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Abstract

As worldwide production and consumption of natugak increase, so
does the importance of maximizing profit when tredihis commodity in a
highly competitive market. Decisions regarding buging, storing and selling
of natural gas are difficult in the face of highlatdity of prices and uncertain
demand. With the introduction of alternative sasrof fuels with lower levels
of methane, the primary component of natural deese decisions become more
complicated. This is an issue faced by investera/@l as operational planners
of industrial and commercial consumers of natues ghere incorrect planning
decisions can be costly.

A great deal of research in the academic and camat@renas has been
accomplished regarding the problem of optimizing fitheduling of injection
and withdrawal of this commodity. While variousnomercial products have
been in use for years and research on new apprmacmtinues, one aspect of
the problem that has received less attention i$ éiacombining gases of
different heat contents. This study examines mlaltapproaches to maximizing
profits by optimally scheduling the purchase arwagie of two gas products of
different energy densities and the sales of theesamcombination with a
product that is a blend of the two. The resultvmles an initial basis for
planners to improve decision making and minimize tost of natural gas
consumed.

This multi-product multi-period finite (twelve-mtr) horizon product-

mix problem is NP-Hard. The first approach devebbjs a Branch and Bound

Xiii



(B&B) technique combined with a linear program (L$®lver. Heuristics are
applied to limit the expansion the trinomial treengrated. In the second
approach, a stochastic search algorithm-linearraroghing hybrid (SS-LP) is
developed. The third approach implemented is a ppmdom search (PRS). To
make each technique computationally tractable, tcainés on the units of
product moved in each transaction are implemented.

Then, using numerical data, the three approachegested, analyzed
and compared statistically and graphically alonghwiomputer performance
information. The best approach provides a toobfarmizing profits and offers

planners an advantage over approaches that atg kistery-based.
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Chapter 1

Introduction

11 Overview

This dissertation describes the problem of plagnimatural gas
scheduling and the experiment to examine multiglehniques to solve it.
Chapter One contains the introductory material.odgjins with this overview
which is followed by a statement of the problemeTgurpose of research and
the questions researched are discussed, followeda bdiscussion of the
significance of this study and the conceptual fraor&. The chapter’s final
section contains a summary of the methodology st a discussion of the
limitations that were observed in the research.

Chapter two presents a summary of the researaidfouthe literature.
Subjects relevant to this research were revieweginhang with general
concepts of natural gas and heat content. Thiptehancludes a review of
various optimization techniques including the use somulation and the
combined simulation-optimization. Specific to tmesearch is the section on
natural gas scheduling optimization and the varapsroaches to this problem.
The chapter concludes with a brief review of corepperformance studies.

Chapter three details the research design andochatigy including the
approach taken, the procedures applied and thevheedupon which it was

executed. The problem examined in this researcbnsidered to be NP-Hard,
1



meaning that finding an exact answer would be \ed, if not impossible.
Optimal or, rather, near-optimal solutions to NP«H@roblems are usually
found through a random search technique of one dymmother. This chapter
describes the three approaches developed and .tesfBlde Branch and
Bound/Linear Programming hybrid algorithm was depeld to examine all
possible decisions during the twelve-month horizoimhe discussion here
includes the limitations and heuristics placed bis talgorithm to make it
computationally tractable. That approach was soeg by a combination of a
evolutionary search and Linear Programming. THhaildeof the final approach,
a Pure Random Search algorithm without Linear Rumgning, follow that. The
development of each approach is a logical step fterpredecessor, gaining in
flexibility but becoming more expensive computatithyn

Chapter Four reports and discusses the findingdhisfresearch. The
data used is discussed. The results and analgspesented.

There are still various avenues of research opethis topic. Chapter
five includes the conclusions of the research awbmmendations for further

study.

12 Statement of the Problem
Investors in natural gas seek to maximize profitdking advantage of
the seasonal low and high prices. Decisions reggruying, storing and
selling natural gas are difficult in the face ofjtmivariability of prices and
uncertain demand. Various management strategists éBuyers of natural gas

2



use various techniques for planning the buyingrag® and selling of the
product. These techniques are discussed in deghapter Two.

This paper describes our approach of combiningulsition and linear
programming to optimize the selection process. |8\vthie focus is multi-cavern
salt dome storage facilities, which have fasteemury turnover rates than the
more common reservoir storage facilities, it isogruzed that not all gas
discussed in this paper is stored in such faali{fERC 2004).

With economical stresses and increased emphastheoprotection of
Earth’s environment, the use of natural gas frol@erahte sources has increased.
In many cases, such gas contains a lower energgrdoor Btu level, and while
it may not be economically feasible to remove turities, it may still be
desirable to use the gas rather than simply buroinglaring’ it.  Further
complicating the problem is that the price curvégas from different sources
may not follow the same cost and price curves.

Consumers and investors seek a means of exe¢h@émganning process

in the presence of gases of differing energy cdnésels.

1.3 Purpose
The primary purpose of this research is to acqknewledge of
techniques for optimizing the scheduling of buyirsgorage and selling of
natural gas inventories of differing heat conterggecifically to maximize
profits or minimize costs in these operations. NMwork has been done in the
area of scheduling standard pipeline-ready gas,there exists a gap in the

3



literature regarding mixed content gas. This problhas nuances that
differentiate it from existing research on mixeaqtuct problems. The nature of
natural gas and how it is stored separates it fotimer commodities. As the
consumption of low-Btu gas increases, this wildb@ore important process.
Another purpose is to investigate the performarafe different
approaches to this problem. The combinatorial neatdi this problem lends to
solutions that tend to be computationally intensivéechnological advances
continually increase the computational power abd@lato the researcher;
nevertheless, researchers and practitioners centmseek more efficient and
accurate ways to find better solutions to problevhshis type. The balance
between the number of variables examined and theuatmof time taken to

generate the solution and the accuracy of thatiealare examined.

14 Resear ch Questions or Hypotheses

This research investigates the combined use ofhchraand bound
techniques and linear programming, specifically $imaplex Method, in finding
a best or near-optimal solution to the mixed gdsedualing problem. Having
developed and exercised the techniques, the reseltthen compared to random
search algorithms developed both in conjunctionhwaind without linear
programming. These are all extensions and hylaiidias of existing
optimization techniques, all of which are discussedchapter two of this
dissertation. The Branch & Bound and simplex hylalgorithm is compared to

a stochastic optimization process.



The second area of investigation is the computatisequirement of
each method. This study examines the amount o tieguired to find a

suitable solution and relates it to the qualityraft solution.

15 Significance of the Study

The contribution this study makes in two areasl$eto its significance.
First, it adds to the research in this field by tedation to the study of mix-
product natural gas scheduling. It provides ihittdormation regarding the
optimization of natural gas storage and schedulandpgistical and financial
problem that has been studied a long time andaaititinue to be investigated.
Simply put, it investigates ways to maximize p®fiwhen buying and selling
natural gas.

Secondly, it adds to the body of environmentatligtsi work. Methane is
the primary component of natural gas and is preserdgther bio-generated
gases. It is considered to be a contributor tdalavarming and is seen as a
pollutant when released into the atmosphere. Aserand more low-Btu gas is
captured to be used rather than released into riieoement or ‘flared’, i.e.
burned, it is useful to know how best to use it.

With the increasing importance of producing eneaggl with technology
that makes it more affordable to do so, gas thatldvin the past have been
economically infeasible to process may be producédso, due to increased

emphasis on environmental concerns, low-BTU gash sas landfill gas is



becoming available for consumption. Operatorsacflities sometimes wish to

combine gases of two different Btu levels to achiau intermediate product.



16 Conceptual Framework

Figure 1 illustrates the flow of the product, natugas, from source to
consumption. The source may be the wellhead, enatiorage location or an
alternative source of methane.

Gas is purchaedtrmmdferred into storage

where it is held until sold or used.

emEEEEEEEEESE v,  eWEEEEEEEEEEEN
*
D

source | =—=——==2ii| Storager |} } ani| Market
A : sl E v A

i Purchase i: Storage : Sal [ Market
: it : : AB
: HE Pl 1 :
Souree | =—=——pii| storages |} pi| Market
s ¥ P 8
1-12 Months

Figure1l Conceptual Framework

In this model, consumption is considered equivaierselling the gas for
the current market price, the “spot price”.
1.7 Summary of Methodology
The research examined the use of simulation opéiticin techniques in

combination with linear programming to make optinsgheduling decisions
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regarding holding times, product mix values, prddagection and withdrawal
schedules and transactional quantities. In additm simplified test data
designed to provide clear demonstrations of funetity and accuracy, we used
price and cost data from past years as input fauralhgas data and estimated
landfill/low-Btu gas prices based on current treadd prices.

A twelve-month time horizon was used since maay gforage contracts
are of that length. We used the simulation packAgesim and modules
written in Microsoft C++ to generate scenarios andome cases used a linear
programming package to provide the economical pbdmix and then
evaluated the results.

Three approaches were developed and comparedracB and Bound
(B&B) algorithm combined with linear programming R), B&B-LP, was
developed. This hybrid was implemented as a re@lyscreated trinomial
decision tree with options to buy, hold or sell gagach node. Heuristics were
applied to limit the number of node per branch dreteby make the algorithm
more computationally tractable.

An evolutionary stochastic search algorithm (S$-li® combination
with LP was developed. This direct stochastic gealgorithm implemented
the same heuristics as the B&B-LP hybrid.

Finally, in order to compare the computationaliceghcy of the LP
solver versus pure random search of the solutiaeespa Pure Random Search

(PRS)-based approach (SS) was developed. Thisagpdid not operate under



the same bounds as the B&B-LP and SS-LP algorithihsised more relaxed

search criteria.

18 Limitations

Current modeling techniques contain many factioas affect the present
and future value of gas in storage. These inclode are not limited to
parameters such as the cost of money (value offnegkinvestment) and rate of
inflation. The model used in this study did nobht@on all of these factors. That
will be possible in future studies.

Current approaches to this problem may include aiy many
optimization techniques. These techniques are gwainn chapter two. These

may also be used in future research.

1.9 Definition of Terms

Natural Gas

Natural Gas is an odorless, colorless fossil @oghprised primarily of
methane, Ck| but may also contain ethane, propane, butandapenhelium
and hexane. It may be found in association witteofossil fuels (EIA 2012a).

It is sold on residential, commercial, industriatiaenergy generation markets.

Heat content
The heat content or heat of combustion is thegnesleased when a

substance undergoes combustion with oxygen undedatd conditions, 60°F



and 14.696 psia (Civan 2008). This may be knowrhest of combustion,
heating value or calorific value. Units are expsgbas heating value per unit
mass or volume. British thermal unit (Btu) per iculboot is a common
measurement of natural gas (NIST 2010). Thisevaéduypically expressed in
units or energy per unit mass, (which may be exge@ss volume for gasses at
standard conditions). To compare the heat comtienatural gas to that of other

common fuels, refer to Table 1.

Fuel Phase | Btufft

hydrogen gas 324
landfill gas gas 497
methane gas 1,009
ethane gas 1,768
propane gas 2,516
butane gas 3,263

Tablel Higher Heat Value of Common Fuels (NI ST 2010)

Low-BTU Gas

Natural gas that, as taken from underground, ammta significantly
lower energy content than that of typical gas iswkn as low-Btu gas. The
energy content may be as low as 500 Btuaffid present a challenge to engineers

to recover, process and market economically (Neetedl., 2009).

10



Landfill Gas

Landfill gas is generated by the decompositionogjanic material.
While it is not natural gas, landfill gas is comedsof approximately 50%
methane, the primary ingredient of natural gas.ndfil gas also contains
carbon dioxide, Cg and water vapor, #0. The gas may be collected and sold

via small pipeline to local consumers (EPA 2012).

11



Chapter 2

2.1 Literature Review
This chapter summarizes the relevant literaturetis dissertation and
explains the background, concepts and basic methsdd throughout this
research. The literature review is presented infaHewing categories: general

concepts, optimization, simulation optimizationgdavaluation of performance.

2.2 General Concepts
This section presents the relevant subject mbatekground information
to understand the problem and discusses the cancegided to adequately

understand the methods proposed in this disseartatio

211 Natural Gas

Natural gas is a non-renewable fossil fuel foumdiarground and is
commonly, though not always, associated with ogadgts. It is a major source
of energy in the United States, supplying energsgetadential, commercial, and
industrial and power generation facilities. In 2QQUS consumption reached 23
trillion cubic feet (EIA 2012). The US consumed #iat it produced and
imported another 4.6 tcf of gas via pipeline fronexto and Canada or as
liquefied natural gas-- gas chilled to -260 degréafrenheit, the point of
becoming liquid-- from various exporters (EIA 2006)

To collect gas from underground reservoirs, lasetiare evaluated and

wells are drilled and prepared, and then gas, ugeelogical pressure, flows up

12



through the wellhead and through a system of gatpelines to a field
processing unit. From there, the gas stream mago ganother processor for
further treatment such as the removal of sulfungpothydrocarbons or helium,
for example. After it is market-ready, the gaspismped through interstate
pipelines to local distributors and back into serainhterstate pipelines to be
distributed to users (EIA 2006).

The Federal Energy Regulatory Commission (FER@2&sued
order no. 436 in 1985, no. 500 in 1987 and no. BB6993 (Busby 1999).
These orders uncoupled production and distributod, as a result, storage
facilities became opportunities for profit by gawners and investors. Gas
futures and options trading began on the New Yor&rddntile Exchange
(NYMEX) on 3 April, 1990. These events have shagmedway gas in storage is
assigned a financial value. Since then, ownergasfin storage have had the
option to buy or sell some amount of the commoddgh day.

A gas supplier may use a combination of toolsrtsuee that demands
are met. A combination of long- and short-term cacts, vertical upstream
integration, buying on the spot market, and thization of storage facilities are
often employed. A supplier practices verticaltugem integration by acquiring
or investing in oil and gas production companiess @nay also be kept in
storage for speculative reasons and as a precaagaimst short-term demand
fluctuations (Baranes,et al. 2009).

Due to the nature of gas production and the tinte Gapital investment
required to bring new sources to market, currentpetion cannot increase to

13



meet fluctuations in short-term demand. Therefgas, must be kept in storage
to meet seasonal increases in demand. Other thalatavely small amount of
gas stored in aboveground containers by local ibigbrs to buffer against
peaks in daily demands, natural gas is stored gnolénd. There are three
major types of underground storage: depleted gserveirs, aquifers, and salt-
caverns (Tek 1996).

Of the three types of underground natural gasagmfacilities, the most
common in North America is the depleted reservdiiter all recoverable gas
has been extracted from a natural deposit, tharves may then be used as a
storage location for the processed product. Tlaeeeseveral advantages to
using reservoirs. The wells, gathering systems @ipéline connections are
already in place and the geology of the area iswkno There are also
disadvantages to this storage type. Since the townshave previously held
hydrocarbons that have ‘sealed’ the formation,dhsra requirement for more
monitoring. The choices of storage field locatand performance are limited
by the inventory of depleted fields in any regidX 2006). The depleted
reservoir is both the least expensive to develaptha fastest with a conversion
time of 24-36 months.

Working gas or “top gas” is the volume of gashe storage facility that
is accessible for extraction. Gas that is pregert storage facility but is not
accessible is called cushion gas or base gas. dggasprovides the pressure for

the withdrawal of top gas. Top gas and cushionagasthe same mixture of
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hydrocarbons in the storage facility? Top gas iogicates how much you can
withdraw (FERC 2004).

Unlike storage facilities or warehouses for othmymmodities or
materials, two salt caverns of the same volume hee different maximum
capacities depending on their depth. The pressiméhich gas is stored relates
to the injection and withdrawal rates (Bagci andiutk 2007). It can be
approximated with a piece-wise linear function d&sndberg andHaubrich,

2008).

2.1.2 Heat Content

One important attribute of all combustible fuels the heat of
combustion, the amount of heat released when thhstance undergoes
complete combustion with oxygen (Civan 2008). tk pure form, methane,
CH,4 has an energy content of 23, 900 British Thermatd(Btu’s) per pound.
Wood, by comparison, has roughly 6000 Btu's/lb (NEE10). One Btu is the
amount of energy required to raise the temperattiene pound of water one
degree Fahrenheit at standard temperature andupee&NCTAD 2011).

Natural gas, though mostly methane, contains dtlgdrocarbons such
as ethane, propane, and butane or other impuwtgsh may increase or, more
likely, decrease the heat content. While the ramigheat content may range
from 500 to 1500 Btu/ft3, most gas has a heat corvalue in the range of 900
to 1100 Btu/ff. The average for gas produced in the US in 1986 1028 Btu
(DOE 1995). Before being transported via the Ut8rstate pipeline systems,

gas must have a heat content of between 1030 af@ B/ff. Gas with a
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higher value could pose a safety hazard by produbotter flames. In other
locations, Germany, for example, separate disinobusystems exist for “High”
or “Low” quality gas (Padberg arthubrich, 2008).

At times, therefore, it is necessary to adjustibat content of gas before
shipping it. One method of lowering heat contenta dilute the gas with an
inert substance such as air or nitrogen. This nlag he accomplished by
combining it with a gas of a different content ésg in a gas in the desired
range. An example of this may be found in Lake @@&sarLouisiana, in the
southern United States where the Southern Union gaosmh combines high
quality imported gas with the locally produced lowgality product (DOE

2005).

2.3 Optimization
Optimization theory consists of a collection oftteiques and methods
that make it possible to find the best solutionat@roblem without actually
examining each and every possible solution (Raamd@006). Table 2 shows

the categories of techniques as they appear ilt¢hature.

16



Optimization Problems

Local Optimization Global Optimization

Discrete Decision Space Continuous Decision Space voluEonary Algorithms
Tabu Search

Ranking and Selection Response Surface Methodology Simulated Annealing

Multiple Comparisons Finite Difference Estimates Bayesian/Sampling

Algorithms
Gradient Surface Method

Ordinal Optimization Perturbation Analysis
Random Search Frequency Domain Analysis

Simplex/Complex Search Likelihood Ratio Estimates Model Reference Adaptive

Single Factor Method Stochastic Approximation Search
Hooke-Jeeves Pattern
Search

Complete Enumeration

Table 2 Classification Scheme (Tekin and Sabunco@@04)

There are other categorization schemes for opditioz techniques.
Zlochin et al. (2004), for example, classifies @ombus and combinatorial
problems as eitheinstance-basedr model-based The selection of solution
candidates in instance-based approaches is bassdlydion the results of the
previous solution searches. This group includesukited annealing, genetic
algorithms, Tabu search, and nested partitions. dé¥dbased approaches,
introduced more recently, tend to have two phaggps.generate candidate
solutions by randomly selecting from the solutipace and (2) use the results
to update the model so that it will be more likéty generate a new, higher

guality candidate solution. The ant colony optiatian (ACO) method, cross-
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entropy (CE) and estimation of distribution algomits (EDAs) methods are

commonly used examples of model-based solutions €Hal., 2007).
Model-based approaches, according to Hu, et @L1(R are more robust,

more easily parallelized and have been successfylplied to many difficult

optimization problems.

24.1 Linear Programming

Linear programming is one of the most commonlydusetimization
techniques. First published in 1947 by Dantzig vwdeveloped the Simplex
method and Neumann who developed the duality theotkis mathematical
approach to finding the best outcome of a linegedlve function is used
widely in operations research (Anderson et al. 2008very, et al. (1992) used
linear programming to model the purchase, storagkteansmission contracts
for natural gas utilities.

Many optimization problems are solved with a caomalion of
simulation and linear programming.  Arbib, et €2012) combined linear
programming and a Tabu search algorithm to soleatdng process problem.
In this project, they generated possible solutioasdomly, eliminated and
marked inferior ones, and evaluated potential optmsolutions with linear

programming.

2.4.2 Branch and Bound
Branch and Bound (B&B) is one of the most widebed approaches to

optimizing NP-Hard combinatorial problems. Foratdéte problems with a
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large number of variables, it is usually impradtittaattempt to enumerate all
possible combinations. A B&B algorithm searches ¢ntire solution space but
reduces processing by setting bounds on the cotntmsathat will be examined

(Papadimitriou and Steiglitz 1982). The solutigace is typically represented
as a multi-node tree, with each branch represertidgcision point. If, at any
point in the evaluation, a branch of the tree feolsneet a threshold value, it is
pruned from the tree and as a result, its sub-besare removed from further
processing (Clausen 1999).

While B&B is conceptually simple, it is not withouts limitations.
Although it can produce an exact optimum, with &rgroblems the amount of
computer time required to find that solution may tbe great to be useful.
Without careful pruning, the number of bud nodes antree increases
exponentially. Mousavi et al. (2012) found thisoetrue, that the performance
of B&B compared to a genetic or simulated annealalgorithm, which

producedhear-optimal solutions, was significantly poorer.

243 Nested Partitions

Developed by Shi and Olaffson in the 1990’s, Neégtartition (NP) is a
randomized method for finding an optimal or neatiropl solution in a finite
feasible region. This method seeks a solutionibigitig the feasible solution
space into subregions and selecting one of thofeegsotential location for the
optimal solution. NP evaluates and ranks eachegjitan by randomly selecting
points from it and evaluating them as the solutiofhe region with the best

ranking is then examined in the same way (Shal.2000).
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In practice, it is common to customize the sulmegearch function to
the problem being solved. Yau, et al. (2009) udBdon a large-scale job shop
problem and developed a weighted sampling function.Wei, et al. (2012)
applied a variation of NP framework to the flexilbésource flow shop problem.
By modifying the random search portion of the ailpon, they achieved better

performance than the generic NP provided.

2.4.4 Random Search

Random Search (RS) or Pure Random Search (PRShecarsed and
works on an infinite parameter space when it ispussible to evaluate every
possible solution. This is the general case ofloam solution searches, being
performed without any heuristics or rules for rddgahe set of solutions. The
process ends after a predetermined number of sssaldve been completed, a
limit of computer resources has been reached aiceeptable solution has been
found. This process performs best when a neigldoatitan be defined in the
solution space (Olafsson and Kim, 2002). PRS hasatlvantage of avoiding
local maxima. While it has been applied primatity discrete problems, its
closely related technique, sample path optimizatisrpracticed on continuous
problems (April et al. 2003). While it can be shothat RS will converge to a
near-optimal solution (Shi et al. 2000), one prableith this approach is the
slow speed at which convergence is reached (TeldrSabuncouglu, 2004).

The existence of other, more guided approachewithgtanding, this

approach does find use in practice. Poland, et(2011) applied a PRS
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algorithm to a smart home sensor placement problesfound that in 98.4% of

test cases this approach produced superior results.

245 Nelder-Mead

Proposed in 1965, the Nelder-Mead (N-M) methodp &nown as the
downhill simplex method, is a technique of minimgi an n+1 variable
objective function in an n-dimensional parameteacgpwithout constraints. In
each iteration, the worst point in the simplex repped and replaced by the
reflective one across the centroid, the centehefremaining feasible solution
space. The complex search method is a variatioth@fsimplex method in
which an effort is made to keep the centroid inféasible area, i.e. constraints
exist (Nelder and Mead, 1965). This heuristic canverge on non-stationary
points

This technique has been modified or hybridizedousr times through
the years. Liu, et al. (2012) and Baghmisheh).g2812) both created particle
swarm-Nelder-Mead hybrid optimization approachesl applied them to
different problems. Kuriger and Grant (2010) présd a Lexicographic

Nelder-Mead based method to solve multi-criteriimjzation.

246 Other Direct Search methods

The Single-Factor Method (SFM) and Hooke-JeeveieiPa Search
Method (H-J) are both direct search techniques thay be applied over an
infinite parameter space. SFM holds all parametenstant and moves one. H-

J varies one of a set of theoretical parametera #iime and examines the
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response. The magnitude of the parameter changeades until the steps are
deemed sufficiently small (Hooke and Jeeves, 19@hjs method is often used

in conjunction with other methods (Azadivar 1999).

24.7 Frequency Domain Analysis

Frequency Domain Analysis (FDA) screens factora isimulation by
oscillating the value of a parameter during simatat The oscillation follows a
sinusoidal function and gives an idea of the reéaiensitivity of the parameter
(Tekin, et al., 2004). This technique has drawbaakd is not frequently

observed in recent literature.

2.4.8 Response Surface Methodologies

Response Surface Methodology (RSM), another coatia decision
space approach, examines the relationship betwadtipla explanatory, i.e.
independent, variables and subsequent responsependent variables. In the
context of simulation optimization, RSM is a reeistion of the response or
value of an objective function as the input factorsvariables are changed
through simulation (April et al., 2003). RSM isedsin two phases. In the first
phase, a first-order model is fitted to the resposarface and the steepest
descent direction is estimated. This repeats timilslope nears zero, at which
point the first order design is no longer a godd fin the second phase a
guadratic response surface is generated and thewptis found from this.
Performance of RSM compares favorably with manydigra-based methods

(Azadivar, 1999).
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24.9 Rankingand Selection

Ranking and Selection (RS) procedures are used tieee is a fixed set
of possible alternatives, i.e. the search for namdalates has ended, or a limit
on computational resources limits the result s@hey do have application
within the simulation optimization arena and mayadpplied when there is a
limit on computational resources. They may alsoadpplied as screeners,
eliminating unlikely solutions from a larger setsbd on some predetermined
threshold. (Fu, et al. 2005). There may be cadege a search algorithm of a
simulation-optimization system may not be the bsstection procedure.
Boesel, et al. (2003) use RS procedures at theokadsimulation-optimization
run to identify the best of a set of candidate sohs. They also used a two-

stage IZ ranking procedure to find the best system.

2.4.10 Multiple Comparison Procedures

The second approach to finding a satisfactoryughonot guaranteed
best, solution from a small, finite parameter spaceMultiple Comparison
Procedures (MCP). MCP’s are statistical inferepoecesses based on the
confidence intervals of processes executed agamstiple replications of a
solution. There are three types commonly usedl palrwise multiple
comparisons (MCA), multiple comparisons with thesto@/CB), and multiple
comparisons with a control (MCC) (Swisher, 2000)n general, the best
performance is expected from the MCB approach sitscgoal is to find the

best solution while reducing the number of commearss(Fu, 1994).
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2.4.11 Ordinal Optimization

Ordinal optimization (OO) is one of the approactieg may be used when the
feasible region is discrete and finite but lardermt computational resources can
handle. It can be used when a ‘good enough’ swius being sought, one of

the tenets of OO being that “nothing but the bestary costly”. The second

tenet is that it is easier to assign an ‘orderamangement to compared items
than it is to assign them a value. (Ho, et alQ730 OO attempts to quantify

these tenets by (1) “softening” the goal and (2rdaing a subset of the region.

Figure 2 illustrates this.

: Search Space

: Good Enough Set

: Selected Set

: Truly Optimum

: Estimated Optimum

O L ®

Figure 2 lllustration of Ordinal Optimization Concepts (Ho, et al. 2007)

2.4.12 Gradient Based Algorithms
Stochastic approximation (SA) methods encompasdaraily of

algorithms in which an increasingly better solutisnsought by iteratively
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moving from one initial ‘best guess’ solution toodimer based on an estimate of
the gradient (Olafsson 2002). These statistida@r@mce tools are useful when
there are noisy estimates of system performanady as when parameters are
generated by a Monte Carlo process and when gitadaea not automatically
available (Fu and Hill 1997).

The earliest algorithms of this type were by Rokband Monro (1951).
Based on that initial work, Kiefer and Wolfowitz982) developed the finite-
difference approximation algorithm in which varieblof the problem are varied
one at a time. Spall (1992) developed an algoribased on a simultaneous
perturbation gradient approximation, Simultaneousrti?bation Stochastic
Approximation (SPSA), in which all variables of tpeoblem are varied at the
same time. This approach reduces the computati@tplirement for large-
dimensional problems and may be applied to anyrelisevent system that can
be simulated (Fu and Hill, 1997) They found that ttumber of simulations
required per gradient estimate, two, was not dependn the number of
parameters of interest. Suri and Zazanis (1998)dahat the use of methods
utilizing an infinitesimal perturbation analysisagient estimator was the most
efficient.

The assumption behind these processes is thabaokéhe gradient for
the original problemmingc,J(6) can be found by solvigj(6) = 0. The
problem of local minima can be overcome through uke of heuristics (Fu

1994).
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2.5 M etaheuristics
Metaheuristics are methods that may be employeenwdther procedures
fail to move away from local optima. There arerfuimary metaheuristics:
simulated annealing, genetic algorithms, Tabu $eamd scatter search (Fu et

al., 2005).

251 Simulated Annealing

Simulated Annealing, SA, is a heuristic inspirgdtlbe physical process
in which metals are combined to form an alloy arelshowly cooled to a lower-
energy state (Ammeri, et al. 2010). In SA, a cdati solution is found and
then possible replacement solutions are choseronalydirom a set of nearby
solutions defined by aandidatedistribution (Kirkpatrick, et al. 1983). SA is
very similar to RS, with the exception that occasiodownhill moves are
allowed (Pritchittamken and Nelson 2003). Vocaty2®08) uses SA and

simulation to optimize shipping container handling.

25.2 Genetic Algorithm

The genetic algorithm (GA) is a biologically-insgdl approach to
optimization. In it a set of values representingaadidate solution is encoded
as a string of binary values, i.e. one and zerchEach string is referred to as a
‘chromosome’.  An initial population (N) of chrommses is randomly
generated at the beginning of the process. They mapresent values from
across the solution space or a subset of it thataee likely to produce the

optimal solution. Each individual is evaluatedaitness function’ and ranked
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for survivability (optimality). Chromosomes aresthselected randomly based
on a weighted value of their fitness score. Thithe Roulette Wheel selection
(Man 1999).

Those selected are paired and combined to proalueav generation of
individuals or chromosomes. The most common gerggierators used in the
reproduction process aceossovermandmutation,but others exist.

The new generation is then evaluated accordingeditness function,
invalid solutions are discarded, i.e. the fitteatvere and reproduction and
selection takes place again. This process corginnél a termination point is
reached, the desired number of generations has freeluced, a satisfactory
solution has been found, computer or time resounee® been depleted, etc.
(Reeves 2003).

There are variations of this approach. Liu,le(2009) investigated a
hybrid genetic algorithm and applied it to gasdiglipeline networks. They
replaced the Roulette selection process with dedihtial evolution algorithm’
in which new individuals were produced through theear combination of
many parent individuals rather than through thessower technique. Dhar and
Datta (2008) used a numerical simulation routing am elitist genetic algorithm

to optimize operations of reservoirs for downstreaater quality.

253 Tabu Search
In the Tabu Search (TS) heuristic, created by K3&mler, a set of illegal
moves is created, cataloged, and then avoided gith search for a solution.

There are three categories of information cataloged (short-term) list of
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recently considered (tabu) solutions is maintaiaad accessed to prevent the
re-examination of a previously discarded solutiof.list of rules intended to
guide the search into more promising areas sergeanaintermediate-term
structure. And a long-term structure maintainsesuthat are applied if the
search encounters a plateau or a local dead eraVdGIL989, 1990). This
metaheuristic may also be combined with other aggres. Hansen (1996)
developed an adaptation of the Tabu Search metlmodntlti-objective
problems. This method has grown in popularityd encurrently applied across
various areas to solve combinatorial optimizationbfems. Beasley, et al.
(2002) applied a Tabu search algorithm to an aiffitr problem. Yang, et al.
(2004) used a Tabu search to optimize a flow shdp wmultiple processors
(FSMP) scheduling problem. Like many problems the¢ best served by
simulation optimization, this one is NP-Hard andding the exact optimal
solution is computationally infeasible. Arbib, &t (2012) combined a Tabu

search algorithm and linear programming to soleatéing process problem.

254 Scatter Search (SS)

This evolutionary (population-based) algorithntlissely related to the Tabu
Search. It is designed to use combinations ofreefee points from potential
solutions that have been marked as ‘good’. Thesgmations then generate a
new potential solution. The first step in the s is to collect the information
that is not contained in the original points. Trext activity is to use existing
heuristics, rules and techniques to generate aatliae new points. The final

step, rather than using randomization, is to agplyredetermined strategy to
28



complete component steps. The use of this teckriigqg grown in recent years
(Fu, et al., 2005).

The response surface methodology (RSM) perfornmethe entire solution
set creates a metamodel that is then passed tdeamdastic optimization
process. The goal of RSM is to discover a relatgm between that input data
and the output objective function. When RSM isngeused as part of an
optimization process, then a form of sequential RSMhe one most often used
(Fu 2005). It is noted that sequential RSM is getyof Stochastic
Approximation in which the gradient is found frotmetregression model (Fu
1994).

A natural gas portfolio is a collection of longadashort-term contracts
with different pricing structures, delivery timensdarates that make use of the
planned supply of gas, whether it is to be deliggreend users or consumed for
industrial or energy generation purposed.

Like many models, Vautheeswaran and Balasubramg2@10) use a
similar approach to developing a lowest-cost mddelthe optimization of a
natural gas portfolio for a power generation fagili Their model combined a
Monte Carlo-based scenario generator based on srortgas prices and load
demand with stochastic programming to find optincainbinations of gas
contracts. To make the problem tractable, theyiega fast forward algorithm
to reduce the number of scenarios from 10,000 @ 20

Seeking the lowest cost is not necessarily thessgflan. Hanjie and
Baldick (2007) approach the problem of scheduling delivery for an electric
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power producer with a utility-maximization framewoin which financial risk
and user risk preferences are incorporated. Lilkenyn their framework
integrates Monte Carlo simulation and dynamic paogning (Fu 2002) but

includes the user’s risk tolerance as a parameter.

2.6 Recent Developments

The Model Reference Adaptive Search Method (MR#&$ introduced
in 2007 by Hu, et al. (2007). In this method, sleéution space is ‘modeled’ and
candidate solutions are taken from the model wiscthhen updated after each
iteration.

The Golden Region Search (GR), introduced in 2By Kabirian and
Olafsson (2011) seeks an optimum by examining tade@gions of the feasible
space based on a score assigned which indicatesmrtbent of the region that
has been visited, a metamodel score which containmetamodel-based
predictive value of the objective function, andwality score which represents

the quality of the points evaluated within the oegi

2.7 Simulation Optimization
Simulation is one of the most widely used toolshia field of operations
research and industrial engineering (Pritsker aiiRe(Dy, 1999). It offers the
practitioner the advantage of examining a proposgstem without actually
building it or evaluating changes to a system withmodifying the existing

system.
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Simulation optimization problems are those in ahhisimulation is
integral to the evaluation of the objective funo{®) or constraint(s) (Azadivar
1999).

The general form of the optimization objective fiorcis

Mmingee) (6)

where] (0) is the objective functior), is a member of the constraint set,

®. Since it is assumed thaff) is not available, the approach is to

estimate/(6) through simulation and the expectation of J isresented
by

J(6) = E[L(6, w)]
where L is a performance measure and w represesisnalation path

(Fu, et al. 1994, 2005).

These techniques have been combined successfathssa multiple
industries for several years. Simulation optima@atroblems, then, are those
in which simulation, primarily discrete event (F@W(Q), is integral to the
evaluation of the objective function(s) or congitéd) (Azadivar 1999).
Examples of systems that may be well served by Iastion optimization
include manufacturing systems, supply chains, caiters and the optimization
of financial portfolios (Fu 2001). Sinha and Gaares(2011) use these
techniques to optimize shipping container operatioklaas and Fischer (2011)

use simulation to generate scenarios, positionebicles, positions of targets,
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position of other vehicles, etc., to train and thest their approach for routing
robotic material carriers.

This approach can be combined with other optinopatechniques such
as integer linear programming to find an optimaluson in cases of
deterministic parameters or points of convergencgtuations where stochastic
parameters are present. This may be done by ge#ik@ problem into multiple
sub-problems and optimizing them separately. Abbpet al. found this
approach tenable while finding solutions using afgdmal experimental design
using intensive computer processing power (Abspoal. 2001). Padberg and
Haubrich (2008) take a different path by identitymmultiple objective functions
throughout the storage-to-consumption system, coimypithem, and solving
them as a Mixed Integer Quadratic Problem (MIQP).

Pitchitlamken and Nelson (2003) created a colbectf algorithms in an
attempt to adapt to variability and features of theponse surface. For the
optimization process, they used a combination oNested Partition (NP)
approach, based on Branch and Bound, for sub-diyidne problem, a hill-
climbing (HC) algorithm as a local-improvement stee and Sequential
Selection with Memory (SSM) to select and retaie thest of the solution
candidates. Scenarios with integer-value decigarables were simulated and
input values, some stochastically generated, wessqu to the optimization
process. They opined that the process would beimefficient when applied to
scenarios with discretized continuous decisionades.  This is particularly
relevant to natural gas futures.
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The literature contains excellent survey papersAznadivar (1992,
1999), Fu (1994), Andradottir (1998), Swisher dt (2000), Olafsson, et al.
(2002), Tekin, et al. (2004), and Ammeri, et aDXR). It is common to classify
simulation optimization by the nature of the fessitegion. Tekin, et al (2004)
classifies studies by local versus global optimiratand further divides the
local optimization studies according to discreteantinuous parameter spaces.
Ammeri,et al. (2010) present a similar classificatsystem. Discrete decision
spaces can be further segregated into finite pdeamspace and infinite

parameter space.

2.8 Optimization of Gas Storage Scheduling
Holland (2007) states that there are three communerical techniques
that are applied to the valuation of gas in staragdonte Carlo simulation,

binomial/trinomial trees, and numerical partiaffeiiential equation techniques.

2.8.1 Binomial/trinomial Techniques
This problem may be considered a Finite Horizorrkdaian Dynamic

Programming problem (FHDP) and as such is defined tuple {S, A, T, ( f;,
f2)"=1} where S is the State Space

A is the Action Space

T is the Horizon

So that #is the reward function of S,A

fi is the transition function: SxA->S

fais the feasible action correspondence: S->P(A)
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As such, the problem can be represented as a hrinemial tree with each
decision point a state (s is element of S) and éaahch an action (a is element

of A) (Sundaram, 1996).

2.8.2 Differential Equation

In their seminal paper, Black and Scholes (197®p@sed that in a
correctly priced market arbitrage, the ability taka sure profits through a
compilation of a portfolio of long and short optsoand their stocks, should not
be possible. Based on this idea, a formula waseatefor determining the value
of an option in terms of the price of the stocktetestingly, the expected return
of the stock is not incorporated in the formulals@ the direction of change in
value of the option is independent of the directadnchange in value of the
stock. Hodges (2004) incorporates an Ornstein{tlidek process rather than
the Brownian motion process which is incorporatedthe Black Scholes
approach.

Ahn, et al (1991) separated the problem into tadsp a virtual storage
problem consisting of traded instruments and thgsichl problem which
identifies the actual gas in storage. He concluthedl a strategy based on the
seasonal spread of prices, the differences in ijie demand for heating gas in
the winter, the low demand in the spring and fatid the lesser increase in
demand for electrical generation in the summenpisthe optimal injection and
withdrawal strategy. The market, according to dbéhor, has incorporated the
value of storage into the forward curve of natugas, making it difficult to

realize a profit when buying gas, holding it in ploal storage, and then selling
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at a later date. He describes the system stadecambination of cash and gas
and establishes a model that implements a ‘sedfitimg’ framework. He
derived a partial differential equation that shoveedowner should inject gas at
the maximum rate whenever the value of storageeslscthe spot price; in other
words, whenever it appears that stored gas wilwbeh more if held in storage

and sold later.

2.8.3 MonteCarlo

The nature of gas storage facilities forces tlaegitioner to use complex
methodologies. Modeling the opportunity cost, éaample, is complicated by
the fact that as gas is released from storagealiligy to release more drops in
the same way that the ability to accept more gasdtorage decreases with the
amount in storage. Of the three common numerexdirtiques that are applied
to the valuation of gas in storage, Monte Carlohis most efficient and most
capable of injecting spikes into the projected ggicHolland (2007) modeled a
one-year horizon with a price value for each d&ne distinctive characteristic
of gas storage is that the rate of injection oiveey is related to the amount in
storage at the time (Holland 2008).

Holland developed a game theoretic model of a gjasage facility
shared by multiple customers (Holland 2008). Enrspiag the worldwide
importance of gas storage in times of price spikes,example, this study
sought the presence of a pure strategy Nash equiitib He considers the case

where some owners may withdraw gas from storagerbebthers, thereby
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reducing the amount of gas those who wait can watidn a period of higher
prices.

Consumption is seasonal with major fluctuations residential
consumption during cold months and lesser increasesimmer consumption
by power generation facilities (EIA 2006). Thissenality of gas consumption
was investigated by Chaton (2005), who considenmgck pshocks as well as
various policies on prices.

Principal Component Analysis (PCA), introducedRmBarson in 1901, is
one of the oldest multivariate analysis technicaes is still very popular. It is
the simplest of the eigenvector-based multivariatalyses. In PCA, the
dimensionality of a dataset containing many inteated variables is reduced to
a smaller, linear uncorrelated set of values by wdean orthagonal
transformation.  PCA techniques may also appsaffactor analysis’ or
‘eigenvector analysis’ (Jollife, 2002). Blanco (2) and Bjerksund, et al.
(2011) analyze the forward curve by applying PCAsegment it into its
principal components

Typical natural gas contracts are normally writtena 12-month basis
and gas is priced for delivery to the Henry HubLouisiana (Holland 2007).
The price of gas obtained from other points onitlierstate pipeline will be
offset to reflect the transportation cost from enry Hub (NEB 2001).

Operators of gas storage facilities, then, mustdgeon a regular basis
whether to inject, withdraw or hold the gas atcisrent level. Current prices,
expected future prices (driven by expected demad) contracted future

36



deliveries factor into that decision including ssition of forward curve
process. The forward price curve differs from ‘egi@d future prices’ in that
forward curve values are current and accurate rabiaa predictive. They are
used for the purchase of gas for future deliveltyis common to use a Monte
Carlo process to simulate the forward price cuBlanco (2002), Bjerksund et

al.(2011).

2.8.4 Real Option Theory

The practice of treating actual business oppadisias financial
instruments is known as ‘real options theory’. yeraand Uludere (2001)
identify five key components of real options: valofeasset, exercise or strike
price, time to expiration, volatility and risk-freate. They modify the Black-
Scholes model to real options and use it to evalagtower production facility.
Dixit and Pindyck (1994) made substantial contiidmg to the development of
real option theory.

With this as a framework, then, for the purposesdgigning a value to
the gas in storage, it is treated as a financghument known as an option. An
option is a contract that gives the holder thetrighbuy or sell a certain amount
of a commodity at a set price on a predeterminée. dahe holder of the option
pays for this right and is not obligated to exexcibe option. A second
instrument is the futures contract in which thedeolcommits to pay a set price
for a specified amount of gas to be delivered specified location on a date in

the future (Hull, 2005).
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Ignoring operating costs, Thompson treats theag®iof gas as a series
of call and put options (Thompson, 2002). In ortemake the best possible
decision, the owner considers the cost of the gasventory, the cost of capital,
and expected demand, which translates to projepteEss. Keppo and Lo
(2003) develop a model for calculating the value aolding an electrical
production facility to a corporation already in thmarket. Lai, et al. (2011)
develop a more tractable heuristic model that coewireal options and
stochastic-dynamic-programming to valuate liquidturel gas storage by
changing the high dimensional problem into one afdr dimensionality in
regards to the forward price curves. Similarly,e@het al. (2006) develop a
semi-Lagrangian approach that includes a timestgppcheme that effectively
discretizes the system parameters.

While real options theory has become widely aaplit is not without
problems. Smith and McCardle (1999) contend thathodels described in the
literature are oversimplified. They point out theany variations involved in
developing and bringing an oil property to produtyi

Longstaff and Schwartz (2001) developed an approtc valuing
American options through simulation using a leagtases approach. The
framework of this approach was based on Black arttbl8s’ work. Boogert
and Jong (2006) adapted this approach to includeplxities of natural gas
storage, such as injection and withdrawal ratesvamiking volume, and used
Monte Carlo to model prices. Hodge (2004) incogtes an Ornstein-
Urhlenback process in the real options solution.
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Prior to 1988, the focus was on continuous ingarameter and included
some form of path search and gradient estimationnigue. Bettonvill, Fu and
Ho, for example, investigated various gradient apphes. In the 1990’s more
attention was paid to discrete input parameterglede and Fleischer, among
others, investigated simulated annealing, and he@nd Hilliard were some
who worked on genetic algorithms (GA) (Swisher e2@00). GA’s have

shown to be useful in non-parameterized problenzadfvar 1999).

2.8.5 Computer Performance

Simulation optimization is, in general, very inent. The best
convergence to be expected in “pure” stochastioropation algorithms is O('n
2 where n represents the computational effort (§94). Fu (2008) reviews
common techniques and discusses the added conyplExinanaging limited
computer resources

One approach to reducing computer resource cornsumis to reduce
the number of scenarios required in optimizationwation. In their natural gas
power generation model, Vautheeswaran and Balaswimian (2010) applied a
fast forward algorithm to reduce the number of sties evaluated from 10,000
to 200.

Different optimization techniques demand differesgources. Dhar and
Datta (2008) found that conventional optimizatienhiniques were prohibitively
resource intensive due to a requirement to generatacobian matrix during
each iteration. They chose instead to use a GeAkgorithm. Monte-Carlo

is the most flexible approach and, when circumsardo not require an exact
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optimal solution, provides a tractable methodddes not yield a provable best
solution but, with added iterations, may producerioved results (Holland,
2007b).

The use of simultaneous perturbation rather thamef difference
stochastic approximation led to a great reducttonamputational requirements
(Fu and Hill, 1997).

Felix and Weber (2008) compared recombining traed dynamic
programming and least squares methods both usingev©arlo simulation to
generated scenarios. They found that the recompinee algorithm performed
better. These are trees that at some point coavether than continue to
branch. If, for example, two nodes at the samellbave the same value and
states, there would be no point in evaluating lmdtthem and their subsequent
branches.

The imposition of constraints is a common apprdacteduce computer
resource demand (April, et a. 2003). Boesel, e{2403) applied Ranking and
Selection procedures to reduce the number of stionk by removing non-
viable potential solutions from the solution s&b further reduce computational
complexity, variables may be combined through ppalccomponent analysis
techniques (Bjerksund 2011).

The problem is sometimes attacked by increasiagtimputer resources
available. Parallelizing the simulation procesaesss multiple processors on
the same computer allows more scenarios to be eeaimiVocaturo, 2008).
This is conceptually the same as executing thelation on multiple, separate
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computers. This concept has been extended, intéathe distributed computer
model in which simulation optimization problems aeparated into standalone
units and generated or evaluated simultaneouslgemarate computers. The

results are then pooled for evaluation (Garcia).€2007, Fourer, et al. 2010)

2.8.6 Evaluation of Heuristic-Based Simulation Optimization

Convergence, in the context of simulation optiriag refers to the rate
at which the optimal solution is found. Heurissearch algorithms cannot
usually be proved to converge to the optimal sofuti In a stochastic
environment, a definite convergence can only bewshas the number of
simulated solution sets approach infinity. It mim sufficient to find an
acceptablesolution. (Boesel, et al., 2003).

The best convergence rate to be expected withhastic simulation
optimization is on the order of?> where n represents the computational effort
(Fu 1994, Homem-de-mello, 2008). Fu goes on tdesthat simulation
optimization itself is not efficient in general astiould be used when other,
more efficient approaches are not available.

The literature reports various comparisons betweeea optimization
technique and another but, due to the variety gbrthms and variations in
problems such as dimensionality, definite resuisrent likely. Hu investigated
the efficiency of the Tabu search routine and foundhe standard test used,
that it outperformed the random search and a conepGa\ (1992). Martin, et
al. (1998) found that the Tabu outperformed thall@earch but was inferior to

an SA approach. Yucesan and Jacobson (1996) cethphe efficiency of
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various SA algorithms to local search. Mousaviakt(2013) describe two
metaheuristic algorithms for approaching the mitdtm multi-period inventory
problem. They use a genetic algorithm (GA), Braaod Bound and Simulated
Annealing (SA) methodologies and compare the perémce results. They
found that the GA and SA approaches outperformezl Bi&B technique
significantly.

Often, researchers will use a random search ormptEien enumeration
algorithm as a baseline for comparisons to theadrahoice (Tekin, et al. 2004,

Dengiz, et al. 1997, Azadivar and Tomkins, 1999).

2.9 Modeling the problem
The optimization of complex systems through simafainvolves the analysis
of a series of possible solutions and selectingbist. There exists a set of
alternative solutionsd = (4,4, ..., 4,), where n is sufficiently large so that it is
computationally difficult to examine all possibiis (Pepelaev, 2006). Due to
their nature, it is impossible to analyze all pbksalternatives, so a balance of
optimality and time must be sought.

One approach is to reduce the size of the setliAthis experiment,
initially gas volume and gas costs are continualges. This is a mixed integer
problem. To simplify, the gas volume values maydmiced to a discrete set of
integer values.

The preferred approach of modeling gas storag® imclude a high
dimensional forward pricing, which overwhelms dym@anprogramming.
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Therefore, the common approach is to apply a hsurssheme (Lai, et al.

2010).
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Chapter 3

31 M ethodology

The problem being investigated is one of schedutime buying and
selling of natural gas as a mixed product. Gawvaslable with different energy
contents or Btu levels. It may be combined folio#s uses. Natural gas has a
cyclical demand pattern-- low in the fall, high tine winter as temperatures
drop, low again in the spring, and then slightlgh@r in the hotter months as the
demand for electricity for cooling increases. Tedfe against the cyclical
demand pattern, gas is placed into undergroundgeor Investors and operators
of gas-consuming facilities seek ways to optimize tlecision to buy, sell or
hold natural gas.

This research investigates the scheduling of timehase and sale or
consumption of gases of mixed energy contents. bd @pecific, the research
examines the purchase of two types of gas andaleeos consumption of three--
the original two plus a third, blended gas. Congstiom may be thought of as an
exchange of gas for heat or energy and can be di@sea sale at the market
spot buy price.

This multi-item, product-mix, multi-period invemo problem is non-
deterministic polynomial time, NP-Hard, and findinthe solution is
computationally infeasible. It cannot be solveticedntly as is, but it can be
approached by reducing it to a simpler problem ublo the application of
heuristics and bounds. A result of this problestatement is that an approach

that provides a near-optimal solution must suffice.
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This project investigated and compared three ambres to seeking an
optimal schedule. The simulation-optimization amhes tested were (1) a
B&B-LP hybrid; (2) a SS-LP hybrid; and (3) an SSagach with transaction

volumes of variable sizes.

3.1.1 Simulation Optimization M ethods

This type of scheduling problem, with decision nisi made across a
finite horizon, lends itself nicely to a B&B solati, with each node representing
a decision point. Decision points in the trinomiede were created at each
period of the 12-month horizon, three being gemerdtom the previous node.
B&B does find an optimum solution when the problsnsufficiently limited to
not become computationally intractable due to tkpoaential growth of the
tree. This was avoided by applying pruning andnoiging rules.

By selecting an action to be taken at a spedifiet B&B identified a
subregion of the solution set. That subregion fuather searched by the LP
routine to find the best combination of productsed.

In the second approach, the use of a stochasdicls€SS) routine to
select sub-regions from the solution set replabedB&B algorithm. Like the
first approach, though, this one also used LP torope that selection.

The stochastic search routine alone was usedeathitid method. Full-
horizon paths were generated and evaluated basedndiom selections from
the solution set, with the best result being trdck&ather than using LP, the

volume moved in each transaction was the reswtrahdom process.
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3.1.2 General Framework

Using Awesim, each entity represented a potepa#lt and contained all
information required to define each period and ¢aagate values for the next.
This included all cost, price and inventory datavedl as other parameters. The
entity ‘aged’ through the time horizon, 12 monthsmnost cases, changing value
as different decisions were executed. At the dnithed 12-period horizon, that
value was compared to that of the best-valued wecgth and replaced it if it

was better.

Dependent Variables
The dependent variables in this experiment are tit@l profit,

withdrawal and injection volumes, and computer pssing time.

Ragi - Calculated profit of Gas AB in period i
Rai - Calculated profit of Gas A in period i
Rei - Calculated profit of Gas B in period i
Va - Volume of Gag Injected

Vs - Volume of GagInjected

Va - Volume of Gag Withdrawn

Vag - Volume of Gags Withdrawn

Vg - Volume of Gag Withdrawn
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Independent Variables

Ca
Cab
CAP,
CAPs
Cs
CS
CSs

Pa
Pab
Po
Pa

Pab

'a

's

Cost of Gag

Cost of Gags

Max Facility Storage Capacity of Gas
Max Facility Storage Capacity of Gas
Cost of Gag

Storage cost of Gas®unit/month
Storage cost of Ggs/unit/month
Horizon — number of time periods
Max injection rate of Gas

Max injection rate of Gas

Facility Current Inventory of Gas
Facility Current Inventory of Ggs
max deliverable volume Gas

max deliverable volume Gas
profit Gag

profit Gagg

profit Gag

Sales Price of Gas

Sales Price of Gas

Sales Price of Gas

Ratio of Gag in Gagg (- I's)

Ratio of Gagin Gagsg (1-ra)
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dvol,
dvoly,
dvol,
VolMaxa

Vol Maxag

Objective Function

change in volume of Gasne period
change in volume of Gasone period
change in volume of Gasne period
Max leased storage capacity of gas
Max leased storage capacity of @as
Max withdrawal rate of Gas

Max withdrawal rate of Gas

Max withdrawal rate of Gas

Number annual inventory turns for Gas

Number annual inventory turns for Gas

At each decision point on the first and second@gpghes, if the choice

to sell was selected, the LP_Solve functions weveked through an Awesim

USERF call and the entity was passed to the funcflthe objective function

being solved was:

max padvol, + pgpdvoly, + ppdvol,

(1)

subject to:

dvol, + percentAinAB*dvagl, <= MDV,
dvol, + percentBinAB*dvagl, <= MDV,

dvol>=0, dvol,>=0, dvol;,>=0
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The general equation for the revenue of buys ahes0f gas over time
horizon h is often modeled as

h
revenue = z p;Vol;(dW; — dI;) ()
i=1

where Wand | are decision variables, taking a mutually exclesialue of 1 or
0, representing the decision to withdraw (selljrpect (buy) gas, respectively.
In this project the objective was to maximize profi

Expand equation (2) to include the combinationpobducts. This
models the rules that all products must be eitloerght or sold on any given

day.

h
revenue = max E(dWi
i=1

—dI) (paidvolai + pabidvolabi (3)

+ pbidUOZbi)

This is expanded to show the cost and price of#ses in equation (4)
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h
value = maxZ((dWi - dli)(caidvolal. + cbl.dvolbl.)

=1
+ (AW — ;) (pa;dvoly, + pap dvoley,

(4)
+ pydvoly)

cx = f(Ci, Cs) (5)

C, is a function of the initial cost of inventory amast of storage.
Throughout this model, a first-in-first-out (FIF@yicing scheme is used for
calculating the cost of gas sold. Note that otimedels include the present
value of money (PVM), in the cost function. Thiowd be discussed in

Chapter 5 as future enhancement.

Equation (4) is expanded to allow a buy/sell decisio apply to individual

products.

h
value = maxz: ((dWg;pa; dvoly; — cq;dvoly dly;)
i=1

+ (pabl.dvolabl.dWabi) + (deinidUOZbi (6)

- CbidUOIbidIbi)))
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Constraints

To equation (6), multiple constraints are applidthe first is that gas
must be in inventory the same month it is solchc8igas can be sold and
bought simultaneously, passing through, as it wleejinventory need not be in
place at the beginning of the period but at the end

There may be situations in which gas of one oh Ibgbes is in a stream
rather than in storage. In these cases, thedtaedge is equal to the maximum
deliverable volume, effectively making the entingentory pass through each

period. Landfill gas would be such an example.
Vi:i =1..h,volsyq = inv; 20 @)

The second constraint is that contracted capaCiBAP, not be

exceeded.

Vici=1.h, Y. _ ((dW, —dl,) (dvol, +  +
- (8)
dvoly,))<= CCAP

One more constraint handles a feature common toynmatural gas
storage contracts, i.e., that gas still in storaigéne end of the contracted period
is forfeited, effectively creating a product with acreasingly short shelf life.

Gas injected at the beginning of a contract haseféective life of twelve
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months, while gas injected into storage two momitsr to the end of contract

has a shelf life of only two months. The penatiytiaving gas in storage at the
expiration point of the storage contract is thesla$ that gas at the current
market price, the “spot” price.

Applying this constraint to the value equationylds:

h
value = maxE ((dWg;pq; dvoly; — cq;dvoly dly,)

=1

+ (pabidVOlabidWabi) + (deinidvolbi
(9)
— Cp;dvolydly;))) — (Invgh + Spot,

+ Invyh * Spoty)

3.1.3 B&B-LP Approach

To create the trinomial tree, each surviving gnivas copied thrice at
the end of each generation, assigned a differdoeviar the next decision point
and reprocessed. This recursive process geneeatgthomial tree with a

maximum of

h
nodes;, = z 3i-1
i=1 (20)

decision points to evaluate and potentially

paths;, = 3" (11)
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total paths after generating paths for the fullizmmn. Appendix 8 contains the
complete code from the Awesim model.

A set of heuristics and bounds were implementedrdduce the
computational workload of the trinomial tree apmtwa The first two prune
branches from the tree that would lead to an iafdinal result while the third
rule reduces search time without removing a branch.

e Do not purchase more product than can be sold i of the storage
contract.

e Do not execute a ‘hold’ if that will result in hang more gas than can be
sold.

e If inventory is insufficient to complete a minim#&iansaction, do not
invoke the LP solver.

e The decision made will apply to all types of g&s.the model, it was not

legal to buy gas A while selling gas B.

Another variable that is not commonly found inlgeams of this type is
the changing delivery rate of the product. Whileduct delivery from a typical
warehouse may be constrained by manpower or equipmuad the delivery rate
affected by the level of concurrent orders to fidtural gas delivery rates are
primarily a function of the amount of product adlyan storage. Deliverability
refers to the rate at which gas can be withdrawmfistorage. This rate is

usually expressed in millions of cubic feet per dmMcf/day) but may also
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refer to the equivalent heat content of the gaslaéxpressed as dekatherms

(100,000 BTU/day).

I =P f(FAC) (12)

I= rate of Injection
P=pressure, which is calculated with the Ideas Gw

(Civan 2008)

_ nRT

4 (13)

n=moles of gas (converted from INV

R= the Universal Gas Constant

L-atm

R = 0.08206

mol-

T = temperature °Kelvin

V=Facility Volume
INV = Total facility inventory at time t
f(FAC)= a multiplier with a value from O to 1, to account
for any flow constraint imposed by facility hardwar
compressors, etc. If the aboveground hardware nlotes

place a limit on the gas withdrawn, tHiéRAC) = 1.
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In practice, this may not be a significant paramas a facility will
contain gas owned by multiple operators and gdso&ilnjected or withdrawn
at rates unknown to planners. Also, there may teligerability rate guaranteed
in the contract.

The inventory cycle time varies according to tlpet of gas storage
facility. In the case of salt cavern storage, fesgod may be between 30 and 60
days, allowing a complete inventory turnover 6-ibi2es annually. Gas may be
stored in one of several types of underground ifeesl Of the three primary
types, depleted reservoirs, aquifers and man-mattecaverns, the later is

considered due to its higher annual inventory tuenoates.

Cushion to Working I njection Withdrawal Period
Type GasRatio Period(Days) (Days)
Aquifer Cushion 50% to 80% 200 to 250 100 to 150
Depleted Oil/Gas
Reservoirs Cushion 50% 200 to 250 100 to 150
Salt Cavern Cushion 20% to 30% 20 to 40 10 to 20

Table3 Natural Gas Storage Facility Characteristics (FERC 2004)

Algorithm 1: Branch and Bound Optimization with LP
for each entity loop

initialize independent variables & parameters

load prices, costs

apply variance process to price and cost data

(entity) enter B&B subroutine
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repeat while at least one entity is in the B&Bbroutine
case action: ‘hold’
if current inventory<periods remainitgansaction volume
then apply action
else prune branch
end if
case action: ‘buy’
if current inventory<periods remainitgansaction volume
and current inventory + purchasanax storage capacity
then apply action
else prune branch
end if
case action: ‘sell’
if current inventory or A and B
then invoke LP_Solver
apply results to value and inventory levels
else process individual sale
end if

end case

update status of entity
if current entity is horizon (n)
compare value to current best value
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if current value > best values
swap values
end if
else spawn new entity for each action (bolg,sell)
(entity) enter B&B subroutine
end if
end repeat

end loop

3.1.4 SSt+LP Bounds

The SS-LP hybrid operated under the same constrasnthe B&B-LP
hybrid. The only change was the manner in whiehtést solution was selected
from the solution space. The decision to buy, @eliold was then selected
from a uniform random distribution with each dearsreceiving equal weight,

i.e., there was no bias toward either of the tldegsion actions.

Algorithm 2: Stochastic Selection with LP

for each entity (trial)
initialize independent variables & parameters
load prices, costs
apply variance process to price and cost data

(entity) enter SS-LP subroutine
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repeat for each iteration
repeat for s=1 to max solution samples
repeat for n=1 to horizon

generate action (stochastic process)

case action: ‘hold’
if current inventory<periods remaigi* transaction volume
then apply action
else prune branch

case action: ‘buy’
if current inventory<periods remaigi* transaction volume
and current inventory + purchase <= max stocagacity
then apply action
else prune branch

case action: ‘sell’
if current inventory or A and B>
then invoke LP_Solve

apply results to value and inventory levels

else process individual sale

end case

if value of plan > best plan

then set best plan=current plan

end repeat

end repeat
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end repeat

end loop

3.1.5 SSBounds

Having two algorithms that applied LP, the thippeoach was
developed so that the selection from the solutpats in its entirety was the
result of a random process. This provided a meanemparing the efficiency
of the LP approach with the more flexible stochlasélection method. It was
not expected that the approach would be more efficvhen compared directly,
but that its flexibility may increase the qualitiysmlution.

The third algorithm was implemented with more ftglity by using a
stochastic process to select a candidate solutiom fthe solution space,
including the mix ratio of products bought or soléVith the stochastic solution
sample processes, invalid decisions are allowedray not be executed. For
example, if ‘Sell’ if selected yet there is insaféint inventory to execute a Sell,
then the net change to value and inventory wilb®end 0 cfgas respectively.

Flexibility was extended in the SS algorithm byl a random process
to determine the percentage of the max transfarmelthat would be bought or
sold in each transaction. To modify the efficiemdythis approach, the values
returned by the random process are customizablde ihitial tests were
performed with the process returning values randiom -100% to +100% in

units of 25%.
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Algorithm 3 Stochastic Selection (SS)
for each entity (trial)

initialize independent variables & parameters

load prices, costs

apply variance process to price and cost data

(entity) enter SS subroutine

repeat for s=1 to max solution samples

repeat for n=1 to horizon
generate inventory delta gas A -100 (sell) t0 (fuy) %
generate inventory delta gas B -100 (sell) t0 (kuy) %
generate inventory delta gas AB -100 (sel)%® O
case action: ‘buy’
update entity inventory, value
case action: ‘sell’
update entity inventory, value
end case
if value of plan > best plan
then set best plan=current plan
end repeat
end repeat
end repeat

end loop
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3.1.6 Required Minimum Delivery Option

To increase the rigor of the simulation, a seceesion of the model
was created identical to the first, with one addiéil option, that a burden could
be placed on the facility to provide a monthly maim sale or use of any or all
of the three products.

This option added parameters and logic that fothedacility to deliver
a ‘contracted’ volume of gas to either a customeifoo internal use. This
delivered amount was due regardless of the statggcision to buy, sell or
hold. In cases where there was no gas in inventbeymodel purchased it on
the open market at the spot price and incurrednalfye another parameter of
the simulation

The purpose of this was to examine the flexibidifythe three algorithms
when facing change and to see how they performdatli Wie necessarily
increased processing.

3.1.7 Development System Information

The simulation tool used was AweSim and Visual S1,Arom Mapics.
This software provides discrete event as well adicoous simulation. It offers
the capability of creating and linking user-defifedctionality with C++. For
this, Microsoft C++ 6.0 was included. A mixed-igé linear programming
(MILP) solver, LP-Solve 5.5, was linked to the ®yst (LP_Solve 2010).
Functions from this package were used to solventhed-product problems.
Data analysis and charting were done with Microgaftel 2007.

The model was created and executed on an IBM FA8Rone (1) 3.4

GHz Pentium CPU and 1GB of RAM. It ran on WindoXB Professional,

version 2002, service pack 2.
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3.2 Performance M easures
Optimization problems of this type do not alwayslg an optimum
result but rather a near optimal one. There isharent trade-off in the amount
of computer processing and the quality of the tesln this research both were
measured and the relationship between the two waasuned for each

algorithm.
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3.2.1 Speed of Computation

Computation speed can only be used as a relakpeession as it is
dependent on the system hardware, (CPU(s), mentaagd drives, etc.),
operating system and software upon which the mexietuted. Computational
speed is indirectly proportional to the effectiverailative processing power of
the system. Equation 14 represents the factors toatribute to the
computational speed.

Computational speed is also related to the strecitithe problem itself.
Some problems can only be approached sequentedBguting one step after
another. In these cases, a multi-CPU machine waowid demonstrate an
advantage over a single-CPU machine. In suchtsihs the problem structure
fos would have a detrimental effect on the processmg, S. With Monte Carlo
optimization techniques, many problems may be [&izdd, i.e., separated into
smaller problems that can be solved on differemeatis, CPU’s or other
computers. After scenario generation and evaloatioe results are combined
for analysis. Garcia, et al. (2007) used distridufgrocessing to evaluate
candidate solutions in a joint-strategy fictitioplsy simulation (Fourer, et al.

2010).

Szfpp*fhw*fsw*fps (14)
S = processing time
fop = function of problem parameters
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fos = function of problem structure
fow = function of system software
fhw = function of system hardware
The processing time may represent CPU time ol totdime. Problem
parameters would include all variables and datal isethe model as well as
control parameters such as number of iterationsnbes of generations,

thresholds, etc.

3.2.2 Quality of Solution

Each algorithm was executed multiple times, witlfiecent parameters
and returned sets of results, candidate solutidrfse accuracy and variance of
values are analyzed for accuracy and variance. résats are compared and

presented in Chapter 4.

3.23 Overall Performance

The quality of solutions and the computationaletiare tightly related in
optimization problems using a stochastic methoddlect candidate solutions
from the solution space. If the problem forcesitheestigator to accept a near-
optimal solution, and it typically does, then thamary factor is how long to run

the process.

3.2.4 Random Numbers
Many types of optimization require the generatdra set of alternative
solutions. In doing so, a random number genegatavides a number between

0 and 1 in a normal distribution. There are vagiaways to generate a ‘random’
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number. One way is to import the numbers fromkdetaf random numbers.
Another method is to use a vacuum tube or somer gibeerator of random
noise. The third method, the one used in this exy@at through AweSim, is to
use a recursive equation (i#1%andom number from a previous set of random
numbers. This deterministic approach does not m®dtue random numbers
but rather pseudo-random numbers, which serve faekimulation problems.
Awesim provides multiple streams as seeds for landambers, allowing the
user to execute reproducible simulations or vary thput to test multiple

scenarios (Pritsker and O’Reilly, 1999)
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Chapter 4

Computational Results and Analysis

4.1 Experimental Design
Simulation optimization was chosen as the toolirteestigate this
problem. Three algorithms were developed and deste branch and bound-
linear programming B&B-LP, a stochastic searchdm@rogramming SS-LP

approach, and a fully stochastic search SS.

4.2 Trial Simulations

An initial set of tests was performed with the pglest data and
parameters as a way to validate the functionalitghe model. Appendix 1
contains the data and parameters used in these t&sfer to appendix 2 for
graphical representation of the results.

Subsequent trials were executed using historceptata from the Henry
Hub for cost of gas and Oklahoma average city pates. Refer to appendices
6 and 7 for the Henry Hub and Oklahoma city gata,d&spectively.

Historical data for the wellhead, city gate andsaamer prices of natural
gas are available from the Energy Information Age(i€lA 2012). This US
government agency provides independent statistisd analysis of the

production and consumption of petroleum product&l,celectricity and other
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energy sources. Data is available by location tamd. This research used a

time period of one month and used similar availgiiee data.

4.3 Computational Results

Branch & Bound-LP Hybrid

This algorithm provided, not surprisingly, the ma@gcurate results.
Within the constraints placed on it, the processnegrated and evaluated each
possible path in the 12-period horizon. In 25 sjighe correct solution was
found each time. The number of samples evaluassibased on thaximum
number of candidate paths enumerated by the trmlotree, 3% = 531,441.
With the bounds placed on the algorithm, and casid the samples per
second evaluated by the other approaches, it ikalypkhat the solution set was

fully enumerated.

Horizon 12.0
Samples Evaluated 531,441
Value Generated 1200
Elapsed Seconds 300
Samples per Second 17715

Table4 Branch & Bound-L P, Results
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SS-LP hybrid
The SS-LP hybrid performed best when sampling @08&lutions per

iteration. It consistently found the optimum sabuig with a STDDEYV of 0.0.

Samples per Simulation 250 2500 10000 20000
Simulations 20 20 20 20

Total Seconds Elapsed 60 240 1800 3480
Samples per Second 83.3 119 111 114
Mean 1000.0 1126.3 | 1189.5| 1200.0
Standard Error 15.3 22.7 10.5 0.0
Median 1000.0 1200.0 | 1200.0 | 1200.0
Mode 1000.0 1200.0 | 1200.0 | 1200.0
Standard Deviation 66.7 99.1 45.9 0.0
Sample Variance 4444 4 9824.6 2105.3 0.0
Range 400.0 200.0 200.0 0.0
Minimum 800.0 1000.0 | 1000.0 | 1200.0
Maximum 1200.0 1200.0 | 1200.0 | 1200.0
Sum 19000.0 21400.0 | 22600.0 | 22800.0
Count 19.0 19.0 19.0 19.0
Largest(1) 1200.0 1200.0 | 1200.0 | 1200.0
Smallest(1) 800.0 1000.0 | 1000.0 | 1200.0
Confidence Level(95.0%) 32.1 47.8 22.1 0.0

Table5 SS-LP, Descriptive Statistics

SS

The SS algorithm was created with the option afiegating specific
volumes of gas to be bought or sold, with a rangenf-100% to 100% of the
maximum transfer amount, and was initially genetate25% increments. In
practice, it turned out that this expanded thetsmuspace to the point that the

SS approach could not reliably find a near-optismlition in a reasonable time.
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The results shown here and in the follow-on modetengenerated with rates

selected from the set {-100, 0,100}.

Samples per Simulation 250 2500 10000 20000
Simulations 20 20 20 20

Total Seconds Elapsed 60 120 360 840
Samples per Second 83.3 416.7 555.6 476.2
Mean 1010.0 1046.0 | 1090.0 1134.0
Standard Error 17.6 17.8 11.7 12.4
Median 1000.0 1000.0 | 1100.0 1120.0
Mode 1000.0 1000.0 | 1100.0 1100.0
Standard Deviation 78.8 79.5 52.1 55.5
Sample Variance 6210.5 6320.0 | 2715.8 3077.9
Range 400.0 280.0 200.0 200.0
Minimum 800.0 920.0 | 1000.0 1000.0
Maximum 1200.0 1200.0 | 1200.0 1200.0
Sum 20200.0 | 20920.0 | 21800.0 | 22680.0
Count 20.0 20.0 20.0 20.0
Largest(1) 1200.0 1200.0 | 1200.0 1200.0
Smallest(1) 800.0 920.0 | 1000.0 1000.0
Confidence Level(95.0%) 36.9 37.2 24.4 26.0

Table6 SSDescriptive Statistics

The SS and SS-LP algorithms yielded very simieults due primarily
to the simplicity of the scenarios. Figure 4 comgathe number of solutions
sampled with the mean value returned. Performanse; the SS model in
these scenarios performed much more efficientlyalating 417% more

solutions per second than SS-LP.
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Branch & Bound-LP Hybrid w/ Minimum Required Defies

With the introduction of the minimal required delries constraint, the
B&B-LP hybrid did find the optimal solution. It oectly returned a value of
1007 when a 0.1% out-of-stock penalty was appliedl H020 when there was
no penalty. In both situations, the B&B-LP alglom provided the best results
and in the shortest time. Again, the number ofgamevaluated was based on

the maximum number of candidate paths enumeratehietrinomial tree, 3 =

531,441.

Horizon 12.0 12.0
Samples Evaluated 531,441 531,441
Penalty 0.1 0.0
Value Generated 1007{0 1020.0
Elapsed Seconds 300 315
Samples per Second 1771.5 1687.1

Table7 B&B-LPw/ Min Dédlivery, Results
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SS-LP w/ Minimum Required Deliveries
With the addition of the minimum required delivetye, the accuracy of
the SS-LP and SS algorithms dropped. Variancessawadard deviation were

higher than the same algorithm without the add#ia@onstraint.

Samples per Simulation 250 2500 10000 20000
Simulations 20 20 20 20

Total Seconds Elapsed 60 240 1800 3480
Samples per Second 83.3 119.0 119.0 119.0
Mean 793.5 900.0 | 1020.0 1010.0
Standard Error 20.7 22.5 0.0 10.0
Median 820.0 820.0 | 1020.0 1020.0
Mode 820.0 820.0 | 1020.0 1020.0
Standard Deviation 92.6 100.5 0.0 44.7
Sample Variance 8571.3 | 10105.3 0.0 2000.0
Range 400.0 200.0 0.0 200.0
Minimum 620.0 820.0 | 1020.0 820.0
Maximum 1020.0 1020.0 | 1020.0 1020.0
Sum 15870.0 | 18000.0 | 20400.0 | 20200.0
Count 20.0 20.0 20.0 20.0
Largest(1) 1020.0 1020.0 | 1020.0 1020.0
Smallest(1) 620.0 820.0 | 1020.0 820.0
Confidence Level(95.0%) 43.3 47.0 0.0 20.9

Table8 SS-LP w/ Min Delivery, Descriptive Statistics
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SS w/ Minimum Required Deliveries

Again, the SS model outperformed the SS-LP spasd- The lack of
computational overhead of the LP-Solve’'s simplexcpssing allowed the
sample evaluations to run much faster. The acguddcthis approach was

significantly enhanced by the constraint placed on the volumejuaintity

shipped.

Samples per Simulation 250 2500 10000 20000
Simulations 20 20 20 20

Total Seconds Elapsed 60 120 360 840
Samples per Second 83.3 416.7 555.6 476.2
Mean 784.4 901.2 970.2 999.2
Standard Error 18.0 13.9 11.2 9.5
Median 795.6 920.0 955.0 1013.3
Mode 720.0 920.0 | 1020.0 1020.0
Standard Deviation 80.5 62.1 50.2 42.5
Sample Variance 6476.6 3853.3 | 2520.9 1806.9
Range 300.0 253.2 153.2 200.0
Minimum 620.0 820.0 920.0 920.0
Maximum 920.0 1073.2 | 1073.2 1120.0
Sum 15688.2 | 18024.0 | 19404.4 | 19983.4
Count 20.0 20.0 20.0 20.0
Largest(1) 920.0 1073.2 | 1073.2 1120.0
Smallest(1) 620.0 820.0 920.0 920.0
Confidence Level(95.0%) 37.7 29.1 23.5 19.9

Table9 SSw/ Min Délivery, Descriptive Statistics
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4.4 Computational Speed

The only meaningful way to compare the speed cfdladgorithms is o

the same hardware and software. With that coreiderin mind, the Branch «

BoundLiP hybrid wasconsistentlysuperior on a result/unit time ba Its

ability to prune the decisiotree and thereby avoid the evaluation of disca
nodes increased the efficien It is noted that the relativelpw time horizon
twelve months, contributed to the B-LP success. Had the horizonen 24-

or 52 periods, the problem would have beccoo computationally intensive fc

this approach.

Solutions Evaluated per Second
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Figure 3 Solutions Evaluated/Second

The SS-LPhybrid was the least effectiyeeomputationall, due to the

overhead of the L-Solve software. The SS algorithm, the simple
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computationally, performed faster in this projeaegrimarily to the constraints

placed on its search of the solution space.

4.2.1 Quality of Solution
The following graphs compare the accuracy of emgproach at each

level of performance. The B&B-LP was superior ottbvariants of the model.

Comparison of Mean & Solution Samples
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Figure4 Comparison of SS-LP & SS Results
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Comparison of Mean & Solution Samples
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Figure5 Comparison of SS-.LP & SSw/ MRD

As expected, the stochastic approaches improve@cturacy with

increased sample evaluations.

Comparison of Accuracy Relativeto B&B-LP
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Comparison of Accuracy Relativeto B& B-LP
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4.2.2 Best Overall Performance

The Branch & Bound-LP hybrid was the best of thee¢ approaches
used in this project. It returned the optimal solu and, when compared to the
SS-LP and SS algorithms that actually executed lengugh to generate a
reliable optimum or near-optimum solution, it wdee tleast computationally

expensive.
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Chapter 5

Conclusions and Future Research

51 General Conclusions

With a worldwide market for natural gas, it is sotrprising that a great
amount of research has already been accomplishednomtitude of associated
topics. So it is within the area of natural gahestuling, an inventory
scheduling problem with some attributes that asziig to natural gas.

This project has sought to extend that researoexibynining methods of
optimizing the decisions that are made by gas tovesand facility operators.
The specific focus of the dissertation was the doation of gases of different
energy contents, or Btu levels. This topic growsmportance as businesses
seek to optimize resources and as environment pesssdictate the
consumption of gas of lesser quality.

Simulation optimization is commonly employed tolveo or find
reasonable solutions to problems such as this. lildnature review in chapter 2
discussed many variations of this powerful tool. hisTdissertation describes a
research project that examined three algorithmsofeiimizing gas inventory
decision making.

The B&B-LP hybrid was, within the constraints bétprogram, the most
accurate, always returning an optimal solution amdhe best time. This
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accuracy was generated at the expense of flexibiliteuristics were applied to
reduce the number of decision points at each rag®mnential growth being the
nemesis of dynamic programming.

The advantage of the Stochastic Selection-Lineag®@mming (SS-LP)
algorithms was its flexibility. It was not as efnt computationally as the
B&B-LP approach, but it was more readily modifiediew constraints.

While the simplest and most flexible approach, geaeric Stochastic
Selection (SS) algorithm proved to be too compaotetily expensive to use
without some constraints. For example, percentdgehipping volumes were

selected from a set of three options, -100%, O,+l@0%.

5.1.1 Computational Effort Conclusions

Being NP-Hard, this is a problem whose acceptablation requires a
high level of computational investment. Heuristiosre applied that simplified
the problem. Measurements of computational effoovide a comparison of
the algorithms’ resource requirements. These wally from computer to
computer and, as mentioned in chapter 3, from mpéementation and software
configuration to another. Even with knowledge bé tspecifications of the
computer and software system used in this projdwse results are not
necessarily predictive of performance on anothstesy.

The B&B-LP hybrid returned the best results in ldgest amount of time.
The SS-LP and SS algorithms did generate optimaltisns when given
sufficient time, but the time required was sigrafitly greater than that of the

B&B-LP.
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5.1.2 Quality of Solution Conclusions

Each of the three algorithms produced optimal tsmis in both test
cases. The B&B-LP model found the optimal soluiio the shortest time. Not
surprisingly, the accuracy of the stochastic solusearch routines was directly
proportional to the number of sample solutions exaoh The SS—-LP model
provided the optimal solution with a STDEV of 0.0i@en 20,000 solutions were
examined. The SS model exhibited the same perforena

There were two variants of the model, the basie and a second that
enforced a minimum delivery quantity. The qualdy solution and relative

consumption of computer resources were the saraaadh variant.

5.1.3 Overall Performance Conclusions

Performance of the three algorithms varied. TE8BP approach was
the superior performer for this problem. Undereothircumstances, that may
not be the case when, for example, there are meuoisidn factors to be

evaluated.

52 Final Conclusions
This project has been very interesting. The gnerdustry and natural
gas in particular is a global concern and, asdegachanges from economic,
technological and environmental stimuli, there Wil new and important areas
of research. This project has examined and offarediseable approach, an

approach superior to one based solely on histopedbrmance, to a problem
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that has become more prominent in the industry atidcontinue to receive

attention.

5.3 Future Research

This is an exciting area of research and thisgatojemains with many
avenues to be investigated. There are many siiomilaptimization techniques
that may be applied to this type of problem.

Exploration of performance improvement on distrdali system would
allow the researcher to examine multiple sets ofiufated decision paths
simultaneously.

The model designed for this project allowed fond@am variations of
input price and cost data. To be more realistmpael may include a procedure
to apply a Brownian motion variance as well. Alssgarding price data, many

models in practice currently include natural gdsries in the pricing scheme.

5.3.1 Paralld and Distributed Processing

With the availability of multi-core and multi-CP@rchitectures, even
modern desktop computers offer significantly morecpssing power than was
available for this research. Such hardware, whepgrly accessed, allows
multiple independent processes to run simultangpws opposed to single-
threaded processing which may appear to executegses at the same time but
actually switches between them rapidly. Many opation techniques,
particularly Monte-Carlo-based approaches, can dmallelized and executed

simultaneously. Approaches that involve Markowstates also fit this scenario.
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Software solutions and optimization programming hteques that take
advantage of tread-level parallelism will provideich broader searches of the
solution space (Happe et al. 2009, Hsu, et al. 2044 2010).

Perhaps the most promising technological developnie increase
processing power is distributed processing. Gaetial. (2007) used distributed
processing to evaluate candidate solutions in at-girategy fictitious play
simulation.  Fourer, et al. (2010) developed a ®&ark for distributed
optimization, a system in which multiple computedd in a central location but
connected via the Internet could be used as shessdurces in solving
optimization problems. Their work is conceptuadignilar to that of Luo, et al.
(2000), but it is implemented with more recent amature methods. They point
out the need for the operations research (OR) camtynto be cognizant of the
advances and innovations already in use in thernmdton technology (IT)
community. In service-oriented architecture (SQ@ghnology, service-level
communication between servers is in widespread assemercially through
standardized protocols that allow dissimilar apgilens to exchange data,
invoke services on other servers, or execute sEs\at the request of external
machines. Using this or a similar framework, thecfitioner could use
modeling software of one server, data generatiovices of a different
machine, the simulation services of another andofitamization service of yet
another server.

In this particular example, such a system woulovigle the means of
examining larger sets of potential solutions, whetthey are stochastically-
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generated combinations or regions of a solutiorcesselected by a different
approach, or as branches of a decision tree. TB&I@Home project is a
well-known example of a massively-distributed comimpy program (Korpela, et

al., 2001).

5.3.2 Geometric Brownian Motion

In applying a valuation to decisions to purchaseadirgas, it is a
common practice to treat them as stock optiongracts for the future privilege
to buy or sell a specified amount at a specifiedepr This practice is known as
Real Options Theory and is widely practiced (Frageal. 2001, Lai, et al.
2011).

Brownian motion was first described in the fiefdobysics as
observations of random movement of large particlesn smaller ones struck
them, but, interestingly, the prices of stocks tendisplay Brownian motion as
they fluctuate. Geometric Brownian motion variemirordinary Brownian
motion in that it holds that over time, the changegrice will fall into a normal
distribution with a mean and standard deviationetelent only on the time
elapsed. Brownian motion is a key component oBlaek-Scholes equation.

Formula 15 shows the basic Brownian motion valuenge (Chriss 1999).

dS = uSdt + oSdz (15)

S = price
t=time

Mo = constants indicating drift
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z =stochastic process, Wienég, = ev/dt
Brewer, et. al. (2012)

It would be advantageous to apply Brownian motierthe changes in
gas prices in future work. While other events d@rahds contribute to the
volatility of natural gas prices, this would impevthe model by making the

volatility factor more realistic.

5.3.3 Heuristics, Metaheuristics, Multi-Criteria

This problem may be approached with various Mataktcs, such as
the tabu search. The problems continuous solutspace makes it
computationally intractable unless heuristics amhstraints are applied to
discretize the problem. Further examination ofsth@onstraints would prove
interesting. The second part of this project soughoptimize profit while
guaranteeing delivery of products. That or simdateria for optimization may

be expanded upon as well.

5.34 Natural GasFutures

In this dissertation and the model it describegural gas ‘spot prices’
have been used. The spot price is the price foaresaction at the current price
on the open market for immediate delivery of a gmequantity of gas at a
specific location.

A futures price, however, is the price quoted detivering a specified
guantity of gas at a specified time and place enftliure. Quotes or ‘contracts’

are usually written for delivery for a specific nbar of months in the future and
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may be referred to as ‘contract n’ where n is 148 and may go as high as
360 months, although that is unusual. Figure I®vshthe historic values of 1-
month natural gas futures. Natural gas contragigethree business days prior
to the first calendar day of the delivery month.u3hthe delivery month for
Contract 1 is the calendar month following the ¢radte.

While speculators buy and sell contracts as imvests, futures are also
purchased as a way of hedging against sharp pucwiations. The addition of

futures to the model would be a great enhancement.
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There are many attributes and capabilities thay ma added to this
model that will increase its accuracy and perhdfisiency as well. As new
technologies emerge, economies change, and soafcesergy fluctuate in

priority, this field of research remains interegtand relevant.
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Appendix 1:

Period CostA CostB Price A Price AB PriceB
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Max Trans A
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costStorage A
costStorage B
max storage A
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Appendix 2: Results of Initial Test Runs

B&B-LP - 25 trials

4000 2
£ 1.8
2 3500 :
& 3000 r 16
S - 1.4
(]
E‘ 2500 1o
& 2000 1
2 k]
= T 1500 - 08
- = - 0.6
S 1000
o - 0.4
L
5 >0 - 0.2
§ 0 rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrtrT O
3 1 6 11 16 21 26 31 36 41
§ Trial
—+— Maximum Value ——Sample With Best Solution
Figure10 B&B-LP Trial Results
Solution Values B&B-LP 25 Trials
30
25
20
15
10 W Series1
5
0 100(110(120|130|140
200300400500 600|700 |800|900
o,olo|lolo
|Seriesl olo|lo|lo|lo/o|o 0|0 |0|25/01/0

Figure 11 Solution ValuesB&B-LP 25 Trials

99




Stochastic Selection + LP 12 * 250,000
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Stochastic Selection + LP - 25,000 samples/per trial
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Stochastic Selection -2500 Samples/Trial
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Stochastic Selection - 25000 samples/per trial
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Appendix 3: Trial Price/Cost Data ll

Gas GasAB
GasA | GasA GasB | GasB GasAB | AB Price
Month | Cost | Price Markup | Cost | Price | Cost Price | Adjusted
Jan 5.83 5.52 -0.05 | 2.62 2.48 3.91 3.70 3.14
Feb 5.32 6.58 0.24 | 2.39 2.96 3.56 4.41 3.75
mar 4.29 6.38 0.49 | 1.93 2.87 2.87 4.27 3.63
Apr 4.03 6.02 0.49| 1381 2.71 2.70 4.03 3.43
May 4.14 6.64 0.60 | 1.86 2.99 2.77 4.45 3.78
Jun 4.80 6.41 0.34| 2.16 2.88 3.22 4.29 3.65
Jul 4.63 6.63 0.43 | 2.08 2.98 3.10 4.44 3.78
Aug 4.32 7.29 0.69| 1.94 3.28 2.89 4.88 4.15
Sep 3.89 7.23 0.86 | 1.75 3.25 2.61 4.84 4.12
Oct 3.43 6.05 0.76 | 1.54 2.72 2.30 4.05 3.45
Nov 3.71 7.07 091 | 1.67 3.18 2.49 4.74 4.03
Dec 4.25 5.22 0.23| 191 2.35 2.85 3.50 2.97

Gas A Costs are based on Henry Hub spot prices amsendix 5

Gas B Prices are based on Oklahoma City Gate priseg appendix 6
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Appendix 4: Natural Gas Futures Contract 1

Year 2000 2001 2002 2003 2004 2005 2006

Jan 2.385 7.825 2.190 5.381 6.272 6.186 9.136
Feb 2.614 5.675 2.263 6.657 5.363 6.203 7.520
Mar 2.828 5.189 3.015 5.786 5.542 7.045 6.979
Apr 3.028 5.189 3.410 5.358 5.765 7.150 7.264
May 3.596 4.244 3.563 5.926 6.398 6.486 6.372
Jun 4.303 3.782 3.259 5.925 6.334 7.206 6.385
Jul 3.972 3.167 2.942 5.034 6.064 7.579 6.222
Aug 4.460 2.935 3.092 4.978 5.471 9.427 6.989
Sep 5.130 2.213 3.569 4.667 5.219 12.111 5.218
Oct 5.079 2.618 4.088 4.986 7.371  13.454 6.633
Nov 5.740 2.786 4.040 4.834 7.608  11.695 7.995
Dec 8.618 2.686 4.838 6.469 6.828  13.425 7.161
Year 2007 2008 2009 2010 2011 2012

Jan 6.775 7.991 5.07 5.599 4.499 2.708

Feb 7.546 8.642 4.382 5.215 4.036 2.526

Mar 7.221 9.624 4.002 4.301 4.069 2.296

Apr 7.629  10.288 3.561 4.088 4.272 2.048

May 7.821 11.381 3.934 4.155 4.336 2.493

Jun 7.503 12.784 3.935 4.785 4.516 2.498

Jul 6.399 11.067 3.551 4.590 4.353 2.963

Aug 6.137 8.301 3.305 4.220 3.984 2.807

Sep 6.188 7.485 3.462 3.898 3.849 2.918

Oct 7.223 6.727 4.780 3.600 3.624 3.500

Nov 7.778 6.700 4.628 4.042 3.558 3.687

Dec 7.178 5.794 5.344 4.283 3.246

(Dollars/Mil. BTUs) (EIA 2013)
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Appendix 5: Henry Hub Natural Gas Spot Prices

Y ear 2000 2001 2002 2003 2004 2005 2006

Jan 2.42 8.17 2.32 5.43 6.14 6.15 8.69
Feb 2.66 5.61 2.32 7.71 5.37 6.14 7.54
Mar 2.79 5.23 3.03 5.93 5.39 6.96 6.89
Apr 3.04 5.19 3.43 5.26 5.71 7.16 7.16
May 3.59 4.19 3.50 5.81 6.33 6.47 6.25
Jun 4.29 3.72 3.26 5.82 6.27 7.18 6.21
Jul 3.99 3.11 2.99 5.03 5.93 7.63 6.17
Aug 4.43 2.97 3.09 4.99 5.41 9.53 7.14
Sep 5.06 2.19 3.55 4.62 5.15 11.75 4.90
Oct 5.02 2.46 4.13 4.63 6.35 13.42 5.85
Nov 5.52 2.34 4.04 4.47 6.17 10.30 7.41
Dec 8.90 2.30 4.74 6.13 6.58 13.05 6.73

Year 2007 2008 2009 2010 2011 2012

Jan 6.55 7.99 5.24 5.83 4.49 2.67
Feb 8.00 8.54 4.52 5.32 4.09 2.51
Mar 7.11 9.41 3.96 4.29 3.97 2.17
Apr 7.60 10.18 3.50 4.03 4.24 1.95
May 7.64 11.27 3.83 4.14 4.31 2.43
Jun 7.35 12.69 3.80 4.80 4.54 2.46
Jul 6.22 11.09 3.38 4.63 4.42 2.95
Aug 6.22 8.26 3.14 4.32 4.06 2.84
Sep 6.08 7.67 2.99 3.89 3.90 2.85
Oct 6.74 6.74 4.01 3.43 3.57 3.32
Nov 7.10 6.68 3.66 3.71 3.24 3.54
Dec 7.11 5.82 5.35 4.25 3.17 3.34

(Dollars/Mil. BTUs) (EIA 2013)
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Appendix 6: Oklahoma Natural Gas Citygate Prices

Y ear 2000 2001 2002 2003 2004 2005 2006

Jan 6.61 9.63 4.07 4.94 6.21 7.12 10.01
Feb 2.66 6.85 3.78 541 6.48 6.70 10.59
Mar 3.01 6.39 4.07 7.71 6.31 6.95 9.52
Apr 2.88 6.76 4.48 5.13 6.82 7.11 8.17
May 3.36 4.50 4.13 6.04 6.11 7.62 8.11
Jun 3.19 4.25 3.77 5.90 6.48 7.23 7.89
Jul 4.14 4.10 3.63 5.34 6.42 7.89 8.66
Aug 4.48 5.30 3.57 5.53 6.32 8.85 8.58
Sep 3.57 5.18 4.20 5.36 6.18 10.59 8.48
Oct 4.94 4.95 4.37 7.14 5.68 10.74 6.40
Nov 5.60 5.10 4.93 6.36 6.94 11.14 8.28
Dec 5.58 4.49 4.72 6.17 8.00 11.39 8.78

Year 2007 2008 2009 2010 2011 2012

Jan 7.72 7.89 7.76 5.52 5.37 4.96
Feb 8.52 8.35 7.15 6.58 5.34 4.99
Mar 9.48 9.34 7.34 6.38 5.72 4.92
Apr 7.80 9.01 6.95 6.02 5.79 5.99
May 8.33 10.34 6.60 6.64 6.45 5.43
Jun 8.79 11.45 6.68 6.41 6.32 4.27
Jul 8.49 12.25 7.15 6.63 6.51 5.85
Aug 7.89 9.64 8.21 7.29 6.87 5.43
Sep 7.56 8.92 7.61 7.23 6.60 5.34
Oct 7.88 7.35 6.99 6.05 6.59 4.95
Nov 8.52 7.61 7.26 7.07 6.28

Dec 7.80 7.78 5.84 5.22 5.18

(Dollars per Thousand Cubic Feet) (EIA 2013)
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Appendix 7: Natural Gas Consumption by End Use

Total Consumption 21,699 23,104| 23,277| 22,910| 24,087| 24,385

L ease and Plant Fuel 1,142 1,226| 1,220| 1,275, 1,286 1,323
L ease Fuel 783 861 864 913 917 938
Plant Fuel 359 365 356 362 369 384

Pipeline &

Distribution Use 584 621 648 670 674 684

Volumes Ddlivered

to Consumers 19,973| 21,256| 21,409| 20,965| 22,127| 22,378
Residential 4368 4,722 4,892 4,779| 4,782 4,714
Commercial 2,832 3,013| 3,153| 3,119| 3,103| 3,154
Industrial 6,527| 6,655| 6,670 6,167| 6,826 6,905
Vehicle Fud 24 25 26 27 29 32
Electric Power 6,222| 6,841| 6,668 6,873| 7,387| 7,574

(Billion Cubic Feet) (EIA 2013)
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Appendix 8: C++ SOURCE CODE FOR LP-SOLVE
INTERFACE

#include "c:\awesim\lib\vslam.h"
#include <math.h>

#include <stdlib.h>

#include "c:\awesim\lp_solvellp_lib.h"
#include <windows.h>

#include "string.h"

#include <time.h>

double USERF(int IFN, ENTITY *peCur);
void getMixedProduct();
double minf(double vala, double valb);

double maxf(double vala, double valb);

add_constraint_func *_add_constraint;
add_constraintex_func *_add_constraintex;
delete_Ip_func *_delete_Ip;
get_col_name_func *_get_col_name;
get_objective_func *_get objective;
get_variables_func *_get variables;
make_lp_func *_make_|Ip;

print_Ip_func *_print_Ip;

print_solution_func *_print_solution;

read LP_func * read LP;
set_add_rowmode_func * set add_rowmode;
set_col_name_func *_set_col_name;
set_maxim_func *_set_maxim;
set_obj_fn_func *_set obj fn;

set_obj_fnex_func *_set_obj_fnex;
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set_verbose_func *_set verbose;
solve_func *_solve;

write_LP_func *_write_LP;

FILE *runlogout;
FILE *runlogout2;

time_t now;

/I Events

#define WRITELN 1
#define SIMPLEX 2
#define CALC_PROFITS 3
#define PRUNE_BUY 4
#define PRUNE_HOLD 5
#define PRUNE_SELL 6
#define CALC_BUY 7
#define ENDOFCYCLE 8
#define RESETINVENTORY 9
#define TIMER_GET 10
#define TIMER_SET 11

#define VARIABLE_BUY_SELL 12

#define RANDOM_A 13
#define RANDOM_AB 14
#define RANDOM_B 15
#define MANDATORY_SELL 16
#define DUMMY 99

#define PRUNE 0
#define NO_PRUNE 1

#define CostAidx LL[1]
#define CostAidxBase LL[2]
#define CostAidxMax LL[3]
#define CostBidx LL[5]
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#define CostBidxBase LL[6]
#define CostBidxMax LL[7]
#define Horizon LL[9]
#define PriceABidx LL[11]
#define PriceABidxBase LL[12]
#define PriceABidxMax LL[13]
#define PriceAidx LL[15]
#define PriceAidxBase  LL[16]
#define PriceAidxMax  LL[17]
#define PriceBidx LL[19]
#define PriceBidxBase  LL[20]
#define PriceBidxMax LL[21]
#define ReadResult LL[23]
#define InventoryABase LL[24]
#define InventoryBBase LL[25]
#define CurrScenerio LL[26]
#define AvgCostOfinvA  LL[30]
#define AvgCostOfinvB  LL[31]
#define ClockTime LL[34]

#define CostOfStorageA XX[3]
#define CostOfStorageB  XX[4]

#define Profit_ A
#define Profit_ AB
#define Profit B
#define alnAB
#define bInAB
#define CurrBuyVolA
#define CurrBuyVolB

peCur->ATRIB[11]
peCur->ATRIB[12]
peCur->ATRIB[13]
peCur->ATRIB[14]
peCur->ATRIB[15]
peCur->ATRIB[17]
peCur->ATRIB[18]

#define changeAPerCent peCur->ATRIB[19]
#define changeABPerCent peCur->ATRIB[20]
#define changeBPerCent peCur->ATRIB[21]
#define CurrDItVIA peCur->ATRIB[22]
#define CurrDeltaVolB  peCur->ATRIB[23]
#define CurrDItVIAB peCur->ATRIB[24]
#define aMinDelivery peCur->ATRIB[25]
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#define abMinDelivery  peCur->ATRIB[26]
peCur->ATRIB[27]
#define aLowVolPenalty peCur->ATRIB[28]
#define bLowVolPenalty peCur->ATRIB[29]
#define CashOnHand peCur->ATRIB[1]
#define CurrSellVolA peCur->ATRIB[2]

#define CurrSellVolAB  peCur->ATRIBJ[3]

#define CurrSellVolB peCur->ATRIB[4]

#define bMinDelivery

#define InventoryA
#define InventoryB
#define MaxTransA
#define MaxTransB
#define MaxVolA
#define MaxVolB

peCur->ATRIB[5]
peCur->ATRIB[6]
peCur->ATRIB[7]
peCur->ATRIB[8]
peCur->ATRIB[9]
peCur->ATRIB[10]

#define CurrentAction peCur->STRIB[1]

#define History peCur->STRIB[2]
#define GENERATION
#define rand02Action

peCur->LTRIB[1]
peCur->LTRIB[5]

double USERF(int IFN, ENTITY *peCur)
{
double aVolSold = 0;
double abVolSold= 0;
double bVolSold = 0;
int c,i;
double volAToSell,volBToSell,volReq;
double costOfGasA = 0.0;
double volAAvailable = 0.0;
double costOfGasB = 0.0;
double tgtSalesVol = 0.0;
double volBAvailable =0.0;
double volAInStorage = 0.0;
double volBInStorage = 0.0;
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double CurrSellVolAinAB = 0.0;
double CurrSellVolBinAB = 0.0;
double aabMinReg= 0.0;

double babMinReqg= 0.0;

double aMinReq= 0.0;

double bMinReq= 0.0;

double ARequiredVol = 0.0;

double BRequiredVol = 0.0;

double alreadyDeliveredPC= 0.0;
switch (IFN)

{

case WRITELN : SU_OUT(TRUE, TRUE,"Hello from proc&JSERF function. curr action=
%s\n",peCur->STRIB[1]);

runlogout =fopen("lp_run.txt","a");
runlogout2=fopen("lp_run2.txt","a");

break;

case DUMMY:

fprintf(runlogout2, "DUMMY:: Percent: %8.2f InvA%f InvB: %8.2f tgtSalesVol
%8.2f MaxTransA %8.2f \n",

changeAPerCent, InventoryA, InventoryB ,tgtSalelsMaxTransA) ;

break;

case PRUNE_SELL :

if (((CurrentAction[0]=="") || ( CurrentAction[0]='S")
&& (InventoryA > 0.0001 && InventoryB > 0.0001)
)

{

return(NO_PRUNE);

}

else
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{
return(PRUNE);

}

break;

case TIMER_GET:
now = time (NULL);
ClockTime = now;
return 0.0;

break;

case PRUNE_HOLD :

if (((CurrentAction[0]=="") || ( CurrentAction[0]=H"))

&& (InventoryA < ((Horizon- GENERATION) * MaxTran&))
&& (InventoryB < ((Horizon- GENERATION) * MaxTrari)))

{
return(NO_PRUNE);

}

else

{
return(PRUNE);

}

break;

case PRUNE_BUY :
if
((CurrentAction[0]=="") || ( CurrentAction[0]=B"))
&& ((InventoryA + MaxTransA) <= ((Horizon - GENERADN) * MaxTransA))
&& ((InventoryB + MaxTransB) <= ((Horizon - GENERADN) * MaxTransB))
&& ((InventoryA + MaxTransA) <= MaxVolA)
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&& ((InventoryB + MaxTransB) <= MaxVolB)

)
{
return(NO_PRUNE); // 0=PRUNE 1=KEEP

}

else

{
return(PRUNE); // 0=PRUNE 1=KEEP

}

break;

case CALC_BUY:

/I set total inventory

CurrBuyVolA=MaxTransA,
CurrBuyVolB=MaxTransB;

InventoryA = InventoryA + CurrBuyVolA,

InventoryB = InventoryB + CurrBuyVolB;

/I set cash
CashOnHand =CashOnHand -
(CurrBuyVolA * peCur->ATRIB[CostAidxBase + GENER'ION]

CurrBuyVolB * peCur->ATRIB[CostBidxBase + GENBRION] );
/Il set period inventory
peCur->ATRIB[InventoryABase + GENERATION] = CurrBuglA ;

peCur->ATRIB[InventoryBBase + GENERATION] = CurrBygIB ;

break;
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case SIMPLEX:

/I first, calculate the profit of gas to be sold

volAToSell= 0.0; // the amount KNOWN to be avaiklfor sale
volReq = 0.0; // how much is needed to fill thed&r'
costOfGasA = 0.0;

/I Set for gas A

/l'loop through the inventory array from oldesttorent (FIFO)

I

if (DEBUGL1) fprintf(runlogout, "nSIMPLEX GENERATI® %i \n",
GENERATION);

for(c=1;c<=GENERATION;c++)

{
if (volAToSell< MaxTransA)

Il if we still need gas to fill the order

{
volReq=MaxTransA-volAToSell; // how much do il need for

this order?
Il check the gas bought in this period
if ( peCur->ATRIB[InventoryABase+c] >= volReq)
{
volAToSell=MaxTransA, // we have the max aviali&a
/I increment the total cost by the cost ofdglas bought in
this period

costOfGasA += volReq * peCur-
>ATRIB[CostAidxBase+c];

// add in the storage cost of the gas
costOfGasA += MaxTransA * CostOfStorageA *
((GENERATION + 1)- ¢);

/I decrement the inventory
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peCur->ATRIB[InventoryABase+c] -= volReq;

/I signal that the order is filled
volReq= 0.0;

}

else // we can fill part of the order from th&sgurchased this period

{

volReq -= peCur->ATRIB[InventoryABase+c];

costOfGasA += peCur->ATRIB[InventoryABase+c] *
peCur->ATRIB[CostAidxBase+c];

// add in the storage cost of the gas

costOfGasA += peCur->ATRIB[InventoryABase+c] *
CostOfStorageA * ((GENERATION + 1)- ¢);

I
volAToSell+= peCur->ATRIB[InventoryABase+c];
peCur->ATRIB[InventoryABase+c] =0.0;

}

/I at this point the amount of gasA availabledb, @nd it's total cost

/l'is known

volBToSell= 0.0; // the amount KNOWN to be aval@or sale
volReq = 0.0; // how much is needed to fill thed&r'
costOfGasB = 0.0;

/I Set for gas B
/l'loop through the inventory array from oldesttorent (FIFO)
i
for(c=1;c<=GENERATION;c++)
{
if (volBToSell< MaxTransB)
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Il if we still need gas to fill the order

{
volReq=MaxTransB-volBToSell; // how much do stédl need for

this order?
/I check the gas bought in this period
if ( peCur->ATRIB[InventoryBBase+c] >= volReq)
{
volBToSell=MaxTransB; // we have the max avalita
/I increment the total cost by the cost ofdglas bought in
this period

costOfGasB += volReq * peCur->ATRIB[CostBidxBas];

// add in the storage cost of the gas
costOfGasB += MaxTransB * CostOfStorageB *
((GENERATION + 1)- ¢);

/I decrement the inventory

peCur->ATRIB[InventoryBBase+c] -= volReq;

/I signal that the order is filled
volReq= 0.0;
}

else // we can fill part of the order from theesgpurchased this period

{

volReq -= peCur->ATRIB[InventoryBBase+c];

costOfGasB += peCur->ATRIB[InventoryBBase+c] *
peCur->ATRIB[CostBidxBase+c];

/l add in the storage cost of the gas

costOfGasB += peCur->ATRIB[InventoryBBase+c] *
CostOfStorageB * ((GENERATION + 1)- ¢);

volBToSell+= peCur->ATRIB[InventoryBBase+c];

peCur->ATRIB[InventoryBBase+c] =0.0;

}
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/I set minimum delivery requirements
aMinReqg=aMinDelivery;
bMinReg=bMinDelivery;
aabMinReq = alnAB * abMinDelivery;
babMinReq = bInAB * abMinDelivery;

I/ if there is not enough in storage to meet nequents, buy some at SPOT price, with
penalty
if (@MinReq + aabMinReq) > volAToSell)
{
/l how much is still needed?
volReq = (aMinReq + aabMinReq)-volAToSell;
volAToSell=volAToSell + volReq;
/I purchase gas on the market
CashOnHand = CashOnHand - volReq * peCur-
>ATRIB[PriceAidxBase+GENERATION] * (1.0 + aLowVolPalty);
// add to inventory
InventoryA = InventoryA + volReq;
/I increase cost of gas currently being solg
costOfGasA = costOfGasA + volReq * peCur-
>ATRIB[PriceAidxBase+GENERATION] * (1.0 + aLowVolPalty);

}

if (bMinReq + babMinReq) > volBToSell)
{
volReq = (bMinReq + babMinReq)-volBToSell;
volBToSell=volBToSell + volReq;
/I purchase gas on the market
CashOnHand = CashOnHand - volReq * peCur-
>ATRIB[PriceBidxBase+GENERATION] * (1.0 + bLowVolPalty);
/I add to inventory
InventoryB = InventoryB + volReq;
/I increase cost of gas currently being solg
costOfGasB = costOfGasB + volReq * peCur-
>ATRIB[PriceBidxBase+GENERATION] *(1.0 + bLowVolrPalty);
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}

/I at this point the amount of gasB availabledlh, &ind it's total cost

/I is known

Profit A = peCur->ATRIB[PriceAidxBase+GENERATIQN
costOfGasA/volAToSell;
Profit B = peCur->ATRIB[PriceBidxBase+GENERATIQN
costOfGasB/volBToSell;
Profit. AB = peCur->ATRIB[PriceABidxBase+GENERATN) -
(aInAB*(costOfGasA/volAToSell) +
binAB*(costOfGasB/volBToSell));

/ then find the best mix to sell

getMixedProduct(
volAToSell,
volBToSell,
Profit_A,
Profit_ AB,
Profit_B,
alnAB,
bInAB,
aMinReq,
bMinReq,
aabMinReq,
babMinReq,
&aVolSold,
&abVolSold,
&bVolSold);

CurrSellVolA = aVolSold;
CurrSellVolAB = abVolSold;
CurrSellVolB = bVolSold;
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CashOnHand = CashOnHand + CurrSellVolA * peCurFRAB[PriceAidxBase +

GENERATION] +

GENERATION];

* bInAB;

CurrSellVolB * peCur->ATRIB[PriceBidxBase + GEFRRATION] +
CurrSellVolAB* peCur->ATRIB[PriceABidxBase +

II* alnAB +
/ICurrSellVolAB* peCur->ATRIB[PriceBidxBase + GEERATION]

InventoryA =InventoryA -( CurrSellVolA + CurrSeltMAB * alnAB);
InventoryB =InventoryB -( CurrSellVoIB + CurrSeltWVAB * bInAB);

break;

case ENDOFCYCLE:

/I calculate the cost of the gas that is stilltorage

I
1

volAlnStorage= 0.0; // the amount KNOWN to be dadslie for sale
costOfGasA = 0.0;
volBInStorage= 0.0; // the amount KNOWN to be talale for sale
costOfGasB = 0.0;

/I Set for gas A

/l'loop through the inventory array from oldesttorent (FIFO)

1

for(c=1;c<=GENERATION;c++)

{

this order?

/IvolRegq=MaxTransA-volAToSell; // how much de@wtill need for

/I check the gas bought in this period
costOfGasA += peCur->ATRIB[InventoryABase+c] &@ur-

>ATRIB[CostAidxBase+c];

volAInStorage+= peCur->ATRIB[InventoryABase+c];
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costOfGasB += peCur->ATRIB[InventoryBBase+c]eQur-
>ATRIB[CostBidxBase+c];
volBInStorage+= peCur->ATRIB[InventoryBBase+c];

CashOnHand = CashOnHand - costOfGasA,;
CashOnHand = CashOnHand - costOfGasB;

break;

case RESETINVENTORY:
for (c=0;c<=Horizon; c++)

{
peCur->ATRIB[InventoryABase+c] =0.0;
peCur->ATRIB[InventoryBBase+c] =0.0;
}

InventoryA = 0.0;

InventoryB = 0.0;

break;

case RANDOM_A:

/I set total inventory

if (changeAPerCent >=0)

{
/I indicate the purchase of Gas B
rand02Action += 2;
/I set vol of Gas A to buy
CurrDItVIA=MaxTransA * changeAPerCent;

/I confirm availability of Gas
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if ((InventoryA + CurrDItVIA) > MaxVolA)

{
CurrDItVIA=MaxVolA-InventoryA;

}

/I execute buy

InventoryA = InventoryA + CurrDItVIA;

/ set cash
CashOnHand =CashOnHand -(CurrDItVIA * peCur->ATRIBstAidxBase +
GENERATION] );

if (DEBUG11) fprintf(runlogout2, "RANDOM_A: peCu=ATRIB[InventoryABase +
GENERATION]=%8.2f InventoryABase=%d GEN%d CuliN)A=%8.2f\n",

peCur->ATRIB[InventoryABase +
GENERATION],InventoryABase,GENERATION,CurrDItVIA);

/I set period inventory
peCur->ATRIB[InventoryABase + GENERATION] = CurfMA ;

if (DEBUG10) fprintf(runlogout2, "RANDOM_A: BUY OMPLETE CashOnHand
%8.2f Percent: %8.2f InvA: %f InvB: %8.2f MaxTsh %8.2f \n",
CashOnHand, changeAPerCent, InventoryA, InvemokaxTransA );

if (DEBUG11) fprintf(runlogout2, "RANDOM_Ab: Cash@Hand %8.2f peCur-
>ATRIB[InventoryABase + GENERATION]=%8.2f InvenyphBase=%d GEN%d
CurrDItVIA=%8.2f\n",

CashOnHand,peCur->ATRIB[InventoryABase +
GENERATION],InventoryABase,GENERATION,CurrDItVIA);

else

/I modify per cent change to exclude minimum alseshipped
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/I changeAPerCent MaxTransA amindelivery
alreadyDeliveredPC = -1.0 * (aMinDelivery/MaxTr#%)s///100.0;

/I cannot ship more that 100% of capacity
changeAPerCent=minf((changeAPerCent-alreadyDeatle),0.0);

/I first, calculate the profit of gas to be sold
volAToSell = 0.0; // the amount KNOWN to be avaiefor sale
volReq = 0.0; // how much is needed to fi# tbrder’
costOfGasA = 0.0;
tgtSalesVol = -1.0 * changeAPerCent * MaxTransA,
if (tgtSalesVol > InventoryA)

{

tgtSalesVol = InventoryA,

changeAPerCent = -1.0 * InventoryA/MaxTransA,;

}

/I Set for gas A
/l'loop through the inventory array from oldesttorent (FIFO)
1
for(c=1;c<=GENERATION;c++)
{
if (volAToSell< tgtSalesVol)
/1 if we still need gas to fill the order
{
volReq=tgtSalesVol-volAToSell; // how much de &till need for
this order?

Il check the gas bought in this period
if ( peCur->ATRIB[InventoryABase+c] >= volReq)

{
VolAToSell=tgtSalesVol; // we have the max afalie
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I/l increment the total cost by the cost ofghas bought in
this period

costOfGasA += volReq * peCur-
>ATRIB[CostAidxBase+c];

// add in the storage cost of the gas
costOfGasA += tgtSalesVol * CostOfStorageA *
((GENERATION + 1)- c);

/l decrement the inventory

peCur->ATRIB[InventoryABase+c] -= volReq;

/I signal that the order is filled
volReq= 0.0;
}

else // we can fill part of the order from thesgurchased this period

{

volReq -= peCur->ATRIB[InventoryABase+c];

costOfGasA += peCur->ATRIB[InventoryABase+c] *
peCur->ATRIB[CostAidxBase+c];

// add in the storage cost of the gas

costOfGasA += peCur->ATRIB[InventoryABase+c] *
CostOfStorageA * ((GENERATION + 1)- ¢);

1
volAToSell+= peCur->ATRIB[InventoryABase+c];
peCur->ATRIB[InventoryABase+c] =0.0;

}

/I at this point the amount of gasA availabledd, @nd it's total cost

/I is known

Profit. A = peCur->ATRIB[PriceAidxBase+GENERATION]
costOfGasA/volAToSell;
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CashOnHand = CashOnHand + volAToSell * peCur->AB[RFriceAidxBase +
GENERATION];

InventoryA =InventoryA - volAToSell ;

/I set the sell volume
CurrDItVIA =-1.0 * volAToSell ;

break;
case RANDOM_B:

/I set total inventory

/I modify per cent change to exclude minimum alyestipped

if (changeBPerCent >=0)
{
/l indicate the purchase of Gas B
rand02Action += 1;
/I buy Gas B
CurrDeltaVolB=MaxTransB * changeBPerCent;

/I confirm availability of storage for new Gas B
if ((InventoryB + CurrDeltaVolB) > MaxVolB)

{
CurrDeltaVolB=MaxVolB-InventoryB;

changeBPerCent=(MaxVolB-InventoryB)/MaxVolIB;
}
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/I execute buy

InventoryB = InventoryB + CurrDeltaVolB;

/l set cash
CashOnHand =CashOnHand -(CurrDeltaVolB * peCur-RMH[CostBidxBase +
GENERATION] );

/I set period inventory
peCur->ATRIB[InventoryBBase + GENERATION] = CurreVolIB ;

else

/I changeBPerCent MaxTransB bmindelivery
alreadyDeliveredPC = -1.0 * (bMinDelivery/MaxTrd)s, //* 100.0;

/I cannot ship more that 100% of capacity
changeBPerCent=minf((changeBPerCent-alreadyDeldRC),0.0);

/I first, calculate the profit of gas to be sold

volBToSell = 0.0; // the amount KNOWN to be avhiafor sale
volReq = 0.0; // how much is needed to fi# tbrder’
costOfGasB = 0.0;

tgtSalesVol = -1.0 * changeBPerCent * MaxTransB;

if (tgtSalesVol > InventoryB)

{
tgtSalesVol = InventoryB;

changeBPerCent = -1.0 * InventoryB/MaxTransB;
}
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/I Set for gas B
/l'loop through the inventory array from oldesttorent (FIFO)
I
for(c=1;c<=GENERATION;c++)
{
if (voIBToSell< tgtSalesVol)
/I if we still need gas to fill the order

{
volReq=tgtSalesVol-volBToSell; // how much de still need for

this order?
/I check the gas bought in this period
if ( peCur->ATRIB[InventoryBBase+c] >= volReq)
{
volBToSell=tgtSalesVol; // we have the max talkzle
I/l increment the total cost by the cost ofghas bought in
this period

costOfGasB += volReq * peCur->ATRIB[CostBidxBas];

// add in the storage cost of the gas
costOfGasB += tgtSalesVol * CostOfStorageB *
((GENERATION + 1)- ¢);

/I decrement the inventory

peCur->ATRIB[InventoryBBase+c] -= volReq;

/I signal that the order is filled
volReq= 0.0;
}

else // we can fill part of the order from thesgurchased this period
{
volReq -= peCur->ATRIB[InventoryBBase+c];
costOfGasB += peCur->ATRIB[InventoryBBase+c] *
peCur->ATRIB[CostBidxBase+c];
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// add in the storage cost of the gas
costOfGasB += peCur->ATRIB[InventoryBBase+c] *
CostOfStorageB * ((GENERATION + 1)- ¢);

1
volBToSell+= peCur->ATRIB[InventoryBBase+c];
peCur->ATRIB[InventoryBBase+c] =0.0;

}

/I at this point the amount of gasB availabledlh, &ind it's total cost

/I is known

Profit B = peCur->ATRIB[PriceBidxBase+GENERATION]
costOfGasB/volBToSell;

CashOnHand = CashOnHand + volBToSell * peCur->AH[RliceBidxBase +
GENERATION];

CurrDeltaVolB = -1.0*volBToSell ;

InventoryB =InventoryB + CurrDeltaVolB ;

// set the sell volume

break;
case RANDOM_AB:

/I modify per cent change to exclude minimum alyestipped
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/I changeBPerCent MaxTransB bmindelivery

alreadyDeliveredPC = -1.0 * maxf((alnAB*abMinDeliygMaxTransA) , //* 100.0,
(bInAB*abMinDelivery/MaxTransB) );

/* 100.0);

/I cannot ship more that 100% of capacity
changeABPerCent=minf((changeABPerCent-alreadyBedigdPC),0.0);

changeABPerCent*=-1.0;

/I lower the percentage of AB to sell until
/l it is at or below the amount amount possible to
/I sell based on stock levels of A and B

/I and the remaining shipping capacity of A and B

if (InventoryA < alnAB * changeABPerCent * MaxTraip
changeABPerCent = minf(changeABPerCent,(Inventd@afhAB* MaxTransA)));

if (InventoryB < bInAB * changeABPerCent * MaxTrdBs
changeABPerCent = minf(changeABPerCent,(InventftyBAB * MaxTransB)));

/I check for max trans limit but allow passthrough
/l'i.e 100% gas in and 100% out is allowable
/I if a sell occured CurrDItVIA is negative so Ma@hsA + CurrDItVIA < MaxTransA
if
(CurrDItVIA<0.0)&& ((changeABPerCent * alnAB * MakransA)>(MaxTransA +
CurrDItVIA))
)/I this should only apply for gas A SELLS
changeABPerCent=minf(changeABPerCent,((MaxTrans#QltVIA)/alnAB));
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/I check for max trans limit but allow passthrough
/l'i.e 100% gas in and 100% out is allowable
/I if a sell occured CurrDeltaVolB is negative saMransA + CurrDeltaVolB < MaxTransB
if

(CurrDeltaVolB<0.0)&& ((changeABPerCent * bInAB *
MaxTransB)>(MaxTransB+CurrDeltaVolB))

)
changeABPerCent=minf(changeABPerCent,((MaxTransB#QeltaVolB)/bInAB));

/I now execute the sales of A and B

/I first, calculate the profit of gas to be sold

volAToSell = 0.0; // the amount KNOWN to be avaik for sale
volReq = 0.0; // how much is needed to fik torder'
costOfGasA = 0.0;

tgtSalesVol = changeABPerCent * alnAB * MaxTransA,

/I Set for gas A
/l'loop through the inventory array from oldesttorent (FIFO)
1
for(c=1;c<=GENERATION;c++)
{
if (volAToSell< tgtSalesVol)
/1 if we still need gas to fill the order

{
volReq=tgtSalesVol-volAToSell; // how much de &till need for

this order?
Il check the gas bought in this period
if ( peCur->ATRIB[InventoryABase+c] >= volReq)
{
VolAToSell=tgtSalesVol; // we have the max #afalie
/I increment the total cost by the cost ofdglas bought in
this period
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costOfGasA += volReq * peCur-
>ATRIB[CostAidxBase+c];

// add in the storage cost of the gas
costOfGasA += tgtSalesVol * CostOfStorageA *
((GENERATION + 1)- ¢);

/l decrement the inventory
peCur->ATRIB[InventoryABase+c] -= volReq;

/I signal that the order is filled
volReq= 0.0;

}

else // we can fill part of the order from thesgurchased this period

{

volReq -= peCur->ATRIB[InventoryABase+c];

costOfGasA += peCur->ATRIB[InventoryABase+c] *
peCur->ATRIB[CostAidxBase+c];

// add in the storage cost of the gas

costOfGasA += peCur->ATRIB[InventoryABase+c] *
CostOfStorageA * ((GENERATION + 1)- ¢);

I
volAToSell+= peCur->ATRIB[InventoryABase+c];
peCur->ATRIB[InventoryABase+c] =0.0;

}

/I at this point the amount of gasA availabledb, @nd it's total cost

/l'is known

Profit. A = peCur->ATRIB[PriceAidxBase+GENERATION]
costOfGasA/volAToSell;

CurrSellVolAinAB =-1.0 * volAToSell ;
134



CashOnHand = CashOnHand +  volAToSell * peCur->M[RriceAidxBase +
GENERATION];

InventoryA =InventoryA - volAToSell ;

/I process the sell of Gas B

/I first, calculate the profit of gas to be sold

volBToSell = 0.0; // the amount KNOWN to be avhlafor sale
volReq = 0.0; // how much is needed to fi# tbrder’
costOfGasB = 0.0;

tgtSalesVol = changeABPerCent * bInAB * MaxTransB;

M

/I Set for gas B
/l'loop through the inventory array from oldesttorent (FIFO)
1
for(c=1;c<=GENERATION;c++)
{
if (volBToSell< tgtSalesVol)
/1 if we still need gas to fill the order
{
volReg=tgtSalesVol-volBToSell; // how much de still need for
this order?

Il check the gas bought in this period
if ( peCur->ATRIB[InventoryBBase+c] >= volReq)

{
volBToSell=tgtSalesVol; // we have the max &alale

135



I/l increment the total cost by the cost ofghas bought in
this period
costOfGasB += volReq * peCur->ATRIB[CostBidxBas];

// add in the storage cost of the gas
costOfGasB += tgtSalesVol * CostOfStorageB *
((GENERATION + 1)- c);

/l decrement the inventory

peCur->ATRIB[InventoryBBase+c] -= volReq;

/I signal that the order is filled
volReq= 0.0;

}

else // we can fill part of the order from theesgurchased this period

{

volReq -= peCur->ATRIB[InventoryBBase+c];

costOfGasB += peCur->ATRIB[InventoryBBase+c] *
peCur->ATRIB[CostBidxBase+c];

// add in the storage cost of the gas

costOfGasB += peCur->ATRIB[InventoryBBase+c] *
CostOfStorageB * ((GENERATION + 1)- ¢);

I
volBToSell+= peCur->ATRIB[InventoryBBase+c];
peCur->ATRIB[InventoryBBase+c] =0.0;

}

/I at this point the amount of gasB availabledth snd it's total cost

/l'is known

Profit B = peCur->ATRIB[PriceBidxBase+GENERATION]
costOfGasB/volBToSell;

136



CurrSellVoIBinAB =-1.0 * volBToSell ;

CashOnHand = CashOnHand + volBToSell * peCur->A[RliceBidxBase +
GENERATION];

InventoryB =InventoryB - volBToSell ;

CurrDItVIAB = -1.0 * (volAToSell + volBToSell);//

<LLLLLLLLL L L L L <

changeABPerCent *=-1.0;

break;

case MANDATORY_SELL:

/I set minimum delivery requirements
aMinReqg=aMinDelivery;
bMinReg=bMinDelivery;
aabMinReq = alnAB * abMinDelivery;
babMinReq = bInAB * abMinDelivery;

ARequiredVol = aMinDelivery + alnAB * abMinDelivg;
BRequiredVol = bMinDelivery + binAB * abMinDelivg;

/l first, calculate the profit of gas to be sold

volAToSell= 0.0; // the amount KNOWN to be avaikfor sale
volReq = 0.0; // how much is needed to fill tbeder'
costOfGasA = 0.0;

/I Set for gas A
//'loop through the inventory array from oldesturrent (FIFO)
/)
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for(c=1;c<=GENERATION;c++)
{
if (volAToSell< ARequiredVol)
/I if we still need gas to fill the order
{
volReq=ARequiredVol-volAToSell; // how much do
we still need for this order?

Il check the gas bought in this period
if ( peCur->ATRIB[InventoryABase+c] >= volReq)
{
volAToSell=ARequiredVol; // we have the max

available

/l increment the total cost by the cost ofdhs
bought in this period

costOfGasA += volReq * peCur-
>ATRIB[CostAidxBase+c];

/l add in the storage cost of the gas
costOfGasA += ARequiredVol * CostOfStorageA *
((GENERATION + 1)- c);

/I decrement the inventory

peCur->ATRIB[InventoryABase+c] -= volReq;

/I signal that the order is filled
volReq= 0.0;
}

else // we can fill part of the order from tees purchased
this period
{
volReq -= peCur->ATRIB[InventoryABase+c];
costOfGasA += peCur-
>ATRIB[InventoryABase+c] * peCur->ATRIB[CostAidxBas-c];
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/l add in the storage cost of the gas
costOfGasA += peCur-

>ATRIB[InventoryABase+c] * CostOfStorageA * ((GENERION + 1)- ¢);

1
volAToSell+= peCur-

>ATRIB[InventoryABase+c];

peCur->ATRIB[InventoryABase+c] =0.0;
}

/I at this point the amount of gasA availablesédl, and it's total cost

/l'is known

volBToSell= 0.0; // the amount KNOWN to be avhimfor sale
volReq = 0.0; // how much is needed to fill tbeder'
costOfGasB = 0.0;

/I Set for gas B
/l'loop through the inventory array from oldesttrrent (FIFO)
I
for(c=1;c<=GENERATION;c++)
{
if (volBToSell< BRequiredVol)
/I if we still need gas to fill the order

{
volReq=BRequiredVol-volBToSell; /l how much do

we still need for this order?

available

Il check the gas bought in this period
if ( peCur->ATRIB[InventoryBBase+c] >= volReq)

{

volBToSell=BRequiredVol; // we have the max
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/l increment the total cost by the cost ofdhs
bought in this period

costOfGasB += volReq * peCur-
>ATRIB[CostBidxBase+c];

/l add in the storage cost of the gas
costOfGasB += BRequiredVol * CostOfStorageB *
((GENERATION + 1)- ¢);

/I decrement the inventory

peCur->ATRIB[InventoryBBase+c] -= volReq;

/I signal that the order is filled
volReq= 0.0;
}

else // we can fill part of the order from thees purchased

this period

{

volReq -= peCur->ATRIB[InventoryBBase+c];

costOfGasB += peCur-
>ATRIB[InventoryBBase+c] * peCur->ATRIB[CostBidxBasc];

// add in the storage cost of the gas

costOfGasB += peCur-
>ATRIB[InventoryBBase+c] * CostOfStorageB * ((GENBRION + 1)- ¢);

volBToSell+= peCur->ATRIB[InventoryBBase+c];

peCur->ATRIB[InventoryBBase+c] =0.0;

}

/I if there is not enough in storage to meet ireguoents, buy some at SPOT
price, with penalty
if (@MinReq + aabMinReq) > volAToSell)

{
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// how much is still needed?

volReq = (aMinReq + aabMinReq)-volAToSell;

volAToSell=volAToSell + volReq;

/I purchase gas on the market

CashOnHand = CashOnHand - volReq * peCur-
>ATRIB[PriceAidxBase+GENERATION] * (1.0 + aLowVolPalty);

// add to inventory

InventoryA = InventoryA + volReq;

Il increase cost of gas currently being solg

costOfGasA = costOfGasA + volReq * peCur-
>ATRIB[PriceAidxBase+GENERATION] * (1.0 + aLowVolPalty);

}

if (bMinReq + babMinReq) > volBToSell)

{

volReq = (bMinReq + babMinReq)-volBToSell;

volBToSell=volBToSell + volReq;

I/ purchase gas on the market

CashOnHand = CashOnHand - volReq * peCur-
>ATRIB[PriceBidxBase+GENERATION] * (1.0 + bLowVolrPalty);

// add to inventory

InventoryB = InventoryB + volReq;

Il increase cost of gas currently being solg

costOfGasB = costOfGasB + volReq * peCur-
>ATRIB[PriceBidxBase+GENERATION] *(1.0 + bLowVolralty);

}
/I at this point the amount of gasB availableet, and it's total cost
/'is known
Profit A = peCur->ATRIB[PriceAidxBase+GENERATN) -
costOfGasA/volAToSell;
Profit B = peCur->ATRIB[PriceBidxBase+GENERATN]-
costOfGasB/volBToSell;

Profit_AB = peCur->ATRIB[PriceABidxBase+GENERADN] -
(aInAB*(costOfGasA/volAToSell) +
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bInAB*(costOfGasB/volBToSell));

CurrSellVolA = aMinDelivery;
CurrSellVolAB = abMinDelivery;
CurrSellVolB = bMinDelivery;

CashOnHand = CashOnHand + CurrSellVolA * peCur-
>ATRIB[PriceAidxBase + GENERATION] +
CurrSellVolB * peCur->ATRIB[PriceBidxBase + GENBRION] +
CurrSellVolAB* peCur-
>ATRIB[PriceABidxBase + GENERATION];

InventoryA =InventoryA -( CurrSellVolA + CurrS&blAB * alnAB);
InventoryB =InventoryB -( CurrSellVolB + CurrS¥bIAB * bInAB);

break;
} /I end switch

/I moved from here

} /I end function

double minf(double vala, double valb)
{

if (vala>valb) return valb;

return vala,;

}

double maxf(double vala, double valb)
{
if (vala>valb) return vala;

return valb;
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void getMixedProduct(

double aAvall,
double bAvail,
double net_prof_a,
double net_prof_ab,
double net_prof b,
double alnABmix,
double bInABmix,
double aMinReq,
double bMinReq,
double aabMinReq,
double babMinReq,

double *aVolSold,

double *abVolSold,
double *bVolSold)

{
int *colno = NULL, Ncol, ret =0;

double row[99];
double var[99];

Iprec *Ip2;

HINSTANCE Ipsolve;
Ipsolve = LoadLibrary("lpsolve55.dll");
if (Ipsolve == NULL)
fprintf(runlogout,"Unable to load Ipsolve shaiddatary \n\n");

else
{

fprintf(runlogout, "begin getMixedProd\n");
}
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/I[srand(time(NULL));

_make_Ip = (make_lp_func *) GetProcAddressllps, "make_Ip");
_add_constraint = (add_constraint_func *) GetPratr&ds(Ipsolve, "add_constraint");
_add_constraintex = (add_constraintex_func *) GatRddress(Ipsolve, "add_constraintex");
_delete_Ip = (delete_Ip_func *) GetProcAddress(hs, "delete_Ip™);
_get_col_name = (get_col_name_func *) GetProcAdghesolve, "get_col _name");
_get_objective = (get_objective_func *) GetProcleks(Ipsolve, "get_objective");
_get _variables = (get_variables_func *) GetProcAdd(lpsolve, "get variables");
_print_lp = (print_Ip_func *) GetProcAddress(Ipse)vprint_Ip");

_print_solution = (print_solution_func *) GetProcd@ss(lpsolve, "print_solution");
_read_LP = (read_LP_func *) GetProcAddress(Ipsdlregd_LP");
_set_add_rowmode = (set_add_rowmode_func *) GetRidess(Ipsolve,
"set_add_rowmode");

_set_col_name = (set_col_name_func *) GetProcAddpmesolve, "set_col _name");
_set_maxim = (set_maxim_func *) GetProcAddress(imsd'set_maxim");
_set_obj_fn = (set_obj_fn_func *) GetProcAddressglpe, "set_obj_fn");
_set_obj_fnex = (set_obj_fnex_func *) GetProcAdd(gssolve, "set_obj_fnex");
_set_verbose = (set_verbose_func *) GetProcAddp=sdye, "set_verbose");

_solve = (solve_func *) GetProcAddress(Ipsolve lVey;

_write_LP = (write_LP_func *) GetProcAddress(IpslVwrite LP");

/* Create LP */
Ip2 = _make_Ip(0, 3);

row[1l] = -1.0 * net_prof_a;
row[2] = -1.0 * net_prof_ab;
row[3] = -1.0 * net_prof_b;

_set_obj_fn(Ip2, row);
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/I set the constraints
_set_add_rowmode(Ilp2, TRUE);

row[1] = 1.0;
row[2] = 0.0; /* also zero elements must be prodide
row[3] = 0.0;

_add_constraint(Ip2, row, LE, aAvalil); /* constrsithe row: 1.0 * x1 <= available A */

row[1] = 1.0;
row[2] = 0.0; /* also zero elements must be prodide
row[3] = 0.0;

_add_constraint(Ip2, row, GE, aMinReq); /* constsutie row: 1.0 * x1 >= minrequired A*/

row[1] = 0.0;
row[2] = 0.0; /* also zero elements must be prodide
row[3] = 1.0;

_add_constraint(Ip2, row, LE, bAvail); /* constraghe row: 1.0 * x3 <= available B*/

row[1] = 0.0;
row[2] = 0.0; /* also zero elements must be prodide
row[3] = 1.0;

_add_constraint(Ip2, row, GE, bMinReq); /* constauthie row: 1.0 * x3 >= minrequired B*/

row[1] = 1.0;

row[2] = alnABmix;

row[3] = 0.0;

_add_constraint(Ip2, row, LE, aAvail); /* 1*x1 +réABMix*x2 cannot contain more A than is
aAvail*/

row[1] = 0.0;

row[2] = alnABmix;

row[3] = 0.0;

_add_constraint(Ip2, row, GE, aabMinReq); /* x2ABMix * x2 cannot be less the Avol in

mandatory minimum AB*/
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row[1] = 0.0;

row[2] = bInABmix;

row[3] = 1.0;

_add_constraint(Ip2, row, LE, bAvail); /*x2 (1#ABMix) * X2 cannot contain more B than
is bAvail*/

row[1] = 0.0;
row[2] = bInABmix;
row[3] = 0.0;

_add_constraint(Ip2, row, GE, babMinReq); /*x2 ABMix * x2 cannot be less the Bvol in

mandatory minimum AB*/

_set_add_rowmode(Ilp2, FALSE);

1
Ncol=3;

/* | only want to see important messages on scvégle solving */
/I _set verbose(lp2, IMPORTANT);

/* Now let Ipsolve calculate a solution */
ret = _solve(lp2);
if(ret == OPTIMAL)

ret=0;
else
ret=5;
if(ret == 0)
{

/* a solution is calculated, now lets get sawmults */

/* objective value */
Ilprintf("Objective value: %f\n", _get_objeati(ip2));

[* variable values */
/l_get_variables(Ip2, row);

146



Iffor(j = 0; j < Ncol; j++)
Il printf("%s: %f\n", _get_col_name(Ip2, j13, row(j]);

_get_variables(lp2, var);

Ifor (j=0; j<3;j++)

Il printf('var %i = %fn",j,var[j]);
*aVolSold =var[0];

*abVolSold =var[1];

*bVolSold =var[2];

if(colno !'= NULL)

free(colno);

if(Ip2 '= NULL) {
[* clean up such that all used memory by Ipsas/freed */
_delete_Ip(Ip2);

}

return;

}
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Appendix 9: AWESIM Model Definition

[CONTROL FILE]
GEN,"SNTEST2","SNTEST2",,1,YES,YES,5;
LIMITS,800,60,5,800,10,10,999;
INITIALIZE,0.0,999999,YES,,YES;
EQUIVALENCE, {{CashOnHand,ATRIB[1]},
{CurrSellVolA,ATRIB[2]},
{CurrSellVolAB,ATRIBJ[3]},
{CurrSellVoIB,ATRIB[4]},
{InventoryA,ATRIBI[5]},
{InventoryB,ATRIBJ[6]},
{MaxTransA,ATRIB[7]},
{MaxTransB,ATRIB[8]},
{MaxVolA,ATRIB[9]},
{MaxVolB,ATRIB[10]},
{Profit_A,ATRIB[11]},
{Profit_AB,ATRIB[12]},
{Profit_B,ATRIB[13]},
{alInAB,ATRIB[14]},
{bInAB,ATRIB[15]},
{RVAL_PROFIT,ATRIB[16]},
{CurrBuyVolA,ATRIB[17]},
{CurrBuyVoIB,ATRIB[18]},
{changeAPerCent,ATRIB[19]},
{changeABPerCent,ATRIB[20]},
{changeBPerCent,ATRIB[21]},
{CurrADeltaVol,ATRIB[22]},
{CurrBDeltaVol, ATRIB[23]},
{CurrABDeltaVol,ATRIB[24]},
{Generation,LTRIB[1]},
{CurrentAction,STRIBJ[1]},
{History,STRIBJ[2]},
{HistoryCh,STRIB[5]},
{HistoryNu,STRIB[6]},
{BestHistory,SZ[1]},
{BestHistoryCh,SZ[2]},
{BestHistoryNu,SZ[3]},
{BestProfit, XX[1]},
{CostAidx,LL[01]},
{CostAidxBase,LL[02]},
{CostAidxMax,LL[03]},
{CostAidxMaxG,LL[04]},
{CostBidx,LL[05]},
{CostBidxBase,LL[06]},
{CostBidxMax,LL[07]},
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{CostBidxMaxG,LL[08]},
{Horizon,LL[09]},
{PriceABidx,LL[11]},
{PriceABidxBase,LL[12]},
{PriceABidxMax,

LL[13]},
{PriceABidxMaxG,LL[14]},
{PriceAidx,LL[15]},
{PriceAidxBase,LL[16]},
{PriceAidxMax,LL[17]},
{PriceAidxMaxG,LL[18]},
{PriceBidx,LL[19]},
{PriceBidxBase,LL[20]},
{PriceBidxMax,LL[21]},
{PriceBidxMaxG,LL[22]},
{ReadResult,LL[23]},
{InventoryABase,LL[24]},
{InventoryBBase,LL[25]},
{CurrentScenerio,LL[26]},
{ScenerioCtr,LL[271},
{AvgCostOflnvA,LL[30]},
{AvgCostOfinvB,LL[31]},
{variationMax,LL[32]},
{processType,LL[33]},
{clockTime,LL[34]},
{clockTimel,LL[35]},
{clockTime2,LL[36]},
{clockTime3,LL[37]},
{fReadResult,XX[2]},
{CostOfStorageA,XX[3]},
{CostOfStorageB,XX[4]},
{PRUNE,0},
{NO_PRUNE,1},
{SCENERIO,LTRIB[2]},
{nextAction,LTRIB[3]},
{variationNumber,LTRIB[4]},
{rand02Action,LTRIB[5]},
{RESULTFILE,STRIB[4]},
{STACK,LL[10]},
{RVAL_ACTION,STRIB[3]},
{cVaryPriceCostTest,-1},
{cVaryPriceCostNone,0},
{cVaryPriceCostNorm,1},
{cFileLoadTest,0},
{cFileLoadLocal,1},
{cFileLoadGlobal,2},
{cFileLoadG2L,3},
{cFileLoadlL2G,4},
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{cTrue,1},

{cFalse,0},
{cTypeRecursive,1},
{cTypeRandom,2},
{cTypeRand02,3},
{Prices_A_File,STRIB[10]},
{cTimerGet,

10},

{cTimerSet,11},
{cRand_A,13},
{cRand_AB,14},
{cRand_B,15}};

INTLC {{ScenerioCtr,0},
{CurrentScenerio,1}};
NETWORK,READ;

FIN;

[NETWORK FILE]

[RECUR SUBNETWORK]

;DBF file created with Version 4
VSN,SNRECURL1,,,,,,,,,,{30,150};

NodeArrives: ENTERVSN,ProcessSVN,1,,,,,,,,,{70,300}

ACTIVITY,,,,,i2,4,,.};

Start: GOON,1,,,,,,,,,,{140,300};

ACTIVITY,,,,,,,,{4.6,,,170,300};

SNRECUR1_WRITE_7: WRITE," history_stack_init.txt",'8'Stack = %d \tenter: gen: %d

%s InvA: %f InvB:

%fn" {STACK,GENERATION,CURRENTACTION,INVENTORYA,INNENTORYB},1,,,,,.{

240,300},

ACTIVITY,1,,,,,,..,{6,8,,.};

DirectAction: GOON,3,,,,,,,,,,{430,300};
ACTIVITY,,,((CurrentAction=="B")||(Currentétion=="*")),,,,,,,{8,12,,,};
ACTIVITY,12,0,((CurrentAction=="H") ||

(CurrentAction=="*")),"SNRECUR1_ASSIGN_3",,,,,,{8%,.};
ACTIVITY,13,0,((CurrentAction=="S") ||

(CurrentAction=="*")),"SNRECUR1_GOON_3",,,,,,{8,79470,420,570,420};

SNRECUR1_WRITE_6: WRITE," "history_stack_init.txt",'8'Stack = %d \tpre-buy: gen:

%d\n",{STACK,GENERATION},1,,,,,,{540,230};

ACTIVITY,,,,,,»{12,14,,.};

GOON,2,,,,,1,,,,{740,230};

ACTIVITY,,0,((CurrentAction=="B") || (CurrgAction=="*")) && ((InventoryA +
MaxTransA) <= ((Horizon - GENERATION) * MaxTransA®& ((InventoryB + MaxTransB)
<= ((Horizon - GENERATION) * MaxTransB))&& ((InveryA + MaxTransA) <= MaxVolA)
&& ((InventoryB + MaxTransB) <= MaxVolB),,,,,,,{14/7,,,810,170,790,130,850,130};
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ACTIVITY,,0,((InventoryA + MaxTransA) > ((bfizon - GENERATION) *
MaxTransA))||((InventoryB + MaxTransB) > ((HorizeGGENERATION) *
MaxTransB))||((InventoryA + MaxTransA) > MaxVolA)([InventoryB + MaxTransB) >
MaxVolB),"SNRECUR1_ASSIGN_2",,,,,,{14,57,,,1000,230
calcBuyVols: ASSIGN, {{fReadResult,USERF(7)}},1,,,,,{880,130};

ACTIVITY,,110,,,{17,19,,.};

SNRECUR1_ASSIGN_6: ASSIGN,{{STACK,STACK-1}},1,,,,,,{980,130};

ACTIVITY,,,ssy,,,{19,21,,.};

SNRECUR1_WRITE_10: WRITE,"history_stack_init.txt'E%,"Stack = %d \tpost-buyB: gen:
%d\n" {STACK,GENERATION},1,,,,,,{1090,130};

ACTIVITY,,,,111:,,{21,23,,.}

PostBuy?2:
ASSIGN,{{Generation,Generation+1},{History,strcat@tory,"B")},{History,strcat(History,"[a]
"} {History,strcat(History,itoa(nint(CurrBuyVolA))},{History,strcat(History,"[b]")},{History,s
trcat(History,itoa(nint(CurrBuyVolB)))},{HistoryClstrcat(HistoryCh,"B")},{HistoryNu,strcat(
HistoryNu,itoa(nint(CurrBuyVolA)))},{HistoryNu,strat(HistoryNu,",0,")},{HistoryNu,strcat(H
istoryNu,itoa(nint(CurrBuyVolB)))},{HistoryNu,strdgHistoryNu,",")}},4,,,,,,,,,{1250,130};

ACTIVITY,,0,Generation <=Horizon,"BuyBuy;,,,{23,28,,,1670,190};

ACTIVITY,,,Generation <= Horizon,"BuyHold?},,.{23,30,,,1690,250};

ACTIVITY,,,Generation <= Horizon,"BuySel};,,,{23,32,,,1660,350};

ACTIVITY,,,Generation > Horizon,"SNRECUR10®N_2",,,,,,{23,34,,,1430,350};
BuyBuy: ASSIGN,{{CURRENTACTION,"B"},{STACK,STACK+1}},1,,,,,,,,,{1790,190};

ACTIVITY,101,,,"Start",,,,,,{28,4,,,1870,7040,70,110,70,120,230};

BuyHold: ASSIGN,{{CURRENTACTION,"H"},{STACK,STACK+1}},1,,,,,,,,,{1810,250};

ACTIVITY,102,,"Start",,,,,,{30,4,,,1890,6000,60};

BuySell: ASSIGN {{CURRENTACTION,"S"},{STACK,STACK+1},1,,,,,,,,,{1820,350};

ACTIVITY,103,,"Start",,,,,,{32,4,,,1900,380,50},

SNRECUR1_GOON_2: GOON,2,,,,,,,,,,{1450,490};

ACTIVITY,,,11111,,{34,36,,,};

End_of Cycle: ASSIGN {{fReadResult,USERF(8)}},1,,.,{1460,460};

ACTIVITY,,,,111,,,{36,38,,.};

GOON,2,,,,,,:,,,{1540,520};

ACTIVITY,,,CashOnHand>=BestProfit,,,,,,,{34,,,1580,490};

ACTIVITY,,,, "writehistory",,,,,,{38,54,,,1%0,580};

PREPAREEXIT:

ASSIGN,{{BESTPROFIT,MAX(BESTPROFIT,CASHONHAND)} {RVL_ACTION,HISTO
RY}L{RVAL_PROFIT,MAX(BESTPROFIT,CASHONHAND)} {BestHstory,History} {BestH
istoryCh,HistoryCh},{BestHistoryNu,HistoryNu}},1,,,,,,,{1590,490};

ACTIVITY,1999,,,,,,,.,{41,43,,.};

BP: COLCT,1003,BESTPROFIT,"BestProfit_SVN",20,0,000,,,{1810,490};

ACTIVITY,,,,111,,,{43,45,,.};

SNRECUR1_WRITE_9: WRITE," history_stack_init.txt",'8'Stack = %d \tenter: gen: %d
%s\n" {STACK,GENERATION,CURRENTACTION},1,,,,,,{194@90};

ACTIVITY,, stack<=-2,"SNRECUR1_ASSIGN_1",,{45,48,,,2100,490},

ACTIVITY,, stack = -2,"SNRECUR1_TERMINATHR",,,,,,{45,53,,.};
SNRECUR1_ASSIGN_1:
ASSIGN,{{BESTPROFIT,MAX(BESTPROFIT,CASHONHAND)} {RVL_ACTION,HISTO
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RY}{RVAL_PROFIT,MAX(BESTPROFIT,CASHONHAND)},{readResult, USERF(cTimerG
et)},{ClockTime2,ClockTime-ClockTimel}},1,,,,,,,,4270,490};
ACTIVITY,,,,,,»»{48,50,,.};
SNRECUR1_WRITE_8: WRITE,"results.txt",YES,"scen:,
%d,%d,%f,%s,%s%f\n", { CURRENTSCENERIO,ClockTime2 Jryarofit,BestHistoryCh,BestH
istoryNu,AinAb},1,,,,,,{2490,490};
ACTIVITY,,,,111,1,{50,52,,.};
RETURNVSN,BESTPROFIT,1,,,,,,,,,{2840,490};
SNRECUR1_TERMINATE_1: TERMINATE,INF,,,,,,,,,,{209620};
writehistory: WRITE,"history_stack_init.txt",YES tack = %d\t Cash=%f \thistory: %s
\tinvA= %f InvB=
%fn",{STACK,CASHONHAND,HISTORY,INVENTORYA,INVENTORYB},1,,,,,,{1710,580
%
ACTIVITY,,,,11:1,{54,56,,.};
TERMINATE,INF,,,,,,,,,,{1950,580};
SNRECUR1_ASSIGN_2: ASSIGN,{{STACK,STACK-1}},1,,,,,,{1030,250};
ACTIVITY,,,1111::,{57,59,,.};
SNRECUR1_WRITE_1: WRITE,"history_stack_init.txt", '8 'Stack = %d \tpost-buyA prune:
gen: %d\n"{STACK,GENERATION},1,,,,,,{1130,250};
ACTIVITY,, stack != -2,,,,,,,{59,62,,.};
ACTIVITY,, stack == -2,"SNRECUR1_ASSIGN_},.{59,48,,,1860,420,2000,420};
TERMINATE,INF,,,,,,,,,,{1320,250};
SNRECUR1_ASSIGN_3: ASSIGN,{{STACK,STACK-1}},1,,,,,,{610,300};
ACTIVITY,,,,1:,:,{63,65,,.};
SNRECUR1_GOON_1: GOON,2,,,,,,,,,,{740,300};
ACTIVITY,,,((InventoryA <= ((Horizon- GENERTION) * MaxTransA)) &&
(InventoryB <= ((Horizon- GENERATION) * MaxTransB)),,,,,{65,68,,,};
ACTIVITY,,,((InventoryA > ((Horizon- GENERAION) * MaxTransA)) || (InventoryB >
((Horizon- GENERATION) *
MaxTransB))),"SNRECUR1_WRITE_4",,,,,,{65,75,,,77808770,360};
SNRECUR1_WRITE_3: WRITE," history_stack_init.txt",' B 'Stack= %d \tpost-hold : gen:
%d\n",{STACK,GENERATION},1,,,,,,{1110,300};
ACTIVITY,,,,,,».,{68,70,,.};
ExecuteHold:
ASSIGN,{{HISTORY,STRCAT(HISTORY,"H")},{GENERATION,GENERATION+1} {Histo
ryCh,strcat(HistoryCh,"H")},{HistoryNu,strcat(HistgNu,"0,0,0,"}},4,,,,,,,,,{1260,300};
ACTIVITY,31,,Generation <=HORIZON,"BuyBuy,,,,{70,28,,,1670,190},
ACTIVITY,32,,GENERATION<=HORIZON,"BuyHold},,,,{70,30,,,1690,250};
ACTIVITY,33,, GENERATION<=HORIZON,"BuySell',,,.{70,32,,,1660,350};
ACTIVITY,,,Generation > Horizon,"SNRECUR10®N_2",,,,,,{70,34,,,1410,360};
SNRECUR1_WRITE_4: WRITE," history_stack_init.txt",'8'Stack= %d \tpost-hold (prune) :
gen: %d\n"{STACK,GENERATION},1,,,,,,{880,360};
ACTIVITY,, stack != -2,,,,,,,{75,78,,.};
ACTIVITY,,,stack == -2,"SNRECUR1_ASSIGN_1,,,{75,48,,,1840,420,2000,420};
TERMINATE,INF,,,,.,,,,,{1230,360};
SNRECUR1_GOON_3: GOON,1,,,,,,,,,,{600,420};
ACTIVITY,,,(InventoryA> .0001 && InventoryB.0001),,,,,,,{79,82,,.};
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ACTIVITY,,,(InventoryA< .0001 ||
InventoryB<.0001),"SNRECUR1_ASSIGN_4",,,,,,{79,9700,470,870,800};
CalcSellQtys: ASSIGN,{{fReadResult,USERF(2)}},1,.,.,{760,420};
ACTIVITY,,,,,,,,,{82,84,,,840,420},
ExecuteSell:
ASSIGN,{{HISTORY,strcat(HISTORY,"S")} {HISTORY,strat(HISTORY,"[a])},{HISTORY
,strcat(HISTORY, ,itoa((nint(currSellVolA))))}{HISTRY,strcat(HISTORY,"[ab]")},{HISTOR
Y,strcat(HISTORY,itoa(nint(currSellVolAB)))},{HIST®RY,strcat(HISTORY,"[b]")},{HISTOR
Y,strcat(HISTORY,itoa(nint(currSellVolB)))},{HistorCh,strcat(HistoryCh,"S")},{HistoryNu,st
rcat(HistoryNu,itoa(nint(-
1.0*CurrSellVolA)))},{HistoryNu,strcat(HistoryNu,™)},{HistoryNu,strcat(HistoryNu,itoa(nint(
1.0*CurrSellVolAB)))},{HistoryNu,strcat(HistoryNu,")},{HistoryNu,strcat(HistoryNu,itoa(nin
t(-1*CurrSellVolB)))},{HistoryNu,strcat(HistoryNu,")}},2,,,,..,,,{880,440};
ACTIVITY,,,,,,,,,{84,87,,,1140,420},
ACTIVITY,,,,"SNRECUR1_WRITE_2",,,,,,{84,94};
SNRECUR1_ASSIGN_7: ASSIGN,{{STACK,STACK-1}},1,,,,,,{1170,420};
ACTIVITY,,,ss,,,,{87,89,,.};
PostSell: ASSIGN {{GENERATION,GENERATION+1}},4,,,,,,{1270,420},
ACTIVITY,41,, GENERATION<=HORIZON,"BuyBuy",,,,{89,28,,,1670,190};
ACTIVITY,42,,GENERATION<=HORIZON,"BuyHold},,,,{89,30,,,1690,250};
ACTIVITY,43, GENERATION<=HORIZON,"BuySell,,,,,{89,32,,,1660,350};
ACTIVITY,,,Generation > Horizon,"SNRECUR10®N_2",,,,,,{89,34,,,1420,450};
SNRECUR1_WRITE_2: WRITE,"history_stack_init.txt",'8'stack = %d post-sell gen: %d
Current Action: %s History= %s Value=%f InvA&f InvB: %f CurrSellVolA=%f
CurrSellVolAB=%f
CurrSellVolB=%f\n" {stack, GENERATION,CURRENTACTIOMISTORY,CASHONHAND,
INVENTORYA,INVENTORYB,CurrSellVolA,CurrSellVolAB,CurSellVolB},1,,,,,,{1490,710
¥
ACTIVITY,,,11111,,{94,96,,.};
TERMINATE,INF,,,,,,,,,,{2020,710};
SNRECUR1_ASSIGN_4: ASSIGN,{{STACK,STACK-1}},1,,,,,,{930,800};
ACTIVITY,,,11111,,{97,99,,.};
SNRECUR1_WRITE_5: WRITE, "history_stack_init.txt",' 8 'Stack = %d \tpost-sell: prune
gen: %d history: %s\n",{STACK,GENERATION,HISTORVS,,,,,,{1100,800};
ACTIVITY,,,stack== -
2,"SNRECUR1_ASSIGN_1",,,,,,{99,48,,,1290,790,2080,2080,560},
ACTIVITY,, stack != -2,,,,,,,{99,102,,,};
TERMINATE,INF,,,,,,,,,,{2400,800};

[RANDO1 SUBNETWORK]

;:DBF file created with Version 4
VSN,SNRANDO1,,,,,,,,,,{40,30};

NodeArrives: ENTERVSN,ProcessSVN,1,,,,,,,,,{50,300}
ACTIVITY,,,,,i2,4,,.};

Start: GOON,1,,,,,,,,,,{90,300};
ACTIVITY1,,,,,,..,{4.,6,,.};

153



ASSIGN,{{nextAction,nint(UNFRM(1,3,7))}},1,,,,,,,{340,300};
ACTIVITY,,,nextAction=-1,,,,,,,{6,11,,,45230};
ACTIVITY,,,nextAction==2,"BuyHold",,,,,.{63,,.};
ACTIVITY,,,nextAction==3,"BuySell",,,,, {&0,,,450,420};
ACTIVITY,,,,"SNRANDOM_WRITE_2",,,,,,{6,71,440,460,490,480},
BuyBuy: ASSIGN,{{CURRENTACTION,"B"}},1,,,,.,,,{490230};
ACTIVITY,,,,"SNRECUR1_WRITE_6",,,,,,{11,13};
SNRECUR1_WRITE_6: WRITE,"history_stack_init_rnd‘t{¥ES,"variationNumber %d
\tbuy: \tgen: %d\t nextAction=%d\t InvA: %f \t ViB:
%f\n" {variationNumber, GENERATION,nextAction,InvestyA,InventoryB},1,,,,,,{620,230};
ACTIVITY,,,,,,»{13,15,,.};
calcBuyVols: ASSIGN,{{fReadResult,USERF(7)}},1,,,,,{900,230};
ACTIVITY,,,,,,,»{15,17,,.};
PostBuy?2:
ASSIGN,{{Generation,Generation+1},{History,strcat@tory,"B")},{HistoryCh,strcat(HistoryC
h,"B")},{HistoryNu,strcat(HistoryNu,itoa(nint(CurrByVolA)))},{HistoryNu,strcat(HistoryNu,"
,0,"Y 1L {HistoryNu,strcat(HistoryNu,itoa(nint(CurrBu/olB)))},{HistoryNu,strcat(HistoryNu,",")
}2,0000:0,{1200,230};
ACTIVITY,,0,Generation <=Horizon,"SNRANDOMGOON_1",,,,,,{17,20,,,1500,240};
ACTIVITY,,,Generation > Horizon,"SNRECUR10®N_2",,,,,,{17,22,,,1460,420};
SNRANDOM_GOON_1: GOON,1,,,,,,,,,,{1570,260};
ACTIVITY,,,,"Start",,,,,,{20,4,,,1660,260660,50,60,50};
SNRECUR1_GOON_2: GOON,3,,,,,,,,,,{1470,490};
ACTIVITY,,,,11:1{22,24,,.};
End_of_Cycle: ASSIGN,{{fReadResult,USERF(8)}},1,...{1520,490};
ACTIVITY,,,,11:1,{24,26,,.};
writehistory: WRITE,"history_stack_init_rnd.txt", Y& "variationNumber %d\t GEN
%d\tCash=%f \thistory: %s \tinvA= %f InvB=
%f\n" {variationNumber,generation, CASHONHAND,HISTGRNVENTORYA,INVENTOR
YB},1,,,,,,{1650,660};
ACTIVITY,,,,,,...»{26,28,,,1920,660,192080680,600,1610,490};
GOON,2,,,,,,,,,,{1630,490};
ACTIVITY,,,CashOnHand>BestProfit,,,,,,,{38,,,.};

ACTIVITY,, CashOnHand<=BestProfit,"SNRANDOM_GOON,2",,{28,41,,,1700,560,2730,

560};

PREPAREEXIT:

ASSIGN,{{BESTPROFIT,MAX(BESTPROFIT,CASHONHAND)} {R\AL_ACTION,HISTO

RY}{RVAL_PROFIT,MAX(BESTPROFIT,CASHONHAND)},{BestHstory,History},{BestH

istoryCh,HistoryCh},{BestHistoryNu,HistoryNu}},1,,,,,,,{1710,490};
ACTIVITY,1999,,,,,,..,{31,33,,.};

BP: COLCT,1003,BESTPROFIT,"BestProfit_SVN",20,0,000,,,{1940,490};
ACTIVITY,,,,,,,,{33,35,,.};

SNRECUR1 _WRITE_9: WRITE," history_stack_init_rnd'tMES,"variationNumber %d \tSet

BestProfit: gen: %d

%s\n",{variationNumber, GENERATION,CURRENTACTION},1,,,{2100,490};
ACTIVITY,,,,"SNRECUR1_ASSIGN_1",,,,,,{35,372270,490},
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SNRECUR1_ASSIGN_1:
ASSIGN,{{BESTPROFIT,MAX(BESTPROFIT,CASHONHAND)} {R\AL_ACTION,HISTO
RY}{RVAL_PROFIT,MAX(BESTPROFIT,CASHONHAND)},{readResult,USERF(cTimerG
et)},{ClockTime2,ClockTime-ClockTimell}},1,,,,,,,,4350,490};

ACTIVITY,,,111:1,{37,39,,,};

SNRANDOM_WRITE_1: WRITE,"results_random.txt",YES;&n:
%d,ct=%d,ct1=%d,ct2=%d,%d,%f,%s,%s\n",{CurrentScen€lockTime,ClockTimel,ClockTi
me2,variationNumber,rval_profit,BestHistoryCh,BeistidryNu},1,,,,,,{2610,490};

ACTIVITY,,,,,,»{39,41,,.};

SNRANDOM_GOON_2: GOON,1,,,,,,,,,,{2810,490};

ACTIVITY,, variationNumber<variationMax,,.{41,44,,,2790,400},

ACTIVITY,, variationNumber==variationMax, MRECUR1_WRITE_8",,,,,,{41,50,,.};

GOON,1,,,,,,,,,,{2830,400};

ACTIVITY,,,,11::,{44,46,,.};

ASSIGN,{{variationNumber,variationNumber
+1},{history,""},{CashOnHand,0},{historyCH,""},{historyNU,""},{Generation,1}},1,,,,,,,,,{288
0,400},

ACTIVITY,,,,1:,:,{46,48,,.};

Resetlnventory: ASSIGN, {{fReadResult,USERF(9)}},1...,,{3050,400};

ACTIVITY,,,,"SNRANDOM_GOON_1",,,,,,{48,20,,,3160,403160,300,2710,300,2710,380,25
45,380,2380,380,1860,380,1560,380};
SNRECUR1 WRITE_8: WRITE,"results.txt",YES,"scen:,
%d,%d,%f,%s,%s%f\n", { CURRENTSCENERIO,ClockTime2 Jryarofit,BestHistoryCh,BestH
istoryNu,AinAb},1,,,,,,{2960,490};
ACTIVITY,,,,111:1,{50,52,,.};
RETURNVSN,BESTPROFIT,1,,,,,,,,,{3120,490};
BuyHold: ASSIGN,{{CURRENTACTION,"H"}},1,,,11::,,{490,300};
ACTIVITY,,,,,,,,{53,55,,.};
SNRECUR1_WRITE_3: WRITE," history_stack_init_rnd‘{¥ES,"variationNumber %d\thold
: gen: %d\t nextAction=%d\n" {variationNumber, GERATION,nextAction},1,,,,,,{620,300};
ACTIVITY,,,,,,,,{55,57,,.};
ExecuteHold:
ASSIGN,{{HISTORY,STRCAT(HISTORY,"H")},{GENERATION,GENERATION+1} {Histo
ryCh,strcat(HistoryCh,"H")},{HistoryNu,strcat(HistgNu,"0,0,0,"}},2,,1111,,,{1190,310};
ACTIVITY,31,,Generation
<=HORIZON,"SNRANDOM_GOON_1",,,,,,{57,20,,,1500,260}
ACTIVITY,,,Generation > Horizon,"SNRECUR10®N_2",,,,,,{57,22,,,1450,430};
BuySell: ASSIGN,{{CURRENTACTION,"S"}},1,,,,,,,,,{49,420};
ACTIVITY,13,,,"SNRECUR1_GOON_3",,,,,,{60,6590,420};
SNRECUR1_GOON_3: GOON,1,,,,,,,,,,{650,420};
ACTIVITY,,,,,,,{62,64,,.};
CalcSellQtys: ASSIGN, {{fReadResult,USERF(2)}},1,.,.{790,420};
ACTIVITY,,,,..,::,{64,66,,,920,420,920,5300,530,770,600};
SNRECUR1_WRITE_2: WRITE,"history_stack_init_rnd‘tMES,"variationNumber
%d\tsell(post) nextAction=%d\tgen: %d Currentidn: %s History= %s Value=%f InvA=
%f InvB: %f CurrSellVolA=%f CurrSellVolAB=%f
CurrSellVolB=%f\n" {variationNumber,nextAction, GENEATION,CURRENTACTION,HIST
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ORY,CASHONHAND,INVENTORYA,INVENTORYB,CurrSellVolA,QirrSellVolAB,CurrSel
IvVolB},1,,,,,,{830,600};

ACTIVITY,,,,.1,,,{66,68,,,1430,600,143083100,530,1100,420};
ExecuteSell:
ASSIGN,{{HISTORY,strcat(HISTORY,"S")},{HistoryCh,stat(HistoryCh,"S")},{HistoryNu,st
rcat(HistoryNu,itoa(nint(-
1.0*CurrSellVolA)))},{HistoryNu,strcat(HistoryNu,™)},{HistoryNu,strcat(HistoryNu,itoa(nint(
1.0*CurrSellVolAB)))},{HistoryNu,strcat(HistoryNu,")},{HistoryNu,strcat(HistoryNu,itoa(nin
t(-
1*CurrSellVolB)))},{HistoryNu,strcat(HistoryNu,","),{Generation,Generation+1}},3,,,,,,,,,{11
30,420}

ACTIVITY,41,,GENERATION<=HORIZON,"SNRANDOM_GOON_1,.,,,{68,20,,,1500,280
2
ACTIVITY,,,Generation > Horizon,"SNRECUR10®N_2",,,,,,{68,22,,,1440,450};
SNRANDOM_WRITE_2: WRITE,"history_stack_init_rnd.tXYES,"variationNumber:
%d\tbad nextActionValue: gen: %d\t
nextAction=%d\n",{variationNumber, GENERATION,next#an},1,,,,,,{530,480};
ACTIVITY .10, {71,73,,.};
TERMINATE,INF,,,,,,,,,,{780,480};

[RANDO2 SUBNETWORK]
;DBF file created with Version 4
VSN,SNRANDO2,,,,,,,,,{40,30};
NodeArrives: ENTERVSN,ProcessR02,1,,,,,,,,,{50,300}
ACTIVITY ,,,100000:{2,4,,. 1
Start: GOON,1,,,,,,,,,,{90,300};
ACTIVITY,1,,,,,.,,,{4,6,,,130,300,130,240};
ASSIGN,{{rand02Action,0},{changeAPerCentutfUNFRM(-
4,4,7)*.25}},1,,,,,,,,,{150,240};
ACTIVITY,,,,,1111,{6,8,,.};
SNRANDO02_WRITE_1: WRITE," history_stack_init_rnd02't YES,"VarNo: %d gen %d
APct= %8.3f " {variationnumber,generation,chafiBercent},1,,,,,,{320,240};
ACTIVITY,,,111::{8,10,,.};
ASSIGN, {{fReadResult, USERF(cRand_A)}},1,....{450,240};
ACTIVITY,,,,.s1,1,{10,12,,,590,240,590,26®0,260,140,260,140,280};
ASSIGN,{{changeBPerCent,nint(UNFRM(-4,4726}},1,,,,,,,,,{150,280};
ACTIVITY,,,,,,,»{12,14,,.};
SNRANDO2_WRITE_2: WRITE," history_stack_init_rnd0@t{ YES,"BPct= %8.2f
" {changeBPercent},1,,,,,,{320,280};
ACTIVITY,,,,,,,»{14,16,,.};
ASSIGN,{{fReadResult,USERF(cRand_B)}},1,,..,{450,280};
ACTIVITY,,,,..s:1{16,18,,,590,280,590,30@0,300,140,320};
ASSIGN {{changeABPerCent,nint(UNFRM(-4,00725}},1,,,.,,,{150,320};
ACTIVITY,,,,::,1,{18,20,,.};
SNRANDO2_WRITE_3: WRITE," history_stack_init_rnd0@'t YES,"ABPct= %8.2f
currDeltavVolAB %8.2f ",{changeABPercent,currABE#Vvol},1,,,,,,{320,320};
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ACTIVITY,,,,111,,,{20,22,,.};

ASSIGN,{{fReadResult,USERF(cRand_AB)}},1,,...{490,320};

ACTIVITY,,,,1100{22,24,,.};
SNRANDO2_WRITE_4: WRITE,"history_stack_init_rnd02'tYES," dItA= %8.3f dItAB=
%8.3f dItB= %8.3f \n",{CurrADeltaVol,CurrABO&Vol,CurrBDeltaVol},1,,,,,,{620,320};

ACTIVITY,,,,.,,,,{24,26,,,780,320,780,380,360,90,360,90,430};
SNRECUR1_WRITE_6: WRITE,"history_stack_init_rndG&'tYES,"varNo: %d gen %d
Apct %8.2f Bpct %8.2f ABpct %8.2f act %d DItA®2f DItAB %8.2f DItB %8.2f invA
%8.2f
invB%38.2f\n" {variationNumber,generation,change A¢&t,changeBPercent,changeABPercent,
rand02Action,CurrADeltaVol,CurrABDeltaVol,CurrBDalol,InventoryA, InventoryB},1,,,,,.{
170,430},

ACTIVITY,,,,.,1s,,{26,28,,,580,430,550,4930,510,550,510};
SNRECUR1_WRITE_2: WRITE," history_stack_init_rnd_pi&t",YES,"var %d gen: %d
Act=%d $$=%8.2f InvA= %8.2f InvB: %8.2f His%s
\n" {variationNumber, GENERATION,rand02Action, CASH®MND,INVENTORYA,INVEN
TORYB,HISTORY},1,,,,,,{580,510};

ACTIVITY,,,,,,,,,,{28,30,,,1190,510,1190.800,420,800,300};
SNRANDO2_ASSIGN_1:
ASSIGN,{{Generation,Generation+1},{HistoryNu,str¢atistoryNu,itoa(nint(CurrADeltaVol)))
}{HistoryNu,strcat(HistoryNu,",")},{HistoryNu,strat(HistoryNu,itoa(nint(CurrABDeltaVol)))}
{HistoryNu,strcat(HistoryNu,",")},{HistoryNu,stradgHistoryNu,itoa(nint(CurrBDeltaVol)))},{
HistoryNu,strcat(HistoryNu,",")}},1,,,,,.,,,{940,31;

ACTIVITY,,,ss,,,,,{30,32,,.};

GOON,1,,,,,,,,,,{1180,300};

ACTIVITY,,,generation==99999,,,,,,,{32,36;,

ACTIVITY,41,,GENERATION<=HORIZON,"SNRANDOM_GOON_1;,,,,{32,39,,,1330,300
¥
ACTIVITY,,,Generation > Horizon,"SNRECUR1O®N_2",,,,,,{32,41,,,1270,330};
ExecuteSell: ASSIGN,{{Generation,Generation+1},{HISRY,strcat(HISTORY,"
"}1{HISTORY,strcat(HISTORY itoa(rand02Action))} {HSTORY ,strcat(HISTORY,"[a]")},{H
ISTORY,strcat(HISTORY,itoa((nint(currADeltaVol)))HISTORY ,strcat(HISTORY,"[ab]")},
{HISTORY,strcat(HISTORY,itoa(nint(currABDeltaVol))XHISTORY, ,strcat(HISTORY,"[b]")
L{HISTORY,strcat(HISTORY,itoa(nint(currBDeltaVol)},{HistoryNu,strcat(HistoryNu,itoa(ni
nt(-
1.0*CurrADeltaVol)))},{HistoryNu,strcat(HistoryNu,™},{HistoryNu,strcat(HistoryNu,itoa(nin
t(-
1.0*CurrABDeltaVol)))},{HistoryNu,strcat(HistoryNu,")},{HistoryNu,strcat(HistoryNu,itoa(n
int(-1*CurrBDeltaVol)))},{HistoryNu,strcat(HistoryM,",")}},2,,,.s.,,,{1220,90},
ACTIVITY,,,,111,,,{36,38,,.};
TERMINATE,INF,,,,.,,,,,{1480,70};
SNRANDOM_GOON_1: GOON,1,,,,,,,,,,{1500,300};
ACTIVITY,,,,"Start",,,,,,{39,4,,,1530,300680,210,60,210,60,270},
SNRECUR1_GOON_2: GOON,1,,,,,,,,,,{1470,490};
ACTIVITY,,,,»,,,{41,43,,.};
End_of_Cycle: ASSIGN,{{fReadResult,USERF(8)}},1,.,.{1500,490};
ACTIVITY,,,,,s,,,,{43,45,,,1600,490,1600/53460,530,1460,680};
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writehistory: WRITE,"history_stack_init_rnd02.tXYES,"End of Hor: varNo= %d\t GEN
%d\tCash=%f \thistory: %s \tinvA= %f InvB=
%f\n" {variationNumber,generation, CASHONHAND,HISTGRNVENTORYA,INVENTOR
YB}.1,,,,,,{1500,680};
ACTIVITY,,,,.ss,:,{45,47,,,1760,680,176064610,640,1610,490},
GOON,2,,,,,,,,,,{1630,490};
ACTIVITY,,,CashOnHand>=BestProfit,,,,,,, {#D,,,};

ACTIVITY,,,CashOnHand<BestProfit,"SNRANDOM_GOON_2;,{47,60,,,1700,560,2730,5
60};

PREPAREEXIT:

ASSIGN,{{BESTPROFIT,MAX(BESTPROFIT,CASHONHAND)} {RVAL_ACTION,HISTO
RY}{RVAL_PROFIT,MAX(BESTPROFIT,CASHONHAND)},{BestHstory,History},{BestH
istoryCh,HistoryCh},{BestHistoryNu,HistoryNu}},1,,,,,,,{1710,490};

ACTIVITY,1999,,,,,,.,,{50,52,,.};

BP: COLCT,1003,BESTPROFIT,"BestProfit_SVN",20,0,000,,,{1940,490};

ACTIVITY,,,,111:1{52,54,,.};

SNRECUR1 _WRITE_9: WRITE," history_stack_init_rnd'tMES,"variationNumber %d \tSet
BestProfit: gen: %d
%s\n" {variationNumber, GENERATION,CURRENTACTION},1,,,{2100,490};

ACTIVITY,,,,"SNRECUR1_ASSIGN_1",,,,,,{54,562270,490};
SNRECUR1_ASSIGN_1:
ASSIGN,{{BESTPROFIT,MAX(BESTPROFIT,CASHONHAND)} {RVAL_ACTION,HISTO
RY}{RVAL_PROFIT,MAX(BESTPROFIT,CASHONHAND)} {readResult, USERF(cTimerG
et)},{ClockTime2,ClockTime-ClockTimel}},1,,,,,,,,4350,490};

ACTIVITY,,,,111,:,{56,58,,.};

SNRANDOM_WRITE_1: WRITE,"results_random.txt",YES;&n:
%d,%d,%f,%s,%s\n",{CurrentScenerio,variationNumied, profit,BestHistoryCh,BestHistory
Nu}1,,,,,,{2610,490};

ACTIVITY,,,,,,»{58,60,,.};

SNRANDOM_GOON_2: GOON,1,,,,,,,,,,{2810,490};

ACTIVITY,, variationNumber<variationMax,,,{60,63,,,2790,400,2804,400},

ACTIVITY,, variationNumber==variationMax, MRECUR1_WRITE_8",,,,,,{60,69,,.};

GOON,1,,,,,,,,,,{2830,400};

ACTIVITY,,,,1:,:,{63,65,,.};

ASSIGN, {{variationNumber,variationNumber
+1},{history,""},{CashOnHand,0},{historyCH,""},{historyNU,""},{Generation,1}},1,,,,,,,,,{288
0,400},

ACTIVITY,,,,,,,,{65,67,,.};

Resetlnventory: ASSIGN, {{fReadResult,USERF(9)}},1...,,{3050,400};

ACTIVITY,,,,"SNRANDOM_GOON_1",,,,,,{67,39,,,3160,403160,300,2710,300,2710,380,25
45,380,2380,380,1860,380,1400,380,1400,310};
SNRECUR1_WRITE_8: WRITE,"results_02.txt",YES,"scen:
%d,%d,%8.2f,%s,%s%3.2\n",{ CURRENTSCENERIO,ClockE&yval_profit,BestHistoryCh,
BestHistoryNu,AinAb},1,,,,,,{2960,490};

ACTIVITY,,111,,{69,71,,.};

RETURNVSN,BESTPROFIT,1,,,,.,,,,{3120,490};

158



[LOADFILE SUBNETWORK]
;DBF file created with Version 4

VSN,LOADFILE,{{LoadType,LONGVAL, }{Localldx, LONGREF,
},{LocalldxBase,LONGREF, },{LocalldxMax,LONGREF, JyFileName,STRINGVAL,
}{vEchoFileContents,LONGVAL,},{vFileNameEcho,STRIGVAL,}},,,,,,,,{70,60};
Begin: ENTERVSN,LoadFile,1,,,,,,,,,{60,160};

ACTIVITY,,,,,,»1,{2,4,,,80,160};

GOON,1,,,,,,,,,,{110,160};

ACTIVITY,, LoadType==cFileLoadTest,,,,,,.{0,,.};

ACTIVITY,, LoadType==cFileLoadLocal,"ReadFileValug},,{4,11,,,140,210,140,260,140,300
%
ACTIVITY,, LoadType==cFileLoadGlobal,"Reait#Global",,,,,,{4,28,,,130,400,140,490};
ACTIVITY,,,LoadType==cFileLoadL2G,"CopyOlj€oGlobal",,,,,,{4,43,,,120,790};

ACTIVITY,, LoadType==cFileLoadG2L,"LOADFILE_WRITE_'4,,,,,{4,60,,,10,610,30,660};

Exit: RETURNVSN,0.0,1,,,,,,,,,{1050,190};

ReadFileValue: READ,vFileName,YES,ReadResult,"%ftrip[LocalldxMax]},1,,,,,{220,300};
ACTIVITY,, ReadResult >0,,,,,,,{11,14,,,3200,310,260};
ACTIVITY,,,ReadResult <=0,"Setldx",,,,,,{118,,,};

Inc_index: ASSIGN,{{LocalldxMax,LocalldxMax+1}},1,,,,,,,{320,260};
ACTIVITY,,,,111:1,{14,16,,.};

wrteLocal: WRITE,"vFileNameEcho.txt",NO," valuesRd from %s =

%f\n" {vFileName,atrib[LocalldxMax]-1},1,,,,,,{44@60};
ACTIVITY,,,,"ReadFilevalue",,,,,,{16,11,39,260,530,240,190,240,190,280};

Setldx: ASSIGN,{{Localldx,LocalldxBase+1}},1,,,,,,{350,300};
ACTIVITY,, vEchoFileContents==cTrue,,,,1§,21,,,};

ACTIVITY,, vEchoFileContents==cFalse,"GMIX1_GOON,,,{18,26,,,440,340,830,340,87
0,310}
WriteData: WRITE,vFileNameEcho,YES,"%f \n " {ddfLocalldx]},1,,,,,,{580,300};
ACTIVITY,,,Localldx <LocalldxMax,,,,,,,{224,,,660,280,680,260};
ACTIVITY,, Localldx >=LocalldxMax,"GMIX1_G®N_1",,,,,,{21,26,,,};
Inc_idx_2: ASSIGN,{{Localldx,Localldx+1}},1,,,,,,,{710,260};
ACTIVITY,,,,"WriteData",,,,,,{24,21,,,8206D,820,240,560,240,560,270};
GMIX1_GOON_1: GOON,1,,,,,,,,,,{900,300};
ACTIVITY,,,,"Exit",,,,,,{26,10,,.};
ReadFileGlobal: READ,vFileName,YES,ReadResult,"¢fX[LocalldxMax]},1,,,,,{220,490};
ACTIVITY,, ReadResult >0,,,,,,,{28,31,,,3480,310,450};
ACTIVITY,, ,ReadResult <=0,"Setldx2",,,,,883,,.};
Inc_index_2: ASSIGN,{{LocalldxMax,LocalldxMax+1}},1,,,,,,,{320,450};
ACTIVITY,,,,"ReadFileGlobal",,,,,,{31,28470,450,470,420,200,420,200,470};
Setldx2: ASSIGN,{{Localldx,LocalldxBase+1}},1,,,,,,{350,490};
ACTIVITY,, ,vEchoFileContents==cTrue,,,,33,36,,.};
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ACTIVITY,, vEchoFileContents==cFalse,"LOADFILE_GOON",,,,,,{33,41,,,440,530,830,53
0,870,500};
WriteData2: WRITE,SZ[3],YES,"%f \n " {XX[Localld]},1,,,,,,{580,490};
ACTIVITY,,,Localldx <=LocalldxMax,,,,,,,{389,,,660,470,680,450};
ACTIVITY,, Localldx >LocalldxMax,"LOADFILE GOON_1",,,,,,{36,41,,,};
Inc_idx4: ASSIGN,{{Localldx,Localldx+1}},1,,,,,,,§{710,450};
ACTIVITY,,,,"WriteData2",,,,,,{39,36,,,82850,820,430,560,430,560,460};
LOADFILE_GOON_1: GOON,1,,,,,,,,,,{900,490};
ACTIVITY,,,,"Exit",,,,,,{41,10,,,};
CopyObjecToGlobal: ASSIGN,{{XX[Localldx],atrib[Lodédx]}},1,,,,,s,,,{180,840};
ACTIVITY,, Localldx<Localldxmax,,,,,,,{438%,.};
ACTIVITY,,,Localldx >=LocalldxMax,"LOADFILE ASSIGN_3",,,,,,{43,48,,,310,840};
ASSIGN,{{Localldx,Localldx+1}},1,,,,,,,,,{30,790};

ACTIVITY,,,,"CopyObjecToGlobal",,,,,,{46,43,,,4309D,430,760,240,760,200,760,160,760},
LOADFILE_ASSIGN_3: ASSIGN,{{Localldx,LocalldxBase4},1,,,,,,,,,{340,840},
ACTIVITY,,.,,,,,.,{48,50,,,};
GOON,1,,,,,..,,,{460,840};
ACTIVITY,, vEchoFileContents==cTrue,,,,5d,53,,.};

ACTIVITY,,,vEchoFileContents==cFalse,"LOADFILE_GOOR",,,,,,{50,58,,,510,880,830,88
0,870,850};
LOADFILE_WRITE_2: WRITE,"vFileNameEcho",YES,"%f\n
" {XX[Localldx]},1,,,,,,{580,840};
ACTIVITY,,,Localldx <LocalldxMax,,,,,,,{53%6,,,660,820,680,800};
ACTIVITY,, Localldx >=LocalldxMax,"LOADFILE GOON_3",,,,,,{53,58,,.};
LOADFILE_ASSIGN_4: ASSIGN,{{Localldx,Localldx+1}},1,.,,,,,,,{710,800};
ACTIVITY,,,,"LOADFILE_WRITE_2",,,,,,{56,53,820,800,820,780,560,780,560,810};
LOADFILE_GOON_3: GOON,1,,,,,,,,,,{900,840};
ACTIVITY,,,, "EXit",,,,,,{58,10,,,};
LOADFILE_WRITE_4: WRITE,SZ[3],YES,"G2L (pre) locddX %d \n
"{Localldx},1,,,,,,{70,600};
ACTIVITY,,,,.:s,:{60,62,,,170,650,160,690}
CopyGlobalToObject: ASSIGN,{{atrib[Localldx],XX[Loalldx]}},1,,,,,,,,,{190,680};
ACTIVITY,,,Localldx<=Localldxmax,,,,,,,{685,,,};
ACTIVITY,,,Localldx >LocalldxMax,"Setldx3;,,,,{62,69,,,320,680};
LOADFILE_WRITE_3: WRITE,SZ[3],YES,"%d obj: %fxx: %f\n
" {Localldx,atrib[Localldx],xx[Localldx]},1,,,,,,{320,620};
ACTIVITY,,,,"LOADFILE_ASSIGN_2",,,,,,{65,67,410,620,430,620};
LOADFILE_ASSIGN_2: ASSIGN,{{Localldx,Localldx+1}},1,,,,,,,,{450,620};
ACTIVITY,,,,"CopyGlobalToObject",,,,,,{674,,540,600,540,550,240,550,200,600};
Setldx3: ASSIGN,{{Localldx,LocalldxBase+1}},1,,,,,,{350,680};
ACTIVITY,,,,11:::,{69,71,,.};
GOON,1,,,,,,,,,,{470,680},
ACTIVITY,, vEchoFileContents==cTrue,,,,4X,74,,.};
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ACTIVITY,, vEchoFileContents==cFalse,"LOADFILE_GOO®",,,,,,{71,79,,,520,720,840,72
0,880,690};
LOADFILE_WRITE_1: WRITE,SZ[3],YES,"G2L output lod®X %d %f \n
" {Localldx,atrib[Localldx]},1,,,,,,{590,680};
ACTIVITY,, Localldx <LocalldxMax,,,,,,,{747,,,710,670,710,640};
ACTIVITY,, Localldx >=LocalldxMax,"LOADFILE GOON_2",,,,,,{74,79,,.};
LOADFILE_ASSIGN_1: ASSIGN,{{Localldx,Localldx+1}},1,,,,,,,,{740,640};
ACTIVITY,,,,"LOADFILE_WRITE_1",,,,,{77,74,830,640,830,620,570,620,570,650};
LOADFILE_GOON_2: GOON,1,,,,,,,,,,{910,680};
ACTIVITY,,,"Exit",,,,,,{79,10,,,};

[PRCECOST SUBNETWORK]

;DBF file created with Version 4
VSN,PRCECOST {{ValueBase,LONGVAL,0 elemerfitprice
array},{ValueMax,DOUBLEVAL,Max element of value
array},{ActionCode,LONGVAL,}},,,,11:,,{30,70};
LIMITSVSN,2,2,2,2,2,2,,,,,{0,0};
EQUIVALENCE {{IndexCtr,LLINST[1]}},1115,,,{0,0};
VaryPriceCost: ENTERVSN,VaryPriceCost,1,,,,,,,,{880};
ACTIVITY,, ActionCode==cVaryPriceCostNong,,{4.,8,,,100,110,1470,110};
ACTIVITY,,,ActionCode==cVaryPriceCostNorng&tPriceBidx",,,,,,{4,9,,.};

ACTIVITY,,, ActionCode==cVaryPriceCostTest,"ExitPe&€ost",,,,,,{4,8,,,110,230,720,230,149

0,230},

ExitPriceCost: RETURNVSN,0.0,1,,,,,,,,,{1530,190};

SetPriceBidx: ASSIGN,{{IndexCtr,ValueBase+1}},1,,,,,{200,190};
ACTIVITY,,,111,,,{9,11,,.};

WritePriceB: WRITE,"PRCECOSTEchoValueArray.txt", YE®f \n

" {atrib[IndexCtr]},1,,,,,,{310,190};
ACTIVITY,, IndexCtr<ValueMax,,,,,,,{11,14420,170,420,150};
ACTIVITY,, IndexCtr>=ValueMax,"PRCECOST_A8SN\_3",,,,,,{11,16,,.};

inc_index_03: ASSIGN,{{IndexCtr,IndexCtr+1}},1,,,,,,{440,150};
ACTIVITY,,,,"WritePriceB",,,,,,{14,11,,,54050,540,120,270,120,270,160},

PRCECOST_ASSIGN_3: ASSIGN,{{IndexCtr,ValueBase+13},,,,,,,{530,190};
ACTIVITY,,,,»,,,{16,18,,.};

ModifyPrice: ASSIGN, {{atrib[IndexCtr],RNORM(atribpidexCtr],1)}},1,,,,,,,,,{640,190};
ACTIVITY,,,,.s1,,,{18,20,,,810,190};

PRCECOST_ASSIGN_4: ASSIGN, {{IndexCtr,IndexCtr+1}},1,,,,,{860,190};

ACTIVITY,, IndexCtr<ValueMax,"ModifyPrice",,,,,,{208,,,950,170,950,150,800,150,620,150
,620,170};
ACTIVITY,,,IndexCtr>=ValueMax,,,,,,,{20,23};
PRCECOST_ASSIGN_1: ASSIGN,{{IndexCtr,ValueBase+1}},,,,,,,{1040,190};
ACTIVITY,,111,,{23,25,,.};
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PRCECOST_WRITE_1: WRITE,"PRCECOSTEchoValueArray,¥ES,"%f \n
" {atrib[IndexCtr}},1,,,,,,{1210,190};
ACTIVITY,, IndexCtr<ValueMax,,,,,,,{25,281,320,180,1320,160};
ACTIVITY,,,IndexCtr>=ValueMax,"ValuesPrird®,,,,,,{25,30,,,};
PRCECOST_ASSIGN_2: ASSIGN {{IndexCtr,IndexCtr+1}},1.,,,,{1340,160};

ACTIVITY,,,,"PRCECOST_WRITE_1",,,,,,{28,25,,,144®Q,1440,130,1170,130,1170,170};

ValuesPrinted: GOON,1,,,,,,,,,,{1470,190};
ACTIVITY,,, "ExitPriceCost",,,,,,{30,8,,.};
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