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Abstract 

 

This thesis examines the role of recollection in the word frequency mirror effect. 

In two experiments, participants studied lists comprised of sets of associatively related 

words and sets of unrelated words from 4 levels of word frequency.  Following a short 

distractor task, participants took an item recognition test with confidence ratings 

(Experiment 1) or old-new judgments followed by remember-familiar judgments 

(Experiment 2).  In Experiment 1, the standard word frequency mirror effect for 

comparisons of LF words to HF words was observed, but the effect did not obtain for 

comparisons of MF, HF, or VHF words.  In Experiment 2, a complete word frequency 

mirror effect was observed, and the patterns for hit rates and remember judgments for 

targets were almost identical.  These findings run counter to predictions from Bayesian 

likelihood models (Glanzer, Hilford, & Maloney, 2009) but are consistent with the 

hypothesis that mirror effects are the result of differences in recollectability between 

stimulus classes (Joordens & Hockley, 2000).   Attempts to develop a computational 

process model to account for mirror effects and boundary conditions on those effects 

such as those observed in Experiment 1 are also discussed. 
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Chapter 1 

Introduction 

 

Prior to the 1990’s, models of recognition memory generally assumed that 

performance on recognition tasks is a function of the strength or familiarity of items in 

memory (e.g., Anderson & Bower, 1972, 1973, 1974; Gillund & Shiffrin, 1984; 

Hintzman, 1988).  Although these models used different architectures and 

operationalized memory strength in dramatically different ways, they made one 

common prediction: All other things being equal, manipulations that increase the 

strength of the representation of stimuli in memory will increase the probability that old 

items will be recognized as old (i.e., the hit rate, HR) and the probability of new items 

being recognized as old (i.e., the false alarm rate, FAR).  Thus, when Glanzer and 

Adams (1985) showed that a wide variety of manipulations result in a very different 

pattern—a mirror effect wherein recognition memory performance is improved by 

simultaneously increasing the HR and decreasing the FAR—memory modelers began 

to question the validity of the assumptions behind strength-based theories of recognition 

memory. 

In particular, Glanzer and his colleagues have argued that the regularity with 

which mirror effects are observed requires a reconceptualization of how recognition 

memory operates (Glanzer, Adams, Iverson, & Kim, 1993; Glanzer, Hilford, & 

Maloney, 2009), and although mirror effects have received relatively little attention in 

the development of general recognition theories, they have become one of the 

phenomena that are “at the heart of testing and evaluating” computational models of 
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recognition memory (Ratcliff & McKoon, 2000, pg 575).  This emphasis on mirror 

effects has led many memory model developers to reject strength-based global memory 

models (GMMs) of recognition such as the search of associative memory model (SAM; 

Gillund & Shiffrin, 1984) in favor of models that use Bayesian likelihood ratios rather 

than memory strength as the basis for making recognition decisions.  One of the key 

advantages of these newer models is that they naturally produce mirror effects as a 

byproduct of the Bayesian decision process (e.g., Dennis & Humphreys, 2001; Glanzer 

et al., 1993; Glanzer et al., 2009; Shiffrin & Steyvers, 1997). 

However, there is a growing body of evidence showing that there are boundary 

conditions on mirror effects and that these effects are not as regular as has been 

generally assumed (for a review see Greene, 2007).  These findings imply that the 

current emphasis on explaining mirror effects is incomplete and that models of 

recognition memory should be able to account for the important cases in which mirror 

effects do not occur, as well as the cases in which they do.  Classic single-process, 

strength-based recognition models predict the absence of mirror effects but do not 

generally predict their presence (Glanzer & Adams, 1985; but see Gillund & Shiffrin, 

1984).  On the other hand, models that use a Bayesian likelihood transformation easily 

predict the presence of mirror effects but do not generally predict their absence (Glanzer 

et al., 2009).  Thus, none of the extant models are sufficient. 

There were two primary goals for this research project.  First, I wanted to 

investigate the effects of normative word frequency and semantic association on true 

and false recognition.  A large number of studies have shown mirror effects when 

comparing memory for low frequency and high frequency words; however, Estes and 
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Maddox (2002) showed that these effects are moderated by the magnitude of the 

disparity in relative frequency.  There are reasons to believe that semantic association 

may also moderate the word frequency mirror effect, and it is not known what effects 

word frequency has on associatively induced false recognition.  To examine this issue I 

designed and ran two novel experiments that combined the word frequency paradigm 

used by Estes and Maddox with a variant of the Deese-Roegider-McDermott (DRM) 

paradigm (Deese, 1959; Roediger & McDermott, 1995) as used by Kimball, Muntean, 

and Smith (2010). 

Second, I wanted to develop a computational model of recognition memory that 

could parsimoniously account for mirror effects and their absence without using 

Bayesian likelihood transformations.  To this end, I modified the fSAM recall model 

(Kimball, Smith, & Kahana, 2007) by incorporating processes that assess memory 

strength based on familiarity and recollection and use the results of those processes to 

make recognition decisions.  I tested a number of possible model variants in a series of 

simulations that examined the ability of the model to account for 1) the shape of ROC 

and z-ROC curves relating hits and false alarms as a function of subjective confidence 

in item recognition and 2) word frequency mirror effects. 

Thus, the research project encompassed two distinct phases, and the 

organization of this thesis reflects those phases.  The first half of this thesis focuses on 

the mirror effect, including the two new experiments I conducted.  First, Chapter 2 

discusses the basics of measuring recognition memory performance and reviews the 

major theories of recognition memory.  Chapter 3 then reviews mirror effects in 

recognition memory, including the evidence for viewing mirror effects as a regularity of 
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memory, the theoretical explanations that have been offered to explain mirror effects, 

and some reported boundary conditions for mirror effects.  The results from two unique 

experiments that were performed to investigate the effects of word frequency and 

semantic association on true and false recognition are reported in Chapters 4 and 5.  

These experiments were also designed to provide data to guide and constrain the 

development of the fSAM recognition model.   

The second half of this paper focuses on the development and testing of a series 

of computational models of recognition based on the fSAM recall model.  Chapter 6 

starts by briefly reviewing extant computational models of recognition memory, 

focusing on how these models deal with two critical issues in recognition memory 

theory—the shape of ROC curves and the word frequency mirror effect.  The chapter 

then discusses issues related to model development and testing, including the rationale 

for my modeling approach, and briefly describes of the SAM framework and the fSAM 

model of recall.  Chapter 7 covers the development of the fSAM recognition model 

through two sets of simulations.  The chapter describes a number of possible ways in 

which familiarity and recollection could be implemented within the fSAM framework, 

reports the results of a test of the ability of 36 different model variants to account for the 

shape of ROC curves in episodic recognition, and shows that none of these models are 

able to generate a word frequency mirror effect. Finally, Chapter 8 presents concluding 

remarks, including discussions of why the fSAM model cannot account for mirror 

effects, what characteristics a strength-based model would need in order to account for 

mirror effects, and possible directions for future research. 
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Chapter 2 

Fundamentals of Recognition Memory 

 

In the standard recognition memory experiment, participants study a list of items 

such as words or pictures, wait for some amount of time, and are then tested on their 

memory for those items.  There are a number of ways in which the recognition test can 

be given.  The simplest type of test involves old-new judgments: Participants are 

presented with a series of items, some of which were in the previously studied list and 

some of which were not, and are asked to determine whether each item is “old” (i.e., 

was in the list) or “new” (i.e., was not in the list).  A common variation on this approach 

is to ask participants to rate their confidence that each test item was a previously studied 

item using a Likert scale that ranges from “sure old” to “sure new.”  These confidence 

ratings can be converted to old-new judgments or used to build receiver operating 

characteristic (ROC) curves as described below.  Another variation is the remember-

know procedure in which participants are asked to make an additional judgment for 

each item that they identify as old, indicating their phenomenological experience 

regarding the item, such as whether they can recall specific details about the item’s 

presentation during study or just have a feeling that the item was studied (Gardiner & 

Java, 1991; Rajaram, 1993; Tulving, 1985). 

Measuring Recognition Memory Performance 

Participants’ performance on the recognition test can be measured in a number 

of different ways, depending on the method that is used to administer the recognition 

test.  For purposes of scoring, items that were previously studied are referred to as 
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targets, and items that were not previously studied are referred to as lures.  For old-new 

judgments, correct identification of a target as old is termed a hit, and incorrect 

identification of a lure as old is termed a false alarm.  Conversely, incorrect 

identification of a target as new is a miss, and correct identification as new is a correct 

rejection.  Because these sets of scores are complementary, old-new recognition 

memory performance is usually measured by the proportion of hits (hit rate, HR) and 

the proportion of false alarms (false alarm rate, FAR). 

Signal detection theory.  Recognition memory performance can be described in 

more detail, though, using the measurement tools of signal detection theory (SDT).  As 

applied to memory performance, SDT assumes that the strength of items in memory is 

distributed in a Gaussian fashion, with different item classes having different 

distributions, as shown in Figure 1.  Prior to being studied, all items are assumed to be 

part of the unstudied or lure distribution.  Studying items strengthens them.  Classical 

signal detection theory assumes that all studied items are strengthened equally so that 

the target distribution is shifted to the right relative to the lure distribution but the 

Figure 1. Distribution of memory strengths in an equal-variance signal detection 
model. 
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variances of the distributions remain equal, as shown in Figure 1 (Wickens, 2002).  

However, if there is variability in the strengthening of items during study, both the 

mean and the variance of the target distribution increase, yielding an unequal variance 

model (Wixted, 2007a).  

Participants are assumed to make recognition memory decisions by comparing 

the strength of a memory probe to a response criterion.  If the strength is above the 

criterion, then the item is judged to be “old”; otherwise the item is judged to be “new.” 

Thus, studied items whose strength is above the threshold result in hits, while unstudied 

items that are above the criterion result in false alarms.  Based on these assumptions, 

SDT provides a number of ways to measure recognition performance, including metrics 

for the discriminability between the distributions, response bias, and the shapes of the 

distributions (for reviews, see Macmillan, 2002, and Wickens, 2002).   

Discriminability.  The most basic metric in SDT—discriminability or sensitivity 

(d’)—measures the standardized distance between the means of the distributions.  If the 

underlying distributions are assumed to have equal variances (σ), then d’ can be easily 

calculated as (HR – FAR) / σ.  When the equal variance assumption is relaxed, the more 

general formula d’ = z(HR) – z(FAR) is preferred (Macmillan & Creelman, 1991; 

Wickens, 2002).  Because d’ is a standardized measure, in theory it allows researchers 

to compare recognition memory performance across conditions that differ on a number 

of dimensions—including the type and number of stimuli, instructional manipulations, 

and subject population—and a vast majority of recognition memory studies use d’ as 

the measure of sensitivity.  The main drawback to using single-point measures of 

sensitivity such as d’ is that unless the equal variance assumption is met, these measures 
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are subject to systematic bias effects that can make meaningful theoretical 

interpretations virtually impossible (Verde, Macmillan, & Rotello, 2006).  Given the 

considerable evidence that there are usually significant differences in the distributions 

of the strength of items in memory (Wixted & Stretch, 2004), these bias effects may be 

particularly problematic for studies of recognition memory performance. 

Receiver operating characteristics (ROCs).  Fortunately, SDT provides a tool 

for measuring recognition memory performance that takes into account not only the 

relative locations of the distributions, but also the variances and response biases.  

Isosensitivity curves, more commonly called receiver operating characteristics (ROCs), 

show the change in performance across different criteria. Because they show the change 

in sensitivity over all possible response biases, ROCs are much more powerful than 

single-point metrics such as d’ (Macmillan & Creelman, 1991). 

ROCs can be constructed from theoretical distributions based on hypotheses 

about the operation of memory processes or from data obtained in empirical studies 

with human participants (Wickens, 2002).  To construct a theoretical ROC, the 

researcher needs to specify the parameters for the means and the variances of the target 

and lure distributions, along with a set of criterion levels. These criterion points 

represent different levels of response bias, and are often mapped to confidence levels 

(e.g., Yonelinas, 1994).  Once these parameters have been specified, the cumulative 

probabilities for hits and false alarms at each level of response bias are calculated, and 

these are plotted against each other to produce an ROC plot in probability space (see 

Figure 2, Panel A). If the hits and false alarms are normalized prior to being plotted, a z-

space ROC (z-ROC) can be produced (see Figure 2, Panel B).  Empirical ROCs are 
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created by measuring subjects’ performance at different levels of response bias, such as 

by asking them to make confidence judgments instead of binary old-new judgments, 

and then plotting the resulting cumulative hit and false alarm rates across the levels of 

response bias (for a brief tutorial on constructing empirical ROCs, see Yonelinas & 

Parks, 2007).  As with theoretical z-ROCs, the cumulative hit and false alarm rates can 

be normalized and plotted in z-space. 

ROC plots are particularly useful because they show a picture of the changes in 

sensitivity across different levels of bias that can be used to infer the shapes of the 

underlying distributions (Macmillan & Creelman, 1991; Wickens, 2002). In probability-

space ROCs, the diagonal line from bottom-left to top-right represents the case where 

sensitivity is zero (i.e., discrimination is at chance, d’ = 0).  Parallel lines above the 

diagonal represent increasing levels of sensitivity.  Assuming the distributions are 

Gaussian with equal variances, if the sensitivity across confidence levels is constant, 

then the points will lie on a symmetric curve with an intercept of zero.  Distortions such 

as a non-zero intercept or a non-symmetric curve (see Figure 2, Panel A) indicate a 
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change in sensitivity across confidence levels.  These changes are produced when the 

distributions have unequal variances (e.g., Wixted, 2007a) or when an additional 

threshold-based decision process is added to the SDT decision process (e.g., Yonelinas, 

1994). 

Although distortions can make the standard probability-space ROC difficult to 

interpret, when transformed into z-space the resulting z-ROC (see Figure 2, Panel B) 

can easily be interpreted in terms of its linearity, slope, and intercept (Wickens, 2002).  

A linear z-ROC indicates that the underlying distributions are Gaussian, while a non-

linear z-ROC is indicative of non-Gaussian distributions.  The slope of the z-ROC 

measures the ratio of the variances of the target distribution to the variance of the lure 

distribution.  Thus, a linear z-ROC with slope of 1.0 represents constant sensitivity 

based on Gaussian target and lure distributions with equal variances.  A slope greater 

than one indicates that the lure distribution has a larger variance than the target 

distribution, and a slope less than one indicates that the target distribution has a larger 

variance.  Finally, for linear and near linear z-ROCs, the intercept measures the overall 

sensitivity (d’ or da).  

Estimating the contributions of familiarity and recollection.  The dual-

process signal detection (DPSD) model (Yonelinas, 1994, 1997) interprets distortions in 

the ROC as evidence of the operation of two distinct memory processes—familiarity 

and recollection.  The DPSD theory is discussed in detail later in this chapter, but for 

the moment, I note that DPSD provides a measurement model that can be fit to 

empirically obtained data and thereby used to estimate the relative contributions of 

familiarity and recollection processes to participants’ recognition memory performance.  
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An Excel 2007 spreadsheet that uses the Solver tool to fit the DPSD model by 

minimizing the sum of squared errors is available from the Human Memory Lab at the 

University of California, Davis (http://psychology.ucdavis.edu/labs/Yonelinas/ 

Software.html). 

Whereas the SDT measurement techniques discussed above were initially 

designed to assess performance on perceptual tasks and only later adapted to measure 

recognition memory performance (Wickens, 2002), Tulving’s (1985) remember-know 

procedure and Jacoby’s (1991) process-dissociation procedure were designed 

specifically to assess the relative contributions of the underlying cognitive processes to 

that performance.  Both of these procedures assume that two independent processes are 

used to make recognition decisions and that the relative influence of these processes can 

be measured, either directly or indirectly. 

The remember-know procedure.  In the recognition version of the remember-

know procedure (e.g., Gardiner & Java, 1991), participants are given an old-new 

recognition test and for each item they rate as old, they are asked to indicate whether 

they identified that item as a previously studied item because they were able to 

consciously recollect the previous encounter with the item (a “remember” response) or 

because it just seemed to be old (a “know” response).  The key assumption underlying 

the remember-know procedure is that these two responses tap into different memory 

processes or systems.  Tulving (1985) originally devised the procedure to assess the 

relative use of episodic memory (remember response) and semantic memory (know 

response), but the procedure is most often used to assess the relative contributions of 

recollection and familiarity processes.  And although some of the underlying 
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assumptions have been questioned (e.g., Rotello, Macmillan, Reeder, & Wong, 2005; 

Wais, Mickes, & Wixted, 2008), the remember-know procedure remains an important 

tool for investigating the cognitive processes used in recognition and evaluating models 

of recognition memory (Cohen, Rotello, & Macmillan, 2008; Yonelinas & Parks, 2007). 

Process-dissociation procedures.  Rather than directly measuring the 

contribution of cognitive processes through introspective reporting, Jacoby’s (1991) 

process-dissociation procedure attempts to estimate their use with a logical subtraction 

approach.  In this procedure, participants study a list of items in which the perceptual 

characteristics and/or processing tasks vary across the words.  For example, some words 

may be presented auditorily while others are presented visually.  After an appropriate 

delay, participants are given either an exclusion test or an inclusion test.  On the 

exclusion test participants are instructed to identify as old only the items that were 

presented in a particular manner (e.g., only the words that were heard but not those that 

were read).  It is assumed that participants have to use a recollection process in order to 

reject items from the non-target category (e.g., the read items), so that the mistaken 

recognition of items from the non-target category is due to a failure of recollection.  By 

subtracting the probability of making an old judgment for the non-target items on the 

exclusion test from the probability of responding old to those same items on the 

inclusion test, the researcher can obtain an estimate of the extent to which familiarity 

processes were used.  This can then be used to estimate the use of recollection 

processes.  A number of studies using the process-dissociation method have shown that 

familiarity and recollection estimates can be reliably dissociated using experimental 

manipulations such as varying the study duration or using divided attention during study 
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(for a review, see Kelly & Jacoby, 2000).  However, the viability of the process 

dissociation procedure is heavily reliant on the assumption that the underlying processes 

are independent (Curran & Hintzman, 1995), and there are boundary conditions on its 

use (Jacoby, 1998). 

General Theories of Recognition Memory 

Single-process or dual-process? Traditionally, recognition memory theories 

have been divided into single-process theories and dual-process theories, depending on 

how many memory processes people are assumed to use when deciding whether a 

stimulus has been encountered previously (Yonelinas, 2002). As the name implies, 

single-process theories assume that only one memory process is required in order to 

make a recognition decision.  Early single-process theories, called threshold models, 

assumed a discrete process akin to free recall that could be explained using state 

diagrams (e.g., Atkinson, 1963; Luce, 1963).  More recent single-process theories, 

including those incorporated into the global matching memory models (GMMs) that are 

discussed in Chapter 6, assume that the strength of items in memory can be indexed on 

a single continuous dimension and that recognition decisions are made using a decision 

process that is described by classical SDT (e.g. Gillund & Shiffrin, 1984).  

On the other hand, dual-process theories assume that recognition decisions 

involve two different memory processes and that recognition is the result of the additive 

effects of these two processes (Mandler, 1980).  The first of these processes is a feeling 

of “knowing” that you have encountered this stimulus before. Various theories ascribe 

this sense of familiarity as being due the overall strength of the memory representation 

for that stimulus (Mandler, 1980; Yonelinas, 1994) or to the ease of processing the test 
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stimulus (Jacoby, 1991).  The second process, usually called recollection, is a recall-like 

process in which one tries to retrieve contextual information about previous encounters 

with the stimulus.  For clarity in this paper, unless I indicate otherwise, I use the terms 

familiarity to refer to strength-based memory processes and recollection to refer to 

recall-like processes, without endorsing any particular theoretical definition of these 

terms.  

The traditional division into single- and dual-process theories was useful 

because there was a clear distinction between the two classes of theories.  Single-

process theories postulated a single memory process that fed into a single decision 

process.  Conversely, dual-process theories postulated two memory processes, each 

with its own associated decision process.  However, the development of new hybrid 

recognition theories has blurred this distinction to a point where it may no longer be a 

meaningful way to distinguish between the theories.  There are at least three reasons 

why the single- vs. dual-process distinction needs to be rethought. 

First, the constructs associated with the cognitive processes involved in 

recognition are not always defined in the same way across the different classes of 

theories (Yonelinas, 2002). A related problem is that some of the critical constructs that 

are shared across the different classes of recognition theories are ill-defined, making it 

difficult to create consistent operational definitions for measuring the constructs. For 

example, with the notable exception of computational models such as the SAM model 

(Gillund & Shiffrin, 1984), theories based on SDT postulate the existence of 

distributions of memory strength, but they often do not define the construct of “memory 

strength” or describe how these distributions arise (T. Smith & Kimball, in press).  This 
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ambiguity has lead to a great deal of debate in the literature as to whether the familiarity 

distributions for targets and lures (an unobservable construct) have equal variances or 

unequal variances, and much of the single- vs. dual-process controversy had been fueled 

by this issue (see, e.g., Parks & Yonelinas, 2007; Wixted, 2007a; Wixted 2007b; 

Yonelinas & Parks, 2007).   

Second, as mentioned above, it is not always clear which types of processes are 

being described by the terms “single-process” and “dual-process.”  In particular, the 

term “single-process” has been used to describe theories that postulate a single memory 

process as well as theories that postulate a single decision process.  For example, 

because the unequal variances signal detection (UVSD) model argues that recognition 

performance can be described with a SDT model that involves only one decision 

process, some researchers classify it as a “single-process” model (e.g., Diana, Reder, 

Arndt, & Park, 2006; Slotnick & Dodson, 2005).  But if one allows for the possibility 

that the memory strength that is used in the UVSD decision process is derived by 

combining sources of evidence generated by familiarity and recollection memory 

processes, then it can also be classified as a dual-process or hybrid model (Wixted, 

2007a; Wixted & Stretch, 2004).  As Heathcote, Raymond, and Dunn (2006) have 

pointed out, this is true in general:  Most so-called “single-process” recognition theories 

could be more properly described as multiple-process or hybrid theories because they 

implicitly assume that the memory strength used in the signal detection process is a 

composite of strengths from multiple memory processes.  Multidimensional SDT-based 

theories such as the STREAK model (Rotello, Macmillan, & Reeder, 2004) that assume 

bivariate distributions of memory strengths from different sources along with different 
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criteria for each dimension further blur the distinction between single- and dual-process 

theories. Should these theories be classified as “single-process” because they use a 

single SDT process for making the recognition decision? Or should they be classified as 

“dual-process” because they include two different memory processes? 

Third, a consensus that a simple single-process model—be it a threshold model 

or a single dimensional strength-based familiarity model—is insufficient to explain 

even the basic phenomena in recognition memory has clearly been reached (Diana et 

al., 2006; Rotello et al., 2004; Slotnick & Dodson, 2005; Wixted, 2007a; Yonelinas & 

Parks, 2007).  Importantly, a consensus that two distinct memory processes—generally 

termed “familiarity” and “recollection”—drive recognition performance also appears to 

be forming.  Today, the major debate seems to be over the nature of these processes 

(e.g., is recollection continuous or discrete) and the manner in which they are combined 

to make recognition decisions (e.g., are familiarity and recollection combined into a 

single composite strength upon which a SDT decision process operates or does 

recollection drive a separate threshold decision process?). The major theories that 

address these issues are described in more detail below. 

Mandler’s dual-process theory.  Mandler (1969, 1980) popularized the idea 

that recognition decisions can be made using two distinct processes and introduced a 

mathematical model to describe how these processes interact. Mandler defined 

familiarity as a sense that a particular stimulus (the test stimulus) has been previously 

encountered and proposed that this is a measure of the extent to which the test stimulus 

has been integrated with other items and contexts.  That is, familiarity is a global 

measure of the strength of the item in memory, which may or may not be accompanied 
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by the ability to identify contextual details about previous occurrences of that item.  

According to Mandler, familiarity is usually accompanied by a recall-like attempt to 

retrieve contextual details about previous occurrences of that item.  In early versions of 

Mandler’s (1969) model, the recognition decision process was assumed to be serial: 

Familiarity is first assessed, and then a memory search is engaged, if necessary.  In later 

versions of the model (e.g., Mandler, 1980), the processes are assumed to run in 

parallel, with familiarity assessments being faster than memory search.  Thus, according 

to Mandler, recognition decisions can be made based on familiarity, retrieval of 

contextual details, or a combination of both processes. 

The Jacoby model. Jacoby and colleagues (Jacoby, 1991; Kelley & Jacoby, 

2000) extended Mandler’s dual-process model by reconceptualizing familiarity and by 

introducing the term recollection to describe the retrieval of contextual details.  In the 

Jacoby model, familiarity is based on an assessment of processing fluency rather than 

memory strength.  Because the processing fluency of an item increases with prior 

experience, the mind can infer the likelihood that an item has been previously 

experienced from how easy it is to process that item.  This inference does not require 

any conscious effort and is assumed to occur automatically.  Recollection in the Jacoby 

model is similar to the retrieval process in the Mandler model in that it is an active 

search of memory for contextual details and other information that was encoded during 

study.  Thus, in the Jacoby model, familiarity is an automatic process and recollection is 

an effortful, conscious process.  However, recollection and familiarity are still assumed 

to be parallel processes, with the automatic familiarity processes being faster than the 

conscious recollection process. 



 

18 

The dual-process signal detection (DPSD) model.  Yonelinas (1994) 

integrated the Mandler (1980) and Jacoby (1991) models with signal detection theory to 

develop the DPSD model.  In the 16 years since its introduction, the DPSD model has 

proven to have a high degree of explanatory power and has been influential in both 

cognitive psychology and cognitive neuroscience (Yonelinas & Parks, 2007). One of 

the key pieces of evidence for the DPSD theory is the shape of recognition memory 

ROCs (Yonelinas, 1994).  Specifically, for item recognition, probability-space ROCs 

are almost universally non-linear and asymmetric, as shown in Figure 1, Panel A.  

These characteristics lead to z-ROCs that are typically linear with a slope less than 1.0 

(usually around 0.8), as shown in Figure 1, Panel B (Yonelinas & Parks, 2007).  This 

does not accord with predictions from the classical equal variance SDT model that z-

ROCs should be linear with a unit slope.  However, Yonelinas (1994) showed that 

adding a threshold recollection process to an equal-variance SDT familiarity process 

allows the DPSD model to capture the asymmetry in ROCs. 

Like the Mandler (1980) model, the DPSD model assumes that recognition 

decisions can be based on an assessment of global memory strength (familiarity) or on 

the results of an active memory search (recollection), and that these processes run in 

parallel.  Unlike previous models, though, DPSD assumes that under normal 

circumstances the recognition decision is made in two stages, with recollection-based 

decisions taking precedence over familiarity-based decisions (Yonelinas, 1994).  That 

is, if the active memory search is successful, the item is recollected and is identified as 

an old item with a high confidence rating. If recollection fails or the decision needs to 

be made before the search terminates (e.g., as in speeded recognition tasks), the 
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recognition decision is made using a standard SDT decision process by comparing a 

familiarity value drawn from a Gaussian distribution to a single criterion to make an 

old-new judgment or to a set of confidence level criteria to make confidence judgments 

(Yonelinas, 1994; Yonelinas & Parks, 2007).  The DPSD model can also accommodate 

remember-know judgments by assuming items that are recollected receive remember 

judgments and items that are judged as old based on familiarity receive know judgments 

(Yonelinas, Kroll, Dobbins, Lazzara, & Knight, 1998). 

The “dual-process” models such as Mandler’s (1980), Jacoby’s (1991), and 

Yonelinas’ (1994) models all assume that two distinct memory processes, each with its 

own decision process, can be used to make recognition decisions; however, this 

assumption has been criticized as being unparsimonious (Slotnick, Klein, Dodson, & 

Shimamura, 2000; Wixted, 2007a; Wixted & Stretch, 2004).  In principle, a recognition 

theory that does not require a separate recollection decision process would be more 

parsimonious than those that do.  I next turn to one such theory that has proven to be a 

viable alternative to DPSD. 

The unequal variance signal detection (UVSD) model. It has long been 

known that a single-process equal variance signal detection model is incapable of 

generating ROCs that look anything like the asymmetrical ROCs that are obtained in 

recognition memory experiments with human subjects (Green, 1960).  However, a 

signal detection model that assumes unequal variances in the distributions of memory 

strength can fit empirical ROCs just as well, and sometimes better, than the DPSD 

model, even though the model lacks a threshold recollection process (Wixted, 2007a, 

2007b; but see Parks & Yonelinas, 2007).  Despite this fact, the DPSD model has often 
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been preferred over an unequal variance signal detection (UVSD) model because, until 

recently, there was no principled explanation of why the target distribution should have 

a greater variance than the lure distribution (Yonelinas & Parks, 2007; Wixted, 2007a). 

This problem was solved by Wixted and Stretch (2004; see also DeCarlo, 2007) by 

relaxing the traditional assumption that the memory strength distributions arise from a 

single memory source.   

In Wixted’s (2007a) UVSD model, memory strength is a combination of 

evidence from a familiarity process—as in traditional single-process SDT and the 

DPSD model—and a recollection process.  Like the DPSD model, the UVSD model 

assumes that familiarity is a continuous measurement of “global” memory strength.  

However, whereas the DPSD model assumes that recollection is a discrete process that 

is separate from the SDT process, the UVSD model assumes that recollection is a 

continuous measurement of “item-specific” memory strength and that the two types of 

memory strength (familiarity and recollection) sum to an overall memory strength.  This 

combined strength is then used to make a recognition decision as in other SDT models. 

Notably, although Wixted uses the terms “item-specific” and “global” strength to 

describe recollection and familiarity, respectively, these constructs are not clearly 

defined in the UVSD model.  I address this point further in Chapter 7 when I describe 

my attempt to implement a UVSD-based process model of recognition. 

The unequal variances in target and lure distributions in Wixted’s (2007a) 

UVSD model are the result of adding the local memory strength from recollection to the 

global memory strength from familiarity.  Unstudied items are assumed to have low 

recollective strengths with little variability among these values.  Studied items are 
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assumed to have higher recollective strengths, but these strengths are highly variable 

due to differences in attention, rehearsal, and other aspects of the encoding process.  

When the familiarity and recollection strengths are summed, the result is a pair of 

normal distributions in which the unstudied items have a low mean with low variability 

and the studied items have a higher mean with higher variability, as shown in Figure 3. 

Participants are assumed to use these combined unidimensional, unequal-

variance distributions to make old-new decisions, confidence ratings, and remember-

know judgments using a signal detection process, as described earlier.  In the UVSD 

model, the critical difference between old-new and remember-know judgments is the 

criteria, not the processes: Old-new decisions (and confidence ratings) use one set of 

criteria, and remember-know decisions use another (see Figure 3).  In both cases, the 

UVSD model predicts curvilinear, asymmetrical ROCs and linear z-ROCs with a slope 

less than 1.0 as a consequence of the differences in variance between the target and lure 

distributions (Wixted, 2007a). 

Figure 3.  Distribution of memory strengths for targets and lures along with criteria 
for making old-new and remember-know judgments in the UVSD model. 
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Limitations. One important limitation of general recognition theories such as 

those outlined above is that the theories focus on how theoretical constructs such as 

memory strength, familiarity, and recollection are used to make recognition decisions 

but they do not detail the actual operation of the lower-level processes that give rise to 

memory strength, familiarity, and recollection (Yonelinas, 2002).  In other words, these 

theories specify the operation of decision processes but require ad hoc assumptions 

regarding the operation of the basic underlying cognitive processes in order to be 

complete.  As I discuss in Chapter 6, computational models such as fSAM are important 

tools that can be used to address this issue. 
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Chapter 3 

Mirror Effects in Item Recognition 

 

The mirror effect is a somewhat paradoxical effect that can occur when classes 

of stimuli that differ in initial strength are studied or when an experimental 

manipulation results in one subset of a class being strengthened more during study than 

another. As discussed in Chapter 2, strength-based accounts of recognition memory 

such as classic SDT and single-process global matching models assume that studying 

items strengthens them, thereby shifting the distribution of target strengths to the right, 

as shown in Figure 4 Panel B.  If two classes of stimuli that differ in initial strength 

(Weak and Strong in Figure 4) are studied, the distributions of both classes should be 

shifted right.  This ordering of distributions implies the concordant effect shown in 

Figure 4 Panel A in which the hit and false alarm rates for the strong class are higher 

than those for the weak class (Glanzer & Adams, 1990; Glanzer et al., 1993).  However, 

when the mirror effect obtains, recognition memory performance for ostensibly stronger 

stimuli is improved relative to the ostensibly weaker stimuli by simultaneously 

increasing the hit rate and decreasing the false alarm rate, as shown in Figure 5 Panel A 

(Glanzer & Adams, 1985).  The mirror effect is highly problematic for strength-based 

signal detection accounts of recognition because it implies the ordering of memory 

strength distribution shown in Figure 5 Panel B in which the unstudied item 

distributions are reversed.  That is, lures for the ostensibly strong stimulus class have to 

be weaker than lures for the ostensibly weak stimulus class (Glanzer & Adams, 1985; 

Glanzer et al., 1993). 
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Figure 4.  Example of a concordant effect (Panel A) and the strength distributions 
that give rise to the effect when using a signal detection decision process 
(Panel B). 

A	   B	  

Figure 5.  Example of a mirror effect (Panel A) and the strength distributions 
that give rise to the effect when using a signal detection decision process 
(Panel B). 

A	   B	  
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Mirror Effects as a “Regularity” of Recognition Memory 

In their seminal review paper, Glanzer and Adams (1985) present fairly 

compelling evidence that mirror effects occur with surprising regularity in recognition 

memory.  They reviewed studies that required participants to perform a common 

recognition task such as make old-new judgments, rate their confidence, 2AFC and 

multiple choice and that manipulated a number of variables within subjects—including 

normative word frequency, concreteness or imageability, meaningfulness or familiarity 

of the stimuli, and pictures vs. words.  For word frequency, 23 of the 24 reviewed 

studies showed the presence of mirror effects.  For concreteness or imageability, 8 of 9 

showed mirror effects.  For meaningfulness or familiarity, 9 of 13 showed the effect.  

For pictures vs. words, 6 of 8 showed mirror effects, and for the miscellaneous variables 

17 of 26 showed this effect.  The fact that none of these proportions are likely to have 

occurred by chance demonstrates that the mirror effect is real and that it seems to occur 

in a vast majority of recognition studies using a wide range of variables and procedures. 

Later experiments appear to strengthen these findings.  In a series of five 

experiments, Glanzer and Adams (1990) found mirror effects for stimuli that varied in 

normative word frequency and concreteness and for a manipulation in which 

participants had to read the word backwards.  Based on their previous review and these 

new findings, they concluded that “[a]ny variable that affects recognition 

accuracy…will produce the effect” (pg 12).  Glanzer, Adams, and Iverson (1991) found 

that manipulating retention interval produces a mirror effect when using 2AFC.  

Hilford, Glanzer, and Kim (1997) observed mirror effects for levels of processing 

operations, lexical decisions tasks, and study repetition with a 2AFC test.  Although the 
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above studies were all conducted by Glanzer and his colleagues, a number of studies by 

investigators not directly affiliated with Glanzer have observed mirror effects, typically 

with word frequency but also with other variables (e.g., Heathcote, Ditton, & Mitchell, 

2006; Malmberg, Steyvers, Stephens, & Shiffrin, 2002; Reder et al., 2000). 

Boundary Conditions on Mirror Effects 

The fact that mirror effects occur with such resounding regularity has lead many 

researchers, spearheaded by Glanzer and colleagues, to view mirror effects as a general 

principle of recognition memory that should guide the development and testing of 

theories (Glanzer & Adams, 1985, 1990; Glanzer et al., 1993; Glanzer et al., 2009; 

Ratcliff & McKoon, 2000).  Given the near incontrovertible evidence for the occurrence 

of mirror effects, it seems quite reasonable to expect recognition memory theories to be 

able to explain why mirror effects arise.  However, contrary to Glanzer and Adams’ 

(1990) prediction, variables that affect recognition accuracy do not always produce a 

mirror effect.  Failures to find a mirror effect might be dismissed as null effects that do 

not require any explanation, but a number of manipulations that reliably produce 

concordant effects instead of mirror effects have been identified (for a review, see 

Greene, 2007).  This suggests that there are boundary conditions on mirror effects that 

must be considered in the development and testing of theories.  In other words, theories 

should be tested for their ability to explain both the occurrence of mirror effects and the 

occurrence of concordant patterns (or non-mirror effects).  Before describing theories of 

mirror effects in more detail, I briefly review the evidence that mirror effects are more 

limited than Glanzer and Adams’ (1990) rule predicts. 
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First, even in Glanzer and Adams’ (1985) review article, several of the studies 

they reviewed did not show mirror effects.  Again, while it might be tempting to dismiss 

these studies as null effects, most of these studies showed significant simple effects that 

were in the same direction (i.e., a concordant pattern) rather than in different directions 

(i.e., a mirror pattern).  If any variable that affects recognition memory performance 

should produce mirror effects, as proposed by Glanzer and Adams (1990), why then did 

these studies show the opposite pattern? Admittedly, this is a weak argument against the 

generality of mirror effects, but it is one that has yet to be fully addressed. 

A stronger argument is the fact that evidence for reliable within-subjects mirror 

effects with variables other than those that involve stimulus characteristics such as word 

frequency is inconsistent (Greene, 2007; for a review see Diana et al., 2006).  For 

example, Stretch and Wixted (1998b) showed that when item strength is manipulated 

across lists, a strength-based mirror effect obtains; but when strength is manipulated 

within lists, the mirror effect does not obtain.  Cary and Reder (2003) observed mirror 

effects when they varied the number of study trials within subjects, but Tussing and 

Greene (2001) found concordant effects with a similar manipulation. 

Another factor to consider is whether the variable is manipulated within subjects 

or between subjects. Glanzer and Adams (1985) specifically exempted between subjects 

manipulations from their review because mirror effects in those studies could be 

trivially explained by criterion differences between the groups. Nevertheless, some of 

the more recent studies that have purported to show mirror effects have used a between 

subjects design (e.g., Hilford et al., 1997).  While these studies might be interesting for 

other reasons, they clearly cannot be used as evidence against criterion-shift 
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interpretations of the mirror effect.  In fact, even when variables are manipulated within 

subjects but across lists, mirror effects can be easily explained within a signal detection 

framework by allowing for differences in criteria between the lists (Stretch & Wixted, 

1998a, 1998b). 

Thus, only studies that manipulate the critical variable within list can truly be 

said to test strength-based theories of recognition (Dobbins & Kroll, 2005; Greene, 

2007; Maddox & Estes, 1997; Stretch & Wixted, 1998b).  This effectively eliminates 

many of the critical variables that have historically been used to generate mirror effects 

because they simply cannot be manipulated within lists, but it does leave one key 

variable that can be manipulated within list and is generally thought to give rise to 

consistent mirror effects—word frequency. 

The Word Frequency Mirror Effect 

 Word frequency is a measure of how often a given word is used in everyday 

speech or in written texts and has been called “the most important variable in research 

on word processing and memory” (Brysbaert & New, 2009, pg 977).  One of the 

reasons that word frequency is of interest is that it has different impacts on recall than 

on recognition (Gregg, 1976).  Subjects typically recall high frequency words at higher 

rates than low frequency words, but they are more accurate at recognizing low 

frequency words. This interaction between recall and recognition has been dubbed the 

word-frequency effect, and has played a key roll in the testing of computational models 

of memory (Clark, 1992).  With regard to theories of recognition memory, word 

frequency is of particular interest because it is one of the few variables that has been 
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shown to consistently generate mirror effects even when manipulated within lists 

(Glanzer & Adams, 1985; Stretch & Wixted, 1998b).  

The word frequency mirror effect (WFME) refers to the finding that low 

frequency (LF) words elicit both higher hit rates and lower false alarm rates than do 

high frequency (HF) words (Glanzer & Adams, 1985). This finding is extremely robust. 

As mentioned earlier, 23 of the 24 studies of word frequency effects reviewed by 

Glanzer and Adams (1985) showed the presence of mirror effects.  The only study that 

did not show a mirror effect was Shepard (1967), but this study was limited by a small 

sample size (n = 17) and the presence of ceiling effects.  A large number of more recent 

studies that have compared memory for low- and high-frequency words have also 

shown the WFME (Arndt & Reder, 2002; Cary & Reder, 2003; de Zubicaray, 

McMahon, Eastburn, Finnigan, & Humphreys, 2005; Glanzer & Adams, 1990; 

Hockley, 1994; Malmberg & Murnane, 2002; Stretch & Wixted, 1998b). 

Despite the overwhelming evidence for a WFME, there is still some question as 

to its generality.  Specifically, all of the above studies are limited by the fact that they 

only examined two levels of frequency—low and high frequency.  Other studies that 

used a broader range of frequency have found that there are clear boundary conditions 

to the WFME (e.g., Estes & Maddox, 2002; Heathcote, Ditton, & Mitchell, 2006; 

Wixted, 1992), and studies comparing memory performance for words and pseudo-

words consistently show concordant patterns rather than mirror effects (Greene, 2007). 

Estes and Maddox (2002) is perhaps the best example of a study that observed 

boundary effects for the WFME.  Estes and Maddox showed that the disparity in 

relative frequency is a critical moderator variable for observing mirror effects with 
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word-frequency.  In two experiments that used five levels of word frequency, including 

non-words and very low frequency words, the mirror effect only obtained for 

comparisons between very high frequency words and low frequency words—the 

standard manipulation in word-frequency effect studies.  Concordant patterns were 

observed for all other comparisons of interest, including those between very high 

frequency words and very low frequency words and those between high frequency 

words and low frequency words.  Re-analyses of data from other studies that used more 

than two levels of word frequency also showed these patterns.  The Estes and Maddox 

study is discussed in more detail in Chapter 4. 

Theoretical Responses to Mirror Effects 

Mirror effects have had a major impact on the development and testing of 

computational models of recognition memory.  These models are reviewed in more 

detail in Chapter 6, but for the current discussion two important points need to be noted.  

First, because the global memory models that use memory strength to make recognition 

decisions cannot account for mirror effects, many researchers have written off these 

models as having been falsified (e.g., Diana et al., 2006).  Second, in keeping with the 

logic of single-process theories, researchers have developed a new class of 

computational memory models that use Bayesian likelihood transformations as the basis 

for recognition decisions (e.g., Glanzer et al., 1993; McClelland & Chappell, 1999; 

Shiffrin & Steyvers, 1997).  As a consequence of the Bayesian likelihood 

transformation, these models predict that mirror effects will obtain for any set of stimuli 

where one stimulus class is stronger than the other (Glanzer et al., 2009).  As discussed 
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in Chapter 6, though, these models do not seem to be able to account for cases when 

there are clear differences in stimulus strengths and mirror effects do not obtain. 

By contrast, mirror effects have played a surprisingly small role in the single- 

vs. dual-process debate described earlier. In fact, with one notable exception, I have not 

been able to find any discussion of mirror effects in the literature on the general 

recognition memory theories reviewed earlier in Chapter 2, including the DPSD and 

UVSD models.  Wixted and Stretch (2004) address strength-based mirror effects based 

on criterion shifts and use the UVSD model to predict that such effects should extend 

from old-new judgments to remember-know judgments.  However, they do not address 

word frequency effects, nor do they describe how the UVSD model could accommodate 

mirror effects in situations where a criterion shift is unlikely to occur.  A few 

researchers have argued that mirror effects support a dual-process account of 

recognition memory (e.g., Cary & Reder, 2003; Joordens & Hockley, 2000; Reder et al., 

2000), but these arguments have had almost no impact on the broader debate.  

Nevertheless, this point deserves a closer look. 

Recollection as an Explanation for Mirror Effects 

Recollection and the WFME. The Source of Activation Confusion (SAC) 

model developed by Reder and colleagues (Reder et al., 2000) integrates the concepts of 

familiarity and recollection from the Mandler (1980) and Jacoby (1991) dual-process 

theories in a computational model that can be used to simulate human performance in 

various recognition memory tasks, including old-new recognition and remember-know 

judgments.  The SAC model, loosely based on the spreading activation model of Collins 

and Loftus (1975), represents memory as a collection of interconnected item nodes and 
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context, or event, nodes.  During study, the item nodes are activated and links between 

item nodes and event nodes are formed or strengthened. As in other spreading activation 

theories, activation decays over time.  In the SAC model, familiarity is based on the 

strength of activation of the stimulus during test. Thus, familiarity is a function of how 

often and how recently the test stimulus has been encountered.  Recollection is a search 

for a particular event node that is associated to the test stimulus (i.e., the node for the 

study episode) and is based on the fan from the test stimulus to the event nodes.  When 

tested, items that are connected to only a few event nodes will have a high probability 

of increasing the activation of the critical event node above a threshold, thereby 

generating a recollection experience.  These items can be said to be highly recollectible.  

Conversely, items that are connected to a large number of event nodes will be less likely 

to activate any one of them above the threshold and will therefore be less recollectible. 

Reder et al. (2000) showed that the combination of these two processes allows 

the SAC model to reproduce the WFME when appropriate assumptions are made for 

representing low- and high-frequency words in the model.  First, they assumed that the 

baseline activation level of the item nodes is a function of the word’s normative 

frequency.  Because familiarity is based on the strength of the item node, this 

assumption causes unstudied high-frequency lures to have higher familiarity values—

and therefore higher false alarm rates—than low-frequency lures.  Second, they 

assumed that the fan was also a function of normative word frequency, such that high 

frequency words were connected to more event nodes than were low frequency words.  

This assumption implements the idea that high-frequency items have been experienced 

in a greater variety of contexts than low-frequency words and are therefore less 
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recollectible.  The high recollectability of low-frequency words causes higher hit rates 

for low-frequency targets than for high frequency targets.  In summary, the SAC model 

uses a two-factor account in which the WFME is due to differences in both the 

familiarity and the recollectability of low- and high-frequency words. 

Recollection as a general explanation of mirror effects.  Joordens and 

Hockley (2000) generalized the two-factor account to explain other causes of mirror 

effects and, importantly, cases wherein mirror effects do not occur.  According to 

Joordens and Hockley, the stimulus classes in mirror effect experiments have different 

levels of preexperimental familiarity. Consistent with the assumptions of classical SDT 

and the GMMs, studying target items from either stimulus class increases their 

familiarity equally, shifting the target distributions to the right, as shown in Figure 4.  

When judgments are made on the basis of familiarity, the ordering of the distributions 

causes subjects to respond “old” more often to items from the stimulus class with a 

higher preexperimental familiarity. Because judgments for unstudied items (lures) are 

based predominantly—if not exclusively—on familiarity, this implies that the low-

familiarity stimulus class should always exhibit a lower false alarm rate than the high-

familiarity stimulus class.  If judgments for target items are also based on familiarity, a 

concordant pattern in which hit rates and false alarm rates are higher for the more 

familiar stimulus class than for the less familiar stimulus class should be observed, as 

predicted by classical SDT and GMMs (Glanzer et al., 1993). 

However, within the dual-process framework, judgments for studied items can 

also be based on recollection.  If, as Joordens and Hockley (2000) argue, items in the 

high-familiarity class have been associated to a greater number of contexts in the past 
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than items from the low-familiarity class, then recollection strengths for the targets will 

mirror familiarity strengths.  That is, the low-familiarity class will be more recollectible 

than the high-familiarity class.  Thus, when subjects are able to use recollection, the 

increased recollectability of the less familiar stimulus class will drive up the hit rate for 

that class, thereby generating a mirror effect. 

Of course, under normal circumstances, subjects are unlikely to use the same 

process for every target item on the recognition test.  When the combined contributions 

of familiarity and recollection are considered, a more complex pattern arises in which 

the results can range from a concordant effect to a null effect to a mirror effect 

depending on the relative contributions of the two processes to recognition decisions.  

In the next two chapters, I present the results from two experiments designed to 

examine the relative impacts of recollection and familiarity on mirror effects in order to 

test this hypothesis. 
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Chapter 4 

Experiment 1 

 

Within the community of recognition memory researchers, there are three major 

perspectives on mirror effects.  Glanzer and colleagues argue that mirror effects are 

ubiquitous and should be one of the key phenomena that are used to test recognition 

memory theories (Glanzer & Adams, 1985; Glanzer et al., 1993; Glanzer et al., 2009).  

They have further argued, rather convincingly, that strength-based familiarity models of 

memory including classic SDT models and GMMs cannot account for mirror effects in 

general terms and are therefore inadequate explanations of recognition memory 

processes.  In keeping with the “single-process” logic that underlies those models, 

Glanzer et al. (1993) proposed that recognition memory decisions are made using a 

Bayesian process rather than a direct assessment of memory strength.  This assumption 

naturally produces mirror effects and has been built into a number of computational 

models of recognition memory (e.g., Glanzer et al., 1993; McClelland & Chappell, 

1998; Shiffrin & Steyvers, 1997; see Chapter 6 for more details).  These Bayesian 

likelihood models predict that, in general, any variable that affects recollection 

performance should produce a mirror effect (Glanzer et al., 2009). Throughout the 

remainder of this thesis, I refer to this idea as the Bayesian likelihood hypothesis. 

In contrast to the view advocated by Glanzer, some researchers have argued that 

although mirror effects may be ubiquitous, they are not all that important because they 

can be explained within the signal detection framework by allowing for criterion shifts 

(e.g., Wixted, 1992; Wixted & Stretch, 2004).  However, this is not a very strong 
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argument: Even proponents of this view concede that within-list mirror effects cannot 

be readily explained by criterion shifts (Stretch & Wixted, 1998a, 1998b).  Thus, a more 

general explanation of mirror effects is needed. 

  A third group of researchers agree with Glanzer that mirror effects are 

important, but point out that the failure to find mirror effects is just as, if not more, 

important (e.g., Hintzman, Caulton, & Curran, 1994; Joordens & Hockley, 2000; Diana 

et al., 2006).  Working within a dual-process framework, this group has argued that 

mirror effects are caused by differences in recollection and that failures to find mirror 

effects are due to the selective use of familiarity. Throughout the remainder of this 

paper, I refer to this idea as the recollection hypothesis. 

Overview of the Experiments 

There were two goals for Experiments 1 and 2.  First, these experiments were 

designed to test competing predictions from the Bayesian likelihood hypothesis and the 

recollection hypothesis by manipulating word frequency across a wider range than is 

typically done (cf. Estes & Maddox, 2002) and by crossing the word frequency 

manipulation with semantic relatedness.  Second, these experiments were designed to 

provide data to constrain the development of a computational model of recognition 

memory based on the recollection hypothesis as discussed in Chapters 6 and 8. 

I chose to manipulate word frequency because the Bayesian likelihood 

hypothesis predicts that differences in word frequency should always produce mirror 

effects (Glanzer et al., 1993; Shiffrin & Steyvers, 1997) whereas the recollection 

hypothesis suggests that word frequency should only produce a mirror effect if it leads 

to differences in recollection (Joordens & Hockley, 2000; Reder et al., 2000).  When 
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recognition memory for unrelated low- and high-frequency words is compared, a mirror 

effect almost universally obtains (for reviews, see Glanzer & Adams, 1985; Joordens & 

Hockley, 2000).  However, in the three studies that have varied word frequency over a 

broader range, the mirror effect obtained only for comparisons of low-frequency words 

to high- or very high-frequency words (Estes & Maddox, 2002; Rao & Proctor, 1984; 

Wixted, 1992). 

I crossed word frequency with semantic relatedness for three reasons. First, 

Monaco, Abbott, and Kahana (2007) recently showed that a neural network using 

semantic associations from word association space (WAS; Steyvers, Shiffrin, & Nelson, 

2004) could account for the WFME, although this model was quite limited in its scope 

and required assumptions that may be somewhat questionable, as I discuss later (see 

Chapter 8).  The finding that “word frequency is encoded in the semantic structure of 

language” (Monaco et al., pg 204) suggests that semantic associations play an important 

role in the WFME, and that there might be an interaction between semantic relatedness 

and word frequency effects in recognition memory. The use of WAS to account for the 

WFME is also important for the development of the fSAM recognition model described 

later in Chapter 7. 

Second, the Bayesian likelihood hypothesis and the recollection hypothesis both 

predict that there should be a mirror effect for semantic relatedness, albeit for different 

reasons.  A number of studies have shown that semantic relatedness impacts recognition 

performance, with recognition accuracy being higher for semantically related words 

than for semantically unrelated words (Neely & Tse, 2007).  Because semantic 

relatedness clearly affects recognition performance in this way, the Bayesian likelihood 
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hypothesis predicts a mirror effect for this variable.  Semantic relatedness is also 

thought to play an important role in recollection (Brainerd, Reyna, Wright, Mojardin, 

2003; Brainerd, Wright, Reyna, & Mojardin, 2001).  Brainerd et al. (2001, Experiment 

3) showed that when subjects studied mixed lists with a relatively even distribution of 

semantically related and semantically unrelated words, the semantically related words 

were more recollectable than were the semantically unrelated words.  If this holds for 

the stimuli used in Experiments 1 and 2, as is reasonable to assume, then the 

recollection hypothesis predicts a semantic relatedness mirror effect with hit rates being 

higher and false alarm rates lower for semantically related lists than for semantically 

unrelated lists.  In Brainerd et al. (2001), the advantage for semantically related lists 

came at the cost of elevated false alarms for critical lures associated to the semantically 

related lists, a phenomenon that Brainerd et al. called “phantom recollection.”  

By using lists of semantically associated words in Experiments 1 and 2, I was 

also able to look for possible word frequency effects in the DRM false memory 

paradigm.  Only one published study to date has examined possible effects of word 

frequency on false recognition, but the results from that study are ambiguous.  Anaki, 

Faran, Ben-Shalom, and Henik (2005) used the mirror effect to test whether false 

recognition of an unstudied critical lure was due either to activation of the critical lure 

during study of its semantic associates as hypothesized by activation-monitoring theory 

(Roediger, Balota, & Watson, 2001), or to the use of gist traces during test as 

hypothesized by fuzzy trace theory (Brainerd et al., 2001).  According to Anaki et al., if 

the locus of false recognition is during study, a word frequency effect should be 

observed for the critical lures; conversely, if the locus is at test, then a word frequency 
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effect should not occur.  In their first experiment, Anaki et al. manipulated the 

normative familiarity (as a proxy for word frequency) of the list words and critical lures 

along with the strength of association from the critical lure to the list words (i.e., 

backward associative strength).  They observed the standard WFME, and for lists with 

high backward associative strength the pattern of false alarms to the critical lures was 

similar to the pattern of hits for the studied words, supporting the activation account.  

However, there were a number of potential confounds in their design, including 

contamination of recognition by a prior recall test.  In their second experiment they 

corrected some of these confounds, but they did not observe a reliable mirror effect.  

The experiments I report below used a different design than Anaki et al., thereby 

avoiding the confounds in their study while still enabling me to investigate the effect of 

word frequency on semantically induced false recognition. 

Basic design. The basic design for the experiments combines elements of two 

experiments from completely different paradigms. The manipulation of word frequency 

was inspired by an experiment designed to investigate the influence of familiarity on the 

WFME (Estes & Maddox, 2002, Experiment 2). The manipulation of semantic 

relatedness, including the use of semantically related lures during test, is based on an 

experiment performed by Kimball et al. (2010) to investigate the effects of spreading 

semantic activation during a recognition test on false memory. 

Word frequency.  Estes and Maddox (2002, Experiment 2) made two major 

changes to the standard paradigm used to investigate the WFME.  Instead of using only 

2 levels of word frequency, Estes and Maddox used 4 levels of word frequency along 

with a non-word condition.  This gave them a total of 5 lexical conditions—non-words, 
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very low frequency words, low frequency words, high frequency words, and very high 

frequency words.  At the beginning of the experiment, they presented subjects with the 

targets and the lures from a given lexical condition from 0 to 8 times in order to 

increase the familiarity of the test stimuli.  During this familiarization phase, the 

subjects were not told which items would be targets and which would be lures.  The 

subjects were then given a subset of the stimuli to study. Following the study task they 

were given a recognition test with confidence judgments over the studied and unstudied 

(but familiarized) words. 

In order to examine possible effects of recollection on the WFME, I borrowed 

two aspects of Estes and Maddox’s (2002) design.  First, I manipulated word frequency 

over a wider range than is typically done.  However, because non-words and very low-

frequency words that subjects are unlikely to have ever encountered are arguably 

qualitatively different types of stimuli than are words that subjects have encountered 

prior to the experiment, I chose to replace the non-word and very low-frequency 

conditions with a medium frequency condition.  Second, rather than just collecting old-

new judgments, I had participants make confidence judgments on the recognition test in 

Experiment 1 and remember-familiar judgments in Experiment 2.  I did not use the 

stimulus pre-exposure procedure. 

Semantic association and false memory.  Kimball et al. (2010, Experiment 1) 

had participants study lists of 40 words that were constructed either from thematically 

related or thematically unrelated sets of words.  The thematically related sets were the 

36 DRM lists from Stadler, Roediger, and McDermott (1999) that are commonly used 

to investigate semantically induced false memory.  These DRM lists are constructed 
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such that all of the words in each list are semantically related to a single word that is not 

studied; this word is referred to as the critical lure.  After studying each 40-item list, 

subjects were given a recognition test over that list.  When the studied list had used 

thematically related words, the lures on the test were drawn either from sets of 

unstudied thematic word lists or from a set of unstudied, unrelated words. When the 

studied list had used unrelated words, the lures on the recognition test were drawn from 

a set of unstudied thematic word lists.  Semantically induced false memory was tested 

by including the critical lures for both studied and unstudied thematic lists near the end 

of the recognition test. This design allowed Kimball et al. (2010) to examine the 

influence of prior study and prior test on false recognition of the critical lure. 

In order to examine possible mirror effects due to semantic relatedness and word 

frequency on both true and false memory, I borrowed three components from Kimball 

et al.’s (2010, Experiment 1) design.  First, in addition to the sets of unrelated words 

that have been used in most other WFME studies, I included sets of semantically related 

words in the study lists.  Because the standard DRM lists do not control for word 

frequency, I created a custom set of stimuli as described in the Methods section below. 

Accordingly, the targets on the recognition test were drawn from both associative and 

non-associative sets of studied words.  Second, the lures on the recognition test included 

words from unstudied associative lists as well as unstudied non-associative lists.  Third, 

the critical lures from both studied and unstudied (but tested) associative lists were 

included near the end of the recognition test. 
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Method 

Participants.  Participants were 72 undergraduate students enrolled in 

psychology courses at the University of Oklahoma who participated for partial course 

credit.  All participants spoke and read English fluently. 

Materials and design.  All stimuli were selected from the University of 

Southern Florida word association norms (USF norms; Nelson, McEvoy, & Schreiber, 

2004) and the SUBTLEXus word frequency norms (Brysbaert & New, 2009).  The USF 

norms provide an estimate of the semantic association between pairs of words by giving 

people a target word and asking them to report the first word that comes to mind in 

response to that target word.  When responses are tallied over large numbers of words 

and individuals, the forward associative strength (from the target to the response) and 

the backward associative strength (from the response to the target) can be calculated for 

many pairs of words (Nelson et al., 2004).  The SUBTLEXus word frequency norms are 

a new set of norms that are superior to the often-used Kučera and Francis (1967) norms 

because they are derived from a larger corpus that is more representative of the natural 

use of contemporary American English, thereby providing a more accurate 

measurement of word frequency (Brysbaert & New, 2009).  The SUBTLEXus norms 

include over 74,000 unique words (including proper nouns) and provide a measurement 

of how often each of these words occurs in American English using several different 

metrics. For this experiment, stimuli were selected using the Lg10WF metric (base 10 

logarithm of the number of times the word occurred in the SUBTLEXus corpus of 51 

million words), but to facilitate comparison to other studies frequency is reported using 

the SUBLTWF metric (word frequency per million words). 
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A total of 48 six-item word lists were constructed using words that occurred in 

both the USF and SUBTLEXus norms. These lists were divided into sets based on the 

following 4 levels of word frequency: low frequency (LF), medium frequency (MF), 

high frequency (HF), and very-high frequency (VHF).  The range and mean word 

frequency for each level, along with comparisons to other WFME experiments, are 

shown in Table 1.  As can be seen from the table, there is considerable variation in how 

word frequency has been operationalized in previous studies, and the operational 

definitions used in this experiment overlap and extend the ranges used in other studies.   

Note that the word frequency for the HF condition in other experiments tends to fall 

around the MF range for this Experiment. 

For each level of word frequency, 6 associative lists and 6 matched non-

associative lists were constructed.  The associative lists were similar to DRM lists that 

are commonly used to study false memory (e.g., Roediger, Watson, McDermott, & 

Gallo, 2001): Each list consisted of a set of words within the specified frequency range 

that are all semantically associated to a single critical word as measured by backward 

associative strength in the USF norms (Nelson et al., 2004).  The non-associative lists 

were constructed by randomly selecting words from the specified frequency range 

without regard to semantic association.  Finally, an additional 24 non-associated low-to-

medium frequency words (3.5 to 47.1 occurrences per million words, M = 14.5) were 

selected to act as primacy and recency buffers.  The associative word lists and their 

critical lures, the matched non-associative lists, and the words used for primacy and 

recency buffers are listed in the Appendix. 



 

44 

 
Table 1.  Operational definitions of word frequency in Experiments 1 and 2 and in 

other selected studies of word frequency mirror effects in recognition. 
 
  Word frequency (per million words) 
Study Condition Min Max Mean 
     
Experiments 1 and 2     
 LF 1.9 2.8 2.3 
 MF 49.4 77.1 60.3 
 HF 202.6 487.2 306.7 
 VHF 627.2 9773.4 2293.1 
Estes and Maddox (2001)     
 VLF < 1 in 6 million -- 
 LF ~1 ~1 -- 
 HF 2.0 39.0 -- 
 VHF 41.0 2714.0 -- 
Glanzer and Adams (1990, Experiment 2)   
 LF -- -- 12.2 
 HF -- -- 164.0 
Higham et al. (2009)     
 LF 5 7 -- 

 HF 500 -- -- 
Kim and Glanzer (1993)     

 LF 0.0 8.0 -- 

 HF 40.0 -- -- 
Malmberg and Murnane (2002)    

 LF 1.0 10.0 -- 

 HF 50.0 -- -- 
Reder et al (2001)     

 LF -- -- 1.6 

 HF -- -- 142.0 
Stretch and Wixted (1998)     

 LF 0.0 3.0 1.6 

  HF 40.0 -- 98.9 
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The experiment used a completely within-subjects 2 (Semantic Relatedness: 

associated vs. non-associated) × 4 (Word Frequency: LF, MF, HF, VHF) design with all 

variables manipulated within-list.  The master set of stimuli described above was used 

to create 3 sets of study-test lists for each subject and repeated measures were taken 

across the resulting sets of study-test cycles.  The assignment of specific lists to study 

and test trials was randomly determined for each subject.  A desktop computer with the 

E-Prime 2.0 software package was used to present the stimuli, control the timing of 

tasks, and record participant’s responses. 

Procedure.  After informed consent was obtained, participants were given oral 

instructions by the experimenter.  Participants were told that they would be memorizing 

lists of words and solving math problems and that they should do their best on both 

tasks.  The experimenter then provided step-by-step instructions for each task as 

samples of the displays corresponding to each step were presented on the computer.  As 

part of the instructions, participants were given a short practice session consisting of a 

10-item study list and a 10-item recognition test. 

The experiment proper consisted of 3 study-test cycles.  On each of these cycles, 

each participant studied a list of 56 words, performed a one-minute distractor task, and 

then took an item recognition test.  During study, words were presented one at a time 

for 2.5s each with a 500ms interstimulus interval.  The study list consisted of 4 primacy 

buffer words, 48 words from associative and non-associative lists for each normative 

frequency presented in random order, and 4 recency buffer words (see Figure 6).  After 

the last study word was presented, participants were given a set of arithmetic problems 

to solve for 60s before the item recognition test began.  As shown in Figure 6, the  
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recognition test consisted of half the studied words from each frequency/association 

sub-list (24 targets) and a corresponding set of unstudied words (24 lures) presented in 

random order, followed by a final sequence comprising the 8 buffer items, the 4 critical 

lures from the studied associative lists, and the 4 critical lures from the unstudied 

associative lists, also presented in random order.  Participants were asked to make old-

new confidence judgments for each test item by indicating their confidence on a 1-6 

scale, where 1 represented highly confident that the item was studied and 6 represented 

highly confident that the item was not studied. 

Results and Discussion 

I conducted two separate sets of analyses for Experiment 1.  In the first set of 

analyses, I converted participant’s responses to old-new judgments by scoring 

Figure 6.  Composition of a study-test list set in Experiments 1 and 2.  Ax = 
associative stimuli set x and Ny = non-associative stimuli set y, where x and y 
are indices that identify unique stimulus sets. 
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confidence ratings of 1, 2, or 3 as “old” and confidence ratings of 4, 5, or 6 as “new”.  I 

then analyzed these old-new judgments for effects of normative word frequency, 

semantic association, and possible interactions between word frequency and semantic 

association.  The second set of analyses uses participants’ confidence ratings to examine 

ROC curves using the DPSD model for evidence of changes in recollection and 

familiarity as a function of word frequency and semantic associations. 

Old-new judgments: Effects of word frequency. The first three rows of Table 1 show 

the mean proportions of items endorsed as old for targets (hits), non-critical lures (false 

alarms), and critical lures (critical lure FAs) as a function of word frequency, collapsed 

across semantic association. A 3 (Item Type: target, non-critical lure, critical lure) x 4 

(Word Frequency: LF, MF, HF, VHF) repeated measures ANOVA revealed significant 

main effects of item type, F(2, 142) = 349.72, MSE = 0.066, p < .001, and word 

frequency, F(3, 213) = 32.45, MSE = 0.019, p < .001, but these main effects were 

qualified by a significant interaction, F(6, 426) = 29.72, MSE = 0.015, p <. 001.  A set 

of planned contrasts revealed that this interaction was due to a pattern consistent with 

the presence of an overall word frequency mirror effect, with hit rates decreasing 

monotonically as normative frequency increased, t(71) = -3.95, SEM = 0.066, p <.001, 

while false alarms to non-critical lures and critical lures both increased, t(71) = 11.02, 

SEM = 0.061, p < .001, and t(71) = 8.39, SEM = 0.091, p < .001, respectively.  

However, there was a qualitative difference in the relationship between word 

frequency and old judgments for targets and lures.  Specifically, there was a significant 

non-linear component for hit rates, t(71) = -2.53, SEM = 0.023, p = .014, such that low 

frequency targets were judged to be old more often than were targets of moderate 
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frequency, t(71) = 3.49, SEM = 0.017, p < .001, high frequency, t(71) = 4.41, SEM = 

0.018, p <.001, or very high frequency, t(71) = 3.91, SEM = 0.020, p < .001, but there 

were no significant differences in hit rates between MF, HF, and VHF targets. 

Importantly, there was no hint of such nonlinearity for non-critical lures, t(71) = 1.51, 

SEM = 0.024, p >.10.  This suggests that the cognitive mechanisms responsible for the 

overall word frequency mirror effect may behave differently for studied items versus 

unstudied items. 

There was also a qualitative difference in the effects of word frequency for non-

critical lures versus critical lures. Whereas word frequency increased false alarms to 

non-critical lures linearly, there was a significant quadratic component for the effect of 

word frequency on false alarms to critical lures, t(71) = 3.40, SEM = 0.040, p = .001, 

that was in the opposite direction from the pattern observed for targets.  There was no 

significant difference in the probabilities of endorsing critical lures from low and 

moderate frequency associative lists, t(71) = 1.18, SEM = 0.024, p > .10; there was only 

a marginally significant difference between false alarms to critical lures from moderate 

versus high frequency lists, t(71) = 1.86, SEM = 0.025, p = .068; but there was a large 

difference between false alarms to critical lures from high versus very high frequency 

lists, t(71) = 5.70, SEM = 0.029, p < .001.  One possible explanation for this pattern is 

that the VHF associative word sets are highly confusable—that is, less distinct—relative 

to the other associative word sets, thus impairing participants’ ability to effectively use 

source monitoring processes to reject the critical lure. 

Old-new judgments: Effects of semantic relatedness and word frequency.  

To test for effects of semantic association and possible interactions between semantic 
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association and word frequency, I conducted a separate set of analyses on just the 

targets and the non-critical lures.  The means for these analyses are shown in Table 1 

(rows 4-7).  A 2 (Item Type: target vs. non-critical lure) × 2 (Semantic Relatedness: 

associative vs. non-associative word sets) × 4 (Word Frequency: LF, MF, HF, VHF) 

repeated measures ANOVA revealed significant main effects of item type, F(1, 71) = 

415.35, MSE = 0.195, p < .001, and word frequency, F(3, 213) = 8.93, MSE = 0.023, p 

< .001 on participants’ willingness to judge an item as old.  Overall, semantic 

relatedness did not have a significant effect on old judgments, F(1, 71) = 1.52, MSE = 

0.019, p > .10. 

However, these main effects were qualified by the presence of significant two-

way interactions.  Item type interacted with semantic relatedness, F(1, 71) = 4.48, MSE 

= 0.017, p = .038, and with word frequency, F(3, 213) = 56.16, MSE = 0.020, p < .001, 

indicating that these variables have different effects on targets than on non-critical lures.  

The interaction between word frequency and semantic relatedness approached but did 

not reach statistical significance, F(3, 213) = 2.51, MSE = 0.015, p = .06. There was no 

evidence for a three-way interaction, F(3, 213) = 1.53, MSE = 0.019, p > .10. The two-

way interactions were further broken down using separate ANOVAs for targets and 

non-critical lures along with sets of planned contrast comparisons. 

Targets.  For targets, a 2 (Semantic Relatedness: associative vs. non-associative 

word sets) × 4 (Word Frequency: LF, MF, HF, VHF) repeated measures ANOVA 

revealed a significant main effect of semantic relatedness, F(1, 71) = 4.64, MSE = 

0.021, p = .035, such that participants correctly identified studied words from 

semantically associated sets as old, M = 0.80, SE = 0.011, more often than words from 
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non-associative sets, M = 0.77, SE = 0.010.  There was also a significant main effect of 

word frequency, F(3, 213) = 9.42, MSE = 0.021, p < .001, but there was no hint of an 

interaction, F < 1.  Planned comparisons showed that the effect of word frequency on 

hit rates was driven exclusively by the LF condition.  Participants correctly recognized 

LF targets at higher rates than MF targets, t(71) = 3.49, SEM = 0.017, p < .001, HF 

targets, , t(71) = 4.41, SEM = 0.018, p < .001, or VHF targets, t(71) = 3.91, SEM = 

0.020, p < .001.  However, there were no significant differences in participants’ 

recognition of MF, HF, or VHF targets, all ts < 1.4 and all ps > .10. 

Non-critical lures.  For lures, a different pattern emerged.  A 2 (Semantic 

Relatedness: associative vs. non-associative word sets) × 4 (Word Frequency: LF, MF, 

HF, VHF) repeated measures ANOVA showed a large main effect of word frequency, 

F(3, 213) = 51.06, MSE = 0.022, p < .001, and a significant interaction between 

semantic relatedness and word frequency, F(3, 213) = 3.50, MSE = 0.017, p = .016, but 

no main effect of semantic relatedness, F < 1, on false alarms to non-critical lures.  

Because the interaction was significant, the effects of word frequency were analyzed 

separately for associative and non-associative lists. 

For associative lists, LF non-critical lures were incorrectly judged to be old less 

often than were MF non-critical lures, t(71) = -5.27, SEM = 0.018, p < .001, and HF 

lists, t(71) = -6.43, SEM = 0.020, p < .001, but there was no difference in the false alarm 

rates for MF and HF lists, t(71) = -1.46, SEM = 0.021, p > .10.  The largest change in 

false alarm rates was between HF and VHF lures, t(71) = 4.62, SEM = 0.024, p < .001.  

Thus, although there was an increase in false alarm rates for associative lists as word 
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frequency increased, the increase was in steps from LF to MF-HF and from MF-HF to 

VHF.   

A similar step pattern was observed for non-associative lists, except it was in 

steps from LF to MF and MF to HF-VHF.  For non-associative lists, the false alarm rate 

increased significantly from LF to MF, t(71) = 5.20, SEM = 0.019, p < .001, and from 

MF to HF, t(71) = 2.84, SEM = 0.024, p = .006. There was no difference in the false 

alarm rates for HF and VHF lists, t(71) = 0.41, SEM = 0.027, p > .10. 

Old-new judgments: Semantically induced false recognition.  The final set of 

analyses based on old-new judgments examines the effects of word frequency and prior 

study of associates on semantically induced false recognition of the critical lures to 

associative lists. A 2 (Prior Study: studied list vs. unstudied list) × 4 (Word Frequency: 

LF, MF, HF, VHF) repeated measures ANOVA on false alarms to critical lures showed 

that there were main effects of prior study, F(1, 71) = 11.27, MSE = 0.060, p = .001, 

and word frequency, F(3, 213) = 31.09, MSE = 0.053, p < .001. These variables did not 

significantly interact, F(3, 213) = 1.77, MSE = 0.066, p > .10.    

 Effect of prior study and test on false recognition. Consistent with effects 

reported by Coane and McBride (2006) and Kimball et al. (2010) in which testing items 

from associative lists increased the false alarm rate to critical lures for those lists, 

participants falsely judged critical lures associated to unstudied but tested lists as old, M 

= 0.31, SE = 0.017, at a rate that was significantly higher than the false alarm rate for 

the list items themselves, M = 0.25, SE = 0.13, t(71) = 3.69, SEM = 0.016, p < .001. 

False alarms rates to critical lures increased even further, M = 0.38, SE = 0.018, when 

the associative list had been studied, t(71) = 3.36, SEM = 0.020, p = .001. 
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Effects of word frequency on false recognition.  Separate sets of planned 

comparisons were used to examine the effects of word frequency on false recognition of 

lures from studied and unstudied lists. (Even though the interaction between prior study 

and word frequency was not significant, because the patterns appear to be qualitatively 

different I chose to perform the analyses separately, as originally planned).  For critical 

lures to studied lists, planned comparisons showed that false alarms increased linearly 

as word frequency increased, t(71) = 7.43, SEM = 0.127, p < .001.  The difference in 

false alarms to critical lures from LF and MF lists was not significant, t(71) = 1.24, 

SEM = 0.037, p > .10, but false alarms were higher for HF lists relative to MF lists, 

t(71) = 2.11, SEM = 0.044, p = .038, and higher still for VHF lists relative to HF lists, 

t(71) = 3.37, SEM = 0.043, p = .001.   By contrast, the effect of word frequency on false 

alarms to critical lures for unstudied lists was driven exclusively by the VHF condition.  

Participants falsely endorsed critical lures associated to unstudied VHF lists at higher 

rates than those for unstudied HF lists, t(71) = 3.86, SEM = 0.048, p < .001, unstudied 

MF lists, , t(71) = 4.15, SEM = 0.045, p < .001, or unstudied LF lists, , t(71) = 4.86, 

SEM = 0.042, p < .001.  There were no significant differences in false alarm rates for 

critical lures from unstudied LF, MF, or HF lists, all ts < 0.4 and all ps > .10. 

ROCs.  I next turn to analyses that take advantage of the full range of data 

available from participants’ confidence ratings.  As discussed in Chapter 2, ROCs can 

provide a more complete picture of participants’ performance by showing the 

relationship between confidence and accuracy.  Because the pattern of results from the 

analyses of old-new responses indicated that semantic relatedness and word frequency 

interact, I created separate ROCs for each level of word frequency for non-associative 
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lists (see Figure 7) and associative lists (see Figure 8).  These ROCs were created from 

the means for each condition averaged across participants.  Because of the relatively 

large number of within-subject conditions (8) and the relatively small number of stimuli 

per condition for each subject (6), I was not able to create ROCs for a large proportion 

of the individual participants. The individual ROCs for participants for whom an ROC 

could be constructed appear to be qualitatively similar to the ROCs created from the 

overall means, so we can assume that the aggregated ROCs are representative of the 

individual subject ROCs (Yonelinas & Parks, 2007).  Nevertheless, they should be 

interpreted with some caution (Wixted, 2002). 

 As can be seen from a visual examination of Figures 7 and 8, overall the ROCs 

from this experiment appear consistent with the standard shapes of ROCs from previous 

item recognition studies (e.g., Yonelinas, 1994).  The probability space ROCs are 

clearly non-linear and asymmetric, and the z-ROCs all appear to be fairly linear with 

slopes less than unity.  There are also clear differences in the shapes of the ROCs as a 

function of word frequency, but it is not as clear from a visual inspection whether there 

are any systematic effects of semantic relatedness on the ROCs. 

In order to examine such effects in more detail, I conducted a linear regression 

on the z-transformed cumulative hit and false alarm rates to determine the parameters of 

the z-ROCs and test for differences in these parameters as functions of semantic 

relatedness and word frequency.  A full model/reduced model comparison confirmed 

that there were significant effects of these variables on both the slope and the intercept, 

F(14, 24) = 109.16, MSE = 0.001, p < .001.  The slopes and intercepts of the z-ROCs as 

a function of semantic relatedness and word frequency are shown in Figures 9 and 10, 
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Figure 7.  ROC and z-ROC curves for the words from non-associative word sets, by 
word frequency 
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Figure 8.  ROC and z-ROC curves for the words from associative word sets, by word 
frequency 
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Figure 9. z-ROC slopes as a function of semantic relatedness and word frequency. 

Figure 10. z-ROC intercepts as a function of semantic relatedness and word frequency. 
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respectively. As these figures clearly show, as word frequency increased the slopes of 

the z-ROCs also increased while the intercept decreased.  But as with the old-new 

results, this is not a strictly linear relationship.  The plots also clearly show that there 

were differences between the associative and non-associative lists that were moderated 

by word frequency.  For low- and moderate frequencies, targets and lures from 

associative lists were more discriminable than were targets and lures from non-

associative lists.  But this gap closed as frequency increased, so that there was no 

difference in discriminability for HF words, and actually reversed for VHF words.  This 

provides at least some support for the idea raised earlier that the pattern for false alarms 

to critical lures is due to low discriminability for VHF associative lists. 

Fits to theoretical models.  The ROCs can be interpreted in terms of either a 

signal detection model, such as the UVSD model proposed by Wixted (2007a), or in 

terms of the DPSD model (Yonelinas, 1994).   In fitting the data with either model, it is 

necessary to make certain assumptions regarding the means and variances for the 

stimulus classes and the criteria settings for the experimental conditions.  Because 

frequency and semantic relatedness were both manipulated within lists, it is reasonable 

to assume that the criteria were the same for all conditions.  Therefore, in fitting the 

UVSD and DPSD models, I fit all 8 experimental conditions simultaneously and 

constrained the criteria to be the same for all conditions.  To provide a base model for 

comparison, I first fit the 80 data points to an equal variance SDT model, using a 

standardized normal distribution for lures (M = 0.0, SD = 1.0) and a single distribution 

for targets.  This model only used 1 degree of freedom but did not fit the data 

particularly well (SSE = 0.5200, RMSEA = 0.081). 
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UVSD interpretation.  I next fit the UVSD model (Wixted, 2007a) to the 

cumulative hit and false alarm rates for each level of confidence, allowing both the 

means and variances of the target and lure distributions to vary for each experimental 

condition.  Overall, the UVSD model fit the data extremely well (SSE = 0.0032, 

RMSEA = 0.008).  The estimated parameters for the means and variances for each 

experimental condition are shown in Table 3.  As can be seen from the table, the UVSD 

model predicts that the lure distributions have similar variances (between 0.68 and 0.76) 

that do not vary substantially with either word frequency or semantic relatedness.  By 

contrast, the target distribution variances show a substantial effect of word frequency 

and a smaller but consistent effect of semantic relatedness.  As word frequency 

increases, the variance of the target distribution decreases, with the largest difference 

being between LF and MF words.  This is generally true for both associative and non-

associative lists, although the associative targets exhibit slightly more variability overall 

than non-associative targets. According to the UVSD model, these differences in 

variability among the target distributions are responsible for the effects of word 

frequency and semantic association on the z-ROC slope shown in Figure 9. 

The UVSD model also shows effects of word frequency and semantic 

relatedness on the means of the distributions.  Interestingly, the means of the 

distributions do not show mirror effect patterns for word frequency predicted by 

Bayesian likelihood models (see Figure 5), even though these patterns are clearly 

evident in the hit and false alarm rates.  Instead, the UVSD model orders both the lure 

and target distributions such that LF > MF > HF ≥ VHF.  Consistent with the 
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Table 3.  Estimated UVSD parameters in Experiment 1 as a function 
of word frequency and semantic relatedness. 

 
Parameter     LF MF HF VHF 
       
Associative lists      
    Lures Mean  0.45 0.17 0.07 -0.12 
 SD  0.76 0.75 0.70 0.72 
       
    Targets Mean  1.99 1.25 1.13 0.99 
 SD  1.52 1.10 1.08 0.90 
       
Non-associative lists      
    Lures Mean  0.43 0.10 -0.03 -0.03 
 SD  0.76 0.70 0.68 0.73 
       
    Targets Mean  1.68 1.08 0.92 0.90 
 SD  1.46 1.00 0.81 0.84 
              

 

recollection hypothesis, the WFME is generated by a combination of differences in 

means for lures and differences in variances for targets.  

Dual-process interpretation.  A dual-process interpretation considers the 

contribution of familiarity and recollection—two qualitatively different types of 

memory and decision processes—when examining the shapes of the ROCs.  To 

estimate the relative contributions of these processes according to the DPSD model 

(Yonelinas, 1994), I fit the DPSD model to the cumulative hit and false alarm rates 

from all 8 experimental conditions, again constraining the model to use the same criteria 

for all conditions but allowing for different values for the means of lure and target 

distributions and for the probabilities of recollection for each condition.  Following the 

standard practice for the DPSD model, the standard deviations were set to 1.0 for all 

distributions (Yonelinas, 1994, 1997).  The estimated familiarity and recollection 
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parameters for each experimental condition are shown in Table 4.  The DPSD did not fit 

the data as well as the UVSD model did, but it still provided a reasonable fit (SSE = 

0.0064, RMSEA = 0.011).  However, the DPSD model shows a very different picture 

than does the UVSD model.  

First, the DPSD models shows a clear mirror effect pattern (see Figure 5) in the 

estimates for familiarity, with the lure familiarities being ordered LF > MF > HF ≥ VHF 

(like the means in the UVSD model) but the target familiarities being in the reverse 

order for three of the word frequencies, LF < MF < VHF.  The familiarity estimates for 

the HF condition were somewhat odd, with HF targets being less familiar than either 

MF or VHF targets for associative lists but more familiar than MF and VHF targets for 

non-associative lists.  If familiarity is thought of as representing global memory strength 

 
Table 4.  Estimated DPSD parameters in Experiment 1 as a function 

of word frequency and semantic relatedness. 
 
Parameter     LF MF HF VHF 
       
Associative lists      
    Lures Familiarity 0.30 -0.02 -0.08 -0.37 
 Recollection 0.11 0.06 0.00 0.01 
       
    Targets Familiarity 0.54 0.87 0.79 1.06 
 Recollection 0.73 0.50 0.46 0.30 
       
Non-associative lists      
    Lures Familiarity 0.30 -0.03 -0.21 -0.24 
 Recollection 0.09 0.00 0.00 0.02 
       
    Targets Familiarity 0.59 0.91 1.17 1.09 
 Recollection 0.65 0.41 0.21 0.23 
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as proposed by Yonelinas (1994), then this pattern clearly violates the basic tenets of 

the SDT portion of DPSD theory (Glanzer & Adams, 1985).  On the other hand, the 

ordering of familiarity distributions is roughly consistent with predictions from 

Bayesian likelihood models, but in order to account for the HF condition, these models 

would have to specify the similarities and differences between LF, MF, HF, and VHF 

words in more detail than they currently do (see, e.g., Shiffrin & Steyvers, 1997). 

Second, the DPSD model also shows evidence for differences in recollection as 

a function of word frequency and semantic relatedness.  There is an overall trend such 

that the recollectability of targets decreases as word frequency increases.  There was 

also evidence of phantom recollection for LF and MF non-critical lures from associative 

lists as well as LF lures from non-associative lists.  Together, these results provide 

converging evidence that recollection is moderated by word frequency, as assumed by 

the recollection hypothesis.  There were also differences in recollection between 

associative and non-associative lists, with semantic relatedness increasing the 

probability of recollection by 7-9 points for LF, MF, and VHF words and by 26 points 

for the anomalous HF words. 

Summary 

 Experiment 1 was designed to test differential predictions from the Bayesian 

likelihood hypothesis and the recollection hypothesis.  The Bayesian likelihood 

hypothesis predicted mirror effects for word frequency such that false alarm rates would 

be ordered LF > MF > HF > VHF while hit rates would be in the reverse order, LF < 

MF < HF < VHF.  The recollection hypothesis predicted that a WFME would only 

obtain if there were a difference in recollectability.  Both hypotheses predicted a mirror 
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effect for semantic relatedness that did not obtain.  The results do not clearly support 

one hypothesis over the other, but they are more consistent with the recollection 

hypothesis than the Bayesian likelihood hypothesis for two reasons. 

First, although there were WFMEs for some comparisons, the WFME did not 

universally obtain as predicted by the Bayesian likelihood hypothesis even though there 

were word frequency effects.  By manipulating word frequency over 4 levels instead of 

2, I was able to observe differential effects of word frequency on hit rates and false 

alarm rates.  Overall, false alarm rates to non-critical lures increased with word 

frequency, consistent with the recollection hypothesis’ assumption that false alarms are 

due to differences in familiarity.  Hit rates exhibited a different pattern in which there 

was a drop in correct recognition from LF to MF, but no difference between MF, HF, 

and VHF.  This step pattern is not consistent with the Bayesian likelihood hypothesis 

but is consistent with the recollection hypothesis if one assumes that a) LF words are 

more recollectable than are MF, HF, and VHF words and b) there are no differences in 

recollectability between MF, HF, and VHF words. 

Second, evidence from analyses of ROCs suggests that there are indeed 

differences in recollectability of words as a function of normative frequency that match 

this pattern.  Estimates from the UVSD model showed that—assuming a single SDT 

decision process—the variances of the memory strength distributions for targets are 

dependent on word frequency such that lower frequency words have greater variability 

than higher frequency words.  If the target distribution is the sum of the pre-

experimental (lure) familiarity distribution, a study-induced familiarity distribution, and 

a recollective strength distribution, all with different means and variances, as suggested 
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by Wixted and Stretch (2004), these results imply that the amount of recollective 

strength that is added to an item during study is a function of the item’s normative 

frequency (e.g., Gillund & Shiffrin, 1984; Glanzer et al., 1993; Shiffrin & Steyvers, 

1997) and, further, that the variance of this strength is also a function of word 

frequency.  Estimates from the DPSD model also imply that recollection is a function of 

word frequency and that LF words are more recollectable than are MF, HF, and VHF 

words. 

Nevertheless, Experiment 1 was not able to provide conclusive evidence that the 

WFME is due to differences in the use of recollection between word sets of different 

frequencies.  This was partly because the use of familiarity and recollection had to be 

estimated from aggregated ROCs.  Therefore, in Experiment 2, I used a more direct 

measure of familiarity and recollection that could be analyzed at the individual level as 

well as the aggregate level. 
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Chapter 5 – Experiment 2 
 

Experiment 2 was designed to investigate the effects of word frequency and 

semantic relatedness using the remember-know procedure.  This procedure allows for a 

more direct measurement of familiarity and recollection processes than the estimation 

from ROC curves that was used in Experiment 1.  Thus, Experiment 2 used the same 

design and procedures as Experiment 1, except that participants were asked to make 2-

stage remember/familiar judgments instead of old-new confidence judgments. 

Method 

Participants.  Participants were 71 undergraduate students enrolled in 

psychology courses at the University of Oklahoma who participated for partial course 

credit.  All participants spoke and read English fluently.  None of the individuals from 

Experiment 1 participated in Experiment 2.   

Materials, design, and procedure.  Experiment 2 used the same materials and 

design as were used in Experiment 1.  The procedures were also identical with the 

exception that instead of using confidence judgments, a modified 2-stage remember-

know procedure was used.  For each test item, participants were asked to first make a 

binary old-new judgment by pressing the “O” or “W” keys, respectively.  Following 

this judgment, they then indicated whether they had made the old-new judgment based 

on a sense of familiarity or on the ability to remember specific details from the study 

episode by pressing the “F” or “R” keys, respectively.  As in Experiment 1, participants 

practiced making these judgments as part of the instructional phase before they began 

the experiment proper. 
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Results and Discussion 

Old-new judgments: Effects of word frequency.  Overall, Experiment 2 

replicated the pattern of results from Experiment 1, with one key exception noted below 

(see Table 3 for means).  A 3 (Item Type: target, lure, critical lure) x 4 (Word 

Frequency: LF, MF, HF, VHF) repeated measures ANOVA revealed significant effects 

of item type, F(2, 140) = 446.13, MSE = 0.065, p <.001, and word frequency, F(3, 210) 

= 16.56, MSE = 0.023, p <.001, but these main effects were again qualified by a 

significant interaction, F(6, 420) = 45.17, MSE = 0.013, p <.001.  As in Experiment 1, a 

set of planned contrasts revealed that the interaction was due to a pattern consistent with 

the presence of an overall word frequency mirror effect, with hit rates decreasing 

linearly as normative frequency increased, t(70) = −8.10, SEM = 0.058, p <.001, while 

false alarms to non-critical lures and critical lures both increased, t(70) = 10.13, SEM = 

0.060, p <.001, and t(70) = 7.13, SEM = 0.104, p <.001, respectively. 

However, unlike in Experiment 1, the relationship between word frequency and 

old judgments for targets was strictly linear.  There was no evidence for a reliable 

quadratic trend for hit rates, t(70) = 1.27, SEM = 0.021, p > .10.  LF targets were 

correctly judged to be old more often than MF targets, t(70) = 4.60, SEM = 0.015, p < 

.001; MF targets elicited higher hit rates than HF targets, t(70) = 2.36, SEM = 0.016, p = 

.021; and HF targets, in turn, elicited higher hit rates than VHF targets, t(70) = 2.58, 

SEM = 0.016, p = .012.   

Non-critical lures showed a complementary pattern that replicated the results 

from Experiment 1.  As in Experiment 1, false alarms to non-critical lures increased 
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with word frequency, and there was no evidence of a non-linear trend in false alarm 

rates to non-critical lures, t(70) = −0.43, SEM = 0.024, p > .10.  LF lures were 

incorrectly judged to be old less often than MF lures, t(70) = −5.18, SEM = 0.013, p < 

.001.  MF lures elicited lower false alarm rates than HF lures, t(70) = −3.55, SEM = 

0.016, p < .001; and HF lures, in turn, elicited even lower false alarms than VHF lures, 

t(70) = 2.90, SEM = 0.020, p = .005. 

The results for critical lures to associative lists also replicated the pattern from 

Experiment 1.  In addition to the significant linear trend, there was a significant non-

linear (quadratic) trend, t(70) = 4.90, SEM = 0.037, p < .001, due primarily to the lack 

of a significant difference in the probabilities of judging critical lures from low and 

moderate frequency associative lists to be old, t(70) = 0.54, SEM = 0.022, p > .10.  

Critical lures for HF lists were falsely recognized more often than those from LF lists, 

t(70) = 2.14, SEM = 0.026, p = .036, or MF lists, t(70) = 2.66, SEM = 0.026, p = .010, 

and critical lures for VHF lists were falsely recognized at rates even higher than those 

for HF lists, t(70) = 5.23, SEM = 0.032, p < .001. 

Old-new judgments: Effects of semantic relatedness and word frequency.  

To test for effects of semantic relatedness and possible interactions between semantic 

relatedness and word frequency when using the remember-know procedure, I again 

conducted separate analyses using just the targets and the non-critical lures (see Table 3 

for means).  A 2 (Item Type: target vs. non-critical lure) × 2 (Semantic Relatedness: 

associative vs. non-associative word sets) × 4 (Word Frequency: LF, MF, HF, VHF) 

repeated measures ANOVA revealed significant main effects of item type, F(1, 70) = 

626.98, MSE = 0.157, p < .001, and semantic relatedness, F(1, 70) = 5.89, MSE = 0.020, 
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p = .012, on participants’ willingness to judge an item as old.  Unlike in Experiment 1, 

the main effect of word frequency on old-new judgments was not statistically 

significant, F < 1, but there was a significant interaction between item type and word 

frequency, F(3, 210) = 86.63, MSE = 0.016, p < .001.  There were no other significant 

interactions, all Fs < 1.25 and all ps > .10.  Due to the interaction between item type and 

word frequency, separate ANOVAs along with sets of planned contrast comparisons 

were conducted for targets and non-critical lures. 

Targets.  The effects of semantic relatedness and word frequency on correct 

recognition of targets were almost identical to those reported in Experiment 1, with the 

exception of a linear, rather than a non-linear, effect of word frequency.  A 2 (Semantic 

Relatedness: associative vs. non-associative word sets) × 4 (Word Frequency: LF, MF, 

HF, VHF) repeated measures ANOVA for targets revealed a small but significant main 

effect of semantic relatedness, F(1, 70) = 5.35, MSE = 0.018, p = .024, such that 

participants correctly identified studied words from semantically associated sets as old, 

M = 0.80, SE = 0.012, more often than words from non-associative sets, M = 0.77, SE = 

0.012.  The main effect of word frequency was also significant, F(3, 210) = 28.74, MSE 

= 0.019, p < .001, but again there was no hint of a Semantic Relatedness × Word 

Frequency interaction, F(3, 210) = 1.23, MSE = 0.015, p > .10.  As described above, the 

effect of word frequency on hit rates was strictly linear, with participants correctly 

recognizing more LF targets than MF targets, more MF targets than HF targets, and 

more HF targets than VHF targets. 

Non-critical lures. The main effects of semantic relatedness and word frequency 

on false recognition of non-critical lures were also similar to those reported in 
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Experiment 1, but unlike in Experiment 1 there was no interaction.  A 2 (Semantic 

Relatedness: associative vs. non-associative word sets) × 4 (Word Frequency: LF, MF, 

HF, VHF) repeated measures ANOVA on non-critical lures showed only a main effect 

of word frequency, F(3, 210) = 40.99, MSE = 0.021, p < .001.   Semantic relatedness 

did not significantly effect false alarm rates to non-critical lures, F(1, 70) = 2.28, MSE = 

0.013, p > .10, nor was there a significant interaction between semantic relatedness and 

word frequency, F(3, 210) = 1.16, MSE = 0.014, p > .10.  Even though the interaction 

was not significant, the effects of word frequency were analyzed separately for 

associative and non-associative lists to facilitate comparisons with Experiment 1. 

As in Experiment 1, false alarm rates for associative lists increased in steps from 

LF to MF-HF and from MF-HF to VHF as word frequency increased.  LF non-critical 

lures were incorrectly judged to be old less often than were MF non-critical lures, t(70) 

= -4.37, SEM = 0.018, p < .001, HF lures, t(70) = -6.19, SEM = 0.019, p < .001, and 

VHF lures, t(70) = -8.25, SEM = 0.019, p < .001.  The difference in the false alarm rates 

for MF and HF lists did not reach the level of statistical significance, t(70) = -1.74, SEM 

= 0.023, p = .089, but there were more false alarms to VHF lures than HF lures, t(70) = 

2.83, SEM = 0.028, p = .006. 

The pattern for non-associative lists was also the same as observed in 

Experiment 1, with false alarms to non-critical lures increasing as a function of word 

frequency in steps from LF to MF and MF to HF-VHF.  The false alarm rate for non-

associative lists increased significantly from LF to MF, t(70) = 2.98, SEM = 0.018, p = 

.004, and from MF to HF, t(70) = 3.86, SEM = 0.020, p < .001.  There was no 
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significant difference in false alarm rates for HF and VHF lures, t(70) = -1.50, SEM = 

0.023, p > .10. 

Old-new judgments: Semantically induced false recognition. Significant 

effects of word frequency and prior study of associates on semantically induced false 

recognition of the critical lures to associative lists were found in Experiment 1, and this 

finding was replicated in Experiment 2.  A 2 (prior study of semantic associates: studied 

list vs. unstudied list) × 4 (Word Frequency: LF, MF, HF, VHF) repeated measures 

ANOVA on false alarms to critical lures showed that there were main effects of prior 

study, F(1, 70) = 36.52, MSE = 0.037, p < .001, and word frequency, F(3, 210) = 29.37, 

MSE = 0.058, p < .001. These variables did not significantly interact, F > 1. 

Effects of prior study and test on false recognition. Although semantically 

induced false recognition was observed in Experiment 2, there was no test-induced 

increase in false recognition.  Participants falsely identified critical lures to associative 

lists as old more often when the associative list had been studied, M = 0.32, SE = 0.018, 

than when it had only been tested, M = 0.22, SE = 0.17, t(70) = 6.04, SEM = 0.016, p < 

.001.  However, unlike in Experiment 1, there was no significant difference in false 

alarms to critical lures from unstudied associative lists and false alarms to the list items 

themselves, M = 0.20, SE = 0.011, t(70) = 1.31, SEM = 0.015, p > .10.  

Effects of word frequency on false recognition.  To further compare the results 

with Experiment 1, the effects of word frequency on false recognition of critical lures 

from studied and unstudied lists were examined separately. For critical lures to studied 

lists, planned comparisons showed that false alarms increased linearly as word 

frequency increased, t(70) = 6.81, SEM = 0.127, p < .001, but there was also a 
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substantial non-linear component, t(70) = 2.78, SEM = 0.059, p = .007.  As in 

Experiment 1, there was no difference in false alarms to critical lures from LF and MF 

lists, t(70) = 0, but false alarms were higher for lures from HF lists than those from MF 

lists, t(70) = 2.69, SEM = 0.035, p = .009, and higher still for lures from VHF lists, t(70) 

= 3.48, SEM = 0.047, p = .001. 

The pattern for critical lures associated to unstudied lists further replicated the 

results from Experiment 1, with the VHF condition driving the word frequency effect. 

Participants false identified critical lures associated to unstudied VHF lists at higher 

rates than those for unstudied HF lists, t(70) = 4.92, SEM = 0.035, p < .001, unstudied 

MF lists, , t(70) = 5.53, SEM = 0.039, p < .001, or unstudied LF lists, , t(70) = 4.82, 

SEM = 0.040, p < .001.  There were no significant differences in false alarm rates for 

critical lures from unstudied LF, MF, or HF lists, all |ts| < 1.30 and all ps > .10. 

Remember-familiar judgments.  Overall, the results from old-new judgments 

in Experiment 2 closely replicated the findings from Experiment 1, although there were 

a few notable differences. I now turn to analyses of participants’ phenomenological 

judgments for items that were identified as old.  Remember-familiar judgments can be 

analyzed using the same methods as are used to examine old-new judgments.  Because 

“familiar” and “remember” judgments are complementary in the same way that “old” 

and “new judgments are, only one set of judgments needs to be analyzed.  I chose to 

analyze “remember” judgments because these judgments are generally indicative of the 

use of a recollection process, and it is the use of recollection that is of particular interest 

in explaining word frequency mirror effects. Table 6 shows the mean proportion of test 
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items endorsed as “old” for which participants indicated an ability to remember specific 

details rather than a sense of familiarity. 

Effects of word frequency. A 3 (Item Type: target, lure, critical lure) x 4 (Word 

Frequency: LF, MF, HF, VHF) repeated measures ANOVA on these judgments 

revealed a significant main effect of item type, F(2, 137) = 95.26, MSE = 0.106, p < 

.001, but no significant effect of word frequency, F(3, 210) = 1.74, MSE = 0.049, p > 

.10.  These findings were qualified by a significant interaction, F(6, 287) = 6.21, MSE = 

0.060, p <.001.  A set of planned comparisons was conducted to examine the 

differences in the simple effects of word frequency on remember judgments for studied 

items, non-critical lures, and critical lures. 

For studied words, remember judgments decreased linearly with word 

frequency, t(70) = 8.41, SEM = 0.081, p <.001.  LF targets were judged to be old based 

on recollection more often than were MF targets, t(70) = 3.04, SEM = 0.017, p = .003. 

MF targets were “remembered” more often than HF targets, t(70) = 4.09, SEM = 0.021, 

p < .001, and HF targets were remembered more often than VHF targets, t(70) = 3.40, 

SEM = 0.019, p = .001.  This pattern is almost identical to the pattern of hit rates 

(compare row 1 in Table 4 to row 1 in Table 3), and is consistent with predictions from 

the recollection hypothesis. Thus, one possible explanation for the effects of word 

frequency on overall hits is that there are systematic differences in the recollectability of 

words as a function of word frequency and that these differences drive the change in hit 

rates. Also as predicted by the recollection hypothesis, there were no effects of word 

frequency on remember judgments for non-critical lures, all |ts| < 1 and all ps > .10. 
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Interestingly, the pattern of remember judgments for critical lures to associative 

lists was opposite the pattern for studied items:  Remember judgments for critical lures 

that were falsely identified as old increased with word frequency, t(29) = 2.06, SEM = 

0.233, p = .048.  There were no significant differences in remember judgments between 

critical lures to LF and MF lists, t(31) = 0.97, SEM = 0.061, p > .10, or between critical 

lures to HF and VHF lists, t(47) = 0.55, SEM = 0.074, p > .10. But there was a 

significant difference between LF and MF lists and HF and VHF lists, t(29) = 2.37, 

SEM = 0.118, p = .025.  Because there were only 6 critical lures for each level of word 

frequency and the mean false alarm rate for these lures was less than 0.30, contrasts for 

critical lure remember judgments could not be calculated for all participants; these 

results should, therefore, be interpreted with caution. Nevertheless, these patterns are 

consistent with other studies that have shown that the critical lure can rise to conscious 

awareness during processing of the associates and then be remembered on a later test 

based on that experience (e.g., Seamon, Lee, Toner, Wheeler, Goodkind, & Birch, 

2002). 

Effects of semantic relatedness and word frequency.  To test for effects of 

semantic relatedness and possible interactions between semantic relatedness and word 

frequency on the use of remember judgments, I conducted separate analyses using just 

the targets and non-critical lures that had been judged as old (see Table 3 for means).  

The results of a 2 (Item Type: target vs. non-critical lure) × 2 (Semantic Relatedness: 

associative vs. non-associative word sets) × 4 (Word Frequency: LF, MF, HF, VHF) 

repeated measures ANOVA were similar to the results from the analysis of old-new 

judgments.  There was a significant main effect of item type, F(1, 69) = 152.32, MSE = 
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0.187, p < .001, with participants giving remember judgments to studied words, M = 

0.70, SE = 0.015, more often than to non-critical lures, M = 0.29, SE = 0.023.  There 

was a significant main effect of semantic relatedness, F(1, 70) = 12.42, MSE = 0.047, p 

< .001, such that participants remembered words from associative lists more often than 

words from non-associative lists. And there was a significant main effect of word 

frequency on remember judgments, F(3, 210) = 4.79, MSE = .059, p = .003, that was 

qualified by an interaction with item type, F(3, 157) = 7.49, MSE = .058, p < .001. 

There were no other significant interactions, all Fs < 1.60 and all ps > .10. As with old-

new judgments, separate ANOVAs along with sets of planned contrast comparisons 

were conducted for targets and non-critical lures. 

Semantic relatedness and word frequency had somewhat different effects on 

remember judgments than on old-new judgments.  Both the main effects and the 

interaction in a 2 (Semantic Relatedness: associative vs. non-associative word sets) × 4 

(Word Frequency: LF, MF, HF, VHF) repeated measures ANOVA for targets were 

significant.  Participants identified targets as old based on recollection more often for 

associative lists than for non-associative lists, F(1, 70) = 13.12, MSE = 0.030, p < .001.  

There was a significant main effect of word frequency on these judgments, F(3, 210) = 

37.94, MSE = 0.031, p < .001, and a significant Semantic Relatedness x Word 

Frequency interaction, F(3, 209) = 2.94, MSE = 0.037, p = .034.  Table 4 clearly shows 

that remember judgments for targets decreased as a function of word frequency for both 

associative and non-associative lists.  The interaction was due to the one exception to 

this pattern—there was no difference between remember judgments for HF and VHF 

targets for non-associative lists. 
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The effects of semantic relatedness and word frequency were also different for 

non-critical lures. A 2 (Semantic Relatedness: associative vs. non-associative word sets) 

× 4 (Word Frequency: LF, MF, HF, VHF) repeated measures ANOVA on non-critical 

lures that were identified as old showed no significant effects of these variables on 

remember judgments.  There was a marginal main effect of semantic relatedness, F(3, 

61) = 3.34, MSE = 0.069, p = .073, but no evidence for an effect of word frequency or 

an interaction, Fs < 1. 

Semantically induced false recognition. There were not enough observations to 

conduct a reliable inferential analyses of the effects of word frequency and prior study 

on remember judgments for critical items that had been judged as old. Nevertheless, the 

means are presented in Table 4 and discussed in qualitative terms.  From the means, it 

appears that prior study of the semantic associates to a critical lure increases the 

likelihood of that item being falsely “remembered”, particularly for lists composed of 

high- and very high-frequency associates.  There also appears to be an interaction for 

LF words, but given the small number of observations, this could be an outlier. To 

gather enough data to investigate these effects in more depth, a study would have to be 

designed in which each subject was presented with a large number of associative lists 

for each level of word frequency.  This might be possible for low and moderate 

frequencies; but, unfortunately, there simply are not enough high- and very high-

frequency words in the English language (or any language) to do this for these 

frequencies. 
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Discussion 

Experiment 2 was designed to investigate the role of recollection in the word 

frequency mirror effect and in effects of semantic relatedness on item recognition.  

Evidence from Experiment 1 pointed to recollection as the locus of the WFME, with 

word frequency effects on false alarm rates being driven by differences in familiarity 

and word frequency effects on hit rates being driven by recollection, as predicted by the 

recollection hypothesis.  The results from Experiment 2 provide further support for this 

hypothesis. 

Overall, a consistent WFME was observed in Experiment 2, with hit rates being 

ordered LF > MF > HF > VHF and false alarm rates having the opposite order, LF < 

MF < HF <VHF.   This is different from the pattern observed in Experiment 1, but 

based on the recollection hypothesis this difference is to be expected because of 

differences in the experimental procedures.  In Experiment 1, participants were asked to 

provide confidence ratings; this task is relatively neutral in that it does not push the 

participants to make their recognition decisions using any particular cognitive process.  

But in Experiment 2, participants were explicitly asked to make a remember-familiar 

judgment.  This explicit requirement can cause participants to rely more on recollection 

than on familiarity (Rotello et al., 2005).  Thus, the observance of a limited mirror 

effect in Experiment 1 and a full mirror effect in Experiment 2 likely reflects 

differences in the use of recollection between the experiments, consistent with the 

recollection hypothesis. These findings are a challenge for the Bayesian likelihood 

hypothesis, though, because the only way in which it could accommodate these results 

is to suppose that the difference in experimental procedures somehow caused 
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participants to use different estimates of prior probabilities for HF and VHF items but 

not for LF and MF items (see Glanzer et al., 2009). 

Participants’ remember-familiar judgments in Experiment 2 also provide more 

direct evidence for impact of recollection on the WFME.  Consistent with predictions 

from the recollection hypothesis, participants’ remember judgments for studied items 

showed the same ordering as the hit rates.  To verify that this is not an artifact of 

averaging over participants, I calculated the within-subject correlation between hit rates 

and remember judgments across the 4 levels of word frequency.  Discarding the 4 

participants for whom this was not calculable, the mean correlation was significantly 

positive, M = 0.23, SE = 0.08, t(66) = 2.98, p < 0.01. 

There is one area where the results from Experiments 1 and 2 seem to contradict 

the recollection hypothesis.  According to Joordens and Hockley (2000), the 

recollection hypothesis assumes that false alarms are driven by familiarity. This 

assumption has two consequences. First, it implies that there should be no differences in 

the use of recollection—whether measured from ROC parameter estimates or from 

remember judgments to lures—across the levels of word frequency.  Although this is a 

prediction of a null effect, the evidence from Experiment 2 seems to support it; there 

were no significant differences in the use of recollection for non-critical lures.  

However, estimates from the DPSD model showing phantom recollection for LF non-

critical lures (even for non-associative lists) in Experiment 1 suggest that recollection 

may play a role in generating false alarms for lures, at least some of the time. 

Second, the assumption that false alarms are driven by familiarity implies that 

the advantage in low false alarm rates for LF words relative to HF words is a 
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consequence of LF words having a lower preexperimental familiarity than HF words 

(Joordens & Hockley, 2000).  This assumption that word frequency is positively related 

to familiarity is a common assumption in memory research (e.g., Clark, 1992; Glanzer 

& Adams, 1985, 1990; Glanzer et al., 1993; Reder et al., 2000) because it seems 

psychologically intuitive, but the parameter estimates from both the UVSD and DPSD 

models in Experiment 1 contradict this assumption.  According to this assumption, the 

means of the strength distributions (UVSD) and the familiarity distributions (DPSD) for 

lures should have been ordered as an increasing function of frequency (LF < MF < HF 

< VHF), but the estimates from the models reflected a decreasing function instead (LF > 

MF > HF > VHF).  Thus, either both the models are wrong, or contrary to long held 

assumptions, word frequency is negatively related to familiarity.  Although this 

conclusion seems counterintuitive, there is some evidence from neural network models 

of memory that supports it (Monaco et al., 2007).  
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Chapter 6 

Computational Models Of Item Recognition 

 

The Rise and Demise of Strength-Based Global Memory Models 

One of the hallmarks of memory research in the 1980’s was the development 

and use of global memory models (GMMs) to explain the processes that underlie recall 

and recognition memory performance.  These models included the search of associative 

memory (SAM) model (Raaijmakers & Shiffrin, 1981; Gillund & Shiffrin, 1984), the 

theory of distributed memory (TODAM2; Murdock, 1993), and MINERVA 2 

(Hintzman, 1988).  While these models differed widely in their architectures, they 

shared a common set of assumptions about how human memory operates (for a 

comparative review, see Clark & Gronlund, 1996).  The GMMs all assumed that items 

are encoded into memory during study, and each of them specified the encoding process 

in mathematical terms.  They also assumed that at test, a set of available cues were 

combined in short-term memory and used as a single, joint probe of long-term memory. 

The defining characteristic of GMMs was that they assumed that this probe was 

compared to all items in memory and that a match value was calculated for each of 

these comparisons (Clark & Gronlund, 1996).  This match value was variously called 

strength (e.g., Raaijmakers & Shiffrin, 1981), familiarity (e.g., Gillund & Shiffrin, 

1984), or activation (e.g., Hintzman, 1988).  As they were implemented initially, 

GMMs all assumed that recognition decisions are made by comparing the index of 

familiarity to a criterion and responding “old” if the familiarity was above the criterion 

or “new” if below it, similar to the assumptions of classical SDT.  However, not all of 
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the GMMs were limited to this single-process view of recognition memory.  For 

example, Gillund and Shiffrin explicitly included recall processes in the theoretical 

SAM model of recognition, although they only implemented and tested the single-

process familiarity version. 

Although the GMMs were able to explain a great variety of empirical data from 

human participants, a number of empirical challenges to the assumptions of recognition 

GMMs arose in the late 1980’s and early 1990’s (for reviews, see Clark & Gronlund, 

1996; and Shiffrin & Steyvers, 1997).  Mirror effects were foremost among these 

challenges (Glanzer & Adams, 1990), but other effects that posed difficulties for GMMs 

included the list length effect and list strength effects (Ratcliff, Clark, & Shiffrin, 1990), 

obtaining z-ROC slopes less than unity (Ratcliff, McKoon, & Tindall, 1994; Ratcliff, 

Sheu, & Gronlund, 1992), dissociations in patterns from item and associative 

recognition tasks, and effects of verbal and environmental context (e.g., Clark & 

Shiffrin, 1992; S. Smith, Glenberg, & Bjork, 1978).  Although each of the GMMs could 

account for a subset of these effects, no single GMM was able to account for all of 

them.  As a consequence, many researchers—including some of the developers of the 

aforementioned GMMs—now consider the entire class of strength-based GMMs to 

have been falsified as theories of recognition (see, e.g., Diana et al., 2006; Glanzer et 

al., 2009). 

Bayesian Likelihood Recognition Models 

Attention/likelihood theory.  As an alternative to the strength-based GMMs, 

Glanzer et al. (1993) developed attention/likelihood theory (ALT).  Like many other 

computational models that derive from Estes (1955) stimulus sampling theory, ALT 
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assumes that stimuli consist of features, some of which are probabilistically sampled 

and marked as having been encountered during any given processing opportunity.  For 

any given experiment, all items are assumed to start with some small proportion of their 

features having been marked from pre-experimental encounters.  This noise marking 

probability is assumed to be the same for all stimuli.  However, the number of features 

that are sampled during the experiment is assumed to be different for stimuli in different 

conditions, depending on the amount of attention that the stimulus class affords.  During 

a recognition test, a sample of the test item features is drawn and the number of marked 

features is assessed.  Unlike strength-based GMMs, though, ALT does not assume that 

the recognition decision is made on the basis of a direct comparison of the features.  

Instead, an additional step wherein the likelihood of the test item being new or old is 

made, and then this likelihood as the input to an SDT decision process. 

In ALT, likelihood is assessed by using the number of marked features along 

with the subject’s metacognitive knowledge1 of how many marked features new and old 

items should be expected to have as the basis for calculating a Bayesian log likelihood 

ratio (Glanzer et al., 1993; Hintzman, 1994).  Assuming the subject’s metacognitive 

                                                 

1 There is some dispute as to whether the type of knowledge that ALT assumes subjects 
use to perform the likelihood assessment is metacognitive in nature.  Glanzer et al. 
(1993, pg. 551) state that “[t]he subject is assumed to have background information: 
how much marking a new [item] and how much marking an old item such as the given 
test item would have.” Hintzman (1994) points out that this implicitly assumes certain 
metacognitive judgments.  In their reply, Kim and Glanzer (1994) deny that this is 
metacognition, stating that the term “imports a large amount of theoretical baggage that 
we have no interest in handling” (pg. 206) and that ALT “simply assumes that the 
subjects estimate p(i, old) on the basis of their experience in the experiment” (pg.  207).  
However, Kim and Glanzer do not offer any process other than metacognition that 
would allow subjects to make this estimation, and until such time as an alternative 
process is proposed, metacognition seems to be the only viable process for this 
estimation. 
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knowledge is at least approximately accurate, this calculation has the natural 

consequence of creating log likelihood distributions that, when placed on a common 

decision axis, array themselves in such an order as to produce mirror effects (see Figure 

11).  That is, the lure distribution for the stronger stimulus class (AN) has a lower mean 

likelihood ratio than does the lure distribution for the weaker stimulus class (BN), and 

target distribution for the stronger stimulus class (AO) has a higher mean likelihood 

ratio than does the target distribution for the weaker stimulus class (BO).  Thus, 

assuming that the subject chooses a criterion that is not too far from the optimal point, 

ALT predicts mirror effects as a natural byproduct of the recognition decision process 

(Glanzer et al, 1993).  In fact, any model that uses the Bayesian likelihood as the basis 

for making recognition decisions will predict mirror effects when there are differences 

in the prior probabilities and an optimal or near-optimal criterion is used (Glanzer et al., 

2009). 

 

 

 

 

 

 

 

 

 

 
Figure 11.  Distributions of Bayesian log-likelihood ratios in ALT (from Glanzer et 

al., 1993, Figure 3) 
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Although ALT has been able to account for mirror effects and a few other 

phenomena that appear when comparing stimuli or procedures that give rise to 

differences in recognition memory performance, the theory has been criticized on a 

number of fronts.  For example, Hintzman (1994) argues that the theory makes a 

number of unstated assumptions, in particular relating to metamemory processes1, and 

that other ways of rescaling strengths can produce the same effects.  Maddox and Estes 

(1997) point out that in order to ensure that the mirror effect occurs properly, ALT 

requires assumptions about how the characteristics of the stimuli or encoding task relate 

to the number of features that are sampled.  These assumptions are not always obvious a 

priori, and in some cases they do not make logical sense. 

Retrieving effectively from memory (REM).  REM was developed in reaction 

to the failure of the SAM model to account for mirror effects and ROC curves, and it 

overcomes the limitations of the SAM architecture by incorporating two significant 

changes (Shiffrin & Steyvers, 1997).  Instead of using strength-based familiarity signals 

as the basis for recognition, REM first calculates the Bayesian likelihood ratio of the 

match between the copy cue and each item stored in memory and then sums these 

likelihood ratios to calculate the odds that the cue matches an item in memory.  If the 

odds are above a threshold, then the copy cue is judged to be old; otherwise it is judged 

to be new.  To support the calculation of likelihood ratios, the representation of items in 

memory was changed from the associative matrices used in SAM to sets of vectors of 

feature values.  The use of Bayesian likelihood ratios ensures that mirror effects are 

always produced in REM when stimuli classes have different strengths in memory 

(Glanzer et al., 2009).  For example, the REM model accounts for the WFME by 
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assuming that high-frequency words have more common features than do low-

frequency words. This causes a difference in the match values for low- and high-

frequency words that then translates to a mirror effect through the Bayesian likelihood 

transformation. 

One of the strengths of REM is that it can account for a wide range of findings 

from single-item recognition paradigms as well as a limited number of recall 

phenomena.  Recognition phenomena that REM has been shown to account for include 

the effects of variations in list length, list strength, and item strength on discriminability 

and ROC measures of item recognition (Shiffrin & Steyvers, 1997); the presence of 

mirror effects in word frequency experiments (Malmberg, Holden, & Shiffrin, 2004; 

Shiffrin & Steyvers, 1997); and various measures of remember-know performance 

(Malmberg, 2008).  Additionally, REM has been used to account for accuracy and 

response time in cued recall (Diller, Nobel, & Shiffrin, 2001), the list strength effect in 

free recall (Malmberg & Shiffrin, 2005; Verde, 2009), and the use of a recall-to-reject 

strategy in recognition (Malmberg, 2008; Malmberg et al., 2004). 

Despite the successes of the REM model, it has a number of critical limitations.  

First, the Bayesian decision process that forms the core of the REM model predicts that 

mirror effects are a consistent feature of recognition, despite evidence of boundary 

conditions for mirror effects (see Chapter 3).  Second, REM cannot account for a 

number of key effects in associative recognition including episodic fan effects (Buchler, 

Light, & Reder, 2008) and the influence of semantic relations between the cue and 

target (Greene & Tussing, 2001).  Third, without some kind of pre-experimental 

semantic memory such as the one used in the fSAM model, REM is unlikely to be able 
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to account for semantic phenomena such as intrusions in free recall or false alarms to 

semantically related items in recognition.  Finally, although Shiffrin and colleagues 

have argued that REM is an extension of the SAM model (Klein, Shiffrin, & Criss, 

2007; Raaijmakers, 2005), the ability of the REM model to provide a satisfactory 

account for many of the phenomena that SAM was able to explain has never been 

tested.  For example, it is not known whether REM can explain serial position curves in 

free recall (Raaijmakers & Shiffrin, 1980; but see Lehman & Malmberg, 2009), the 

part-set cuing effect (Raaijmakers & Shiffrin, 1981), or interference in cued recall and 

recognition (Mensink & Raaijmakers. 1988). 

Boundary conditions on mirror effects: A challenge for Bayesian likelihood 

models.  The boundary conditions on mirror effects discussed in Chapter 3 and 

observed in Experiments 1 and 2 pose a challenge for Bayesian likelihood models such 

as ALT and REM. As discussed above, these models predict that under normal 

circumstances mirror effects will obtain for any set of stimuli where one stimulus class 

is stronger than the other.  Glanzer et al. (2009) showed that Bayesian likelihood models 

predict exceptions to this rule when subjects exhibit a bias, but these predictions do not 

necessarily comport with the empirical evidence.  For example, according to Glanzer et 

al., when subjects adopt a liberal criterion (i.e., one that is to the left of the optimal 

criterion), the strong stimuli should have a lower FAR than the weak stimuli but the HR 

for the two classes should be the same. Conversely, Glanzer et al. also showed that 

when subjects adopt a strong criterion (i.e., one that is to the right of the optimal 

criterion) Bayesian log likelihood models predict that strong stimuli should have a 

higher HR than the weak stimuli but the FAR for the two classes should be the same.  
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However, these are global criterion shifts that should affect all classes of items; 

therefore, they cannot explain results such as those in Experiment 1 or in Estes and 

Maddox (2002) where mirror effects obtain for some item classes but not for others.  

Additionally, these bias shifts do not allow for concordant patterns where hit rates and 

false alarm rates are both higher for one stimulus class than for another. 

Model Development and Testing 

As discussed above, no extant model of recognition memory can account for 

mirror effects and their boundary conditions.  There are three potential solutions to this 

problem: 1) modify a strength-based model to account for the presence of mirror 

effects, 2) modify a Bayesian likelihood model to account for the absence of mirror 

effects, or 3) develop a new class of recognition models that uses something other than 

strength or Bayesian likelihood as the basis for recognition decisions.  For this thesis, I 

chose the first approach and tried to modify a strength-based model that is built on the 

Search of Association Memory (SAM) framework (Gillund & Shiffrin, 1984; 

Raaijmakers & Shiffrin, 1981).  I chose the SAM framework rather than a newer 

Bayesian likelihood model for the reasons outlined below. 

Rationale for the modeling approach.  Unlike most Bayesian likelihood 

models, the SAM model provides a clear theoretical link between the processes of recall 

and recognition (Gillund & Shiffrin, 1984).  In addition to accounting for an impressive 

array of recognition phenomena, variants of the SAM model have been able to account 

for a large number of key phenomena in free and cued recall—many of which cannot be 

accounted for by other computational models—whereas the ability of Bayesian 

likelihood models to account for free recall data is unknown (but see Lehman & 
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Malmberg, 2009).  The phenomena to which SAM has been applied include the effects 

of presentation rate and list length (Raaijmakers & Shiffrin, 1980), serial position 

curves and part-set cuing (Raaijmakers & Shiffrin, 1981), interference and forgetting 

(Mensink & Raaijmakers, 1988), list strength (Shiffrin, Ratcliff, & Clark, 1990), 

generation (Clark, 1995), temporal contiguity (Kahana, 1996), category clustering 

(Sirotin, Kimball, & Kahana, 2005), and the generation of false recall in the Deese-

Roediger-McDermott (DRM) paradigm (Kimball et al., 2007).  With the notable 

exception of the REM model, none of the Bayesian likelihood models include memory 

search processes to support recall. The REM model theoretically includes a memory 

search process based on the memory search algorithm used in SAM (Shiffrin & 

Steyvers, 1997, pp.  160-161), but until recently the implementation of recall processes 

in the model has been limited to supplementing recognition decisions (Malmberg et al., 

2004; Xu & Malmberg, 2007; Malmberg, 2008). Lehman and Malmberg (2009) 

developed a recall version of REM and applied it to the directed forgetting paradigm, 

but the generality of this model is still unknown. 

Second, despite the fact that the general SAM recognition model proposed by 

Gillund and Shiffrin (1984) included both a familiarity process and a recall-like process, 

the capability of a dual-process SAM model—or any dual-process strength-based 

recognition model—to account for mirror effects has never been tested.  This may be 

due to the fact that when the current generation of computational models was developed 

in the 1980’s and 1990’s the zeitgeist was that a single signal-detection theory (SDT) 

process provided the most parsimonious explanation for recognition and that adding an 

additional process would needlessly complicate the models (Slotnick & Dodson, 2005).  
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However, as discussed in Chapters 2 and 3, there is now a growing consensus that a 

multi-process theory that integrates a familiarity mechanism and a recollection 

mechanism is necessary to account for the full range of recognition memory phenomena 

(for recent reviews, see Wixted, 2007a, and Yonelinas & Parks, 2007), and a number of 

researchers have suggested that a such a theory could account for mirror effects (e.g., 

Arndt & Reder, 2002; Balota, Burgess, Cortese, & Adams, 2002; Cary & Reder, 2003; 

Hirshman, Fisher, Henthorn, Arndt, & Passannante, 2002; Joordens & Hockley, 2000).  

Additionally, even the Bayesian likelihood models such as REM are now being 

supplemented with recall and/or recollection mechanisms in order to account for more 

subtle effects of variables that often produce mirror effects (Malmberg et al., 2004; Xu 

& Malmberg, 2007; Malmberg, 2008), thus negating the potential argument that a 

single-process Bayesian likelihood model is more parsimonious than a dual-process 

strength-based model. 

Finally, with the addition of a pre-experimental semantic memory, the SAM 

framework could be used to examine the interaction of semantic and episodic influences 

on memory performance (Kimball et al., 2007), something no other extant recognition 

model can do.  This is important when examining mirror effects because many of the 

variables that produce mirror effects, such as normative word-frequency, concreteness 

and imageability, and meaningfulness, are inherently semantic variables rather than 

episodic variables (Monaco et al., 2007).  I also needed a model that could represent 

semantic relations in order to try to account for the effects of semantic association in the 

two experiments presented in Chapters 4 and 5.  I next describe the fSAM model of 
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recall that I used as a starting point for the development of a new model of recognition 

memory. 

The fSAM Model of Recall  

The fSAM model is based on the Search of Associative Memory model (SAM; 

Raaijmakers & Shiffrin, 1981) that has been previously applied to a wide variety of 

episodic memory phenomena including free recall, cued recall, recognition, and 

forgetting.  The fSAM model incorporates the basic episodic memory machinery of 

SAM described below and can account for basic episodic memory phenomena such as 

the serial position curve in free recall (Kimball, et al., 2007) and part-set cuing effects 

(T. Smith & Kimball, 2008).  However, unlike other computational memory models, the 

fSAM model explicitly represents semantic associations in long-term memory and is 

able to simulate semantic memory effects by using those semantic associations to 

construct semantic context at encoding and to search memory at retrieval.  In addition, 

to promote ecological validity, the semantic associations in fSAM can be based on 

behavioral word association norming data (e.g., Nelson et al., 2004; Steyvers et al., 

2004), rather than just abstract representations of semantic information, as are used in 

other models such as MINERVA (Arndt & Hirshman, 1998) or REM (Malmberg et al., 

2004). 

The SAM model of episodic recall. The SAM model (Gillund & Shiffrin, 

1984; Raaijmakers & Shiffrin, 1981) assumes the existence of two memory stores: 

short-term memory (STM) and long-term memory (LTM).  Within STM, rehearsal 

processes are idealized in the form of a limited capacity buffer in which studied words 

become associated through a rehearsal process, as described below.  LTM contains 
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values for the strengths of two types of associations: the associations formed at study 

between each list word and the list context, and the pairwise episodic associations 

formed among list words during study.  The strengths of item-to-context and inter-item 

associations formed during study are stored in an episodic matrix.  List context is 

conceptualized as the temporal and situational setting for a particular list.  For the sake 

of simplicity, the basic SAM model assumes that all associations in LTM are 

episodically created in the course of rehearsal during study, so the strengths in the 

episodic matrix are set to zero prior to study (although these associative strengths are 

later reset to a residual value for pairs of words that are not rehearsed together during 

study). 

According to Raaijmakers and Shiffrin (1981), during study of a list, SAM 

assumes that, as each list item is presented, it enters the STM buffer and is rehearsed 

along with other items occupying the buffer at any given time, thereby increasing the 

strengths of the items’ episodic associations in LTM.  In particular, rehearsal increases 

the strength of association between each item in the buffer and the list context, the 

strength of the association in LTM between any two items that simultaneously occupy 

the buffer, and the association of each item in the buffer to itself.  The amount of time 

that each item spends in the STM buffer during study is determined by the presentation 

rate, the size of the buffer (the maximum number of items that can simultaneously 

occupy the buffer), and the rule for displacement of items from the buffer.  Once the 

buffer is full, each new item displaces one of the items then occupying the buffer. 

Raaijmakers and Shiffrin (1981) describe recall from LTM in SAM as a self-

limiting process in which memory is probed with a cue set and searched for items that 
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are associated to the cue set.  The search process includes at least two phases: First, an 

item is sampled, and then it may or may not be recovered, that is, identified as a 

particular word and output as a recalled item.  The sampling rule in SAM is a 

probabilistic Luce choice rule in which the strength of association between the cue set 

and each item in memory is compared to the sum of the associations between the cue set 

and all items in memory.  This sampling rule uses the relative strength of items in 

memory to implement retrieval competition, so that items that are more strongly related 

to the cue set are more likely to be sampled.  If an item is sampled, then its absolute 

strength of association to the cue set is used to determine whether the item will be 

recovered. 

The fSAM framework.  Building on the SAM model, Kimball et al. (2007) 

incorporated explicit representation of pre-experimental semantic associations among 

words, along with new semantic mechanisms that operate at encoding and retrieval, into 

a new model that was developed to account for veridical and false recall following the 

study of lists of semantically associated words.  Kimball et al. developed several 

versions of fSAM that differed in the ways that these semantic associations exert an 

influence on episodic recall.  One critical way that the model versions differed is in 

whether they incorporated a semantic mechanism at encoding, at retrieval, or at both 

stages.  In addition, the particular semantic mechanism used at encoding was one of 

three different versions, and there were also three different versions of the semantic 

retrieval mechanism.  In the different versions of the semantic encoding mechanism, 

each word in the lexicon becomes associated to the list context in proportion to the 

word's strength of semantic association either to the most recently presented word alone 
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or to all of the studied words jointly occupying the rehearsal buffer at a given time; if 

the latter, the association strengths combine either additively or multiplicatively.  In a 

similar way, at test, the probability of retrieving a word is in part a function of its 

strength of semantic association either to the last recalled word alone or to all of the 

most recently recalled words jointly; if the latter, the strengths combine either additively 

or multiplicatively.   

By factorially combining the encoding and retrieval mechanisms, Kimball et al. 

(2007) generated 16 model versions comprising a 4 (semantic encoding mechanism: 

none, single-item, additive, multiplicative) × 4 (semantic retrieval mechanism: none, 

single-item, additive, multiplicative) design and compared the ability of these 16 model 

versions to fit empirical data from a free recall experiment that they had run with human 

participants.  They used the best-performing model version from those simulations—the 

version that combined the multiplicative encoding and retrieval mechanisms—to 

simulate important false memory effects from the literature, including developmental 

patterns of false recall and the effects of varying association strengths between and 

within study lists. 

The multiplicative fSAM model used by Kimball et al. (2007) added three key 

features to the SAM framework.  First, it extended the memory representations to 

include pre-experimental semantic associations along with the contextual associations 

and episodic interitem associations that were used in previous SAM-based models.  

Second, it added a mechanism to allow these semantic associations to impact the 

encoding of words during study.  Third, it extended the concept of compound cuing to 

allow multiple items instead of just one item to be used to jointly cue memory along 
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with the current context.  Together, these features give the fSAM model the ability to 

account for semantic effects in both veridical and false recall. 

Kimball and Smith (2007) have further applied the fSAM model to other core 

false recall effects, including the effects of repeated study, repeated testing, repeated 

study-test trials, presentation rate, levels of processing, critical word presentation during 

study, and blocked versus random presentation of multiple lists.  We have also applied 

the fSAM model to studies of part-set cuing and false memory (T. Smith & Kimball, 

2008).  However, the current fSAM model is still limited to explaining free recall 

phenomena. 

Extending the fSAM Model to Recognition 

Because the current version of the fSAM model lacks the mechanisms needed to 

implement decision processes that are vital to simulating recognition phenomena, the 

first step in extending the model to recognition was to develop a set of potential 

mechanisms to extend the fSAM model to recognition, as described below.  For this 

thesis, I implemented each of these mechanisms and systematically tested the ability of 

the resulting 36 model variants to a) generate appropriately shaped ROCs in a 

simulation of a basic episodic recognition task and b) generate a word frequency mirror 

effect in a simulation of Glanzer and Adams (1990, Experiment 2), a seminal WFME 

experiment.  I had planned to use the most successful models to try to explain the 

effects of semantic association and word frequency observed in Experiments 1 and 2 

(see Chapters 4 and 5, respectively), but as it turned out none of the model variants was 

able to generate basic word frequency mirror effects.  I explain these results in more 

detail in Chapter 7. 
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Recognition memory within the SAM framework.  Gillund and Shiffrin 

(1984) proposed a general recognition model within the SAM framework that included 

both familiarity and recollection processes, and implemented a simple, single-process 

computer model to simulate a number of episodic recognition memory effects.  In the 

Gillund and Shiffrin simulation model, recognition decisions were based on familiarity, 

much as in classic SDT models.  Familiarity of a test probe was calculated by using the 

test item and context as cues, calculating for each item in LTM a product of that item’s 

contextual association strength and its strength of association to the test item, then 

summing those products across all items in the lexicon to determine the familiarity of 

the test item.  This familiarity value was the same as the denominator in the sampling 

rule used by Raaijmakers and Shiffrin (1981) in the recall process, thus uniting 

recognition and recall theoretically.  If the calculated familiarity was above a pre-set 

criterion, the item was accepted as old.  Otherwise it was rejected as being new. 

Using this simple single-process model, Gillund and Shiffrin (1984) were able to 

qualitatively simulate a number of key findings from the recognition literature, 

including effects of presentation speed and retention interval, list-length effects for lists 

of unrelated words, and the mirror effect for word-frequency.  However, in order to 

account for word-frequency effects, Gillund and Shiffrin assumed that participants use 

different criterion for high-frequency words than for low-frequency words, an 

assumption that no longer seems tenable in light of evidence that participants are 

reluctant to use different criteria even when given good reason to do so (Stretch & 

Wixted, 1998a). 
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Surprisingly, little attention has been given to the more general recognition 

theory laid out by Gillund and Shiffrin (1984) or the fact that they acknowledged the 

inherent limitations of their single-process simulation model as well as the arbitrariness 

of the method they used to calculate familiarity (see also Shiffrin & Steyvers, 1997).  

Because implementations of the SAM recognition model have generally assumed that 

recognition relies solely on a familiarity process (e.g., Clark & Shiffrin, 1992; Gillund 

& Shiffrin, 1984; Mensink & Raaijmakers, 1988; Shiffrin, Huber, & Marinelli, 1995) it 

is commonly thought that this assumption is integral to the SAM theory.  However, a 

closer reading of the literature reveals that familiarity and recollection both play a role 

in recognition in the SAM framework, and there is a potential role for other decision 

processes as well.  As Gillund and Shiffrin (pg. 56) put it, “the question is really not 

whether search processes occur, put the degree to which such processes occur….  [T]he 

underlying logic of the SAM model requires that the subject be able to utilize search if 

he or she so chooses.”  

Thus, there are at least two types of potential modifications that could be made 

to the traditional SAM-based approach to modeling recognition: a) use a different 

formulation to calculate familiarity and/or b) incorporate a recollection process into the 

model.  To date, no studies of alternative ways to calculate familiarity within the SAM 

framework have been published, although Shiffrin et al. (1995) did add a differentiation 

mechanism that impacted the calculation of familiarity in response to lures.  In the only 

published study that has attempted to incorporate recollection processes into the model, 

Ratcliff, Van Zandt, and McKoon (1995) showed that SAM could account for data from 

the process dissociation procedure when recall processes were allowed to contribute to 
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recognition memory decisions.  Despite this success, no studies to date have 

implemented a full dual-process version of SAM.  Thus, the ability of SAM-based 

models to account for mirror effects has never been fully tested. 
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Chapter 7 

Simulations 

 

My first step toward creating a strength-based model to account for mirror 

effects was to find a set of familiarity and recollection mechanisms that could be placed 

in the fSAM framework to generate ROCs that approximate the shape of human-

generated ROCs in item recognition.  Generating correctly shaped ROCs is a logical 

prerequisite for generating mirror effects because the same cognitive mechanisms are 

thought to underlie the two. 

As discussed in Chapter 2, a signal detection model can only generate item 

recognition ROCs that look like those obtained from humans if the model assumes that 

the variance of the target distribution is larger than the variance of the lure distribution 

(Wixted, 2007).  However, global memory models—and the SAM model in 

particular—have historically had difficulties generating asymmetric ROCs with -

normalized slopes less than one (Ratcliff et al., 1992).  Strength-based GMMs can 

produce distributions with equal variances (Murdock, 1993) or unequal variances where 

the variance of the lure distribution is larger than the variance of the target distribution 

(e.g., Gillund & Shiffrin, 1984), but in their current form they do not seem to be able to 

produce a target distribution that has a greater variance than the lure distribution.  

Wixted (2007a) has suggested that this could be accomplished by adding the strengths 

from a continuous-strength recollection process to familiarity. This type of operation 

conceivably could produce mirror effects as well.  In particular, if the ordering of the 

recollection distributions is opposite that of the familiarity distributions—i.e., the more 
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familiar stimuli are less recollectable while the less familiar stimuli are more 

recollectable—the summed distributions could order themselves as shown in Figure 5, 

thereby producing a mirror effect when subjected to a signal detection process (cf., 

Reder et al., 2000). 

Of course, asymmetrical ROCs with a normalized slope less than unity can also 

be created by supplementing familiarity with a discrete recollection process (Yonelinas, 

1994; Yonelinas & Parks, 2007).  Again, if one assumes that the more familiar stimuli 

are less recollectable while the less familiar stimuli are more recollectable, this 

combination of decision processes could produce a mirror effect.  As Joordens and 

Hockley (2000) explain, decisions for lures necessarily are based on familiarity, so that 

the stimuli with lower familiarity will have lower false alarm rates.  But decisions for 

targets can often be made using recollection.  Because the less familiar stimuli are more 

recollectable, this will cause them to have higher hit rates than the more familiar 

stimuli. 

Thus, a SAM model that can generate properly shaped ROCs—whether it uses a 

pure signal detection decision mechanism with unequal variances or a combination of 

recollection and familiarity decision mechanisms—might also be able to generate 

mirror effects using this same mechanism.  Conversely, a model that cannot generate 

properly-shaped ROCs is unlikely to be able to generate the more complex patterns 

associated with mirror effects. In the next section, I describe a number of ways in which 

familiarity and recollection could be assessed within the fSAM framework and the 

results of tests of model variants that implement these mechanisms. 
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Modifications to the fSAM Model 

The first step in extending the fSAM recall model to account for recognition was 

to add a mechanism to calculate and assess the familiarity, or strength, of items in 

memory.  I tested four different mechanisms to calculate familiarity.  Two of these 

mechanisms were based on summing the strengths of association between the memory 

probe and each item in memory over the entire contents of LTM; these are global 

familiarity mechanisms.  The second two calculated familiarity based on the strength of 

the memory probe itself; these are local familiarity mechanisms.  For each of these 

types of mechanisms, the strengths of the contextual, episodic, and semantic 

components of memory were combined either additively or multiplicatively. These 

mechanisms are described in more detail below. 

Familiarity. The global product familiarity mechanism is an extension of the 

mechanism used by Gillund and Shiffrin (1984) in their episodic SAM model.  In this 

model, familiarity is the denominator from the free recall sampling rule, wherein the 

strength of each item in memory is calculated as the weighted product of the three 

memory components as shown in Equation 1: 

                                                                         ,    (1) 

where f( j) represents the familiarity of the test probe j, S(k, context) represents the 

strength of the association of item k to context; Se(k, j) represents the strength of the 

episodic association between the test probe j and item k; Ss(k, j) represents the strength 

of the semantic association between the test probe and item k; Wc, We, and Ws are the 

retrieval weight parameters for weighting of item-to-context associations, inter-item 

! 

f ( j) =
k

k"N

# S(k,context)Wc Se (k, j)
We Ss(k, j)
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episodic associations, and inter-item semantic associations, respectively; and N is the 

set of all items in long-term memory.  A slight modification of this rule yields the 

global sum familiarity mechanism: 

€ 

f ( j) =
k

k∈N

∑ WcS(k,context) +WeSe (k, j) +WsSs(k, j)[ ]     (2) 

Although these two mechanisms assess the strength of each item in memory using a 

different rule, they both calculate familiarity by adding these strengths over all items in 

memory. 

 Although SAM has traditionally been identified as a global memory model, it is 

also possible to use a local strength to calculate familiarity. The local product 

familiarity mechanism uses the memory probe’s self-association strength, combining 

the memory components multiplicatively: 

     (3) 

If the memory components are combined additively instead, a local sum familiarity rule 

can be created: 

€ 

f ( j) =WcS( j,context) +WeSe ( j, j) +WsSs( j, j)    (4) 

Each of the above formulations is theoretically plausible according to various 

conceptualizations of familiarity, and except for historical consistency with previous 

SAM-type models there is no apparent a priori reason to prefer any one to the others. 

Recollection. The next step in creating a recognition model was to incorporate a 

recollection processes into fSAM.  As with familiarity, there are a number of possible 

ways in which recollection processes can be implemented, and the manner in which the 

familiarity and recollection processes will be combined has to be considered, as well.  I 

! 

f ( j) = S( j,context)Wc Se ( j, j)
We Ss( j, j)

Ws
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tested a total of 8 different mechanisms for calculating recollection and combining the 

recollection and familiarity processes. 

Recall-based memory search.  The most obvious way to implement recollection 

is to use the same memory search processes that are used in free recall, as proposed by 

Gillund and Shiffrin (1984) and partially implemented by Ratcliff et al. (1995).  Gillund 

and Shiffrin suggested two different ways in which recall processes could supplement 

recognition.  First, a standard memory search could be conducted using context as the 

memory cue.  If the test item is sampled and recovered, then it is a recallable item and is 

endorsed as old. Obviously, this is a separate decision process than the familiarity 

process and therefore the recognition decision would be made following the logic of the 

dual-process signal detection (DPSD) model of Yonelinas (1994):  If the item is 

recollected, it is identified as old with the highest confidence rating.  Otherwise, the 

decision is made based on familiarity. 

Following this recommendation, I implemented two different memory search 

recollection mechanisms in which LTM is either cued with context (context-only 

memory search) or with context and the test item (context+item memory search).  The 

idea that subjects engage in a standard free recall memory search every time they 

engage a recollection process seems rather unparsimonious and psychologically 

implausible.  Therefore, I limited the memory search by assuming that subjects attempt 

up to Lmax sample and recovery attempts with the provided cue.  If the test item is 

sampled and successfully recovered, it is recollected.  If this memory search is 

unsuccessful, then a recognition decision is made using familiarity.  
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Gillund and Shiffrin (1984) also suggested an even more limited memory search 

using a single sample and recovery attempt. To implement this mechanism, I used the 

algorithm described above, setting  Lmax = 1.  Depending on whether memory is probed 

with context or the test item and context, I refer to these mechanisms as context-only 

sampling and context+item sampling recollection mechanisms. 

Using the recovery rule for recollection.  An alternative, and somewhat simpler, 

recollection mechanism is to calculate a value that represents the quantity and quality of 

contextual details that come to mind in response to the test item.  In the current version 

of fSAM, this would most logically be a function of the absolute strength of association 

between the test item and the current context, S(j, context).  One logical function that 

retains the theoretical link between recall and recognition that is present in the Gillund 

and Shiffrin (1984) model is the recovery rule from free recall: 

€ 

r( j) =1− e−S( j ,context ).       (5) 

This non-linear transformation results in a value between 0 and 1 that can be used to 

make a discrete recollection decision (as in the DPSD model) or as a continuous 

measure of recollective strength (as in the UVSD model). Within the DPSD framework, 

the recovery value can be viewed as the probability that the item will be recollected.  

This probability can then be compared to a stochastically determined threshold, and if it 

is higher than the threshold, the item is recollected and endorsed as old with high 

confidence. This process forms the basis of the discrete context-only recollection 

mechanism.  

Within the UVSD framework, r(j) can be used as a measure of recollective 

strength than can be combined with the familiarity value to calculate a value for the 
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total memory strength of the test probe. The continuous context-only recollection 

mechanism combines familiarity and recollection strengths using Equation 6: 

€ 

S( j) =Wf f ( j) +Wrr( j),       (6) 

where Wf and Wr are weighting parameters for familiarity and recollection, respectively.  

This total memory strength value is then compared to a criterion, as in the UVSD model 

of recognition (Wixted, 2007a). 

As with the memory search processes, I also created alternative versions of the 

recovery rule-based processes by including the item as part of the memory probe.  The 

discrete context+item and continuous context+item recollection mechanisms use the 

context+item form of the recovery rule from fSAM (Kimball et al., 2007) instead of the 

context only rule shown above.  

Testing the recognition mechanisms 

To test the viability of these mechanisms, I constructed 36 model variants by 

factorially combining the four familiarity mechanisms with nine types of recollection 

mechanisms (no recollection plus the eight mechanisms discussed above), as shown in 

Table 7.  In Simulation 1, I evaluated the ability of each of these models to generate a 

prototypical ROC and z-ROC for confidence ratings in an episodic recognition memory 

task.  In Simulation 2, I tested the ability of each of the model variants to account for 

the word frequency mirror effect in simulations of a prototypical word frequency item 

recognition experiment (Glanzer & Adams, 1990, Experiment 2).  These simulations are 

described in turn in the remainder of this chapter. 
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Table 7.  Factorial combination of familiarity and recollection mechanisms integrated into 
the fSAM model in Simulations 1 and 2. 

    Familiarity 

Decision Recollection Global  Local 

model mechanism Product Sum  Product Sum 

Familiarity None      

DPSD Context-only search      

DPSD Context+Item search      

DPSD Context-only sampling      

DPSD Context+Item sampling      

DPSD Context-only recovery      

DPSD Context+Item recovery      

UVSD Context-only recovery      

UVSD Context+Item recovery      

 

Simulation 1: Confidence-based ROCs in Item Recognition 

In a typical episodic item recognition experiment participants are presented with 

a list of unrelated words, one word at a time, followed by a recognition test containing 

both studied and unstudied words.  During the recognition test, participants are asked to 

rate their confidence that each test word was studied, often using a scale of 1-6 (e.g., 

Yonelinas, 1994).  Participant responses are then used to generate ROC curves.  When 

participants study moderately long lists (50-200 items) of unrelated words and are tested 

within the same experimental session, they typically exhibit d’ values between 1.0 and 

2.0 and produce ROC curves that are curvilinear in probability space and linear with a 



 

107 

slope around 0.8 in z-space (for extensive reviews, see Wixted, 2007a; Yonelinas & 

Parks, 2007). 

Data to be modeled. Each model was tested by simulating a prototypical 

recognition memory experiment in which subjects study a lists of 100 words and are 

given a test comprised of 50 randomly selected study items and 50 unrelated lures.  An 

artificial data set representing typical results from an item recognition experiment was 

constructed for these simulations (see Table 8).  These data produce a probability space 

ROC that is asymmetrical and a z-ROC with a slope of 0.8 and an intercept of 1.25, as 

shown in Figure 12. 

Lexicon.  A total of 500 words to be used as stimuli were randomly selected 

from the 5018 words from the University of Southern Florida word association norms 

(Nelson et al., 2004) that were used by Steyvers et al. (2004) to create their word 

association space (WAS).  The Steyvers et al. version of WAS forms the basis of the 

semantic matrix in fSAM.  These 500 words were randomly divided into a set of 100 

words to be studied, a set of 50 words to be used as lures on the recognition test, and a 

set of 350 words that were placed in the model’s lexicon but were not studied or tested.  

Fitting method.  Because the models are highly complex, I used a genetic 

algorithm (Ashlock, 2006; Mitchell, 1996) to estimate the best fitting parameters for 

each model.  The algorithm started by creating an initial generation of 200 parameter 

sets by randomly drawing the value of each parameter in a set from a predetermined 

range of values. The model was then run with 20 simulated subjects using each of these 

randomly generated parameter sets. The mean number of targets and lures that were 



 

108 

 

Table 8. Data to be fit for Simulation 1.  Data represent mean proportions of targets and 
lures endorsed at each level of confidence. 

 Confidence   Lure Target  

 Sure old 1 0.06 0.47  

  2 0.06 0.16  

  3 0.10 0.12  

  4 0.16 0.11  

  5 0.30 0.08  

 Sure new 6 0.32 0.06  

 

 

 

 

 

 

Figure 12.  Confidence ROC and z-ROC plots for data to be fit in Simulation 1. 
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rated at each level of confidence was calculated across the simulated subjects and 

compared to the values shown in Table 8.  Goodness of fit was calculated using 

unweighted root mean squared deviations (RMSD). 

The first-generation parameter sets that yielded the lowest RMSD values were 

then used to create the next generation of parameter sets through the processes of 

mutation and recombination. Mutation creates a particular second-generation parameter 

set by randomly selecting one of the best fitting first generation parameter sets and then 

randomly copying or varying the value of each parameter within a specified range. 

During mutation, parameters were allowed to mutate by up to 1% of the parameter’s 

range, in either direction, subject to the parameter’s upper and lower range limits. 

Recombination creates a second-generation parameter set by randomly selecting two of 

the best fitting first-generation parameter sets as “parents” and, for each parameter, 

randomly selecting one parent’s values for that parameter as the “child’s” value.  

For each generation, the 10 best-fitting parameter sets from the previous 

generation were kept, the next 20 best-fitting sets were mutated, and the remaining 170 

sets were replaced with new parameter sets created by randomly recombining the 10 

best-fitting sets and the 20 mutated sets.  These processes iterated through 30 

generations.  The 100 best-fitting parameter sets generated by the genetic algorithm 

were then each used to run the model again using samples of 200 simulated subjects to 

generate statistically stable predictions and correct for regression to the mean. The 

parameter set from this large-sample run that had the lowest RMSD was used as the 

base parameter set for that model. 
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Results.  Most of the models were able to provide a good quantitative fit to the 

raw confidence rating proportions. Table 9 shows the RMSDs for the best fits of each 

model to the data.  The best fitting model was the version that combined the global 

product familiarity mechanism with the continuous (UVSD) context+item recovery 

recollection mechanism (RMSD = 0.010), but a number of other models provided fits 

that were nearly as good.  Notably, the two versions that used local familiarity rules 

without any recollection mechanism were among the best fitting models.  In no case did 

adding a recollection mechanism to either of the local familiarity mechanisms improve 

the fit, and it actually harmed the fit in most cases. 

Table 9.  Goodness of fit (RMSD) to confidence-based ROCs in Simulation 1. 

    Familiarity 

Decision Recollection Global  Local 

model mechanism Product Sum  Product Sum 

Familiarity None 0.019 0.091   0.011 0.012 

DPSD Context-only search 0.012 0.073  0.013 0.012 

DPSD Context+Item search 0.015 0.021  0.014 0.013 

DPSD Context-only sampling 0.012 0.076  0.020 0.013 

DPSD Context+Item sampling 0.010 0.041  0.013 0.013 

DPSD Context-only recovery 0.033 0.036  0.026 0.019 

DPSD Context+Item recovery 0.026 0.039  0.016 0.019 

UVSD Context-only recovery 0.016 0.014  0.014 0.013 

UVSD Context+Item recovery 0.010 0.017   0.012 0.014 
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Even though many of the models fit well quantitatively, most of the models did 

not do so well in capturing the shape of the confidence ROC and z-ROC.  Tables 10 and 

11 show the z-ROC slopes and intercepts, respectively, produced by each model.  An 

examination of these data reveals a few interesting patterns.  First, most of the models 

were not able to match the slope of the z-ROC, generating normalized slopes close to—

and in some cases greater than—unity.  This was particularly true for the models that 

used the global product familiarity mechanism based on the SAM model (Gillund & 

Shiffrin, 1984) or the global sum familiarity mechanism. This is consistent with 

previous studies in which SAM and other GMMs have been shown to predict ROCs 

with a slope greater than or equal to 1.0 (Clark & Gronlund, 1996; Ratcliff et al., 1992), 

suggesting that this is a problem for all strength-based global familiarity mechanisms. 

By contrast, models based on a local familiarity mechanism did a much better 

job of fitting the normalized slope.  In particular, the local product familiarity 

mechanism performed quite well, either alone or when combined with a recollection 

mechanism.  The local product familiarity model (with no recollection) not only fit the 

normalized slope perfectly; it also fit the intercept quite well.  This qualitative fit was 

improved slightly by adding either the DPSD context-only sampling recollection 

mechanism or the UVSD continuous context+item recovery rule recollection 

mechanism.  Although local familiarity mechanisms are known to have problems 

predicting list length effects (Ratcliff et al., 1994), they appear to do quite well in 

predicting normalized ROC slopes. 
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Table 10.  z-ROC slope for each model tested in Simulation 1.  The data that were fit 
had a slope of 0.80.  Good qualitative fits (0.70, 0.90) are in bold. 

    Familiarity 

Decision Recollection Global  Local 

model mechanism Product Sum  Product Sum 

Familiarity None 0.95 1.10   0.80 0.91 
DPSD Context-only search 1.00 1.10  0.85 0.92 
DPSD Context+Item search 0.93 0.79  0.92 0.93 
DPSD Context-only sampling 1.04 1.09  0.79 0.86 
DPSD Context+Item sampling 0.89 0.72  0.99 0.84 
DPSD Context-only recovery 0.62 0.65  1.01 1.05 
DPSD Context+Item recovery 0.94 0.59  0.93 1.07 
UVSD Context-only recovery 0.97 0.90  0.92 0.95 
UVSD Context+Item recovery 0.90 0.97   0.80 0.85 

 

 

Table 11.  z-ROC intercept for each model tested in Simulation 1.  The data that were 
fit had a slope of 1.25. Good qualitative fits (1.15, 1.35) are in bold. 

    Familiarity 

Decision Recollection Global  Local 

model mechanism Product Sum  Product Sum 

Familiarity None 1.29 0.29   1.33 1.37 
DPSD Context-only search 1.43 0.52  1.28 1.43 
DPSD Context+Item search 1.41 1.19  1.34 1.42 
DPSD Context-only sampling 1.52 0.53  1.22 1.44 
DPSD Context+Item sampling 1.34 0.81  1.48 1.29 
DPSD Context-only recovery 1.20 0.89  1.65 1.61 
DPSD Context+Item recovery 1.52 0.90  1.45 1.63 
UVSD Context-only recovery 1.44 1.29  1.39 1.47 
UVSD Context+Item recovery 1.35 1.47   1.28 1.41 
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Simulation 2: Word Frequency Mirror Effects 

 Having shown in Simulation 1 that a strength-based memory model can generate 

ROCs that approximate ROCs created with data from human subjects, I next tested the 

ability of these models to simulate the word frequency mirror effect.  For this test, I 

simulated a prototypical word frequency item recognition experiment (Glanzer & 

Adams, 1990, Experiment 2).  In this experiment, subjects were presented with a study 

list of 148 words (50 high frequency targets, HF; 50 low frequency targets, LF; 24 HF 

fillers; and 24 LF fillers) one at a time for 1s each.  They were then given an old-new 

recognition test with confidence ratings.  The test was comprised of the 50 HF words, 

50 LF words, and 100 unstudied lures (50 HF and 50 LF).  The standard mirror effect 

was obtained, with LF words having a higher HR and lower FAR than the HF words.   

Using the best-fitting parameter sets from Simulation 1, I used each model to 

simulate the procedure used by Glanzer and Adams (1990, Experiment 2) with 200 

subjects.  Importantly, unlike most other attempts to model the WFME, I made no a 

priori assumptions regarding the characteristics of LF and HF words, nor did I use 

different encoding parameters or retrieval strategies for the different classes of stimuli 

(cf., Glanzer et al., 1993; Reder et al., 2000; Shiffrin & Steyvers, 1997).  The goal of 

this simulation was to capture the WFME as a natural consequence of differences 

between LF and HF words that are captured by the WAS metric (Monaco et al., 2007). 

As Table 9 clearly shows, none of the models were able to produce a mirror 

effect with this set of assumptions.  Although a few of the global familiarity models 

were able to capture the lower false alarm rate for LF words relative to HF words, none 

of them were able to capture the higher hit rate for LF words.  In fact, all of the global  
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familiarity models predicted lower hit rates for LF words than for HF words.  The 

results from the local familiarity models were just as bad:  None of the local familiarity 

models were able to capture any substantial effects of word frequency.  These findings 

are somewhat surprising given Monaco et al.’s (2007) results showing that using WAS, 

LF words generate a higher familiarity signal than do HF words.  Clearly, none of the 

recognition mechanisms I incorporated into the fSAM model are able to take advantage 

of this factor. 

In order to try to understand why every variant of the fSAM model that I had 

tried failed to generate higher hit rates for LF than HF words, I examined the familiarity 

and recollection rules in more detail, and I found three fatal weaknesses in the SAM 

framework that militate against developing it further for use with recognition.  First, I 

found that one of the most important mechanisms in the fSAM model—the semantic 

encoding mechanism that increases contextual associations during study as a function of 

association strengths in WAS—is negated by the use of a global familiarity rule.  

Because the global familiarity rules (Equations 1 and 2) sum the contextual associations 

over all items in memory, contextual strength can be factored out and will be the same 

for any cue set.  Therefore, as Gillund and Shiffrin (1984) put it, context “acts as a scale 

factor in recognition and does not affect performance” (pg. 19).  As a consequence, 

differences in contextual association strength between LF and HF words due to 

operation of the semantic encoding mechanism in fSAM have no effect on global 

familiarity.  (This also implies that an fSAM recognition model using a global 

familiarity rule would not be able to account for semantically induced false recognition 

in the DRM paradigm, a key goal of the effort to extend fSAM to recognition.) 
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Second, although the local familiarity rules (Equations 3 and 4) do not have the 

problems with context that the global familiarity rules do, they do not take advantage of 

semantic associations during retrieval.  In WAS, an item’s self-similarity is always 1; 

therefore, the Ss(j,j) term can be eliminated from the local product rule (Equation 3) and 

becomes a constant in the local sum familiarity rule (Equation 4).  Thus, a model with 

either of these rules will have difficultly handling test-based effects involving semantic 

variables, such as the test-facilitated false memory observed in Experiment 1 and in 

Kimball et al. (2010). 

Finally, it turns out that the recollection processes all have the same limitations 

as the fSAM recall model (Kimball et al., 2007) in that they can increase endorsements 

of items as old, but without some kind of monitoring process they cannot reduce 

endorsements.  This is not a problem if recollection is only used to endorse items, as is 

assumed by the DPSD model (Yonelinas, 1994) and the recollection hypothesis for 

mirror effects (Joordens & Hockley, 2000).  But if recollection is also used to reject 

items, as proposed by Brainerd et al. (2001), then these mechanisms are incomplete. 

In summary, I developed and tested 36 different variants of an fSAM 

recognition model that factorially combined global and local familiarity mechanisms 

with a variety of plausible recollection mechanisms.  Of these 36 models, 6 were able to 

account for confidence-based ROCs, including the z-ROC slope, but none were able to 

account for the WFME.  Detailed examinations of the familiarity and recollection rules 

revealed that this failure was due to serious structure flaws in the SAM framework such 

that none of the mechanisms are able to take full advantage of semantic encoding and 

retrieval mechanisms in the fSAM model. 
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Chapter 8 
 

Conclusions 

 

The title of this thesis poses the question of whether recollection can explain 

mirror effects in item recognition.  I used a two-prong approach to investigate this 

question.  First, I examined the effects of normative word frequency and semantic 

relatedness on true and false recognition in 2 experiments with human participants.  In 

Experiment 1, I observed the standard word frequency mirror effect for comparisons of 

LF words to HF words, but the effect did not obtain for comparisons of MF, HF, or 

VHF words.  Additionally, there was no mirror effect for semantic relatedness.  These 

findings run counter to predictions from Bayesian likelihood models that, absent a 

systematic bias, any variable that affects recognition performance will produce a mirror 

effect.  The hypothesis that mirror effects are the result of differences in recollectability 

was partially supported by analyses of ROCs using the UVSD and DPSD measurement 

models.  Experiment 2 showed further support for this hypothesis:  The patterns for hit 

rates and “remember” judgments for targets were almost identical, as would be 

expected if the hit rate portion of the WFME is due to recollection.  Importantly, the 

false alarm rates to non-critical lures showed effects of word frequency, but there were 

no such effects for remember judgments for lures.  Together with previous studies, 

these experiments show the importance of examining mirror effects in more detail and 

considering boundary conditions for mirror effects when evaluating theories of memory 

(Greene, 2007). 
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 The second part of this thesis was to try to develop a computational model of 

recognition memory that could parsimoniously account for mirror effects and their 

absence, as well as effects of semantic relatedness, in item recognition.  As discussed in 

Chapters 3 and 6, strength-based familiarity global memory models—including 

previous implementations of the SAM model—underpredict mirror effects, while the 

Bayesian likelihood models that have largely replaced GMMs overpredict mirror 

effects.  The SAC model developed by Reder and colleagues (Cary & Reder, 2003; 

Reder et al., 2000) is able to account for word-frequency mirror effects as well as some 

boundary conditions on these effects, but it cannot account for effects of semantic 

relatedness such as false memory in the DRM paradigm.  Therefore, a “Goldilocks” 

model that can simultaneously handle mirror effects, boundary conditions, and semantic 

relatedness effects is highly desirable.  

I tried to develop such a model by modifying the fSAM recall model (Kimball et 

al., 2007).  I tested a total of 36 variants of the model that factorially combined 4 

different familiarity mechanisms with a variety of recollection mechanisms.  Some of 

these models used the DPSD decision process logic in which recognition was based on 

separate recollection and familiarity processes. Others used a mixture decision process 

in which familiarity and recollective strength were combined into a unidimensional 

UVSD decision model.  Although some of these models were able to generate properly 

shaped ROCs and z-ROCS—something no other SAM models have been able to do—

none of them were able to generate a WFME.  Detailed investigations of the operation 

of the familiarity and recollection rules revealed that this was due to critical failures in 

the fSAM framework.  These failures indicate the limits of the usefulness of the SAM 
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framework and point to key characteristics that a recognition model will need in order 

to fully account for mirror effects and their boundary conditions. 

Model Failures and a Way Forward 

The most problematic aspect of the SAM framework is the representation of 

context. When Gillund and Shiffrin (1984) developed the episodic SAM recognition 

model, they chose an architecture that would ensure that the familiarity of different 

items was not affected by the contextual strength of those items; that is, familiarity 

judgments can be considered to be context-free.  This is seemingly consistent with the 

idea that familiarity is a global measure of the strength of the representation of a 

stimulus in memory that does not depend on the ability to remember or identify 

contextual details about previous encounters with that stimulus (e.g., Jacoby, 1991; 

Mandler, 1980; Wixted, 2007a; Yonelinas, 1994).  However, on closure examination, 

the global familiarity rule used in SAM turns out to be a very different 

conceptualization of familiarity than is commonly thought.   

Most theories of memory that include a familiarity process assume that 

familiarity strength is a function of a sensory and perceptual experience along with 

interitem integration (e.g. Juola, 1973).  The SAM model represents these two types of 

evidence in different associative structures: context and the episodic matrix, 

respectively.  However, because context is essentially factored out when calculating 

familiarity, differences in prior sensory and perceptual experiences between items 

cannot contribute to the familiarity signal in SAM.  This explains why the Gillund and 

Shiffrin (1984) SAM recognition model has never been able to successfully account for 

context-based phenomena (Clark & Gronlund, 1996).  In order to account for these 
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types of effects, the SAM model would need 1) a richer contextual representation and 2) 

a new way of calculating familiarity that allows for different contextual strengths in 

response to different test probes. 

Mensink and Raaijmakers (1988) provided SAM with a rich contextual 

representation by incorporating Estes’ (1955) stimulus fluctuation and sampling theory 

into the SAM framework. In the Mensink and Raaijmakers SAM model, context is 

represented as a vector of elements in which each contextual element is in either an 

active or inactive state at any given time. The identities of the active contextual 

elements change over time, with some active elements becoming inactive and some 

inactive elements becoming active at each time step. Each time an item is studied, a 

proportion of the active contextual elements are conditioned, or associated, to the item 

on a binary basis. The conditioning rule is expressed as a differential equation so that 

the number of newly conditioned elements is a decreasing function of the number of 

currently conditioned elements, generating an exponential learning curve. The 

contextual retrieval strength of an item in memory is determined by the number of 

contextual elements active at the time of test that were associated to the item during 

study. These changes allowed Mensink and Raaijmakers to account for a number of 

interference phenomena in cued recall and forced choice recognition (using a recall 

process). 

Unfortunately, though, the Mensink and Raaijmakers (1988) SAM model has 

never been applied to item recognition, and even if it were to be applied to item 

recognition it would still have the same problem as the base SAM model because 

differences in context between items would still not affect familiarity.  It might be 
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possible to use the Mensink and Raaijmakers model with a local familiarity rule (as in 

Simulation 1) rather than a global rule, but the model would still be limited to episodic 

effects and would not be able to account for semantic effects in recognition.  Kimball et 

al. (2007) proposed that the contextual fluctuation mechanism could be implemented in 

fSAM recall model, thereby creating a model that could account for both contextual and 

semantic influences in recall.  Several years ago I attempted to do this, but I was unable 

to find a way to reconcile the vector representations used in the contextual fluctuation 

mechanism with the associative matrix representation of semantic memory. 

Based on these experiences, I have reluctantly concluded that even with the 

modifications that have been made to the SAM framework over the years, it is not 

suitable as a basis for a general model of recall and recognition.  I now briefly outline a 

new model that keeps the most desirable features from fSAM—namely the use of a 

preexperimental semantic memory, an episodic-semantic encoding mechanism, and a 

conjunctive memory search algorithm—and places these in an architecture that is more 

suitable for modeling familiarity and recollection. 

An alternative to the association-based representations used in fSAM is to use a 

featural representation for items.  Most other memory models, including TODAM2 

(Murdock, 1993), MINERVA 2 (Hintzman, 1988), and REM (Shiffrin & Steyvers, 

1997) use featural representations.  A featural representation has a number of 

advantages over an association-based representation.  First, it gives the model a way to 

represent similarities and differences between individual stimuli; stimuli that share more 

features are, by definition, more similar.  This capability is critical in both familiarity 

assessments and recollection and is likely to be important in modeling stimulus-based 
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mirror effects such as the word-frequency effect (e.g., Shiffrin & Steyvers, 1997).  

Second, a featural representation gives the model a rich way of representing 

environmental and mental context, another necessity for recollection. Finally, featural 

representations can help bridge the gap between high-level models of cognitive 

processes and lower-level models such as neural networks and neurobiological models 

(Howard & Kahana, 2002). 

 Despite the advantages of featural representations, the association-based 

structure of the SAM framework should not be completely abandoned.  Associations 

have been—and will continue to be—an important part of memory theory, and it seems 

to me that a general model of recall and recognition ought to include associations as a 

core component of the model.  Therefore, the challenge is in how to combine the two 

types of representations (associations and features) in a way that is both parsimonious 

and psychologically plausible. 

One possible solution is to think of memory as consisting of a set of linked 

neural networks in which information about item features is generated, encoded, and 

stored.  This information can be computationally represented as sets of abstract feature 

values that are mathematically equivalent to locations in a high-dimensional space (e.g, 

Howard & Kahana, 2002) so that an item is represented by a location in memory space.  

Although associations are not stored directly in long-term memory in this architecture, 

they nevertheless can play key roles in memory processes because associations are a 

natural byproduct of feature overlap.  That is, the strength of association between any 

two items in memory can be calculated as a function of the relative locations of those 

items in memory space. Items that are close together in memory space will tend to be 
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highly associated with each other, while items that are far apart in memory space will 

not. 

Deriving associations within a spatial representation is, of course, not entirely 

novel.  Indeed, this is the central idea behind data analysis techniques such as factor 

analysis and multi-dimensional scaling (Kruskal & Wish, 1978), lexical-semantic tools 

such as word association space (Steyvers et al., 2005) and latent semantic analysis 

(Landauer & Dumais, 1997), and some models of similarity judgment (Krumhansl, 

1978; Tversky, 1977). Additionally, the temporal context model of memory and its 

derivatives (Howard & Kahana, 2002; Polyn, Norman, & Kahana, 2009) are based on 

this type of representation. 

However, I believe that combining a spatial-association representation with the 

encoding and retrieval processes that have proven to be highly successful within the 

SAM framework is an exceptionally promising avenue to explore.  In particular, using a 

featural representation of both items and context would provide a basis for 

implementing recollection and source monitoring mechanisms within the model.  As 

discussed in Chapter 3 and suggested by the results of Experiments 1 and 2, recollection 

appears to play a key role in mirror effects and their boundary conditions.  These 

mechanisms are also likely to be important in a number of other paradigms, including 

episodic recognition, false recall, and false recognition. Additionally, because such a 

model would include representations of both items and associations, it could provide a 

good platform from which to explore dissociations between item recognition and 

associative recognition—a task that has proven to be challenging for even the most 

complex computational models of memory (e.g., Malmberg, 2008).  
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Of course, there are a number of challenges to overcome in the development of 

such a model.  One of the most critical issues is the fact that similarity and association 

are different constructs, even though many models—including fSAM—do not really 

distinguish between them (e.g., Kimball et al., 2007; Shiffrin & Steyvers, 1997; 

Murdock, 1993).  Together with my advisor, Dan Kimball, I am currently working on 

finding a way to derive separate measures of similarity and association from the same 

underlying featural representations.  One possibility is to use angular distance as the 

measure of association as many current models do, while using a metric such as 

Krumhansl’s (1978) distance-density model as a measure of similarity.  Despite the 

difficulties of this task, I remain hopeful. 
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Appendix – Stimuli for Experiments 1 and 2 

Associative Lists – Critical words are in bold 
 

LOW FREQUENCY    MODERATE FREQUENCY  
 Freq BAS FAS   Freq BAS FAS 
SEA 59.84    FIRE 215.49   
CORAL 2.37 0.11 0.00  SMOKE 65.43 0.29 0.02 
OCTOPUS 1.94 0.10 0.00  BURN 55.22 0.26 0.06 
DIVER 2.43 0.04 0.00  MATCH 49.43 0.24 0.02 
SERPENT 1.94 0.03 0.00  CAMP 51.22 0.13 0.00 
NAVIGATOR 2.69 0.03 0.00  EMERGENCY 54.43 0.02 0.00 
NEPTUNE 2.67 0.02 0.00  BOMB 53.65 0.01 0.00 
         
BUG 20.94    POLICE 236.16   
BEETLE 2.06 0.61 0.05  SHERIFF 61.08 0.33 0.00 
ROACH 2.65 0.33 0.15  ARREST 59.55 0.24 0.02 
LICE 2.14 0.24 0.00  DETECTIVE 61.12 0.15 0.00 
MOTH 2.27 0.09 0.00  GUARD 58.20 0.07 0.00 
ANNOY 2.51 0.06 0.01  SERGEANT 62.94 0.04 0.00 
NAG 2.18 0.03 0.00  JAIL 70.63 0.01 0.00 
         
HORSE 92.88    GOD 903.16   
UNICORN 2.47 0.39 0.00  CHURCH 69.67 0.31 0.04 
OATS 2.06 0.20 0.00  HEAVEN 56.61 0.12 0.09 
ZEBRA 2.51 0.18 0.00  CROSS 55.04 0.09 0.00 
BUGGY 2.49 0.15 0.00  HOLY 68.14 0.09 0.02 
TACK 2.12 0.04 0.00  SPIRIT 49.35 0.07 0.00 
TAME 2.73 0.02 0.00  SOUL 76.96 0.05 0.00 
         
WOOD 27.00    SMELL 83.14   
LUMBER 2.47 0.59 0.00  DIRTY 66.45 0.17 0.00 
TIMBER 2.49 0.41 0.00  TASTE 51.31 0.14 0.18 
STUMP 2.45 0.02 0.00  NOSE 69.75 0.10 0.12 
PLAQUE 2.08 0.02 0.00  AWFUL 63.41 0.05 0.01 
FLUTE 2.12 0.01 0.00  FRESH 54.51 0.03 0.00 
CUPBOARD 2.49 0.01 0.00  ROSE 53.02 0.03 0.00 
         
MILK 42.53    PICTURE 138.45   
QUART 2.08 0.46 0.00  CAMERA 57.00 0.44 0.05 
GALLON 2.27 0.29 0.00  ART 70.80 0.10 0.00 
SAUCER 2.75 0.09 0.00  SCENE 74.65 0.08 0.00 
YOGURT 2.27 0.05 0.00  FILM 65.25 0.06 0.00 
JUG 2.63 0.04 0.00  WALL 70.69 0.05 0.04 
ULCER 2.57 0.01 0.00  COPY 52.27 0.01 0.00 
         
RAIN 48.90    STAR 81.35   
CLOUDY 2.16 0.28 0.00  MOON 49.96 0.11 0.12 
PUDDLE 1.94 0.17 0.02  SPACE 66.06 0.08 0.02 
DEW 2.14 0.07 0.00  HERO 49.84 0.04 0.00 
GLOOMY 2.41 0.05 0.00  TRACK 55.75 0.01 0.00 
TORNADO 2.55 0.01 0.00  NORTH 63.88 0.01 0.00 
RUST 2.49 0.01 0.00  SUN 69.67 0.01 0.09 
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Associative Lists, continued 
 
 

HIGH FREQUENCY    VERY HIGH FREQUENCY  
 Freq BAS FAS   Freq BAS FAS 
ALIVE 154.47    NEED 1294.90   
DEAD 448.98 0.39 0.55  WANT 2759.18 0.28 0.60 
BEING 485.90 0.04 0.00  MUST 699.24 0.06 0.00 
FIVE 285.45 0.03 0.00  HELP 921.12 0.03 0.02 
LIVE 344.59 0.02 0.02  MORE 1298.59 0.01 0.00 
DEATH 216.69 0.01 0.01  CALL 861.39 0.01 0.00 
DIE 261.14 0.01 0.00  GET 4583.76 0.01 0.00 
         
MOTHER 479.92    WHAT 9842.45   
FAMILY 354.25 0.05 0.01  WHO 2222.94 0.22 0.18 
WIFE 348.92 0.03 0.00  WHERE 1830.22 0.06 0.11 
BROTHER 283.94 0.02 0.00  HOW 3056.22 0.04 0.05 
WOMAN 434.63 0.02 0.02  WHY 2248.76 0.03 0.13 
KID 339.20 0.02 0.00  THAN 738.80 0.02 0.00 
MOM 430.39 0.01 0.06  WHEN 2034.10 0.02 0.08 
         
PRETTY 392.22    OUT 3865.31   
BEAUTIFUL 279.73 0.38 0.10  IN 9773.41 0.94 0.80 
LOOKS 311.49 0.13 0.00  WAY 1424.73 0.38 0.00 
FACE 289.16 0.05 0.00  WITH 5048.33 0.06 0.00 
GIRLS 208.35 0.03 0.00  TIME 1958.63 0.05 0.00 
LADY 217.08 0.01 0.00  GOING 2123.29 0.03 0.00 
EYES 221.55 0.01 0.00  LOOK 1947.27 0.02 0.00 
         
SAD 63.37    NO 5971.55   
HAPPY 333.20 0.62 0.63  YES 1996.76 0.83 0.76 
ALONE 308.53 0.08 0.00  NOT 5424.96 0.25 0.00 
FUNNY 218.18 0.07 0.00  MAYBE 926.45 0.07 0.01 
WORRY 287.02 0.02 0.00  NEVER 1362.55 0.05 0.03 
HURT 246.35 0.01 0.00  PLEASE 1100.96 0.04 0.00 
HATE 214.59 0.01 0.00  KNOW 5721.18 0.01 0.00 
         
STUDY 49.04    NOTHING 853.61   
CASE 282.41 0.09 0.00  EVERYTHING 654.88 0.34 0.08 
COURSE 487.22 0.06 0.00  SOMETHING 1500.16 0.31 0.16 
SCHOOL 333.12 0.06 0.09  ANYTHING 907.25 0.21 0.03 
THINKING 281.43 0.03 0.00  ALL 5161.86 0.06 0.03 
READ 241.22 0.02 0.07  THING 1088.67 0.01 0.00 
HOURS 214.88 0.01 0.00  JUST 4749.14 0.01 0.00 
         
BALL 104.96    GO 3793.04   
PLAY 354.53 0.13 0.00  STOP 707.27 0.61 0.54 
HIT 275.00 0.11 0.02  COME 3140.98 0.57 0.13 
JACK 251.59 0.02 0.00  LET 2419.24 0.23 0.00 
MISS 467.65 0.02 0.00  WAIT 830.25 0.04 0.00 
HAND 279.65 0.01 0.00  DO 6135.59 0.03 0.00 
POINT 236.53 0.01 0.00  AWAY 730.90 0.02 0.02 
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Non-associative Lists 
 

LOW FREQUENCY  MODERATE FREQUENCY 
     
  Freq    Freq 
     
FUNCTIONAL 2.73  LOW 59.14 
INDOORS 2.47  EATING 60.82 
LOATHE 2.08  WRITING 55.92 
CORNWALL 2.02  INNOCENT 54.51 
NAW 2.08  BOYFRIEND 72.24 
DUPLICATE 2.29  DECISION 55.06 
     
OUTBREAK 1.94  CUP 51.65 
PEEPING 2.51  OBVIOUSLY 60.43 
FLOP 2.31  OURSELVES 52.47 
SERMON 2.73  SERIOUSLY 64.12 
BALE 2.04  ACTION 61.08 
DILEMMA 2.61  WARM 52.14 
     
LEAKS 2.20  TELLS 52.25 
VOILA 2.53  PROMISED 62.14 
FIREMEN 2.14  NOTE 53.55 
POSED 2.20  WITNESS 51.39 
WORKPLACE 2.43  NORMAL 70.37 
RADIATOR 2.02  BREAKFAST 66.29 
     
STIRRED 2.41  SAKE 64.16 
SPICES 2.24  CONGRATULATIONS 70.90 
SUSPENSE 2.24  SHARE 69.51 
SMUGGLE 2.00  HALL 51.94 
PLATINUM 2.41  INTEREST 50.94 
INVESTIGATORS 2.69  COMPUTER 59.04 
     
SCROLL 2.27  WORST 56.35 
PERJURY 2.25  WILD 57.31 
PRIMARILY 2.06  BAND 53.41 
CRUMBS 2.55  LEG 56.51 
STEED 2.55  TWICE 62.57 
TRUTHFULLY 2.35  EVIL 73.16 
     
COMMANDANT 2.57  HUNGRY 77.08 
PUFFS 2.51  LOVES 72.45 
CONSUMER 2.08  WINE 60.35 
FRACTION 2.04  GOTTEN 54.27 
SWAB 2.37  YEP 50.98 
JUNKYARD 2.69  LISTENING 62.84 
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Non-associative Lists, continued 
 
 

HIGH FREQUENCY  VERY HIGH FREQUENCY 
     
  Freq    Freq 
     
NOBODY 266.65  TALK 855.00 
ASK 483.14  WORK 798.02 
UNTIL 302.47  AT 3217.10 
SAYING 291.65  THESE 904.00 
HAVING 289.25  ONLY 1083.71 
REST 212.96  DOES 666.71 
     
WATCH 330.02  FEEL 627.24 
DIFFERENT 209.53  DAY 801.82 
DEAR 223.43  HE 7637.20 
LEAST 207.76  IF 3541.37 
WITHOUT 354.65  EVER 709.22 
TRYING 448.02  ME 9241.94 
     
JOB 413.00  ALWAYS 655.25 
FOUR 255.78  HERE 4525.25 
FOUND 396.00  SIR 964.47 
QUITE 202.59  SURE 1099.82 
READY 387.80  GUY 762.61 
TROUBLE 223.55  LOVE 1114.98 
     
FORGET 277.06  MY 6762.73 
MINUTE 377.49  SEE 2556.73 
CAR 483.06  MONEY 640.76 
CHANGE 240.35  NOW 3202.61 
ONCE 344.88  OKAY 2006.27 
BIT 235.04  AROUND 736.73 
     
GONE 296.76  MUCH 973.25 
CUT 229.76  NIGHT 866.04 
DEAL 261.37  FOR 6895.10 
GUESS 453.98  NAME 641.86 
MYSELF 342.55  TELL 1724.49 
HEART 244.18  SHOULD 1061.94 
     
USED 344.14  FIRST 840.57 
PROBABLY 280.84  OVER 1323.29 
OFFICE 203.90  GIVE 1167.82 
KNEW 368.96  BACK 2009.16 
YEAR 277.92  THINGS 692.88 
KNOWS 244.94  OR 1705.29 
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Buffer words for primacy and recency 

 
  Freq 
BANKS 15.90 
BOWMAN 3.57 
BROTHERS 47.06 
BURNT 9.57 
COLLECTING 6.84 
COMPETITIVE 4.20 
COOPERATE 10.35 
COSY 2.02 
DREAMT 6.65 
FAKE 36.33 
GAIN 13.73 
HARBOR 11.02 
KINDS 21.98 
MUSEUM 18.47 
PINNED 4.53 
PROJECT 37.39 
PUSH 70.55 
REPORTS 25.41 
SAFELY 11.10 
SECTOR 7.06 
SUITED 2.98 
UNCLES 2.16 
WAKE 105.22 
WEDDING 101.43 

 


