

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

AN EXAMINATION OF MULTIPLE OPTIMIZATION APPROACHES

TO THE SCHEDULING OF MULTI-PERIOD

MIXED-BTU NATURAL GAS PRODUCTS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

By

MICHAEL A. BOND
Norman, Oklahoma

2013

AN EXAMINATION OF MULTIPLE OPTIMIZATION APPROACHES
TO THE SCHEDULING OF MULTI-PERIOD
MIXED-BTU NATURAL GAS PRODUCTS

A DISSERTATION APPROVED FOR THE
SCHOOL OF INDUSTRIAL AND SYSTEMS ENGINEERING

BY

Dr. Floyd H. Grant, Chair

Dr. Faruk Civan

Dr. Shivakumar Raman

Dr. Binil Starly

Dr. Theodore B. Trafalis

Copyright by MICHAEL A. BOND 2013
All Rights Reserved.

iv

Acknowledgments

I would like to thank my committee members: Dr. Grant, Dr. Civan and

Dr. Starly, Dr. Raman and Dr. Trafalis. They have all provided important

insights and direction to my research. I cannot express how much I appreciate

Dr. Grant’s time. His guidance, friendship and most of all, patience has been

invaluable throughout this time.

To my colleagues and the management of Science Applications

International Corporation, Inc., I owe much. I would like to thank all of my

friends who supported me through this. Don Essary deserves special thanks for

supplying the computer hardware that was used on this project.

My parents have always supported my endeavors and to them I offer my

gratitude and love. I would also like to thank my children, Erin, Cory, Daniel,

Jackson, Olivia, Elizabeth, Joseph and Casey for their support and patience.

Thank you for allowing me to read papers and do homework at soccer games,

concerts, etc.

Finally, I cannot express my gratitude to my loving wife and best friend,

Terri, whose tireless support, encouragement and patience made this possible.

v

Table of Contents

LIST OF TABLES ... X

LIST OF FIGURES .. XI

ABSTRACT.. XIII

CHAPTER 1 .. 1

INTRODUCTION .. 1

1.1 OVERVIEW ... 1

1.2 STATEMENT OF THE PROBLEM ... 2

1.3 PURPOSE .. 3

1.4 RESEARCH QUESTIONS OR HYPOTHESES ... 4

1.5 SIGNIFICANCE OF THE STUDY .. 5

1.6 CONCEPTUAL FRAMEWORK ... 7

1.7 SUMMARY OF METHODOLOGY .. 7

1.8 LIMITATIONS ... 9

1.9 DEFINITION OF TERMS ... 9

CHAPTER 2 .. 12

2.1 LITERATURE REVIEW ... 12

2.2 GENERAL CONCEPTS ... 12

2.1.1 Natural Gas .. 12

2.1.2 Heat Content ... 15

2.3 OPTIMIZATION ... 16

vi

2.4.1 Linear Programming .. 18

2.4.2 Branch and Bound .. 18

2.4.3 Nested Partitions .. 19

2.4.4 Random Search ... 20

2.4.5 Nelder-Mead ... 21

2.4.6 Other Direct Search methods ... 21

2.4.7 Frequency Domain Analysis ... 22

2.4.8 Response Surface Methodologies ... 22

2.4.9 Ranking and Selection .. 23

2.4.10 Multiple Comparison Procedures ... 23

2.4.11 Ordinal Optimization .. 24

2.4.12 Gradient Based Algorithms .. 24

2.5 Metaheuristics ... 26

2.5.1 Simulated Annealing ... 26

2.5.2 Genetic Algorithm ... 26

2.5.3 Tabu Search .. 27

2.5.4 Scatter Search (SS) ... 28

2.6 Recent Developments .. 30

2.7 SIMULATION OPTIMIZATION .. 30

2.8 OPTIMIZATION OF GAS STORAGE SCHEDULING 33

2.8.1 Binomial/trinomial Techniques .. 33

2.8.2 Differential Equation .. 34

2.8.3 Monte Carlo .. 35

vii

2.8.4 Real Option Theory ... 37

2.8.5 Computer Performance .. 39

2.8.6 Evaluation of Heuristic-Based Simulation Optimization 41

2.9 MODELING THE PROBLEM .. 42

CHAPTER 3 .. 44

3.1 METHODOLOGY ... 44

3.1.1 Simulation Optimization Methods .. 45

3.1.2 General Framework .. 46

3.1.3 B&B-LP Approach .. 52

3.1.4 SS+LP Bounds .. 57

3.1.5 SS Bounds ... 59

3.1.6 Required Minimum Delivery Option .. 61

3.1.7 Development System Information ... 61

3.2 PERFORMANCE MEASURES .. 62

3.2.1 Speed of Computation ... 63

3.2.2 Quality of Solution .. 64

3.2.3 Overall Performance .. 64

3.2.4 Random Numbers .. 64

CHAPTER 4 .. 66

COMPUTATIONAL RESULTS AND ANALYSIS 66

4.1 EXPERIMENTAL DESIGN... 66

4.2 TRIAL SIMULATIONS .. 66

viii

4.3 COMPUTATIONAL RESULTS ... 67

4.4 COMPUTATIONAL SPEED .. 73

4.2.1 Quality of Solution .. 74

4.2.2 Best Overall Performance .. 77

CHAPTER 5 .. 78

CONCLUSIONS AND FUTURE RESEARCH ... 78

5.1 GENERAL CONCLUSIONS ... 78

5.1.1 Computational Effort Conclusions ... 79

5.1.2 Quality of Solution Conclusions ... 80

5.1.3 Overall Performance Conclusions ... 80

5.2 FINAL CONCLUSIONS ... 80

5.3 FUTURE RESEARCH .. 81

5.3.1 Parallel and Distributed Processing .. 81

5.3.2 Geometric Brownian Motion .. 83

5.3.3 Heuristics, Metaheuristics, Multi-Criteria 84

5.3.4 Natural Gas Futures ... 84

BIBLIOGRAPHY ... 86

APPENDIX 1: INITIAL TEST DATA AND PARAMETERS 98

APPENDIX 2: RESULTS OF INITIAL TEST RUNS 99

APPENDIX 3: TRIAL PRICE/COST DATA II ... 106

APPENDIX 4: NATURAL GAS FUTURES CONTRACT 1 107

ix

APPENDIX 5: HENRY HUB NATURAL GAS SPOT PRICES 108

APPENDIX 6: OKLAHOMA NATURAL GAS CITYGATE PRICES ... 109

APPENDIX 7: NATURAL GAS CONSUMPTION BY END USE 110

APPENDIX 8: C++ SOURCE CODE FOR LP-SOLVE INTERFACE ... 111

APPENDIX 9: AWESIM MODEL DEFINITION FILES 148

x

List of Tables

Table 1 Higher Heat Value of Common Fuels (NIST 2010)............................. 10

Table 2 Classification Scheme (Tekin and Sabuncouglu, 2004) 17

Table 3 Natural Gas Storage Facility Characteristics (FERC 2004) 55

Table 4 Branch & Bound-LP, Results ... 67

Table 5 SS-LP, Descriptive Statistics .. 68

Table 6 SS Descriptive Statistics ... 69

Table 7 B&B-LP w/ Min Delivery, Results .. 70

Table 8 SS-LP w/ Min Delivery, Descriptive Statistics 71

Table 9 SS w/ Min Delivery, Descriptive Statistics .. 72

xi

List of Figures

Figure 1 Conceptual Framework ... 7

Figure 2 System Organization ... 62

Figure 3 Solutions Evaluated/Second .. 73

Figure 4 Comparison of SS-LP & SS Results ... 74

Figure 5 Comparison of SS-LP & SS w/ MRD ... 75

Figure 6 Relative Accuracy of Approaches ... 75

Figure 7 Relative Accuracy of Approaches w/ MRD .. 76

Figure 8 Relative Accuracy of SS approaches .. 76

Figure 9 Natural Gas Futures Contract 1 ($US/MMBTU) (EIA2013) 85

Figure 10 B&B-LP Trial Results ... 99

Figure 11 Solution Values B&B-LP 25 Trials .. 99

Figure 12 Results of SS-LP, 12x250,000 ... 100

Figure 13 Solution Values SS-LP 12x250,000 .. 100

Figure 14 Results of SS-LP 50x25,000 ... 101

Figure 15 Solution Values SS-LP 50x25,000 .. 101

Figure 16 Results of SS+LP 50x2500 ... 102

Figure 17 Solution Values SS-LP 500x2500 .. 102

Figure 18 Stochastic Selection -2500 Samples/Trial .. 103

Figure 19 Stochastic Selection -500x2500 Samples/Trial 103

Figure 20 SS-LP 25000 Samples/Trial ... 104

Figure 21 SS-LP 100x25000 Samples/Trial ... 104

Figure 22 SS 100x250000 Samples/Trial ... 105

xii

Figure 23 SS Values 100x250000 Samples/Trial ... 105

xiii

Abstract

 As worldwide production and consumption of natural gas increase, so

does the importance of maximizing profit when trading this commodity in a

highly competitive market. Decisions regarding the buying, storing and selling

of natural gas are difficult in the face of high volatility of prices and uncertain

demand. With the introduction of alternative sources of fuels with lower levels

of methane, the primary component of natural gas, these decisions become more

complicated. This is an issue faced by investors as well as operational planners

of industrial and commercial consumers of natural gas where incorrect planning

decisions can be costly.

 A great deal of research in the academic and commercial arenas has been

accomplished regarding the problem of optimizing the scheduling of injection

and withdrawal of this commodity. While various commercial products have

been in use for years and research on new approaches continues, one aspect of

the problem that has received less attention is that of combining gases of

different heat contents. This study examines multiple approaches to maximizing

profits by optimally scheduling the purchase and storage of two gas products of

different energy densities and the sales of the same in combination with a

product that is a blend of the two. The result provides an initial basis for

planners to improve decision making and minimize the cost of natural gas

consumed.

 This multi-product multi-period finite (twelve-month) horizon product-

mix problem is NP-Hard. The first approach developed is a Branch and Bound

xiv

(B&B) technique combined with a linear program (LP) solver. Heuristics are

applied to limit the expansion the trinomial tree generated. In the second

approach, a stochastic search algorithm-linear programming hybrid (SS-LP) is

developed. The third approach implemented is a pure random search (PRS). To

make each technique computationally tractable, constraints on the units of

product moved in each transaction are implemented.

 Then, using numerical data, the three approaches are tested, analyzed

and compared statistically and graphically along with computer performance

information. The best approach provides a tool for optimizing profits and offers

planners an advantage over approaches that are solely history-based.

1

Chapter 1

Introduction

1.1 Overview

 This dissertation describes the problem of planning natural gas

scheduling and the experiment to examine multiple techniques to solve it.

Chapter One contains the introductory material. It begins with this overview

which is followed by a statement of the problem. The purpose of research and

the questions researched are discussed, followed by a discussion of the

significance of this study and the conceptual framework. The chapter’s final

section contains a summary of the methodology used and a discussion of the

limitations that were observed in the research.

 Chapter two presents a summary of the research found in the literature.

Subjects relevant to this research were reviewed beginning with general

concepts of natural gas and heat content. This chapter includes a review of

various optimization techniques including the use of simulation and the

combined simulation-optimization. Specific to this research is the section on

natural gas scheduling optimization and the various approaches to this problem.

The chapter concludes with a brief review of computer performance studies.

 Chapter three details the research design and methodology including the

approach taken, the procedures applied and the hardware upon which it was

executed. The problem examined in this research is considered to be NP-Hard,

2

meaning that finding an exact answer would be very hard, if not impossible.

Optimal or, rather, near-optimal solutions to NP-Hard problems are usually

found through a random search technique of one type or another. This chapter

describes the three approaches developed and tested. The Branch and

Bound/Linear Programming hybrid algorithm was developed to examine all

possible decisions during the twelve-month horizon. The discussion here

includes the limitations and heuristics placed on this algorithm to make it

computationally tractable. That approach was succeeded by a combination of a

evolutionary search and Linear Programming. The details of the final approach,

a Pure Random Search algorithm without Linear Programming, follow that. The

development of each approach is a logical step from its predecessor, gaining in

flexibility but becoming more expensive computationally.

 Chapter Four reports and discusses the findings of this research. The

data used is discussed. The results and analysis are presented.

 There are still various avenues of research open on this topic. Chapter

five includes the conclusions of the research and recommendations for further

study.

1.2 Statement of the Problem

 Investors in natural gas seek to maximize profit by taking advantage of

the seasonal low and high prices. Decisions regarding buying, storing and

selling natural gas are difficult in the face of high variability of prices and

uncertain demand. Various management strategies exist. Buyers of natural gas

3

use various techniques for planning the buying, storage and selling of the

product. These techniques are discussed in depth in Chapter Two.

 This paper describes our approach of combining simulation and linear

programming to optimize the selection process. While the focus is multi-cavern

salt dome storage facilities, which have faster inventory turnover rates than the

more common reservoir storage facilities, it is recognized that not all gas

discussed in this paper is stored in such facilities (FERC 2004).

 With economical stresses and increased emphasis on the protection of

Earth’s environment, the use of natural gas from alternate sources has increased.

In many cases, such gas contains a lower energy content or Btu level, and while

it may not be economically feasible to remove the impurities, it may still be

desirable to use the gas rather than simply burning or ‘flaring’ it. Further

complicating the problem is that the price curves of gas from different sources

may not follow the same cost and price curves.

 Consumers and investors seek a means of executing the planning process

in the presence of gases of differing energy content levels.

1.3 Purpose

 The primary purpose of this research is to acquire knowledge of

techniques for optimizing the scheduling of buying, storage and selling of

natural gas inventories of differing heat contents, specifically to maximize

profits or minimize costs in these operations. Much work has been done in the

area of scheduling standard pipeline-ready gas, but there exists a gap in the

4

literature regarding mixed content gas. This problem has nuances that

differentiate it from existing research on mixed-product problems. The nature of

natural gas and how it is stored separates it from other commodities. As the

consumption of low-Btu gas increases, this will be a more important process.

 Another purpose is to investigate the performance of different

approaches to this problem. The combinatorial nature of this problem lends to

solutions that tend to be computationally intensive. Technological advances

continually increase the computational power available to the researcher;

nevertheless, researchers and practitioners continue to seek more efficient and

accurate ways to find better solutions to problems of this type. The balance

between the number of variables examined and the amount of time taken to

generate the solution and the accuracy of that solution are examined.

1.4 Research Questions or Hypotheses

 This research investigates the combined use of branch and bound

techniques and linear programming, specifically the Simplex Method, in finding

a best or near-optimal solution to the mixed gas scheduling problem. Having

developed and exercised the techniques, the results are then compared to random

search algorithms developed both in conjunction with and without linear

programming. These are all extensions and hybridizations of existing

optimization techniques, all of which are discussed in chapter two of this

dissertation. The Branch & Bound and simplex hybrid algorithm is compared to

a stochastic optimization process.

5

 The second area of investigation is the computational requirement of

each method. This study examines the amount of time required to find a

suitable solution and relates it to the quality of that solution.

1.5 Significance of the Study

 The contribution this study makes in two areas lends to its significance.

First, it adds to the research in this field by contribution to the study of mix-

product natural gas scheduling. It provides initial information regarding the

optimization of natural gas storage and scheduling, a logistical and financial

problem that has been studied a long time and will continue to be investigated.

Simply put, it investigates ways to maximize profits when buying and selling

natural gas.

 Secondly, it adds to the body of environmental studies work. Methane is

the primary component of natural gas and is present in other bio-generated

gases. It is considered to be a contributor to global warming and is seen as a

pollutant when released into the atmosphere. As more and more low-Btu gas is

captured to be used rather than released into the environment or ‘flared’, i.e.

burned, it is useful to know how best to use it.

 With the increasing importance of producing energy and with technology

that makes it more affordable to do so, gas that would in the past have been

economically infeasible to process may be produced. Also, due to increased

emphasis on environmental concerns, low-BTU gas, such as landfill gas is

6

becoming available for consumption. Operators of facilities sometimes wish to

combine gases of two different Btu levels to achieve an intermediate product.

7

1.6 Conceptual Framework

Figure 1 illustrates the flow of the product, natural gas, from source to

consumption. The source may be the wellhead, another storage location or an

alternative source of methane. Gas is purchaed and transferred into storage

where it is held until sold or used.

 In this model, consumption is considered equivalent to selling the gas for

the current market price, the “spot price”.

1.7 Summary of Methodology

 The research examined the use of simulation optimization techniques in

combination with linear programming to make optimal scheduling decisions

Storage

Sales

Storage A Source
A

Market
A

Storage B Source
B

Market
B

Market
AB

1-12 Months

Purchase

 Figure 1 Conceptual Framework

8

regarding holding times, product mix values, product injection and withdrawal

schedules and transactional quantities. In addition to simplified test data

designed to provide clear demonstrations of functionality and accuracy, we used

price and cost data from past years as input for natural gas data and estimated

landfill/low-Btu gas prices based on current trends and prices.

 A twelve-month time horizon was used since many gas storage contracts

are of that length. We used the simulation package Awesim and modules

written in Microsoft C++ to generate scenarios and in some cases used a linear

programming package to provide the economical product mix and then

evaluated the results.

 Three approaches were developed and compared. A Branch and Bound

(B&B) algorithm combined with linear programming (LP), B&B-LP, was

developed. This hybrid was implemented as a recursively created trinomial

decision tree with options to buy, hold or sell gas at each node. Heuristics were

applied to limit the number of node per branch and thereby make the algorithm

more computationally tractable.

 An evolutionary stochastic search algorithm (SS-LP) in combination

with LP was developed. This direct stochastic search algorithm implemented

the same heuristics as the B&B-LP hybrid.

 Finally, in order to compare the computational efficiency of the LP

solver versus pure random search of the solution space, a Pure Random Search

(PRS)-based approach (SS) was developed. This approach did not operate under

9

the same bounds as the B&B-LP and SS-LP algorithms. It used more relaxed

search criteria.

1.8 Limitations

 Current modeling techniques contain many factors that affect the present

and future value of gas in storage. These include but are not limited to

parameters such as the cost of money (value of risk-free investment) and rate of

inflation. The model used in this study did not contain all of these factors. That

will be possible in future studies.

 Current approaches to this problem may include any of many

optimization techniques. These techniques are examined in chapter two. These

may also be used in future research.

1.9 Definition of Terms

Natural Gas

 Natural Gas is an odorless, colorless fossil fuel comprised primarily of

methane, CH4, but may also contain ethane, propane, butane, pentane, helium

and hexane. It may be found in association with other fossil fuels (EIA 2012a).

It is sold on residential, commercial, industrial and energy generation markets.

Heat content

 The heat content or heat of combustion is the energy released when a

substance undergoes combustion with oxygen under standard conditions, 60ºF

10

and 14.696 psia (Civan 2008). This may be known as heat of combustion,

heating value or calorific value. Units are expressed as heating value per unit

mass or volume. British thermal unit (Btu) per cubic foot is a common

measurement of natural gas (NIST 2010). This value is typically expressed in

units or energy per unit mass, (which may be expressed as volume for gasses at

standard conditions). To compare the heat content of natural gas to that of other

common fuels, refer to Table 1.

Fuel Phase Btu/ft3
hydrogen gas 324
landfill gas gas 497
methane gas 1,009
ethane gas 1,768
propane gas 2,516
butane gas 3,263

Table 1 Higher Heat Value of Common Fuels (NIST 2010)

Low-BTU Gas

 Natural gas that, as taken from underground, contains a significantly

lower energy content than that of typical gas is known as low-Btu gas. The

energy content may be as low as 500 Btu/ft3 and present a challenge to engineers

to recover, process and market economically (Newell et al., 2009).

11

Landfill Gas

 Landfill gas is generated by the decomposition of organic material.

While it is not natural gas, landfill gas is composed of approximately 50%

methane, the primary ingredient of natural gas. Landfill gas also contains

carbon dioxide, CO2, and water vapor, H2O. The gas may be collected and sold

via small pipeline to local consumers (EPA 2012).

12

Chapter 2

2.1 Literature Review

 This chapter summarizes the relevant literature for this dissertation and

explains the background, concepts and basic methods used throughout this

research. The literature review is presented in the following categories: general

concepts, optimization, simulation optimization, and evaluation of performance.

2.2 General Concepts

 This section presents the relevant subject matter background information

to understand the problem and discusses the concepts needed to adequately

understand the methods proposed in this dissertation.

2.1.1 Natural Gas

 Natural gas is a non-renewable fossil fuel found underground and is

commonly, though not always, associated with oil deposits. It is a major source

of energy in the United States, supplying energy to residential, commercial, and

industrial and power generation facilities. In 2010, US consumption reached 23

trillion cubic feet (EIA 2012). The US consumed all that it produced and

imported another 4.6 tcf of gas via pipeline from Mexico and Canada or as

liquefied natural gas-- gas chilled to -260 degrees Fahrenheit, the point of

becoming liquid-- from various exporters (EIA 2006).

 To collect gas from underground reservoirs, locations are evaluated and

wells are drilled and prepared, and then gas, under geological pressure, flows up

13

through the wellhead and through a system of gathering lines to a field

processing unit. From there, the gas stream may go to another processor for

further treatment such as the removal of sulfur, other hydrocarbons or helium,

for example. After it is market-ready, the gas is pumped through interstate

pipelines to local distributors and back into smaller interstate pipelines to be

distributed to users (EIA 2006).

 The Federal Energy Regulatory Commission (FERC 2008) issued

order no. 436 in 1985, no. 500 in 1987 and no. 636 in 1993 (Busby 1999).

These orders uncoupled production and distribution and, as a result, storage

facilities became opportunities for profit by gas owners and investors. Gas

futures and options trading began on the New York Mercantile Exchange

(NYMEX) on 3 April, 1990. These events have shaped the way gas in storage is

assigned a financial value. Since then, owners of gas in storage have had the

option to buy or sell some amount of the commodity each day.

 A gas supplier may use a combination of tools to ensure that demands

are met. A combination of long- and short-term contracts, vertical upstream

integration, buying on the spot market, and the utilization of storage facilities are

often employed. A supplier practices vertical upstream integration by acquiring

or investing in oil and gas production companies. Gas may also be kept in

storage for speculative reasons and as a precaution against short-term demand

fluctuations (Baranes,et al. 2009).

 Due to the nature of gas production and the time and capital investment

required to bring new sources to market, current production cannot increase to

14

meet fluctuations in short-term demand. Therefore, gas must be kept in storage

to meet seasonal increases in demand. Other than a relatively small amount of

gas stored in aboveground containers by local distributors to buffer against

peaks in daily demands, natural gas is stored underground. There are three

major types of underground storage: depleted gas reservoirs, aquifers, and salt-

caverns (Tek 1996).

 Of the three types of underground natural gas storage facilities, the most

common in North America is the depleted reservoir. After all recoverable gas

has been extracted from a natural deposit, that reservoir may then be used as a

storage location for the processed product. There are several advantages to

using reservoirs. The wells, gathering systems and pipeline connections are

already in place and the geology of the area is known. There are also

disadvantages to this storage type. Since the formations have previously held

hydrocarbons that have ‘sealed’ the formation, there is a requirement for more

monitoring. The choices of storage field location and performance are limited

by the inventory of depleted fields in any region (EIA 2006). The depleted

reservoir is both the least expensive to develop and the fastest with a conversion

time of 24-36 months.

 Working gas or “top gas” is the volume of gas in the storage facility that

is accessible for extraction. Gas that is present in a storage facility but is not

accessible is called cushion gas or base gas. Base gas provides the pressure for

the withdrawal of top gas. Top gas and cushion gas are the same mixture of

15

hydrocarbons in the storage facility? Top gas just indicates how much you can

withdraw (FERC 2004).

 Unlike storage facilities or warehouses for other commodities or

materials, two salt caverns of the same volume may have different maximum

capacities depending on their depth. The pressure at which gas is stored relates

to the injection and withdrawal rates (Bagci and Ozturk, 2007). It can be

approximated with a piece-wise linear function gas (Padberg and Haubrich,

2008).

2.1.2 Heat Content

 One important attribute of all combustible fuels is the heat of

combustion, the amount of heat released when that substance undergoes

complete combustion with oxygen (Civan 2008). In its pure form, methane,

CH4, has an energy content of 23, 900 British Thermal Units (Btu’s) per pound.

Wood, by comparison, has roughly 6000 Btu’s/lb (NIST 2010). One Btu is the

amount of energy required to raise the temperature of one pound of water one

degree Fahrenheit at standard temperature and pressure (UNCTAD 2011).

 Natural gas, though mostly methane, contains other hydrocarbons such

as ethane, propane, and butane or other impurities which may increase or, more

likely, decrease the heat content. While the range of heat content may range

from 500 to 1500 Btu/ft3, most gas has a heat content value in the range of 900

to 1100 Btu/ft3. The average for gas produced in the US in 1995 was 1028 Btu

(DOE 1995). Before being transported via the US interstate pipeline systems,

gas must have a heat content of between 1030 and 1060 Btu/ft3. Gas with a

16

higher value could pose a safety hazard by producing hotter flames. In other

locations, Germany, for example, separate distribution systems exist for “High”

or “Low” quality gas (Padberg and Haubrich, 2008).

 At times, therefore, it is necessary to adjust the heat content of gas before

shipping it. One method of lowering heat content is to dilute the gas with an

inert substance such as air or nitrogen. This may also be accomplished by

combining it with a gas of a different content resulting in a gas in the desired

range. An example of this may be found in Lake Charles, Louisiana, in the

southern United States where the Southern Union Company combines high

quality imported gas with the locally produced lower quality product (DOE

2005).

2.3 Optimization

 Optimization theory consists of a collection of techniques and methods

that make it possible to find the best solution to a problem without actually

examining each and every possible solution (Ravindran 2006). Table 2 shows

the categories of techniques as they appear in the literature.

17

Optimization Problems

Local Optimization Global Optimization

Discrete Decision Space Continuous Decision Space Evolutionary Algorithms

 Tabu Search

 Simulated Annealing

Bayesian/Sampling

 Algorithms

Gradient Surface Method

Model Reference Adaptive

Search

Ranking and Selection

Multiple Comparisons

Ordinal Optimization

Random Search

Simplex/Complex Search

Single Factor Method

Hooke-Jeeves Pattern

 Search

Complete Enumeration

Response Surface Methodology

Finite Difference Estimates

Perturbation Analysis

Frequency Domain Analysis

Likelihood Ratio Estimates

Stochastic Approximation

Table 2 Classification Scheme (Tekin and Sabuncouglu, 2004)

 There are other categorization schemes for optimization techniques.

Zlochin et al. (2004), for example, classifies continuous and combinatorial

problems as either instance-based or model-based. The selection of solution

candidates in instance-based approaches is based directly on the results of the

previous solution searches. This group includes simulated annealing, genetic

algorithms, Tabu search, and nested partitions. Model-based approaches,

introduced more recently, tend to have two phases: (1) generate candidate

solutions by randomly selecting from the solution space and (2) use the results

to update the model so that it will be more likely to generate a new, higher

quality candidate solution. The ant colony optimization (ACO) method, cross-

18

entropy (CE) and estimation of distribution algorithms (EDAs) methods are

commonly used examples of model-based solutions (Hu, et al., 2007).

 Model-based approaches, according to Hu, et al. (2011), are more robust,

more easily parallelized and have been successfully applied to many difficult

optimization problems.

2.4.1 Linear Programming

 Linear programming is one of the most commonly used optimization

techniques. First published in 1947 by Dantzig who developed the Simplex

method and Neumann who developed the duality theorem, this mathematical

approach to finding the best outcome of a linear objective function is used

widely in operations research (Anderson et al. 2006). Avery, et al. (1992) used

linear programming to model the purchase, storage and transmission contracts

for natural gas utilities.

 Many optimization problems are solved with a combination of

simulation and linear programming. Arbib, et al. (2012) combined linear

programming and a Tabu search algorithm to solve a cutting process problem.

In this project, they generated possible solutions randomly, eliminated and

marked inferior ones, and evaluated potential optimum solutions with linear

programming.

2.4.2 Branch and Bound

 Branch and Bound (B&B) is one of the most widely used approaches to

optimizing NP-Hard combinatorial problems. For discrete problems with a

19

large number of variables, it is usually impractical to attempt to enumerate all

possible combinations. A B&B algorithm searches the entire solution space but

reduces processing by setting bounds on the combinations that will be examined

(Papadimitriou and Steiglitz 1982). The solution space is typically represented

as a multi-node tree, with each branch representing a decision point. If, at any

point in the evaluation, a branch of the tree fails to meet a threshold value, it is

pruned from the tree and as a result, its sub-branches are removed from further

processing (Clausen 1999).

 While B&B is conceptually simple, it is not without its limitations.

Although it can produce an exact optimum, with larger problems the amount of

computer time required to find that solution may be too great to be useful.

Without careful pruning, the number of bud nodes on a tree increases

exponentially. Mousavi et al. (2012) found this to be true, that the performance

of B&B compared to a genetic or simulated annealing algorithm, which

produced near-optimal solutions, was significantly poorer.

2.4.3 Nested Partitions

 Developed by Shi and Olaffson in the 1990’s, Nested partition (NP) is a

randomized method for finding an optimal or near-optimal solution in a finite

feasible region. This method seeks a solution by dividing the feasible solution

space into subregions and selecting one of those as the potential location for the

optimal solution. NP evaluates and ranks each subregion by randomly selecting

points from it and evaluating them as the solution. The region with the best

ranking is then examined in the same way (Shi, et al. 2000).

20

 In practice, it is common to customize the subregion search function to

the problem being solved. Yau, et al. (2009) used NP on a large-scale job shop

problem and developed a weighted sampling function. Wei, et al. (2012)

applied a variation of NP framework to the flexible resource flow shop problem.

By modifying the random search portion of the algorithm, they achieved better

performance than the generic NP provided.

2.4.4 Random Search

 Random Search (RS) or Pure Random Search (PRS) can be used and

works on an infinite parameter space when it is not possible to evaluate every

possible solution. This is the general case of random solution searches, being

performed without any heuristics or rules for reducing the set of solutions. The

process ends after a predetermined number of searches have been completed, a

limit of computer resources has been reached or an acceptable solution has been

found. This process performs best when a neighborhood can be defined in the

solution space (Olafsson and Kim, 2002). PRS has the advantage of avoiding

local maxima. While it has been applied primarily to discrete problems, its

closely related technique, sample path optimization, is practiced on continuous

problems (April et al. 2003). While it can be shown that RS will converge to a

near-optimal solution (Shi et al. 2000), one problem with this approach is the

slow speed at which convergence is reached (Tekin and Sabuncouglu, 2004).

 The existence of other, more guided approaches notwithstanding, this

approach does find use in practice. Poland, et al. (2011) applied a PRS

21

algorithm to a smart home sensor placement problem and found that in 98.4% of

test cases this approach produced superior results.

2.4.5 Nelder-Mead

 Proposed in 1965, the Nelder-Mead (N-M) method, also known as the

downhill simplex method, is a technique of minimizing an n+1 variable

objective function in an n-dimensional parameter space without constraints. In

each iteration, the worst point in the simplex is dropped and replaced by the

reflective one across the centroid, the center of the remaining feasible solution

space. The complex search method is a variation of the simplex method in

which an effort is made to keep the centroid in the feasible area, i.e. constraints

exist (Nelder and Mead, 1965). This heuristic can converge on non-stationary

points

 This technique has been modified or hybridized various times through

the years. Liu, et al. (2012) and Baghmisheh, et al. (2012) both created particle

swarm-Nelder-Mead hybrid optimization approaches and applied them to

different problems. Kuriger and Grant (2010) presented a Lexicographic

Nelder-Mead based method to solve multi-criteria optimization.

2.4.6 Other Direct Search methods

 The Single-Factor Method (SFM) and Hooke-Jeeves Pattern Search

Method (H-J) are both direct search techniques that may be applied over an

infinite parameter space. SFM holds all parameters constant and moves one. H-

J varies one of a set of theoretical parameters at a time and examines the

22

response. The magnitude of the parameter change decreases until the steps are

deemed sufficiently small (Hooke and Jeeves, 1961). This method is often used

in conjunction with other methods (Azadivar 1999).

2.4.7 Frequency Domain Analysis

 Frequency Domain Analysis (FDA) screens factors in a simulation by

oscillating the value of a parameter during simulation. The oscillation follows a

sinusoidal function and gives an idea of the relative sensitivity of the parameter

(Tekin, et al., 2004). This technique has drawbacks and is not frequently

observed in recent literature.

2.4.8 Response Surface Methodologies

 Response Surface Methodology (RSM), another continuous decision

space approach, examines the relationship between multiple explanatory, i.e.

independent, variables and subsequent response or dependent variables. In the

context of simulation optimization, RSM is a representation of the response or

value of an objective function as the input factors or variables are changed

through simulation (April et al., 2003). RSM is used in two phases. In the first

phase, a first-order model is fitted to the response surface and the steepest

descent direction is estimated. This repeats until the slope nears zero, at which

point the first order design is no longer a good fit. In the second phase a

quadratic response surface is generated and the optimum is found from this.

Performance of RSM compares favorably with many gradient-based methods

(Azadivar, 1999).

23

2.4.9 Ranking and Selection

 Ranking and Selection (RS) procedures are used when there is a fixed set

of possible alternatives, i.e. the search for new candidates has ended, or a limit

on computational resources limits the result set. They do have application

within the simulation optimization arena and may be applied when there is a

limit on computational resources. They may also be applied as screeners,

eliminating unlikely solutions from a larger set based on some predetermined

threshold. (Fu, et al. 2005). There may be cases where a search algorithm of a

simulation-optimization system may not be the best selection procedure.

Boesel, et al. (2003) use RS procedures at the end of a simulation-optimization

run to identify the best of a set of candidate solutions. They also used a two-

stage IZ ranking procedure to find the best system.

2.4.10 Multiple Comparison Procedures

 The second approach to finding a satisfactory, though not guaranteed

best, solution from a small, finite parameter space is Multiple Comparison

Procedures (MCP). MCP’s are statistical inference processes based on the

confidence intervals of processes executed against multiple replications of a

solution. There are three types commonly used: all pairwise multiple

comparisons (MCA), multiple comparisons with the best (MCB), and multiple

comparisons with a control (MCC) (Swisher, 2000). In general, the best

performance is expected from the MCB approach since its goal is to find the

best solution while reducing the number of comparisons (Fu, 1994).

24

2.4.11 Ordinal Optimization

Ordinal optimization (OO) is one of the approaches that may be used when the

feasible region is discrete and finite but larger than computational resources can

handle. It can be used when a ‘good enough’ solution is being sought, one of

the tenets of OO being that “nothing but the best is very costly”. The second

tenet is that it is easier to assign an ‘order’ or arrangement to compared items

than it is to assign them a value. (Ho, et al., 2007) OO attempts to quantify

these tenets by (1) “softening” the goal and (2) searching a subset of the region.

Figure 2 illustrates this.

Figure 2 Illustration of Ordinal Optimization Concepts (Ho, et al. 2007)

2.4.12 Gradient Based Algorithms

 Stochastic approximation (SA) methods encompass a family of

algorithms in which an increasingly better solution is sought by iteratively

25

moving from one initial ‘best guess’ solution to another based on an estimate of

the gradient (Olafsson 2002). These statistical inference tools are useful when

there are noisy estimates of system performance, such as when parameters are

generated by a Monte Carlo process and when gradients are not automatically

available (Fu and Hill 1997).

 The earliest algorithms of this type were by Robbins and Monro (1951).

Based on that initial work, Kiefer and Wolfowitz (1952) developed the finite-

difference approximation algorithm in which variables of the problem are varied

one at a time. Spall (1992) developed an algorithm based on a simultaneous

perturbation gradient approximation, Simultaneous Perturbation Stochastic

Approximation (SPSA), in which all variables of the problem are varied at the

same time. This approach reduces the computational requirement for large-

dimensional problems and may be applied to any discrete event system that can

be simulated (Fu and Hill, 1997) They found that the number of simulations

required per gradient estimate, two, was not dependent on the number of

parameters of interest. Suri and Zazanis (1998) found that the use of methods

utilizing an infinitesimal perturbation analysis gradient estimator was the most

efficient.

 The assumption behind these processes is that a zero of the gradient for

the original problem, ��������	
 can be found by solving���	
 � 0. The

problem of local minima can be overcome through the use of heuristics (Fu

1994).

26

2.5 Metaheuristics

 Metaheuristics are methods that may be employed when other procedures

fail to move away from local optima. There are four primary metaheuristics:

simulated annealing, genetic algorithms, Tabu Search, and scatter search (Fu et

al., 2005).

2.5.1 Simulated Annealing

 Simulated Annealing, SA, is a heuristic inspired by the physical process

in which metals are combined to form an alloy and are slowly cooled to a lower-

energy state (Ammeri, et al. 2010). In SA, a candidate solution is found and

then possible replacement solutions are chosen randomly from a set of nearby

solutions defined by a candidate distribution (Kirkpatrick, et al. 1983). SA is

very similar to RS, with the exception that occasional downhill moves are

allowed (Pritchitlamken and Nelson 2003). Vocaturo (2008) uses SA and

simulation to optimize shipping container handling.

2.5.2 Genetic Algorithm

 The genetic algorithm (GA) is a biologically-inspired approach to

optimization. In it a set of values representing a candidate solution is encoded

as a string of binary values, i.e. one and zero. Each such string is referred to as a

‘chromosome’. An initial population (N) of chromosomes is randomly

generated at the beginning of the process. They may represent values from

across the solution space or a subset of it that is more likely to produce the

optimal solution. Each individual is evaluated by a ‘fitness function’ and ranked

27

for survivability (optimality). Chromosomes are then selected randomly based

on a weighted value of their fitness score. This is the Roulette Wheel selection

(Man 1999).

 Those selected are paired and combined to produce a new generation of

individuals or chromosomes. The most common genetic operators used in the

reproduction process are crossover and mutation, but others exist.

 The new generation is then evaluated according to the fitness function,

invalid solutions are discarded, i.e. the fittest survive and reproduction and

selection takes place again. This process continues until a termination point is

reached, the desired number of generations has been produced, a satisfactory

solution has been found, computer or time resources have been depleted, etc.

(Reeves 2003).

 There are variations of this approach. Liu, et al. (2009) investigated a

hybrid genetic algorithm and applied it to gas field pipeline networks. They

replaced the Roulette selection process with a ‘differential evolution algorithm’

in which new individuals were produced through the linear combination of

many parent individuals rather than through the crossover technique. Dhar and

Datta (2008) used a numerical simulation routine and an elitist genetic algorithm

to optimize operations of reservoirs for downstream water quality.

2.5.3 Tabu Search

 In the Tabu Search (TS) heuristic, created by Fred Glover, a set of illegal

moves is created, cataloged, and then avoided during the search for a solution.

There are three categories of information cataloged. A (short-term) list of

28

recently considered (tabu) solutions is maintained and accessed to prevent the

re-examination of a previously discarded solution. A list of rules intended to

guide the search into more promising areas serves as an intermediate-term

structure. And a long-term structure maintains rules that are applied if the

search encounters a plateau or a local dead end (Glover 1989, 1990). This

metaheuristic may also be combined with other approaches. Hansen (1996)

developed an adaptation of the Tabu Search method to multi-objective

problems. This method has grown in popularity, and is currently applied across

various areas to solve combinatorial optimization problems. Beasley, et al.

(2002) applied a Tabu search algorithm to an air traffic problem. Yang, et al.

(2004) used a Tabu search to optimize a flow shop with multiple processors

(FSMP) scheduling problem. Like many problems that are best served by

simulation optimization, this one is NP-Hard and finding the exact optimal

solution is computationally infeasible. Arbib, et al. (2012) combined a Tabu

search algorithm and linear programming to solve a cutting process problem.

2.5.4 Scatter Search (SS)

 This evolutionary (population-based) algorithm is closely related to the Tabu

Search. It is designed to use combinations of reference points from potential

solutions that have been marked as ‘good’. These combinations then generate a

new potential solution. The first step in the process is to collect the information

that is not contained in the original points. The next activity is to use existing

heuristics, rules and techniques to generate and evaluate new points. The final

step, rather than using randomization, is to apply a predetermined strategy to

29

complete component steps. The use of this technique has grown in recent years

(Fu, et al., 2005).

 The response surface methodology (RSM) performed on the entire solution

set creates a metamodel that is then passed to a deterministic optimization

process. The goal of RSM is to discover a relationship between that input data

and the output objective function. When RSM is being used as part of an

optimization process, then a form of sequential RSM is the one most often used

(Fu 2005). It is noted that sequential RSM is a type of Stochastic

Approximation in which the gradient is found from the regression model (Fu

1994).

 A natural gas portfolio is a collection of long- and short-term contracts

with different pricing structures, delivery times and rates that make use of the

planned supply of gas, whether it is to be delivered to end users or consumed for

industrial or energy generation purposed.

 Like many models, Vautheeswaran and Balasubramanian (2010) use a

similar approach to developing a lowest-cost model for the optimization of a

natural gas portfolio for a power generation facility. Their model combined a

Monte Carlo-based scenario generator based on short term gas prices and load

demand with stochastic programming to find optimal combinations of gas

contracts. To make the problem tractable, they applied a fast forward algorithm

to reduce the number of scenarios from 10,000 to 200.

 Seeking the lowest cost is not necessarily the safest plan. Hanjie and

Baldick (2007) approach the problem of scheduling gas delivery for an electric

30

power producer with a utility-maximization framework, in which financial risk

and user risk preferences are incorporated. Like many, their framework

integrates Monte Carlo simulation and dynamic programming (Fu 2002) but

includes the user’s risk tolerance as a parameter.

2.6 Recent Developments

 The Model Reference Adaptive Search Method (MRAS) was introduced

in 2007 by Hu, et al. (2007). In this method, the solution space is ‘modeled’ and

candidate solutions are taken from the model which is then updated after each

iteration.

 The Golden Region Search (GR), introduced in 2011 by Kabirian and

Olafsson (2011) seeks an optimum by examining selected regions of the feasible

space based on a score assigned which indicates the amount of the region that

has been visited, a metamodel score which contains a metamodel-based

predictive value of the objective function, and a quality score which represents

the quality of the points evaluated within the region.

2.7 Simulation Optimization

 Simulation is one of the most widely used tools in the field of operations

research and industrial engineering (Pritsker and O’Reilly, 1999). It offers the

practitioner the advantage of examining a proposed system without actually

building it or evaluating changes to a system without modifying the existing

system.

31

 Simulation optimization problems are those in which simulation is

integral to the evaluation of the objective function(s) or constraint(s) (Azadivar

1999).

 The general form of the optimization objective function is

��������	

where ��	
 is the objective function, θ is a member of the constraint set,

Θ. Since it is assumed that ��	
 is not available, the approach is to

estimate Ĵ(θ) through simulation and the expectation of J is represented

by

��	
 � ����	, �
�
where L is a performance measure and w represents a simulation path

(Fu, et al. 1994, 2005).

 These techniques have been combined successfully across multiple

industries for several years. Simulation optimization problems, then, are those

in which simulation, primarily discrete event (Fu 2001), is integral to the

evaluation of the objective function(s) or constraint(s) (Azadivar 1999).

Examples of systems that may be well served by simulation optimization

include manufacturing systems, supply chains, call centers and the optimization

of financial portfolios (Fu 2001). Sinha and Ganesan (2011) use these

techniques to optimize shipping container operations. Klaas and Fischer (2011)

use simulation to generate scenarios, position of vehicles, positions of targets,

32

position of other vehicles, etc., to train and then test their approach for routing

robotic material carriers.

 This approach can be combined with other optimization techniques such

as integer linear programming to find an optimal solution in cases of

deterministic parameters or points of convergence in situations where stochastic

parameters are present. This may be done by breaking the problem into multiple

sub-problems and optimizing them separately. Abspoel et al. found this

approach tenable while finding solutions using a D-optimal experimental design

using intensive computer processing power (Abspoel et al. 2001). Padberg and

Haubrich (2008) take a different path by identifying multiple objective functions

throughout the storage-to-consumption system, combining them, and solving

them as a Mixed Integer Quadratic Problem (MIQP).

 Pitchitlamken and Nelson (2003) created a collection of algorithms in an

attempt to adapt to variability and features of the response surface. For the

optimization process, they used a combination of a Nested Partition (NP)

approach, based on Branch and Bound, for sub-dividing the problem, a hill-

climbing (HC) algorithm as a local-improvement scheme, and Sequential

Selection with Memory (SSM) to select and retain the best of the solution

candidates. Scenarios with integer-value decision variables were simulated and

input values, some stochastically generated, were passed to the optimization

process. They opined that the process would be very inefficient when applied to

scenarios with discretized continuous decision variables. This is particularly

relevant to natural gas futures.

33

 The literature contains excellent survey papers by Azadivar (1992,

1999), Fu (1994), Andradottir (1998), Swisher et .at (2000), Olafsson, et al.

(2002), Tekin, et al. (2004), and Ammeri, et al. (2010). It is common to classify

simulation optimization by the nature of the feasible region. Tekin, et al (2004)

classifies studies by local versus global optimization and further divides the

local optimization studies according to discrete or continuous parameter spaces.

Ammeri,et al. (2010) present a similar classification system. Discrete decision

spaces can be further segregated into finite parameter space and infinite

parameter space.

2.8 Optimization of Gas Storage Scheduling

 Holland (2007) states that there are three common numerical techniques

that are applied to the valuation of gas in storage: Monte Carlo simulation,

binomial/trinomial trees, and numerical partial differential equation techniques.

2.8.1 Binomial/trinomial Techniques

 This problem may be considered a Finite Horizon Markovian Dynamic

Programming problem (FHDP) and as such is defined by a tuple {S, A, T, (rt, ft,

fa)
T

t=1} where S is the State Space

 A is the Action Space

 T is the Horizon

 So that rt is the reward function of S,A

 ft is the transition function: S x A -> S

 fa is the feasible action correspondence: S->P(A)

34

As such, the problem can be represented as a bi- or trinomial tree with each

decision point a state (s is element of S) and each branch an action (a is element

of A) (Sundaram, 1996).

2.8.2 Differential Equation

 In their seminal paper, Black and Scholes (1973) proposed that in a

correctly priced market arbitrage, the ability to make sure profits through a

compilation of a portfolio of long and short options and their stocks, should not

be possible. Based on this idea, a formula was derived for determining the value

of an option in terms of the price of the stock. Interestingly, the expected return

of the stock is not incorporated in the formula. Also, the direction of change in

value of the option is independent of the direction of change in value of the

stock. Hodges (2004) incorporates an Ornstein-Uhlenbeck process rather than

the Brownian motion process which is incorporated in the Black Scholes

approach.

 Ahn, et al (1991) separated the problem into two parts, a virtual storage

problem consisting of traded instruments and the physical problem which

identifies the actual gas in storage. He concluded that a strategy based on the

seasonal spread of prices, the differences in the high demand for heating gas in

the winter, the low demand in the spring and fall, and the lesser increase in

demand for electrical generation in the summer, is not the optimal injection and

withdrawal strategy. The market, according to the author, has incorporated the

value of storage into the forward curve of natural gas, making it difficult to

realize a profit when buying gas, holding it in physical storage, and then selling

35

at a later date. He describes the system state as a combination of cash and gas

and establishes a model that implements a ‘self-financing’ framework. He

derived a partial differential equation that showed an owner should inject gas at

the maximum rate whenever the value of storage exceeds the spot price; in other

words, whenever it appears that stored gas will be worth more if held in storage

and sold later.

2.8.3 Monte Carlo

 The nature of gas storage facilities forces the practitioner to use complex

methodologies. Modeling the opportunity cost, for example, is complicated by

the fact that as gas is released from storage, the ability to release more drops in

the same way that the ability to accept more gas into storage decreases with the

amount in storage. Of the three common numerical techniques that are applied

to the valuation of gas in storage, Monte Carlo is the most efficient and most

capable of injecting spikes into the projected prices. Holland (2007) modeled a

one-year horizon with a price value for each day. One distinctive characteristic

of gas storage is that the rate of injection or delivery is related to the amount in

storage at the time (Holland 2008).

 Holland developed a game theoretic model of a gas storage facility

shared by multiple customers (Holland 2008). Emphasizing the worldwide

importance of gas storage in times of price spikes, for example, this study

sought the presence of a pure strategy Nash equilibrium. He considers the case

where some owners may withdraw gas from storage before others, thereby

36

reducing the amount of gas those who wait can withdraw in a period of higher

prices.

 Consumption is seasonal with major fluctuations in residential

consumption during cold months and lesser increases in summer consumption

by power generation facilities (EIA 2006). This seasonality of gas consumption

was investigated by Chaton (2005), who considered price shocks as well as

various policies on prices.

 Principal Component Analysis (PCA), introduced by Pearson in 1901, is

one of the oldest multivariate analysis techniques and is still very popular. It is

the simplest of the eigenvector-based multivariate analyses. In PCA, the

dimensionality of a dataset containing many interrellated variables is reduced to

a smaller, linear uncorrelated set of values by use of an orthagonal

transformation. PCA techniques may also appear as ‘factor analysis’ or

‘eigenvector analysis’ (Jollife, 2002). Blanco (2002) and Bjerksund, et al.

(2011) analyze the forward curve by applying PCA to segment it into its

principal components

 Typical natural gas contracts are normally written on a 12-month basis

and gas is priced for delivery to the Henry Hub in Louisiana (Holland 2007).

The price of gas obtained from other points on the interstate pipeline will be

offset to reflect the transportation cost from the Henry Hub (NEB 2001).

 Operators of gas storage facilities, then, must decide on a regular basis

whether to inject, withdraw or hold the gas at its current level. Current prices,

expected future prices (driven by expected demand) and contracted future

37

deliveries factor into that decision including estimation of forward curve

process. The forward price curve differs from ‘expected future prices’ in that

forward curve values are current and accurate rather than predictive. They are

used for the purchase of gas for future delivery. It is common to use a Monte

Carlo process to simulate the forward price curve, Blanco (2002), Bjerksund et

al.(2011).

2.8.4 Real Option Theory

 The practice of treating actual business opportunities as financial

instruments is known as ‘real options theory’. Frayer and Uludere (2001)

identify five key components of real options: value of asset, exercise or strike

price, time to expiration, volatility and risk-free rate. They modify the Black-

Scholes model to real options and use it to evaluate a power production facility.

Dixit and Pindyck (1994) made substantial contributions to the development of

real option theory.

 With this as a framework, then, for the purpose of assigning a value to

the gas in storage, it is treated as a financial instrument known as an option. An

option is a contract that gives the holder the right to buy or sell a certain amount

of a commodity at a set price on a predetermined date. The holder of the option

pays for this right and is not obligated to exercise the option. A second

instrument is the futures contract in which the holder commits to pay a set price

for a specified amount of gas to be delivered to a specified location on a date in

the future (Hull, 2005).

38

 Ignoring operating costs, Thompson treats the storage of gas as a series

of call and put options (Thompson, 2002). In order to make the best possible

decision, the owner considers the cost of the gas in inventory, the cost of capital,

and expected demand, which translates to projected prices. Keppo and Lo

(2003) develop a model for calculating the value of adding an electrical

production facility to a corporation already in that market. Lai, et al. (2011)

develop a more tractable heuristic model that combines real options and

stochastic-dynamic-programming to valuate liquid natural gas storage by

changing the high dimensional problem into one of lower dimensionality in

regards to the forward price curves. Similarly, Chen, et al. (2006) develop a

semi-Lagrangian approach that includes a timestepping scheme that effectively

discretizes the system parameters.

 While real options theory has become widely applied, it is not without

problems. Smith and McCardle (1999) contend that the models described in the

literature are oversimplified. They point out the many variations involved in

developing and bringing an oil property to productivity.

 Longstaff and Schwartz (2001) developed an approach to valuing

American options through simulation using a least-squares approach. The

framework of this approach was based on Black and Scholes’ work. Boogert

and Jong (2006) adapted this approach to include complexities of natural gas

storage, such as injection and withdrawal rates and working volume, and used

Monte Carlo to model prices. Hodge (2004) incorporates an Ornstein-

Urhlenback process in the real options solution.

39

 Prior to 1988, the focus was on continuous input parameter and included

some form of path search and gradient estimation technique. Bettonvill, Fu and

Ho, for example, investigated various gradient approaches. In the 1990’s more

attention was paid to discrete input parameters. Eglese and Fleischer, among

others, investigated simulated annealing, and Liepins and Hilliard were some

who worked on genetic algorithms (GA) (Swisher et al 2000). GA’s have

shown to be useful in non-parameterized problems (Azadivar 1999).

2.8.5 Computer Performance

 Simulation optimization is, in general, very inefficient. The best

convergence to be expected in “pure” stochastic optimization algorithms is O(n-

1/2) where n represents the computational effort (Fu 1994). Fu (2008) reviews

common techniques and discusses the added complexity of managing limited

computer resources

 One approach to reducing computer resource consumption is to reduce

the number of scenarios required in optimization simulation. In their natural gas

power generation model, Vautheeswaran and Balasubramanian (2010) applied a

fast forward algorithm to reduce the number of scenarios evaluated from 10,000

to 200.

 Different optimization techniques demand different resources. Dhar and

Datta (2008) found that conventional optimization techniques were prohibitively

resource intensive due to a requirement to generate a Jacobian matrix during

each iteration. They chose instead to use a Genetic Algorithm. Monte-Carlo

is the most flexible approach and, when circumstances do not require an exact

40

optimal solution, provides a tractable method. It does not yield a provable best

solution but, with added iterations, may produce improved results (Holland,

2007b).

 The use of simultaneous perturbation rather than finite difference

stochastic approximation led to a great reduction in computational requirements

(Fu and Hill, 1997).

 Felix and Weber (2008) compared recombining trees and dynamic

programming and least squares methods both using Monte-Carlo simulation to

generated scenarios. They found that the recombining tree algorithm performed

better. These are trees that at some point converge rather than continue to

branch. If, for example, two nodes at the same level have the same value and

states, there would be no point in evaluating both of them and their subsequent

branches.

 The imposition of constraints is a common approach to reduce computer

resource demand (April, et a. 2003). Boesel, et al. (2003) applied Ranking and

Selection procedures to reduce the number of simulations by removing non-

viable potential solutions from the solution set. To further reduce computational

complexity, variables may be combined through principal component analysis

techniques (Bjerksund 2011).

 The problem is sometimes attacked by increasing the computer resources

available. Parallelizing the simulation processes across multiple processors on

the same computer allows more scenarios to be examined (Vocaturo, 2008).

This is conceptually the same as executing the simulation on multiple, separate

41

computers. This concept has been extended, in fact, to the distributed computer

model in which simulation optimization problems are separated into standalone

units and generated or evaluated simultaneously on separate computers. The

results are then pooled for evaluation (Garcia, et al. 2007, Fourer, et al. 2010)

2.8.6 Evaluation of Heuristic-Based Simulation Optimization

 Convergence, in the context of simulation optimization, refers to the rate

at which the optimal solution is found. Heuristic search algorithms cannot

usually be proved to converge to the optimal solution. In a stochastic

environment, a definite convergence can only be shown as the number of

simulated solution sets approach infinity. It must be sufficient to find an

acceptable solution. (Boesel, et al., 2003).

 The best convergence rate to be expected with stochastic simulation

optimization is on the order of n-1/2 where n represents the computational effort

(Fu 1994, Homem-de-mello, 2008). Fu goes on to state that simulation

optimization itself is not efficient in general and should be used when other,

more efficient approaches are not available.

 The literature reports various comparisons between one optimization

technique and another but, due to the variety of algorithms and variations in

problems such as dimensionality, definite results are not likely. Hu investigated

the efficiency of the Tabu search routine and found, in the standard test used,

that it outperformed the random search and a composite GA (1992). Martin, et

al. (1998) found that the Tabu outperformed the local search but was inferior to

an SA approach. Yucesan and Jacobson (1996) compared the efficiency of

42

various SA algorithms to local search. Mousavi, et al. (2013) describe two

metaheuristic algorithms for approaching the multi-item multi-period inventory

problem. They use a genetic algorithm (GA), Branch and Bound and Simulated

Annealing (SA) methodologies and compare the performance results. They

found that the GA and SA approaches outperformed the B&B technique

significantly.

 Often, researchers will use a random search or complete enumeration

algorithm as a baseline for comparisons to the one of choice (Tekin, et al. 2004,

Dengiz, et al. 1997, Azadivar and Tomkins, 1999).

2.9 Modeling the problem

The optimization of complex systems through simulation involves the analysis

of a series of possible solutions and selecting the best. There exists a set of

alternative solutions, � � ���, … , ��
, where n is sufficiently large so that it is

computationally difficult to examine all possibilities (Pepelaev, 2006). Due to

their nature, it is impossible to analyze all possible alternatives, so a balance of

optimality and time must be sought.

 One approach is to reduce the size of the set A. In this experiment,

initially gas volume and gas costs are continuous values. This is a mixed integer

problem. To simplify, the gas volume values may be reduced to a discrete set of

integer values.

 The preferred approach of modeling gas storage is to include a high

dimensional forward pricing, which overwhelms dynamic programming.

43

Therefore, the common approach is to apply a heuristic scheme (Lai, et al.

2010).

44

Chapter 3

3.1 Methodology

 The problem being investigated is one of scheduling the buying and

selling of natural gas as a mixed product. Gas is available with different energy

contents or Btu levels. It may be combined for various uses. Natural gas has a

cyclical demand pattern-- low in the fall, high in the winter as temperatures

drop, low again in the spring, and then slightly higher in the hotter months as the

demand for electricity for cooling increases. To hedge against the cyclical

demand pattern, gas is placed into underground storage. Investors and operators

of gas-consuming facilities seek ways to optimize the decision to buy, sell or

hold natural gas.

 This research investigates the scheduling of the purchase and sale or

consumption of gases of mixed energy contents. To be specific, the research

examines the purchase of two types of gas and the sale or consumption of three--

the original two plus a third, blended gas. Consumption may be thought of as an

exchange of gas for heat or energy and can be viewed as a sale at the market

spot buy price.

 This multi-item, product-mix, multi-period inventory problem is non-

deterministic polynomial time, NP-Hard, and finding the solution is

computationally infeasible. It cannot be solved efficiently as is, but it can be

approached by reducing it to a simpler problem through the application of

heuristics and bounds. A result of this problem restatement is that an approach

that provides a near-optimal solution must suffice.

45

 This project investigated and compared three approaches to seeking an

optimal schedule. The simulation-optimization approaches tested were (1) a

B&B-LP hybrid; (2) a SS-LP hybrid; and (3) an SS approach with transaction

volumes of variable sizes.

3.1.1 Simulation Optimization Methods

 This type of scheduling problem, with decision points made across a

finite horizon, lends itself nicely to a B&B solution, with each node representing

a decision point. Decision points in the trinomial tree were created at each

period of the 12-month horizon, three being generated from the previous node.

B&B does find an optimum solution when the problem is sufficiently limited to

not become computationally intractable due to the exponential growth of the

tree. This was avoided by applying pruning and optimizing rules.

 By selecting an action to be taken at a specific time, B&B identified a

subregion of the solution set. That subregion was further searched by the LP

routine to find the best combination of products to sell.

 In the second approach, the use of a stochastic search (SS) routine to

select sub-regions from the solution set replaced the B&B algorithm. Like the

first approach, though, this one also used LP to optimize that selection.

 The stochastic search routine alone was used as the third method. Full-

horizon paths were generated and evaluated based on random selections from

the solution set, with the best result being tracked. Rather than using LP, the

volume moved in each transaction was the result of a random process.

46

3.1.2 General Framework

 Using Awesim, each entity represented a potential path and contained all

information required to define each period and to generate values for the next.

This included all cost, price and inventory data as well as other parameters. The

entity ‘aged’ through the time horizon, 12 months in most cases, changing value

as different decisions were executed. At the end of the 12-period horizon, that

value was compared to that of the best-valued decision path and replaced it if it

was better.

 Dependent Variables

 The dependent variables in this experiment are the total profit,

withdrawal and injection volumes, and computer processing time.

RABi - Calculated profit of Gas AB in period i

RAi - Calculated profit of Gas A in period i

RBi - Calculated profit of Gas B in period i

 VA - Volume of GasA Injected

 VB - Volume of GasB Injected

 VA - Volume of GasA Withdrawn

 VAB - Volume of GasAB Withdrawn

 VB - Volume of GasB Withdrawn

47

Independent Variables

 CA Cost of GasA

 CAb Cost of GasAB

CAPA Max Facility Storage Capacity of GasA

CAPB Max Facility Storage Capacity of GasB

 CB Cost of GasB

CSA Storage cost of GasA $/unit/month

CSAB Storage cost of GasB $/unit/month

h Horizon – number of time periods

 IA Max injection rate of GasA

 IB Max injection rate of GasB

INV A Facility Current Inventory of GasA

INVB Facility Current Inventory of GasB

MDVa max deliverable volume GasA

MDVb max deliverable volume GasB

pa profit GasA

pab profit GasAB

pb profit GasB

 PA Sales Price of GasA

 PAb Sales Price of GasAB

 PB Sales Price of GasB

 rA Ratio of GasA in GasAB (1- rB)

 rB Ratio of GasB in GasAB (1-rA)

48

 dvola change in volume of GasA one period

 dvolab change in volume of GasAB one period

 dvolb change in volume of GasB one period

 VolMaxA Max leased storage capacity of GasA

 VolMaxAB Max leased storage capacity of GasB

 WA Max withdrawal rate of GasA

 WAB Max withdrawal rate of GasAB

 WB Max withdrawal rate of GasB

YA Number annual inventory turns for GasA

YB Number annual inventory turns for GasB

Objective Function

 At each decision point on the first and second approaches, if the choice

to sell was selected, the LP_Solve functions were invoked through an Awesim

USERF call and the entity was passed to the function. The objective function

being solved was:

 ��� ����� � ! ��"��� �" ! �"��� "

(1)

 subject to:

 dvola + percentAinAB*dvolab <= MDVa

 dvolb + percentBinAB*dvolab <= MDVb

 dvola>=0, dvolb>=0, dvolab>=0

49

 The general equation for the revenue of buys and sales of gas over time

horizon h is often modeled as

#$�$�%$ � & �'(� '��)' * �+'

,

'-�
 (2)

where Wi and Ii are decision variables, taking a mutually exclusive value of 1 or

0, representing the decision to withdraw (sell) or inject (buy) gas, respectively.

In this project the objective was to maximize profit.

 Expand equation (2) to include the combination of products. This

models the rules that all products must be either bought or sold on any given

day.

#$�$�%$ � ��� &��)'

,

'-�

* �+'
 .��'��� �' ! ��"'��� �"' /

! �"'��� "'

(3)

This is expanded to show the cost and price of the gases in equation (4)

50

�� %$ � ��� &���)' * �+'
01�'��� �' ! 1"'��� "'2

,

'-�

! ��)' * �+'
 .��'��� �' ! ��"'��� �"' /

! �"'��� "'

(4)

 13 � 4�5', 56
 (5)

 Cx is a function of the initial cost of inventory and cost of storage.

Throughout this model, a first-in-first-out (FIFO) pricing scheme is used for

calculating the cost of gas sold. Note that other models include the present

value of money (PVM), in the cost function. This would be discussed in

Chapter 5 as future enhancement.

Equation (4) is expanded to allow a buy/sell decision to apply to individual

products.

�� %$ � ��� & ���)�'��'

,

'-�
��� �' * 1�'��� �'�+�'

! 0��"'��� �"'�)�"'2 ! ��)"'�"'��� "'

* 1"'��� "'�+"'

(6)

51

Constraints

 To equation (6), multiple constraints are applied. The first is that gas

must be in inventory the same month it is sold. Since gas can be sold and

bought simultaneously, passing through, as it were, the inventory need not be in

place at the beginning of the period but at the end.

 There may be situations in which gas of one or both types is in a stream

rather than in storage. In these cases, the total storage is equal to the maximum

deliverable volume, effectively making the entire inventory pass through each

period. Landfill gas would be such an example.

 7�: � � 1. . ;, �� 6<=> ? ���' ? 0 (7)

 The second constraint is that contracted capacity, CCAP, not be

exceeded.

:

 7�: � � 1. . ;, @ ���)� * �+�
�
�-� 0��� � ! � / !

 ��� "
)<= CCAP

(8)

 One more constraint handles a feature common to many natural gas

storage contracts, i.e., that gas still in storage at the end of the contracted period

is forfeited, effectively creating a product with an increasingly short shelf life.

Gas injected at the beginning of a contract has an effective life of twelve

52

months, while gas injected into storage two months prior to the end of contract

has a shelf life of only two months. The penalty for having gas in storage at the

expiration point of the storage contract is the loss of that gas at the current

market price, the “spot” price.

 Applying this constraint to the value equation (5) yields:

�� %$ � ��� & ���)�'��'

,

'-�
��� �' * 1�'��� �'�+�'

! 0��"'��� �"'�)�"'2 ! ��)"'�"'��� "'

* 1"'��� "'�+"'

 * �+���; A B��C�

! +��"; A B��C"

(9)

3.1.3 B&B-LP Approach

 To create the trinomial tree, each surviving entity was copied thrice at

the end of each generation, assigned a different value for the next decision point

and reprocessed. This recursive process generated a trinomial tree with a

maximum of

���$D, � & 3'F�

,

'-�

(10)

decision points to evaluate and potentially

 ��C;D, � 3, (11)

53

total paths after generating paths for the full horizon. Appendix 8 contains the

complete code from the Awesim model.

 A set of heuristics and bounds were implemented to reduce the

computational workload of the trinomial tree approach. The first two prune

branches from the tree that would lead to an inferior final result while the third

rule reduces search time without removing a branch.

• Do not purchase more product than can be sold by the end of the storage

contract.

• Do not execute a ‘hold’ if that will result in having more gas than can be

sold.

• If inventory is insufficient to complete a minimal transaction, do not

invoke the LP solver.

• The decision made will apply to all types of gas. In the model, it was not

legal to buy gas A while selling gas B.

 Another variable that is not commonly found in problems of this type is

the changing delivery rate of the product. While product delivery from a typical

warehouse may be constrained by manpower or equipment, and the delivery rate

affected by the level of concurrent orders to fill, natural gas delivery rates are

primarily a function of the amount of product actually in storage. Deliverability

refers to the rate at which gas can be withdrawn from storage. This rate is

usually expressed in millions of cubic feet per day (MMcf/day) but may also

54

refer to the equivalent heat content of the gas and be expressed as dekatherms

(100,000 BTU/day).

 + � G A 4�H�5
 (12)

 I= rate of Injection

 P=pressure, which is calculated with the Ideal Gas law

 (Civan 2008)

 G � �IJ
(

(13)

 n=moles of gas (converted from INVt)

 R= the Universal Gas Constant

 I � 0.08206 N·�PQ
Q<=·R

 T = temperature ºKelvin

 V=Facility Volume

 INVt = Total facility inventory at time t

4�H�5
= a multiplier with a value from 0 to 1, to account

for any flow constraint imposed by facility hardware,

compressors, etc. If the aboveground hardware does not

place a limit on the gas withdrawn, then f(FAC) = 1.

55

 In practice, this may not be a significant parameter as a facility will

contain gas owned by multiple operators and gas will be injected or withdrawn

at rates unknown to planners. Also, there may be a deliverability rate guaranteed

in the contract.

 The inventory cycle time varies according to the type of gas storage

facility. In the case of salt cavern storage, this period may be between 30 and 60

days, allowing a complete inventory turnover 6-12 times annually. Gas may be

stored in one of several types of underground facilities. Of the three primary

types, depleted reservoirs, aquifers and man-made salt-caverns, the later is

considered due to its higher annual inventory turnover rates.

Type
Cushion to Working

Gas Ratio
Injection

Period(Days)
Withdrawal Period

(Days)

Aquifer Cushion 50% to 80% 200 to 250 100 to 150

Depleted Oil/Gas
Reservoirs Cushion 50% 200 to 250 100 to 150

Salt Cavern Cushion 20% to 30% 20 to 40 10 to 20

Table 3 Natural Gas Storage Facility Characteristics (FERC 2004)

Algorithm 1: Branch and Bound Optimization with LP

for each entity loop

 initialize independent variables & parameters

 load prices, costs

 apply variance process to price and cost data

 (entity) enter B&B subroutine

56

 repeat while at least one entity is in the B&B subroutine

 case action: ‘hold’

 if current inventory<periods remaining * transaction volume

 then apply action

 else prune branch

 end if

 case action: ‘buy’

 if current inventory<periods remaining * transaction volume

 and current inventory + purchase <= max storage capacity

 then apply action

 else prune branch

 end if

 case action: ‘sell’

 if current inventory or A and B

 then invoke LP_Solver

 apply results to value and inventory levels

 else process individual sale

 end if

 end case

 update status of entity

 if current entity is horizon (n)

 compare value to current best value

57

 if current value > best values

 swap values

 end if

 else spawn new entity for each action (buy,hold,sell)

 (entity) enter B&B subroutine

 end if

 end repeat

end loop

3.1.4 SS+LP Bounds

 The SS-LP hybrid operated under the same constraints as the B&B-LP

hybrid. The only change was the manner in which the test solution was selected

from the solution space. The decision to buy, sell or hold was then selected

from a uniform random distribution with each decision receiving equal weight,

i.e., there was no bias toward either of the three decision actions.

Algorithm 2: Stochastic Selection with LP

for each entity (trial)

 initialize independent variables & parameters

 load prices, costs

 apply variance process to price and cost data

 (entity) enter SS-LP subroutine

58

 repeat for each iteration

 repeat for s=1 to max solution samples

 repeat for n=1 to horizon

 generate action (stochastic process)

 case action: ‘hold’

 if current inventory<periods remaining * transaction volume

 then apply action

 else prune branch

 case action: ‘buy’

 if current inventory<periods remaining * transaction volume

 and current inventory + purchase <= max storage capacity

 then apply action

 else prune branch

 case action: ‘sell’

 if current inventory or A and B>

 then invoke LP_Solve

 apply results to value and inventory levels

 else process individual sale

 end case

 if value of plan > best plan

 then set best plan=current plan

 end repeat

 end repeat

59

 end repeat

end loop

3.1.5 SS Bounds

 Having two algorithms that applied LP, the third approach was

developed so that the selection from the solution space in its entirety was the

result of a random process. This provided a means of comparing the efficiency

of the LP approach with the more flexible stochastic selection method. It was

not expected that the approach would be more efficient when compared directly,

but that its flexibility may increase the quality of solution.

 The third algorithm was implemented with more flexibility by using a

stochastic process to select a candidate solution from the solution space,

including the mix ratio of products bought or sold. With the stochastic solution

sample processes, invalid decisions are allowed but may not be executed. For

example, if ‘Sell’ if selected yet there is insufficient inventory to execute a Sell,

then the net change to value and inventory will be $0 and 0 cf3 gas respectively.

 Flexibility was extended in the SS algorithm by adding a random process

to determine the percentage of the max transfer volume that would be bought or

sold in each transaction. To modify the efficiency of this approach, the values

returned by the random process are customizable. The initial tests were

performed with the process returning values ranging from -100% to +100% in

units of 25%.

60

Algorithm 3 Stochastic Selection (SS)

for each entity (trial)

 initialize independent variables & parameters

 load prices, costs

 apply variance process to price and cost data

 (entity) enter SS subroutine

 repeat for s=1 to max solution samples

 repeat for n=1 to horizon

 generate inventory delta gas A -100 (sell) to 100 (buy) %

 generate inventory delta gas B -100 (sell) to 100 (buy) %

 generate inventory delta gas AB -100 (sell) to 0%

 case action: ‘buy’

 update entity inventory, value

 case action: ‘sell’

 update entity inventory, value

 end case

 if value of plan > best plan

 then set best plan=current plan

 end repeat

 end repeat

 end repeat

end loop

61

3.1.6 Required Minimum Delivery Option

 To increase the rigor of the simulation, a second version of the model

was created identical to the first, with one additional option, that a burden could

be placed on the facility to provide a monthly minimum sale or use of any or all

of the three products.

 This option added parameters and logic that forced the facility to deliver

a ‘contracted’ volume of gas to either a customer or for internal use. This

delivered amount was due regardless of the strategic decision to buy, sell or

hold. In cases where there was no gas in inventory, the model purchased it on

the open market at the spot price and incurred a penalty, another parameter of

the simulation

 The purpose of this was to examine the flexibility of the three algorithms

when facing change and to see how they performed with the necessarily

increased processing.

3.1.7 Development System Information

 The simulation tool used was AweSim and Visual SLAM, from Mapics.

This software provides discrete event as well as continuous simulation. It offers

the capability of creating and linking user-defined functionality with C++. For

this, Microsoft C++ 6.0 was included. A mixed-integer linear programming

(MILP) solver, LP-Solve 5.5, was linked to the system (LP_Solve 2010).

Functions from this package were used to solve the mixed-product problems.

Data analysis and charting were done with Microsoft Excel 2007.

 The model was created and executed on an IBM PS2 with one (1) 3.4

GHz Pentium CPU and 1GB of RAM. It ran on Windows XP Professional,

version 2002, service pack 2.

62

3.2 Performance Measures

 Optimization problems of this type do not always yield an optimum

result but rather a near optimal one. There is an inherent trade-off in the amount

of computer processing and the quality of the result. In this research both were

measured and the relationship between the two was measured for each

algorithm.

Figure 2 System Organization

Cost &
Price Data,
Parameters

Results, paths,
profits,
performance
data

C++ source code

Awesim

LP_solve

AweSim
Main
Control
Module

SS-LP Module

B&B-LP Module

SS Module-II

63

3.2.1 Speed of Computation

 Computation speed can only be used as a relative expression as it is

dependent on the system hardware, (CPU(s), memory, hard drives, etc.),

operating system and software upon which the model executed. Computational

speed is indirectly proportional to the effective cumulative processing power of

the system. Equation 14 represents the factors that contribute to the

computational speed.

 Computational speed is also related to the structure of the problem itself.

Some problems can only be approached sequentially, executing one step after

another. In these cases, a multi-CPU machine would not demonstrate an

advantage over a single-CPU machine. In such situations, the problem structure

fps would have a detrimental effect on the processing time, S. With Monte Carlo

optimization techniques, many problems may be parallelized, i.e., separated into

smaller problems that can be solved on different threads, CPU’s or other

computers. After scenario generation and evaluation, the results are combined

for analysis. Garcia, et al. (2007) used distributed processing to evaluate

candidate solutions in a joint-strategy fictitious play simulation (Fourer, et al.

2010).

 B � 4SS A 4,T A 46T A 4S6 (14)

 S = processing time

 fpp = function of problem parameters

64

 fps = function of problem structure

 fsw = function of system software

 fhw = function of system hardware

 The processing time may represent CPU time or total runtime. Problem

parameters would include all variables and data used by the model as well as

control parameters such as number of iterations, number of generations,

thresholds, etc.

3.2.2 Quality of Solution

 Each algorithm was executed multiple times, with different parameters

and returned sets of results, candidate solutions. The accuracy and variance of

values are analyzed for accuracy and variance. The results are compared and

presented in Chapter 4.

3.2.3 Overall Performance

 The quality of solutions and the computational time are tightly related in

optimization problems using a stochastic method to select candidate solutions

from the solution space. If the problem forces the investigator to accept a near-

optimal solution, and it typically does, then the primary factor is how long to run

the process.

3.2.4 Random Numbers

 Many types of optimization require the generation of a set of alternative

solutions. In doing so, a random number generator provides a number between

0 and 1 in a normal distribution. There are various ways to generate a ‘random’

65

number. One way is to import the numbers from a table of random numbers.

Another method is to use a vacuum tube or some other generator of random

noise. The third method, the one used in this experiment through AweSim, is to

use a recursive equation (i+1)st random number from a previous set of random

numbers. This deterministic approach does not produce true random numbers

but rather pseudo-random numbers, which serve well for simulation problems.

Awesim provides multiple streams as seeds for random numbers, allowing the

user to execute reproducible simulations or vary the input to test multiple

scenarios (Pritsker and O’Reilly, 1999)

66

Chapter 4

Computational Results and Analysis

4.1 Experimental Design

 Simulation optimization was chosen as the tool to investigate this

problem. Three algorithms were developed and tested—a branch and bound-

linear programming B&B-LP, a stochastic search-linear programming SS-LP

approach, and a fully stochastic search SS.

4.2 Trial Simulations

 An initial set of tests was performed with the simplest data and

parameters as a way to validate the functionality of the model. Appendix 1

contains the data and parameters used in these tests. Refer to appendix 2 for

graphical representation of the results.

 Subsequent trials were executed using historic price data from the Henry

Hub for cost of gas and Oklahoma average city gate prices. Refer to appendices

6 and 7 for the Henry Hub and Oklahoma city gate data, respectively.

 Historical data for the wellhead, city gate and consumer prices of natural

gas are available from the Energy Information Agency (EIA 2012). This US

government agency provides independent statistics and analysis of the

production and consumption of petroleum products, coal, electricity and other

67

energy sources. Data is available by location and time. This research used a

time period of one month and used similar available price data.

.

4.3 Computational Results

Branch & Bound-LP Hybrid

 This algorithm provided, not surprisingly, the most accurate results.

Within the constraints placed on it, the process enumerated and evaluated each

possible path in the 12-period horizon. In 25 trials, the correct solution was

found each time. The number of samples evaluated was based on the maximum

number of candidate paths enumerated by the trinomial tree, 312 = 531,441.

With the bounds placed on the algorithm, and considering the samples per

second evaluated by the other approaches, it is unlikely that the solution set was

fully enumerated.

Horizon 12.0
Samples Evaluated 531,441
Value Generated 1200
Elapsed Seconds 300
Samples per Second 1771.5

Table 4 Branch & Bound-LP, Results

68

SS-LP hybrid

 The SS-LP hybrid performed best when sampling 20000 solutions per

iteration. It consistently found the optimum solutions with a STDDEV of 0.0.

Samples per Simulation 250 2500 10000 20000

Simulations 20 20 20 20

Total Seconds Elapsed 60 240 1800 3480

Samples per Second 83.3 119 111 114

Mean 1000.0 1126.3 1189.5 1200.0

Standard Error 15.3 22.7 10.5 0.0

Median 1000.0 1200.0 1200.0 1200.0

Mode 1000.0 1200.0 1200.0 1200.0

Standard Deviation 66.7 99.1 45.9 0.0

Sample Variance 4444.4 9824.6 2105.3 0.0

Range 400.0 200.0 200.0 0.0

Minimum 800.0 1000.0 1000.0 1200.0

Maximum 1200.0 1200.0 1200.0 1200.0

Sum 19000.0 21400.0 22600.0 22800.0

Count 19.0 19.0 19.0 19.0

Largest(1) 1200.0 1200.0 1200.0 1200.0

Smallest(1) 800.0 1000.0 1000.0 1200.0

Confidence Level(95.0%) 32.1 47.8 22.1 0.0

Table 5 SS-LP, Descriptive Statistics

SS

 The SS algorithm was created with the option of generating specific

volumes of gas to be bought or sold, with a range from -100% to 100% of the

maximum transfer amount, and was initially generated in 25% increments. In

practice, it turned out that this expanded the solution space to the point that the

SS approach could not reliably find a near-optimal solution in a reasonable time.

69

The results shown here and in the follow-on model were generated with rates

selected from the set {-100, 0,100}.

Samples per Simulation 250 2500 10000 20000

Simulations 20 20 20 20

Total Seconds Elapsed 60 120 360 840

Samples per Second 83.3 416.7 555.6 476.2

Mean 1010.0 1046.0 1090.0 1134.0

Standard Error 17.6 17.8 11.7 12.4

Median 1000.0 1000.0 1100.0 1120.0

Mode 1000.0 1000.0 1100.0 1100.0

Standard Deviation 78.8 79.5 52.1 55.5

Sample Variance 6210.5 6320.0 2715.8 3077.9

Range 400.0 280.0 200.0 200.0

Minimum 800.0 920.0 1000.0 1000.0

Maximum 1200.0 1200.0 1200.0 1200.0

Sum 20200.0 20920.0 21800.0 22680.0

Count 20.0 20.0 20.0 20.0

Largest(1) 1200.0 1200.0 1200.0 1200.0

Smallest(1) 800.0 920.0 1000.0 1000.0

Confidence Level(95.0%) 36.9 37.2 24.4 26.0

Table 6 SS Descriptive Statistics

 The SS and SS-LP algorithms yielded very similar results due primarily

to the simplicity of the scenarios. Figure 4 compares the number of solutions

sampled with the mean value returned. Performance-wise, the SS model in

these scenarios performed much more efficiently, evaluating 417% more

solutions per second than SS-LP.

70

Branch & Bound-LP Hybrid w/ Minimum Required Deliveries

 With the introduction of the minimal required deliveries constraint, the

B&B-LP hybrid did find the optimal solution. It correctly returned a value of

1007 when a 0.1% out-of-stock penalty was applied and 1020 when there was

no penalty. In both situations, the B&B-LP algorithm provided the best results

and in the shortest time. Again, the number of samples evaluated was based on

the maximum number of candidate paths enumerated by the trinomial tree, 312 =

531,441.

Horizon 12.0 12.0
Samples Evaluated 531,441 531,441
Penalty 0.1 0.0
Value Generated 1007.0 1020.0
Elapsed Seconds 300 315
Samples per Second 1771.5 1687.1

Table 7 B&B-LP w/ Min Delivery, Results

71

SS-LP w/ Minimum Required Deliveries

 With the addition of the minimum required delivery rule, the accuracy of

the SS-LP and SS algorithms dropped. Variance and standard deviation were

higher than the same algorithm without the additional constraint.

Samples per Simulation 250 2500 10000 20000

Simulations 20 20 20 20

Total Seconds Elapsed 60 240 1800 3480

Samples per Second 83.3 119.0 119.0 119.0

Mean 793.5 900.0 1020.0 1010.0

Standard Error 20.7 22.5 0.0 10.0

Median 820.0 820.0 1020.0 1020.0

Mode 820.0 820.0 1020.0 1020.0

Standard Deviation 92.6 100.5 0.0 44.7

Sample Variance 8571.3 10105.3 0.0 2000.0

Range 400.0 200.0 0.0 200.0

Minimum 620.0 820.0 1020.0 820.0

Maximum 1020.0 1020.0 1020.0 1020.0

Sum 15870.0 18000.0 20400.0 20200.0

Count 20.0 20.0 20.0 20.0

Largest(1) 1020.0 1020.0 1020.0 1020.0

Smallest(1) 620.0 820.0 1020.0 820.0

Confidence Level(95.0%) 43.3 47.0 0.0 20.9

Table 8 SS-LP w/ Min Delivery, Descriptive Statistics

72

SS w/ Minimum Required Deliveries

 Again, the SS model outperformed the SS-LP speed-wise. The lack of

computational overhead of the LP-Solve’s simplex processing allowed the

sample evaluations to run much faster. The accuracy of this approach was

significantly enhanced by the constraint placed on the volume of quantity

shipped.

Samples per Simulation 250 2500 10000 20000

Simulations 20 20 20 20

Total Seconds Elapsed 60 120 360 840

Samples per Second 83.3 416.7 555.6 476.2

Mean 784.4 901.2 970.2 999.2

Standard Error 18.0 13.9 11.2 9.5

Median 795.6 920.0 955.0 1013.3

Mode 720.0 920.0 1020.0 1020.0

Standard Deviation 80.5 62.1 50.2 42.5

Sample Variance 6476.6 3853.3 2520.9 1806.9

Range 300.0 253.2 153.2 200.0

Minimum 620.0 820.0 920.0 920.0

Maximum 920.0 1073.2 1073.2 1120.0

Sum 15688.2 18024.0 19404.4 19983.4

Count 20.0 20.0 20.0 20.0

Largest(1) 920.0 1073.2 1073.2 1120.0

Smallest(1) 620.0 820.0 920.0 920.0

Confidence Level(95.0%) 37.7 29.1 23.5 19.9

Table 9 SS w/ Min Delivery, Descriptive Statistics

4.4 Computational Speed

 The only meaningful way to compare the speed of these algorithms is on

the same hardware and software. With that consideration in mind, the Branch &

Bound-LP hybrid was

ability to prune the decision

nodes increased the efficiency.

twelve months, contributed to the B&B

or 52 periods, the problem would have become t

this approach.

Figure

 The SS-LP hybrid

overhead of the LP

0

500

1000

1500

2000

S
o

lu
ti

o
n

s
E

v
a

lu
a

te
d

Solutions Evaluated per Second

73

Computational Speed

The only meaningful way to compare the speed of these algorithms is on

the same hardware and software. With that consideration in mind, the Branch &

LP hybrid was consistently superior on a result/unit time basis.

ability to prune the decision tree and thereby avoid the evaluation of discarded

nodes increased the efficiency. It is noted that the relatively low time horizon,

twelve months, contributed to the B&B-LP success. Had the horizon be

or 52 periods, the problem would have become too computationally intensive for

Figure 3 Solutions Evaluated/Second

hybrid was the least effective, computationally

overhead of the LP-Solve software. The SS algorithm, the simplest

Algorithm

Solutions Evaluated per Second

Solutions/Sec

The only meaningful way to compare the speed of these algorithms is on

the same hardware and software. With that consideration in mind, the Branch &

superior on a result/unit time basis. Its

tree and thereby avoid the evaluation of discarded

low time horizon,

LP success. Had the horizon been 24-

oo computationally intensive for

, computationally, due to the

The SS algorithm, the simplest

74

computationally, performed faster in this project due primarily to the constraints

placed on its search of the solution space.

4.2.1 Quality of Solution

 The following graphs compare the accuracy of each approach at each

level of performance. The B&B-LP was superior in both variants of the model.

Figure 4 Comparison of SS-LP & SS Results

700.0

800.0

900.0

1000.0

1100.0

1200.0

1300.0

250 2500 10000 20000

V

a

l

u

e

Number of Solutions Sampled

Comparison of Mean & Solution Samples

SS-LP SS B&B-LP

75

Figure 5 Comparison of SS-LP & SS w/ MRD

 As expected, the stochastic approaches improved in accuracy with

increased sample evaluations.

Figure 6 Relative Accuracy of Approaches

700.0

750.0

800.0

850.0

900.0

950.0

1000.0

1050.0

250 2500 10000 20000

V

a

l

u

e

Number of Solutions Sampled

Comparison of Mean & Solution Samples

B&B-LP SS-LP SS

75.0

80.0

85.0

90.0

95.0

100.0

105.0

250 2500 10000 20000

V

a

l

u

e

Number of Solutions Sampled

Comparison of Accuracy Relative to B&B-LP

B&B-LP SS-LP SS

76

Figure 7 Relative Accuracy of Approaches w/ MRD

Figure 8 Relative Accuracy of SS approaches

0.0

20.0

40.0

60.0

80.0

100.0

120.0

250 2500 10000 20000

P

e

r

c

e

n

t

Number of MRD Solutions Sampled

Comparison of Accuracy Relative to B&B-LP

B&B-LP SS-LP SS

0.0

20.0

40.0

60.0

80.0

100.0

120.0

250 2500 10000 20000

P

e

r

c

e

n

t

Number of Solutions Sampled

Comparison of Accuracy Relative to B&B-LP

SS w/ MRD SS SS-LP SS-LP w/MRD

77

4.2.2 Best Overall Performance

 The Branch & Bound-LP hybrid was the best of the three approaches

used in this project. It returned the optimal solution and, when compared to the

SS-LP and SS algorithms that actually executed long enough to generate a

reliable optimum or near-optimum solution, it was the least computationally

expensive.

78

Chapter 5

Conclusions and Future Research

5.1 General Conclusions

 With a worldwide market for natural gas, it is not surprising that a great

amount of research has already been accomplished on a multitude of associated

topics. So it is within the area of natural gas scheduling, an inventory

scheduling problem with some attributes that are specific to natural gas.

 This project has sought to extend that research by examining methods of

optimizing the decisions that are made by gas investors and facility operators.

The specific focus of the dissertation was the combination of gases of different

energy contents, or Btu levels. This topic grows in importance as businesses

seek to optimize resources and as environment pressures dictate the

consumption of gas of lesser quality.

 Simulation optimization is commonly employed to solve or find

reasonable solutions to problems such as this. The literature review in chapter 2

discussed many variations of this powerful tool. This dissertation describes a

research project that examined three algorithms for optimizing gas inventory

decision making.

 The B&B-LP hybrid was, within the constraints of the program, the most

accurate, always returning an optimal solution and in the best time. This

79

accuracy was generated at the expense of flexibility. Heuristics were applied to

reduce the number of decision points at each node, exponential growth being the

nemesis of dynamic programming.

 The advantage of the Stochastic Selection-Linear Programming (SS-LP)

algorithms was its flexibility. It was not as efficient computationally as the

B&B-LP approach, but it was more readily modified to new constraints.

 While the simplest and most flexible approach, the generic Stochastic

Selection (SS) algorithm proved to be too computationally expensive to use

without some constraints. For example, percentage of shipping volumes were

selected from a set of three options, -100%, 0, and +100%.

5.1.1 Computational Effort Conclusions

 Being NP-Hard, this is a problem whose acceptable solution requires a

high level of computational investment. Heuristics were applied that simplified

the problem. Measurements of computational effort provide a comparison of

the algorithms’ resource requirements. These will vary from computer to

computer and, as mentioned in chapter 3, from one implementation and software

configuration to another. Even with knowledge of the specifications of the

computer and software system used in this project, these results are not

necessarily predictive of performance on another system.

 The B&B-LP hybrid returned the best results in the least amount of time.

The SS-LP and SS algorithms did generate optimal solutions when given

sufficient time, but the time required was significantly greater than that of the

B&B-LP.

80

5.1.2 Quality of Solution Conclusions

 Each of the three algorithms produced optimal solutions in both test

cases. The B&B-LP model found the optimal solution in the shortest time. Not

surprisingly, the accuracy of the stochastic solution search routines was directly

proportional to the number of sample solutions examined. The SS–LP model

provided the optimal solution with a STDEV of 0.0 when 20,000 solutions were

examined. The SS model exhibited the same performance.

 There were two variants of the model, the basic one and a second that

enforced a minimum delivery quantity. The quality of solution and relative

consumption of computer resources were the same in each variant.

5.1.3 Overall Performance Conclusions

 Performance of the three algorithms varied. The B&B-LP approach was

the superior performer for this problem. Under other circumstances, that may

not be the case when, for example, there are more decision factors to be

evaluated.

5.2 Final Conclusions

 This project has been very interesting. The energy industry and natural

gas in particular is a global concern and, as it faces changes from economic,

technological and environmental stimuli, there will be new and important areas

of research. This project has examined and offered an useable approach, an

approach superior to one based solely on historical performance, to a problem

81

that has become more prominent in the industry and will continue to receive

attention.

5.3 Future Research

 This is an exciting area of research and this project remains with many

avenues to be investigated. There are many simulation optimization techniques

that may be applied to this type of problem.

 Exploration of performance improvement on distributed system would

allow the researcher to examine multiple sets of simulated decision paths

simultaneously.

 The model designed for this project allowed for random variations of

input price and cost data. To be more realistic, a model may include a procedure

to apply a Brownian motion variance as well. Also, regarding price data, many

models in practice currently include natural gas futures in the pricing scheme.

5.3.1 Parallel and Distributed Processing

 With the availability of multi-core and multi-CPU architectures, even

modern desktop computers offer significantly more processing power than was

available for this research. Such hardware, when properly accessed, allows

multiple independent processes to run simultaneously, as opposed to single-

threaded processing which may appear to execute processes at the same time but

actually switches between them rapidly. Many optimization techniques,

particularly Monte-Carlo-based approaches, can be parallelized and executed

simultaneously. Approaches that involve Markovian states also fit this scenario.

82

Software solutions and optimization programming techniques that take

advantage of tread-level parallelism will provide much broader searches of the

solution space (Happe et al. 2009, Hsu, et al. 2011, Lee 2010).

 Perhaps the most promising technological development to increase

processing power is distributed processing. Garcia, et al. (2007) used distributed

processing to evaluate candidate solutions in a joint-strategy fictitious play

simulation. Fourer, et al. (2010) developed a framework for distributed

optimization, a system in which multiple computers not in a central location but

connected via the Internet could be used as shared resources in solving

optimization problems. Their work is conceptually similar to that of Luo, et al.

(2000), but it is implemented with more recent and mature methods. They point

out the need for the operations research (OR) community to be cognizant of the

advances and innovations already in use in the information technology (IT)

community. In service-oriented architecture (SOA) technology, service-level

communication between servers is in widespread use commercially through

standardized protocols that allow dissimilar applications to exchange data,

invoke services on other servers, or execute services at the request of external

machines. Using this or a similar framework, the practitioner could use

modeling software of one server, data generation services of a different

machine, the simulation services of another and the optimization service of yet

another server.

 In this particular example, such a system would provide the means of

examining larger sets of potential solutions, whether they are stochastically-

83

generated combinations or regions of a solution space selected by a different

approach, or as branches of a decision tree. The SETI@Home project is a

well-known example of a massively-distributed computing program (Korpela, et

al., 2001).

5.3.2 Geometric Brownian Motion

 In applying a valuation to decisions to purchase or sell gas, it is a

common practice to treat them as stock options, contracts for the future privilege

to buy or sell a specified amount at a specified price. This practice is known as

Real Options Theory and is widely practiced (Frayer, et al. 2001, Lai, et al.

2011).

 Brownian motion was first described in the field of physics as

observations of random movement of large particles when smaller ones struck

them, but, interestingly, the prices of stocks tend to display Brownian motion as

they fluctuate. Geometric Brownian motion varies from ordinary Brownian

motion in that it holds that over time, the changes in price will fall into a normal

distribution with a mean and standard deviation dependent only on the time

elapsed. Brownian motion is a key component of the Black-Scholes equation.

Formula 15 shows the basic Brownian motion value change (Chriss 1999).

 �B � UB�C ! VB�W (15)

 S = price

 t=time

 µ,σ = constants indicating drift

84

 z =stochastic process, Wiener, �W � X√�C

 Brewer, et. al. (2012)

 It would be advantageous to apply Brownian motion to the changes in

gas prices in future work. While other events and trends contribute to the

volatility of natural gas prices, this would improve the model by making the

volatility factor more realistic.

5.3.3 Heuristics, Metaheuristics, Multi-Criteria

 This problem may be approached with various Metaheuristics, such as

the tabu search. The problems continuous solution space makes it

computationally intractable unless heuristics and constraints are applied to

discretize the problem. Further examination of those constraints would prove

interesting. The second part of this project sought to optimize profit while

guaranteeing delivery of products. That or similar criteria for optimization may

be expanded upon as well.

5.3.4 Natural Gas Futures

 In this dissertation and the model it describes, natural gas ‘spot prices’

have been used. The spot price is the price for a transaction at the current price

on the open market for immediate delivery of a specific quantity of gas at a

specific location.

 A futures price, however, is the price quoted for delivering a specified

quantity of gas at a specified time and place in the future. Quotes or ‘contracts’

are usually written for delivery for a specific number of months in the future and

85

may be referred to as ‘contract n’ where n is 1,2,3 etc. and may go as high as

360 months, although that is unusual. Figure 12 shows the historic values of 1-

month natural gas futures. Natural gas contracts expire three business days prior

to the first calendar day of the delivery month. Thus, the delivery month for

Contract 1 is the calendar month following the trade date.

 While speculators buy and sell contracts as investments, futures are also

purchased as a way of hedging against sharp price fluctuations. The addition of

futures to the model would be a great enhancement.

Figure 9 Natural Gas Futures Contract 1 ($US/MMBTU) (EIA2013)

 There are many attributes and capabilities that may be added to this

model that will increase its accuracy and perhaps efficiency as well. As new

technologies emerge, economies change, and sources of energy fluctuate in

priority, this field of research remains interesting and relevant.

0

2

4

6

8

10

12

14

16

Ja
n

-1
9

9
4

D
e

c-
1

9
9

4

N
o

v-
1

9
9

5

O
ct

-1
9

9
6

S
e

p
-1

9
9

7

A
u

g
-1

9
9

8

Ju
l-

1
9

9
9

Ju
n

-2
0

0
0

M
a

y
-2

0
0

1

A
p

r-
2

0
0

2

M
a

r-
2

0
0

3

F
e

b
-2

0
0

4

Ja
n

-2
0

0
5

D
e

c-
2

0
0

5

N
o

v-
2

0
0

6

O
ct

-2
0

0
7

S
e

p
-2

0
0

8

A
u

g
-2

0
0

9

Ju
l-

2
0

1
0

Ju
n

-2
0

1
1

M
a

y
-2

0
1

2

86

Bibliography

1. Abspoel, S., Etman, L., Vervoort, J., Rooij, R., Schoofs, A., Rooda, J.

(2001). Simulation Based Optimization of Stochastic Systems with Integer
Design Variables by Sequential Multipoint Linear Approximation.
Structural and Multidisciplinary Optimization, 22, 125-138.

2. Ahn, H., Danilova, A., Swindle, G. (2002, September). Storing ARB.

Wilmott.

3. Al-Aomar, R. (2000). Product-Mix Analysis with Discrete Event Simulation.
Proceedings of the 2000 Winter Simulation Conference, 1385-1392.

4. Amerault, P., Blount, J., Hopper, J., Gentges, R. (2005). Industry Leaders
Discuss Future Gas Storage Trends. Pipeline and Gas Journal 232, 6.

5. Ammeri, A., Chabchoub, H., Hachicha, W., Masmoudi, F. (2010, May). A
Comprehensive Literature Classification of Simulation-Optimization
Methods. Proceedings of Multi Objective Programming Goal
Programming2010.

6. Anderson, P., Evans, G., Biles, W. (2006, June). Simulation Optimization of
logistics systems through the use of various reduction techniques and
criterion models. Engineering Optimization, 38, 4, 441-460.

7. April, J., Glover, F., Kelly, J., Laguna, M. (2003). Practical Introduction to
Simulation Optimization. Proceedings of the 2003 Winter Simulation
Conference, 71-78.

8. Arbib, C., Marinellie, F., Pezzella, F. (2012). An LP-Based Tabo Search for
Batch Scheduling in a Cutting Process with Finite Buffers. International
Journal of Production Economics, 136, 287-296.

9. Avery, W., Brown, G., Rosenkranz, J., Wood, R. (1992). Optimization of
Purchase, Storage and Transmission Contracts for Natural Gas Utilities.
Operations Research, 40, 3, 446-462.

10. Azadivar, F. (1999). Simulation Optimization Methodologies. Proceedings
of the 1999 Winter Simulation Conference, 93-100.

11. Bagci, A., Ozturk, E. (2007). Performance Prediction of Underground Gas
Storage in Salt Caverns, Energy Sources, Part B, 2,155-165.

87

12. Baghmisheh, M., Peimani, M., Sadeghi, M.,Ettefagh, M.,Tabrizi, A. (2012).
A Hybrid Particle Swarm-Nelder-Mead Optimization Method for Crack
Detection in Cantilever Beams. Applied Soft Computing Journal, 12, 8,
2217-2226.

13. Baranes, E., Mirabel, F., Poudou, J. (2009). The Economics of natural Gas
Storage: A European Perspective. Heidelberg: Springer-Verlag.

14. Bjerksund, P., Stensland, G., Vagstad, F. (2011). Gas Storage Valuation:
Price Modeling vs Optimization Methods. The Energy Journal, 32, 203-226.

15. Black, F., Scholes, M. (1973). The Pricing of Options and Corporate
Liabilities. Journal of Political Economy, 81, 637-659.

16. Beasley, J., Howells, H., Sonanser, J. (2002). Improving Short-Term
Conflict via Tabu Search. The Journal of the Operational Research Society,
53, 6, 593-602.

17. Blanco, C., Stefiszyn, P. (2002). Multi-factor Models for Forward Curves
Analysis: An Introduction to Principal Component Analysis. Financial
Engineering Associates. Retrieved February 21, 2013, from
http://www.docstoc.com/ docs /93749334/Multi-Factor-Models-for-
Forward-Curve-Analysis

18. Blanco, C., Stefiszyn, P. (2007). Valuing Natural Gas Storage Using
Seasonal Principal Component Analysis. Financial Engineering Associates.
Retrieved February 21, 2013, from http://www.erasmusenergy.com/
articles/72/1/Valuing-Natural-Gas-Storage-Using-Seasonal-Principal-
Component-Analysis/Page1.html

19. Boesel, J., Nelson, B., Kim,S. (2003). Using Ranking and Selection to

‘Clean Up’ After Simulation Optimization. Operation Research, 51, 814-
825.

20. Boogert, A., De Jong, C. (2006). Gas Storage Valuation Using a Monte-

Carlo Method. London: School of Economics, Mathematics and Statistics
Birkbeck College University of London.

21. Bopp, A. (1996). An Optimization Model for Planning Natural Gas
Purchases, Transportation, Storage and Deliverability, Journal of
Management Science, 24, 5, 511-522.

22. Brewer, K., Feng, Y., Kwan, C. (2012). Geometric Brownian Motion,
Option Pricing, and Simulation: Some Spreadsheet-Based Exercises in
Financial Modeling. Spreadsheets in Education (eJSiE), 5, 3, article 4

88

Retrieved February 13, 2013, from http://epublications.bond.edu.au/
ejsie/vol5/iss3/4.

23. Busby, R. (1999). Natural Gas in Non-Technical Language. Institute of Gas
Technology.Tulsa, Oklahoma: Pennwell.

24. Byers, J. (2006). Commodity Storage Valuation: A Linear Optimization
Based on Traded Instruments. Energy Economics, 298, 275-287.

25. Chaton, C., Creti, A., Villeneuve, B. (2005, December). The Economics of
Seasonal Gas Storage. Energy Policy, 36, 11, 4235-4246.

26. Chen, H., Baldick, R. (2007, February). Optimizing Short-Term Natural Gas
Supply Portfolio for Electric Utility Companies. IEEE Transactions on
Power Systems, 22, 1.

27. Chen, Z., Forsyth, P. (2007). A Semi-Lagrangian Approach for Natural Gas
Storage Valuation and Optimal Operation. SIAM Journal on Scientific
Computing, 30:339-368.

28. Chinneck, J. W. (2010). Practical Optimization: A Gentle Introduction.
Carleton University, Ottawa, Canada. Retrieved September 6, 2010, from
www.sce.carleton.ca/faculty/chinneck/po.html

29. Chriss, N. (1997). Black-Scholes And Beyond. Boston: McGraw Hill.

30. Chvatal, V. (1983). Linear Programming. W.H. Freeman & Company.

31. Civan, F. (2008). Notes for “Oil and Gas Transportation and Storage”.
University of Oklahoma.

32. Clausen, J. (1999). Branch and Bound Algorithms – Principles and
Examples. University Of Copenhagen.

33. Cormen, T., Leiserson, C., Rivest, R., Stein, C. (2001). Introduction to
Algorithms. 2nd ed. Cambridge, Massachusetts: The MIT Press.

34. Dhar, A., Datta, B. (2008). Optimal Operation of Reservoirs for Downstream
Water Quality Control Using Linked Simulation Optimization. Hydrological
Processes, 22, 842-853.

35. Deng, S. (1998). Stochastic Models of Energy Commodity Prices and Their
Applications: Mean-Reversion with Jumps and Spikes. University of
California, Berkeley.

89

36. Dixit, A., Pindyck, R. (1994), Investment Under Uncertainty, Princeton
University Press.

37. DOE (1993). International Energy Annual 1993, U.S. Department of
Energy, Energy Information Administration Report DOE/EIA-0219(93).

38. DOE (1995). Annual Energy Review 1995, U.S. Department of Energy,
Energy Information Administration Report DOE/EIA-0384(95).

39. DOE (2005). Liquefied Natural Gas: Understanding the Basic Facts. U.S.
Department of Energy, Retrieved April 10, 2010, from
http://fossil.energy.gov/ programs/oilgas/publications/lng/LNG_primerupd
.pdf

40. EIA (2010). Working Gas in Underground Storage. US. Energy Information
Administration, Office of Oil and Gas. Retrieved April 18, 2010, from
http://ir.eia.gov/ngs/ngs.html

41. EIA (2012a). U.S. Underground Natural Gas Storage Developments: 1998-
2005 Energy Information Administration, Office of Oil and Gas. Retrieved
February 18, 2012, from http://www.eia.gov

42. EIA (2012b). Natural Gas Consumption by End Use. Energy Information
Administration, Office of Oil and Gas, Retrieved February 18, 2012, from
http://www.eia.gov

43. EIA (2012c). Natural Gas Prices. Energy Information Administration,
Office of Oil and Gas, Retrieved February 18, 2012, from
http://www.eia.gov

44. EIA (2013). Natural Gas Futures Contract 1. Energy Information
Administration, Office of Oil and Gas, Retrieved January 11, 2013, from
http://www.eia.gov

45. EIA (2012d). Energy Information Administration, Retrieved January 11,
2013, from http://www.eia.gov/dnav/ng /ng_cons_heat_
a_EPG0_VGTH_btucf_a.htm

46. EPA (2012). Landfill Methane Outreach Program, Retrieved January 13,
2013, from http://www.epa.gov/lmop/

47. FERC (2004). Current State of and Issues Concerning Underground Natural
gas Storage, Federal Energy Regulatory Commission Staff Report Sept 30,
Retrieved January 13, 2013, from www.ferc.gov

90

48. FERC (2008). Federal Energy Regulatory Commission, Retrieved January
13, 2013, from www.ferc.gov

49. Felix, B., Weber, C. (2008). Gas Storage Valuation: Comparison of
recombining Trees and Least Squares Monte-Carlo Simulation. Engineering
Management Conference. IEEE International. 1-4.

50. Frayer, J., Uludere, N. (2001). What is it Worth? Application of Real
Options Theory to the Valuation of Generation Assets. The Electricity
Journal. 14, 8, 40-51.

51. Fourer, R., Ma, J., Martin, K. (2010). Optimization Services: A Framework
for Distributed Optimization. Operations Research, 58, 6, 1624-1636.

52. Fu, M. (1994). Optimization via Simulation: A Review. Annals of Operation
Research, 53, 199-248.

53. Fu, M., Hill, S. (1997). Optimization of Discrete Event Systems via
Simultaneous Perturbation Stochastic Approximation, IIE Transactions, 29,
223-243.

54. Fu, M. (2001). Simulation Optimization. Proceedings of the 2001 Winter
Simulation Conference, 53-61.

55. Fu, M. (2001a). Encyclopedia of Operations Research and Management
Science, Kluwer Academic Publishers.

56. Fu, M., Laprise, S., Madan, D., Su, Y., Wu, R. (2001b, Spring). Pricing
American Options: A Comparison of Monte Carlo Simulation Approaches.
Journal of Computational Finance, 4, 3, 39-88.

57. Fu, M. (2002, Summer). Optimization for Simulation: Theory vs. Practice.
INFORMS Journal on Computing, 14, 192-215.

58. Fu, M., Glover, F., April, J. (2005). Simulation Optimization: A Review,
New Developments, and applications. Proceedings of the 2005 Winter
Simulation Conference, 83-95.

59. Fu, M., Chen, C., Shi, L. (2008). Some Topics for Simulation Optimization.
Proceedings of the 2008 Winter Simulation Conference, 27-38.

60. Gemen, H. (2006). Mean Reversion versus Random Walk in Oil and Natural
Gas Prices. Retrieved January 13, 2013, from http://ieor.columbia.edu/
files/seasdepts/industrial-engineering-operations-research/pdf-
files/Geman.pdf 16 Jan 2013.

91

61. Garcia, A., Patek, S., Sinha, K. (2007, July-August). A Decentralized
Approach to Discrete Optimization via Simulation: Application to Network
Flow. Operations Research, 55, 4, 717-732.

62. Glover, F. (1989). Tabu Search – Part I. ORSA Journal on Computing, 1, 3,
190-206.

63. Glover, F. (1990). Tabu Search – Part II. ORSA Journal on Computing, 2, 1,
4-32.

64. Glover, F., Kelly, J., Laguna, M. (1999). New Advances for Wedding
Optimization and Simulation. Proceedings of the 1999 Winter Simulation
Conference, 255-260.

65. Hansen, M. (1996). Tabu Search for Multi-objective Optimization: MOTS,
MCDM ’97, Capetown, South Africa.

66. Happe, M., Lubbers, E., Platzner, M. (2010).
A Multithreaded Framework for Sequential Monte Carlo Methods on
CPU/FPGA Platforms. Lecture Notes in Computer Science. 5453, 380-385.

67. Ho, Y., Zhao, Q., Jia, Q. (2007). Ordinal Optimization Soft Optimization for
Hard Problems. Springer.

68. Hooke, R., Jeeves, T. (1961). Direct Search Solution of Numerical and
Statistical Problems. Journal of the Association for Computing Machinery,
8, 2, 212-229.

69. Hodges, S. (2004). The Value of a Storage Facility. Techreport, 04-142.
Retrieved January 13, 2013, from http://www2.warwick.ac.uk/
fac/soc/wbs/research/wfri/rsrchcentres/forc/preprintseries/

70. Holland, A. (2007). Injection/Withdrawal Scheduling for Natural Gas
Storage Facilities. Proceedings of the ACM Symposium on Applied
Computing.

71. Holland, A. (2007b). Optimization of Injection/Withdrawal Scheduling for
Natural Gas Storage Facilities. Retrieved June 26, 2012 from
http://www.4c.ucc.ie/ ~aholland/publications/GasStorage.pdf

72. Holland, A. (2008). Welfare Losses in Commodity Storage Games
(Extended Abstract). Proceedings of the 8th Int. Conf on Autonomous Agents
and Multi-Agent Systems (AAMAS2009), May 10-15. Budapest, Hungary,
1253-1254.

92

73. Homem-De-Mello, T. (2008). On Rates of Convergence for Stochastic
Optimization Problems under Non–Independent and Identically Distributed
Sampling, SIAM Journal of Optimization, 19, 2, 524–551.

74. Hsu, C., Pino, J., Bhattacharyya, S. (2011, June). Multithreaded Simulation
for Synchronous Dataflow Graphs. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 16, 3.

75. Hu, J., Fu, M., Marcus, S. (2007). A Model Reference Adaptive Search
method for Global Optimization. Operations Research, 55, 3, 549-568.

76. Hu, J., Chang, H., Fu, M., Marcus, S. (2011). Dynamic Sample Budget
Allocation in Model-Based Optimization. Journal of Global Optimization,
50, 575-596.

77. Hull, J. (2005). Options, Futures, and Other Derivative Securitie 6th ed,
Prentice Hall.

78. Jolliffe, I. (2002). Principal Component Analysis, 2nd ed. New York:
Springer.

79. Kabirian, A., Olafsson, S., (2011). Continuous Optimization via Simulation
using Golden Region Search. European Journal of Operational Research,
208, 19-27.

80. Keppo, J., Lu,H. (2003, Sept). Real Option and a Large Producer: the Case
of Electricity Markets. Energy Economics, 25, 5, 459-472.

81. Kiefer, J, Wolfowitz, J, (1952). Stochastic Estimation of the Maximum a
Regression Function. Annals of Mathematical Statistics, 23 462-466.

82. Kim, J., Olafsson, S. (2002). Two-Stage NP Method with Inheritance.
Proceedings of the 2002 Winter Simulation Conference, 279-284.

83. Kirkpartick, S., Gelatt, C., Vecchi, M. (1983, May 13). Optimization by
Simulated Annealing. Science, New Series, 220, 4598, 671-680.

84. Korpela, E., Werthimer, D., Anderson, D., Cobb, J., Lebofsky, M. (2001,
January-February). SETI@Home—Massively Distributed Computing for
SETI. Computing in Science & Engineering, 78-83.

85. Kuriger, G. (2006). Multi-Criteria-simulation Optimization with Stochastic
Coefficients: Methods, Performance Measures and Test Bed Problems,
Doctoral Dissertation, The University of Oklahoma.

93

86. Kuriger, G., Grant, F. (2010). A Lexicographic Nelder-Mead Simulation
Optimization Method To Solve Multi-Criteria Problems. Computers &
Industrial Engineering, 60, 4, 555-565.

87. Lai, G., Francois, M., Secomandi, N. (2011). An Approximate Dynamic
Programming Approach to Benchmark Practice-Based Heuristics for Natural
Gas Storage Valuation. Operations Research, 58, 3, 564-582.

88. Lai, G., Wang, M., Secomandi, N., Kekre, S., Scheller-Wolf, A. (2011).
Valuation of Storage at a Liquefied Natural Gas Terminal. Operations
Research, 59, 3, 602-616.

89. Lawler, E. (1976). Combinatorial Optimization Networks and Matroids.
Mineola, New York: Dover Publications, Inc.

90. Lee, I. (2010). Analyzing Performance and Power of Multi-core Architecture
Using Multithreaded Iterative Solver. Journal of Computer Science, 6, 4,
406-412.

91. Li, Y., (2007, December). Natural Gas Storage Valuation. Master’s Thesis.
Georgia Institute of Technology.

92. Liu, A., Yang, M. (2012). A New Hybrid Nelder-Mead Particle Swarm
Optimization for Coordination Optimization of Directional Overcurrent
Relays. Mathematical Problems in Engineering, 2012.

93. Liu, W., Li, M., Liu, Y., Xu, Y., Yang, X. (2009). Decision of Optimal
Scheduling Scheme for Gas Field Pipeline Network Based on Hybrid
Genetic Algorithm, World Summit on Genetic and Evolutionary
Computation (GEC ’09). Shanghai, China.

94. Longstaff, F., Schwartz, E. (2001). Valuing American Options by
Simulation: A simple Least-Squares Approach. The Review of Financial
Studies, 14, 1, 113-147.

95. Lp_solve (2010). Lp_solve Reference Guide. Retrieved December 10, 2010
from http://lpsolve.sourceforge.net/5.5/

96. Lou, Y., Chen, C., Yucesan, E., Lee, I. (2000). Distributed Web-Based
Simulation Optimization. Proceedings of the 2000 Winter Simulation
Conference, 1785-1793.

97. Man, K., Tang, K., Kwong, S. (1999). Genetic Algorithms: concepts and
designs. London: New York: Springer.

94

98. Marks, F., (2011). Landfill Gas to Power Wewoka Brick Company’s Kilns.
Retrieved January 13, 2012 from http://newsok.com

99. Montgomery, Douglas C. (2001). Design and Analysis of Experiments, 5th
ed. New York: Wiley.

100. Mousavi, S., Hajipour, V., Niaki, S. Alikar, N. (2013). Optimizing
Multi-Item Multi-Period Inventory Control System with Discounted Cash
Flow and Inflation: Two Calibrated Meta-Heuristic Algorithms. Applied
Mathematical Modeling, 37, 4, 2241–2256.

101. NEB (2001). North American Natural Gas Liquids Pricing and
Convergence. National Energy Board of Canada, Retrieved March 30, 2011
from www.neb-one.gc.ca/clf.../gslqdsprcngcvrgncnrthmrc2001-eng.pdf

102. Nelder, J., Mead, R. (1965). A Simple Method for Function
Minimization. The Computer Journal, 7, 4, 308-313.

103. Newell, D., Bhattacharya, S., Sears, M. (2009, September 14). Low-Btu
Gas in the US Mid-continent: A Challenge for Geologists and Engineers.
Oil& Gas Journal.

104. NIST 2010. Retrieved April 20, 2010 from http://webbook.nist.gov/
chemistry

105. Olafsson, S., Kim, J. (2002). Simulation Optimization. Proceedings of
the 2002 Winter Simulation Conference, 79-84.

106. Padberg, U., Haubrich, H. (2008). Stochastic Optimization of natural
Gas Portfolios, Electricity Market, 1-6.

107. Pearson, K. (1901). On Lines and Planes of Closest Fit to Systems of
Points in Space. Philosophical Magazine, 2, 6, 559–572.

108. Pepelyaev, V. (2006). Planning Simulation-Optimization Experiments.
Cybernetics and System Analysis, 42, 6, 866-875.

109. Pichitlamken, J., Nelson, B. (2003, April). A Combined Procedure for
Optimization via Simulation”, ACM Transactions on Modeling and
Computer Simulation, 13, 2, 155-179.

110. Papadimitriou, C., Steiglitz, K. (1982). Combinatorial optimization
Algotithms and Complexity. New Jersey: Prentice Hall.

95

111. Poland, M., Nugent, C., Wang, H., Chen, L. (2011). Pure Random
Search for Ambient Sensor Distribution Optimization In A Smart Home
Environment. Technology and Health Care, 19, 137-160.

112. Powell, W. (2007). The Optimizing-Simulator: Merging Simulation and
Optimization Using Approximate Dynamic Programming. Proceedings of
the 2007 Winter Simulation Conference, 43-53.

113. Pritsker, A., O’Reilly, J. (1999). Simulation with Visual SLAM and
AweSim. 2nd ed. Wiley.

114. Ravindran, A., Ragsdell, K., Reklaitis, G. (2006). Engineering
Optimization Methods and Applications, 2nd Edition. Haryana, India: Wiley-
India.

115. Reeves, C., Rowe, J. (2003). Genetic Algorithms: Principles and
Perspectives: A Guide to GA Theory. Boston: Kluwer Academic
Publishers.

116. Robbins, H., Monro, S. (1951). A Stochastic Approximation Method.
Annals of Mathematical Statistics, 22, 400-407.

117. Rosen, S., Harmonosky, C., Traband, M. (2007). A Simulation
Optimization Method That Considers Uncertainty and Multiple Performance
Measures. European Journal of Operational Research, 181, 315–330.

118. Ross, S. (2003). Introduction to Probability Models, 8th ed. Academic
Press.

119. Routledge, B., Seppi, D., Spatt, C. (2000, June). Equilibrium Forward
Curves for Commodities. The Journal of Finance, 55, 3, 1297-1338.

120. Sieminski, A. (2007). Varying Views on the Future of the Natural Gas
Market Secrets of Energy Price Forecasting. Retrieved April 20, 2010 from
www.eia.gov/oiaf/aeo/conf/pdf/sieminski.pdf

121. Segars, M., Sanchez, R., Cannon, P., Binkowski, B., Gutierrez, C.,
Hailey, D. (2011). Blending Fuel Gas to Optimize use of Off-Spec Natural
Gas, ISA Power Industry Division 54th Annual I&C Symposium.

122. Shi, L., Olafsson, S. (2000, May-June). Nested Partitions Method for
Global Optimization. Operations Research, 48, 3, 390-407.

123. Smith, J., McCardle, K. (1999, January-February). Options in the Real
World: Lessons learned in Evaluating Oil and Gas Investments. Operations
Research, 47, 1.

96

124. Spall, J. (1992). Multivariate Stochastic Approximation Using a

Simultaneous Perturbation Gradient Approximation. IEEE Transactions on
Automatic Control, 37, 3, 332–341.

125. Sundaram, R. (1996). A First Course in Optimization Theory. Cambridge
University Press.

126. Suri, R., Zazanis, M. (1988). Perturbation Analysis Gives Strongly
Consistent Sensitivity Estimates for the M/G/1 Queue”. Management
Science, 34, 39-64.

127. Swisher, J., Hyden, P., Jacobson, S., and Schruben, L. (2000). A Survey
of Simulation Optimization Techniques and Procedures. Proceedings of the
2000 Winter Simulation Conference, 119-228.

128. Tek, M. (1996). Natural Gas Underground Storage: Inventory and
Deliverability, Pennwell.

129. Tekin, E., Sabuncuoglu, I. (2004). Simulation Optimization: A
Comprehensive Review on Theory and Applications. IIE Transactions, 36,
1067-1081.

130. Thompson, M., Davidson, M, Rasmussen, H. (2002), Natural Gas
Storage Valuation and Optimization: A Real Options Application,
Department of Applied Mathematics, University of Ontario. Retrieved
March 30, 2011 from www.apmaths.uwo.ca/~mdavison /_library/
preprints/Gasstorage.pdf

131. UNCTAD. Retrieved March 30, 2011 from http://www.unctad.org/
infocomm/anglais/gas/quality.htm

132. Vaitheeswaran, N. and Balasubramanian, R. (2010). Stochastic Model
for Natural Gas Portfolio Optimization of a Power Producer. Power
Electronics, Drives and Energy Systems (PEDES) & 2010 Joint
International Conference on Power India, 1-5.

133. Vocaturo, F. (2008). Optimization via Simulation for Logistic Systems
Planning and Control. Journal of Operations Research, 7, 97-100.

134. Wei, W., Wei, J., Guan, X., Shi, L. (2012). A Hybrid Nested Partitions
Algorithm For Scheduling Flexible Resource In Flow Shop Problem.
International Journal of Production Research, 50, 10, 2555-2569.

135. Yang, T., Kuo, Y., Chang, I. (2004, October 1). Tabu-Search Simulation
Optimization Approach For Flow-Shop Scheduling With Multiple

97

Processors – A Case Study, International Journal of Production Research
42, 19, 4015-4030.

136. Yau, H., Shi, L., (2009). Nested Partitions for the Large-Scale Extended
Job Shop Scheduling Problem. Annals of Operations Research, 168, 23-39.

137. Yucesan, E., Jacobson, S. (1996). Computational Issues for Accessibility
in Discrete Event Simulation. ACM Transactions on Modeling and
Computer Simulation, 6, 1, 53-75.

138. Zlochin, M; Birattari, M; Meuleau, N; Dorigo, M. (2004). Model-Based
Search for Combinatorial Optimization: A Critical Survey. Annals of
Operations Research, 131, 1,373-380.

98

Appendix 1: Initial Test Data and Parameters

Test Data Set 1

Period Cost A Cost B Price A Price AB Price B
1 1.0 1.0 2.0 1.0 2.0
2 1.0 1.0 2.0 1.0 2.0
3 1.0 1.0 2.0 1.0 2.0
4 1.0 1.0 2.0 1.0 2.0
5 1.0 1.0 2.0 1.0 2.0
6 1.0 1.0 2.0 1.0 2.0
7 1.0 1.0 2.0 1.0 2.0
8 1.0 1.0 2.0 1.0 2.0
9 1.0 1.0 2.0 1.0 2.0

10 1.0 1.0 2.0 1.0 2.0
11 1.0 1.0 2.0 1.0 2.0
12 1.0 1.0 2.0 1.0 2.0

Best results =([Buy 100%A, Buy100%B][Sell 100%A, Sell100%B])
*6
Max Expected Value:
1200.0

Max Trans A 100.0 aInAb 0.5
Max Trans B 100.0 bInAB 0.5

costStorage A 0.0 price variance none
costStorage B 0.0 cost variance none
max storage A 5000.0
max storage B 5000.0

99

Appendix 2: Results of Initial Test Runs

Figure 10 B&B-LP Trial Results

Figure 11 Solution Values B&B-LP 25 Trials

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

500

1000

1500

2000

2500

3000

3500

4000

1 6 11 16 21 26 31 36 41 46

B
e

st
 S

o
lu

ti
o

n
 F

o
u

n
d

,
 1

st
 S

a
m

p
le

 o
f

g
ro

u
p

 t
o

fi
n

d
 i

t

Trial

B&B-LP - 25 trials

Maximum Value Sample With Best Solution

200 300 400 500 600 700 800 900
100

0

110

0

120

0

130

0

140

0

Series1 0 0 0 0 0 0 0 0 0 0 25 0 0 0

0

5

10

15

20

25

30

Solution Values B&B-LP 25 Trials

Series1

100

Figure 12 Results of SS-LP, 12x250,000

Figure 13 Solution Values SS-LP 12x250,000

0

50000

100000

150000

200000

250000

300000

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12

2
5

0
,0

0
0

 S
o

lu
ti

o
n

s
e

x
a

m
in

e
d

Trial

Stochastic Selection + LP 12 * 250,000

Sample With Best Solution Maximum Value

200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

Solution Value 0 0 0 0 0 0 0 0 2 0 10 0 0

0

2

4

6

8

10

12

Solution Values SS-LP 12x250000

Solution Value

101

Figure 14 Results of SS-LP 50x25,000

Figure 15 Solution Values SS-LP 50x25,000

0

5000

10000

15000

20000

25000

30000

0

500

1000

1500

2000

2500

3000

3500

4000

1 6 11 16 21 26 31 36 41 46

B
e

st
 S

o
lu

ti
o

n
 F

o
u

n
d

,
 1

st
 S

a
m

p
le

 o
f

g
ro

u
p

 t
o

fi
n

d
 i

t

Trial

Stochastic Selection + LP - 25,000 samples/per trial

Maximum Value Sample With Best Solution

700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300

Freq 0 0 0 0 0 0 43 0 0 0 7 0 0

0

10

20

30

40

50

Solution Values SS-LP 50x25000

Freq

102

Figure 16 Results of SS+LP 50x2500

Figure 17 Solution Values SS-LP 500x2500

0

200

400

600

800

1000

1200

1400

0

500

1000

1500

2000

2500

3000

3500

4000

1 51 101 151 201 251 301 351 401 451

2
5

0
0

S

o
lu

ti
o

n
s

e
x

a
m

in
e

d

Trial

Stochastic Selection +LP 2500 Samples/Trial

Sample With Best Solution Maximum Value

700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300

Occurances 0 0 0 0 119 29 273 8 65 0 6 0 0 0

0

50

100

150

200

250

300

Solution Values SS-LP 500x2500

103

Figure 18 Stochastic Selection -2500 Samples/Trial

Figure 19 Stochastic Selection -500x2500 Samples/Trial

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

500

1000

1500

2000

2500

1 51 101 151 201 251 301 351 401 451

2
5

0
0

S

o
lu

ti
o

n
s

e
x

a
m

in
e

d

Trial

Stochastic Selection -2500 Samples/Trial

Sample With Best Solution Maximum Value

700 750 800 850 900 950
100

0

105

0

110

0

115

0

120

0

125

0

130

0

Mor

e

Occurences 0 0 0 0 119 29 273 8 65 0 6 0 0 0

0

50

100

150

200

250

300

Solution Values SS 500x2500 Trials

104

Figure 20 SS-LP 25000 Samples/Trial

Figure 21 SS-LP 100x25000 Samples/Trial

0

5000

10000

15000

20000

25000

30000

0

500

1000

1500

2000

2500

3000

3500

4000

1 6 11 16 21 26 31 36 41 46

B
e

st
 S

o
lu

ti
o

n
 F

o
u

n
d

,
 1

st
 S

a
m

p
le

 o
f

g
ro

u
p

 t
o

 f
in

d
 i

t

Trial

Stochastic Selection - 25000 samples/per trial

Maximum Value Sample With Best Solution

700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300
Mor

e

Occurences 0 0 0 0 0 0 18 7 61 1 13 0 0 0

0

20

40

60

80

Solution Values SS-LP 100*25000 Trials

105

Figure 22 SS 100x250000 Samples/Trial

Figure 23 SS Values 100x250000 Samples/Trial

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0

500

1000

1500

2000

2500

3000

3500

4000

1 6 11

B
e

st
 S

o
lu

ti
o

n
 F

o
u

n
d

,
 1

st
 S

a
m

p
le

 o
f

g
ro

u
p

 t
o

 f
in

d
 i

t

Trial

Stochastic Selection - 250000 samples/per trial

Maximum Value Sample With Best Solution

700 750 800 850 900 950
100

0

105

0

110

0

115

0

120

0

125

0

130

0

Occurances 0 0 0 0 0 1 5 6 2 0 0 0 0 0

0

2

4

6

8

Solution Values SS 14*250000 Trials

Occurances

106

Appendix 3: Trial Price/Cost Data II

Month

GasA

Cost

GasA

Price Markup

GasB

Cost

GasB

Price

GasAB

Cost

Gas

AB

Price

GasAB

Price

Adjusted

Jan 5.83 5.52 -0.05 2.62 2.48 3.91 3.70 3.14

Feb 5.32 6.58 0.24 2.39 2.96 3.56 4.41 3.75

mar 4.29 6.38 0.49 1.93 2.87 2.87 4.27 3.63

Apr 4.03 6.02 0.49 1.81 2.71 2.70 4.03 3.43

May 4.14 6.64 0.60 1.86 2.99 2.77 4.45 3.78

Jun 4.80 6.41 0.34 2.16 2.88 3.22 4.29 3.65

Jul 4.63 6.63 0.43 2.08 2.98 3.10 4.44 3.78

Aug 4.32 7.29 0.69 1.94 3.28 2.89 4.88 4.15

Sep 3.89 7.23 0.86 1.75 3.25 2.61 4.84 4.12

Oct 3.43 6.05 0.76 1.54 2.72 2.30 4.05 3.45

Nov 3.71 7.07 0.91 1.67 3.18 2.49 4.74 4.03

Dec 4.25 5.22 0.23 1.91 2.35 2.85 3.50 2.97

Gas A Costs are based on Henry Hub spot prices – see appendix 5

Gas B Prices are based on Oklahoma City Gate prices – see appendix 6

107

Appendix 4: Natural Gas Futures Contract 1

Year 2000 2001 2002 2003 2004 2005 2006

Jan 2.385 7.825 2.190 5.381 6.272 6.186 9.136

Feb 2.614 5.675 2.263 6.657 5.363 6.203 7.520

Mar 2.828 5.189 3.015 5.786 5.542 7.045 6.979

Apr 3.028 5.189 3.410 5.358 5.765 7.150 7.264

May 3.596 4.244 3.563 5.926 6.398 6.486 6.372

Jun 4.303 3.782 3.259 5.925 6.334 7.206 6.385

Jul 3.972 3.167 2.942 5.034 6.064 7.579 6.222

Aug 4.460 2.935 3.092 4.978 5.471 9.427 6.989

Sep 5.130 2.213 3.569 4.667 5.219 12.111 5.218

Oct 5.079 2.618 4.088 4.986 7.371 13.454 6.633

Nov 5.740 2.786 4.040 4.834 7.608 11.695 7.995

Dec 8.618 2.686 4.838 6.469 6.828 13.425 7.161

Year 2007 2008 2009 2010 2011 2012

Jan 6.775 7.991 5.07 5.599 4.499 2.708

Feb 7.546 8.642 4.382 5.215 4.036 2.526

Mar 7.221 9.624 4.002 4.301 4.069 2.296

Apr 7.629 10.288 3.561 4.088 4.272 2.048

May 7.821 11.381 3.934 4.155 4.336 2.493

Jun 7.503 12.784 3.935 4.785 4.516 2.498

Jul 6.399 11.067 3.551 4.590 4.353 2.963

Aug 6.137 8.301 3.305 4.220 3.984 2.807

Sep 6.188 7.485 3.462 3.898 3.849 2.918

Oct 7.223 6.727 4.780 3.600 3.624 3.500

Nov 7.778 6.700 4.628 4.042 3.558 3.687

Dec 7.178 5.794 5.344 4.283 3.246

(Dollars/Mil. BTUs) (EIA 2013)

108

Appendix 5: Henry Hub Natural Gas Spot Prices

Year 2000 2001 2002 2003 2004 2005 2006
Jan 2.42 8.17 2.32 5.43 6.14 6.15 8.69
Feb 2.66 5.61 2.32 7.71 5.37 6.14 7.54
Mar 2.79 5.23 3.03 5.93 5.39 6.96 6.89
Apr 3.04 5.19 3.43 5.26 5.71 7.16 7.16
May 3.59 4.19 3.50 5.81 6.33 6.47 6.25
Jun 4.29 3.72 3.26 5.82 6.27 7.18 6.21
Jul 3.99 3.11 2.99 5.03 5.93 7.63 6.17
Aug 4.43 2.97 3.09 4.99 5.41 9.53 7.14
Sep 5.06 2.19 3.55 4.62 5.15 11.75 4.90
Oct 5.02 2.46 4.13 4.63 6.35 13.42 5.85
Nov 5.52 2.34 4.04 4.47 6.17 10.30 7.41
Dec 8.90 2.30 4.74 6.13 6.58 13.05 6.73

Year 2007 2008 2009 2010 2011 2012
Jan 6.55 7.99 5.24 5.83 4.49 2.67
Feb 8.00 8.54 4.52 5.32 4.09 2.51
Mar 7.11 9.41 3.96 4.29 3.97 2.17
Apr 7.60 10.18 3.50 4.03 4.24 1.95
May 7.64 11.27 3.83 4.14 4.31 2.43
Jun 7.35 12.69 3.80 4.80 4.54 2.46
Jul 6.22 11.09 3.38 4.63 4.42 2.95
Aug 6.22 8.26 3.14 4.32 4.06 2.84
Sep 6.08 7.67 2.99 3.89 3.90 2.85
Oct 6.74 6.74 4.01 3.43 3.57 3.32
Nov 7.10 6.68 3.66 3.71 3.24 3.54
Dec 7.11 5.82 5.35 4.25 3.17 3.34

(Dollars/Mil. BTUs) (EIA 2013)

109

Appendix 6: Oklahoma Natural Gas Citygate Prices

Year 2000 2001 2002 2003 2004 2005 2006
Jan 6.61 9.63 4.07 4.94 6.21 7.12 10.01
Feb 2.66 6.85 3.78 5.41 6.48 6.70 10.59
Mar 3.01 6.39 4.07 7.71 6.31 6.95 9.52
Apr 2.88 6.76 4.48 5.13 6.82 7.11 8.17
May 3.36 4.50 4.13 6.04 6.11 7.62 8.11
Jun 3.19 4.25 3.77 5.90 6.48 7.23 7.89
Jul 4.14 4.10 3.63 5.34 6.42 7.89 8.66
Aug 4.48 5.30 3.57 5.53 6.32 8.85 8.58
Sep 3.57 5.18 4.20 5.36 6.18 10.59 8.48
Oct 4.94 4.95 4.37 7.14 5.68 10.74 6.40
Nov 5.60 5.10 4.93 6.36 6.94 11.14 8.28
Dec 5.58 4.49 4.72 6.17 8.00 11.39 8.78

Year 2007 2008 2009 2010 2011 2012
Jan 7.72 7.89 7.76 5.52 5.37 4.96
Feb 8.52 8.35 7.15 6.58 5.34 4.99
Mar 9.48 9.34 7.34 6.38 5.72 4.92
Apr 7.80 9.01 6.95 6.02 5.79 5.59
May 8.33 10.34 6.60 6.64 6.45 5.43
Jun 8.79 11.45 6.68 6.41 6.32 4.27
Jul 8.49 12.25 7.15 6.63 6.51 5.85
Aug 7.89 9.64 8.21 7.29 6.87 5.43
Sep 7.56 8.92 7.61 7.23 6.60 5.34
Oct 7.88 7.35 6.99 6.05 6.59 4.95
Nov 8.52 7.61 7.26 7.07 6.28
Dec 7.80 7.78 5.84 5.22 5.18

(Dollars per Thousand Cubic Feet) (EIA 2013)

110

Appendix 7: Natural Gas Consumption by End Use

Total Consumption

21,699

23,104

23,277

22,910

24,087

24,385

Lease and Plant Fuel

1,142

1,226

1,220

1,275

1,286

1,323

 Lease Fuel

783

861

864

913

917

938

 Plant Fuel

359

365

356

362

369

384

 Pipeline &
Distribution Use

584

621

648

670

674

684

Volumes Delivered
to Consumers

19,973

21,256

21,409

20,965

22,127

22,378

 Residential

4,368

4,722

4,892

4,779

4,782

4,714

 Commercial

2,832

3,013

3,153

3,119

3,103

3,154

 Industrial

6,527

6,655

6,670

6,167

6,826

6,905

 Vehicle Fuel

24

25

26

27

29

32

 Electric Power

6,222

6,841

6,668

6,873

7,387

7,574

 (Billion Cubic Feet) (EIA 2013)

111

Appendix 8: C++ SOURCE CODE FOR LP-SOLVE

INTERFACE

#include "c:\awesim\lib\vslam.h"

#include <math.h>

#include <stdlib.h>

#include "c:\awesim\lp_solve\lp_lib.h"

#include <windows.h>

#include "string.h"

#include <time.h>

double USERF(int IFN, ENTITY *peCur);

void getMixedProduct();

double minf(double vala, double valb);

double maxf(double vala, double valb);

add_constraint_func *_add_constraint;

add_constraintex_func *_add_constraintex;

delete_lp_func *_delete_lp;

get_col_name_func *_get_col_name;

get_objective_func *_get_objective;

get_variables_func *_get_variables;

make_lp_func *_make_lp;

print_lp_func *_print_lp;

print_solution_func *_print_solution;

read_LP_func *_read_LP;

set_add_rowmode_func *_set_add_rowmode;

set_col_name_func *_set_col_name;

set_maxim_func *_set_maxim;

set_obj_fn_func *_set_obj_fn;

set_obj_fnex_func *_set_obj_fnex;

112

set_verbose_func *_set_verbose;

solve_func *_solve;

write_LP_func *_write_LP;

FILE *runlogout;

FILE *runlogout2;

time_t now;

// Events

#define WRITELN 1

#define SIMPLEX 2

#define CALC_PROFITS 3

#define PRUNE_BUY 4

#define PRUNE_HOLD 5

#define PRUNE_SELL 6

#define CALC_BUY 7

#define ENDOFCYCLE 8

#define RESETINVENTORY 9

#define TIMER_GET 10

#define TIMER_SET 11

#define VARIABLE_BUY_SELL 12

#define RANDOM_A 13

#define RANDOM_AB 14

#define RANDOM_B 15

#define MANDATORY_SELL 16

#define DUMMY 99

#define PRUNE 0

#define NO_PRUNE 1

#define CostAidx LL[1]

#define CostAidxBase LL[2]

#define CostAidxMax LL[3]

#define CostBidx LL[5]

113

#define CostBidxBase LL[6]

#define CostBidxMax LL[7]

#define Horizon LL[9]

#define PriceABidx LL[11]

#define PriceABidxBase LL[12]

#define PriceABidxMax LL[13]

#define PriceAidx LL[15]

#define PriceAidxBase LL[16]

#define PriceAidxMax LL[17]

#define PriceBidx LL[19]

#define PriceBidxBase LL[20]

#define PriceBidxMax LL[21]

#define ReadResult LL[23]

#define InventoryABase LL[24]

#define InventoryBBase LL[25]

#define CurrScenerio LL[26]

#define AvgCostOfInvA LL[30]

#define AvgCostOfInvB LL[31]

#define ClockTime LL[34]

#define CostOfStorageA XX[3]

#define CostOfStorageB XX[4]

#define Profit_A peCur->ATRIB[11]

#define Profit_AB peCur->ATRIB[12]

#define Profit_B peCur->ATRIB[13]

#define aInAB peCur->ATRIB[14]

#define bInAB peCur->ATRIB[15]

#define CurrBuyVolA peCur->ATRIB[17]

#define CurrBuyVolB peCur->ATRIB[18]

#define changeAPerCent peCur->ATRIB[19]

#define changeABPerCent peCur->ATRIB[20]

#define changeBPerCent peCur->ATRIB[21]

#define CurrDltVlA peCur->ATRIB[22]

#define CurrDeltaVolB peCur->ATRIB[23]

#define CurrDltVlAB peCur->ATRIB[24]

#define aMinDelivery peCur->ATRIB[25]

114

#define abMinDelivery peCur->ATRIB[26]

#define bMinDelivery peCur->ATRIB[27]

#define aLowVolPenalty peCur->ATRIB[28]

#define bLowVolPenalty peCur->ATRIB[29]

#define CashOnHand peCur->ATRIB[1]

#define CurrSellVolA peCur->ATRIB[2]

#define CurrSellVolAB peCur->ATRIB[3]

#define CurrSellVolB peCur->ATRIB[4]

#define InventoryA peCur->ATRIB[5]

#define InventoryB peCur->ATRIB[6]

#define MaxTransA peCur->ATRIB[7]

#define MaxTransB peCur->ATRIB[8]

#define MaxVolA peCur->ATRIB[9]

#define MaxVolB peCur->ATRIB[10]

#define CurrentAction peCur->STRIB[1]

#define History peCur->STRIB[2]

#define GENERATION peCur->LTRIB[1]

#define rand02Action peCur->LTRIB[5]

double USERF(int IFN, ENTITY *peCur)

{

double aVolSold = 0;

double abVolSold= 0;

double bVolSold = 0;

int c,i;

double volAToSell,volBToSell,volReq;

double costOfGasA = 0.0;

double volAAvailable = 0.0;

double costOfGasB = 0.0;

double tgtSalesVol = 0.0;

double volBAvailable = 0.0;

double volAInStorage = 0.0;

double volBInStorage = 0.0;

115

double CurrSellVolAinAB = 0.0;

double CurrSellVolBinAB = 0.0;

double aabMinReq= 0.0;

double babMinReq= 0.0;

double aMinReq= 0.0;

double bMinReq= 0.0;

double ARequiredVol = 0.0;

double BRequiredVol = 0.0;

double alreadyDeliveredPC= 0.0;

switch (IFN)

{

case WRITELN : SU_OUT(TRUE,TRUE,"Hello from procs.c USERF function. curr action=

%s\n",peCur->STRIB[1]);

runlogout =fopen("lp_run.txt","a");

runlogout2=fopen("lp_run2.txt","a");

break;

case DUMMY:

 fprintf(runlogout2, "DUMMY: Percent: %8.2f InvA: %f InvB: %8.2f tgtSalesVol

%8.2f MaxTransA %8.2f \n",

 changeAPerCent, InventoryA, InventoryB ,tgtSalesVol,MaxTransA) ;

break;

case PRUNE_SELL :

if (((CurrentAction[0]=='*') || (CurrentAction[0]=='S'))

&& (InventoryA > 0.0001 && InventoryB > 0.0001)

)

{

return(NO_PRUNE);

}

else

116

{

return(PRUNE);

}

break;

case TIMER_GET:

now = time (NULL);

ClockTime = now;

return 0.0;

break;

case PRUNE_HOLD :

if (((CurrentAction[0]=='*') || (CurrentAction[0]=='H'))

 && (InventoryA < ((Horizon- GENERATION) * MaxTransA))

 && (InventoryB < ((Horizon- GENERATION) * MaxTransB)))

{

return(NO_PRUNE);

}

else

{

return(PRUNE);

}

break;

case PRUNE_BUY :

if (

 ((CurrentAction[0]=='*') || (CurrentAction[0]=='B'))

&& ((InventoryA + MaxTransA) <= ((Horizon - GENERATION) * MaxTransA))

&& ((InventoryB + MaxTransB) <= ((Horizon - GENERATION) * MaxTransB))

&& ((InventoryA + MaxTransA) <= MaxVolA)

117

&& ((InventoryB + MaxTransB) <= MaxVolB)

)

{

return(NO_PRUNE); // 0=PRUNE 1=KEEP

}

else

{

return(PRUNE); // 0=PRUNE 1=KEEP

}

break;

case CALC_BUY:

// set total inventory

CurrBuyVolA=MaxTransA;

CurrBuyVolB=MaxTransB;

InventoryA = InventoryA + CurrBuyVolA;

InventoryB = InventoryB + CurrBuyVolB;

// set cash

CashOnHand =CashOnHand -

 (CurrBuyVolA * peCur->ATRIB[CostAidxBase + GENERATION]

+

 CurrBuyVolB * peCur->ATRIB[CostBidxBase + GENERATION]);

// set period inventory

peCur->ATRIB[InventoryABase + GENERATION] = CurrBuyVolA ;

peCur->ATRIB[InventoryBBase + GENERATION] = CurrBuyVolB ;

break;

118

case SIMPLEX:

 // first, calculate the profit of gas to be sold

 volAToSell= 0.0; // the amount KNOWN to be available for sale

 volReq = 0.0; // how much is needed to fill the 'order'

 costOfGasA = 0.0;

 // Set for gas A

 // loop through the inventory array from oldest to current (FIFO)

 //

 if (DEBUG1) fprintf(runlogout, "nSIMPLEX GENERATION %i \n",

GENERATION);

 for(c=1;c<=GENERATION;c++)

 {

 if (volAToSell< MaxTransA)

 // if we still need gas to fill the order

 {

 volReq=MaxTransA-volAToSell; // how much do we still need for

this order?

 // check the gas bought in this period

 if (peCur->ATRIB[InventoryABase+c] >= volReq)

 {

 volAToSell=MaxTransA; // we have the max available

 // increment the total cost by the cost of the gas bought in

this period

 costOfGasA += volReq * peCur-

>ATRIB[CostAidxBase+c];

 // add in the storage cost of the gas

 costOfGasA += MaxTransA * CostOfStorageA *

((GENERATION + 1)- c);

 // decrement the inventory

119

 peCur->ATRIB[InventoryABase+c] -= volReq;

 // signal that the order is filled

 volReq= 0.0;

 }

 else // we can fill part of the order from the gas purchased this period

 {

 volReq -= peCur->ATRIB[InventoryABase+c];

 costOfGasA += peCur->ATRIB[InventoryABase+c] *

peCur->ATRIB[CostAidxBase+c];

 // add in the storage cost of the gas

 costOfGasA += peCur->ATRIB[InventoryABase+c] *

CostOfStorageA * ((GENERATION + 1)- c);

 //

 volAToSell+= peCur->ATRIB[InventoryABase+c];

 peCur->ATRIB[InventoryABase+c] =0.0;

 }

 }

 }

 // at this point the amount of gasA available to sell, and it's total cost

 // is known

 volBToSell= 0.0; // the amount KNOWN to be available for sale

 volReq = 0.0; // how much is needed to fill the 'order'

 costOfGasB = 0.0;

 // Set for gas B

 // loop through the inventory array from oldest to current (FIFO)

 //

 for(c=1;c<=GENERATION;c++)

 {

 if (volBToSell< MaxTransB)

120

 // if we still need gas to fill the order

 {

 volReq=MaxTransB-volBToSell; // how much do we still need for

this order?

 // check the gas bought in this period

 if (peCur->ATRIB[InventoryBBase+c] >= volReq)

 {

 volBToSell=MaxTransB; // we have the max available

 // increment the total cost by the cost of the gas bought in

this period

 costOfGasB += volReq * peCur->ATRIB[CostBidxBase+c];

 // add in the storage cost of the gas

 costOfGasB += MaxTransB * CostOfStorageB *

((GENERATION + 1)- c);

 // decrement the inventory

 peCur->ATRIB[InventoryBBase+c] -= volReq;

 // signal that the order is filled

 volReq= 0.0;

 }

 else // we can fill part of the order from the gas purchased this period

 {

 volReq -= peCur->ATRIB[InventoryBBase+c];

 costOfGasB += peCur->ATRIB[InventoryBBase+c] *

peCur->ATRIB[CostBidxBase+c];

 // add in the storage cost of the gas

 costOfGasB += peCur->ATRIB[InventoryBBase+c] *

CostOfStorageB * ((GENERATION + 1)- c);

 volBToSell+= peCur->ATRIB[InventoryBBase+c];

 peCur->ATRIB[InventoryBBase+c] =0.0;

 }

 }

121

 }

 // set minimum delivery requirements

 aMinReq=aMinDelivery;

 bMinReq=bMinDelivery;

 aabMinReq = aInAB * abMinDelivery;

 babMinReq = bInAB * abMinDelivery;

 // if there is not enough in storage to meet requirements, buy some at SPOT price, with

penalty

 if ((aMinReq + aabMinReq) > volAToSell)

 {

 // how much is still needed?

 volReq = (aMinReq + aabMinReq)-volAToSell;

 volAToSell=volAToSell + volReq;

 // purchase gas on the market

 CashOnHand = CashOnHand - volReq * peCur-

>ATRIB[PriceAidxBase+GENERATION] * (1.0 + aLowVolPenalty);

 // add to inventory

 InventoryA = InventoryA + volReq;

 // increase cost of gas currently being solg

 costOfGasA = costOfGasA + volReq * peCur-

>ATRIB[PriceAidxBase+GENERATION] * (1.0 + aLowVolPenalty);

 }

 if ((bMinReq + babMinReq) > volBToSell)

 {

 volReq = (bMinReq + babMinReq)-volBToSell;

 volBToSell=volBToSell + volReq;

 // purchase gas on the market

 CashOnHand = CashOnHand - volReq * peCur-

>ATRIB[PriceBidxBase+GENERATION] * (1.0 + bLowVolPenalty);

 // add to inventory

 InventoryB = InventoryB + volReq;

 // increase cost of gas currently being solg

 costOfGasB = costOfGasB + volReq * peCur-

>ATRIB[PriceBidxBase+GENERATION] *(1.0 + bLowVolPenalty);

122

 }

 // at this point the amount of gasB available to sell, and it's total cost

 // is known

 Profit_A = peCur->ATRIB[PriceAidxBase+GENERATION] -

costOfGasA/volAToSell;

 Profit_B = peCur->ATRIB[PriceBidxBase+GENERATION] -

costOfGasB/volBToSell;

 Profit_AB = peCur->ATRIB[PriceABidxBase+GENERATION] -

 (aInAB*(costOfGasA/volAToSell) +

 bInAB*(costOfGasB/volBToSell));

 // then find the best mix to sell

 getMixedProduct(

 volAToSell,

 volBToSell,

 Profit_A,

 Profit_AB,

 Profit_B,

 aInAB,

 bInAB,

 aMinReq,

 bMinReq,

 aabMinReq,

 babMinReq,

 &aVolSold,

 &abVolSold,

 &bVolSold);

 CurrSellVolA = aVolSold;

 CurrSellVolAB = abVolSold;

 CurrSellVolB = bVolSold;

123

 CashOnHand = CashOnHand + CurrSellVolA * peCur->ATRIB[PriceAidxBase +

GENERATION] +

 CurrSellVolB * peCur->ATRIB[PriceBidxBase + GENERATION] +

 CurrSellVolAB* peCur->ATRIB[PriceABidxBase +

GENERATION];

 //* aInAB +

 //CurrSellVolAB* peCur->ATRIB[PriceBidxBase + GENERATION]

* bInAB;

 InventoryA =InventoryA -(CurrSellVolA + CurrSellVolAB * aInAB);

 InventoryB =InventoryB -(CurrSellVolB + CurrSellVolAB * bInAB);

 break;

case ENDOFCYCLE:

// calculate the cost of the gas that is still in storage

//

//

 volAInStorage= 0.0; // the amount KNOWN to be available for sale

 costOfGasA = 0.0;

 volBInStorage= 0.0; // the amount KNOWN to be available for sale

 costOfGasB = 0.0;

 // Set for gas A

 // loop through the inventory array from oldest to current (FIFO)

 //

 for(c=1;c<=GENERATION;c++)

 {

 //volReq=MaxTransA-volAToSell; // how much do we still need for

this order?

 // check the gas bought in this period

 costOfGasA += peCur->ATRIB[InventoryABase+c] * peCur-

>ATRIB[CostAidxBase+c];

 volAInStorage+= peCur->ATRIB[InventoryABase+c];

124

 costOfGasB += peCur->ATRIB[InventoryBBase+c] * peCur-

>ATRIB[CostBidxBase+c];

 volBInStorage+= peCur->ATRIB[InventoryBBase+c];

 }

 CashOnHand = CashOnHand - costOfGasA;

 CashOnHand = CashOnHand - costOfGasB;

 break;

case RESETINVENTORY:

 for (c=0;c<=Horizon; c++)

 {

 peCur->ATRIB[InventoryABase+c] =0.0;

 peCur->ATRIB[InventoryBBase+c] =0.0;

 }

 InventoryA = 0.0;

 InventoryB = 0.0;

 break;

case RANDOM_A:

// set total inventory

if (changeAPerCent >=0)

{

 // indicate the purchase of Gas B

 rand02Action += 2;

 // set vol of Gas A to buy

 CurrDltVlA=MaxTransA * changeAPerCent;

 // confirm availability of Gas

125

 if ((InventoryA + CurrDltVlA) > MaxVolA)

 {

 CurrDltVlA=MaxVolA-InventoryA;

 }

 // execute buy

 InventoryA = InventoryA + CurrDltVlA;

 // set cash

 CashOnHand =CashOnHand -(CurrDltVlA * peCur->ATRIB[CostAidxBase +

GENERATION]);

 if (DEBUG11) fprintf(runlogout2, "RANDOM_A: peCur->ATRIB[InventoryABase +

GENERATION]=%8.2f InventoryABase=%d GEN%d CurrDltVlA=%8.2f\n",

 peCur->ATRIB[InventoryABase +

GENERATION],InventoryABase,GENERATION,CurrDltVlA);

 // set period inventory

 peCur->ATRIB[InventoryABase + GENERATION] = CurrDltVlA ;

 if (DEBUG10) fprintf(runlogout2, "RANDOM_A: BUY COMPLETE CashOnHand

%8.2f Percent: %8.2f InvA: %f InvB: %8.2f MaxTransA %8.2f \n",

 CashOnHand, changeAPerCent, InventoryA, InventoryB ,MaxTransA);

 if (DEBUG11) fprintf(runlogout2, "RANDOM_Ab: CashOnHand %8.2f peCur-

>ATRIB[InventoryABase + GENERATION]=%8.2f InventoryABase=%d GEN%d

CurrDltVlA=%8.2f\n",

 CashOnHand,peCur->ATRIB[InventoryABase +

GENERATION],InventoryABase,GENERATION,CurrDltVlA);

}

else

{

 // modify per cent change to exclude minimum already shipped

126

 // changeAPerCent MaxTransA amindelivery

 alreadyDeliveredPC = -1.0 * (aMinDelivery/MaxTransA); ///100.0;

 // cannot ship more that 100% of capacity

 changeAPerCent=minf((changeAPerCent-alreadyDeliveredPC),0.0);

 // first, calculate the profit of gas to be sold

 volAToSell = 0.0; // the amount KNOWN to be available for sale

 volReq = 0.0; // how much is needed to fill the 'order'

 costOfGasA = 0.0;

 tgtSalesVol = -1.0 * changeAPerCent * MaxTransA;

 if (tgtSalesVol > InventoryA)

 {

 tgtSalesVol = InventoryA;

 changeAPerCent = -1.0 * InventoryA/MaxTransA;

 }

 // Set for gas A

 // loop through the inventory array from oldest to current (FIFO)

 //

 for(c=1;c<=GENERATION;c++)

 {

 if (volAToSell< tgtSalesVol)

 // if we still need gas to fill the order

 {

 volReq=tgtSalesVol-volAToSell; // how much do we still need for

this order?

 // check the gas bought in this period

 if (peCur->ATRIB[InventoryABase+c] >= volReq)

 {

 volAToSell=tgtSalesVol; // we have the max available

127

 // increment the total cost by the cost of the gas bought in

this period

 costOfGasA += volReq * peCur-

>ATRIB[CostAidxBase+c];

 // add in the storage cost of the gas

 costOfGasA += tgtSalesVol * CostOfStorageA *

((GENERATION + 1)- c);

 // decrement the inventory

 peCur->ATRIB[InventoryABase+c] -= volReq;

 // signal that the order is filled

 volReq= 0.0;

 }

 else // we can fill part of the order from the gas purchased this period

 {

 volReq -= peCur->ATRIB[InventoryABase+c];

 costOfGasA += peCur->ATRIB[InventoryABase+c] *

peCur->ATRIB[CostAidxBase+c];

 // add in the storage cost of the gas

 costOfGasA += peCur->ATRIB[InventoryABase+c] *

CostOfStorageA * ((GENERATION + 1)- c);

 //

 volAToSell+= peCur->ATRIB[InventoryABase+c];

 peCur->ATRIB[InventoryABase+c] =0.0;

 }

 }

 }

 // at this point the amount of gasA available to sell, and it's total cost

 // is known

 Profit_A = peCur->ATRIB[PriceAidxBase+GENERATION] -

costOfGasA/volAToSell;

128

 CashOnHand = CashOnHand + volAToSell * peCur->ATRIB[PriceAidxBase +

GENERATION];

 InventoryA =InventoryA - volAToSell ;

 // set the sell volume

 CurrDltVlA = -1.0 * volAToSell ;

// ==

}

break;

case RANDOM_B:

// set total inventory

// modify per cent change to exclude minimum already shipped

if (changeBPerCent >=0)

{

 // indicate the purchase of Gas B

 rand02Action += 1;

 // buy Gas B

 CurrDeltaVolB=MaxTransB * changeBPerCent;

 // confirm availability of storage for new Gas B

 if ((InventoryB + CurrDeltaVolB) > MaxVolB)

 {

 CurrDeltaVolB=MaxVolB-InventoryB;

 changeBPerCent=(MaxVolB-InventoryB)/MaxVolB;

 }

129

 // execute buy

 InventoryB = InventoryB + CurrDeltaVolB;

 // set cash

 CashOnHand =CashOnHand -(CurrDeltaVolB * peCur->ATRIB[CostBidxBase +

GENERATION]);

 // set period inventory

 peCur->ATRIB[InventoryBBase + GENERATION] = CurrDeltaVolB ;

}

else

{

 // changeBPerCent MaxTransB bmindelivery

 alreadyDeliveredPC = -1.0 * (bMinDelivery/MaxTransB) ; //* 100.0;

 // cannot ship more that 100% of capacity

 changeBPerCent=minf((changeBPerCent-alreadyDeliveredPC),0.0);

 // first, calculate the profit of gas to be sold

 volBToSell = 0.0; // the amount KNOWN to be available for sale

 volReq = 0.0; // how much is needed to fill the 'order'

 costOfGasB = 0.0;

 tgtSalesVol = -1.0 * changeBPerCent * MaxTransB;

 if (tgtSalesVol > InventoryB)

 {

 tgtSalesVol = InventoryB;

 changeBPerCent = -1.0 * InventoryB/MaxTransB;

 }

130

 // Set for gas B

 // loop through the inventory array from oldest to current (FIFO)

 //

 for(c=1;c<=GENERATION;c++)

 {

 if (volBToSell< tgtSalesVol)

 // if we still need gas to fill the order

 {

 volReq=tgtSalesVol-volBToSell; // how much do we still need for

this order?

 // check the gas bought in this period

 if (peCur->ATRIB[InventoryBBase+c] >= volReq)

 {

 volBToSell=tgtSalesVol; // we have the max available

 // increment the total cost by the cost of the gas bought in

this period

 costOfGasB += volReq * peCur->ATRIB[CostBidxBase+c];

 // add in the storage cost of the gas

 costOfGasB += tgtSalesVol * CostOfStorageB *

((GENERATION + 1)- c);

 // decrement the inventory

 peCur->ATRIB[InventoryBBase+c] -= volReq;

 // signal that the order is filled

 volReq= 0.0;

 }

 else // we can fill part of the order from the gas purchased this period

 {

 volReq -= peCur->ATRIB[InventoryBBase+c];

 costOfGasB += peCur->ATRIB[InventoryBBase+c] *

peCur->ATRIB[CostBidxBase+c];

131

 // add in the storage cost of the gas

 costOfGasB += peCur->ATRIB[InventoryBBase+c] *

CostOfStorageB * ((GENERATION + 1)- c);

 //

 volBToSell+= peCur->ATRIB[InventoryBBase+c];

 peCur->ATRIB[InventoryBBase+c] =0.0;

 }

 }

 }

 // at this point the amount of gasB available to sell, and it's total cost

 // is known

 Profit_B = peCur->ATRIB[PriceBidxBase+GENERATION] -

costOfGasB/volBToSell;

 CashOnHand = CashOnHand + volBToSell * peCur->ATRIB[PriceBidxBase +

GENERATION];

 CurrDeltaVolB = -1.0*volBToSell ;

 InventoryB =InventoryB + CurrDeltaVolB ;

 // set the sell volume

// ==

}

break;

case RANDOM_AB:

// modify per cent change to exclude minimum already shipped

132

// changeBPerCent MaxTransB bmindelivery

alreadyDeliveredPC = -1.0 * maxf((aInAB*abMinDelivery/MaxTransA) , //* 100.0,

 (bInAB*abMinDelivery/MaxTransB));

//* 100.0);

// cannot ship more that 100% of capacity

 changeABPerCent=minf((changeABPerCent-alreadyDeliveredPC),0.0);

 changeABPerCent*=-1.0;

// lower the percentage of AB to sell until

// it is at or below the amount amount possible to

// sell based on stock levels of A and B

// and the remaining shipping capacity of A and B

if (InventoryA < aInAB * changeABPerCent * MaxTransA)

 changeABPerCent = minf(changeABPerCent,(InventoryA/(aInAB* MaxTransA)));

if (InventoryB < bInAB * changeABPerCent * MaxTransB)

 changeABPerCent = minf(changeABPerCent,(InventoryB/(bInAB * MaxTransB)));

// check for max trans limit but allow passthrough

// i.e 100% gas in and 100% out is allowable

// if a sell occured CurrDltVlA is negative so MaxTransA + CurrDltVlA < MaxTransA

if (

 (CurrDltVlA<0.0)&& ((changeABPerCent * aInAB * MaxTransA)>(MaxTransA +

CurrDltVlA))

)// this should only apply for gas A SELLS

 changeABPerCent=minf(changeABPerCent,((MaxTransA+CurrDltVlA)/aInAB));

133

// check for max trans limit but allow passthrough

// i.e 100% gas in and 100% out is allowable

// if a sell occured CurrDeltaVolB is negative so MaxTransA + CurrDeltaVolB < MaxTransB

if (

 (CurrDeltaVolB<0.0)&& ((changeABPerCent * bInAB *

MaxTransB)>(MaxTransB+CurrDeltaVolB))

)

 changeABPerCent=minf(changeABPerCent,((MaxTransB+CurrDeltaVolB)/bInAB));

 // now execute the sales of A and B

 // first, calculate the profit of gas to be sold

 volAToSell = 0.0; // the amount KNOWN to be available for sale

 volReq = 0.0; // how much is needed to fill the 'order'

 costOfGasA = 0.0;

 tgtSalesVol = changeABPerCent * aInAB * MaxTransA;

 // Set for gas A

 // loop through the inventory array from oldest to current (FIFO)

 //

 for(c=1;c<=GENERATION;c++)

 {

 if (volAToSell< tgtSalesVol)

 // if we still need gas to fill the order

 {

 volReq=tgtSalesVol-volAToSell; // how much do we still need for

this order?

 // check the gas bought in this period

 if (peCur->ATRIB[InventoryABase+c] >= volReq)

 {

 volAToSell=tgtSalesVol; // we have the max available

 // increment the total cost by the cost of the gas bought in

this period

134

 costOfGasA += volReq * peCur-

>ATRIB[CostAidxBase+c];

 // add in the storage cost of the gas

 costOfGasA += tgtSalesVol * CostOfStorageA *

((GENERATION + 1)- c);

 // decrement the inventory

 peCur->ATRIB[InventoryABase+c] -= volReq;

 // signal that the order is filled

 volReq= 0.0;

 }

 else // we can fill part of the order from the gas purchased this period

 {

 volReq -= peCur->ATRIB[InventoryABase+c];

 costOfGasA += peCur->ATRIB[InventoryABase+c] *

peCur->ATRIB[CostAidxBase+c];

 // add in the storage cost of the gas

 costOfGasA += peCur->ATRIB[InventoryABase+c] *

CostOfStorageA * ((GENERATION + 1)- c);

 //

 volAToSell+= peCur->ATRIB[InventoryABase+c];

 peCur->ATRIB[InventoryABase+c] =0.0;

 }

 }

 }

 // at this point the amount of gasA available to sell, and it's total cost

 // is known

 Profit_A = peCur->ATRIB[PriceAidxBase+GENERATION] -

costOfGasA/volAToSell;

 CurrSellVolAinAB = -1.0 * volAToSell ;

135

 CashOnHand = CashOnHand + volAToSell * peCur->ATRIB[PriceAidxBase +

GENERATION];

 InventoryA =InventoryA - volAToSell ;

 // process the sell of Gas B

 // first, calculate the profit of gas to be sold

 volBToSell = 0.0; // the amount KNOWN to be available for sale

 volReq = 0.0; // how much is needed to fill the 'order'

 costOfGasB = 0.0;

 tgtSalesVol = changeABPerCent * bInAB * MaxTransB;

/////////

 // Set for gas B

 // loop through the inventory array from oldest to current (FIFO)

 //

 for(c=1;c<=GENERATION;c++)

 {

 if (volBToSell< tgtSalesVol)

 // if we still need gas to fill the order

 {

 volReq=tgtSalesVol-volBToSell; // how much do we still need for

this order?

 // check the gas bought in this period

 if (peCur->ATRIB[InventoryBBase+c] >= volReq)

 {

 volBToSell=tgtSalesVol; // we have the max available

136

 // increment the total cost by the cost of the gas bought in

this period

 costOfGasB += volReq * peCur->ATRIB[CostBidxBase+c];

 // add in the storage cost of the gas

 costOfGasB += tgtSalesVol * CostOfStorageB *

((GENERATION + 1)- c);

 // decrement the inventory

 peCur->ATRIB[InventoryBBase+c] -= volReq;

 // signal that the order is filled

 volReq= 0.0;

 }

 else // we can fill part of the order from the gas purchased this period

 {

 volReq -= peCur->ATRIB[InventoryBBase+c];

 costOfGasB += peCur->ATRIB[InventoryBBase+c] *

peCur->ATRIB[CostBidxBase+c];

 // add in the storage cost of the gas

 costOfGasB += peCur->ATRIB[InventoryBBase+c] *

CostOfStorageB * ((GENERATION + 1)- c);

 //

 volBToSell+= peCur->ATRIB[InventoryBBase+c];

 peCur->ATRIB[InventoryBBase+c] =0.0;

 }

 }

 }

 // at this point the amount of gasB available to sell, and it's total cost

 // is known

 Profit_B = peCur->ATRIB[PriceBidxBase+GENERATION] -

costOfGasB/volBToSell;

137

 CurrSellVolBinAB = -1.0 * volBToSell ;

 CashOnHand = CashOnHand + volBToSell * peCur->ATRIB[PriceBidxBase +

GENERATION];

 InventoryB =InventoryB - volBToSell ;

 CurrDltVlAB = -1.0 * (volAToSell + volBToSell);//

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 changeABPerCent *=-1.0;

break;

case MANDATORY_SELL:

 // set minimum delivery requirements

 aMinReq=aMinDelivery;

 bMinReq=bMinDelivery;

 aabMinReq = aInAB * abMinDelivery;

 babMinReq = bInAB * abMinDelivery;

 ARequiredVol = aMinDelivery + aInAB * abMinDelivery;

 BRequiredVol = bMinDelivery + bInAB * abMinDelivery;

 // first, calculate the profit of gas to be sold

 volAToSell= 0.0; // the amount KNOWN to be available for sale

 volReq = 0.0; // how much is needed to fill the 'order'

 costOfGasA = 0.0;

 // Set for gas A

 // loop through the inventory array from oldest to current (FIFO)

 //

138

 for(c=1;c<=GENERATION;c++)

 {

 if (volAToSell< ARequiredVol)

 // if we still need gas to fill the order

 {

 volReq=ARequiredVol-volAToSell; // how much do

we still need for this order?

 // check the gas bought in this period

 if (peCur->ATRIB[InventoryABase+c] >= volReq)

 {

 volAToSell=ARequiredVol; // we have the max

available

 // increment the total cost by the cost of the gas

bought in this period

 costOfGasA += volReq * peCur-

>ATRIB[CostAidxBase+c];

 // add in the storage cost of the gas

 costOfGasA += ARequiredVol * CostOfStorageA *

((GENERATION + 1)- c);

 // decrement the inventory

 peCur->ATRIB[InventoryABase+c] -= volReq;

 // signal that the order is filled

 volReq= 0.0;

 }

 else // we can fill part of the order from the gas purchased

this period

 {

 volReq -= peCur->ATRIB[InventoryABase+c];

 costOfGasA += peCur-

>ATRIB[InventoryABase+c] * peCur->ATRIB[CostAidxBase+c];

139

 // add in the storage cost of the gas

 costOfGasA += peCur-

>ATRIB[InventoryABase+c] * CostOfStorageA * ((GENERATION + 1)- c);

 //

 volAToSell+= peCur-

>ATRIB[InventoryABase+c];

 peCur->ATRIB[InventoryABase+c] =0.0;

 }

 }

 }

 // at this point the amount of gasA available to sell, and it's total cost

 // is known

 volBToSell= 0.0; // the amount KNOWN to be available for sale

 volReq = 0.0; // how much is needed to fill the 'order'

 costOfGasB = 0.0;

 // Set for gas B

 // loop through the inventory array from oldest to current (FIFO)

 //

 for(c=1;c<=GENERATION;c++)

 {

 if (volBToSell< BRequiredVol)

 // if we still need gas to fill the order

 {

 volReq=BRequiredVol-volBToSell; // how much do

we still need for this order?

 // check the gas bought in this period

 if (peCur->ATRIB[InventoryBBase+c] >= volReq)

 {

 volBToSell=BRequiredVol; // we have the max

available

140

 // increment the total cost by the cost of the gas

bought in this period

 costOfGasB += volReq * peCur-

>ATRIB[CostBidxBase+c];

 // add in the storage cost of the gas

 costOfGasB += BRequiredVol * CostOfStorageB *

((GENERATION + 1)- c);

 // decrement the inventory

 peCur->ATRIB[InventoryBBase+c] -= volReq;

 // signal that the order is filled

 volReq= 0.0;

 }

 else // we can fill part of the order from the gas purchased

this period

 {

 volReq -= peCur->ATRIB[InventoryBBase+c];

 costOfGasB += peCur-

>ATRIB[InventoryBBase+c] * peCur->ATRIB[CostBidxBase+c];

 // add in the storage cost of the gas

 costOfGasB += peCur-

>ATRIB[InventoryBBase+c] * CostOfStorageB * ((GENERATION + 1)- c);

 volBToSell+= peCur->ATRIB[InventoryBBase+c];

 peCur->ATRIB[InventoryBBase+c] =0.0;

 }

 }

 }

 // if there is not enough in storage to meet requirements, buy some at SPOT

price, with penalty

 if ((aMinReq + aabMinReq) > volAToSell)

 {

141

 // how much is still needed?

 volReq = (aMinReq + aabMinReq)-volAToSell;

 volAToSell=volAToSell + volReq;

 // purchase gas on the market

 CashOnHand = CashOnHand - volReq * peCur-

>ATRIB[PriceAidxBase+GENERATION] * (1.0 + aLowVolPenalty);

 // add to inventory

 InventoryA = InventoryA + volReq;

 // increase cost of gas currently being solg

 costOfGasA = costOfGasA + volReq * peCur-

>ATRIB[PriceAidxBase+GENERATION] * (1.0 + aLowVolPenalty);

 }

 if ((bMinReq + babMinReq) > volBToSell)

 {

 volReq = (bMinReq + babMinReq)-volBToSell;

 volBToSell=volBToSell + volReq;

 // purchase gas on the market

 CashOnHand = CashOnHand - volReq * peCur-

>ATRIB[PriceBidxBase+GENERATION] * (1.0 + bLowVolPenalty);

 // add to inventory

 InventoryB = InventoryB + volReq;

 // increase cost of gas currently being solg

 costOfGasB = costOfGasB + volReq * peCur-

>ATRIB[PriceBidxBase+GENERATION] *(1.0 + bLowVolPenalty);

 }

 // at this point the amount of gasB available to sell, and it's total cost

 // is known

 Profit_A = peCur->ATRIB[PriceAidxBase+GENERATION] -

costOfGasA/volAToSell;

 Profit_B = peCur->ATRIB[PriceBidxBase+GENERATION] -

costOfGasB/volBToSell;

 Profit_AB = peCur->ATRIB[PriceABidxBase+GENERATION] -

 (aInAB*(costOfGasA/volAToSell) +

142

 bInAB*(costOfGasB/volBToSell));

 CurrSellVolA = aMinDelivery;

 CurrSellVolAB = abMinDelivery;

 CurrSellVolB = bMinDelivery;

 CashOnHand = CashOnHand + CurrSellVolA * peCur-

>ATRIB[PriceAidxBase + GENERATION] +

 CurrSellVolB * peCur->ATRIB[PriceBidxBase + GENERATION] +

 CurrSellVolAB* peCur-

>ATRIB[PriceABidxBase + GENERATION];

 InventoryA =InventoryA -(CurrSellVolA + CurrSellVolAB * aInAB);

 InventoryB =InventoryB -(CurrSellVolB + CurrSellVolAB * bInAB);

break;

} // end switch

// moved from here

} // end function

double minf(double vala, double valb)

{

if (vala>valb) return valb;

return vala;

}

double maxf(double vala, double valb)

{

if (vala>valb) return vala;

return valb;

143

}

//---

void getMixedProduct(

 double aAvail,

 double bAvail,

 double net_prof_a,

 double net_prof_ab,

 double net_prof_b,

 double aInABmix,

 double bInABmix,

 double aMinReq,

 double bMinReq,

 double aabMinReq,

 double babMinReq,

 double *aVolSold,

 double *abVolSold,

 double *bVolSold)

{

int *colno = NULL, Ncol, ret = 0;

double row[99];

double var[99];

lprec *lp2;

HINSTANCE lpsolve;

lpsolve = LoadLibrary("lpsolve55.dll");

if (lpsolve == NULL)

 fprintf(runlogout,"Unable to load lpsolve shared library \n\n");

else

 {

fprintf(runlogout, "begin getMixedProd\n");

 }

144

//srand(time(NULL));

_make_lp = (make_lp_func *) GetProcAddress(lpsolve, "make_lp");

_add_constraint = (add_constraint_func *) GetProcAddress(lpsolve, "add_constraint");

_add_constraintex = (add_constraintex_func *) GetProcAddress(lpsolve, "add_constraintex");

_delete_lp = (delete_lp_func *) GetProcAddress(lpsolve, "delete_lp");

_get_col_name = (get_col_name_func *) GetProcAddress(lpsolve, "get_col_name");

_get_objective = (get_objective_func *) GetProcAddress(lpsolve, "get_objective");

_get_variables = (get_variables_func *) GetProcAddress(lpsolve, "get_variables");

_print_lp = (print_lp_func *) GetProcAddress(lpsolve, "print_lp");

_print_solution = (print_solution_func *) GetProcAddress(lpsolve, "print_solution");

_read_LP = (read_LP_func *) GetProcAddress(lpsolve, "read_LP");

_set_add_rowmode = (set_add_rowmode_func *) GetProcAddress(lpsolve,

"set_add_rowmode");

_set_col_name = (set_col_name_func *) GetProcAddress(lpsolve, "set_col_name");

_set_maxim = (set_maxim_func *) GetProcAddress(lpsolve, "set_maxim");

_set_obj_fn = (set_obj_fn_func *) GetProcAddress(lpsolve, "set_obj_fn");

_set_obj_fnex = (set_obj_fnex_func *) GetProcAddress(lpsolve, "set_obj_fnex");

_set_verbose = (set_verbose_func *) GetProcAddress(lpsolve, "set_verbose");

_solve = (solve_func *) GetProcAddress(lpsolve, "solve");

_write_LP = (write_LP_func *) GetProcAddress(lpsolve, "write_LP");

/* Create LP */

lp2 = _make_lp(0, 3);

row[1] = -1.0 * net_prof_a;

row[2] = -1.0 * net_prof_ab;

row[3] = -1.0 * net_prof_b;

_set_obj_fn(lp2, row);

145

// set the constraints

_set_add_rowmode(lp2, TRUE);

row[1] = 1.0;

row[2] = 0.0; /* also zero elements must be provided */

row[3] = 0.0;

_add_constraint(lp2, row, LE, aAvail); /* constructs the row: 1.0 * x1 <= available A */

row[1] = 1.0;

row[2] = 0.0; /* also zero elements must be provided */

row[3] = 0.0;

_add_constraint(lp2, row, GE, aMinReq); /* constructs the row: 1.0 * x1 >= minrequired A*/

row[1] = 0.0;

row[2] = 0.0; /* also zero elements must be provided */

row[3] = 1.0;

_add_constraint(lp2, row, LE, bAvail); /* constructs the row: 1.0 * x3 <= available B*/

row[1] = 0.0;

row[2] = 0.0; /* also zero elements must be provided */

row[3] = 1.0;

_add_constraint(lp2, row, GE, bMinReq); /* constructs the row: 1.0 * x3 >= minrequired B*/

row[1] = 1.0;

row[2] = aInABmix;

row[3] = 0.0;

_add_constraint(lp2, row, LE, aAvail); /* 1*x1 + aInABMix*x2 cannot contain more A than is

aAvail*/

row[1] = 0.0;

row[2] = aInABmix;

row[3] = 0.0;

_add_constraint(lp2, row, GE, aabMinReq); /* x2 aInABMix * x2 cannot be less the Avol in

mandatory minimum AB*/

146

row[1] = 0.0;

row[2] = bInABmix;

row[3] = 1.0;

_add_constraint(lp2, row, LE, bAvail); /*x2 (1+bInABMix) * X2 cannot contain more B than

is bAvail*/

row[1] = 0.0;

row[2] = bInABmix;

row[3] = 0.0;

_add_constraint(lp2, row, GE, babMinReq); /*x2 bInABMix * x2 cannot be less the Bvol in

mandatory minimum AB*/

_set_add_rowmode(lp2, FALSE);

// ---

Ncol=3;

/* I only want to see important messages on screen while solving */

// _set_verbose(lp2, IMPORTANT);

/* Now let lpsolve calculate a solution */

ret = _solve(lp2);

if(ret == OPTIMAL)

 ret = 0;

else

 ret = 5;

if(ret == 0)

 {

 /* a solution is calculated, now lets get some results */

 /* objective value */

 //printf("Objective value: %f\n", _get_objective(lp2));

 /* variable values */

 //_get_variables(lp2, row);

147

 //for(j = 0; j < Ncol; j++)

 // printf("%s: %f\n", _get_col_name(lp2, j + 1), row[j]);

 _get_variables(lp2, var);

 //for (j=0; j<3;j++)

 // printf("var %i = %f\n",j,var[j]);

 *aVolSold =var[0];

 *abVolSold =var[1];

 *bVolSold =var[2];

}

 if(colno != NULL)

 free(colno);

 if(lp2 != NULL) {

 /* clean up such that all used memory by lpsolve is freed */

 _delete_lp(lp2);

 }

return;

}

148

Appendix 9: AWESIM Model Definition Files

[CONTROL FILE]
GEN,"SNTEST2","SNTEST2",,1,YES,YES,5;
LIMITS,800,60,5,800,10,10,999;
INITIALIZE,0.0,999999,YES,,YES;
EQUIVALENCE,{{CashOnHand,ATRIB[1]},
{CurrSellVolA,ATRIB[2]},
{CurrSellVolAB,ATRIB[3]},
{CurrSellVolB,ATRIB[4]},
{InventoryA,ATRIB[5]},
{InventoryB,ATRIB[6]},
{MaxTransA,ATRIB[7]},
{MaxTransB,ATRIB[8]},
{MaxVolA,ATRIB[9]},
{MaxVolB,ATRIB[10]},
{Profit_A,ATRIB[11]},
{Profit_AB,ATRIB[12]},
{Profit_B,ATRIB[13]},
{aInAB,ATRIB[14]},
{bInAB,ATRIB[15]},
{RVAL_PROFIT,ATRIB[16]},
{CurrBuyVolA,ATRIB[17]},
{CurrBuyVolB,ATRIB[18]},
{changeAPerCent,ATRIB[19]},
{changeABPerCent,ATRIB[20]},
{changeBPerCent,ATRIB[21]},
{CurrADeltaVol,ATRIB[22]},
{CurrBDeltaVol,ATRIB[23]},
{CurrABDeltaVol,ATRIB[24]},
{Generation,LTRIB[1]},
{CurrentAction,STRIB[1]},
{History,STRIB[2]},
{HistoryCh,STRIB[5]},
{HistoryNu,STRIB[6]},
{BestHistory,SZ[1]},
{BestHistoryCh,SZ[2]},
{BestHistoryNu,SZ[3]},
{BestProfit,XX[1]},
{CostAidx,LL[01]},
{CostAidxBase,LL[02]},
{CostAidxMax,LL[03]},
{CostAidxMaxG,LL[04]},
{CostBidx,LL[05]},
{CostBidxBase,LL[06]},
{CostBidxMax,LL[07]},

149

{CostBidxMaxG,LL[08]},
{Horizon,LL[09]},
{PriceABidx,LL[11]},
{PriceABidxBase,LL[12]},
{PriceABidxMax,
LL[13]},
{PriceABidxMaxG,LL[14]},
{PriceAidx,LL[15]},
{PriceAidxBase,LL[16]},
{PriceAidxMax,LL[17]},
{PriceAidxMaxG,LL[18]},
{PriceBidx,LL[19]},
{PriceBidxBase,LL[20]},
{PriceBidxMax,LL[21]},
{PriceBidxMaxG,LL[22]},
{ReadResult,LL[23]},
{InventoryABase,LL[24]},
{InventoryBBase,LL[25]},
{CurrentScenerio,LL[26]},
{ScenerioCtr,LL[27]},
{AvgCostOfInvA,LL[30]},
{AvgCostOfInvB,LL[31]},
{variationMax,LL[32]},
{processType,LL[33]},
{clockTime,LL[34]},
{clockTime1,LL[35]},
{clockTime2,LL[36]},
{clockTime3,LL[37]},
{fReadResult,XX[2]},
{CostOfStorageA,XX[3]},
{CostOfStorageB,XX[4]},
{PRUNE,0},
{NO_PRUNE,1},
{SCENERIO,LTRIB[2]},
{nextAction,LTRIB[3]},
{variationNumber,LTRIB[4]},
{rand02Action,LTRIB[5]},
{RESULTFILE,STRIB[4]},
{STACK,LL[10]},
{RVAL_ACTION,STRIB[3]},
{cVaryPriceCostTest,-1},
{cVaryPriceCostNone,0},
{cVaryPriceCostNorm,1},
{cFileLoadTest,0},
{cFileLoadLocal,1},
{cFileLoadGlobal,2},
{cFileLoadG2L,3},
{cFileLoadL2G,4},

150

{cTrue,1},
{cFalse,0},
{cTypeRecursive,1},
{cTypeRandom,2},
{cTypeRand02,3},
{Prices_A_File,STRIB[10]},
{cTimerGet,
10},
{cTimerSet,11},
{cRand_A,13},
{cRand_AB,14},
{cRand_B,15}};
INTLC,{{ScenerioCtr,0},
{CurrentScenerio,1}};
NETWORK,READ;
FIN;

[NETWORK FILE]

[RECUR SUBNETWORK]
;DBF file created with Version 4
 VSN,SNRECUR1,,,,,,,,,,{30,150};
NodeArrives: ENTERVSN,ProcessSVN,1,,,,,,,,,{70,300};
 ACTIVITY,,,,,,,,,,{2,4,,,};
Start: GOON,1,,,,,,,,,,{140,300};
 ACTIVITY,,,,,,,,,,{4,6,,,170,300};
SNRECUR1_WRITE_7: WRITE,"history_stack_init.txt",YES,"Stack = %d \tenter: gen: %d
%s InvA: %f InvB:
%f\n",{STACK,GENERATION,CURRENTACTION,INVENTORYA,INVENTORYB},1,,,,,,{
240,300};
 ACTIVITY,1,,,,,,,,,{6,8,,,};
DirectAction: GOON,3,,,,,,,,,,{430,300};
 ACTIVITY,,,((CurrentAction=="B")||(CurrentAction=="*")),,,,,,,{8,12,,,};
 ACTIVITY,12,0,((CurrentAction=="H") ||
(CurrentAction=="*")),"SNRECUR1_ASSIGN_3",,,,,,{8,63,,,};
 ACTIVITY,13,0,((CurrentAction=="S") ||
(CurrentAction=="*")),"SNRECUR1_GOON_3",,,,,,{8,79,,,470,420,570,420};
SNRECUR1_WRITE_6: WRITE,"history_stack_init.txt",YES,"Stack = %d \tpre-buy: gen:
%d\n",{STACK,GENERATION},1,,,,,,{540,230};
 ACTIVITY,,,,,,,,,,{12,14,,,};
 GOON,2,,,,,,,,,,{740,230};
 ACTIVITY,,0,((CurrentAction=="B") || (CurrentAction=="*")) && ((InventoryA +
MaxTransA) <= ((Horizon - GENERATION) * MaxTransA)) && ((InventoryB + MaxTransB)
<= ((Horizon - GENERATION) * MaxTransB))&& ((InventoryA + MaxTransA) <= MaxVolA)
&& ((InventoryB + MaxTransB) <= MaxVolB),,,,,,,{14,17,,,810,170,790,130,850,130};

151

 ACTIVITY,,0,((InventoryA + MaxTransA) > ((Horizon - GENERATION) *
MaxTransA))||((InventoryB + MaxTransB) > ((Horizon - GENERATION) *
MaxTransB))||((InventoryA + MaxTransA) > MaxVolA) || ((InventoryB + MaxTransB) >
MaxVolB),"SNRECUR1_ASSIGN_2",,,,,,{14,57,,,1000,230};
calcBuyVols: ASSIGN,{{fReadResult,USERF(7)}},1,,,,,,,,,{880,130};
 ACTIVITY,,,,,,,,,,{17,19,,,};
SNRECUR1_ASSIGN_6: ASSIGN,{{STACK,STACK-1}},1,,,,,,,,,{980,130};
 ACTIVITY,,,,,,,,,,{19,21,,,};
SNRECUR1_WRITE_10: WRITE,"history_stack_init.txt",YES,"Stack = %d \tpost-buyB: gen:
%d\n",{STACK,GENERATION},1,,,,,,{1090,130};
 ACTIVITY,,,,,,,,,,{21,23,,,};
PostBuy2:
ASSIGN,{{Generation,Generation+1},{History,strcat(History,"B")},{History,strcat(History,"[a]
")},{History,strcat(History,itoa(nint(CurrBuyVolA)))},{History,strcat(History,"[b]")},{History,s
trcat(History,itoa(nint(CurrBuyVolB)))},{HistoryCh,strcat(HistoryCh,"B")},{HistoryNu,strcat(
HistoryNu,itoa(nint(CurrBuyVolA)))},{HistoryNu,strcat(HistoryNu,",0,")},{HistoryNu,strcat(H
istoryNu,itoa(nint(CurrBuyVolB)))},{HistoryNu,strcat(HistoryNu,",")}},4,,,,,,,,,{1250,130};
 ACTIVITY,,0,Generation <=Horizon,"BuyBuy",,,,,,{23,28,,,1670,190};
 ACTIVITY,,,Generation <= Horizon,"BuyHold",,,,,,{23,30,,,1690,250};
 ACTIVITY,,,Generation <= Horizon,"BuySell",,,,,,{23,32,,,1660,350};
 ACTIVITY,,,Generation > Horizon,"SNRECUR1_GOON_2",,,,,,{23,34,,,1430,350};
BuyBuy: ASSIGN,{{CURRENTACTION,"B"},{STACK,STACK+1}},1,,,,,,,,,{1790,190};
 ACTIVITY,101,,,"Start",,,,,,{28,4,,,1870,70,140,70,110,70,120,230};
BuyHold: ASSIGN,{{CURRENTACTION,"H"},{STACK,STACK+1}},1,,,,,,,,,{1810,250};
 ACTIVITY,102,,,"Start",,,,,,{30,4,,,1890,60,100,60};
BuySell: ASSIGN,{{CURRENTACTION,"S"},{STACK,STACK+1}},1,,,,,,,,,{1820,350};
 ACTIVITY,103,,,"Start",,,,,,{32,4,,,1900,50,90,50};
SNRECUR1_GOON_2: GOON,2,,,,,,,,,,{1450,490};
 ACTIVITY,,,,,,,,,,{34,36,,,};
End_of_Cycle: ASSIGN,{{fReadResult,USERF(8)}},1,,,,,,,,,{1460,460};
 ACTIVITY,,,,,,,,,,{36,38,,,};
 GOON,2,,,,,,,,,,{1540,520};
 ACTIVITY,,,CashOnHand>=BestProfit,,,,,,,{38,41,,,1580,490};
 ACTIVITY,,,,"writehistory",,,,,,{38,54,,,1620,580};
PREPAREEXIT:
ASSIGN,{{BESTPROFIT,MAX(BESTPROFIT,CASHONHAND)},{RVAL_ACTION,HISTO
RY},{RVAL_PROFIT,MAX(BESTPROFIT,CASHONHAND)},{BestHistory,History},{BestH
istoryCh,HistoryCh},{BestHistoryNu,HistoryNu}},1,,,,,,,,,{1590,490};
 ACTIVITY,1999,,,,,,,,,{41,43,,,};
BP: COLCT,1003,BESTPROFIT,"BestProfit_SVN",20,0,1000,1,,,,{1810,490};
 ACTIVITY,,,,,,,,,,{43,45,,,};
SNRECUR1_WRITE_9: WRITE,"history_stack_init.txt",YES,"Stack = %d \tenter: gen: %d
%s\n",{STACK,GENERATION,CURRENTACTION},1,,,,,,{1940,490};
 ACTIVITY,,,stack<=-2,"SNRECUR1_ASSIGN_1",,,,,,{45,48,,,2100,490};
 ACTIVITY,,,stack != -2,"SNRECUR1_TERMINATE_1",,,,,,{45,53,,,};
SNRECUR1_ASSIGN_1:
ASSIGN,{{BESTPROFIT,MAX(BESTPROFIT,CASHONHAND)},{RVAL_ACTION,HISTO

152

RY},{RVAL_PROFIT,MAX(BESTPROFIT,CASHONHAND)},{readResult,USERF(cTimerG
et)},{ClockTime2,ClockTime-ClockTime1}},1,,,,,,,,,{2270,490};
 ACTIVITY,,,,,,,,,,{48,50,,,};
SNRECUR1_WRITE_8: WRITE,"results.txt",YES,"scen:,
%d,%d,%f,%s,%s%f\n",{CURRENTSCENERIO,ClockTime2,rval_profit,BestHistoryCh,BestH
istoryNu,AinAb},1,,,,,,{2490,490};
 ACTIVITY,,,,,,,,,,{50,52,,,};
 RETURNVSN,BESTPROFIT,1,,,,,,,,,{2840,490};
SNRECUR1_TERMINATE_1: TERMINATE,INF,,,,,,,,,,{2090,520};
writehistory: WRITE,"history_stack_init.txt",YES,"stack = %d\t Cash=%f \thistory: %s
\tInvA= %f InvB=
%f\n",{STACK,CASHONHAND,HISTORY,INVENTORYA,INVENTORYB},1,,,,,,{1710,580
};
 ACTIVITY,,,,,,,,,,{54,56,,,};
 TERMINATE,INF,,,,,,,,,,{1950,580};
SNRECUR1_ASSIGN_2: ASSIGN,{{STACK,STACK-1}},1,,,,,,,,,{1030,250};
 ACTIVITY,,,,,,,,,,{57,59,,,};
SNRECUR1_WRITE_1: WRITE,"history_stack_init.txt",YES,"Stack = %d \tpost-buyA prune:
gen: %d\n",{STACK,GENERATION},1,,,,,,{1130,250};
 ACTIVITY,,,stack != -2,,,,,,,{59,62,,,};
 ACTIVITY,,,stack == -2,"SNRECUR1_ASSIGN_1",,,,,,{59,48,,,1860,420,2000,420};
 TERMINATE,INF,,,,,,,,,,{1320,250};
SNRECUR1_ASSIGN_3: ASSIGN,{{STACK,STACK-1}},1,,,,,,,,,{610,300};
 ACTIVITY,,,,,,,,,,{63,65,,,};
SNRECUR1_GOON_1: GOON,2,,,,,,,,,,{740,300};
 ACTIVITY,,,((InventoryA <= ((Horizon- GENERATION) * MaxTransA)) &&
(InventoryB <= ((Horizon- GENERATION) * MaxTransB))),,,,,,,{65,68,,,};
 ACTIVITY,,,((InventoryA > ((Horizon- GENERATION) * MaxTransA)) || (InventoryB >
((Horizon- GENERATION) *
MaxTransB))),"SNRECUR1_WRITE_4",,,,,,{65,75,,,770,320,770,360};
SNRECUR1_WRITE_3: WRITE,"history_stack_init.txt",YES,"Stack= %d \tpost-hold : gen:
%d\n",{STACK,GENERATION},1,,,,,,{1110,300};
 ACTIVITY,,,,,,,,,,{68,70,,,};
ExecuteHold:
ASSIGN,{{HISTORY,STRCAT(HISTORY,"H")},{GENERATION,GENERATION+1},{Histo
ryCh,strcat(HistoryCh,"H")},{HistoryNu,strcat(HistoryNu,"0,0,0,")}},4,,,,,,,,,{1260,300};
 ACTIVITY,31,,Generation <=HORIZON,"BuyBuy",,,,,,{70,28,,,1670,190};
 ACTIVITY,32,,GENERATION<=HORIZON,"BuyHold",,,,,,{70,30,,,1690,250};
 ACTIVITY,33,,GENERATION<=HORIZON,"BuySell",,,,,,{70,32,,,1660,350};
 ACTIVITY,,,Generation > Horizon,"SNRECUR1_GOON_2",,,,,,{70,34,,,1410,360};
SNRECUR1_WRITE_4: WRITE,"history_stack_init.txt",YES,"Stack= %d \tpost-hold (prune) :
gen: %d\n",{STACK,GENERATION},1,,,,,,{880,360};
 ACTIVITY,,,stack != -2,,,,,,,{75,78,,,};
 ACTIVITY,,,stack == -2,"SNRECUR1_ASSIGN_1",,,,,,{75,48,,,1840,420,2000,420};
 TERMINATE,INF,,,,,,,,,,{1230,360};
SNRECUR1_GOON_3: GOON,1,,,,,,,,,,{600,420};
 ACTIVITY,,,(InventoryA> .0001 && InventoryB>.0001),,,,,,,{79,82,,,};

153

 ACTIVITY,,,(InventoryA< .0001 ||
InventoryB<.0001),"SNRECUR1_ASSIGN_4",,,,,,{79,97,,,700,470,870,800};
CalcSellQtys: ASSIGN,{{fReadResult,USERF(2)}},1,,,,,,,,,{760,420};
 ACTIVITY,,,,,,,,,,{82,84,,,840,420};
ExecuteSell:
ASSIGN,{{HISTORY,strcat(HISTORY,"S")},{HISTORY,strcat(HISTORY,"[a]")},{HISTORY
,strcat(HISTORY,itoa((nint(currSellVolA))))},{HISTORY,strcat(HISTORY,"[ab]")},{HISTOR
Y,strcat(HISTORY,itoa(nint(currSellVolAB)))},{HISTORY,strcat(HISTORY,"[b]")},{HISTOR
Y,strcat(HISTORY,itoa(nint(currSellVolB)))},{HistoryCh,strcat(HistoryCh,"S")},{HistoryNu,st
rcat(HistoryNu,itoa(nint(-
1.0*CurrSellVolA)))},{HistoryNu,strcat(HistoryNu,",")},{HistoryNu,strcat(HistoryNu,itoa(nint(
-
1.0*CurrSellVolAB)))},{HistoryNu,strcat(HistoryNu,",")},{HistoryNu,strcat(HistoryNu,itoa(nin
t(-1*CurrSellVolB)))},{HistoryNu,strcat(HistoryNu,",")}},2,,,,,,,,,{880,440};
 ACTIVITY,,,,,,,,,,{84,87,,,1140,420};
 ACTIVITY,,,,"SNRECUR1_WRITE_2",,,,,,{84,94,,,};
SNRECUR1_ASSIGN_7: ASSIGN,{{STACK,STACK-1}},1,,,,,,,,,{1170,420};
 ACTIVITY,,,,,,,,,,{87,89,,,};
PostSell: ASSIGN,{{GENERATION,GENERATION+1}},4,,,,,,,,,{1270,420};
 ACTIVITY,41,,GENERATION<=HORIZON,"BuyBuy",,,,,,{89,28,,,1670,190};
 ACTIVITY,42,,GENERATION<=HORIZON,"BuyHold",,,,,,{89,30,,,1690,250};
 ACTIVITY,43,,GENERATION<=HORIZON,"BuySell",,,,,,{89,32,,,1660,350};
 ACTIVITY,,,Generation > Horizon,"SNRECUR1_GOON_2",,,,,,{89,34,,,1420,450};
SNRECUR1_WRITE_2: WRITE,"history_stack_init.txt",YES,"stack = %d post-sell gen: %d
Current Action: %s History= %s Value=%f InvA= %f InvB: %f CurrSellVolA=%f
CurrSellVolAB=%f
CurrSellVolB=%f\n",{stack,GENERATION,CURRENTACTION,HISTORY,CASHONHAND,
INVENTORYA,INVENTORYB,CurrSellVolA,CurrSellVolAB,CurrSellVolB},1,,,,,,{1490,710
};
 ACTIVITY,,,,,,,,,,{94,96,,,};
 TERMINATE,INF,,,,,,,,,,{2020,710};
SNRECUR1_ASSIGN_4: ASSIGN,{{STACK,STACK-1}},1,,,,,,,,,{930,800};
 ACTIVITY,,,,,,,,,,{97,99,,,};
SNRECUR1_WRITE_5: WRITE,"history_stack_init.txt",YES,"Stack = %d \tpost-sell: prune
gen: %d history: %s\n",{STACK,GENERATION,HISTORY},1,,,,,,{1100,800};
 ACTIVITY,,,stack== -
2,"SNRECUR1_ASSIGN_1",,,,,,{99,48,,,1290,790,2080,790,2080,560};
 ACTIVITY,,,stack != -2,,,,,,,{99,102,,,};
 TERMINATE,INF,,,,,,,,,,{2400,800};

[RAND01 SUBNETWORK]

;DBF file created with Version 4
 VSN,SNRAND01,,,,,,,,,,{40,30};
NodeArrives: ENTERVSN,ProcessSVN,1,,,,,,,,,{50,300};
 ACTIVITY,,,,,,,,,,{2,4,,,};
Start: GOON,1,,,,,,,,,,{90,300};
 ACTIVITY,1,,,,,,,,,{4,6,,,};

154

 ASSIGN,{{nextAction,nint(UNFRM(1,3,7))}},1,,,,,,,,,{340,300};
 ACTIVITY,,,nextAction==1,,,,,,,{6,11,,,450,230};
 ACTIVITY,,,nextAction==2,"BuyHold",,,,,,{6,53,,,};
 ACTIVITY,,,nextAction==3,"BuySell",,,,,,{6,60,,,450,420};
 ACTIVITY,,,,"SNRANDOM_WRITE_2",,,,,,{6,71,,,440,460,490,480};
BuyBuy: ASSIGN,{{CURRENTACTION,"B"}},1,,,,,,,,,{490,230};
 ACTIVITY,,,,"SNRECUR1_WRITE_6",,,,,,{11,13,,,};
SNRECUR1_WRITE_6: WRITE,"history_stack_init_rnd.txt",YES,"variationNumber %d
\tbuy: \tgen: %d\t nextAction=%d\t InvA: %f \t InvB:
%f\n",{variationNumber,GENERATION,nextAction,InventoryA,InventoryB},1,,,,,,{620,230};
 ACTIVITY,,,,,,,,,,{13,15,,,};
calcBuyVols: ASSIGN,{{fReadResult,USERF(7)}},1,,,,,,,,,{900,230};
 ACTIVITY,,,,,,,,,,{15,17,,,};
PostBuy2:
ASSIGN,{{Generation,Generation+1},{History,strcat(History,"B")},{HistoryCh,strcat(HistoryC
h,"B")},{HistoryNu,strcat(HistoryNu,itoa(nint(CurrBuyVolA)))},{HistoryNu,strcat(HistoryNu,"
,0,")},{HistoryNu,strcat(HistoryNu,itoa(nint(CurrBuyVolB)))},{HistoryNu,strcat(HistoryNu,",")
}},2,,,,,,,,,{1200,230};
 ACTIVITY,,0,Generation <=Horizon,"SNRANDOM_GOON_1",,,,,,{17,20,,,1500,240};
 ACTIVITY,,,Generation > Horizon,"SNRECUR1_GOON_2",,,,,,{17,22,,,1460,420};
SNRANDOM_GOON_1: GOON,1,,,,,,,,,,{1570,260};
 ACTIVITY,,,,"Start",,,,,,{20,4,,,1660,260,1660,50,60,50};
SNRECUR1_GOON_2: GOON,3,,,,,,,,,,{1470,490};
 ACTIVITY,,,,,,,,,,{22,24,,,};
End_of_Cycle: ASSIGN,{{fReadResult,USERF(8)}},1,,,,,,,,,{1520,490};
 ACTIVITY,,,,,,,,,,{24,26,,,};
writehistory: WRITE,"history_stack_init_rnd.txt",YES,"variationNumber %d\t GEN
%d\tCash=%f \thistory: %s \tInvA= %f InvB=
%f\n",{variationNumber,generation,CASHONHAND,HISTORY,INVENTORYA,INVENTOR
YB},1,,,,,,{1650,660};
 ACTIVITY,,,,,,,,,,{26,28,,,1920,660,1920,600,1680,600,1610,490};
 GOON,2,,,,,,,,,,{1630,490};
 ACTIVITY,,,CashOnHand>BestProfit,,,,,,,{28,31,,,};

ACTIVITY,,,CashOnHand<=BestProfit,"SNRANDOM_GOON_2",,,,,,{28,41,,,1700,560,2730,
560};
PREPAREEXIT:
ASSIGN,{{BESTPROFIT,MAX(BESTPROFIT,CASHONHAND)},{RVAL_ACTION,HISTO
RY},{RVAL_PROFIT,MAX(BESTPROFIT,CASHONHAND)},{BestHistory,History},{BestH
istoryCh,HistoryCh},{BestHistoryNu,HistoryNu}},1,,,,,,,,,{1710,490};
 ACTIVITY,1999,,,,,,,,,{31,33,,,};
BP: COLCT,1003,BESTPROFIT,"BestProfit_SVN",20,0,1000,1,,,,{1940,490};
 ACTIVITY,,,,,,,,,,{33,35,,,};
SNRECUR1_WRITE_9: WRITE,"history_stack_init_rnd.txt",YES,"variationNumber %d \tSet
BestProfit: gen: %d
%s\n",{variationNumber,GENERATION,CURRENTACTION},1,,,,,,{2100,490};
 ACTIVITY,,,,"SNRECUR1_ASSIGN_1",,,,,,{35,37,,,2270,490};

155

SNRECUR1_ASSIGN_1:
ASSIGN,{{BESTPROFIT,MAX(BESTPROFIT,CASHONHAND)},{RVAL_ACTION,HISTO
RY},{RVAL_PROFIT,MAX(BESTPROFIT,CASHONHAND)},{readResult,USERF(cTimerG
et)},{ClockTime2,ClockTime-ClockTime1}},1,,,,,,,,,{2350,490};
 ACTIVITY,,,,,,,,,,{37,39,,,};
SNRANDOM_WRITE_1: WRITE,"results_random.txt",YES,"scen:
%d,ct=%d,ct1=%d,ct2=%d,%d,%f,%s,%s\n",{CurrentScenerio,ClockTime,ClockTime1,ClockTi
me2,variationNumber,rval_profit,BestHistoryCh,BestHistoryNu},1,,,,,,{2610,490};
 ACTIVITY,,,,,,,,,,{39,41,,,};
SNRANDOM_GOON_2: GOON,1,,,,,,,,,,{2810,490};
 ACTIVITY,,,variationNumber<variationMax,,,,,,,{41,44,,,2790,400};
 ACTIVITY,,,variationNumber==variationMax,"SNRECUR1_WRITE_8",,,,,,{41,50,,,};
 GOON,1,,,,,,,,,,{2830,400};
 ACTIVITY,,,,,,,,,,{44,46,,,};
 ASSIGN,{{variationNumber,variationNumber
+1},{history,""},{CashOnHand,0},{historyCH,""},{historyNU,""},{Generation,1}},1,,,,,,,,,{288
0,400};
 ACTIVITY,,,,,,,,,,{46,48,,,};
ResetInventory: ASSIGN,{{fReadResult,USERF(9)}},1,,,,,,,,,{3050,400};

ACTIVITY,,,,"SNRANDOM_GOON_1",,,,,,{48,20,,,3160,400,3160,300,2710,300,2710,380,25
45,380,2380,380,1860,380,1560,380};
SNRECUR1_WRITE_8: WRITE,"results.txt",YES,"scen:,
%d,%d,%f,%s,%s%f\n",{CURRENTSCENERIO,ClockTime2,rval_profit,BestHistoryCh,BestH
istoryNu,AinAb},1,,,,,,{2960,490};
 ACTIVITY,,,,,,,,,,{50,52,,,};
 RETURNVSN,BESTPROFIT,1,,,,,,,,,{3120,490};
BuyHold: ASSIGN,{{CURRENTACTION,"H"}},1,,,,,,,,,{490,300};
 ACTIVITY,,,,,,,,,,{53,55,,,};
SNRECUR1_WRITE_3: WRITE,"history_stack_init_rnd.txt",YES,"variationNumber %d\thold
: gen: %d\t nextAction=%d\n",{variationNumber,GENERATION,nextAction},1,,,,,,{620,300};
 ACTIVITY,,,,,,,,,,{55,57,,,};
ExecuteHold:
ASSIGN,{{HISTORY,STRCAT(HISTORY,"H")},{GENERATION,GENERATION+1},{Histo
ryCh,strcat(HistoryCh,"H")},{HistoryNu,strcat(HistoryNu,"0,0,0,")}},2,,,,,,,,,{1190,310};
 ACTIVITY,31,,Generation
<=HORIZON,"SNRANDOM_GOON_1",,,,,,{57,20,,,1500,260};
 ACTIVITY,,,Generation > Horizon,"SNRECUR1_GOON_2",,,,,,{57,22,,,1450,430};
BuySell: ASSIGN,{{CURRENTACTION,"S"}},1,,,,,,,,,{490,420};
 ACTIVITY,13,,,"SNRECUR1_GOON_3",,,,,,{60,62,,,590,420};
SNRECUR1_GOON_3: GOON,1,,,,,,,,,,{650,420};
 ACTIVITY,,,,,,,,,,{62,64,,,};
CalcSellQtys: ASSIGN,{{fReadResult,USERF(2)}},1,,,,,,,,,{790,420};
 ACTIVITY,,,,,,,,,,{64,66,,,920,420,920,530,770,530,770,600};
SNRECUR1_WRITE_2: WRITE,"history_stack_init_rnd.txt",YES,"variationNumber
%d\tsell(post) nextAction=%d\tgen: %d Current Action: %s History= %s Value=%f InvA=
%f InvB: %f CurrSellVolA=%f CurrSellVolAB=%f
CurrSellVolB=%f\n",{variationNumber,nextAction,GENERATION,CURRENTACTION,HIST

156

ORY,CASHONHAND,INVENTORYA,INVENTORYB,CurrSellVolA,CurrSellVolAB,CurrSel
lVolB},1,,,,,,{830,600};
 ACTIVITY,,,,,,,,,,{66,68,,,1430,600,1430,530,1100,530,1100,420};
ExecuteSell:
ASSIGN,{{HISTORY,strcat(HISTORY,"S")},{HistoryCh,strcat(HistoryCh,"S")},{HistoryNu,st
rcat(HistoryNu,itoa(nint(-
1.0*CurrSellVolA)))},{HistoryNu,strcat(HistoryNu,",")},{HistoryNu,strcat(HistoryNu,itoa(nint(
-
1.0*CurrSellVolAB)))},{HistoryNu,strcat(HistoryNu,",")},{HistoryNu,strcat(HistoryNu,itoa(nin
t(-
1*CurrSellVolB)))},{HistoryNu,strcat(HistoryNu,",")},{Generation,Generation+1}},3,,,,,,,,,{11
30,420};

ACTIVITY,41,,GENERATION<=HORIZON,"SNRANDOM_GOON_1",,,,,,{68,20,,,1500,280
};
 ACTIVITY,,,Generation > Horizon,"SNRECUR1_GOON_2",,,,,,{68,22,,,1440,450};
SNRANDOM_WRITE_2: WRITE,"history_stack_init_rnd.txt",YES,"variationNumber:
%d\tbad nextActionValue: gen: %d\t
nextAction=%d\n",{variationNumber,GENERATION,nextAction},1,,,,,,{530,480};
 ACTIVITY,,,,,,,,,,{71,73,,,};
 TERMINATE,INF,,,,,,,,,,{780,480};

[RAND02 SUBNETWORK]
;DBF file created with Version 4
 VSN,SNRAND02,,,,,,,,,,{40,30};
NodeArrives: ENTERVSN,ProcessR02,1,,,,,,,,,{50,300};
 ACTIVITY,,,,,,,,,,{2,4,,,};
Start: GOON,1,,,,,,,,,,{90,300};
 ACTIVITY,1,,,,,,,,,{4,6,,,130,300,130,240};
 ASSIGN,{{rand02Action,0},{changeAPerCent,nint(UNFRM(-
4,4,7))*.25}},1,,,,,,,,,{150,240};
 ACTIVITY,,,,,,,,,,{6,8,,,};
SNRAND02_WRITE_1: WRITE,"history_stack_init_rnd02.txt",YES,"VarNo: %d gen %d
APct= %8.3f ",{variationnumber,generation,changeAPercent},1,,,,,,{320,240};
 ACTIVITY,,,,,,,,,,{8,10,,,};
 ASSIGN,{{fReadResult,USERF(cRand_A)}},1,,,,,,,,,{450,240};
 ACTIVITY,,,,,,,,,,{10,12,,,590,240,590,260,150,260,140,260,140,280};
 ASSIGN,{{changeBPerCent,nint(UNFRM(-4,4,7))*.25}},1,,,,,,,,,{150,280};
 ACTIVITY,,,,,,,,,,{12,14,,,};
SNRAND02_WRITE_2: WRITE,"history_stack_init_rnd02.txt",YES,"BPct= %8.2f
",{changeBPercent},1,,,,,,{320,280};
 ACTIVITY,,,,,,,,,,{14,16,,,};
 ASSIGN,{{fReadResult,USERF(cRand_B)}},1,,,,,,,,,{450,280};
 ACTIVITY,,,,,,,,,,{16,18,,,590,280,590,300,140,300,140,320};
 ASSIGN,{{changeABPerCent,nint(UNFRM(-4,0,7))*.25}},1,,,,,,,,,{150,320};
 ACTIVITY,,,,,,,,,,{18,20,,,};
SNRAND02_WRITE_3: WRITE,"history_stack_init_rnd02.txt",YES,"ABPct= %8.2f
currDeltaVolAB %8.2f ",{changeABPercent,currABDeltaVol},1,,,,,,{320,320};

157

 ACTIVITY,,,,,,,,,,{20,22,,,};
 ASSIGN,{{fReadResult,USERF(cRand_AB)}},1,,,,,,,,,{490,320};
 ACTIVITY,,,,,,,,,,{22,24,,,};
SNRAND02_WRITE_4: WRITE,"history_stack_init_rnd02.txt",YES," dltA= %8.3f dltAB=
%8.3f dltB= %8.3f \n",{CurrADeltaVol,CurrABDeltaVol,CurrBDeltaVol},1,,,,,,{620,320};
 ACTIVITY,,,,,,,,,,{24,26,,,780,320,780,360,160,360,90,360,90,430};
SNRECUR1_WRITE_6: WRITE,"history_stack_init_rnd02.txt",YES,"varNo: %d gen %d
Apct %8.2f Bpct %8.2f ABpct %8.2f act %d DltA %8.2f DltAB %8.2f DltB %8.2f invA
%8.2f
invB%8.2f\n",{variationNumber,generation,changeAPercent,changeBPercent,changeABPercent,
rand02Action,CurrADeltaVol,CurrABDeltaVol,CurrBDeltaVol,InventoryA,InventoryB},1,,,,,,{
170,430};
 ACTIVITY,,,,,,,,,,{26,28,,,580,430,550,490,530,510,550,510};
SNRECUR1_WRITE_2: WRITE,"history_stack_init_rnd_pre2.txt",YES,"var %d gen: %d
Act=%d $$=%8.2f InvA= %8.2f InvB: %8.2f hist: %s
\n",{variationNumber,GENERATION,rand02Action,CASHONHAND,INVENTORYA,INVEN
TORYB,HISTORY},1,,,,,,{580,510};
 ACTIVITY,,,,,,,,,,{28,30,,,1190,510,1190,420,800,420,800,300};
SNRAND02_ASSIGN_1:
ASSIGN,{{Generation,Generation+1},{HistoryNu,strcat(HistoryNu,itoa(nint(CurrADeltaVol)))
},{HistoryNu,strcat(HistoryNu,",")},{HistoryNu,strcat(HistoryNu,itoa(nint(CurrABDeltaVol)))}
,{HistoryNu,strcat(HistoryNu,",")},{HistoryNu,strcat(HistoryNu,itoa(nint(CurrBDeltaVol)))},{
HistoryNu,strcat(HistoryNu,",")}},1,,,,,,,,,{940,300};
 ACTIVITY,,,,,,,,,,{30,32,,,};
 GOON,1,,,,,,,,,,{1180,300};
 ACTIVITY,,,generation==99999,,,,,,,{32,36,,,};

ACTIVITY,41,,GENERATION<=HORIZON,"SNRANDOM_GOON_1",,,,,,{32,39,,,1330,300
};
 ACTIVITY,,,Generation > Horizon,"SNRECUR1_GOON_2",,,,,,{32,41,,,1270,330};
ExecuteSell: ASSIGN,{{Generation,Generation+1},{HISTORY,strcat(HISTORY,"
")},{HISTORY,strcat(HISTORY,itoa(rand02Action))},{HISTORY,strcat(HISTORY,"[a]")},{H
ISTORY,strcat(HISTORY,itoa((nint(currADeltaVol))))},{HISTORY,strcat(HISTORY,"[ab]")},
{HISTORY,strcat(HISTORY,itoa(nint(currABDeltaVol)))},{HISTORY,strcat(HISTORY,"[b]")
},{HISTORY,strcat(HISTORY,itoa(nint(currBDeltaVol)))},{HistoryNu,strcat(HistoryNu,itoa(ni
nt(-
1.0*CurrADeltaVol)))},{HistoryNu,strcat(HistoryNu,",")},{HistoryNu,strcat(HistoryNu,itoa(nin
t(-
1.0*CurrABDeltaVol)))},{HistoryNu,strcat(HistoryNu,",")},{HistoryNu,strcat(HistoryNu,itoa(n
int(-1*CurrBDeltaVol)))},{HistoryNu,strcat(HistoryNu,",")}},2,,,,,,,,,{1220,90};
 ACTIVITY,,,,,,,,,,{36,38,,,};
 TERMINATE,INF,,,,,,,,,,{1480,70};
SNRANDOM_GOON_1: GOON,1,,,,,,,,,,{1500,300};
 ACTIVITY,,,,"Start",,,,,,{39,4,,,1530,300,1530,210,60,210,60,270};
SNRECUR1_GOON_2: GOON,1,,,,,,,,,,{1470,490};
 ACTIVITY,,,,,,,,,,{41,43,,,};
End_of_Cycle: ASSIGN,{{fReadResult,USERF(8)}},1,,,,,,,,,{1500,490};
 ACTIVITY,,,,,,,,,,{43,45,,,1600,490,1600,530,1460,530,1460,680};

158

writehistory: WRITE,"history_stack_init_rnd02.txt",YES,"End of Hor: varNo= %d\t GEN
%d\tCash=%f \thistory: %s \tInvA= %f InvB=
%f\n",{variationNumber,generation,CASHONHAND,HISTORY,INVENTORYA,INVENTOR
YB},1,,,,,,{1500,680};
 ACTIVITY,,,,,,,,,,{45,47,,,1760,680,1760,640,1610,640,1610,490};
 GOON,2,,,,,,,,,,{1630,490};
 ACTIVITY,,,CashOnHand>=BestProfit,,,,,,,{47,50,,,};

ACTIVITY,,,CashOnHand<BestProfit,"SNRANDOM_GOON_2",,,,,,{47,60,,,1700,560,2730,5
60};
PREPAREEXIT:
ASSIGN,{{BESTPROFIT,MAX(BESTPROFIT,CASHONHAND)},{RVAL_ACTION,HISTO
RY},{RVAL_PROFIT,MAX(BESTPROFIT,CASHONHAND)},{BestHistory,History},{BestH
istoryCh,HistoryCh},{BestHistoryNu,HistoryNu}},1,,,,,,,,,{1710,490};
 ACTIVITY,1999,,,,,,,,,{50,52,,,};
BP: COLCT,1003,BESTPROFIT,"BestProfit_SVN",20,0,1000,1,,,,{1940,490};
 ACTIVITY,,,,,,,,,,{52,54,,,};
SNRECUR1_WRITE_9: WRITE,"history_stack_init_rnd.txt",YES,"variationNumber %d \tSet
BestProfit: gen: %d
%s\n",{variationNumber,GENERATION,CURRENTACTION},1,,,,,,{2100,490};
 ACTIVITY,,,,"SNRECUR1_ASSIGN_1",,,,,,{54,56,,,2270,490};
SNRECUR1_ASSIGN_1:
ASSIGN,{{BESTPROFIT,MAX(BESTPROFIT,CASHONHAND)},{RVAL_ACTION,HISTO
RY},{RVAL_PROFIT,MAX(BESTPROFIT,CASHONHAND)},{readResult,USERF(cTimerG
et)},{ClockTime2,ClockTime-ClockTime1}},1,,,,,,,,,{2350,490};
 ACTIVITY,,,,,,,,,,{56,58,,,};
SNRANDOM_WRITE_1: WRITE,"results_random.txt",YES,"scen:
%d,%d,%f,%s,%s\n",{CurrentScenerio,variationNumber,rval_profit,BestHistoryCh,BestHistory
Nu},1,,,,,,{2610,490};
 ACTIVITY,,,,,,,,,,{58,60,,,};
SNRANDOM_GOON_2: GOON,1,,,,,,,,,,{2810,490};
 ACTIVITY,,,variationNumber<variationMax,,,,,,,{60,63,,,2790,400,2804,400};
 ACTIVITY,,,variationNumber==variationMax,"SNRECUR1_WRITE_8",,,,,,{60,69,,,};
 GOON,1,,,,,,,,,,{2830,400};
 ACTIVITY,,,,,,,,,,{63,65,,,};
 ASSIGN,{{variationNumber,variationNumber
+1},{history,""},{CashOnHand,0},{historyCH,""},{historyNU,""},{Generation,1}},1,,,,,,,,,{288
0,400};
 ACTIVITY,,,,,,,,,,{65,67,,,};
ResetInventory: ASSIGN,{{fReadResult,USERF(9)}},1,,,,,,,,,{3050,400};

ACTIVITY,,,,"SNRANDOM_GOON_1",,,,,,{67,39,,,3160,400,3160,300,2710,300,2710,380,25
45,380,2380,380,1860,380,1400,380,1400,310};
SNRECUR1_WRITE_8: WRITE,"results_02.txt",YES,"scen:,
%d,%d,%8.2f,%s,%s%3.2f\n",{CURRENTSCENERIO,ClockTime2,rval_profit,BestHistoryCh,
BestHistoryNu,AinAb},1,,,,,,{2960,490};
 ACTIVITY,,,,,,,,,,{69,71,,,};
 RETURNVSN,BESTPROFIT,1,,,,,,,,,{3120,490};

159

[LOADFILE SUBNETWORK]
;DBF file created with Version 4
 VSN,LOADFILE,{{LoadType,LONGVAL, },{LocalIdx,LONGREF,
},{LocalIdxBase,LONGREF, },{LocalIdxMax,LONGREF, },{vFileName,STRINGVAL,
},{vEchoFileContents,LONGVAL,},{vFileNameEcho,STRINGVAL,}},,,,,,,,,{70,60};
Begin: ENTERVSN,LoadFile,1,,,,,,,,,{60,160};
 ACTIVITY,,,,,,,,,,{2,4,,,80,160};
 GOON,1,,,,,,,,,,{110,160};
 ACTIVITY,,,LoadType==cFileLoadTest,,,,,,,{4,10,,,};

ACTIVITY,,,LoadType==cFileLoadLocal,"ReadFileValue",,,,,,{4,11,,,140,210,140,260,140,300
};
 ACTIVITY,,,LoadType==cFileLoadGlobal,"ReadFileGlobal",,,,,,{4,28,,,130,400,140,490};
 ACTIVITY,,,LoadType==cFileLoadL2G,"CopyObjecToGlobal",,,,,,{4,43,,,120,790};

ACTIVITY,,,LoadType==cFileLoadG2L,"LOADFILE_WRITE_4",,,,,,{4,60,,,10,610,30,660};
Exit: RETURNVSN,0.0,1,,,,,,,,,{1050,190};
ReadFileValue: READ,vFileName,YES,ReadResult,"%f",{atrib[LocalIdxMax]},1,,,,,{220,300};
 ACTIVITY,,,ReadResult >0,,,,,,,{11,14,,,310,290,310,260};
 ACTIVITY,,,ReadResult <=0,"SetIdx",,,,,,{11,18,,,};
Inc_index: ASSIGN,{{LocalIdxMax,LocalIdxMax+1}},1,,,,,,,,,{320,260};
 ACTIVITY,,,,,,,,,,{14,16,,,};
wrteLocal: WRITE,"vFileNameEcho.txt",NO," value Read from %s =
%f\n",{vFileName,atrib[LocalIdxMax]-1},1,,,,,,{440,260};
 ACTIVITY,,,,"ReadFileValue",,,,,,{16,11,,,530,260,530,240,190,240,190,280};
SetIdx: ASSIGN,{{LocalIdx,LocalIdxBase+1}},1,,,,,,,,,{350,300};
 ACTIVITY,,,vEchoFileContents==cTrue,,,,,,,{18,21,,,};

ACTIVITY,,,vEchoFileContents==cFalse,"GMIX1_GOON_1",,,,,,{18,26,,,440,340,830,340,87
0,310};
WriteData: WRITE,vFileNameEcho,YES,"%f \n ",{atrib[LocalIdx]},1,,,,,,{580,300};
 ACTIVITY,,,LocalIdx <LocalIdxMax,,,,,,,{21,24,,,660,280,680,260};
 ACTIVITY,,,LocalIdx >=LocalIdxMax,"GMIX1_GOON_1",,,,,,{21,26,,,};
Inc_idx_2: ASSIGN,{{LocalIdx,LocalIdx+1}},1,,,,,,,,,{710,260};
 ACTIVITY,,,,"WriteData",,,,,,{24,21,,,820,260,820,240,560,240,560,270};
GMIX1_GOON_1: GOON,1,,,,,,,,,,{900,300};
 ACTIVITY,,,,"Exit",,,,,,{26,10,,,};
ReadFileGlobal: READ,vFileName,YES,ReadResult,"%f",{XX[LocalIdxMax]},1,,,,,{220,490};
 ACTIVITY,,,ReadResult >0,,,,,,,{28,31,,,310,480,310,450};
 ACTIVITY,,,ReadResult <=0,"SetIdx2",,,,,,{28,33,,,};
Inc_index_2: ASSIGN,{{LocalIdxMax,LocalIdxMax+1}},1,,,,,,,,,{320,450};
 ACTIVITY,,,,"ReadFileGlobal",,,,,,{31,28,,,470,450,470,420,200,420,200,470};
SetIdx2: ASSIGN,{{LocalIdx,LocalIdxBase+1}},1,,,,,,,,,{350,490};
 ACTIVITY,,,vEchoFileContents==cTrue,,,,,,,{33,36,,,};

160

ACTIVITY,,,vEchoFileContents==cFalse,"LOADFILE_GOON_1",,,,,,{33,41,,,440,530,830,53
0,870,500};
WriteData2: WRITE,SZ[3],YES,"%f \n ",{XX[LocalIdx]},1,,,,,,{580,490};
 ACTIVITY,,,LocalIdx <=LocalIdxMax,,,,,,,{36,39,,,660,470,680,450};
 ACTIVITY,,,LocalIdx >LocalIdxMax,"LOADFILE_GOON_1",,,,,,{36,41,,,};
Inc_idx4: ASSIGN,{{LocalIdx,LocalIdx+1}},1,,,,,,,,,{710,450};
 ACTIVITY,,,,"WriteData2",,,,,,{39,36,,,820,450,820,430,560,430,560,460};
LOADFILE_GOON_1: GOON,1,,,,,,,,,,{900,490};
 ACTIVITY,,,,"Exit",,,,,,{41,10,,,};
CopyObjecToGlobal: ASSIGN,{{XX[LocalIdx],atrib[LocalIdx]}},1,,,,,,,,,{180,840};
 ACTIVITY,,,LocalIdx<LocalIdxmax,,,,,,,{43,46,,,};
 ACTIVITY,,,LocalIdx >=LocalIdxMax,"LOADFILE_ASSIGN_3",,,,,,{43,48,,,310,840};
 ASSIGN,{{LocalIdx,LocalIdx+1}},1,,,,,,,,,{310,790};

ACTIVITY,,,,"CopyObjecToGlobal",,,,,,{46,43,,,430,790,430,760,240,760,200,760,160,760};
LOADFILE_ASSIGN_3: ASSIGN,{{LocalIdx,LocalIdxBase+1}},1,,,,,,,,,{340,840};
 ACTIVITY,,,,,,,,,,{48,50,,,};
 GOON,1,,,,,,,,,,{460,840};
 ACTIVITY,,,vEchoFileContents==cTrue,,,,,,,{50,53,,,};

ACTIVITY,,,vEchoFileContents==cFalse,"LOADFILE_GOON_3",,,,,,{50,58,,,510,880,830,88
0,870,850};
LOADFILE_WRITE_2: WRITE,"vFileNameEcho",YES,"%f \n
",{XX[LocalIdx]},1,,,,,,{580,840};
 ACTIVITY,,,LocalIdx <LocalIdxMax,,,,,,,{53,56,,,660,820,680,800};
 ACTIVITY,,,LocalIdx >=LocalIdxMax,"LOADFILE_GOON_3",,,,,,{53,58,,,};
LOADFILE_ASSIGN_4: ASSIGN,{{LocalIdx,LocalIdx+1}},1,,,,,,,,,{710,800};
 ACTIVITY,,,,"LOADFILE_WRITE_2",,,,,,{56,53,,,820,800,820,780,560,780,560,810};
LOADFILE_GOON_3: GOON,1,,,,,,,,,,{900,840};
 ACTIVITY,,,,"Exit",,,,,,{58,10,,,};
LOADFILE_WRITE_4: WRITE,SZ[3],YES,"G2L (pre) localIDX %d \n
",{LocalIdx},1,,,,,,{70,600};
 ACTIVITY,,,,,,,,,,{60,62,,,170,650,160,690};
CopyGlobalToObject: ASSIGN,{{atrib[LocalIdx],XX[LocalIdx]}},1,,,,,,,,,{190,680};
 ACTIVITY,,,LocalIdx<=LocalIdxmax,,,,,,,{62,65,,,};
 ACTIVITY,,,LocalIdx >LocalIdxMax,"SetIdx3",,,,,,{62,69,,,320,680};
LOADFILE_WRITE_3: WRITE,SZ[3],YES,"%d obj: %f xx: %f\n
",{LocalIdx,atrib[LocalIdx],xx[LocalIdx]},1,,,,,,{320,620};
 ACTIVITY,,,,"LOADFILE_ASSIGN_2",,,,,,{65,67,,,410,620,430,620};
LOADFILE_ASSIGN_2: ASSIGN,{{LocalIdx,LocalIdx+1}},1,,,,,,,,,{450,620};
 ACTIVITY,,,,"CopyGlobalToObject",,,,,,{67,62,,,540,600,540,550,240,550,200,600};
SetIdx3: ASSIGN,{{LocalIdx,LocalIdxBase+1}},1,,,,,,,,,{350,680};
 ACTIVITY,,,,,,,,,,{69,71,,,};
 GOON,1,,,,,,,,,,{470,680};
 ACTIVITY,,,vEchoFileContents==cTrue,,,,,,,{71,74,,,};

161

ACTIVITY,,,vEchoFileContents==cFalse,"LOADFILE_GOON_2",,,,,,{71,79,,,520,720,840,72
0,880,690};
LOADFILE_WRITE_1: WRITE,SZ[3],YES,"G2L output localIDX %d %f \n
",{LocalIdx,atrib[LocalIdx]},1,,,,,,{590,680};
 ACTIVITY,,,LocalIdx <LocalIdxMax,,,,,,,{74,77,,,710,670,710,640};
 ACTIVITY,,,LocalIdx >=LocalIdxMax,"LOADFILE_GOON_2",,,,,,{74,79,,,};
LOADFILE_ASSIGN_1: ASSIGN,{{LocalIdx,LocalIdx+1}},1,,,,,,,,,{740,640};
 ACTIVITY,,,,"LOADFILE_WRITE_1",,,,,,{77,74,,,830,640,830,620,570,620,570,650};
LOADFILE_GOON_2: GOON,1,,,,,,,,,,{910,680};
 ACTIVITY,,,,"Exit",,,,,,{79,10,,,};

[PRCECOST SUBNETWORK]

;DBF file created with Version 4
 VSN,PRCECOST,{{ValueBase,LONGVAL,0 element of price
array},{ValueMax,DOUBLEVAL,Max element of value
array},{ActionCode,LONGVAL,}},,,,,,,,,{30,70};
 LIMITSVSN,2,2,2,2,2,2,,,,,{0,0};
 EQUIVALENCE,{{IndexCtr,LLINST[1]}},,,,,,,,,,{0,0};
VaryPriceCost: ENTERVSN,VaryPriceCost,1,,,,,,,,,{60,190};
 ACTIVITY,,,ActionCode==cVaryPriceCostNone,,,,,,,{4,8,,,100,110,1470,110};
 ACTIVITY,,,ActionCode==cVaryPriceCostNorm,"SetPriceBidx",,,,,,{4,9,,,};

ACTIVITY,,,ActionCode==cVaryPriceCostTest,"ExitPriceCost",,,,,,{4,8,,,110,230,720,230,149
0,230};
ExitPriceCost: RETURNVSN,0.0,1,,,,,,,,,{1530,190};
SetPriceBidx: ASSIGN,{{IndexCtr,ValueBase+1}},1,,,,,,,,,{200,190};
 ACTIVITY,,,,,,,,,,{9,11,,,};
WritePriceB: WRITE,"PRCECOSTEchoValueArray.txt",YES,"%f \n
",{atrib[IndexCtr]},1,,,,,,{310,190};
 ACTIVITY,,,IndexCtr<ValueMax,,,,,,,{11,14,,,420,170,420,150};
 ACTIVITY,,,IndexCtr>=ValueMax,"PRCECOST_ASSIGN_3",,,,,,{11,16,,,};
inc_index_03: ASSIGN,{{IndexCtr,IndexCtr+1}},1,,,,,,,,,{440,150};
 ACTIVITY,,,,"WritePriceB",,,,,,{14,11,,,540,150,540,120,270,120,270,160};
PRCECOST_ASSIGN_3: ASSIGN,{{IndexCtr,ValueBase+1}},1,,,,,,,,,{530,190};
 ACTIVITY,,,,,,,,,,{16,18,,,};
ModifyPrice: ASSIGN,{{atrib[IndexCtr],RNORM(atrib[IndexCtr],1)}},1,,,,,,,,,{640,190};
 ACTIVITY,,,,,,,,,,{18,20,,,810,190};
PRCECOST_ASSIGN_4: ASSIGN,{{IndexCtr,IndexCtr+1}},1,,,,,,,,,{860,190};

ACTIVITY,,,IndexCtr<ValueMax,"ModifyPrice",,,,,,{20,18,,,950,170,950,150,800,150,620,150
,620,170};
 ACTIVITY,,,IndexCtr>=ValueMax,,,,,,,{20,23,,,};
PRCECOST_ASSIGN_1: ASSIGN,{{IndexCtr,ValueBase+1}},1,,,,,,,,,{1040,190};
 ACTIVITY,,,,,,,,,,{23,25,,,};

162

PRCECOST_WRITE_1: WRITE,"PRCECOSTEchoValueArray.txt",YES,"%f \n
",{atrib[IndexCtr]},1,,,,,,{1210,190};
 ACTIVITY,,,IndexCtr<ValueMax,,,,,,,{25,28,,,1320,180,1320,160};
 ACTIVITY,,,IndexCtr>=ValueMax,"ValuesPrinted",,,,,,{25,30,,,};
PRCECOST_ASSIGN_2: ASSIGN,{{IndexCtr,IndexCtr+1}},1,,,,,,,,,{1340,160};

ACTIVITY,,,,"PRCECOST_WRITE_1",,,,,,{28,25,,,1440,160,1440,130,1170,130,1170,170};
ValuesPrinted: GOON,1,,,,,,,,,,{1470,190};
 ACTIVITY,,,,"ExitPriceCost",,,,,,{30,8,,,};

