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Abstract 

 As worldwide production and consumption of natural gas increase, so 

does the importance of maximizing profit when trading this commodity in a 

highly competitive market.  Decisions regarding the buying, storing and selling 

of natural gas are difficult in the face of high volatility of prices and uncertain 

demand.  With the introduction of alternative sources of fuels with lower levels 

of methane, the primary component of natural gas, these decisions become more 

complicated.  This is an issue faced by investors as well as operational planners 

of industrial and commercial consumers of natural gas where incorrect planning 

decisions can be costly.  

 A great deal of research in the academic and commercial arenas has been 

accomplished regarding the problem of optimizing the scheduling of injection 

and withdrawal of this commodity.  While various commercial products have 

been in use for years and research on new approaches continues, one aspect of 

the problem that has received less attention is that of combining gases of 

different heat contents.  This study examines multiple approaches to maximizing 

profits by optimally scheduling the purchase and storage of two gas products of 

different energy densities and the sales of the same in combination with a 

product that is a blend of the two.  The result provides an initial basis for 

planners to improve decision making and minimize the cost of natural gas 

consumed. 

 This multi-product multi-period finite (twelve-month) horizon product-

mix problem is NP-Hard.  The first approach developed is a Branch and Bound 
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(B&B) technique combined with a linear program (LP) solver.  Heuristics are 

applied to limit the expansion the trinomial tree generated.  In the second 

approach, a stochastic search algorithm-linear programming hybrid (SS-LP) is 

developed.  The third approach implemented is a pure random search (PRS).  To 

make each technique computationally tractable, constraints on the units of 

product moved in each transaction are implemented.  

 Then, using numerical data, the three approaches are tested, analyzed 

and compared statistically and graphically along with computer performance 

information.  The best approach provides a tool for optimizing profits and offers 

planners an advantage over approaches that are solely history-based. 
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Chapter 1  

Introduction 

1.1 Overview 

 This dissertation describes the problem of planning natural gas 

scheduling and the experiment to examine multiple techniques to solve it.   

Chapter One contains the introductory material.  It begins with this overview 

which is followed by a statement of the problem. The purpose of research and 

the questions researched are discussed, followed by a discussion of the 

significance of this study and the conceptual framework.  The chapter’s final 

section contains a summary of the methodology used and a discussion of the 

limitations that were observed in the research. 

 Chapter two presents a summary of the research found in the literature.  

Subjects relevant to this research were reviewed beginning with general 

concepts of natural gas and heat content.  This chapter includes a review of 

various optimization techniques including the use of simulation and the 

combined simulation-optimization.  Specific to this research is the section on 

natural gas scheduling optimization and the various approaches to this problem. 

The chapter concludes with a brief review of computer performance studies. 

 Chapter three details the research design and methodology including the 

approach taken, the procedures applied and the hardware upon which it was 

executed.  The problem examined in this research is considered to be NP-Hard, 
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meaning that finding an exact answer would be very hard, if not impossible.  

Optimal or, rather, near-optimal solutions to NP-Hard problems are usually 

found through a random search technique of one type or another.  This chapter 

describes the three approaches developed and tested.  The Branch and 

Bound/Linear Programming hybrid algorithm was developed to examine all 

possible decisions during the twelve-month horizon.  The discussion here 

includes the limitations and heuristics placed on this algorithm to make it 

computationally tractable.  That approach was succeeded by a combination of a 

evolutionary search and Linear Programming.  The details of the final approach, 

a Pure Random Search algorithm without Linear Programming, follow that.  The 

development of each approach is a logical step from its predecessor, gaining in 

flexibility but becoming more expensive computationally. 

 Chapter Four reports and discusses the findings of this research.  The 

data used is discussed.  The results and analysis are presented. 

 There are still various avenues of research open on this topic.  Chapter 

five includes the conclusions of the research and recommendations for further 

study.  

 

1.2 Statement of the Problem 

 Investors in natural gas seek to maximize profit by taking advantage of 

the seasonal low and high prices.  Decisions regarding buying, storing and 

selling natural gas are difficult in the face of high variability of prices and 

uncertain demand.   Various management strategies exist.  Buyers of natural gas 
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use various techniques for planning the buying, storage and selling of the 

product.  These techniques are discussed in depth in Chapter Two.   

 This paper describes our approach of combining simulation and linear 

programming to optimize the selection process.  While the focus is multi-cavern 

salt dome storage facilities, which have faster inventory turnover rates than the 

more common reservoir storage facilities, it is recognized that not all gas 

discussed in this paper is stored in such facilities (FERC 2004). 

 With economical stresses and increased emphasis on the protection of 

Earth’s environment, the use of natural gas from alternate sources has increased.  

In many cases, such gas contains a lower energy content or Btu level, and while 

it may not be economically feasible to remove the impurities, it may still be 

desirable to use the gas rather than simply burning or ‘flaring’ it.   Further 

complicating the problem is that the price curves of gas from different sources 

may not follow the same cost and price curves.    

 Consumers and investors seek a means of executing the planning process 

in the presence of gases of differing energy content levels.     

 

1.3 Purpose 

 The primary purpose of this research is to acquire knowledge of 

techniques for optimizing the scheduling of buying, storage and selling of 

natural gas inventories of differing heat contents, specifically to maximize 

profits or minimize costs in these operations.  Much work has been done in the 

area of scheduling standard pipeline-ready gas, but there exists a gap in the 
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literature regarding mixed content gas.  This problem has nuances that 

differentiate it from existing research on mixed-product problems.  The nature of 

natural gas and how it is stored separates it from other commodities.  As the 

consumption of low-Btu gas increases, this will be a more important process. 

 Another purpose is to investigate the performance of different 

approaches to this problem.  The combinatorial nature of this problem lends to 

solutions that tend to be computationally intensive.  Technological advances 

continually increase the computational power available to the researcher; 

nevertheless, researchers and practitioners continue to seek more efficient and 

accurate ways to find better solutions to problems of this type.  The balance 

between the number of variables examined and the amount of time taken to 

generate the solution and the accuracy of that solution are examined. 

 

1.4 Research Questions or Hypotheses 

 This research investigates the combined use of branch and bound 

techniques and linear programming, specifically the Simplex Method, in finding 

a best or near-optimal solution to the mixed gas scheduling problem.  Having 

developed and exercised the techniques, the results are then compared to random 

search algorithms developed both in conjunction with and without linear 

programming.  These are all extensions and hybridizations of existing 

optimization techniques, all of which are discussed in chapter two of this 

dissertation.  The Branch & Bound and simplex hybrid algorithm is compared to 

a stochastic optimization process. 
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 The second area of investigation is the computational requirement of 

each method.  This study examines the amount of time required to find a 

suitable solution and relates it to the quality of that solution. 

 

1.5 Significance of the Study 

 The contribution this study makes in two areas lends to its significance.  

First, it adds to the research in this field by contribution to the study of mix-

product natural gas scheduling.  It provides initial information regarding the 

optimization of natural gas storage and scheduling, a logistical and financial 

problem that has been studied a long time and will continue to be investigated.  

Simply put, it investigates ways to maximize profits when buying and selling 

natural gas. 

 Secondly, it adds to the body of environmental studies work.  Methane is 

the primary component of natural gas and is present in other bio-generated 

gases.  It is considered to be a contributor to global warming and is seen as a 

pollutant when released into the atmosphere.  As more and more low-Btu gas is 

captured to be used rather than released into the environment or ‘flared’, i.e. 

burned, it is useful to know how best to use it.   

 With the increasing importance of producing energy and with technology 

that makes it more affordable to do so, gas that would in the past have been 

economically infeasible to process may be produced.  Also, due to increased 

emphasis on environmental concerns, low-BTU gas, such as landfill gas is 
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becoming available for consumption.  Operators of facilities sometimes wish to 

combine gases of two different Btu levels to achieve an intermediate product.   
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1.6 Conceptual Framework 

Figure 1 illustrates the flow of the product, natural gas, from source to 

consumption.  The source may be the wellhead, another storage location or an 

alternative source of methane.  Gas is purchaed and transferred into storage 

where it is held until sold or used. 

    

 

 

 In this model, consumption is considered equivalent to selling the gas for 

the current market price, the “spot price”. 

 

1.7 Summary of Methodology 

 The research examined the use of simulation optimization techniques in 

combination with linear programming to make optimal scheduling decisions 

Storage 

 

Sales 

 

Storage A Source 
A 

Market 
A 

Storage B Source 
B 

Market 
B 

Market 
AB 

1-12 Months 

Purchase 

 Figure 1  Conceptual Framework 
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regarding holding times, product mix values, product injection and withdrawal 

schedules and transactional quantities.  In addition to simplified test data 

designed to provide clear demonstrations of functionality and accuracy, we used 

price and cost data from past years as input for natural gas data and estimated 

landfill/low-Btu gas prices based on current trends and prices.   

  A twelve-month time horizon was used since many gas storage contracts 

are of that length.  We used the simulation package Awesim and modules 

written in Microsoft C++ to generate scenarios and in some cases used a linear 

programming package to provide the economical product mix and then 

evaluated the results.   

 Three approaches were developed and compared.  A Branch and Bound 

(B&B) algorithm combined with linear programming (LP), B&B-LP, was 

developed.  This hybrid was implemented as a recursively created trinomial 

decision tree with options to buy, hold or sell gas at each node.  Heuristics were 

applied to limit the number of node per branch and thereby make the algorithm 

more computationally tractable.  

 An evolutionary stochastic search algorithm (SS-LP) in combination 

with LP was developed.  This direct stochastic search algorithm implemented 

the same heuristics as the B&B-LP hybrid. 

 Finally, in order to compare the computational efficiency of the LP 

solver versus pure random search of the solution space, a Pure Random Search 

(PRS)-based approach (SS) was developed.  This approach did not operate under 
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the same bounds as the B&B-LP and SS-LP algorithms.  It used more relaxed 

search criteria. 

 

1.8 Limitations 

 Current modeling techniques contain many factors that affect the present 

and future value of gas in storage.  These include but are not limited to 

parameters such as the cost of money (value of risk-free investment) and rate of 

inflation.  The model used in this study did not contain all of these factors.  That 

will be possible in future studies. 

 Current approaches to this problem may include any of many 

optimization techniques.  These techniques are examined in chapter two.  These 

may also be used in future research. 

  

1.9 Definition of Terms 

Natural Gas  

 Natural Gas is an odorless, colorless fossil fuel comprised primarily of 

methane, CH4, but may also contain ethane, propane, butane, pentane, helium 

and hexane.  It may be found in association with other fossil fuels (EIA 2012a).  

It is sold on residential, commercial, industrial and energy generation markets. 

Heat content 

 The heat content or heat of combustion is the energy released when a 

substance undergoes combustion with oxygen under standard conditions, 60ºF 
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and 14.696 psia (Civan 2008).  This may be known as heat of combustion, 

heating value or calorific value.  Units are expressed as heating value per unit 

mass or volume.  British thermal unit (Btu) per cubic foot is a common 

measurement of natural gas (NIST 2010).   This value is typically expressed in 

units or energy per unit mass, (which may be expressed as volume for gasses at 

standard conditions).  To compare the heat content of natural gas to that of other 

common fuels, refer to Table 1. 

  

Fuel Phase  Btu/ft3 
hydrogen gas 324 
landfill gas gas 497 
methane gas 1,009 
ethane gas 1,768 
propane gas 2,516 
butane gas 3,263 

Table 1  Higher Heat Value of Common Fuels (NIST 2010) 

 

Low-BTU Gas 

 Natural gas that, as taken from underground, contains a significantly 

lower energy content than that of typical gas is known as low-Btu gas.  The 

energy content may be as low as 500 Btu/ft3 and present a challenge to engineers 

to recover, process and market economically (Newell et al., 2009). 
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Landfill Gas   

 Landfill gas is generated by the decomposition of organic material.  

While it is not natural gas, landfill gas is composed of approximately 50% 

methane, the primary ingredient of natural gas.  Landfill gas also contains 

carbon dioxide, CO2, and water vapor, H2O.   The gas may be collected and sold 

via small pipeline to local consumers (EPA 2012). 
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Chapter 2 

2.1 Literature Review 

 This chapter summarizes the relevant literature for this dissertation and 

explains the background, concepts and basic methods used throughout this 

research. The literature review is presented in the following categories: general 

concepts, optimization, simulation optimization, and evaluation of performance. 

 

2.2 General Concepts 

 This section presents the relevant subject matter background information 

to understand the problem and discusses the concepts needed to adequately 

understand the methods proposed in this dissertation.  

2.1.1 Natural Gas 

 Natural gas is a non-renewable fossil fuel found underground and is 

commonly, though not always, associated with oil deposits.  It is a major source 

of energy in the United States, supplying energy to residential, commercial, and 

industrial and power generation facilities.  In 2010, US consumption reached 23 

trillion cubic feet (EIA 2012).  The US consumed all that it produced and 

imported another 4.6 tcf of gas via pipeline from Mexico and Canada or as 

liquefied natural gas-- gas chilled to -260 degrees Fahrenheit, the point of 

becoming liquid-- from various exporters (EIA 2006). 

 To collect gas from underground reservoirs, locations are evaluated and 

wells are drilled and prepared, and then gas, under geological pressure, flows up 
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through the wellhead and through a system of gathering lines to a field 

processing unit.  From there, the gas stream may go to another processor for 

further treatment such as the removal of sulfur, other hydrocarbons or helium, 

for example.  After it is market-ready, the gas is pumped through interstate 

pipelines to local distributors and back into smaller interstate pipelines to be 

distributed to users (EIA 2006).  

  The Federal Energy Regulatory Commission (FERC 2008) issued 

order no. 436 in 1985, no. 500 in 1987 and no. 636 in 1993 (Busby 1999).  

These orders uncoupled production and distribution and, as a result, storage 

facilities became opportunities for profit by gas owners and investors.  Gas 

futures and options trading began on the New York Mercantile Exchange 

(NYMEX) on 3 April, 1990.  These events have shaped the way gas in storage is 

assigned a financial value.  Since then, owners of gas in storage have had the 

option to buy or sell some amount of the commodity each day.   

 A gas supplier may use a combination of tools to ensure that demands 

are met. A combination of long- and short-term contracts, vertical upstream 

integration, buying on the spot market, and the utilization of storage facilities are 

often employed.   A supplier practices vertical upstream integration by acquiring 

or investing in oil and gas production companies. Gas may also be kept in 

storage for speculative reasons and as a precaution against short-term demand 

fluctuations (Baranes,et al. 2009).   

 Due to the nature of gas production and the time and capital investment 

required to bring new sources to market, current production cannot increase to 
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meet fluctuations in short-term demand.  Therefore, gas must be kept in storage 

to meet seasonal increases in demand.  Other than a relatively small amount of 

gas stored in aboveground containers by local distributors to buffer against 

peaks in daily demands, natural gas is stored underground.  There are three 

major types of underground storage: depleted gas reservoirs, aquifers, and salt-

caverns (Tek 1996).  

 Of the three types of underground natural gas storage facilities, the most 

common in North America is the depleted reservoir.  After all recoverable gas 

has been extracted from a natural deposit, that reservoir may then be used as a 

storage location for the processed product.  There are several advantages to 

using reservoirs.  The wells, gathering systems and pipeline connections are 

already in place and the geology of the area is known.  There are also 

disadvantages to this storage type. Since the formations have previously held 

hydrocarbons that have ‘sealed’ the formation, there is a requirement for more 

monitoring.   The choices of storage field location and performance are limited 

by the inventory of depleted fields in any region (EIA 2006).  The depleted 

reservoir is both the least expensive to develop and the fastest with a conversion 

time of 24-36 months. 

 Working gas or “top gas” is the volume of gas in the storage facility that 

is accessible for extraction.  Gas that is present in a storage facility but is not 

accessible is called cushion gas or base gas.  Base gas provides the pressure for 

the withdrawal of top gas.  Top gas and cushion gas are the same mixture of 
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hydrocarbons in the storage facility?  Top gas just indicates how much you can 

withdraw (FERC 2004). 

 Unlike storage facilities or warehouses for other commodities or 

materials, two salt caverns of the same volume may have different maximum 

capacities depending on their depth.  The pressure at which gas is stored relates 

to the injection and withdrawal rates (Bagci and Ozturk, 2007).  It can be 

approximated with a piece-wise linear function gas (Padberg and Haubrich, 

2008). 

2.1.2 Heat Content 

 One important attribute of all combustible fuels is the heat of 

combustion, the amount of heat released when that substance undergoes 

complete combustion with oxygen (Civan 2008).  In its pure form, methane, 

CH4, has an energy content of 23, 900 British Thermal Units (Btu’s) per pound. 

Wood, by comparison, has roughly 6000 Btu’s/lb (NIST 2010).  One Btu is the 

amount of energy required to raise the temperature of one pound of water one 

degree Fahrenheit at standard temperature and pressure (UNCTAD 2011). 

 Natural gas, though mostly methane, contains other hydrocarbons such 

as ethane, propane, and butane or other impurities which may increase or, more 

likely, decrease the heat content.  While the range of heat content may range 

from 500 to 1500 Btu/ft3, most gas has a heat content value in the range of 900 

to 1100 Btu/ft3.  The average for gas produced in the US in 1995 was 1028 Btu 

(DOE 1995).  Before being transported via the US interstate pipeline systems, 

gas must have a heat content of between 1030 and 1060 Btu/ft3.  Gas with a 



16 

 

higher value could pose a safety hazard by producing hotter flames.  In other 

locations, Germany, for example, separate distribution systems exist for “High” 

or “Low” quality gas (Padberg and Haubrich, 2008). 

 At times, therefore, it is necessary to adjust the heat content of gas before 

shipping it.  One method of lowering heat content is to dilute the gas with an 

inert substance such as air or nitrogen. This may also be accomplished by 

combining it with a gas of a different content resulting in a gas in the desired 

range. An example of this may be found in Lake Charles, Louisiana, in the 

southern United States where the Southern Union Company combines high 

quality imported gas with the locally produced lower quality product (DOE 

2005). 

  

2.3 Optimization 

 Optimization theory consists of a collection of techniques and methods 

that make it possible to find the best solution to a problem without actually 

examining each and every possible solution (Ravindran 2006).  Table 2 shows 

the categories of techniques as they appear in the literature. 

 
 

 
   

 

  



17 

 

 

Optimization Problems 

Local Optimization Global Optimization 

Discrete Decision Space Continuous Decision Space Evolutionary Algorithms 

     Tabu Search 

     Simulated Annealing 

Bayesian/Sampling 

     Algorithms 

Gradient Surface Method 

Model Reference Adaptive 

Search 

 

Ranking and Selection  

Multiple Comparisons                     

Ordinal Optimization                                      

Random Search 

Simplex/Complex Search   

Single Factor Method                    

Hooke-Jeeves Pattern 

     Search          

Complete Enumeration 

             

Response Surface Methodology           

Finite Difference Estimates                

Perturbation Analysis                         

Frequency Domain Analysis 

Likelihood Ratio Estimates 

Stochastic Approximation 

 

Table 2  Classification Scheme (Tekin and Sabuncouglu, 2004) 

 

 There are other categorization schemes for optimization techniques.  

Zlochin et al. (2004), for example, classifies continuous and combinatorial 

problems as either instance-based or model-based.  The selection of solution 

candidates in instance-based approaches is based directly on the results of the 

previous solution searches.  This group includes simulated annealing, genetic 

algorithms, Tabu search, and nested partitions.  Model-based approaches, 

introduced more recently, tend to have two phases: (1) generate candidate 

solutions by randomly selecting from the solution space and (2) use the results 

to update the model so that it will be more likely to generate a new, higher 

quality candidate solution.  The ant colony optimization (ACO) method, cross-
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entropy (CE) and estimation of distribution algorithms (EDAs) methods are 

commonly used examples of model-based solutions (Hu, et al., 2007). 

 Model-based approaches, according to Hu, et al. (2011), are more robust, 

more easily parallelized and have been successfully applied to many difficult 

optimization problems. 

2.4.1 Linear Programming 

 Linear programming is one of the most commonly used optimization 

techniques.  First published in 1947 by Dantzig who developed the Simplex 

method and Neumann who developed the duality theorem, this mathematical 

approach to finding the best outcome of a linear objective function is used 

widely in operations research (Anderson et al. 2006).  Avery, et al. (1992) used 

linear programming to model the purchase, storage and transmission contracts 

for natural gas utilities. 

 Many optimization problems are solved with a combination of 

simulation and linear programming.   Arbib, et al. (2012) combined linear 

programming and a Tabu search algorithm to solve a cutting process problem.  

In this project, they generated possible solutions randomly, eliminated and 

marked inferior ones, and evaluated potential optimum solutions with linear 

programming. 

2.4.2 Branch and Bound 

 Branch and Bound (B&B) is one of the most widely used approaches to 

optimizing NP-Hard combinatorial problems.  For discrete problems with a 



19 

 

large number of variables, it is usually impractical to attempt to enumerate all 

possible combinations.  A B&B algorithm searches the entire solution space but 

reduces processing by setting bounds on the combinations that will be examined 

(Papadimitriou and Steiglitz 1982).  The solution space is typically represented 

as a multi-node tree, with each branch representing a decision point.  If, at any 

point in the evaluation, a branch of the tree fails to meet a threshold value, it is 

pruned from the tree and as a result, its sub-branches are removed from further 

processing (Clausen 1999). 

 While B&B is conceptually simple, it is not without its limitations.  

Although it can produce an exact optimum, with larger problems the amount of 

computer time required to find that solution may be too great to be useful.  

Without careful pruning, the number of bud nodes on a tree increases 

exponentially.  Mousavi et al. (2012) found this to be true, that the performance 

of B&B compared to a genetic or simulated annealing algorithm, which 

produced near-optimal solutions, was significantly poorer. 

2.4.3 Nested Partitions 

 Developed by Shi and Olaffson in the 1990’s, Nested partition (NP) is a 

randomized method for finding an optimal or near-optimal solution in a finite 

feasible region.  This method seeks a solution by dividing the feasible solution 

space into subregions and selecting one of those as the potential location for the 

optimal solution.  NP evaluates and ranks each subregion by randomly selecting 

points from it and evaluating them as the solution.  The region with the best 

ranking is then examined in the same way   (Shi, et al. 2000). 
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 In practice, it is common to customize the subregion search function to 

the problem being solved.  Yau, et al. (2009) used NP on a large-scale job shop 

problem and developed a weighted sampling function. Wei, et al. (2012) 

applied a variation of NP framework to the flexible resource flow shop problem.  

By modifying the random search portion of the algorithm, they achieved better 

performance than the generic NP provided.   

2.4.4 Random Search 

 Random Search (RS) or Pure Random Search (PRS) can be used and 

works on an infinite parameter space when it is not possible to evaluate every 

possible solution.  This is the general case of random solution searches, being 

performed without any heuristics or rules for reducing the set of solutions.  The 

process ends after a predetermined number of searches have been completed, a 

limit of computer resources has been reached or an acceptable solution has been 

found.  This process performs best when a neighborhood can be defined in the 

solution space (Olafsson and Kim, 2002).  PRS has the advantage of avoiding 

local maxima.  While it has been applied primarily to discrete problems, its 

closely related technique, sample path optimization, is practiced on continuous 

problems (April et al. 2003).  While it can be shown that RS will converge to a 

near-optimal solution (Shi et al. 2000), one problem with this approach is the 

slow speed at which convergence is reached (Tekin and Sabuncouglu, 2004). 

 The existence of other, more guided approaches notwithstanding, this 

approach does find use in practice.  Poland, et al. (2011) applied a PRS 
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algorithm to a smart home sensor placement problem and found that in 98.4% of 

test cases this approach produced superior results.   

2.4.5 Nelder-Mead  

 Proposed in 1965, the Nelder-Mead (N-M) method, also known as the 

downhill simplex method, is a technique of minimizing an n+1 variable 

objective function in an n-dimensional parameter space without constraints.  In 

each iteration, the worst point in the simplex is dropped and replaced by the 

reflective one across the centroid, the center of the remaining feasible solution 

space.  The complex search method is a variation of the simplex method in 

which an effort is made to keep the centroid in the feasible area, i.e. constraints 

exist (Nelder and Mead, 1965).  This heuristic can converge on non-stationary 

points 

 This technique has been modified or hybridized various times through 

the years.  Liu, et al. (2012) and Baghmisheh, et al. (2012) both created particle 

swarm-Nelder-Mead hybrid optimization approaches and applied them to 

different problems.  Kuriger and Grant (2010) presented a Lexicographic 

Nelder-Mead based method to solve multi-criteria optimization. 

2.4.6 Other Direct Search methods 

 The Single-Factor Method (SFM) and Hooke-Jeeves Pattern Search 

Method (H-J) are both direct search techniques that may be applied over an 

infinite parameter space.  SFM holds all parameters constant and moves one.  H-

J varies one of a set of theoretical parameters at a time and examines the 
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response.  The magnitude of the parameter change decreases until the steps are 

deemed sufficiently small (Hooke and Jeeves, 1961).  This method is often used 

in conjunction with other methods (Azadivar 1999).   

2.4.7 Frequency Domain Analysis 

 Frequency Domain Analysis (FDA) screens factors in a simulation by 

oscillating the value of a parameter during simulation.  The oscillation follows a 

sinusoidal function and gives an idea of the relative sensitivity of the parameter 

(Tekin, et al., 2004).  This technique has drawbacks and is not frequently 

observed in recent literature. 

2.4.8 Response Surface Methodologies 

 Response Surface Methodology (RSM), another continuous decision 

space approach, examines the relationship between multiple explanatory, i.e. 

independent, variables and subsequent response or dependent variables.  In the 

context of simulation optimization, RSM is a representation of the response or 

value of an objective function as the input factors or variables are changed 

through simulation (April et al., 2003).  RSM is used in two phases.  In the first 

phase, a first-order model is fitted to the response surface and the steepest 

descent direction is estimated. This repeats until the slope nears zero, at which 

point the first order design is no longer a good fit.  In the second phase a 

quadratic response surface is generated and the optimum is found from this.  

Performance of RSM compares favorably with many gradient-based methods 

(Azadivar, 1999).    
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2.4.9 Ranking and Selection 

 Ranking and Selection (RS) procedures are used when there is a fixed set 

of possible alternatives, i.e. the search for new candidates has ended, or a limit 

on computational resources limits the result set.  They do have application 

within the simulation optimization arena and may be applied when there is a 

limit on computational resources.  They may also be applied as screeners, 

eliminating unlikely solutions from a larger set based on some predetermined 

threshold.  (Fu, et al. 2005).  There may be cases where a search algorithm of a 

simulation-optimization system may not be the best selection procedure.  

Boesel, et al. (2003) use RS procedures at the end of a simulation-optimization 

run to identify the best of a set of candidate solutions.  They also used a two-

stage IZ ranking procedure to find the best system. 

2.4.10 Multiple Comparison Procedures 

 The second approach to finding a satisfactory, though not guaranteed 

best, solution from a small, finite parameter space is Multiple Comparison 

Procedures (MCP).   MCP’s are statistical inference processes based on the 

confidence intervals of processes executed against multiple replications of a 

solution.  There are three types commonly used:  all pairwise multiple 

comparisons (MCA), multiple comparisons with the best (MCB), and multiple 

comparisons with a control (MCC) (Swisher, 2000).  In general, the best 

performance is expected from the MCB approach since its goal is to find the 

best solution while reducing the number of comparisons (Fu, 1994). 
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2.4.11 Ordinal Optimization 

Ordinal optimization (OO) is one of the approaches that may be used when the 

feasible region is discrete and finite but larger than computational resources can 

handle.  It can be used when a ‘good enough’ solution is being sought, one of 

the tenets of OO being that “nothing but the best is very costly”.  The second 

tenet is that it is easier to assign an ‘order’ or arrangement to compared items 

than it is to assign them a value.  (Ho, et al., 2007)  OO attempts to quantify 

these tenets by (1) “softening” the goal and (2) searching a subset of the region.  

Figure 2 illustrates this. 

 

Figure 2  Illustration of Ordinal Optimization Concepts (Ho, et al. 2007) 

2.4.12 Gradient Based Algorithms  

 Stochastic approximation (SA) methods encompass a family of 

algorithms in which an increasingly better solution is sought by iteratively 
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moving from one initial ‘best guess’ solution to another based on an estimate of 

the gradient (Olafsson 2002).  These statistical inference tools are useful when 

there are noisy estimates of system performance, such as when parameters are 

generated by a Monte Carlo process and when gradients are not automatically 

available (Fu and Hill 1997).   

 The earliest algorithms of this type were by Robbins and Monro (1951).  

Based on that initial work, Kiefer and Wolfowitz (1952) developed the finite-

difference approximation algorithm in which variables of the problem are varied 

one at a time.  Spall (1992) developed an algorithm based on a simultaneous 

perturbation gradient approximation, Simultaneous Perturbation Stochastic 

Approximation (SPSA), in which all variables of the problem are varied at the 

same time.  This approach reduces the computational requirement for large-

dimensional problems and may be applied to any discrete event system that can 

be simulated (Fu and Hill, 1997) They found that the number of simulations 

required per gradient estimate, two, was not dependent on the number of 

parameters of interest.  Suri and Zazanis (1998) found that the use of methods 

utilizing an infinitesimal perturbation analysis gradient estimator was the most 

efficient. 

 The assumption behind these processes is that a zero of the gradient for 

the original problem, ��������	
 can be found by solving���	
 � 0.  The 

problem of local minima can be overcome through the use of heuristics (Fu 

1994).  
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2.5 Metaheuristics 

 Metaheuristics are methods that may be employed when other procedures 

fail to move away from local optima.  There are four primary metaheuristics: 

simulated annealing, genetic algorithms, Tabu Search, and scatter search (Fu et 

al., 2005). 

2.5.1 Simulated Annealing 

 Simulated Annealing, SA, is a heuristic inspired by the physical process 

in which metals are combined to form an alloy and are slowly cooled to a lower-

energy state (Ammeri, et al. 2010).  In SA, a candidate solution is found and 

then possible replacement solutions are chosen randomly from a set of nearby 

solutions defined by a candidate distribution (Kirkpatrick, et al. 1983).  SA is 

very similar to RS, with the exception that occasional downhill moves are 

allowed (Pritchitlamken and Nelson 2003).  Vocaturo (2008) uses SA and 

simulation to optimize shipping container handling. 

2.5.2 Genetic Algorithm 

 The genetic algorithm (GA) is a biologically-inspired approach to 

optimization.  In it a set of values representing a candidate solution is encoded 

as a string of binary values, i.e. one and zero. Each such string is referred to as a 

‘chromosome’.  An initial population (N) of chromosomes is randomly 

generated at the beginning of the process.  They may represent values from 

across the solution space or a subset of it that is more likely to produce the 

optimal solution.  Each individual is evaluated by a ‘fitness function’ and ranked 
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for survivability (optimality).  Chromosomes are then selected randomly based 

on a weighted value of their fitness score.  This is the Roulette Wheel selection 

(Man 1999).   

 Those selected are paired and combined to produce a new generation of 

individuals or chromosomes.  The most common genetic operators used in the 

reproduction process are crossover and mutation, but others exist. 

  The new generation is then evaluated according to the fitness function, 

invalid solutions are discarded, i.e. the fittest survive and reproduction and 

selection takes place again.  This process continues until a termination point is 

reached, the desired number of generations has been produced, a satisfactory 

solution has been found, computer or time resources have been depleted, etc. 

(Reeves 2003). 

 There are variations of this approach.   Liu, et al. (2009) investigated a 

hybrid genetic algorithm and applied it to gas field pipeline networks.  They 

replaced the Roulette selection process with a ‘differential evolution algorithm’ 

in which new individuals were produced through the linear combination of 

many parent individuals rather than through the crossover technique.  Dhar and 

Datta (2008) used a numerical simulation routine and an elitist genetic algorithm 

to optimize operations of reservoirs for downstream water quality.   

2.5.3  Tabu Search 

 In the Tabu Search (TS) heuristic, created by Fred Glover, a set of illegal 

moves is created, cataloged, and then avoided during the search for a solution.  

There are three categories of information cataloged.  A (short-term) list of 
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recently considered (tabu) solutions is maintained and accessed to prevent the 

re-examination of a previously discarded solution.  A list of rules intended to 

guide the search into more promising areas serves as an intermediate-term 

structure.  And a long-term structure maintains rules that are applied if the 

search encounters a plateau or a local dead end (Glover 1989, 1990).  This 

metaheuristic may also be combined with other approaches.  Hansen (1996) 

developed an adaptation of the Tabu Search method to multi-objective 

problems.   This method has grown in popularity, and is currently applied across 

various areas to solve combinatorial optimization problems.  Beasley, et al. 

(2002) applied a Tabu search algorithm to an air traffic problem.  Yang, et al. 

(2004) used a Tabu search to optimize a flow shop with multiple processors 

(FSMP) scheduling problem.  Like many problems that are best served by 

simulation optimization, this one is NP-Hard and finding the exact optimal 

solution is computationally infeasible.  Arbib, et al. (2012) combined a Tabu 

search algorithm and linear programming to solve a cutting process problem. 

2.5.4  Scatter Search (SS)  

 This evolutionary (population-based) algorithm is closely related to the Tabu 

Search.  It is designed to use combinations of reference points from potential 

solutions that have been marked as ‘good’.  These combinations then generate a 

new potential solution.  The first step in the process is to collect the information 

that is not contained in the original points.  The next activity is to use existing 

heuristics, rules and techniques to generate and evaluate new points. The final 

step, rather than using randomization, is to apply a predetermined strategy to 
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complete component steps.  The use of this technique has grown in recent years 

(Fu, et al., 2005). 

 The response surface methodology (RSM) performed on the entire solution 

set creates a metamodel that is then passed to a deterministic optimization 

process.  The goal of RSM is to discover a relationship between that input data 

and the output objective function.  When RSM is being used as part of an 

optimization process, then a form of sequential RSM is the one most often used 

(Fu 2005).  It is noted that sequential RSM is a type of Stochastic 

Approximation in which the gradient is found from the regression model (Fu 

1994). 

 A natural gas portfolio is a collection of long- and short-term contracts 

with different pricing structures, delivery times and rates that make use of the 

planned supply of gas, whether it is to be delivered to end users or consumed for 

industrial or energy generation purposed.   

 Like many models, Vautheeswaran and Balasubramanian (2010) use a 

similar approach to developing a lowest-cost model for the optimization of a 

natural gas portfolio for a power generation facility.  Their model combined a 

Monte Carlo-based scenario generator based on short term gas prices and load 

demand with stochastic programming to find optimal combinations of gas 

contracts.  To make the problem tractable, they applied a fast forward algorithm 

to reduce the number of scenarios from 10,000 to 200. 

 Seeking the lowest cost is not necessarily the safest plan.  Hanjie and 

Baldick (2007) approach the problem of scheduling gas delivery for an electric 
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power producer with a utility-maximization framework, in which financial risk 

and user risk preferences are incorporated.  Like many, their framework 

integrates Monte Carlo simulation and dynamic programming (Fu 2002) but 

includes the user’s risk tolerance as a parameter. 

 

2.6 Recent Developments  

  The Model Reference Adaptive Search Method (MRAS) was introduced 

in 2007 by Hu, et al. (2007).  In this method, the solution space is ‘modeled’ and 

candidate solutions are taken from the model which is then updated after each 

iteration. 

 The Golden Region Search (GR), introduced in 2011 by Kabirian and 

Olafsson (2011) seeks an optimum by examining selected regions of the feasible 

space based on a score assigned which indicates the amount of the region that 

has been visited, a metamodel score which contains a metamodel-based 

predictive value of the objective function, and a quality score which represents 

the quality of the points evaluated within the region. 

 

2.7 Simulation Optimization 

 Simulation is one of the most widely used tools in the field of operations 

research and industrial engineering (Pritsker and O’Reilly, 1999).  It offers the 

practitioner the advantage of examining a proposed system without actually 

building it or evaluating changes to a system without modifying the existing 

system.   
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  Simulation optimization problems are those in which simulation is 

integral to the evaluation of the objective function(s) or constraint(s) (Azadivar 

1999).  

  The general form of the optimization objective function is  

��������	
 

where ��	
 is the objective function, θ is a member of the constraint set, 

Θ.  Since it is assumed that ��	
 is not available, the approach is to 

estimate Ĵ(θ) through simulation and the expectation of J is represented 

by   

��	
 � ����	, �
� 
where L is a performance measure and w represents a simulation path 

(Fu, et al. 1994, 2005).   

  

 These techniques have been combined successfully across multiple 

industries for several years.  Simulation optimization problems, then, are those 

in which simulation, primarily discrete event (Fu 2001), is integral to the 

evaluation of the objective function(s) or constraint(s) (Azadivar 1999).  

Examples of systems that may be well served by simulation optimization 

include manufacturing systems, supply chains, call centers and the optimization 

of financial portfolios (Fu 2001).  Sinha and Ganesan (2011) use these 

techniques to optimize shipping container operations.  Klaas and Fischer (2011) 

use simulation to generate scenarios, position of vehicles, positions of targets, 
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position of other vehicles, etc., to train and then test their approach for routing 

robotic material carriers.  

 This approach can be combined with other optimization techniques such 

as integer linear programming to find an optimal solution in cases of 

deterministic parameters or points of convergence in situations where stochastic 

parameters are present.  This may be done by breaking the problem into multiple 

sub-problems and optimizing them separately.  Abspoel et al. found this 

approach tenable while finding solutions using a D-optimal experimental design 

using intensive computer processing power (Abspoel et al. 2001).  Padberg and 

Haubrich (2008) take a different path by identifying multiple objective functions 

throughout the storage-to-consumption system, combining them, and solving 

them as a Mixed Integer Quadratic Problem (MIQP).   

 Pitchitlamken and Nelson (2003) created a collection of algorithms in an 

attempt to adapt to variability and features of the response surface.  For the 

optimization process, they used a combination of a Nested Partition (NP) 

approach, based on Branch and Bound, for sub-dividing the problem, a hill-

climbing (HC) algorithm as a local-improvement scheme, and Sequential 

Selection with Memory (SSM) to select and retain the best of the solution 

candidates.  Scenarios with integer-value decision variables were simulated and 

input values, some stochastically generated, were passed to the optimization 

process.  They opined that the process would be very inefficient when applied to 

scenarios with discretized continuous decision variables.   This is particularly 

relevant to natural gas futures.   
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 The literature contains excellent survey papers by Azadivar (1992, 

1999), Fu (1994), Andradottir (1998), Swisher et .at (2000), Olafsson, et al. 

(2002), Tekin, et al. (2004), and Ammeri, et al. (2010).  It is common to classify 

simulation optimization by the nature of the feasible region.  Tekin, et al (2004) 

classifies studies by local versus global optimization and further divides the 

local optimization studies according to discrete or continuous parameter spaces. 

Ammeri,et al. (2010) present a similar classification system.   Discrete decision 

spaces can be further segregated into finite parameter space and infinite 

parameter space.   

 

2.8 Optimization of Gas Storage Scheduling 

 Holland (2007) states that there are three common numerical techniques 

that are applied to the valuation of gas in storage:  Monte Carlo simulation, 

binomial/trinomial trees, and numerical partial differential equation techniques.   

2.8.1 Binomial/trinomial Techniques 

 This problem may be considered a Finite Horizon Markovian Dynamic 

Programming problem (FHDP) and as such is defined by a tuple {S, A, T, (rt, ft, 

fa)
T

t=1} where   S is the State Space 

  A is the Action Space 

  T is the Horizon 

  So that  rt is the reward function of S,A 

    ft is the transition function:   S x A -> S 

    fa is the feasible action correspondence:  S->P(A) 
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As such, the problem can be represented as a bi- or trinomial tree with each 

decision point a state (s is element of S) and each branch an action (a is element 

of A) (Sundaram, 1996). 

2.8.2 Differential Equation 

 In their seminal paper, Black and Scholes (1973) proposed that in a 

correctly priced market arbitrage, the ability to make sure profits through a 

compilation of a portfolio of long and short options and their stocks, should not 

be possible.  Based on this idea, a formula was derived for determining the value 

of an option in terms of the price of the stock.  Interestingly, the expected return 

of the stock is not incorporated in the formula.  Also, the direction of change in 

value of the option is independent of the direction of change in value of the 

stock.  Hodges (2004) incorporates an Ornstein-Uhlenbeck process rather than 

the Brownian motion process which is incorporated in the Black Scholes 

approach.    

 Ahn, et al (1991) separated the problem into two parts, a virtual storage 

problem consisting of traded instruments and the physical problem which 

identifies the actual gas in storage.  He concluded that a strategy based on the 

seasonal spread of prices, the differences in the high demand for heating gas in 

the winter, the low demand in the spring and fall, and the lesser increase in 

demand for electrical generation in the summer, is not the optimal injection and 

withdrawal strategy.  The market, according to the author, has incorporated the 

value of storage into the forward curve of natural gas, making it difficult to 

realize a profit when buying gas, holding it in physical storage, and then selling 
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at a later date.  He describes the system state as a combination of cash and gas 

and establishes a model that implements a ‘self-financing’ framework.  He 

derived a partial differential equation that showed an owner should inject gas at 

the maximum rate whenever the value of storage exceeds the spot price; in other 

words, whenever it appears that stored gas will be worth more if held in storage 

and sold later. 

2.8.3 Monte Carlo 

 The nature of gas storage facilities forces the practitioner to use complex 

methodologies.  Modeling the opportunity cost, for example, is complicated by 

the fact that as gas is released from storage, the ability to release more drops in 

the same way that the ability to accept more gas into storage decreases with the 

amount in storage.  Of the three common numerical techniques that are applied 

to the valuation of gas in storage, Monte Carlo is the most efficient and most 

capable of injecting spikes into the projected prices. Holland (2007) modeled a 

one-year horizon with a price value for each day.  One distinctive characteristic 

of gas storage is that the rate of injection or delivery is related to the amount in 

storage at the time (Holland 2008). 

 Holland developed a game theoretic model of a gas storage facility 

shared by multiple customers (Holland 2008).  Emphasizing the worldwide 

importance of gas storage in times of price spikes, for example, this study 

sought the presence of a pure strategy Nash equilibrium.  He considers the case 

where some owners may withdraw gas from storage before others, thereby 
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reducing the amount of gas those who wait can withdraw in a period of higher 

prices. 

 Consumption is seasonal with major fluctuations in residential 

consumption during cold months and lesser increases in summer consumption 

by power generation facilities (EIA 2006).  This seasonality of gas consumption 

was investigated by Chaton (2005), who considered price shocks as well as 

various policies on prices.   

 Principal Component Analysis (PCA), introduced by Pearson in 1901, is 

one of the oldest multivariate analysis techniques and is still very popular.  It is 

the simplest of the eigenvector-based multivariate analyses.  In PCA, the 

dimensionality of a dataset containing many interrellated variables is reduced to 

a smaller, linear uncorrelated set of values by use of an orthagonal 

transformation.   PCA  techniques may also appear as ‘factor analysis’ or 

‘eigenvector analysis’ (Jollife, 2002).  Blanco (2002)  and Bjerksund, et al. 

(2011) analyze the forward curve by applying PCA to segment it into its 

principal components   

 Typical natural gas contracts are normally written on a 12-month basis 

and gas is priced for delivery to the Henry Hub in Louisiana (Holland 2007).  

The price of gas obtained from other points on the interstate pipeline will be 

offset to reflect the transportation cost from the Henry Hub (NEB 2001). 

 Operators of gas storage facilities, then, must decide on a regular basis 

whether to inject, withdraw or hold the gas at its current level.  Current prices, 

expected future prices (driven by expected demand) and contracted future 
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deliveries factor into that decision including estimation of forward curve 

process.  The forward price curve differs from ‘expected future prices’ in that 

forward curve values are current and accurate rather than predictive.  They are 

used for the purchase of gas for future delivery.  It is common to use a Monte 

Carlo process to simulate the forward price curve, Blanco (2002), Bjerksund et 

al.(2011). 

2.8.4 Real Option Theory 

 The practice of treating actual business opportunities as financial 

instruments is known as ‘real options theory’.  Frayer and Uludere (2001) 

identify five key components of real options: value of asset, exercise or strike 

price, time to expiration, volatility and risk-free rate. They modify the Black-

Scholes model to real options and use it to evaluate a power production facility.  

Dixit and Pindyck (1994) made substantial contributions to the development of 

real option theory.   

 With this as a framework, then, for the purpose of assigning a value to 

the gas in storage, it is treated as a financial instrument known as an option.  An 

option is a contract that gives the holder the right to buy or sell a certain amount 

of a commodity at a set price on a predetermined date.  The holder of the option 

pays for this right and is not obligated to exercise the option.  A second 

instrument is the futures contract in which the holder commits to pay a set price 

for a specified amount of gas to be delivered to a specified location on a date in 

the future (Hull, 2005).   
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 Ignoring operating costs, Thompson treats the storage of gas as a series 

of call and put options (Thompson, 2002).  In order to make the best possible 

decision, the owner considers the cost of the gas in inventory, the cost of capital, 

and expected demand, which translates to projected prices.  Keppo and Lo 

(2003) develop a model for calculating the value of adding an electrical 

production facility to a corporation already in that market.  Lai, et al. (2011) 

develop a more tractable heuristic model that combines real options and 

stochastic-dynamic-programming to valuate liquid natural gas storage by 

changing the high dimensional problem into one of lower dimensionality in 

regards to the forward price curves.  Similarly, Chen, et al. (2006) develop a 

semi-Lagrangian approach that includes a timestepping scheme that effectively 

discretizes the system parameters. 

  While real options theory has become widely applied, it is not without 

problems.  Smith and McCardle (1999) contend that the models described in the 

literature are oversimplified.  They point out the many variations involved in 

developing and bringing an oil property to productivity.   

 Longstaff and Schwartz (2001) developed an approach to valuing 

American options through simulation using a least-squares approach.  The 

framework of this approach was based on Black and Scholes’ work.  Boogert 

and Jong (2006) adapted this approach to include complexities of natural gas 

storage, such as injection and withdrawal rates and working volume, and used 

Monte Carlo  to model prices.   Hodge (2004) incorporates an Ornstein-

Urhlenback process in the real options solution. 
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  Prior to 1988, the focus was on continuous input parameter and included 

some form of path search and gradient estimation technique. Bettonvill, Fu and 

Ho, for example, investigated various gradient approaches.   In the 1990’s more 

attention was paid to discrete input parameters.  Eglese and Fleischer, among 

others, investigated simulated annealing, and Liepins and Hilliard were some 

who worked on genetic algorithms (GA) (Swisher et al 2000).   GA’s have 

shown to be useful in non-parameterized problems (Azadivar 1999).   

2.8.5 Computer Performance 

 Simulation optimization is, in general, very inefficient.  The best 

convergence to be expected in “pure” stochastic optimization algorithms is O( n-

1/2) where n represents the computational effort (Fu 1994).  Fu (2008) reviews 

common techniques and discusses the added complexity of managing limited 

computer resources 

 One approach to reducing computer resource consumption is to reduce 

the number of scenarios required in optimization simulation.  In their natural gas 

power generation model, Vautheeswaran and Balasubramanian (2010) applied a 

fast forward algorithm to reduce the number of scenarios evaluated from 10,000 

to 200.   

 Different optimization techniques demand different resources.  Dhar and 

Datta (2008) found that conventional optimization techniques were prohibitively 

resource intensive due to a requirement to generate a Jacobian matrix during 

each iteration.  They chose instead to use a Genetic Algorithm.  Monte-Carlo 

is the most flexible approach and, when circumstances do not require an exact 
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optimal solution, provides a tractable method.  It does not yield a provable best 

solution but, with added iterations, may produce improved results (Holland, 

2007b). 

 The use of simultaneous perturbation rather than finite difference 

stochastic approximation led to a great reduction in computational requirements 

(Fu and Hill, 1997).  

 Felix and Weber (2008) compared recombining trees and dynamic 

programming and least squares methods both using Monte-Carlo simulation to 

generated scenarios.  They found that the recombining tree algorithm performed 

better.  These are trees that at some point converge rather than continue to 

branch.  If, for example, two nodes at the same level have the same value and 

states, there would be no point in evaluating both of them and their subsequent 

branches. 

 The imposition of constraints is a common approach to reduce computer 

resource demand (April, et a. 2003).  Boesel, et al. (2003) applied Ranking and 

Selection procedures to reduce the number of simulations by removing non-

viable potential solutions from the solution set.  To further reduce computational 

complexity, variables may be combined through principal component analysis 

techniques (Bjerksund 2011). 

 The problem is sometimes attacked by increasing the computer resources 

available.  Parallelizing the simulation processes across multiple processors on 

the same computer allows more scenarios to be examined (Vocaturo, 2008).  

This is conceptually the same as executing the simulation on multiple, separate 
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computers.  This concept has been extended, in fact, to the distributed computer 

model in which simulation optimization problems are separated into standalone 

units and generated or evaluated simultaneously on separate computers.  The 

results are then pooled for evaluation (Garcia, et al. 2007, Fourer, et al. 2010) 

2.8.6 Evaluation of Heuristic-Based Simulation Optimization 

 Convergence, in the context of simulation optimization, refers to the rate 

at which the optimal solution is found.  Heuristic search algorithms cannot 

usually be proved to converge to the optimal solution.  In a stochastic 

environment, a definite convergence can only be shown as the number of 

simulated solution sets approach infinity.  It must be sufficient to find an 

acceptable solution. (Boesel, et al., 2003). 

 The best convergence rate to be expected with stochastic simulation 

optimization is on the order of n-1/2 where n represents the computational effort 

(Fu 1994, Homem-de-mello, 2008).  Fu goes on to state that simulation 

optimization itself is not efficient in general and should be used when other, 

more efficient approaches are not available.   

 The literature reports various comparisons between one optimization 

technique and another but, due to the variety of algorithms and variations in 

problems such as dimensionality, definite results are not likely.  Hu investigated 

the efficiency of the Tabu search routine and found, in the standard test used, 

that it outperformed the random search and a composite GA (1992).  Martin, et 

al. (1998) found that the Tabu outperformed the local search but was inferior to 

an SA approach.  Yucesan and Jacobson (1996) compared the efficiency of 
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various SA algorithms to local search.  Mousavi, et al. (2013) describe two 

metaheuristic algorithms for approaching the multi-item multi-period inventory 

problem.  They use a genetic algorithm (GA), Branch and Bound and Simulated 

Annealing (SA) methodologies and compare the performance results.  They 

found that the GA and SA approaches outperformed the B&B technique 

significantly. 

 Often, researchers will use a random search or complete enumeration 

algorithm as a baseline for comparisons to the one of choice (Tekin, et al. 2004, 

Dengiz, et al. 1997, Azadivar and Tomkins, 1999). 

 

2.9 Modeling the problem 

The optimization of complex systems through simulation involves the analysis 

of a series of possible solutions and selecting the best.  There exists a set of 

alternative solutions, � � ���, … , ��
, where n is sufficiently large so that it is 

computationally difficult to examine all possibilities (Pepelaev, 2006).  Due to 

their nature, it is impossible to analyze all possible alternatives, so a balance of 

optimality and time must be sought.     

 One approach is to reduce the size of the set A.  In this experiment, 

initially gas volume and gas costs are continuous values.  This is a mixed integer 

problem.  To simplify, the gas volume values may be reduced to a discrete set of 

integer values. 

 The preferred approach of modeling gas storage is to include a high 

dimensional forward pricing, which overwhelms dynamic programming.  
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Therefore, the common approach is to apply a heuristic scheme (Lai, et al. 

2010). 
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Chapter 3 

3.1  Methodology 

 The problem being investigated is one of scheduling the buying and 

selling of natural gas as a mixed product.   Gas is available with different energy 

contents or Btu levels.  It may be combined for various uses.  Natural gas has a 

cyclical demand pattern-- low in the fall, high in the winter as temperatures 

drop, low again in the spring, and then slightly higher in the hotter months as the 

demand for electricity for cooling increases.  To hedge against the cyclical 

demand pattern, gas is placed into underground storage.  Investors and operators 

of gas-consuming facilities seek ways to optimize the decision to buy, sell or 

hold natural gas. 

 This research investigates the scheduling of the purchase and sale or 

consumption of gases of mixed energy contents.  To be specific, the research 

examines the purchase of two types of gas and the sale or consumption of three-- 

the original two plus a third, blended gas.  Consumption may be thought of as an 

exchange of gas for heat or energy and can be viewed as a sale at the market 

spot buy price.   

 This multi-item, product-mix, multi-period inventory problem is non-

deterministic polynomial time, NP-Hard, and finding the solution is 

computationally infeasible.  It cannot be solved efficiently as is, but it can be 

approached by reducing it to a simpler problem through the application of 

heuristics and bounds.  A result of this problem restatement is that an approach 

that provides a near-optimal solution must suffice.   
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 This project investigated and compared three approaches to seeking an 

optimal schedule.  The simulation-optimization approaches tested were (1) a 

B&B-LP hybrid; (2) a SS-LP hybrid; and (3) an SS approach with transaction 

volumes of variable sizes.    

3.1.1 Simulation Optimization Methods 

 This type of scheduling problem, with decision points made across a 

finite horizon, lends itself nicely to a B&B solution, with each node representing 

a decision point.  Decision points in the trinomial tree were created at each 

period of the 12-month horizon, three being generated from the previous node.  

B&B does find an optimum solution when the problem is sufficiently limited to 

not become computationally intractable due to the exponential growth of the 

tree.  This was avoided by applying pruning and optimizing rules. 

 By selecting an action to be taken at a specific time, B&B identified a 

subregion of the solution set.  That subregion was further searched by the LP 

routine to find the best combination of products to sell. 

 In the second approach, the use of a stochastic search (SS) routine to 

select sub-regions from the solution set replaced the B&B algorithm.  Like the 

first approach, though, this one also used LP to optimize that selection. 

 The stochastic search routine alone was used as the third method.  Full-

horizon paths were generated and evaluated based on random selections from 

the solution set, with the best result being tracked.  Rather than using LP, the 

volume moved in each transaction was the result of a random process. 
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3.1.2 General Framework 

 Using Awesim, each entity represented a potential path and contained all 

information required to define each period and to generate values for the next.  

This included all cost, price and inventory data as well as other parameters.  The 

entity ‘aged’ through the time horizon, 12 months in most cases, changing value 

as different decisions were executed.  At the end of the 12-period horizon, that 

value was compared to that of the best-valued decision path and replaced it if it 

was better.  

 Dependent Variables 

 The dependent variables in this experiment are the total profit, 

withdrawal and injection volumes, and computer processing time. 

 

RABi -  Calculated profit of Gas AB in period i 

RAi -  Calculated profit of Gas A in period i 

RBi -  Calculated profit of Gas B in period i 

 VA  - Volume of GasA Injected  

 VB  - Volume of GasB Injected 

 VA  - Volume of GasA Withdrawn  

 VAB  - Volume of GasAB Withdrawn 

 VB  - Volume of GasB Withdrawn 
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Independent Variables 

 CA  Cost of GasA 

 CAb  Cost of GasAB 

CAPA  Max Facility Storage Capacity of GasA 

CAPB  Max Facility Storage Capacity of GasB 

 CB  Cost of GasB 

CSA    Storage cost of GasA $/unit/month  

CSAB    Storage cost of GasB $/unit/month  

h   Horizon – number of time periods 

 IA    Max injection rate of GasA 

 IB    Max injection rate of GasB 

INV A   Facility Current Inventory of GasA 

INVB   Facility Current Inventory of GasB 

MDVa  max deliverable volume GasA   

MDVb  max deliverable volume GasB 

pa     profit GasA  

pab     profit GasAB 

pb   profit GasB 

 PA  Sales Price of GasA  

 PAb   Sales Price of GasAB 

 PB   Sales Price of GasB 

 rA   Ratio of GasA in GasAB (1- rB) 

 rB   Ratio of GasB in GasAB  (1-rA) 
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 dvola   change in volume of GasA one period  

 dvolab  change in volume of GasAB one period  

 dvolb   change in volume of GasB one period  

 VolMaxA Max leased storage capacity of GasA  

 VolMaxAB Max leased storage capacity of GasB 

 WA    Max withdrawal rate of GasA  

 WAB    Max withdrawal rate of GasAB  

 WB    Max withdrawal rate of GasB  

YA   Number annual inventory turns for GasA 

YB   Number annual inventory turns for GasB 

 

Objective Function 

 At each decision point on the first and second approaches, if the choice 

to sell was selected, the LP_Solve functions were invoked through an Awesim 

USERF call and the entity was passed to the function. The objective function 

being solved was: 

 

 ��� ����� � ! ��"��� �" !   �"��� " 

 
(1)  

  subject to: 

   dvola + percentAinAB*dvolab <= MDVa 

   dvolb + percentBinAB*dvolab <= MDVb 

   dvola>=0, dvolb>=0, dvolab>=0 
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 The general equation for the revenue of buys and sales of gas over time 

horizon h is often modeled as 

 
#$�$�%$ � & �'(� '��)' * �+'


,

'-�
 (2)  

where   Wi and Ii are decision variables, taking a mutually exclusive value of 1 or 

0, representing the decision to withdraw (sell) or inject (buy) gas, respectively. 

In this project the objective was to maximize profit. 

 Expand equation (2) to include the combination of products.  This 

models the rules that all products must be either bought or sold on any given 

day. 
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(3)  

This is expanded to show the cost and price of the gases in equation (4) 

 



50 

 

 
�� %$ � ��� &���)' * �+'
01�'��� �' ! 1"'��� "'2

,

'-�

! ��)' * �+'
 .��'��� �' !  ��"'��� �"' /

!  �"'��� "'

 

 

  

(4)  

 13 � 4�5', 56
 (5)  

  Cx is a function of the initial cost of inventory and cost of storage.  

Throughout this model, a first-in-first-out (FIFO) pricing scheme is used for 

calculating the cost of gas sold.  Note that other models include the present 

value of money (PVM), in the cost function.  This would be discussed in 

Chapter 5 as future enhancement. 

 

Equation (4) is expanded to allow a buy/sell decision to apply to individual 

products. 
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(6)  
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Constraints 

 To equation (6), multiple constraints are applied.  The first is that gas 

must be in inventory the same month it is sold.  Since gas can be sold and 

bought simultaneously, passing through, as it were, the inventory need not be in 

place at the beginning of the period but at the end. 

 There may be situations in which gas of one or both types is in a stream 

rather than in storage.  In these cases, the total storage is equal to the maximum 

deliverable volume, effectively making the entire inventory pass through each 

period.  Landfill gas would be such an example. 

 

 7�: � � 1. . ;, �� 6<=> ? ���' ? 0 (7)  

 

 The second constraint is that contracted capacity, CCAP, not be 

exceeded. 

: 

 7�: � � 1. . ;, @ ���)� * �+�
�
�-� 0��� � ! � / !

 ��� "
)<= CCAP 

(8)  

   

 
 One more constraint handles a feature common to many natural gas 

storage contracts, i.e., that gas still in storage at the end of the contracted period 

is forfeited, effectively creating a product with an increasingly short shelf life.  

Gas injected at the beginning of a contract has an effective life of twelve 
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months, while gas injected into storage two months prior to the end of contract 

has a shelf life of only two months.  The penalty for having gas in storage at the 

expiration point of the storage contract is the loss of that gas at the current 

market price, the “spot” price. 

 Applying this constraint to the value equation (5) yields: 

 
�� %$ � ��� &  ���)�'��'

,

'-�
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(9)  

 

3.1.3 B&B-LP Approach 

 To create the trinomial tree, each surviving entity was copied thrice at 

the end of each generation, assigned a different value for the next decision point 

and reprocessed.  This recursive process generated a trinomial tree with a 

maximum of  

 
���$D, � & 3'F�

,

'-�
 

 

(10) 

decision points to evaluate and potentially  

 ��C;D, � 3, (11) 
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total paths after generating paths for the full horizon.  Appendix 8 contains the 

complete code from the Awesim model. 

 A set of heuristics and bounds were implemented to reduce the 

computational workload of the trinomial tree approach.  The first two prune 

branches from the tree that would lead to an inferior final result while the third 

rule reduces search time without removing a branch.   

• Do not purchase more product than can be sold by the end of the storage 

contract. 

• Do not execute a ‘hold’ if that will result in having more gas than can be 

sold. 

• If inventory is insufficient to complete a minimal transaction, do not 

invoke the LP solver. 

• The decision made will apply to all types of gas.  In the model, it was not 

legal to buy gas A while selling gas B.  

 

 Another variable that is not commonly found in problems of this type is 

the changing delivery rate of the product.  While product delivery from a typical 

warehouse may be constrained by manpower or equipment, and the delivery rate 

affected by the level of concurrent orders to fill, natural gas delivery rates are 

primarily a function of the amount of product actually in storage.  Deliverability 

refers to the rate at which gas can be withdrawn from storage.  This rate is 

usually expressed in millions of cubic feet per day (MMcf/day) but may also 
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refer to the equivalent heat content of the gas and be expressed as dekatherms 

(100,000 BTU/day).   

 

 + � G A 4�H�5
 (12) 

 

 

   I= rate of Injection 

   P=pressure, which is calculated with the Ideal Gas law  

    (Civan 2008) 

 G � �IJ
(  

 

(13) 

 

    n=moles of gas (converted from INVt) 

    R= the Universal Gas Constant 

    I � 0.08206 N·�PQ
Q<=·R  

    T = temperature ºKelvin 

    V=Facility Volume 

   INVt = Total facility inventory at time t 

4�H�5
= a multiplier with a value from 0 to 1, to account 

for any flow constraint imposed by facility hardware, 

compressors, etc.  If the aboveground hardware does not 

place a limit on the gas withdrawn, then f(FAC) = 1. 
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 In practice, this may not be a significant parameter as a facility will 

contain gas owned by multiple operators and gas will be injected or withdrawn 

at rates unknown to planners. Also, there may be a deliverability rate guaranteed 

in the contract.   

 The inventory cycle time varies according to the type of gas storage 

facility.  In the case of salt cavern storage, this period may be between 30 and 60 

days, allowing a complete inventory turnover 6-12 times annually.  Gas may be 

stored in one of several types of underground facilities.  Of the three primary 

types, depleted reservoirs, aquifers and man-made salt-caverns, the later is 

considered due to its higher annual inventory turnover rates.   

Type 
Cushion to Working 

Gas Ratio 
Injection 

Period(Days) 
Withdrawal Period 

(Days) 

Aquifer Cushion 50% to 80% 200 to 250 100 to 150 

Depleted Oil/Gas 
Reservoirs Cushion 50%  200 to 250 100 to 150 

Salt Cavern Cushion 20% to 30% 20 to 40 10 to 20 

Table 3  Natural Gas Storage Facility Characteristics (FERC 2004) 

 

 

Algorithm 1: Branch and Bound Optimization with LP 

for each entity loop 

    initialize independent variables & parameters 

    load prices, costs 

    apply variance process to price and cost data 

    (entity) enter B&B subroutine 
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    repeat while at least one entity is in the B&B subroutine 

        case action: ‘hold’ 

            if current inventory<periods remaining * transaction volume  

                then apply action 

            else prune branch 

            end if  

        case action: ‘buy’ 

            if current inventory<periods remaining * transaction volume 

                and current inventory + purchase <= max storage capacity  

                then apply action 

            else prune branch 

            end if 

        case action: ‘sell’ 

            if current inventory or A and B 

                then invoke LP_Solver 

  apply results to value and inventory levels 

            else process individual sale 

            end if 

        end case 

 

        update status of entity 

        if current entity is horizon (n) 

            compare value to current best value 
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            if current value > best values 

                swap values 

            end if 

        else spawn new entity for each action (buy,hold,sell) 

               (entity) enter B&B subroutine 

        end if 

  end repeat 

end loop 

 

3.1.4 SS+LP Bounds 

 The SS-LP hybrid operated under the same constraints as the B&B-LP 

hybrid.  The only change was the manner in which the test solution was selected 

from the solution space.  The decision to buy, sell or hold was then selected 

from a uniform random distribution with each decision receiving equal weight, 

i.e., there was no bias toward either of the three decision actions. 

 

Algorithm 2: Stochastic Selection with LP 

for each entity (trial) 

   initialize independent variables & parameters 

   load prices, costs 

   apply variance process to price and cost data 

   (entity) enter SS-LP subroutine 
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   repeat for each iteration 

      repeat for s=1 to max solution samples 

         repeat for n=1 to horizon 

            generate action (stochastic process) 

            case action: ‘hold’ 

               if current inventory<periods remaining * transaction volume  

               then apply action 

               else prune branch 

 case action: ‘buy’ 

               if current inventory<periods remaining * transaction volume 

    and current inventory + purchase <= max storage capacity  

               then apply action 

               else prune branch 

 case action: ‘sell’ 

    if current inventory or A and B> 

    then invoke LP_Solve  

  apply results to value and inventory levels 

    else process individual sale 

 end case 

 if value of plan > best plan 

 then set best plan=current plan 

 end repeat 

       end repeat 
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   end repeat 

end loop 

 

 

3.1.5 SS Bounds 

 Having two algorithms that applied LP, the third approach was 

developed so that the selection from the solution space in its entirety was the 

result of a random process.  This provided a means of comparing the efficiency 

of the LP approach with the more flexible stochastic selection method.  It was 

not expected that the approach would be more efficient when compared directly, 

but that its flexibility may increase the quality of solution.   

 The third algorithm was implemented with more flexibility by using a 

stochastic process to select a candidate solution from the solution space, 

including the mix ratio of products bought or sold.   With the stochastic solution 

sample processes, invalid decisions are allowed but may not be executed.  For 

example, if ‘Sell’ if selected yet there is insufficient inventory to execute a Sell, 

then the net change to value and inventory will be $0 and 0 cf3 gas respectively. 

 Flexibility was extended in the SS algorithm by adding a random process 

to determine the percentage of the max transfer volume that would be bought or 

sold in each transaction.  To modify the efficiency of this approach, the values 

returned by the random process are customizable.  The initial tests were 

performed with the process returning values ranging from -100% to +100% in 

units of 25%.   
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Algorithm 3 Stochastic Selection (SS) 

for each entity (trial) 

   initialize independent variables & parameters 

   load prices, costs 

   apply variance process to price and cost data 

   (entity) enter SS subroutine 

    repeat for s=1 to max solution samples 

         repeat for n=1 to horizon 

 generate inventory delta gas A   -100 (sell) to 100 (buy) % 

 generate inventory delta gas B   -100 (sell) to 100 (buy) % 

 generate inventory delta gas AB   -100 (sell) to 0% 

 case action: ‘buy’ 

                update entity inventory, value 

 case action: ‘sell’ 

               update entity inventory, value 

 end case 

 if value of plan > best plan 

 then set best plan=current plan 

 end repeat 

       end repeat 

   end repeat 

end loop 
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3.1.6 Required Minimum Delivery Option 

 To increase the rigor of the simulation, a second version of the model 

was created identical to the first, with one additional option, that a burden could 

be placed on the facility to provide a monthly minimum sale or use of any or all 

of the three products. 

 This option added parameters and logic that forced the facility to deliver 

a ‘contracted’ volume of gas to either a customer or for internal use.  This 

delivered amount was due regardless of the strategic decision to buy, sell or 

hold.  In cases where there was no gas in inventory, the model purchased it on 

the open market at the spot price and incurred a penalty, another parameter of 

the simulation 

 The purpose of this was to examine the flexibility of the three algorithms 

when facing change and to see how they performed with the necessarily 

increased processing. 

3.1.7 Development System Information 

 The simulation tool used was AweSim and Visual SLAM, from Mapics.  

This software provides discrete event as well as continuous simulation.  It offers 

the capability of creating and linking user-defined functionality with C++.  For 

this, Microsoft C++ 6.0 was included.  A mixed-integer linear programming 

(MILP) solver, LP-Solve 5.5, was linked to the system (LP_Solve 2010).   

Functions from this package were used to solve the mixed-product problems.  

Data analysis and charting were done with Microsoft Excel 2007. 

 The model was created and executed on an IBM PS2 with one (1) 3.4 

GHz Pentium CPU and 1GB of RAM.  It ran on Windows XP Professional, 

version 2002, service pack 2. 
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3.2 Performance Measures 

 Optimization problems of this type do not always yield an optimum 

result but rather a near optimal one.  There is an inherent trade-off in the amount 

of computer processing and the quality of the result.  In this research both were 

measured and the relationship between the two was measured for each 

algorithm. 

Figure 2  System Organization 

  

Cost & 
Price Data, 
Parameters 
 

Results, paths, 
profits, 
performance 
data 

C++ source code  

Awesim 

LP_solve 

AweSim 
Main  
Control  
Module 
 

SS-LP Module 

B&B-LP Module 
 

SS Module-II 



63 

 

3.2.1 Speed of Computation 

 Computation speed can only be used as a relative expression as it is 

dependent on the system hardware, (CPU(s), memory, hard drives, etc.), 

operating system and software upon which the model executed.  Computational 

speed is indirectly proportional to the effective cumulative processing power of 

the system.  Equation 14 represents the factors that contribute to the 

computational speed.    

 Computational speed is also related to the structure of the problem itself.  

Some problems can only be approached sequentially, executing one step after 

another.  In these cases, a multi-CPU machine would not demonstrate an 

advantage over a single-CPU machine.  In such situations, the problem structure 

fps would have a detrimental effect on the processing time, S.  With Monte Carlo 

optimization techniques, many problems may be parallelized, i.e., separated into 

smaller problems that can be solved on different threads, CPU’s or other 

computers.  After scenario generation and evaluation, the results are combined 

for analysis. Garcia, et al. (2007) used distributed processing to evaluate 

candidate solutions in a joint-strategy fictitious play simulation (Fourer, et al. 

2010). 

 

 B � 4SS A 4,T A 46T A 4S6 (14) 

  

   S  = processing time 

   fpp = function of problem parameters 
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   fps = function of problem structure 

   fsw  = function of system software 

   fhw  = function of system hardware 

 The processing time may represent CPU time or total runtime.  Problem 

parameters would include all variables and data used by the model as well as 

control parameters such as number of iterations, number of generations, 

thresholds, etc.      

3.2.2 Quality of Solution 

 Each algorithm was executed multiple times, with different parameters 

and returned sets of results, candidate solutions.  The accuracy and variance of 

values are analyzed for accuracy and variance.  The results are compared and 

presented in Chapter 4.   

3.2.3 Overall Performance 

 The quality of solutions and the computational time are tightly related in 

optimization problems using a stochastic method to select candidate solutions 

from the solution space.  If the problem forces the investigator to accept a near-

optimal solution, and it typically does, then the primary factor is how long to run 

the process.   

3.2.4 Random Numbers 

 Many types of optimization require the generation of a set of alternative 

solutions.  In doing so, a random number generator provides a number between 

0 and 1 in a normal distribution.  There are various ways to generate a ‘random’ 
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number.  One way is to import the numbers from a table of random numbers.  

Another method is to use a vacuum tube or some other generator of random 

noise.  The third method, the one used in this experiment through AweSim, is to 

use a recursive equation (i+1)st random number from a previous set of random 

numbers. This deterministic approach does not produce true random numbers 

but rather pseudo-random numbers, which serve well for simulation problems.  

Awesim provides multiple streams as seeds for random numbers, allowing the 

user to execute reproducible simulations or vary the input to test multiple 

scenarios (Pritsker and O’Reilly, 1999) 
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Chapter 4  

Computational Results and Analysis 

 

4.1 Experimental Design 

 Simulation optimization was chosen as the tool to investigate this 

problem.  Three algorithms were developed and tested—a branch and bound-

linear programming B&B-LP, a stochastic search-linear programming SS-LP 

approach, and a fully stochastic search SS. 

 

4.2 Trial Simulations 

 An initial set of tests was performed with the simplest data and 

parameters as a way to validate the functionality of the model. Appendix 1 

contains the data and parameters used in these tests.  Refer to appendix 2 for 

graphical representation of the results. 

 Subsequent trials were executed using historic price data from the Henry 

Hub for cost of gas and Oklahoma average city gate prices.  Refer to appendices 

6 and 7 for the Henry Hub and Oklahoma city gate data, respectively. 

 Historical data for the wellhead, city gate and consumer prices of natural 

gas are available from the Energy Information Agency (EIA 2012).  This US 

government agency provides independent statistics and analysis of the 

production and consumption of petroleum products, coal, electricity and other 
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energy sources.  Data is available by location and time.  This research used a 

time period of one month and used similar available price data.   

. 

4.3 Computational Results 

Branch & Bound-LP Hybrid 

 This algorithm provided, not surprisingly, the most accurate results.  

Within the constraints placed on it, the process enumerated and evaluated each 

possible path in the 12-period horizon. In 25 trials, the correct solution was 

found each time.  The number of samples evaluated was based on the maximum 

number of candidate paths enumerated by the trinomial tree, 312 = 531,441.  

With the bounds placed on the algorithm, and considering the samples per 

second evaluated by the other approaches, it is unlikely that the solution set was 

fully enumerated. 

 

Horizon 12.0 
Samples Evaluated 531,441 
Value Generated 1200 
Elapsed Seconds 300 
Samples per Second 1771.5 

Table 4  Branch & Bound-LP, Results 
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SS-LP hybrid 

 The SS-LP hybrid performed best when sampling 20000 solutions per 

iteration. It consistently found the optimum solutions with a STDDEV of 0.0. 

Samples per Simulation 250 2500 10000 20000 

Simulations 20 20 20 20 

Total Seconds Elapsed 60 240 1800 3480 

Samples per Second 83.3 119 111 114 

Mean 1000.0 1126.3 1189.5 1200.0 

Standard Error 15.3 22.7 10.5 0.0 

Median 1000.0 1200.0 1200.0 1200.0 

Mode 1000.0 1200.0 1200.0 1200.0 

Standard Deviation 66.7 99.1 45.9 0.0 

Sample Variance 4444.4 9824.6 2105.3 0.0 

Range 400.0 200.0 200.0 0.0 

Minimum 800.0 1000.0 1000.0 1200.0 

Maximum 1200.0 1200.0 1200.0 1200.0 

Sum 19000.0 21400.0 22600.0 22800.0 

Count 19.0 19.0 19.0 19.0 

Largest(1) 1200.0 1200.0 1200.0 1200.0 

Smallest(1) 800.0 1000.0 1000.0 1200.0 

Confidence Level(95.0%) 32.1 47.8 22.1 0.0 

Table 5  SS-LP, Descriptive Statistics 

 

SS  

 The SS algorithm was created with the option of generating specific 

volumes of gas to be bought or sold, with a range from -100% to 100% of the 

maximum transfer amount, and was initially generated in 25% increments.  In 

practice, it turned out that this expanded the solution space to the point that the 

SS approach could not reliably find a near-optimal solution in a reasonable time.  
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The results shown here and in the follow-on model were generated with rates 

selected from the set {-100, 0,100}.  

 

Samples per Simulation 250 2500 10000 20000 

Simulations 20 20 20 20 

Total Seconds Elapsed 60 120 360 840 

Samples per Second 83.3 416.7 555.6 476.2 

Mean 1010.0 1046.0 1090.0 1134.0 

Standard Error 17.6 17.8 11.7 12.4 

Median 1000.0 1000.0 1100.0 1120.0 

Mode 1000.0 1000.0 1100.0 1100.0 

Standard Deviation 78.8 79.5 52.1 55.5 

Sample Variance 6210.5 6320.0 2715.8 3077.9 

Range 400.0 280.0 200.0 200.0 

Minimum 800.0 920.0 1000.0 1000.0 

Maximum 1200.0 1200.0 1200.0 1200.0 

Sum 20200.0 20920.0 21800.0 22680.0 

Count 20.0 20.0 20.0 20.0 

Largest(1) 1200.0 1200.0 1200.0 1200.0 

Smallest(1) 800.0 920.0 1000.0 1000.0 

Confidence Level(95.0%) 36.9 37.2 24.4 26.0 

Table 6  SS Descriptive Statistics 

  

 The SS and SS-LP algorithms yielded very similar results due primarily 

to the simplicity of the scenarios.  Figure 4 compares the number of solutions 

sampled with the mean value returned.  Performance-wise, the SS model in 

these scenarios performed much more efficiently, evaluating 417% more 

solutions per second than SS-LP.  
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Branch & Bound-LP Hybrid w/ Minimum Required Deliveries 

 With the introduction of the minimal required deliveries constraint, the 

B&B-LP hybrid did find the optimal solution.  It correctly returned a value of 

1007 when a 0.1% out-of-stock penalty was applied and 1020 when there was 

no penalty.   In both situations, the B&B-LP algorithm provided the best results 

and in the shortest time.  Again, the number of samples evaluated was based on 

the maximum number of candidate paths enumerated by the trinomial tree, 312 = 

531,441.    

  

Horizon 12.0 12.0 
Samples Evaluated 531,441 531,441 
Penalty 0.1 0.0 
Value Generated 1007.0 1020.0 
Elapsed Seconds 300 315 
Samples per Second 1771.5 1687.1 

Table 7  B&B-LP w/ Min Delivery, Results 
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SS-LP w/ Minimum Required Deliveries  

 With the addition of the minimum required delivery rule, the accuracy of 

the SS-LP and SS algorithms dropped.  Variance and standard deviation were 

higher than the same algorithm without the additional constraint. 

 

 

Samples per Simulation 250 2500 10000 20000 

Simulations 20 20 20 20 

Total Seconds Elapsed 60 240 1800 3480 

Samples per Second 83.3 119.0 119.0 119.0 

Mean 793.5 900.0 1020.0 1010.0 

Standard Error 20.7 22.5 0.0 10.0 

Median 820.0 820.0 1020.0 1020.0 

Mode 820.0 820.0 1020.0 1020.0 

Standard Deviation 92.6 100.5 0.0 44.7 

Sample Variance 8571.3 10105.3 0.0 2000.0 

Range 400.0 200.0 0.0 200.0 

Minimum 620.0 820.0 1020.0 820.0 

Maximum 1020.0 1020.0 1020.0 1020.0 

Sum 15870.0 18000.0 20400.0 20200.0 

Count 20.0 20.0 20.0 20.0 

Largest(1) 1020.0 1020.0 1020.0 1020.0 

Smallest(1) 620.0 820.0 1020.0 820.0 

Confidence Level(95.0%) 43.3 47.0 0.0 20.9 

Table 8  SS-LP w/ Min Delivery, Descriptive Statistics 

  



72 

 

SS w/ Minimum Required Deliveries 

  Again, the SS model outperformed the SS-LP speed-wise.  The lack of 

computational overhead of the LP-Solve’s simplex processing allowed the 

sample evaluations to run much faster.  The accuracy of this approach was 

significantly enhanced by the constraint placed on the volume of quantity 

shipped.    

Samples per Simulation 250 2500 10000 20000 

Simulations 20 20 20 20 

Total Seconds Elapsed 60 120 360 840 

Samples per Second 83.3 416.7 555.6 476.2 

Mean 784.4 901.2 970.2 999.2 

Standard Error 18.0 13.9 11.2 9.5 

Median 795.6 920.0 955.0 1013.3 

Mode 720.0 920.0 1020.0 1020.0 

Standard Deviation 80.5 62.1 50.2 42.5 

Sample Variance 6476.6 3853.3 2520.9 1806.9 

Range 300.0 253.2 153.2 200.0 

Minimum 620.0 820.0 920.0 920.0 

Maximum 920.0 1073.2 1073.2 1120.0 

Sum 15688.2 18024.0 19404.4 19983.4 

Count 20.0 20.0 20.0 20.0 

Largest(1) 920.0 1073.2 1073.2 1120.0 

Smallest(1) 620.0 820.0 920.0 920.0 

Confidence Level(95.0%) 37.7 29.1 23.5 19.9 

Table 9  SS w/ Min Delivery, Descriptive Statistics 

 

 

  



 

 

4.4 Computational Speed

 The only meaningful way to compare the speed of these algorithms is on 

the same hardware and software.  With that consideration in mind, the Branch & 

Bound-LP hybrid was 
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Computational Speed 

The only meaningful way to compare the speed of these algorithms is on 

the same hardware and software.  With that consideration in mind, the Branch & 

LP hybrid was consistently superior on a result/unit time basis.

ability to prune the decision tree and thereby avoid the evaluation of discarded 

nodes increased the efficiency.  It is noted that the relatively low time horizon, 

twelve months, contributed to the B&B-LP success.  Had the horizon be

or 52 periods, the problem would have become too computationally intensive for 

Figure 3  Solutions Evaluated/Second 
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computationally, performed faster in this project due primarily to the constraints 

placed on its search of the solution space.  

4.2.1 Quality of Solution 

 The following graphs compare the accuracy of each approach at each 

level of performance.  The B&B-LP was superior in both variants of the model.   

 

 

Figure 4  Comparison of SS-LP & SS Results 
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Figure 5  Comparison of SS-LP & SS w/ MRD 

 

 As expected, the stochastic approaches improved in accuracy with 

increased sample evaluations. 

 

Figure 6  Relative Accuracy of Approaches 
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Figure 7  Relative Accuracy of Approaches w/ MRD 

 

 

Figure 8  Relative Accuracy of SS approaches 
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4.2.2 Best Overall Performance 

 The Branch & Bound-LP hybrid was the best of the three approaches 

used in this project.  It returned the optimal solution and, when compared to the 

SS-LP and SS algorithms that actually executed long enough to generate a 

reliable optimum or near-optimum solution, it was the least computationally 

expensive. 
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Chapter 5 

Conclusions and Future Research 

 

5.1 General Conclusions 

 With a worldwide market for natural gas, it is not surprising that a great 

amount of research has already been accomplished on a multitude of associated 

topics.  So it is within the area of natural gas scheduling, an inventory 

scheduling problem with some attributes that are specific to natural gas.   

 This project has sought to extend that research by examining methods of 

optimizing the decisions that are made by gas investors and facility operators.  

The specific focus of the dissertation was the combination of gases of different 

energy contents, or Btu levels.  This topic grows in importance as businesses 

seek to optimize resources and as environment pressures dictate the 

consumption of gas of lesser quality. 

 Simulation optimization is commonly employed to solve or find 

reasonable solutions to problems such as this.  The literature review in chapter 2 

discussed many variations of this powerful tool.  This dissertation describes a 

research project that examined three algorithms for optimizing gas inventory 

decision making.    

 The B&B-LP hybrid was, within the constraints of the program, the most 

accurate, always returning an optimal solution and in the best time.  This 
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accuracy was generated at the expense of flexibility.  Heuristics were applied to 

reduce the number of decision points at each node, exponential growth being the 

nemesis of dynamic programming. 

 The advantage of the Stochastic Selection-Linear Programming (SS-LP) 

algorithms was its flexibility.  It was not as efficient computationally as the 

B&B-LP approach, but it was more readily modified to new constraints. 

 While the simplest and most flexible approach, the generic Stochastic 

Selection (SS) algorithm proved to be too computationally expensive to use 

without some constraints.  For example, percentage of shipping volumes were 

selected from a set of three options, -100%, 0, and +100%. 

5.1.1 Computational Effort Conclusions 

 Being NP-Hard, this is a problem whose acceptable solution requires a 

high level of computational investment.  Heuristics were applied that simplified 

the problem.   Measurements of computational effort provide a comparison of 

the algorithms’ resource requirements.  These will vary from computer to 

computer and, as mentioned in chapter 3, from one implementation and software 

configuration to another.  Even with knowledge of the specifications of the 

computer and software system used in this project, these results are not 

necessarily predictive of performance on another system.  

 The B&B-LP hybrid returned the best results in the least amount of time.  

The SS-LP and SS algorithms did generate optimal solutions when given 

sufficient time, but the time required was significantly greater than that of the 

B&B-LP. 
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5.1.2 Quality of Solution Conclusions 

 Each of the three algorithms produced optimal solutions in both test 

cases.   The B&B-LP model found the optimal solution in the shortest time.  Not 

surprisingly, the accuracy of the stochastic solution search routines was directly 

proportional to the number of sample solutions examined.  The SS–LP model 

provided the optimal solution with a STDEV of 0.0 when 20,000 solutions were 

examined.  The SS model exhibited the same performance.  

 There were two variants of the model, the basic one and a second that 

enforced a minimum delivery quantity.  The quality of solution and relative 

consumption of computer resources were the same in each variant. 

5.1.3 Overall Performance Conclusions 

 Performance of the three algorithms varied.  The B&B-LP approach was 

the superior performer for this problem.  Under other circumstances, that may 

not be the case when, for example, there are more decision factors to be 

evaluated. 

 

5.2 Final Conclusions 

 This project has been very interesting.  The energy industry and natural 

gas in particular is a global concern and, as it faces changes from economic, 

technological and environmental stimuli, there will be new and important areas 

of research.  This project has examined and offered an useable approach, an 

approach superior to one based solely on historical performance,  to a problem 



81 

 

that has become more prominent in the industry and will continue to receive 

attention.     

 

5.3 Future Research 

 This is an exciting area of research and this project remains with many 

avenues to be investigated.   There are many simulation optimization techniques 

that may be applied to this type of problem.   

 Exploration of performance improvement on distributed system would 

allow the researcher to examine multiple sets of simulated decision paths 

simultaneously.  

 The model designed for this project allowed for random variations of 

input price and cost data.  To be more realistic, a model may include a procedure 

to apply a Brownian motion variance as well.  Also, regarding price data, many 

models in practice currently include natural gas futures in the pricing scheme.    

5.3.1 Parallel and Distributed Processing 

 With the availability of multi-core and multi-CPU architectures, even 

modern desktop computers offer significantly more processing power than was 

available for this research.  Such hardware, when properly accessed, allows 

multiple independent processes to run simultaneously, as opposed to single- 

threaded processing which may appear to execute processes at the same time but 

actually switches between them rapidly.  Many optimization techniques, 

particularly Monte-Carlo-based approaches, can be parallelized and executed 

simultaneously.  Approaches that involve Markovian states also fit this scenario.  
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Software solutions and optimization programming techniques that take 

advantage of tread-level parallelism will provide much broader searches of the 

solution space (Happe et al. 2009, Hsu, et al. 2011, Lee 2010).    

 Perhaps the most promising technological development to increase 

processing power is distributed processing.  Garcia, et al. (2007) used distributed 

processing to evaluate candidate solutions in a joint-strategy fictitious play 

simulation.  Fourer, et al. (2010) developed a framework for distributed 

optimization, a system in which multiple computers not in a central location but 

connected via the Internet could be used as shared resources in solving 

optimization problems.   Their work is conceptually similar to that of Luo, et al. 

(2000), but it is implemented with more recent and mature methods.  They point 

out the need for the operations research (OR) community to be cognizant of the 

advances and innovations already in use in the information technology (IT) 

community.  In service-oriented architecture (SOA) technology, service-level 

communication between servers is in widespread use commercially through 

standardized protocols that allow dissimilar applications to exchange data, 

invoke services on other servers, or execute services at the request of external 

machines.  Using this or a similar framework, the practitioner could use 

modeling software of one server, data generation services of a different 

machine, the simulation services of another and the optimization service of yet 

another server.   

 In this particular example, such a system would provide the means of 

examining larger sets of potential solutions, whether they are stochastically- 
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generated combinations or regions of a solution space selected by a different 

approach, or as branches of a decision tree.  The SETI@Home project is a 

well-known example of a massively-distributed computing program (Korpela, et 

al., 2001). 

5.3.2 Geometric Brownian Motion  

 In applying a valuation to decisions to purchase or sell gas, it is a 

common practice to treat them as stock options, contracts for the future privilege 

to buy or sell a specified amount at a specified price.  This practice is known as 

Real Options Theory and is widely practiced (Frayer, et al. 2001, Lai, et al. 

2011). 

 Brownian motion was first described in the field of physics as 

observations of random movement of large particles when smaller ones struck 

them, but, interestingly, the prices of stocks tend to display Brownian motion as 

they fluctuate. Geometric Brownian motion varies from ordinary Brownian 

motion in that it holds that over time, the changes in price will fall into a normal 

distribution with a mean and standard deviation dependent only on the time 

elapsed.  Brownian motion is a key component of the Black-Scholes equation.  

Formula 15 shows the basic Brownian motion value change (Chriss 1999).   

 

 �B � UB�C !  VB�W (15) 

  S = price 

  t=time 

  µ,σ = constants indicating drift 
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  z =stochastic process, Wiener, �W � X√�C 

   Brewer, et. al. (2012) 

 

 It would be advantageous to apply Brownian motion to the changes in 

gas prices in future work.  While other events and trends contribute to the 

volatility of natural gas prices, this would improve the model by making the 

volatility factor more realistic. 

5.3.3 Heuristics, Metaheuristics, Multi-Criteria 

 This problem may be approached with various Metaheuristics, such as 

the tabu search.  The problems continuous solution space makes it 

computationally intractable unless heuristics and constraints are applied to 

discretize the problem.  Further examination of those constraints would prove 

interesting.  The second part of this project sought to optimize profit while 

guaranteeing delivery of products.  That or similar criteria for optimization may 

be expanded upon as well.  

5.3.4  Natural Gas Futures 

 In this dissertation and the model it describes, natural gas ‘spot prices’ 

have been used.  The spot price is the price for a transaction at the current price 

on the open market for immediate delivery of a specific quantity of gas at a 

specific location. 

 A futures price, however, is the price quoted for delivering a specified 

quantity of gas at a specified time and place in the future.  Quotes or ‘contracts’ 

are usually written for delivery for a specific number of months in the future and 
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may be referred to as ‘contract n’ where n is 1,2,3 etc. and may go as high as 

360 months, although that is unusual.  Figure 12 shows the historic values of 1-

month natural gas futures.  Natural gas contracts expire three business days prior 

to the first calendar day of the delivery month. Thus, the delivery month for 

Contract 1 is the calendar month following the trade date.  

 While speculators buy and sell contracts as investments, futures are also 

purchased as a way of hedging against sharp price fluctuations.  The addition of 

futures to the model would be a great enhancement. 

 

 

Figure 9  Natural Gas Futures Contract 1 ($US/MMBTU) (EIA2013) 

 

 There are many attributes and capabilities that may be added to this 

model that will increase its accuracy and perhaps efficiency as well.  As new 

technologies emerge, economies change, and sources of energy fluctuate in 

priority, this field of research remains interesting and relevant. 
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Appendix 1:   Initial Test Data and Parameters 

 

Test Data Set 1 

Period Cost A Cost B Price A Price AB Price B 
1 1.0 1.0 2.0 1.0 2.0 
2 1.0 1.0 2.0 1.0 2.0 
3 1.0 1.0 2.0 1.0 2.0 
4 1.0 1.0 2.0 1.0 2.0 
5 1.0 1.0 2.0 1.0 2.0 
6 1.0 1.0 2.0 1.0 2.0 
7 1.0 1.0 2.0 1.0 2.0 
8 1.0 1.0 2.0 1.0 2.0 
9 1.0 1.0 2.0 1.0 2.0 

10 1.0 1.0 2.0 1.0 2.0 
11 1.0 1.0 2.0 1.0 2.0 
12 1.0 1.0 2.0 1.0 2.0 

Best results =([Buy 100%A, Buy100%B][Sell 100%A, Sell100%B]) 
*6  
Max Expected Value: 
1200.0  

Max Trans A 100.0 aInAb 0.5 
Max Trans B 100.0 bInAB 0.5 

costStorage A 0.0 price variance none 
costStorage B 0.0 cost variance none 
max storage A 5000.0 
max storage  B 5000.0 
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Appendix 2:  Results of Initial Test Runs 

 

Figure 10  B&B-LP Trial Results 

 

 

Figure 11  Solution Values B&B-LP 25 Trials 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

500

1000

1500

2000

2500

3000

3500

4000

1 6 11 16 21 26 31 36 41 46

B
e

st
 S

o
lu

ti
o

n
 F

o
u

n
d

, 
 1

st
 S

a
m

p
le

 o
f 

g
ro

u
p

 t
o

 

fi
n

d
 i

t

Trial

B&B-LP - 25 trials 

Maximum Value Sample With Best Solution

200 300 400 500 600 700 800 900
100

0

110

0

120

0

130

0

140

0

Series1 0 0 0 0 0 0 0 0 0 0 25 0 0 0

0

5

10

15

20

25

30

Solution Values B&B-LP 25 Trials

Series1



100 

 

 

Figure 12 Results of SS-LP, 12x250,000 

 

 

 

Figure 13  Solution Values SS-LP 12x250,000 
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Figure 14  Results of SS-LP 50x25,000 

 

 

 

Figure 15  Solution Values SS-LP 50x25,000 
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Figure 16  Results of SS+LP 50x2500  

 

 

Figure 17 Solution Values SS-LP 500x2500  
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Figure 18 Stochastic Selection -2500 Samples/Trial 

 

 

Figure 19 Stochastic Selection -500x2500 Samples/Trial 
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Figure 20 SS-LP 25000 Samples/Trial 

 

 

Figure 21 SS-LP 100x25000 Samples/Trial 
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Figure 22 SS 100x250000 Samples/Trial 

 

 

 

Figure 23 SS Values 100x250000 Samples/Trial  
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Appendix 3:  Trial Price/Cost Data II 

 

Month 

GasA 

Cost  

GasA 

Price  Markup 

GasB 

Cost 

GasB 

Price 

GasAB 

Cost 

Gas 

AB 

Price 

GasAB 

Price 

Adjusted 

Jan 5.83 5.52 -0.05 2.62 2.48 3.91 3.70 3.14 

Feb 5.32 6.58 0.24 2.39 2.96 3.56 4.41 3.75 

mar 4.29 6.38 0.49 1.93 2.87 2.87 4.27 3.63 

Apr 4.03 6.02 0.49 1.81 2.71 2.70 4.03 3.43 

May 4.14 6.64 0.60 1.86 2.99 2.77 4.45 3.78 

Jun 4.80 6.41 0.34 2.16 2.88 3.22 4.29 3.65 

Jul 4.63 6.63 0.43 2.08 2.98 3.10 4.44 3.78 

Aug 4.32 7.29 0.69 1.94 3.28 2.89 4.88 4.15 

Sep 3.89 7.23 0.86 1.75 3.25 2.61 4.84 4.12 

Oct 3.43 6.05 0.76 1.54 2.72 2.30 4.05 3.45 

Nov 3.71 7.07 0.91 1.67 3.18 2.49 4.74 4.03 

Dec 4.25 5.22 0.23 1.91 2.35 2.85 3.50 2.97 

 

Gas A Costs are based on Henry Hub spot prices – see appendix 5 

Gas B Prices are based on Oklahoma City Gate prices – see appendix 6 
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Appendix 4:   Natural Gas Futures Contract 1  

Year   2000   2001   2002   2003   2004   2005   2006 

Jan 2.385 7.825 2.190 5.381 6.272 6.186 9.136 

Feb 2.614 5.675 2.263 6.657 5.363 6.203 7.520 

Mar 2.828 5.189 3.015 5.786 5.542 7.045 6.979 

Apr 3.028 5.189 3.410 5.358 5.765 7.150 7.264 

May 3.596 4.244 3.563 5.926 6.398 6.486 6.372 

Jun 4.303 3.782 3.259 5.925 6.334 7.206 6.385 

Jul 3.972 3.167 2.942 5.034 6.064 7.579 6.222 

Aug 4.460 2.935 3.092 4.978 5.471 9.427 6.989 

Sep 5.130 2.213 3.569 4.667 5.219 12.111 5.218 

Oct 5.079 2.618 4.088 4.986 7.371 13.454 6.633 

Nov 5.740 2.786 4.040 4.834 7.608 11.695 7.995 

Dec 8.618 2.686 4.838 6.469 6.828 13.425 7.161 

 

 

Year   2007   2008   2009   2010   2011   2012 

Jan 6.775 7.991 5.07 5.599 4.499 2.708 

Feb 7.546 8.642 4.382 5.215 4.036 2.526 

Mar 7.221 9.624 4.002 4.301 4.069 2.296 

Apr 7.629 10.288 3.561 4.088 4.272 2.048 

May 7.821 11.381 3.934 4.155 4.336 2.493 

Jun 7.503 12.784 3.935 4.785 4.516 2.498 

Jul 6.399 11.067 3.551 4.590 4.353 2.963 

Aug 6.137 8.301 3.305 4.220 3.984 2.807 

Sep 6.188 7.485 3.462 3.898 3.849 2.918 

Oct 7.223 6.727 4.780 3.600 3.624 3.500 

Nov 7.778 6.700 4.628 4.042 3.558 3.687 

Dec 7.178 5.794 5.344 4.283 3.246 
 

(Dollars/Mil. BTUs)   (EIA 2013) 
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Appendix 5:  Henry Hub Natural Gas Spot Prices 

Year   2000   2001   2002   2003   2004   2005   2006 
Jan 2.42 8.17 2.32 5.43 6.14 6.15 8.69 
Feb 2.66 5.61 2.32 7.71 5.37 6.14 7.54 
Mar 2.79 5.23 3.03 5.93 5.39 6.96 6.89 
Apr 3.04 5.19 3.43 5.26 5.71 7.16 7.16 
May 3.59 4.19 3.50 5.81 6.33 6.47 6.25 
Jun 4.29 3.72 3.26 5.82 6.27 7.18 6.21 
Jul 3.99 3.11 2.99 5.03 5.93 7.63 6.17 
Aug 4.43 2.97 3.09 4.99 5.41 9.53 7.14 
Sep 5.06 2.19 3.55 4.62 5.15 11.75 4.90 
Oct 5.02 2.46 4.13 4.63 6.35 13.42 5.85 
Nov 5.52 2.34 4.04 4.47 6.17 10.30 7.41 
Dec 8.90 2.30 4.74 6.13 6.58 13.05 6.73 

 

Year   2007   2008   2009   2010   2011   2012 
Jan 6.55 7.99 5.24 5.83 4.49 2.67 
Feb 8.00 8.54 4.52 5.32 4.09 2.51 
Mar 7.11 9.41 3.96 4.29 3.97 2.17 
Apr 7.60 10.18 3.50 4.03 4.24 1.95 
May 7.64 11.27 3.83 4.14 4.31 2.43 
Jun 7.35 12.69 3.80 4.80 4.54 2.46 
Jul 6.22 11.09 3.38 4.63 4.42 2.95 
Aug 6.22 8.26 3.14 4.32 4.06 2.84 
Sep 6.08 7.67 2.99 3.89 3.90 2.85 
Oct 6.74 6.74 4.01 3.43 3.57 3.32 
Nov 7.10 6.68 3.66 3.71 3.24 3.54 
Dec 7.11 5.82 5.35 4.25 3.17 3.34 

 

(Dollars/Mil. BTUs)  (EIA 2013) 
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Appendix 6:  Oklahoma Natural Gas Citygate Prices  

Year   2000   2001   2002   2003   2004   2005   2006 
Jan 6.61 9.63 4.07 4.94 6.21 7.12 10.01 
Feb 2.66 6.85 3.78 5.41 6.48 6.70 10.59 
Mar 3.01 6.39 4.07 7.71 6.31 6.95 9.52 
Apr 2.88 6.76 4.48 5.13 6.82 7.11 8.17 
May 3.36 4.50 4.13 6.04 6.11 7.62 8.11 
Jun 3.19 4.25 3.77 5.90 6.48 7.23 7.89 
Jul 4.14 4.10 3.63 5.34 6.42 7.89 8.66 
Aug 4.48 5.30 3.57 5.53 6.32 8.85 8.58 
Sep 3.57 5.18 4.20 5.36 6.18 10.59 8.48 
Oct 4.94 4.95 4.37 7.14 5.68 10.74 6.40 
Nov 5.60 5.10 4.93 6.36 6.94 11.14 8.28 
Dec 5.58 4.49 4.72 6.17 8.00 11.39 8.78 

 

Year   2007   2008   2009   2010   2011   2012 
Jan 7.72 7.89 7.76 5.52 5.37 4.96 
Feb 8.52 8.35 7.15 6.58 5.34 4.99 
Mar 9.48 9.34 7.34 6.38 5.72 4.92 
Apr 7.80 9.01 6.95 6.02 5.79 5.59 
May 8.33 10.34 6.60 6.64 6.45 5.43 
Jun 8.79 11.45 6.68 6.41 6.32 4.27 
Jul 8.49 12.25 7.15 6.63 6.51 5.85 
Aug 7.89 9.64 8.21 7.29 6.87 5.43 
Sep 7.56 8.92 7.61 7.23 6.60 5.34 
Oct 7.88 7.35 6.99 6.05 6.59 4.95 
Nov 8.52 7.61 7.26 7.07 6.28 
Dec 7.80 7.78 5.84 5.22 5.18 

  

(Dollars per Thousand Cubic Feet) (EIA 2013) 
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Appendix 7:  Natural Gas Consumption by End Use 
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Appendix 8:  C++ SOURCE CODE FOR LP-SOLVE 

INTERFACE 

#include "c:\awesim\lib\vslam.h" 

#include <math.h> 

#include <stdlib.h> 

#include "c:\awesim\lp_solve\lp_lib.h" 

#include <windows.h> 

#include "string.h" 

#include <time.h> 

 

 

double USERF(int IFN, ENTITY *peCur); 

void getMixedProduct(); 

double minf(double vala, double valb); 

double maxf(double vala, double valb); 

 

 

 

 

add_constraint_func *_add_constraint; 

add_constraintex_func *_add_constraintex; 

delete_lp_func *_delete_lp; 

get_col_name_func *_get_col_name; 

get_objective_func *_get_objective; 

get_variables_func *_get_variables; 

make_lp_func *_make_lp; 

print_lp_func *_print_lp; 

print_solution_func *_print_solution; 

read_LP_func *_read_LP; 

set_add_rowmode_func *_set_add_rowmode; 

set_col_name_func *_set_col_name; 

set_maxim_func *_set_maxim; 

set_obj_fn_func *_set_obj_fn; 

set_obj_fnex_func *_set_obj_fnex; 
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set_verbose_func *_set_verbose; 

solve_func *_solve; 

write_LP_func *_write_LP; 

 

FILE *runlogout; 

FILE *runlogout2; 

time_t now; 

 

 

// Events 

#define WRITELN 1 

#define SIMPLEX 2 

#define CALC_PROFITS 3 

#define PRUNE_BUY 4 

#define PRUNE_HOLD 5 

#define PRUNE_SELL 6 

#define CALC_BUY 7 

#define ENDOFCYCLE 8 

#define RESETINVENTORY 9 

#define TIMER_GET 10 

#define TIMER_SET 11 

#define VARIABLE_BUY_SELL 12 

#define RANDOM_A  13 

#define RANDOM_AB  14 

#define RANDOM_B  15 

#define MANDATORY_SELL 16 

#define DUMMY   99 

 

#define PRUNE 0 

#define NO_PRUNE 1 

 

 

 

#define CostAidx   LL[1] 

#define CostAidxBase   LL[2] 

#define CostAidxMax   LL[3] 

#define CostBidx   LL[5] 
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#define CostBidxBase   LL[6] 

#define CostBidxMax   LL[7] 

#define Horizon    LL[9] 

#define PriceABidx   LL[11] 

#define PriceABidxBase   LL[12] 

#define PriceABidxMax   LL[13] 

#define PriceAidx   LL[15] 

#define PriceAidxBase   LL[16] 

#define PriceAidxMax   LL[17] 

#define PriceBidx   LL[19] 

#define PriceBidxBase   LL[20] 

#define PriceBidxMax   LL[21] 

#define ReadResult   LL[23] 

#define InventoryABase  LL[24] 

#define InventoryBBase   LL[25] 

#define CurrScenerio LL[26] 

#define AvgCostOfInvA   LL[30] 

#define AvgCostOfInvB   LL[31] 

#define ClockTime  LL[34] 

 

#define CostOfStorageA XX[3] 

#define CostOfStorageB XX[4] 

 

#define Profit_A    peCur->ATRIB[11] 

#define Profit_AB    peCur->ATRIB[12] 

#define Profit_B     peCur->ATRIB[13] 

#define aInAB     peCur->ATRIB[14] 

#define bInAB     peCur->ATRIB[15] 

#define CurrBuyVolA  peCur->ATRIB[17] 

#define CurrBuyVolB  peCur->ATRIB[18] 

#define changeAPerCent peCur->ATRIB[19] 

#define changeABPerCent peCur->ATRIB[20] 

#define changeBPerCent peCur->ATRIB[21] 

#define CurrDltVlA peCur->ATRIB[22] 

#define CurrDeltaVolB peCur->ATRIB[23] 

#define CurrDltVlAB peCur->ATRIB[24] 

#define aMinDelivery peCur->ATRIB[25] 
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#define abMinDelivery peCur->ATRIB[26] 

#define bMinDelivery peCur->ATRIB[27] 

#define aLowVolPenalty peCur->ATRIB[28] 

#define bLowVolPenalty peCur->ATRIB[29] 

#define CashOnHand   peCur->ATRIB[1] 

#define CurrSellVolA  peCur->ATRIB[2] 

#define CurrSellVolAB peCur->ATRIB[3] 

#define CurrSellVolB  peCur->ATRIB[4] 

#define InventoryA  peCur->ATRIB[5] 

#define InventoryB  peCur->ATRIB[6] 

#define MaxTransA   peCur->ATRIB[7] 

#define MaxTransB   peCur->ATRIB[8] 

#define MaxVolA   peCur->ATRIB[9] 

#define MaxVolB   peCur->ATRIB[10] 

 

#define CurrentAction  peCur->STRIB[1] 

#define History   peCur->STRIB[2] 

 

#define GENERATION  peCur->LTRIB[1] 

#define rand02Action peCur->LTRIB[5] 

 

 

 

double USERF(int IFN, ENTITY *peCur) 

{ 

double aVolSold = 0; 

double abVolSold= 0; 

double bVolSold = 0; 

int c,i; 

double volAToSell,volBToSell,volReq; 

double costOfGasA = 0.0; 

double volAAvailable  = 0.0; 

double costOfGasB = 0.0; 

double tgtSalesVol = 0.0; 

double volBAvailable  = 0.0; 

double volAInStorage = 0.0; 

double volBInStorage = 0.0; 
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double CurrSellVolAinAB = 0.0; 

double CurrSellVolBinAB = 0.0; 

double aabMinReq= 0.0; 

double babMinReq= 0.0; 

double aMinReq= 0.0; 

double bMinReq= 0.0; 

double ARequiredVol = 0.0; 

double BRequiredVol = 0.0; 

double alreadyDeliveredPC= 0.0; 

switch (IFN) 

{ 

case WRITELN : SU_OUT(TRUE,TRUE,"Hello from procs.c USERF function. curr action= 

%s\n",peCur->STRIB[1]); 

runlogout =fopen("lp_run.txt","a"); 

runlogout2=fopen("lp_run2.txt","a"); 

break; 

 

 

 

case DUMMY: 

 fprintf(runlogout2, "DUMMY:  Percent: %8.2f InvA: %f  InvB: %8.2f tgtSalesVol 

%8.2f   MaxTransA %8.2f  \n", 

 changeAPerCent, InventoryA,  InventoryB ,tgtSalesVol,MaxTransA) ; 

 

 

break; 

 

 

 

case PRUNE_SELL : 

if (((CurrentAction[0]=='*') || ( CurrentAction[0]=='S')) 

&& (InventoryA > 0.0001 && InventoryB > 0.0001) 

) 

{ 

return(NO_PRUNE); 

} 

else 
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{ 

return(PRUNE); 

} 

 

 

break; 

 

 

case TIMER_GET: 

now = time (NULL); 

ClockTime = now; 

return 0.0; 

break; 

 

 

 

case PRUNE_HOLD : 

if (((CurrentAction[0]=='*') || ( CurrentAction[0]=='H')) 

 && (InventoryA < ((Horizon- GENERATION) * MaxTransA)) 

 && (InventoryB < ((Horizon- GENERATION) * MaxTransB))) 

{ 

return(NO_PRUNE); 

} 

else 

{ 

return(PRUNE); 

} 

break; 

 

 

 

case PRUNE_BUY : 

if ( 

   ((CurrentAction[0]=='*') || ( CurrentAction[0]=='B')) 

&& ((InventoryA + MaxTransA) <= ((Horizon - GENERATION) * MaxTransA)) 

&& ((InventoryB + MaxTransB) <= ((Horizon - GENERATION) * MaxTransB)) 

&& ((InventoryA + MaxTransA) <= MaxVolA) 
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&& ((InventoryB + MaxTransB) <= MaxVolB) 

) 

{ 

return(NO_PRUNE); // 0=PRUNE   1=KEEP 

} 

else 

{ 

return(PRUNE); // 0=PRUNE   1=KEEP 

} 

break; 

 

 

 

 

 

case CALC_BUY: 

// set total inventory 

 

CurrBuyVolA=MaxTransA; 

CurrBuyVolB=MaxTransB; 

 

 

InventoryA = InventoryA + CurrBuyVolA; 

InventoryB = InventoryB + CurrBuyVolB; 

 

 

// set cash 

CashOnHand =CashOnHand - 

   (CurrBuyVolA * peCur->ATRIB[CostAidxBase + GENERATION]  

+ 

    CurrBuyVolB * peCur->ATRIB[CostBidxBase + GENERATION] ); 

 

// set period inventory 

peCur->ATRIB[InventoryABase + GENERATION] = CurrBuyVolA ; 

peCur->ATRIB[InventoryBBase + GENERATION] = CurrBuyVolB ; 

 

break; 
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case SIMPLEX: 

 

 // first, calculate the profit of gas to be sold 

 

 volAToSell= 0.0; // the amount KNOWN to be available for sale 

 volReq = 0.0; // how much is needed to fill the 'order' 

 costOfGasA = 0.0; 

 

 // Set for gas A 

 // loop through the inventory array from oldest to current (FIFO) 

 // 

 if (DEBUG1) fprintf(runlogout, "nSIMPLEX GENERATION %i  \n", 

GENERATION); 

 

 for(c=1;c<=GENERATION;c++) 

   { 

  if (volAToSell< MaxTransA) 

   // if we still need gas to fill the order 

   { 

   volReq=MaxTransA-volAToSell;  // how much do we still need for 

this order? 

 

   // check the gas bought in this period 

   if ( peCur->ATRIB[InventoryABase+c]  >= volReq) 

    { 

    volAToSell=MaxTransA; // we have the max available 

 

    // increment the total cost by the cost of the gas bought in 

this period 

    costOfGasA += volReq * peCur-

>ATRIB[CostAidxBase+c]; 

 

    // add in the storage cost of the gas 

    costOfGasA += MaxTransA * CostOfStorageA * 

((GENERATION + 1)- c); 

 

    // decrement the inventory 
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    peCur->ATRIB[InventoryABase+c]  -= volReq; 

 

    // signal that the order is filled 

    volReq= 0.0; 

    } 

 

   else // we can fill part of the order from the gas purchased this period 

    { 

    volReq -= peCur->ATRIB[InventoryABase+c]; 

    costOfGasA += peCur->ATRIB[InventoryABase+c] * 

peCur->ATRIB[CostAidxBase+c]; 

    // add in the storage cost of the gas 

    costOfGasA += peCur->ATRIB[InventoryABase+c] * 

CostOfStorageA * ((GENERATION + 1)- c); 

 

    // 

    volAToSell+= peCur->ATRIB[InventoryABase+c]; 

    peCur->ATRIB[InventoryABase+c] =0.0; 

    } 

   } 

  } 

 

 // at this point the amount of gasA available to sell, and it's total cost 

 // is known 

 

 

 

 volBToSell= 0.0; // the amount KNOWN to be available for sale 

 volReq = 0.0; // how much is needed to fill the 'order' 

 costOfGasB = 0.0; 

 

 // Set for gas B 

 // loop through the inventory array from oldest to current (FIFO) 

 // 

 for(c=1;c<=GENERATION;c++) 

   { 

  if (volBToSell< MaxTransB) 



120 

 

   // if we still need gas to fill the order 

   { 

   volReq=MaxTransB-volBToSell;  // how much do we still need for 

this order? 

 

   // check the gas bought in this period 

   if ( peCur->ATRIB[InventoryBBase+c]  >= volReq) 

    { 

    volBToSell=MaxTransB; // we have the max available 

 

    // increment the total cost by the cost of the gas bought in 

this period 

    costOfGasB += volReq * peCur->ATRIB[CostBidxBase+c]; 

 

    // add in the storage cost of the gas 

    costOfGasB += MaxTransB * CostOfStorageB * 

((GENERATION + 1)- c); 

 

    // decrement the inventory 

    peCur->ATRIB[InventoryBBase+c]  -= volReq; 

 

    // signal that the order is filled 

    volReq= 0.0; 

    } 

 

   else // we can fill part of the order from the gas purchased this period 

    { 

    volReq -= peCur->ATRIB[InventoryBBase+c]; 

    costOfGasB += peCur->ATRIB[InventoryBBase+c] * 

peCur->ATRIB[CostBidxBase+c]; 

    // add in the storage cost of the gas 

    costOfGasB += peCur->ATRIB[InventoryBBase+c] * 

CostOfStorageB * ((GENERATION + 1)- c); 

    volBToSell+= peCur->ATRIB[InventoryBBase+c]; 

    peCur->ATRIB[InventoryBBase+c] =0.0; 

    } 

   } 



121 

 

  } 

 

    // set minimum delivery requirements 

 aMinReq=aMinDelivery; 

 bMinReq=bMinDelivery; 

  aabMinReq = aInAB * abMinDelivery; 

 babMinReq = bInAB * abMinDelivery; 

 

 // if there is not enough in storage to meet requirements, buy some at SPOT price, with 

penalty 

 if ((aMinReq + aabMinReq) > volAToSell) 

  { 

  // how much is still needed? 

  volReq = (aMinReq + aabMinReq)-volAToSell; 

  volAToSell=volAToSell + volReq; 

  // purchase gas on the market 

  CashOnHand = CashOnHand - volReq * peCur-

>ATRIB[PriceAidxBase+GENERATION] * (1.0 + aLowVolPenalty); 

  // add to inventory 

  InventoryA = InventoryA + volReq; 

  // increase cost of gas currently being solg 

  costOfGasA = costOfGasA + volReq * peCur-

>ATRIB[PriceAidxBase+GENERATION] * (1.0 + aLowVolPenalty); 

  } 

 

 if ((bMinReq + babMinReq) > volBToSell) 

  { 

  volReq = (bMinReq + babMinReq)-volBToSell; 

  volBToSell=volBToSell + volReq; 

  // purchase gas on the market 

  CashOnHand = CashOnHand - volReq * peCur-

>ATRIB[PriceBidxBase+GENERATION] * (1.0 + bLowVolPenalty); 

  // add to inventory 

  InventoryB = InventoryB + volReq; 

  // increase cost of gas currently being solg 

  costOfGasB = costOfGasB + volReq * peCur-

>ATRIB[PriceBidxBase+GENERATION] *(1.0 +  bLowVolPenalty); 
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  } 

 // at this point the amount of gasB available to sell, and it's total cost 

 // is known 

 

 

 Profit_A  =  peCur->ATRIB[PriceAidxBase+GENERATION] - 

costOfGasA/volAToSell; 

 Profit_B  =  peCur->ATRIB[PriceBidxBase+GENERATION] - 

costOfGasB/volBToSell; 

 Profit_AB =  peCur->ATRIB[PriceABidxBase+GENERATION] - 

     (aInAB*(costOfGasA/volAToSell) + 

      bInAB*(costOfGasB/volBToSell)); 

 

 // then find the best mix to sell 

 getMixedProduct( 

    volAToSell, 

    volBToSell, 

    Profit_A, 

    Profit_AB, 

    Profit_B, 

    aInAB, 

    bInAB, 

    aMinReq, 

    bMinReq, 

    aabMinReq, 

    babMinReq, 

    &aVolSold, 

    &abVolSold, 

    &bVolSold); 

 

 

 CurrSellVolA  = aVolSold; 

 CurrSellVolAB = abVolSold; 

 CurrSellVolB  = bVolSold; 
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 CashOnHand = CashOnHand +  CurrSellVolA * peCur->ATRIB[PriceAidxBase + 

GENERATION] + 

   CurrSellVolB * peCur->ATRIB[PriceBidxBase + GENERATION] + 

   CurrSellVolAB* peCur->ATRIB[PriceABidxBase + 

GENERATION]; 

 

   //* aInAB + 

   //CurrSellVolAB* peCur->ATRIB[PriceBidxBase + GENERATION] 

* bInAB; 

 

 InventoryA =InventoryA -( CurrSellVolA + CurrSellVolAB * aInAB); 

 InventoryB =InventoryB -( CurrSellVolB + CurrSellVolAB * bInAB); 

 

      break; 

 

case ENDOFCYCLE: 

// calculate the cost of the gas that is still in storage 

// 

// 

 volAInStorage= 0.0; // the amount KNOWN to be available for sale 

 costOfGasA = 0.0; 

 volBInStorage= 0.0; // the amount KNOWN to be available for sale 

 costOfGasB = 0.0; 

 

 // Set for gas A 

 // loop through the inventory array from oldest to current (FIFO) 

 // 

 

 for(c=1;c<=GENERATION;c++) 

   { 

   //volReq=MaxTransA-volAToSell;  // how much do we still need for 

this order? 

 

   // check the gas bought in this period 

   costOfGasA += peCur->ATRIB[InventoryABase+c] * peCur-

>ATRIB[CostAidxBase+c]; 

   volAInStorage+= peCur->ATRIB[InventoryABase+c]; 
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   costOfGasB += peCur->ATRIB[InventoryBBase+c] * peCur-

>ATRIB[CostBidxBase+c]; 

   volBInStorage+= peCur->ATRIB[InventoryBBase+c]; 

  } 

 

 CashOnHand = CashOnHand - costOfGasA; 

 CashOnHand = CashOnHand - costOfGasB; 

 

 break; 

 

 

case RESETINVENTORY: 

    for (c=0;c<=Horizon; c++) 

     { 

  peCur->ATRIB[InventoryABase+c] =0.0; 

  peCur->ATRIB[InventoryBBase+c] =0.0; 

  } 

 InventoryA = 0.0; 

 InventoryB = 0.0; 

 

 

    break; 

 

 

 

case RANDOM_A: 

// set total inventory 

 

 

if (changeAPerCent >=0) 

{ 

 // indicate the purchase of Gas B 

 rand02Action += 2; 

 // set vol of Gas A to buy 

 CurrDltVlA=MaxTransA * changeAPerCent; 

 

 // confirm availability of Gas 
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 if ((InventoryA + CurrDltVlA) > MaxVolA) 

  { 

  CurrDltVlA=MaxVolA-InventoryA; 

  } 

 

 // execute buy 

 InventoryA = InventoryA + CurrDltVlA; 

 

 // set cash 

 CashOnHand =CashOnHand -(CurrDltVlA * peCur->ATRIB[CostAidxBase + 

GENERATION] ); 

 

 if (DEBUG11) fprintf(runlogout2, "RANDOM_A: peCur->ATRIB[InventoryABase + 

GENERATION]=%8.2f  InventoryABase=%d   GEN%d  CurrDltVlA=%8.2f\n", 

 peCur->ATRIB[InventoryABase + 

GENERATION],InventoryABase,GENERATION,CurrDltVlA); 

 

 // set period inventory 

 peCur->ATRIB[InventoryABase + GENERATION] = CurrDltVlA ; 

 

 if (DEBUG10) fprintf(runlogout2, "RANDOM_A:  BUY COMPLETE  CashOnHand 

%8.2f  Percent: %8.2f InvA: %f  InvB: %8.2f MaxTransA %8.2f  \n", 

 CashOnHand, changeAPerCent, InventoryA,  InventoryB ,MaxTransA ); 

 

 if (DEBUG11) fprintf(runlogout2, "RANDOM_Ab: CashOnHand %8.2f  peCur-

>ATRIB[InventoryABase + GENERATION]=%8.2f  InventoryABase=%d   GEN%d  

CurrDltVlA=%8.2f\n", 

 CashOnHand,peCur->ATRIB[InventoryABase + 

GENERATION],InventoryABase,GENERATION,CurrDltVlA); 

 

} 

else 

 

{ 

 

 // modify per cent change to exclude minimum already shipped 
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 // changeAPerCent  MaxTransA   amindelivery 

 alreadyDeliveredPC = -1.0 * (aMinDelivery/MaxTransA); ///100.0; 

 

 // cannot ship more that 100% of capacity 

 changeAPerCent=minf((changeAPerCent-alreadyDeliveredPC),0.0); 

 

 

 

 

 // first, calculate the profit of gas to be sold 

 volAToSell = 0.0; // the amount KNOWN to be available for sale 

 volReq = 0.0;     // how much is needed to fill the 'order' 

 costOfGasA = 0.0; 

 tgtSalesVol = -1.0 * changeAPerCent * MaxTransA; 

 if (tgtSalesVol > InventoryA) 

  { 

  tgtSalesVol = InventoryA; 

  changeAPerCent = -1.0 * InventoryA/MaxTransA; 

  } 

 

 // Set for gas A 

 // loop through the inventory array from oldest to current (FIFO) 

 // 

 for(c=1;c<=GENERATION;c++) 

   { 

  if (volAToSell< tgtSalesVol) 

   // if we still need gas to fill the order 

   { 

   volReq=tgtSalesVol-volAToSell;  // how much do we still need for 

this order? 

 

   // check the gas bought in this period 

   if ( peCur->ATRIB[InventoryABase+c]  >= volReq) 

    { 

    volAToSell=tgtSalesVol; // we have the max available 
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    // increment the total cost by the cost of the gas bought in 

this period 

    costOfGasA += volReq * peCur-

>ATRIB[CostAidxBase+c]; 

 

    // add in the storage cost of the gas 

    costOfGasA += tgtSalesVol * CostOfStorageA * 

((GENERATION + 1)- c); 

 

    // decrement the inventory 

    peCur->ATRIB[InventoryABase+c]  -= volReq; 

 

    // signal that the order is filled 

    volReq= 0.0; 

    } 

 

   else // we can fill part of the order from the gas purchased this period 

    { 

    volReq -= peCur->ATRIB[InventoryABase+c]; 

    costOfGasA += peCur->ATRIB[InventoryABase+c] * 

peCur->ATRIB[CostAidxBase+c]; 

    // add in the storage cost of the gas 

    costOfGasA += peCur->ATRIB[InventoryABase+c] * 

CostOfStorageA * ((GENERATION + 1)- c); 

 

    // 

    volAToSell+= peCur->ATRIB[InventoryABase+c]; 

    peCur->ATRIB[InventoryABase+c] =0.0; 

    } 

   } 

  } 

 

 // at this point the amount of gasA available to sell, and it's total cost 

 // is known 

 

 Profit_A  = peCur->ATRIB[PriceAidxBase+GENERATION] - 

costOfGasA/volAToSell; 
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 CashOnHand = CashOnHand + volAToSell * peCur->ATRIB[PriceAidxBase + 

GENERATION]; 

 

 InventoryA =InventoryA - volAToSell ; 

 

 // set the sell volume 

 CurrDltVlA  = -1.0 * volAToSell ; 

 

 

// ================================================== 

 

} 

 

break; 

case RANDOM_B: 

 

 

// set total inventory 

 

// modify per cent change to exclude minimum already shipped 

 

 

if (changeBPerCent >=0) 

{ 

 // indicate the purchase of Gas B 

 rand02Action += 1; 

 // buy Gas B 

 CurrDeltaVolB=MaxTransB * changeBPerCent; 

 

 // confirm availability of storage for new Gas B 

 if ((InventoryB + CurrDeltaVolB) > MaxVolB) 

  { 

  CurrDeltaVolB=MaxVolB-InventoryB; 

  changeBPerCent=(MaxVolB-InventoryB)/MaxVolB; 

  } 
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 // execute buy 

 InventoryB = InventoryB + CurrDeltaVolB; 

 

 // set cash 

 CashOnHand =CashOnHand -(CurrDeltaVolB * peCur->ATRIB[CostBidxBase + 

GENERATION] ); 

 

 // set period inventory 

 peCur->ATRIB[InventoryBBase + GENERATION] = CurrDeltaVolB ; 

 

 

} 

else 

{ 

 

 

 // changeBPerCent  MaxTransB   bmindelivery 

 alreadyDeliveredPC = -1.0 * (bMinDelivery/MaxTransB) ; //* 100.0; 

 

 // cannot ship more that 100% of capacity 

 changeBPerCent=minf((changeBPerCent-alreadyDeliveredPC),0.0); 

 

 

 // first, calculate the profit of gas to be sold 

 volBToSell = 0.0; // the amount KNOWN to be available for sale 

 volReq = 0.0;     // how much is needed to fill the 'order' 

 costOfGasB = 0.0; 

 tgtSalesVol = -1.0 * changeBPerCent * MaxTransB; 

 

 

 

 if (tgtSalesVol > InventoryB) 

  { 

  tgtSalesVol = InventoryB; 

  changeBPerCent = -1.0 * InventoryB/MaxTransB; 

  } 
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 // Set for gas B 

 // loop through the inventory array from oldest to current (FIFO) 

 // 

 for(c=1;c<=GENERATION;c++) 

   { 

  if (volBToSell< tgtSalesVol) 

   // if we still need gas to fill the order 

   { 

   volReq=tgtSalesVol-volBToSell;  // how much do we still need for 

this order? 

 

   // check the gas bought in this period 

   if ( peCur->ATRIB[InventoryBBase+c]  >= volReq) 

    { 

    volBToSell=tgtSalesVol; // we have the max available 

 

    // increment the total cost by the cost of the gas bought in 

this period 

    costOfGasB += volReq * peCur->ATRIB[CostBidxBase+c]; 

 

    // add in the storage cost of the gas 

    costOfGasB += tgtSalesVol * CostOfStorageB * 

((GENERATION + 1)- c); 

 

    // decrement the inventory 

    peCur->ATRIB[InventoryBBase+c]  -= volReq; 

 

    // signal that the order is filled 

    volReq= 0.0; 

    } 

 

   else // we can fill part of the order from the gas purchased this period 

    { 

    volReq -= peCur->ATRIB[InventoryBBase+c]; 

    costOfGasB += peCur->ATRIB[InventoryBBase+c] * 

peCur->ATRIB[CostBidxBase+c]; 
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    // add in the storage cost of the gas 

    costOfGasB += peCur->ATRIB[InventoryBBase+c] * 

CostOfStorageB * ((GENERATION + 1)- c); 

 

    // 

    volBToSell+= peCur->ATRIB[InventoryBBase+c]; 

    peCur->ATRIB[InventoryBBase+c] =0.0; 

    } 

   } 

  } 

 

 // at this point the amount of gasB available to sell, and it's total cost 

 // is known 

 

 Profit_B  = peCur->ATRIB[PriceBidxBase+GENERATION] - 

costOfGasB/volBToSell; 

 

 CashOnHand = CashOnHand + volBToSell * peCur->ATRIB[PriceBidxBase + 

GENERATION]; 

 

 

 

 CurrDeltaVolB  = -1.0*volBToSell ; 

 

 InventoryB =InventoryB + CurrDeltaVolB ; 

 // set the sell volume 

 

 

// ================================================== 

} 

 

 

break; 

case RANDOM_AB: 

 

 

// modify per cent change to exclude minimum already shipped 
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// changeBPerCent  MaxTransB   bmindelivery 

alreadyDeliveredPC = -1.0 * maxf((aInAB*abMinDelivery/MaxTransA) , //* 100.0, 

        (bInAB*abMinDelivery/MaxTransB) ); 

//* 100.0); 

 

// cannot ship more that 100% of capacity 

 changeABPerCent=minf((changeABPerCent-alreadyDeliveredPC),0.0); 

 

 

 changeABPerCent*=-1.0; 

 

// lower the percentage of AB to sell until 

// it is at or below the amount amount possible to 

// sell based on stock levels of A and B 

// and the remaining shipping capacity of A and B 

 

if (InventoryA < aInAB * changeABPerCent * MaxTransA) 

 changeABPerCent = minf(changeABPerCent,(InventoryA/(aInAB* MaxTransA))); 

 

 

 

if (InventoryB < bInAB * changeABPerCent * MaxTransB) 

 changeABPerCent = minf(changeABPerCent,(InventoryB/(bInAB * MaxTransB))); 

 

 

// check for max trans limit but allow passthrough 

// i.e 100% gas in and 100% out is allowable 

// if a sell occured CurrDltVlA is negative so MaxTransA + CurrDltVlA < MaxTransA 

if ( 

 (CurrDltVlA<0.0)&& ((changeABPerCent * aInAB * MaxTransA)>(MaxTransA + 

CurrDltVlA)) 

 )// this should only apply for gas A SELLS 

 changeABPerCent=minf(changeABPerCent,((MaxTransA+CurrDltVlA)/aInAB)); 
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// check for max trans limit but allow passthrough 

// i.e 100% gas in and 100% out is allowable 

// if a sell occured CurrDeltaVolB is negative so MaxTransA + CurrDeltaVolB < MaxTransB 

if ( 

 (CurrDeltaVolB<0.0)&& ((changeABPerCent * bInAB * 

MaxTransB)>(MaxTransB+CurrDeltaVolB)) 

 ) 

 changeABPerCent=minf(changeABPerCent,((MaxTransB+CurrDeltaVolB)/bInAB)); 

 

 // now execute the sales of A and B 

 

 

 // first, calculate the profit of gas to be sold 

 volAToSell = 0.0; // the amount KNOWN to be available for sale 

 volReq = 0.0;     // how much is needed to fill the 'order' 

 costOfGasA = 0.0; 

 tgtSalesVol = changeABPerCent * aInAB * MaxTransA; 

 

 // Set for gas A 

 // loop through the inventory array from oldest to current (FIFO) 

 // 

 for(c=1;c<=GENERATION;c++) 

   { 

  if (volAToSell< tgtSalesVol) 

   // if we still need gas to fill the order 

   { 

   volReq=tgtSalesVol-volAToSell;  // how much do we still need for 

this order? 

 

   // check the gas bought in this period 

   if ( peCur->ATRIB[InventoryABase+c]  >= volReq) 

    { 

    volAToSell=tgtSalesVol; // we have the max available 

 

    // increment the total cost by the cost of the gas bought in 

this period 
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    costOfGasA += volReq * peCur-

>ATRIB[CostAidxBase+c]; 

 

    // add in the storage cost of the gas 

    costOfGasA += tgtSalesVol * CostOfStorageA * 

((GENERATION + 1)- c); 

 

    // decrement the inventory 

    peCur->ATRIB[InventoryABase+c]  -= volReq; 

 

    // signal that the order is filled 

    volReq= 0.0; 

    } 

 

   else // we can fill part of the order from the gas purchased this period 

    { 

    volReq -= peCur->ATRIB[InventoryABase+c]; 

    costOfGasA += peCur->ATRIB[InventoryABase+c] * 

peCur->ATRIB[CostAidxBase+c]; 

    // add in the storage cost of the gas 

    costOfGasA += peCur->ATRIB[InventoryABase+c] * 

CostOfStorageA * ((GENERATION + 1)- c); 

 

    // 

    volAToSell+= peCur->ATRIB[InventoryABase+c]; 

    peCur->ATRIB[InventoryABase+c] =0.0; 

    } 

   } 

  } 

 

 // at this point the amount of gasA available to sell, and it's total cost 

 // is known 

 

 Profit_A  = peCur->ATRIB[PriceAidxBase+GENERATION] - 

costOfGasA/volAToSell; 

 

 CurrSellVolAinAB  = -1.0 * volAToSell ; 
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 CashOnHand = CashOnHand +  volAToSell * peCur->ATRIB[PriceAidxBase + 

GENERATION]; 

 

 InventoryA =InventoryA - volAToSell ; 

 

 

 

 

 // process the sell of Gas B 

 

 // first, calculate the profit of gas to be sold 

 volBToSell = 0.0; // the amount KNOWN to be available for sale 

 volReq = 0.0;     // how much is needed to fill the 'order' 

 costOfGasB = 0.0; 

 tgtSalesVol = changeABPerCent * bInAB * MaxTransB; 

 

 

///////// 

 

 // Set for gas B 

 // loop through the inventory array from oldest to current (FIFO) 

 // 

 for(c=1;c<=GENERATION;c++) 

   { 

  if (volBToSell< tgtSalesVol) 

   // if we still need gas to fill the order 

   { 

   volReq=tgtSalesVol-volBToSell;  // how much do we still need for 

this order? 

 

   // check the gas bought in this period 

   if ( peCur->ATRIB[InventoryBBase+c]  >= volReq) 

    { 

    volBToSell=tgtSalesVol; // we have the max available 
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    // increment the total cost by the cost of the gas bought in 

this period 

    costOfGasB += volReq * peCur->ATRIB[CostBidxBase+c]; 

 

    // add in the storage cost of the gas 

    costOfGasB += tgtSalesVol * CostOfStorageB * 

((GENERATION + 1)- c); 

 

    // decrement the inventory 

    peCur->ATRIB[InventoryBBase+c]  -= volReq; 

 

    // signal that the order is filled 

    volReq= 0.0; 

    } 

 

   else // we can fill part of the order from the gas purchased this period 

    { 

    volReq -= peCur->ATRIB[InventoryBBase+c]; 

    costOfGasB += peCur->ATRIB[InventoryBBase+c] * 

peCur->ATRIB[CostBidxBase+c]; 

    // add in the storage cost of the gas 

    costOfGasB += peCur->ATRIB[InventoryBBase+c] * 

CostOfStorageB * ((GENERATION + 1)- c); 

 

    // 

    volBToSell+= peCur->ATRIB[InventoryBBase+c]; 

    peCur->ATRIB[InventoryBBase+c] =0.0; 

    } 

   } 

  } 

 

 // at this point the amount of gasB available to sell, and it's total cost 

 // is known 

 

 Profit_B  = peCur->ATRIB[PriceBidxBase+GENERATION] - 

costOfGasB/volBToSell; 
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 CurrSellVolBinAB  = -1.0 * volBToSell ; 

 

 CashOnHand = CashOnHand + volBToSell * peCur->ATRIB[PriceBidxBase + 

GENERATION]; 

 

 InventoryB =InventoryB - volBToSell ; 

 

 

  CurrDltVlAB = -1.0 * (volAToSell + volBToSell);// 

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 

 

 changeABPerCent *=-1.0; 

 

 

break; 

 

case MANDATORY_SELL: 

 

     // set minimum delivery requirements 

  aMinReq=aMinDelivery; 

  bMinReq=bMinDelivery; 

   aabMinReq = aInAB * abMinDelivery; 

  babMinReq = bInAB * abMinDelivery; 

 

  ARequiredVol = aMinDelivery + aInAB * abMinDelivery; 

  BRequiredVol = bMinDelivery + bInAB * abMinDelivery; 

 

 

  // first, calculate the profit of gas to be sold 

 

  volAToSell= 0.0; // the amount KNOWN to be available for sale 

  volReq = 0.0; // how much is needed to fill the 'order' 

  costOfGasA = 0.0; 

 

  // Set for gas A 

  // loop through the inventory array from oldest to current (FIFO) 

  // 
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  for(c=1;c<=GENERATION;c++) 

    { 

   if (volAToSell< ARequiredVol) 

    // if we still need gas to fill the order 

    { 

    volReq=ARequiredVol-volAToSell;  // how much do 

we still need for this order? 

 

    // check the gas bought in this period 

    if ( peCur->ATRIB[InventoryABase+c]  >= volReq) 

     { 

     volAToSell=ARequiredVol; // we have the max 

available 

 

     // increment the total cost by the cost of the gas 

bought in this period 

     costOfGasA += volReq * peCur-

>ATRIB[CostAidxBase+c]; 

 

     // add in the storage cost of the gas 

     costOfGasA += ARequiredVol * CostOfStorageA * 

((GENERATION + 1)- c); 

 

     // decrement the inventory 

     peCur->ATRIB[InventoryABase+c]  -= volReq; 

 

     // signal that the order is filled 

     volReq= 0.0; 

     } 

 

    else // we can fill part of the order from the gas purchased 

this period 

     { 

     volReq -= peCur->ATRIB[InventoryABase+c]; 

     costOfGasA += peCur-

>ATRIB[InventoryABase+c] * peCur->ATRIB[CostAidxBase+c]; 
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     // add in the storage cost of the gas 

     costOfGasA += peCur-

>ATRIB[InventoryABase+c] * CostOfStorageA * ((GENERATION + 1)- c); 

 

     // 

     volAToSell+= peCur-

>ATRIB[InventoryABase+c]; 

     peCur->ATRIB[InventoryABase+c] =0.0; 

     } 

    } 

   } 

 

  // at this point the amount of gasA available to sell, and it's total cost 

  // is known 

 

 

 

  volBToSell= 0.0; // the amount KNOWN to be available for sale 

  volReq = 0.0; // how much is needed to fill the 'order' 

  costOfGasB = 0.0; 

 

  // Set for gas B 

  // loop through the inventory array from oldest to current (FIFO) 

  // 

  for(c=1;c<=GENERATION;c++) 

    { 

   if (volBToSell< BRequiredVol) 

    // if we still need gas to fill the order 

    { 

    volReq=BRequiredVol-volBToSell;  // how much do 

we still need for this order? 

 

    // check the gas bought in this period 

    if ( peCur->ATRIB[InventoryBBase+c]  >= volReq) 

     { 

     volBToSell=BRequiredVol; // we have the max 

available 
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     // increment the total cost by the cost of the gas 

bought in this period 

     costOfGasB += volReq * peCur-

>ATRIB[CostBidxBase+c]; 

 

     // add in the storage cost of the gas 

     costOfGasB += BRequiredVol * CostOfStorageB * 

((GENERATION + 1)- c); 

 

     // decrement the inventory 

     peCur->ATRIB[InventoryBBase+c]  -= volReq; 

 

     // signal that the order is filled 

     volReq= 0.0; 

     } 

 

    else // we can fill part of the order from the gas purchased 

this period 

     { 

     volReq -= peCur->ATRIB[InventoryBBase+c]; 

     costOfGasB += peCur-

>ATRIB[InventoryBBase+c] * peCur->ATRIB[CostBidxBase+c]; 

     // add in the storage cost of the gas 

     costOfGasB += peCur-

>ATRIB[InventoryBBase+c] * CostOfStorageB * ((GENERATION + 1)- c); 

     volBToSell+= peCur->ATRIB[InventoryBBase+c]; 

     peCur->ATRIB[InventoryBBase+c] =0.0; 

     } 

    } 

   } 

 

 

  // if there is not enough in storage to meet requirements, buy some at SPOT 

price, with penalty 

  if ((aMinReq + aabMinReq) > volAToSell) 

   { 
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   // how much is still needed? 

   volReq = (aMinReq + aabMinReq)-volAToSell; 

   volAToSell=volAToSell + volReq; 

   // purchase gas on the market 

   CashOnHand = CashOnHand - volReq * peCur-

>ATRIB[PriceAidxBase+GENERATION] * (1.0 + aLowVolPenalty); 

   // add to inventory 

   InventoryA = InventoryA + volReq; 

   // increase cost of gas currently being solg 

   costOfGasA = costOfGasA + volReq * peCur-

>ATRIB[PriceAidxBase+GENERATION] * (1.0 + aLowVolPenalty); 

   } 

 

  if ((bMinReq + babMinReq) > volBToSell) 

   { 

   volReq = (bMinReq + babMinReq)-volBToSell; 

   volBToSell=volBToSell + volReq; 

   // purchase gas on the market 

   CashOnHand = CashOnHand - volReq * peCur-

>ATRIB[PriceBidxBase+GENERATION] * (1.0 + bLowVolPenalty); 

   // add to inventory 

   InventoryB = InventoryB + volReq; 

   // increase cost of gas currently being solg 

   costOfGasB = costOfGasB + volReq * peCur-

>ATRIB[PriceBidxBase+GENERATION] *(1.0 +  bLowVolPenalty); 

 

   } 

  // at this point the amount of gasB available to sell, and it's total cost 

  // is known 

 

 

  Profit_A  =  peCur->ATRIB[PriceAidxBase+GENERATION] - 

costOfGasA/volAToSell; 

  Profit_B  =  peCur->ATRIB[PriceBidxBase+GENERATION] - 

costOfGasB/volBToSell; 

  Profit_AB =  peCur->ATRIB[PriceABidxBase+GENERATION] - 

      (aInAB*(costOfGasA/volAToSell) + 
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       bInAB*(costOfGasB/volBToSell)); 

 

 

 

  CurrSellVolA  = aMinDelivery; 

  CurrSellVolAB = abMinDelivery; 

  CurrSellVolB  = bMinDelivery; 

 

 

  CashOnHand = CashOnHand +  CurrSellVolA * peCur-

>ATRIB[PriceAidxBase + GENERATION] +  

  CurrSellVolB * peCur->ATRIB[PriceBidxBase + GENERATION] + 

       CurrSellVolAB* peCur-

>ATRIB[PriceABidxBase + GENERATION]; 

 

 

  InventoryA =InventoryA -( CurrSellVolA + CurrSellVolAB * aInAB); 

  InventoryB =InventoryB -( CurrSellVolB + CurrSellVolAB * bInAB); 

 

 

break; 

} // end switch 

 

 

// moved from here 

} // end function 

 

 

double minf(double vala, double valb) 

{ 

if (vala>valb) return valb; 

return vala; 

} 

double maxf(double vala, double valb) 

{ 

if (vala>valb) return vala; 

return valb; 
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} 

 

//------------------------------------------------------------- 

 

void getMixedProduct( 

    double aAvail, 

    double bAvail, 

    double net_prof_a, 

    double net_prof_ab, 

    double net_prof_b, 

    double aInABmix, 

    double bInABmix, 

    double aMinReq, 

    double bMinReq, 

    double aabMinReq, 

    double babMinReq, 

       double *aVolSold, 

       double *abVolSold, 

    double *bVolSold) 

 

{ 

int *colno = NULL, Ncol,  ret = 0; 

double row[99]; 

double var[99]; 

 

 

lprec *lp2; 

 

 

HINSTANCE lpsolve; 

lpsolve = LoadLibrary("lpsolve55.dll"); 

if (lpsolve == NULL) 

  fprintf(runlogout,"Unable to load lpsolve shared library \n\n"); 

else 

 { 

fprintf(runlogout, "begin getMixedProd\n"); 

 } 
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//srand(time(NULL)); 

 

_make_lp    = (make_lp_func   *) GetProcAddress(lpsolve, "make_lp"); 

_add_constraint = (add_constraint_func *) GetProcAddress(lpsolve, "add_constraint"); 

_add_constraintex = (add_constraintex_func *) GetProcAddress(lpsolve, "add_constraintex"); 

_delete_lp  = (delete_lp_func *) GetProcAddress(lpsolve, "delete_lp"); 

_get_col_name = (get_col_name_func *) GetProcAddress(lpsolve, "get_col_name"); 

_get_objective = (get_objective_func *) GetProcAddress(lpsolve, "get_objective"); 

_get_variables = (get_variables_func *) GetProcAddress(lpsolve, "get_variables"); 

_print_lp = (print_lp_func *) GetProcAddress(lpsolve, "print_lp"); 

_print_solution = (print_solution_func *) GetProcAddress(lpsolve, "print_solution"); 

_read_LP = (read_LP_func *) GetProcAddress(lpsolve, "read_LP"); 

_set_add_rowmode = (set_add_rowmode_func *) GetProcAddress(lpsolve, 

"set_add_rowmode"); 

_set_col_name = (set_col_name_func *) GetProcAddress(lpsolve, "set_col_name"); 

_set_maxim = (set_maxim_func *) GetProcAddress(lpsolve, "set_maxim"); 

_set_obj_fn = (set_obj_fn_func *) GetProcAddress(lpsolve, "set_obj_fn"); 

_set_obj_fnex = (set_obj_fnex_func *) GetProcAddress(lpsolve, "set_obj_fnex"); 

_set_verbose = (set_verbose_func *) GetProcAddress(lpsolve, "set_verbose"); 

_solve = (solve_func *) GetProcAddress(lpsolve, "solve"); 

_write_LP = (write_LP_func *) GetProcAddress(lpsolve, "write_LP"); 

 

 

 

/* Create LP  */ 

lp2 = _make_lp(0, 3); 

 

 

 

 

 

row[1] = -1.0 * net_prof_a; 

row[2] = -1.0 * net_prof_ab; 

row[3] = -1.0 * net_prof_b; 

 

_set_obj_fn(lp2, row); 
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// set the constraints 

_set_add_rowmode(lp2, TRUE); 

row[1] = 1.0; 

row[2] = 0.0; /* also zero elements must be provided */ 

row[3] = 0.0; 

_add_constraint(lp2, row, LE, aAvail); /* constructs the row: 1.0 * x1 <= available A */ 

 

row[1] = 1.0; 

row[2] = 0.0; /* also zero elements must be provided */ 

row[3] = 0.0; 

_add_constraint(lp2, row, GE, aMinReq); /* constructs the row: 1.0 * x1 >= minrequired A*/ 

 

row[1] = 0.0; 

row[2] = 0.0; /* also zero elements must be provided */ 

row[3] = 1.0; 

_add_constraint(lp2, row, LE, bAvail); /* constructs the row: 1.0 * x3 <= available B*/ 

 

row[1] = 0.0; 

row[2] = 0.0; /* also zero elements must be provided */ 

row[3] = 1.0; 

_add_constraint(lp2, row, GE, bMinReq); /* constructs the row: 1.0 * x3 >= minrequired B*/ 

 

row[1] = 1.0; 

row[2] = aInABmix; 

row[3] = 0.0; 

_add_constraint(lp2, row, LE, aAvail); /*  1*x1 + aInABMix*x2 cannot contain more A than is 

aAvail*/ 

 

row[1] = 0.0; 

row[2] = aInABmix; 

row[3] = 0.0; 

_add_constraint(lp2, row, GE, aabMinReq); /* x2 aInABMix * x2  cannot be less the Avol in 

mandatory minimum AB*/ 
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row[1] = 0.0; 

row[2] = bInABmix; 

row[3] = 1.0; 

_add_constraint(lp2, row, LE, bAvail);   /*x2 (1+bInABMix) * X2 cannot contain more B than 

is bAvail*/ 

 

row[1] = 0.0; 

row[2] = bInABmix; 

row[3] = 0.0; 

_add_constraint(lp2, row, GE, babMinReq); /*x2  bInABMix * x2  cannot be less the Bvol in 

mandatory minimum AB*/ 

 

 

_set_add_rowmode(lp2, FALSE); 

 

 

// ------------------------------------------- 

Ncol=3; 

/* I only want to see important messages on screen while solving */ 

//    _set_verbose(lp2, IMPORTANT); 

 

/* Now let lpsolve calculate a solution */ 

ret = _solve(lp2); 

if(ret == OPTIMAL) 

      ret = 0; 

else 

     ret = 5; 

 

if(ret == 0) 

 { 

     /* a solution is calculated, now lets get some results */ 

 

     /* objective value */ 

     //printf("Objective value: %f\n", _get_objective(lp2)); 

 

     /* variable values */ 

     //_get_variables(lp2, row); 
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     //for(j = 0; j < Ncol; j++) 

      // printf("%s: %f\n", _get_col_name(lp2, j + 1), row[j]); 

 

 

 _get_variables(lp2, var); 

 

 //for (j=0; j<3;j++) 

 //     printf("var %i  = %f\n",j,var[j]); 

 *aVolSold  =var[0]; 

 *abVolSold =var[1]; 

 *bVolSold  =var[2]; 

} 

 

  if(colno != NULL) 

    free(colno); 

 

  if(lp2 != NULL) { 

    /* clean up such that all used memory by lpsolve is freed */ 

    _delete_lp(lp2); 

  } 

return; 

} 
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Appendix 9:  AWESIM Model Definition Files 

 
[CONTROL FILE] 
GEN,"SNTEST2","SNTEST2",,1,YES,YES,5; 
LIMITS,800,60,5,800,10,10,999; 
INITIALIZE,0.0,999999,YES,,YES; 
EQUIVALENCE,{{CashOnHand,ATRIB[1]}, 
{CurrSellVolA,ATRIB[2]}, 
{CurrSellVolAB,ATRIB[3]}, 
{CurrSellVolB,ATRIB[4]}, 
{InventoryA,ATRIB[5]}, 
{InventoryB,ATRIB[6]}, 
{MaxTransA,ATRIB[7]}, 
{MaxTransB,ATRIB[8]}, 
{MaxVolA,ATRIB[9]}, 
{MaxVolB,ATRIB[10]}, 
{Profit_A,ATRIB[11]}, 
{Profit_AB,ATRIB[12]}, 
{Profit_B,ATRIB[13]}, 
{aInAB,ATRIB[14]}, 
{bInAB,ATRIB[15]}, 
{RVAL_PROFIT,ATRIB[16]}, 
{CurrBuyVolA,ATRIB[17]}, 
{CurrBuyVolB,ATRIB[18]}, 
{changeAPerCent,ATRIB[19]}, 
{changeABPerCent,ATRIB[20]}, 
{changeBPerCent,ATRIB[21]}, 
{CurrADeltaVol,ATRIB[22]}, 
{CurrBDeltaVol,ATRIB[23]}, 
{CurrABDeltaVol,ATRIB[24]}, 
{Generation,LTRIB[1]}, 
{CurrentAction,STRIB[1]}, 
{History,STRIB[2]}, 
{HistoryCh,STRIB[5]}, 
{HistoryNu,STRIB[6]}, 
{BestHistory,SZ[1]}, 
{BestHistoryCh,SZ[2]}, 
{BestHistoryNu,SZ[3]}, 
{BestProfit,XX[1]}, 
{CostAidx,LL[01]}, 
{CostAidxBase,LL[02]}, 
{CostAidxMax,LL[03]}, 
{CostAidxMaxG,LL[04]}, 
{CostBidx,LL[05]}, 
{CostBidxBase,LL[06]}, 
{CostBidxMax,LL[07]}, 
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{CostBidxMaxG,LL[08]}, 
{Horizon,LL[09]}, 
{PriceABidx,LL[11]}, 
{PriceABidxBase,LL[12]}, 
{PriceABidxMax, 
LL[13]}, 
{PriceABidxMaxG,LL[14]}, 
{PriceAidx,LL[15]}, 
{PriceAidxBase,LL[16]}, 
{PriceAidxMax,LL[17]}, 
{PriceAidxMaxG,LL[18]}, 
{PriceBidx,LL[19]}, 
{PriceBidxBase,LL[20]}, 
{PriceBidxMax,LL[21]}, 
{PriceBidxMaxG,LL[22]}, 
{ReadResult,LL[23]}, 
{InventoryABase,LL[24]}, 
{InventoryBBase,LL[25]}, 
{CurrentScenerio,LL[26]}, 
{ScenerioCtr,LL[27]}, 
{AvgCostOfInvA,LL[30]}, 
{AvgCostOfInvB,LL[31]}, 
{variationMax,LL[32]}, 
{processType,LL[33]}, 
{clockTime,LL[34]}, 
{clockTime1,LL[35]}, 
{clockTime2,LL[36]}, 
{clockTime3,LL[37]}, 
{fReadResult,XX[2]}, 
{CostOfStorageA,XX[3]}, 
{CostOfStorageB,XX[4]}, 
{PRUNE,0}, 
{NO_PRUNE,1}, 
{SCENERIO,LTRIB[2]}, 
{nextAction,LTRIB[3]}, 
{variationNumber,LTRIB[4]}, 
{rand02Action,LTRIB[5]}, 
{RESULTFILE,STRIB[4]}, 
{STACK,LL[10]}, 
{RVAL_ACTION,STRIB[3]}, 
{cVaryPriceCostTest,-1}, 
{cVaryPriceCostNone,0}, 
{cVaryPriceCostNorm,1}, 
{cFileLoadTest,0}, 
{cFileLoadLocal,1}, 
{cFileLoadGlobal,2}, 
{cFileLoadG2L,3}, 
{cFileLoadL2G,4}, 
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{cTrue,1}, 
{cFalse,0}, 
{cTypeRecursive,1}, 
{cTypeRandom,2}, 
{cTypeRand02,3}, 
{Prices_A_File,STRIB[10]}, 
{cTimerGet, 
10}, 
{cTimerSet,11}, 
{cRand_A,13}, 
{cRand_AB,14}, 
{cRand_B,15}}; 
INTLC,{{ScenerioCtr,0}, 
{CurrentScenerio,1}}; 
NETWORK,READ; 
FIN; 
 
 
 
[NETWORK FILE] 
 
 
[RECUR SUBNETWORK] 
;DBF file created with Version 4 
        VSN,SNRECUR1,,,,,,,,,,{30,150}; 
NodeArrives: ENTERVSN,ProcessSVN,1,,,,,,,,,{70,300}; 
        ACTIVITY,,,,,,,,,,{2,4,,,}; 
Start: GOON,1,,,,,,,,,,{140,300}; 
        ACTIVITY,,,,,,,,,,{4,6,,,170,300}; 
SNRECUR1_WRITE_7: WRITE,"history_stack_init.txt",YES,"Stack = %d  \tenter:  gen:  %d   
%s InvA: %f    InvB: 
%f\n",{STACK,GENERATION,CURRENTACTION,INVENTORYA,INVENTORYB},1,,,,,,{
240,300}; 
        ACTIVITY,1,,,,,,,,,{6,8,,,}; 
DirectAction: GOON,3,,,,,,,,,,{430,300}; 
        ACTIVITY,,,((CurrentAction=="B")||(CurrentAction=="*")),,,,,,,{8,12,,,}; 
        ACTIVITY,12,0,((CurrentAction=="H") || 
(CurrentAction=="*")),"SNRECUR1_ASSIGN_3",,,,,,{8,63,,,}; 
        ACTIVITY,13,0,((CurrentAction=="S") || 
(CurrentAction=="*")),"SNRECUR1_GOON_3",,,,,,{8,79,,,470,420,570,420}; 
SNRECUR1_WRITE_6: WRITE,"history_stack_init.txt",YES,"Stack = %d  \tpre-buy:  gen:  
%d\n",{STACK,GENERATION},1,,,,,,{540,230}; 
        ACTIVITY,,,,,,,,,,{12,14,,,}; 
        GOON,2,,,,,,,,,,{740,230}; 
        ACTIVITY,,0,((CurrentAction=="B") || (CurrentAction=="*")) && ((InventoryA + 
MaxTransA) <= ((Horizon - GENERATION) * MaxTransA)) && ((InventoryB + MaxTransB) 
<= ((Horizon - GENERATION) * MaxTransB))&& ((InventoryA + MaxTransA) <= MaxVolA) 
&& ((InventoryB + MaxTransB) <= MaxVolB),,,,,,,{14,17,,,810,170,790,130,850,130}; 
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        ACTIVITY,,0,((InventoryA + MaxTransA) > ((Horizon - GENERATION) * 
MaxTransA))||((InventoryB + MaxTransB) > ((Horizon - GENERATION) * 
MaxTransB))||((InventoryA + MaxTransA) > MaxVolA) || ((InventoryB + MaxTransB) > 
MaxVolB),"SNRECUR1_ASSIGN_2",,,,,,{14,57,,,1000,230}; 
calcBuyVols: ASSIGN,{{fReadResult,USERF(7)}},1,,,,,,,,,{880,130}; 
        ACTIVITY,,,,,,,,,,{17,19,,,}; 
SNRECUR1_ASSIGN_6: ASSIGN,{{STACK,STACK-1}},1,,,,,,,,,{980,130}; 
        ACTIVITY,,,,,,,,,,{19,21,,,}; 
SNRECUR1_WRITE_10: WRITE,"history_stack_init.txt",YES,"Stack = %d  \tpost-buyB:  gen:  
%d\n",{STACK,GENERATION},1,,,,,,{1090,130}; 
        ACTIVITY,,,,,,,,,,{21,23,,,}; 
PostBuy2: 
ASSIGN,{{Generation,Generation+1},{History,strcat(History,"B")},{History,strcat(History,"[a]
")},{History,strcat(History,itoa(nint(CurrBuyVolA)))},{History,strcat(History,"[b]")},{History,s
trcat(History,itoa(nint(CurrBuyVolB)))},{HistoryCh,strcat(HistoryCh,"B")},{HistoryNu,strcat(
HistoryNu,itoa(nint(CurrBuyVolA)))},{HistoryNu,strcat(HistoryNu,",0,")},{HistoryNu,strcat(H
istoryNu,itoa(nint(CurrBuyVolB)))},{HistoryNu,strcat(HistoryNu,",")}},4,,,,,,,,,{1250,130}; 
        ACTIVITY,,0,Generation <=Horizon,"BuyBuy",,,,,,{23,28,,,1670,190}; 
        ACTIVITY,,,Generation <= Horizon,"BuyHold",,,,,,{23,30,,,1690,250}; 
        ACTIVITY,,,Generation <= Horizon,"BuySell",,,,,,{23,32,,,1660,350}; 
        ACTIVITY,,,Generation > Horizon,"SNRECUR1_GOON_2",,,,,,{23,34,,,1430,350}; 
BuyBuy: ASSIGN,{{CURRENTACTION,"B"},{STACK,STACK+1}},1,,,,,,,,,{1790,190}; 
        ACTIVITY,101,,,"Start",,,,,,{28,4,,,1870,70,140,70,110,70,120,230}; 
BuyHold: ASSIGN,{{CURRENTACTION,"H"},{STACK,STACK+1}},1,,,,,,,,,{1810,250}; 
        ACTIVITY,102,,,"Start",,,,,,{30,4,,,1890,60,100,60}; 
BuySell: ASSIGN,{{CURRENTACTION,"S"},{STACK,STACK+1}},1,,,,,,,,,{1820,350}; 
        ACTIVITY,103,,,"Start",,,,,,{32,4,,,1900,50,90,50}; 
SNRECUR1_GOON_2: GOON,2,,,,,,,,,,{1450,490}; 
        ACTIVITY,,,,,,,,,,{34,36,,,}; 
End_of_Cycle: ASSIGN,{{fReadResult,USERF(8)}},1,,,,,,,,,{1460,460}; 
        ACTIVITY,,,,,,,,,,{36,38,,,}; 
        GOON,2,,,,,,,,,,{1540,520}; 
        ACTIVITY,,,CashOnHand>=BestProfit,,,,,,,{38,41,,,1580,490}; 
        ACTIVITY,,,,"writehistory",,,,,,{38,54,,,1620,580}; 
PREPAREEXIT: 
ASSIGN,{{BESTPROFIT,MAX(BESTPROFIT,CASHONHAND)},{RVAL_ACTION,HISTO
RY},{RVAL_PROFIT,MAX(BESTPROFIT,CASHONHAND)},{BestHistory,History},{BestH
istoryCh,HistoryCh},{BestHistoryNu,HistoryNu}},1,,,,,,,,,{1590,490}; 
        ACTIVITY,1999,,,,,,,,,{41,43,,,}; 
BP: COLCT,1003,BESTPROFIT,"BestProfit_SVN",20,0,1000,1,,,,{1810,490}; 
        ACTIVITY,,,,,,,,,,{43,45,,,}; 
SNRECUR1_WRITE_9: WRITE,"history_stack_init.txt",YES,"Stack = %d  \tenter:  gen:  %d   
%s\n",{STACK,GENERATION,CURRENTACTION},1,,,,,,{1940,490}; 
        ACTIVITY,,,stack<=-2,"SNRECUR1_ASSIGN_1",,,,,,{45,48,,,2100,490}; 
        ACTIVITY,,,stack != -2,"SNRECUR1_TERMINATE_1",,,,,,{45,53,,,}; 
SNRECUR1_ASSIGN_1: 
ASSIGN,{{BESTPROFIT,MAX(BESTPROFIT,CASHONHAND)},{RVAL_ACTION,HISTO
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RY},{RVAL_PROFIT,MAX(BESTPROFIT,CASHONHAND)},{readResult,USERF(cTimerG
et)},{ClockTime2,ClockTime-ClockTime1}},1,,,,,,,,,{2270,490}; 
        ACTIVITY,,,,,,,,,,{48,50,,,}; 
SNRECUR1_WRITE_8: WRITE,"results.txt",YES,"scen:, 
%d,%d,%f,%s,%s%f\n",{CURRENTSCENERIO,ClockTime2,rval_profit,BestHistoryCh,BestH
istoryNu,AinAb},1,,,,,,{2490,490}; 
        ACTIVITY,,,,,,,,,,{50,52,,,}; 
        RETURNVSN,BESTPROFIT,1,,,,,,,,,{2840,490}; 
SNRECUR1_TERMINATE_1: TERMINATE,INF,,,,,,,,,,{2090,520}; 
writehistory: WRITE,"history_stack_init.txt",YES,"stack = %d\t Cash=%f   \thistory: %s  
\tInvA= %f InvB= 
%f\n",{STACK,CASHONHAND,HISTORY,INVENTORYA,INVENTORYB},1,,,,,,{1710,580
}; 
        ACTIVITY,,,,,,,,,,{54,56,,,}; 
        TERMINATE,INF,,,,,,,,,,{1950,580}; 
SNRECUR1_ASSIGN_2: ASSIGN,{{STACK,STACK-1}},1,,,,,,,,,{1030,250}; 
        ACTIVITY,,,,,,,,,,{57,59,,,}; 
SNRECUR1_WRITE_1: WRITE,"history_stack_init.txt",YES,"Stack = %d  \tpost-buyA prune:  
gen:  %d\n",{STACK,GENERATION},1,,,,,,{1130,250}; 
        ACTIVITY,,,stack != -2,,,,,,,{59,62,,,}; 
        ACTIVITY,,,stack == -2,"SNRECUR1_ASSIGN_1",,,,,,{59,48,,,1860,420,2000,420}; 
        TERMINATE,INF,,,,,,,,,,{1320,250}; 
SNRECUR1_ASSIGN_3: ASSIGN,{{STACK,STACK-1}},1,,,,,,,,,{610,300}; 
        ACTIVITY,,,,,,,,,,{63,65,,,}; 
SNRECUR1_GOON_1: GOON,2,,,,,,,,,,{740,300}; 
        ACTIVITY,,,((InventoryA <= ((Horizon- GENERATION) * MaxTransA))  && 
(InventoryB <= ((Horizon- GENERATION) * MaxTransB))),,,,,,,{65,68,,,}; 
        ACTIVITY,,,((InventoryA > ((Horizon- GENERATION) * MaxTransA))  ||  (InventoryB > 
((Horizon- GENERATION) * 
MaxTransB))),"SNRECUR1_WRITE_4",,,,,,{65,75,,,770,320,770,360}; 
SNRECUR1_WRITE_3: WRITE,"history_stack_init.txt",YES,"Stack= %d  \tpost-hold :  gen:  
%d\n",{STACK,GENERATION},1,,,,,,{1110,300}; 
        ACTIVITY,,,,,,,,,,{68,70,,,}; 
ExecuteHold: 
ASSIGN,{{HISTORY,STRCAT(HISTORY,"H")},{GENERATION,GENERATION+1},{Histo
ryCh,strcat(HistoryCh,"H")},{HistoryNu,strcat(HistoryNu,"0,0,0,")}},4,,,,,,,,,{1260,300}; 
        ACTIVITY,31,,Generation <=HORIZON,"BuyBuy",,,,,,{70,28,,,1670,190}; 
        ACTIVITY,32,,GENERATION<=HORIZON,"BuyHold",,,,,,{70,30,,,1690,250}; 
        ACTIVITY,33,,GENERATION<=HORIZON,"BuySell",,,,,,{70,32,,,1660,350}; 
        ACTIVITY,,,Generation > Horizon,"SNRECUR1_GOON_2",,,,,,{70,34,,,1410,360}; 
SNRECUR1_WRITE_4: WRITE,"history_stack_init.txt",YES,"Stack= %d  \tpost-hold (prune) :  
gen:  %d\n",{STACK,GENERATION},1,,,,,,{880,360}; 
        ACTIVITY,,,stack != -2,,,,,,,{75,78,,,}; 
        ACTIVITY,,,stack == -2,"SNRECUR1_ASSIGN_1",,,,,,{75,48,,,1840,420,2000,420}; 
        TERMINATE,INF,,,,,,,,,,{1230,360}; 
SNRECUR1_GOON_3: GOON,1,,,,,,,,,,{600,420}; 
        ACTIVITY,,,(InventoryA> .0001 && InventoryB>.0001),,,,,,,{79,82,,,}; 
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        ACTIVITY,,,(InventoryA< .0001 || 
InventoryB<.0001),"SNRECUR1_ASSIGN_4",,,,,,{79,97,,,700,470,870,800}; 
CalcSellQtys: ASSIGN,{{fReadResult,USERF(2)}},1,,,,,,,,,{760,420}; 
        ACTIVITY,,,,,,,,,,{82,84,,,840,420}; 
ExecuteSell: 
ASSIGN,{{HISTORY,strcat(HISTORY,"S")},{HISTORY,strcat(HISTORY,"[a]")},{HISTORY
,strcat(HISTORY,itoa((nint(currSellVolA))))},{HISTORY,strcat(HISTORY,"[ab]")},{HISTOR
Y,strcat(HISTORY,itoa(nint(currSellVolAB)))},{HISTORY,strcat(HISTORY,"[b]")},{HISTOR
Y,strcat(HISTORY,itoa(nint(currSellVolB)))},{HistoryCh,strcat(HistoryCh,"S")},{HistoryNu,st
rcat(HistoryNu,itoa(nint(-
1.0*CurrSellVolA)))},{HistoryNu,strcat(HistoryNu,",")},{HistoryNu,strcat(HistoryNu,itoa(nint(
-
1.0*CurrSellVolAB)))},{HistoryNu,strcat(HistoryNu,",")},{HistoryNu,strcat(HistoryNu,itoa(nin
t(-1*CurrSellVolB)))},{HistoryNu,strcat(HistoryNu,",")}},2,,,,,,,,,{880,440}; 
        ACTIVITY,,,,,,,,,,{84,87,,,1140,420}; 
        ACTIVITY,,,,"SNRECUR1_WRITE_2",,,,,,{84,94,,,}; 
SNRECUR1_ASSIGN_7: ASSIGN,{{STACK,STACK-1}},1,,,,,,,,,{1170,420}; 
        ACTIVITY,,,,,,,,,,{87,89,,,}; 
PostSell: ASSIGN,{{GENERATION,GENERATION+1}},4,,,,,,,,,{1270,420}; 
        ACTIVITY,41,,GENERATION<=HORIZON,"BuyBuy",,,,,,{89,28,,,1670,190}; 
        ACTIVITY,42,,GENERATION<=HORIZON,"BuyHold",,,,,,{89,30,,,1690,250}; 
        ACTIVITY,43,,GENERATION<=HORIZON,"BuySell",,,,,,{89,32,,,1660,350}; 
        ACTIVITY,,,Generation > Horizon,"SNRECUR1_GOON_2",,,,,,{89,34,,,1420,450}; 
SNRECUR1_WRITE_2: WRITE,"history_stack_init.txt",YES,"stack = %d  post-sell  gen:  %d  
Current Action: %s   History= %s  Value=%f   InvA= %f  InvB:  %f   CurrSellVolA=%f  
CurrSellVolAB=%f   
CurrSellVolB=%f\n",{stack,GENERATION,CURRENTACTION,HISTORY,CASHONHAND,
INVENTORYA,INVENTORYB,CurrSellVolA,CurrSellVolAB,CurrSellVolB},1,,,,,,{1490,710
}; 
        ACTIVITY,,,,,,,,,,{94,96,,,}; 
        TERMINATE,INF,,,,,,,,,,{2020,710}; 
SNRECUR1_ASSIGN_4: ASSIGN,{{STACK,STACK-1}},1,,,,,,,,,{930,800}; 
        ACTIVITY,,,,,,,,,,{97,99,,,}; 
SNRECUR1_WRITE_5: WRITE,"history_stack_init.txt",YES,"Stack = %d  \tpost-sell:  prune 
gen:  %d history: %s\n",{STACK,GENERATION,HISTORY},1,,,,,,{1100,800}; 
        ACTIVITY,,,stack== -
2,"SNRECUR1_ASSIGN_1",,,,,,{99,48,,,1290,790,2080,790,2080,560}; 
        ACTIVITY,,,stack != -2,,,,,,,{99,102,,,}; 
        TERMINATE,INF,,,,,,,,,,{2400,800}; 
 
[RAND01 SUBNETWORK] 
 
;DBF file created with Version 4 
        VSN,SNRAND01,,,,,,,,,,{40,30}; 
NodeArrives: ENTERVSN,ProcessSVN,1,,,,,,,,,{50,300}; 
        ACTIVITY,,,,,,,,,,{2,4,,,}; 
Start: GOON,1,,,,,,,,,,{90,300}; 
        ACTIVITY,1,,,,,,,,,{4,6,,,}; 
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        ASSIGN,{{nextAction,nint(UNFRM(1,3,7))}},1,,,,,,,,,{340,300}; 
        ACTIVITY,,,nextAction==1,,,,,,,{6,11,,,450,230}; 
        ACTIVITY,,,nextAction==2,"BuyHold",,,,,,{6,53,,,}; 
        ACTIVITY,,,nextAction==3,"BuySell",,,,,,{6,60,,,450,420}; 
        ACTIVITY,,,,"SNRANDOM_WRITE_2",,,,,,{6,71,,,440,460,490,480}; 
BuyBuy: ASSIGN,{{CURRENTACTION,"B"}},1,,,,,,,,,{490,230}; 
        ACTIVITY,,,,"SNRECUR1_WRITE_6",,,,,,{11,13,,,}; 
SNRECUR1_WRITE_6: WRITE,"history_stack_init_rnd.txt",YES,"variationNumber %d  
\tbuy:  \tgen:  %d\t nextAction=%d\t InvA: %f \t InvB: 
%f\n",{variationNumber,GENERATION,nextAction,InventoryA,InventoryB},1,,,,,,{620,230}; 
        ACTIVITY,,,,,,,,,,{13,15,,,}; 
calcBuyVols: ASSIGN,{{fReadResult,USERF(7)}},1,,,,,,,,,{900,230}; 
        ACTIVITY,,,,,,,,,,{15,17,,,}; 
PostBuy2: 
ASSIGN,{{Generation,Generation+1},{History,strcat(History,"B")},{HistoryCh,strcat(HistoryC
h,"B")},{HistoryNu,strcat(HistoryNu,itoa(nint(CurrBuyVolA)))},{HistoryNu,strcat(HistoryNu,"
,0,")},{HistoryNu,strcat(HistoryNu,itoa(nint(CurrBuyVolB)))},{HistoryNu,strcat(HistoryNu,",")
}},2,,,,,,,,,{1200,230}; 
        ACTIVITY,,0,Generation <=Horizon,"SNRANDOM_GOON_1",,,,,,{17,20,,,1500,240}; 
        ACTIVITY,,,Generation > Horizon,"SNRECUR1_GOON_2",,,,,,{17,22,,,1460,420}; 
SNRANDOM_GOON_1: GOON,1,,,,,,,,,,{1570,260}; 
        ACTIVITY,,,,"Start",,,,,,{20,4,,,1660,260,1660,50,60,50}; 
SNRECUR1_GOON_2: GOON,3,,,,,,,,,,{1470,490}; 
        ACTIVITY,,,,,,,,,,{22,24,,,}; 
End_of_Cycle: ASSIGN,{{fReadResult,USERF(8)}},1,,,,,,,,,{1520,490}; 
        ACTIVITY,,,,,,,,,,{24,26,,,}; 
writehistory: WRITE,"history_stack_init_rnd.txt",YES,"variationNumber %d\t GEN 
%d\tCash=%f   \thistory: %s  \tInvA= %f InvB= 
%f\n",{variationNumber,generation,CASHONHAND,HISTORY,INVENTORYA,INVENTOR
YB},1,,,,,,{1650,660}; 
        ACTIVITY,,,,,,,,,,{26,28,,,1920,660,1920,600,1680,600,1610,490}; 
        GOON,2,,,,,,,,,,{1630,490}; 
        ACTIVITY,,,CashOnHand>BestProfit,,,,,,,{28,31,,,}; 
        
ACTIVITY,,,CashOnHand<=BestProfit,"SNRANDOM_GOON_2",,,,,,{28,41,,,1700,560,2730,
560}; 
PREPAREEXIT: 
ASSIGN,{{BESTPROFIT,MAX(BESTPROFIT,CASHONHAND)},{RVAL_ACTION,HISTO
RY},{RVAL_PROFIT,MAX(BESTPROFIT,CASHONHAND)},{BestHistory,History},{BestH
istoryCh,HistoryCh},{BestHistoryNu,HistoryNu}},1,,,,,,,,,{1710,490}; 
        ACTIVITY,1999,,,,,,,,,{31,33,,,}; 
BP: COLCT,1003,BESTPROFIT,"BestProfit_SVN",20,0,1000,1,,,,{1940,490}; 
        ACTIVITY,,,,,,,,,,{33,35,,,}; 
SNRECUR1_WRITE_9: WRITE,"history_stack_init_rnd.txt",YES,"variationNumber %d \tSet 
BestProfit:  gen:  %d   
%s\n",{variationNumber,GENERATION,CURRENTACTION},1,,,,,,{2100,490}; 
        ACTIVITY,,,,"SNRECUR1_ASSIGN_1",,,,,,{35,37,,,2270,490}; 
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SNRECUR1_ASSIGN_1: 
ASSIGN,{{BESTPROFIT,MAX(BESTPROFIT,CASHONHAND)},{RVAL_ACTION,HISTO
RY},{RVAL_PROFIT,MAX(BESTPROFIT,CASHONHAND)},{readResult,USERF(cTimerG
et)},{ClockTime2,ClockTime-ClockTime1}},1,,,,,,,,,{2350,490}; 
        ACTIVITY,,,,,,,,,,{37,39,,,}; 
SNRANDOM_WRITE_1: WRITE,"results_random.txt",YES,"scen: 
%d,ct=%d,ct1=%d,ct2=%d,%d,%f,%s,%s\n",{CurrentScenerio,ClockTime,ClockTime1,ClockTi
me2,variationNumber,rval_profit,BestHistoryCh,BestHistoryNu},1,,,,,,{2610,490}; 
        ACTIVITY,,,,,,,,,,{39,41,,,}; 
SNRANDOM_GOON_2: GOON,1,,,,,,,,,,{2810,490}; 
        ACTIVITY,,,variationNumber<variationMax,,,,,,,{41,44,,,2790,400}; 
        ACTIVITY,,,variationNumber==variationMax,"SNRECUR1_WRITE_8",,,,,,{41,50,,,}; 
        GOON,1,,,,,,,,,,{2830,400}; 
        ACTIVITY,,,,,,,,,,{44,46,,,}; 
        ASSIGN,{{variationNumber,variationNumber 
+1},{history,""},{CashOnHand,0},{historyCH,""},{historyNU,""},{Generation,1}},1,,,,,,,,,{288
0,400}; 
        ACTIVITY,,,,,,,,,,{46,48,,,}; 
ResetInventory: ASSIGN,{{fReadResult,USERF(9)}},1,,,,,,,,,{3050,400}; 
        
ACTIVITY,,,,"SNRANDOM_GOON_1",,,,,,{48,20,,,3160,400,3160,300,2710,300,2710,380,25
45,380,2380,380,1860,380,1560,380}; 
SNRECUR1_WRITE_8: WRITE,"results.txt",YES,"scen:, 
%d,%d,%f,%s,%s%f\n",{CURRENTSCENERIO,ClockTime2,rval_profit,BestHistoryCh,BestH
istoryNu,AinAb},1,,,,,,{2960,490}; 
        ACTIVITY,,,,,,,,,,{50,52,,,}; 
        RETURNVSN,BESTPROFIT,1,,,,,,,,,{3120,490}; 
BuyHold: ASSIGN,{{CURRENTACTION,"H"}},1,,,,,,,,,{490,300}; 
        ACTIVITY,,,,,,,,,,{53,55,,,}; 
SNRECUR1_WRITE_3: WRITE,"history_stack_init_rnd.txt",YES,"variationNumber %d\thold 
:  gen:  %d\t nextAction=%d\n",{variationNumber,GENERATION,nextAction},1,,,,,,{620,300}; 
        ACTIVITY,,,,,,,,,,{55,57,,,}; 
ExecuteHold: 
ASSIGN,{{HISTORY,STRCAT(HISTORY,"H")},{GENERATION,GENERATION+1},{Histo
ryCh,strcat(HistoryCh,"H")},{HistoryNu,strcat(HistoryNu,"0,0,0,")}},2,,,,,,,,,{1190,310}; 
        ACTIVITY,31,,Generation 
<=HORIZON,"SNRANDOM_GOON_1",,,,,,{57,20,,,1500,260}; 
        ACTIVITY,,,Generation > Horizon,"SNRECUR1_GOON_2",,,,,,{57,22,,,1450,430}; 
BuySell: ASSIGN,{{CURRENTACTION,"S"}},1,,,,,,,,,{490,420}; 
        ACTIVITY,13,,,"SNRECUR1_GOON_3",,,,,,{60,62,,,590,420}; 
SNRECUR1_GOON_3: GOON,1,,,,,,,,,,{650,420}; 
        ACTIVITY,,,,,,,,,,{62,64,,,}; 
CalcSellQtys: ASSIGN,{{fReadResult,USERF(2)}},1,,,,,,,,,{790,420}; 
        ACTIVITY,,,,,,,,,,{64,66,,,920,420,920,530,770,530,770,600}; 
SNRECUR1_WRITE_2: WRITE,"history_stack_init_rnd.txt",YES,"variationNumber 
%d\tsell(post)  nextAction=%d\tgen:  %d  Current Action: %s   History= %s  Value=%f   InvA= 
%f  InvB:  %f   CurrSellVolA=%f  CurrSellVolAB=%f   
CurrSellVolB=%f\n",{variationNumber,nextAction,GENERATION,CURRENTACTION,HIST
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ORY,CASHONHAND,INVENTORYA,INVENTORYB,CurrSellVolA,CurrSellVolAB,CurrSel
lVolB},1,,,,,,{830,600}; 
        ACTIVITY,,,,,,,,,,{66,68,,,1430,600,1430,530,1100,530,1100,420}; 
ExecuteSell: 
ASSIGN,{{HISTORY,strcat(HISTORY,"S")},{HistoryCh,strcat(HistoryCh,"S")},{HistoryNu,st
rcat(HistoryNu,itoa(nint(-
1.0*CurrSellVolA)))},{HistoryNu,strcat(HistoryNu,",")},{HistoryNu,strcat(HistoryNu,itoa(nint(
-
1.0*CurrSellVolAB)))},{HistoryNu,strcat(HistoryNu,",")},{HistoryNu,strcat(HistoryNu,itoa(nin
t(-
1*CurrSellVolB)))},{HistoryNu,strcat(HistoryNu,",")},{Generation,Generation+1}},3,,,,,,,,,{11
30,420}; 
        
ACTIVITY,41,,GENERATION<=HORIZON,"SNRANDOM_GOON_1",,,,,,{68,20,,,1500,280
}; 
        ACTIVITY,,,Generation > Horizon,"SNRECUR1_GOON_2",,,,,,{68,22,,,1440,450}; 
SNRANDOM_WRITE_2: WRITE,"history_stack_init_rnd.txt",YES,"variationNumber: 
%d\tbad nextActionValue:  gen:  %d\t 
nextAction=%d\n",{variationNumber,GENERATION,nextAction},1,,,,,,{530,480}; 
        ACTIVITY,,,,,,,,,,{71,73,,,}; 
        TERMINATE,INF,,,,,,,,,,{780,480}; 
 
[RAND02 SUBNETWORK] 
;DBF file created with Version 4 
        VSN,SNRAND02,,,,,,,,,,{40,30}; 
NodeArrives: ENTERVSN,ProcessR02,1,,,,,,,,,{50,300}; 
        ACTIVITY,,,,,,,,,,{2,4,,,}; 
Start: GOON,1,,,,,,,,,,{90,300}; 
        ACTIVITY,1,,,,,,,,,{4,6,,,130,300,130,240}; 
        ASSIGN,{{rand02Action,0},{changeAPerCent,nint(UNFRM(-
4,4,7))*.25}},1,,,,,,,,,{150,240}; 
        ACTIVITY,,,,,,,,,,{6,8,,,}; 
SNRAND02_WRITE_1: WRITE,"history_stack_init_rnd02.txt",YES,"VarNo: %d  gen %d  
APct= %8.3f    ",{variationnumber,generation,changeAPercent},1,,,,,,{320,240}; 
        ACTIVITY,,,,,,,,,,{8,10,,,}; 
        ASSIGN,{{fReadResult,USERF(cRand_A)}},1,,,,,,,,,{450,240}; 
        ACTIVITY,,,,,,,,,,{10,12,,,590,240,590,260,150,260,140,260,140,280}; 
        ASSIGN,{{changeBPerCent,nint(UNFRM(-4,4,7))*.25}},1,,,,,,,,,{150,280}; 
        ACTIVITY,,,,,,,,,,{12,14,,,}; 
SNRAND02_WRITE_2: WRITE,"history_stack_init_rnd02.txt",YES,"BPct= %8.2f   
",{changeBPercent},1,,,,,,{320,280}; 
        ACTIVITY,,,,,,,,,,{14,16,,,}; 
        ASSIGN,{{fReadResult,USERF(cRand_B)}},1,,,,,,,,,{450,280}; 
        ACTIVITY,,,,,,,,,,{16,18,,,590,280,590,300,140,300,140,320}; 
        ASSIGN,{{changeABPerCent,nint(UNFRM(-4,0,7))*.25}},1,,,,,,,,,{150,320}; 
        ACTIVITY,,,,,,,,,,{18,20,,,}; 
SNRAND02_WRITE_3: WRITE,"history_stack_init_rnd02.txt",YES,"ABPct= %8.2f  
currDeltaVolAB   %8.2f  ",{changeABPercent,currABDeltaVol},1,,,,,,{320,320}; 
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        ACTIVITY,,,,,,,,,,{20,22,,,}; 
        ASSIGN,{{fReadResult,USERF(cRand_AB)}},1,,,,,,,,,{490,320}; 
        ACTIVITY,,,,,,,,,,{22,24,,,}; 
SNRAND02_WRITE_4: WRITE,"history_stack_init_rnd02.txt",YES,"   dltA= %8.3f   dltAB= 
%8.3f   dltB= %8.3f     \n",{CurrADeltaVol,CurrABDeltaVol,CurrBDeltaVol},1,,,,,,{620,320}; 
        ACTIVITY,,,,,,,,,,{24,26,,,780,320,780,360,160,360,90,360,90,430}; 
SNRECUR1_WRITE_6: WRITE,"history_stack_init_rnd02.txt",YES,"varNo: %d  gen %d  
Apct %8.2f  Bpct %8.2f  ABpct %8.2f  act %d  DltA %8.2f   DltAB %8.2f  DltB %8.2f invA 
%8.2f 
invB%8.2f\n",{variationNumber,generation,changeAPercent,changeBPercent,changeABPercent,
rand02Action,CurrADeltaVol,CurrABDeltaVol,CurrBDeltaVol,InventoryA,InventoryB},1,,,,,,{
170,430}; 
        ACTIVITY,,,,,,,,,,{26,28,,,580,430,550,490,530,510,550,510}; 
SNRECUR1_WRITE_2: WRITE,"history_stack_init_rnd_pre2.txt",YES,"var %d gen:  %d 
Act=%d   $$=%8.2f   InvA= %8.2f  InvB:  %8.2f   hist:  %s 
\n",{variationNumber,GENERATION,rand02Action,CASHONHAND,INVENTORYA,INVEN
TORYB,HISTORY},1,,,,,,{580,510}; 
        ACTIVITY,,,,,,,,,,{28,30,,,1190,510,1190,420,800,420,800,300}; 
SNRAND02_ASSIGN_1: 
ASSIGN,{{Generation,Generation+1},{HistoryNu,strcat(HistoryNu,itoa(nint(CurrADeltaVol)))
},{HistoryNu,strcat(HistoryNu,",")},{HistoryNu,strcat(HistoryNu,itoa(nint(CurrABDeltaVol)))}
,{HistoryNu,strcat(HistoryNu,",")},{HistoryNu,strcat(HistoryNu,itoa(nint(CurrBDeltaVol)))},{
HistoryNu,strcat(HistoryNu,",")}},1,,,,,,,,,{940,300}; 
        ACTIVITY,,,,,,,,,,{30,32,,,}; 
        GOON,1,,,,,,,,,,{1180,300}; 
        ACTIVITY,,,generation==99999,,,,,,,{32,36,,,}; 
        
ACTIVITY,41,,GENERATION<=HORIZON,"SNRANDOM_GOON_1",,,,,,{32,39,,,1330,300
}; 
        ACTIVITY,,,Generation > Horizon,"SNRECUR1_GOON_2",,,,,,{32,41,,,1270,330}; 
ExecuteSell: ASSIGN,{{Generation,Generation+1},{HISTORY,strcat(HISTORY,"   
")},{HISTORY,strcat(HISTORY,itoa(rand02Action))},{HISTORY,strcat(HISTORY,"[a]")},{H
ISTORY,strcat(HISTORY,itoa((nint(currADeltaVol))))},{HISTORY,strcat(HISTORY,"[ab]")},
{HISTORY,strcat(HISTORY,itoa(nint(currABDeltaVol)))},{HISTORY,strcat(HISTORY,"[b]")
},{HISTORY,strcat(HISTORY,itoa(nint(currBDeltaVol)))},{HistoryNu,strcat(HistoryNu,itoa(ni
nt(-
1.0*CurrADeltaVol)))},{HistoryNu,strcat(HistoryNu,",")},{HistoryNu,strcat(HistoryNu,itoa(nin
t(-
1.0*CurrABDeltaVol)))},{HistoryNu,strcat(HistoryNu,",")},{HistoryNu,strcat(HistoryNu,itoa(n
int(-1*CurrBDeltaVol)))},{HistoryNu,strcat(HistoryNu,",")}},2,,,,,,,,,{1220,90}; 
        ACTIVITY,,,,,,,,,,{36,38,,,}; 
        TERMINATE,INF,,,,,,,,,,{1480,70}; 
SNRANDOM_GOON_1: GOON,1,,,,,,,,,,{1500,300}; 
        ACTIVITY,,,,"Start",,,,,,{39,4,,,1530,300,1530,210,60,210,60,270}; 
SNRECUR1_GOON_2: GOON,1,,,,,,,,,,{1470,490}; 
        ACTIVITY,,,,,,,,,,{41,43,,,}; 
End_of_Cycle: ASSIGN,{{fReadResult,USERF(8)}},1,,,,,,,,,{1500,490}; 
        ACTIVITY,,,,,,,,,,{43,45,,,1600,490,1600,530,1460,530,1460,680}; 
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writehistory: WRITE,"history_stack_init_rnd02.txt",YES,"End of Hor:   varNo= %d\t GEN 
%d\tCash=%f   \thistory: %s  \tInvA= %f InvB= 
%f\n",{variationNumber,generation,CASHONHAND,HISTORY,INVENTORYA,INVENTOR
YB},1,,,,,,{1500,680}; 
        ACTIVITY,,,,,,,,,,{45,47,,,1760,680,1760,640,1610,640,1610,490}; 
        GOON,2,,,,,,,,,,{1630,490}; 
        ACTIVITY,,,CashOnHand>=BestProfit,,,,,,,{47,50,,,}; 
        
ACTIVITY,,,CashOnHand<BestProfit,"SNRANDOM_GOON_2",,,,,,{47,60,,,1700,560,2730,5
60}; 
PREPAREEXIT: 
ASSIGN,{{BESTPROFIT,MAX(BESTPROFIT,CASHONHAND)},{RVAL_ACTION,HISTO
RY},{RVAL_PROFIT,MAX(BESTPROFIT,CASHONHAND)},{BestHistory,History},{BestH
istoryCh,HistoryCh},{BestHistoryNu,HistoryNu}},1,,,,,,,,,{1710,490}; 
        ACTIVITY,1999,,,,,,,,,{50,52,,,}; 
BP: COLCT,1003,BESTPROFIT,"BestProfit_SVN",20,0,1000,1,,,,{1940,490}; 
        ACTIVITY,,,,,,,,,,{52,54,,,}; 
SNRECUR1_WRITE_9: WRITE,"history_stack_init_rnd.txt",YES,"variationNumber %d \tSet 
BestProfit:  gen:  %d   
%s\n",{variationNumber,GENERATION,CURRENTACTION},1,,,,,,{2100,490}; 
        ACTIVITY,,,,"SNRECUR1_ASSIGN_1",,,,,,{54,56,,,2270,490}; 
SNRECUR1_ASSIGN_1: 
ASSIGN,{{BESTPROFIT,MAX(BESTPROFIT,CASHONHAND)},{RVAL_ACTION,HISTO
RY},{RVAL_PROFIT,MAX(BESTPROFIT,CASHONHAND)},{readResult,USERF(cTimerG
et)},{ClockTime2,ClockTime-ClockTime1}},1,,,,,,,,,{2350,490}; 
        ACTIVITY,,,,,,,,,,{56,58,,,}; 
SNRANDOM_WRITE_1: WRITE,"results_random.txt",YES,"scen: 
%d,%d,%f,%s,%s\n",{CurrentScenerio,variationNumber,rval_profit,BestHistoryCh,BestHistory
Nu},1,,,,,,{2610,490}; 
        ACTIVITY,,,,,,,,,,{58,60,,,}; 
SNRANDOM_GOON_2: GOON,1,,,,,,,,,,{2810,490}; 
        ACTIVITY,,,variationNumber<variationMax,,,,,,,{60,63,,,2790,400,2804,400}; 
        ACTIVITY,,,variationNumber==variationMax,"SNRECUR1_WRITE_8",,,,,,{60,69,,,}; 
        GOON,1,,,,,,,,,,{2830,400}; 
        ACTIVITY,,,,,,,,,,{63,65,,,}; 
        ASSIGN,{{variationNumber,variationNumber 
+1},{history,""},{CashOnHand,0},{historyCH,""},{historyNU,""},{Generation,1}},1,,,,,,,,,{288
0,400}; 
        ACTIVITY,,,,,,,,,,{65,67,,,}; 
ResetInventory: ASSIGN,{{fReadResult,USERF(9)}},1,,,,,,,,,{3050,400}; 
        
ACTIVITY,,,,"SNRANDOM_GOON_1",,,,,,{67,39,,,3160,400,3160,300,2710,300,2710,380,25
45,380,2380,380,1860,380,1400,380,1400,310}; 
SNRECUR1_WRITE_8: WRITE,"results_02.txt",YES,"scen:, 
%d,%d,%8.2f,%s,%s%3.2f\n",{CURRENTSCENERIO,ClockTime2,rval_profit,BestHistoryCh,
BestHistoryNu,AinAb},1,,,,,,{2960,490}; 
        ACTIVITY,,,,,,,,,,{69,71,,,}; 
        RETURNVSN,BESTPROFIT,1,,,,,,,,,{3120,490}; 
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[LOADFILE SUBNETWORK] 
;DBF file created with Version 4 
        VSN,LOADFILE,{{LoadType,LONGVAL, },{LocalIdx,LONGREF, 
},{LocalIdxBase,LONGREF, },{LocalIdxMax,LONGREF, },{vFileName,STRINGVAL, 
},{vEchoFileContents,LONGVAL,},{vFileNameEcho,STRINGVAL,}},,,,,,,,,{70,60}; 
Begin: ENTERVSN,LoadFile,1,,,,,,,,,{60,160}; 
        ACTIVITY,,,,,,,,,,{2,4,,,80,160}; 
        GOON,1,,,,,,,,,,{110,160}; 
        ACTIVITY,,,LoadType==cFileLoadTest,,,,,,,{4,10,,,}; 
        
ACTIVITY,,,LoadType==cFileLoadLocal,"ReadFileValue",,,,,,{4,11,,,140,210,140,260,140,300
}; 
        ACTIVITY,,,LoadType==cFileLoadGlobal,"ReadFileGlobal",,,,,,{4,28,,,130,400,140,490}; 
        ACTIVITY,,,LoadType==cFileLoadL2G,"CopyObjecToGlobal",,,,,,{4,43,,,120,790}; 
        
ACTIVITY,,,LoadType==cFileLoadG2L,"LOADFILE_WRITE_4",,,,,,{4,60,,,10,610,30,660}; 
Exit: RETURNVSN,0.0,1,,,,,,,,,{1050,190}; 
ReadFileValue: READ,vFileName,YES,ReadResult,"%f",{atrib[LocalIdxMax]},1,,,,,{220,300}; 
        ACTIVITY,,,ReadResult >0,,,,,,,{11,14,,,310,290,310,260}; 
        ACTIVITY,,,ReadResult <=0,"SetIdx",,,,,,{11,18,,,}; 
Inc_index: ASSIGN,{{LocalIdxMax,LocalIdxMax+1}},1,,,,,,,,,{320,260}; 
        ACTIVITY,,,,,,,,,,{14,16,,,}; 
wrteLocal: WRITE,"vFileNameEcho.txt",NO,"   value Read from %s = 
%f\n",{vFileName,atrib[LocalIdxMax]-1},1,,,,,,{440,260}; 
        ACTIVITY,,,,"ReadFileValue",,,,,,{16,11,,,530,260,530,240,190,240,190,280}; 
SetIdx: ASSIGN,{{LocalIdx,LocalIdxBase+1}},1,,,,,,,,,{350,300}; 
        ACTIVITY,,,vEchoFileContents==cTrue,,,,,,,{18,21,,,}; 
        
ACTIVITY,,,vEchoFileContents==cFalse,"GMIX1_GOON_1",,,,,,{18,26,,,440,340,830,340,87
0,310}; 
WriteData: WRITE,vFileNameEcho,YES,"%f    \n ",{atrib[LocalIdx]},1,,,,,,{580,300}; 
        ACTIVITY,,,LocalIdx <LocalIdxMax,,,,,,,{21,24,,,660,280,680,260}; 
        ACTIVITY,,,LocalIdx >=LocalIdxMax,"GMIX1_GOON_1",,,,,,{21,26,,,}; 
Inc_idx_2: ASSIGN,{{LocalIdx,LocalIdx+1}},1,,,,,,,,,{710,260}; 
        ACTIVITY,,,,"WriteData",,,,,,{24,21,,,820,260,820,240,560,240,560,270}; 
GMIX1_GOON_1: GOON,1,,,,,,,,,,{900,300}; 
        ACTIVITY,,,,"Exit",,,,,,{26,10,,,}; 
ReadFileGlobal: READ,vFileName,YES,ReadResult,"%f",{XX[LocalIdxMax]},1,,,,,{220,490}; 
        ACTIVITY,,,ReadResult >0,,,,,,,{28,31,,,310,480,310,450}; 
        ACTIVITY,,,ReadResult <=0,"SetIdx2",,,,,,{28,33,,,}; 
Inc_index_2: ASSIGN,{{LocalIdxMax,LocalIdxMax+1}},1,,,,,,,,,{320,450}; 
        ACTIVITY,,,,"ReadFileGlobal",,,,,,{31,28,,,470,450,470,420,200,420,200,470}; 
SetIdx2: ASSIGN,{{LocalIdx,LocalIdxBase+1}},1,,,,,,,,,{350,490}; 
        ACTIVITY,,,vEchoFileContents==cTrue,,,,,,,{33,36,,,}; 
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ACTIVITY,,,vEchoFileContents==cFalse,"LOADFILE_GOON_1",,,,,,{33,41,,,440,530,830,53
0,870,500}; 
WriteData2: WRITE,SZ[3],YES,"%f    \n ",{XX[LocalIdx]},1,,,,,,{580,490}; 
        ACTIVITY,,,LocalIdx <=LocalIdxMax,,,,,,,{36,39,,,660,470,680,450}; 
        ACTIVITY,,,LocalIdx >LocalIdxMax,"LOADFILE_GOON_1",,,,,,{36,41,,,}; 
Inc_idx4: ASSIGN,{{LocalIdx,LocalIdx+1}},1,,,,,,,,,{710,450}; 
        ACTIVITY,,,,"WriteData2",,,,,,{39,36,,,820,450,820,430,560,430,560,460}; 
LOADFILE_GOON_1: GOON,1,,,,,,,,,,{900,490}; 
        ACTIVITY,,,,"Exit",,,,,,{41,10,,,}; 
CopyObjecToGlobal: ASSIGN,{{XX[LocalIdx],atrib[LocalIdx]}},1,,,,,,,,,{180,840}; 
        ACTIVITY,,,LocalIdx<LocalIdxmax,,,,,,,{43,46,,,}; 
        ACTIVITY,,,LocalIdx >=LocalIdxMax,"LOADFILE_ASSIGN_3",,,,,,{43,48,,,310,840}; 
        ASSIGN,{{LocalIdx,LocalIdx+1}},1,,,,,,,,,{310,790}; 
        
ACTIVITY,,,,"CopyObjecToGlobal",,,,,,{46,43,,,430,790,430,760,240,760,200,760,160,760}; 
LOADFILE_ASSIGN_3: ASSIGN,{{LocalIdx,LocalIdxBase+1}},1,,,,,,,,,{340,840}; 
        ACTIVITY,,,,,,,,,,{48,50,,,}; 
        GOON,1,,,,,,,,,,{460,840}; 
        ACTIVITY,,,vEchoFileContents==cTrue,,,,,,,{50,53,,,}; 
        
ACTIVITY,,,vEchoFileContents==cFalse,"LOADFILE_GOON_3",,,,,,{50,58,,,510,880,830,88
0,870,850}; 
LOADFILE_WRITE_2: WRITE,"vFileNameEcho",YES,"%f    \n 
",{XX[LocalIdx]},1,,,,,,{580,840}; 
        ACTIVITY,,,LocalIdx <LocalIdxMax,,,,,,,{53,56,,,660,820,680,800}; 
        ACTIVITY,,,LocalIdx >=LocalIdxMax,"LOADFILE_GOON_3",,,,,,{53,58,,,}; 
LOADFILE_ASSIGN_4: ASSIGN,{{LocalIdx,LocalIdx+1}},1,,,,,,,,,{710,800}; 
        ACTIVITY,,,,"LOADFILE_WRITE_2",,,,,,{56,53,,,820,800,820,780,560,780,560,810}; 
LOADFILE_GOON_3: GOON,1,,,,,,,,,,{900,840}; 
        ACTIVITY,,,,"Exit",,,,,,{58,10,,,}; 
LOADFILE_WRITE_4: WRITE,SZ[3],YES,"G2L (pre)  localIDX %d   \n 
",{LocalIdx},1,,,,,,{70,600}; 
        ACTIVITY,,,,,,,,,,{60,62,,,170,650,160,690}; 
CopyGlobalToObject: ASSIGN,{{atrib[LocalIdx],XX[LocalIdx]}},1,,,,,,,,,{190,680}; 
        ACTIVITY,,,LocalIdx<=LocalIdxmax,,,,,,,{62,65,,,}; 
        ACTIVITY,,,LocalIdx >LocalIdxMax,"SetIdx3",,,,,,{62,69,,,320,680}; 
LOADFILE_WRITE_3: WRITE,SZ[3],YES,"%d   obj:  %f   xx:  %f\n 
",{LocalIdx,atrib[LocalIdx],xx[LocalIdx]},1,,,,,,{320,620}; 
        ACTIVITY,,,,"LOADFILE_ASSIGN_2",,,,,,{65,67,,,410,620,430,620}; 
LOADFILE_ASSIGN_2: ASSIGN,{{LocalIdx,LocalIdx+1}},1,,,,,,,,,{450,620}; 
        ACTIVITY,,,,"CopyGlobalToObject",,,,,,{67,62,,,540,600,540,550,240,550,200,600}; 
SetIdx3: ASSIGN,{{LocalIdx,LocalIdxBase+1}},1,,,,,,,,,{350,680}; 
        ACTIVITY,,,,,,,,,,{69,71,,,}; 
        GOON,1,,,,,,,,,,{470,680}; 
        ACTIVITY,,,vEchoFileContents==cTrue,,,,,,,{71,74,,,}; 
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ACTIVITY,,,vEchoFileContents==cFalse,"LOADFILE_GOON_2",,,,,,{71,79,,,520,720,840,72
0,880,690}; 
LOADFILE_WRITE_1: WRITE,SZ[3],YES,"G2L  output localIDX %d %f    \n 
",{LocalIdx,atrib[LocalIdx]},1,,,,,,{590,680}; 
        ACTIVITY,,,LocalIdx <LocalIdxMax,,,,,,,{74,77,,,710,670,710,640}; 
        ACTIVITY,,,LocalIdx >=LocalIdxMax,"LOADFILE_GOON_2",,,,,,{74,79,,,}; 
LOADFILE_ASSIGN_1: ASSIGN,{{LocalIdx,LocalIdx+1}},1,,,,,,,,,{740,640}; 
        ACTIVITY,,,,"LOADFILE_WRITE_1",,,,,,{77,74,,,830,640,830,620,570,620,570,650}; 
LOADFILE_GOON_2: GOON,1,,,,,,,,,,{910,680}; 
        ACTIVITY,,,,"Exit",,,,,,{79,10,,,}; 
 
 
[PRCECOST SUBNETWORK] 
 
;DBF file created with Version 4 
        VSN,PRCECOST,{{ValueBase,LONGVAL,0 element of price 
array},{ValueMax,DOUBLEVAL,Max element of value 
array},{ActionCode,LONGVAL,}},,,,,,,,,{30,70}; 
        LIMITSVSN,2,2,2,2,2,2,,,,,{0,0}; 
        EQUIVALENCE,{{IndexCtr,LLINST[1]}},,,,,,,,,,{0,0}; 
VaryPriceCost: ENTERVSN,VaryPriceCost,1,,,,,,,,,{60,190}; 
        ACTIVITY,,,ActionCode==cVaryPriceCostNone,,,,,,,{4,8,,,100,110,1470,110}; 
        ACTIVITY,,,ActionCode==cVaryPriceCostNorm,"SetPriceBidx",,,,,,{4,9,,,}; 
        
ACTIVITY,,,ActionCode==cVaryPriceCostTest,"ExitPriceCost",,,,,,{4,8,,,110,230,720,230,149
0,230}; 
ExitPriceCost: RETURNVSN,0.0,1,,,,,,,,,{1530,190}; 
SetPriceBidx: ASSIGN,{{IndexCtr,ValueBase+1}},1,,,,,,,,,{200,190}; 
        ACTIVITY,,,,,,,,,,{9,11,,,}; 
WritePriceB: WRITE,"PRCECOSTEchoValueArray.txt",YES,"%f    \n 
",{atrib[IndexCtr]},1,,,,,,{310,190}; 
        ACTIVITY,,,IndexCtr<ValueMax,,,,,,,{11,14,,,420,170,420,150}; 
        ACTIVITY,,,IndexCtr>=ValueMax,"PRCECOST_ASSIGN_3",,,,,,{11,16,,,}; 
inc_index_03: ASSIGN,{{IndexCtr,IndexCtr+1}},1,,,,,,,,,{440,150}; 
        ACTIVITY,,,,"WritePriceB",,,,,,{14,11,,,540,150,540,120,270,120,270,160}; 
PRCECOST_ASSIGN_3: ASSIGN,{{IndexCtr,ValueBase+1}},1,,,,,,,,,{530,190}; 
        ACTIVITY,,,,,,,,,,{16,18,,,}; 
ModifyPrice: ASSIGN,{{atrib[IndexCtr],RNORM(atrib[IndexCtr],1)}},1,,,,,,,,,{640,190}; 
        ACTIVITY,,,,,,,,,,{18,20,,,810,190}; 
PRCECOST_ASSIGN_4: ASSIGN,{{IndexCtr,IndexCtr+1}},1,,,,,,,,,{860,190}; 
        
ACTIVITY,,,IndexCtr<ValueMax,"ModifyPrice",,,,,,{20,18,,,950,170,950,150,800,150,620,150
,620,170}; 
        ACTIVITY,,,IndexCtr>=ValueMax,,,,,,,{20,23,,,}; 
PRCECOST_ASSIGN_1: ASSIGN,{{IndexCtr,ValueBase+1}},1,,,,,,,,,{1040,190}; 
        ACTIVITY,,,,,,,,,,{23,25,,,}; 
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PRCECOST_WRITE_1: WRITE,"PRCECOSTEchoValueArray.txt",YES,"%f    \n 
",{atrib[IndexCtr]},1,,,,,,{1210,190}; 
        ACTIVITY,,,IndexCtr<ValueMax,,,,,,,{25,28,,,1320,180,1320,160}; 
        ACTIVITY,,,IndexCtr>=ValueMax,"ValuesPrinted",,,,,,{25,30,,,}; 
PRCECOST_ASSIGN_2: ASSIGN,{{IndexCtr,IndexCtr+1}},1,,,,,,,,,{1340,160}; 
        
ACTIVITY,,,,"PRCECOST_WRITE_1",,,,,,{28,25,,,1440,160,1440,130,1170,130,1170,170}; 
ValuesPrinted: GOON,1,,,,,,,,,,{1470,190}; 
        ACTIVITY,,,,"ExitPriceCost",,,,,,{30,8,,,}; 


