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Abstract 
 
“Portions of this abstract are reproduced with automatic permission from [Kaserer A.O., Babak A., Cook 
P.F., West A.H. (2009) Effects of Osmolytes on the SLN1-YPD1-SSK1 Phosphorelay system from 
Saccharomyces cerevisiae., Biochemistry. v. 48(33), p. 8044-50]”. 
 

The multi-step His-Asp phosphorelay system in Saccharomyces cerevisiae 

allows cells to adapt to osmotic, oxidative and other environmental stresses. The 

pathway consists of a hybrid histidine kinase SLN1, a histidine-containing 

phosphotransfer (HPt) protein YPD1 and two response regulator proteins, SSK1 and 

SKN7. Under non-osmotic stress conditions, the SLN1 sensor kinase is active and 

phosphoryl groups are shuttled through YPD1 to SSK1, therefore maintaining the 

response regulator protein in a constitutively phosphorylated state. The cellular 

response to hyperosmotic stress involves rapid efflux of water and changes in 

intracellular ion and osmolyte concentration. To address the effect of osmolytes on the 

regulation of this signaling pathway, the individual and combined effects of NaCl and 

glycerol on phosphotransfer rates within the SLN1-YPD1-SSK1 phosphorelay were 

examined. In addition, the effect of osmolyte concentration on the half-life of the 

phosphorylated SSK1 receiver domain in the presence/absence of YPD1 was evaluated. 

The results show that the combined effects of glycerol and NaCl on the phosphotransfer 

reaction rates are different from the individual effects of glycerol and NaCl. The 

combinatory effect is likely more representative of the in vivo changes that occur during 

hyperosmotic stress. The results revealed that increasing osmolyte concentrations 

negatively affects the YPD1•SSK1~P interaction thereby facilitating dephosphorylation 
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of SSK1 and activating the HOG1 MAP kinase cascade. At high osmolyte 

concentrations, the kinetics of the phosphorelay favors production of SSK1~P and 

inhibition of the HOG1 pathway. 

A similar multi-step signaling pathway is also utilized by Candida albicans, 

which is known for adaptation to oxidative stress, morphogenesis, cell wall 

biosynthesis and virulence in this opportunistic pathogenic yeast. To biochemically 

characterize major components of this pathway, studies were focused on in vitro 

reconstitution of the multi-step phosphorelay from C. albicans and biochemical 

characterization of the CaYPD1 (HPt protein) and CaSSK1 (response regulator 

protein). The heterologous phosphoryl transfer system SLN1-HK-RR → CaYPD1→ 

CaSSK1 (or SSK1) was established and examined. The CaYPD1 histidine 

phosphotransfer protein exhibited similar phosphotransfer specificity in vitro towards 

the response regulator domain of CaSSK1-RR and SSK1-RR. The half-life of the 

phosphorylated regulatory domain of CaSSK1-RR was also measured and was 

approximately 9 min with a corresponding rate constant of 0.078 min-1. This result 

demonstrates a similar rate of CaSSK1-RR dephosphorylation compared to SSK1-RR 

suggesting possible functional similarities between these two response regulator 

proteins. 

Mutational analysis of the CaSSK1 response regulator domain was also 

performed. Mutants were expressed, purified and their activity was analyzed using an 

in vitro phosphorylation assay. Little or no phosphorylation was observed for the 
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CaSSK1-RR D556N mutant. The radiolabel primarily resided with the CaYPD1 protein 

and did not get transferred to the D556N mutant. Likewise, the D513K mutant was also 

severely impaired in its ability to be phosphorylated by CaYPD1. The receiver domains 

of the D556N and the D513K mutants could not be appreciably phosphorylated in vitro 

indicating that constitutive activation of HOG1 occurs in vivo due to the inability of 

CaSSK1 to be phosphorylated. 
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Chapter 1 

1. Introduction 
 
“Portions of this chapter are reproduced in part with automatic permission from [Kaserer, A.O. and 
West, A.H. (2007) Histidine kinases in two-component signaling pathways, The Handbook of Cell 
Signaling, (2nd edition by Bradshaw R.A., Dennis E.A., eds.), In press] Academic Press, San Diego”. 
 
 
 

In order to sense and respond to their environment, cells need to transform one 

kind of signal or stimuli into another. This type of transformation is called signal 

transduction. Most signal transduction processes inside the cell involve ordered 

biochemical reactions carried out by protein participants of the signaling pathways. 

These events have a different nature and duration, lasting from milliseconds and 

minutes up to hours and days depending on the output response. The amount of 

proteins and other molecules participating in the signaling system may also vary 

starting from the initial stimuli and to signal amplification and finally to alterations in 

gene expression.  

 Signaling systems are widely spread among all living organisms. Bacteria, 

archaea and lower eukaryotes utilize similar mechanisms to survive exposure to the 

environment. The signal transduction mechanism that they have in common is the so-

called two-component system. This system adopts protein phosphorylation as a means 

of information transfer. The minimal signaling system consists of a sensor histidine 

kinase (HK) and its downstream partner, a response regulator (RR) protein (Parkinson, 
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Kofoid 1992; Stock, Surette et al., 1995; Mizuno 1998; Stock, Robinson et al., 2000; 

West, Stock 2001). 

 

1.1. Significance 

The significance of this work lies within three major areas of scientific and 

biomedical importance:  

1) Cell signaling mechanisms; 

 2) Protein-protein interactions; 

3) Development of novel antibacterial and antifungal drugs;  

1) Cell signaling mechanism 

Cell signaling is the main element of  the cell communication system that 

manages basic cellular activities and coordinates cell actions. The ability of cells to 

perceive and correctly respond to environmental changes is the basis of development 

and survival. The study of the cell signaling of S. cerevisiae via its multi-step two-

component signaling system will advance our knowledge in understanding of the 

mechanism underlying adaptation to hyperosmotic stress and provide insights as to the 

mechanism of phosphorylation-dependent activation/deactivation of the SSK1 

response regulator and its protein partners.   

2) Protein-protein interactions 

For any signal transduction pathway, it is extremely important that its proteins 

interact with each other in a specific and highly regulated manner. Correct information 
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should be carried out through the cell to modulate vital cellular responses. Specific 

protein-protein interactions in Saccharomyces cerevisiae should secure signal 

transmission with high fidelity in response to hyperosmotic stress to compensate for 

water loss from the cell and produce osmolytes (glycerol etc.) to sustain constant 

internal equilibrium (Hohmann 2002). 

The effect of osmolytes on protein-protein interactions between histidine 

kinases, histidine-containing phosphotransfer proteins and response regulators are 

critical not only in understanding multi-step phosphorelay system regulation, but also 

maintenance of the yeast cell homeostasis. 

3) Development of novel antibacterial and antifungal drugs 

Practical implications of this study involve development of new antibacterial 

and antifungal drugs on the basis of multi-step phosphorelay systems from 

Saccharomyces cerevisiae (a well-studied model organism) and Candida albicans 

(pathogenic fungi). The real need for new antibacterial and antifungal drugs especially 

against the latter arises from the emergence of multi-drug resistant strains. Two-

component regulatory proteins, and specifically CaSSK1, are involved in activation of 

the downstream genes that contribute to virulence of C. albicans and are attractive 

targets for drug design and drug screening (Stephenson, Hoch 2002; Chauhan, Latge 

et al., 2008). Thus, because of the involvement of these signaling proteins in fungal 

pathogenesis, biochemical characterization of the participants of the two-component 
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system in C. albicans will provide useful information for drug design including design 

of possible peptide inhibitors that can inhibit these proteins, specifically CaSSK1. 

A significant proportion of human infections involve biofilms (Kojic, 

Darouiche 2004). Organisms in biofilms behave differently from freely suspended 

microbes and are less susceptible to different antibacterial and antifungal drugs. An 

increasing amount of device-related infections, particularly those involving the 

bloodstream and urinary tract, is being caused by Candida albicans. C. albicans is 

emerging as important nosocomial pathogen with detectable biofilms formation on 

and in implanted devices.  These studies will provide useful knowledge for novel 

approaches to the biofilm antifungal drug design. 

 

1.2. Signaling through two-component systems 

Two-component signaling systems couple extracellular stimuli to cellular 

responses. The information processing and transfer occurs via phosphorylation. The 

minimal signaling system consists of a sensor histidine kinase (HK) and its 

downstream partner, a response regulator (RR) protein. It is also referred to as a “His-

Asp phosphorelay signal transduction system”.  

The HK catalyzes ATP-dependent autophosphorylation of its conserved 

histidine residue (within the HK dimerization domain) and then transfers phosphoryl 

groups to a conserved aspartate residue within the receiver domain of the RR protein  
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Figure 1-1. His-to-Asp Phosphotransfer Schemes. (A) A canonical two-component system 

consists of a membrane-bound HK and cytoplasmic RR protein.  The HK is anchored to the membrane 

by transmembrane segments TM1 and TM2.  Autophosphorylation of the HK requires ATP as a 

phosphoryl donor.  The phosphoryl group is then transferred to an aspartic acid residue within the 

receiver domain of the RR.  (B) A multi-step phosphorelay system typically contains a hybrid HK, 

which possesses a C-terminal receiver domain, a histidine-containing phosphotransfer (HPt) protein and 

an RR protein (Kaserer, West 2009).  

 
 

(Figure 1-1A). Phosphorylation of the RR typically results in activation of the effector 

domain function, which commonly possesses DNA-binding activity resulting in 

transcriptional regulation of genes involved in output responses.   

 Multi-step two-component system 

 Canonical two-component system 
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Expanded and more complex multi-step His-to-Asp phosphorelay systems also 

exist (Figure 1-1B). These consist of a hybrid HK with a C-terminal aspartate-

containing phosphoreceiver domain, an essential histidine phosphotransfer (HPt) 

protein, and a downstream RR protein.  The HPt protein functions as a histidine-

phosphorylated intermediate and transfers phosphoryl groups between the hybrid HK 

and its cognate RR.   

 

1.3. Histidine kinases 

Signal transduction pathways involving a His-to-Asp phosphorelay regulate 

important cellular processes such as nutrient acquisition, adaptation to environmental 

stress, cell motility, development, virulence, and intercellular communication. HKs in 

particular, have become attractive targets for the development of novel antibacterial or 

antifungal drugs (Matsushita, Janda 2002; Stephenson, Hoch 2002; Chauhan, Kruppa 

et al., 2007; Boisnard, Ruprich-Robert et al., 2008; Chauhan, Calderone 2008). 

 

1.3.1 Abundance and evolutionary diversity of HKs 
 

Up to now, close to 905 bacterial genomes and 182 fungal genomes have been 

sequenced and made available to the public (http://www.ncbi.nlm.nih.gov/genomes/ 

lproks.cgi?view=1 and http://www.ncbi.nlm.nih.gov/genomes/ leuks.cgi). In a survey 

of the SENTRA database there are >11,228 predicted HK genes of prokaryotic signal 

transduction proteins (http://compbio.mcs.anl.gov/sentra/) (D'Souza, Glass et al., 
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2006), of which as many as 25% are predicted to be hybrid HKs (Zhang, Shi 2005).  

Approximately 5700 of these HKs are fully annotated in a curated set of 202 

prokaryotic organisms (Galperin 2005).  Despite the large number of HKs that are 

found, they are unevenly distributed across microbial species. For example, the 

genome of Streptomyces coelicolor contains 95 HKs, Vibrio cholerae has 44 HKs, 

while Fusobacterium nucleatum has none (Galperin 2005). Very often HKs and their 

cognate RRs are encoded whether adjacent to each other or in the same operon. 

However, there are many "orphan" HK and RR genes that cannot be placed into a 

predictable TCS pathway. An in vitro phosphotransfer-profiling assay is an answer to 

this problem. The method was specifically developed to identify cognate HK, HPt or 

RR proteins on a proteome-wide basis that most likely would function together in a 

His-to-Asp phosphorelay system (Laub, Biondi et al., 2007). 

Phylogenetic analysis of HK proteins indicated a possible common origin with 

heat-shock protein Hsp90, type II topoisomerases and DNA-mismatch repair protein 

MutL (Dutta, Qin et al., 1999; Koretke, Lupas et al., 2000).  HKs have diverged via 

gene family expansion, gene duplication, gene fusion/fission, domain gain/loss and 

domain shuffling (Alm, Huang et al., 2006; Cock, Whitworth 2007).  Some species 

have adapted by forming new combinations of signaling domains, while others have 

relied on horizontal gene transfer to produce a larger number of HKs at their disposal 

(Brinkman, MacFarlane et al., 2001; Alm, Huang et al., 2006). It appears that hybrid 

HKs evolved in bacteria in the manner of lateral recruitment of an aspartate-containing 
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receiver domain into an HK molecule, which then duplicated as one unit (Koretke, 

Lupas et al., 2000). Interestingly, most if not all, of the HKs found in eukaryotic 

organisms are of the hybrid variety suggesting that hybrid HKs most likely originated 

in bacteria and were acquired by eukaryotes through horizontal gene transfer (Pao, 

Saier 1997; Koretke, Lupas et al., 2000).  

 

1.3.2 Sensory domains of HKs 

Most histidine kinases exist as membrane-embedded dimeric proteins with N-

terminal periplasmic sensory domain (as depicted in Figure 1-1) (Mascher, Helmann 

et al., 2006). On the other hand, there are some transmembrane HKs, which do not 

possess an extracellular sensory domain and presumably are receptive to membrane-

associated signals.  In addition, there are HKs that are cytoplasmic proteins, which 

tether sensory domains to detect intracellular changes. Sensory domains were grouped 

according to their domain topology (Mascher, Helmann et al., 2006). This type of 

classification explains their role in cell communication with environmental stimuli, 

stimuli perception and processing. It includes:  

1) Periplasmic (or extracellular)-sensing HKs; 

2) HKs with transmembrane helices (2-20 transmembrane regions involved in 

signal perception) lacking sensing domains and using membrane associated 

stimuli or membrane surface for direct signal perception; 
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3) Cytoplasmic-sensing HKs, implying membrane-anchored or soluble 

proteins with sensing domains inside the membrane.  

Overall, sensory domains of HKs are extremely diverse not only in terms of 

sequence variability but also in terms of signals they perceive. The signal perception 

occurs by direct interaction between the sensory domain and a stimulant molecule. 

There are a number of other stimuli that can activate histidine kinases: chemical, 

mechanical or other. Still, for many HKs the exact stimulus remains unknown. 

Recently, a number of three-dimensional structures of periplasmic and 

cytoplasmic sensory domains of HKs have been reported (Pappalardo, Janausch et al., 

2003; Reinelt, Hofmann et al., 2003; Neiditch, Federle et al., 2006; Cheung, 

Hendrickson 2009). Although each of these bind to different ligands, interestingly, 

several are structurally related to the PAS (Period-ARNT-Single-minded) domain 

superfamily of prokaryotic and eukaryotic ligand-binding light, oxygen, and redox 

sensing modules (Taylor, Zhulin 1999).   

PAS domains have been found in almost 2000 sensor kinases (Letunic, Copley 

et al., 2006). They are present in enzymes, transcription factors, ion channels etc and 

belong to all three kingdoms of life (Taylor, Zhulin 1999). The domains share 

approximately 110 amino acids which constitute the α/β fold. They are able to interact 

with other protein domains via surface-exposed central β-sheet. These domain/domain 

interactions can modulate kinase activity by perturbing the arrangement of the core 

HK domains (catalytic and dimerization domains) within the protein (Lee 2008).  
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1.3.3 HK core domains  

Based upon their domain organization all HKs are divided into two major 

classes: class I and class II  (Bilwes, Alex et al., 1999).  

Class I HK family is represented by EnvZ protein which contains an N-

terminal periplasmic sensor domain, a transmembrane domain and a core kinase 

domain consisting of the catalytic domain and dimerization domain. In class I HKs the  

phosphorylatable histidine residue, part of the H-box sequence motif, is located in the 

dimerization domain His-box and is directly linked to the catalytic domain comprising 

the unique conserved set of sequence motifs designated as N, G1, F and G2 boxes 

(Figure 1-2). These conserved sequences are essential for Mg2+ and ATP-binding.  

Furthermore, residues in the F and G2 boxes constitute part of a “lid” that closes upon 

nucleotide binding (Bilwes, al. 2001; Marina, Mott et al., 2001).  

The class II HK family, represented by the CheA protein, possesses a different 

domain organization. The H-box is secluded from the ATP-binding domain and 

resides in the phosphotransfer (HPt) domain located at the N-terminus of the kinase. It 

is followed by a dimerization domain and ATP-binding domain similar to class I HKs.  

Structural information for the class II HK ATP-binding core domain was first 

determined  for CheA from Thermatoga maritima (Parkinson, Kofoid 1992). One of 

the major advances in recent years was the crystal structure determination of the entire 

cytoplasmic portion of the histidine kinase HK853 from Thermatoga maritima (Figure 

1-3) (Marina, Waldburger et al., 2005). In the dimeric structure, the ATP-binding 
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Figure 1-2. Class I and Class II histidine kinases. Schematic diagram of two classes of 

HKs. Figure adapted from (Bilwes, Alex et al., 1999; Dutta, Qin et al., 1999).  

 

catalytic domains flank the central histidine-containing helical hairpin dimerization 

domains.  During catalysis, the ATP-binding domain of one monomer trans-

phosphorylates the H- box of the opposite subunit.  This would necessitate significant 

conformational changes during catalysis in which the flexible hinge regions between 

these two domains are predicted to play an important role and emphasizes the 

importance of interdomain contacts (Marina, Waldburger et al., 2005). 
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Figure 1-3. Crystal structure of the histidine kinase HK853 from Thermatoga 

maritima.  Ribbon representation of the entire cytoplasmic portion of HK853, which includes an N-

terminal His-containing dimerization domain and C-terminal catalytic core domain.  ATP binds to the 

α/β "wing" domains that flank the central four-helix bundle.  The side chain for the conserved histidine 

(His260) residue is shown in stick representation. 
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1.3.4 Signaling through the membrane 

The mechanism of signal propagation of HKs remains elusive. Upon ligand 

binding, bacterial chemoreceptors undergo subtle changes which involve subsequent 

participation of specific helices.  These helices were discovered in 1994 by Inouye and 

coworkers as “linker regions” (Jin, Inouye 1994) and specified as “HAMP” domain by 

Aravind and Ponting in 1999 (Aravind, Ponting 1999). Despite its low sequence 

homology, it is present in bacteria, fungi, plants and protists, compiling about one-fifth 

of all HK proteins and sharing a helix-turn-helix conformation according to secondary 

structure predictions.   

The HAMP domain consists of two amphipathic helices (AS1 and AS2) 

connected by a long loop adopting a four-helix bundle conformation in the dimerized 

HK, placing two AS2s adjacent to each other and two AS1s further apart (Singh, 

Berger et al., 1998; Appleman, Stewart 2003; Zhu, Inouye 2004). Mutational analysis 

of HAMP domain AS2 resulted in reversed-response phenotype and defective or 

constitutive HK activation for AS1 and AS2, revealing the importance of the HAMP 

domain as a negative regulator for output HK domain activity (Butler, Falke 1998; 

Appleman, Stewart 2003). The NMR structure of a HAMP domain from the Af1503 

protein of Archaeoglobus fulgidus was recently solved by Hulko et al. (Hulko, Berndt 

et al., 2006).  The Af1503 protein forms a homodimer with a unique parallel four-

helical coiled-coil structure and unusual interhelical packing that suggests two distinct 

packing geometries are possible.   
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Figure 1-4. The HAMP domain from the Af1503 protein of Archaeoglobus 

fulgidus. A schematic ribbon side view of the HAMP domain dimer (Stock, Stock et al., 1990; 

Kosinsky, Volynsky et al., 2004).  Monomers are in yellow (α1) and in green (α2). The helices of the 

HAMP domain have typical coiled-coil crossing angles of 3°–13° within a monomer and 10°–15° 

relative to the central axis of the bundle.  

 

Additional data support a helical rotational model in which adjacent helices can 

interconvert between two possible packing modes rotating 26° between “on” and “off” 
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conformations to facilitate signal transmission to and from the HAMP domain (Figure 

1-4).  

However an alternative model of HAMP function was earlier put forward by 

Williams and Stewart (Williams, Stewart 1999) implying direct interaction of AS1 

with AS2 or its interaction with cell membrane. Undoubtedly, HAMP domains have a 

flexible structural organization and might play multiple roles in facilitating 

transmembrane signal propagation for diverse types of receptors.  

 

1.3.5 Histidine phosphorylation and regulation of HKs 

Phosphorylation of the conserved histidine residue in HKs leads to the creation 

of a high-energy phosphoramidate (N-P) bond.  Solution studies of phosphohistidine 

residues show that it is stable only at high pH values and undergoes rapid hydrolysis 

(Klumpp, Krieglstein 2002). Hydrolysis of the phosphohistidine molecule is 

accompanied by the release of around 40 kJ/mol for the free amino acid and around  

55 kJ/mol for the residue within a protein (Inouye, Duttu et al., 2003). Thus, 

chemically, a phosphorylated histidine is very unstable in comparison with Ser, Thr, 

and Tyr phosphoamino acids, which form a relatively stable phosphoester bond (Hoch, 

Silhavy 1995). 

The events leading to histidine autophosphorylation of an HK is relatively 

complex and involves the coupling of a series of steps.  The HK sensory domain must 

first accept input signals that in turn somehow modulate the rate of kinase 
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autophosphorylation.  Ligand-binding to the sensory domain presumably induces a 

conformational change that is transmitted through the membrane to the cytoplasmic 

kinase domain, often through a HAMP domain linker region.  Domain-domain 

interactions clearly are an important key to understanding signal transmission and 

regulation of HKs.    

In a simple two-component signaling scheme, phosphoryl groups are 

transferred from an HK to an RR.  However, some HKs also affect the rate of 

dephosphorylation of their cognate RRs.  Two alternative models have been put forth 

to explain how external environmental signals regulate these two opposing functions 

of HKs, i.e. both kinase and phosphatase activities of the cytoplasmic domain (Gao, 

Mack et al., 2007). The first model, the so-called switch model, proposes a simple 

“on” or “off” mode of the cytoplasmic domain.  The other, the rheostat model, 

suggests that the ratio of the opposing activities is controlled by the external signal.  

Hence, the balance between kinase and RR phosphatase activity is affected by external 

stimuli.  For example, when the rate of histidine autophosphorylation is high, the 

balance shifts predominantly towards the phosphotransfer reaction and RR 

phosphorylation.  When the rate of histidine autophosphorylation is low, the 

equilibrium shift favors RR phosphatase activity (Gao, Mack et al., 2007). 
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1.4. Response regulator proteins 

HKs transmit environmental signals to cytoplasmic response regulator (RR) 

proteins, which in turn control signal output responses.  Most bacterial RRs have a 

two-domain architecture with a conserved N-terminal regulatory domain (also called a 

receiver domain) that controls the function of a variable C-terminal effector domain.  

In many cases, the RR serves as a transcriptional regulator by virtue of a C-terminal 

DNA-binding domain. According to phylogenetic analysis, these types of RRs can be 

divided into major subfamilies: OmpR/PhoB, NarL/FixJ, NtrC/DctD and LytTR, 

ActR, YesN of which the OmpR/PhoB subfamily accounts for almost 30% of all RRs 

(West, Stock 2001; Galperin 2006).  

 

1.4.1 RR diversity and classification 

Recent studies identified around 9000 RRs in bacterial and archaeal genome 

databases (Mayover, Halkides et al., 1999; D'Souza, Glass et al., 2006). However, 

many of these RRs are not characterized and their regulatory functions are yet to be 

defined. Although most of the RRs are encoded in the genome in close proximity with 

their HKs, many of them are located discretely, making it difficult to find their true 

partners. Furthermore, some of the HKs interact with more then one RR or multiple 

HKs interact with one RR creating branched networks and implicating potential cross-

talk among the pathways. Phosphotransfer profiling and phenotype microarray 

analysis were recently established to facilitate identification of cognate HK-RR 
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partners uncovering new pathways for characterization (Zhou, Lei et al., 2003; Laub, 

Biondi et al., 2007).  

With the advent of the large-scale genomic sequencing, many new RRs were 

discovered and studied.  Close to 17% of all RRs constitute single domain proteins, 

such as the chemotaxis protein CheY and Spo0F that signal to effector proteins via 

protein-protein interactions. The rest of the RRs are classified according to their 

effector domain sequence similarity: DNA-binding domains, enzymatic, protein-

protein interactions and RNA-binding domains (Figure 1-5) (Gao, Mack et al., 2007; 

Laub, Biondi et al., 2007). Another approach for organizing RRs in the OmpR 

subfamily from B. subtilis and E. coli is to classify them on the basis of their surface 

interfaces (Kojetin, Thompson et al., 2003). Despite only 20-30% amino acid 

sequence identity, the regulatory domain of RRs all share a dynamic conserved (βα)5 

fold (West, Stock 2001; Gao, Stock 2009).  The active site of RRs is composed of 

several carboxylate-containing amino acids that coordinate an essential Mg2+ ion and a 

highly conserved lysine residue. Residues that constitute the interface surface between 

HK and the receiver domain of the RRs were taken into account and classified into 

three major types (Kojetin, Sullivan et al., 2007): 
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Figure 1-5. Classification of bacterial RRs. Classification is done according to the RRs 

effector domains and 9000 RRs is taken as a 100% value (Gao, Mack et al., 2007). 

 

a) conserved catalytic residues directly involved in phosphotransfer; 

b) tethering residues, creating broad orientational contacts for catalysis; 

c) recognition residues, providing correct HK-RR interaction. 

Using a comparative modeling approach, Kojetin and colleges categorized the OmpR 

subfamily onto six subclasses (A-F) based on the existing conserved hydrophobic 

DNA binding RRs ~65% 

Single domain/shuttle RRs ~14% 

Enzymatic RRs ~11% 

Other RRs ~7% 

RNA binding RRs ~1% 

Protein binding RRs ~2% 
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interfaces of the α-helix 1 and α-helix 1/α-helix 5, taking into account individual side-

chain composition, residue clustering and relative amino acid localization (Fabret, 

Feher et al., 1999; Kojetin, Sullivan et al., 2007). 

 

1.4.2 Receiver and effector domains activities 

A typical RR consists of two domains, a C-terminal effector domain, and an N-

terminal domain referred to as a regulatory or receiver domain. The receiver (α/β) 

domain comprises three major activities such as phosphotransfer, regulation of 

effector domain function and autodephosphorylation. RRs regulate a variety of output 

responses. Their regulatory domain structures are conformationally dynamic, allowing 

modulation of the effector domain activities or direct interaction with other protein 

partners during phosphotransfer. These domains catalyze phosphoryl group transfer 

from the histidine residue of the HK onto a conserved aspartate residue within the RR 

protein.  

The regulatory domains of RRs are enzymatically active and capable of 

catalyzing not only phosphotransfer from phospho-His of the HKs to its own Asp 

residue, but also autophosphorylation using small molecule phosphodonors (Lukat, 

McCleary et al., 1992; McCleary, Stock 1994). However, the transfer of phosphoryl 

groups from a cognate HK is far more efficient. Small molecule phosphodonors are 

represented by acetyl phosphate, phosphoramidate and carbamoyl phosphate. Acetyl 

phosphate is the high-energy acid/base-labile intermediate of the reversible acetate 
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kinase-phosphotransacetylase pathway  in E. coli (Klein, Shulla et al., 2007). It has 

been shown that CheY, OmpR and PhoB response regulators can be phosphorylated 

by acetyl phosphate in vitro and the sensor kinase EnvZ is capable of activating PhoB 

response regulator using acetyl phosphate in vivo (Lukat, McCleary et al., 1992; 

McClearly, Stock 1994; Hiratsu, Nakata et al., 1995; Kim, Wilmes-Riesenberg et al., 

1996). In addition, intracellular concentrations of acetyl phosphate in E. coli are 

sufficient for direct phosphorylation of response regulators which led to a suggestion 

that this small molecule phosphodonor can trigger global signal propagation by 

directly affecting the activation state of at least one global RR (Klein, Shulla et al., 

2007). However, a major role of this metabolite in catalyzing RR receiver domain 

autophosphorylation is yet to be determined. 

Additional characteristics of RR receiver domains include modulation of the 

effector domain activity and autodephosphorylation. The autodephosphorylation of the 

conserved Asp can vary from one RR to another ranging from seconds to hours 

depending on the specific system it belongs to. The mechanism of RR 

dephosphorylation has been considered as a phosphatase reaction with water or 

hydroxide molecule substituting the histidine imidazole side chain (Lukat, Lee et al., 

1991).  

A lot of research has been also carried out to elucidate the mechanism by 

which RR receiver domains modulate the activity of their effector domains (Stock, 

Robinson et al., 2000; Stock, Da Re 2000). The direct regulation of the effector 
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domains upon phosphorylation of the receiver domains has been shown in detail for 

the methylesterase CheB and transcription factor NarL. The CheB receiver domain 

phosphorylation relieves inhibition of its methylesterase domain allowing access to the 

catalytic triad, while phosphorylation of NarL disrupts the interdomain interface 

exposing DNA-binding residues of the effector domain (Anand, Goudreau et al., 

1998; Djordjevic, Goudreau et al., 1998; Eldridge, Kang et al., 2002).  For these two 

RRs, intermolecular changes within the receiver domains lead to two discrete forms of 

effector domain activation upon phosphorylation. 

Effector domains, on the other hand, mediate the outcome responses of the 

signaling systems. Most effector domains of the prokaryotic two-component systems 

are transcriptional activators or repressors, capable of DNA binding or direct 

interaction with transcriptional machinery and its components. In contrast, eukaryotic 

two-component systems effector domains mainly possess enzymatic activity or 

regulate signaling activities through protein-protein interactions (Chang, Stewart 1998; 

Loomis, Kuspa et al., 1998; West, Stock 2001).  

 

1.4.3 Activation and phosphorylation of RRs 

The phosphorylated lifetime of the conserved Asp can vary from one RR to 

another, presenting an obstacle to their characterization in active conformation. To 

elucidate the mechanism of RRs activation by phosphorylation and capture RRs in 

their active state a variety of biochemical approaches has been used in the past decade:  
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Figure 1-6. The crystal structure of the CheY- BeF3
—Mg2+-FliM peptide complex 

from E.coli. A ribbon diagram of the activated RR CheY bound to Mg2+ and BeF3
-. Mg2+ has an 

octahedral coordination, BeF3
- comprises tetrahedral coordination. Mg2+ interacts with Asp12, Asp13, 

the backbone of Asn59, one of the fluorine atoms and a water molecule as the sixth ligand. Two other 

fluorine atoms are hydrogen bonded to Thr87 and Asn89. 

 

protein NMR, synthesis of phosphono-analogs, removal of metal ions to reduce the 

rate of RR dephosphorylation, utilization of the stable acyl phosphates from 

Thermatoga maritima and utilization of phosphate analogs ( BeF3
-) (Halkides, Zhu et 
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al., 1998; Birck, Mourey et al., 1999; Kern, Volkman et al., 1999; Lewis, Brannigan et 

al., 1999; Yan, Cho et al., 1999). 

Receiver domains of RRs undergo conformational changes upon 

phosphorylation. The crystal structure of the CheY- BeF3
--Mg2+-FliM peptide 

complex offered new insights into the active form of the single domain RR CheY 

(Figure 1-6) (Lee, Cho et al., 2001). The active site of the CheY RR, located in a 

structurally conserved (α/β)5 domain, comprises of a cluster of acidic residues: Asp12, 

Asp13 (α1-β1 loop – metal binding site) and Asp57 (β3 - site of phosphorylation). It 

is also surrounded by other conserved residues (Thr87 in β4, Lys109 and Tyr106 in 

β5) participating in the conformational changes which accompany phosphorylation. 

Upon phosphorylation, positioning of the Thr87 residue undergoes significant 

perturbations along with the flipped “outward” to an “inward” orientation of the 

Tyr106 residue. Residue Lys109 directly interacts with phosphate (BeF3
-). A majority 

of displacements within RRs are limited to the α4-β4-α5 face of the protein and range 

from 1 to 6 Å for different regulatory domains (Robinson, Buckler et al., 2000; Stock, 

Robinson et al., 2000).  

The phosphorylated and unphosphorylated forms of the receiver domains can 

represent the active conformations of the RRs. Several studies have shown an 

existence of the equilibrium between phosphorylated and unphosphorylated forms of 

the proteins (Kern, Volkman et al., 1999; Simonovic, Volz 2001; Volkman, Lipson et 

al., 2001). This information allowed developing of the “two-state” activation model 
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for RRs which described the concurrent existence of active and non-active 

conformations of the RRs in equilibrium. According to this model, phosphorylation or 

protein-protein interactions would shift the equilibrium towards the active 

conformation of the RRs.   

  

1.4.4 Structures of RRs  

There have been major advances in the structural characterization of RR 

proteins in recent years.  More than a dozen RR receiver domain structures have been 

solved: CheY, Spo0F, NtrC, NarL, CheB, FixJ, PhoB and many others (Volz, 

Matsumura 1991; Volkman, Nohaile et al., 1995; Baikalov, Schröder et al., 1996; 

Madhusudan, Zapf et al., 1996; Djordjevic, Goudreau et al., 1998; Birck, Mourey et 

al., 1999; Sola, Gomis-Rüth et al., 1999). 

Some of the activated RRs are determined in large part due to the use of the 

phosphoryl analog, beryllium fluoride or other phosphoryl mimics. Comparison of the 

activated and inactive conformations of RRs showed subtle conformational 

rearrangements within the protein molecule leading to its stabilization (Lee, Cho et al., 

2001).  In addition, structures of complexes between RRs and their signaling partners 

have begun to emerge (Varughese, Tsigelny et al., 2006; Yamada, Akiyama et al., 

2006; Zhao, Copeland et al., 2008).   
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1.5. HPt domains 
 

 
1.5.1 HPt domain discovery 
 

Canonical two-component signaling system consists of a sensor histidine 

kinase and its downstream partner, a response regulator protein. However, more 

complex systems, multi-step phosphorelays, also exist consisting of a hybrid HK, an 

essential histidine phosphotransfer (HPt) protein, and a downstream RR protein.  The 

HPt protein functions as a histidine-phosphorylated intermediate (or alternative 

transmitter) and transfers phosphoryl groups between the hybrid HK and its cognate 

RR, playing a crucial role in the His → Asp → His → Asp phosphorelay (Appleby, 

Parkinson et al., 1996). 

The HPt containing protein, ArcB, from E. coli was discovered in 1994 by 

Ishige and colleges (Ishige, Nagasawa et al., 1994). ArcB is a hybrid histidine kinase 

consisting of a histidine kinase domain, and receiver domain followed by an HPt 

domain. The ArcB C-terminal region, containing His-717, was shown to be 

phosphorylatable in vitro and serve as a supplementary transmitter domain for the RR 

ArcA phosphorylation (Tsuzuki, Ishige et al., 1995).  

Many HPt proteins has been discovered since then, most of which participate 

in His → Asp phosphorelay systems (Appleby, Parkinson et al., 1996; Inouye 1996; 

Mizuno 1998). The analysis of the E.coli genome uncovered four more hybrid kinases, 

containing HPt domains: BarA, EvgS, TorS and YojN (Mizuno 1997). Further studies 

identified HPt domains and HPt proteins in other organisms such as B. pertussis 
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(BvgS), B. subtilis (Spo0B), S. cerevisiae (YPD1) and A. thaliana (AHP1, AHP2 

AHP3) etc (Arico, Miller et al., 1989; Burbulys, Trach et al., 1991; Maeda, Wurgler-

Murphy et al., 1994; Uhl, Miller 1996; Suzuki, Imamura et al., 1998). The amount of 

HPt containing proteins and their distribution among different species demonstrate an 

important role these mediators play within multi-step phosphorelay systems. 

 

1.5.2 HPt structures – ArcB and YPD1  

Most of the prokaryotic HPt domains are part of the hybrid histidine kinases, 

whereas eukaryotic HPts evolved to function as separate proteins. The HPt 

domains/proteins are hard to recognize in the genome sequence databases since the 

amino acid composition of these domains/proteins is variable and relatively short. 

However, the central phosphorylated His residue remains invariant surrounded by a 

set of conserved amino acids aiding in HPt recognition (Xu, West 1999).  

The X-ray structure of ArcB-HPt domain was determined to a resolution of 

2.06 Å using multiple isomorphous replacement method (Kato, Mizuno et al., 1997). 

It consists of about 120 amino acids organized into six anti-parallel α helices. The 

domain has elongated shape with dimensions 30 x 30 x 45 Å. Four of the six helices 

are packed into a coiled-coil arrangement with a sterically close-packed hydrophobic 

core in the center, the so-called “four-helix bundle”. The bundle is arranged in an up-

down-up-down topology with left-handed twist (Figure 1-7).  



 28 

The site of phosphorylation His-715 is located on the surface of the αD helix. 

Conserved residues Glu-714, Lys-718, Lys720 and Gln-736, Gln-739 are located in 

close proximity on the αD helix and C-terminus of the αE helix. It was shown (Kato, 

Mizuno et al., 1997) that the αD and αE helices regions constitute the most conserved 

area of ArcB HPt domain. This region has a 20% identity with the HPt protein YPD1 

from S. cerevisiae.  

The structure of YPD1 protein, a HPt protein of the SLN1-YPD1-SSK1 multi-

step phosphorelay system from S. cerevisiae, is very similar to that of the C-terminal 

ArcB HPt domain. Like ArcB, YPD1 forms a four-helix bundle with a sterically close-

packed hydrophobic core in the center. The crystal of YPD1 protein was obtained by 

hanging-drop diffusion method and the structure was solved to a resolution of 2.7 Å 

using multiple isomorphous replacement and anomalous scattering methods by the 

West group (Xu, Nguyen et al., 1999; Xu, West 1999). Another group also 

independently solved YPD1 structure to a resolution of 1.8 Å (Song, Lee et al., 1999). 

The YPD1 protein has an elongated shape with dimensions 30 x 30 x 60 Å. 

The site of phosphorylation, His 64, is located on the surface of helix αC. Compared 

to ArcB, YPD1 contains an extended loop stretching from the αD helix and reaching 

the αG helix of the  



 29 

 

Figure 1-7. The crystal structure of ArcB HPt domain from E.coli and YPD1 

from S. cerevisiae. A ribbon diagram of both the ArcB HPt domain (left) and YPD1 HPt protein 

(right). The site of phosphorylation for ArcB is His 715 and the site of phosphorylation for YPD1 is His 

64 (Kato, Shimizu et al., 1999; Xu, West 1999). 

 

bundle. The response regulator binding site is formed between His64 and the αA helix 

comprised mostly of hydrophobic residues creating a common docking site for SSK1 

and SKN7 response regulators (Porter, West 2005). Finally, the response regulator 

binding specificity was proposed to occur through interactions at the hydrophobic 

docking site concentrated within the non-conserved residues of the β4–α4 and β5–α5 

loops (Porter, West 2005). The crystal structure of the SLN1-RR·YPD1 complex and 

His 715 His 64 

ArcB
 

YPD1
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BeF3
- activated SLN1-RR·YPD1 complex, solved by the members of the West group 

in 2003 and 2008 (Xu, Porter et al., 2003; Zhao, Copeland et al., 2008), provided 

detailed insight into molecular recognition between a RR and HPt protein. Several 

hydrophobic residues located along α1 of the response regulator SLN1-RR and 

several loops surrounding active site such as β1–α1, β3–α3 and β4–α4 mainly 

constitute the binding interface of the SLN1-RR forming interactions with αA, αB and 

αC of YPD1 (Zhao, Copeland et al., 2008). 

 
 
1.6. Multi-step two-component system in Saccharomyces cerevisiae. 

 
The multi-step phosphorelay system from Saccharomyces cerevisiae was one 

of the first identified and is one of the best characterized eukaryotic system. It is 

responsible for cellular adaptation to osmotic, oxidative and other environmental 

stresses (Blomberg, Adler 1989; Mager, Varela 1993; Ota, Varshavsky 1993; 

Albertyn, Hohmann et al., 1994; Brown, Bussey et al., 1994; Maeda, Wurgler-Murphy 

et al., 1994; Posas, Wurgler-Murphy et al., 1996; Hohmann 2002). The branched 

pathway consists of a hybrid histidine kinase SLN1, a histidine-containing 

phosphotransfer (HPt) protein YPD1, and two independent response regulator 

proteins, SSK1 and SKN7 (Figure 1-8).  

The SLN1 gene encodes a transmembrane sensor kinase with histidine kinase 

and aspartate transferase activities. It was discovered as a synthetically lethal allele 

with ubr1∆, encoding the recognition component of the N-end-rule ubiquitin system  
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(Ota, Varshavsky 1992). SLN1 possess an extracellular domain and two 

transmembrane domains like some bacterial sensor kinases (Ostrander, Gorman 1999). 

The architecture of the SLN1 protein differs from the typical bacterial sensor kinase 

by the unconventional fusion of a sensor kinase and a response regulator module. The 

hybrid histidine kinase exists as a dimer in the yeast membrane and 

autophosphorylates in trans via cytosolic ATP (Maeda, Wurgler-Murphy et al., 1994; 

Posas, Wurgler-Murphy et al., 1996). The sites of phosphorylation are His576 for 

histidine kinase domain and Asp1144 for response regulator domain (Maeda, Wurgler-

Murphy et al., 1994). The phosphorylation of response regulator domain leads to the 

subsequent transfer of the phosphoryl groups to the downstream HPt protein YPD1. 

The crystal structure of the SLN1-RR•YPD1 complex in active and inactive 

conformations was solved by the members of the laboratory (Chooback, West 2003; 

Xu, Porter et al., 2003; Zhao, Copeland et al., 2008). 

It has also been shown that the SLN1 kinase monitors changes in turgor 

pressure caused by hyperosmotic stress, and that its activity is independently affected 

by the presence/absence of specific outer cell wall proteins (Reiser, Raitt et al., 2003; 

Shankarnarayan, Malone et al., 2008).  

The HPt protein YPD1 is involved in mediating transfer of the phosphoryl 

group from the transmembrane HK SLN1 to response regulator proteins SSK1 and 

SKN7 (Posas, Wurgler-Murphy et al., 1996; Li, Ault et al., 1998).  
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Figure 1-8. Multi-step phosphorelay signaling pathway in S. cerevisiae. Components 

of the system are: SLN1- hybrid sensor kinase, YPD1-histidine phosphotransfer protein, SSK1/SKN7- 

response regulator proteins. Under normal conditions phosphotransfer occurs from SLN1 to SSK1, 

under non-osmotic conditions, unphosphorylated SSK1 activates the MAP kinase cascade.  

 

 

SKN7 is one of the RRs of the multi-step phosphorelay. It has an atypical 

domain organization in that the DNA binding domain is located at the N-terminus and 

the response regulator domain is located at the C-terminus. The SKN7 response 

regulator is involved in different cellular processes: oxidative stress (Morgan, Banks et 
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al., 1997; Li, Ault et al., 1998; Raitt, Johnson et al., 2000) and cell wall damage 

(Brown, North et al., 1993; Morgan, Bouquin et al., 1995). During adaptation to 

oxidative stress SKN7 regulates transcription of TRX2, SSA1 and heat-shock like 

genes in a phosphorylation-independent manner (Li, Ault et al., 1998; Raitt, Johnson 

et al., 2000). The mechanism of this regulation is not known. On the other hand 

regulation of the response to the cell wall damage requires SKN7 phosphorylation 

leading to OCH1 gene activation (Li, Dean et al., 2002). 

The domain organization of SSK1 is similar to SKN7 and consists of the 

response regulator domain at the C-terminus and a putative effector domain at the N-

terminal end, but is devoid of DNA-binding activity. Phosphorylation of SSK1 

negatively regulates a downstream MAP kinase cascade. Only under hyperosmotic 

conditions the unphosphorylated SSK1 protein can activate downstream target genes by 

direct binding to the first members of the MAP kinase cascade SSK2/SSK22, redundant 

MAP kinase kinase kinases (Maeda, Wurgler-Murphy et al., 1994; Posas, Saito 1998; 

Posas, Takekawa et al., 1998; Horie T., Tatebayashi K. et al., 2008). These two kinases 

activate the MAP kinase kinase PBS2 (Maeda, Takekawa et al., 1995; Posas, Saito 

1997). PBS2 in turn activates HOG1, the final MAP kinase in this pathway. 

Phosphorylated HOG1 migrates into the nucleus where it interacts with different 

transcription factors and regulates the expression level of the GPD1 gene (glycerol-3 

phosphate dehydrogenase) and other genes, which leads to the production of glycerol 

(Albertyn, Hohmann et al., 1994; Ferrigno, Posas et al., 1998; Madhani, Fink 1998; 
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Posas, Saito 1998). The two-component signal transduction in the yeast S. cerevisiae 

uses two mechanisms for signal transduction: the histidine-aspartate phosphorelay 

mechanism commonly observed in bacteria and the serine/threonine/tyrosine 

phosphorylated MAP kinase cascade typically found in eukaryotes. 

 

1.7. Pathogenic yeast - Candida albicans  

Candida albicans is a pathogenic yeast of both clinical and research interest. A 

crucial feature of this microorganism is its versatility. The organism has the ability to 

invade kidney, liver, and brain (Calderone 2002; Soll 2002; Romani, Bistoni et al., 

2003). In some patient groups, whose defense system is severely compromised (AIDS 

patients, prematurely born infants, leukemics and burn patients), Candida turns into a 

deadly pathogen causing systemic infections with mortality rate as high as 50% 

(Wenzel 1995). The incidence of such infections is rapidly increasing. Candida 

species are fourth in frequency among all microorganisms isolated from blood samples 

in US hospitals and fourth in causing nosocomial infections (Calderone 2002). 

Furthermore, oropharyngeal candidiasis occurs in approximately 70% of patients with 

AIDS, ~70% of all women will experience at least one episode of vaginitis caused by 

Candida albicans and ~ 20% will experience recurrent disease (Calderone 2002; Soll 

2002).  
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Figure 1-9. Germination of C. albicans. Parental yeast cells can germinate into five different 

morphological forms depending on the growth conditions: budding yeast, pseudohypha, germ tubes, 

and hypha (Walsh, Dixon 1996). 

 

C. albicans grows vegetatively in a variety of morphogenic forms: it can exist 

as simple budding yeast or undergo morphogenesis and produce filaments in the form 

of pseudohypha and/or hypha (Figure 1-9). Additional electron microscopy studies 

have revealed ultrastructural organization in the C. albicans cell wall, which changes  
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Figure 1-10. Multi-Step Phosphorelay Signaling Pathways in S. cerevisiae and C. 

albicans. Comparison of the multi-step systems in both organisms. Both systems control a 

downstream MAP kinase cascade and are responsible for environmental stress adaptation.  

 

during germ-tube formation, the onset of stationary phase, and reinitiation of growth 

(Djaczenko, Cassone 1972; Scherwitz, Martin et al., 1978). The yeast cell wall 
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contains the following composition: lipid 2%, protein 3-6%, chitin 1-2%, 

mannoprotein 35-40%, and glucan 48-60% (Klis, de Groot et al., 2001). 

Due to the morphological switch (unicellular yeast into filamentous yeast); C. 

albicans is able to survive under variety of stress conditions. A number of factors have 

been associated with the virulence properties of C. albicans: adherence to host cells, 

ability to turn on several degradative enzymes and the phenomenon of “phenotypic 

switching” (Brown, Gow 1999; Soll 2002; Romani, Bistoni et al., 2003). Little is 

known about the mechanism of adaptation of C. albicans. The multi-step His-Asp 

phosphorelay signal transduction pathways is known as one of the major pathways by 

which adaptation to oxidative stress occurs (Calera, Calderone 1999).  

Homologues of two-component signal transduction proteins were found in 

C.albicans (Figure 1-10). Three histidine kinases CaSLN1, Cos/CaNik1 and CHK1 

were found in C.albicans (Calera, Calderone 1999; Deschenes, Lin et al., 1999; 

Yamada-Okabe, Mio et al., 1999). CaSLN1 is a transmembrane kinase that 

complements SLN1 in S. cerevisiae. This suggests that it has a similar role in C. 

albicans (Nagahashi, Mio et al., 1998). Cos/CaNik1 is a gene homologue of NIK1 

protein from Neurospora crassa. Similarities in structure were found in the N-

terminus region with S.cerevisiae. It is known that deletions of the CaNIK1 gene 

suggest that the protein is involved in hyphal development in C. albicans and is 

responsible for the frequency of the phenotype switch (Alex, Korch et al., 1998; 

Nagahashi, Mio et al., 1998; Srikantha, Tsai et al., 1998). 
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CaCHK1 is a hybrid kinase with a Ser/Thr MAP kinase domain and an 

ATP/GTP binding loop. Deletion of the CaCHK1 gene resulted in avirulence and 

flocculation of the strains that may indicate that CaCHK1 is a part of a signal 

transduction pathway associated with regulating hyphal-specific cell surface proteins 

(Calera, Choi et al., 1998; Calera, Calderone 1999; Calera, Zhao et al., 1999; 

Torosantucci, Chiani et al., 2002). As in S.cerevisiae, the histidine-containing 

phosphotransfer protein CaYPD1 is found in C. albicans. The CaYPD1 gene can 

complement the ypd1 gene deletion in S. cerevisiae (Calera, Herman et al., 2000). 

Two response regulators have been identified to date in C. albicans – CaSKN7 

(orf6.8220, http://genolist.pasteur.fr/CandidaDB) and CaSSK1. It is known that the 

CaSSK1 gene is unable to complement a SSK1 gene deletion in S. cerevisiae (Calera, 

Calderone 1999), thus it is expected to have functions not only in regulating the 

response to the hyperosmotic stress, but also other functions (functions that are 

associated with virulence and cell wall biosynthesis) (Chauhan, Inglis et al., 2003). 

Additionally, ∆ssk1 in C. albicans causes cell flocculation and avirulence (Calera, 

Zhao et al., 2000). The CaSKN7 response regulator gene has been identified by the C. 

albicans genome-sequencing project, but the protein has not yet been studied. 

However, the deletion mutant of CaSKN7 was constructed. The mutant strain was 

sensitive to H2O2 in vitro, but its virulence was only mildly attenuated (Singh, 

Chauhan et al., 2004).   
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Virulence of C. albicans 

The ability of C. albicans to survive, as a commensal organism, under different 

stress conditions inside the host is well known. The spectrum of diseases, attributed to 

C. albicans is much greater than that of any other commensal microorganism.  It is 

able to invade the host under a wide variety of predisposing conditions that range from 

specific immune defects to esophageal candidiasis (Kodsi, Wickremesinghe et al., 

1976; Bernhardt, Herman et al., 2001). For any disease establishment, C. albicans 

requires virulence factors, which can be strictly associated with the pathogenic state of 

the organism or can also influence survival of C. albicans as a commensal organism. 

They include (Calderone, Fonzi 2001):  

a) host recognition biomolecules; b) morphogenesis; c) expression of invasive 

enzymes; c) phenotypic switching. 

Host recognition biomolecules Numerous studies showed that C. albicans non-

adhesive strains are avirulent (Gale 1998; Staab, Bradway et al., 1999; Sundstrom 

1999). The adhesive proteins, which bind the organism to mammalian cells include: 

Als1, Als5 (agglutinin-like proteins), Hwp1 (mannoprotein), Int1 (integrin-like 

protein), Mnt1 (membrane protein) and mannan-binding proteins. 

Morphogenesis C. albicans is polymorphic in their growth pattern. They can grow 

isotropically (budding yeast) or apically (hyphae, pseudohyphae). This yeast-to-hyphal 

conversion is important because it is associated with biofilm formation by the 

organism in mucosal infections and invasion in systemic disease. Two signal 
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transduction pathways are associated with morphogenesis (Brown, Gow 1999; 

Lengeler, Davidson et al., 2000).  

Expression of invasive enzymes There are two groups of enzymes that contribute to 

the C. albicans virulence – secreted aspartyl proteinases (SAP) and phospholipases 

(PL). Among four PLs, only PLB1 protein is required for virulence (Ghannoum 2000). 

Six out of seven existing SAPs in C. albicans are required for virulence and express in 

different manner, which depends on tissue specificity (Schaller M., Schafer W. et al., 

1998; Schaller M., Bein et al., 2003). 

Phenotypic switching The phenotypic switch in C. albicans occurs frequently and is 

reversible. The mechanism for the switch has been suggested to include chromosomal 

rearrangements (aneuploidy) (Rustchenko-Bulgac, Sherman et al., 1990). The most 

studied phenotypic switch is the white-opaque system in strain WO-1 (Slutsky, Buffo 

et al., 1985). Opaque cell colonize the skin more than white-phase cells, but are less 

virulent (Kvaal, Lachke et al., 1999). 

All above-mentioned factors expressed by C. albicans are important in its 

adaptation and virulence to specific anatomical sites and include multiple protein 

signaling cascades that help to effect and turn on downstream genes.  

 

1.8. Research focus 

The multi-step His-Asp phosphorelay system in Saccharomyces cerevisiae 

which allows cells to adapt to osmotic, oxidative and other environmental stresses has 
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been comprehensively studied. However there are still questions yet to be answered: 

what is the mechanism of signal recognition by SLN1 histidine kinase? How is the 

signal transmitted and processed under hyperosmotic stress? What triggers SSK1 

protein dephosphorylation during hyperosmotic stress? How does ion-solute 

concentrations affect the SLN1-YPD1-SSK1 phosphorelay pathway?  

The research in our laboratory has been focused on investigating on how 

changes in intracellular ion and osmolyte concentration upon hyperosmotic shock may 

affect pathway regulation and protein-protein interactions involving YPD1 and SSK1. 

Elucidating the molecular events that trigger the cellular responses to hyperosmotic 

stress is important for fully understanding the overall regulation of this signaling 

pathway. Therefore, we examined the effect of solute concentration not only on 

phosphotransfer rates within SLN1-YPD1-SSK1 phosphorelay but also on 

YPD1/SSK1 interactions and dephosphorylation of SSK1. This study will provide 

new insights into the mechanisms that underlie the osmoregulatory pathway in S. 

cerevisiae and the specific effects of osmolytes in regulating the pathway. 

Additionally, we have also focused our attention on the in vitro reconstitution 

of the multi-step phosphorelay from pathogenic yeast C. albicans and biochemical 

characterization of the CaYPD1 and CaSSK1 proteins. This study will establish a 

basis for the future biochemical characterization of this multi-step His-to-Asp 

phosphorelay and its components and possibly for anti-fungal drug design. 
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Chapter 2 

Effect of osmolytes on the half-life of phosphorylated SSK1-RR in the 
presence and absence of YPD1 

 
“Portions of this chapter are reproduced with automatic permission from [Kaserer A.O., Babak A., 
Cook P.F., West A.H. (2009) Effects of Osmolytes on the SLN1-YPD1-SSK1 Phosphorelay system 
from Saccharomyces cerevisiae., Biochemistry. v. 48(33), p. 8044-50]”. 

 

Two-component signal transduction systems in prokaryotes and eukaryotes 

regulate cellular responses to a variety of environmental stresses (Stock, Robinson et 

al., 2000). In Saccharomyces cerevisiae, a multi-step phosphorelay system is 

responsible for adaptation to osmotic, oxidative and other environmental stresses 

(Blomberg, Adler 1989; Albertyn, Hohmann et al., 1994; Saito 2001; Hohmann 2002). 

The branched pathway consists of a sensor histidine kinase SLN1, a histidine-

containing phosphotransfer (HPt) protein YPD1, and two independent response 

regulator proteins, SSK1 and SKN7. The SLN1 gene encodes a hybrid histidine kinase 

with two membrane spanning regions and an extracellular sensing domain (Ota, 

Varshavsky 1993). The HPt protein, YPD1, serves as a non-enzymatic but essential 

mediator between SLN1 and two downstream RR proteins SSK1 and SKN7 (Posas, 

Wurgler-Murphy et al., 1996; Li, Ault et al., 1998).  

Phosphoryl group transfer from YPD1 to SSK1-RR allows constitutive 

phosphorylation of this response regulator to occur under normal osmotic conditions 

(Posas, Saito 1998; Janiak-Spens, Cook et al., 2005; Horie T., Tatebayashi K. et al., 

2008). However, the life-time of response regulators in the presence of magnesium 

ions is relatively short, ranging from seconds (CheY) to about 10 hrs (VanR) (Hess, 
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Oosawa et al., 1988; Wright, Holman et al., 1993). Half-life studies were previously 

carried out in our laboratory for all three isolated response regulator domains: 

phospho-SSK1-RR, phospho-SLN1-RR and phospho-SKN7-RR (Janiak-Spens, 

Sparling et al., 1999). The analysis revealed that phospho-SLN1-RR exhibited a half-

life of t1/2 = 13 ± 2 min, phospho-SSK1-RR  with t1/2 = 13 ± 3 min and phospho-SKN7-

RR with t1/2 = 144 ± 6 min (Janiak-Spens, Sparling et al., 1999; Janiak-Spens, Sparling 

et al., 2000).  

Furthermore, the unprecedented regulatory role for an HPt domain YPD1 in a 

phosphorelay signaling system was uncovered using a gel mobility shift assay and 

half-life studies of the phosphorylated SSK1-RR in the presence of YPD1 (Janiak-

Spens, Sparling et al., 2000). It was demonstrated in vitro, that YPD1 is able to form a 

complex with phosphorylated SSK1 response regulator domain shielding its 

phosphoryl group from rapid hydrolysis. This stabilization effect of nearly 200-fold 

appeared to be protein specific and was observed only for SSK1-RR, increasing the 

half-life of the phosphorylated SSK1-RR from t1/2 = 13 ± 3 min to t1/2 = 38 ± 4 hrs. It 

also suggested a possible mechanism according by which SSK1 can be maintained in 

its phosphorylated inactive state under normal physiological conditions (Janiak-Spens, 

Sparling et al., 2000). However, a major question still remained: how is the SSK1 

response regulator protein rapidly dephosphorylated under hyperosmotic shock 

conditions?  
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 Phosphorylation and dephosphorylation of SSK1 functions as an on/off switch 

in controlling the activity of the downstream HOG1 mitogen-activated protein (MAP) 

kinase cascade, responsible for production of glycerol (Posas, Saito 1998; Horie T., 

Tatebayashi K. et al., 2008). Accumulation of intracellular glycerol, a chemically inert 

osmolyte, allows yeast cells to adapt to hyperosmotic stress conditions.  

A number of different osmolytes are found inside yeast and other fungi 

including monovalent salts, amino acids, polyols and carbohydrates (Blomberg, Adler 

1992; Millar 1999; Hohmann 2002). S. cerevisiae, S. pombe, C. albicans, and D. 

hansenii almost exclusively employ glycerol as an osmolyte in osmoregulation (Aiba, 

Yamada et al., 1995; Thomé 1999; Hohmann 2002; Fan, Whiteway et al., 2005; Burg 

2008). Osmoadaptation is achieved through a series of cellular responses that are 

temporally regulated. For instance, closure of the osmotically sensitive glycerol 

channel (Fps1) upon hyperosmotic shock provides an additional route to increase the 

glycerol concentration inside the cell almost immediately to compensate for water 

efflux (Shankarnarayan, Malone et al., 2008). HOG1 phosphorylation occurs in the 

cell during the first 1-3 min after exposure to osmotic shock (Brewster, de Valoir et 

al., 1993). Both GPD1 and glycerol concentrations are at half-maximal level within 20 

min (Klipp, Nordlander et al., 2005). An increase in intracellular glycerol 

concentration increases the turgor pressure which is mediated by the elasticity of the 

plasma membrane and cell wall upon water exchange (Klipp, Nordlander et al., 2005). 
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Elucidating the molecular events that trigger the cellular responses to 

hyperosmotic stress including the rapid efflux of water, changes in intracellular ion 

and osmolyte concentration, phosphorylation/dephosphorylation of SSK1-R2 is 

important for fully understanding the overall regulation of this signaling pathway. We 

hypothesized that the change in ion/solute concentration under hyperosmotic 

conditions disrupts the YPD1•SSK1-RR~P complex, thus facilitating 

dephosphorylation of SSK1 and subsequent MAP kinase cascade activation. We 

therefore examined the effect of osmolyte concentrations on the half-life of the 

phosphorylated SSK1-RR in the presence and absence of YPD1 and present data in 

support of our hypothesis. 

 

2.2 Materials and methods 

2.2.1 Materials 

All chemicals and biochemicals were of ultrapure grade. Glutathione-

Sepharose 4B resin was purchased from Amersham. HiTrapQ columns were 

purchased from GE Healthcare. [γ-32P] ATP (3000 Ci/mmol) was purchased from 

Perkin-Elmer. Chymostatin, aprotinin, pepstain, phosphoramidon, E-64, leupeptin, 

antipain, sodium metabisulfite were purchased from Sigma and benzamidine was 

purchased from Fluka. Ficoll 400, D-(+)-trehalose, proline and betaine were purchased 

from Sigma-Alrdich. NaCl and glycerol were from Mallinckrodt Chemicals and 

Pharmco-Aaper, respectively.  
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2.2.2 Protein expression and purification 

All strains used for protein purification are presented in Table 2-1. 

GST-SLN1-HK protein expression and purification (Li, Ault et al., 1998)  

Escherichia coli DH5α cells (strain OU246) containing the pGEX-GST-SLN1-

HK (plasmid OU70 including SLN1-HK 530 – 970 amino acids) vector were 

inoculated into 10 mL of LB medium with 100 μg mL−1 of ampicillin and shaken 

overnight at 37 ºC. The cell culture was further inoculated into 1 L of prewarmed LB 

medium in the presence of 100 μg mL−1 of ampicillin at 37°C. When the optical 

density (at 600 nm) of the culture reached 0.9, the cells were cooled to room  

 

Protein 
expressed 

Plasmid 
number Plasmid name Strain 

number 

E. coli strain, 
antibiotic 
resistance 

GST-SLN1-HK OU70 pGEX-GST-HK OU246 DH5α/ AmpR 

YPD1 OU15 pUC12-YPD1 OU6 DH5α/ AmpR 

SSK1-RR OU26 pETCYB-SSK1-RR OU357 BL21 (DE3)/ 
AmpR, CmR  

 
Table 2-1. Plasmid constructs used for protein expression and purification. An OU 

number was assigned for each individual plasmid construct and transformed in E. coli strain.  

 

temperature and expression of SLN1-HK was induced by the addition of IPTG to a 

final concentration of 0.2 mM. The cultures were shaken overnight at 16°C and then 

harvested, resuspended at 4 mL g−1 (wet weight) of the cell buffer SP-1 (50 mM Tris-
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HCl, pH 8, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% βME, 1 mM PMSF 

and 1 x protease inhibitor cocktail)1. Cells were lysed by sonication, and the lysates 

were clarified by centrifugation in a JA-20 rotor at 27,200 x g for 1 h at 4°C. The 

supernatant was loaded onto a 2 mL glutathione–sepharose 4B bead column 

equilibrated in SP1 buffer at 4°C. The column was washed sequentially with 20 mL of 

SP1 buffer and incubated overnight at 4°C. Thereafter the column was washed with 

10 mL of SP2 buffer (50 mM Tris-HCl, pH 8, 2 mM DTT and 1 mM EDTA) and 20 

mL of SP3 buffer (50 mM Tris-HCl, pH 8, 100 mM KCl, 2 mM DTT, 1 mM EDTA 

and 10% glycerol). Next, 2 mL of SP3 buffer was left above the column bed and 

gently mixed with the beads. The suspension was immediately aliquoted (50 μL) in 

the eppendorf tubes and stored at –20°C. The protein was judged to be 90% 

homogeneous based on analysis by SDS-PAGE.  

 

YPD1 protein expression and purification (Xu, Nguyen et al., 1999). 

Escherichia coli DH5α cells (strain OU6) containing the pUC12-YPD1 vector 

(plasmid OU 15 including YPD1 full length protein) were inoculated into 1 mL of LB 

medium with 100 μg mL−1 of ampicillin and shaken overnight at 37 ºC. The cell 

culture was further inoculated into 1 L of prewarmed LB medium in the presence of 

100 μg mL−1 of ampicillin and grown for 19 hrs at 37°C. The culture was harvested, 

                                                
1 Protein inhibitor mix (100x) with final concentrations of the components: Chymostatin (10 μg/mL), 
Aprotinin (200 μg/mL), pepstatin (100 μg/mL), Phosphoramidon (110 μg/mL), E-64 (720 μg/mL), 
Leupeptin (50 μg/mL), Antipain (250 μg/mL), Benzamidine (10 mM) and Sodium metabisulfite (10 
mM). 
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washed and suspended at 5 mL g−1 (wet weight) of cells in lysis buffer (0.1 M sodium 

phosphate, pH 7.0, 1 mM EDTA and 1.4 mM βME). Cells were lysed by sonication, 

and the lysate was clarified by centrifugation at 27, 200 x g for 1 h at 4°C (JA-20 

rotor). The supernatant was separated from pellet and its volume was measured. Next, 

an ammonium sulfate precipitation was performed: clarified cell lysate was transferred 

to a small beaker and placed on the stirplate at 4°C, gently stirring with the slow 

addition of saturated ammonium sulfate to a final concentration of 55 %. The 

suspension was centrifuged in a JA-20 rotor at 12, 100 x g for 45 min at 4°C. The 

pellet was resuspended in 6-7 mL of dialysis buffer (20 mM BisTris, pH 6.5 and 

1.4 mM βME) and dialyzed against 2 L of dialysis buffer. Subsequently, the protein 

was recovered from the dialysis bag and clarified by centrifugation in a JA-20 rotor at 

12,100 x g for 1 h at 4°C. The supernatant was filtered through a 0.2 μm syringe filter 

and loaded onto a pre-equilibrated 5 ml HiTrapQ column with buffer A (20 mM 

BisTris, pH 6.5). The column was washed sequentially with 100 mL of buffer A and 

the protein was eluted with the linear salt gradient 0 - 1 M NaCl in buffer A. Fractions 

were analyzed by SDS-PAGE and YPD1-containing fractions were pooled and 

concentrated to approximately 8 mL using a Centricon 10 (Amicon) filter. The protein 

was then loaded onto a Sephadex G-50 gel-filtration column (300 ml bed volume) 

equilibrated in 50 mM sodium phosphate, pH 7, 1 mM EDTA and 1.4 mM βME. 

Fractions containing pure YPD1 protein were identified by SDS-PAGE and pooled, 

subsequently concentrated to 10 mg/mL. The protein concentration was determined by 
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absorbance at 280 nm using a calculated extinction coefficient of 15,280 M−1cm−1. 

Purified YPD1 protein was stored in gel filtration buffer in the presence of 1mM DTT 

and 15 % glycerol at −20°C. 

 

SSK1-RR protein expression and purification (Janiak-Spens, Sparling et al., 1999) 

Escherichia coli BL21 (DE3) RIL cells (strain OU357) containing the 

pETCYB-SSK1-RR (plasmid OU26 including SSK1-RR 495 – 712 amino acids) 

vector were inoculated into 10 mL of LB medium with 100 μg mL−1 of ampicillin and 

shaken overnight at 37 ºC. The cell culture was further inoculated into 1 L of 

prewarmed LB medium in the presence of 100 μg mL−1 of ampicillin and shaken at 

37°C. When the optical density (at 600 nm) of the culture reached 0.8, the cells were 

cooled to room temperature and expression of SSK1-RR was induced by the addition 

of IPTG to a final concentration of 1 mM. The cultures were shaken overnight at 16°C 

and then harvested, washed with cell wash buffer (0.1 M Na-phosphate, pH 7 and 1 

mM EDTA), then resuspended at 5 mL g−1 (wet weight) of cells in lysis buffer 

(20 mM Tris-HCl, pH 8, 500 mM NaCl, 1 mM EDTA, 0.1% Triton X-100). Cells 

were lysed by sonication, and the lysate was clarified by centrifugation at 27,200 x g 

for 1 h at 4°C. The supernatant was loaded onto a 3 mL chitin bead column 

equilibrated in lysis buffer at 4°C. The column was washed sequentially with 100 mL 

of lysis buffer and 25 mL of cleavage buffer (20 mM Tris-HCl, pH 8, 50 mM NaCl, 

1 mM EDTA, 5 mM ATP, 10 mM MgCl2). Thereafter the column was washed 
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immediately with 25 mL of cleavage buffer containing 30 mM βME and incubated 

overnight at 4°C. The protein was eluted with cleavage buffer and further purified by 

separation on a gel filtration column (Sephadex G75, 300 ml bed volume) equilibrated 

in 20 mM Tris-HCl, pH 8, 50 mM NaCl, 1 mM EDTA, 1.4 mM βME and 10% 

glycerol. Fractions containing SSK1-RR were pooled and concentrated using a 

Centricon 10 (Amicon) filter unit. The protein was judged to be 90% homogeneous 

based on analysis by SDS-PAGE. The protein concentration was determined by 

absorbance at 280 nm using a calculated extinction coefficient of 25,440 M−1cm−1. 

Typical yields were 1 mg L−1 of cells. Purified SSK1-RR protein was stored in gel 

filtration buffer in the presence of 10% glycerol at −20°C. 

 

2.2.3 Measurement of phosphorylated protein half-life 

Phosphorylation of the response regulator domain SSK1-RR was achieved by 

incubation with GST-SLN1-HK and [γ-32P] ATP. GST-tagged SLN1-HK (7 µM) 

bound to glutathione-Sepharose 4B resin was incubated with 7 µM [γ-32P] ATP in 100 

µL of 50 mM Tris-HCl (pH 8.0), 100 mM KCl, 10 mM MgCl2, 2 mM DTT and 20% 

glycerol for 30 min at room temperature. Phosphorylated GST-SLN1-HK was 

recovered in the pellet after three consecutive centrifugation steps (1 min at 100 × g). 

Purified SSK1-RR (12 µM) in 50 mM Tris-HCl (pH 8.0), 100 mM KCl, 10 mM 

MgCl2, 2 mM DTT was added and the mixture was incubated for 30 min at room 

temperature in a total reaction volume of 40 µL. Phospho-SSK1-RR was recovered in 
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the supernatant after gently pelleting the resin-bound GST-SLN1-HK. The isolated 

phosphorylated SSK1-RR (30 μL) was added to a reaction mixture containing 3 µM 

YPD1 and indicated osmolyte concentrations (NaCl, trehalose, glycerol, proline, 

betaine) in a total reaction volume of 120 µL. For the reaction in the absence of YPD1, 

the isolated SSK1-RR (12 µM) in 50 mM Tris-HCl (pH 8.0), 100 mM KCl, 10 mM 

MgCl2, 2 mM DTT was added to the indicated osmolyte concentrations in a total 

reaction volume of 75 µl. Aliquots (15 μL) were removed at indicated time points for 

both reactions, mixed with 5 μL of 4X stop buffer (0.25 M Tris-HCl pH 8.0, 8% SDS, 

60 mM EDTA, 40% glycerol, 0.008% bromophenol blue) to terminate the reaction, 

and kept at 20 °C until gel analysis. Samples were analyzed by SDS-PAGE followed 

by phosphorimager analysis (STORM 860, Molecular Dynamics) to quantitate 

radiolabeled band intensity. Dephosphorylation of phospho-SSK1-R2 followed first-

order rate kinetics and the half-life of phospho-SSK1-R2 was determined according to 

the formula t1/2 = ln2/k, where k is the rate constant for the dephosphorylation reaction. 

 

2.3 Results 

2.3.1 Effect of osmolytes on the stability of the YPD1•SSK1-RR complex 

 A value of 13 ± 3 min was previously measured for the half-life of 

phosphorylated SSK1-R2 in the absence of YPD1 (Janiak-Spens, Sparling et al., 

2000). However, in the presence of YPD1, the phosphorylated SSK1-R2 half-life 

increased to 38 ± 4 hrs (Janiak-Spens, Sparling et al., 2000). Thus, it was proposed 
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that the HPt protein YPD1 forms a complex with SSK1 and sterically shields the 

phosphorylated aspartate residue from hydrolysis. However, the mechanism of rapid 

dephosphorylation of SSK1-RR~P under conditions of hyperosmotic stress remains 

unclear. 

In order to assess the stability of the phosphorylated form of SSK1-RR under 

conditions of hyperosmotic stress, the half-life of SSK1-RR~P was first measured as a 

function of osmolyte concentration in the presence of YPD1. Osmolytes used were 

glycerol (Figure 2-1), betaine (Figure 2-2), proline (Figure 2-3), sodium chloride 

(Figure 2-4), and trehalose (Figure 2-5). Ficoll 400 was also tested as a control for 

viscosity (Figure 2-6). Throughout the course of the experiment, no trace of 

phosphorylated YPD1 was detectable, suggesting that there is no observable reverse 

phosphotransfer reaction between the two proteins. Our results demonstrate an 

approximately 2-fold decrease in the life-time of phosphorylated SSK1-RR in the 

presence of YPD1 and osmolytes (with the exception of proline) (Figure 2-7).  
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Figure 2-1.  In vitro dephosphorylation of SSK1-RR in the presence of YPD1 and 

glycerol. The dephosphorylation reaction mixtures contained equimolar amounts of SSK1-RR and 

YPD1 in all reactions mixtures. Various concentrations of glycerol were examined: A) 0 M glycerol; B) 

0.3 M glycerol; C) 0.6 M glycerol; D) 0.9 M glycerol; E) 1.2 M glycerol. After incubation for the 

specified amount of time, sample aliquots were taken and quenched by addition of 5 μl of 4 × stop 

buffer (8% SDS and 80 mM EDTA). Reaction products were separated by 15% SDS-PAGE and the gel 

was then subjected to phosphorimager analysis. 
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Figure 2-2.  In vitro dephosphorylation of SSK1-RR in the presence of YPD1 and 

betaine. The dephosphorylation reaction mixtures contained equimolar amounts of SSK1-RR and 

YPD1 in all reactions mixtures. Various concentrations of betaine were examined: A) 0 M Betaine; B) 

0.15 M Betaine; C) 0.3 M Betaine; D) 0.6 M Betaine; E) 1.2 M Betaine. After incubation for the 

specified amount of time, sample aliquots were taken and quenched by addition of 5 μl of 4 × stop 

buffer (8% SDS and 80 mM EDTA). Reaction products were separated by 15% SDS-PAGE and the gel 

was then subjected to phosphorimager analysis. 
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Figure 2-3.  In vitro dephosphorylation of SSK1-RR in the presence of YPD1 and 

proline. The dephosphorylation reaction mixtures contained equimolar amounts of SSK1-RR and 

YPD1 in all reactions mixtures. Various concentrations of proline were examined: A) 0 M Proline; B) 

0.2 M Proline; C) 0.4 M Proline; D) 0.8M Proline; E) 1.2 M Proline. After incubation for the specified 

amount of time, sample aliquots were taken and quenched by addition of 5 μl of 4 × stop buffer (8% 

SDS and 80 mM EDTA). Reaction products were separated by 15% SDS-PAGE and the gel was then 

subjected to phosphorimager analysis. 
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Figure 2-4.  In vitro dephosphorylation of SSK1-RR in the presence of YPD1 and 

sodium chloride. The dephosphorylation reaction mixtures contained equimolar amounts of SSK1-

RR and YPD1 in all reactions mixtures. Various concentrations of sodium chloride were examined: A) 

0 M NaCl; B) 0.2 M NaCl; C) 0.4 M NaCl; D) 0.6 M NaCl; E) 0.8 M NaCl; F) 1 M NaCl. After 

incubation for the specified amount of time, sample aliquots were taken and quenched by addition of 

5 μl of 4 × stop buffer (8% SDS and 80 mM EDTA). Reaction products were separated by 15% SDS-

PAGE and the gel was then subjected to phosphorimager analysis. 
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Figure 2-5.  In vitro dephosphorylation of SSK1-RR in the presence of YPD1 and 

trehalose. The dephosphorylation reaction mixtures contained equimolar amounts of SSK1-RR and 

YPD1 in all reactions mixtures. Various concentrations of trehalose were examined: A) 0 M Trehalose; 

B) 0.2 M trehalose; C) 0.3 M Trehalose; D) 0.4 M Trehalose; E) 0.5 M Trehalose. After incubation for 

the specified amount of time, sample aliquots were taken and quenched by addition of 5 μl of 4 × stop 

buffer (8% SDS and 80 mM EDTA). Reaction products were separated by 15% SDS-PAGE and the gel 

was then subjected to phosphorimager analysis. 
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Figure 2-6.  In vitro dephosphorylation of SSK1-RR in the presence of YPD1 and 

Ficoll 400. The dephosphorylation reaction mixtures contained equimolar amounts of SSK1-RR and 

YPD1 in all reactions mixtures. Various concentrations of Ficoll were examined: A) 0 M Ficoll 400; B) 

0.2 M Ficoll 400; C) 0.4 M Ficoll 400; D) 0.6 M Ficoll 400; E) 0.8 M Ficoll 400. After incubation for 

the specified amount of time, sample aliquots were taken and quenched by addition of 5 μl of 4 × stop 

buffer (8% SDS and 80 mM EDTA). Reaction products were separated by 15% SDS-PAGE and the gel 

was then subjected to phosphorimager analysis. 
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Figure 2-7.  Effects of osmolytes on the half-life of SSK1-RR~P. Curves are drawn by 

hand for (○) proline, (◊) Ficoll 400, (▲) glycerol, (■) betaine, (♦) trehalose, and (●) NaCl. 



 72 

2.3.2 Effect of osmolytes on the SSK1-RR phosphorylated half-life 

To determine if the observed effect of osmolytes on the SSK1-RR 

phosphorylated lifetime is due to an affect on protein-protein interaction between 

YPD1 and SSK1-RR or a direct influence on SSK1-RR~P intrinsic stability, the same 

experiments were repeated in the absence of YPD1. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2-8.  Effects of osmolytes on the half-life of SSK1-RR~P in the absence of 

YPD1. (♦) NaCl,  (▲) glycerol, (●) (○) trehalose. 
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Osmolytes used were glycerol, sodium chloride and trehalose (Figure 2-8). In contrast 

to the experiments carried out in the presence of YPD1, experiments conducted in the 

absence of YPD1 showed no effect of osmolytes on the intrinsic stability of SSK1-

RR~P. 

 
 

2.4 Discussion 

The nature of the interaction between SSK1-RR and YPD1 is important due to 

the regulatory function of SSK1-RR and its phosphorylation state that controls to 

activation or inactivation of the HOG1 MAP kinase cascade. Previous in vitro studies 

have suggested a protective role for YPD1 in shielding the phosphoryl group of SSK1-

RR from hydrolysis (Janiak-Spens, Sparling et al., 1999; Janiak-Spens, Sparling et al., 

2000). A protein-protein interaction such as this would help prevent activation of 

HOG1 under non-osmotic stress conditions. Increasing osmolyte concentrations 

caused a reduction in the half-life of SSK1-RR~P in the presence of YPD1 by 

approximately 2-fold (Figure 2-7). Ficoll 400 was used as a control for viscosity and 

had shown no effect on the SSK1-RR~P stability in the presence of YPD1 (Figure 2-

7).  Additionally, in the absence of YPD1, osmolytes had also no effect on the intrinsic 

stability of SSK1-RR~P (Figure 2-8).  Our data suggest that osmolytes negatively 

affect the stability of the SSK1-RR~P·YPD1 complex in a concentration-dependent 

manner (Figure 2-7) and, as a consequence, the rate of phosphate hydrolysis increases. 

The underlying mechanism for complex destabilization can be explained as the ability 
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of osmolytes to create extensive hydrogen bonding and or ionic interactions with 

surface residues of the proteins involved in the complex as well as conformational 

changes. Proline was an exception in this case, suggesting that its structural rigidity 

and higher hydrophobicity compared to other osmolytes, renders it incapable of 

influencing complex stability.  We suggest that this modest 1.5- to 2-fold decrease 

observed for the SSK1-RR~P half-life in the presence of osmolytes is only one of 

potentially multiple contributing factors that lead to dephosphorylation of SSK1 and 

subsequent activation of the HOG1 MAPK cascade.  The existence of an SSK1-

specific aspartyl phosphatase, for example, cannot be ruled out.  
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Chapter 3 

Effect of osmolytes on the phosphotransfer rates between SLN1-
RR/YPD1 and YPD1/SSK1-RR protein pairs 

 
“Portions of this chapter are reproduced with automatic permission from [Kaserer A.O., Babak A., 
Cook P.F., West A.H. (2009) Effects of Osmolytes on the SLN1-YPD1-SSK1 Phosphorelay system 
from Saccharomyces cerevisiae., Biochemistry. v. 48(33), p. 8044-50]”. 

 

In Chapter 2, I described the effect of osmolytes on the half-life of the 

phosphorylated SSK1-RR in the presence and absence of YPD1. We showed that 

increasing osmolyte concentrations caused a reduction in the half-life of SSK1-RR~P 

in the presence of YPD1 by approximately 2-fold and had no effect on the SSK1-

RR~P stability in the absence of YPD1, suggesting that osmolytes negatively affect 

YPD1·SSK1~P complex stability. In this chapter, I describe the effect of osmolyte 

concentrations on the phosphotransfer kinetics of the SLN1-YPD1-SSK1 multi-step 

phosphorelay pathway from S. cerevisiae can not be ruled out. 

Previous studies conducted from the West laboratory used rapid-quench 

kinetics to characterize the individual phosphotransfer reactions between YPD1 and 

the response regulator domains associated with SLN1, SSK1 and SKN7 (Janiak-

Spens, Cook et al., 2005). For the SLN1-RR~P to YPD1 reaction, a maximum 

forward rate constant of 29 s-1 was determined with a Kd of 1.4 μM for the SLN1-

RR~P·YPD1 complex. A very rapid phosphotransfer rate of 160 s-1 was measured for 

the subsequent reaction between YPD1~P to SSK1-RR and the reaction was strongly 

favored over phosphotransfer to SKN7-RR. Phosphotransfer reactions between YPD1 

and SLN1-RR or SKN7-RR were reversible; while reverse transfer from SSK1-RR~P 
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to YPD1 was not observed under the conditions tested. These parameters are in good 

agreement with the concept that SSK1 is constitutively phosphorylated under normal 

osmotic conditions (Posas, Saito 1998; Janiak-Spens, Cook et al., 2005; Horie T., 

Tatebayashi K. et al., 2008). 

We therefore examined the effect of on osmolyte concentrations on the kinetics 

of the individual phosphotransfer reactions. This study provides new insights into the 

mechanisms that underlie the osmoregulatory pathway in S. cerevisiae and the specific 

effects of osmolytes in regulating the pathway.  

 

3.2 Materials and methods 

3.2.1 Materials 

All chemicals and biochemicals were of ultrapure grade. Glutathione-

Sepharose 4B resin was purchased from Amersham. [γ-32P] ATP (3000 Ci/mmol) was 

purchased from Perkin-Elmer. Chymostatin, aprotinin, pepstain, phosphoramidon, E-

64, leupeptin, antipain, sodium metabisulfite were purchased from Sigma and 

benzamidine was purchased from Fluka. Ficoll 400, D-(+)-trehalose, proline and 

betaine were purchased from Sigma. NaCl and glycerol were from Mallinckrodt 

Chemicals and Pharmco-Aaper, respectively.  
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3.2.2 Protein expression and purification 

Bacterial strains used for protein purification are presented in Table 3-1. 

Protein 
expressed 

Plasmid 
number Plasmid name Strain 

number 

E. coli strain, 
antibiotic 
resistance 

GST-SLN1-HK-RR OU119 pGEX-GST-HK-RR OU253 BL21 (DE3) Star/ 
AmpR 

SLN1-RR OU29 pETCYB-SLN1-RR OU29 BL21 (DE3) Star/ 
AmpR 

YPD1 OU15 pUC12-YPD1 OU6 DH5α/ AmpR 

SSK1-RR OU26 pETCYB-SSK1-RR OU357 BL21 (DE3)/ 
AmpR, CmR  

Table 3-1. Plasmid constructs used for protein expression and purification. An OU 

number was assigned for each individual plasmid construct and transformed in E. coli strain.  

 

GST-SLN1-HK-RR protein expression and purification (Janiak-Spens, Cook et al., 

2005) 

Escherichia coli BL21 (DE3) Star cells (strain OU 253) containing the pGEX-

GST-SLN1-HK-RR (plasmid OU 119 including SLN1-HK-RR 530 – 1220 amino 

acids) vector were inoculated into 10 mL of LB medium with 100 μg mL−1 of 

ampicillin and shaken overnight at 37 ºC. The cell culture was further inoculated into 

1 L of prewarmed LB medium in the presence of 100 μg mL−1 of ampicillin and 

shaken at 37°C. When the optical density (at 600 nm) of the culture reached 0.6, the 

cells were cooled to room temperature and expression of SLN1-HK-RR was induced 

by the addition of IPTG to a final concentration of 1 mM. The cultures were shaken 

for 20-22 hrs at 16°C and then harvested, washed with 50 ml of the wash buffer (50 

mM Tris-HCl, pH 8, 1 mM EDTA and 2 mM DTT), then resuspended at 5 mL g−1 
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(wet weight) with the cell buffer SP1 (50 mM Tris-HCl, pH 8, 150 mM NaCl, 1 mM 

EDTA, 1% Triton X-100, 0.1% βME, 1 mM PMSF and 1 x protease inhibitor cocktail, 

see Chapter 2). Cells were lysed by sonication, and the lysates were clarified by 

centrifugation in a JA-20 rotor at 27, 200 x g for 1 h at 4°C. The supernatant was 

loaded onto a 2 mL glutathione bead column equilibrated in SP1 buffer at 4°C. The 

column was washed sequentially with 20 mL of SP1 buffer and incubated overnight at 

4°C. Thereafter the column was washed with 10 mL of SP2 buffer (50 mM Tris-HCl, 

pH 8, 2 mM DTT and 1 mM EDTA) and 20 mL of SP3 buffer (50 mM Tris-HCl, 

pH 8, 100mM KCl, 2 mM DTT, 1 mM EDTA and 10% glycerol). Next, 2 mL of the 

SP3 buffer was left above the column bed and gently mixed with the beads. The 

suspension was immediately aliquoted (50 μL) in eppendorf tubes and stored at –

20°C. The protein was judged to be ~90% homogeneous based on analysis by SDS-

PAGE.  

 

SLN1-RR protein expression and purification (Janiak-Spens, Sparling et al., 1999) 

Escherichia coli BL21 (DE3) Star cells (strain OU 29) containing the 

pETCYB-SLN1-RR (plasmid OU 29) vector were inoculated into 10 mL of LB 

medium with 100 μg mL−1 of ampicillin and shaken overnight at 37 ºC. The cell 

culture was further inoculated into 1 L of prewarmed LB medium in the presence of 

100 μg mL−1 of ampicillin and shaken at 37°C. When the optical density (at 600 nm) 

of the culture reached 0.8, the cells were cooled to room temperature and expression 
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of SLN1-RR was induced by the addition of IPTG to a final concentration of 0.4 mM. 

The cultures were shaken at room temperature for about 8 hrs and then harvested, 

washed with cell wash buffer (0.1 M Na-phosphate, pH 7 and 1 mM EDTA) 

resuspended at 5 mL g−1 (wet weight) of cells in lysis buffer (20 mM Tris-HCl, 

pH 7.5, 500 mM NaCl, 1 mM EDTA, 0.1% Triton X-100). Cells were lysed by 

sonication, and the lysates were clarified by centrifugation at 27, 200 x g for 1 h at 

4°C. The supernatant was loaded onto a 3 mL chitin bead column equilibrated in lysis 

buffer at 4°C. The column was washed sequentially with 100 mL of lysis buffer and 

25 mL of cleavage buffer (20 mM Tris-HCl, pH 7.5, 50 mM NaCl, 1 mM EDTA, 

5 mM ATP, 10 mM MgCl2). Thereafter the column was washed immediately with 

25 mL of cleavage buffer containing 30 mM βME and incubated overnight at 4°C. 

The protein was eluted with the cleavage buffer and further purified by separation on a 

gel filtration column (Sephadex G50, 300 ml bed volume) equilibrated in 20 mM Tris-

HCl, pH 7.5, 50 mM NaCl, 1 mM EDTA, and 1.4 mM βME. Fractions containing 

SLN1-RR were pooled and concentrated by using a Centricon 10 (Amicon) filter unit. 

The protein was judged to be ~90% homogeneous based on analysis by SDS-PAGE. 

The protein concentration was determined by absorbance at 280 nm using a calculated 

extinction coefficient of 4020 M−1cm−1. Typical yields were 1 mg L−1 of cells. Purified 

SLN1-RR protein was stored in gel filtration buffer in the presence of 10% glycerol at 

−20°C. 
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The GST-SLN1-HK-RR, YPD1 and SSK1-RR proteins were purified as 

described in Chapter 2. 

 

 3.2.3 In vitro phosphorylation 

SLN1-RR Phosphorylation.  

The SLN1-RR domain was phosphorylated via incubation with the SLN1-HK 

domain as follows. GST-tagged SLN1-HK (7 μM) bound to glutathione-Sepharose 4B 

resin was incubated with 7 μM [γ-32P] ATP for 30 min. Unincorporated [γ-32P] ATP 

was washed from phospho-SLN1-HK with 50 mM Tris-HCl, pH 8.0, 100 mM KCl, 15 

mM MgCl2, 2 mM DTT, and 20% glycerol by 3 consecutive centrifugations (1 min at 

1000 x g). The SLN1-RR protein (18.6 μM) was then added in the same buffer and 

incubated for 10 min at room temperature in a total volume of 300 μL. Phospho-

SLN1-RR was recovered in the supernatant after gently pelleting the GST-SLN1-HK 

bound to the resin. EDTA was added to the supernatant to a final concentration of 30 

mM to prevent autodephosphorylation (Janiak-Spens, Cook et al., 2005). 

YPD1 Phosphorylation.  

The YPD1 protein was phosphorylated similarly to that of SLN1-RR with the 

following modifications. Incubation of GST-tagged SLN1-HK-R1 (7 μM) and [γ-32P] 

ATP (7 μM) was for 60 min (Janiak-Spens, Cook et al., 2005). YPD1 protein (18.6 

μM) then was added in the reaction mixture for phosphorylation.  
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3.2.4 Measurement of phosphotransfer rates using quench-flow kinetics 

Experiments were carried out to obtain rate data for the individual 

phosphotransfer steps using a rapid-quench kinetics instrument SFM-Q/4 Quench-

Flow instrument (BioLogic). Phosphotransfer reactions were monitored in the 

millisecond timescale for acquisition of pre-steady state experimental data. The 

phosphodonor protein was diluted to 0.45 μM in 50 mM Tris-HCl, pH 8.0, 1 mM 

EDTA, 1 mM DTT and glycerol (0.3-1.2 M), or NaCl (0.2-1.0 M). The diluted 

phosphorylated protein (60 μL) was then mixed with 60 μL of phospho-accepting 

protein partner (0.45 μM-20 μM) in 50 mM Tris-HCl, pH 8.0, 20 mM MgCl2, 1 mM 

DTT and 0.3-1.2 M glycerol, or 0.2-1 M NaCl, or glycerol/NaCl combinations (0.3/0.2 

M, 0.55/0.4 M and 0.75/0.6 M). The reactions were quenched with 60 μL of stop 

buffer (8% SDS, 80 mM EDTA) after a specified time. To analyze the results, 30 μL 

of the quenched reaction was mixed with 10 μL of 4% SDS-PAGE loading buffer 

(200 mM Tris pH 6.8, 400 mM DTT or β-mercaptoethanol, 8% SDS, 0.4 % 

bromophenol blue, and 40% glycerol) , and then 30 μL samples were loaded onto 15% 

SDS-PAGE gels. After gel electrophoresis, wet gels were wrapped in plastic wrap and 

analyzed using a phosphorimager (Molecular Dynamics, Storm 840). The 

phosphotransfer reaction kinetic parameters were quantified based on the 

disappearance of the 32P-label from the phospho-donor protein or the appearance of 

32P-label in the phospho-accepting protein. The data were analyzed using the least 

squares fitting of Excel (Microsoft Office v. 10.1.12) and Enzfitter (version 2.04, 
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Biosoft, Cambridge, U.K.). Individual datasets were analyzed using eq 1 for 

experiments with NaCl, glycerol, Ficoll 400 and NaCl-glycerol combinations,  
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where [S] is the concentration of the phospho-accepting protein, kobs is the observed 

first order rate constant for the phosphotransfer reaction at a particular [S], kfwd is the 

maximal forward net rate constant for phosphoryl transfer from the phosphorylated 

protein to the phospho-acceptor protein, krev is the corresponding maximum reverse 

net rate constant for the reaction between phospho-donor and phospho-acceptor 

proteins, and Kd is the dissociation constant of the phospho-donor-acceptor complex. 

The concentration of Ficoll 400 used in the control experiment was 0.75 M. 

 
 
3.3. Results 
 
3.3.1 Effect of individual osmolytes on the phosphotransfer rates from SLN1-RR  

to YPD1 

Rapid mixing of SLN1-RR~P and YPD1 followed by rapid quench allowed 

measurement of first order rate constants by concurrently monitoring the 

disappearance of SLN1-RR~P and the appearance of YPD1~P  (Scheme 3-1): 
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Reaction SLN1-RR~P + YPD1 

NaCl 0 M 0.2 M 0.6 M 1 Mb 

kfwd (s–1) 27.0 ±2.6 32.9 ±1.8 24.6 ±0.8 14.7 ± 0.8 

krev (s–1) 9.2 ± 3.3 0.21 ± 2.1c 10.0 ±0.9 20.7 ± 0.4 

Kd (μM) 2.8 ± 0.8 2.3 ± 0.6 2.6 ± 0.4 6.2 ± 1.6 

kfwd/Kd 
(μM–1s–1) 

9.6 ± 2.9 14.3 ± 3.8 9.5 ± 1.5 2.4 ± 0.6 

Table 3-2. Kinetic constantsa for phosphotransfer reactions in the absence and 

presence of NaCl. a The data used to calculate the values in this table were obtained in triplicate 

and the errors represent standard errors of the mean. b 1 M NaCl is considered not physiologically 

relevant. c Undefined. 

 

All data were obtained in triplicate and were analyzed using eq 1 (in the 

methods section) to calculate the values shown in Tables 1-3.  In the absence of 

osmolytes, the maximum forward rate constant, kfwd, was 27.0 ± 2.6 s-1, while the Kd 

for the SLN1-RR~P·YPD1 complex was 2.8 ± 0.8 µM, in good agreement with 

previously obtained data in the absence of osmolytes (Janiak-Spens, Cook et al., 

2005). 

Subsequent phosphotransfer reactions between SLN1-RR~P and YPD1 were 

performed in the presence of different NaCl concentrations (as shown in Table 3-2, 

Figure 3-1). The value of kfwd decreases from 27.0 ± 2.6 s-1 with no NaCl present to a 
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Figure 3-1. Phosphotransfer reaction from SLN1-RR to YPD1 in the presence of 

0.6 M NaCl. Rapid mixing of specific molar ratios of SLN1-RR~P and YPD1 in the presence of 0.6 

M NaCl followed by rapid quench with monitoring the disappearance of SLN1-RR~P and the 

appearance of YPD1~P . A) 1:0.5 ratio; B) 1:1 ratio; C) 1:2ratio; D) 1:5 ratio and E) 1:10 ratio.  

 

 

value of 14.7 ± 0.8 s–1 at 1 M NaCl, while krev increases from 9.2 ± 3.3 s-1 to 20.7 ± 0.4 

s-1 at 1 M NaCl. No change in the dissociation constant was observed up to 0.6 M 

NaCl. A slight increase was observed at 1 M salt. For the second order rate constant  
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 Reaction SLN1-R1~P + YPD1 

Glycerol 0 M 0.3 M 0.75 M 1.2 M 

kfwd (s–1) 27.0 ±2.6 36.5 ±1.4 48.3 ± 2.1 62.3 ± 1.0 

krev (s–1) 9.2 ± 3.3 7.5 ± 1.1 11.3 ± 0.6 14.5 ± 0.1 

Kd (μM) 2.8 ± 0.8 4.6 ± 0.8 10 ± 1 18 ± 1 

kfwd/Kd 

 (μM–1s–1) 
9.6 ± 2.9 7.9 ± 1.4 4.8 ± 0.6 3.4 ± 0.1 

 

Table 3-3. Kinetic constantsa for phosphotransfer reactions in the absence and 

presence of glycerol. a The data used to calculate the values in this table were obtained in triplicate 

and the errors represent standard errors of the mean.  

 

(kfwd/Kd), the limit of eq 1 when [S] tends to zero and krev = 0, remained unchanged 

from 0 to 0.6 M NaCl. The highest concentration of NaCl (1 M) was not considered 

physiologically relevant (see discussion). 

The phosphotransfer reactions between SLN1-RR~P and YPD1 in the presence 

of glycerol were done in a manner analogous to those in the presence of NaCl (Figure 

3-2) with concentrations of glycerol as shown in Figure 3-3, Table 3-3. The 

concentrations of glycerol chosen reflect the range of intracellular levels observed 

during hyperosmotic stress (Hohmann 1997; Klipp, Nordlander et al., 2005). The 

value of kfwd increases from 27.0 ± 2.6 s-1 with no glycerol present to a value of 62.3 ± 

1.0  
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Figure 3-2. Phosphotransfer reaction from SLN1-RR to YPD1 in the presence of 

0.75 M Glycerol. Rapid mixing of specific molar ratios of SLN1-RR~P and YPD1 in the presence 

of 0.75 M Glycerol followed by rapid quench with monitoring the disappearance of SLN1-RR~P and 

the appearance of YPD1~P . A) 1:0.5 ratio; B) 1:1 ratio; C) 1:2ratio; D) 1:5 ratio and E) 1:10 ratio.  
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Figure 3-3. Phosphotransfer reactions SLN1-RR to YPD1. A) kfwd and kfwd/Kd for the 

SLN-RR~P·YPD1 phosphotransfer reaction at different concentrations of glycerol. Curves are drawn by 

hand for kfwd (■) and kfwd/Kd (•). 

  

s-1 at 1.2 M glycerol and the value of krev increases from 9.2 ± 3.3 s-1 to 14.5 ± 0.1 s-1, 

at 1.2 M glycerol. The dissociation constant increases approximately 6-fold (Figure 3-

4) and the second order rate constant decreases approximately 3-fold in the presence 

of 1.2 M glycerol. 

Rate constants were also measured in the presence of both NaCl and glycerol 

(Table 3-4). The maximum forward rate constant increased by about 2-fold at the  
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Figure 3-4. Phosphotransfer reactions SLN1-RR to YPD1.B) krev and Kd for the SLN1-

RR~P·YPD1 phosphotransfer reaction at different concentrations of glycerol. Lines are drawn by hand 

for krev (■) and Kd (•). 

 

highest concentration of both osmolytes (0.75 M glycerol, 0.6 M NaCl). The reverse 

rate constant and the Kd values remained unchanged.  The combinatory effect of both  

osmolytes at the highest concentrations tested caused about a 3-fold increase in the 

second-order rate constant.  
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Reaction SLN1-R1~P + YPD1 

[Glycerol]M/ 
[NaCl]M 0/0 0.3/0.2 0.55/0.4 0.75/0.6 

kfwd (s–1) 27.0 ± 2.6 53.8 ± 1.3 57.5 ± 0.4 66.0 ± 0.8 

krev (s–1) 9.2 ± 3.3 5.4 ± 1.4 6.4 ± 0.5 7.2 ± 0.9 

Kd (μM) 2.8 ± 0.8 3.2 ± 0.4 2.7 ± 0.1 2.3 ± 0.1 

kfwd/Kd  (μM–1s–1) 9.6 ± 2.9 16.8 ± 2.1 21.3 ± 0.8 28.7 ± 1.3 

 

Table 3-4. Kinetic constantsa for phosphotransfer reactions in the absence and 

presence of glycerol and NaCl. a The data used to calculate the values in this table were 

obtained in triplicate and the errors represent standard errors of the mean.  

 

 

3.3.2 Effect of individual osmolytes on the phosphotransfer rates from YPD1 to 

SSK1-RR  

To observe the effect of sodium chloride and glycerol on the phosphotransfer 

rates between YPD1~P and SSK1-RR, experiments similar to those described above 

were carried out. In this case, YPD1~P was mixed with SSK1-RR (Scheme 2): 

 



 93 

 

 

and the data were collected by following the appearance of SSK1-RR~P and 

disappearance of YPD1~P. 

In the absence of osmolytes, the maximum forward rate constant, kfwd, was 110 

± 8.0 s-1. The reverse rate constant, krev, and Kd for the reaction were 4.1 ± 1.4 s-1 and 

3.8 ± 1.5 µM, respectively, in good agreement with previously obtained data (Janiak-

Spens, Cook et al., 2005). The maximum forward (kfwd) and reverse rate constants 

(krev) in the presence of NaCl are shown in Table 3-5, Figure 3-5. The value of kfwd 

decreases from 110 ± 8.0 s-1 with no NaCl present to a value of 32.0 ± 3.2 s-1 at 1 M 

NaCl, while krev remained essentially the same. The dissociation constant in these 

experiments did not change significantly.  However, there is a deviation on krev and Kd 

in going from 0 to 0.2 M, which might be due to systematic error or some unknown 

phenomenon.  The second order rate constant remained unchanged from 0 to 0.6 M 

NaCl. The highest concentration of NaCl (1 M) was not considered physiologically 

relevant (see discussion). 

In contrast to the effect of glycerol on the phosphotransfer reaction between 

SLN1-RR~P and YPD1, the effect of glycerol on the phosphotransfer reactions 

between YPD1~P and SSK1-RR was different. All experiments were conducted in a  
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Reaction YPD1~P + SSK1-RR 

NaCl 0 M 0.2 M 0.6 M 1 Mb 

kfwd (s–1) 110 ± 8 77.0 ± 0.2 41.0 ± 0.5 32.0 ± 3.2 

krev (s–1) 4.1 ± 1.4 0.8 ± 0.3 2.2 ± 0.7 6.1 ± 2.9 

Kd (μM) 3.8 ± 1.5 2.2 ± 0.3 1.4 ± 0.1 3.0 ± 1.6 

kfwd/Kd 
(μM–1s–1) 

29 ± 4 35.0 ± 4.8 28.6 ± 2.0 10.6 ± 5.8 

 
Table 3-5. Kinetic constantsa for phosphotransfer reactions in the absence and 

presence of NaCl. a The data used to calculate the values in this table were obtained in triplicate 

and the errors represent standard errors of the mean. b 1 M NaCl is considered not physiologically 

relevant. c Undefined. 

 

manner analogous to those obtained for SLN1-RR~P/YPD1 (Figure 3-6). The forward 

(kfwd) and the reverse rate constants (krev) change in the same direction; that is, their 

values increase with increasing glycerol concentration. Specifically, the value of kfwd 

increases from 110 ± 8.0 s-1 with no glycerol present to a value of 185.0 ± 4.0 s-1 at 1.2 

M glycerol and the value of krev increases from 4.1 ± 1.4 s-1 to 9.5 ± 1.4 s-1, at 1.2 M 

glycerol. The dissociation constant increases approximately 3-fold and the second 

order rate constant remains approximately the same in the presence of 1.2 M glycerol. 

The data are summarized in Table 3-6. 
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Figure 3-5. Phosphotransfer reaction from YPD1 to SSK1-RR in the presence of 

0.6 M NaCl. Rapid mixing of specific molar ratios of YPD1~P and SSK1-RR in the presence of 0.6 

M NaCl followed by rapid quench with monitoring the disappearance of YPD1~P and the appearance 

of SSK1-RR~P . A) 1:0.5 ratio; B) 1:1 ratio; C) 1:2ratio; D) 1:5 ratio and E) 1:10 ratio.  
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Figure 3-6. Phosphotransfer reaction from YPD1 to SSK1-RR in the presence of 

0.75 M Glycerol. Rapid mixing of specific molar ratios of YPD1~P and SSK1-RR in the presence 

of 0.75 M Glycerol followed by rapid quench with monitoring the disappearance of YPD1~P and the 

appearance of SSK1-RR~P . A) 1:0.5 ratio; B) 1:1 ratio; C) 1:2ratio; D) 1:5 ratio and E) 1:10 ratio.  
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Reaction YPD1~P + SSK1-RR 

Glycerol 0 M 0.3 M 0.75 M 1.2 M 

kfwd (s–1) 110 ± 8.0 107 ± 2 141 ± 1.0 185 ± 4.0 

krev (s–1) 4.1 ± 1.4 3.8 ± 0.9 4.4 ± 0.6 9.5 ± 1.4 

Kd (μM) 3.8 ± 1.5 2.1 ± 0.3 4.0 ± 0.1 11.5 ± 2.7 

kfwd/Kd 
(μM–1s–1) 

28.6 ± 4.3 28.2 ± 7.2 51.0 ± 9.2 35.2 ± 3.2 

 

Table 3-6. Kinetic constantsa for phosphotransfer reactions in the absence and 

presence of glycerol. a The data used to calculate the values in this table were obtained in triplicate 

and the errors represent standard errors of the mean.  

 

Experiments carried out to determine the combined effect of NaCl and glycerol 

on the YPD1~P and SSK1-RR phosphotransfer reaction were conducted in the 

presence of varying concentrations of both NaCl and glycerol. As osmolyte 

concentrations increased, the maximum forward and reverse rate constants increased, 

while no change was observed in the second order rate constant or Kd (Table 3-7). 
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Reaction YPD1~P + SSK1-R2 

[Glycerol]M/ 
[NaCl]M 0/0 0.3/0.2 0.55/0.4 0.75/0.6 

kfwd (s–1) 110 ± 8.0 136 ± 1.0 141 ± 2.1 160 ± 3.0 

krev (s–1) 4.1 ± 1.4 3.6 ± 0.5 6.9 ± 0.9 10.2 ± 2.8 

Kd (μM) 3.8 ± 1.5 4.4 ± 0.1 4.3 ± 0.2 4.3 ± 1.4 

kfwd/Kd 
(μM–1s–1) 28.6 ± 4.3 30.9 ± 0.7 32.8 ± 1.6 37.2 ± 2.2 

 

Table 3-7. Kinetic constantsa for phosphotransfer reactions in the absence and 

presence of glycerol and NaCl. a The data used to calculate the values in this table were 

obtained in triplicate and the errors represent standard errors of the mean.  

 

 

To differentiate between a true glycerol effect and an effect of viscosity on the 

phosphotransfer reactions, a control experiment was performed in the presence of 

Ficoll 400. Ficoll 400, as a high molecular weight polymer (macroviscosogen) is able 

to vary viscosity of the reaction mixture; however it has no effect on the rates of 

diffusion of the phosphotransfer reactions (Blacklow, Raines et al., 1988). Glycerol (a 

microviscosogen), on the other hand, is capable of affecting both parameters. Kinetic 

data obtained in the presence of Ficoll 400 were similar to the data obtained in the 
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absence of osmolytes suggesting that the effects on the phosphotransfer reactions 

observed in the presence of glycerol are viscosity-independent. 

 

3.3 Discussion 

Osmotic shock can dramatically alter the intracellular concentrations of 

osmolytes. However, cells can adapt by modulating intracellular osmolyte 

concentrations in order to balance the external osmolarity of the cell. When 

homeostasis is restored, the osmotic pressure and the production of osmolytes are 

reduced and the activity of the osmoregulation pathway components returns to its 

default or prestimulus state. 

In order to better understand the overall physiology of the cell response to 

hyperosmotic shock, detailed kinetic studies are important. Although many two-

component systems have been identified in prokaryotes, only a small number of 

bacterial and eukaryotic phosphotransfer systems have been kinetically characterized 

(Fischer, Kim et al., 1996; Stewart 1997; Grimshaw, Huang et al., 1998; Mayover, 

Halkides et al., 1999; Janiak-Spens, Cook et al., 2005). As shown in Scheme 1, for 

phosphotransfer between SLN1-RR and YPD1, the ratio k1/k-1 is defined as the Kd (the 

dissociation constant of the SLN1-RR~P•YPD1 complex). The forward and reverse 

net rate constants for the phosphotransfer reaction are kfwd and krev, respectively. 

Transfer of phosphoryl groups from YPD1~P to SSK1-RR, as depicted in Scheme 2, 

involves formation of the YPD1~P·SSK1-RR complex; the ratio k4/k-4 is defined as the 
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Kd (the dissociation constant of the YPD1~P•SSK1-RR complex). k7 is the rate 

constant for the formation of the dead-end complex. In eq. 1 above, the observed rate 

constant is given in terms of a forward and reverse rate constant, kfwd and krev. 

However, these rate constants are net rate constants, not microscopic rate constants. 

kfwd is defined as in eq. 2. 
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kkk
kkk fwd ++

=
−

         (2) 

and if k–1 is not greater than k2, krev will be defined as in eq. 3 
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++
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This is likewise true for Scheme 2 where kfwd and krev are given by eqs. 4 and 5 
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The treatment of eq. 2-5 assumes a rapid pre-equilibrium (reflected in the Kd) 

of the initial encounter complex compared to the chemical steps and k–3 and k–6 are 

negligible under the conditions tested. If dissociation of the product complex, SLN1-

RR·YPD1~P, is fast compared to the phosphotransfer step, k3>k2, then kfwd = k2. This 

is the case for the kinetics of the reverse reaction, transfer of phosphate from YPD1 to 

SLN1-RR in the absence of osmolytes (Janiak-Spens, Cook et al., 2005). 
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The kinetic data obtained in this study showed that in the presence of 

osmolytes, the rates of phosphoryl transfer were saturable at high YPD1 concentration 

suggesting the formation of a YPD1~P·SSK1-RR complex as observed previously 

(Janiak-Spens, Cook et al., 2005). Phosphoryl transfer between SLN1-RR~P and 

YPD1 gives a significant krev, thus k3 ≤ k2. This is also true for phosphoryl transfer 

between YPD1~P and SSK1-RR; krev is finite and k6 ≤ k5. However, phosphoryl 

transfer from SSK-RR~P to YPD1 is not observed, and thus either the YPD1·SSK1-

RR complex is not formed or is non-productive. However, attempts to demonstrate 

phosphoryl transfer from SSK1-RR~P to YPD1 were unsuccessful and thus a dead-

end complex must form between SSK1-RR~P and YPD1. Scheme 2 shows the 

formation and dissociation of the dead-end complex with rate constant k7 and k–7. 

Thus, SSK1-RR~P and YPD1 can form either a [SSK1-RR~P·YPD1] or [SSK1-

RR~P·YPD1]* complex, but the latter is more stable. The measurement of the 

observed rate constants (kfwd and krev) and binding affinity (Kd) on the basis of eq 1 

provides quantitative data for comparison of the phosphotransfer reactions between 

SLN1-RR and YPD1, and YPD1 and SSK1-RR in the absence and presence of 

osmolytes.  

The maximum rate, kfwd, will only be observed if the concentrations of the 

response regulator molecules (SLN1-RR or SSK1-RR) are significantly greater than 

the Kd for the YPD1·RR complex in vivo. However, the physiologic concentrations of 

these molecules are much lower than the Kd. As reported in the Saccharomyces 



 102 

Genome Database (www.yeastgenome.org), the in vivo concentrations of SLN1-RR, 

YPD1, and SSK1-RR are estimated to be 0.03, 0.29, and 0.05 μM, respectively. Given 

a Kd of 2.8 μM for the SLN1-RR~P·YPD1 complex, the concentration of the complex 

formed is estimated to be 0.005 μM, 16 % of the limiting component, SLN1-RR. As a 

result, it is the second order rate constant, kfwd/Kd that will be physiologically 

important. This is equally true of the YPD1~P·SSK1-RR complex. At limiting 

concentrations of the components in the reaction, the second order rate constant 

applies and includes all processes from the initial binding of the components to give a 

productive complex through the dissociation of the product complex. For Schemes 1 

and 2, rate constants k1 through k3 and k4 through k6 will be included in kfwd/Kd for the 

SLN1-RR~P to YPD1 and YPD1~P to SSK1-RR reactions, respectively. The rate 

constant for reformation of the SLN1-RR·YPD1~P complex from SLN1-RR and 

YPD1~P (k–3) or the YPD1·SSK1-RR~P complex from YPD1~P and SSK1-RR (k–6) 

are not included in the second order rate constant. Thus, any changes in the Kd values 

of the reactant complex, i.e., the SLN1-RR~P·YPD1 and YPD1~P·SLN1-RR 

complexes, are accounted for in the second order rate constant. This would include a 

change in the half-life for the reactant complexes in the presence of viscosogen. 

For both phosphotransfer reactions, SLN1-RR~P to YPD1 and YPD1~P to 

SSK1-RR in the presence of NaCl, no significant change in kfwd/Kd or Kd is observed 

up to 0.6 M NaCl. Thus, NaCl exhibits no significant effect on the SLN1-RR~P and 

YPD1 or YPD1~P and SSK1-RR rates of phosphotransfer. 
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The concentration of NaCl at 1 M was not considered physiologically relevant 

for these experiments. Upon osmotic shock, the yeast cell volume can decrease by as 

much as 50-60%, which accordingly would increase the internal osmolyte 

concentration by only two- to three-fold (Morris, Winters et al., 1983). Under normal 

conditions, a basal internal concentration of NaCl and KCl within S. cerevisiae is 

approximately 0.2 M (Ferrando, Kron et al., 1995), consequently upon hyperosmotic 

shock this concentration will raise to approximately 0.6 M. 

The effect of glycerol on phosphotransfer kinetics is in general different than 

the effect of NaCl. For the SLN-RR~P·YPD1 complex, the Kd increases by about 6-

fold as the glycerol concentration increases to 1.2 M (Table 3-3), suggesting less 

initial complex is present at the same SLN1-RR~P and YPD1 concentrations, 

compared to the absence of glycerol. In addition, the second-order rate constant for the 

forward reaction (kfwd/Kd), (Figure 3-3), decreases with an increase in glycerol 

concentration, and thus glycerol alone cannot contribute to an increase in 

phosphorylation of SSK1-RR in the osmoadaptation phase, once osmotic pressure has 

been re-established. 

In the case of the YPD1~P·SSK1-RR complex, the Kd does not change as 

glycerol concentration increases to 1.2 M. Although, kfwd and krev increase slightly, the 

second order rate constant (kfwd/Kd) remains relatively constant. Therefore, the net 

effect of glycerol on the YPD1~P·SSK1-RR complex parallels the effect of glycerol 
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on SLN1-RR~P·YPD1 complex, and glycerol alone does not give a net increase in 

phospho-SSK1-RR. 

The combinatory effects of NaCl and glycerol on the pathway, however, are 

more revealing. As shown in Table 3-4, in the case of SLN1-RR~P·YPD1 complex, 

the second order rate constant increases three-fold, as the concentration of glycerol 

and NaCl increase to 0.75 M and 0.6 M, respectively. A synergistic effect is observed 

that is different from the effect of glycerol or NaCl alone. For the YPD1~P to SSK1-

RR phosphotransfer reaction (Table 3-7), kfwd/Kd also increases, although by only 

30%. The combined effect of NaCl and glycerol is thus to increase the level of 

phosphorylated SSK1-RR and return the pathway to its prestimulus state, i.e. the effect 

of osmotic stress has been attenuated. 

The subtle effects of NaCl and glycerol on the SLN1-YPD1-SSK1 

phosphorelay system reveal some important regulatory aspects of the cell response to 

osmotic shock. In the early stages of the cell's response to hyperosmotic stress, 

immediate water loss can lead to a modest increase in intracellular ion/solute 

concentrations. The half-life studies in the presence of osmolytes suggest a reduction 

in SSK1-RR~P·YPD1 complex stability; thereby leading to a higher rate of SSK1-RR 

dephosphorylation. This likely represents one contributing factor that leads to 

subsequent HOG1 pathway activation. However, in the osmoadaptation phase, after 

HOG1-dependent transcriptional targets such as GPD1 have been upregulated and 

intracellular glycerol levels approach molar concentrations, our results indicate that 
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the combinatory effect of high levels of NaCl and glycerol on rates of phosphotransfer 

favors phosphorylation of SSK1 and signal attenuation. Thus, the studies on the 

phosphorelay kinetics in the presence of osmolytes provide insight into the post-

hyperosmotic shock events, restoration of intracellular homeostasis and cessation of 

glycerol production. These studies explain for the first time the effects of osmolytes on 

the SLN1-YPD1-SSK1 phosphorelay and elucidate some basic aspects of the 

osmoregulation pathway including the presence of a feedback-like control mechanism 

and the combinatory effect of NaCl and glycerol. 
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Chapter 4 

Biochemical characterization of the phosphorelay proteins 
CaYPD1 and CaSSK1 from Candida albicans 

“Reproduced in part with automatic permission from [Menon V, Li D, Chauhan N, Rajnarayanan R, 
Dubrovska A, West AH, Calderone R (2006) Functional studies of the Ssk1p response regulator protein 
of Candida albicans as determined by phenotypic analysis of receiver domain point mutants., Mol 
Microbiol. Nov; 62(4):997-1013]”. 

 

Candida albicans is pathogenic diploid yeast – the cause of opportunistic oral 

and genital infections in humans (Calderone 2002).  C. albicans is commensal and 

under normal environmental conditions can live in 80% of the human population with 

no harmful effects. However, in patient groups whose defense system is severely 

compromised (AIDS patients, prematurely born infants, leukemics and burn patients), 

Candida albicans turns into a deadly pathogen causing systemic infections with a 

mortality rate as high as 50% (Wenzel 1995). Although C. albicans is a threat as a 

human pathogen, mutational analysis revealed avirulent or attenuated species 

defective in host recognition, morphogenesis, enzymatic and oxidant adaptation 

functions.  

The multi-step His-to-Asp signal transduction pathway is known as one of the 

major routes by which adaptation to general stress, morphogenesis, cell wall 

biosynthesis and virulence occurs in C. albicans (Calera, Zhao et al., 2000; Chauhan, 

Inglis et al., 2003; Chauhan, Latge et al., 2008). In both C. albicans and S. cerevisiae, 

the SSK1 and CaSSK1-RR response regulator proteins are critical for downstream 

signaling via the HOG1 MAPK, except that the main function of this pathway is 
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osmoadaptation in S. cerevisiae and oxidant adaptation in C. albicans. In addition to 

oxidant adaptation, mutants deleted of CaSSK1 in C. albicans also are less able to 

adhere to human esophageal cells, survive in human PMNs and cause invasive disease 

(Calderone 2000; Calera, Zhao et al., 2000; Bernhardt, Herman et al., 2001). 

However, little is known about structure-function activities of the CaSSK1 in 

C. albicans and the role of specific amino acid residues in phosphotransfer and 

adaptation. In S. cerevisiae, several studies have focused upon the identification of 

domains that are essential for YPD1–SSK1 interactions (Porter, Xu et al., 2003; 

Porter, West 2005). In vitro phosphorylation assays have been established using 

expressed and purified domains of SLN1, YPD1 and SSK1 (Janiak-Spens, Sparling et 

al., 1999; Janiak-Spens, West 2000).  

We initiated studies that focus on in vitro reconstitution of the multi-step 

phosphorelay from C. albicans and biochemical characterization of the CaYPD1 (HPt 

protein) and CaSSK1 (response regulator protein). We examined heterologous 

phosphoryl transfer from SLN1-HK-RR → CaYPD1→ CaSSK1 and measured the 

lifetime of the phosphorylated regulatory domain of CaSSK1. Mutational analysis of 

the CaSSK1 response regulator domain was also performed. Mutants were expressed, 

purified and their activities were analyzed using an in vitro phosphorylation assay. 
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4.2 Materials and methods 

4.2.1 Materials 

All chemicals and biochemicals used were of ultrapure grade. NdeI, XhoI and 

chitin beads were obtained from New England Biolabs. Gateway cloning kit, Pfu 

Turbo, Pfx DNA polymerase and T4 ligase were purchased from Stratagene. Low-

melting agarose was purchased from Cambrex Bio Sciences. QIAquick Plasmid 

DNA purification kit, QIAquick Gel extraction kit and QIAprep spin Miniprep kit 

were purchased from QIAGEN Inc. Sequencing was done by Microgen at the 

University of Oklahoma Health Sciences Center (OUHSC) to confirm designed 

mutations. [γ-32P] ATP (30 Ci/mmol) was purchased from Amersham. 

Chromatography media were purchased from Pharmacia and Sigma. Plasmids pBR27 

and pYPD1, containing the genes of CaSSK1-RR and CaYPD1, respectively, were a 

gift from Dr. Richard Calderone (Georgetown University). The expression vector 

pET16b was purchased from Novagen and expression vector pETCYB (IMPACT 

system) from New England Biolabs. Primers were purchased from Invitrogen. IPTG 

(Isopropyl-β-D-thiogalactoside) was from Gold Biotechnology. 

 

4.2.2 Protein expression and purification 

For protein expression in E. coli cells, gene fragments of the CaSSK1 response 

regulator domain (CaSSK1-RR, residues 499–674) and full length CaYPD1 (aa 1-184) 

were amplified by PCR using the pBR27 and pYPD1 plasmids with the sets of primers 
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listed in Table 4-1 (Szurmant, Muff et al., 2004). The PCR reaction for CaYPD1 had 

the following parameters: denaturation temperature – 94°C for 1.5 min, annealing 

temperature - 45°C for 30 s, extension temperature - 68°C for 1 min 45 s. Parameters 

for the CaSSK1-RR PCR reaction were identical to CaYPD1. The amplified products 

were digested with NdeI and XhoI restriction enzymes and introduced into the 

NdeI/XhoI cloning sites of pET16b (CaYPD1) and pETCYB (CaSSK1-RR) vectors. 

These plasmid derivatives were designated, pET-CaYPD1 and pETCYB-CaSSK1-RR, 

respectively.  

Both plasmids were transformed first into DH5α cells. After transformation, 

selected colonies were grown overnight and plasmids were extracted using the 

QIAprep spin Miniprep kit. Both plasmids were sent to Microgen (OUHSC) for 

DNA sequencing. Next, pET-CaYPD1 was introduced into the E. coli expression host 

strain BL21 (DE3) Star and the pETCYB-CaSSK1-RR plasmid was transformed into 

BL21 (DE3) RIL. 
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Protein constructs Primer Pairs (Sequence 5` to 3`) 
AW421    CaYPD1 FP GGGAATTCCATATGTCAGAAGATAAATTAC 

AW422    CaYPD1 RP CCGCTCGAGCGGCTATTCGTAATATTCGTCC 

AW425    CaSSK1-RR FP GGGAATTCCATATGAATTTTCTCTATAACAATTCA 

AW458    CaSSK1-RR RP ATACTCGAGCGGAGCTTTGTTTAATCTTCG 

AW524 CaSSK1-RR-D556N FP CACTTGGTATTGATGAACATTCAATTGCCAGTG 

AW525 CaSSK1-RR-D556N RP CACTGGCAATTGAATGTTCATCAATACCAAGTG 

AW522 CaSSK1-RR-D513K FP CTGTATTGGTAGTTGAAAAAAATGCCATCAATCAAGC 

AW523 CaSSK1-RR-D513K RP GCTTGATTGATGGCATTTTTTTCAACTACCAATACAG 

 
Table 4-1. Primer pairs used for gene cloning and site directed mutagenesis. 

AW number was assigned in the lab for each individual primer. FP stands for a forward primer, while 

RP is a reverse primer. 

 

CaYPD1 protein expression and purification 

Escherichia coli BL21 (DE3) Star cells containing pET-CaYPD1 vector were 

grown in 1 L of LB medium in the presence of 100 μg mL−1 of ampicillin at 37°C. 

When the optical density (at 600 nm) of the culture reached 0.6, the cells were induced 

by the addition of IPTG to a final concentration of 0.4 mM. The culture was shaken 

for an additional 3 h at 37°C and then harvested, washed and suspended at 5 mL g−1 

(wet weight) of cells in lysis buffer (20 mM Tris-HCl, pH 7.6, 100 mM NaCl, 20 mM 

imidazole). Cells were lysed by sonication, and the lysate was clarified by 

centrifugation at 112, 000 x g for 1 h at 4°C. The supernatant was loaded onto a Ni2+-

NTA-affinity chromatography column pre-equilibrated in lysis buffer. CaYPD1 was 
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eluted using a step gradient of 200 mM imidazole and 300 mM imidazole. The protein 

was further purified by separation on a gel filtration column (Sephadex G50, 300 mL 

bed volume) equilibrated in 20 mM Tris-HCl, pH 7.6, 50 mM NaCl, 1 mM EDTA and 

1.4 mM β-mercaptoethanol. Fractions containing CaYPD1 were pooled and 

concentrated by using a Centricon 3 (Amicon) filter unit. The protein was judged to be 

99% homogeneous based on analysis by SDS-PAGE. The protein concentration was 

determined by absorbance at 280 nm using a calculated extinction coefficient of 

16 500 M−1 cm−1. Typical yields were 4 mg L−1 of cells. Purified CaYPD1 protein was 

stored in gel filtration buffer in the presence of 10% glycerol at −20°C. 

 

CaSSK1-RR protein expression and purification 

Escherichia coli BL21 (DE3) RIL cells containing the pETCYB-CaSSK1-RR 

vector were grown in 2 L of LB medium in the presence of 100 μg mL−1 of ampicillin 

and 25 μg mL−1 of chloramphenicol at 37°C. When the optical density (at 600 nm) of 

the culture reached 0.6, the cells were cooled to room temperature and expression of 

CaSSK1-RR was induced by the addition of IPTG to a final concentration of 1 mM. 

The cultures were shaken overnight at 16°C and then harvested, washed and 

resuspended at 5 mL g−1 (wet weight) of cells in lysis buffer (20 mM Tris-HCl, pH 8, 

500 mM NaCl, 1 mM EDTA, 0.1% Triton X-100, 10% glycerol). Cells were lysed by 

French press, and the lysates were clarified by centrifugation at 27,200 x g for 1 h at 

4°C. The supernatant was loaded onto a 3 mL chitin bead column equilibrated in lysis 
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buffer at 4°C. The column was washed sequentially with 100 mL of lysis buffer and 

25 mL of cleavage buffer (20 mM Tris-HCl, pH 8, 50 mM NaCl, 1 mM EDTA, 5 mM 

ATP, 10 mM MgCl2, 10% glycerol). Thereafter the column was washed immediately 

with 25 mL of cleavage buffer containing 30 mM βME and incubated overnight at 

4°C. The protein was eluted with cleavage buffer and further purified by separation on 

a gel filtration column (Sephadex G75, 300 ml bed volume) equilibrated in 20 mM 

Tris-HCl, pH 8, 50 mM NaCl, 1 mM EDTA, and 1.4 mM βME. Fractions containing 

CaSSK1-RR were pooled and concentrated using a Centricon 10 (Amicon) filter unit. 

The protein was judged to be ~90% homogeneous based on analysis by SDS-PAGE. 

The protein concentration was determined by absorbance at 280 nm using a calculated 

extinction coefficient of 25, 440 M−1cm−1. Typical yields were 1 mg L−1 of cells. 

Purified CaSSK1-RR protein was stored in gel filtration buffer in the presence of 10% 

glycerol at −20°C. 

The S. cerevisiae YPD1 protein, SLN1-RR and GST-SLN1-HK were purified 

as described in Chapters 2 and 3 (Li, Ault et al., 1998; Janiak-Spens, Sparling et al., 

1999; Xu, Nguyen et al., 1999). 

 

4.2.3 In vitro phosphorylation 

Glutathione-Sepharose-bound GST-SLN1-HK (12.5 μM) was mixed with 

SLN1-RR (0.125 μM) and [γ-32P]-ATP (4 μM) in 80 μL of reaction buffer (50 mM 

Tris pH 8.0, 100 mM KCl, 15 mM MgCl2, 2 mM DTT, 20% glycerol) to generate 
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phosphorylated SLN1-RR via phosphoryl transfer from GST-SLN1-HK. The mixture 

was incubated at room temperature for 30 min. SLN1-RR was separated from GST-

SLN1-HK by gentle centrifugation (1 min at 1000 x g). The SLN1-RR (8 μL) was 

added to reaction mixtures (total volume of 15 μL) containing designated 

phosphorelay components (0.67 μM YPD1; 0.67 μM CaYPD1; 0.67 μM YPD1 and 

0.67 μM CaSSK1-RR; 0.67 μM CaYPD1 and 0.67 μM CaSSK1-RR). Phosphorelay 

reaction mixtures were incubated for 10 min at room temperature. Reactions were 

stopped by the addition of 5 μL of 4× stop buffer (0.25 M Tris, pH 6.8, 8% SDS, 

40 mM EDTA, 40% glycerol, and 0.008 % bromophenol blue) and the reaction 

products were separated on a 15% SDS-PAGE gel. The wet gel was immediately 

wrapped in plastic film and subjected to phosphorimager analysis (Molecular 

Dynamics, Storm 840). 

 

4.2.4 Measurement of CaSSK1-RR phosphorylated half-life  

Phosphorylation of the response regulator domain CaSSK1-RR was achieved 

by incubation with GST-SLN1-HK and [γ-32P] ATP. GST-tagged SLN1-HK (7 µM) 

bound to glutathione-Sepharose 4B resin was incubated with 7 µM [γ-32P] ATP in 100 

µL of 50 mM Tris-HCl (pH 8.0), 100 mM KCl, 10 mM MgCl2, 2 mM DTT and 20% 

glycerol for 30 min at room temperature. The phosphorylated GST-SLN1-HK was 

recovered in the pellet after gentle centrifugation (1 min at 1000 x g). CaSSK1-RR (12 

µM) in 50 mM Tris-HCl (pH 8.0), 100 mM KCl, 10 mM MgCl2, 2 mM DTT was 
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added to the phosphorylated GST-SLN1-HK and incubated for 30 min at room 

temperature in a total reaction volume of 280 µL. The phosphorylated response 

regulator domain was recovered in the supernatant after gently pelleting the resin-

bound GST-SLN1-HK. Aliquots (15 µL) were removed from the reaction mixture at 

indicated time points, mixed with 5 µL of 4X stop buffer (0.25 M Tris-HCl pH 8.0, 

8% SDS, 60 mM EDTA, 40% glycerol, 0.008% bromophenol blue) to terminate the 

reaction, and kept at -20 °C until gel analysis. Reaction products were separated on 

15% SDS-PAGE gel. The wet gel was immediately wrapped in plastic film and 

subjected to phosphorimager analysis to quantify the radioactivity of each band 

(Molecular Dynamics, Storm 840). 

 

4.2.5 Construction, expression and purification of CaSSK1-D556N and CaSSK1-

D513K mutants 

Two aspartate residues (D513 and D556) within the CaSSK1-RR domain were 

mutated to lysine and asparagine, respectively, with the QuikChange method 

(Stratagene). Two oligonucleotide primers carrying the selected mutation were 

included with the pETCYB-CaSSK1-RR plasmid template in a PCR reaction (Table 4-

1). PCR reaction conditions were: denaturation temperature – 94°C for 1.5 min, 

annealing temperature - 50°C for 50 s, extension temperature - 68°C for 14 min. Pfu 

Turbo DNA Polymerase was used for PCR reaction. After 18 rounds of amplification, 

the reaction mixture was digested with Dpn I restriction enzyme to digest methylated 
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parental DNA while retaining newly synthesized one. The reaction mixture was 

subsequently transformed into E. coli DH5α competent cells. Plasmids were isolated 

from selected transformants and the mutations were confirmed via DNA sequencing 

analysis (Microgen, OUHSC). Confirmed plasmids were transformed into E. coli 

BL21 (DE3) RIL cells. Expression and purification of the mutant proteins were 

performed similar to that of CaSSK1-RR. 

 

4.2.6 In vitro phosphorylation of CaSSK1-D556N and CaSSK1-D513K mutants 

Phosphorylation of the CaSSK1-RR mutants (D513K and D556N) was 

performed similar to that of WT CaSSK1-RR with the following modifications. 

Reaction mixtures (total volume of 15 μl) contained 2 μM CaYPD1; 2 μM CaYPD1 

and 2 μM CaSSK1-RR; 2 μM CaYPD1 and 2 μM CaSSK1-RR D556N; 2 μM 

CaYPD1 and 2 μM CaSSK1-RR D513K. 

 

4.3 Results 

4.3.1 Amino acid sequence analysis of the C. albicans CaSSK1-RR domain  

The CaSSK1 response regulator domain sequence was aligned with sequences 

corresponding to S. cerevisiae SSK1 response regulator domain, S. pombe MCS4 

response regulator domain and E. coli CheY protein using the Clustal W program 

(Figure 4-1)(Thompson, Higgins et al., 1994).  
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The CheY RR from Escherichia coli served as a model for RR proteins. The 

CheY protein is required for cell motility of this microorganism by directing the 

clockwise-counterclockwise movement of flagella (Szurmant, Muff et al., 2004). Of 

several conserved residues, D57 (site of phosphorylation) and D13 (metal binding site) 

have been shown to be the required for normal cell motility. One additional conserved 

residue Lys109 is required for phosphorylation of Asp57 residue (Bourret, Drake et 

al., 1993). Compared to CheY, the response regulator domain of CaSSK1 contains 

Asp556 as the site of phosphorylation (Asp57 in CheY). Residue Asp513 is one of the 

pair of aspartates that are conserved among prokaryotic response regulators (Asp13 in 

CheY) and Lys638 corresponds to the  conserved  residue  Lys109 in  CheY protein 

(Parkinson 1993).  

The secondary structure prediction of CaSSK1-RR using the web-based 

program APSSP (http://imtech.res.in/raghava/apssp/) revealed a typical RR protein 

core (CheY-like) consisting of doubly-wound (βα)5 fold. This fold contains a central 

five-stranded parallel β sheet flanked on both faces by amphipathic helices. Highly 

conserved residues are located in the areas of an active-site groove formed by loops of 

β1, β3 and β5 strands, and a pair of residues that form a diagonal path extending 

across the molecule from the active site (West, Stock 2001).  

Next, protein sequences were introduced into the BLASTP program and it was 

shown, that the CaSSK1 response regulator domain shares homology with response  



 119 

 

Figure 4-1. Alignment of the receiver domains of C. albicans CaSSK1, 

S. cerevisiae SSK1, S. pombe MCS4 with E. coli CheY (Menon, Li et al., 2006). 

Above sequence alignment is the corresponding secondary structure for CheY. The numbers to the left 

of each line refer to the primary amino acid sequence. Conserved hydrophobic and hydrophilic residues 

are shaded grey and yellow respectively. The three amino acid residues that are invariant within the 

response regulator superfamily are boxed. The amino acid residues marked with an asterisk are the 

positions that were mutated in C. albicans SSK1-RR (D556 and D513).  

 

regulator protein domains and the CheY RR protein. The highest similarity was shared 

with the SSK1-RR from S. cerevisiae (61.3% identity and 72.8% similarity) and 

MCS4-RR from S. pombe (59.5% identity and 71.6% similarity), respectively 

(Altschul, Gish et al., 1990). The combined sequence analysis and structure prediction 

information allowed an accurate structure-based sequence alignment for mutational 

analysis. The assignment of functions to conserved amino acids of the C. albicans RR 

protein has not been reported, nor has the phosphoacceptor residue been established in 

this human pathogen. The BLASTP analysis also identified that the C. albicans D556 
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and D513 correspond to the D554 and D511 of the S. cerevisiae (SSK1) and D412 and 

D369 of the S. pombe (MCS4) RR proteins (Figure 4-1). The overall approach 

therefore was to mutate these residues in CaSSK1 to help understand the role of each 

in phosphotransfer and adaptation of C. albicans. 

 

4.3.2 Phosphotransfer from SLN1-HK to CaYPD1 and CaSSK1-R2 

The receiver domain of CaSSK1-RR (residues 499–674) was expressed, 

purified and phosphorylated in vitro using a heterologous phosphorelay assay (Janiak-

Spens, Sparling et al., 2000). The assay mixture consisted of GST-SLN1-HK, SLN1-

RR and YPD1 proteins from S. cerevisiae and CaYPD1 and CaSSK1-RR proteins 

from C. albicans as indicated in Figure 4-2. GST-SLN1-HK was autophosphorylated 

in the presence of [γ-32P]-ATP. Addition of purified SLN1-RR domain to GST-SLN1-

HK allowed for the formation of phosphorylated SLN1-RR (Figure 4-2, lane 1). 

Phospho-SLN1-RR was then separated from GST-SLN1-HK and added to either 

YPD1 or CaYPD1. The radiolabel can be transferred from SLN1-RR to either HPt 

protein (Figure 4-2, lanes 2 and 3). If CaSSK1-RR is included (Figure 4-2, lanes 4 and 

5), complete phosphorelay from SLN1-RR to YPD1 to CaSSK1 and SLN1-RR to  
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Figure 4-2.  In vitro phosphorylation of CaSSK1-RR. The phosphorylation reaction 

mixtures contained SLN1-RR (lane 1); or equimolar amounts of SLN1-RR and YPD1 (lane 2); SLN1-

RR and CaYPD1 (lane 3); SLN1-RR, CaYPD1 and CaSSK1-RR (lane 4); SLN1-RR, YPD1 and 

CaSSK1-RR (lane 5). After incubation for 10 min, reactions were quenched by addition of 5 μl of 4 × 

stop buffer. Reaction products were separated by 15% SDS-PAGE and the gel was then subjected to 

phosphorimager analysis. 

 

 

CaYPD1 to CaSSK1 is observed. The steady-state level of phospho-CaSSK1-RR 

protein observed in this 10 min time frame suggests that both YPD1 and CaYPD1 can 

serve as equivalent phosphodonors for the CaSSK1-RR protein. 
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4.3.3 In vitro assay for testing phosphotransfer activities of CaSSK1-R2 mutants 

Similar studies were performed to assess the ability of the D556N and D513K mutants 

of CaSSK1-RR to be phosphorylated compared with the wild-type CaSSK1-RR. Both 

mutants were expressed, purified and assayed as described above for the wild-type 

CaSSK1-RR protein. The CaSSK1-RR was phosphorylated as shown in Figure 4-3, 

lane 3. As expected for the D556N mutant, we observed little or no phosphorylation; 

the radiolabel primarily resides with the CaYPD1 protein and does not get transferred 

to the D556N mutant (Figure 4-3, lane 4). Likewise, the D513K mutant is also 

severely impaired in its ability to be phosphorylated by YPD1 (Figure 4-3, lane 5). 

 

 
4.3.4 Stability of the phosphorylated CaSSK1-RR domain  

The response regulators studied thus far differ in their phosphorylated half-

lives, ranging from seconds for the bacterial chemotaxis protein CheY to about 10-12 

h for the vancomycin resistance protein VanR (Hess, Oosawa et al., 1988; Wright, 

Holman et al., 1993). A half-life value of 13 ± 3 min, with a corresponding rate 

constant of 0.054 min-1 was previously reported for the half-life of phosphorylated 

SSK1-RR in Saccharomyces cerevisiae (Janiak-Spens, Sparling et al., 1999). To 

address the stability of the phosphorylated form of CaSSK1-RR, and to compare it to 

SSK1-RR and other response regulator proteins, we measured rates of 

dephosphorylation of phospho-CaSSK1-RR.  
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Figure 4-3. In vitro phosphorylation of the D556N-RR and D513K-RR domains.  

SLN1-RR (lane 1); SLN1-RR, CaYPD1 (lane 2); SLN1-RR, CaYPD1, CaSSK1-RR (lane 3); same as 

lane 3, but with D556N CaSSK1-RR (lane 4); and D513K CaSSK1-RR (lane 5). 

 

 
 

Purified phospho-GST-HK (7 µM) was incubated with CaSSK1-RR (12 µM) in 

the presence of Mg2+ ions. Phosphoryl transfer from phospho-GST-HK to CaSSK1-

RR was complete within 30 min. Aliquots were removed at designated time points 

thereafter, and stop buffer was added. The reaction products were separated on 15% 

SDS-PAGE gels and analyzed by phosphorimager analysis (Figure 4-4). 

Dephosphorylation of phospho-CaSSK1-RR followed first-order rate kinetics and the  
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Figure 4-4. Dephosphorylation rate of CaSSK1-RR. (A) Dephosphorylation of CaSSK1-

RR as a function of time. The reaction products were separated on SDS-PAGE gel and analyzed by 

phosphorimager analysis (Molecular Dynamics, Storm 840). (B) Image was further analyzed by 

ImageQuant TL Software (GE Heathcare) to determine the fraction of CaSSK1-RR remaining. The 

half-life of the CaSSK1 was determined by first-order rate kinetics accordingly. 

 

half-life of phospho-CaSSK1-R2 was determined according to the formula t1/2 = ln2/k, 

where k is a rate constant for the dephosphorylation reaction. The results showed that 

A 

Time, min        0        1        2         4        6        8        10      20 
B 
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the phosphorylated response regulator domain of CaSSK1 has a half-life (t1/2) of 8.9 ± 

1.1 min (Figure 4-5) with a corresponding rate constant (k) of 0.078 min-1 (Figure 4-

4). 

 

4.4 Discussion 

Response regulator proteins are critically placed in signaling pathways to 

regulate output responses of cells to a wide variety of environmental signals. All RR 

proteins contain a regulatory domain of approximately 125 amino acids, about 20–

30% of which are identical (Stock, Ninfa et al., 1989; Volz 1993). Probably the most 

studied of all RR proteins is CheY of E. coli. Its role in bacterial chemotaxis is to 

promote clockwise flagella rotation resulting in a 'smooth swimming' phenotype 

(Armitage 1999; Webre, Wolanin et al., 2003; Szurmant, Muff et al., 2004; Wadhams, 

Armitage 2004). Amino acid residues that compose the active site of CheY include 

three aspartates (D12, D13 and D57), which in turn position an essential Mg2+ ion, and 

a conserved lysine residue (K109) that interacts with the phosphate group when D57 is 

phosphorylated. The biological activities of RR proteins such as CheY include 

phosphotransfer, autodephosphorylation and regulation of the effector domain 

processes that are associated with enzymatic properties of the protein (Stock, West 

2002). 

Residues D556 and D513 of C. albicans CaSSK1 protein represent the 

invariant D57 and D13 of the CheY receiver domain and D554 and D511 of S. 
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cerevisiae SSK1. The reason for choosing these residues to construct point mutants 

was based upon studies in E. coli that demonstrated their importance to chemotaxis as 

stated above. While the function of RRs is diverse, invariant amino acid residues are 

critical for protein activity, so it is reasonable to compare the activities of disparate 

proteins. 

D554 is the phosphoacceptor of the SSK1-RR, which as stated above works in 

cooperation with the upstream YPD1 phosphorelay protein to ensure phosphotransfer 

to SSK1 (Posas, Saito 1998). YPD1 becomes phosphorylated by the transmembrane 

histidine kinase, SLN1 (Posas, Wurgler-Murphy et al., 1996). Thus, the flow of 

phosphate includes four phosphotransfer reactions involving four key amino acid 

residues of SLN1, YPD1 and SSK1 proteins (H576 and D695 of SLN1; H64 of 

YPD1; and D554 of SSK1). Previous studies have indicated that the in vitro half-lives 

of the phosphorylated SLN1-RR and SSK1-RR are approximately 13 min, while that 

of phosphorylated SSK1-RR in the presence of YPD1 is about 42 h such that the 

longer half-life of the SSK1 protein probably reflects the need to maintain the HOG1 

pathway in an inactive state when cells are not osmotically or oxidatively stressed 

(Janiak-Spens, Sparling et al., 1999).  

In sln1 deleted strains, HOG1 should be constitutively phosphorylated, but in 

the S. cerevisiae mutant, this causes lethality because cells overproduce glycerol 

(Hohmann 2002). In C. albicans, deletion of sln1 is not lethal under any stress 

condition and HOG1 is phosphorylated (Nagahashi, Mio et al., 1998; Yamada-Okabe, 
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Mio et al., 1999). Our interpretation is that CaSSK1 is unphosphorylated in the sln1 

mutant and therefore CaSSK1 is capable of activating the HOG1 MAPK pathway via 

CaSSK2 but without a lethal event occurring. 

In work described in this chapter, the D556 and D513 amino acids of SSK1 

appear critical to oxidant adaptation and morphogenesis, respectively, of C. albicans 

((Menon, Li et al., 2006). However, the role of D513 in oxidant adaptation and 

morphogenesis is not as clear. The constitutive activation of HOG1 in the D513K 

mutant (as well as the D556R) supports the currently accepted dogma that RR proteins 

exist in a dynamic equilibrium between active and inactive conformational states 

(Menon, Li et al., 2006). Phosphorylation likely stabilizes the active conformation and 

thus shifts the equilibrium in that direction as described for the E. coli CheY (Bourret, 

Hess et al., 1990; Lukat, Lee et al., 1991; Jiang, Bourret et al., 1997). Thus, the D13K 

mutation (in CheY, and by analogy the D513K mutant in CaSSK1) is thought to 

mimic the active conformation in the absence of phosphorylation. In addition, D513K 

mutant is also unable to undergo the yeast-hyphal transition, suggesting that the 

inhibition of hyphal formation could be associated with the constitutive 

phosphorylation of HOG1 in the D513K mutant, which could change the activities of 

signal systems in cells. Perhaps a primary function of the HOG1 MAPK pathway is to 

prevent or attenuate cross-talking which may be abrogated in the D513K mutant.  

The D556 residue of C. albicans CaSSK1 is required for peroxide adaptation, 

but the sensitivity of the D556N mutant to other oxidants such as menadione was 
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similar to WT cells, implying that other regulatory/signal processes may participate in 

adaptation to specific oxidants, such as described by (Enjalbert, Smith et al., 2006; 

Menon, Li et al., 2006). Perhaps the D556N mutant of CaSSK1 also interacts with 

other pathways that regulate oxidant adaptation, which obviously would not occur in 

the ssk1 deletion mutant. Alternatively, the different sensitivities may indicate that 

nuclear translocation of HOG1 occurs at a low level.  

 

4.5. Overall Summary 

Phosphorylation and dephosphorylation of SSK1 RR functions as an on/off 

switch in controlling the activity of the downstream HOG1 mitogen-activated protein 

(MAP) kinase cascade, responsible for production of glycerol in response to 

hyperosmotic shock in S. cerevisiae (Posas, Saito 1998; Horie T., Tatebayashi K. et 

al., 2008). The effect of osmolyte concentrations on the half-life of the phosphorylated 

SSK1-RR caused a reduction in the half-life of SSK1-RR~P in the presence of YPD1 

by approximately 2-fold and had no effect on the intrinsic stability of SSK1-RR~P in 

the absence of YPD1. This showed that increasing osmolyte concentration has a 

negative effect on SSK1-RR~P·YPD1 and results in an increased rate of SSK1-RR~P 

phosphate hydrolysis. 

Phosphotransfer rates within the SLN1-YPD1-SSK1 phosphorelay in the 

presence of NaCl or glycerol, individually, did not change significantly. However, the 

combined effect at low to moderate concentrations of both osmolytes negatively 
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affected the YPD1•SSK1~P interaction thereby facilitating dephosphorylation of 

SSK1 and activating the HOG1 MAP kinase cascade. At high combinatory osmolyte 

concentrations, the kinetics of the phosphorelay favored production of SSK1~P and 

inhibition of the HOG1 pathway. 

 The Candida albicans multi-step phosphorelay CaSLN1-CaYPD1-CaSSK1 is 

required for adaptation to oxidative stress. An established heterologous 

phosphotransfer system utilizing the SLN1 histidine kinase protein from S. cerevisiae 

enabled estimation of the phosphorylated CaSSK1-RR half-life (approximately 9 

min). Two point mutants, D556N and D513K of the CaSSK1-RR protein were 

analyzed using an in vitro phosphotransfer assay, resulting in little or no 

phosphorylation of the CaSSK1-RR D556N mutant and a severely impaired D513K 

mutant. Both mutants were compromised in their ability to adapt cells to oxidants or to 

promote morphogenesis (Menon, Li et al., 2006). 
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Appendix  

Chapter 5 

Measurements of YPD1/SSK1-R2 binding affinity 

The branched multi-step phosphorelay signaling pathway from Saccharomyces 

cerevisiae is involved in adaptation to environmental stress-related responses such as 

hyperosmotic and oxidative stresses (Blomberg, Adler 1992; Maeda, Wurgler-Murphy 

et al., 1994; Posas, Wurgler-Murphy et al., 1996).  

Under normal growth conditions, the SLN1-YPD1-SSK1 branch negatively 

regulates MAP (mitogen-activated protein) kinase cascade. Specifically, phosphoryl 

groups are being shuttled to SSK1 response regulator protein preventing its interaction 

with SSK2/SSK22 MAPKKK (Maeda, Wurgler-Murphy et al., 1994; Posas, Wurgler-

Murphy et al., 1996). The actual dephosphorylation mechanism is not completely 

understood. Hyperosmotic stress leads to dephosphorylation of SSK1 and activation of 

the MAP kinase cascade resulting in HOG1 phosphorylation, followed by its 

translocation into the nucleus and activation of stress-related genes responsible for 

glycerol production (Albertyn, Hohmann et al., 1994; Ferrigno, Posas et al., 1998; 

Posas, Saito 1998; Rep, Krantz et al., 2000). An increase in intracellular glycerol 

concentration plays a key role in the yeast cell survival upon hyperosmotic stress 

(Mager, Varela 1993). Furthermore, the cellular response to hyperosmotic stress 

involves rapid efflux of water and changes in intracellular ion and osmolyte 

concentration. It is our hypothesis that these changes may affect protein-protein 
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interactions involving YPD1 and SSK1-RR. Therefore, this chapter is focused on 

examining environmental conditions that affect YPD1·SSK1-RR complex formation 

and its stability via fluorescence spectroscopy. Specifically, experiments were 

conducted to examine the effect of ion or solute concentrations on YPD1·SSK1-RR 

interactions in vitro and to measure affinities between YPD1 and phosphorylated and 

unphosphorylated SSK1-RR.  

 

5.2 Materials, methods  

5.2.1 Materials 

All chemicals and biochemicals were of ultrapure grade. Glutathione-

Sepharose 4B resin was purchased from Amersham and Sephadex G25 from Sigma. 

HiTrapQ columns were purchased from GE Healthcare. [γ-32P] ATP (3000 Ci/mmol) 

was purchased from Perkin-Elmer. Chymostatin, aprotinin, pepstain, phosphoramidon, 

E-64, leupeptin, antipain, sodium metabisulfite were purchased from Sigma and 

benzamidine was purchased from Fluka. D-(+)-trehalose, D-(+)-melezitose hydrate, 

betaine and stachyose tetrahydrate were purchased from Sigma-Alrdich. NaCl, KCl 

and glycerol were from Mallinckrodt Chemicals, EMD and Pharmco-Aaper, 

respectively. The fluorescence probe 5-iodoacetamidofluorescein (5-IAF) was 

purchased from Molecular Probes. Acetyl phosphate, carbamoyl phosphate, 

orthotungstate, orthovanadate, beryllium chloride and sodium fluoride were from 

Sigma. 
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5.2.2 Protein expression and purification  

Bacterial strains used for protein purification are presented in the Table 5-1.  

Protein 
expressed 

Plasmid 
number Plasmid name Strain 

number 

E. coli strain, 
antibiotic 
resistance 

GST-SLN1-HK OU70 pGEX-GST-HK OU246 DH5α/AmpR 

YPD1 OU15 pUC12-YPD1 OU6 DH5α/AmpR 

SSK1-RR OU26 pETCYB-SSK1-RR OU357 BL21(DE3) Star/ 
AmpR, CmR 

YPD1-T12C OU270 pET21a-YPD1T12C OU340 BL21(DE3) Star/ 
AmpR 

 

Table 5-1. Plasmid constructs used for protein expression and purification. An OU 

number was assigned for each individual plasmid construct and transformed E. coli strain.  

 

Purifications of GST-SLN1-HK, SLN1-RR, YPD1 and SSK1-RR were done 

following the same protocols presented in Chapters 2 and 3.  

 
 
5.2.3 Construction, expression, purification of YPD1-T12C mutant (done by F. 
Janiak-Spens) 
 

Both YPD1 and SSK1-RR proteins were examined first for internal tryptophan 

fluorescence. The SSK1-RR response regulator contained 4 tryptophans (W543, 

W638, W646 and W658) and the HPt protein YPD1 contained two (W11 and W80). 

However, W11 of YPD1 is buried and W80 is located on the surface outside of the 

hydrophobic patch, near the binding site for the SSK1-RR response regulator. No 
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change in intrinsic tryptophan fluorescence was observed when SSK1-RR was added 

to YPD1 protein (F. Janiak-Spens, unpublished data). Therefore an external probe was 

attached to the surface of YPD1 via an engineered cysteine residue.  

The surface exposed residue Thr12 of YPD1 was mutated to cysteine via the 

QuikChange method (Stratagene). Two oligonucleotide primers (AW426 5`-

GAAATCATCAATTGGTGTATCTTAAATGAAATT and AW137 3`-

TTCTCGAGTTATAGGTTTGTGTTG) carrying the selected mutation were included 

with the pET21a-YPD1 plasmid template in a PCR reaction. PCR reaction conditions 

were: denaturation temperature – 94°C for 2.5 min, annealing temperature - 50°C for 

30 s, extension temperature - 68°C for 10 min. Pfu Turbo DNA Polymerase was used 

for PCR reaction. After 18 rounds of amplification, the reaction mixture was digested 

with DpnI restriction enzyme to digest methylated parental DNA while retaining 

newly synthesized one. The reaction mixture was subsequently transformed into 

E. coli DH5α competent cells (OU336). Plasmid DNA was isolated from selected 

transformants and the mutation was confirmed via DNA sequencing analysis 

(Microgen, OUHSC). The YPD1-T12C expressing plasmid was transformed into 

E. coli BL21 (DE3) Star cells (OU340, Table 5-1). For protein expression, cells were 

grown in 1 L of LB medium in the presence of 100 μg mL-1 of ampicillin at 37ºC. 

When the optical density (at 600 nm) of the culture reached 0.8, the cells were induced  
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Figure 5-1.  Expression profile of YPD1-T12C protein. Samples of E. coli BL21 (DE3) 

Star cells containing pET21a-YPD1T12C were removed from different stages of expression and 

analyzed on 15% SDS-PAGE. Lane 1, pre-induced sample of YPD1-T12C; lane 2, IPTG induced 

sample; lane 3, whole-cell lysate; lane 4, insoluble cell extract after sonication; lane 5, soluble cell 

extract after sonication. 

 

by the addition of IPTG to a final concentration of 1 mM. The culture was cooled 

down and was shaken for an additional 22 hrs at 16ºC and then harvested. The 

expression profile is shown in Figure 5-1. Purification of the mutant protein was 

performed similar to that of the wild type YPD1 protein (Chapter 2) (Xu, Nguyen et 

al., 1999). 

 

5.2.4 In vitro phosphorylation of the YPD1-T12C mutant 

Phosphorylation of the YPD1-T12C was achieved by incubation with GST-

SLN1-HK, SLN1-RR and [γ-32P] ATP. GST-tagged SLN1-HK (7 µM) bound to 

glutathione-Sepharose 4B resin was incubated with 7 µM [γ-32P] ATP in 65 µL of 50 

   YPD1-T12C 

kDa  MW        1         2           3          4          5 

6
6 
4
5 
3
6 
2
9 



 139 

mM Tris-HCl (pH 8.0), 100 mM KCl, 10 mM MgCl2, 2 mM DTT and 20% glycerol 

for 30 min at room temperature. Phosphorylated GST-SLN1-HK was recovered in the 

pellet after three consecutive centrifugation steps (1 min at 100 × g). Purified SLN1-

RR (6 µM) in 50 mM Tris-HCl (pH 8.0), 100 mM KCl, 10 mM MgCl2, 2 mM DTT 

was added and the mixture was incubated for 30 min at room temperature in a total 

reaction volume of 65 µL. Phospho-SLN1-RR was recovered in the supernatant after 

gently pelleting the resin-bound GST-SLN1-HK. The isolated phosphorylated SLN1-

RR (5 μL) was added to different reaction mixtures containing either: 6 µM YPD1; 6 

µM YPD1 and 6 µM SSK1-RR; 6 µM YPD1-T12C; 6 µM YPD1-T12C and 6 µM 

SSK1-RR in a total reaction volume of 15 µL. The reaction mixtures were incubated 

for 5 min at room temperature and then mixed with 5 µL of 4X stop buffer (0.25 M 

Tris-HCl pH 8.0, 8% SDS, 60 mM EDTA, 40% glycerol, 0.008% bromophenol blue) 

to terminate the reaction, and kept at - 20 0C until gel analysis. Samples were analyzed 

by SDS-PAGE followed by phosphorimager analysis (STORM 860, Molecular 

Dynamics) (Figure 5-2). 

 

5.2.5 Fluorescence labeling of YPD1-T12C mutant 

The YPD1-T12C protein 500 μL (75 μM) was loaded on the Sephadex G-25 

column (1.5 cm x 18 cm) pre-equilibrated with 50 mM sodium phosphate, pH 7, 1 

mM EDTA to remove DTT and collect 1 mL samples. Fractions were pulled and 

concentrated via centricon (YM-10, Millipore) for further labeling. The stock of 5-IAF  
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Figure 5-2.  YPD1 and YPD1-T12C-dependent phosphoryl transfers. Samples were 

phosphorylated in vitro in total volume of 15 μL. Lane 1, phosphorylated SLN1-RR; lane 2, phosphoryl 

transfer from SLN1-RR to YPD1; lane 3, phosphoryl transfer from SLN1-RR to YPD1 to SSK1-RR; 

lane 4, phosphoryl transfer from SLN1-RR to YPD1-T12C; lane 5, phosphoryl transfer from SLN1-RR 

to YPD1-T12C to SSK1-RR. 

 

 

was made by dissolving 1 mg of 5-IAF in 200 μL of DMSO. The stock solution (5 μL) 

was dissolved in 1 mL of 50 mM K3PO4, pH 9.0. The 5-IAF concentration was 
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determined (extinction coefficient, ε =75 900 M-1 cm-1) via spectrophotometer 

measuring absorbance at λ = 492 nm. 

The 10x molar excess of 5-IAF stock was added to YPD1-T12C protein in the 

glass tube, mixed gently and incubated for 1-2 hrs at room temperature in the dark. 

The reaction was quenched by 5 mM DTT and incubated for 5 min at room 

temperature. 

The YPD1-T12C-F (labeled by 5-IAF YPD1-T12C) protein was loaded onto 

Sephadex G-25 column to remove unreacted 5-IAF from the mixture, 1 mL fractions 

were collected. The concentration was determined via spectrophotometer measuring 

absorbance at λ = 280 and 492 nm. Binding efficiency was estimated according to the 

formula: [A492/ 75900] / [A280/ 15280], where 75900 – extinction coefficient of 5-IAF 

and 15280 – extinction coefficient of YPD1-T12C. All fractions were pooled and 

glycerol was added to the final concentration of 15%, aliquoted (100 µL) and frozen. 

 

5.2.6 Fluorescence-based protein binding assay 

Fluorescence-based YPD1-T12C-F assay was performed as follows: 12.5 µL 

of YPD1-T12C-F (10 µM) was mixed with 50 mM Tris-HCl, pH 8.0, 10 mM MgCl2 

and 1 mM DTT in total volume of 300 µL and placed in the quartz cuvette (QS 10.00, 

HELMA). The cuvette was placed in the fluorospectrophotometer ( ) and the fixed 

excitation wave length was set to λ = 495 nm, while the emission wave length was set 

to the range of λ = 500 - 550 nm. Subsequently YPD1-T12C-F was titrated with 
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SSK1-RR by adding it to the reaction mixture in the final concentrations from 0 to 4 

µM. 

The experiments with osmolytes were performed in similar manner; however 

YPD1-T12C-F was mixed with 200 mM trehalose or 200 mM glycerol or 200 mM 

KCl or 20 mM melezitose or 500 mM betaine or 50 mM stachyose or 500 mM NaCl 

and titrated with SSK1-RR by adding it to the reaction mixture in the final 

concentrations from 0 to 3 µM. 

Similar experiments were performed with 5 mM, 20 mM and 50 mM acetyl 

phosphate; 0.5 mM, 5 mM and 20 mM carbamyl phosphate; 0.5 mM, 5 mM and 10 

mM orthotungstate; 0.5 mM, 2 mM and 5 mM orthovanadate; and 7 mM beryllium 

fluoride (1 mM BeCl2 and 7 mM NaF mix). All substances were incubated for 5 min 

with SSK1-RR and added to the reaction mixture with YPD1-T12C-F. The reaction 

mixture was titrated with SSK1-RR in the final concentrations from 0 to 2 µM. 

All the obtained data was corrected for the volume, F/F0. The data were 

analyzed using the least squares fitting of Excel (Microsoft Office v. 10.1.12) and 

Enzfitter (version 2.04, Biosoft, Cambridge, U.K.). Individual datasets were analyzed 

using equation:   

ΔF = ΔFmax·[L]/(Kd + [L]),  

to calculate dissociation constant, Kd, values. 
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5.2.7 YPD1-T12C•SSK1-RR complex stability in the presence of osmolytes 
 

Twelve osmolytes were found to be present in yeast such as: glycerol, 

trehalose, glycine betaine, glycerophosphocholine, proline, betaine, stachyose, 

melezitose, sucrose, glucose, NaCl and KCl (Blomberg, Adler 1992; Aiba, Yamada et 

al., 1995; Hohmann 2002; Burg, Ferraris 2008).  

 

Osmolyte Kd, µM 

NaCl (500 mM) 0.48 ± 0.08 

KCl (200 mM) 0.44 ± 0.11 

Glycerol (200 mM) 0.90 ± 0.02 

Trehalose (200 mM) 0.67 ± 0.03 

Melezitose (20 mM) 0.58 ± 0.06 

Stachyose (50 mM) 0.68 ± 0.05 

Betaine (500 mM) 0.65 ± 0.04 
 
Table 5-2. Effect of osmolytes on the complex stability of YPD1-T12C-F and 

unphosphorylated SSK1-RR Dissociation constants were calculated on the bases of data 

collected from fluorescence-based binding assay. The data used to calculate the values in this table were 

obtained in triplicate and the errors represent standard errors of the mean. 

 
 
The binding affinity was first measured for the YPD1-T12C·SSK1-RR complex. 

Analysis of the data indicated that the dissociation constant for the unphosphorylated 



 144 

YPD1-T12C-F·SSK1-RR complex is 0.40 ± 0.08 μM. The effect of osmolytes on the 

complex stability of YPD1-T12C-F ·SSK1-RR was estimated. The Kd values obtained 

are presented in Table 5-2. 

 

5.2.8 YPD1-T12C•SSK1-RR complex stability in the presence of small molecules  

phosphodonor s. 

In attempt to mimic the phosphorylation state of SSK1-RR and determine its 

binding affinity towards YPD1-T12C-F protein, small molecules phosphodonors and 

transition state analogs were incubated with SSK1-RR and then added to the reaction 

mixture for the fluorescence assay. The following small molecules phosphodonors 

were examined: acetyl phosphate, carbamoyl phosphate and beryllium fluoride. The 

following transition state analogs were examined: orthovanadate and orthotungstate. 

The effect of small molecules phosphodonors and transition state analogs on the 

complex stability of YPD1-T12C-F and SSK1-RR was estimated. The Kd values 

obtained are presented in Table 5-3. 
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Phosphate  
mimic Concentration, mM Kd, µM 

5 0.24 ± 0.05 

20 0.28 ± 0.05 Acetyl  
Phosphate 

50 0.57 ± 0.04 

0.5 0.33 ± 0.01 

5 0.39 ± 0.01 Carbamoyl 
Phosphate 

20 0.50 ± 0.12 

0.5 0.30 ± 0.02 

5 0.45 ± 0.07 Orthotungstate 

10 0.50 ± 0.13 

0.5 0.24 ± 0.12 

2 0.38 ± 0.06 Orthovanadate 

10 0.73 ± 0.01 
Beryllium  
fluoride 7 0.52 ± 0.09 

 

Table 5-3. Effect of phosphate mimics on the complex stability of YPD1-T12C-F 

and SSK1-RR Dissociation constants were calculated on the bases of data collected from 

fluorescence-based binding assay. The data used to calculate the values in this table were obtained in 

triplicate and the errors represent standard errors of the mean. 
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5.4. Discussion  

The histidine phosphotransfer protein YPD1 is able to form a complex with the 

phosphorylated response regulator SSK1-RR (Janiak-Spens, Sparling et al., 2000), 

however, it is still remains unclear what conditions/interactions trigger complex 

dissociation, phosphoryl group hydrolysis from SSK1-RR, and subsequent MAP 

kinase cascade activation. 

We have hypothesized that changes in intracellular ion and osmolyte 

concentrations may affect protein-protein interactions involving YPD1 and SSK1-RR. 

In the current study we have examined environmental conditions that affect 

YPD1·SSK1-RR complex formation and its stability via fluorescence spectroscopy. 

Specifically, experiments were conducted to examine the effect of ino or solute 

concentrations on YPD1-SSK1-RR interactions in vitro and measure affinities 

between YPD1 and potentially phosphorylated SSK1-RR. 

I have corroborated Fabiola Janiak-Spens initial results that YPD1-T12C-F can 

form a complex with SSK1-RR with a measured dissociation constant of the 

unphosphorylated SSK1-RR·YPD1-T12C-F of 0.40 ± 0.08 μM using the fluorescence 

assay described herein. However, there did not appear to be a significant effect of 

osmolytes on complex stability of the YPD1-T12C-F·SSK1-RR. There was a small 2-

fold increase in the Kd observed for glycerol (200 mM) (Table 5-2), however it is 

impossible to draw conclusions if this change has significant effect on complex 

stability. 
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Small molecules phosphodonors were chosen for this study to functionally 

activate SSK1-RR domain, as it has been shown for other response regulators such as 

CheY and NtrC (Yan, Cho et al., 1999; Lee, Cho et al., 2001). These structural 

analogs are capable of binding to aspartyl side chain in the tetrahedral geometry, 

mimicking phosphoryl group conformation within the target molecule. My 

experimental data, however, showed no significant change in the dissociation constant 

values (Table 5-3). However, I have been unable to confirm the extent of 

phosphorylation of SSK-RR using small molecule phosphodonors. 

Alternatively, transition state analogs, such as orthovanadate and 

orthotungstate were used to activate the SSK1-RR. In contrast to tetrahedral 

conformation of small molecules phosphodonors, these compounds mimic the 

transition state for a phosphoryl transfer reaction and are assumed to have a penta-

coordinated geometry (Barford, Flint et al., 1994; Holtz, Stec et al., 1999). Both 

analogs had no significant effect on the dissociation constant of YPD1-T12C-F·SSK1-

RR complex. Again, I have no data to confirm whether these transition state analogs 

actually bind to SSK1-RR. There are several questions that remain unclear: 

a) Does the small molecules change in dissociation constant between YPD1-

T12C-F and SSK1-RR represent a true osmolyte effect? 

b) Is the SSK1-RR domain activated when incubated with small molecules 

phosphodonors and transition state analogs? 
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c) If the SSK1-RR is activated, what is the effect of osmolytes on YPD1-

T12C-F·SSK1-RR complex stability? 

All these questions need to be addressed in future studies to assess whether ion or 

solute concentration affects YPD1-SSK1-RR interactions. 
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List of Abbreviations 

 
General Abbreviations  

 
ATP   Adenosine-5΄-triphosphate 
DTT   Dithiothreitol 
EDTA   Ethylenediaminetetraacetic acid  
GST   Glutathione-S-transferase  
HK   Histidine kinase 
RR   Response regulator 
HPt   Histidine-containing phosphotransfer 
IPTG   Isopropyl-β-D-thiogalactopyranoside 
PAGE   Polyacrylamide gel electrophoresis 
PCR   Polymerase chain reaction  
MAP   Mitogen-activated protein 
MAPK   MAP kinase;  
MAPKK  MAP kinase kinase 
MAPKKK  MAP kinase kinase kinase 
SDS   Sodium dodecyl sulfate 
 
 
Gene designations 
 
GPD1   Glycerol-3-phosphate dehydrogenase 1 
 
 
Protein designation 
 
CheY   Chemotaxis protein Y; E. coli 
ArcB   Anoxic redox control B; E. coli 
HOG1   High osmolarity glycerol response; S. cerevisiae 
SKN7/CaSKN7 
SLN1/CaSLN1 Synthetic lethal of the N-end rule 1; S. cerevisiae/C. albicans 
SSK1/CaSSK1 Suppressor of the sensor kinase 1; S. cerevisiae/C. albicans 
YPD1/CaYPD1 Tyrosine (Y) phosphatase dependent 1;S. cerevisiae/C. albicans 
CaNIK1    
CaHK1  Histidine kinase 1; C. albicans 
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