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ABSTRACT 

The Magdalena submarine fan, offshore Colombia, is the result of 

sediment accumulation in an accretionary prism initiated during the middle 

Miocene. It is fed by the Magdalena River, which drains the northern 

Andean Cordillera. Integration of multibeam bathymetry, GLORIA side scan 

sonar and 2D seismic profiles reveal a series of seafloor deepwater 

channel-levee systems and mass transport complexes (MTCs) that have 

evolved as a result of changes in the processes controlling the 

sedimentation. This study explains the fan evolution during the Pleistocene 

up to present times and how the tectonic setting has modified the 

morphology of different architectural elements and their depositional styles.  

The river delta migrated westward during Pleistocene to Holocene 

times, generating eight phases in the submarine fan, mainly represented by 

channel-levee complexes, unconfined deposits and MTCs filling the 

interchannel lows.  A major Late Pleistocene shift towards the east defined 

the western abandonment phase of the main fan area (Galerazamba).   

The present day fan is located north of the river mouth, revealing its 

recent activity by deposition of sediment gravity flows which have ruptured 

submarine cables. Two flow pathways trend down slope through piggyback 

basins that are linked by knickpoints and canyons. A third flow pathway 

corresponding to the Aguja Canyon, located northeast of the river mouth, 
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also provided sediment gravity flows which ruptured submarine cables. The 

flow events are related to different processes on the continental shelf: 1) 

High flood stages of the river, 2) coastal erosion, 3) longshore drift, 4) 

hyperpycnal flows and 5) river mouth instability. The sedimentological 

characteristics of the different deposits should vary because the flow 

properties are different. Flows through the active Magdalena Canyon and 

western gullies may be related to high flood stages of the river, giving rise to 

hyperpycnal flows and instability of the Magdalena delta front. Meanwhile, 

flows from the Aguja and Sabanilla canyons are associated with longshore 

drift and coastal erosion. 

Mass transport processes have smoothed sea bottom morphology 

and have been subdivided according to the following causal mechanisms: 1) 

detached (growth of thrust structures, instability of slope canyon and 

channel walls) and shelf-attached (major slope failures). 

Deformation of the Magdalena Fan occurs at the proximities of the 

deformation fronts, where buried folds and faults modified the slope. This 

was recorded in the western fan by increase of sinuosity of the channel-

levee systems, forced migration (avulsion) and generation of knickpoints at 

the higher slope section. Higher slope angles occur at the upper slope, 

along the northeastern section of the fan, where retrogradational erosion is 

linked with MTCs as a result of uplift of the inner thrust ridges and the shelf.  
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Depositional styles vary from the fan to the deformation fronts. 

Channel-levee systems, unconfined flows and MTCs are typical on the main 

fan, while thrust deformed areas are dominated by above-slope deposition, 

represented by unconfined deposits that fill the piggyback basins or are 

transported downslope to the abyssal plain.  

This work provides new understanding of the processes involved in 

submarine fan evolution in an active margin setting. This knowledge has 

implications for both petroleum exploration and assessment of shallow 

hazards of submarine infrastructure in the area.   
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CHAPTER 1 

1.1 OBJECTIVES   

The modern south Caribbean seafloor, offshore Colombia, displays a series 

of submarine channel levee complexes, mainly formed by turbidity currents 

fed by the main drainage system in the area (Magdalena River). The aims of 

this dissertation are to analyze the distribution of the modern turbidite 

channels, provide an interpretation of the evolution of the channel 

complexes through time and evaluate the possible changes in morphology 

due to tectonic forces. Multibeam bathymetry, side scan sonar imagery, 

sediment samples (piston cores) and 2D seismic profiles were analyzed to 

achieve these purposes.    

This dissertation involves four main topics:  

1. Analysis of the sedimentary processes operating in the submarine 

channels in the northwestern Colombia slope.  

2. Study of the influence of tectonic setting in the evolution of the 

Magdalena Fan through the sinuosity vs. slope relationship.  

3. Characterization of the submarine fan morphology.   

1. Relation of the sea bottom morphology to deeper strata using 2D 

seismic lines to determine stratigraphic evolution of the turbidite 

deposits, in particular the evolution of submarine channels.  
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1.2 RESEARCH HYPOTHESIS  

Changes in slope angle as well as channel maturity and variation of flow 

characteristics such as current energy, flow volume, and sediment load, are 

among the factors that modify the submarine channel morphology 

(Babonneau et al., 2002). In an active compressional tectonic setting, the 

deepwater depositional system evolves as the slope angle is continuously 

modified. Consequently, the sedimentation style is modified. In active 

convergent margins major deformation events occur, leaving as a result an 

accretionary wedge. The geometry of the convergent margin can be 

modified by high rates of sedimentation on the margin (Davis et al., 1983). 

Figure 1.1 illustrates how high rates of sedimentation may produce 

curvilinear structural trends and indentation on the convergent margin.  

Figure 1.1. Breen (1984) model of the 

effects of sedimentation on the geometry of a 

convergent margin.  
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Breen (1989) proposed that the rapid buildup of the Magdalena Fan may act 

as a rigid indenter in creating locally curved structural trends within the 

upper plate. The Magdalena Fan sediments cover the shelf margin of the 

Colombian basin, separating two arcuate deformation fronts (Figure 1.2 

arrows). The fan started to receive sediments during the late Cenozoic 

Andean Orogeny (Kolla and Buffler, 1984a) and remains active today 

(Heezen, 1956a). The structural response has been indentation and 

curvature of the accretionary wedge and increase deformation inboard of the 

Magdalena Fan, increasing the tectonically driven uplift of the Santa Marta 

block in Colombia (Breen, 1989).  

 
Figure 1.2. Main morphologic features of northern Colombia and Magdalena fan 

area.  



 4 

The deformation style of an accretionary wedge was explained by Davis et 

al. (1983). The accretionary wedge will deform internally until a critical taper 

is reached. For slopes greater than the critical taper the wedge will slide 

stably (Thrust faults). The presence of active sedimentation at the toe of the 

deformation front will reduce the wedge slope lower than the critical taper 

and reinitiate the internal deformation (Davis et al., 1983). If the sedimentary 

load persists on the slope at the same place the deformation front may 

become markedly curved. (Breen, 1989) 

 

The slope of the Magdalena Fan is about 2˚ on the upper fan and decreases 

to less than 0.5˚ on the middle and lower fan (Kolla and Buffler, 1984b). In 

contrast, the adjacent accretionary wedge has a slope of 2.5˚-8.5 ˚. The 

pattern of deformation on the northwestern Colombian margin appears to be 

altered in the vicinity of the Magdalena fan. The main deformation point has 

shifted back from the toe of the accretionary wedge towards areas on land 

behind the Magdalena Fan (Figure 1.3) (Breen, 1989).  

Figure 1.3. Migration of the deformation point due to the decrease in the 

slope of the upper plate in a convergent margin. (Breen, 1989).   

Lower 

Plate 

Upper 

Plate 
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The modification of the slope by the internal deformation in the Magdalena 

Fan should modify the channels morphology of the developed in the area of 

indentation (Magdalena submarine fan). Likewise, grow of the accretionary 

wedge areas (western and eastern areas) should affect the geometry of the 

channels and sediments that are deposited during the deformation.  

The timing of deposition is also an important factor to evaluate in this 

system. The Magdalena Fan shifted in response to inland tectonic events 

during the Pliocene-Holocene interval, migrating towards the southwest and 

later to the northeast, where it is currently located, leaving a series of paleo-

fans (Hoover and Bebout, 1985; Pirmez et al., 1990). If the main 

deformation occurred after the abandonment of the fan, the channel 

geometry would not reflect the slope changes and will be out of the 

equilibrium profile (Pirmez et al., 2000). Conversely, if deformation was 

acting at the time of deposition of the channel systems, the slope 

modification would be recorded by changes in the morphology of the 

channel, such as increase in sinuosity, lateral migration of the systems and 

erosional downcutting (Flood and Damuth, 1987; Pirmez and Flood, 1995). 

The migration of the Magdalena Fan also helps to establish relative timing of 

the deformation events. If the two arcuate deformation areas were active 

during the same period of time, major deformation events should be 

reflected on the fan sedimentary sequence in both areas. Even though the 
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Magdalena Fan shifted its main deposition, some evidence of deformation 

should be present in the coeval structures.   

The eastern fan area is currently active, hence sediment gravity flows, 

MTCs and slumps are common. Submarine cable breaks attest to the very 

recent sedimentary flow activity (Heezen, 1956a). The channel morphology 

of this area differs from the western channels. Straight segments and lower 

sinuosity are recognized in these channels and canyons. These variations in 

channel morphology may be indicating differences in the slope angles due 

to variations in the deformation style through the area or merely changes 

resulting from different deformational events resulting from shifting of the 

Magdalena River delta.   

A complete study of the Magdalena submarine fan area will properly 

evaluate whether the system is behaving as a passive margin system, or 

whether it exhibit major differences in the deformed areas that would reflect 

its active margin tectonic setting.  

  

Major points addressed by this dissertation include:    

1. Morphometric quantification of the channels to establish the level of 

similarity between the channel levee systems in the submarine fan;  

2. Comparison of channel morphologies to understand what processes 

control the style of sedimentation and evolution of the Magdalena submarine 
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fan leading to an understanding of the role of slope modification related to 

mobile substrates and tectonic events;  

3. Analyze sediment distribution and turbidity flows in the modern active fan 

and comparison with the paleo-fan area to understand the evolution of the 

fan and sediment distribution on the continental slope;   

4. Comparison of the modern Magdalena Fan and older sediments to find 

applications to subsurface exploration in similar basins;  

5. Develop deepwater sedimentary model for active basins; and 

6. Understand the active processes on the continental slope in order to 

assess geohazards. 

 

1.3 IMPORTANCE  

The Magdalena Fan is an active system with modern deposition of sediment 

gravity flows. Numerous submarine cable breaks have been reported since 

1950 and the sea floor morphologies exhibit great variability of the 

architectural element morphologies. Figure 1.4 depicts importance of the 

Magdalena Fan when compared with other submarine fans. The Magdalena 

Fan is considerable in size, in an active compressional margin setting with 

active sediment gravity flows today. This study aims to provide a 

comprehensive interpretation of the evolution of the fan based on the  
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interpretation of architectural elements and identification of the processes 

that control and modify the sedimentation.  

The results of this study provide a better understanding of the evolution of 

submarine fans in active margins, depositional evolution of the continental 

slope offshore Colombia and in general to the generation of turbidity flow 

processes. In addition, the study of this area serves as an analog for 

 
 

Figure 1.4. Comparison of major submarine fan systems (Modified from Kendall 

and Haughton, 2006) 
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depositional models in similar tectonic settings, reservoir characterization 

and modeling.  

The study also provides information about the sediment distribution and play 

concepts in the subsurface area. The promising increase in oil and gas 

exploration in the past year in the area makes the understanding of active 

slope processes and shallow hazards assessment important and urgent.  

 

1.4 THESIS OUTLINE  

Three papers (Chapters 2, 3, and 4) comprise the summary of 

interpretations and highlight the main findings of the study of the Magdalena 

submarine fan. Sections of the work explained in a particular paper were 

referenced with the corresponding chapter number in this dissertation. 

These papers were submitted to peer-reviewed scientific publication, as 

follows. 

 

1.4.1 Chapter 2. Evolution of the Magdalena deepwater fan in a 

tectonically active setting, offshore Colombia 

This manuscript addresses the evolution of the recent submarine deposits 

on the seafloor of the Magdalena Fan, taking into account the active tectonic 

setting in which it was deposited. Distribution and morphologies of the 
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channel complexes on the seafloor were studied using high resolution 

bathymetry and seismic profiles. The paper discuses how the inland 

tectonics controlled the location of the sediment source (Magdalena River) 

and induced migration of the submarine fan towards the south and northeast 

until it reached its current position. During Pleistocene and Holocene 

deposition of these channel complexes, active deformation of the continental 

slope occurred in some areas of the Magdalena Fan, hence allowing the 

study of interaction between slope modification and morphology of the fan 

Measurements of sinuosity, slope angles, and overall dimension of the 

systems were made. Additionally, the importance of knickpoint development 

is presented as a possible initiation point for the establishment of channel 

levee systems in a slope with active deformation and a relatively steep 

slope.  

This manuscript was submitted to a SEPM Special Publication:  Application 

of Seismic Geomorphology Principles to Continental Slope and Base-of-

slope Systems: Case Studies from Seafloor and Near-Seafloor Analogues, 

editors: Prather B., Deptuck M., Mohring D., Van Hoorn B., Wynn R.) 
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1.4.2 Chapter 3. Active sedimentation and submarine cable breaks on 

the Magdalena deepwater fan, Colombia: linkages with shallow water 

processes as starting point for turbidite flows.  

 

This chapter summarizes the recent sediment flow activity of the Magdalena 

Fan, characterizing the morphology of the northeastern fan, from the river 

mouth to the abyssal plain. Submarine cable ruptures during 1930 to 1956 

demonstrate the presence of active gravity flows in the area. The use of 

GLORIA side scan sonar, bathymetry and seismic profiles allowed the 

identification of active flow pathways and distribution of the sediments. 

Identification of the main process that could have been associated with the 

initiation of flows is the main part of the discussion. High flood stages, 

hyperpycnal flows, coastal erosion, longshore drift, river mouth instability all 

seem to be playing a role in triggering gravity flows in the area. In addition, 

the interaction of mass transport deposits with the turbidite flows and their 

distribution, recurrence of the events, slope sedimentation and importance 

of the findings are presented in context.     

This manuscript was submitted to a SEPM Special Publication:  Application 

of Seismic Geomorphology Principles to Continental Slope and Base-of-

slope Systems: Case Studies from Seafloor and Near-Seafloor Analogues, 

(editors: Prather B., Deptuck M., Mohring D., Van Hoorn B., Wynn R.) 
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1.4.3 Chapter 4. Mass transport complexes on the Magdalena 

deepwater fan: possible timing and causal mechanisms  

An important percentage of the deep water morphology of the Magdalena 

Fan is a result of mass transport complexes (MTCs) distributed across the 

slope. This chapter is focused on the description of the different MTCs and 

the causal mechanisms associated with them, based on the interpretation of 

GLORIA side scan sonar, seismic profiles and bathymetry. These 

architectural elements were divided by causal mechanism into: 1) Detached 

MTCs triggered by either growth of thrust structures or instability of the slope 

canyons and channel walls, and 2) Shelf attached MTCs related to major 

slope failures. Additional triggers were considered for the shelf attached 

MTC including seismicity of the area, abandonment of the delta front and the 

submarine fan. Estimation of timing for the shelf-attached MTCs was based 

on the delta front abandonment as a result of the migration of the sediment 

source (Magdalena River), changes in the regional sea level and regional 

processes. 

This manuscript was submitted to Submarine Mass Movements and Their 

Consequences IV. Advances in Natural and Technological Hazards 

Research, (editors: Mosher, D.C., Shipp, C., Moscardelli, L., Chaytor, J., 

Baxter, C., Lee, H., and Urgeles, R.), vol XX., Springer. 
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1.4.4 Chapter 5. Integration of results  

This chapter summarizes important considerations derived from the study 

that advance the study of turbidites and the understanding of deepwater 

deposition in the Magdalena Fan area. The chapter integrates and 

discusses the results of the submarine fan deposition in terms of regional 

tectonics, deepwater sedimentation and depositional styles. Also included 

are some limitations of the data available, how these limitations affected the 

results and some ideas to be implemented in future studies.  

1.4.5 Chapter 6. Conclusions 

This chapter summarizes the main conclusions of the study.   

 

 



 14 

CHAPTER 2 

EVOLUTION OF THE MAGDALENA DEEPWATER FAN IN A 

TECTONICALLY ACTIVE SETTING, OFFSHORE COLOMBIA 

 

ABSTRACT : 

The slope morphologies of the Magdalena deepwater fan exhibit a series of 

channel-levee complexes, recording the evolution of the Magdalena Delta. 

Detailed morphological analysis of the seafloor expression of the channels 

and their lateral relationship allowed reconstruction of the Pleistocene fan 

history. The Magdalena deepwater fan was deposited on the northern 

offshore Colombia accretionary wedge (Caribbean Sea), initiated during the 

Late Miocene. The fan evolution is closely related to the Magdalena River 

establishment and delta migration, controlled by tectonic processes during 

the Pliocene to present. Major delta shifts toward the southwest (Canal del 

Dique) and northeast (Cienaga de Santa Marta region) created a submarine 

fan that migrated with the river, becoming younger towards the southwest. 

The main fan was abandoned during the Holocene, focusing deposition on 

the Barranquilla region to the northeast with modern active sedimentation.  

The depositional processes in the active fan area are mainly dominated by 

turbidity currents, possibly initiated by hyperpycnal flows, alternating with 

slumps/debris-flows that generated large mass transport deposits. Seven 
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channel–levee complexes (CLC) were imaged using multibeam bathymetry 

and seismic profiles.  

Topographic lows between CLCs formed relatively unconfined areas for the 

accumulation of mass transport deposits. Morphometric measurements to 

define the slope angle vs. sinuosity relationships were performed on the 

channels in order to evaluate the interaction of deformation and 

sedimentation in the area. Highly sinuous channels in the western fan 

suggest that sinuosity changes were controlled by changes on the slope 

associated with deformation of the fold and thrust belt along the margin.  

Upstream knickpoint migration in slope steps as a response to deformation 

may represent a key process explaining the initiation of deepwater channel 

systems on the origin of the Magdalena Fan as well as fans deposited on 

other tectonically active basins. This study provides new understanding of 

the processes involved in the Magdalena deepwater fan. Also, there are 

implications for the petroleum exploration and assessment of shallow 

hazards of submarine infrastructure of the area.   

 

2.1 INTRODUCTION  

The Magdalena submarine fan is the main physiographic feature that 

shapes the modern seafloor morphology of offshore northwestern Colombia. 

It is one of the few deep-sea fans with turbidity current activity today. The 
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fan consists of a series of submarine channel-levee complexes and mass 

transport deposits, mainly formed by transport and deposition of sediments 

from the Magdalena River, the main drainage system in Colombia (Figure 

2.1). The fan extends about 68,000 km2, with a volume of 180,000 km3 and 

extends to over 4,000 m of water depth (Kolla and Buffler, 1984b; Wetzel, 

1993; Reading and Richards, 1994). It is part of the accretionary wedge 

complex formed by the collision of the Caribbean –South American plates 

(Duque-Caro, 1979; Breen, 1989).  

Previous studies on the morphology and stratigraphy of the Magdalena Fan 

(Kolla and Buffler, 1984a; Kolla et al., 1984b; Ercilla et al., 2002a; Estrada et 

al., 2005a) showed that, despite its active margin setting, the fan had 

features that resembled the large fan systems encountered off major rivers 

on passive margins, such as sinuous channel levee systems and large 

mass-transport deposits. Previous works by Hoover and Bebout (1985) and 

later by Pirmez et al. (1990) addressed the link between migration of the 

Magdalena River course, regional tectonics and the deepwater fan deposits. 

Here we present new bathymetric and seismic data that complement 

previous studies and allow for a more complete understanding of the fan 

and interpretation of its history. Seismic reflection data and detailed 

bathymetric coverage reveal the temporal and spatial evolution of the fan by 

examining the stratigraphic relationships between the various channel-levee 
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systems. Then, we relate the evolution of the fan to previous studies that 

discuss the evolution of the Magdalena River drainage onshore in an 

attempt to understand the evolution of the system from source to sink. This 

approach allows for constraining the models for sedimentation, tectonic 

interactions, and for placing constraints on the timing of fan evolution.   

Finally, we attempt to link the spatial and temporal evolution of the 

sedimentary system to the patterns of tectonic deformation of the margin, 

including an analysis of the morphology of the various submarine channel-

levee systems, characterizing the thalweg profiles and variations in sinuosity 

and slope angle. We discuss degradational processes to which the channels 

have been exposed after abandonment and the role of slope deformation on 

channel–levee morphology and knickpoint formation. Most studies of 

submarine fans are from passive margin settings. The Magdalena Fan is 

deposited in an active margin and reveals active deformation during the 

deposition of the channel systems, providing an opportunity to study 

possible differences between active and passive margin systems.  

 

2.1.1 Geological Setting  

The Magdalena submarine fan is an arcuate bathymetric feature, part of the 

accretionary wedge formed by the subduction zone of the Caribbean –South 

American plates (Duque-Caro, 1979; Kolla and Buffler, 1984b; Breen, 1989). 
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The Caribbean plate subducts towards the east-southeast, at a low angle 

beneath the South American plate and at a rate of 20 +/- 2 mm/yr 

(Trenkamp et al., 2002; Corredor, 2003). 

The Caribbean margin of Colombia and the Magdalena Fan began receiving 

sediments during late Cenozoic time (Kolla and Buffler, 1984b) (Figure 2.2). 

In the middle of the margin, the Magdalena Fan formed a bathymetric bulge, 

separating two arcuate deformation fronts that delineate the fold and thrust 

belts east and west of the Galerazamba shelf. The fan appears largely 

undeformed (Breen, 1989), apparently modifying the geometry of the 

margin.  

 The main structural elements essential to the tectonic evolution of the 

margin are the Santa Marta massif, the San Jacinto fold belt and Sinú fold 

belt (Figure 2.2). The Santa Marta massif is an uplifted basement block, 

bounded by major strike-slip faults (Bucaramanga system to the west and 

Oca fault to the north). Kellogg & Bonini (1982) suggest that the majority of 

the offset in these two fault systems occurred during the last 10 Ma and is 

linked with the most important uplift of the massif.  The San Jacinto fold belt 

represents the land portion of the accretionary complex composed of late 

Cretaceous to Pliocene sedimentary rocks. Deformation began during the 

early Paleogene and was reactivated during the late Miocene- Pliocene 

Andean compression (Ruiz et al., 2000). The Sinú fold belt lies west of the 
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San Jacinto fold belt and is separated by the Sinú lineament (Duque-Caro, 

1979) (Figure 2.2). Composed of Oligocene to Holocene sediments, it 

extends to the offshore area represented by a series of imbricate structures 

which become progressively younger towards the toe of the slope. The 

decollement surface seems to be related to overpressured shales deposited 

during Early Miocene (Vernette et al., 1992). Piggy-back basins have been 

preserved in the belt structures in the upper portions of the slope; they have 

been filled by mass transport complexes. Turbidity flows were later affected 

by collapse of some preexisting compressional structures (normal faulting). 

Sinú belt structures are aligned to the Sinú lineament and were mostly 

formed during the Pliocene but the prism is still active today.  Pleistocene 

deformation is evidenced in some structures and supported by geodetic 

observations (Kellog and Vega,1995). Shale ridges and mud diapirism are 

important elements in the system. Diapirs located on the slope at the 

northeastern and southwestern deformation fronts, as well as onshore 

(Totumo Volcano) are common in the basin. Gas hydrates (BSR) and gas 

seepage are also present throughout the slope (Shipley, 1979; Shepard, 

1973; Vernette et al., 1992). 

The tectonic history of the offshore accretionary complex is still not 

completely resolved. Breen (1989) proposed that rapid deposition of the 

Magdalena Fan deposition has had a structural effect on the geometry of the 

convergent plate margin, creating an indentation and curvature of the 
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accretionary wedge. As a consequence, according to Breen (1989) the two 

arcuate deformation fronts were emplaced and deformation inboard of the 

Magdalena Fan increased, raising the tectonically driven inland uplift (e.g. 

Santa Marta block). Ruiz et al. (2000) presented a more complex scenario 

than the previous models, based on seismic interpretation, magnetic and 

gravity anomalies and divided northwestern Colombia into two zones 

separated by the Canoas Fault Zone: 1) zone of accretion (south of the 

Canoas fault) and 2) zone of transpression-transtension (Figure 2.2) 

between the Canoas and Oca-Santa Marta Fault systems. However, the 

presence of the Canoas Fault could not be confirmed with the available 

seismic profiles. Later, Flint et al. (2003) proposed an accretionary prism for 

the area which extends from the Uraba basin in the south and joins the 

northern accretionary wedge of Venezuela. High sediment supply to the 

offshore wedge induced a critical taper stage (Davis, 1983) and collapse of 

the pre-existing compressional structures. Folding and thrusting is less 

evident along the Proto-Magdalena (Galerazamba area) than in the 

deformation fronts, due to a high sedimentation rate during deformation.  

 

2.1.2 Magdalena River History  

The Magdalena River history is intimately linked with the tectonic events in 

northern South America. Hoorn et al. (1995) indicate a change in the 

northern South America drainage system during the early Miocene. Initiation 
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of the Eastern cordillera uplift in the late middle Miocene (between 12.9 and 

11.8 Ma) generated a north and northeast flow of the river system in addition 

to the existing east and southern flows. Part of the drainage was directed 

northward along the paleo-Orinoco river to a delta in the Lake Maracaibo 

area.  At 11.8 Ma the current directions shifted completely towards the north, 

changing from a meandering to an anastomosing fluvial system (Guerrero, 

1993; Flynn et al., 1994).  Bordine (1974) documented the paleogeography 

for land deposits in the lower Magdalena valley (Figure 2.3). Late Miocene –

early Pliocene marginal and shallow marine deposits are the most prominent 

in the area.  Link (1927) recognized a major ancient channel near Calamar, 

flowing northwestward near Luruaco, probably of late Pliocene age (based 

on planktonic foraminifera). The continuous northeast-southwest uplift and 

the presence of the Pleistocene La Popa Limestone near the ancient river 

mouth at Galerazamba indicate that the river was forced to shift toward the 

south-west (Canal del Dique) (Figure 2.3). The reef buildups were formed on 

the topographic highs created by shale diapirs. The uplift of the Atlantico-

Turbaco Hills across the river's course caused a major east and northeast 

shift. Since then, the river has partially filled its estuary and has built three 

small, submerged delta lobes across a narrow shelf (Hoover and Bebout, 

1985).  It is important to mention that incipient deformation has been 

observed in coastal deposits by deformation of the Popa limestone along the 
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coast line, particularly at the Dique canal area (Martinez and Roberson, 

1997; Reyes et al., 2001).     

 

2.1.3 Deepwater Fan Deposits  

As a result of the migration and establishment of the Magdalena River 

northward during the Miocene, the submarine fan sedimentation was 

initiated. The proto-Magdalena Fan was mainly fed by the Magdalena River, 

but sediments of the Sinú River may also have contributed to the fan. The 

Magdalena Fan deposits were divided by Kolla & Buffler (1984b) into upper, 

middle and lower fan, based on sub-bottom profiles and piston core 

examination. The more recent units reveal several periods of incision and 

channel activity, reflecting uplift in the sediment source region, changes in 

sea levels and delta shifts in space and time that can be related to the 

Andean orogeny in the middle Pliocene (Kolla and Butter, 1984b). Modifying 

the earliest division of the area proposed by Ercilla et al. (2002a), the fan 

can be divided into: 1) deformed compressional belts and 2) main fan area. 

The deformed compressional belts areas include the arcuate northeast and 

southwest thrust belts, expressed on the sea floor as elongated ridges with 

strike along the margin (Figure 2.1 and 2.4). The main fan area is 

characterized by leveed channel complexes, large-scale mass-flow 

deposits, canyons and slump scars in the upper slope (Figure 2.3). The 

levee-channel systems are partially destroyed or buried by mass-flow 
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deposits. Tectonic deformation in the main fan area is largely absent, but 

subtle evidence can be detected on the bathymetric and seismic data, 

particularly in the vicinity of the adjacent thrust belts.   

 

2.2 DATA AND METHODS  

Data available for the study include high resolution bathymetry 

images of the northwest Caribbean offshore Colombia (Figure 2.1). The 

bathymetry covers a major part of the Magdalena deepwater fan, 

approximately 54,000km2 of the seafloor (Figure 2.1). Four different surveys 

cover the area of study. In 1997 the Spanish vessel Bio-Hesperides 

acquired approximately 32,500 km2 of bathymetry data (Ercilla et al, 2002a) 

with the multibeam echosounder SimRad EM-12 S120. Two surveys were 

acquired in 2002 on behalf of Ecopetrol (14,700 km2) and Total E&P (11,400 

km2). Data were collected using a hull—mounted, multibeam echosounder 

Reson SeaBat 8169 (50 KHz; for water depths between 100 and 800 m) and 

Simrad EM 12D (13 kHz; for water depths between 800 and 3500 m). 

Additional bathymetry surveys that cover the shelf area and river mouth 

were provided by the CIOH (Centro de Investigaciones Oceanográficas e 

Hidrográficas, Colombia) (6,000 km2). Data were tide-corrected and 

processed by the contractor, and were provided in final format compatible 

with geographic information systems. Proximity to the Magdalena River 
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outflow area resulted in depth anomalies due to fresh water input which 

altered sound velocity ranges, but did appear to be properly corrected.  

Bathymetry interpretations and quantification of the architectural elements 

dimensions were made using ArcGIS software (ESRI, Environmental 

Systems Research Institute, Inc.). Calculation of attributes such as slope 

and curvature were used to enhance and facilitate the interpretation.  

Thalweg profiles were extracted directly from the bathymetry grid for each 

channel studied. Thalweg profiles for each channel are referenced to the 

shelf break (~ 60m) to allow a better comparison of the changes in slope 

angle of the different systems.   

Quantification of channel parameters was done measuring profiles every 5 

km.  Channel width was measured from the levee crest to levee crest. Levee 

height was calculated from the channel thalweg to the crest of the levee. 

Sinuosity and slope angle were measured by dividing the channel into 

segments for complete sinuous loops. Sinuosity is defined as the ratio 

between the thalweg length (channel axis) and the straight line distance 

between the sinuous loop end points, for a given section of the channel.  

The 2D seismic lines shown in this paper illustrate the seismic expression of 

subsurface structure. They are part of a wider grid of seismic reflection data 

provided by Ecopetrol. Acquisition parameters are industry standard, nearly 

zero phase with SEG normal polarity. Frequencies range from 20 to 60 Hz 

around the level of interest. Seismic interpretation was performed in SMT 
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Kingdom Suite 8.1. Presence of water bottom multiples, gas hydrates, gas 

chimney and shale diapirs obscure the seismic signal in places. Additionally 

we used seismic data acquired during RMS Charles Darwin expedition 

CD40a in 1987 (Figure 2.1). These data were only available in paper copies 

and line interpretations (Pirmez et al., 1990).  

 

2.3 AREA PHYSIOGRAPHY 

The continental shelf is generally narrow (~2km), with wider sections 

amplified by the sediment discharge of the river mouth (e.g. 33 km in 

Galerazamba region, Figure 2.5c central profile) forming delta lobes (Figure 

2.1). Sediment discharge was therefore directly onto the continental slope, 

as is happening today (Kolla and Buffler, 1984b). Ercilla et al. (2002a) 

characterize the central and eastern portion of the fan dividing the area into 

deformed and underformed zones, with a bulge shape on the basin floor 

towards the north of the Galerazamba region, with the presence of large 

mass transport deposits diminishing the slope angle.  

The shelf area is very smooth; angles vary from 0 to 0.12o. However, a 

distinct step is present at a water depth of 20 m that seems to be related to 

a fault system on the platform, with the slope angle increasing from 0.2 to 1 

until it reaches a low angle sector (20 m deeper). The depth of the step 

coincides with the shelf break for the areas outside the Galerazamba region 
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(Figure 2.5 a and b ).The shelf break on average occurs at 40 m of water 

depth, but increases to 70 m in some areas of the Galerazamba region. The 

continental slope angle (Figure 2.5a) can be divided into an upper slope with 

angles ranging from 2.5 o to 3.5o; a middle slope with values of 1.5 o to 2.5 o, 

and a lower slope or continental rise with angles < 1.5 o. These values 

exclude scarps, channel and canyon walls that locally can reach slope 

angles up to 50o.   

Slope profiles for the western, central and eastern areas show dramatic 

differences (Figure 2.5c) interpreted to reflect differential deformation on the 

fan. The central profile exhibits a concave up morphology with slope angles 

diminished by the presence of MTCs. The western profile is located close to 

the toe thrust deformed area. It exhibits gentle slopes similar to the central 

profile, but with pronounced erosional features. In contrast, the eastern 

profile shows abrupt morphology variation due to the compressional forces 

in the accretionary wedge (step like profile). Here, ridge-confined valleys or 

piggyback basins operate as conduits and basins for sediment transport and 

deposition. The thrust forelimb increases the angle of the slope, leaving a 

marked break separating slope and continental rise. In addition, it is 

important to observe that the eastern section is 300 m deeper (3500 m bsl) 

than the central and possibly the western section (no bathymetry data are 

available for the deep western sector). 

 



 32 

2.4 CHANNEL LEVEE COMPLEXES  

A series of submarine channel levee complexes (CLC) are present on the 

modern sea floor particularly in the central portion of the margin (Figure 2.1). 

Overlapping and compensational relationships allow us to establish the 

depositional order for the complexes (Figure 2.6). Seven major complexes 

have been recognized, each separated by interchannel lows where mass 

transport deposits and unconfined flows were deposited. A summary of the 

most representative channel characteristics is presented in Table 2.1. Figure 

2.7 depicts the thalweg profiles for the different channels using the shelf 

break as a reference point. It is important to notice that the older eastern 

systems are found at deeper water depths and the younger western profiles 

generate gentle slopes at shallow depths, closer to the shelf. Morphology of 

the main systems is summarized in Figure 2.8; the profiles are measured 

every 5km. The closeness of the profiles indicates low slope angles or 

higher sinuosity where the vertical separation (depth axis) does not change 

much in 5 km.  

 

2.4.1 CLC- IV 

CLC-IV is the northernmost complex and is comprised of three main 

channel-levee systems (CLS): CLS IVa, IVb and IVc, (Figure 2.1, 2.9), 

extended up to 120 km from the shelf and into water depths to 3200m bsl,  
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and two younger channels IVd and IVe that eroded segments of the older 

channels. This channel complex is part of the channels first described by 

Kolla and Buffler (1984b) on the Magdalena Fan. The channel levees 

aggraded (up to 150 m) on the seafloor, forming a positive topographic 

structure (Figure 2.9b). The thalweg profile of the channels reveals a very 

rough morphology, except for IVc which exhibits a smooth concave up 

morphology (Figure 2.9a). The two younger channels IVd and IVe overlap 

and cannibalize the system on the upper slope.  

Remnants of CLS IVa occur at 2824 m water depth (length of 30.2 km), with 

much reworked levees and thalwegs (Figure 2.9a). The sinuosity is 

moderate (1.35). The upper and lower section of the system is covered by 

younger channel systems.   

CLS IVb occurs at 2167 m bsl, west of CLS IVa. The morphology of the 

levees has been highly affected by erosive processes (mainly the western 

levee). The measured length of the CLS IVb is 72.4 km. Sinuosity values 

increase down slope, from 1.10 until an avulsion point at 2790 mbsl is 

reached, beyond which the sinuosity is up to 1.49. The thalweg profile is 

very irregular (Figure 2.9a) and with higher slope angles than the CLS IVa.   

CLS IVc is located at 1776 mbsl, west and parallel to CLS IVb. The 

preserved section of CLS is 75.6 km long. It can be divided into two sections 

a straight section (1.03 sinuosity) and a sinuous section (1.48 sinuosity) 

starting at 2780 mbsl. The change in sinuosity coincides with the avulsion 
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point of CLS IVb.  The thalweg profile is very smooth and concave up, and is 

very similar to the CLS IVb, but with higher angles upslope. Profiles normal 

to the axis of CLS IVc exhibit an open ―U‖ shape (Figure 2.8). Present day 

relief of the levees is very smooth and reaches 70m in some areas with an 

average of 40m.  

A younger channel system IVd cuts into the upper slope, eroding a section 

of VIa. This is an abandoned aggradational channel that has been exposed 

to erosional processes which had created flows covering sections of CLS 

IVa (Figure 2.9b). Seismic expression of channels IVd and IVe are shown in 

Figure 2.9c. The first few milliseconds correspond to very continuous 

reflections covering the area and partially filling channels IVe and IVd. 

Figure 2.9b shows more advanced erosional processes that modify the 

upper slope due to transport of sediments down slope through IVd and IVe.   

Channels V-1 and V-2, located down dip from IVc may represent remnants 

of older channels not related with CLC IV, based on the extreme reworking 

of the thalwegs (Figure 2.1 and 2.9a).  

 

2.4.2 CLC III 

CLC III is composed by at least three main channels and four avulsions. 

(Figure 2.1) west of CLC IV. It extends from the upper slope to the lower 

slope for a distance of 57km, and water depth to 3668m. CLS IIIa is the 
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oldest and westernmost channel in the complex. The upper slope section of 

IIIa (32.8 km length)  imaged by the bathymetry, exhibits high sinuosity (1.3) 

and appears to be linked to the CLC III (at 1370 m bsl), but is completely 

buried by the levees of younger channels, as can be observed in the seismic 

profiles (Figure 2.10). The thalweg profile exhibits angles very similar to the 

upper slope section of the complex (Figure 2.10a). The lower-slope section 

of IIIa is not covered by the bathymetric survey.  

 The following conduit in the CLC sequence is IIIb, which was later 

abandoned and replaced by IIIc. CLS IIIb occurs at 2170 mbsl, with two 

eastward migrating avulsion points at 3200 and 2800 mbsl (IIIb2 and IIIb3) 

(Figure 2.1). This part of the system is about 110 m topographically higher 

than the younger eastern channel system (Figure 2.10a). Sinuosity 

increases for IIIb, IIIb2 and IIIb3 at the avulsion point at 2800 m bsl (forming 

IIIb3), with values up to 2.45, coinciding with the increase in sinuosity for 

CLC IV.  

CLS IIIc, described by Estrada et al. (2005a), is the youngest of the 

complex. The sinuosity increases down slope up to 1.85 and the average 

width of the channel is 1930m. An avulsion point is present at 3160 mbsl, 

which resulted in an eastward shift and abandonment of CLS IIc1. The levee 

relief decreases down slope and the channel becomes less entrenched, 

changing from a prominent ―U‖ form to a shallower channel (Figure 2.8). 
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Thalweg profile for this CLS is concave up with some convex areas. The 

higher resolution bathymetry used for this study allowed better definition of 

the avulsion points on the upper slope at 1588 and 1840 m bsl (Figure 

2.10b), which are cutting IIIc and depositing sediments over younger 

conduits west of this channel. This segment, named IIId (19.3 km long) was 

cannibalized by the mass transport complex deposited between the 

interchannel lows (Ercilla et al, 2002a; Estrada et al., 2005b) (Figure 2.9c 

and 2.10c). The thalweg profiles show how the overall system becomes 

deeper towards the east. Figure 10c shows the well developed western 

levee, the filled thalweg of IIId and the migration of the system towards the 

east.  This complex corresponds to Channel I, II and III of Ercilla et 

al.(2002a) and Estrada et al. (2005a). 

 

2.4.3 CLC II  

Towards the west on the fan, the next complex observed is CLC II (Figure 

2.1). This complex is a prominent feature on the lower slope, on the CD40a 

seismic line (Figure 2.6). The upper slope section has been cut and/or 

buried by several younger mass flows and conduits (Figure 2.11a), which 

are covering the original morphology in this area. Thus no morphologic 

measurements could be made in this complex. The height and extension of 

the complex appear to be similar to CLC I on the lower slope 
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(Figure 2.6), but smaller in size updip (Figure 2.11c). A prominent feature is 

the erosional conduit that follows the channel course but becomes diverted 

to the southwest, forming a lobate deposit in the interchannel complex low 

(Figure 2.11a,b). 

 

2.4.4 CLC IIa and CLC IIb 

As indicated in Figures 2.6 and 2.12a, younger deposition occurred to the 

west with CLC IIa and IIb downslope from the western side of the 

Galezamba shelf area. Down-cutting relationships on the seismic sections 

(Figure 2.12b) indicate that CLC IIa at 1700m bsl was deposited first. It 

developed a highly sinuous channel system (sinuosity up to 3.34) for a 

distance of 106.6 km mainly to the west. The middle section diverts towards 

the south and has an average width of 1.1km. Based on seismic 

interpretation, the complex is partially buried by continuous reflectors and 

mass transport deposits generated upslope. The morphology observed on 

the sea floor mimics the topographic highs at the time the channel was 

active (Figure 2.12b). CLC IIb can be recognized upslope at 1284m bsl. It is 

45.8 km long and truncated by younger flows at 2281 mbsl. The width of the 

conduit varies from 2.2 km in the upper slope to 1.3 km in the lowest part of 

the system. CLC IIb is a very low sinuosity conduit when compared with the 

geometry of CLC IIa (Figure 2.12a). The higher sinuosity areas have values 
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of 1.16 and 1.46. Figure 2.12b clearly exhibits the relationship between CLC 

IIa and the younger CLC IIb. CLC IIb thalweg profile exhibits abrupt slope 

changes and some convex up sections (Figure 2.12c). Changes are 

particularly evident at the outer bends of CLC IIa. In comparison of the 

channel profile for these channels, CLC IIb has a much steeper slope than 

ChIIa (Figure 2.12c).  

 

2.4.5 CLC-IIc 

CLC IIc corresponds to the westernmost channel with morphologic 

expression on the seafloor today (Figure 2.1). The complex is recognized at 

the upper extension of the bathymetry survey (827 m bsl), reaching depths 

up to 3056 m bsl, and covering an area of 2600 km2. The upper section of 

the slope is characterized by erosional canyons–channels, up to 2 km wide 

(Figure 2.8), which are controlled by the influence of the deformation front. 

CLS IIc1, IIc2, and IIc3 (Figure 2.12a) are remnants of the initial positions of 

the complex in the lower section of the slope. West of these CLS remnants 

is located CLS IIc4, the most continuous channel in the complex (Figure 

2.12a).  

CLS IIc1 is found at 1995 mbsl. It is 40 km long (preserved segment) and 

1.1 to 0.9 km wide. CLS IIc2 is found at 2408 mbsl. The upper section is 

42.7 km long, and width varies from 0.7 to 0.5 down slope. The lower 
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section is 62 km long and width is 0.7 km on average. Channels IIc1 and 

IIc2 have lower slope angles (Figure 2.13) and higher sinuosity (up to 2.8 

and 3.5 respectively) than IIc3 (Figure 2.12a). The thalweg profile for IIc1 

probably is more affected by the levees of the neighboring channels (IIc3 

and IIc4) (Figure 2.14). CLS IIc2 thalweg profile is concave up with some 

irregularities with an abrupt slope change at 2440m bsl (Figure 2.13).     

CLS IIc3 starts at 1960 m bsl as a fairly straight conduit (Figures 2.12a and 

2.13). Increase in slope angle and sinuosity occur at 2160 m bsl. The 

thalweg profile shows these changes by convex up sections (Figure 2.13).  

A second convex up section is found at 2400 m bsl after which the thalweg 

becomes straight. The upper straight section of CLS IIc3 is parallel to the 

front limb toe of a thrust-fault ridge and is an erosional conduit (Figure 

2.12a, 2.14d). The channel is affected by deformation observed in Figure 

2.14e, where is part of the folded sequences.  

CLS IIc4 is the most sinuous and therefore longest thalweg measured on 

the complex (140 km) (Table 2.2).  The upper section (1300 to 2000 m bsl) 

of IIc4 has characteristics of an erosional channel –canyon with steep walls, 

U shape profile and 1.4 km width on average (Figure 2.8, 2.14 a,b,c). 

Despite the erosional nature of the canyon/channel, sinuosity values are up 

to 1.7(Figure 2.15). The lower section (2000 to 2800 bsl, 60km) channel 

becomes aggradational with development of levees (65m in height from the 

thalweg) (Figure 2.14 d,e,f) and higher sinuosity (up to 4) (Figure 2.15) with 
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several cutoff loops (Figure 2.16). The deeper section of the channel (~3000 

bsl) broadens and appears to have migrated toward the north, abandoning 

the main channel. This CLS is similar to the Pleistocene Borneo channel 

described by Posamentier (2000). The thalweg profile is mainly concave up 

(Figure 2.15a), with some erosional cuts at the lower section and some 

bends of the channel. Around 1700mbsl the profile is convex up, which 

corresponds to the erosional section of the system (Figure 2.15a). High-

amplitude reflections (HARs) are found at the channel thalwegs (Figure 

2.14d). Channel wedges are tilted indicating post-depositional deformation 

(Figure 2.14e). 

CLS IIc5 is a younger avulsion of the system (Figure 2.12a). It is a 32.8 km 

long erosional channel /canyon that cut IIc4 and that is covered by younger 

deposits downslope. It has a ―U‖ shape with steep walls of 100m height and 

approximately 2 km width (Figure 2.8, 2.14a and 2.14b). The conduit 

sinuosity reaches values of 1.14. The thalweg prolife is very steep and 

convex up in the lower section (Figure 2.13). 

 

2.4.6 CLC-I  

CLC I is the youngest levee complex on the modern seafloor based on the 

overlapping relationships on seismic and seafloor morphologies (Figure 2.6, 

2.17). It represents a prominent feature on the slope with levee heights up to 
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120m.  The thalweg profile is concave up with steeper slopes on the bends 

of the channel making the profile irregular (Figure 2.18a). The shape of the 

channel is a ―V‖ form on the upper slope (900 to 1300 mbsl), then broadens 

down slope to a ―U‖ form down to 2100 mbsl were it becomes narrower 

(Figure 2.8). Average width is1.6 km. Seismic profiles indicate a wider 

thalweg for younger stages of channel growth, with the presence of HARs 

(Figure 2.17 c). The overall slope angles decrease down slope, but local 

highs correspond to high sinuosity values (Figure 2.18b). The average 

sinuosity is 1.4 with values up to 3.6. The southwestern overbank of the 

complex exhibits sediment waves (Figure 2.17b).  The azimuth map shows 

a conjugation of wave systems towards the southeast and south probably 

generated by turbiditic flows overtopping the outer bend levees by 

flowstripping (Piper and Normark 1983; Imran et al, 1999; Posamentier, 

2003).  

The northeastern overbank is covered by mass transport deposits that fill 

the interchannel lows (Figure 2.17a).  The levee height reaches up to 175m 

(average values of 120m). This is at least three times higher compared with 

the other levees in the fan. This system shows intrachannel terraces which 

are more common in the upper section of the channel (1000-2000m bsl, 

Figure 2.8). This is the only complex on the fan that is composed of a single 

system. The only possible avulsion point is located close to the edge of the 
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Figure 2.18. A. Thalweg profile for I, overall concave up, but with some local convex 

up sections (e.g. 40km). It is also displaying the profile of the conduits jointing the 

knickpoints in Figure 2.21. B. Slope and sinuosity values for I Thalweg. The overall 

slope tendency is to decrease in angle down slope, with some sections of steeper 

slopes. The sinuosity higher values coincide with these steep segments of the 

channel.  
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survey, although downslope avulsion beyond the area mapped may be 

possible.     

 

2.4.7 Active Magdalena Fan  

In active fan (eastern area) sediments are transported into the slope and 

abyssal plain through a series of canyons that are in communication with the 

Magdalena River mouth. (Canyons U,S,M,D, Figure 2.1, 2.4, 2.19a). The 

Magdalena Canyon is a prominent feature on the slope directly connected 

with the current Magdalena River. The canyon presents a maximum incision 

of 260m, is 2.5 km wide on average, and has a sinuosity index of 1.22. The 

general form is a wide V-shaped canyon with some areas of higher 

confinement (Figure 2.19b). The vertical profile shows more irregularities the 

first 10km up slope and a smoother profile downslope (Figure 2.19c). 

Collapse scours are common on the northeastern wall of the channel. The 

channel extends down slope about 30 km before it reaches a step in the 

slope where it converges with the U and Sabanilla canyons to continue 

down slope (Figure 2.19b). The U canyon is located 10 km seaward of the 

shelf break and is not connected to any present drainage. It is a tributary 

network of small gullies, which develop a channel-like feature at the change 

in slope. It is 1.2 km wide with maximum incision of 80 m. Sabanilla canyon 

is the westernmost canyon. It is a narrower feature (1.4 to 0.6 km wide) with 

120m of maximum incision. The head of the canyon is connected to the 
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shelf break and extends 20 km seaward before it connects with the other 

canyons. The ―V‖ canyon geometry is lost once it reaches the step on the 

slope (Figure 2.19b).  

East of the river mouth a series of slope channels or gullies are 

recognized (Figure 2.19a) (sensu Posamentier et al, 2003) which connect 

down slope to the Magdalena Canyon or a slump feature to the west. Mass 

transport deposits also occur.  Numerous submarine cable breaks in the 

Magdalena River mouth area were reported in the 1950’s (Heezen, 1956a) 

indicating active sediment gravity flows moving through the canyons. 

Detailed description of active deposition on the Magdalena Fan is presented 

in Chapter 3.   

 

2.5 KNICKPOINTS  

A Knickpoint is defined as a steep gradient section between lower 

gradient sections; therefore correspond to a disruption in the equilibrium 

profile, first defined for fluvial systems (Howard et al., 1994). The western 

upper slope (between IIc and IIb) (Figure 2.12a and 2.20) displays a series 

of knickpoints (KP) at areas with a change in slope separated by lower slope 

steps (Figure 2.18a and 2.20). KP -1 is located 38 km downslope from the 

shelf break at 1650 mbsl, where it intersects CLS IIc5.  KP1 is an erosional 

feature 1.1 km wide and at 130 m in height.  Upslope from the knick point it 
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is possible to follow a channel or gully (IIc6) cutting a section of the slope 

covered by unconfined flows, slope angles of 1.7° (Figure 2.18a). IIc6 

(Figure 2.12a) is a fairly young conduit that cut the slope until it encountered 

KP1. The slope profile defines an increase in the slope angles and a convex 

up morphology downslope (Figure 2.18a).  

Downslope of KP1 is a lower slope angle area (1.13°) (Figure 2.18a), down 

to KP2 at 2290 mbsl (at 16 km from KP1) (Figure 2.20). KP2 is 1.2 km wide, 

with 90m height. An important characteristic of this knickpoint is the 

presence of sinuous bends in the area of higher slope angles (1.46°) (Figure 

2.20). KP3 is found at 2720 mbsl (23.4 km from KP2 base), with a height of 

60 m and variable width from 0.4 up to 0.8 m. This is a less entrenched 

feature with a minor slope angle change to 0.85 ° (Figure 2.20). 
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 2.6 MAGDALENA RIVER DELTA PHASES – SUBMARINE FAN 

MIGRATION  

The seafloor morphology and the apparent migration of the river course 

through time confirm a close relationship between the Magdalena River and 

the fan. Sedimentation rates increased during the last 2-4 Ma in many 

continental margins (Hay et al, 1988; Pelzhen et al, 2001) including the 

offshore Caribbean sector (Bordine, 1974; Duque-Caro, 1984). The 

Magdalena Fan is mainly fed by the sediments transported in the 

Magdalena River load, therefore the sediment depocenters shift laterally as 

the source of sediments and/or their feeder channels change course with 

time. In this paper the nomenclature proposed by Pirmez et al. (1990) was 

used which described the present day sea floor expression of the channel 

levee complexes with the associated river/delta phases (Table 2.2). Beside 

the evidence found in the outcropping deposits onshore, the shelf 

morphology reveals the past locations of the river mouth. The delta formed 

by the river creates a series of lobes widening the shelf, such as at the 

Galerazamba area (Figure 2.1).  

At least eight different positions of the river mouth have been recognized for 

the Plio-Pleistocene time interval (Table 2.2, Figure 2.3). Late Miocene 

through Pliocene phases (Sucre & Plato and Phase E) are buried in the 

slope area, but are the most prominent land features. The area south 
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of the present Magdalena River, comprised of marginal shallow marine 

sediments (Figure 2.3) (Bordine, 1974). 

   

2.6.1 Phase Ea 

The Early Pleistocene river mouth (Phase Ea) was located near Puerto 

Colombia, west of the present river location. It generated deposits that 

correspond to channel levee systems (CLC) IV and V. It is the oldest phase 

which has an apparent expression on the seafloor morphology (Figure 

2.21a).   

 

2.6.2 Phase Eb  

During the middle Pleistocene (Phase Eb) the river mouth migrated to the 

southwest, towards the Galerazamba region, generating CLC III (Figure 

2.21a).  

Further westward, migration of the river mouth resulted in CLC II deposits. It 

is not possible with the available information to define whether these 

deposits correspond to a delta phase before the main shift to the southwest 

(D?) or the early stage of phase C (Before deposition of CLC IIa).  
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2.6.3 Phase D 

Phase D is the product of continued migration of the river towards the south 

to the Canal del Dique. Mid Pleistocene sediments were deposited in the 

thrust belt area (Figure 2.21b), which corresponds to the southernmost 

position reached by the river. This phase generated deposits that were 

progressively deformed by the growth of the deformation front. It is possible 

that the nearby Sinú River delta exerted strong influence on the deposits 

generated at this phase. No CLS are recognized at the sea floor in this area 

in part due to the high input of recent sediments by the Sinú River (Pujos & 

Javelaud, 1991). This major shift is supported not only by the remnants of a 

paleo channel onshore, but also by establishment of the La Popa formation 

coraline limestone, which would require low influx of terrigenous sediments 

in the northern coastal area (Bordine, 1974; Reyes et al., 2001).   

 

2.6.4 Phase C 

During the Late Pleistocene, the river mouth switched north of Cartagena to 

develop Phase C, depositing fans that are overlapping and generating CLC 

IIa, IIb, IIc and I, from older to younger, with CLC I being the most recent on 

the entire submarine fan (Figure 2.21c). This area of the fan presents a 

dynamic interaction between deformation and sedimentation, which can be 

evidenced by the abrupt changes of orientation and sinuosity of the 
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channels and thalweg profiles.  In CLC IIc4 highly sinuous segments and a 

series of cutoff loops are present where the slope has higher angles (Figure 

2.16). The channel accommodated the change in slope by bending the 

course of the channel, trying to maintain the equilibrium profile (Pirmez et 

al., 2000; Deptuck et al.,2007). CLC-I presents higher slope angles at the 

bends of the channel and the sinuosity morphology is similar to the younger 

erosional cuts north of the channel at the upper slope (Figure 2.12, 2.16). 

 

2.6.5 Phase B  

Due to late stages of deformation during the late Pleistocene, the river 

course was modified as a response of the Atlantico-Turbaco Hills Uplift, 

causing a major depositional shift towards the east and northeast (Hoover 

and Bebout, 1985) (Figure 2.21d). This shift generated phase B, depositing 

sediments in the Cienaga de Santa Marta area, and creating an expansion 

of the continental shelf. The Sierra Nevada de Santa Marta drainage system 

should have been an important source of sediments for this area as well. A 

major decrease in carbonate concentration in the Colombian basin at 6000 

year b,p. (Prell, 1978), may be related to the shift of the Magdalena River 

towards the east during this time. 
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2.6.6 Phase A 

During the Holocene phase A the river began to migrate westward once 

again (Figure 2.21d). During the last century the river has switched positions 

initially to the Boca Vieja and Sabanilla canyon, then to its present position 

(Heezen, 1956; Bordine, 1974) generating a delta lobes in the shelf area 

(Figure 2.1). This late Pleistocene and Holocene Magdalena River to the 

west did not build large leveed channels. Deposition was dominated by 

slumps/ debris-flow fill into the slope valleys in the thrust-dominated region 

and overflowing to the abyssal plain. Several canyons are driving the 

present day sediment load down slope (Heezen, 1956; Hoover and Bebout, 

1985). With almost no development of a shelf, the sediment load is 

transported down slope through canyons and gullies and emplaced as 

gravity flow deposits filling the basins on the submarine fold and thrust belt. 

Additional sediments were remobilized and deposited through this canyon 

by the longshore current that fluctuates NE-SW and SW-NE  under the 

effect of the intertropical convergence zone (ITCZ) ( Pujos et al, 1986) that 

seems to have been established with the closing of the Panama Isthmus 

2.4Ma.   
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2.7 DISCUSSION  

2.7.1 Degradation Processes on the Channel Systems 

After abandonment of the river delta, submarine fan channel systems are 

exposed to degradational processes such as: 1) erosion of the CLS by mass 

transport deposits; 2) Collapse of channel walls and levees; 3) modification 

of levee morphology.  

Erosion of a CLS by mass transport is a common process on the fan. 

Several MTCs are generated on the upper slope, which erode the 

antecedent deposits while traveling down the slope and finally filling 

interchannel lows. Some of these events in the eastern fan (CLC III and IV) 

were identified by Ercilla et al. (2002a) and Estrada (2005) (Figure 2.1 and 

2.4). The western fan section (CLC II, IIa, IIb, IIc and I) exhibits MTCs at the 

interchannel lows as well, but at a smaller scale (Figure 2.4). Collapse of the 

channel walls and levees is an important process in some of the systems. 

The channel displayed on Figure 2.22a depicts collapse scarps at both 

margins. Figure 2.22b indicates collapse of the CLC I levee walls, such as to 

form a canyon downslope with parallel and similar sinuosity of CLC I.   
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Modification of original levee morphology occurred in the older systems at 

the eastern part of the fan (Figure 2.8). Older channels are reworked by 

opportunistic mass transport flows traveling down the slope, taking 

advantage of the abandoned channel course and modifying the pre-existing 

morphology.  The height of the levees is very variable and the thalweg 

profiles are very rough, as shown by CLC II (Figure 2.8). Seismic profiles 

(Figure 2.6a and 2.11c) exhibit well developed levees similar to CLC III or 

CLC I, with lateral migration of the thalweg (probably high sinuosity) at 

depth. But the sea floor morphology is very different, characterized by low 

sinuosity, remnants of levees, and loss of channel character upslope (Figure 

2.11a).  

A similar process is observed in CLC IIb. The geometries of the channel 

bends seem to be modified by younger flows that were channelized through 

the abandoned course (Figures 2.12a, 2.b and 2.c). As a result of these 

changes in the morphology, the channel could increase in dimension or 

straighten leading to erroneous assumptions about the size and capacity of 

the flows if evaluating channels in the subsurface. On the lower slope, 

modification of the morphologies could be associated with reworking of the 

channels by ocean bottom currents (Ercilla et al., 2002b).  
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2.7.2 Influence of Tectonics on the Magdalena Deepwater Fan  

2.7.2.1 Sedimentation vs. Structural Setting 

Slope angle is one of the factors that regulates the channel morphology, as 

well as channel maturity and variation of flow characteristics such as current 

energy, flow volume, and sediment load (Babonneau et al., 2002). Turbiditic 

systems in active tectonic settings evolve as the slope angle  is continuously 

modified by major compressional events. Consequently, sedimentation style 

is modified as well. Compressional structures orthogonal to channels seem 

to cause large changes in the channel profiles as has been observed in the 

thrust front of the Barbados accretionary prism (Huyghe et al, 2004) and the 

growth fold in the western Niger delta (Heiniö and Davies, 2007).  

The western compressional belt structures are almost orthogonal to the CLS 

axis (Figure 2.23a). Interaction of the deformation and the channels seems 

to be present during different phases of evolution of the fan. Some of the 

evidence can be identified directly by changes in sinuosity and slope angle 

of the channel systems (e.g. Figures 2.15 and 2.16) or on the adjacent slope 

by formation of knickpoints and steps (Figure 2.12, 2.16 and 2.20).  

Some of the thrust imbricates and fold geometries with expression on the 

sea floor extend into the slope, underlying and deforming the fan sediments 

(Figure 2.23a and 2.24a). Some of these structures are actively 
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growing, affecting the morphology of the sea floor by generating steeper 

slope sections (Figure 2.20, 2.22 and 2.24a). Forced migrations of the 

complete CLC IIc to the east as the deformation front was advancing are 

evidences of active deformation in the southwestern area during the 

Pleistocene (Figure 2.12a). The channel complex modified its course by 

increased sinuosity, becoming erosional or abandoning the course at 

avulsion points. Abandonment of CLS IIc2 seems to be related with the 

growth of the fold at the toe of the thrust front. CLS IIc3 is controlled by the 

thrust front, becoming erosional and straight in some segments. In addition, 

CLS IIc 2 and IIc3 present convex up thalweg sections, which may indicate 

post-abandonment deformation (90 km, Figure 2.13). The IIc4 thalweg does 

not present convex up morphology for the corresponding section on the 

slope; conversely it exhibits several cutoff loops (Figure 2.16). This suggests 

that deformation must have occurred concurrently or immediately following 

channel systems IIc1-3, and must have slowed or ceased once channel IIc4 

began to form.  Nonetheless, IIc4 thalweg is a convex up section at 50km 

indicating post-abandonment deformation, as it can also be observed on 

Figure 14 c, e, where CLS IIc3 and IIc4 are part of the folded sequence.  

Besides CLC IIc, other complexes in the fan show convex up thalwegs (CLC 

IIb, CLC I ), which may be caused by :1) channel abandonment before 

reaching the equilibrium profile or 2) deformation of the channel after 

abandonment (Figure 2.7).  Based on the observations and high sinuosity of 
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the systems, it is more likely that the channels have evolved over time and 

have reached some level of equilibrium with the pre-existing valley, which 

suggest the geometry of the thalwegs (convex up) are related with  post-

abandoment deformation.   

The fan channel thalweg profiles in the northeast upper slope (upper 100 

km). are considerably deeper (~200 m) than those in the upper slope on the 

southwestern side of the fan (Figure 2.7). Sinuosity values are considerably 

lower for the upper slope in the northeastern area.  In addition, CLC III and 

IV channel thalwegs exhibit sections with convex up profiles, indicating 

disequilibrium channels or post-abandonment deformation. This change in 

the basin depth could be due to: 1) lower sediment discharges at the time of 

earlier delta-fan building, 2) rapid migration of the river mouth toward the 

west (which occurred in the latest Pleistocene/Holocene), or 3) higher 

deformation in the western fan, uplifting the continental slope.   

There are no age constrains for each system to properly support variations 

in the sedimentation rates during the evolution of the submarine fan, besides 

the relative ages provided by the correlations with the migration of the river 

on land. However, the lobate geometry of the whole fan and dimensions of 

the channel systems (depth and width) are similar throughout the fan, which 

may indicate that sediment flows were steady through time and generated 

systems with similar dimensions. The rapid westward migration of the river 

after establishment of the Magdalena drainage system in the basin, and 
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relative abundance of recent channel systems in the west may explain the 

change in depths and sediment accumulation on the western and eastern 

sides of the fan. 

 Nonetheless, it is important to take into account the active deformation of 

the upper slope in the southwestern deformed belt that was taking place 

during deposition of the western fan. Increments of sinuosity, forced 

migration of the channel systems and convex up thalweg profiles all indicate 

that deformation in the west was active and extended on the western fan 

upper slope. Conversely, the upper slope at the eastern fan (CLC III and IV) 

has lower sinuosity channels than counterparts on the western side. 

Deformation of the northeastern thrust belt seems not to have affected CLC 

IV and CLC III at the time of deposition (Figure 2.23b, 2.24b). There is no 

expression of faulting or deformation at the seafloor or at deeper levels. The 

northeastern deformation front was active before the generation of CLC IV. 

This is clearly evidenced by the presence of a channel system (probably 

older than CLC IV) that could not keep up with deformation leaving a 

beheaded hanging channel, and creating a new course orthogonal to the 

deformation front (Figure 2.22a). The deformation continued as is evidenced 

by the tilted position of the beheaded channel, while the old channel course 

continues to focus sediments down slope generating a new pathway.  The 

continuation of deformation of the northeastern thrust belt restricted to few 

kilometers downslope of the shelf break, associated with the extension of 
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the older thrust imbricates towards the shelf. Multiple erosional features at 

the upper slope in this area (Figure 2.23b), uplift of the shelf and very steep 

angles for the upper slope thalweg on CLC III and IV indicate uplift and 

active deformation of this area.    

In addition to the compressional tectonics it is important to mention that 

normal faulting seems to also have played an important role in the 

generation of steep angles on the slope. Slope overburden by the high 

sedimentation rates may cause normal faults generating steep slopes 

(Figures 2.24a and b),  Normal faulting is common in the progradational 

sequences of the deltas, and have been mentioned as mechanisms to 

equilibrate the slope in the area (Flinch et al., 2003). Also, normal faulting 

associated with the growth of the thrust faults (Figure 2.24a) 

 

2.7.2.2 Sinuosity and Slope Angle 

Despite complex sea floor morphology, many submarine channels form 

concave-up profiles, constantly adjusting their profiles towards equilibrium 

(Pirmez et al., 2000). This is achieved by erosional and depositional 

processes of turbidity currents, including changes in channel sinuosity, 

channel incision/aggradation and development of distributary channels and 

aggradational sheets (Pirmez et al., 2000; Kneller,2003; Adeogba et al., 

2005). A good example of this adjustment is shown in Figure 2.14, where 
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the sinuous channel thalweg exhibits a smooth profile, while the adjacent 

slope has steeper angles. The thalweg profiles provide information about the 

state of equilibrium during the formation of the channel, assuming the 

channels are free to erode/deposit without impediment (such as by 

abnormally lithified layers underneath), but once abandoned, deformation 

and erosional processes can modify the profile. Mayall et al. (2006) discuss 

at least four processes that influence the sinuosity of turbidite channels: 

initial erosive base, lateral stacking, lateral accretion and influence of pre-

existing sea-floor topography. Even though lateral stacking and lateral 

accretion are present in the Magdalena Fan complexes, there is a direct 

indication of the relationship between sea-floor topography and sinuosity.  

The variation of angle with distance shows in general a decreasing trend 

down slope, with local increases/decreases in angle that mark departures 

from the general trend (Figure 2.25a). The systems better fitting a concave 

curve are IIIc and IIIc1. The younger systems I and IIc4, exhibit a more 

variable profile with some extreme high values. It is important to note that 

angle values plotted represent today’s slope, and are affected by post 

deposition modifications of the channel systems. This may represent an 

excess in slope angle for some of the values.  The down slope distribution of 

sinuosity (Figure 2.25b) does not show a distinct trend, the middle slope (60-
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Figure 2.25. A. Slope angle changes through the slope measured for each channel 

system. All distances are referenced to the shelf break. The dashed line indicates a 

decreasing the gradient with distance (basinward), but there are many points that are 

showing higher vales from the tendency line. The out of trend points (squared data) are 

referenced in Figure 2.26. B. Sinuosity changes through the slope. There is a big 

variability of sinuosity through the slope.  
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120 km) exhibits larger variations. A comparison graph between slope angle 

and sinuosity for the entire fan is shown in Figure 2.26. Sinuosity on the 

Magdalena Fan (Figure 2.25b and 2.26) reaches high values up to 4, which 

is higher than previously reported for the Magdalena and other fans (Table 

2.3). In addition, IIc4’s high sinuosity segment (Figure 2.16) exhibits several 

cutoff bends, which as mentioned previously corresponds to a steep region 

of the slope. For the steeper angles (> ~2 degrees) the sinuosity is generally 

very low, sinuosity reaches a maximum value where valley angles reduce to 

about ~1 degree. For angles <1 degree, sinuosity generally decreases with 

slope angle (Figure 2.25, cf. Clark et al., 1992). Anomalous values are 

identified with very high sinuosity for any slope angle. Those values were 

identified in Figure 2.26a, as points corresponding to areas with slope 

angles outside of the general trend. These values correspond mainly to the 

IIc4 channel system, indicating that high sinuosity values correspond to 

stepper sectors in the slope, which are outside of the general profile for the 

fan.  

In the western Magdalena Fan, two processes can be identified to 

accommodate the increase in slope angle by the continuous deformation in 

the area: 1) sinuosity increase in the channels and 2) generation of 

knickpoints on the slope.   
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2.7.2.3 Knickpoints 

Another mechanism to reach the equilibrium profile is the formation of 

knickpoints, a well known process in fluvial channels which has been 

gaining influence in deepwater systems architecture in regions with evolving 

topography (Pirmez et al.2000; Mitchell, 2006; Heiniö and Davies, 2007). In 

fluvial systems knickpoints are defined as a steep slope section between 

lower angle sections along the river course, resulting from changes in base 

level, sediment flux, bedrock resistance and/or tectonic deformation 

(Howard et al,1994). Knickpoints may migrate upstream, leaving cut 

terraces or they may be smoothed out by slope replacement (Gardner, 

1983; Howard et al, 1994).  

Increases in incision and flow velocity occur as a result of increase of slope 

angle (Pirmez et al., 2000; Kneller, 2003). Channel width decreases toward 

the knickpoint lip, defined as the break in slope where the channel is 

oversteepened (Gardner, 1983).  In areas of low slope angles (base of the 

knickpoint), velocity reduction, flow spreading and deposition occur (Pirmez 

et al, 2000; Prather, 2003).  

A knickpoint begins as a small scour that grows at the inflection point of the 

slope (edge of the step). Erosion is enhanced at the knickpoint lip by an 

increase of the slope and at the knickpoint toe by increase in turbulence in 

the steeper part of the slope, (hydraulic jumps; Komar,1971). Heiniö and 

Davies (2007) proposed that ―knickpoints grow into larger features by 
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positive feedback, in which steeper slope enhances erosion and this newly 

formed erosional scour promotes further erosion‖. Once the knickpoint is 

established, it may migrate upstream, creating incised conduits in the low 

slope areas (Figure 2.20). As the turbidity flows continue through the newly 

formed conduit, they tend toward an equilibrium profile by increasing erosion 

and even generating some bends in the conduit.  It has been proposed that 

enhanced deposition will occur downdip of the knickpoint where slope 

decreases (e.g. Pirmez et al., 2000), perhaps even locally forming 

unconfined lobes (such as the perched slope fills of Beaubouef and 

Friedmann, 2000) at the lower angle steps of the slope by slope adjusted 

deceleration of the flows (Heiniö and Davies, 2007). Preservation of these 

deposits depends upon the growth geometry of the folds and the 

accommodation space created on the slope.  

West of CLC IIc, four main steps in the slope are connected by fairly narrow 

and well developed knickpoints (section 2.5, Figure 2.20). They are 

connecting areas of unconfined deposits (lobes) (Figure 2.27a and b), 

truncating CLC IIc5 and filling low angle sections of the slope (Figure 2.12a, 

2.20, 2.27a and b).  KP1 is located down slope of the thrust fold (Figure 2.20 

and 2.23a). KP2 is located at the slope step where CLS IIc4 increases its 

sinuosity, suggesting KP2 was established after deposition of IIc (Figure 

2.16). KP3 is very incipient but is aligned with a strait segment of CLS IIc4, 

followed by a change in direction of the channel (Figure 20, 23A). The 
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knickpoints are interpreted to have formed as a result of uplift caused by 

continuous deformation of the thrust belt (growth of folds). The location of 

the knickpoints down slope of the thrust and fold axes, associated with 

steeper angles of the nearby slope, suggests a structural control of their 

formation. The down slope knickpoint profile for IIc6 depicts clearly the slope 

changes (Figure 2.18A). 

Alternatively, the knickpoint system could have been initiated by IIc5 

(youngest conduit of CLC IIc) and later abandoned and fed by down slope 

flows traveling through IIc6. However, both interpretations agree on the 

formation of knickpoints as connectors that allow the sediment distribution 

throughout the slope.  

 

2.7.3 Initiation of Channel Levee Systems 

Major deepwater fans are characterized by the presence of a master 

canyon(s) feeding the continental slope, such as the Amazon fan, 

Mississippi fan, Zaire fan, and Indus fan (Damuth and Kumar, 1975; Kastens 

and Shor, 1985; McHargue and Webb, 1986; Droz et al, 1996; Normark and 

Carlson, 2003). In the presence of a constant source of sediments, what 

defines the initiation of a channel levee system in the Magdalena Fan 

without the presence of a confined canyon?. 
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The initiation of a deepwater channel system has been linked to gullies, 

which by progressive down slope enlargement by erosional processes 

evolve into channels. Examples of the Fuji and Einstein systems in the 

eastern Gulf of Mexico have been reported by Faultkenberry et al. (2005) 

and Sylvester et al. (submitted). Megaflutes in the Ross Formation have 

been described as examples of possible features to initiate channel levee 

systems, recording sediment bypass on an intraslope basin (Elliot, 2000).  

Several experimental efforts have been completed to understand the 

processes involved in the generation of channel levee systems (e.g. Métivier 

et al., 2005; Yu et al., 2006) but still there are no dynamic models to explain 

the processes involved.  

A potential answer to the initiation of channels in this tectonically active 

setting may be related to continuous deformation on the slope. The flows 

start to erode the slope at the knickpoints, which migrate and link to other 

knickpoints, thus creating the initial course of a channel (Figure 2.28a).  

From the sequence of knickpoints described previously, it is important to 

notice that the formation of the knickpoints is possible on low slopes (~0.08) 

as is observed in KP3 (Figure 2.18A and 2.20). In addition, some of the CLS 

bases are characterized by flat continuous reflections and basal channel 

scours not deeply incised when observed on seismic profiles. A more 

complete data set that allows us to fully understand the spatial and temporal 

relationships will be needed to validate this hypothesis. However, the 
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erosive nature and migration of knickpoints make it difficult to preserve them 

in the geologic record (Heiniö and Davies, 2007). To evaluate the influence 

of knickpoints on the formation of channels, one may need to study features 

associated with the presence of ―arrested‖ knickpoints in the geologic 

record, such as erosional notches on slope deposits at the base of and 

adjacent to channel systems.  

Continuous modification of the slope by active deformation will keep the 

slope above grade (Prather, 2003) and the channel systems out of the 

equilibrium profile, inducing mechanisms such as migration, avulsion, 

knickpoint formation or abandonment of the system, among others. 

Migration of knickpoints and subsequent establishment of channel systems 

have been used to explain the interaction between the growth of mobile 

shale ridges and turbidite deposition in stepped slope profiles, where at 

early stages, the low angle section of the slope is healed by unconfined 

deposits (lobes) (Figure 2.27a and b) with subsequent migration of 

knickpoints bypassing the previously healed section of the slope (e.g., 

O’Byrne et al., 2008). The Early Miocene shale sequence may play an 

important role on the deformation of the slope on the Magdalena Fan. This 

sequence is the décollement surface for the thrust imbricates and the source 

for the mud diapirism onshore and offshore (Duque-Caro, 1984; Vernette et 

al., 1992) and seems to extend across the fan area. Even though the 

deformation seems to be masked by the active sedimentation, the presence 
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of highly sinuous bends and knickpoint alignment on the slope and highly 

disrupted reflections may indicate continuous deformation on the Magdalena 

Fan area. The interaction between deformation and sedimentation (e.g. IIc4) 

(Figure 2.24) is in part obscured and suppressed by the late Pleistocene 

dump of sediment shown at the eastern fan (CLC III and IV).   

Interchannel lows also may play an important role in the establishment of 

new CLS (Figure 2.28b). Commonly, unconfined flows and mass transport 

deposits fill the interchannel lows (Figure 2.4, 2.9, 2.10, 2.11 and 2.27a). 

Older levees serve as barriers to younger flows, increase the sediment 

accumulation in these areas, and facilitate the entrenchment and later 

connection of knickpoints (by healing the slope) (Figure 2.27a). In areas 

where changes in slope angles are the product of deformation, the initiation 

of channel-levee systems could be explain by the knickpoint formation 

model and subsequent development of channels, based on the tendency of 

slope systems to obtain a graded slope (Prather, 2003).   

 

2.8 SIGNIFICANCE FOR HYDROCARBON EXPLORATION 

Deepwater deposits are an important play for the oil and gas industry 

(Weimer and Slatt, 2007). This study contains important findings that can 

impact hydrocarbon exploration in this and other tectonically active basins. 

Facies distribution and preservation of deposits along the slope will depend 
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upon the interaction of slope deformation and deepwater sedimentation. 

Changes in slope control not only the CLC morphology but also the 

distribution of coarser sediments. Preservation of deposits such as the 

upstream lobes at low angle steps on the slope could be of importance 

(Adeogba et al., 2005; Heiniö and Davis, 2007; O’Byrne et al., 2008), as it is 

in the western Niger delta. Morphological parameters of the channels could 

be used as an analog for reservoir characterization for similar basins.   

 

2.9 CONCLUSIONS  

-The sea-floor morphology of the Magdalena deepwater fan is characterized 

by the presence of seven major channel levee complexes separated by 

interchannel-lows where mass transport deposits and unconfined flows are 

deposited. The older CLCs are labeled IV followed by III , II, IIa, IIb, IIc and I.  

- Evolution of the fan is closely related to the Magdalena delta migration and 

the tectonic processes that occurred in northern Colombia during the 

Miocene to Present. The Plio-Pleistocene history of the Magdalena River is 

represented by at least eight different phases, beginning at the north (west 

of the present river location) (CLC IV- Early Pleistocene). Then, the river 

started migrating towards the south (CLCs III and II). The southernmost 

location reaches the Canal del Dique (Phase D) during the middle 

Pleistocene. Later, the river shifted north of Cartagena (Phase C), forming 
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CLC IIa, IIb, IIc and I (youngest CLC of the entire fan). A major northern shift 

of the river due to the Atlantico-Turbaco uplift generated phase B which 

focused sediments towards the Cienaga de Santa Marta. The establishment 

of the present day delta fan is very recent, switching positions between Boca 

Vieja and Sabanilla Canyon before stabilizing at its present position. The fan 

is active today with deposition of turbidite flows and mass transport deposits 

in piggyback basins formed as a result of deformation of the accretionary 

wedge. The shifts are corroborated by a decrease in carbonate content of 

the Colombia basin (6000 B.P.), growth of coralline limestone at the coastal 

margin (Barranquilla) and remnants of old river courses. 

-In the older complexes, thalweg and levee morphology have been affected 

by degradational processes after the abandonment of each system. They 

increase channel width and the levees walls are modified by erosional 

processes, and are ultimately buried. Degradation of the channel should be 

considered when evaluating the dimensions of ancient deposits in order to 

obtain a better estimation of the size of the expected deposits. Degradation 

processes associated with mass-transport deposits also could be important 

elements of sealing and stratigraphic trapping of potential reservoirs in the 

underlying channel-levee deposits. 

-Several CLS in the fan show convex up thalwegs, indicating: 1) the channel 

was abandoned before reaching its equilibrium profile or 2) deformation of 

the channel occurred after abandonment.    
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- The CLS’s in the Magdalena Fan are highly sinuous. Higher values of 

sinuosity (up to 4) correspond of areas of the slope with high angles (out of 

the regional slope trend), which suggest that sinuosity is controlled by 

changes in the slope.  

-There is evidence of multiple phases of deformation on the Magdalena Fan 

created by the deformation of the larger accretionary wedge. Decrease in 

bathymetric depths on the thalweg profiles for the western side seems to 

support the hypothesis of higher deformation (compression) and uplift in this 

area. Alignment of knickpoints, channel bends, and step profiles in the 

western side are a clear indication of the deformation that is active during 

and post formation of the channel facies. The presence of overpressured 

shales seems to play an important role in deformation of the fan.  

- A sequence of knickpoints seems to connect deposition of sediments from 

the shelf break downslope through a series of steps, culminating in lobate 

unconfined deposits. Upstream knickpoint migration in slope steps as a 

response to deformation may represent a key process to explain the 

initiation of deepwater channel systems in the Magdalena Fan, but further 

research needs to be done to establish its importance.  In addition, the 

interchannel lows could facilitate the rapid confinement of the slope to 

initiate the knickpoint migration.    

- The distribution of sediments in the Magdalena deepwater fan is highly 

controlled by the actively deforming slope, which will serve as an analog for 
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basins where slope deformation was active during deposition of deepwater 

sediments. 
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CHAPTER 3 

ACTIVE SEDIMENTATION AND SUBMARINE CABLE BREAKS ON THE 

MAGDALENA DEEPWATER FAN, COLOMBIA:  LINKAGES WITH 

SHALLOW WATER PROCESSES AS STARTING POINT FOR SEDIMENT 

GRAVITY FLOWS.  

 

ABSTRACT  

The active Magdalena submarine fan is located north of the Magdalena 

River mouth, offshore Colombia, Caribbean Sea. Several cable breaks 

recorded the timing of sediment gravity flows between 1930 and 1956. 

Accompanying some of these events were reported ruptures of jetties at the 

river mouth. Multibeam bathymetry surveys provide the link between cable 

breaks and upper slope submarine canyons confined gravity flows.  

The active fan occurs at the northeastern deformed thrust belt, which is part 

of the accretionary wedge generated by the subduction of the Caribbean 

plate under the South American plate. Four piggyback basins between the 

fault ridges accommodate sediments, generating an above grade slope. 

Three canyons (Sabanilla, Magdalena and Unnamed) and gullies east of the 

river mouth are the main pathways for the gravity flows. The piggyback 

basins are connected by channels, which allowed the transport of sediments 

to the abyssal plain. In addition, the Aguja Canyon, northeast of the active 
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fan, also experienced sediment gravity flows, which have caused submarine 

cable ruptures. 

Integration of high resolution bathymetry, 2D seismic lines, GLORIA side 

scan images and piston cores allowed for the identification of sedimentation 

pathways and characterization of individual flow events from source to sink. 

Three main sediment transport pathways were defined: 1) Western-directed 

flows through the Sabanilla, Unnamed and Magdalena canyons 2) Eastern-

directed flows through the Magdalena Canyon and eastern gullies and 3) 

Aguja Canyon. High acoustic-reflectivity lobes at the toe of the PBB and at 

the abyssal plain detected in the GLORIA imagery, and turbidite deposits at 

the top of three piston cores corroborate the recent activity of the pathways. 

Several processes may have triggered the gravity flows: 1) High flood 

stages of the river, 2) coastal erosion, 3) longshore drift, 4) hyperpycnal 

flows and 5) river mouth instability. Mass transport deposits seem to play an 

important role in the distribution of the flows into the piggyback basins. The 

findings of the study provide unprecedented detail in the characterization of 

active turbidity current activity on an active continental margin, with 

hydrocarbon exploration and production implications for deepwater 

depositional models in structurally confined basins and connected tortuous 

corridors.  
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3.1 INTRODUCTION  

The modern seafloor morphology of offshore northwestern Colombia is 

controlled by a series of channel-levee systems and mass transport 

complexes, formed by frequent transport and deposition of sediments by the 

Magdalena River, the main drainage system in Colombia (Figure 3.3.1). Like 

the modern Zaire Fan (Babonneau et al., 2002), offshore Angola and some 

California fans, the Magdalena deepwater fan is one of the few presently 

active fan systems, where there is documented activity of frequent sediment 

gravity flows in the last century.  

Previous studies (Kolla and Buffler, 1984; Ercilla et al., 2002; Estrada et al., 

2005a, this work (Chapter 2) have described some of the characteristics of 

the channel levee complexes and large mass transport complexes found 

within the Magdalena submarine fan. The acquisition of new bathymetry 

data sets provides a link among previous observations of active sediment 

transport on the fan, submarine cable breaks (Heezen, 1956), and core 

descriptions (Muñoz, 1966).  

Numerous submarine cable breaks in the Magdalena Fan area were 

reported in the 1950’s (Figure 3.2). Heezen (1955) wrote ―Destruction and 
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sudden lowering of the Magdalena River mouth bar was followed by the 

breakage of a submarine cable which crosses the Magdalena submarine 

canyon in about 700 fathoms (1280 m), about 15 miles seaward of the river 

mouth. In 25 years this cable broke 14 times in the vicinity of canyon‖.  The 

location of the cable breaks plotted over the new multibeam bathymetry map 

(Figure 3.2) shows that they correspond to areas where active canyons and 

mass transport complexes (MTCs) are found. 

In this paper we present a detailed description of the active turbidite flow 

pathways that are capable of transporting sediments to the abyssal plain, 

based on multibeam bathymetry, GLORIA side scan images and core 

descriptions.  Our observations are then discussed in the context of the 

processes that may be involved as trigger of the different sediment flows.  

Understanding of the sediment distribution and the processes involved in the 

generation of turbidite flows in active submarine fans will add to the 

knowledge of deepwater depositional systems. In addition, it will provide a 

more complete scenario in terms of the shallow hazard assessments and 

instability areas for submarine infrastructure in the area.   
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3.1.1 Regional Setting  

The Magdalena submarine fan, located in the Caribbean Sea, offshore 

Colombia (Figures 3.1 and 3.3), is an extensive bathymetric feature, part of 

the accretionary wedge complex formed by the collision of the Caribbean –

South American plates (Duque-Caro, 1979; Kolla and Buffler, 1984; Breen, 

1989). It covers an area of about 68,000 km2, a volume of 180,000 km3 and 

it extends to over 4,000m of water depth (Wetzel, 1993; Reading and 

Richards, 1994). The deepwater fan is fed by the Magdalena River, a major 

fluvial system that drains most of the Colombian Andes. The river is 

classified within the top 10 rivers in the world in terms of sediment load (150 

MT/yr) (Restrepo and Syvitski, 2006). It discharges the sediment load into 

the Caribbean Sea, creating a 1,690 km2 wave-dominated delta (Coleman, 

1981; Restrepo and Lopez, 2007). Sediments are deposited offshore 

through submarine canyons with steep slopes (~3o). The continental slope is 

characterized by the presence of compressional tectonic ridges, gas 

hydrates, mud diapirs and slumps (Shepard, 1973; Shipley, 1979; Kolla and 

Buffler, 1984; Vernette et al., 1992). In this paper we present new 

bathymetric data that illustrate that the submarine canyons near the mouth 

of the river are the site of active sediment gravity flows that were responsible 

for multiple submarine cable breaks in the last century  (Heezen, 1956) 

(Figure 3.2).  
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Magdalena Fan sedimentation was initiated during the middle Miocene, 

which was a time of low deformation rates on the margin (Kolla and Butter, 

1984). The fan has been subdivided into upper, middle and lower parts, 

based on sub-bottom profiles and piston core examination (Kolla and Butter, 

1984). Complex sea floor topography reveals several periods of incision and 

channel activity (Figure 3.3), reflecting uplift in the sediment source region, 

changes in sea level, and temporal and spatial shifts of deltas that began 

with the middle Pliocene Andean orogeny (Kolla and Butter, 1984; this work, 

Chapter 2).  

The Magdalena Fan depocenter has shifted through time due to changes in 

location of the main Magdalena fluvial channel, so that several coalescing 

submarine fans were deposited (Hoover and Bebout, 1985; Pirmez et al., 

1990; this work, Chapter 2). The eastern portion of the fan contains the 

oldest channel-levee systems (CLS) on the sea floor; it has been the focal 

point of several studies (Kolla and Buttler, 1984; Ercilla et al., 2002; Estrada 

et al., 2005a). The western fan contains younger CLS, which were 

influenced by deformation on the slope, (this work, Chapter 2). During the 

late Pleistocene, the Magdalena River shifted eastward, discharging 

sediments in what is now the Cienaga de Santa Marta area, as a result of 

the Atlantico-Turbaco uplift (Hoover and Bebout, 1985). The fan in this area 

migrated towards the west to its present day position (Heezen, 1956; 

Bordine, 1974; Pirmez et al., 1990; this work, Chapter 2).   
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The continental slope is characterized by two arcuate deformed belts, 

separated by a central area dominated by submarine fan deposition. The 

northeast and southwest thrust belts are expressed on the sea floor as 

ridges (Figure 3.1 and 3.3). Piggyback basins became sediment traps as the 

deformation front advanced. On the northeastern active fan, sediments were 

transported down slope through canyons and gullies, and emplaced as 

gravity flow deposits filling the piggyback basins. In this area, multiple 

collapse structures and normal faults are common, in addition to the 

presence of mud diapirs and gas hydrates (Vernette et al., 1992; Flinch et 

al., 2003).   

 

3.1.2 Data and Methodology  

Data available for the study include high resolution bathymetry images of the 

northwest Caribbean offshore Colombia. The bathymetry covers a major 

part of the Magdalena submarine fan, approximately 54,000 km2 of the 

seafloor (Figure 3.1). Four different surveys cover the area of study. In 1997, 

the Spanish vessel BIO Hesperides acquired approximately 32,500 km2 of 

bathymetry data (Ercilla et al., 2002) with the multibeam echosounder 

SimRad EM-12 S120. Two bathymetry surveys were acquired in 2002 on 

behalf of Ecopetrol (14,700 km2) and Total E&P (11,400 km2). Data were 

collected using a hull—mounted, multibeam echosounder Reson SeaBat 

8169 (50 KHz; for water depths between 100 and 800 m) and Simrad EM 
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12D (13 kHz; for water depths between 800 and 3500 m). Additional 

bathymetry surveys that cover the shelf area and river mouth were provided 

by the CIOH (Centro de Investigaciones Oceanográficas e Hidrográficas, 

Colombia) (6,000 km2). Data were tide-corrected and processed by the 

contractor, and were provided in final format compatible with geographic 

information systems. Proximity to the Magdalena River outflow area resulted 

in sounding errors due to fresh water input which altered sound velocity 

ranges. Bathymetry interpretations and quantification of the MTC 

dimensions were made using ArcGIS (ESRI, Environmental Systems 

Research Institute, Inc.). Calculation of attributes such as slope, azimuth 

and curvature were used to enhance and facilitate the identification and 

interpretation of deep water architectural elements.   

GLORIA (Geological LOng Range Inclined Asdic) side-scan sonar image 

was available for the study (Figure 3.4), originally presented by Pirmez et al. 

(1990) and now integrated with the data in the area in the GIS database built 

in this study.  The GLORIA data was acquired primarily during cruise CD40a 

and also includes an older swath acquired during cruise DIS109.  The latter 

was originally presented by Vitali et al. (1985).  

Lithologic description of sediment cores acquired by the Lamont Doherty 

Geological Observatory on the abyssal plain of the Colombian basin were 

published by Muñoz (1966) and used in this study (Figure 3.4). Revision of 
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the grain size descriptions and photographs were made, since new 

interpretations could not be performed due to the deterioration with time. 

The 2D seismic lines shown in this paper illustrate the seismic expression of 

the recent sedimentation in the piggyback basins. They are part of a wider 

grid of seismic reflection data provided by Ecopetrol. Acquisition parameters 

are industry standard, near zero phase with SEG normal polarity. 

Frequencies range from 20 to 60 Hz at horizons of interest. Seismic 

interpretation was performed in Kingdom Suite 8.1.  

 

3.2 MORPHOLOGY OF THE ACTIVE FAN AREA 

3.2.1 Canyons  

The active Magdalena Fan is located in a highly deformed area. Northeast-

trending thrust fault ridges (Figures 3.1, 3.2, and 3.5) occur as a series of 

sea bottom slope steps creating confined basins (piggyback basins), where 

sediments transported down slope becomes trapped in the lower slope 

areas. Three main canyons and gullies have been carved on the slope 

which served as conduits for sediment flows to low relief areas of the slope 

through the ridges and abyssal plain (Romero et al., this volume). The 

Magdalena Canyon is a prominent feature on the slope (maximum incision 

of 260m and 2.5 km wide) directly connected with the current Magdalena 

River. It runs down slope about 30 km before it reaches a step in the slope 
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Figure 3.5. Active canyons of the Magdalena slope: S) Sabanilla, U) Unnamed, M) 

Magdalena. East of the Magdalena Canyon are found SC) Slope channels of gullies, 

MTC’s, and D) Diapirs. Cable breaks are represented by triangles and the extension of 

the line corresponds to the replaced cable. The cable breaks are distinguished 

depending on the flood stage of the river at the time they were presented. H1 (Red) high 

flood stage during July and August. H2 high flood stage during November to December 

and low flood (L) during the rest of the year.  
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where it converges with the U and Sabanilla canyons to continue down 

slope. The U Canyon (incision of 80 m and 1.2 km wide) is located 10 km 

from the shelf break and is not connected to any present drainage. It is a 

tributary network of small gullies, which developed a channel-like feature 

beyond the slope break (Figure 3.5). Sabanilla Canyon is the westernmost 

canyon, being a narrow feature 1.4 to 0.6 km wide and with 120m of 

maximum incision. The Sabanilla Canyon is related with previous locations 

of the Magdalena River mouth during the Holocene (this work, Chapter 2).  

East of the river mouth there are a series of slope channels (or gullies) 

(Figure 3.5) oriented down slope and connecting to a slump feature to the 

east. In addition, evidences of mass transport deposits and shale diapirs can 

be identified on the slope. 

North of the Sierra Nevada de Santa Marta is the Aguja Canyon controlled 

by major faults that are present in the area (Figure 3.1 and 3.2b). This 

entrenched feature begins parallel to the Oca fault, then abruptly turns to the 

north for 40 km with a height of 430m and width of 2.1 km. The next 

segment, oriented east- west, is about 40 km long until reaching the 

deformation front debouching onto the abyssal plain. It is almost orthogonal 

to the upslope canyon segment, with 600 m of height and 5.2 km width. The 

canyon is characterized by a sinuous thalweg and at the lower slope section 

by the presence of terraces and slump scarps at the canyon walls. There is 

no major drainage associated with the canyon that provides sediment.  
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The Sierra Nevada de Santa Marta drainages are small and deposit their 

load on the coast and continental shelf.  

 

3.2.2 Piggyback basins  

A series of northeast trending piggyback basins (PBBs) were developed as 

a result of the thrust fault and fold growth (Figure 3.6). Three of them are 

actively receiving sediment flows coming from the delta front through 

canyons towards the abyssal plain.  Fault growth, collapse structures 

(crestal collapse) and normal faulting generate MTCs which contribute to the 

fill of the basins floor (Romero et al., in press). PBB 1 is found at the toe of 

the active canyons (1300 m water depth, 55.2 km long and 5.9 km wide). It 

is connected to lower basins through knickpoints (KP1and KP2) and 

canyons. PBB2 (1490 m water depth, 23.5 km long and 3.7 km wide) is a 

hanging basin with its floor elevated with respect to the adjacent basins, and 

seems to not be receiving sediments today, since fault growth leaves it as a 

relatively high topographic area. It is dissected by an orthogonal canyon 

which feeds sediments to PBB4.  PBB3 and PBB4 were connected in an 

early stage of deformation, and isolated by continued uplift of the thrust fault 

that confines PBB3, and which separated the piggyback basins by a 200m 
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high scarp, thus preventing sediments from the main canyons reaches 

PBB4 from the south. PBB3 (2290 m water depth, 38.4 km long and 4.2 km 

wide) is fed by flows traveling through PBB1 (KP2) and ultimately reaching 

the abyssal plain by KP4. PPB4 (2100 m water depth, 48 km long x 9.25 km 

wide) exhibits a hanging channel that at some time prior to deformation was 

connected to the shelf break. Due to deformation it was abandoned and 

replaced by a conduit orthogonal to the fault system (this work, Chapter 2). 

Continuous deformation is indicated by the onlap of sediments against the 

channel walls (Figure 3.6). Erosional conduits and knickpoints reveal the 

flow pathway towards the abyssal plain through KP3 (Figure 3.6). Figure 3.7 

shows the slope profiles through the piggyback basins and the pathways 

that follow the sediments to reach the abyssal plain. The profiles are highly 

variable within the piggyback basins as can be observed in the slope section 

corresponding to PBB4 between KP1 to KP3 (Figure 3.7).    

The slope map in Figure 3.6 outlines other nearly flat areas that form small 

basins. However, there is no record of recent sedimentation activity in these 

basins, as they are not in the path of sediment flows that ruptured the 

submarine cables. The flat nature of their floor however suggests that some 

relatively recent sediment gravity flows occurred there. 

Another large intra-slope basin, the Rancheria Basin, is observed to the 

northeast of the area (Figure 3.4B). This basin is contained by the folded 

ridges of the accretionary belt to the north and west.  The high acoustic 
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amplitude on the GLORIA image suggests that the basin has been receiving 

sandy sediment flows. These flows converge toward the exit canyon to the 

northwest and travel through a well-defined canyon that debouches onto the 

abyssal plain where it forms a sediment apron.  

 

3.2.3 Mass transport complexes 

Large MTC deposits associated with shelf processes have been described 

on the Magdalena Fan as filling the interchannel low areas (Ercilla et al., 

2002; Estrada et al., 2005b; this work, Chapter 4) (Figure 3.4). In the 

deformation belt, numerous scarps and slumps are associated with the 

growth of imbricate faults and normal faults on the front limbs. An important 

MTC is located west of the Magdalena canyon, MTC-1 is 27 km from the 

river mouth (1,080 m water depth) (Figure 3.5). The slope angles around the 

MTCs head scarp ranges between 2-3 o, increasing down slope to a high 

angle ramp of 5-9 o. The MTC-1 is emplaced in PBB1 (0.5 -2 o   slope).   The 

head scarp is circular (―cookie bite type‖, Moscardelli and Wood, 2008) with 

an area of 32 km2. The estimated column of sediment that has been 

evacuated corresponds to a volume of 6.4 km3. Minor scarp features and 

slide blocks are observed at the northeastern and southwestern walls of the 

MTC-1 scarp. Three channel conduits trend down slope towards the MTC-1 

escarpment and converge at the escarpment head. A channel-like feature 

occurs at the base of the escarpment that continues down slope towards 
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PBB1 between ridges where sediment gravity flows probably are deposited 

(Figure 3.8). This channel indicates active down slope transport of 

sediments occurred after the slope failure event responsible for the main 

scarp. Part of the sediments remobilized from the scarp occurs down slope 

of the scarp (Figure 3.8). The minimum estimated volume for the deposits is 

0.27 km3 with a possible mean height of approximately 17m.  The runoff 

distance is approximately 9km from the escarpment toe to the deepest 

portion of the deposits. The MTC-1 can be classified as a frontally emergent 

submarine landslide using the classification of Frey-Martinez (2006) and as 

a detached MTC using the classification of Moscardelli and Wood (2008).  

 

3.3 CABLE BREAKS  

Heezen (1956) reported fifteen submarine cable breaks in the upper slope of 

the Caribbean coast of Colombia during the period 1930 to 1956 (Figures 2, 

5, 8 and Table 1). In 1930 the submarine communication cable was 

installed. During the same time period jetties at the Magdalena River mouth 

were constructed. Two cable breaks were recorded which coincide with loss 

of the jetty structures. On August 29th, 1935, 480m of the eastern jetty sank 

and the river sand bar disappeared overnight. On, November 20th, 1945, 

200 m of the eastern jetty disappeared. Figure 3.9 depicts the location of the 

cable breaks. Note that broken cables were replaced further down slope to 
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Year Date 
Location Flow 

Pathway* 
River Flood 
stage** River history  

1927 -   - Start Jetty construction 

1928 -   - - 

1929 - 

  - Interruption of Jetty       

construction 

1930 -   - Installation of MO-BN Cable 

1931 -   - Restart Jetty construction 

1932 5-Nov Magdalena A H-2 - 

1933 30-Jul Magdalena A H-1 - 

1934 2-Dec MTC-1 west B H-2 - 

1935a* 20-Jul Aguja  C H-1 Rupture in the Aguja Canyon 

1935b 29-Aug 

U A H-1 480m of Eastern Jetty sank.  

River sand bar disappear 

1936 -   - - 

1937 24-Feb MTC-1 east B L - 

1938 -   - - 

1939 -   - - 

1940 -   - - 

1941 -   - - 

1942 18-Apr Sabanilla A L - 

1943 ?   - - 

1944 7-Dec MTC-1 east B H-2 - 

1945 20-Nov MTC-1 east B H-2 200m of Eastern Jetty sank 

1946 -   - - 

1947 -   - - 

1948 -   - - 

1949 -   - - 

1950a 8-Aug MTC-1 east B H-1 - 

1950b 11-Dec 

KP1 A H-2 
Sand bars in the river mouth  

interrupted the cargo ships traffic  

1951 31-May KP1 A L - 

1952 ?   - Restart Jetty construction 

1953 21-Dec KP1 A H-2 - 

1954* ? Aguja  C L Rupture in the Aguja Canyon 

1955* 9-Feb 

 

Aguja 

 

C 

 

L 

Jetty reconstruction was  

almost ready on January 1955 

Rupture in the Aguja Canyon.  

1956 4-Jun   - - 

      

 

Table  3.1. Cable Breaks Events (Modified from Heezen, 1956a). 

 



 127 

deeper waters in an attempt to avoid new ruptures. Three ruptures (Table 1) 

were also reported from the Aguja canyon, though these are not directly 

linked with the Magdalena River.    

 

3.4 GLORIA IMAGE  

The Gloria sidescan sonar record the reflected sound waves (backscatter) 

from the seafloor, which are a function of the slope , surface roughness and 

the textural characteristics of the sediments (Somers et al., 1978). The 

GLORIA imagery depicts areas of high reflectivity related to areas of active 

sediment transport and deposition (Figure 3.10). Channel and lobate like 

features can be recognized on the image, but with further integration of the 

bathymetry (figure 10 B), the relation of these features with the canyons and 

the toe of the canyon areas was identified (Figure 3.10 C). Degradation of 

the slope is a common process with scarps and MTCs being identified by 

higher reflections (this work, Chapter 4).  It is important to note that due to 

the abrupt morphologies of some ridges, high reflectivity areas may be 

associated with changes in the slope of the sea floor (Figure 3.10B).  

The abyssal plain northeast of the active fan is characterized by high 

reflectivity north of KP3, KP4 and Aguja Canyon, and extends towards the 

abyssal plain of the Guajira-Rancheria area (Figure 3.4). The Aguja Canyon 

is characterized by high reflectivity in the thalweg areas, forming a sediment 

apron at the toe of the deformation front (Figure 3.4C). North of the Aguja 
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Canyon, a highly defined canyon can be recognized, which dissects the 

continuation of the northeastern deformation front (Figure 3.4B). Upslope of 

this canyon is a highly reflective area, the Rancheria Basin, which is 

confined by the fold ridges (Figure 3.4B). The abyssal plain is characterized 

by reflective sediments, fed by the active fan and Aguja Canyon (southwest) 

and the Guajira area (east) (Figure 3.4A).  The imagery reveals features that 

are probably associated with bedforms caused by the sediment gravity flows 

both in the sediment aprons (Fig 4C) and on the abyssal plain (Fig 4A).  

3.5 FLOW PATHWAYS AND DISTRIBUTION OF CABLE BREAKS 

Sediment gravity flows in the active Magdalena Fan are distributed through 

the different canyons travelling down slope, leaving deposits at the lower 

slope areas (PBB) until reaching the abyssal plain. The active flow pathways 

can be grouped into three corridors (Figure 3.6): A) Flows from the 

Magdalena , Sabanilla and U canyons in direction  to PBB 3 through KP1 

and reaching the abyssal plain through KP3; B) Flows starting at the 

Magdalena Canyon or at the eastern gullies diverging towards the east in 

PBB1, traveling downslope through KP2, continuing in PBB3 and reaching 

the abyssal plain through KP4; C) Flows initiated at the shelf margin, 

traveling downslope through the Aguja Canyon until they reach the abyssal 

plain.  Table 1 characterizes the cable breaks with their associated sediment 

flow pathways. Figure 3.7 shows the pathway topographic profiles from the 

river/shelf to the abyssal plain. The slope profiles show high variability, with 
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several convex-up sections beside the breaks were the knickpoints are 

located, indicating areas of erosion and deposition within the piggyback 

basins. 

3.5.1 Active Magdalena Canyon  

The first cable breaks occurred in 1932 and 1933 at the toe of the 

Magdalena Canyon. Flows traveling through the canyon deposited 

sediments at the break in slope as indicated by the presence of a lobate 

feature and high reflectivity in the GLORIA image (Figure 3.5, 10 C). The 

flows were deflected towards the east (Flow pathway B) and were deposited 

on the piggyback basin floor obstructed by the MTC-1. Some flows may 

have overridden the MTC-1, while others eroded the MTC to open a 

pathway through it (Figure 3.8). This is corroborated by the flat parallel 

seismic reflections that onlap the MTC (Figure 3.11). Also, there are 

indications of erosion and flows diverging towards the west (Flow pathway 

A) (Figure 3.8). GLORIA image shows a linear channel pattern of high 

reflectivity which could indicate recent sediment flows through this area 

(Figure 3.10 C), converging with the western canyons flows, and traveling 

down slope through KP1and entrenched on the canyon that is cutting PBB2 

until reaching PBB3 (Figure 3.6). The GLORIA image exhibits a lobate 

shape with high reflectivity at the toe of the canyon, indicating sediment 

deposition in this area (Figure 3.10 C). In addition, three cable breaks are 
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located in this canyon (1950b, 51, 53, in Figure 3.5), indicating periodic 

active sediment transport.  

 

3.5.2 Delta west 

Cable breaks were reported west of the Magdalena Canyon during 1935b 

and 1942 (Figure 3.5).  The 1935 break coincided with the eastern jetty 

disappearing at the river mouth (Table 1). The rupture of the cable is 

associated with the U Canyon that, interestingly, is not directly connected 

with the river mouth. The 1942 cable break occurred in the Sabanilla 

Canyon.  The U and Sabanilla canyons exhibit incision on the slope and 

converge towards KP1. The Sabanilla Canyon contains incised thalwegs 

that cut the U Canyon, indicating greater or more recent erosive processes 

in the Sabanilla Canyon. In addition, a slump deposit was emplaced by 

instability of the confining ridge, deflecting the flows coming from the 

Sabanilla Canyon (Figure 3.5). The flows traveling through these conduits 

should have been deposited partly on PPB 1 or down slope in PPB 4 

through KP1 (Flow pathway A) (Figure 3.6). Part of the flows through the 

Magdalena Canyon converged towards the KP1 following the same pathway 

as the Sabanilla and U flows ((Flow pathway A). with the river mouth. The 

1942 cable break occurred in the Sabanilla Canyon.  The U and Sabanilla 

canyons are exhibit incision on the slope and converge towards KP1. The 

Sabanilla canyon contains incised thalwegs that cut the U Canyon, 

X
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indicating greater or more recent erosive processes in the Sabanilla canyon. 

In addition, a slump deposit was emplaced by instability of the confining 

ridge, deflecting the flows coming from the Sabanilla canyon (Figure 3.5).   

The flows traveling through these conduits should have been deposited 

partly on PPB 1 or down slope in PPB 4 through KP1 (Flow pathway A) 

(Figure 3.6). Part of the flows through the Magdalena Canyon converged 

towards the KP1 following the same pathway as the Sabanilla and U flows 

((Flow pathway A).  

 

3.5.3 Delta East   

Five rupture events have been reported east of the Magdalena Canyon.  

Breaks that occurred in the years 1934, 1937 and 1944 are located in the 

MTC-1 area (Figure 3.5). The eastern part of pathway B seems to have had 

recent activity as is illustrated by the erosion at the scarp floor (Figure 3.8). 

All eastern (including Magdalena Canyon) pathways contribute to the 

transport of flows toward the abyssal plain as well as infilling the PBB1. The 

1934 break at the western conduit is located at the toe of the MTC-1 scarp, 

and possibly allowed transport of sediment towards both the west and 

northeast (basinward) (Figure 3.5). Two main flow pathways are identified: 

1) flows from the headscarp conduits that are deflected towards the west of 

the MTC-1 (E1) and 2) flows deflected eastward of the MTC-1 (E2) (Figures 

3.5 and 3.7).  
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The 1937 and 1944 cable breaks are located east of the MTC-1, at the main 

sediment flow corridor into the piggyback basin. Flows traveling through the 

west pathway (E1 - 1934 cable break) (Figure 3.8) may have contributed to 

fill the back side of MTC-1, ultimately deflecting Magdalena Canyon flows 

toward the west.  Also, evidence of western flows (E1) deflecting towards 

the east through the MTC remnants is the change in morphology 

(smoothing) at the head of the MTC deposit, leaving remnant blocks 

separated from the main deposit.  

Two breaks occurred during 1945 and 1950a (Table 1, Figure 3.5). The 

location of these breaks is not associated directly with the canyons or PPB1, 

but at the back limb of the ridge (Figure 3.8). It is important to consider the 

errors on the location of these events. Due to 1950’s geo-positioning 

methods, errors of 1 km or more may change the location of the cable 

breaks. In addition, not reliably pinpointing stretching and rupture of the 

cable may have modified the location. In particular, flows traveling northeast 

on the adjacent canyon could have stretched the cable, pushing the 

apparent break location to the north.  We interpret that these rupture events 

were related to down slope flows going through PBB1. Flows transported 

through E2 continued down slope through PPB1, which in combination with 

the Magdalena flows reached the abyssal plain passing through KP2, PBB3 

and KP4 (Figure 3.6). 
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3.5.4 Aguja Canyon 

The Aguja Canyon is not directly related to the Magdalena River sediment 

transport, but also presently receives sediment flows which are transported 

to the  abyssal plain (Figure 3.2). Cable breaks in 1935a (July), 1954 and 

1955 (February) were reported in this area. Heezen (1956) linked the Aguja 

Canyon with the Magdalena River, apparently by associating the cable 

breaks there with flows originating from the Magdalena River. This 

interpretation was allowed due to sparse bathymetry data available at that 

time (Figure 3.2B). With higher resolution bathymetry it is now evident that 

there is a separate system which seems to be fed from the continental shelf 

to the east of the Sierra Nevada de Santa Marta where there are no large 

rivers. 

3.6 SEDIMENT DISTRIBUTION – PISTON CORES.  

Part of the research performed in the Magdalena area by Heezen in the 

1950’s and 60’s included a series of piston cores taken on the active fan 

area and the abyssal fan based on the interpretation of the flow paths 

(Figure 3.2A). Muñoz (1966) published detailed descriptions and grain size 

analyses of cores acquired close to areas where submarine cable breaks 

were reported in the Magdalena turbidite fan. Fourteen core descriptions 

were revised and only three of them exhibit recent turbidites (Figure 3.4 and 

3.12). Two of these cores are located in the piggyback basins: V12-112 and 
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Figure 3.13. Lithologic description for piston cores VM12-112, VM12-118 and VM12-

119. Note the abundance of turbidites for the three cores. Location at Figure 3.12. 
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V12-118, and the third is located on the abyssal plain, V12-119 (Figures 

3.12 and 3.13).  

V12-112 contains two main lithologies (Figure 3.13). The top bed (23cm) 

represents a turbidite composed of very fine sand to silt, angular quartz 

grains, with abundant plant fragments. The basal bed has similar 

characteristics to the upper layers but with some disturbance at the bottom. 

The middle lithology suggests slump deposits composed of silty mud, with 

abundant granules, pebbles, foraminifera and shells fragments. It has been 

suggested that this interval corresponds to slump deposits (Muñoz, 1996). 

The muddy lithology and poor sorting suggests massive deposition, likely 

from a debris flow. 

 

The V12-118 core (Figures 12 and 13) is located within the MTC-1 deposit 

area. Muñoz’ (1966) description (Figure 3.14) highlights the abundance of 

turbidites as approximately 10 per meter in the cored section, with individual 

bed thicknesses reaching 57 cm. The core is mainly composed of 

alternations of turbidites (very fine sand to coarse silt), clay and silty clay. 

The sand grains are mainly angular to subangular quartz grains, mica flakes 

and other mineral fragments. There is a notable similarity between the 

sediments in the core and the sediments at the river mouth (both bed load 

and suspension). Some turbidites exhibit sharp basal contacts (Figure 3.14). 
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high content of plant debris occurs throughout the core, sometimes 

concentrated in laminae 1 mm thick and associated with very fine sand. 

Neither terrigenous mud nor pelagic material occurs above the turbidites, 

thus indicating their recent deposition. Some beds are graded. Frequently 

the graded sequence is not complete, and massive, 5-60cm thick 

homogeneous sand beds are present. The sand beds are well sorted and 

similar to the sands in the up-current river channel bedload. This similarity 

suggests little sorting between the river mouth and the site of deposition 

about 30 km away. It is important to note that the typical facies expected for 

MTC deposits (debrites, slumps) are not present in the core, which could 

indicate that the MTC is composed mainly of undeformed slide blocks 

(Moscardelli and Wood,2008) or, as is more likely, that the shallow core 

sampled turbidite deposits that are younger than the slumped deposits 

(Figure 3.14).  

V12-119 is located on the abyssal plain near the Aguja Canyon. It is mainly 

composed of gray, very fine to fine grained, moderately to poorly sorted 

turbidite beds (Figure 3.12 and 3.13). Abundant plant material is found 

throughout the section. Finer grained intervals correspond to silty lutites with 

the presence of lenses and reworked sediments (―inclined layers‖; Munoz, 

1966).  

It is important to note that none of these three cores has a pelagic mud 

drape, which confirms the active sediment transport through this area. The 
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sediments of the rest of the cores are mainly constituted by silty mudstones 

and mudstones (Figure 3.12). Content of foraminifera is generally low, and 

plant and shell fragment are not very common. (2.12, 2.16, 2.35 m) depict 

negative asymmetry, which could be related to slumped material (Figure 

3.12).  

 

3.7 PISTON CORES INTERPRETATION   

Only four of the piston cores are located on the possible recent pathway of 

active turbidity currents. Three of these (VM12-112, V12-118 and VM12-

119) depict recent turbidity current activity by the presence of a turbidite 

layer at the top of the core (Figure 3.12) as was discussed above. The fourth 

core, V12-111, is located on PBB4 (Figure 3.15 A), in the middle of an 

entrenched area (incipient knickpoint) between an abandoned channel and 

the front limb of a ridge. If the location of the core is correct, the absence of 

turbidite deposits similar to the ones found in the upslope VM12-112 core 

suggests this area to be a bypass zone. The turbidite flows are eroding this 

part of the slope (Figure 3.15A) and continuing down slope to be deposited 

on PBB-4 or the abyssal plain, as is evidenced by the morphology of the 

PPB-4 down slope of this core. Seismic profiles down slope of V12-111 

(Figure 3.15 B and C) show the different style of sedimentation at the 

proximal and more distal area on the PBB4. Figure 3.15B shows thinner 
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deposits against the abandoned levee and truncated by the sea-bottom 

reflector. In contrast, Figure 3.15C exhibits horizontal, continuous reflectors 

that onlap against the levee; and those are clearly missing on the proximal 

line and may correspond to turbidite flows deposited in this part of PBB4.  

Grain size distribution and sorting of the V12-118, V12-112 and V12-119 

sediments are plotted in Figure 3.16. For turbidite intervals containing more 

that 40% sand, the grain size is mainly very fine to fine sand (Figure 3.16A). 

Sorting is more variable (Figure 3.16B). The sample with nearly 80% sand 

corresponds to the upper turbidite in V12-112. The three extremely poorly 

sorted fine sand samples correspond to the lower turbidite interval.  

There is no clear evidence of changes in the grain size with an increase in 

the source distance; the V12-118 and V-12 119 cores show similar values of 

sorting and grain size (Figure 3.16A). Core V12-119, located in the abyssal 

plain, does not show a major change in grain size or sorting that may 

indicate changes in the sediment source (Figure 3.16). The seafloor imagery 

(Figures 4C and 6) suggests that flows from both the Aguja and Magdalena 

River areas could have reached the site in recent times.  Detailed 

mineralogy studies could possibly be used to distinguish turbidites sourced 

from the two areas.   
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Figure 3.16. Grain size, sand content and sorting of the V12-118, V12-112 and V12-

118. A) Sand content (%) vs grain size (phi), note the samples for the V12-112 core are 

out of the main trend. B) Sand content (%) vs sorting (phi), the sand rich sediment are 

very to poorly sorted with the exception of the V12-112 samples that are extremely poor 

sorted.  
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3.8 DISCUSSION  

The importance of recognizing the mechanisms for turbidite flow initiation 

lies in the characteristics of the deposits that are generated from the 

different flows (see Weimer and Slatt, 2007 for a comprehensive review). 

Characteristics such as flow velocity, viscosity, size, and erosional capability 

will differ depending upon the origin of the flow (Kneller and Buckee, 2000). 

In the same way, the deposits will differ in textural characteristics, 

sedimentary structures and areal distribution of the flows.  

On the active Magdalena Fan more than one flow initiation mechanism may 

be present. River mouth failure, longshore drift, coastal erosion, high river 

flood stages, and hyperpycnal flows are considered in this paper as possible 

mechanisms responsible for the turbidite flows causing the cable breaks. In 

addition, the active compressional deformation, uplift of the shelf and upper 

slope area, and seismicity (this work, Chapter 4), may have destabilized the 

sediments at the proximities of the river mouth.  

 

3.8.1 River sediment discharge and flood stages -cable breaks  

Cable breaks associated with maximum river bed-load transport during 

floods have been recognized in the Zaire Fan, at a frequency of 60 events 

per century (Droz et al., 1996). A similar frequency (about 48 

events/century) has been determined for the cable breaks in the Magdalena 
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River area (excluding the breaks in the Aguja Canyon). The Magdalena 

River annual sediment load of 143.9 x106 t yr-1 ( 130.5 metric ton per year) is 

a very large amount and accounts for 9% of the sediment transported in the 

east coast of South America, and is of same order of magnitude as the 

Amazon, Orinoco and Parana rivers which have larger drainage basins 

(Restrepo and Kjerfve, 2000). Sediment load and discharge during the last 

25 years exhibit maximum values during November and December, and a 

secondary peak during June and July (Figure 3.17). These increments 

coincide with the months with higher occurrence of cable breaks or during 

periods just prior to the cable breaks. This correlation indicates the likely 

influence of the river-borne sediment load and the generation of submarine 

flows. The presence of terrigenous plant material in the cores is also 

confirming river derived sediment flow processes.   

The annual discharge of the river from 1940 to 1960 (Winkley et al., 1994) 

also showed high volumes during several periods. This corresponds to a 

period of time when seven cable-breaks occurred (Figure 3.18). During 

years of higher discharge, cable breaks occurred mainly during the second 

high discharge season (Nov- Dec). The river discharge record for the period 

from 1930 to 1940 is not available; during this timeframe five cable breaks 

were recorded.  

The sediment load data indicate three possible correlations with sediment 

flows: 1) due to the large amount of sediments transported by the river, 1) 
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Figure 3.17. (A) Monthly mean and standard deviation of water discharge; and (B) 

sediment load, in the Magdalena River at Calamar, 1975–1995. (From Restrepo and 

Kjerfve,2000). (C) Cable breaks monthly distribution: 1927-1956. The seasonal 

distribution of sediment load indicates high values of 690 x10
3
 t day

-1
 and 678 x10

3
 t 

day
-1

during November and December. Secondary high sediment loads occur during 

June–July with loads reaching 443 x10
3
 t day

-1
. These periods coincide with some of the 

cable breaks.  
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turbidity flows or 2) hyperpycnal flows are generated by water masses of 

higher sediment concentration during flood stages, or 3) increased sediment 

accumulation at the delta front, which creates instability and generates slope 

sediment transport.   

 

3.8.2 Hyperpycnites in the Magdalena Fan?  

Hyperpycnal flows are defined as sustained flows formed during high 

sediment discharge periods that are transported down slope along the sea 

floor due to differences in the density of the flow and that of overlying sea 

water (Mulder et al., 2003). Heezen and Muñoz (1965) calculated a 

sedimentation rate of approximately 100 km3 per 100,000 years (25 m per 

million years) for the Magdalena Fan, which when compared with the 

present discharge of the Magdalena River of about 426.6 km3 per 100,000 

years, indicates the river as the major sediment source to the fan.  

Hyperpycnal flows are non-ignitive processes (flows fed by sediment 

transported into the slope from rivers, not by slope erosion) common in 

major rivers in the world (84%) with frequencies of more than 1 event every 

100 years, excluding turbidity currents generated by slumps or foreset 

failures (Mulder et al., 2003).   

The critical concentration needed to produce hyperpycnal flows in marine 

water depends on the properties of the coastal zone. For equatorial zones, 
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concentrations of sediments should exceed 36.25 kg m-3 (Kennish, 1989) in 

order to overcome the density difference between fresh and salt water. 

However, several factors may reduce the critical concentration to as low as 

5 kg m-3 to generate hyperpycnal flows. Mulder et al. (2003) presented a 

summary of these factors, including: convective instability of hyperpycnal 

flows, geological setting (easily eroded drainage basins), extreme geologic 

events (jökulhaups, lahars, dam breaking), dilution of sea-water by fresh 

water during long flood stages, and erosion on mouth bars. In addition, 

discovery of hyperpycnal flow-related sediments in the Zaire deep-sea fan 

(Migeon, 2000), which was earlier classified as a ―clean river‖ [river that 

cannot produce hyperpycnal flows (Mulder and Syvitski, 1995)], suggest that 

hyperpycnal flows are not yet fully understood and could be generated in 

rivers with low concentration of sediments.  

Due to a narrow shelf (~2km) the Magdalena River mouth connects directly 

to a slope canyon (Figure 3.5). This condition differentiates the Magdalena 

River from other larger rivers where sediment is first deposited on the 

continental shelf. The Magdalena River was classified by Mulder and 

Syvitski (1995) as a river which rarely (>10,000 Yrs) will produce 

hyperpycnal plumes. Certainly, following the methodology of Mulder and 

Syvitski (1995), if we calculate the sediment concentration at flood 

conditions with the maximum average data published for the Magdalena 

River (Figure 3.17) and the maximum values for years with cable breaks 
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(during 1956) (Figure 3.18), the concentrations obtained do not exceed the 

36.25 kg m-3 required for initiation of a hyperpycnal flow (Table 2), but will be 

higher than 5 kg m-3 when convective instability is considered. This indicates 

that hyperpycnal flows in the Magdalena Fan are feasible.  It is important to 

note that average values are being used and do not properly reflect the 

relationship of water discharge and sediment load at individual flood 

conditions.   

Taking this into account, it is possible that periodic hyperpycnal flows rather 

than only sea-water turbiditic flows are responsible for some submarine 

cable breaks, as first stated by Heezen and Muñoz (1965). Some of the 

thinly laminated intervals described by Muñoz (1966) in the core at 70 and 

90 cm (Figure 3.14) are similar to hyperpycnal deposits (i.e. ―hyperpycnites‖) 

described by Bhattacharya and MacEachern (2008). Even though the grain 

size distribution for this interval shows the presence of very fine sand and 

silt, further analyses are required to establish if the sediments reveal inverse 

grading, that is one of the main characteristics to identify hyperpycnal 

deposits (Soyinka and Slatt, 2008).  
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3.8.3 Shallow Processes  

In addition to high river flood derived turbidite and hyperpycnal flows,, 

shallow processes may play an important role in the distribution of 

sediments to the continental slope. Coastal erosion, longshore drift and river 

mouth instability are considered to be fundamental processes that provide 

sediments to the turbidite flows.  

  

3.8.3.1 Coastal erosion  

The Magdalena is a wave dominated delta, with nearshore wave power of 

35 x106 s-1m and deep wave power (9m depth contours) of 45x 106  ergs-1m, 

making it the most significant power in Colombia and along the Atlantic 

coast of South America ( Restrepo and Lopez, 2007). This condition causes 

extensive reworking of the shoreline. The discharge of the river peaks in 

November, while the wave power reaches its maximum in December. This 

slight out of phase condition has allowed the delta to grow in the vicinity of 

the river mouth. However, the wave dominance redistributes sediments 

along the delta plain as beach ridges and dunes (Restrepo and Lopez, 

2007).  

Jetties construction has created an open channel into the Caribbean Sea, 

directing  fluvial sediments towards the Magdalena Canyon and resulting in 

bypass of sediments along the delta shoreline and deposition offshore 
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(Alvarado, 2005). This decrease in sediment delivery to the delta is a 

significant factor in the modification of the downstream coastal bodies and 

land loss on the western part of the delta (Martinez et al., 1990; Restrepo 

and Lopez, 2007). Historic maps show an asymmetric delta front with the 

main distributary channel oriented to the west-southwest (Martinez et al., 

1990). Figure 3.19 depicts coastal retreat at the western jetty between the 

1930’s and the present day. Rapid retreat of the western delta front occurred 

immediately after construction of the jetties, with an average of 65m /yr 

(range 21-150 m/yr) loss from 1939 to 1987 (Martinez et al.1990). Analysis 

of satellite images for the period 1989–2000, indicates an average coastal 

retreat of 55 m yr-1 in the western part of the delta. The net estimate of 

beach erosion on the western part of the delta for the period 1936–2002 is 

~1500 m (Alvarado, 2005; Restrepo and Lopez, 2007). In addition, the 

Magdalena delta has the lowest wave attenuation ratio of any Colombian 

delta. The steep offshore profile does not attenuate the incoming deep-water 

waves, resulting in extremely high energy waves along the shoreline which 

increases coastal erosion processes (Restrepo and Lopez, 2007).     

The fate of the material eroded from the coast is unclear. A significant 

amount must be directed to deepwater, as the sediment is fed into the 

canyons and gullies that are observed in the upper slope, adjacent to the 

narrow shelf. 
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3.8.3.2 Longshore drift  

Strong northeasterly winds throughout the year cause a persistent northeast 

–southwest longshore drift; which controls the sediments coming from the 

Sierra Nevada drainage deflecting the sediment plume parallel to the shore. 

Figure 3.20 shows the modification of the shelf floor by the longshore drift; 

forming linear features oriented northeast-southwest. The remobilization of 

sand from the continental shelf may have been enhanced after the jetty-

induced delta retreat, which modified the wave pattern (Figure 3.19). Sand 

lost from the delta front probably has been added to longshore transport, 

developing large temporary spits which grow at an angle to the coast 

(Martinez et al.,1990).   

During the wet season (May to November), the Magdalena turbid plume is 

diverted five nautical miles from the coast towards the east due to the 

Panama countercurrent. During the dry season (December to April) the 

sediment plume is diverted back towards the west due to the presence of 

the longshore drift and the absence of the countercurrent (Figure 3.21) 

which remains restricted to the Darien Gulf during this time of the year 

(Pujos et al., 1991).  

The cable breaks recorded at the Sabanilla Canyon (April, 1942) and the 

Aguja Canyon (February,1955) occurred during a period of low fluvial 

discharge (Figure 3.18). At this time of the year (Dry season) the longshore 

drift and wave power were at their maximum (Figure 3.22).  Due to the lack 
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of a near sediment source for these two locations, it is possible that 

longshore drift transported sands are the sediment source for the Sabanilla 

and Aguja Canyon turbidites. Landsat images of the northeastern coast 

(Figure 3.21) depict a sediment plume traveling towards the Aguja Canyon.  

Erosion and migration of the coastal sand bodies caused by these 

processes may be an important source of sediments.  

 

3.8.3.3 River mouth instability  

Processes associated with river mouth instability in the area are directly 

verified by the collapse of the western jetty on two occasions (August 1935 

and November 1945, Table 1). Even though the ruptures did not occur 

during the peak months of higher wave power (Figure 3.22), the events 

could have been caused by the intense erosion to which the western jetty is 

exposed during these periods. In addition, the sediment load for August and 

November corresponds to the periods of highest sediment load over the 

year (Figure 3.22) which may have contributed to destabilizing the jetty 

structure at the river mouth.   

In summary, the analysis presented above indicates that active sediment 

flows caused the cable breaks. These sediments are periodically being 

transported through the canyons and piggyback basins on the continental 

slope are generated by different processes that may act in conjunction or be 
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separated. For example, coastal erosion may affect the stability of the jetties 

and associated deposits, which may be responsible for some flows. 

Longshore drift is clearly present in the Aguja Canyon and possibly in the 

Sabanilla Canyon, and sediment instability, related to the rapid accumulation 

of sediment at the river mouth has demonstrably occurred in two of the 

thirteen cable break events off the Magdalena River mouth, 

Some cable breaks in the past, such as at the Grand Banks (Heezen et al., 

1952, 1964; Piper et al., 1988) and Algeria (Babonneau et al., 2007), have 

been associated with earthquake activity. Even though the area of this study 

is part of an actively deforming accretionary wedge no earthquake activity 

has been associated directly with sediment gravity flows. Earthquakes in this 

area have been recorded at depth between 30 -100 km and with magnitudes 

not greater than 4 (this work, Chapter 4). But there is no evidence of 

catastrophic collapses of the slope which could provide a connection to 

earthquake-generated events (Moscardelli and Wood, 2008).    

 

3.8.4 MTC-1 and Interaction of turbidity flows    

Even though it was established that emplacement of the MTC-1 in the PBB1 

is not related with the generation of the documented cable breaks, the 

presence of this MTC depicts their importance in the distribution of the 

sediment gravity flows. The flows may override the obstacles found on the 
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sea floor, be deflected around the MTC, be confined by them or cause a 

local reversal in flow direction (Kneller and Buckee, 2000). When the 

sediment flows from the Magdalena Canyon reach the low slope angle 

seafloor (PPB1) and decelerate, the coarser sediment probably was 

deposited and confined by the MTC-1 (Figure 3.8). Part of the sediment load 

deposited in PBB1 is truncated by the MTC, but the presence of cable 

breaks is evidence of down slope sediment flow, as is the sediments found 

in V12-118 (Figure 3.14), development of knickpoints and erosive 

morphologies on the piggyback basins floors.  

 

3.8.5 Origin of the 1935b Cable break  

Most of the cable breaks can be associated with flows traveling from the 

shelf break through conduits and reaching deeper parts of the slope. The 

1935b cable break is the exception, even though the rupture is directly 

related in time to the collapse of the delta mouth (400m of jetty sank 

overnight, and the cable broke soon after). The location of the cable break is 

associated with U Canyon. There are no evident conduits on the bathymetry 

map that may link the river mouth with the U Canyon (Figure 3.5). Various 

hypotheses may explain the linkage between the rupture site and the 

documented failure of the jetty at the river mouth: 1) The flow did not travel 

through the Magdalena Canyon, but instead overrode the slope to reach the 

U Canyon; 2) The flow was entrenched in the Magdalena Canyon, and once 
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it reached the PBB, the cable stretched and ruptured 12 km west of the 

canyon; and 3) the cable break could be associated with a flow produced 

from the Sabanilla Canyon. The last hypothesis seems to be the most 

unlikely, since there is evidence of a flow produced at the river mouth. The 

remaining hypotheses are plausible, but weak points, including: a) the flows 

have to override the western channel wall that is approximately 100 m in 

height, and b) the cable break occurred 12 km from Magdalena Canyon, the 

locations of all the cable breaks in the area are suspect. One possible 

alternative is that there were two flow events that initiated at about the same 

time at two different locations. The exact time of cable break versus the 

failure of the river mouth is not known, so this hypothesis is quite plausible 

as well. 

 

3.8.6 Recurrence of sediment gravity flows  

Observations in other systems indicate high occurrence of sediment gravity 

flow events. In the Congo (Zaire) submarine canyon between 1887 and 

1937, 30 submarine cable breaks occurred which have been related with 

high bedload discharge from the Congo River (Heezen et al., 1952, 1964). 

On the Amazon Fan, 1 flow event every 2 years on a 20ka year interval 

have been calculated (Pirmez et al., 2000).  
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Various points are important to discuss in terms of the periodicity of the 

flows generated at the Magdalena submarine fan. 1) Recurrence of the 

events is high. During a 25 year period 12 turbidite flows have been 

identified, indicating a high frequency occurrence like on the Amazon Fan 

(once every 2 years). Some events correspond to years with high river water 

discharge conditions and cable breaks. It is important to point out that even 

though cable breaks can be related to strongest flows, less energetic flows 

may have occurred during this time interval which did not rupture the cable.  

2) Change of the cable location also influences the flow record. Early cables 

were more susceptible to ruptures since they were located at the toe of the 

canyons (Figure 3.9). As these cables were repaired, they were relocated 

farther down slope, thus flows that travels farther were required to rupture a 

cable. 3) Distribution of the breaks seems to be related to the 

accommodation space on the slope (PBB). The first years after cable 

installation, cable breaks occurred at the toe of the canyons in PBB1, i.e. 

five breaks during a six year period. The second group of breaks 

corresponds to the cables along the western pathway in PBB1, with three 

events during a four year period. The last group corresponds to the cable 

breaks at the canyon which dissects PPB2, with three breaks in a five year 

period. The distribution of the cable breaks suggests that sediment gravity 

flows produced at the river mouth and associated with the Magdalena 

Canyon were being transported towards the northeast through the PBB1. 
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Once, the accommodation space was occupied by sediments at the PBB1 

east of the canyon, flows became more frequent towards the west, where 

they were transported through KP1 and directed towards PBB2.   

 

3.8.7 Similar depositional settings  

The active Magdalena Fan is a modern example of deepwater deposition in 

structurally confined basins, connected by tortuous corridors for sediment 

transport. The fan is a good analog for some areas offshore Brazil, Brunei, 

and Angola (Smith, 2004). This type of deposition differs from the older 

Magdalena submarine fan that was characterized by leveed channel 

systems. On the Brunei slope, prospective reservoir occurs as lobes 

deposited in subtle depressions or at breaks in the slope (Demyttenaere et 

al., 2000). Dimensions of the lobes and structures are similar to the 

Magdalena Fan.   

 

This depositional model has also been recognized at the outcrop scale in 

the upper Miocene Gorgoglione Flysch sequence in southern Italy (Boiano, 

1997). The present day slope of northwest Borneo (Brunei) (Ingram et al. 

2004) and late Pleistocene deposits offshore eastern Corsica (Gervais et al., 

2006) constitute additional modern analogs. Mainly coarse sediments that 

are fed by the Golo River into the shelf area, sediments are transported 
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downslope through canyons and deposited as lobe complexes in the 

Corsican trough which confines deposition. The Corsica example includes 

sinuous channels within the canyons, which could produce similar 

morphology as in the Agua Canyon.  

 

3.8.8 Slope deposition  

The Magdalena slope is an above-grade slope (Prather, 2003). The lack of 

the 3D control of the basal sequences to establish the connectivity within the 

different PBB prevents the designation of ponded accommodation (Prather, 

2003). Seismic profiles (Figure 3.11) depict the stacking of MTCs, gravity 

flows and pelagic deposition, but 3D connectivity of them cannot be 

determined.  

The gravity flows travel at least 100 km to reach the abyssal plain through 

any of the flow pathways, a distance in which the characteristics of the flow 

properties change.  In relatively small flow volumes comparative to the scale 

of the receiving basin, changes in properties from axial to lateral and 

proximal to distal are expected, including changes such as sand content, 

amalgamation percentage and bed thickness (Smith, 2004).  Properties 

changes in the PBB are expected at two scales: intrabasinal changes and 

the complete connected flow pathway scale. However, the lack in age 

control and availability of sample analysis from the cores that contain 
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turbidites, do not allow establishing variations in the composition and 

textural changes for the different flows in this study (Figure 3.16).   

The relationship between flow character and equilibrium profile can also be 

studied. The gravity flows that encounter slopes steeper than the equilibrium 

profile   tend to be more erosive (Pirmez et al, 2000), as observed in the 

V12-111 area and at the knickpoints that are connecting the different PBB 

(Figure 3.15).  

Conversely, on lower slope areas, the equilibrium profile will generate 

decelerating flows (Pirmez et al., 2000). At the connected pathways scale, 

changes in slope angle will occur in segments of substrate erosion 

alternating with segments of enhanced deposition (Smith, 2004). The PBB 

with lower slopes depict recent sedimentation (horizontal reflectors) and 

onlap geometries against the obstacles of the basin (walls or MTCs) (Figure 

3.8). All these characteristics may change through time since the slope is 

actively modified by the continuous compressional tectonic forces. 

Therefore, variation of geometries and distribution of sediments should be 

considered when evaluating this depositional setting.  

 

3.8.9 Importance  

This study contributes to understanding the interaction between topographic 

obstacles and gravity flows and understanding the effect of slope on the flow 
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distribution. These flows can be considered analogs for different areas of the 

world where hydrocarbon exploration is taking place in a similar tectonically 

active setting. The authors would like to emphasize the importance of this 

area as a natural laboratory to study sediment distribution through tortuous 

pathways, evolution of gravity flows through the slope and differences within 

gravity flows from different initiation processes.    

 

3.9 SUMMARY AND CONCLUSIONS  

 

-The active Magdalena deepwater fan provides sediment gravity flows that 

generate submarine cable breaks. Twelve such breaks were recorded in a 

25 year period. The sediments are transported down slope mainly through 

the Magdalena Canyon, but now abandoned canyons and gullies also 

served as conduits for sediment flows. The Sabanilla and U canyons to the 

west and some gullies to the east of the Magdalena Canyon constitute a 

network of active conduits. The Aguja Canyon, northeast of the river delta, 

also has had three cable ruptures.   

 

-The upper slope is characterized by the presence of piggyback basins that 

are communicated through knickpoints that allow the transport of sediments 
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down to the abyssal plain. These basins partially retain the sediment by 

decelerating the flows, leaving some deposits on the lower slope areas. 

 

-Three main flow pathways were identified: 1) flows from the Magdalena, 

Sabanilla and U canyons transported through PBB1 and PBB4, 2) flows 

from the Magdalena Canyon and western gullies that are transported 

through PBB1 and PBB3, and 3) flows transported by the Aguja Canyon.    

  

-The sediment flow events seem to be related to different processes on the 

continental shelf: 1) High flood stages of the river, 2) coastal erosion, 3) long 

shore drift, 4) hyperpycnal flows and 5) river mouth instability. The 

sedimentological characteristics of the different deposits should differ as the 

flow properties are different.  

- Flows related to the active Magdalena Canyon and western gullies may be 

related to high flood stages of the river. Direct evidence from failures linked 

to flow events suggests river mouth instability or hyperpycnal flows as 

starting points for turbidite flows. Flows related to the Sabanilla and Aguja 

canyons are probably related with sediments directed into canyons from 

long-shore drift  
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-MTC deposits play an important role in the distribution of sediment flows in 

confined basins, serving as obstacles to the flow and changing the 

distribution of sediments in the basin.  

- Important applications in hydrocarbon exploration and reservoir 

distributions can be obtained from this study when used as an analog of 

deepwater deposition in structurally confined basins or connected by 

tortuous corridors. In addition, this study characterizes the continental slope 

in terms of stability and shallow hazards for submarine infrastructure.  
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CHAPTER 4 

DETACHED AND SHELF–ATTACHED MASS TRANSPORT COMPLEXES 

ON THE MAGDALENA DEEPWATER FAN 

 

ABSTRACT    

The Magdalena submarine fan, fed mainly by the Magdalena River, is part 

of a Miocene-Recent accretionary prism off the Caribbean coast of 

Colombia, S.A. Periodic shifts of the Magdalena River controlled the 

evolution of the fan. The integration of multibeam bathymetry, GLORIA 

image, and 2D seismic profiles reveal a series of deep-water channel 

systems and mass transport complexes (MTCs) on the seafloor. The MTCs 

have been subdivided into detached and shelf-attached types. Relative 

timing of the detached MTC processes cannot be determined due to their 

local character. Four major shelf attached slope MTCs are described from 

interchannel areas. We hypothesize that these attached MTCs began to be 

generated during a low stand of sea level (140-120 ka) which prompted 

hydrostatic pressure changes and/or gas hydrate dissolution on the slope, 

leading to collapse. Later processes of slope deformation and slope 

instability continued feeding MTCs to the interchannel lows. A southerly shift 

of the Magdalena River depocenter (middle Pleistocene) and abandonment 
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of the Galerazamba region channel-levee systems coincided with the 

lowstand.  

 

4.1 INTRODUCTION  

The combination of active margin tectonics with one of the larger fluvial 

sediment sources to the ocean makes the Magdalena Fan an important area 

to understand the development of MTCs. Integration of multibeam 

bathymetry, GLORIA image and seismic profiles were used to characterize 

the MTCs on the continental slope of northern offshore Colombia. This 

paper documents the different submarine mass movement deposits 

recorded on the submarine fan, by describing the morphologies of the 

scarps and their related deposits. The mass transport classification of 

Moscardelli and Wood (2008) is used because it is based on seismic 

observations that emphasize the relationship between mass failures and the 

geomorphology of their source areas (Table 1). This classification is based 

on three main aspects: 1) sourcing regions of MTCs, 2) geomorphological 

expression of MTCs on their updip part (e.g. scarp) and 3) dimensions and 

geometries of MTCs.  
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4.1.1Regional Setting  

The Magdalena submarine fan, located in the Caribbean Sea, offshore 

Colombia (Figure 1), is a bathymetric feature that is part of the accretionary 

wedge complex formed by the collision of the Caribbean and South 

American plates (Duque-Caro, 1979; Breen, 1989). It covers an area of 

about 68,000 km2, contains a volume of 180,000 km3 and extends into 

areas > 4,000m of water depth (Reading and Richards, 1994). The 

deepwater fan is fed by the Magdalena River, a major fluvial system that 

drains most of the Colombian Andes. The submarine fan sedimentation was 

initiated during the middle Miocene, a time of low deformation rates (Kolla 

and Butter, 1984b).  

Ercilla et al. (2002a) first reported the existence of large MTCs with a radial 

distribution throughout the continental slope. Tongue-shaped mass flow 

deposits smooth the slope between channel systems and perpendicular to 

thrust ridges. They are characterized by erosive (concave) and depositional 

(convex) sections of the slope.  The uplifting of the continental shelf, steep 

slopes and the high availability of uncompacted sediments in the abandoned 

Galerazamba area seem to have played an important role in the 

development of large-scale mass flows. In addition, interchannel lows 

formed barriers to confine the sediment flows (Estrada et al., 2005b).  

The fan is subdivided into: 1) deformed compressional belts and 2) main fan 

area. The deformed area includes the arcuate northeast and 
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southwest thrust belts, expressed on the sea floor as ridges (Figure 4.1, 4.2 

and 4.3). The main fan area is characterized by leveed channel complexes, 

large-scale MTCs, and scars of slumps (Figure 4.1). The eastern part of the 

main fan contains the oldest channel-levee systems (CLS) at the seafloor 

(Kolla and Buffler, 1984b; Ercilla et al., 2002a; Estrada et al., 2005a). The 

western part of the main fan contains younger CLS and greater influence of 

deformation on the slope, which clearly affected the evolution of the 

channels (this work, Chapter 2). The CLS are partially destroyed and 

cannibalized by mass-flow deposits. Although, deformation is not regionally 

extensive, it is present in the fan areas, particularly near the thrust belts. The 

most recent active fan is located in the northeastern deformed belt, where 

sediments are transported downslope through canyons with steep slopes 

(~2.5o) and gullies, emplaced as gravity deposits filling the piggyback basins 

which are formed as a result of deformation. New bathymetric data (this 

work, Chapter 2) reveal a series of recently active canyons, based on the 

occurrence of multiple submarine cables breaks in the recent past (Heezen, 

1956a). Gas hydrates (Figure 4.4), mud diapirs (Figure 4.3) and slumps 

have been documented in the basin (Shepard, 1973, Shipley, 1979; Kolla 

and Buffler, 1984a,b; Vernette et al., 1992). 
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4.1.2 Data and Methods 

Data available for the study include high resolution bathymetry images of the 

northwest Caribbean offshore Colombia. The bathymetry covers a major 

part of the Magdalena deepwater fan, approximately 54,000km2 of the 

seafloor (Figure 4.1). Four different surveys cover the area of study. In 1997 

the Spanish vessel Bio-Hesperides acquired approximately 15,000 km2 of 

bathymetry data (Ercilla et al, 2002a) with the multibeam echosounder 

SimRad EM-12 S120. Two surveys were acquired in 2002 on behalf of 

Ecopetrol and Total E&P., using a hull-mounted, multibeam echosounder 

Reson SeaBat 8169 (50KHz; for water depths between 100 and 800 m) and 

Simrad EM 12D (13 kHz; for water depths between 800 and 3500 m). 

Additional bathymetry surveys that cover the shelf area and river mouth 

were provided by the CIOH. Bathymetry interpretations and quantification of 

the MTC dimensions were made using Arc map (ESRI). These observations 

are complemented by a GLORIA side-scan sonar mosaic acquired during 

CD40a and RMS Discovery expedition DIS109 (Pirmez et al., 1990). Figures 

4.1, 4.2 and 4.3 are a combination of slope in degrees calculated to 

enhance the morphological changes and a transparent display of the 

GLORIA image in a color scale. The 2D seismic lines (Figure 4.4) grid was 

provided by Ecopetrol. Acquisition and processing parameters are industry 

standard, near zero phase with SEG normal polarity. Frequencies range 
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A 

 
 

B 

 
 

Figure 4.4. A. x-x’ seismic profile of the southwestern deformed belt. MTC (green) are part 

of the deformed sequences generated as a result of the thrust imbricate advancement. 

Notice the presence of gas hydrates in the area (BSR). B. y-y’ seismic profile of the 

southwestern Magdalena Fan. MTC (green lines) were deposited at the deformed belt toe 

as a result of thrust imbricate advancement. Notice the abundance of channel levee 

systems (blue lines represent the base of the CLS). 
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from 20 to 60 Hz around the level of interest. Seismic interpretation was 

performed in SMT Kingdom Suite 8.1.  

 

4.2 LOCATION AND CHARACTERISTICS OF MTCS 

The different MTCs in the area were subdivided into three groups by 

association with the causal mechanism based on Moscardelli and Wood 

(2008) classification (Table 4.1). Detached MTCs are associated with: 1. 

Thrust deformed belts and 2. Channel-levee systems. Shelf attached MTCs 

are 3. Inter channel lows – shelf break MTCs. 

 

4.2.1 Thrust deformed belts MTCs 

Thrust belts are an important bathymetric feature in the continental slope 

offshore Colombia. Several buried MTCs related to thrust imbricate growth 

were recognized at the toe of the thrusted sheets on seismic profiles, but 

they are not expressed on the seafloor morphology. 

At the southwestern deformation belt seafloor morphologies are associated 

with slump deposits, slide blocks and collapse scours (Figures 4.2, 4.4 and 

4.5). The collapse scours are common at the front limb and back limb of the 

thrust imbricates (Figure 4.2). Erosional features are represented by arcuate 

headscarps and grooves or ―linear features‖ that commonly modify the front 
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limbs of slope ridges (Figures 4.2 and 4.5). Elongate scarps seem to be the 

sum of several small collapses at the edge of the thrust ridges (Table 4.2). 

Lobate deposits occur at the toe of the slump scarps or fill the piggyback 

basins as result of sediment remobilization from the front limb of the 

structures (Figure 4.2). High reflectivity on the GLORIA images 

characterizes these areas of MTC deposition as well as slide blocks and 

evidence of sediment creep. 

Evidence of MTC processes in the northwestern thrust belt are more 

pronounced. Arcuate headscarps are present on the ridges with lengths of 1 

to 3.2 km. Larger collapse structures are developed on the thrust ridge 

flanks (Table 4.2) and can be traced to their associated MTCs (Figure 4.3). 

High reflectivity on the GLORIA image is identified at the toe of some scarps 

 
 

Table 4.2. Morphometry of main scarps on the deformation fronts. Location is shown 

in figures 4.2 and 4.3. 
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and low slope areas within the piggyback basins. Lobate geometries (Figure 

4.3) are associated with scarps on the front limbs.  

 

4.2.1.1 MTC-1  

The most striking northeastern scarp feature is a narrow morphological 

slope collapse structure, recognizable at 1,080 m water depth and 27 km to 

the northeast of the river mouth (Table 4.2, Figures 4.3, 4.6).  From here, 

sediments were transported downslope to depths of 1590m below sea level.  

The head scarp is semi-circular (cookie bite type, Moscardelli and Wood, 

2008) with an area of 32 km2. The estimated column of sediment that has 

been evacuated from the escarpment reaches 300 m in height, 

corresponding to an evacuated volume of 6.4 km3. Minor scar features and 

slide blocks occur at the northeastern and southwestern walls of the scarp 

(Figure 4.7). Three channel conduits trend downslope from the shelf towards 

the MTC-1 escarpment and converge at the escarpment head. A channel-

like feature occurs at the base of the escarpment that continues downslope 

towards confined, elongated basins between ridges, where sediment gravity 

flows probably were deposited (Figures 4.7).  

The MTC-1 deposits are represented by slump blocks (Figure 4.7) covering 

an area of approximately 15 km2. The deposits are truncated downslope by 

a southwest-northeast trending ridge and are deflected towards the 
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northeast. The minimum estimated volume for the deposit is 0.27 km3 with a 

possible mean height of approximately 17m. This suggests that several 

events were needed to generate this geometry. The runoff distance is 

approximately 9km from the escarpment to the deepest part of the deposits.  

 

4.2.2 Channel walls and levees MTCs 

All of the CLS present in the seafloor on the Magdalena Fan were 

abandoned after the shifts of the Magdalena River during the Pleistocene. 

Features such as inner levee and overbank collapses are found in some 

areas of the fan (Figures 4.8, 4.9 and 4.10) Levee breaks are caused by 

major MTCs that flowed through the abandoned conduits, modifying the 

morphology of the channels (Figure 4.9). It can be observed on the GLORIA 

image that some of the channels were cannibalized by eroding flows, 

leaving deposits with high reflectivity (opportunistic MTC, Figure 4.11A). 

Arcuate scarps are found in the inner levees as a result of the deformation 

of some channels.   

 

4.2.3 Interchannel lows MTCs 

Shifting of CLS’s through time produced interchannel low areas, with radial 

distribution on the slope. The interchannel lows are characterized by the 

presence of several large MTCs connected to the Galerazamba area, and 
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Figure 4.9. Channel levee collapse scarps (Detached MTC). The scarp is linked with an 

abandoned channel which served as a conduit to transport the deposits downslope. 

 

 
Figure 4.10. Channel levee collapse scarps in the Aguja Canyon (Detached MTC). Also 

observe the different levels of terraces on the canyon. 
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infilling low areas adjacent to channels. The GLORIA image is characterized 

by four high reflectivity zones in the central fan (Figure 4.11A) that 

correspond to interchannel lows and can be followed from near the shelf 

break down to the lower fan. Linear features within the MTC on GLORIA 

images correspond to canyons and conduits on the bathymetry image. 

Dimensions of the MTCs are presented in Table 4.3. The MTCs in the 

eastern area could extend farther downslope than the indicated by the high 

reflectivity on the GLORIA image, as indicated by the morphology of the 

seafloor (Figure 4.11B). These MTCs may be composed of several 

depositional events, with the younger being characterized by higher 

reflectivity (Figure 4.11B).  

The upper slope is characterized by arcuate scarps and canyons which 

focus flows downslope through the interchannel lows (Figure 4.8). Some of 

the canyons may be following the deeper abandoned channels. Downslope 

the floors of these lows appear to be very smooth except where cut by 

younger channels. Slope angle in the interchannel lows varies from 2.5° 

downslope to 0.5° in the continental rise. Several arcuate scours (scarps) 

are located in the first 30 km downslope from the shelf break. The eastern 

part of the main fan exhibits higher slope angles (3.5-4°) and appears 

aligned with the extension of the deformation front (Figure 4.8).  
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4.3 TYPES OF MTCS  

4.3.1 Detached MTCs 

MTC-1 (Table 4.3) is a detached MTC (Figure 4.12) confined by thrust fault-

ridges barriers setting (Mayall and Stewart, 2000). The triggering 

mechanisms of detached MTCs are related to local gravitational instabilities 

on localized bathymetric highs. Unstable flanks collapse and generate 

debris flows or slumps (Moscardelli and Wood, 2008) such as MTC-1. 

Younger deposits filled the trough and reduced the slope angle as they 

stacked vertically. The modern bathymetry shows that the deposits can 

reach longer run-off distances down dip, possibly reaching the basin floor for 

the larger events. The volumetric calculations and seismic interpretation 

indicate that the MTC-1 scarp is the result of several mass transport events. 

 
 

Table 4.3 Magdalena Fan MTCs classification (base on Moscardelli and Wood, 2008). 
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The scarp is associated with a trend of normal faults that have morphologic 

expression on the sea-bottom. It is likely that instability of the slope is due to 

regional deformation and local stresses, possibly amplified by local 

seismicity (Figure 4.13). Channels at the head and toe of the escarpment 

indicate that continental slope instability is not the only trigger for the 

sediment flows traveling basinward through this area (Figure 4.7). Flows 

associated with formation of the channels may have triggered mass wasting 

events.   

In addition to MTC-1, all thrust belt-related slumps can be classified as 

detached MTCs. Even though the major MTCs are buried in the piggyback 

basins or at toes of the deformation belt, continuous growth of imbricate 

ridges allows these mechanisms to recur in the area (Figures 4.4 A and B).   

Also, degradation of the thrust ridges is an important process in the thrust 

belt areas. The northeastern deformational belt is more active than the 

southwestern deformational belt, with a number of detached MTCs and 

lobate deposits at the toe of the ridges (high reflectivity features) (Figure 

4.3).  

Even though the deposits generated by the levee collapse are feeding the 

interchannel low areas, hence modifying the geometries of the large MTCs, 

these MTCs are classified as detached MTCs. Increase of the slope angle at 

abandoned channels generates inner levee collapses that modify the 

geometry of the channels margins. 
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4.3.2 Shelf Attached MTC 

The large MTCs A, B, C and D, are attached MTCs (Table 4.3, Figure 4.14). 

Whether or not the MTCs are slope-attached or shelf-attached is ambiguous 

with the available information. These large deposits seem to have been 

more likely generated after migration of the submarine fan southward, since 

the deposits are confined between abandoned channel levee systems, 

eroding and smoothing the slope with similar reflectivity on the GLORIA 

image. Therefore, these deposits cannot be classified as typical shelf edge 

delta MTCs since they are not fed directly by unstable active deltas, nor did 

they respond to changes in the sedimentation rates (Moscardelli and Wood, 

2008). However, the abandonment of the delta front may have caused 

instability of the shelf margin and was the source for the MTCs. 

Abandonment could have been initiated after the late Pleistocene shift of the 

fan towards the south (Dique canal) (Bordine,1974; Pirmez et al., 1990; this 

work, Chapter 2). 

Conversely, the driving mechanism for slope-attached MTCs may be 

associated with catastrophic and extensive collapses of the upper 

continental slope due to earthquakes, long-shore currents, hydrate 

dissociation or strong storms and/or hurricanes (Moscardelli and Wood, 

2008). However, in this area no large upper slope collapses have been 

recognized with the available data. Instead, a series of canyons and gullies 

that followed older channels, eroded the upper slope and channelized 
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sediment flows through them. The abundance of these linear features on the 

GLORIA image and the presence of these MTCs filling all the interchannel 

lows indicate that this process was common for the entire fan and may not 

be the product of isolated catastrophic events.  

 

4.3.3 Other Causal Mechanisms  

Additional causal mechanisms may have been present in the Magdalena 

Fan in order to generate the MTCs found on the slope. Besides the 

abandonment of the delta front as the possible main trigger, changes in the 

hydrostatic pressure due to sea level changes could have been involved in 

the generation of attached MTCs. Hydrostatic pressure changes may have 

induced mass collapse of the abandoned delta (Maslin, 2004).  

Global sea level changes and climatic conditions during the Pleistocene 

seem to be related with many of the MTCs studied throughout the world 

(Maslin 2004) (Figure 4.15). The Colombian basin δ18O records (ODP Core 

999) (Martinez et al., 2007) indicate several major drops of sea level (similar 

to global changes) which may have influenced the stability of the shelf 

(Figure 4.16).  

The active deformation of the area also may have constituted a major trigger 

for MTCs. Uplift of the shelf area may have caused remobilization of 

sediments contributing to the development of MTCs. There are multiple 
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evidences for active deformation in the area. The Magdalena River shift 

toward the east (Cienaga de Santa Marta area) was a result of active 

tectonics (Hoover et al., 1985). Pleistocene units such as the La Popa 

Formation (coralline limestone) exhibit stress tensors (115°/24°) that 

respond to the tectonic models of northern South America, in addition to 

uplifted terraces in coastal areas (Reyes et al., 2001). Evidences of 

continental slope uplift are associated to high slope angles along the eastern 

channel thalwegs (this work, Chapter 2), abundant scarps and 

retrogradational erosion.  

Historic seismicity of the area (Figure 4.13) shows strong activity in the 

northeastern sector. At least 25 earthquakes have occurred on the slope 

during the last 25 years (Ingeominas, 2008). Their magnitude ranges from 3 

to 4.5. They are distributed from a few kilometers up to 90km of depth. 

However, the earthquakes cannot be directly correlated with the MTCs. 

Their distribution indicates that they possibly responded to stress-induced 

accretionary wedge deformation, with pressure release through existing 

faults. These events may have triggered some MTCs at unstable sectors of 

the slope, which were then deposited in the piggyback basins.  
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4.3.4 Possible Timing of Events  

Relative timing of the detached MTCs cannot be determined due to their 

local character. Causal mechanisms are controlled by the growth of arcuate 

deformation fronts (east and west of the fan) and instability of active and 

abandoned CLS.  

During the middle Pleistocene, a southerly shift of the Magdalena River 

depocenter resulted in abandonment of the Galerazamba region channel 

levee systems. This shift coincided with a low stand of sea level (140-120 

ka). We hypothesize that the MTCs in the interchannel lows could have 

been initiated during this sea level drop due to changes in hydrostatic 

pressure and/or gas hydrate dissolution on the slope, in addition to the 

abandonment of the Galerazamba area. Similar processes are postulated to 

have occurred 40-45ka on the Amazon fan, where large MTCs are found 

(Maslin et al. 2005). Based on δ18O records of ODP Core 999, Martinez et 

al. (2007) interpreted temperature changes during 120-140 ka are similar to 

the 40-45ka time interval in the Amazon area (Figure 4.16 and 4.17). In 

contrast, the large MTCs in the Magdalena Fan could not be related to 

increases in sedimentation rates due to the Andes latest deglaciation 

(Younger Amazon MTCs, 10-13 ka), since the delta depocenter was east of 

the Galerazamba shelf-edge during that time.  

The multiple mass flow products of the retrogradation of the slope by 

continuous uplift seems to be the most recent process, retrogradation 
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promoted erosion and modification of the upper slope, creating instability 

and feeding the interchannel low areas (Shelf attached MTCs). The 

westernmost section of the fan does not exhibit the scours or the similar 

reflectivity response. This may indicate fundamental differences in the 

deformation of the slope.  

 

4.4 CONCLUSIONS  

The combination of bathymetry, GLORIA, and seismic profiles allowed 

identification of multiple MTCs on the Magdalena Fan.  These can be 

grouped into detached and shelf attached MTCs based on the causal 

mechanisms: 1) growth of thrust structures (detached), 2) instability of slope 

canyon and channel walls (detached), 3) major delta front- upper slope 

failures (shelf-attached).  

Four major shelf-attached MTCs occur in the interchannel lows on the fan. 

This classification is ambiguous since there are no changes in the adjacent 

delta load, and there is no evidence of major slope collapse. Furthermore 

the regional extent of the MTCs indicates a more regional process. Causal 

mechanisms that could have triggered these MTCs are instability after 

abandonment of the delta front, sea level changes, seismic activity in the 

area and active deformation of the upper slope.   
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Possible initiation of the shelf attached MTCs may be related to the southern 

shift of the delta/fan and relative lowstand of sea level during the middle 

Pleistocene. The shelf edge may have become unstable, but further 

investigation is necessary to test this hypothesis. Observations of the upper 

slope morphologies and downslope deposits suggest that these MTCs are 

the result of multiple events enhanced by the retrogadational erosion of the 

upper slope.   
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CHAPTER 5 

INTEGRATION OF RESULTS 

 

This chapter integrates the most important findings of the three papers 

previously presented. It covers final thoughts on fan deformation, deepwater 

sedimentation and depositional styles that characterize the Magdalena Fan 

area. It also presents limitations of the study and future work that would 

complement the results shown in this dissertation. 

 

5.1 FAN DEFORMATION  

Variations in the morphology of the channel levee systems comprising the 

Magdalena Fan are closely related to modification of the slope as a result of 

deformation created by the compressional stresses in the basin.  

One of the main results of this dissertation was establishing the presence of 

deformed areas within the Magdalena Fan. However, deformation is not 

recognized throughout the fan, but is restricted to the area’s contiguous 

deformation belts.  

Deformation of the northeastern fan occurred before deposition of the main 

fan, affecting the older sea floor morphologies (channel levee complexes). 

The presence of hanging, beheaded channels (previous to CLC IV) parallel 
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to thrust ridges indicates that the channel system was active during the 

deformation events and had time to adjust to deformation, generating a 

confined channel system parallel to the axis of thrust ridges. Deformation 

continued and finally the channel was abandoned and replaced by a course 

perpendicular to the deformation front.   

Deformation on the upper slope (uplift) generated steep slope angles for the 

central fan (CLC III and IV). Retrogressive erosion and mass transport 

events on the northeastern upper slope is interpreted to indicate a response 

to tectonic oversteepening. However, the northeast deformation belt 

terminates in the direction of the central fan (Galerazamba area), suggesting 

that slope modification is more related to continuation of the thrust 

deformation front than to displacement of stress inland. The uplift and 

overteepening of the central channel thalwegs may indicate migration of the 

accretionary deformation inland as a result of lowering the fan slope or 

upper-plate taper. 

The buried extension of the southwestern deformation front modified the 

slope, creating a stepped slope on the western fan, generating high 

sinuosity channels, forced avulsions and knickpoint formation. The CLC IIc 

geometries are clearly modified by deformation changes on the slope, which 

forced the system to abandon areas near the deformation front, and creating 

avulsion points. In addition, an increase in sinuosity and associated 

meander cutoff bends are a result of an increase in slope angle in this case 
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caused by oversteepening of the seafloor topography by deeper folds and 

faults.   

The migration of the sediment source and depocenters could have an effect 

in the internal deformation of the sedimentary wedge. The sediments began 

to be deposited at the northeastern part of the fan. Therefore the 

southwestern area could have been at angles greater than the critical taper 

wedge; hence thrust growth was taking place on that area (deeper 

structures). The fan migration southward lowered the critical taper for that 

area of the slope inhibiting temporally grow of thrust faults. However at the 

stages of deposition of CLC II, the slope was still being modified by the 

thrust faults indicating that the critical taper was not inhibited yet.  

The eastern fan could have being subject of internal deformation earlier by 

lowering the critical taper. Thalweg profiles for the eastern fan exhibit some 

weak convex up profiles that could be related with that deformation.  

Consequently the effect of lowering the critical taper wedge (internal 

deformation) is evident in the central and western fan areas since the 

sediment pile was deposited earlier than the western fan. Conversely, the 

deformation of the southwestern area is more pronounced by the later 

establishment of the fan depocenters.  
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5.2 DEEPWATER SEDIMENTATION:  

The variations in slope topography and location of the sediment source are 

key controlling factors for sediment distribution on the Magdalena Fan. The 

Magdalena system is classified as a mud-rich, point-sourced fan system by 

Reading and Richards (1994). Other modern fan systems in this class 

include the Amazon, Bengal, Indus, and Mississippi fans.  

The Magdalena Fan has previously been described as similar to passive 

margin fans based on the morphologies of the different architectural 

elements (Kolla and Buffler, 1984b; Ercilla et al., 2002a). However this 

present research revealed some important differences between the classic 

passive margin systems and the Magdalena Fan.  

One main characteristic of the Magdalena Fan is the narrow nature of the 

adjacent shelf. The shelf is on average only ~2km wide, whereas the 

Amazon and Mississippi fan systems have continental shelves which extend 

for more than 100 km. This narrow shelf allowed sediment input to the 

continental slope during all stages of sea level fluctuation.  

Because the narrow shelf allowed regular input of sediments to the slope–

basin, variations in sedimentation rates and distribution are mainly controlled 

by river discharge and the inland processes that modified the type, size and 

composition of the sediments. In general it can be stated that this submarine 
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fan is controlled mainly by processes associated with fluvial discharge, with 

a secondary response to sea level changes.  

Due to the constant input of sediments to the slope, pelagic sedimentation 

and condensed sections are restricted to inactive areas of the fan. Some of 

the cores exhibit high percentages of foraminifera at the top layers (RC13-

146, RC11-239, V12-114 and V12-115, Figure 3-12 and Appendix 1). Where 

as the eastern fan has turbidity current activity today, with flows reaching 

hundreds of km into the abyssal plain. Regional extension of condensed 

sections is discontinuous throughout the area due to the erosional 

processes of channel systems that cannibalized the underlying sequences 

during early stages of development.   

No major canyon system was identified for the different stages of growth of 

the Magdalena Fan associated with the channel-levee systems. This is an 

important difference between this system and other passive margin 

systems. The lack of a single, well defined canyon promoted lateral 

migration of the fan and the establishment of channel levee systems. In 

addition the channel levee systems in the Magdalena Fan exhibit a pattern 

commonly seen in other large submarine fans, where each channel levee 

systems overlaps each other, suggesting only one channel system active a 

time. In contrast, the active eastern area there is no individual canyon 

established, but multiple pathways are active over the period of time 

confirmed by the cable breaks distribution over the slope.  
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The active fan canyons are a result of the higher angles of the upper slope. 

Entrenchment of the Magdalena canyon could also be enhanced by the 

anthropogenic modification of the river mouth after construction of jetties.   

 

5.3 MAGDALENA FAN DEPOSITIONAL STYLES 

On the Magdalena Fan, morphologies seem to be more related to the 

sediment source and slope morphology than to the tectonic setting. Different 

depositional styles have been recognized that were the result of interaction 

between sediment input and deformation of the slope.  

The main fan area exhibits three main types of deposits (Figure 5.1 A):  

channel-levee systems, mass transport complexes and sand waves. In 

addition to these architectural elements, unconfined flow deposits were also 

identified (lobate morphologies), that could have been deposited in the 

interchannel lows, low angle sections of the slope, or at the toe of slope at 

the mouth of the canyons systems on the eastern side of the fan. These 

deposits are associated with knickpoint formation and establishment of the 

channel levee systems (Figure 5.1 B). Commonly the lobe deposits are 

found at the base of the channel levee system and could be of economic 

importance. Later establishment of the channel course will define the 

preservation and fluid communication between these geobodies.  
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Sand rich lobate deposits were identified at the toe of the thrust ridges, and 

on different low angle positions on the slope. These deposits are distributed 

along the piggyback basins and the abyssal plain. Bypass areas such as 

canyons and knickpoints within and communicating between the piggyback 

basins are common and should be significant to recognize in the subsurface 

when estimating reservoir location and properties, because they represent 

zones of erosion and therefore may impact reservoir continuity.  

 The depositional systems at the thrust deformed belts differ from the rest of 

the fan ((Figure 5.1 C): Even though the river mouth was located at the 

southwestern (Phase D) and northeastern (Phase B) deformed belts during 

the late Pleistocene and Holocene, respectively, there is no evidence of 

channel levee system development. The depositional axis in both cases is 

perpendicular to the deformation. This sedimentation style should 

correspond to above-grade accommodation (Prather, 2003) with sediment 

accumulation on the toe of the thrust ridges (piggyback basins). Unconfined 

turbidite flows should dominate the slope deposition processes.  

 Later development of slope canyons at the present location of the river 

mouth resulted in variation of the distribution of sediments. The turbidity 

flows traveled along and were deposited parallel to the thrust ridges axis 

((Figure 5.1 D): As discussed earlier variation of properties of the deposit 

away from the point source will be a key to consider when estimating the 

reservoir properties of this type of deposit. The presence of beheaded –
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hanging channels is an indicator of the interaction between deformation and 

sedimentation; this is important when evaluating depositional styles.  

Figure 5.1 depicts a progression on the amount of deformation from A to D 

and consequently the irregularity of the seafloor morphologies appear to 

increase from the central fan toward the deformed thrust belts.   

In addition to the spatial progression, also it is important to note the time 

progression of the deformation. The older sections of the fan seem to 

present lower rates of slope modification (higher internal deformation?) and 

the younger sections of the fan were deposited in areas where the slope 

have experienced strong modifications by the thrust deformation.  

A close interaction between the sediment influx and deformation rates  are 

observed on the fan. The areas with very irregular topography may reflect 

higher deformation than sediment accumulation. Over time, the continuation 

of sediment accumulation may overcome the deformation resulting in a 

smoother topography. This observation will directly support the changes in 

deformation style in presence of high rates of sedimentation that is the basis 

of the critical taper wedge model. 

Sediment deposition in the Aguja Canyon may have been different since it is 

not linked to the Magdalena River system. Characteristics are more related 

to a sand-rich system (Reading and Richards, 1994) that is mainly fed by 

longshore drift through a main canyon. However, composition of the 



 217 

sediment and abundance of plant fragments on the abyssal plain near the 

Aguja canyon indicates mixing of sediments transported by the two systems. 

 

 5.4 LIMITATIONS  

Interpretations of the data utilized in this study were highly limited by the low 

vertical resolution of the seismic profiles and poor imaging of some data 

available. Furthermore the seismic signal was obscured by the presence of 

gas, mud diapirs, and gas hydrates, which in conjunction with the complexity 

of the structures, made the identification and interpretation of the many 

elements identified on the bathymetry data difficult.  

A second constraint was the lack of age control for the different elements. 

The highly erosional nature of the upper slope and lack of age control of the 

sedimentary sections in the basin limit regional correlation. Even though 

correlation with the river migration inland and lateral overlapping 

relationships allowed determination of relative ages for the different 

elements, a better age control would allow timing of establishment of the 

channel systems, changes in sedimentation rate, etc. to be determined. 

Poor preservation of the few surface sediment piston cores in the area also 

limited interpretations about the variation of sediments in the different areas, 

textural changes and even identification of processes that were associated 
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with each flow deposit. New or alternative techniques may be used to try to 

extract additional information from these cores.    

 

5.5 FUTURE WORK  

The Magdalena Fan system could provide opportunities to better understand 

deepwater depositional systems. The interaction of deformation, different 

styles of deposition and active turbidite sedimentation of this system make it 

fairly unique. Future work may include the following:  

 Age dating for some of the major elements in order to establish 

timing of channel-levee system growth, variations in sedimentation rates, 

fan migration, and possibly recurrence of turbidite flows. Not only it is 

necessary to know the age of the turbidite fan, but also to better link the 

activity of the sediments from the coast line.  

 Availability of new 2D and 3D seismic surveys as a result of 

the increasing exploration interest of the area will provide the basis to 

expand and corroborate the interpretation of some of the architectural 

elements. 3D imaging of the fan deposits will allow new understanding in 

the evolution of the channel-levee systems in time by definition of 

changes in sinuosity, lateral migration and slope modification. 

Corroboration of some of the ideas presented in this work, such as the 
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initiation of the channel levee systems, could be achieved with better 

seismic coverage. 

 Revising the existing piston core descriptions and applying 

new concepts and alternative methodologies that allow extracting 

valuable information about the active turbidite flows.  

 New acquisition of piston cores at different distances from 

flows would allow determining the evolution of such flows and their 

erosional and depositional capability. 

 A detailed study of the Aguja Canyon sand rich system would 

be valuable to characterize longshore drift-fed turbidites and quantify the 

influence that this system had on abyssal plain sedimentation. Also 

characterization of northern (Guajira area) sand rich canyons could be of 

economic importance if those systems were common before the 

establishment of the northern drainage system (Magdalena system) in 

the basin.    

 The cable break record is limited to the 1950’s, but it is likely 

that information about ruptures on submarine infrastructure exist, even 

though it is not in the public domain. A rupture of the internet cable that 

provided this service to Colombia and Venezuela was reported on June 

20th, 2007 on the Arcos network (Columbus Networks). An attempt to 

identify the location of the rupture was not provided by the company on 
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security grounds. However institutions such as the CIOH in Colombia 

may be interested in continuing this type of work and finding records of 

additional ruptures in the area.    

 There is considerable opportunity to establish the structural 

evolution of the thrust-deformed belts, in particular the piggyback basins.  

 Quantification of mass transport deposits vs turbidite deposits 

as part of the above-grade deposition will provide important information 

as an analog to exploration and reservoir characterization in this type of 

setting.  

 Biostratigraphy and age dating of the sequences in the 

deformed areas is needed to calculate sedimentation rates and timing of  

compressional phases of deformation.  
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CHAPTER 6 

CONCLUSIONS 

 

 The Magdalena submarine fan is a mud-rich system that 

extends 68,000 km2 into the southern Caribbean Sea. It has been fed by 

the Magdalena River since establishment of the northern drainage 

system in Miocene time. It is part of the accretionary wedge generated 

by the interaction of the Caribbean and South American plates. Two 

arcuate thrust belts developed at the northeastern and southwestern 

extensions of the main fan deposition. Sedimentation is characterized by 

the presence of multiple channel levee complexes (CLC), mass transport 

deposits (MTCs) and fewer unconfined flows.  

 

 Pleistocene to Holocene deposits on the seafloor were 

studied, using bathymetry and seismic profiles, in order to define the 

variations within the system. The fan evolution is closely linked to 

Magdalena delta migration and tectonic processes. The Plio-Pleistocene 

history of the Magdalena River is represented by at least eight different 

phases, beginning at the north (west of the present river location) (CLC 

IV- Early Pleistocene). Then, the river migrated towards the south (CLCs 

III and II, Phase E). The southern most location of the river reached the 
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Canal del Dique (Phase D) during the middle Pleistocene. Later, the river 

migrated north of Cartagena (Phase C), forming CLC IIa, IIb, IIc and I 

(youngest CLC of the entire fan). A major northern shift of the river due 

to the Atlantico-Turbaco uplift shifted sedimentation towards the Cienaga 

de Santa Marta (phase B). The present day delta fan switched positions 

between Boca Vieja and Sabanilla Canyon before stabilizing at its 

present position (Phase A). The fan is active today with deposition of 

turbidite flows and mass transport deposits in piggyback basins formed 

as a result of deformation of the accretionary wedge. Sedimentation 

shifts are corroborated by a decrease in the carbonate content of the 

Colombia basin (6000 B.P.), growth of coralline limestone at the coastal 

margin (Barranquilla) and remnants of old river courses. 

 

 Several CLS’s in the fan show segments with convex up 

thalweg profiles indicating: 1) the channel was abandoned before 

reaching its equilibrium profile or 2) deformation of the channel occurred 

after abandonment. There is evidence of multiple phases of deformation 

on the Magdalena Fan due to the deformation of the larger accretionary 

wedge. Decrease in bathymetric depths on the thalweg profiles for the 

western fan seems to support the idea of higher deformation 

(compression) in this area. Alignment of knickpoints and channel bends, 

and step profiles in the western side are a clear indication of the 
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deformation that is active during and post-formation of the channel 

facies. The presence of overpressured shales seems to have played an 

important role in the deformation of the fan.  

 

 A sequence of knickpoints connects deposition of sediments 

from the shelf break downslope through a series of steps, culminating in 

lobate unconfined deposits. Upstream knickpoint migration in slope steps 

as a response to deformation may represent a key process to explain the 

initiation of deepwater channel systems on the Magdalena Fan, but 

further research needs to be done to establish this. In addition, the 

interchannel lows could facilitate the rapid confinement of the slope to 

initiate the knickpoint migration.    

 

 Modern sediment gravity flows generated submarine cable 

breaks occurred on the Magdalena Fan. Fifteen breaks were recorded in 

a 30 year period. The sediments are apparently transported downslope 

mainly through the Magdalena Canyon, but abandoned canyons and 

gullies also served as conduits for past sediment flows. Three main flow 

pathways were identified: 1) flows from the Magdalena, Sabanilla and U 

canyons transported through piggyback basins PBB1 and PBB4, 2) flows 

from the Magdalena Canyon and western gullies that are transported 

through piggy-back basins on the back of thrust- and fault-cored 



 224 

anticlinal ridges (PBB1 and PBB3), and 3) flows transported by the Aguja 

Canyon.    

 Individual flows seem to be related to different processes on 

the continental shelf: 1) High flood stages of the river, 2) coastal erosion, 

3) longshore drift, 4) hyperpycnal flows and 5) river mouth instability. The 

sedimentological characteristics of the different deposits should differ as 

the flow properties are different. Flows related to the active Magdalena 

canyon and western gullies may be related to high flood stages of the 

river, hyperpycnal flows and instability of the delta front.  

 

 Mass transport deposits (MTCs) in the Magdalena Fan are 

grouped by causal mechanisms: 1) growth of thrust structures (detached 

MTCs), 2) instability of slope canyon and channel walls (detached 

MTCs), and 3) major slope failures (shelf attached MTC). Degradation of 

thrust ridges and retrogradational erosion are also important modifiers on 

the continental slope.  

 

 Four major shelf-attached, slope MTCs occur in the 

interchannel lows on the fan. Causal mechanisms that may have 

triggered these MTCs are instability after abandonment of the delta front, 

sea level changes, seismic activity in the area and active deformation of 
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the upper slope. Possible initiation of the MTCs may be related to the 

southern shift of the delta/fan and relative lowstand of sea level during 

the middle Pleistocene. The shelf edge may have become unstable, but 

further investigation is necessary to test this hypothesis. Observations of 

the upper slope morphologies and downslope deposits suggest that 

these MTCs are the result of multiple events enhanced by 

retrogradational erosion of the upper slope.   

 

 Deformation on the Magdalena Fan occurs within occurs within 

the deformed belts on each side of the fan and along the edges in 

proximity of the deformation fronts. The northeast deformation is found 

on the upper slope and shelf areas where the northeastern deformation 

belt closes in the direction of the central fan (Galerazamba area). The 

southwest deformation is represented by the buried extension of the 

southwestern deformation front which modifies the slope, creating step-

slopes, generating high sinuosity channels, forced avulsions and 

knickpoints.  

 

 The fan deposition lower the critical taper wedge (internal 

deformation) in the central and western fan areas since the sediment pile 

was deposited earlier than the western fan. Conversely, the deformation 
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of the southwestern area is more pronounced by the later establishment 

of the fan depocenters. 

 

 Depositional styles vary from the main fan to the thrust-

deformed areas. Channel levee systems, unconfined flows and MTCs 

are typical of the main fan. Thrust deformed areas are characterized by 

unconfined deposits filling the piggyback basins with directions of flow 

perpendicular and parallel to the main axis of the thrust structures. 

 

 The Aguja Canyon, is identified as a sand rich system because 

it has no significant river linked to the canyon head. Instead the canyon 

must be receiving sandy sediments transported by longshore drift along 

the eastern coast of Colombia.  Submarine cable ruptures across the 

lower reaches of this canyon indicates that sediment gravity flows also 

are active in this area, away from the Magdalena River mouth.  

 

 Important applications to hydrocarbon exploration and 

reservoir distributions have been obtained from this study when the fan is 

used as a modern analog, particularly in the Caribbean basins and 

similar basins in tectonically active parts of the world. In addition, it 
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characterizes the Colombian continental slope in terms of stability and 

shallow hazards for submarine infrastructure. 

 Future studies were suggested to better understand the 

interaction of deformation and the deepwater architectural elements. 

Integration of information such as biostratigraphy, additional seismic 

surveys and sediment samples for the Magdalena fan area, will provide 

further advances on the generation of deepwater depositional models for 

tectonically active margins.  
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APPEDIX 1 

CORE DESCRIPTION 

 

Core location  

 

Core Basal age 

Core 

length 

Date julian 

day Latitude  Longitude  

TW 

Length Type 

water 

depth m 

RC11-239 Pleistocene 36 22-Oct-67 12N 75.483W 33 P 3301 

RC7-15 Pleistocene 30 2-Oct-63 12.0666N 74.89999W 0 P 3612 

RC13-146 
Upper, Late 
Pleistocene 675 29-Jun-70 11.917N 75.03299W 40 P 3387 

VM12-111 Pleistocene 457 21-Jul-57 11.467N 75.06702W 22 P 1853 

VM12-112 
Early, Lower 
Pleistocene 215 22-Jul-57 11.433N 75.10001W 0 P 2136 

VM12-113 
No age 
determined 650 22-Jul-57 11.183N 74.85001W 31 P 232 

VM12-114 Pleistocene 575 23-Jul-57 12.15N 75.06702W 23 P 3601 

VM12-115 Pleistocene 925 23-Jul-57 12.367N 75.21701W 34 P 3691 

VM12-116 
No age 
determined 1175 25-Jul-57 11.233N 74.29999W 18 P 357 

VM12-117 
No age 
determined 490 25-Jul-57 11.217N 74.767W 7 P 284 

VM12-118 

No age 

determined 735 26-Jul-57 11.4N 74.91699W 0 P 1430 

VM12-119 
No age 
determined 615 27-Jul-57 12.45N 74.5W 0 P 3862 

RC13-148 Pleistocene 37 1-Jul-70 11.745N 74.2883W 32 P 1257 

 

http://ingrid.ldgo.columbia.edu/SOURCES/.LDEO/.Deep_Sea_Core/ 

 

http://ingrid.ldgo.columbia.edu/SOURCES/.LDEO/.Deep_Sea_Core/
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 APPENDIX 2 

Flows calculations following Mulder and Syvitski (1995) 

methodology. 

 

Cc = 36.25 kg m
-3

. Average critical sediment concentration  (sediment density 2650 kg m
-

3
) to overcome difference between fresh and salt water. At equatorial latitudes. (from 

Kennish, 1989)  

 

Q  Mean annual water discharge Units m
3
s

-1
 

Qs Mean annual sediment discharge Units m
3
s

-1
 

Qflood is calculated by the power function (Mattahai 1990) . Units m
3
s

-1
 

99.0,10

084.2log865.0)(log07.0log

226

2

rkmforA

AAQflood

 

A  Basin area in km
2  

  

 Concentration of suspended sediment 

Q

Qs
Css   

 Maximum flood discharge  

b

flood
Q

Qflood
CssC  

 

b Exponent varied until Cflood > Cc, b=2 



 280 

APPENDIX 3 

 

Curvature on Seafloor bathymetry 

 

This appendix contains images of curvature attributes generated for one of 

the bathymetry surveys. For relatively flat surfaces, curvature approximates 

the second derivative of a surface, and is more accurately defined as the 

reciprocal of the radius of a circle that is tangent to the given curve at a 

point. (Chopra and Marfurt, 2007). Curvature will be large for a tightly folded 

surface and zero for a plane. Different measurements of curvature highlight 

different features of the seafloor surface as is shown in the following figures. 

(For definition of curvature types see Chopra and Marfurt, 2007). 

 Variations of the surface cell size act as spatial filter and will change the 

curvature results, highlighting different features. Calculations of curvature 

were implemented for six cell sizes in order to observe the variation of 

curvature and its different measurements.  

  

 

Chopra S., Marfurt K., 2007, Curvature attributes applications to 3D surface seismic data, 

The Leading Edge, 26(4):404-414    
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