graphs, where the nodes 

represent concepts (e.g., activities and states), and the arcs represent relationships among 

concepts (Cyre 1999; Zhou et al. 2004). Nonetheless, there are few methods/tools 

available to assist in the conceptual modeling phase.  

Heavey and Ryan (2006) carry out a selective review of a number of current 

process modeling methods/tools and categorize those into: formal methods and 

descriptive methods. Formal methods, such as Petri Nets, Discrete Event System 
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Specification (DEVS), and State Charts, provide a formal basis and numerous software 

implementations of these methods. In contrast, descriptive methods have little formal 

basis and are primarily descriptive software implementations including IDEF3, Integrated 

Enterprise Modeling (IEM), CIMOSA, and UML State Charts. However, none of these 

methods/tools are advances sufficiently to support the development of model constructs 

for a domain specific simulation environment. This is because these current process 

modeling methods/tools can only implement domain conceptualization but not the 

simulation implementation.  

 Setavoraphan (2005) developed a simulation modeling tool based on object-

oriented modeling approach and IDEF3 method. This tool represents both the process-

oriented view of the target domain and modeling elements (e.g., attribute and operation 

aspects) required for the simulation implementation and to create a simulation modeling 

instance for a particular application domain. Further, each simulation modeling instance 

is able to deploy other object-oriented features such as polymorphism (e.g., methods and 

procedures), aggregation (e.g., a-part-of relationship for decomposition/specialization), 

and generalization (e.g., composition). These features provide not only the different 

levels of representations of the application domain but also the reusability and flexibility 

of the models, which are needed for developing model constructs used in a domain 

specific simulation environment. Thus, the simulation modeling instance plays as a key 

role in developing model constructs in this research study.  
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2-2-2. Domain Specific Simulation Environment 

 The same kind of questions exists in the characterization of the operations of a 

system within a particular domain, and decision makers must answer these over and over 

again. Verbraeck and Valentin (2002) observe that “often, however, new simulation 

models are built for each question, if possible copying some parts of previous models. 

Structured reuse of simulation components is rarely seen.” In most generic discrete-event 

simulation environments, such as Arena, Promodel, and Automod, model developers 

must translate their domain specific requirements into the general modeling components 

such as queues and resources (Valentin and Verbraeck 2005). To facilitate the 

development of models in a certain domain, domain-specific simulation languages may 

be used to create simulation model development environments which provide model 

constructs that represent domain specific system elements which are familiar to the 

analyst.  

“The idea behind domain-specific modeling languages is their ability to define 

the relationships between concepts in a domain and specify key semantics and constraints 

associated with those domain concepts” (Ferayorni and Sarjoughian 2007). The concepts 

in the domain come from the knowledge acquisition processes which can be literature 

review, domain expert interviews, and actual experience in the field of interest. The 

concepts are categorized into two groups: basic and special concepts (Zhou et al. 2004). 

Basic concepts are shared by all models of the domain and belong to the domain of 

simulation knowledge. Special concepts are used to define and describe the unique 

characteristics of different application systems, associating with particular domain 

knowledge. As well, the key semantics that provide modeling elements and the 
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constraints that set the boundaries in model are retrieved from the knowledge acquisition 

process and translated into the simulation concepts.  

Later, these simulation concepts can be further developed into a domain specific 

simulation language – which generates a modeling tool for resolving specific and 

repeated problems. The modeling tool, at a certain mature level of reusability, 

sustainability, and efficiency, then becomes the core element of the architecture defining 

and specifying requirements and constraints for designing a domain specific simulation 

environment. A domain specific simulation language is as much concerned with 

programming, whereas a domain specific simulation environment is considered as much 

of a system that facilitates programming, running, and storing model constructs. Keep in 

mind that a simulation modeling language is the foundation of the development of a 

simulation environment, so understanding the characteristics of a simulation modeling 

language is indeed critical – prior to the development of a domain specific simulation 

environment. However, it is not such necessary to always develop a specific simulation 

environment to support the domain specific simulation language. This is because the 

language can be constructed in a simple programming-language environment such as 

FORTRAN or Visual BASIC.  

The development of domain specific simulation languages/environments has been 

rare but instances have been seen over the years. Grant and Pritsker (1974) constructed 

the Electroplating Simulation Program (ESP) as a domain specific simulation modeling 

language for the evaluation of production, waste discharge and housekeeping aspects of 

existing electroplating processes and also for the evaluation of potential changes in those 

plating processes for improved pollution control. The Safeguards Network Analysis 
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Procedure (SNAP) is another example of a domain specific simulation 

language/environment used for evaluating the resistance of a fixed-site safeguards system 

to sabotage or theft (Miner and Grant 1978). However, due to not only the limitations of 

the domains themselves but also the requirements for advanced simulation skills, it seems 

difficult to draw model developers’ interests to building a domain specific simulation 

language/environment – that is not only time consuming but perhaps one-time use.  

There have been several panel discussions, e.g., the Winter Simulation 

Conferences, mentioning the use of domain specific simulation languages/environments 

as the next step for discrete event simulation research. According to Valentin and 

Verbraeck (2005), they conclude the advantages of applying the approach as follows: 

• Problem owners have a better understanding of the simulation model 

because the concepts of the conceptual model can be recognized in the 

simulation; 

• New simulation experiments are easy to generate; 

• The simulation model is easier to validate because only the applicability of 

the model constructs needs to be checked and not the inner-workings; and 

• The simulation model needs less instances of model constructs, with 

improved overview and model management.  

 

These advantages support and encourage modern model developers to develop simulation 

models using model constructs that represent domain specific system elements, which 

allow them to carry out many simulation projects for common but complicated domains. 

For example, a domain specific simulation environment for the Automatic Guided 
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Vehicles (AGVs) system used between the airport Schiphol and the flower auction 

Aalsmeer in the Netherlands has been developed to test an advanced control system 

called TRACES, for the design of the terminals, the control mechanisms, and the AGVs 

(Heijden et al. 2002). For airport terminal modeling, a domain specific simulation 

environment can also be built to provide model constructs for different simulation studies 

(Verbraeck and Valentin 2002).  

The dissertation of Saanen (2004) also shows that a domain specific simulation 

environment facilitates the model developer in instantiating and parameterizing particular 

types of elements related to container terminal operations, such as container cranes, for 

the simulation model instead of developing the detailed behavior of each crane. It is 

clearly seen that the simulation modeling elements can be reused and implemented for 

other specific projects under the certain domain. This helps the simulation model 

developer or user shorten time consuming and reduce constraints for building a new 

simulation model. 

Although “domain specific simulation environments are often incomplete, hard to 

maintain, and model developers need to overcome initial low trust for these 

environments” (Valentin and Verbraeck 2005), the capabilities of domain specific 

simulation modeling language to provide environments of reusability and faster model 

development and experimentation are still crucial. To address these advantages, domain 

specific simulation environments need to match a set of requirements suggested by 

Valentin and Verbraeck (2005), as follows:  
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a) Requirements for domain specific simulation environments:  

• Usable within several simulation studies; A domain specific simulation 

environment should not be used only in one case, but it should be suitable 

for easily developing simulation models for several simulation studies. 

• Usable at different levels of abstraction, or detail; A domain specific 

simulation environment should provide several model constructs available 

to represent one system element at different levels of abstraction by 

representing different complexities. 

• Clearly define the scope of applicability of the domain specific 

environment so the user knows when to use and when not to use; 

Adjusting the existing model constructs or developing new constructs 

might be needed when the domain specific simulation environment is not 

suited for use for a certain problem.  

• Easily extendable with new model constructs; New model constructs can 

be added to a domain specific simulation environment to represent system 

elements at a different level of abstraction/detail. 

• Support material to gain trust; Sufficient support material, e.g., a user 

manual, online documentation, etc. should be available to show the users 

of the domain specific simulation environment how system elements are to 

be applied in developing model details. 

• Additional analysis tools or instruments to support understanding of the 

outcomes of simulation models; Output analysis tools should be provided 

to enable model developers to analyze and observe the outcome of their 
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simulation model that represents their system effective. These should 

include statistical analysis as well as graphical analysis tools. 

• Ability to easily build simulation models that are understandable for 

problem owners and show valid behavior; A domain specific simulation 

environment should consist of sufficient model constructs that can 

represent the various system elements in a way understandable and easily 

used by problem owner.  

 

b) Requirements for model constructs in domain specific simulation 

environments; 

• Follow basic rules of systems thinking and software engineering; The 

development of model constructs of domain specific simulation 

environments should follow the concepts of decomposition and design of 

interfaces.  

• User interface for parameterization in terminology of problem owner and 

problem domain; The user interfaces should contain terms that the 

problem owner is used to and allow him/her to set parameters of the model 

construct via the user interfaces.  

• Not too much functionality in one model construct; Performance 

indicators, parameters, and functionalities of a model construct should be 

set appropriately and not be overly complex. 

• Performance indicators that make sense to problem owners; The model 

constructs should provide performance indicators that reflect the interests 
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of the problem owners rather than just default statistics – to enable them to 

trust the model and its outcomes.  

• Model constructs separated for physical (the existing or planned system) 

and control system (the logical elements which have no physical existence 

and also control model execution details) elements; This separation makes 

the model constructs easier to use and more flexible. 

• Generate errors and warnings for model developers during model 

development; This support is to give guidance if a model developer is 

doing things that are not entitled or matching with the model constructs. 

The model development process using domain specific environments will 

automatically generate documentation that defines the model and makes it 

easy to expand later, perhaps by other developers. 

 

c) Requirements for supporting the design of domain specific simulation 

environments;  

• Support developers of domain specific simulation environments; The 

design methodology should not make the process in building a domain 

specific simulation environment unnecessarily difficult for the developers. 

• Provide insight into the complexity of the domain for problem owners and 

future model developers; Knowledge acquisition is needed for developers 

to receive input from a problem owner to develop model constructs that 

can be used in several simulation studies and represent system elements 

valid and understandable.  
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• Provide insight in required data/information/system knowledge; All kinds 

of required domain knowledge should be provided by the problem owners 

to developer in descriptive details. Metadata should be included in the 

model development to enable self-documentation and future expansion. 

• Provide definition and overview of deliverables; Deliverables of the 

developer of the domain specific simulation environment during the 

development process will enable trust and understanding between the 

problem owners and model developers in the design of the domain 

specific simulation environment.   

 

d) Guidelines for use of domain specific simulation environment.  

• Make sure that all steps of a simulation study are performed; It is 

important to perform all process steps (i.e., formulate problem, specify 

model, build model, simulate model, and use model) of a full simulation 

study for it to be valid. 

• Pay attention to trust of model developers in the domain specific 

simulation environment; Ensure that the model constructs of the domain 

specific simulation environment match with the problem within the 

domain. 

• Evaluate the selection of model constructs; Specifications should be 

provided to the model developer with insight how to appropriately select 

model constructs corresponding to different levels of abstraction/detail. 
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The requirements stated above can be used to define reference architecture for developing 

domain specific simulation environments, which facilitate the model developers to define 

minimum configurations to design and use model constructs.  

 This research seeks to provide a methodology for building domain specific 

simulation environments. The goal is to use this methodology to build simulation 

applications that are self documenting, easy to expand, and easy to use by users that go 

beyond the model builder, as simulation application is today. To extend the research 

discussed above and to accomplish this goal, the development processes of building 

domain specific simulation environments have been organized into three steps: 

conceptualization, documentation, and translation. Conceptualization involves defining 

the elements of the domain important in models and their relationships. Documentation 

provides the detail necessary to actually build a simulator. Translation is concerned with 

linking the details developed in documentation to the components of an existing 

modeling language such that the domain specific environment can be realized. The goals 

are twofold: to easily build a “one time” use application that is well documented, and, to 

build a reusable modeling environment that can solve future design problems as they 

arise. 
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CHAPTER 3  

Conceptual Simulation Modeling: The Structure of Domain Specific Simulation 

Environment 

 “Reproduced with automatic permission from [Setavoraphan, K. and Grant, F. H. (2008) Conceptual simulation 

modeling: The structure of domain specific simulation environment from The Winter Simulation Conference 2008, 

975-986]. It has been modified somewhat to reflect current advances in this research.” 

 

Abstract 

This chapter focuses on the development of a conceptual simulation modeling tool that 

can be used to structure a domain specific simulation environment. This approach can be 

used to structure either the development of a single-application model or an environment 

appropriate for building several models in a specific domain.  

The issues in Software Engineering and Knowledge Engineering such as object-

oriented concepts and knowledge representations are addressed to identify and analyze 

modeling frameworks and patterns of a specific problem domain. Thus, its structural and 

behavioral characteristics can be conceptualized and described in terms of simulation 

architecture and context. Moreover, symbols, notations, and diagrams are developed as a 

communication tool that creates a blueprint to be seen and recognized by both domain 

experts and simulation developers, which lead to the effectiveness and efficiency in the 

simulation development of any specific domains. 

 

3-1. Introduction 

 In the past ten years, there have been several panel discussions at, e.g., the Winter 

Simulation Conferences (Zhou, Son, and Chen 2004; Heavey and Ryan 2006; Robinson 
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2006a), the OR Society Simulation Workshop (Robinson 2006b, Wang and Brooks 

2006), and the BETADE Workshop (Verbraeck and Dahanayake 2002), which 

acknowledge the use of conceptual modeling (CM) approach and domain specific 

simulation environment (DSSE) approach as a critical step to improve the quality and 

efficiency of discrete event simulation research studies/projects. The literature mainly 

states that good practice of these two approaches significantly reduce communication 

barriers, organize model structure, shorten project time, and improve simulation 

development processes (Vreede, Verbraeck, and Eijck 2003; Valentin and Verbraeck 

2005; Zhou, Zhang, and Chen 2006). Although their advantaged are addressed and 

supported in the same direction by several simulation studies, CM and DSSE still have so 

far received little attention from simulation developers because CM is viewed as more of 

an art than science (Brooks 2006), while DSSE is lack of trust of those (Valentin and 

Verbraeck 2005).  

 Numerous articles of, for example, Cyre (1999); Deursen, Klint, and Visser 

(2000); Pace (2000); Yilmaz and Oren (2004); Valentin and Verbraeck (2005); and 

Robinson (2006a, 2006b), propose ideas on definitions, requirements, limitations, and 

methods for the development of CM and DSSE to overcome the struggles in those 

simulation developers’ mind. However, most of them are still reluctant to apply CM and 

DSSE approach to develop their simulation projects. This is because only a few number 

of literature demonstrate how to transform and develop those concepts into a standard 

method/tool that can be used to capture and describe elements required for both CM and 

DSSE. A research study by Teeuw and van den Berg (1997), for instance, introduces the 

conceptual framework as developed in their testbed project by using symbols and 
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notations to describe a system’s behaviors, relations, and entities. A conceptual model 

can also be built by using knowledge representation notations such as semantic/logical 

graphs, where the nodes represent concepts, and the arcs represent relationships among 

concepts (Cyre 1999; Zhou, Son, and Chen 2004). Furthermore, a selective review of a 

number of current modeling methods/tools carried out by Heavey and Ryan (2006) shows 

that simulation developers have become more aware of using standard methods/tools 

such as Petri Nets, DEVS, IDEF3, and UML, to develop their own conceptual models. As 

well, simulation building block terminology is proposed by a research team, BETADE, at 

Delft University of Technology, The Netherlands, in 2001 to provide a standard 

methodology for the DSSE development (Verbraeck and Dahanayake 2002), instead of 

relying on old-fashioned programming. It can be said that the trend of the CM and DSSE 

research studies is moving forward to acquiring more sophisticated, universal, and user-

friendly methods/tools to serve both CM and DSSE requirements effectively and 

efficiently. However, none of the available methods/tools exists to satisfy this demand. 

 One of the critical reasons is that both CM and DSSE are viewed from different 

perspectives that not only isolate them into two distinct disciplines but also eliminate an 

opportunity for their collaborative modeling and representation formalisms in developing 

simulation projects. The fact that the foundations of modeling concepts and processes for 

CM and DSSE are similar allows them to overlap in some aspects (see Valentin and 

Verbraeck 2002; Verbraeck and Valentin 2002; Vreede, Verbraeck, and Eijck 2003; 

Zhou, Setavoraphan, and Chen 2005). The concepts developed by CM processes are 

transformed into the logical and structural components for DSSE, whereas the result of 

the implementation of those in DSSE becomes a feedback mechanism that provides a 
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better understanding of both the problem owners to improve their conceptual models for 

better DSSE (see Figure 3-1). This iterative CM and DSSE development process is 

performed until DSSE generates a complete standard set of the specifications and patterns 

– that can be transformed into basic building blocks. Then these building blocks are 

integrated to form a stand-alone simulation template, which is capable of representing 

systems as a domain specific simulation model for the simulation builders as well as a 

domain specific conceptual model for the domain experts. Consequently, the simulation 

template is delivered as the basic component to develop (commercial) simulation 

software and a knowledge-based simulation system. 

 

CM  DSSE Simulation 
Template 

Transformation

Feedback Specification

Pattern

 

Figure 3 - 1: The relationship between CM and DSSE 

The main idea of this research study is to focus CM concepts and techniques to 

further its potentials in characterizing the general behavioral and structural characteristics 

of a specific problem domain to generate a model that contains processes, elements, 

controls and requirements for simulation. This is generally referred to as conceptual 

simulation modeling (CSM). Thus, the CM approach is determined to be the backbone of 

the development of a CSM tool that can be used to structure a DSSE for discrete-event 

simulation modeling problems. Section 3-2 briefly describes the key concepts within 

Software Engineering (SE) and Knowledge Engineering (KE) that comprise the baseline 

foundations of CSM development. The concepts are formalized into different layers and 

representations to construct standard symbols, notations, and diagrams to be used in 
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CSM, which is illustrated in Section 3-3, including an example for illustration. Finally, 

conclusions and further research ideas are given in Section 3-4.  

 

3-2. Key Concepts 

 The simulation development process is a kind of problem-solving process that 

determines a context, environment, and boundary of a real-world problem domain to be 

developed and used for experimentation. CSM plays a critical role as a specialized tool to 

facilitate the understanding of the problem, support communication between domain 

experts and simulation developers, and represent the knowledge needed by the simulation 

system to simulate/solve the problem. CSM also uses the underlying convergent concepts 

used to develop conceptual models from both SE and KE, which are: first, object-

oriented concepts from the discipline SE; and second, knowledge representations (or 

“levels” in some literature) from the discipline KE (see more details about the CM 

methods in Dieste et al. 2001). However, CSM requires more advanced approaches to 

access, formalize, and use these concepts to overcome the barriers and drawbacks during 

constructing and transforming a conceptual simulation model. These are decomposition 

and composition approaches.  

 

3-2-1. Decomposition Approach 

 The significant problem found in applying object-oriented concepts and defining 

knowledge representations is how to determine and represent the concepts derived from 

both application knowledge and simulation knowledge (see Zhou, Son, and Chen 2004) 

at an appropriate abstract level to satisfy the efficiency of CSM. The determination of the 
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level of abstraction is strongly influenced by the objectives of the design or the questions 

needed to be answered (Benjamin et al. 1993). Nevertheless, no single abstract model is 

sufficient to be expressed at different levels of precision and to attack specific problems 

(Booch, Jacobson, and Rumbaugh 1999). 

 Decomposition is a crucial approach used to handle complexity and represent the 

behavioral and structural characteristics of the target problem domain at an appropriate 

level of detail (Zhou, Setavoraphan, and Chen 2005). Moreover, it is the paramount idea 

of object-oriented concepts (Meyer 1997), which is used to formalize modeling 

frameworks for CSM due to its inherent support for abstraction-centric, reusable, and 

adaptable design (Zhou, Zhang, and Chen 2006). Using abstraction, aggregation, and 

specialization aspects, the object orientation provides decomposition to the simulation 

developers to capture descriptions at varying abstraction levels and integrate all those sub 

domains into a comprehensive behavioral description for the problem domain.  

The central idea of decomposition is to breakdown the complexity of a problem 

domain into less complex sub domains by eliminating irrelevant details and highlighting 

the important behavioral and structural characteristics (Hofmann 2004). The frames of 

reference of these sub domains can be extended or modified to satisfy the objectives of 

the design (Lee and Wyner 2003). This allows each sub domain to interact with a set of 

other sub domains to provide complete representation and enable the modeling of the 

domain (Davis 2001). For further benefits and criteria of decomposition, see the works by 

Davis (2001) and Hofmann (2004). 

 To avoid the tendency of characterizing CSM as “more of an art than science”, 

the constraints of decomposition need to be specified to manage abstraction of the 
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domain at hand. A proceeding paper (Zhou, Setavoraphan, and Chen 2005) proposes a set 

of mathematics notations to describe the functions and constraints of two types of 

decomposition: serial decomposition and parallel decomposition. In this chapter, a 

process-oriented view is used to define a problem domain as a set of sequenced processes 

in a generic level, which can be decomposed into (multi) sub lower-level processes, 

controlled by constraints. These constraints are addressed here in narrative description 

instead of mathematics notation.  

First, serial decomposition must satisfy the following constraints: 

• A top level process must be decomposed into sub processes in order to form a 

serial-sequence order, and each sub process’ input and output specified must be 

available when executed; and 

• The set of sub processes must be a partition of its higher-level process, completely 

dividing the functionality of the higher-level process; and 

• Precedence relation is required among the sub processes; and 

• The attributes defined for the sub processes and the aggregation of these sub 

processes must be consistent with the attributes defined for the decomposed 

process; and 

• The input and output external to the set of sub processes must match the original 

input and output associated with its higher-level process; and 

• The total process time is a sum of sub process times. 

 

Second, parallel decomposition mostly follows the constraints defined in serial 

decomposition. The difference is that parallel decomposition requires Boolean logical 
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operators, for example, AND, OR, and XOR, to support the functionalities of logical 

branching out (e.g., deterministic branching or probabilistic branching) from the 

predecessor of the original process. These logical operators allow decomposition to 

specify several alternative combinations of causes and effects to extend the consequences 

of the original process (Bell, Snooke, and Price 2005). As a result of decomposition, the 

simulation developers are able to capture a set of sequential processes within the domain, 

corresponding to the simulation requirements to create a conceptual simulation model at 

the appropriate levels of detail.  

 

3-2-2. Composition Approach 

 Another encountered problem is that most of products (outcomes) from CSM fail 

to be reused in new simulation applications. Reusability of models, modules, or elements 

is a challenge not only at abstraction level (conceptual simulation models) but also at 

implementation level (domain specific simulation environments). The failure of capturing 

and explicitly representing specifications of constraints, objectives, features, and the 

semantics of components at the conceptual level generates an incompatible framework of 

those within the domain specific simulation environment, reducing the reusability of 

model constructs. On the other hand, the incompleteness of encapsulating (modularizing) 

and inheriting data (e.g., objects and processes) of the model constructs creates the loss of 

the model functionalities and contexts at the implementation level, affecting the trust of 

simulation developers in the conceptual simulation models, which reduces their 

reusability. Thus, an approach is needed to support model reusability for these two levels.  
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 Composability is described as an approach with compositional mechanisms that 

provides “the ability to compose models/modules across a variety of application domains, 

levels or resolution and time scales” (Kasputis and Ng 2000), plus “the capability to 

select and assemble simulation components in various combinations into simulation 

systems to satisfy user requirements” (Petty and Weisel 2003). Though, the current 

capability in composability is limited (Kasputis and Ng 2000) due to the complexity of 

the selection of components in the context of simulation (Winnell and Ladbrok 2003) and 

is determined to be an NP-hard problem. Still the simulation developers can apply this 

approach to design a frame of reference for the possible compositions to increase the 

possibility of model for reuse in any environment. 

 In general, there are two types of composability: syntactic composability and 

semantic composability, used to represent the modeling formalism for the selection of 

components (Petty and Weisel 2003). First, syntactic composability requires compatible 

implementation details which include timing mechanisms and interface specifications for 

all possible compositions. Second, semantic composability requires a meaningful/valid 

composition. “Both syntactic and semantic composability are necessary for simulation 

composability” (Bartholet et al. 2004) in terms of the development of the interfaces and 

the component internals within the defined simulation framework.  

 In addition, composability can be conducted in two dimensions which are referred 

to as the horizontal and vertical dimension (Page and Opper 1999). In the horizontal 

dimension, the components are applied in terms of peer-to-peer integration with respect 

to the scope of the model by justifying a level of modeling abstraction with respect to a 

set of modeling objectives, which is fundamentally hard to do correctly. This is because 
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“the presence of multiple models and multiple levels of abstraction increases the 

difficulty”, which has been referred to as the multiresolution modeling problem (Page and 

Opper 1999). On the other hand, composability in the vertical dimension facilitates a 

level of modeling abstraction through aggregation/disaggregation, which may in turn not 

provide the best or even a valid solution. It can be seen that the vertical composability is 

more flexible to facilitate the composition of decomposed components to create a model 

corresponding to the specific requirements. Therefore, composability in the vertical 

dimension is mainly applied in this study to avoid complexity, though, it may compensate 

with the loss of validity.  

 Butler (1998) identifies three crucial components: assembly, extension, and 

parameterization, as follows: 

• Assembly: connecting existing modeling components in possibly unique ways 

through a common environment; 

• Extension: modifying or extending the original functionality of an existing model 

component through either function override or selective feature 

activation/deactivation; and 

• Parameterization: changing parameters which control the operational and 

behavioral characteristics in an existing model component. 

 

He also states the design requirements for composability to shape the technical and 

operational approach in his work. Moreover, a number of research studies have been 

conducted to investigate modeling formalism, context, dependency, and framework for 
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model reuse (Yilmaz and Oren 2004; Spiegel, Reynolds and Brogan 2005; Sarjoughian 

and Huang 2005) to improve and facilitate model composability. 

 The results from these studies support not only the techniques of model 

composability but also the impact of model composability choices in a variety of degrees 

of model composition, limitation, and complexity. The idea behind these results shows 

that the concepts, theories, and techniques of model composability consist of abstraction, 

hierarchy (aggregation/disaggregation), and encapsulation that belong to the object-

oriented aspects (Sarjoughian and Huang 2005). Use of these aspects is crucial in 

developing a framework that provides standardized patterns to define the scopes of 

design and development of model components and representations for CSM and DSSE. It 

must be kept in mind that as long as a set of the model components and representations 

are a pattern-based development within the framework, the reusability of the conceptual 

simulation models and the model constructs in DSSE is more flexible and more 

meaningful when conducting a new simulation project. Moreover, it needs to make sure 

that the composition of the model components and representations must be tested in the 

level of CSM prior to implement those in DSSE to avoid the conflicts of functionalities 

between these two levels.  

 

3-3. Illustration of a CSM prototype 

3-3-1. Background of Study 

 In the previous section, the importance of the decomposition and composition 

approach is illustrated by a means of the application and control to the use of the key 

concepts: the object orientation and knowledge representation, in the development of a 



 

 36

CSM tool. Less attention applied in the management of modeling complexity (levels of 

detail) and the arrangement of modeling compatibility (levels of selection) results in 

ineffectiveness and inefficiency of the overall modeling structure and context. Most of 

the simulation developers know the basic object-oriented concepts described in many 

publications (e.g., Rumbaugh et al. 1991, Coleman et al. 1993), but few of them 

recognize the methods of formalism of these concepts to develop robust and reusable 

knowledge representations as modeling frameworks for simulation (see Zhou, Zhang, and 

Chen 2006). It has been found out that there are many generic (standard) methods/tools 

that are available to support CM (e.g., IDEF3, DEVS, Petri Nets, and UML), but they fail 

to accomplish bidirectional transference of concepts and information between application 

domain and simulation domain. As a result, most of the time these methods/tools simply 

create difficulties in the CSM and DSSE construction and translation rather than to 

achieve the simulation-template’s goal.  

 It can be said that there is a need for a defined simulation modeling framework 

that facilitates not only domain conceptualization but also simulation implementation. A 

thesis (Setavoraphan 2005) illustrates a CSM tool, called “Simulation Modeling UOB” 

(SMU), used to formalize concepts into a simulation modeling framework. This tool is 

developed from the transformation of knowledge representations in a platform of process 

descriptions derived from IDEF3 method, collaborating with the object-oriented 

approach. Each instance in SMU employs both process-oriented and component-based 

view to represent the processes lying within the target problem domain and the 

simulation modeling elements (e.g., entities, attributes, and functions) satisfying the 

simulation requirements. Furthermore, it is able to apply the object-oriented features to 
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facilitate modeling decomposition and composition. Having the capability to formalize 

concepts at different levels of detail and to generate robust and reusable modeling 

frameworks, SMU has been applied to develop conceptual simulation models for a 

variety of application domains such as warehousing operations (Setavoraphan 2005) and 

inland waterway lockage operations (Setavoraphan and Grant 2008). However, the 

current capability of SMU is focused on delivering a detailed modeling framework that 

provides both static and dynamic representations required for structuring DSSE.  

 Some examples of simulation projects developed under the DSSE approach 

include: 

• Electroplating Simulation Program, ESP (Grant and Pritsker 1974) by using a 

programming language; 

• Safeguards Network Analysis Procedure, SNAP (Miner and Grant 1978) by 

developing a network language; 

• Airport Terminal Modeling of Amsterdam Airport Schiphol (Verbraeck and 

Valentin 2002) and the Robotized Marine Container Terminals (Saanen 2004) by 

using simulation building blocks. 

 

Accordingly from above, it can be said that every single DSSE development 

fundamentally consists of static modeling components (e.g., physical layouts) and 

dynamic modeling components (e.g., entities). These fundamental concepts need to be 

integrated into the CSM tool for better mapping and transforming concepts prior to 

develop a simulation modeling framework. A research study by Iba, Matsuzawa, and 

Aoyama (2004) emphasizes on the Model Driven Development created based on Model 
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Driven Architecture and Executable UML to use high-level modeling languages to 

enhance the capability of CM in representing the overall behavioral and structural 

characteristics of a domain, including their interactions, from both static and dynamic 

views. Their project development supports the idea of improving SMU, the existing CSM 

tool, by integrating its original concepts with UML to cover its limitations and to be used 

in this study.  

 

3-3-2. General Structure 

 The main purpose of this chapter is to deliver a concrete idea that integrates and 

formalizes the concepts mentioned in the preceding sections by illustrating a CSM 

prototype temporarily named as “Integrated Simulation Acknowledge Procedure” 

(ISAP). ISAP is a tool for capturing the concepts in a specific problem domain and 

transforming them into a set of descriptive processes, static and dynamic modeling 

components, interactions, and rules/algorithms which are defined within a simulation 

modeling framework. The framework created by ISAP consists of three layers: the 

initialization layer (IL), the process layer (PL), and the termination layer (TL) (see Figure 

3-2). First, IL provides initial information about the simulation experiment to be 

performed (e.g., number of simulation runs, number of attributes/variables, and time to 

begin/end simulation). Second, PL describes the behavioral and structural characteristics 

of the problem domain and simulation domain. Third, TL sets the procedures of 

terminating simulation and printing out a simulation output report. Each of these layers 

consists of a group of ISAP symbols, notations, and diagrams which are arranged to 
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define and represent modeling structures, elements, and relationships. Within the limited 

space of this published paper, only the process layer is discussed. 

 

Figure 3 - 2: Three layers in ISAP with three phases 

The construction of ISAP is based on the modeling and simulation process 

(Pritsker and O’Reilly 1999) and adapted into three phases: the design phase, the 

development phase, and the edit phase (also see Figure 3-2). First, the design phase is to 

formulate problem and specify model for PL according to the design objectives in IL and 

TL. Second, the development phase is to build models individually for each layer. Third, 

the edit phase is to test models and use their feedbacks to correct errors found in these 

layers, and also this phase needs modification in IL and TL to satisfy the new 

requirements for PL. Moreover, the construction of PL is divided into two subsystems: 

static modeling subsystem and dynamic modeling subsystem. Both of them require the 

use of symbols, notations, and diagrams for robust and reusable representations. An 

example of an inventory system of a large discount house (Pritsker and O’ Reilly 1999) is 

used to illustrate the construction of these two subsystems in PL. 

ISAP
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3-3-3. Demonstration 

 To illustrate these concepts described above, consider a large discount house that 

is planning to install a periodic review-reorder point inventory system to control its in-

house inventory of a particular radio. This system is able to manage backorders in the 

case where customers demand the radio when it is not in stock. 80 percent will go to 

another discount house to find it, determined as lost sales, whereas the other 20 percent 

will be put on the backorder list and wait for the next shipment arrival. The inventory 

status is reviewed every four weeks to decide if an order should be placed. The company 

policy is to order up to the stock control level of 72 radios whenever the inventory 

position, consisting of the radios in stock plus the radios on order minus the radios on 

backorder, is found to be less than or equal to the reorder point of 18 radios. The 

procurement lead time requires constantly three weeks.  

 

3-3-3-1. Static Modeling Subsystem 

 The first step is to specify the physical characteristics in the target problem 

domain. It can be seen that the inventory system consists of an actual (in-house) 

inventory subsystem and a virtual (periodic review-reorder) inventory subsystem. ISAP 

provides symbols and notations that represent different three static components: BUILD, 

SPACE, and CROSS. A BUILD component is used to identify a point in a system where 

some physical objects are moved through or changed their states. A SPACE component is 

used to identify an area in the system through which physical objects may pass or 

temporarily stay. A CROSS component is used to identify locations in the system which 

is the physical objects engaged with multi cross-domain subsystems. In this example, 
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only BUILD components are used to represent the actual inventory subsystem and the 

virtual inventory subsystem, where the flows and transition states of e.g., demands and 

order-signals, take place, shown in Figure 3-3. Each BUILD component is defined with 

its identical component label that is connected to its dynamic modeling subsystem 

containing the logical process flows and parameters needed. The connection is made 

through “@” and followed by a specified dynamic modeling subsystem label (DMSL). 

An arrow is used to indicate a precedence of movement that may occur in only one 

direction between two physical components, which means there exists one or more 

interchanges or flows of objects and information between the components. One of the 

obvious benefits of having static (physical) components for CSM is a top-view 

perspective that shows the core structures and the focused frames of the domain, which 

can be further developed either as apiece (decomposition) or as a whole (composition) 

within the defined domain structural boundaries.  

Actual Inv.

@ INV 

Virtual Inv.

@ RINV 

 

Figure 3 - 3: BUILD components for inventory system 
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3-3-3-2. Dynamic Modeling Subsystem 

 The next step is to describe the dynamics of the domain in terms of application 

knowledge and simulation knowledge, determined as the core of the ISAP development 

process. Each dynamic modeling subsystem can be view as a document folder that has its 

own label (DMSL), sub-folder(s) (Ref#), and page number ($ #). Each page is divided 

into three sections: the SMU section, the relation section, and the sequence-diagram 

section. The first section follows the major structure described in Setavoraphan (2005), 

shown in Figure 3-4, whereas the rest of the sections apply the symbols, notations, and 

diagrams which are adapted from the UML modeling approach (Booch, Jacobson, and 

Rumbaugh 1999). 

Make an order of 
radios 
 
 
2 

EntSignal
 
ResRadio 
 
SetOrder() 
UpdateInventory() 
RouteOrder() 
RecordSaftyStock() 
UpdateRadioStock()
TerminateSignal() 

Process Description 

Level of Abstraction 

List of Entities 

List of Resources 

List of Operations 

 

Figure 3 - 4: General structure and an SMU example 

Each SMU is used to represent as an intimate simulation (block) module that 

moves the entities through the process or change the entities’ transition states; calls the 

resources required for the process; and executes the operations to complete the process. 

As a module, an SMU can be decomposed into two or more sub SMUs to cover the 

detailed levels of the process. For example, SMU Make An Order of Radios (Figure 3-4) 
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can be decomposed into SMU Prepare An Order and SMU Make A Transshipment, 

shown in Figure 3-5. At lower levels of decomposition, the reference number for level of 

abstraction of a child SMU (X) consists of three distinct numbers separated by periods. 

The first number is the last number in the reference number of X’s parent SMU. The 

second number is the number assigned to the particular decomposition of the parent SMU 

in which X occurs (Note: Numbers are assigned to a set of decompositions and SMUs in 

order of different creations/points of view). Finally, the third number is an actual X’s 

SMU reference number. The relationship between the parent SMU and child SMUs is 

determined as a-part-of relationship or aggregation in which SMUs representing the 

entities, resources, and operations of some processes are associated with an SMU 

representing the entire assembly of processes. Thus, each decomposition must be taken 

carefully to avoid the loss of details and the incompleteness of the process. As well, the 

composition of the existing SMUs into a new SMU requires standard/common 

parameters to reduce the invalidity of the model functionalities, which is similar to the 

methods used in the object-oriented programming. Suppose that the SMUs in Figure 3-5 

are individual SMUS. To compose these two SMUs into one, a crucial requirement is to 

make sure that they assess the same entities, utilize the same resources, and execute the 

operations with the same attributes and variables. Also, the flow of entities and 

operations must be logical sequences.  
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Prepare an order 

 

2.1.4 

EntSignal 

ResRadio 
 
SetOrder() 
UpdateInventory()

Make a 
transshipment 
 

2.1.5 

EntSignal 

ResRadio 

RouteOrder() 
RecordSaftyStock()
UpdateRadioStock()
TerminateSignal() 

 

Figure 3 - 5: A decomposition of SMU Make An Order of Radios 

The relation section provides information of the conditions and decisions for 

branching, preceding, and interacting between two SMUs. Figure 3-6 gives some 

examples of notations.  

Process-In Process-Out Relation-Frame 

Precedence Precedence with condition(s) 

[Condition(s)] 

XOR-join XOR-split 

 

Figure 3 - 6: Some examples of notations for relations 

In the Relation-Frame, the precedence and logical relationships that tie SMUs (see Fig. 3-

8) represent the flow-paths for the entities, including the conditions that create the 

alternative flow-paths. This relation-view provides the simulation developers the 
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conceptual foresee of the entity flow in the sub-system, which supports the verification of 

logic associated with SMUs.  

 Finally, the sequence-diagram section shows a series of messages exchanged by a 

selected set of objects in SMUs, with an emphasis on the chronological course of 

communication between SMUs – which is used to indicate the status and the responding 

sequences from taking an action (operation) of the objects related to SMUs. Some crucial 

notations are shown in Figure 3-7.  

Connection-Tube Division-Segment 

Object: Status {Argument/Control Statement} 

Precedence-Sequence 

Object: Status {Argument/Control Statement} 

Responding-Sequence 

To Be Continued: $#

Derived from: $#

Forward-Connection 

Backward-Connection 

 

Figure 3 - 7: Notations for the sequence-diagram section 

The sequence diagram, on the other hand, can be determined as a conceptual 

simulation that illustrates a brief simulation run. It includes (see Fig. 3-8 for a better 

understanding) both Begin and End runs, initial set-up for variables, entities and their 

flows, resource utilization, variable changes, activities, and time sequences (divided by 

division-segment and prioritized activity orders). This diagram is also used to pre-check 

whether or not individual or a set of SMUs have sufficient parameters (e.g., 
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entity/resource types, variables, and operations) to fulfill the simulation requirements 

prior to further DSSE development. 

The later step is to provide the descriptions of the objects and operations used in 

these sections in a tabular form (table). Each table gives not only an object’s generic 

information (e.g., name, type, description, and associated parameters) but also its 

extension (e.g., event state, rules, and algorithms) if needed. There is no specific 

regulation in designing a table of description. The design is depended on the demand and 

detailed level of information.  

(Note: due to the size of the tables and figures, they are partially shown in the appendices 

section for DMSL: RINV as an example) 

The final step is to revise every section and connect them together by using 

Connection-Tube. This line contains data given in each SMU and passes them throughout 

its length. Thus, the simulation developers are able to keep track of every action and 

transaction state of the objects, by following the lines (Top-to-Bottom or Bottom-to-Top 

relation) and other associated notations (Left-to-Right or Right-to-Left relation), which 

helps support their conceptual thinking. It is seen that the logic behind the development 

of the ISAP process layer is to access a domain from a very generic component to sub-

components with different detailed levels and to maintain the completeness of 

encapsulation and inheritance of component data for the component reusability. This 

means that ISAP well deploys the decomposition approach to remove the complexity of 

conceptual thinking as well as the composition approach to extend the scope of 

conceptual thinking. 
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The results of the connection and association of these SMUs, notations, and 

descriptions are transformed into a network statement. Here is the network statement of 

DMSL: RINV, as shown below. 

 
Ref# 0: 

1 SetReorderPoint, Reorder point; 
2 CreateSignal, Arrival rate, Time of first arrival, Max # of demands; 
3 CheckInventory, Resource#, File resource#, Inventory position; 
4 Condition, INV_POS <= REORDER_PT; 
5 SetOrder, Order quantity; 
6 UpdateInventory, Inventory position; 
7 RouteOrder, Lead time; 
8 RecordSafetyStock, File#, Resource#, File resource#, Number of radios; 
9 UpdateRadioStock, Resource#, File resource#, Number of radios; 
10 TerminateSignal, Max# of signals; 
11 Condition, INV_POS > REORDER_PT; 
12 TerminateSignal, Max# of signals; 

 

Each line of the network statement contains sequential-order numbers and 

operation names with their parameters. Using a network statement is a basic idea found in 

the structure of commercial simulation software such as Arena© (Kelton, Sadowski, and 

Sadowski 2002) and AweSim© (Pritsker and O’Reilly 1999) to create simulation 

modeling frameworks for the construction and control of simulation modules. Therefore, 

a simulation modeling framework defined by the network statement and by other aspects 

through the ISAP development process can be used to generate appropriate simulation 

modules for the DSSE development.  

 

3-4. Conclusions 

 The specialization of the CM concepts and techniques is taken as the main idea of 

this research study to improve the CSM approach. This is because CSM has been seen as 



 

 48

a critical approach that is used to shorten gaps of communication between the domain 

experts and the simulation developers and to reduce difficulties of transformation of the 

concepts between two different domains of knowledge. However, CSM has been largely 

ignored, especially when conducted the development of DSSE.  

ISAP is a prototype that is developed based on the conceptual modeling approach 

under the SE and KE disciplines to support the development of a conceptual simulation 

model. Moreover, ISAP is designed to match with the structural and behavioral 

characteristics of the DSSE development process. Simulation developers, thus, can apply 

ISAP to generate robust and reusable simulation modeling frameworks that can be used 

as blueprints giving designs and instructions for the specific simulation development 

projects.  

 Nevertheless, there is still more room for improvement for this ISAP prototype to 

fulfill other simulation requirements, for example, dynamic parameter assignment, 

random distributed data generation, database, and simulation-module interface. For this 

study, the ISAP prototype is expected by the authors that it is able to encourage 

simulation developers to enhance the current capability of the available modeling 

methods/tools to take simulation development to the state-of-art level.  
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3-6. Appendices  
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Figure 3 - 8: An example of DMSL: RINV 
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Table 3 - 1: Description of objects for DMSL: RINV. 

 
Object 
Name 

Type Description Parameters 

EntSignal Entity This object represents a signal entity to enable the 
periodic review-reorder inventory system. 

: Arrival rate 

ResRadio Resource This object represents radio resources that can be 
altered corresponding to the inventory status. 

: Resource# 
: Resource capacity 
: Queue# 
: Queue capacity 

 
 

Table 3 - 2: Description of operations for DMSL: RINV. 

 
Operation Name Actor Description Attributes Global 

Variables 
CheckInventory() ResRadio An action is to determine 

if radio is available to 
satisfy a customer 
demand. 

N/A : Resource# 
: File resource# 
: Inventory 
position 

CreateSignal() EntSignal A signal entity is created 
to the systems. 

: Arrival rate 
: Time of first 
arrival 
: Max# of signal 
entities 

 

SetReorderPoint() N/A An action is to set a 
reorder point for the 
inventory system. 

N/A : Reorder point 

SetOrder() N/A An action is to set a 
quantity of order 

N/A : Order quantity 

RecordSafetyStock() ResRadio Number of radios are 
available at that time of 
arrival of shipment. 

N/A : File# 
: Resource# 
: File resource# 
: Number of 
radios 

RouteOrder() ResRadio A quantity of order is 
transport to the discount 
house’s inventory with a 
lead time 

N/A : Lead time 

UpdateInventory() N/A Number of radios in the 
inventory are updated 

N/A : Inventory 
position 

UpdateRadioStock() ResRadio Number of radios are 
updated. 

N/A : Resource# 
: File resource# 
: Resource 
capacity 

TerminateSignal() EntSignal Each signal entity is 
terminated. 

N/A : Max# of 
signals  
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Table 3 - 3: Description of variables for DMSL: RINV. 

 
Variable Equivalence Description 

INV_POS Inventory position It contains the overall number of radios derived from both sub-
systems. 

NNRS(RADIO) Number of radios It shows the exact number of radios at the physical inventory. 
ORDER_QTY Order quantity It indicates the number of radios per an order. 
REORDER_PT Reorder point It sets the minimum number of radios in the physical inventory 

for reorder. 
SCL Stock control level It limits the maximum number of radios in the physical 

inventory. 
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3-8. Additional Works 

 The above material in Chapter 3 is entirely derived from the paper submitted to 

the Winter Simulation Conference 2008. To expand on this and provide results of 

additional research, we provide the following supplementary explanations for: 1) the 

initialization layer (IL); 2) the termination layer (TL); and 3) the process layer (PL), 

respectively. Moreover, a new example is given to support these extras. The purpose is to 

provide the simulation developers a better understanding in applying a conceptual 

simulation modeling tool such as ISAP in their simulation projects more effectively and 

efficiently. 

 

3-8-1. New Demonstration 

 To illustrate an expanded level of detail concerning the concepts of ISAP, 

consider a basic lockage operation that is generally found in most of the U.S. inland 

waterways transportation systems. This example is more complicated so that the readers 

can recognize how important each layer in ISAP is and how to utilize those available 

symbols, notations, and diagrams to transform their conceptualization into knowledge 

representations.  

There appears to require a link between smaller regional ports and oversea ports, 

delivering containers for deep-sea vessels. This is because there are some areas that the 

deep-sea vessels are unable to access due to their capacity and size. Inland waterway 

transportation is used as alternative to transport containers into the hinterland on rivers, 

using inland barges. However, there are some locations where significant changes in 
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water levels occur, which requires those vessels to use one or more locks to carry them 

up or down from one pool to the next.  

 According to the papers by the U.S. Army Corps of Engineers and Bandy (1987, 

1988, 1991, 1996), the basic procedures for a lockage to service vessels traveling either 

upstream or downstream are the same (see Figure 3-9 for an overview from 

www.navlocks-hpo.usace.army.mil).  

 

Figure 3 - 9: An example of navigation lock system 

First, the water level inside the lock has to be the same as where vessels are 

located before allowing the vessels to enter the lock. The underwater valves at both the 

upstream and downstream gates are used to control the water elevation inside the lock by 

using the advantages of the water-level differences and gravity to fill water in or drain 

water out of the lock. It takes about 10-15 minutes to fill or empty a lock chamber, which 

depends on the size of valve opening and the total change of elevation for the water 

inside the lock. Second, the entrance gate is opened, while the gate on the other end of the 

lock is closed to maintain the proper water level. The vessels sail into the lock. Third, 

when the entrance gate is closed, the underwater valves at the other end of the lock are 
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opened to allow the water elevation inside the lock to eventually equalize with that on the 

other side of the exit gate. Fourth, the vessels sail out when the exit gate is opened to 

continue their trips.  

 Another issue related to the lock system is to fully utilize the lock’s capacity. 

Because each lock has specific usable dimensions (width times length) that produce 

limited space inside its chamber, the number of vessels that will fit in the lock plays a 

role in operating a lockage. The size and shape of the vessels are taken into consideration 

in terms of accessing a lockage and dealing with safety issues. Actually, traffic on the 

waterway navigation systems consists of two main types of vessels: boats and barge tows. 

Boats can be determined as e.g., passenger, fishing, or government owned vessels. A 

barge tow consists of a tow boat and a set of barges (from one to sixteen or more barges) 

that carry a variety of products, such as coal, sand, grain, and chemicals, and containers. 

An average-size lock can handle twenty smaller boats, while only eight barges followed 

by a tow boat within a 3x3 configuration can fit the lock. A barge tow having nine or 

more barges or overall dimensions exceeding the usable dimensions of the lock cannot fit 

into the lock for a single lockage. Therefore, two main types of lockage operations 

associated with barge tows: a single lockage and a double lockage; are discussed, as the 

main focus of this research. 

  For a single lockage operation, there are two scenarios to be considered at the 

lock. First, the barge tows have overall dimensions less than the usable dimensions of the 

lock, which means they can fit into the lock as a single batch. Second, the barge tows 

having an overall length exceeding the usable length of the lock require reconfiguration. 

External force provided by electric wrenches that are located on shore both upstream and 
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downstream of the lock is typically needed. A double lockage operation is required to 

support the barge tows that consist of nine or more barges followed by the tow boat. They 

are too big to fit into the lock for a single lockage. To operate a double lockage, these 

barge tows move through the lock in the following manner (Bandy, 1996): a) The barge 

tow is moved into the lock and the front barges are tied to the side of the lock. b) The 

barge tow is separated and reconfigured in such a way that each of the two parts will fit 

into the lock lengthwise. c) The back part of the barge tow is moved out of the lock by 

the tow boat. d) The lockage for the front part is completed. e) An electric wrench is used 

to pull the front part of the barge tow out of the lock. f) The water level inside the lock is 

returned to the initial level. g) The tow boat moves the back part of the barge tow into the 

lock. h) The second lockage is completed for the back part of the barge tow. i) The back 

part of the barge tow moves into position behind the front part. j) The barge tow is tied 

back together. k) The barge tow continues the journey. It can be noticed that the vessels 

waiting on the other side are not allowed to enter the lock when the first lockage is 

completed – due to the safety concerns. 

 A lock on an inland waterway is determined a time-consuming operational system 

that delay the transshipment of containers or products, which may affect not only a point 

on the river but also the entire navigation network systems. A simulation model is then 

made to model and simulate the current system to obtain statistical results for 

performance analysis such as time in system, resource utilization, and waiting time. 

However, in a long-term development process, this simulation model is possibly obsolete 

sooner or later – due to conditional changes in the system (e.g., parameters and 

processes). Furthermore, building a simulation model by using either programming 
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languages or generic simulation environments is considered as a reluctant job. It is not 

only a time and cost consuming activity but also a recurrent process. It, thus, is very 

influential for the development of a domain specific simulation environment (DSSE) that 

provides reusable/editable model constructs, including supportive libraries. All these 

availabilities are particularly designed to match the requirements of the specific domain 

so that a variety of simulation projects can be produced with a minimum of time, cost, 

and recurrent development processes.  

 As previously described, ISAP supports the simulation developers to structure a 

simulation modeling framework by creating three different layers, following processes 

under each construction phase. This demonstration, however, is not exhibited in detailed 

steps-by-steps. It is aimed to illustrate how to use ISAP to create a blueprint providing 

layouts and guidelines for designing control agent and logic/process agent – representing 

basic mechanisms found in most generic simulation environments.  

First, the control agent is required to define experimental conditions in terms of 

initial parameters and output options for the simulation, corresponding to its modeling 

objectives and constraints. This creates a frame of reference that manages and controls 

model compatibility and interoperability of model constructs to be on the same 

levels/meanings through the entire simulation environment. The control agent can be 

portrayed in IL and TL. Second, the logic/process agent is required to support a flow of 

entities through a network of interconnected processes that depicts the operation of the 

system under study. This creates a simulation framework that sets relationships, 

transitions (routing and branching points), and sequences of the network to be within a 

significant boundary. The logic/process agent can be portrayed in PL.  
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3-8-2. Initialization Layer (IL) 

 Each simulation run requires an initial setup. It is necessary to define 

experimental conditions to layout a frame of reference that any model constructs can 

access and retrieve their execution references (e.g., run length and number of runs) or 

initial references (e.g., queue populations and queuing priorities). Initialization is taken 

into the first-time simulation run as a startup to detect any errors and to verify/validate 

simulation. This leads to model improvement and correctness. Moreover, initialization is 

considered a part of design of experiments for simulation, which can adversely influence 

the estimators of steady-state performance (Pritsker and O’Reilly 1999). Therefore, 

initialization is viewed as a process to design and define a set of parameterized references 

whose settings can be modified per experimentation. 

 In general, there are standard references regularly required for a basic startup or 

setup; for example, number of runs to make, run length, beginning/ending time of a run, 

and number of attributes/variables. However, the more complicated a simulation model 

is, the more parameterized references for initialization are needed. The extension list of 

initialization may include queuing priorities, initial variable values, and random number 

seeds – requiring more careful attention in defining their statements. This is because a run 

of simulation is controlled as a whole piece rather than as individuals. It, thus, is crucial 

to avoid any conflicts that may affect model compatibility and interoperability levels 

from using parameters (including attributes and variables) through interconnected model 

constructs.  

 To list and define parameterized references for initialization, not only are their 

physical names and values needed but also are implicit and explicit relations of those 



 

 64

references’ statement required. What the implicit relation means is the relevance of 

elements defined within a statement of reference. For instance, “queuing priority” 

reference requires file number of the target queue, priority rule to rank entities (e.g., FIFO 

or LIFO), and expression to evaluate to determine ranking of entities. Its statement must 

be able to clearly describe relations that the priority rule is selected to determine the value 

in the specified expression to rank entities put in the target file number. On the other 

hand, the explicit relation indicates the meaning (interoperability) of the physical names 

used among references. For example, if “File#” in the statement of “queuing priority” 

reference means the file number of a queue, it must specifically be used for this meaning 

throughout other references. Having well-defined statements of initialization, therefore, is 

essential to avoid any errors in simulation runs and experiments.  

 ISAP provides a method/tool identically exploited in the initialization layer (IL) 

to conceptualize and list necessary parameterized references of initialization for 

simulation. In addition, a frame of reference, including statements and relations, can be 

visually represented and easily viewed as either individuals or all. A graphical 

representation created from a combination of Fishbone Diagram and UML Object 

Diagram has been developed under the scopes of the ISAP prototype. The ideas behind 

the combination of these two diagrams are: 

• The Fishbone Diagram is a problem-analysis tool providing a systematic 

(conceptual thinking) way in generating information, classifying information 

types (e.g., cause-effect, topic-detail, or problem-solution), and prioritizing 

importance of information. It is helpful for listing references demanded for 

initialization.  
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• The UML Object Diagram is a graphical representation for the static (structural) 

view of the system using objects, attributes, and relations. It is useful for 

clarifying and visualizing a reference’s statement within limited space.  

An example of IL diagram designed for this problem is given in Figure 3-10.  

 

Figure 3 - 10: A diagram representing initialization of Lock 

 The IL diagram has a triangle at the right hand side, where the initialization to be 

executed is written. LCK, in this case, is a destination assigned to the process layer (IL) 

where these references are initiated. The main body of the diagram is a horizontal line 

from which branches the references, represented as bones. These bones are drawn 

towards the left-hand side of the main body and are each labeled with the reference 

LCK 

Simulation Run 

: No. of run 
 
Run = 1

: Run length 
 
Period = 8 hrs.

Has 

Set 

Simulation 

: Beginning time 
 
Time = 8:00 

: Ending time 
 
Time = 16:00
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: No. of arrays 
 
Max = 10 

: No. of attributes 
 
Max = 15 

Specify 

Specify 

Queuing Priority 

: File or calendar 
 
No. = 1 

: Ranking 
 
Rule = Lowest value first 

: Expression 
 
 
Function = Attribute (3) 

Denote 

Specify 

Evaluate 

IL: Lock; Date: 2/14/2009@0:00 pm; Design# 1
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names. Off each of the large bones, there may be one or more smaller bones attaching 

with item boxes. Each item box contains an element name and its attribute value, and 

combines together with other item boxes (if available) to make a statement for the 

reference name. Above each smaller bone, a relation between the reference name and the 

item box is defined – using a word of “transitive verb”. As a result, the entire section of a 

big-bone branch (including smaller bones) can be translated into the reference’s 

statement.  

 Furthermore, a box under the IL diagram is available for recording information of 

the diagram construction, which needs IL name, date/time, and design number. The 

purpose is to keep track modification taken place at a time – to make a collection of 

designs. It leads to reduce repetitiveness of defining initialization for not only simulation 

models but also experimental designs. Afterward, the collection of designs will be 

transformed into a standard initialization format available in DSSE.  

 

3-8-3. Termination Layer (TL) 

 A system has been viewed as a black box where selected inputs are processed to 

generate desired outputs. In general, to decrease the degrees of being a black box, the 

primary focus is on the development and improvement of the system’s processes. 

However, defining parameters used in these processes are critical. Some parameters drive 

the processes to function, whereas some force the processes to produce outputs. Often, 

appropriate outputs are hardly achieved because of a lack of well-defined parameters. 

Consequently, a frame of reference for outputs must be specified into a standard pattern. 

It aims to eliminate irrelevant and unnecessary parameters that may cause any distortion 
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in either processes or outputs.  This concept can be applied to the development of 

simulation by a means of determination of parameterization.  

  Parameterization of the projected outputs can be portrayed in ISAP’s termination 

layer (TL) by using a tabular-cell pattern. It simply forms a table for description of data 

fields for parameterization, as shown in Table 3-4. The first data field (1) contains a 

projected output’s label such as TIS (time in system), LUT (lock utilization), and WAT 

(waiting time). Then, the later data field numbers (e.g., 2, 3, 4, and so on) include 

parameters associated with each projected output. For example, to obtain a value of TIS, 

these following parameters: Arrival time of entity and Departure time of entity must be 

given. 

Table 3 - 4: Description of data fields for parameterization 

   Fields*    

1 2 3 4 5 6 7 
TIS 

 
 
 

Arrival 
time of 
entity 
 

Departure 
time of 
entity 
         

LUT 
 
 
 

 Lock 
number 
 
 

 Lock 
busy time 
 
 

Lock idle 
time   
 
 

 Total 
simulation 
run 
     

WAT 
 
 
 
 
 

 Queue 
number 
 
 
 
 

Arrival 
time of 
entity at 
queue 
  
 

Departure 
time of 
entity 
from 
queue 
       

TER 
 
 

 Maximum 
entities 
 

Time 
limit 
          

 

TL is also aimed to design a pattern for termination of simulation. Basically, 

simulation is terminated when it reaches a specified number of maximum entities, time 

limit, and customized condition. It needs to be noted here that a value set for time limit in 

TL can be the same or different from one defined for run length in IL. This is because 
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they both are used upon different basis. Run length is initiated to identify a timeframe for 

a simulation run, whereas time limit is physically set to end a simulation run on a 

purpose. Termination (TER) is given at the bottom of the table.  

Moreover, it is able to advance the usage of this table by assigning attributes, 

variables, or default values ‘{}’ that practically match those in a simulation language or 

application to these parameters. Table 3-5 illustrates an example of data fields that 

provide parameters with their assigned attributes/variables/defaults expected to be used in 

Visual SLAM and AweSim network models (see Pritsker and O’Reilly 1999).  

Table 3 - 5: Description of data fields for parameterization with assignments 

   Fields*    

1 2 3 4 5 6 7 
TIS 

 
 
 
 

Arrival 
time of 
entity 
 
ATRIB[1] 

Departure 
time of 
entity 
 
TNOW         

LUT 
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 Lock 
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{0} 

Lock idle 
time   
 
 
{0} 

 Total 
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{∞}     
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 Queue 
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{0} 

Arrival 
time of 
entity at 
queue 
  
 
ATRIB[2] 

Departure 
time of 
entity 
from 
queue 
 
TNOW       

TER 
 
 
 

 Maximum 
entities 
 
{∞} 

Time 
limit 
 
 {∞}         

 

Although the table above is unable to be applied directly into DSSE, it creates a good 

structural view laying out a core design where parameterization and termination are well 

determined. 
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3-8-4. Process Layer (PL) 

 When a draft design of the control agent: IL and TL, has been done, the next step 

is to input all the frames of reference into a simulation framework being created in the 

process layer (PL). To be more efficient and effective in the development of DSSE’s 

logic/process agent, the construction of PL is divided into two modeling subsystems: 

static modeling subsystem and dynamic modeling subsystem. Both of them require the 

use of symbols, notations, and diagrams for robust and reusable representations of 

physical and behavioral characteristics – related to the processes of the target domain.  

 

3-8-4-1. Static Modeling Subsystem 

 The first step is to specify the physical characteristics in the target problem 

domain. Along a navigation system, there may exist one or more locks to operate, space 

for waiting areas, and ports for operational transition – which need to be laid out within a 

framework of simulation. ISAP provides symbols and notations that represent different 

three static components: BUILD, SPACE, and CROSS. 

A BUILD component is used to identify a point in a system where some physical 

objects are moved through or changed their states. In this demonstration, each lock is a 

point on the river that barge tows travel through and their statuses change (e.g., batched 

or unbatched) depending on conditions. As well, the states of resources at the lock (e.g., 

lockage and wrench) alter (e.g., idle or busy) at a point of time. BUILD components are 

used to represent locks and to identify their located points within the framework – that 

reflects the reality. 
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CLBL 
@DMSL 

Dynamic modeling 
subsystem label 

Component label 

 

Figure 3 - 11: A symbol for BUILD 

 A SPACE component is used to identify an area in the system through which 

physical objects may pass or temporarily stay. It is seen that before entering a lock, barge 

tows are required to wait in a reserved area for a permission signal from a lockage 

controller. Thus, SPACE components are placed beside BUILD components to display 

waiting areas for barge tows.  

CLBL 
@DMSL 

 

Figure 3 - 12: A symbol for SPACE 

 A CROSS component is used to identify locations in the system where the 

physical objects engaged with multi cross-domain systems. A cross-domain system is a 

system that possibly exploits similar parameterization, shares routing paths, or responds 

to consequences related with one or more different systems. A port, for example, is 

considered a cross-domain system because it engages with barge tows that travel from/to 

other locks or ports (determined as different systems) located on the same navigation 

system. Thus, to simulate this navigation system including a number of locks and ports, it 

is necessary to share information among systems (or cross-domain communication) to 

control interoperability of parameterization, layout design (e.g., routing), and dynamics 
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of the system (e.g., sequences of entity flow). The idea of using a CROSS component is 

to provide a better understanding in a mechanism of passing and returning parameters 

and entities within and between modularity (e.g., submodels) – a key development of 

simulation building blocks – which is discussed later in Chapter 5. 

CLBL 
@DMSL1; DMSL2; … 

 

Figure 3 - 13: A symbol of CROSS 

 Each static component is defined with its identical component label that is 

connected to its dynamic modeling subsystem containing the logical process flows and 

parameters needed. The connection is made through “@” and followed by a specified 

dynamic modeling subsystem label (DMSL). There are two types of connections between 

static components: adjacency and precedence. Adjacency is used to indicate that 

movement may occur in either direction between two components. The symbol of 

adjacency is a line (Figure 3-14). 

 

Figure 3 - 14: An adjacency line 

An arrow, as shown in Figure 3-15, is used to indicate a precedence of movement that 

may occur in only one direction between two physical components. Movement may 

occur only in the direction of the arrow head. These connections show that there exist one 

or more interchanges or flows of objects and information between the components.  
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Figure 3 - 15: A precedence line 

 Figure 3-16 illustrates a physical layout on a navigation system, giving locations 

of ports, locks, waiting areas, and sections on the Mississippi River.  
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Figure 3 - 16: An assumed physical layout on the Mississippi River 

These physical locations can be transformed into static symbolized components, which 

are connected together as a network, as shown in Figure 3-17. 
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Figure 3 - 17: A network of static symbolized components 
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3-8-4-2 Dynamic Modeling Subsystem 

 The concepts of dynamic modeling subsystem have been already explained in 

depth in the paper. For this supplementary section, the entire set of the PL representations 

for the lockage operation is given in the following figures. It is necessary for the 

simulation developers to understand how to create each section, how to decompose an 

SMU, how to combine three sections, and what the entire page conceptually represents. 

Following the figures, tables of descriptions of the objects and operations are provided. 

There have been some changes in these tables to facilitate translating and mapping the 

conceptual simulation model into a domain specific simulation environment. For 

instance, operations are categorized into three different types: basic, extended, and 

specific, supporting determination of levels of configuration to fit levels of availabilities 

of parameters and functions in the target simulation programming or application.  
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Figure 3 - 18: DMSL: LCK; sub-folder# 0; page# 1 
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Figure 3 - 19: DMSL: LCK; sub-folder# 2; page# 1 
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Figure 3 - 20: DMSL: LCK; sub-folder# 2; page# 2 
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Table 3 - 6: Description of Objects for DMSL: LCK 

Object Name Type Description Parameters 
EntBargeTow Entity A barge-tow is represented as a target 

entity to be observed in the inland 
waterway system. A barge-tow entity 
consists of a set of barges and a tow 
boat. 

: Identification# 
: Number of barges 
: Origin 
: Destination 
: Arrival time 
: Speed 

ResLock Resource A lock is a resource that takes an action 
in raising or lowering barge-tow entities 
by filling or draining water. Also, the 
lock-enter allowance is controlled by its 
gates. The gates can be determined as 
internal or external resources.  

: Name 
: File# 
: Resource# 
: Capacity 
: Activity time 

ResWrench Resource An electric wrench is a resource used to 
pull a section of barges that are cut for 
the first lockage.  

: File# 
: Resource# 
: Capacity 
: Activity time 

 

Table 3 - 7: Description of Operations for DMSL: LCK 

Operation Name Type Actor Description Attributes Global 
Variables 

AssembleBargeTow() General/ 
Extended 

EntBargeTow An action is to 
accumulate one or 
more set of barges 
that are cut with a tow 
boat into a single 
entity 

: Identical values 
: Number of 
barges 

 

AssignBargeTow() 
{…} 

General EntBargeTow A simulation action is 
to assign identical 
attributes to define the 
characteristics of each 
barge-tow entity that 
represent a set of 
barges and a tow boat. 

: Identification# 
: Number of 
barges 
: Origin 
: Destination 
:Arrival time 
: Speed 

 

BranchBargeTow() General/ 
Extended 

EntBargeTow A number of branches 
are provided at a 
location for an entity 
to take upon 
conditions or 
probabilities 

 : Condition 
expression 

CreateBargeTow() General/ 
Extended 

EntBargeTow A barge-tow entity is 
created by a mean of 
containing a set of 
barges and a tow boat. 

: First arrival 
: Arrival rate 
:Current time 
: Max# entities 

 

CollectTime() General EntBargeTow Statistical data of time 
spent in the system 
are collected 

: Travel time : ID 
: Label 
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Table 3 - 8: Description of Operations for DMSL: LCK (Cont.) 

Operation Name Type Actor Description Attributes Global 
Variables 

CheckBargeTow() Extended EntBargeTow An action is to check 
how many barges the 
entity is containing to 
make a decision for 
selecting a lockage type. 

: Number of 
barges 

 

CutBargeTow() Extended/ 
Specific 

EntBargeTow An action is to split a 
specific number of 
barges that are allowed 
to enter a lock. There 
are many ways to cut, 
upon policies and sizes 
of each lock 

: Identical 
batch size 
: Number of 
barges 

 

HoldBargeTow() General/ 
Extended 

ResLock “Hold” can be 
determined as an action 
to control the flow of 
entities.  

 : Delay time 
 

ProcessLock() General ResLock An action is taken at a 
lock by a mean of delay-
activity time. 

: Resource# 
: Capacity of 
lock 

: Activity time 

ProcessWrench() General ResWrench Electric wrench is used 
when a double lockage 
is required. 

: Resource# 
 

: Activity time 

SelectLockage() Extended ResLock A decision-making 
action is to select either 
single or double lockage 
configuration upon the 
sizes of the barge-tow 
entities 

: Resource# 
: Capacity of 
lock 
 

 

SetLockState() Extended ResLock An action (of sending a 
signal) verifies a status 
of the lock (e.g., busy or 
idle) 

: Resource# : Offset value 

RouteBargeTow() General EntBargeTow Each barge-tow entity is 
routed or moved 
through the system on 
designated routes. Delay 
time might be specified 
on each route. 

 : Distance 

TerminateBargeTow() General EntBargeTow Each barge-tow entity is 
terminated when it 
leaves the system 
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Moreover, a full network statement of DMSL: LCK can be created by arranging 

operations in those SMUs into sequential activities. To make a network statement, follow 

these steps: 

(1) Begin with Ref# 0 (the topmost level of decomposition) to check how many 

SMUs (modules) are in this folder (level of decomposition). 

(2) Start with the left-most SMU. 

(3) Check if the SMU leads to a new Ref# by using its abstraction-level number to 

search for a folder having the Ref# as same as the number. 

• If no, go to Step (4). 

• If yes, start with the new Ref# and go to Step (6). 

(4) Transform the SMU’s operations into a statement format and put them in a 

sequential order (stated in the sequence section).  

(5) Check if there is another SMU next to it. 

• If no, go to Step (8). 

• If yes, go to Step (7). 

(6) Repeat Step (2) until there is no further decomposition. 

(7) Start with the next SMU and go to Step (3). 

(8) End the network statement. 
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According to the instructions above, the simulation developers are able to obtain such the 

network statement as shown in DMSL: LCK. 

DMSL: LCK; Ref# 0 – 2: 

1 CreateBargeTow, First arrival, Arrival rate, Current time, Max# of 
entities; 

2 AssignBargeTow, Identification#, Number of barges, Origin, Destination, 
Arrival time, Speed; 

3 RouteBargeTow, Distance; 
4 CheckBargeTow, Number of barges; 
5 SelectLockage, Resource#, Capacity of lock, Number of barges; 
6 SetLockState, Rerouce#, Offset value; 
7 BranchBargeTow, Condition expression; 
8 Condition, Number of barges <= Capacity of lock; 
9 SetLockState, Resource#, Offset value; 
10 RouteBargeTow, Distance; 
11 ProcessLock, Resource#, Capacity of lock, Activity time; 
12 RouteBargeTow, Distance; 
13 SetLockState, Resource#, Offset value; 
14 Condition, Number of barges >= Capacity of lock; 
15 SetLockState, Resource#, Offset value; 
16 CutBargeTow, Identical batch size, Number of barges; 
17 HoldBargeTow, Delay time; 
18 ProcessWrench, Resource#, Activity time; 
19 ProcessLock, Resource#, Capacity of lock, Activity time; 
20 RouteBargeTow, Distance; 
21 SetLockState, Resource#, Offset value; 
22 RouteBargeTow, Distance; 
23 SetLockState, Resource#, Offset value; 
24 ProcessLock, Resource#, Capacity of lock, Activity time; 
25 RouteBargeTow, Distance; 
26 AssembleBargeTow, Identical batchsize, Number of barges; 
27 SetLockState, Resource#, Offset value; 
28 RouteBargeTow, Distance; 
29 CollectTime, Travel time, ID, Label; 
30 RouteBargeTow, Distance; 
31 TerminateBargeTow; 
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The design of network statement is intended to increase the readability of the process 

layer’s representations without encumbering the simulation developers with extraneous 

information requirements (based on the idea of Pritsker and O’Reilly 1999).  
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CHAPTER 4 

Transformation of Conceptual Simulation Modeling 

“Reproduced with automatic permission from [Setavoraphan, K. and Grant, F. H. (2009) Transformation of conceptual 

simulation modeling submitted to Symposium on Theory of Modeling and Simulation (DEVS 2010)]. It has been 

modified somewhat to reflect current advances in this research.” 

 

Abstract 

Conceptual simulation modeling (CSM) is a critical approach that breaks through the 

barriers of cross-domain communication in Modeling and Simulation (M&S). However, 

standard symbols, notation, and diagrams created in CSM need to be transformed into 

contextualized documentation, so that their semantics of structural and behavioral 

contents within a simulation context can be represented in a more executable and 

readable form. The search for a formal transformation approach is crucial to establish a 

bridge between human concepts and simulation content. This chapter includes a pilot 

study on the transformation of a conceptual simulation model developed by Integrated 

Simulation Acknowledge Procedure (ISAP), based on model composability and 

simulation interoperability.  

 

4-1. Introduction 

In Modeling and Simulation (M&S), conceptual simulation modeling (CSM) 

plays a significant role in breaking through communication barriers between domain 

experts and simulation developers. The objective of CSM aims to deliver a robust and 

reusable simulation modeling framework for a target domain, describing its structural and 
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behavioral characteristics that represent both reality and simulation contents. Often this 

framework is used as a blueprint for domain specific simulation development. However, 

CSM is still based upon a human-to-human (readable/understandable) platform, which 

creates challenges in transferring concepts and requirements to computer simulation-

based implementation. 

 Even though a CSM framework provides a set of processes, objects, functions, 

and relations needed to compose a simulation model, these can only be used at the 

generic or basic levels by a means of logical flows and component/pattern designs – to 

structure overall architecture but an independent-implementation environment for domain 

specific simulation. CSM tools are still incapable of transforming their conceptual models 

into executable simulation models automatically. This causes the information exchange 

to be inaccurate and incomplete. However, the automatic transformation does not 

guarantee that the information will not be lost when the concepts are transformed into 

executable codes. This is because at transformation stage domain experts are no longer 

involved in the process. In fact, it is important for the domain experts to check the entire 

development process of both conceptual models and simulation models to confirm if they 

still include all the aspects of their requirements.  

The problem to be addressed is that most domain experts are unable to 

read/understand not only the computer/simulation programming languages but also the 

formal modeling languages available these days (Valenti, Panti, and Cucchiarelli 1998). 

This requires that an individual take special training before being able to read/understand 

such a modeling language. The main reason is that there are only a few modeling 

languages that incorporate an explanation generation approach such as PPP (explanation 
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component), as described in a study by Nijhuis (2005), to enrich conceptual models with 

user interaction like, i.e., UML. User interaction consists of an explanation component 

with natural language and a knowledgebase component, allowing the user (e.g., domain 

expert and simulation developer) to ask a question and to answer follow-up questions; 

and to store and get information from the knowledgebase. Another reason is that 

conceptual models are directly translated into complex programming languages such as 

C++ and JAVA when encoding a host simulation language (e.g., SIMAN/Arena and 

Visual SLAM/AweSim). The difficulty exists not only for the domain experts but also for 

the inexperienced simulation developers.  

Based on these concerns, Setavoraphan and Grant (2008) proposed an Integrated 

Simulation Acknowledge Procedure (ISAP) to enhance recent modeling methods and to 

response the user’s requirements in domain specific simulation development. In the 

paper, fundamental symbols, notation, and diagrams are represented in natural language, 

which can be transformed into simulation-language-like statements. Unfortunately, the 

paper is limited to cover all the aspects necessary to support the alignment of 

conceptualization and implementation. Therefore, a simulation-contextual document has 

been developed in this study to represent the transformation of ISAP using an 

intermediate simulation language that supports both model composability and simulation 

interoperability. This type of documentation aims at creating open space for the 

development of domain specific simulation on any simulation environments.  

 



 

 85

4-2. Key Concepts 

 An initiative for facilitating better understanding of the transformation approach 

is taken by distinguishing models and simulations. The Modeling and Simulation (M&S) 

community defines this distinction by a means of metadata structures in support of the 

development processes (Tolk and Turnitsa 2007). Models are the results of 

conceptualization of a problem to be solved, while simulations are implementations of 

models executable over time. Information generated and executed by these domains are 

different, which initially generates a gap between them by a means of conceptualization 

and implementation. Therefore, a need for information exchange between them becomes 

crucial for reducing or eliminating this gap. 

In fact, conceptual models in most cases are not technically captured in a 

computable way. Hence, difficulties exist in evaluating if the information exchange can 

be aligned conceptually or not (Davis and Anderson 2003). Only the alignment of 

concepts, nevertheless, is not sufficient to fulfill the gap. The content of the information 

exchange reference must also be specified as contextualized information, which is built 

from a set of user declarations under a set of validity constraints (Analyti et al. 2007). 

Given such a contextualized framework, specifications of conceptualizations can be 

formalized into a context that simulation systems can really exchange and understand. 

The context can be viewed as a knowledge representation providing a common language 

for this cross-domain communication. Structuring a meaningful context, thus, leads to a 

key approach in the transformation process.  

According to Hemel, Kats, and Visser (2008), “the essence of the 

(transformation) approach is to shift the knowledge about these implementation details 
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from the minds of programmers to the templates of code generators that automatically 

translate models into implementations.” This statement points out that the context for 

transformation should initially be pursued at the conceptual level. The purpose is to 

acknowledge and synergize the requirements and specifications of two domains so that 

components that are created in the contextualized framework contain information easily 

transformed across the domains. To achieve this goal, the implementation of two key 

concepts: model composability and simulation interoperability, must be taken into 

account. 

 

4-2-1. Model Composability 

 An interesting definition describing model composability can be found in the 

literature by Morse et al. (2003):  

“Given a set of components, structured descriptions or specifications of the components, 

sometimes called meta-data or meta-models, can be used to guide the process of selecting 

components for a specific purpose and determining if a set of components can be 

effectively composed.” 

In brief, composability is the process of combining and recombining components in 

different compositions (Petty 2004). A summary of composability can be found in the 

previous study (Setavoraphan and Grant 2008). However, details related to 

transformation are not included.  

 In general, syntactic and semantic composability are considered core concepts for 

model composability. Syntactic composability is concerned with the compatibility of 

implementation details (Petty and Weisel 2003); semantic composability, on the other 
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hand, is concerned with validity of the composition (Weisel, Petty, and Mielke 2003). 

However, as mentioned earlier, transformation is a process of structuring a context 

understandable by simulation systems. Hence, another type of composability needs to be 

addressed. Pragmatic composability is concerned with the context of the simulation and 

with the determination of whether the composed simulation meets the intended purpose 

of the modeler (Hofmann 2002).  

In practice, semantic and pragmatic composability is a much harder problem 

(Fishwick and Miller 2004; Moradi 2007) in conducting conceptual models, compared to 

syntactic composability. One of the reasons is that the formats of conceptual models, in 

general, are not designed to contain semantic and pragmatic information about what they 

intend to simulate. This results in having a framework that provides interface 

specifications and rules which only facilitate technical aspects of compositions (e.g., 

syntactic composability), for example, the High Level Architecture (HLA) (Moradi 

2008). Within a poorly structured semantic and pragmatic format, there appear the 

difficulties not only in reusing components but also in transforming these components 

from conceptualization to implementation.  

To handle this issue, the first step is to have a clear understanding of what is being 

composed (e.g., components) and what is the result of composition (e.g., product from 

the components). Based upon a number of answers found in the literature, they can be 

referred to as levels of composability (Petty and Weisel 2003) as follows: 

• Application: Applications such as simulations are composed together to build 

simulation events, exercises or experiments. 
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• Federate: Refer to specific HLA meanings, this level allows combining, 

recombining, and editing simulations to build a set of distributed simulations that 

communicate in run-time. 

• Package: Simulations are composed by using pre-assembled packages of models 

to form a subset of the specific domain. 

• Parameter: This level is focused on configuration of pre-existing simulation by 

using parameters. 

• Module: Modules are composed into software executables. 

• Model: Models of smaller scales are composed into composite models of larger 

scales. 

• Data: Databases are developed through composition of sets of different data (e.g., 

entities, sources, and aspects).  

• Entity: Entities are composed into groupings, whereas groupings are composed 

into higher level groupings.  

• Behavior: Behaviors at lower level are composed into higher level behaviors, 

which are to be executed by computer generated forces or in constructive 

simulations. 

The levels of composability provide information that help specify meanings, 

characteristics, and requirements of sources (e.g., conceptual components) and targets 

(e.g., executable components). Thus, the mappings and relations between component 

types can be taken into management and control, which generates rules and constraints 

for the specializations of transformations (Koch 2006).  
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 The second step is to develop proper documentation used as guideline and control 

for (re)configuration and adaptation in composability. Davis and Anderson (2003) point 

out that in practice there is always a need for some degrees of component adjustment and 

adaptation before being able to compose a set of components. It can be done through 

reconfiguration of simulations by, for example, adjusting interfaces, making changes in 

the existing simulation codes, etc. In either case, proper documentation is needed for the 

adaptations (Fishwick and Miller 2004). “It is much easier for a human to read and 

understand a textual description of a component than a program code, and use it as a 

basis for selecting and adapting the component” (Moradi 2008). Hence, proper 

documentation aims to provide a good support to pursue successful composability at the 

conceptual and description level – in a formal way. Furthermore, an additional format for 

architectures and environments that facilitate transformation of the components can be 

created and implemented within documentation. This type of documentation brings 

potential path to progress in the entire development process for domain specific 

simulation. Documentation in this research study is developed upon technology-based 

concepts, which are further explained in Section 4-3. 

 

4-2-2. Simulation Interoperability 

 Within the modeling and simulation (M&S) community, interoperability has been 

of major concern to bridge the gap between implementation focused methods and 

conceptual models (Tolk and Muguira 2003). Interoperability in M&S is closely related 

to composability; thus, it is of interest to clarify its definitions. The IEEE defines 

interoperability as “the ability of two or more systems or components to exchange 
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information and to use the information that has been exchanged” (IEEE 1990). 

Meanwhile, its definition in the M&S context has been described as the ability of 

different simulations connected in a distributed system to collaboratively simulate a 

common scenario (Petty 2002). Furthermore, the distinction between interoperability and 

composability is defined in the literature by Page et al. (2004) as the following aspects: 

• Interoperability deals with exchange of data elements based on a common 

data interpretation related to implementation details, which can be mapped to 

the levels of syntactic and semantic interoperability.  

• Composability addresses the alignment of issues on the conceptual modeling 

level to provide meaningful conceptualization used for being implemented by 

the simulation systems.  

 

The underlying idea of distinguishing between interoperability and composability is to 

recognize what type components are (e.g., interoperable or composable) and what the 

result of configuration of the components is (e.g., levels of interoperability and 

composability). According to Petty (2002), components that are interoperable in one 

configuration, but cannot be composed together in other ways are not composable. 

Furthermore, having components with unbalance levels between interoperability and 

composability makes the meanings and validations of transformation become infeasible.  

 Originally, transformation is acknowledged as an approach dealing with 

information exchange between two different systems, which requires an achievement of 

meaningful interoperability as well. Hence, the focus is put on the specifications of what 

type of interoperability being structured and what level of information being 
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interchanged. First of all, similar to composability, there are two types of interoperability: 

technical and substantive (Petty 2002). In technical interoperability, components require 

to be compatible with an interoperability protocol which is responsible of exchange of 

information between components. Technical interoperability is also called syntactic 

interoperability. On the other hand, substantive or semantic interoperability is satisfied if 

the exchanged information is semantically meaningful, which is based on the definition 

settings. Furthermore, substantive interoperability is often collaborative along with 

pragmatic interoperability when determine whether the exchanged information differs 

from the intention (Pokraev et al. 2005).  

 Second, in order to reach meaningful interoperability, the levels of information 

being exchanged between two systems need to be managed at the conceptual level to 

avoid ambiguous interpretation (Tolk and Muguira 2003). Five levels of interoperability 

are defined in the literature as follows: 

• Level 0 – System Specific Data: No interoperability exists between two 

systems because data is specifically used within each system.  

• Level 1 – Documented Data: Data is documented using a common protocol 

and interface such as HLA. 

• Level 2 – Aligned Static Data: Data is documented using a common reference 

model such as ontology.  

• Level 3 – Aligned Dynamic Data: The use of the data within the component is 

well defined in standard documentation and is visible to the integrator such as 

Unified Modeling Language (UML), Extensible Markup Language (XML) in 

Simulation Reference Markup Language (SRML).  
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• Level 4 – Harmonized Data: Conceptual model is documented to control the 

consistency of semantic connections between unrelated data concerning the 

executable code. 

 

As obviously seen, to reach the higher level of interoperability that is related to the 

availability and management of information exchange is relied on how well 

documentation is made to capture and describe data.  

The idea of documenting interoperability is similar to documentation for model 

composability in which technology-based concepts are involved. A question here is that 

how documentation based technological concepts can be created to support 

transformation.  A thought of what is the most critical requirement of the M&S 

transformation process becomes a key to answering it. Intensively, transformation 

requires the high-level collaboration between the “semantic” composition of components 

and the “meaningful” interoperation of information. One of the technology-based 

concepts found in a set of literature that show the success of transformation is Semantic 

Web. Within the terminology of Semantic Web, new possibilities for documenting a 

contextualized framework using its related concepts such as ontology, XML, and SRML, 

to facilitate transforming conceptualization into implementation are conducted. These 

concepts have been discussed in the section 4-3.  

 

4-3. Related Technology-based Concepts 

 According to the W3C director Berners-Lee (2001), the Semantic Web is an 

extension of the current World Wide Web technology in which the semantics of 
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information on the web is well defined. Through Semantic Web technologies, it is 

possible to structure everything in languages to make formal description of contents, 

understandable by people and computers. Hence, the Semantic Web is about a verbal 

communication tool for collecting data relating to real world objects and exchanging the 

data in a formal way. 

 The reason behind the use of the Semantic Web in this study is to develop a 

methodology that supports transforming conceptual models into simulations. Its potential 

has inspired this work to document a contextualized framework using available 

technologies and languages within the Semantic Web context for the transformation 

process. The following sub-sections present an overview of the related technologies. 

 

4-3-1. Ontology 

 To achieve proper contextualized documentation for transformation, semantics of 

composability and interoperability need to be well captured at the conceptual level. 

Ontology is defined as a formalization of a specification of a conceptualization (Tolk and 

Turnitsa 2007) in a sense to overcome the challenges of M&S composablity and 

interoperability. Its formulation for practical applications is described: “if a formal 

specification concisely and unambiguously defines concepts such that anyone interested 

in the specified domain can consistently understand the concept’s meaning and its 

suitable use, then that specification is an ontology” (Tolk and Blais 2005). Accordingly, 

ontology aims at providing common and unambiguous meaning of information to 

establish a joint terminology/frame of reference of conceptual meanings between 
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components (e.g., entities) within a domain as well as their interactions between the 

components (e.g., events). 

The following example helps to visualize how ontology works. Ontology defines 

that there is a concept of an object called Vehicle, and that a Vehicle requires fuel. This 

object can then be declared with terms and properties in some formal way to convey that; 

for instance, a Car is a Vehicle. Furthermore, using logical inference that a Car is a 

Vehicle and Vehicles require fuel, it can be concluded that a Car requires fuel. According 

to Moradi (2008): 

“The point of declaring this type of ontology is so that if two entities (for example two 

computers that try to mimic intelligence) have agreed upon using this ontology, and one 

of the entities can mention the word Car, then the other entity knows that this Car they 

are talking about is a Vehicle and nothing else.” 

 Given its definition and example, it can be seen that ontology shares many 

structural similarities with object orientation by a means of fundamental aspects such as 

encapsulation, polymorphism, and inheritance. 

Table 4 - 1: Ontology to Object-oriented mapping 

Ontology Domain 

(retrieved from Wikipedia 2008) 

Object-oriented Domain 

(Rumbaugh et al. 1991) 

Individual concept (instance) Object 

Collections/types of concepts Classes 

Properties Attributes 

Function terms Operations and methods 

Relations Links and associations 
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Ontology to Object-oriented mapping retrieved from the table above shows that a concept 

can potentially be structured into a form of an object that has its own class and relations 

between other objects/classes. Furthermore, its information (e.g., attributes, 

characteristics, properties, etc.) can be captured, exchanged, specialized, inherited, and 

reused within a specific domain (e.g., a frame of reference). Put together a set of objects, 

classes, information, and relations, the concept becomes less abstract but more semantic 

to be used in modeling.  

Although the object orientation is (often) used as the fundamental methodology to 

develop conceptual models, it still lacks mechanisms to control and formalize the levels 

of semantics of conceptualizations. Vasilecas and Bugaite (2007) state that the 

development of conceptual model using ontology based approach is needed because the 

semantic content can be transformed into information system (e.g., simulation) artifacts. 

Hence, the costs and time can be reduced not only in conceptual modeling but also in 

simulation modeling.  

Base Object Model (BOM), for example, has recently been developed using 

ontology-based approach to provide a component framework for facilitating reusability, 

composability, and interoperability (SISO 2006). A BOM is developed based on the 

assumption that piece-parts of models and simulations can be extracted and reused as 

modeling building-blocks and components. Specifically, BOMs are meant to provide an 

end-state of a conceptual simulation model and to be used as a foundation for the design 

of executable software code and integration of interoperable simulations. Based on the 

aspects found in a BOM, concepts can be captured and described in terms of both static 

(e.g., reality) and dynamic (e.g., interaction) view to support considering what the model 
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or simulation will intend to do. Furthermore, a BOM is a document that defines not only 

the template components for capturing the information needed to describe a simulation 

component but also the XML schema for interchanging the information between 

conceptual models and simulations. The concept of BOM brings an insight of applying 

the ontology-based approach and XML to develop a conceptual simulation model 

including simulation transformability. The implementation of this idea has been taken in 

the entire research study so that ISAP is capable of constructing a process-oriented and 

component-based framework to contain and represent sufficient semantics of simulation 

components with respect to the ontology context. Therefore, there is the possibility for 

ISAP to be documented by using XML to facilitate its transformation process. Detailed 

discussion will be given in the section of model transformation. 

Another interesting issue about ontology is the levels of abstraction. There are 

three main levels: upper (foundation) ontology, core ontology, and domain (domain-

specific) ontology (Fishwick and Miller 2004). Upper ontology is a model that captures 

basic concepts of real world. It provides a framework in which the building-blocks of 

reality can be described, independent of any specific domain. Thus, concepts defined in 

the upper ontology are generally applicable across a wide range of domain ontologies. 

The upper ontology then can be used as a knowledge base for building more specialized 

ontologies, which provides reusable knowledge and semantics to support interoperability 

between different specialized ontologies. The core ontology captures concepts and their 

relations in a field of practice. The domain ontology models a specific domain and 

specializes the core ontologies.  
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Moreover, the ontological spectrum introduced by Daconta et al. (2003) is used to 

describe a range of semantic models of increasing expressiveness and complexity to 

capture the information required, as shown in the following categories: 

• Dictionaries and glossaries are lists of controlled vocabularies not underlying 

concepts and are the weakest semantics in this spectrum.  

• Thesauri are well known-order and structured controlled vocabularies that 

facilitate retrieval of documents and achieve consistency in recorded 

documents. 

• Taxanomies are tree structures of classifications for a given set of objects, 

which are the first form reflecting the idea of concepts. 

• Ontologies represent the formalization of an exhaustive and rigorous 

conceptual schema within a given domain, which are helpful for capturing the 

meaning of the underlying concepts. 

• Logical models are representing semantically the strongest methods of the 

ontological spectrum, giving knowledge representations in particular. 

 

The main purpose of using the ontological spectrum is to fill several gaps identified by 

Robinson (2006) in modeling conceptualization and implementing models into 

simulations. Hence, the use of a common language has been introduced for information 

exchange to control and represent the levels of semantics between abstract and executable 

thinking (Tolk and Turnitsa 2007). It exploits common artifacts in capturing and 

providing information that not only human but also computer can read and understand. 

Obviously, these common artifacts become particular definitions and supportive elements 
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for transformations between domains. Among available languages, XML has been 

selectively used as a common language in this study.  

 

4-3-2. XML 

 Extensible Markup Language (XML) is a markup language derived from Standard 

Generalized Markup Language (SGML), originally designed for the exchange of data on 

the Web (Quin 2003). XML is a simple and flexible text format for describing a class of 

data objects called XML documents. XML documents consist of elements which contain 

either parsed or unparsed data, specified using tags (words bracketed by ‘<’ and ‘>’). 

Parsed data are made of characters that form character data (e.g., attributes) for 

describing the elements and form markup for encoding the contents of document, 

described by a-name-value pairs. XML provides this markup mechanism to impose 

constraints on the document’s storage layout and logical structure. The example below 

represents how the author can be described in an XML document.  

<?xml version="1.0" encoding="UTF-8" ?> 
<Author> 
 <Name>Kitti Setavoraphan</Name> 
 <Institution> 
  <Name>University of Oklahoma</Name> 
  <Location> 
   <City>Norman</City> 
   <State>Oklahoma</State> 
   <Post> 
    <Code>OK</Code> 
    <Zip>73019</Zip> 
   </Post> 
   </State> 
   <Country>USA</Country> 
  </Location> 
 </Institution> 
</Author> 
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 Using this tree-structured text style, related data and networked data can naturally 

be described at various levels of complexity. The hierarchical structure in an XML 

document is formed in a fashion similar to the object-oriented structures laying out the 

foundation for the development of most simulation software packages. The most precise 

semantic mapping of conceptual structures onto both the XML structures and object-

oriented structures is the Document Object Model (DOM). The DOM provides access to 

the various nodes of a document such as document, element, and attribute, and to node 

lists. Moreover, XML marks a shift toward data structures that can be defined by 

grammars (Daum 2003), so that it has enough expressiveness to satisfy the requirements 

of conceptualization-to-implementation communication in modeling and simulation. 

Thus, XML becomes a preferred protocol for accessing and establishing simulation 

modeling specifications (Lu, Qiao, and McLean 2003) regardless of simulation platform.  

 As a grammar-driven language, XML allows a modeler to define his own tags 

and structure of documents using an XML schema (Lim 2004). The schema can also be 

viewed as a common vocabulary for a particular application that involves exchanging 

documents (W3C 2002). The vocabulary aims at defining the structures of the XML 

document in terms of constraints in a particular schema. There are two types of 

constraints used in a schema: content definition and data type constraints (Walsh 1999). 

Content definition constraints describe the order and the sequence of elements, whereas 

data type constraints describe valid units of the data. An XML schema, thus, permits the 

modeler to specify rules to structure the content of an XML document (e.g., elements, 

attributes, relationships, and data types) that can be validated with simulation software 

(Reichenthal 2002). 
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Since its syntax is simple, an XML document can be read by both human and 

computers (Fishwick 2002). Not only does transformability of the XML document 

potentially emerge but also collaboration between the domain experts and the simulation 

developers does improve. As a result, XML is considered as a core language suited for 

documenting a contextualized framework to represent the contents of both domains at an 

intermediate information-exchange level – that is a more computer-readable form.  

 

4-3-3. Simulation Reference Markup Language (SRML) 

 According to Reichenthal (2002), “simulation is a process that attempts to predict 

aspects of the behavior of some system by creating an approximate model of it.” The 

underlying concept here is that a model must contain the ability to describe behavior of 

all items comprising a simulation. As mentioned above, an XML document is constructed 

upon object-based descriptions to represent (physical) data structure of a particular 

system. However, use of plain XML does not imply semantic behavior of the data (W3C 

2002).  

 The Simulation Reference Markup Language (SRML) is a formal language for 

describing simulations using similar constructs of XML, developed by the Boeing 

Company. Gustavson and Chase (2004) state that “SRML is like HTML in that it provides 

for executable content using the same kinds of mechanisms such as object models, 

scripting, plugs-in, and the ability to dynamically download and assemble content.” 

SRML is designed to combine XML and those features, especially scripting, to encode 

both structure and behavior of entire simulations using classes and scripts (Reichenthal 
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2008). Moreover, simulations described in SRML can be executed in its runtime 

environment, Simulation Reference Simulator (SR Simulator).  

In an SRML document, the structure of XML constructs is organized in a way 

that makes it practical to represent (Reichenthal and Johanson 2008):  

• A set of interconnected items, both hierarchically and networked; 

• Individual item behavior via scripts; 

• Item classes, polymorphism, and multiple-inheritance; 

• A means for synchronous, asynchronous, and scheduled communication; and 

• Random events. 

 

The example below illustrates how a simple SRML document is constructed.  

<Simulation> 
 <Script Type='text/javascript'> 
 ... 
 </Script> 
 <ItemClass Name='Vehicle'> 
  <Vehicle type="Passenger"> 
   <Script Type='text/javascript>  
   ... 
   </Script> 
  </Vehicle> 
 </ItemClass> 
 <Vehicle Quantity='4'/> 
</Simulation> 
 

In general, SRML uses a set of tags as any other XML-based language to create 

structured representations, including pre-designated attributes to describe abstract items. 

Meanwhile, internal and external structures are described and validated by XML and 

simulation-specific schemas (W3C 2002). For a better understanding, an explanation of 

the basic tags used in the example above is given. The <Simulation></Simulation> tags 
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encapsulate elements and scripts corresponding to an entire simulation. A simulation 

element contains zero or more Script elements as children to specify the main simulation 

behavior, using a <Script></Script> tag-set. This script can be written in JavaScript, 

VBScript, or any other script-language; however, JavaScript is set by default for an 

SRML script. The next part of the document is followed by a number of 

<ItemClass></ItemClass> tags, which define the different types of items required for the 

simulation. In the above example, a Vehicle is defined as an ItemClass element within a 

<ItemClass> tag-set. Each ItemClass element can typically be created by defining 

properties, structure, and behavior of the item. It can also contain zero or more Script 

elements describing the functionality of the item defined. After the <ItemClass>-tags, a 

set of instances of items that is being used in the simulation may or may not be specified. 

The example above shows that four vehicles are created. In addition to these simple 

constructs, the SRML document can contain other elements, for example, Links, Events, 

and so forth to support specific domains under simulation. For more information on 

SRML, see the W3C SRML website (http://www.w3.org/TR/SRML/).  

To be concluded at this point, “SRML should not be considered a programming 

language, but rather a composition language for integrating XML data models with 

behavior” (Reinchenthal 2004). With these characteristics, SRML can provide enough 

expressive power to model most anything for purposes of simulation by a means of 

structural and behavioral documentation, which can be executed on computers. 

Furthermore, simulation models constructed in this form of SRML document supports 

both composability and interoperability as well. Hence, SRML has successfully been 

used in transforming conceptual models such as BOMs into simulations (Gustavson and 
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Chase 2004; Reichenthal, Gustavson, and Cruz 2003; Moradi, Nordvaller, and Ayani 

2006; Moradi 2008). 

Nevertheless, SRML includes a large number of features, some of which are not 

applicable in the scope of this research study – especially with ISAP. At the beginning, 

this research study has been set to avoid any burdens with designing complex high-level 

definitions of any host simulation or programming languages. It is focused on providing a 

friendly-user methodology that facilitates the development of domain specific simulation 

environments. The transformation of conceptualization has become a part of the 

methodology, creating a simulation document independently applied for implementation 

on any simulation environments. Hence, only has the architecture of the SRML language 

been utilized in documenting ISAP conceptual simulation models.  

 

4-4. Model Transformation 

 This section presents a methodology based on contextualized-framework 

documentation to support the transformation of conceptual simulation models developed 

under ISAP. The document follows the SRML-based architecture using XML and 

JavaScript to capture and describe structural and behavioral components in a domain 

specific simulation. Even though ISAP uses three layers (e.g., Initialization, Process, and 

Termination) to represent a generic structure of the domain specific simulation, it is 

possible to develop all-in-one-type documentation to satisfy the individual layers’ 

requirements. This type of documentation must allow selecting and representing the 

information from ISAP that can potentially be exchanged and mapped into a simulation 

environment on a conceptual level. The main purpose is to reduce some concerns related 
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to constraints and knowledge in implementation, so that the document can encapsulate 

the contents within the simulation context into an organized and easily-readable module.  

 An advantage of documenting ISAP information into a form of modularization is 

that each SMU can be transformed, integrated, distributed, and reused independently in 

separate documents, by separate model developers.  

 

<SMU1> 

… 

</SMU1> 

Modeler#1 

<SMU3> 

… 

</SMU3> 

<SMU2> 

… 

</SMU2> 
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</SMU7> 

<SMU8> 

… 

</SMU8> 

<SMU1> 

… 

</SMU1> 

<SMU2> 

… 

</SMU2> 

<SMU3> 

… 

</SMU3> 

<SMU7> 

… 

</SMU7> 

<SMU8> 

… 

</SMU8> 

<DMSL1> 

… 

</DMSL1> 

<DMSL2> 

… 

</DMSL2> 

<SMU1> 

… 

</SMU1> 

Modeler#2 

SMU1 SMU3

SMU2 SMU7 SMU8

Transformation

Transformation

Composition of DMSL1 Composition of DMSL2 

 
Figure 4 - 1: General approach of documentation for ISAP 

A transformational module contains information not only from the targeted SMU but also 

from surrounding information such as inputs, relations, and sequences, described in the 

ISAP layers. This is to ensure that the transformational module provides sufficient 
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semantics of its construction as well as a generic simulation module/building-block in 

which the information are formalized into specific data components for future 

applications.  Figure 4-2 shows the initial data components and their relations of a 

simulation module.  

<Code> 

…. 

</Code> 

Input 

Database 

Module Type 

File# 

Variable#1 

Variable#2 

……. 

……. 

<Code1> 

…. 

</Code1> 

<Code2> 

…. 

</Code2> 

<Code N> 

…. 

</Code N> 

…………….

+ Read-in Data-exchange 

INPUT DATA STRUCTURE PROCESS 

 
Figure 4 - 2: Initial structure of a simulation module 

 It is seen from the figure above that a simulation module is enabled by a 

collaboration of three data components: inputs, data structure (e.g., arrays and 

parameters), and process (e.g., functions). Its mechanisms require a set of instructions 

(codes) that are iteratively used to: 

• Receive input data; 

• Create parameters and a one-dimensional array to store input data; 

• Generate one or more processes to execute parameters; and 

• Return new data set to the storage. 
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Look at the mechanisms; it shows that all these instructions are written to describe how 

the data exchange and the logical execution of the simulation module implicitly take 

place. From this point of view, there are two major needs for an SMU to perform its 

transformation process: data descriptions and behavioral functions. Refer to the SRML-

based architecture, data such as entities, properties, and logic can be described by XML, 

whereas behavioral functions such as create, assign, and queue can be represented by 

scripts (e.g., JavaScript). The illustration is given in Figure 4-3. 

 

 

 

Process Description 

Level of Abstraction 

List of Entities 

List of Resources 

List of Operations 

Descriptions 

Behaviors 

XML 

JavaScript 

 
Figure 4 - 3: A scenario of transformation process 

Later, each individual transformational module needs to be coupled into a network 

representing an entire simulation, which requires more additional descriptions and scripts 

to make the connection between them. The following subsections demonstrate how to 

apply this approach for the transformation of ISAP. 
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4-4-1. Selection  

 The transformation process starts with the selection of SMUs and their relevant 

information at the lowest abstraction level. The idea is to provide true semantics of the 

composition of transformational modules and the interoperation among them when put 

together in documentation. In ISAP, an entire system is logically viewed as a document 

folder so that the levels of abstraction can be decomposed into one or more sub-folders in 

a tree-hierarchical order.  However, due to the fact that decomposition in ISAP exploits 

aggregation, the transformational module at the lowest level of abstraction may or may 

not contain all the inherit properties from its root. A loss of information does affect the 

completeness of implementation. Hence, it is necessary to derive and maintain 

descriptions and behaviors from the origins within documentation.   

 The lockage-operation example demonstrated in Chapter 3 is applied in this study 

to represent a continuous development process – from CSM to contextualized 

documentation. Basically, the selection begins at the network statement created from 

ISAP. The network statement contains the information of operations that are arranged 

based on logical sequences and decomposition levels. Then, it is to check back with its 

DMSL to find which SMUs those operations belong to. Finally, a list of SMUs is taken 

into consideration for the selection, which , in this example, consists of SMU Inform 

Arrival of Barge-tows, XOR Decide Which Lockage Fits Barge tows’ size, SMU Operate 

Single Lockage, and SMU Operate Double Lockage.  
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4-4-2. Modularization 

 The next step is to transform each SMU into a transformational module using 

XML and JavaScript to specify its descriptive and behavioral characteristics.  

XML allows the simulation developers to define their own tags to describe 

elements, properties, relations, and so forth. However, to make consistency through this 

research study, the following tags are set by defaults: 

Table 4 - 2: Default-setting tags 

Tag Name Description 

<DMSL></DMSL> Encapsulate the entire dynamic modeling subsystem that 
represents a domain specific simulation. 

<SMU></SMU> Define different types of modules that need to be 
transformed and are present in the simulation. 

<Entity></Entity> Define different types of entities that contain their own 
properties (e.g. attributes) and flow through the simulation 

<Resource></Resource> Define different types of resources that contain their own 
properties (e.g. attributes) and process the entities. 

<Script></Script> Define different behaviors for the item corresponding to the 
enclosing element (e.g. DMSL or SMU). Each script may 
contain functions, procedures, or variables that override the 
previous script. 

<Attribute/> Define and assign attribute name and attribute type to the 
element. 

<Variable/> Define and assign global variable name and global variable 
type to the element. 

<Link></Link> Define relation types and destinations for the current SMU.  

 

Assignment of properties to each element depends on what requirements are needed and 

how to translate those requirements by using descriptions. Properties are necessary for 

representing and, in some cases, adding more descriptions that cannot be covered by the 

ISAP conceptual models. It needs to be realized that levels of complexity in describing 
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properties are based on the quality and quantity of information that are derived from 

conceptualization and required for simulation. In Listing 4-1, for example, properties 

assigned to EntBargeTow and ResLock describe characteristics that specifically 

distinguish between an entity-type element and a resource-type element, providing 

acknowledgement of their contexts logically used for either within or separate modules 

(SMUs) to be referenced by functions.  

Listing 4 - 1: XML-based descriptions of entity and resource 

    <Entity Name ="EntBargeTow"> 

      <Attribute atribname="Identification#" atribtype="interger"/> 

      <Attribute atribname="NumberBarges" atribtype="integer"/> 

      <Attribute atribname="Origin" atribtype="integer"/> 

      <Attribute atribname="Destination" atribtype="integer"/> 

      <Attribute atribname="ArrivalTime" atribtype="real"/> 

      <Attribute atribname="Speed" atribtype="real"> 

    </Entity> 

 

    <Resource Name ="ResLock"> 

      <Attribute atribname="Name" atribtype="string"/> 

      <Attribute atribname="File#" atribtype="integer"/> 

      <Attribute atribname="Resource#" atribtype="integer"/> 

      <Attribute atribname="CapacityLock" atribtype="integer"/> 

      <Attribute atribname="ActivityTime" atribtype="real"/> 

    </Resource> 

     

Properties described in XML terms must also be relevant and accessible for functions 

specified in scripting – which is a critical concern for modularization by a means of 

interoperable-connection mechanisms – that controls interoperation of modules in 

separate development. 
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 The previous study (Setavoraphan and Grant 2008) states that functions (or 

operations) within an SMU can be used to create one or more simulation 

modules/building-blocks as found in SIMAN and Visual SLAM. Furthermore, a study by 

Reinchenthal and Gustavson (2003) shows the use of behavioral markup (JavaScript) in 

SRML to describe the process blocks in SIMAN. As a result, each function attached to an 

SMU can be viewed as a block that contains encapsulation of elements, parameters, and 

sub-functions/methods as a self-describing process module. This block then can be 

transformed into a simulation module/building-block that can be reused in other 

compositions.  

 However, there exists a difficulty in applying this transformation method. It is still 

unable to avoid dealing with JavaScript and simulation programming which require 

knowledge, skills, and experiences in creating a module to function as expected. To 

encounter this difficulty, an approach to establish an intermediate simulation language 

based on JavaScript and host simulation programming has been enforced to the study of 

transformation. This language is not focused on implementation but rather on description 

to specify transformations and mediations between domains. It offers more logical and 

more flexible to create documentation that can be further developed in a host simulation 

language or mapped into simulation building-blocks available in generic simulation 

software. There is a question of whether documentation of transformation itself can be 

implemented into a simulation. The answer is “yes” if it is created under the environment 

runtime of a simulator such as Simulation Reference Simulator developed by Boeing (see 

http://www.w3.org/TR/SRML/). However, the scope of this research study leads to a 

finding of methodology that facilitates the development of a domain specific simulation 
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environment rather than a finding of validation that approves the correctness of 

documentation.  

 To reduce the trade-off caused by this approach, simulation developers are 

allowed to construct their own user-callable functions that can be used/reused and 

expected to be available – in host simulaiton languages (e.g., SIMAN/Arena and Visual 

SLAM/AweSim). User-callable functions are meant to work as a set of fundamental 

support functions for performing all commonly encountered functions such as event 

scheduling, statistics collection, and random sample generation. With these fundamental 

user-callable functions, the simulation developers are able to reduce difficulties in 

describing and specifying functions defined in the ISAP conceptual models by having 

none or a minimum of coding. Moreover, mapping is easier to be made because there are 

some common characteristics (similarities) between those in the intermediate simulation 

language and the target-host simulation languages with respect to meanings and 

specifications of functionalities that can be paired (more discussion in the next chapter).  

 Although levels of appropriateness of specifying user-callable functions are relied 

on the simulation developers’ expertise in host simulation languages, the key of creation 

is to delivering a concrete perception of what each user-callable function is and how it 

works. Thus, it is essential for the simulation developers to provide references for user-

callable functions in terms of function structures and descriptions, including properties 

related. Also, object classes that are used to reference functions and properties need to be 

defined. Visual SLAM, for example, includes VSLAM (the general simulator object), 

VSENTITY (an object for referencing an entity), VSENTRY (an object which maintains 

an entity’s position within a file), and VSNODE (an object used to reference the 
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functions and properties of a network node) to support arguments to some of the 

functions and properties (Pritsker and O’ Reilly 1999). Moreover, Visual SLAM allows 

users to define their own object classes on purposes. Objects, in general, are referenced to 

both functions and properties in the following manner: object.function and 

object.property.  

 In this study, the construction of fundamental user-callable functions have been 

developed based on user-callable and user-written visual basic functions available in 

Visual SLAM (Pritsker and O’ Reilly 1999). The purpose is to make contextualized 

documentation for transformation more consistent and more effective. However, there is 

only one general object class named IP and user-defined object class being used to 

reference functions and properties – to decrease any complexity in exploitation. The 

following table lists some properties and user-callable functions that have been used in 

the documentation of DMSL: LCK and been generalized for other host simulation 

languages. 
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Table 4 - 3: Referenced properties for DMSL: LCK 

References Description 

NewEntity() Create a new entity. 

CurrentEntity()  Return the current entity. 

CloneEntity() Clone the entity. 

TerminateEntity() Terminate the entity. 

Release(Resource#, Units) Release number of units of the resource#. 

Seize(Resource#, Units) Allocate number of units of the resource#. 

NARES(Resource#) Return the number of available units of the resource#. 

NIUSE(Resource#) Return the number of busy units of the resource#. 

Resource() Allocate a resource and assign its calling number 

Schedule(Event, Entity, Time) Schedule an event of type Event to occur at time TNOW + Time 
for the current entity. 

Assign(Attribute 1, Attribute 2, …) Assign one or more attributes to the entity. 

LocateEntity(Event, Resource, Entity) Locate the entity in the target resource 

Intlc(run) Check the initial run 

TNOW Current simulated time 
 

Listing 4-2 shows the transformation of SMU Inform Arrival of Barge-tows into a 

module in documentation using properties and user-callable functions in the able tables. 

Listing 4 - 2: A transformational module of SMU Inform Arrival of Barge-tows 

<SMU Name = "Inform arrival of barge-tows"> 

    <Entity Name = "EntBargeTow"> 

      <Attribute atribname="Identification#" atribtype="interger"/> 

      <Attribute atribname="NumberBarges" atribtype="integer"/> 

      <Attribute atribname="Origin" atribtype="integer"/> 

      <Attribute atribname="Destination" atribtype="integer"/> 

      <Attribute atribname="ArrivalTime" atribtype="real"/> 

      <Attribute atribname="Speed" atribtype="real"> 

     </Entity> 

 

    <Script Type="text/javascript"> 

      <![CDATA[ 
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    function CreateBargeTow()//Create and schedule entities 

    {  

      //Define variables used in this function 

      var FirstArrival = 0; 

      var ArrivalRate; 

      var CurrentTime = TNOW; 

      var MaxEntities; 

       

      //Create a new entity 

 set NewEntBargeTow = IP.NewEntity(); 

      set NewEntBargeTow.ArrivalTime = IP.TNOW; 

      IP.Schedule("FirstArrival", NewEntBargeTow, 
(NewEntBargeTow.ArrivalTime+ArrivalRate); 

       

      //Schedule the next entities 

      for (i=1; i<=Max# entities; i++) 

   { 

          set NextEntBargeTow = IP.CloneEntity(); 

          set NextEntBargeTow = IP.TNOW; 

          IP.Schedule("NextArrival", NextEntBargeTow, 
(NextEntBargeTow.ArrivalTime+ArrivalRate)); 

   } 

    } 

 

    function AssignBargeTow()//Assign attributes to the BargeTow 
entities 

    { 

 var Identification#; 

 var NumberBarges; 

 var Origin; 

 var Destination; 

 var ArrivalTime; 

      var Speed; 

        

      //Define the current EntBargeTow entity and assign attributes to 
it 

 set CurrentEntBargeTow = IP.CurrentEntity(); 

      CurrentEntBargeTow.Assign(Identification#, NumberBarges, Origin, 
Destination, ArrivalTime, Speed); 
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    } 

 

    function RouteBargeTow()//Schedule the current EntBargeTow entity 
for travelling 

    { 

 var Distance; 

 var Speed; 

 var DelayTime = Distance/Speed; 

 IP.Schedule("Decision", CurrentEntBargeTow, 
CurrentEntBargeTow.DelayTime); 

    } 

      ]]> 

   </Script> 

 

   
4-4-3. Integration 

 The final step is to combine a set of transformational modules and the root of a 

dynamic modeling subsystem. Like a general simulation environment, it contains zero or 

more global variables that can be accessed and used by its children, and specifies the 

main simulation behavior or main function (script) that controls the overall operations of 

the simulation. The integration of these elements leads to a complete simulation 

documentation being used as the future reference for implementation. Listing 4-3 

illustrates a sample of documentation for the lockage operation system, LCK. 

Listing 4 - 3: Partial documentation for DMSL: LCK 

<DMSL Name ="LCK"> 

  <Variable varname="Offset" vartype="boolean"/> 

  <Variable varname="Offset enter value" vartype="boolean"/> 

  <Variable varname="Offset exit value" vartype="boolean"/> 

  <Script Type="text/javascript"> 

    <![CDATA[ 
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    //Initialize variables for the first run 

    function Initial() 

    { 

      Intlc(run);//Check the initial run 

      if (run = 1) 

        { 

          var Offset = 0; 

          var Offset enter value = 0; 

          var Offset exit value = 0; 

        } 

     } 

      ]]> 

  </Script> 

 

  <SMU Name = "Inform arrival of barge-tows"> 

    <Entity Name = "EntBargeTow"> 

      <Attribute atribname="Identification#" atribtype="interger"/> 

      <Attribute atribname="NumberBarges" atribtype="integer"/> 

      <Attribute atribname="Origin" atribtype="integer"/> 

      <Attribute atribname="Destination" atribtype="integer"/> 

      <Attribute atribname="ArrivalTime" atribtype="real"/> 

      <Attribute atribname="Speed" atribtype="real"> 

      </Entity> 

 

    <Script Type="text/javascript"> 

      <![CDATA[ 

    

    function CreateBargeTow()//Create and schedule entities 

    {  

      //Define variables used in this function 

      var FirstArrival = 0; 

      var ArrivalRate; 

      var CurrentTime = TNOW; 

      var MaxEntities; 

       

      //Create a new entity 

 set NewEntBargeTow = IP.NewEntity(); 
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      set NewEntBargeTow.ArrivalTime = IP.TNOW; 

      IP.Schedule("FirstArrival", NewEntBargeTow, 
(NewEntBargeTow.ArrivalTime+ArrivalRate); 

       

      //Schedule the next entities 

      for (i=1; i<=Max# entities; i++) 

   { 

          set NextEntBargeTow = IP.CloneEntity(); 

          set NextEntBargeTow = IP.TNOW; 

          IP.Schedule("NextArrival", NextEntBargeTow, 
(NextEntBargeTow.ArrivalTime+ArrivalRate)); 

   } 

    } 

 

    function AssignBargeTow()//Assign attributes to the BargeTow 
entities 

    { 

 var Identification#; 

 var NumberBarges; 

 var Origin; 

 var Destination; 

 var ArrivalTime; 

      var Speed; 

        

      //Define the current EntBargeTow entity and assign attributes to 
it 

 set CurrentEntBargeTow = IP.CurrentEntity(); 

      CurrentEntBargeTow.Assign(Identification#, NumberBarges, Origin, 
Destination, ArrivalTime, Speed); 

    } 

 

    function RouteBargeTow()//Schedule the current EntBargeTow entity 
for travelling 

    { 

 var Distance; 

 var Speed; 

 var DelayTime = Distance/Speed; 

 IP.Schedule("Decision", CurrentEntBargeTow, 
CurrentEntBargeTow.DelayTime); 

    } 
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      ]]> 

   </Script> 

 

  <Link Name="J2" Type="Precedence"> 

  <Link Target="XOR: Decide which lockage fits barge tows' size"> 

  </Link> 

  </SMU> 

 

  <SMU Name ="XOR: Decide which lockage fits barge tows' size"> 

    <Entity Name ="EntBargeTow"> 

     <Attribute atribname="Identification#" atribtype="interger"/> 

     <Attribute atribname="NumberBarges" atribtype="integer"/> 

     <Attribute atribname="Origin" atribtype="integer"/> 

     <Attribute atribname="Destination" atribtype="integer"/> 

     <Attribute atribname="ArrivalTime" atribtype="real"/> 

     <Attribute atribname="Speed" atribtype="real"> 

    </Entity> 

     

    <Resource Name ="ResLock"> 

     <Attribute atribname="Name" atribtype="string"/> 

     <Attribute atribname="File#" atribtype="integer"/> 

     <Attribute atribname="Resource#" atribtype="integer"/> 

     <Attribute atribname="CapacityLock" atribtype="integer"/> 

     <Attribute atribname="ActivityTime" atribtype="real"/> 

    </Resource> 

    <Script Type="text/javascript"> 

    <![CDATA[ 

      

    function CheckBargeTow()//Retrieve the value of number of barges 
from the current EntBargeTow entity 

    { 

      var NumberBarges; 

      set CheckNumberBarges = CurrentEntBargeTow.NumberBarges; 

    } 

      

    function SelectLockage()//Retrieve the capacity value from the lock 
Resource# 

    { 
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      var LockCapacity; 

      set ResLock = IP.Resource(); 

      set LockCapacity = ResLock.CapacityLock; 

     } 

      

    function BranchBargeTow() 

    { 

      var LockCapacity; 

      if (CheckNumberBarges <= LockCapacity) 

      IP.LocateEntity("Operate single lockage", ResLock, 
CurrentEntBargeTow); 

      else if (CheckNumberBarges > LockCapacity) 

      IP.LocateEntity("Operate double lockage", ResLock, 
CurrentEntBargeTow); 

    } 

      

    ]]> 

    </Script> 

 

   <Link Name="LockType" Type="Precedence with condition(s)"> 

   <Link Target="Operate single lockage"/> 

   <Link Target="Operate double lockage"/> 

   </Link> 

   </SMU> 

 

   <SMU Name ="Operate single lockage"> 

    <Entity Name ="EntBargeTow"> 

      <Attribute atribname="Identification#" atribtype="interger"/> 

      <Attribute atribname="NumberBarges" atribtype="integer"/> 

      <Attribute atribname="Origin" atribtype="integer"/> 

      <Attribute atribname="Destination" atribtype="integer"/> 

      <Attribute atribname="ArrivalTime" atribtype="real"/> 

      <Attribute atribname="Speed" atribtype="real"> 

      </Entity> 

 

    <Resource Name ="ResLock"> 

      <Attribute atribname="Name" atribtype="string"/> 

      <Attribute atribname="File#" atribtype="integer"/> 
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      <Attribute atribname="Resource#" atribtype="integer"/> 

      <Attribute atribname="CapacityLock" atribtype="integer"/> 

      <Attribute atribname="ActivityTime" atribtype="real"/> 

    </Resource> 

 

    <Script Type="text/javascript"> 

     <![CDATA[ 

    function SetLockState() 

    { 

      if (NIUSE(ResLock) >=1)//Lock is occopied 

        { 

          var Offset = 1;//State is busy 

          var Offset enter value = 1;//Enter gate is closed 

          var offset exit value = 1;//Exit gate is closed 

        } 

       else (NIUSE(ResLock) <=0)//Lock is available 

        { 

          var Offset = 0;//State is idle 

          var Offset enter value = 0;//Enter gate is opened 

          var Offset exit value = 0;//Exit gate is opened 

        } 

    } 

    

   function ProcessLock() 

   { 

      var ActivityTime; 

      if (NARES(ResLock) >0) 

       { 

         IP.Seize(ResLock, 1); 

         IP.SetLockState(); 

         IP.Schedule("Lockage", CurrentEntBargeTow, 
(CurrentEntBargeTow.TNOW+ActivityTime)); 

    IP.Release(Reslock, 1); 

       } 

   } 

       

   function RouteBargeTow()//Schedule the current EntBargeTow entity 
for exiting lockage 
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   { 

 var Distance; 

      var Speed; 

      var DelayTime = Distance/Speed; 

      IP.Schedule("Exit", CurrentEntBargeTow, 
CurrentEntBargeTow.DelayTime); 

   } 

 

    ]]> 

  </Script> 

  <Link Name="Exit" Type="Precedence"> 

  <Link Target="Set departure of barge-tows"/> 

  </SMU> 

 

//The rest of documentation includes the descriptions and 

specifications of SMU Operate Double Lockage and SMU Set Departure of 

Barge-tows. The construction follows the methodology described in these 

sub sections. This listing is just aimed to show how documentation of 

transformation is developed.  

</DMSL> 

 

4-4-4. Revision 

 Like other documentation, a numerous iterative revisions and editions are very 

vital in clarifying the semantics of a transformational document. These actions must be 

taken within not only apiece of modules nor the entire document but also conceptual 

models and simulations. The patterns of the actions are: a) Vertical search for 

appropriateness of decomposition (top-down) and for semantics of composition (bottom-

up); and b) Horizontal search for degrees of implementation (left-to-right) and for levels 

of communication (right-to-left). The purpose of following these patterns is to generate 
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and keep up the semantics of model composability and simulation interoperability 

throughout the development process for domain specific simulation. The final 

documentation, hence, becomes a handbook to facilitate any construction of simulation 

models under a specific domain.   

 

4-5. Conclusions 

 Many research studies have been found with their efforts to encourage the M&S 

community to recognize the importance of semantics of model composability and 

simulation interoperability when building conceptual models. They expect not only to 

improve this cross-domain communicational tool but also to promote its potential 

utilization in other applications. To satisfy these expectations, the use of contextualized-

framework documentation has been introduced to facilitate model transformation, which 

leads conceptual models to have more expressive and meaningful representations in the 

levels of implementation.  

An Ontology-based approach has added the capability to documentation to 

describe both structural and behavioral simulation characteristics in a more executable 

and readable way, using the Semantic Web technologies like XML and SRML. The 

derived concepts provide this study a thoughtful approach to develop an intermediate 

simulation language to compose a transformational document.  Furthermore, this type of 

documentation contains a set of modules that can possibly be translated into composable 

and reusable simulation modules/building-blocks or any host simulation languages, as 

will be seen in this dissertation. However, it is not possible to translate all of the modules 

in the document directly into those targets. Therefore, future research should be focused 
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on finding a methodology to support the translation of documentation, based on ontology 

mapping and knowledge-base selecting algorithms.  

 The next chapter is focused on mapping the descriptions of systems developed 

using Transformation into implemented simulation tools. 
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CHAPTER 5 

Domain Specific Ontological Mapping: An Integrated Approach 

“Reproduced with automatic permission from [Setavoraphan, K. and Grant, F. H. (2009) Domain specific ontological 

mapping: An integrated approach, being in progress to submit to Journal of Computers & Industrial Engineering]. It 

has been modified somewhat to reflect current advances in this research.” 

 

Abstract 

To establish a domain specific simulation environment (DSSE) from conceptual 

simulation models (CSMs), one of the most efficient and easiest solutions is to map 

CSMs onto an existing simulation environment or a host simulation language. Based on 

this idea, a simulation developer can exploit available resources (e.g., building blocks or 

callable functions) similar to the CSMs to develop his/her own domain specific 

simulation environments that provide, e.g., reusable model constructs/functions and their 

callable libraries. However, this mapping is not as easily done as it may seem. This is 

because mapping requires not only a common layer for information/knowledge exchange 

but also a framework and pattern for mapping. Methodologies such as ontology mapping, 

simulation block building, and visual subnetwork modeling have been applied to develop 

an integrated approach that facilitates mapping in this research study.  

 

5-1. Introduction 

The development of a domain specific simulation environment (DSSE) consists of 

three major pieces: structure, content, and simulation environment application. First, the 

structure of the DSSE can be laid out by using the conceptual simulation modeling 
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(CSM) approach to generate a blueprint, describing physical and behavioral 

characteristics of both reality and simulation domain. CSM also delivers a 

communication tool for domain experts and simulation developers to support their 

collaborations. Among CSM methods and tools available in Modeling and Simulation 

(M&S) communities, Integrated Simulation Acknowledge Procedure (ISAP) has been 

selected to manage and access critical aspects (e.g., static/dynamic components, 

functional layers, and representations) required for structuring and composing DSSE (see 

Setavoraphan and Grant (2008)). However, CSM itself is not complete enough to develop 

DSSE because all the details of needed simulation components cannot be included within 

this kind of knowledge-based representation – using symbols, notations, and diagrams.  

To avoid inconsistency and invalidity in using conceptual simulation models, 

those symbols, notations, and diagrams need to be transformed into a contextualized 

document. This process aims to retrieve the appropriate simulation contents from CSMs. 

Making contextualized documentation helps not only eliminate irrelevance but also 

improve the semantics of the contents. To conduct such a transformational document, the 

Semantic Web terminology has been used with the exploitation of an ontological analysis 

approach, including a common language (e.g., XML) and an integrated descriptive and 

behavioral language (e.g., SRML). This contextualized documentation later plays a 

critical role together with CSMs in developing DSSE. 

DSSE is determined as a simulation environment application that provides 

reusable simulation model constructs to represent domain specific system elements. 

Basically, a DSSE application can be developed under: a) an original simulation 

environment where everything is uniquely created; or b) an existing simulation 
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environment where the availability of resources exists for accessing and utilizing by the 

simulation developers. Both conditions have advantages and disadvantages. However, the 

focus of this study is to develop a methodology that facilitates the development of a 

DSSE application – which not only minimizes cost and time but also maximizes 

productivity and efficiency. Based on this methodology, it is assumed that the simulation 

developers already have a simulation environment application for generic uses. 

Theoretically, it is possible to transform the simulation environment application to be a 

DSSE application by mapping the structure and simulation contents into those available 

resources, so that the resources are caused to function as defined in specifications. 

Mapping, thus, is seen as the key solution in developing a DSSE application under the 

existing simulation environment.  

Mapping is taken into consideration to enable individuals to keep their own world 

views and at the same time to share knowledge across domains (Ehrig and Sure 2004). 

By a means of sharing knowledge, mapping is required to deal with semantic 

interoperability, the issue of allowing the exchange meaningful information/knowledge 

between applications/domains (Bouquet et al. 2003). However, the problem here is that 

the representations of information/knowledge in each domain are depicted in different 

ways. To solve this problem, one needs to view the information/knowledge 

representations in the framework of an ontology which provides a joint terminology and 

frame of reference of specifications and semantics of conceptualization. The use of 

ontologies helps create a common layer where the conceptualization of 

information/knowledge can be transformed and categorized into a set of standard 

representation elements such as entities, properties, and relations. When the 
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information/knowledge from alternative domains is agreed in such a sense of semantic 

similarities, it allows the individuals to recognize what to be mapped. However, to have 

the efficient and correct exchange of information/knowledge between domains through 

mapping, the framework and pattern of mapping must be clearly specified. 

As described above, mapping by a means of ontology mapping is seen as a 

solution to facilitate the exchange information/knowledge between domains. There are a 

number of articles in the literature focusing on research in ontology mapping in different 

areas to provide definitions, techniques, algorithms, and representations of mapping (see 

Ehrig and Sure 2004; Marques 2005; Kalfoglou and Schorlemmer 2003). The concepts 

retrieved from the literature are used to support creating a specific framework and pattern 

of mapping to match the characteristics and requirements of the materials at hand (e.g., 

CSMs, contextualized documentation, and simulation environment application). This 

means that mapping is not just about sharing information/knowledge between different 

ontologies, but it also includes the levels of similarities in many aspects (e.g., structure, 

contents, and representations). Therefore, the methodologies of simulation block building 

and visual subnetwork modeling have been integrated into ontology mapping to construct 

a solid and robust framework and pattern of mapping between conceptualization and a 

simulation environment application – to generate a DSSE application.  

This research study is organized as follows: Section 5-2 describes the key 

concepts that include ontology mapping, simulation block building, and visual 

subnetwork modeling. The implementation of the concepts is demonstrated in Section 5-

3. Finally, the conclusions and recommendations are given in Section 5-4.  
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5-2. Key Concepts 

 This section is aimed to provide a survey of the key concepts found in a number 

of articles in the literature related to ontology mapping, simulation block building, and 

visual subnetwork modeling. There is a particular purpose lying within each of these 

concepts. Ontology mapping is important for transferring simulation contents between 

domains. Simulation block building is applied to design the structure of the mapping 

destination that will encapsulate the simulation contents being used in a simulation 

environment application. Finally, visual subnetwork modeling provided in Visual SLAM 

and AweSim is used to configure and enforce the simulation building blocks to function. 

Moreover, the selection of definitions, methods, techniques, and tools provided 

for the methodologies has been made based upon the overall framework designed for the 

development of a DSSE application. This framework is expected to arrange and control 

the similarities of structure, simulation contents, and simulation environment applications 

for both conceptualization and application. The idea behind the framework of similarity 

is to eliminate complexity, irrelevance, and inconsistency in transferring semantics of 

information/knowledge during the transitions of representation formats from one to 

another.   

 

5-2-1. Ontology Mapping 

“An ontology is an explicit, formal specification of a shared conceptualization of 

a domain of interest” (Gruber 1993). The purpose of using a terminology of ontology is 

to “reduce or eliminate conceptual and terminological confusion among the members of 

a user community who need to share various kinds of (electronic) documents and 
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information” (Navigli, Velardi, and Gangemi 2003). To accomplish this purpose, a set of 

relevant concepts (e.g., entities, instances, relations, and properties) that characterize a 

given domain needs to be identified and defined properly, which later becomes a mutual 

point of interest for mapping of two ontologies.  

 According to Rahm and Bernstein (2001), an ontology mapping process is defined 

as a set of activities required to transform instances of a source ontology into instances of 

a target ontology. For a clearer picture, Ehrig and Staab (2004) define the term of 

ontology mapping: “Given two ontologies O1 and O2, mapping one ontology onto another 

means that for each entity (concept C, relation R, or instance I) in ontology O1, we try to 

find a correspond entity, which has the same intended meaning, in ontology O2.” Also, 

ontology mapping can be defined in different terms such as alignment, merging, 

articulation, fusion, integration, morphism, and so on, depending on the application and 

intended outcome (see the details in Kalfoglou and Schorlemmer 2008).  

 Recently, there are numerous frameworks that provide a methodological approach 

to ontology mapping. For example, a cooperative framework for integrating ontologies 

described by Breis and Bejar (2002) is a system having the algorithm that supports the 

integration by using taxonomic features and synonymous concepts in the two ontologies.  

Madhavan et al. (2002) develop a framework that enables mapping between ontologies in 

different representation languages without first translating the ontologies into a common 

language. A framework for ontological structures to support ontology sharing, namely 

IFF, is proposed by Kent (2000), which represents ontologies as logics and ontology 

sharing as a specifiable ontology extension hierarchy. Among the frameworks available 

up to date, there exists a set of commonalities in their approaches and processes to 
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ontology mapping. These commonalities are assembled and identified in the MAFRA 

conceptual framework (Maedche et al. 2002), providing the critical clues that lead to the 

possibilities for mapping between conceptualization and a simulation environment 

application. 

 Maedche and Staab (2000) develop MAFRA as a mapping framework for 

distributed ontologies in the Semantic Web. MAFRA is built on the idea that mapping 

existing ontology will be easier than creating a common ontology. This is because only a 

smaller community is involved in the mapping process. Also, this framework aims to 

detect similarities of entities contained in two different ontologies – being the critical 

mechanisms of this mapping framework. Thus, the framework of MAFRA discovery 

reveals the essential modules that support the exploitation of semantic similarities in 

ontology mapping, as described in follows: 

• Lift and Normalization: The main purpose of this module is to raise all data to be 

mapped onto the same representation level, which copes with syntactical and 

structural language heterogeneity (Visser et al. 1997). Maedche and Staab (2000) 

states that “both ontologies must be normalized to a uniform representation, …, 

thus eliminating syntax differences and making semantics differences between the 

source and the target ontology more apparent.”  

• Similarity: This module aims to support mapping discovery by establishing 

similarities between entities from the source and target ontology. The mapping 

approach is based on different similarity measures, which have been proposed in 

the literature by Rahm and Bernstein (2001), Doan et al. (2002), and Maedche and 

Staab (2000).  
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• Semantic Bridging: This module is responsible for establishing correspondence 

between entities from the source and target ontology based on the similarities 

found between them. The goal in specifying the semantic bridge ontology is to 

maintain and exploit the existent constructs and minimize extra constructs 

(Maedche and Staab 2000).  

 

Referring to the concepts of these modules, it can be concluded that the key role in 

conducting ontology mapping is the ability to establish similarities between the source 

and target ontology and to specify a common representation framework (or space) for 

mapping these similarities. In Section 5-3, a work of ontology mapping based on the 

similarity-centric approach is demonstrated.  

 

5-2-2. Simulation Block Building 

The BETADE program at Delft University of Technology, Netherland, has been 

applied to support distributed working, designing, and modeling in order to construct 

distributed applications or models entirely out of reusable building blocks. The working 

definition used in the BETADE research program is (Verbraeck et al. 2002): 

“A building block is a self-contained, interoperable, reusable, and replaceable unit, 
encapsulating its internal structure and providing useful services or functionality to its 
environment through precisely defined interfaces. A building block may be customized in 
order to match the specific requirements of the environment in which it is ‘plugged’ or 
used.” 

 

To apply a building block in such an environment, it needs to clarify the 

relationship between a building block and components or other related terms. Verbraeck 

et al. (2002) states: “A component is the implementation of a building block in a software 
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environment. The interface (functionality) of the building block and the component are 

therefore different presentations of the same thing.” The authors also argue that a 

building block on its own – without domain specific context, communicating, co-

operating or even competing with other building block – cannot provide the functionality 

a user requires.  

In order to provide functionality, an application is constructed by an aggregate of 

more than one building block, where lower level building blocks are combined into new 

higher level building blocks and interact each other to function as the user specifies. The 

aggregation of building blocks is based on the object-oriented paradigm in order to 

support reusability of building blocks in applications or models, which can be illustrated 

as in Figure 5-1. It is seen that a set of building blocks consists of model building blocks 

(1st level) that are constructed of building block elements (2nd level) (Verbraeck and 

Valentin 2002). Each building block element communicates using a standard interface 

used for formal entries for messages and entity passing and represents a specific 

functionality. Therefore, different kinds of model building blocks can be designed and 

constructed by using different building block elements.  
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Model building 
block 
XYZ 

Model building 
block 
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BBE 
A‐1 

BBE 
B‐1 

BBE
C‐1

BBE
A‐1

BBE 
C‐2 

BBE
B‐1

Set of building blocks

 

Figure 5 - 1: Example of a set of model building blocks using building block elements (Valentin and 

Verbraeck 2002, p567) 

 Recently, building blocks have been applied in simulation studies to support the 

development of discrete event simulation models (see examples in Verbraeck and 

Versteegt 2000; Valentin 2002; and Saanen 2002). Similar model constructs are used 

over and over again, especially when developing different simulation models within the 

same domain. In this case, it seems very logical to structure and package the repetitive 

model constructs into building blocks, and make them available for the modeler for 

repeated use (Valentin 2002). Moreover, these building blocks can be collected together 

in categorized libraries that emerge a set of specific vocabularies for future callable 

references in simulation modeling – which later possibly turns into a domain specific 

simulation language (DSSL).  

 The main purpose in establishing a DSSL is to define and specify semantics, 

relations, and constraints associated with those domain concepts in a representation 

format of domain specific simulation elements – being used as interfaces of 

communication. Like a natural language, when the popularity of using and creating 

domain specific simulation elements within DSSL increases, it is able to create its own 
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simulation environment (community) to support the development of simulation models 

(communication) using those elements (vocabularies). This kind of simulation 

environment can be determined as a domain specific simulation environment (DSSE). 

Following this logical reasoning, it can be concluded that building blocks play a critical 

role in the development of DSSE by a means of structuring, defining semantics, and 

configuring functionalities.  

 According to Snowdon et al. (1998), building blocks must support easy model 

development, which means a set of building blocks can be viewed as a conceptual model 

that can be reused and directly/easily transferred to the simulation model. The statement 

leads this research study to find out a connection between conceptualization and 

simulation, in which a building block becomes a data bridge of two different domains. In 

addition to the characteristics as of DSSL, the building block is also capable of 

communicating and translating concepts either implicitly or explicitly of its environment. 

This allows the building block to merge with other existing DSSLs by 

customization/configuration to match the specific requirements of the new environments. 

As the result, it is not necessary to think of the development of building blocks in a 

traditional way – which starts from a scratch.  

 The literature by Verbraeck and Valentin (2001) shows that building blocks can 

be developed in existing simulation environments such as Arena, Automod, eM-plant, 

and Taylor ED, whose system architecture is based on object orientation. The authors 

also define the characteristics of simulation building blocks used in the existing 

simulation environments: “Building blocks can range from just one very basic 

functionality (like executing a simple function) till very complex building blocks with 
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hundreds of functionalities, no matter what kind of problem, and no matter how large the 

set of available building blocks is.” Their statement substantiates that such an object-

oriented simulation environment is fit best with the characteristics of simulation building 

blocks since it provides the most important mechanisms – composition. A simulation 

building block can be composed of either basic simulation building block elements (e.g., 

create, queue, and resource) or customized/specialized simulation building block 

elements (e.g., conveyor, crane, and AGV) in a specific way. However, configuration of 

the building block is still needed to have well defined interface for connecting it to other 

building blocks and to fit in its environments. Therefore, experiences and knowledge in 

employing specific simulation environments are critical to succeed in composing 

simulation building block elements and connecting them together to function.  

 Based on the concepts described through this subsection, the author is able to 

make a hypothesis that we have explored the successful development of simulation 

building blocks using an existing object-oriented simulation environment. Visual SLAM 

and AweSim, thus, have been chosen as a simulation modeling language/environment. A 

brief discussion of Visual SLAM and AweSim, including its feature that supports 

building simulation blocks, is given in the next subsection. 

 

5-2-3. Visual Subnetwork Modeling 

 Prior to have a better understanding why Visual SLAM and AweSim have been 

selected for this research study, it is necessary to recognize the idea behind the 

development of this simulation modeling language/environment. Pritsker and O’ Reilly 
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(1999) provides an explanation related to their perspectives and essential concepts for 

building blocks: 

“For many years, it has been desired to develop a modeling language that is modular and 
hierarchical. Modularity would allow submodels to be developed and used as building 
blocks for a total systems model. Hierarchical models would display the aggregate 
features of a model and allow the details to be viewed by driving the view to less 
aggregate displays of the model. These properties would allow for the building of 
submodels by team members which then could be integrated into a system model. To 
achieve these capabilities, modeling languages were designed using object-oriented 
concepts.” 
 

This idea, thus, becomes a fact that the object orientation is taken in Visual SLAM. It 

aims to employ object-oriented concepts and coding within the network worldview (or 

objects) of the Visual SLAM simulation language. In the meantime, AweSim is a 

simulation problem-solving environment for Visual SLAM, providing extensive input, 

output, and integration capabilities to facilitate the use of Visual SLAM by users. For the 

development of simulation building blocks, both Visual SLAM (modeling language) and 

AweSim (mechanisms/environment) are needed.  

 Since Visual SLAM employs object-oriented concepts, it allows for defining a 

subnetwork as an object class. An entity is routed to the subnetwork for a particular 

instance of that object class. For example, different machines that perform similarly to 

process parts can be modeled as a subnetwork. The subnetwork for the processing to be 

done by the specific machine is modeled by Visual SLAM network elements and by 

passing parameters to define the node and activity characteristics for the subnetwork 

instance. Because of the object nature of a subnetwork, it can be referred to as a visual 

subnetwork or VSN.  
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 Subnetworks always contain two important modeling aspects: modularity and 

hierarchy. Each subnetwork encapsulates the data (e.g., subnetwork variables, entity 

attributes, and parameters) in such a way that a self-contained block/module is created 

and is able to connect with other subnetworks. Modularity allows for the subnetwork to 

be reused in different locations within a large network model and to be built for use by 

other modelers. Moreover, for the hierarchical modeling aspect, entities are transferred 

from a calling network to a subnetwork. The calling network can be the main network or 

a subnetwork that is one level higher than the subnetwork that it calls. The hierarchy is 

also related to the different levels of detail specified in each subnetwork.  

When looking at these capabilities, there appear similarities between VSNs and 

simulation building blocks. The similarities by a means of the object-oriented world view 

facilitate not only information mapping but also physical and behavioral modeling to 

develop and use simulation building blocks through VSNs. Therefore, in practice, a VSN 

can be generated as a model building block, whereas a network node/branch in Visual 

SLAM network model can be used as a building block element.  

 Moreover, the construction of VSNs is supported by mechanisms and tools 

available in the simulation environment, AweSim. As a result, the simulation developers 

do not need to worry whether the VSNs match with the requirements of their 

environment. In another case, the simulation developers are also able to customize a VSN 

in order to function as they require by creating user-written functions (user-codes) and 

use them via the interface points called EVENT and ENTER nodes. This available 

feature provides complete modeling flexibility for the configurations of VSNs. The 

simulation building blocks created in Visual SLAM will be maintained in AweSim’s 
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libraries, which allow the simulation developers to reuse, modify, add, and delete those 

for the future simulation projects under the same domain. Later, the network libraries 

become vocabularies that are used only in a domain specific simulation, which 

automatically creates a simulation environment that supports modeling specific problems.  

For the details of the syntax and semantics associated with VSNs, network nodes, 

and user-written functions, see Simulation with Visual SLAM and AweSim, The User 

Manual Guide, and Visual SLAM Quick Reference Manual by Pritsker and O’ Reilly 

(1999).  

 

5-3. Concept Implementation 

 The concepts of ontology mapping, simulation block building, and visual 

subnetwork modeling are integrated as a paramount approach for the development of a 

domain specific simulation environment (DSSE) using Visual SLAM simulation 

modeling language with AweSim mechanisms. This section is focused on the 

demonstration of implementation of this approach, associating with the previous studies 

of conceptual simulation modeling (CSM) and transformation of CSM. Moreover, this 

demonstration still continues using the example of lockage operations found in Chapter 3 

and 4, respectively, to close the series of development processes.  

 Prior to start the demonstration, it must be clear that the key issue of this study is 

to map the conceptual simulation models collaborated with their contextualized 

documentation into components available in an existing simulation environment 

application with respect to simulation requirements and constraints. Therefore, the 

demonstration includes only the processes of mapping two ontologies and building 
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simulation blocks by using VSNs. The expectation of this study is to illustrate the process 

and to obtain a DSSE for lockage (inland waterway) operations.  

 

5-3-1. Mapping CSM with Visual SLAM 

 As discussed in Subsection 5-2-1, this study employs a similarity-centric 

approach to perform ontology mapping between conceptualization and simulation. Using 

this approach, the simulation developers must be able to establish similarities between the 

source ontology (e.g., CSMs) and the target ontology (e.g., Visual SLAM) and specify a 

common representation framework/space for mapping these similarities. However, it 

must be understood by simulation developers that similarity mapping concerns not only 

the concepts to be mapped but also the structure to be generated (for encapsulating the 

concepts). The mapping between CSM and Visual SLAM, thus, means to the 

transformation of both structure and semantics of SMUs into VSNs (as simulation 

building blocks).  

Both SMUs and VSNs are considered as objects having the aspects of modularity 

and hierarchy, which can be constructed as building blocks at different levels of detail. 

Therefore, it is critical to limit the detailed levels of their structures before mapping their 

concepts. Refer to the structure of building blocks, there are only two levels: model 

building blocks (1st level) and building block elements (2nd level). Technically, model 

building blocks should be a direct translation of the defined instances from CSM (e.g., 

SMUs) because the model building blocks represent the world-view of the domain expert 

in terms of standard functionalities used/reused in reality. Meanwhile, building block 

elements are deterministically used as either internal or external functionalities of the 
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model building blocks, providing the semantics of their construction and interconnection 

to match the user requirements.  

When considering and comparing the structures of SMUs and VSNs, it seems 

possible to perform one-to-one mapping between them to generate model building blocks 

and building block elements with respect to the levels of detail. In general, an SMU can 

be viewed as a VSN as well as a model building block, whereas the operations within the 

SMU can be transformed into a set of Visual SLAM network nodes that perform as 

building block elements. For the structure mapping, however, it is natural to refine the 

structure of CSMs by adding details (e.g., tools or structures) for implementation in order 

to link them together for testing in a host simulation language. In this case, it is not 

always necessary that the results of mapping between CSMs and Visual SLAM will 

follow the same pattern previously described. This is because the status of being either a 

model building block or a building block element of SMUs/VSNs is depended on the 

correctness of implementation. A set of SMUs are only used as a core design for the 

development of simulation building blocks, while adding the details for implementation 

to create VSNs or network nodes is relied on the determination of the simulation 

developers. The structure mapping, therefore, becomes a more or less abstraction issue 

for future discussion. 

To handle the problem caused by the structure mapping, a critical support role in 

this similarity-centric approach is taken by ontology mapping. This study is set to apply 

the framework of MAFRA (Maedche and Staab 2000) to deal with semantic similarities 

of the concepts/ontologies between two domains. Focusing on similarities of semantics 

rather than those of structures is helpful for making decision not only in proposing 
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candidates for mapping but also in adding details for implementation (if necessary). As a 

result, the simulation developers are able to determine which candidates can be used, 

what levels of detail (e.g., model building block or building block element) they can be 

constructed, and how they can be linked together for testing. This provides flexibility in 

building simulation blocks on the host simulation language like Visual SLAM. However, 

the MAFRA mapping framework contains some requirements prior to map semantic 

similarities between ontologies. 

The requirements have been described in terms of modules which include lift and 

normalization, similarity, and semantic bridge. The main objective of these modules is to 

facilitate defining and establishing a specific framework that fits the surroundings of both 

source ontology and target ontology. There are three critical conditions to keep in mind. 

First, both ontologies must be normalized to a uniform representation (or the same 

representation level). Second, similarities between entities from the source and target 

ontology must apparently be established. Third, there must be a space for the similarities 

of two ontologies to be mapped. Following these conditions helps the author to develop a 

tool, called Similarity Mapping Plane (SMP), to support ontology mapping between 

conceptualization and simulation. 

Prior to exploit SMP, it is important for the simulation developers to be able to 

specify what source (ontology) to be mapped. On the other hand, it means how to 

exchange information/data between ontologies. To deal with the information/data 

exchange, the first step is to categorize the information/data into generic formats – which 

are object and content formats – since the target of mapping, obviously, is simulation 
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instances and simulation contents. The object format includes SMUs, VSNs, and network 

nodes, whereas the content format contains descriptions, properties, and so on.  

The next step is to select mapping objects. For example, SMU Inform Arrival of 

Barge-tows is selected as an object to be constructed as a VSN. Meanwhile, its operations 

such as CreateBargeTow(), AssignBargeTow(), and RouteBargeTow() are also set as 

objects to be transformed into network nodes (as shown in Figure 5-2). In practice, 

building a VSN begins with defining and specifying a set of network nodes and all the 

required parsing parameters. This allows the simulation developers to perform mapping 

at the second level (operations ↔ network nodes) prior to reach the first level (SMUs ↔ 

VSNs).  

Inform arrival of 
barge‐tows 
 
 
1 

EntBargeTow 
 
CreateBargeTow() 
AssignBargeTow(){…} 
RouteBargeTow() 

VSN

1 2 N 

Network Nodes 

 

Figure 5 - 2: An example of mapping between an SMU and a VSN 

After the mapping objects have been selected, one or more candidates must be nominated 

from the target of mapping per a selected mapping object by briefly scanning if there is 

any semantic similarity by a means of functionalities. This would be the easiest way to 

obtain a number of candidates. It seems to be a time-consuming activity and to require 

experiencing in the host simulation language – to do manually searching. At this rate of 

searching, each candidate is placed onto SMP as well as the selected mapping object. 
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However, both of them cannot be completely mapped until their contents are provided in 

the same representation level of similarities to be supportive decisions.  

 In order to normalize the contents of two ontologies into a uniform representation, 

a framework of similarities must be drawn from the contents available in the target of 

mapping. The contents of the Visual SLAM network nodes, including Visual SLAM 

(e.g., support, user-written, and user-callable) functions, are represented in terms of 

descriptions, statement forms, input listings, and specifications within documentation (as 

seen in the documents for Visual SLAM and AweSim by Pritsker and O’ Reilly). All the 

contents described in the documentation are determined as entities of the target ontology 

(as stated by Maedche and Staab 2002). With these entities, the simulation developers are 

able to establish a scope of the similarity framework to seek for similar entities in the 

source ontology. However, it needs to be noted here that the representation of those 

entities in the source ontology must be on the same level as well as documentation.  

 When considering the source ontology to be mapped, it is found out that the 

entities retrieved from CSMs are also represented in a context of documentation as well. 

For example, there appear the entities like description, property, input statement, and 

function for CreateBargeTow() provided in descriptive tables, network statements, and, 

especially, contextualized documentation for DMSL: LCK (see Chapter 3 and 4). The 

entities from the source and target ontology, therefore, become normalized on the 

documentation basis and ready for selection. The selection of entities is made on the 

following criteria: 

• The entities must clearly represent the main contents of both ontologies. 

• The entities must be included in both ontologies and can be matched up directly.  
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• The entities must provide details that facilitate the simulation developers to 

measure or weigh the degrees of similarity between entities.  

 

For the above example, there is only one candidate to be mapped with 

CreateBargeTow(), which is the CREATE node. Table 5-1 shows how to construct SMP 

and to weigh the degrees of similarity between entities from the source and target 

ontology.  

Apparently, the degrees of similarity can be weighed in a sense of scoring 

numeric evaluation. The range of evaluation might be varied, depending on individuals’ 

judging criteria and experiences. However, to make this mapping example easy to 

understand, the evaluation is set at three different degree levels of similarity with numeric 

scores in (): none (0), likely similar (1), and similar (2). The scores given for each entity 

are then summed up at the bottom of SMP. The more total score is; the higher possibility 

of mapping is.  

Moreover, the total score can be used as an indicator to consider if the target 

ontology needs to be added by any other details for implementation. If so, there are three 

methods for the simulation developers to add those details. The first method is to edit the 

structure of the target ontology by adding partial specific functionalities to the origin 

(e.g., modification of the network nodes). The second method is to recreate the target 

ontology by making a new complete set of specific functionalities (e.g., simulation 

programming for the functionalities). Finally, the third method is to add one or more 

extra extensions to the target ontology for being used as supporting roles (or 
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surroundings). This happens when the target ontology cannot be self-contained enough to 

responding to the contents of the source ontology to be mapped or to developing itself  

Table 5 - 1: Similarity Mapping Plane for CreateBargeTow() 

Source  Weight Target 
Instance 
Name: CreateBargeTow() 

1 Node
Name: CREATE 
 

Description 
A barge‐tow entity is created by a mean of containing a set 
of barges and a tow boat. 
 

2 Description
Entities are generated within the network. 

Properties 
:First arrival  
:Arrival rate 
:Current time 
:Max# entities 

1 Inputs
:Time between creations (TBC) 
:Time of first creation (TF) 
:Maximum creations (MC) 
:Mark variable which will store the time of creation (MV) 
:Number of branches (M) 
 

Input statement 
CreateBargeTow, First arrival, Arrival rate, Current time, 
Max# of signal entities; 
 

1 Input format
CREATE, TBC, TF, MV, MC, M; 

Explanation 
function CreateBargeTow() 
{  
  var FirstArrival = 0;   
  var ArrivalRate; 
  var CurrentTime = TNOW; 
  var MaxEntities; 
       
 //Create a new entity 
 
  Set NewEntBargeTow = IP.NewEntity(); 
  Set NewEntBargeTow.ArrivalTime = IP.TNOW; 
  IP.Schedule("FirstArrival", NewEntBargeTow, 
(NewEntBargeTow.ArrivalTime+ArrivalRate); 
       
 //Schedule the next entities 
 
  for (i=1; i<=Max# entities; i++) 
  Set NextEntBargeTow = IP.CloneEntity(); 
  Set NextEntBargeTow = IP.TNOW; 
  IP.Schedule("NextArrival", NextEntBargeTow, 
(NextEntBargeTow.ArrivalTime+ArrivalRate)); 
 
} 
 

1 Explanation
CREATE NODE 
:The first entity is created at a time specified by the value 
of TF; 
:The time between creations of entities after the first is 
specified by the variable TBC; 
:The time at which the entity is created can be assigned 
to a variable MV; 
:Entities will continue to be created until a limit is 
reached, specified by MC 
 
 

 
Total scores 

 
6/10  Likely similar 

 

 

Weight by degrees of similarity (score): None (0); Likely similar (1); and Similar (2). 
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into a stand-alone instance (e.g., network node or functional module). It can be seen in 

many cases that to represent a true semantic of a specific function requires a composition 

of a set of detailed functions; for instance, a PROCESS function is composed of SEIZE, 

DELAY, and RELEASE function. Adding the details for implementation, the simulation 

developers need to closely collaborate with the simulation experts for advising and 

revising in their works.  

In addition to facilitate the similarity mapping, SMP also provides an extra joint 

entity, called Explanation, to support revealing the true semantics of simulation 

functionalities for both ontologies. Explanation entity in the source ontology is derived 

from its contextualized documentation, whereas the one in the target ontology may be 

retrieved either from the documents for the host simulation language or from the 

simulation developers’ understanding. Since most of the target ontologies are the Visual 

SLAM network nodes which lack detailed explanation how they function, the simulation 

developers are required to test each of them to have recognition of their functionalities 

and usage. As a result, the simulation developers can describe these Visual SLAM 

network nodes in terms of basic function procedures (or processing steps). For other 

cases such as having simulation functionalities already described by the documents or 

specifically created by the simulation developers, they can be directly put onto SMP for 

comparing similarities with those descriptive functions from the contextualized 

documentation. Providing the Explanation entity is very helpful not only for completing 

the ontology mapping between conceptualization and simulation but also for making a 

final decision whether to utilize the target ontology in developing a simulation building 

block.  
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5-3-2. VSNs and DSSE 

 The ontology mapping between conceptualization and simulation results in 

providing the definition of simulation building blocks for implementation. These 

definitions help the simulation developers to specify an implementation framework for 

considering which simulation functionality (e.g., network node) needs to be modeled and 

how it can be tested in a demo (simulation) model. Having the implementation 

framework is to ensure that every time new simulation building blocks being created 

match the requirements of the simulation environment they are plugged into. It is 

recommended to apply a black-box approach (Valentin and Verbraeck 2002) to select 

functionalities and set up a starting environment for testing. This approach is to start 

implementing the functionalities needed to get a working simulation building block in 

details with respect to develop a test model. This helps the simulation developers to get 

insight in the benefits or weaknesses of the simulation building blocks regarding 

visualization, representation, ease-of-use, output, and use in model development process 

(Valentin and Verbraeck 2002).  

 In this research study, the implementation of simulation building blocks is 

performed in the simulation environment of Visual SLAM and AweSim by using the 

feature, called visual subnetwork modeling. It allows the simulation developers to 

implement the definitions of simulation building blocks into the Visual SLAM network 

elements and visual subnetworks (VSNs). The details of using the network modeling 

language of Visual SLAM, however, will not be discussed here, so it is important to 

study Simulation with Visual SLAM and AweSim (Pritsker and O’ Reilly 1999) prior to 

have a better understanding of this demonstration. 
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 Intuitively, the correctness of syntax of the simulation language seems to be the 

most important issue in developing a VSN. However, this statement is not completely 

correct. It is critical for the simulation developers to realize that the main purpose of 

building a VSN as a simulation building block is to deliver the reusability and flexibility 

in modeling. Moreover, the VSN must be understandable and accessible for both 

simulation developers and domain experts. It will be useless if the VSN cannot represent 

the true semantics of functionality corresponding to the real-world process. In reality, 

there are a set of processes that keep specifically being reused in a domain – which are 

recognized as standard routines. These standard routines later become callable references 

used for communication not only in the problem domain but also in the simulation 

domain. Therefore, each VSN must contain enough information/data to provide a 

semantic functionality that matches the user requirements.  

 Figure 5-3 depicts the VSN named SLCK that represents as a model building 

block to function for the single lockage operation. Operating a single lockage occurs 

when the number of barges is less than the capacity of the lock, which requires only one 

lock resource. Within the VSN, as represented as building block elements, a set of the 

Visual SLAM network nodes are created to convey the semantic of functionality of the 

single lockage operation, as shown in Figure 5-4. 

                                                   

Figure 5 - 3: The VSN named SLCK 
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Figure 5 - 4: The Visual SLAM network nodes within the VSN named SLCK 

Nevertheless, some restrictions regarding nodes and statements for use within 

VSNs are imposed in building the VSN (see Pritsker and O’ Reilly 1999). This creates 

the difficulties in encapsulating all the information/data within the VSN as a complete 

module to function as required. When encountering this kind of situation, the simulation 

developers are allowed to separate some information/data from the original module and 

place them aside (or surround) the modified module as the supportive options/extensions. 

As the result, a combination of the supportive options/extensions and the modified 

module can be viewed as a big module that still provides the same semantic as well as the 

original one. Another case is that the original module cannot longer be a module after the 

information/data have been separated apart. The separated information/data, thus, can be 

arranged or grouped together as a set of information/data elements to represent the 

original module instead. This idea not only offers flexibility but also reduces intensity in 

building VSNs. However, to strengthen the idea, the decomposition and composition 

approaches need to be strictly performed – to obtain the best combination or the most 

appropriate set of information/data elements.  

 An example of the combination of the supportive options/extensions and the 

modified module is given in Figure 5-5. The original module is expected to represent 
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SMU XOR Decide Which Lockage Fits Barge-tows’ Size, which can be replaced by the 

combination of the Visual SLAM network nodes and a VSN.  

 

Figure 5 - 5: A combination that represents SMU XOR Decide Which Lockage Fits Barge-tows’ Size 

Another example is given in Figure 5-6 to show a set of the Visual SLAM network nodes 

that covey the meaning of SMU Inform Arrival of Barge-tows. 

 

Figure 5 - 6: A set of the Visual SLAM network nodes that represent SMU Inform Arrival of Barge-

tows 

 Basically, the VSNs are collected and stored in the AweSim library of 

subnetworks. The library provides the ability to reuse the VSNs in order to build 

simulation models to solve other problems within the domain of lockage operation. 

Moreover, it allows for the simulation developers to add, edit, or delete the VSNs in the 

library with respect to the requirements of simulation modeling. For a period of time, the 

collection of VSNs in the library will become vocabularies specifically used to describe 
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this problem domain in many scenarios related. Figure 5-7 depicts the AweSim library of 

subneetworks that stores the VSNs created for the lockage operation.  

                           

Figure 5 - 7: The AweSim library of subnetworks for DMSL_LCK 

 Here is a question: How to reuse those combinations and information/data 

elements in other simulation studies of this domain? It can be seen that the AweSim 

library of subnetworks is available only for storing the VSNs. To resolve this problem, it 

is critical for the simulation developers to employ the pattern-based approach. This 

approach aims to define a framework of reusable solution to a commonly occurring 

problem in modeling as a pattern. As a result, the simulation developers are able to 

transform and maintain the combinations and information/data elements as patterns to be 

reused in many situations. The patterns can be stored in the AweSim library of networks 

as available networks (not considered as the main networks) for future references, shown 

in Figure 5-8.  
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Figure 5 - 8: The AweSim library of networks storing patterns 

 Having the libraries for reusable VSNs and patterns available for modeling the 

lockage problem, it leads to a point that the simulation developers are able to establish the 

AweSim project as a domain specific simulation environment (DSSE). As obviously 

seen, the DSSE named DMSL_LCK provides a variety of tools for the development of 

simulation studies related to the lockage operation, facilitated by the Visual SLAM 

simulation language and AweSim mechanisms. Based on this methodology, each 

AweSim project can be developed at the level of DSSE for a particular problem domain – 

as long as it contains enough tools for communication and reuse in modeling simulation 

for the domain.  

 

5-4. Conclusions 

 The heart of this research study is to propose the integrated approach that 

facilitates the development of a domain specific simulation environment (DSSE). Use of 

the DSSE may be for one time use (application) or multiple uses (language like). The 
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integrated approach consists of the methodologies of ontology mapping, simulation block 

building, and visual subnetwork modeling, which also collaborates with the conceptual 

simulation modeling (CSM) and transformation approach. The idea behind the integrated 

approach is to design a framework and pattern of mapping between the structures and 

contents derived from conceptualization and an existing simulation environment 

application/host simulation language. This brings the simulation developers the abilities 

to create their own simulation environments to support simulation modeling for a specific 

problem domain. Not only flexibility in modeling will their DSSEs provide but also 

reusability in generating simulation models related to the domain.  

 Nevertheless, the idea of mapping and simulation block building has not received 

extensive attentions from most simulation language developers. It seems difficult and 

complicated for them to begin with laying out the structures by using conceptual 

simulation models, defining and specifying the simulation contents by making 

contextualized documentation, and encapsulating and mapping those information/data 

into a module by constructing simulation building blocks. Often, they prefer to use 

logical models and jump right away to develop simulation models. Programming is also 

another choice of their preferences for modeling simulation for their particular problems. 

It might be a comfort zone for them to deal with simulation modeling.  

 Another reason is that to obtain good production from using the integrated 

approach is depended on how detailed the source ontology (e.g., CSMs and 

contextualized documentation) can be and how much expertise in simulation modeling 

(including simulation environment applications and languages) the simulation developers 

have. This is a big barrier that not only blocks them from using the approach effectively 
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and efficiently but also enforces them to deny involving with it at the end. Moreover, 

there is still room for improvement of the representations and applications to gain more 

insights and effectiveness to the approach in terms of details for implementation. It is 

found out that the simulation developers are lost in translation and unable to link the 

elements for testing. To reach the optimum goal for this research study; therefore, it is 

critical to have collaborations from individuals in different major areas such as domain 

experts, simulation experts, software engineers, and computer programmers. The author 

personally believes that this approach can be developed as a fundamental applied for the 

Modeling and Simulation (M&S) communities.  
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CHAPTER 6 

Case Study: DSSE Development Illustration 

 

Abstract 

This chapter is aimed at illustrating the methodology developed for developing domain 

specific simulation environments (DSSEs). The methodology is an integration of 

conceptual simulation modeling (CSM), contextualized documenting, ontology mapping, 

simulation block building, and visual subnetwork modeling. To illustrate the use of the 

methodology, the application of lockage operations on an inland waterway network on 

the McClellan-Kerr Arkansas River is taken as a case study.  

 

6-1. Introduction 

There have been a number of simulation models developed to provide a variety of 

scenarios and results for the analysis of lockage operations on inland waterway 

navigation systems. However, none of them can be reused in other simulation studies, 

though, they are in the same domain of interest. A lack of reusability in simulation 

modeling leads to higher cost and more time when conducting a simulation study. To 

solve this problem, we critically consider the approach of domain specific simulation 

environments (DSSEs). The main purpose of the approach is to create a simulation 

environment that is able to provide reusable and accessible tools (or structures) to 

facilitate the development of simulation studies for a specific problem domain. To 

develop such a DSSE, it requires using concepts, approaches, and applications related to 

simulation and modeling. Here have been numerous attempts by researchers and 
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simulation developers/modelers to develop methodologies and tools to support the 

construction of DSSEs, giving alternative outcomes – depended on purposes, 

requirements, and perspectives of the users. 

In this study, the implementation of the methodology developed by the author is 

applied in an application of lockage operations on an inland waterway system on the 

McClellan-Kerr Arkansas River to illustrate how effective it will be in a simulation 

practice. This methodology encourages a simulation developer to conduct the 

development of a DSSE with recognition of structures, contents, and simulation 

environment application. Therefore, to apply this methodology, the simulation developer 

needs to complete three phases which are conceptualization, transformation, and 

mapping, to accomplish the development.  

This case study is focused only on a partial segment of the inland waterway 

network on the McClellan-Kerr Arkansas River to minimize the size of model and 

explanation. Also, we have attempted to make the demonstration as direct as possible to 

illustrate the procedures. We also assume some knowledge of Visual SLAM and 

Awesim.  

 

6-2. Problem Description 

 This problem statement is taken from the US Army Corps of Engineers (2008). 

The McClellan-Kerr Arkansas River Navigation System (MKARNS) is reliable, year-

round waterway into the Southwest. On this 445-mile long waterway, there is a series of 

navigation pools connected by 18 locks and dams to enable vessels to overcome a 420-

foot difference in elevation from the Mississippi River to the head of navigation at 
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Catoosa, Oklahoma. The MKARNS was designed for ease of navigation by multi-barge 

tows, with ample channel and lock dimensions and bridge clearances, where the locks 

and dams are operated 24 hours a day by the Corps of Engineers. Figure 6-1 shows the 

locations of the locks and dams on the MKARNS.  

 The average size of locks is 110 ft. x 600 ft., which can accommodate eight jumbo 

barges without double lockage. If there are more than eight barges in the group, double 

lockage with tow haulage is needed. Tow haulage is a procedure for drawing barges 

through a lock by using equipment (e.g., wrench) on the lock itself to minimize the 

maneuvering of a towboat when a tow exceeds the length of the lock. (Note: see the 

detailed descriptions of single and double lockage in Chapter 3).  
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Figure 6 - 1: Locations of the locks on the MKARNS (U.S. Army Corps of Engineers 2008) 
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 In this case study, the focus is on the general lockage operations that service 

barge-tows travelling either upstream or downstream through the locks between Port of 

Muskogee (downstream) and Tulsa Port of Catoosa (upstream) located in Oklahoma. 

Generally, several barge-tows are found to have traveled at a maximum speed of 15 mph 

and a top actual speed of around 7 mph along the river, whereas the average entrance 

speed is around of 4 mph. There are two locks: Chouteau (#17) and Newt Graham (#18) 

between these ports, with the in-between distance of around 7.6, 20.2, and 23.4 miles, 

respectively (the US Army Corps of Engineers 2008). The average time of single lockage 

operation is 10-15 minutes, while using tow haulage approximately takes 15-25 minutes 

to complete. It is desired to simulate the operations of the locks for one-day period (24 

hours) to obtain the average time in system and the average waiting time of each barge-

tow, including the average utilization of the locks.  

 

6-3. Methodology 

 This section represents how to develop a DSSE for the lockage operations on the 

MKARNS by following the three-phase-design approach. Phase 1 is to develop 

conceptual simulation models (CSMs) using ISAP to generate a blueprint of the overall 

structure of the DSSE. The process of transformation of the CSMs will be illustrated in 

Phase 2. Finally, in Phase 3, the mapping between conceptualization and simulation will 

be taken to develop simulation building blocks using Visual SLAM and AweSim. These 

three phases are not necessarily executed independently. In practice, there will be 

significant overlaps and iterative feedback loops in the modeling and simulation process, 
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which requires the simulation developers to solve different types of problem between 

these phases.  

 

6-3-1. Phase 1: Conceptualization of Problem Domain 

 Prior to develop a DSSE for the lockage operations on the MKARNS, the 

structure describing the physical and behavioral characteristics of the target domain is 

needed. To obtain such an accurate structure of the domain, it is critical to limit and 

describe how things work and what is to be solved within the domain by starting with a 

problem domain (Valentin and Verbraeck 2002). To formulate the problem domain, the 

simulation developers must be able to understand the problem context, set specific 

modeling objectives, and define the system to be modeled. Problem descriptions, system 

boundaries and components, and desired results are the outcomes of the formulation of 

the problem domain, which is considered as conceptualization. In this case study, 

Integrated Simulation Acknowledge Procedure (ISAP) is taken to support the 

conceptualization of the problem domain to generate conceptual simulation models 

(CSMs).  

 According to Setavoraphan and Grant (2008), ISAP consists of three layers: 

Initialization Layer (IL), Process Layer (PL), and Termination Layer (TL), which is 

developed through three phases based on the simulation and modeling design approach. 

The results of using ISAP are represented in the following CSMs according to each layer. 
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6-3-1-1. Initialization Layer (IL) 

 In IL, initial information about the simulation experiment to be performed such as 

number of simulation runs, number of attributes/variables, and time to begin/end 

simulation are specified. This is a process to design and define a set of parameterized 

references whose settings can be modified per experimentation. Figure 6-2 illustrates the 

design of IL: Lock.  

 

LCK 

Simulation Run 

: No. of run 
 
Run = 1

: Run length 
 
Period = 24 hrs.

Has 

Set 

Simulation 

: Beginning time 
 
Time = 0:00 

: Ending time 
 
Time = 24:00

Has 

Has 

Variables 

: No. of arrays 
 
Max = 10 

: No. of attributes 
 
Max = 10 

Specify 

Specify 

Queuing Priority 

: File or calendar 
 
No. = 1, 2,.., n 

: Ranking 
 
Rule = FIFO 

: Expression 
 
Function = None 

Denote 

Specify 

Evaluate 

IL: Lock; Date: 4/12/2009@13:00 pm; Design# 2

 

Figure 6 - 2: A diagram representing initialization of Lock 
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Creating an IL seems to be difficult for a beginner to realize what to do and what 

to input. The best suggestion is that he/she should find out which is the destination for 

his/her DSSE to be built – a host simulation language or a simulation environment 

application. In this case study, AweSim is our target, so we can deploy its structure and 

input parameters as references for designing a parameterized framework. To avoid using 

irrelevant parameters, filter and arrange them in categories that positively impact overall 

experimentation and construction of his/her DSSE. Organize them within a diagram that 

well conveys information to an individual’s perception in a way of a mind-map. Finally, 

revise and update the diagram to response to correctness and modification of parameters. 

After a few trials, IL can be designed on his/her own purpose, giving better initial 

parameters that help specify and sharpen the scope of modeling.  

 

6-3-1-2. Termination Layer (TL) 

 TL is aimed to provide the setting procedures of terminating simulation and 

printing out a simulation output report, which specifies a frame of reference for 

parameterization and termination of simulation. The frame of reference can be portrayed 

in a tabular-cell pattern that contains a set of data fields and information. Table 6-1 shows 

the data fields for parameterization with assignments required for this case study. 
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Table 6 - 1: Description of data fields for parameterization with assignments 

Fields* 

1 2 3 4 5 6 7 
TIS 

 
 
 
 

Arrival 
time of 
entity 
 
ATRIB[1] 

Departure 
time of 
entity 
 
TNOW         

LUT 
 
 
 
 

 Lock 
number 
 
 
 

 Lock 
busy time 
 
 
{0} 

Lock idle 
time   
 
 
{0} 

 Total 
simulation 
run 
 
{∞}     

WAT 
 
 
 
 
 
 

 Queue 
number 
 
 
 
 
{0} 

Arrival 
time of 
entity at 
queue 
  
 
 

Departure 
time of 
entity 
from 
queue 
 
TNOW       

TER 
 
 
 

 Maximum 
entities 
 
{∞} 

Time 
limit 
 
 {∞}         

 

Where,  

TIS = Time in system of each barge-tow; 

LUT = Utilization of each lock; 

WAT = Waiting time of each barge-tow; 

TER = Termination of simulation; 

 

 The beginner can follow the guidelines  previously mentioned in IL. Obtaining a 

good list of output parameters and terminating criteria is depended upon how well his/her 

modeling objectives are set. This requires not only the details of information from the 

domain problems but also the individual’s experience in modeling. This means that good 

communication between domain experts and simulation developers are critical for 

exchange of information; however, the responsibility in translating the information into 

simulation requirements belongs to the simulation developers. Therefore, the 
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relationships among inputs, a simulation system, and outputs must be drawn as a big 

picture to support the individual’s understanding in their effects and decision making for 

the selection of appropriate parameters. 

 

6-3-1-3. Process Layer (PL) 

 PL becomes the most critical part of ISAP because the physical and structural 

characteristics of the problem domain and simulation domain are formulated here to 

generate the core structure of the DSSE, constructed under two different modeling 

subsystems. The physical characteristics are described in the static modeling subsystem, 

whereas the behavioral characteristics are represented in the dynamic modeling 

subsystem. According to Figure 6-1, the static modeling subsystem representing the 

physical layout of the locks and ports on the MKARNS can be created as shown in Figure 

6-3.  

LOCK 
18 

@LCK 
Area 
18 

Lower

Area 
17 

Lower 

MKARNS 

LOCK
17 

@LCK 
Area 
17 

Upper

Area 
18 

Upper 

Port Muskogee 

Port Catoosa MKARNS 

MKARNS 

 

Figure 6 - 3: A static modeling subsystem of the problem domain 
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 The static modeling subsystem provides an insight to determine which segment of 

the physical layout needs to be processed. As seen in Figure 6-3, only at LOCK 17 and 

LOCK 18 are the processes taken place for representing the lockage operations. It is 

assumed that the same processes are operated at these two locks. The next step is to 

specify and describe the lockage operations in a dynamic modeling subsystem to 

represent, for example, relationships, attributes, and dynamic flows of those processes.  

 The beginner can start with drawing a logical flow diagram to help organize ideas, 

concepts, and information into a pattern of descriptive processes. Later, add details, e.g., 

entities, resources, sub-processes, and attributes, as needed to the logical flow diagram to 

provide a better understanding of the processes. Revise it a few times before transforming 

it into a dynamic modeling subsystem diagram. A good diagram should help the 

individual visualize what happens in those dynamic flows of the processes. Losing a 

focus in the details causes difficulties in translating and mapping conceptual simulation 

models in later states.  

 There is no restriction in using tools or software applications for developing 

dynamic modeling subsystem diagrams, including other diagrams shown in this research 

study. Microsoft Words, for example, might be convenient for many individuals but not 

for everyone. Therefore, it needs to ensure that creating a diagram is not an obstacle in 

using the integrated methodology. The following figures illustrate the dynamic modeling 

subsystem, DMSL: LCK, built for this case study. 
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Figure 6 - 4: DMSL: LCK; sub-folder# 0; page#1 
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Lock: Selected 

Barge: Hold 

Operate lockage  
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Figure 6 - 5: DMSL: LCK; sub-folder# 2; page# 1
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Operate lockage  
 
 
 
2 
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Figure 6 - 6: DMSL: LCK; sub-folder# 2; page# 2 
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Following the figures, tables of descriptions of the objects and operations are provided to 
support understanding of DMSL: LCK, as shown in Table 6-2, 6-3, and 6-4, respectively. 

 
Table 6 - 2: Description of Objects for DMSL: LCK 

 
Object Name Type Description Parameters 

EntBargeTow Entity A barge-tow is represented as a target 
entity to be observed in the inland 
waterway system. A barge-tow entity 
consists of a set of barges and a tow 
boat. 

: Identification# 
: Number of barges 
: Origin 
: Destination 
: Arrival time 
: Speed 

ResLock Resource A lock is a resource that takes an action 
in raising or lowering barge-tow entities 
by filling or draining water. Also, the 
lock-enter allowance is controlled by its 
gates. The gates can be determined as 
internal or external resources.  

: Name 
: File# 
: Resource# 
: Capacity 
: Activity time 

ResWrench Resource An electric wrench is a resource used to 
pull a section of barges that are cut for 
the first lockage.  

: File# 
: Resource# 
: Capacity 
: Activity time 

 
Table 6 - 3: Description of Operations for DMSL: LCK 

 
Operation Name Type Actor Description Attributes Global 

Variables 
AssembleBargeTow() General/ 

Extended 
EntBargeTow An action is to 

accumulate one or 
more set of barges 
that are cut with a tow 
boat into a single 
entity 

: Identical values 
: Number of 
barges 

 

AssignBargeTow() 
{…} 

General EntBargeTow A simulation action is 
to assign identical 
attributes to define the 
characteristics of each 
barge-tow entity that 
represent a set of 
barges and a tow boat. 

: Identification# 
: Number of 
barges 
: Origin 
: Destination 
:Arrival time 
: Speed 

 

BranchBargeTow() General/ 
Extended 

EntBargeTow A number of branches 
are provided at a 
location for an entity 
to take upon 
conditions or 
probabilities 

 : Condition 
expression 

CreateBargeTow() General/ 
Extended 

EntBargeTow A barge-tow entity is 
created by a mean of 
containing a set of 
barges and a tow boat. 

: First arrival 
: Arrival rate 
:Current time 
: Max# entities 

 

CollectTime() General EntBargeTow Statistical data of time 
spent in the system 
are collected 

: Travel time : ID 
: Label 
 



 

 179

Table 6 - 4: Description of Operations for DMSL: LCK (Cont.) 

Operation Name Type Actor Description Attributes Global 
Variables 

CheckBargeTow() Extended EntBargeTow An action is to check 
how many barges the 
entity is containing to 
make a decision for 
selecting a lockage type. 

: Number of 
barges 

 

CutBargeTow() Extended/ 
Specific 

EntBargeTow An action is to split a 
specific number of 
barges that are allowed 
to enter a lock. There 
are many ways to cut, 
upon policies and sizes 
of each lock 

: Identical 
batch size 
: Number of 
barges 

 

HoldBargeTow() General/ 
Extended 

ResLock “Hold” can be 
determined as an action 
to control the flow of 
entities.  

 : Delay time 
 

ProcessLock() General ResLock An action is taken at a 
lock by a mean of delay-
activity time. 

: Resource# 
: Capacity of 
lock 

: Activity time 

ProcessWrench() General ResWrench Electric wrench is used 
when a double lockage 
is required. 

: Resource# 
 

: Activity time 

SelectLockage() Extended ResLock A decision-making 
action is to select either 
single or double lockage 
configuration upon the 
sizes of the barge-tow 
entities 

: Resource# 
: Capacity of 
lock 
 

 

SetLockState() Extended ResLock An action (of sending a 
signal) verifies a status 
of the lock (e.g., busy or 
idle) 

: Resource# : Offset value 

RouteBargeTow() General EntBargeTow Each barge-tow entity is 
routed or moved 
through the system on 
designated routes. Delay 
time might be specified 
on each route. 

 : Distance 

TerminateBargeTow() General EntBargeTow Each barge-tow entity is 
terminated when it 
leaves the system 

  

 

 

Descriptions should be concise enough to specify meanings and purposes of use of the 

objects and operations identified in the dynamic modeling subsystem diagrams. Also, 

labeling an object/operation should be meaningful and consistent so that it will not create 

any conflicts when used in transformational documentation.   
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The next step is to translate DMSL: LCK into a network statement to increase the 

readability of the process layer’s representations, as shown below: 

 

DMSL: LCK; Ref# 0 – 2: 

1 CreateBargeTow, First arrival, Arrival rate, Current time, Max# of 
entities; 

2 AssignBargeTow, Identification#, Number of barges, Origin, Destination, 
Arrival time, Speed; 

3 RouteBargeTow, Distance; 
4 CheckBargeTow, Number of barges; 
5 SelectLockage, Resource#, Capacity of lock; 
6 SetLockState, Rerouce#, Offset value; 
7 BranchBargeTow, Condition expression; 
8 Condition, Number of barges <= Capacity of lock; 
9 SetLockState, Resource#, Offset value; 
10 RouteBargeTow, Distance; 
11 ProcessLock, Resource#, Capacity of lock, Activity time; 
12 RouteBargeTow, Distance; 
13 SetLockState, Resource#, Offset value; 
14 Condition, Number of barges >= Capacity of lock; 
15 SetLockState, Resource#, Offset value; 
16 CutBargeTow, Identical batch size, Number of barges; 
17 HoldBargeTow, Delay time; 
18 ProcessWrench, Resource#, Activity time; 
19 ProcessLock, Resource#, Capacity of lock, Activity time; 
20 RouteBargeTow, Distance; 
21 SetLockState, Resource#, Offset value; 
22 RouteBargeTow, Distance; 
23 SetLockState, Resource#, Offset value; 
24 ProcessLock, Resource#, Capacity of lock, Activity time; 
25 RouteBargeTow, Distance; 
26 AssembleBargeTow, Identical batchsize, Number of barges; 
27 SetLockState, Resource#, Offset value; 
28 RouteBargeTow, Distance; 
29 CollectTime, Travel time, ID, Label; 
30 RouteBargeTow, Distance; 
31 TerminateBargeTow; 
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6-3-2. Phase 2: Transformation of Conceptual Simulation Models 

 This phase is to transform the CSMs into contextualized documentation, so that 

their semantics of structural and behavioral contents within a simulation context can be 

represented in a more executable-readable form. The contextualized documentation is 

developed by using the Semantic Web technologies such as XML and SRML. Moreover, 

user-callable functions are created to support the explanation of the documentation, as 

shown in Table 6-5. 

Table 6 - 5: Referenced properties and callable functions for DMSL: LCK 

References Description 
NewEntity() Create a new entity. 
CurrentEntity()  Return the current entity. 
CloneEntity() Clone the entity. 
TerminateEntity() Terminate the entity. 
Release(Resource#, Units) Release number of units of the resource#. 
Seize(Resource#, Units) Allocate number of units of the resource#. 
NARES(Resource#) Return the number of available units of the resource#. 
NIUSE(Resource#) Return the number of busy units of the resource#. 
Resource() Allocate a resource and assign its calling number 
Schedule(Event, Entity, Time) Schedule an event of type Event to occur at time TNOW + Time 

for the current entity. 
Assign(Attribute 1, Attribute 2, …) Assign one or more attributes to the entity. 
LocateEntity(Event, Resource, Entity) Locate the entity in the target resource 
Intlc(run) Check the initial run 
TNOW Current simulated time 
 

 From DMSL: LCK, the contextualized documentation can be generated as shown below: 

<DMSL Name ="LCK"> 
  <Variable varname="Offset" vartype="boolean"/> 
  <Variable varname="Offset enter value" vartype="boolean"/> 
  <Variable varname="Offset exit value" vartype="boolean"/> 
  <Script Type="text/javascript"> 
    <![CDATA[ 
     
    //Initialize variables for the first run 
     
    function Initial() 
    { 
      Intlc(run);//Check the initial run 
      if (run = 1) 
        { 
          var Offset = 0; 
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          var Offset enter value = 0; 
          var Offset exit value = 0; 
        } 
     } 
      ]]> 
  </Script> 
 
  <SMU Name = "Inform arrival of barge-tows"> 
    <Entity Name = "EntBargeTow"> 
      <Attribute atribname="Identification#" atribtype="interger"/> 
      <Attribute atribname="NumberBarges" atribtype="integer"/> 
      <Attribute atribname="Origin" atribtype="integer"/> 
      <Attribute atribname="Destination" atribtype="integer"/> 
      <Attribute atribname="ArrivalTime" atribtype="real"/> 
      <Attribute atribname="Speed" atribtype="real"> 
      </Entity> 
 
    <Script Type="text/javascript"> 
      <![CDATA[ 
    
    function CreateBargeTow()//Create and schedule entities 
    {  
      //Define variables used in this function 
      var FirstArrival = 0; 
      var ArrivalRate; 
      var CurrentTime = TNOW; 
      var MaxEntities; 
       
      //Create a new entity 
 set NewEntBargeTow = IP.NewEntity(); 
      set NewEntBargeTow.ArrivalTime = IP.TNOW; 
      IP.Schedule("FirstArrival", NewEntBargeTow, 
(NewEntBargeTow.ArrivalTime+ArrivalRate); 
       
      //Schedule the next entities 
      for (i=1; i<=Max# entities; i++) 
   { 
          set NextEntBargeTow = IP.CloneEntity(); 
          set NextEntBargeTow = IP.TNOW; 
          IP.Schedule("NextArrival", NextEntBargeTow, 
(NextEntBargeTow.ArrivalTime+ArrivalRate)); 
   } 
    } 
 
    function AssignBargeTow()//Assign attributes to the BargeTow 
entities 
    { 
 var Identification#; 
 var NumberBarges; 
 var Origin; 
 var Destination; 
 var ArrivalTime; 
      var Speed; 
        
      //Define the current EntBargeTow entity and assign attributes to 
it 
 set CurrentEntBargeTow = IP.CurrentEntity(); 
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      CurrentEntBargeTow.Assign(Identification#, NumberBarges, Origin, 
Destination, ArrivalTime, Speed); 
    } 
 
    function RouteBargeTow()//Schedule the current EntBargeTow entity 
for travelling 
    { 
 var Distance; 
 var Speed; 
 var DelayTime = Distance/Speed; 
 IP.Schedule("Decision", CurrentEntBargeTow, 
CurrentEntBargeTow.DelayTime); 
    } 
      ]]> 
   </Script> 
 
  <Link Name="J2" Type="Precedence"> 
  <Link Target="XOR: Decide which lockage fits barge tows' size"> 
  </Link> 
  </SMU> 
 
  <SMU Name ="XOR: Decide which lockage fits barge tows' size"> 
    <Entity Name ="EntBargeTow"> 
     <Attribute atribname="Identification#" atribtype="interger"/> 
     <Attribute atribname="NumberBarges" atribtype="integer"/> 
     <Attribute atribname="Origin" atribtype="integer"/> 
     <Attribute atribname="Destination" atribtype="integer"/> 
     <Attribute atribname="ArrivalTime" atribtype="real"/> 
     <Attribute atribname="Speed" atribtype="real"> 
    </Entity> 
     
    <Resource Name ="ResLock"> 
     <Attribute atribname="Name" atribtype="string"/> 
     <Attribute atribname="File#" atribtype="integer"/> 
     <Attribute atribname="Resource#" atribtype="integer"/> 
     <Attribute atribname="CapacityLock" atribtype="integer"/> 
     <Attribute atribname="ActivityTime" atribtype="real"/> 
    </Resource> 
    <Script Type="text/javascript"> 
    <![CDATA[ 
      
    function CheckBargeTow()//Retrieve the value of number of barges 
from the current EntBargeTow entity 
    { 
      var NumberBarges; 
      set CheckNumberBarges = CurrentEntBargeTow.NumberBarges; 
    } 
      
    function SelectLockage()//Retrieve the capacity value from the lock 
Resource# 
    { 
      var LockCapacity; 
      set ResLock = IP.Resource(); 
      set LockCapacity = ResLock.CapacityLock; 
     } 
      
    function BranchBargeTow() 
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    { 
      var LockCapacity; 
      if (CheckNumberBarges <= LockCapacity) 
      IP.LocateEntity("Operate single lockage", ResLock, 
CurrentEntBargeTow); 
      else if (CheckNumberBarges > LockCapacity) 
      IP.LocateEntity("Operate double lockage", ResLock, 
CurrentEntBargeTow); 
    } 
      
    ]]> 
    </Script> 
 
   <Link Name="LockType" Type="Precedence with condition(s)"> 
   <Link Target="Operate single lockage"/> 
   <Link Target="Operate double lockage"/> 
   </Link> 
   </SMU> 
 
   <SMU Name ="Operate single lockage"> 
    <Entity Name ="EntBargeTow"> 
      <Attribute atribname="Identification#" atribtype="interger"/> 
      <Attribute atribname="NumberBarges" atribtype="integer"/> 
      <Attribute atribname="Origin" atribtype="integer"/> 
      <Attribute atribname="Destination" atribtype="integer"/> 
      <Attribute atribname="ArrivalTime" atribtype="real"/> 
      <Attribute atribname="Speed" atribtype="real"> 
      </Entity> 
 
    <Resource Name ="ResLock"> 
      <Attribute atribname="Name" atribtype="string"/> 
      <Attribute atribname="File#" atribtype="integer"/> 
      <Attribute atribname="Resource#" atribtype="integer"/> 
      <Attribute atribname="CapacityLock" atribtype="integer"/> 
      <Attribute atribname="ActivityTime" atribtype="real"/> 
    </Resource> 
 
    <Script Type="text/javascript"> 
     <![CDATA[ 
    function SetLockState() 
    { 
      if (NIUSE(ResLock) >=1)//Lock is occopied 
        { 
          var Offset = 1;//State is busy 
          var Offset enter value = 1;//Enter gate is closed 
          var offset exit value = 1;//Exit gate is closed 
        } 
       else (NIUSE(ResLock) <=0)//Lock is available 
        { 
          var Offset = 0;//State is idle 
          var Offset enter value = 0;//Enter gate is opened 
          var Offset exit value = 0;//Exit gate is opened 
        } 
    } 
    
   function ProcessLock() 
   { 
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      var ActivityTime; 
      if (NARES(ResLock) >0) 
       { 
         IP.Seize(ResLock, 1); 
         IP.SetLockState(); 
         IP.Schedule("Lockage", CurrentEntBargeTow, 
(CurrentEntBargeTow.TNOW+ActivityTime)); 
    IP.Release(Reslock, 1); 
       } 
   } 
       
   function RouteBargeTow()//Schedule the current EntBargeTow entity 
for exiting lockage 
   { 
 var Distance; 
      var Speed; 
      var DelayTime = Distance/Speed; 
      IP.Schedule("Exit", CurrentEntBargeTow, 
CurrentEntBargeTow.DelayTime); 
   } 
 
    ]]> 
  </Script> 
  <Link Name="Exit" Type="Precedence"> 
  <Link Target="Set departure of barge-tows"/> 
  </SMU> 
 
  <SMU Name ="Operate double lockage"> 
    <Entity Name ="EntBargeTow"> 
      <Attribute atribname="Identification#" atribtype="interger"/> 
      <Attribute atribname="NumberBarges" atribtype="integer"/> 
      <Attribute atribname="Origin" atribtype="integer"/> 
      <Attribute atribname="Destination" atribtype="integer"/> 
      <Attribute atribname="ArrivalTime" atribtype="real"/> 
      <Attribute atribname="Speed" atribtype="real"> 
      </Entity> 
 
    <Resource Name ="ResLock"> 
      <Attribute atribname="Name" atribtype="string"/> 
      <Attribute atribname="File#" atribtype="integer"/> 
      <Attribute atribname="Resource#" atribtype="integer"/> 
      <Attribute atribname="CapacityLock" atribtype="integer"/> 
      <Attribute atribname="ActivityTime" atribtype="real"/> 
    </Resource> 
 
    <Resource Name ="ResWrench"> 
      <Attibute atribname="File#" atribtype="integer"/> 
      <Attribute atribname="Resource#" atribtype="integer"/> 
      <Attribute atribname="CapacityWrench" atribtype="integer"/> 
      <Attribute atribname="ActivityTime" atribtype="real"/> 
      <Resource> 
 
     <Script Type="text/javascript"> 
     <![CDATA[ 
    
    function SetLockState() 
    { 
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      if (NIUSE(ResLock) >=1)//Lock is occopied 
        { 
          var Offset = 1;//State is busy 
          var Offset enter value = 1;//Enter gate is closed 
          var offset exit value = 1;//Exit gate is closed 
        } 
       else (NIUSE(ResLock) <=0)//Lock is available 
        { 
          var Offset = 0;//State is idle 
          var Offset enter value = 0;//Enter gate is opened 
          var Offset exit value = 0;//Exit gate is opened 
        } 
    } 
    
    function CutBargeTow() 
    { 
 var FirstBatchSize; 
 var SecondBatchSize; 
 var NumberBarges; 
 if (NumberBarges > CapacityLock) 
   { 
      set FirstBatchSize = CapacityLock; 
      set SecondBatchSize = NumberBarges - CapacityLock; 
   } 
    } 
    
    function HoldBargeTow() 
    { 
      var DelayTime; 
 IP.Schedule("ProcessLock", CurrentBargeTow.FirstBatchSize, 
CurrentEntBargeTow.DelayTime); 
 IP.Schedule("ProcessLock", CurrentBargeTow.SecondBatchSize, 
CurrentEntBargeTow.DelayTime); 
    } 
   
  
    function ProcessLock() 
    { 
      var ActivityTime; 
      if (NARES(ResLock) >0) 
        { 
          IP.Seize(ResLock, 1); 
          IP.SetLockState(); 
          IP.Schedule("Lockage", CurrentEntBargeTow.FirstBatchSize, 
(CurrentEntBargeTow.FirstBatchSize.TNOW+ActivityTime)); 
     IP.Release(ResLock, 1); 
        } 
     } 
       
    function ProcessWrench() 
    { 
 var WrenchCapacity 
 var ActivityTime; 
 set ResWrench = Resource(); 
 set WrenchCapacity = ResWrench.CapacityWrench; 
 if (NARES(ResWrench) > 0) 
  { 
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     IP.Seize(ResWrench, 1); 
     IP.Schedule("Wrench", CurrentEntBargeTow.FirstBatchSize, 
(CurrenEntBargeTow.FirstBatchSize.TNOW+ActivityTime)); 
     IP.Release(ResWrench, 1); 
       } 
    } 
    
    function ProcessLock() 
    { 
      var ActivityTime; 
      if (NARES(ResLock) >0) 
       { 
          IP.Seize(ResLock, 1); 
          IP.SetLockState(); 
          IP.Schedule("Lockage", CurrentEntBargeTow.SecondBatchSize, 
(CurrentEntBargeTow.SecondBatchSize.TNOW+ActivityTime)); 
     IP.Release(ResLock, 1); 
        } 
     } 
    
    function AssembleBargeTow() 
    { 
 set CurrentEntBargeTow.NumberBarges = 
CurrentEntBargeTow.FirstBatchSize + CurrentEntBargeTow.SecondBatchSize; 
    } 
    
   function RouteBargeTow()//Schedule the current EntBargeTow entity 
for exiting lockage 
   { 
 var Distance; 
 var Speed; 
      var DelayTime = Distance/Speed; 
 IP.Schedule("Exit", CurrentEntBargeTow, 
CurrentEntBargeTow.DelayTime); 
   } 
     ]]> 
    </Script> 
    <Link Name="Exit" Type="Precedence"> 
    <Link Target="Set departure of barge-tows"/> 
         
  </SMU> 
 
  <SMU Name ="Set departure of barge-tows"> 
    <Entity Name ="EntBargeTow"> 
      <Attribute atribname="Identification#" atribtype="interger"/> 
      <Attribute atribname="NumberBarges" atribtype="integer"/> 
      <Attribute atribname="Origin" atribtype="integer"/> 
      <Attribute atribname="Destination" atribtype="integer"/> 
      <Attribute atribname="ArrivalTime" atribtype="real"/> 
      <Attribute atribname="Speed" atribtype="real"> 
      </Entity> 
    <Script Type="text/javascript"> 
      <![CDATA[ 
    
    function CollectTime() 
    { 
 var TravelTime; 
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 var ID; 
 var Label; 
 set TravelTime = CurrentEntBargeTow.ArrivalTime - TNOW; 
 IP.Collect(TravelTime, ID, Label); 
    } 
    
    function RouteBargeTow() 
    { 
 var Distance; 
 var Speed; 
 var DelayTime = Distance/Speed; 
 IP.Schedule("Terminate", CurrentEntBargeTow,  
CurrentEntBargeTow.DelayTime); 
    } 
    
    function TerminateBargeTow() 
    { 
 IP.TerminateEntity(CurrentEntBargeTow); 
    } 
    
    ]]> 
  </Script> 
 
  </SMU> 
 

6-3-3. Phase 3: Mapping and Building 

 In the final phase, the simulation developer is able to make the transition from 

conceptualization to simulation. Using a tool, Similar Mapping Plane (SMP), is very 

crucial for mapping between the source ontology (e.g., CSMs and contextualized 

documentation) and the target ontology (e.g., Visual SLAM).  SMP allows the simulation 

developer to nominate candidates for mapping and determine which one is the most 

appropriate selection for implementing in simulation. The following tables show how to 

map two ontologies by using SMP.  
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Table 6 - 6: Similarity Mapping Plane for CreateBargeTow() 

Source Weight Target 
Instance 
Name: CreateBargeTow() 

1 Node 
Name: CREATE 
 

Description 
A barge-tow entity is created by a mean of containing a set 
of barges and a tow boat 
 

2 Description 
Entities are generated within the network. 

Properties 
:First arrival  
:Arrival rate 
:Current time 
:Max# entities 

1 Inputs 
:Time between creations (TBC) 
:Time of first creation (TF) 
:Maximum creations (MC) 
:Mark variable which will store the time of creation (MV) 
:Number of branches (M) 
 

Input statement 
CreateBargeTow, First arrival, Arrival rate, Current time, 
Max# of signal entities; 
 

1 Input format 
CREATE, TBC, TF, MV, MC, M; 

Explanation 
function CreateBargeTow() 
{  
var FirstArrival = 0;   
var ArrivalRate; 
var CurrentTime = TNOW; 
var MaxEntities; 
       
 //Create a new entity 
 
Set NewEntBargeTow = IP.NewEntity(); 
Set NewEntBargeTow.ArrivalTime = IP.TNOW; 
IP.Schedule("FirstArrival", 
NewEntBargeTow, 
(NewEntBargeTow.ArrivalTime+ArrivalRate); 
       
 //Schedule the next entities 
 
for (i=1; i<=Max# entities; i++) 
{ 
Set NextEntBargeTow = IP.CloneEntity(); 
Set NextEntBargeTow = IP.TNOW; 
IP.Schedule("NextArrival", 
NextEntBargeTow, 
(NextEntBargeTow.ArrivalTime+ArrivalRate)
); 
} 
} 
 

1 Explanation 
CREATE NODE 
:The first entity is created at a time specified by the value 
of TF; 
:The time between creations of entities after the first is 
specified by the variable TBC; 
:The time at which the entity is created can be assigned to 
a variable MV; 
:Entities will continue to be created until a limit is 
reached, specified by MC 
 
 

 
Total scores 

 

 
6/10 

 
Likely similar 

 
 

Weight by degrees of similarity (score): None (0); Likely similar (1); and Similar (2). 
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Table 6 - 7: Similar Mapping Plane for AssignBargeTow() 

Source Weight Target 
Instance 
Name: AssignBargeTow() 

1 Node 
Name: ASSIGN 
 

Description 
A simulation action is to assign identical attributes to define 
the characteristics of each barge-tow entity. 
 

2 Description 
Values are assigned to Visual SLAM variables at each 
arrival of an entity to the node. 

Properties 
:Identification# 
:Number of barges 
:Origin 
:Destination 
:Arrival time 
:Speed 
 

1 Inputs 
:Visual SLAM global or entity variable (VAR) 
:Expression (VALUE) 
:Number of branches (M)  

Input statement 
AssignBargeTow, Identification#, Number of barges, Origin, 
Destination, Arrival time; 
 

1 Input format 
ASSIGN, {{VAR, VALUE}, repeats}, M; 

Explanation 
function AssignBargeTow() 
 
//Assign attributes to the BargeTow 
entities 
{ 
var Identification#; 
var NumberBarges; 
var Origin; 
var Destination; 
var ArrivalTime; 
var Speed; 
        
//Define the current EntBargeTow entity 
and assign attributes to it 
   
Set CurrentEntBargeTow = 
This.EntBargeTow.CloneEntity(); 
       
CurrentEntBargeTow.Assign(Identification#
, NumberBarges, Origin, Destination, 
ArrivalTime, TravelTime, Speed); 
} 
 

1 Explanation 
ASSIGN NODE 
:Values are prescribed to the attributes of an entity passing 
through the ASSIGN node; or 
:Values are prescribed to the system variables that pertain 
to the network in general  

 
Total scores 

 

 
6/10 

 
Likely similar 

 
 

Weight by degrees of similarity (score): None (0); Likely similar (1); and Similar (2). 

(Note: In advanced modeling, READ node can be used to assign values from an external 
file to attributes instead of ASSIGN node. However, to assign values to global variables 
still needs using ASSIGN node. SetLockState() is also be mapped to this node.) 
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Table 6 - 8: Similar Mapping Plane for RouteBargeTow() 

Source Weight Target 
Instance 
Name: RouteBargeTow() 

1 Node 
Name: ACTIVITY 
 

Description 
Each barge-tow entity is routed or moved through the system 
on designated routes. 
 

2 Description 
Branches are used to model activities. Only at branches 
are explicit time delays prescribed for entities flowing 
through the network. 

Properties 
:Distance  

0 Inputs 
:Activity number (A) 
:Duration specified for the activity (DUR) 
:Condition for selecting the activity and can be a 
probability specification (COND) 
:End node label (NLBL) 
:Number of parallel identical servers (N) 
:Activity identification (ID) 
 

Input statement 
RouteBargeTow, Distance; 
 

0 Input format 
ACTIVITY, A, DUR, CONDITION, NLBL, N, ID; 

Explanation 
function RouteBargeTow() 
 
//Schedule the current EntBargeTow entity 
for travelling 
{ 
var Distance; 
var Speed; 
var DelayTime = Distance/SPEED; 
IP.Schedule("Decision", 
CurrentEntBargeTow, 
CurrentEntBargeTow.DelayTime); 
} 
 

2 Explanation 
ACTIVITY  
:Branches emanate entities to simultaneously flow through 
them; 
:The duration of an activity is the time delay that an entity 
encounters as it flows through the branch representing the 
activity 

 
Total scores 

 

 
5/10 

 
Likely similar 

 
 

Weight by degrees of similarity (score): None (0); Likely similar (1); and Similar (2). 

(Note: By the characteristics of ACTIVITY, it can also be used to function for 
BranchBargeTow(), CheckBargeTow(), and SelectLockage() by defining expressions for 
ACTIVITIES.) 
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Table 6 - 9: Similar Mapping Plane for ProcessLock() 

Source Weight Target 
Instance 
Name: ProcessLock() 

1 Node 
Name: AWAIT 
 

Description 
An action is taken at a lock by a mean of delay activity time. 
 

2 Description 
The AWAIT node is used to store entities waiting for UR 
units of resource RES or waiting for gate GATE to open. 

Properties 
:Resource# 
:Capacity of lock 
:Activity time 

1 Inputs 
:File number (IFL) 
:Label of a component previously defined with a 
RESOURCE (RESORGATE) 
:Units required (UR) 
:Resource allocation rule (RULE) 
:Queue capacity (QC) 
:Condition of queue (FULLCOND) 
:Number of branches (M) 
  

Input statement 
ProcessLock, Resource#, Capacity of lock, Activity time; 
 

1 Input format 
AWAIT, IFL, {{RESORGATE, UR}, repeats}, RULE, 
QC, FULLCOND, M; 

Explanation 
function ProcessLock() 
{ 
var ActivityTime; 
if (NARES(ResLock) >0) 
{ 
IP.Seize(ResLock,1); 
IP.SetLockState(); 
IP.Schedule("Lockage", CurrentBargeTow, 
(CurrentBargeTow.TNOW+ActivityTime)); 
IP.Release(ResLock, 1); 
} 
} 
 

2 Explanation 
AWAIT node 
: The AWAIT node delays an entity in file IFL until UR 
units of resource or group RES are available.  
:When required resources are available, the entity seizes 
the UR units of RES. 

 
Total scores 

 

 
7/10 

 
Likely similar 

 
 

Weight by degrees of similarity (score): None (0); Likely similar (1); and Similar (2). 

(Note: To use AWAIT node, it also requires RESOURCE block and FREE node to 
complete the process. ProcessWrench() can be mapped to this Visual SLAM nodes and 
block as well.) 
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Table 6 - 10: Similar Mapping Plane for CollectTime() 

Source Weight Target 
Instance 
Name: CollectTime() 

1 Node 
Name: COLCT 
 

Description 
Statistical data for time spent in the system are collected. 
 

2 Description 
Statistics can be collected on any expression at a COLCT. 

Properties 
:Travel time 
:ID 
:Label 

1 Inputs 
: Statistics index (N) 
:Expression whose value is to be observed (VARIABLE) 
:Identifying label (ID) 
:Number of histogram cells (NCEL) 
:Lower limit of first cell (HLOW) 
:Cell width (HWID) 
:Number of branches (M) 
 

Input statement 
CollectTime, Travel time, ID, Label; 
 

1 Input format 
COLCT, N, VAR, “ID”, NCEL, HLOW, HWID, M; 

Explanation 
function CollectTime() 
{ 
var TravelTime; 
var ID; 
var Label; 
set TravelTime = 
CurrentEntBargeTow.ArrivalTime - TNOW; 
IP.Collect(TravelTime, ID, Label); 
} 

1 Explanation 
COLCT node 
:The value of a Visual SLAM expression is recorded as an 
observation every time an entity arrives to the node. 

 
Total scores 

 

 
6/10 

 
Likely similar 

 
 

Weight by degrees of similarity (score): None (0); Likely similar (1); and Similar (2). 
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Table 6 - 11: Similar Mapping Plane for CutBargeTow() 

Source Weight Target 
Instance 
Name: CutBargeTow() 

1 Node 
Name: UNBATCH 
 

Description 
An action is to split a specific number of barges that are 
allowed to enter a lock. 
 

2 Description 
An entity is split into multiple entities. 

Properties 
:Identical batch size 
:Number of barges 

1 Inputs 
:Number of copies to make of the entity (NCLONE) 
:Number of branches (M) 
 

Input statement 
CutBargeTow, Identical batch size, Number of barges; 
 

1 Input format 
UNBATCH, NCLONE, M; 

Explanation 
function CutBargeTow() 
{ 
var FirstBatchSize; 
var SecondBatchSize; 
var NumberBarges; 
    
if (NumberBarges > CapacityLock) 
{ 
set FirstBatchSize = CapacityLock; 
set SecondBatchSize = NumberBarges - 
CapacityLock; 
} 
} 

1 Explanation 
UNBATCH node 
:The arriving entity is duplicated and NCLONE identical 
entities are released from the UNBATCH node. 

 
Total scores 

 

 
6/10 

 
Likely similar 

 
 

Weight by degrees of similarity (score): None (0); Likely similar (1); and Similar (2). 

(Note: In practice, this function may or may not be required since it is possible to employ 
the logic that one unit can be put in multi-processing instead of splitting it into two parts 
for shortening the processes. Thus, AssembleBargeTow() that can possibly mapped into 
BATCH node would be ignored. This helps make modeling less complicated.) 
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The results of mapping ontologies on SMP help the DSSE developer to determine 

which Visual SLAM network nodes or functions are best fit to the construction of 

simulation building blocks by using the feature of visual subnetworks (VSNs). A 

collection of the VSNs is created as a library for reusing and accessing for other 

simulation studies under the same problem domain. However, as mentioned above, not 

every mapping result can be linked and implemented for testing. It is important for the 

simulation developer to add the details for implementation to those given products of 

mapping to satisfy the requirements of the simulation. Moreover, configurations and 

modifications in the Visual SLAM network nodes or functions are necessary for the 

accomplishment of simulation modeling. Finally, the quality of the simulation model is 

depended on the simulation developer’s experience and expertise in Visual SLAM and 

AweSim, including logic and skills in simulation and modeling. 

Figure 6-7 represents a simulation model for the travels of barge-tows from Port 

Muskogee to Tulsa Port of Catoosa through Lock#17. This simulation model has been 

developed from the results of mapping between conceptualization and simulation. 

 

Figure 6 - 7: A simulation model for the lockage operations at Lock#17 
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As mentioned in Chapter 5, due to some restrictions of using VSNs, there appear 

combinations of the Visual SLAM network nodes and VSNs, patterns of the Visual 

SLAM network nodes, and stand-alone VSNs in the model. Obviously, it is unable to 

create simulation building blocks for representing every SMU retrieved from CSMs. The 

following figures provide the structures (building block elements) of the VSNs: “ARV”, 

“OPERATE”, “SINGLE”, “DOUBLE”, and “CLT”, respectively.  

 

Figure 6 - 8: Building block elements for the VSN: “ARV” 

 

 

Figure 6 - 9: Building block elements for the VSN: “OPERATE” 
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Figure 6 - 10: Building block elements for the VSN: “SINGLE” 

 

 

Figure 6 - 11: Building block elements for the VSN: “DOUBLE” 

 

 

Figure 6 - 12: Building block elements for the VSN: “CLT” 
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For this simulation model, the network statements and control statements are given in 

Figure 6-13, whereas the subnetwork statements are provided in Figure 6-14. 

 

Network statements: 
 
INFORM_UP: CREATE,EXPON(35),0.0,,INF,1,,,,,,{50,110}; 
        ACTIVITY,,,,,,,,,,{1,3,,,}; 
ARRIVAL_UP: CALLVSN,"ARV",,{INT(UNFRM(2,15)),"MUSKOGEE","CATOOSA",3},1,,,,,,,{130,110}; 
        ACTIVITY,,,,"TOW_UP",,,,,,{3,-1,,,250,110}; 
LOCK17_CONTROL: CREATE,INF,0.0,,1,1,,,,,,{60,180}; 
        ACTIVITY,,,,,,,,,,{5,7,,,}; 
        ASSIGN,{{ETYPE,SIGNAL17},{LOCK17,LFREE}},1,,,,,,,,,{140,180}; 
        ACTIVITY,,,,"LOCK_ST_17",,,,,,{7,-1,,,250,180}; 
TOW_UP: QUEUE,1,0,INF,NONE,{ONE_SELECT_1},,,,,,{50,230}; 
        ;CONNECTOR{9,11} 
ONE_SELECT_1: SELECT,LOWASSEMBLE(ETYPE),NONE,NONE,{TOW_UP,LOCK_ST_17},,,,,,,{100,260}; 
        ACTIVITY,,,,,,,,,,{11,13,,,}; 
        ASSIGN,{{LOCK17,BUSY}},1,,,,,,,,,{230,260}; 
        ACTIVITY,,,,,,,,,,{13,15,,,}; 
        CALLVSN,"OPERATE","LCK17",,1,,,,,,,{330,260}; 
        ACTIVITY,,,,,,,,,,{15,17,,,}; 
        ASSIGN,{{LOCK17,LFREE}},2,,,,,,,,,{430,260}; 
        ACTIVITY,,,,"LOCK_ST_17",,,,,,{17,-1,,,480,210,540,210}; 
        ACTIVITY,,,,,,,,,,{17,20,,,}; 
        CALLVSN,"CLT","LCK17",,1,,,,,,,{530,260}; 
        ACTIVITY,,,,,,,,,,{20,22,,,}; 
        TERMINATE,INF,,,,,,,,,,{630,260}; 
LOCK_ST_17: QUEUE,2,0,INF,NONE,{ONE_SELECT_1},,,,,,{50,290}; 
        ;CONNECTOR{23,11} 
 

Control statements: 
 
GEN,"Kitti Setavoraphan","MKARNS",4/9/09,1,YES,YES; 
LIMITS,,10,,10,10,10; 
INITIALIZE,0.0,1440,YES,,NO; 
EQUIVALENCE,{{TOW,1},{SIGNAL17,17},{LFREE,0},{BUSY,1},{ARRIVAL,ATRIB[1]},{SPEED,ATRIB[2]}
,{ID,LTRIB[1]},{NO_BARGE,LTRIB[2]},{ORIGIN,STRIB[1]},{DESTINATION,STRIB[2]},{LOCK17,LL[0]
}}; 
INTLC,{{LL[0],0}}; 
NET; 
FIN; 

 

Figure 6 - 13: Visual SLAM network and control statements for Lock#17 simulation model
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Subnetwork statements: 

 
VSN,ARV,{{INIT_BARGE,DOUBLEVAL, 
},{ORIGIN_PORT,STRINGVAL,},{DEST_PORT,STRINGVAL,},{DISTANCE1,DOUBLEVAL, 
}},,,,,,,,,{40,30}; 
        LIMITSVSN,-1,10,-1,-1,10,-1,,,,,{0,0}; 
ENTER1: ENTERVSN,,1,,,,,,,,,{50,90}; 
        ACTIVITY,,,,,,,,,,{3,5,,,}; 
        ASSIGN,{{LNTRIB[1],INIT_BARGE}},1,,,,,,,,,{80,90}; 
        ACTIVITY,,,,,,,,,,{5,7,,,}; 
        UNBATCH,LNTRIB[1],1,,,,,,,,,{220,90}; 
        ACTIVITY,,,,,,,,,,{7,9,,,}; 
        ASSIGN,{{ETYPE,TOW},{LNTRIB[0],LNTRIB[1]},{LNTRIB[2],1}},1,,,,,,,,,{290,90}; 
        ACTIVITY,,,,,,,,,,{9,11,,,}; 
        BATCH,0,LNTRIB[0],1,LAST,{LNTRIB[2]},YES,1,,,,{410,90}; 
        ACTIVITY,,,,,,,,,,{11,13,,,}; 
     
ASSIGN,{{ID,ID+1},{NO_BARGE,LNTRIB[2]},{ORIGIN,ORIGIN_PORT},{DESTINATION,DEST_PORT},{ARRI
VAL,TNOW},{SPEED,UNFRM(7,15)}},1,,,,,,,,,{500,90}; 
        ACTIVITY,,DISTANCE1/SPEED,,,,,,,,{13,15,,,}; 
        RETURNVSN,0.0,1,,,,,,,,,{680,90}; 
VSN,OPERATE,,,,,,,,,,{40,20}; 
        ENTERVSN,,1,,,,,,,,,{50,120}; 
        ACTIVITY,,,NO_BARGE<=8,,,,,,,{2,5,,,50,60}; 
        ACTIVITY,,,,"CASE_CALLVSN_1",,,,,,{2,8,,,50,180}; 
        CALLVSN,"SINGLE","LCK17",{1,15,4,4.6},1,,,,,,,{180,60}; 
        ACTIVITY,,,,,,,,,,{5,7,,,}; 
        RETURNVSN,0.0,1,,,,,,,,,{330,60}; 
CASE_CALLVSN_1: CALLVSN,"DOUBLE","LCK17",{1,15,1,25,4,4.6},1,,,,,,,{180,180}; 
        ACTIVITY,,,,,,,,,,{8,10,,,}; 
        RETURNVSN,0.0,1,,,,,,,,,{330,180}; 
VSN,SINGLE,{{LCKCAP,DOUBLEVAL,},{LCKTIME,DOUBLEVAL,},{SPEEDLCK,DOUBLEVAL,},{DISTANCELCK,D
OUBLEVAL,}},,,,,,,,,{40,30}; 
        RESOURCE,1,LOCKAGE,LCKCAP,{1},,,,,,,{40,60}; 
        ENTERVSN,,1,,,,,,,,,{50,110}; 
        ACTIVITY,,DISTANCELCK/SPEEDLCK,,,,,,,,{3,5,,,}; 
        AWAIT,1,{{LOCKAGE,1}},ALL,,NONE,1,,,,,{160,110}; 
        ACTIVITY,,LCKTIME,,,,,,,,{5,7,,,}; 
        FREE,{{LOCKAGE,1}},1,,,,,,,,,{280,110}; 
        ACTIVITY,,,,,,,,,,{7,9,,,}; 
        RETURNVSN,0.0,1,,,,,,,,,{380,110}; 
VSN,DOUBLE,{{LCKCAP,DOUBLEVAL,},{LCKTIME,DOUBLEVAL, },{WRENCHCAP,DOUBLEVAL, 
},{WRENCHTIME,DOUBLEVAL, },{SPEEDLCK,DOUBLEVAL, },{DISTANCELCK,DOUBLEVAL, 
}},,,,,,,,,{30,20}; 
        RESOURCE,1,LOCKAGE,LCKCAP,{1},,,,,,,{30,50}; 
        RESOURCE,2,WRENCH,WRENCHCAP,{2},,,,,,,{30,80}; 
        ENTERVSN,,1,,,,,,,,,{40,120}; 
        ACTIVITY,,DISTANCELCK/SPEEDLCK,,,,,,,,{4,6,,,}; 
        AWAIT,1,{{LOCKAGE,1}},ALL,,NONE,1,,,,,{150,120}; 
        ACTIVITY,,LCKTIME,,,,,,,,{6,8,,,}; 
        AWAIT,2,{{WRENCH,1}},ALL,,NONE,1,,,,,{260,120}; 
        ACTIVITY,,WRENCHTIME,,,,,,,,{8,10,,,}; 
        FREE,{{WRENCH,1}},1,,,,,,,,,{370,120}; 
        ACTIVITY,,LCKTIME,,,,,,,,{10,12,,,}; 
        GOON,1,,,,,,,,,,{480,120}; 
        ACTIVITY,,LCKTIME,,,,,,,,{12,14,,,}; 
        FREE,{{LOCKAGE,1}},1,,,,,,,,,{530,120}; 
        ACTIVITY,,,,,,,,,,{14,16,,,}; 
        RETURNVSN,0.0,1,,,,,,,,,{620,120}; 
VSN,CLT,,,,,,,,,,{41,33}; 
        ENTERVSN,,1,,,,,,,,,{50,80}; 
        ACTIVITY,,,,,,,,,,{2,4,,,}; 
        COLCT,,TNOW-ARRIVAL,"TIS",,,,1,,,,{120,80}; 
        ACTIVITY,,,,,,,,,,{4,6,,,}; 
        RETURNVSN,0.0,1,,,,,,,,,{260,80}; 

 

Figure 6 - 14: Visual SLAM subnetwork statements for Lock#17 simulation model 



 

 200

Based on this methodology, the simulation developer can further develop a simulation 

model for the lockage operations at both Lock# 17 and Lock# 18 in which the barge-tows 

from the downstream of MKARNS travel, as shown in Figure 6-15. 

 

 

Figure 6 - 15: A simulation model for the lockage operations at Lock# 17 and Lock# 18 

 

As well, its network statements, control statements, and extended subnetwork statements 

are given in the following figures: 
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Network statements: 
 
INFORM_UP: CREATE,EXPON(35),0.0,,INF,1,,,,,,{50,110}; 
        ACTIVITY,,,,,,,,,,{1,3,,,}; 
ARRIVAL_UP: CALLVSN,"ARV",,{INT(UNFRM(2,15)),"MUSKOGEE","CATOOSA",3},1,,,,,,,{130,110}; 
        ACTIVITY,,,,"TOW_17",,,,,,{3,-1,,,240,110}; 
LOCK17_CONTROL: CREATE,INF,0.0,,1,1,,,,,,{60,180}; 
        ACTIVITY,,,,,,,,,,{5,7,,,}; 
        ASSIGN,{{ETYPE,SIGNAL17},{LOCK17,LFREE}},1,,,,,,,,,{140,180}; 
        ACTIVITY,,,,"LOCK_ST_17",,,,,,{7,-1,,,250,180}; 
TOW_17: QUEUE,1,0,INF,NONE,{CASE_SELECT_1},,,,,,{50,230}; 
        ;CONNECTOR{9,11} 
CASE_SELECT_1: SELECT,LOWASSEMBLE(ETYPE),NONE,NONE,{TOW_17,LOCK_ST_17},,,,,,,{100,260}; 
        ACTIVITY,,,,,,,,,,{11,13,,,}; 
        ASSIGN,{{LOCK17,BUSY}},1,,,,,,,,,{230,260}; 
        ACTIVITY,,,,,,,,,,{13,15,,,}; 
        CALLVSN,"OPERATE","LCK17",,1,,,,,,,{330,260}; 
        ACTIVITY,,,,,,,,,,{15,17,,,}; 
        ASSIGN,{{LOCK17,LFREE}},2,,,,,,,,,{430,260}; 
        ACTIVITY,,,,"LOCK_ST_17",,,,,,{17,-1,,,480,210,540,210}; 
        ACTIVITY,,,,,,,,,,{17,20,,,}; 
        CALLVSN,"CLT","LCK17",,1,,,,,,,{530,260}; 
        ACTIVITY,,16.4/SPEED,,"TOW_18",,,,,,{20,-1,,,660,260}; 
LOCK_ST_17: QUEUE,2,0,INF,NONE,{CASE_SELECT_1},,,,,,{50,290}; 
        ;CONNECTOR{22,11} 
LOCK18_CONTROL: CREATE,INF,0.0,,1,1,,,,,,{60,370}; 
        ACTIVITY,,,,,,,,,,{24,26,,,}; 
        ASSIGN,{{ETYPE,SIGNAL18},{LOCK18,LFREE}},1,,,,,,,,,{140,370}; 
        ACTIVITY,,,,"LOCK_ST_18",,,,,,{26,-1,,,230,370,240,369}; 
TOW_18: QUEUE,3,0,INF,NONE,{TWO_SELECT_1},,,,,,{50,430}; 
        ;CONNECTOR{28,30} 
TWO_SELECT_1: SELECT,LOWASSEMBLE(ETYPE),NONE,NONE,{TOW_18,LOCK_ST_18},,,,,,,{120,470}; 
        ACTIVITY,,,,,,,,,,{30,32,,,}; 
        ASSIGN,{{LOCK18,BUSY}},1,,,,,,,,,{240,470}; 
        ACTIVITY,,,,,,,,,,{32,34,,,}; 
        CALLVSN,"OPT18","LCK18",,1,,,,,,,{330,470}; 
        ACTIVITY,,,,,,,,,,{34,36,,,}; 
        ASSIGN,{{LOCK18,LFREE}},2,,,,,,,,,{430,470}; 
        ACTIVITY,,,,"LOCK_ST_18",,,,,,{36,-1,,,480,420,560,420}; 
        ACTIVITY,,23.4/SPEED,,,,,,,,{36,39,,,}; 
        CALLVSN,"CLT","LCK18",,1,,,,,,,{560,470}; 
        ACTIVITY,,,,,,,,,,{39,41,,,}; 
        TERMINATE,INF,,,,,,,,,,{660,470}; 
LOCK_ST_18: QUEUE,4,0,INF,NONE,{TWO_SELECT_1},,,,,,{50,490}; 
        ;CONNECTOR{42,30} 
 
Control statements:  
 
GEN,,,,1,YES,YES; 
LIMITS,,10,,10,10,10; 
INITIALIZE,0.0,1440,YES,,NO; 
EQUIVALENCE,{{TOW,1},{SIGNAL17,17},{SIGNAL18,18},{LFREE,0},{BUSY,1},{ARRIVAL,ATRIB[1]},{S
PEED,ATRIB[2]},{ID,LTRIB[1]},{NO_BARGE,LTRIB[2]},{ORIGIN,STRIB[1]},{DESTINATION,STRIB[2]}
,{LOCK17,LL[0]},{LOCK18,LL[1]}}; 
INTLC,{{LL[0],0},{LL[1],0}}; 
NET; 
FIN; 

 

Figure 6 - 16: Visual SLAM network and control statements for Lock# 17 and Lock# 18 simulation 

model 



 

 202

VSN,OPT18,,,,,,,,,,{60,20}; 
        ENTERVSN,,1,,,,,,,,,{60,120}; 
        ACTIVITY,,,NO_BARGE<=8,,,,,,,{2,5,,,60,70}; 
        ACTIVITY,,,,"OPT18_CALLVSN_1",,,,,,{2,8,,,60,170}; 
        CALLVSN,"SGL18","LCK18",{1,10,4,4.2},1,,,,,,,{150,70}; 
        ACTIVITY,,,,,,,,,,{5,7,,,}; 
        RETURNVSN,0.0,1,,,,,,,,,{280,70}; 
        OPT18_CALLVSN_1: CALLVSN,"DBL18","LCK18",{1,10,1,20,4,4.2},1,,,,,,,{150,170}; 
        ACTIVITY,,,,,,,,,,{8,10,,,}; 
        RETURNVSN,0.0,1,,,,,,,,,{280,170}; 
VSN,SGL18,{{LCKCAP,DOUBLEVAL, },{LCKTIME,DOUBLEVAL, },{SPEEDLCK,DOUBLEVAL,  
},{DISTANCELCK,DOUBLEVAL, }},,,,,,,,,{70,30}; 
        RESOURCE,3,LK18,LCKCAP,{3},,,,,,,{70,70}; 
        ENTERVSN,,1,,,,,,,,,{80,120}; 
        ACTIVITY,,DISTANCELCK/SPEEDLCK,,,,,,,,{3,5,,,}; 
        AWAIT,3,{{LK18,1}},ALL,,NONE,1,,,,,{200,120}; 
        ACTIVITY,,LCKTIME,,,,,,,,{5,7,,,}; 
        FREE,{{LK18,1}},1,,,,,,,,,{310,120}; 
        ACTIVITY,,,,,,,,,,{7,9,,,}; 
        RETURNVSN,0.0,1,,,,,,,,,{390,120};     
VSN,DBL18,{{LCKCAP,DOUBLEVAL,},{LCKTIME,DOUBLEVAL,},{WRENCHCAP,DOUBLEVAL,},{WRENCHTIME,DO
UBLEVAL,},{SPEEDLCK,DOUBLEVAL,},{DISTANCELCK,DOUBLEVAL,}},,,,,,,,,{60,30}; 
        RESOURCE,3,LK18,LCKCAP,{3},,,,,,,{60,70}; 
        RESOURCE,4,WR18,WRENCHCAP,{4},,,,,,,{60,100}; 
        ENTERVSN,,1,,,,,,,,,{70,160}; 
        ACTIVITY,,DISTANCELCK/SPEEDLCK,,,,,,,,{4,6,,,}; 
        AWAIT,3,{{LK18,1}},ALL,,NONE,1,,,,,{190,160}; 
        ACTIVITY,,LCKTIME,,,,,,,,{6,8,,,}; 
        AWAIT,4,{{WR18,1}},ALL,,NONE,1,,,,,{290,160}; 
        ACTIVITY,,WRENCHTIME,,,,,,,,{8,10,,,}; 
        FREE,{{WR18,1}},1,,,,,,,,,{390,160}; 
        ACTIVITY,,LCKTIME,,,,,,,,{10,12,,,}; 
        GOON,1,,,,,,,,,,{490,160}; 
        ACTIVITY,,LCKTIME,,,,,,,,{12,14,,,}; 
        FREE,{{LK18,1}},1,,,,,,,,,{550,160}; 
        ACTIVITY,,,,,,,,,,{14,16,,,}; 
        RETURNVSN,0.0,1,,,,,,,,,{630,160}; 

 

Figure 6 - 17: Extended Visual SLAM  subnetwork statements for Lock# 17 and Lock# 18 simulation 

model 

 

Finally, Table 6-12 represent a sample of results for the expected outputs (as designed in 

Termination Layer) from running the simulation model for 24 hours. 

Table 6 - 12: The results from running the simulation model of Lock# 17 and Lock# 18 

Lock# Average Time in System Average Lock Utilization Average Waiting Time 

17 255.493 minutes 82% 222.211 minutes 

18 306.833 minutes 55% 14.489 minutes 
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6-4. Conclusions 

 The case study of the lockage operations on MKARNS illustrates that the 

methodology developed is effective in supporting the development of simulation models. 

It leads the processes of simulation and modeling to the effectiveness and efficiency in 

not only generating simulation models but also improving an individual’s thinking and 

decision making. This means that the methodology provides such standard tools and 

procedures that facilitate communication and collaboration among team members (or 

anyone involving) and specify frameworks for the development. With these tools, 

frameworks, and procedures, the individual is able to develop his/her own simulation 

environment to support simulation studies related to a specific domain such as the 

lockage operations. While effective, considering the restrictions of Visual SLAM and 

AweSim and the limitations of the individual (e.g., skills and knowledge), this 

methodology could be made more applicable through the development of user-friendly 

interface tools that are beyond the scope of this research. 
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CHAPTER 7 

Conclusions and Future Research 

 

This chapter is divided into general conclusions, comparisons, and 

recommendations for future research.  

 

7-1. General Conclusions 

The purpose of this research study was to provide a robust and rigid methodology 

that enhanced the current modeling and simulation (M&S) knowledge for building 

domain specific simulation environments (DSSEs). Three critical issues were addressed 

to outline a direction and framework for this dissertation in order to develop the 

methodology, which were: the appropriateness of conceptual simulation models; the 

semantics of transformational conceptual simulation models; and the expressiveness of 

use of simulation models. To address these issues, it was necessary not only to handle 

each of them individually but also to resolve all of them together, including their 

interactions. The methodology is decomposed into a trilogy of methodologies 

corresponding to each issue as well as integrating them into a powerful M&S tool 

corresponding to the entire development of DSSEs.  

 At the beginning of study, the center focus was on a DSSE approach that allowed 

simulation developers to obtain both maintainability/sustainability in modeling and 

controllability in simulation. Under the DSSE approach, simulation developers were able 

to include the entire development processes for a DSSE – from designing its overall 

structure through controlling the semantics and contents of its model constructs until 
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implementing the model constructs for a specific use. Moreover, the approach was not 

restrictively applied to only create a new simulation language environment or application. 

On the other hand, it can potentially be embedded into an existing simulation language 

environment or application – to build a reusable modeling environment that can solve 

future design problems as they arise. With this significant potential, the DSSE approach 

is a key solution reducing not only the gap between reality and simulation but also the 

barriers created by existing simulation technologies. 

 As the research progressed, the DSSE approach involved the development of 

particular methodologies that addressed the key components of Conceptualization, 

Documentation, and Translation. Each methodology provided relevant concepts and 

techniques to resolve a specific issue. In fact, each individual methodology can either be 

directly applied or be initially disregarded in the development of a DSSE. However, to 

represent the relationship, completeness, and correctness of structure, content, and 

context of simulation in the DSSE, an integration of these methodologies was intensively 

needed. This aimed to increase the levels of syntactic and semantic 

interoperability/composability of data and components from conceptualization through 

implementation.  

 The first step of developing a DSSE using the integrated methodology initiated 

with conceptualization of a domain problem. In the chapter 3, Integrated Simulation 

Acknowledge Procedure (ISAP) was introduced to be as a conceptual simulation 

modeling (CSM) tool for capturing and transforming the concepts in a specific problem 

domain into a set of descriptive processes, static and dynamic modeling components, 

interactions, and rules/algorithms defined within a simulation modeling framework. The 
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center idea of ISAP was to provide not only an appropriate framework that specified both 

structural and behavioral characteristics of a DSSE but also a blueprint that gave designs 

and instructions for the development process.  

 Under the ISAP framework, a DSSE can be divided into three layers: 

Initialization Layer (IL), Process Layer (PL), and Termination Layer (TL) to match 

characteristics and architecture of general host simulation languages/environments. 

Frames of references defining experimental conditions, input and output parameters, and 

process descriptions and interactions were portrayed by a means of knowledge 

representations using symbols, notation, and diagrams for these layers. Using knowledge 

representations was a key to success in reducing or eliminating complexities in capturing 

real world concepts, communicating between simulation developers and domain experts, 

and mapping the concepts into simulation concepts/requirements. As a result, errors from 

the conceptualization process can be minimized, which helped save time and cost for 

simulation projects. 

 Even though, in many cases, conceptual simulation models can be directly used as 

construction guidelines for building simulation models, there always appeared a trouble 

called “lost in translation” of, e.g., semantics and contents of simulation during 

transformation. This became another focus of this dissertation on bridging a gap between 

conceptualization and implementation. Chapter 4 was dedicated to study key factors and 

concepts in transforming CSMs into executable simulation models. A finding of the study 

showed that in order to have more expressive and meaningful representations for 

transformation of CSMs at the level of implementation, semantics of model 

composability and simulation interoperation must be clearly specified at the conceptual 
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level. Accordingly, the integrated methodology was initially designed to support this 

continuous development process by representing CSMs in a pattern of descriptive model 

components and using natural language for descriptions – which can be transformed into 

simulation-like-language statements. The statements, therefore, became a data bridge that 

facilitated controlling and transferring semantics of model composability and simulation 

interoperability between conceptualization and implementation.  

 However, to represent both structural and behavioral characteristics of simulation 

in an executable way, the simulation-like-language statements needed to be translated 

into programmable-and-simulation documentation that computer/simulation systems can 

really exchange and understand. Also, to avoid the difficulty in reading/understanding the 

documentation, an intermediate simulation language was developed for contextualizing 

those statements in a more readable form – by using the Semantic Web languages such as 

XML and SRML. In a consequence, it was able to create contextualized documentation 

that included details of modeling transformation and supported semantics/data exchange 

between conceptualization and implementation. The documentation then can be either 

instantly implemented or ontologically mapped onto a host simulation language or a 

simulation runtime environment. 

 Instant implementation of contextualized documentation seemed to be a critical 

resolution for the “lost in translation” problem. This was because all descriptions and 

functionalities specified in simulation contexts can initially be executed by a simulation 

system without any modifications. Nevertheless, there was a need for building a specific 

simulator that contained, e.g., runtime environment, database, event calendar, and 

libraries of callable functions, to support the implementation process, which was an 
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unavoidable time-and-cost consuming activity. As a result, the resolution was switched to 

focus on ontology mapping, described in Chapter 5.  

 Having been developed by using the Semantic Web languages, this type of 

contextualized documentation provided essential aspects of both object-orientation and 

ontology. This allowed not only delivering unambiguous meaning of data of model 

transformation but also representing semantic behavior and structure of data in a set of 

component modules – that matched the common architecture of any host simulation 

languages/environments. As a result, there was a possibility to translate these modules 

into a set of simulation building blocks, creating a pattern and framework for mapping in 

a sense of semantic similarities. With assistance of ontology mapping, most of the 

conceptual modules specified in the contextualized documentation can be mapped onto 

basic simulation components and be composed into simulation building blocks on a host 

simulation language/environment. 

 The integrated methodology was applied to build a DSSE for an inland waterway 

(lockage) operation problem on Visual SLAM and AweSim, demonstrated in Chapter 6 

The main reason for choosing this host simulation language/environment was that its 

model components can be translated into network and control statements when 

implementation. Also, its open-ended architecture allowed us to add specific components 

to the simulation environment by using Visual Basic and C/C++ programming language 

and to develop simulation building blocks by using the features of visual subnetworks 

(VSNs). All these characteristics, including other integrating capabilities of AweSim, 

e.g., to store, retrieve, browse, and communicate with externally written software 
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applications, helped facilitate us in ontology mapping as well as building a set of libraries 

of VSNs to be reused in the DSSE.  

 The outcomes from exploiting the integrated methodology for the development of 

DSSEs returned to us in many beneficial aspects. First, it helped improve both individual 

and team’s thinking and decision making process in solving a variety of real world 

problems, which CSM was the critical supporting mechanism in managing complexities 

and communicating concepts. Second, it generated standard tools, frameworks, and 

procedures that an individual can apply to develop his/her own DSSE corresponding to 

resolve specific problems. This also helped enhance the capability of the existing host 

simulation language/environment such as Visual SLAM and AweSim to be more 

supportive for alternative simulation modeling. Finally, it led simulation developers to 

focus more on optimizing performance of what simulation applications available in hands 

rather than looking for new replacements. This study showed us that methodology was 

more important than technology, and it just needed to be appropriately embedded into 

one of the right technologies. If it can be done so, not only individuals but also 

organizations can increase cost savings and confidence in applying simulation for 

problem solving.  

 The advantages mentioned above seemed to be the extraordinary results that 

might create impacts to the M&S society in terms of either individuals or organizations. 

However, the true contribution of this research study was a state-of-the-art methodology 

used to build simulation applications that are self documenting, easy to expand, and easy 

to use by users that go beyond the model builder, as simulation application is today. The 

product can be either a one-time-use simulation application (model) or a reusable 
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simulation modeling environment. In addition, this dissertation aimed to help improve the 

quality of simulation training and education by illustrating the essential architecture and 

behavior of simulation at conceptual levels which can reduce/eliminate difficulties in 

learning and complexities in building simulation. Prospect or current simulation learners, 

therefore, were less reluctant to learn/use simulation to solve their problems. 

Nevertheless, the methodology seemed not to be the ultimate weapon breaking the 

barriers between reality and simulation world because of some restrictions created by the 

methodology itself, simulation technologies, and users’ skills and knowledge. Room for 

improvement in many aspects, thus, was still opened for the future work.  

 

7-2. Comparison with Current Methods 

 It would be useful to consider how the proposed methodology works when 

compared to standard approaches. This is, however, difficult, since the proposed 

methodology does not have the advanced user interface tools which are typically 

available and influence model development productivity. We can, however, consider 

some general comparison characteristics to get an idea of how productivity can be 

enhanced when applying the new technology.  

To clarify the characteristics the proposed methodology possesses in breaking 

through the limitations of modeling and simulation created by the current approaches, the 

comparison can be divided into two categories: objective and subjective comparison. 

Objective comparison requires numeric measurements, whereas subjective comparison 

needs reasonable descriptions. Since we do not have details regarging model 
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development productivity to be measured, the following discussion, thus, is given in 

subjective terms for comparison. 

 For decades, domain specific simulation applications/environments have been 

strictly developed based on standard approaches similar to the conventional software 

engineering processes, which can be categorized into two main streams: pure 

programming and user-interface (e.g., nodes/blocks, tools) application. In either way of 

creation, they both share one common – “sketch-to-ash” – framework. This means each 

project originates from raw ideas which later are transformed into thousands of 

programming-code patterns to create a complete domain specific simulation 

application/environment for solving only one particular problem. Sooner or later the 

product/software becomes obsolete because editing/configuring those programming 

codes to match new requirements is a too complicated task and too risky investment for 

time and budget.  

However, the difficulty in programming is not a big concern for this comparison. 

We rather focus on the differences in terms of the key modeling and simulation issues 

that make impacts to both development and application of domain specific simulation.  

Table 7- 1: Subjective comparison between integrated and standard methodology 

Issues Integrated Methodology Standard Methodology 
Controllability : Moderate control if built on existing 

simulation host language/environment 
: 100% control plus appropriate design if 
newly built 

: 100% control, but probably non-applicable 

Reusability : Organized processes for modeling 
: Retrievable components for remodeling 

: Ad hoc 
: Unorganized processes for modeling 
: Required expert knowledge for remodeling 

Maintainability : Well-documented for future reference 
: Public accessed for maintenance 

: Non-reference 
: Private accessed for maintenance 

Composability : Semantic composition 
: Easy configuration 

: Often syntactic composition 
: Complicated configuration 

Interoperability : Open platform for implementation : Limited platform for implementation 
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As shown in Table 7-1, five issues that have been seriously discussed through this 

dissertation are still determined to be critical characteristics for this subjective 

comparison. This aims to illustrate how the integrated methodology has enhanced the 

standard approaches. 

 Under the integrated methodology, simulation developers are encouraged to 

develop domain specific simulation on an existing simulation host language/environment, 

which could limit controllability in simulation. Unlike the standard approaches, every 

line of programming codes are written to fully support simulation controls. However, if 

apply the integrated methodology for developing a new domain specific simulation 

application/environment, what the simulation developers would obtain is not only 100% 

of simulation controllability but also the appropriateness in designing simulation controls. 

This is because domain experts are allowed to involve with the simulation developers 

through the whole development process, in which a mutual understanding is created – 

that keeps the simulation development being controllable and applicable. Without sharing 

perspectives from both sides, the power of simulation controllability could be seemingly 

useless. 

 Next, reusability has become one of the most beneficial characteristics provided 

by the integrated methodology. It offers well-organized processes for modeling 

simulation components. Also, the idea of simulation block building helps the simulation 

developers to be able to design architecture and patterns for configuring the simulation 

components to be reusable and retrievable for remodeling. Meantime, having 

unorganized modeling processes, the standard approaches seems to be ad hoc when 
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modeling reusable simulation components. This becomes a too specific job that requires 

expert knowledge for remodeling. 

 For the maintenance of domain specific simulation, the integrated methodology 

enforces the simulation developers to generate well-documented information that anyone 

can use as reference. This makes the maintenance job easier and more precise. Unlikely, 

the standard approaches are still relied on personal responsibility in maintaining 

individual simulation projects. As a result, maintenance becomes a high cost and time 

consuming activity. 

 In applicable terms, the integrated methodology restrictedly specifies the 

requirements for composing simulation components to create high productivity for 

simulation implementation. The result is that it can reduce or eliminate numerous 

compositions of the simulation components that do not give any semantics or solutions. 

With strict control and management of composition, configuration of composed 

simulation components can easily be performed. On the other hand, ignorance in 

semantic composition is often allowed to occur in the simulation products created by the 

standard approaches. Because of some limitations of programming languages or skills, it 

is difficult to avoid having syntactic composition to accomplish a task. This, later, can 

lead to troubles in configuration. 

 Finally, the most obvious characteristic that the integrated methodology has 

brought to the modeling and simulation community is the ability to build domain specific 

simulation on any platform of programming languages, host simulation 

languages/environments, or technologies. Even though the integrated methodology has 

been only applied with Visual SLAM and AweSim, its concepts and processes are not 
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limited to be applied for other implementation platforms. This is because ontological 

mapping plays a key role in simulation interoperation, which cannot be found in the 

standard approaches.  

 Though it seems to be too subjective for comparison, if carefully determine, it is 

found out that the integrated methodology shows numerous characteristics that benefit 

the ways of modeling and simulation – which lacks in today’s approaches.  

 

7-3. Future Work 

Even though the framework of this research study was designed based on the 

underlying convergent concepts of Software Engineering (SE) and Knowledge 

Engineering (KE), the integrated methodology had only capacity for structuring and 

displaying information as formalisms of knowledge representations. When considering 

the development of a practical and user-friendly application, additional research is 

recommended to reach the level necessary to deliver a complete M&S tool corresponding 

to the requirements of non-expert simulation users. Additional research is suggested to 

address the following: 

• The process could be more efficient by the development of graphical interface 

software to create graphical diagrams, notation, symbols, and tables, including 

XML and JavaScript documentation; 

• An integrated software system would be useful which multi software applications 

such as Microsoft Office, Visual Studios, and AweSim, which creates and 

maintains work files and verifies the correctness of information; and 
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• Development of mechanisms facilitating connection, display, and storage for 

knowledge representations, documentation, model components, and references to 

be developed as knowledgebase for either current or prospect simulation projects.  

 

These development topics will bring the integrated methodology to life and to 

make it more easily used by engineers, basically research in software engineering. SE 

could give us the power to enhance our current capability in representing the ideas and 

concepts to become more realistic and more practical terms of applications. In addition, 

SE could open space for others in different study areas to share their knowledge and 

involve with the software development processes to create better solutions. Under the SE 

umbrella, it allows us to come up with a three-phase development program that lays out 

perspectives and guidelines for the future works.  

 

7-3-1. Phase I: User-friendly Software 

 The main task in this phase is to develop software that can assist simulation 

developers to shorten processing time in creating knowledge representations and 

documentation for a specific simulation project. Also, the software application could 

allow them to store their works into categories which are ready to be called and restored 

for modifications. To make a user-friendly software application, it is recommended to 

build it in a window-type format that can be run on Microsoft Windows or Mac OS. This 

application should provide a graphical interface that contains, e.g., function tools, icons, 

and display areas, for specific tasking modes such as building diagrams for Initial Layer, 

writing XML and JavaScript documentation, or updating callable user-function libraries.  
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Basically, this software application could be developed as an environment similar 

to, for example, Rhapsody C++® software by I-Logic Inc. which is used to support the 

software development using UML, C++, and Java. This means that the software 

environment could be designed to support not only basic functions but also programming 

compilers. Other features, moreover, could be added if needed, for example, database 

components and import/export links. The goal is to make software simple as possible for 

every level of users to develop knowledge representations and documentation effectively 

and efficiently.  

 

7-3-2. Phase II: Embedded Simulation Software 

 The product from Phase I could resolve the difficulties in building knowledge 

representations and documentation. The next step is to embed the software application 

into a simulation application such as AweSim, which makes it to be one of the 

components (e.g., User Data, User Inserts, or Notes) displayed in the AweSim executive 

window. After embedded, it should be easier for simulation developers to call references 

from the (software) component for selecting and mapping network model components 

available in AweSim. Furthermore, it could help save time creating historical records of 

selection, mapping, and creation (in case of no match) for being used as future references. 

The goal of this embedded simulation software is to provide simulation developers 

convenience and accuracy in transferring conceptualization into simulation. 
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7-3-3. Phase III: Automation 

 The process of selecting and mapping in the embedded simulation software could 

still be considered a time-consuming activity. With the SE capabilities, it is possible to go 

beyond the current capacity of the embedded simulation software. Automation could be 

added as a mechanism that automatically transforms knowledge representations into 

XML and JavaScript documentation and translates documentation into model 

components. Also, it could provide recommendations for mapping. However, automation 

requires sophisticated algorithms to perform automatic transformation, translation, and 

mapping, which could create errors and delays in processing and analyzing results. The 

goal of automation is to shorten time for testing and verifying conceptualization in 

simulation.  

 

 This three-phase development program provides simulation developers a 

spectacular insight and inspiration to enhance the capabilities of simulation we have 

today and to go beyond the boundaries of any M&S methodologies. Finally, the 

integrated methodology developed in this research study is expected to be a strong 

stepping stone that leads both simulation application and education to be implemented in 

higher levels. 

 


