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Abstract

Distributed hydrologic models, based on conservation laws, simulate the flow

of water over and through the land surface in response to forcing from precip-

itation, transpiration, and evaporation. Conservation laws provide a physical

basis for runoff generation that are dependent on the accurate specification

of initial conditions, boundary conditions, and representative parameter es-

timates which control the model’s performance. The main objective of this

dissertation is to develop and test a method for calibration of a distributed

hydrologic model in the presence of rainfall input uncertainty that utilizes the

physics of runoff generation processes.

The main hypothesis tested is that a model calibrated using spatially dis-

tributed (SD) parameter adjustments will have less prediction error than a

model calibrated by a spatially averaged (SA) parameter adjustment. A Mann

Whitney Wilcoxon (MWW) rank sum hypothesis test is used to test the sta-

tistical significance. The results of the MWW rank sum hypothesis test show

the mean of RMSE from the model calibrated by SD adjustments is less than

the RMSE from the model calibrated using the SA parameter adjustment.

The Nash Sutcliffe Efficiency of the SD calibrated model is also consistently

higher than the SA calibrated model. These results are consistent at both

the calibration gauge and at the interior gauge point. Thus, a spatially dis-

tributed parameter adjustment technique leads to a reduction in prediction

error compared with the spatially averaged parameter adjustment technique.

xiii



Chapter 1

Introduction

1.1 Motivation

Operational hydrologic predictions are required for the issuance of flood warn-

ings and making operational decisions regarding reservoir storage. However,

many basins are ungauged due to the cost of implementing and maintaining

high-resolution hydrologic monitoring networks. Therefore, remote sensing

and computer simulation to estimate hydrologic processes is an attractive al-

ternative when direct measurement is not feasible. Understanding the level

of detail required to characterize hydrologic processes has the potential to

increase the predictability of streamflow in ungauged basins.

Considerable attention has been focused recently on radar hydrology, and

its quantitative application in hydrologic modeling. Offline evaluation of hy-

drologic model prediction accuracy using archival radar and/or gauge data is

a necessary step for improving operational use in real-time forecasting. These

evaluations also provide opportunities to investigate the predictability of dis-

tributed hydrologic models used for decision making. The combination of dis-

tributed hydrologic modeling with high-resolution rainfall input derived from

radar and gauge observations, offers the potential for gaining insight into how

prediction accuracy scales with drainage area. Of particular importance is an

understanding of how corrections made to radar rainfall input affect uncer-
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tainty in hydrologic predictions, and how it scales with drainage area.

A workshop on predictability and limits to predictability discussed the

frameworks necessary to characterize predictability in hydrologic systems (NRC,

2002). Recommendations by the NRC are that predictive system should in-

clude:

1. The fundamental system dynamics and propagation of perturbations,

2. Adequate characterization of model states, and

3. Procedures for generating model output with expected evolution of model

states.

These three grand challenges are fundamentally at the source of increasing

hydrologic predictability. My dissertation and research has focused on smaller

components of each of these challenges. My particular research has been influ-

enced by the importance of using accurate precipitation input for distributed

hydrologic modeling. In addition, I have investigated the calibration of dis-

tributed hydrologic models and the impacts of precipitation bias on parameter

estimation.

The objective of this dissertation is to develop and test a method for cali-

bration of a distributed hydrologic model in the presence of rainfall input un-

certainty that utilized the physics of runoff generation processes. Secondary

objectives are:

1. Assess the influence of rainfall uncertainty on parameter estimation,

2. Develop a technique for propagating bias correction in rainfall through

the model, and

2



3. Demonstrate that the Forward Sensitivity Method is capable of estimat-

ing spatially distributed parameters for a basin possessing heterogeneous

model parameter spatial distributions.

1.2 Approach

The first objective is the characterization of rainfall to adequately simulate the

hydrologic cycle (Ch. 3 and 4). The third chapter focuses on the impact of

precipitation bias on the calibration of a distributed hydrologic model (Looper

et al., 2012). The fourth chapter evaluates the impact of rain gauge adjustment

on the operational performance of a distributed flash flood forecasting system

(Looper and Vieux, 2012). My second objective is to develop a framework for

propagating bias correction in radar rainfall through a distributed hydrologic

model (Looper and Vieux, 2013). The third objective is to develop a technique

that produces the expected evolution of a distributed hydrologic model using

the Forward Sensitivity Method data assimilation technique (Lakshmivarahan

and Lewis, 2010). This technique provides an evolution of forward sensitivities

that addresses the dynamics and evolution of the sensitivities in time. In

addition, the method provides an automatic calibration technique based on

these sensitivities that can be used for parameter estimation.

The hypothesis is that a model calibrated using spatially distributed pa-

rameter adjustments will have less prediction error than a model calibrated by

a spatially averaged parameter adjustment. The FSM method will be used to

test for each case.

3



Chapter 2

Literature Review

This chapter focuses on the sources of uncertainty in distributed hydrologic

modeling and the methods used to assess uncertainty.

2.1 Distributed Hydrologic Modeling

Whether lumped or distributed, watershed models are simplifications of com-

plex processes responsible for runoff generation and routing, and may deviate

from observed conditions. Distributed hydrologic modeling seeks to repre-

sent the spatially variable characteristics that control hydrologic response to

forcing from precipitation and potential evapotranspiration. Physics-based

distributed (PBD) hydrologic models generate runoff for each grid location

and rely on the solution of the governing equations of conservation of mass

and momentum to route runoff through a discrete representation of the water-

shed composed of channel and overland flow elements. Most PBD watershed

hydrologic models solve a simplified flow analogy such as the kinematic or

diffusive wave, rather than the full dynamic wave. Advances in computing

and numerical methods such as the finite element method have led to the

efficient mathematical representation of large areas at high resolution. The

finite element approach is used by r.water.fea described by Vieux and Gauer

(1994), and in Vflo presented by Vieux et al. (2004a,b) and Vieux (2004a,b).

Other PBD models that solve conservation equations include the CASC2D

4



(Julien and Saghafian, 1991; Ogden and Julien 1994); the GSSHA gridded

diffusive wave model (Downer and Ogden, 2004); Systme Hydrologique Eu-

ropen (SHE) (Abbott et al., 1986a;b); the Hydrologic Laboratory Research

Distributed Model (HLRDM) participating in the DMIP and DMIP2 exper-

iments (Koren et al., 2004); and the Distributed Hydrology Soil Vegetation

Model (DHSVM) (Wigmosta et al., 1994). Of these PBD models, Vflo and

r.water.fea use the finite element method for spatial discretization of the wa-

tershed and solution of conservation equations.

Fully distributed models build the hydrologic response from the assem-

bly of elements or grids representing the hydraulic drainage network, soils,

imperviousness, and vegetative cover of the watershed. Digital terrain data

describing overland slope and drainage direction commonly exists as gridded

data, thus it is convenient to define the drainage network using a grid-cell

scheme to connect overland flow and channel elements. The connectivity of

the drainage network results in a system of equations that represent conser-

vation of mass in the kinematic wave analogy (Vieux, 2004b). Coupling soil

moisture tracking with the overland and channel components in Vflo results

in a distributed modeling system that is capable of continuous operation for

online forecasting or offline hydrologic analysis.

Operational use of gridded PBD models for flood forecasting is a relatively

recent development (Bedient et al., 2003; Vieux et al., 2003a; Todini, 1999).

The NWS has expanded its efforts in distributed modeling with the HLRDM

model, which is in use in the NWS Arkansas Red River Basin River Forecast

and West Gulf River Forecast centers (Koren, 2004). To reduce manual adjust-

ment of the Sacramento Model, a variational (VAR) approach is being tested

that adjusts the ordinates of the unit hydrographs and input during operations
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to force the simulated streamflow to match with the observed streamflow (Seo

et al., 2003). Adjusting model input during operations may make it difficult

to assess model performance independent of input uncertainty. A continuous

model tracks soil moisture, providing proper initiation during real-time op-

erations. Sensitivity to soil moisture can be larger than uncertainty due to

uncalibrated radar estimates of precipitation, as shown by Vieux et al. (2009)

where the model response is nonlinear and depends on storm magnitude. Un-

certainties resulting from model input, parameters, and structure can confound

streamflow simulation in both historical and operational forecast contexts.

2.2 Precipitation Uncertainty

Uncertainties in radar rainfall estimates used as input to hydrologic models

can affect the accuracy of both offline prediction (post-analysis) and online

forecast (real-time) applications, as observed by Carpenter and Georgakakos

(2004) who considered ensemble streamflow forecasting in larger river basins

where presumably there is less control over the radar bias and sparse rain

gauge networks. The uncertainty inherent in precipitation derived from radar

has been well established as having both random and systematic (bias) com-

ponents, as described by Wilson and Brandes (1979), Doviak and Zrnic (1993)

among others. It is also supposed that random error in the radar rainfall

estimates, e.g. those caused by updrafts and downdrafts, should cancel out

over catchment areas of sufficient size. Disparities in the representativeness

of measurements of each sensor can cause disagreement between rainfall mea-

surements made by gauges and radar, as found by Ciach et al. (2003, 2006),

Chumchean et al. (2003), and Habib et al. (2004). Mandapaka et al. (2009)
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estimated the spatial correlation distance to be about 20 km, which can in-

crease uncertainty in rainfall estimates derived from combinations of gauge

and radar. Effort expended on error separation to account for differences

between rain gauge and radar measurements is important for understanding

why observations from these sensors differ and where these errors come from.

Beyond the uncertainty in point-area rainfall estimation, from a hydrologic

perspective, understanding is needed on how these errors feed forward into

hydrologic prediction and forecasting, whether they average out, or if there is

scale dependency across catchment areas.

Conversion of reflectivity to rainfall rate is accomplished using a Z-R re-

lationship that depends on the number and size of raindrops (Marshall and

Palmer, 1948). However, among the many sources of uncertainty, error can

be introduced due to differences between the assumed drop size distribution

(DSD) in a given Z-R relationship and the actual storm DSD. Considerable re-

duction in radar rainfall uncertainty can be achieved through bias correction

using rain gauges (Wilson and Brandes, 1979). The factors affecting radar

rainfall accuracy, and the improvement achieved through bias correction using

rain gauges are described by Chumchean et al. (2003), Morin et al. (1995),

Rosenfeld et al. (1993, 1994), Smith et al. (1996), Seo et al. (1999), Sanchez-

Diezma, et al. (2001), and Vieux and Vieux (2005a, 2005b).

Interest in characterizing radar adjustment techniques has accelerated with

the advent of distributed hydrologic models that are capable of integrating the

spatially distributed rainfall information (Gourley and Vieux, 2005, Habib et

al., 2008). Use of gauge-adjusted weather radar for hydraulic modeling of

sewer systems is becoming well established (Einfalt et al., 2005). An overview

of the hydrologic requirements for weather radar used in urban drainage is
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described by Einfalt et al. (2004), who identified the radar processing require-

ments for hydrologic applications of various weather radar systems in Germany

and the United States. Vieux and Bedient (2004a) demonstrated the impor-

tance of gauge-correction of radar, and the achievable streamflow accuracy of

distributed model predictions. In spite of point-area errors, it was found that

gauge-corrected radar rainfall produced rainfall (input) agreed with measured

streamflow (output) with a correlation coefficient of 0.94 for a single basin out-

let location, i.e. the USGS stream gauge 08075000 in Brays Bayou, whereas,

uncorrected radar produced much poorer agreement with streamflow. Even

with high quality bias-corrected radar rainfall and a well characterized basin,

uncertainty in the rainfall estimates can still persist and create prediction er-

ror. Looper et al. (2012a) performed a 10 yr continuous analysis of the impact

of gauge adjustment on radar rainfall estimates. As a participating model in

the second Distributed Model Intercomparison Project (DMIP2), Vflo was

applied to the Illinois and Blue River basins in Oklahoma. Streamflow predic-

tion accuracy was enhanced when multi-sensor precipitation estimates (MPE)

were bias corrected through re-analysis of the MPE provided in the DMIP2

experiment, resulting in gauge corrected precipitation estimates (GCPE). The

reanalysis of rainfall input was one of the largest reasons for improved stream-

flow prediction accuracy.

Hydrologic prediction requires precipitation that is accurate and represen-

tative for the watershed area. While the method of adjustment depends on

the hydrologic application and the spatial extent of the area of interest, the

mean field bias (MFB) approach is useful for identifying gauges that are not

consistent with the radar using a spatially constant adjustment factor and also

reducing the single rain gauge error from corrupting the bias correction (Bedi-
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ent et al. ,2008). The Local Bias (LB) approach to adjusting the radar rainfall

applies a spatially-variable ratio of gauge to radar accumulations (G/R) from

surrounding gauges with the closest gauge having the most weight (Seo and

Breidenbach, 2002). The LB approach used here distributes the variation of

bias over the area based on a 6-hour moving window that is updated every

15-minutes. The 6-hr moving window is an integration period updated ev-

ery 15 minutes, which is similar to the window probability matching method

(Rosenfeld, 1994). The LB uses the ratio between the sum of each gauge di-

vided by the sum of the sampled radar values over each gauge. Gauge and

radar accumulations were computed for each moving window. All radar/gauge

(RG) pairs were then checked for statistical outliers. Exclusion of any gauge

accumulation during a moving window is based on control limits of two stan-

dard deviations from the mean. After exclusion, remaining RG pairs are then

distributed spatially over the analysis area using a Barnes objective analysis

scheme (Barnes, 1964). The resulting LB value over each radar bin is the mul-

tiplicative factor that adjusts the radar. The Barnes objective analysis scheme

is also used to perform the spatial interpolate the rain gauge data for the rain

gauge only (RGO) input.

The rain gauge network density is important for characterizing rainfall

variability alone or in conjunction with radar. Collier (1986) recommended a

rain gauge spacing of 20 km to produce results as accurate as radar in North-

west England for all precipitation types, e.g. frontal, showers, and bright-

band affected storms. Since then, many researchers and practitioners have

employed rain gauge networks for validation of the quantitative precipitation

estimates, evaluated inaccuracies in GARR on flood forecasting, and iden-

tified improvements needed for uniform reliability of rainfall measurements.
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Errors in precipitation estimates derived from radar can lead to inaccurate

stream flow predictions and miscalibration of hydrologic models (Winchell et

al., 1998). To overcome this inaccuracy in post-event analysis, Bouilloud et al.

(2010) developed an effective Z-R relationship through optimization using rain

gauges to identify coefficients that minimized event-scale rainfall measurement

differences. They found that an effective Z-R relationship could be optimized

with respect to rain gauge accumulations measured at the event time scale,

and that this approach could compensate for range dependent errors associ-

ated with radar. Coefficients of the Z-R relationship can vary significantly

over time and space. Continuous updating of spatially variable radar bias cor-

rection factors is important for radar-based flood forecasting, especially where

local downdrafts during storms can enhance rainfall rates that would other-

wise go undetected by radar (Smith et al., 2007). Looper and Vieux (2012b)

investigated the influence of rain gauge adjustment on the performance of a

flash flood forecasting system for a significant flood event in Austin, TX. The

distributed hydrologic model, Vflo, was used for the study. A comparison

of model forecast accuracy using the operational rain gauge-adjusted radar

rainfall input (GARR) was made against rain gauge only (RGO) input. The

use of GARR as input to the model not only increased the forecast lead-time

accuracy, but also the accuracy of forecast peak stage across a range of basin

sizes and with variable rain gauge densities used for radar bias correction.

Rain gauge density over the forecast basins was one of the main determinants

of forecast accuracy during the event. Input uncertainty can greatly affect

the predictability of distributed hydrologic models. Looper (2012c) showed

how rainfall input uncertainty propagated through a distributed hydrologic

model. Identification of streamflow prediction accuracy using radar as input
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to a distributed hydrologic model for a relatively impervious basin was per-

formed using corrected and uncorrected radar input. Streamflow predictions

are found to depend on: 1) the gauge correction of the radar-derived QPE;

and 2) the non-linear scaling of gauge-correction with watershed area. Rainfall

input was perturbed based on the PDF of bias correction factors for each event

showing how gauge correction scales with drainage area. Across storm events,

the difference between flow rates produced with corrected and uncorrected

radar input consistently increased with drainage area, but at non-constant

rates. The perturbation of inputs was used to confirm results obtained through

comparison of forecast skill at two stream gauge locations. The model skill

improved 3-fold when gauge-corrected radar is used over predictions obtained

with the use of uncorrected radar. However, the technique requires a moving

6hr window to adjust the rainfall input. One hypothesis is that the data assim-

ilation could be used to refine the Z-R relationship parameters. Using a data

assimilation technique would lead to improved rainfall input estimates. The

Z-R relationship parameters could be estimated using either the variational

or ensemble Kalman filter approaches. A more robust picture of how input

errors propagate through a distributed hydrologic model could be obtained by

including the Z-R parameter estimation problem with the estimation of model

parameters.

2.3 Parameter Estimation

Parameter estimation in distributed hydrologic modeling has been distinguished

by methods that focus on the model either as a black box or uses the physical

model structure to speed up model parameter estimation. Duan (1992) pro-
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posed a framework for optimization of a hydrologic model called the Shuffled

Complex Evolution (SCE) method. Duan identified five points concerning the

optimization problem. This method assumes the model is a black box and can

be slow to converge.

1. There may be several major regions of attraction into which a search

strategy may converge.

2. Each major region of attraction may contain numerous (possibly un-

countable) local minima (stationary points where the first derivatives

are zero and the Hessian matrices are positive definite or positive semi

definite). These local optima may occur both close to and at various

distances from the best solution.

3. The objective function surface in the multi-parameter space may not

be smooth and may not even be continuous. The derivatives may be

discontinuous and may vary in an unpredictable manner through the

parameter space.

4. The parameters may exhibit varying degrees of sensitivity and a great

deal of interaction and compensation. Much of the interaction can be

highly nonlinear.

5. The response surface near the true solution is often non-convex.

The ordered physics based parameter adjustment (OPPA) framework (Vieux

and Moreda, 2003) is a guided calibration process for PBD models. The OPPA

approach optimizes runoff volume parameters followed by the optimization of

overland and channel hydraulic parameters. The OPPA method focuses first
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on the parameters that influence runoff volume. The main parameters control-

ling runoff volume in Vflo are soil depth and assumed porosity, and saturated

hydraulic conductivity. Adjusting these parameters simultaneously includes

both saturation excess and infiltration rate excess runoff-generating processes

of the basin. The main steps in the OPPA method are:

1. Estimate spatially distributed parameters from physical properties.

2. Assign channel hydraulic properties based on measured cross-sections

where available.

3. Study the sensitivity of each parameter

4. Determine the optimum parameter set, which minimizes the respective

objective functions for runoff volume, timing, and peak discharge.

5. Perform continuous and event based simulations then re-adjust parame-

ters to account for interactions as necessary.

Spatially uniform scalar multipliers adjust a-priori distributed parameter

estimates derived from soil and channel parameters with the objective of mini-

mizing a function composed of the differences between observed and simulated

quantities, e.g. volume, peak stage, and timing.

Uncertainty estimation within the hydrologic community has been divided

into less formal and more formal mathematical frameworks for uncertainty

estimation. The less formal methods such Propagation of Perturbations and

Generalized Likelihood Uncertainty Estimation (GLUE) have been derived

out of generally only hydrologic concerns. Formal methods based on filtering

theory have been derived based on a strict mathematical framework and then

applied to hydrologic problems.
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Wagener (2004) developed a simplified framework for assessing the sensi-

tivity of model parameters using simple conceptual models. The framework

uses Monte Carlo simulations with simple conceptual models to identify pa-

rameters that are critical to predictability. The lack of identifiably of model

structure and parameters is a major restriction of current conceptual rain-

fall runoff models (RRM) applications. It introduces large uncertainties into

model predictions and seriously limits the possibility of sensible parameter

regionalization for the modeling of ungauged catchments. Beven and Binley

(1992) developed a Monte Carlo technique to try and handle the cases where

multiple parameter sets can generate generally acceptable results. A basic

underpinning of the method is that we cannot assume we know exactly the

model structure of a system. The method weights each model structure based

on a likelihood function derived from how well each model performed during

calibration.

Data Assimilation is the optimal combining of data and models to mini-

mize a defined criterion. It can be divided into stochastic and deterministic

techniques. Stochastic data assimilation has grown out of the linear Kalman

Filter (Kalman, 1960) approach to combining observations and simulations.

The Kalman Filter is a method of optimally combining a linear model with

observations. It finds the state variables of a linear model that minimizes the

analysis error covariance matrix. The Kalman Filter approach was extended to

non-linear models using the Extended Kalman Filter (EKF). The EKF requires

creating the tangent linear model around the mean of the state variables. The

linearization is performed by using the first term of a Taylor’s series expansion

around the mean of the state variables. The inverse of the linearization is the

adjoint which is used to propagate variations backwards in time. Higher order
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non-linear filters can be derived by including more terms from the Taylor’s

series expansion. Another approach to linearizing the model is the Ensem-

ble Kalman Filter with perturbed observations (EnKF). The EnKF uses an

ensemble of model simulations to estimate the background error covariance

matrix within the Kalman Filter. The background error covariance matrix is

estimated from the ensembles. Perturbations are added to the observations

and then each perturbed observation is used to calculate the analysis state

variable. The perturbations are required due to spurious correlations due to

small ensemble sizes. As the ensemble size increases to infinity the analysis

covariance converges to the true variance (Evensen, 1994).

An alternative approach is the Local Ensemble Transform Kalman Filter

(LETKF) data assimilation framework (Hunt, 2007). The LETKF data assim-

ilation framework constrains the Kalman gain to a localized area. Covariance

localization could help to alleviate the sampling error by restricting the influ-

ence of grids that are located a distance from the grid of interest (Houtekamer

and Mitchell, 2001). This in turn reduces the complexity of the Kalman gain

calculation. Usually the correlation structure is assumed, but for real cases

this error correlation structure is seldom known. There has been little work in

how to define the localized areas within distributed hydrologic modeling.

Deterministic data assimilation are usually based on the variational ap-

proach to combining data and models. Castaings et al. (2009) showed that

error covariance matrix structure is related to the drainage network configu-

ration. Thus if an initial estimate of the drainage network structure is well

defined then the parameter estimated by data assimilation will be easier to

find. He however used a simple model structure that did not take into account

saturation excess runoff processes. The on/off switching behavior of runoff
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generation can be problematic in calculating the adjoint model. He used auto-

matic differentiation (AD) techniques that may need to be modified to handle

discontinuities.

The 4D-Var technique has been used extensively in meteorology (LeDimet

and Talagrand, 1986). One new deterministic method for data assimilation is

the Forward Sensitivity Method (FSM) (Lakshmivarahan and Lewis, 2010).

The FSM has been shown to be equivalent to the 4D-Var technique. However,

FSM provides additional information about the impact of the time of each

observation on the prediction error structure.

Comparing ENKF assimilation and 4D-Var approaches is necessary since

hybrid techniques combining both methods have become attractive in Mete-

orology (Buehner et. al, 2009). A hybrid approach combining both methods

uses the ENKF to calculate the background error covariance required for varia-

tional assimilation. This avoids the calculation of the linear model and adjoint

usually required for variational assimilation. This hybrid technique would also

be useful transition from infiltration rate excess to saturation excess runoff

processes. This transition usually causes the adjoint to become unstable due

to filling the soil profile.

Increasing prediction accuracy through incorporation of observations is im-

portant for a variety of hydrologic forecasting applications, e.g. streamflow,

drought, flood, water supply, etc. The two general methods of deterministic

and stochastic filtering (Lewis et al., 2006) have enhanced the application of

strict mathematical frameworks for data assimilation.

16



Chapter 3

Assessing the Impacts of Precipitation Bias on

Distributed Hydrologic Model Calibration and

Prediction Accuracy

3.1 Abstract

1 Physics-based distributed (PBD) hydrologic models predict runoff through-

out a basin using the laws of conservation of mass and momentum, and benefit

from more accurate and representative precipitation input. Vflo is a gridded

distributed hydrologic model that predicts runoff and continuously updates

soil moisture. As a participating model in the second Distributed Model In-

tercomparison Project (DMIP2), Vflo is applied to the Illinois and Blue River

basins in Oklahoma. Model parameters are derived from geospatial data for

initial setup, and then adjusted to reproduce the observed flow under contin-

uous time-series simulations and on an event basis. Simulation results demon-

strate that certain runoff events are governed by saturation excess, while in

others, infiltration rate excess dominates. Streamflow prediction accuracy is

enhanced when multi-sensor precipitation estimates (MPE) are bias corrected

through re-analysis of the MPE provided in the DMIP2 experiment, resulting

in gauge corrected precipitation estimates (GCPE). Model calibration identi-

1Adapted version of Looper, J. P., Vieux, B. E., and Moreno, M. A. (2012). Assessing the
Impacts of Precipitation Bias on Distributed Hydrologic Model Calibration and Prediction
Accuracy. Journal of Hydrology, 418, 110-122.
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fied a set of parameters that minimized objective functions for errors in runoff

volume and instantaneous discharge. Simulated streamflow for the Blue and

Illinois River basins, has Nash-Sutcliffe efficiency coefficients between 0.61 and

0.68 respectively for the 1996–2002 periods using GCPE. The streamflow pre-

diction accuracy improves by 74 percent in terms of Nash Sutcliffe efficiency

when GCPE is used during the calibration period. Without model calibra-

tion, excellent agreement between hourly simulated and observed discharge is

obtained for the Illinois, whereas in the Blue River, adjustment of parameters

affecting both saturation and infiltration rate excess were necessary. During

the 1996–2002 period, GCPE input was more important than model calibra-

tion for the Blue River, while model calibration proved more important for

the Illinois River. Calibration proved more important than using GCPE input

during the 2002–2006 in both the Blue and Illinois River basins.

3.2 Introduction

Uncertainties resulting from model input, parameters, and structure can con-

found streamflow simulation in both historical and operational forecast con-

texts. Whether lumped or distributed, watershed models are simplifications

of complex processes responsible for runoff generation and routing, and may

deviate from observed conditions. Distributed hydrologic modeling seeks to

represent the spatially variable characteristics that control hydrologic response

to forcing from precipitation and potential evapotranspiration. Among other

objectives, the DMIP2 experiment explores distributed and lumped models

performance, given the uncertainties in precipitation estimates used in river

forecast operations. Further description of the NWS motivation for the DMIP2
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experiment may be found in the overview paper (Smith et al., this issue).

Physics-based distributed (PBD) hydrologic models generate runoff for

each grid location and rely on the solution of the governing equations of con-

servation of mass and momentum to route runoff through a discrete repre-

sentation of the watershed composed of channel and overland flow elements.

Most PBD watershed hydrologic models solve a simplified flow analogy such

as the kinematic or diffusive wave, rather than the full dynamic wave. Ad-

vances in computing and numerical methods such as the finite element method

have lead to the efficient mathematical representation of large areas at high

resolution. The finite element approach is used by r.water.fea described by

Vieux and Gauer (1994), and in Vflo presented by Vieux et al. (2004a,b)

and Vieux (2004a,b). Other PBD models that solve conservation equations

include the CASC2D (Julien and Saghafian, 1991; Ogden and Julien 1994);

the GSSHA gridded diffusive wave model (Downer and Ogden, 2004); Systme

Hydrologique Europen (SHE) (Abbott et al., 1986a;b); the Hydrologic Labo-

ratory Research Distributed Model (HLRDM) participating in the DMIP and

DMIP2 experiments (Koren et al., 2004 and Smith et al. this issue); and the

Distributed Hydrology Soil Vegetation Model (DHSVM) (Wigmosta et al.,

1994). Of these PBD models, only Vflo and r.water.fea use the finite element

method for spatial discretization of the watershed and solution of conservation

equations.

Fully distributed models build the hydrologic response from the assembly of

elements or grids representing the hydraulic drainage network, soils, impervi-

ousness, and vegetative cover of the watershed. Digital terrain data describing

overland slope and drainage direction commonly exists as gridded data, thus

it is convenient to define the drainage network using a grid-cell scheme to
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connect overland flow and channel elements. The connectivity of the drainage

network results in a system of equations that represent conservation of mass in

the kinematic wave analogy. Coupling soil moisture tracking with the overland

and channel components in Vflo results in a distributed modeling system that

is capable of continuous operation for online forecasting or offline hydrologic

analysis.

Operational use of gridded PBD models for flood forecasting is a relatively

recent development (Bedient et al., 2003; Vieux et al., 2003a; Todini, 1999).

The NWS has expanded its efforts in distributed modeling with the HLRDM

model, which is in use in the NWS Arkansas Red River Basin River Forecast

and West Gulf River Forecast centers (Koren, 2004). To reduce manual adjust-

ment of the Sacramento Model, a variational (VAR) approach is being tested

that adjusts the ordinates of the unit hydrographs and input during operations

to force the simulated streamflow to match with the observed streamflow (Seo

et al., 2003). Adjusting model input during operations may make it difficult

to assess model performance independent of input uncertainty. A continuous

model tracks soil moisture, providing proper initiation during real-time op-

erations. Sensitivity to soil moisture can be larger than uncertainty due to

uncalibrated radar estimates of precipitation, as shown by Vieux et al. (2009)

where the model response is nonlinear and depends on storm magnitude. Vieux

et al. (2002) presents continuous Vflo simulation of watershed response and

soil moisture for three watersheds that include the island of Puerto Rico, a

coastal watershed near Houston, Texas, and a partially urbanized watershed

in Norman, Oklahoma. Current uses of Vflo for continuous operations in-

clude the Flood Alert System (FAS) in Houston, Texas, (Bedient et al., 2003);

distributed hydrologic monitoring for the Oklahoma Department of Trans-
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portation where 149 bridges subject to scour are simulated; modeling for the

City of Austin, Texas (Janek et al., 2006) in urban and rural basins prone to

flash flooding; monitoring for the US National Weather Service in the OUN

Forecast Office; and flood forecasting applications internationally (Vieux et

al., 2003).

Understanding the source of uncertainty in historical simulations is impor-

tant for improving the accuracy of real-time forecasts as well as offline model

simulations. Real-time forecasts may use precipitation input that are biased

due to an inappropriate Z-R relationship or a lack of reporting rain gauges.

This differs from offline model simulations where the Z-R relationship can be

adjusted and rain gauge data is more complete. Oudin (2006) showed that

random errors in precipitation significantly decreased model performance. He

also indicated that model parameters can be over calibrated to adjust for these

errors in precipitation inputs. Prediction uncertainty may be due to model

structure, parameter uncertainty, soil moisture, or precipitation inputs, any

of which may confound efforts to identify physically realistic parameter values

that are stable during seasonal or interannual periods. Our purpose is to: 1)

participate in the DMIP2 experiment using a physics-based distributed model,

2) evaluate the model’s sensitivity to input forcing, and 3) identify physically

realistic parameters that are stable. Section 2 offers an overview of the Blue

and Illinois River basins. Section 3 presents the theoretical physical laws for

Vflo. Section 4 describes the datasets and steps required to parametrize the

model. Section 5 describes the DMIP2 experimental precipitation (MPE) and

the gauge corrected precipitation estimate (GCPE). Section 6 explains the

distributed model calibration procedure. Section 7 presents the baseline un-

calibrated and calibrated model results and sensitivity to model input forcing.
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Finally, a summary and conclusions are presented in Section 8.

3.3 Basin Characteristics

In our study, we considered two of the basins in the DMIP2 experiment, which

are the Blue River and Illinois River basins shown in Figure 3.1. Due to the

frequent occurrence of severe weather in Oklahoma, there is a large amount

of archival radar and rain gauge observational data. Since 1993, the US NWS

Arkansas-Red Basin River Forecast Center (ABRFC) has archived precipita-

tion estimates for the region including the Blue and Illinois River basins using

a combination of NEXRAD (WSR-88D) radars and rain gauge observations.

The observational networks of radars, Mesonet rain gauges, and stream gauges

that cover the Blue and Illinois basins are shown in Figure 3.2.

For the Blue River basin, two USGS gauging stations have observed stream-

flow for different periods of record. The Oklahoma Mesonet maintains a net-

work of meteorological stations within the state of Oklahoma (Brock et al.,

1995) that are apparently used operationally by the ABRFC along with other

US NWS precipitation gauges located within the Arkansas-Red River basin.

Within and surrounding the Blue River, there are eight Oklahoma Mesonet

rain gauges with an average spacing of 40 km. The Twin Lakes radar (KTLX)

is located 80 km away from the upper portion of the Blue River basin and

200 km away from the outlet, which can result in radar beam overshooting of

precipitation in the lower atmosphere over the southern portion (Gourley and

Vieux, 2006).

For the Illinois River basin, there are nine USGS gauging stations providing

observed streamflow, and eight Oklahoma Mesonet rain gauges with an average
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spacing of 30 km. Only three gauges are located near the basin and are

distributed to the west of Tahlequah on the Oklahoma side of the border

with Arkansas. The two radars covering the Illinois River basin are located

in Tulsa, Oklahoma (KINX) and Fort Smith, Arkansas (KRSX). The KINX

radar is located 63 km from the outlet and 130 km from the eastern portion of

the Illinois River basin, and the KRSX radar is located 86 km from the outlet

and 120 km from the northern side of the basin.

3.3.1 Blue River

The 1232 km2 Blue River basin is located in south central Oklahoma and

drains into the Red River that forms the border between Oklahoma and Texas

(Figure 3.2a). Normal annual precipitation ranges between 972–1124 mm.

Mean annual runoff generalized from climatological data ranges from 152–203

mm (Vieux et al., 2003b). In the Blue River, the mean annual evapotranspi-

ration ranges from 762–822 mm based upon a simple water balance analysis

(Garbrecht, 2004). The Arbuckle-Simpson aquifer underlies the upper Blue

River basin, and contributes springflow to the local creeks and rivers. Base-

flow upstream of Connerville is derived from the Arbuckle-Simpson aquifer.

The aquifer has been the focus of an extensive study by the Oklahoma Water

Resources Board (OWRB). Recharge in the upland areas of the Blue River af-

fects runoff due to preferential flow through karsts. Subsequent discharge from

the subsurface to the stream network may add additional complexity to the

rainfall-runoff transformation. During the 2003–2006 period, average baseflow

in the Blue River at Blue was 2.8 m3/s; at Connerville the average baseflow

was 1.5 m3/s. The verification period, October 2002 to September 2006, was

dominated by baseflow with only a few significant events that are less than

24



the 2-yr recurrence period.

The USDA-NRCS soil survey for Bryant County covers a portion of the

Arbuckle-Simpson Aquifer. The survey identifies soil features that allow recharge

to the aquifer. Soil series and rock outcrops prevalent above Connerville in the

Blue River basin are the Talpa-Rock Outcrop and Lula-Talpa-Scullin associa-

tion, which feature fractures or macropores allowing recharge. Rapid response

of groundwater levels in this area during and immediately after rainfall, further

supports the occurrence of recharge to the aquifer from exposed rock outcrops

in the Blue River. However, not all rock outcrops communicate rainfall to

the subsurface as recharge, such as those soils derived from granitic outcrops

prevalent below Connerville in the Blue River. Hydrologic processes respon-

sible for runoff generation including macroporosity and interflow are expected

to be dominant processes in the upper reaches of the Blue River because of

the connection between surface runoff, recharge, and baseflow.

3.3.2 Illinois River

The Illinois River basin is located in the Northeast portion of Oklahoma, and

drains hilly terrain to Lake Tenkiller (Figure 3.2b). Forest and pasture are

prevalent in areas with rock outcrops or rocky soils, whereas cropland is con-

centrated in the more fertile soil in the lowlands, floodplains, or flatter slopes

in the watershed. The Illinois River typically receives measurable precipita-

tion for 80–90 days annually, with 10–14 days of snow, on average. Normal

annual precipitation ranges from 1066 to 1219 mm. Annual runoff for the

East Central region of Oklahoma, where the Illinois River is located, ranges

from 304–508 mm (Vieux and Moreda, 2003b). Average annual estimates of

evapotranspiration range from 758–802 mm based on a simple water balance
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analysis by Garbrecht (2004). Baseflow at Tahlequah is 28 m3/s. At upstream

locations dominated by springflow, baseflow represents a larger percentage of

streamflow in the Illinois watershed.

3.4 Model Formulation

3.4.1 Runoff

Vflo is a physics-based distributed hydrologic model that computes two state

variables, soil moisture and direct runoff depth. Runoff generation and routing

are an integrated continuous process modeled by the kinematic wave analogy

applied to saturation and infiltration rate excess. The Vflo model represents

the watershed by means of a network of channel and overland flow grid cells

connected by finite elements forming the drainage network. The kinematic

wave analogy for overland and channel flow in this network is solved using the

finite element method in space and finite difference in time (Vieux, 2004b).

The fully turbulent Manning’s equation is used to relate velocity to depth

at each finite element node based on local land surface slope and hydraulic

roughness (Vieux, et al., 1990). The flow depth, h, in each overland grid

cell depends on runoff from upslope, infiltration, rainfall intensity, slope, and

hydraulic roughness. The kinematic wave equation for overland flow in terms

of depth, h, is,

∂h

∂t
+
S0.5

η

∂h5/3

∂x
= R− I (3.1)

where S is the land surface slope, η is the Manning’s roughness coefficient, R is

rainfall rate, and I is infiltration rate. The dependent variable, h, is modified
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depending on whether the flow is overland or within the confines of a channel.

3.4.2 Infiltration

Partitioning of precipitation into runoff and infiltration depends upon char-

acterization of the soil and soil moisture conditions. The soil model applied

here consists of a single layer with a restrictive boundary. Infiltration rate, I,

is modeled using the Green and Ampt equation,

I = Ke

[
1 +

Ψf∆θ

F (t)

]
(3.2)

where Ke is the effective saturated hydraulic conductivity; Ψf is the wet-

ting front soil suction head; ∆θ is the soil moisture deficit; and F (t) is the

cumulative infiltration depth. The Green and Ampt equation assumes a well-

defined wetting front; therefore, the volume of infiltrated rainfall must be

re-distributed as soil moisture after rainfall ceases. The model assumes that

infiltrated water is redistributed on a daily basis so that the soil moisture

deficit is uniform over the soil profile. Occurrence of rainfall in the radar QPE

input superimposed over each grid cell is used to determine rain and non-

rain periods. During periods of non-rain, evaporation is permitted subject to

available soil moisture. A timeseries of climatological rates of potential evapo-

transpiration (PET) are input to the model. For each grid cell, the PET rate

depletes the soil moisture until the wilting point is reached during non-rainfall

periods. The available storage in the single layer soil model equals the effective

porosity multiplied by the soil depth, which is accounted for in the ∆θ term

in (3.2). When the soil profile becomes saturated, rainfall becomes saturation

excess runoff. The soil depth is a model constraint that provides a means
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for simulating both infiltration-rate and saturation excess runoff processes to

generate flow that is then routed downstream.

3.4.3 Streamflow Routing

Channel hydraulic representation and routing are important determinants of

model prediction accuracy when applied to flood stage prediction in opera-

tional forecasting or historical simulation. Streamflow routing within the Vflo

model uses the kinematic wave analogy with lateral inflow,

∂A

∂t
+
∂Q

∂x
= q (3.3)

where Q is the discharge or flow rate in the channel; A is the wetted area of the

cross section; and q is the rate of lateral inflow per unit length of the channel.

The simplified momentum equation is used, where the friction gradient, Sf , is

assumed to be parallel to the land surface or channel slope, So (Cunge, 1980).

Solving for Sf using Mannings equation relating Q = f(A) results in the first

term in Eq. (6.1) as,

∂A

∂t
=
dA

dQ

∂Q

∂t
(3.4)

The relationship dQ
dA

controls the speed of the flood wave through a channel

cell and is defined by rating curves or by the channel cross section geometry.

Channel cells are represented using trapezoids, surveyed cross-sections, or rat-

ing curves. The celerity of the kinematic wave depends on the flow rate and

the geometry of the cross section, which poses a limit to explicit time-stepping

algorithms used to solve the kinematic wave equations. Each channel grid is

supplied with geometric information, bed slope, and a single roughness coef-
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ficient representative of the entire cross-section. More complex hydraulics in

channel and overbank areas such as floodplains may be modeled with rating

curves imported from other hydraulic models.

3.4.4 Baseflow

Currently Vflo does not have a baseflow component. For the upper portions

of the Blue River basin this is an important component of the hydrologic

system. To overcome these limitations, baseflow separation is performed on

the observed hydrographs using USGS PART software (Rutledge, 1998). The

PART program models aquifer discharge based on a master recession index

derived from streamflow hydrographs during non-storm periods. After the

direct runoff has been modeled using Vflo, the baseflow component is added

to the direct runoff hydrographs to produce the streamflow hydrograph. At

interior ungauged points, baseflow is estimated as a fraction based on drainage

areas and the closest downstream gauge where baseflow is recorded.

3.5 Model Parameterization

Distributed hydrologic models are parameterized using geospatial data sets

representative of the basin; for example, hydraulic roughness parameters may

be interpreted from land use/cover data. If the parameter estimates are uncer-

tain, then some adjustment to the base estimate may be needed. Parameter

estimation from watershed characteristics and predictable response to param-

eter adjustment are hallmarks of PBD models. Calibration is often required of

any model because of imperfect knowledge of parameters or a model structure

that does not accurately represent the watershed or runoff processes assumed
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to be operating. The following sections describe the parameterization of in-

filtration processes and hydraulic routing within the Vflo hydrologic model,

which are setup at 500 and 250–m resolutions for the Blue and Illinois River

basins, respectively. The Blue River comprises 4,926 cells while the Illinois

has 20,265.

3.5.1 Infiltration

Use of the Green and Ampt model requires estimation of saturated hydraulic

conductivity, wetting front suction, and effective porosity at each grid cell.

The Green and Ampt soil parameter maps are determined from the Rawls

and Brakenseik relationships developed for soil textural classifications (Rawls

et al. 1983a, b). The soil textural classifications for the Blue River basin

are obtained for this study from the Map Information Assembly and Display

System (MIADS). MIADS is a soil database compiled at a 200-meter resolution

by the United States Department of Agriculture (USDA)-Natural Resources

Conservation Service (NRCS) for the State of Oklahoma from county-level soil

surveys. Soil textural classifications for the Illinois River are obtained from the

Soil Survey Geographic (SSURGO) soil database. The soil depth is derived

using the depth to the bottom of the ’B’ layer as an initial starting depth.

Identifying the limiting layer (e.g. perched water table, bedrock) is important

for continuous simulation of both saturation excess and infiltration rate excess

runoff events. Soil depth and saturated hydraulic conductivity parameters are

adjusted during model calibration.
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3.5.2 Hydraulic Roughness

The overland flow is modeled using Manning’s roughness, η interpreted from

land use/cover maps of the watershed. For overland cells, roughness values are

estimated using tabulated values reported by landuse type (Engman, 1986).

Spatial datasets of landuse type are obtained from the National Land Cover

Database (NLCD, 2001). Landuse classifications contained in the NLCD are

then reclassified to maps of overland roughness coefficients using lookup tables

based on Engman (1986). Channel cells are defined at locations in the water-

shed consistent with networks contained in the National Hydrography Dataset

(NHD) GIS database. Roughness values for channel cells are estimated from

lookup tables provided by Chow (1959), Barnes (1967), and from previous

modeling studies (Vieux et al. 2004b).

Channel routing is affected by assumed cross-section geometry, slope, and

roughness that control the wave velocity as it propagates downstream. Trape-

zoidal cross sections are assumed throughout except where surveyed cross-

sections or rating curves are available. Trapezoidal channel bottom width is

estimated from aerial photographs or surveyed cross sections. Rating curves

provided by the USGS are used for gauged locations. The estimation of as-

sumed trapezoidal channel properties at grid locations is accomplished by

applying a geomorphic relationship between drainage area and the channel

width. Drainage area is derived from the flow accumulation for selected loca-

tions. The channel width functions are W (A) = 5.30A0.23 for the Blue River

and W (A) = 0.15A0.79 for the Illinois River (Figure 3.3 a, b) where, W is

the channel bottom width in meters, and A is the drainage area in square

kilometers. In the Illinois, the channel width is more sensitive to drainage
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area: its exponent for drainage area is 0.79, whereas in the Blue River the

exponent is only 0.23. Channel routing is relatively insensitive to channel side

slope, and is assumed to be 1:1 vertical to horizontal throughout. Channel

longitudinal slope is a smoothly varying parameter derived from topographic

contours and is assigned to each grid in the channel network. Initial estimates

of channel hydraulic roughness are provided from published values typical of

channels within the two river basins (Vieux et al., 2004b). Other information

on channel cross-sectional geometry is available in some locations for these two

basins. Harmel (1997) established measured cross section data for the Illinois

River basin for purposes of understanding aggradation and degradation of the

channel. Selected cross-sectional information from Harmel (1997) was input

to the Illinois River Vflo model, particularly in the lower main channel reach

from Watts to Tahlequah. Additional channel cross-sectional geometry in the

form of width-height pairs was derived from an engineering study collected by

Freeze and Nichols (1994), and provided as part of the DMIP experiment.

3.6 Hydrometeorological Inputs

Hydrologic prediction requires precipitation that is representative and accu-

rate for the watershed area. Developments in radar technology have led to

precipitation measurement that is high-resolution, both temporally and spa-

tially. However, errors in precipitation estimates derived from radar can lead to

inaccurate streamflow predictions and mis-calibration (Winchell et al., 1998).

The initial use of MPE form model input and the use of gauge corrected pre-

cipitation estimates (GCPE) for input in re-analysis is described as follows.
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3.6.1 Multi-sensor Precipitation Estimates

For the DMIP2 project, the organizers provided multi-sensor precipitation

estimates (MPE). The MPE input is composed of a mosaic of Digital Pre-

cipitation Array (DPA), operational hourly rain gauge data, and forecaster

adjustments (Fulton et al, 1998). The MPE used in this paper refers to the

DMIP2 data supplied by the organizers. It does not refer to the NWS MPE

system. The model input was calibrated using the MPE and then forced using

the GCPE per the DMIP2 instructions. Young et al. (2000) documented in-

consistencies in the MPE estimates, such as range dependent biases and bright

banding. Additional sources of uncertainty in precipitation estimates include

beam ducting, individual radar power differences, ground clutter, erroneously

assumed drop size distributions, signal attenuation, overshooting cloud tops,

and backscattering from hail (Doviak and Zrnic, 1993). Hail has considerably

larger backscattering cross sections than water droplets, and leads to larger

reflectivity values (Atlas et al., 1960). These larger reflectivity factors result

in rainfall rate overestimates and can cause model over-prediction. In August

2002, an intense storm cell developed and passed over the Blue River basin

near Wapanucka, Oklahoma; interpolated gauge data was used instead of radar

in this event because hail was reported for the storm in the NCDC extreme

storm event database. Another severe storm event within the MPE archive

is October 1998, when an outbreak of 19 tornadoes and heavy precipitation

showed possible hail contamination over the Illinois River basin. Even with

gauge-correction, the effects of hail contamination may be difficult to remove

or correct, and can lead to distortion of model parameters.

The MPE precipitation input is the primary data used as model input
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in the DMIP2 experiment. The model simulations reported herein relied on

MPE from the ABRFC and rain gauge data. Mesonet gauge data from the

Oklahoma Mesonet is used to perform spatially-variable bias correction of

the MPE input on a daily accumulation basis, referred to herein as gauge-

corrected precipitation estimate (GCPE). While the NWS already performs

bias correction, the resulting precipitation estimates may not be accurate for a

particular river basin, such as the Blue River (1,232 km2), because adjustment

is performed on the entire Arkansas-Red River basin (538,717 km2). The

mean field bias correction over the ABRFC domain may not be appropriate

to ensure the removal of bias near the subject basins. It should be noted

that the area sampled by radar and rain gauges is significantly different. The

MPE used in the study has an approximate pixel resolution of 4 km, while the

standard rain gauge has a diameter of 20.3 cm. Both a local bias and mean

field correction were tested, but for the rain gauge spacing near the subject

basins, slightly better streamflow simulation results were obtained with mean-

field bias correction. The GCPE uses a mean field bias correction factor,

MFB, defined as,

MFB =
1
n

∑n
i=1Gi

1
n

∑n
i=1MPEi

(3.5)

where Gi and MPEi are the ith gauge-MPE pairs of accumulation, respec-

tively, and n is the number of pairs.

Figure 3.4 shows the MFB value from 1996 to 2006 for the Blue River basin.

The daily MFB showed that there were periods with significant departures,

but the central tendency of the MFB was 1.0. A comparison of hydrologic

prediction results using GCPE and MPE is presented below in the results
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section. The random error between radar and gauge rainfall accumulations is

represented by the average difference, D̄ , defined as,

D̄ =
100%

n

n∑
i=1

∣∣∣∣Gi −MPEi
MPEi

∣∣∣∣ (3.6)

where G is the observed gauge accumulation, MPE is the multi-sensor pre-

cipitation estimate, and n is the number of gauges with reporting data. For

the Blue River basin, the average difference for MPE is 15.3%, while the av-

erage difference for GCPE is 12.9%. For the Illinois River basin, the average

difference for MPE is 20.8%, while the average difference for GCPE is 15.8%.

Through re-analysis, the average difference between rain gauge and radar es-

timates improves 2.4% and 5.0% for the Blue and Illinois River basins, respec-

tively. While this enhancement in accuracy does not appear to be large, its

impact on streamflow prediction accuracy proves to be significant, as shown

in subsequent sections.

3.6.2 Evapotranspiration

While precipitation drives the hydrologic cycle, evapotranspiration (ET) is the

largest output on an annual basis for the Blue and Illinois River basins. ET

is a forcing input that depletes the available soil moisture of a basin. Ac-

tual evapotranspiration depends on the available moisture in the soil profile

and is considerably less than potential rates of evapotranspiration. Potential

evapotranspiration represents the amount of evapotranspiration that would

occur if there were a constant supply of moisture. The model requires po-

tential evapotranspiration (PET) rates, which can be input as climatological

values or as a timeseries. Monthly PET estimates for our simulations are esti-
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Figure 3.3: Channel width relationships for a) Blue River and b) Illinois River
basins
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Figure 3.4: Time series of bias correction factors applied to MPE for Blue
River basin from 1996–2006
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mated from the Oklahoma Mesonet for the Blue River (Figure 3.5) and Illinois

River basins based on meteorological observations. The Oklahoma Mesonet

uses solar radiation, wind speed, air temperature, relative humidity, and pres-

sure to compute PET using the Food and Agriculture Organization (FAO)

Penman-Monteith equations (Allen et al., 1994). The NWS provided PET

estimates for the Oklahoma basins (Koren et al., 1998); however, these values

were lower than other estimates described below, and thus were discarded in

favor of representative PET derived from the Mesonet stations located in and

surrounding the basins. The NWS PET estimate for the Blue River basin is

1345 mm/yr, whereas, the Oklahoma Mesonet annual PET estimate is 1450

mm/yr. For the Illinois River, the NWS PET estimated 1066 mm/yr, while

the Oklahoma Mesonet estimates accumulate to 1507 mm/yr. Carpenter and

Georgakakos (2004) estimated similar PET of 1640 mm/yr for the Illinois River

basin, which is closer to the Oklahoma Mesonet PET annual values than those

provided in the DMIP experiment. The simulations presented herein are based

on monthly PET derived from meteorological measurements at the nearby Ok-

lahoma Mesonet stations that total to 1450 mm/yr and 1507 mm/yr, for the

Blue River and Illinois River, respectively.

3.7 Distributed Model Calibration

Our approach to distributed model calibration seeks to estimate the magni-

tude and spatial distribution of model parameters that minimize differences

between simulated and observed streamflow. Runoff-generating processes may

vary from season to season, and may be occurring at the same time within a

basin. Thus, a single objective function representing only one runoff process
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Figure 3.5: Monthly potential evapotranspiration for Blue River basin derived
from climatological stations

or quantity may be inadequate to assess model performance (Gupta, 1998).

Combining performance measures, e.g. peak and volume, that are represen-

tative of the dominant runoff process(es) may be more efficient at meeting

project objectives (James and Burges, 1982). The approach used to calibrate

Vflo for DMIP2 is a multi-objective criteria composed of event scatter plots,

two-dimensional objective function surfaces, and statistical performance mea-

sures.

Comparisons between the observed and simulated event volumes and event

peak discharge are used to identify intra-storm biases. Analysis of simulated

and observed streamflow scatter plots identifies groups of events that perform

differently from other events, and if there is any bias in uncalibrated model

performance.

Minimization of error between simulated and observed streamflow is critical

to generating meaningful runoff results from a distributed hydrologic model.
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A strength of physics based models is that the hydrologic cycle is formu-

lated based upon intuitive physical laws. Vieux and Moreda (2003b) describe

the Ordered Physics-Based Parameter Adjustment methodology (OPPA) for

purposes of calibrating a distributed model. The OPPA approach balances

optimization theory and the physics governing the hydrologic processes. In

this method, spatially uniform scalar multipliers are used to adjust initial pa-

rameter map estimates derived from the geospatial data, with the intent of

preserving spatial variability within physically realistic ranges. This approach

takes advantage of predictable parameter interaction to optimize both volume

and peak streamflow. Restating (3.1)(Vieux, 2004b) with adjustment factors

for each of the model parameters results in,

∂h

∂t
+
S0.5

βη

∂h5/3

∂x
= γR− αI (3.7)

where the three scalars α , γ , and β are the multipliers controlling infiltration

rate(I), rainfall rate(R), and hydraulic roughness(η).

Because these scalars can be thought of as controls in optimal control

theory, (3.7) may be used as the forward equation. When the inverse solution

is obtained by using the adjoint formulation, the backward equation may be

used to identify optimal values described in Vieux et al. (1998) and White et

al. (2002, 2003). However, a manual adjustment of these scalar multipliers is

applied in the optimization procedure as follows.

For our study, calibration of the model relies on the combination of the

Nash-Sutcliffe efficiency coefficient for discharge and root mean square error

(RMSE) in volume. The Nash-Sutcliffe efficiency, ENash, is defined as,
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ENash = 1−
∑n

i=1 (Qi
obs −Qi

sim)
2∑n

i=1

(
Qi
obs − Q̄obs

)2 (3.8)

where Qsim is the simulated hourly streamflow, Qobs is the observed hourly

streamflow, and Q̄ is the mean hourly observed streamflow. The minimization

of the objective function for volume, Jv, is defined as,

minJv =

√∑n
i=1 (V i

sim − V i
obs)

2

n
(3.9)

where Vsim and Vobs are the simulated and observed event volumes. Identifica-

tion of model biases between simulated and observed streamflow is necessary

to guide the calibration process.

The first step in the OPPA method is to obtain volume agreement. To

achieve this, we adjust hydraulic conductivity and soil depth to optimize Jv.

Finally, channel hydraulic parameters are varied such that ENash is maximized.

This procedure is carried out manually until the objective functions are opti-

mized. Physically realistic parameters and predictable response and parameter

interaction assist the manual method put into effect by a skilled operator. In

Table 3.1 the a priori parameter values (uncalibrated) for the Blue River and

Illinois River basins are given. Results of this calibration process for the Blue

and Illinois River basins are given in the next section.

3.8 Results and Discussion

Comparisons are presented between uncalibrated and calibrated models using

both the MPE and GCPE inputs. This allows for a systematic comparison

between the effects of calibration and precipitation input. The simulations
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Table 3.1: Average parameter values for Blue River and Illinois River basins

Blue River Illinois River
Parameter Uncal Cal Uncal Cal
Sat. Hydr. Cond. (cm/hr) 0.66 0.94 7.26 6.53
Wetting Front Suction (cm) 14.83 14.83 27.1 27.1
Effective Porosity 0.423 0.423 0.376 0.376
Soil Depth (mm) 1080 430 711 1041
Overland Roughness 0.053 0.053 0.069 0.069
Channel Roughness 0.035 0.025 0.043 0.036
Channel Width (m) 14.384 14.384 11.163 9.935

performed were 1) MPE input with uncalibrated model parameters (MPE-

Uncal); 2) MPE input with calibrated model parameters (MPE-Cal); 3) GCPE

input with uncalibrated model parameters (GCPE-Uncal); and 4) GCPE input

with calibrated model parameters (GCPE-Cal).

The calibrated simulation results are organized by the calibration and ver-

ification periods. Model performance for each period is evaluated in terms

of 1) continuous time-series performance measures, 2) event scatter plots of

peak discharge and volume, and 3) objective functions. Continuous time-series

performance measures between simulated and observed stream flows are the

mean, standard deviation, hourly root mean square error (HRMSE), the Nash-

Sutcliffe efficiency coefficient, and the Pearson correlation coefficient. While

these measures are not able to capture all of the information contained in a

hydrograph, they do provide a quantification of model skill.

3.8.1 Uncalibrated Simulation Results

The baseline simulations using MPE-Uncal and GCPE-Uncal are presented in

Tables 3.2 and 3.3. For the Blue River basin during the calibration period,

ENash significantly increased from 0.34 for MPE-Uncal to 0.63 with GCPE-
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Uncal. For the Tahlequah simulation point, there was a slight increase in ENash

from 0.22 for MPE-Uncal to 0.23 with GCPE-Uncal. For Siloam Springs,

there was a minor increase in ENash from 0.11 to 0.17. During the verification

period, ENash for the Blue River increased from −0.38 using MPE-Uncal to

−0.23 using GCPE-Uncal. There was no change in ENash between the MPE-

Uncal and GCPE-Uncal for both the Tahlequah and Siloam Springs simulation

points during the verification period.

The GCPE-Uncal Blue River event volumes during the calibration period

are plotted in Figure 3.6a. Two distinct groups emerge in the Blue River

scatter plot (Figure 3.6a) where the event volume is overestimated by a factor

of 2.19, for the second group, the volume is underestimated by a factor of 0.28.

The events that were overestimated could be produced from runoff processes

that differ from the other events or are due to errors inherent in the MPE such

as hail. The GCPE-Uncal Illinois River model produced relatively unbiased

event volume, slope of 1.02, with minor random scatter as seen in Figure 3.6b.
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Table 3.2: Uncalibrated streamflow statistics for calibration period (1996–2002)

BASINS Blue River (bluo2) Tahlequah (talo2) Siloam Springs (sloa4)

PRECIPITATION INPUT MPE GCPE MPE GCPE MPE GCPE
STATISTICS
Observed mean (m3s−1) 9.6 9.6 30.5 30.5 18.7 18.7
Simulated mean (m3s−1) 11.4 10.8 50.6 52.5 30.3 31.7
Observed S.D. (m3s−1) 31.4 31.4 55.9 55.9 42.2 42.2
Simulated S.D. (m3s−1) 36.5 32.4 66.2 69.2 53 56.1
HRMSE (m3s−1) 25.5 19.1 49.5 48.9 39.7 38.5
Pearson correlation coefficient 0.73 0.82 0.74 0.78 0.7 0.76
Nash-Sutcliffe efficiency 0.34 0.63 0.22 0.23 0.11 0.17

Table 3.3: Uncalibrated streamflow statistics for verification period (2002–2006)

BASINS Blue River (bluo2) Tahlequah (talo2) Siloam Springs (sloa4)

PRECIPITATION INPUT MPE GCPE MPE GCPE MPE GCPE
STATISTICS
Observed mean (m3s−1) 4.6 4.6 18.8 18.8 13.3 13.3
Simulated mean (m3s−1) 6.6 6.6 37.1 37.2 23.9 23.9
Observed S.D. (m3s−1) 13.5 13.5 44.1 44.1 35.5 35.5
Simulated S.D. (m3s−1) 20.4 20 51.2 51.3 40.2 40.2
HRMSE (m3s−1) 15.9 15 38.7 38.8 33.7 33.8
Pearson correlation coefficient 0.63 0.67 0.75 0.75 0.65 0.65
Nash-Sutcliffe efficiency -0.38 -0.23 0.23 0.23 0.1 0.1
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3.8.2 Calibration Results

Assumed processes are infiltration rate excess and saturation excess runoff that

operate simultaneously. Both processes are handled by Vflo where saturated

hydraulic conductivity and soil depth (depth to a restricting layer) control

infiltration rate excess and saturation excess runoff processes, respectively.

Wetting front suction is another parameter in the Green and Ampt equation

affecting the infiltration rate, but it is not adjusted. To handle the occurrence

of the two runoff processes operating simultaneously in the watershed, the sat-

urated hydraulic conductivity and soil depth are adjusted by spatially uniform

scalar multipliers in order to optimize the objective functions for volume, Jv

and ENash.

3.8.2.1 Optimal Parameter Values

Calibration of soil depth, Sd, and saturated hydraulic conductivity, Ksat, re-

duces the error in infiltration rate excess and saturation excess runoff genera-

tion . These two parameters primarily affect streamflow volume and indirectly,

peak discharge because of the relationship between volume and peak. The ob-

jective functions for ENash and Jv are computed by adjusting the soil depth

and saturated hydraulic conductivity calibration factors. Objective functions

are shown in Figure 3.7 for a) ENash and b) Jv for the Blue River calibration

period (1996–2002). There is a global optimum in each of the objective func-

tions that are coincident. While a truly unique parameter set may not exist,

given the shape of the objective function we would not expect a markedly dif-

ferent optimal parameter set. The a priori parameter set, as shown in Table

3.1, is Sd = 1080 mm and Ksat = 6.6 mm/hr. The objective function for ENash
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Figure 3.6: Uncalibrated simulated and observed direct runoff volume using
GCPE input and Mesonet PET for a) Blue River and b) Illinois River basins.
Solid squares show proposed infiltration rate excess events, circles are un-
determined dominate runoff process events, and solid triangles are proposed
saturation excess events.
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has a global maximum at a Sd = 430 mm and Ksat = 9.4 mm/hr. There is

a flat portion in the ENash function near the vicinity of Sd = 430 mm and

Ksat between 8.7–11.4 mm/hr. That is, when Ksat varies between 8.7 and

11.4 mm/hr there is minimal change in the ENash objective function. The Jv

objective function has a global minimum at a Sd = 430 mm and Ksat = 10.0

mm/hr and elongated contours that correspond to the flat surface in the ENash

objective function. The trough and elongated contours imply that the Blue

River basin responds more to Sd than Ksat, which suggests more runoff is gen-

erated from saturation excess as opposed to infiltration rate excess. However,

there is some interaction between the two parameters because Ksat controls

how fast the available porosity is filled and saturation achieved.

Consider for example, the event from December 1997 to February 1998

in the Blue River basin shown in Figure 3.8. The first hydrographs respond

reasonably well, but discharge falls well below observed for subsequent events.

It is hypothesized that the basin runoff response during this period is due to

both saturation excess and infiltration rate excess operating together. Chang-

ing the soil depth from 1080 mm to 430mm improved the prediction of peak

discharge and runoff volume. However, there was almost no change in the first

peak of the event. Therefore, it is hypothesized that the first peak responds

to infiltration rate excess runoff dominating at the beginning, and then later,

the response is dominated by saturation excess.

3.8.2.2 Continuous Streamflow Performance

For October 1996 to September 2002, the Vflo model was calibrated using

hourly simulated and observed streamflow. The calibrated simulation results

using MPE and GCPE inputs are provided in Table 3.4 for the main outlets
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Figure 3.8: Hydrograph showing variable runoff generation process for the
Blue River at Blue, January 1998

of the Blue and Illinois River basins. The model performance was relatively

consistent among the stream gauge locations in the Blue and Illinois Rivers

shown.

Using GCPE as input, calibration of the Blue River model increased ENash

from 0.63 to 0.68 and improved the correlation coefficient from 0.82 to 0.83.

In the Blue River for a selected period in 1997 (Figure 3.9a), good agreement

is evident from the hourly streamflow, which has a comparable ENash of 0.81.

For the Illinois River at Tahlequah calibration improved the ENash from 0.23

to 0.61, and improved the correlation coefficient from 0.78 to 0.80. Agreement

between simulated and observed streamflow is achieved with a ENash of 0.69

computed on hourly discharge pairs at Tahlequah in the Illinois River during a

selected period in 1999 as seen in Figure 3.9b. For the Illinois River at Siloam

Springs, calibration improved ENash from 0.17 to 0.62, and improved the cor-

relation coefficient from 0.76 to 0.80. Some adjustment of trapezoidal channel
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width was needed to improve accuracy of peak discharge and arrival time at

Tahlequah, which is presented in Table 3.1 along with the other calibrated

parameter values.
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Table 3.4: Calibrated streamflow statistics for calibration period (1996–2002)

BASINS Blue River (bluo2) Tahlequah (talo2) Siloam Springs (sloa4)
PRECIPITATION INPUT MPE GCPE MPE GCPE MPE GCPE
STATISTICS
Observed mean (m3s−1) 9.6 9.6 30.5 30.5 18.7 18.7
Simulated mean (m3s−1) 10.6 9.6 35.7 36.5 21.3 22.1
Observed S.D. (m3s−1) 31.4 31.4 55.9 55.9 42.2 42.2
Simulated S.D. (m3s−1) 35.4 29.7 46.9 50 35.8 39.2
HRMSE (m3s−1) 24.5 17.7 37.3 34.7 28.4 26.1
Pearson correlation coefficient 0.74 0.83 0.76 0.8 0.75 0.8
Nash-Sutcliffe efficiency 0.39 0.68 0.56 0.61 0.55 0.62
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Comparisons have also been performed between each of the rainfall inputs

during the calibration period for the main outlets. For the Blue River, the

MPE-Uncal had a ENash of 0.34, and the MPE-Cal had a ENash of 0.39.

The GCPE-Uncal input had a ENash of 0.63, and the GCPE-Cal had a Nash

Sutcliffe efficiency of 0.68. A 74% increase in ENash for the calibrated model

is obtained using GCPE input for the Blue River. For the Illinois River, the

MPE-Uncal had a ENash of 0.22, and the MPE-Cal had a ENash of 0.56. The

GCPE-Uncal had a ENash of 0.23, and the GCPE-Cal had a ENash of 0.61.

For the Illinois River basin, model calibration improved prediction accuracy

more than using GCPE as input.

For the Blue River basin, the event volumes obtained using MPE and

GCPE inputs are shown in Figure 3.10 a) and b), respectively. GCPE im-

proved accuracy in the Blue River. For the MPE-Cal input, the Blue River

event volume has an RMSE of 11.7 mm. With the GCPE-Cal, the event vol-

ume accuracy improves with a decreased RMSE of 6.90 mm for the Blue River

at Blue. The sensitivity of using GCPE precipitation input is also seen in the

scatterplots of peak discharge using the MPE-Cal (Figure 3.11a) and GCPE-

Cal (Figure 3.11b). The peak discharge using MPE-Cal at Blue has a bias of

1.05 with an RMSE of 97.6 m3s−1. Using GCPE-Cal improves the results with

a bias of 0.996, and an RMSE of 67.7 m3s−1. The improvement in prediction

accuracy gained from using GCPE input over the provided MPE in prediction

accuracy is RMSE = 41% and 31% in volume and peak, respectively.

For the Illinois River basin using GCPE input, scatter plots for volume

and peak streamflow (Figure 3.12 a, b) show that the simulated volume is

greater than the observed for the low flow events, but less than observed for

larger events. In the Illinois River, the accuracy for event volume prediction
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Figure 3.9: Continuous streamflow hydrograph with GCPE input and Mesonet
PET for a) Blue River basin in 1997, and b) Illinois River basin in 1999
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Figure 3.10: Calibrated event volume scatter plots for the Blue River using
Mesonet PET with a) MPE input and b) GCPE input
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Figure 3.11: Calibrated event peak discharge scatter plots for Blue River using
Mesonet PET with a) MPE input and b) GCPE input
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is excellent with a bias of 1.16 and an RMSE of 10.1 mm. The peak discharge

has a bias of 0.84 with an RMSE of 138 m3s−1.

Continuous time-series performance measures for the Blue and Illinois

River basins indicate the model is able to reproduce the observed stream-

flow with a Nash-Sutcliffe efficiency coefficient of at least 0.59 with the highest

efficiency of 0.68 during the calibration period in the Blue River basin. Gauge

correction of MPE rainfall lead to a 74% increase in the Nash-Sutcliffe effi-

ciency for the Blue River basin.

3.8.3 Verification Results

Model verification assesses the calibrated model predictive ability using an

independent dataset. The verification period is from October 2002 to Septem-

ber 2006, when the Blue river basin showed the most improvement due to

calibration during the verification period. The calibrated simulation results

using MPE and GCPE inputs are provided in Table 3.5 for the main outlets

of the Blue and Illinois River basins. The GCPE-Uncal had an ENash of -0.23,

whereas, GCPE-Cal improves ENash to 0.18. The MPE-Cal had an ENash of

only 0.01, but GCPE-Cal improves ENash to 0.18.

For the Illinois River at Tahlequah, GCPE-Cal performed best during the

verification period. ENash for the GCPE-Uncal was 0.23 while the ENash for

GCPE-Cal was 0.58, which is essentially the same performance obtained during

the calibration period. Using GCPE instead of MPE during this period, ENash

improved slightly, i.e. 0.57 to 0.58.

The Illinois River at Siloam Springs also had the most improvement due

to calibration during the verification period. ENash using the GCPE-Uncal

was 0.10 while ENash for GCPE-Cal was 0.45. ENash slightly improved from
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Figure 3.12: Calibrated event scatter plots with GCPE input and Mesonet
PET for the Illinois River a) volume, and b) peak discharge
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0.44 for MPE-Cal to 0.45 GCPE-Cal. Recall that Oklahoma Mesonet gauges

are not located in or around the drainage area contributing to Siloam Springs

Arkansas, which may suggest why little prediction improvement is obtained

using GCPE as input for the Illinois River.

Prediction accuracy during verification is nearly equivalent to calibration

period for the Illinois River regardless of precipitation input, i.e. GCPE or

MPE. Within the Blue River, the prediction accuracy during the verification

period was considerably less than the calibration period, but improved with

GCPE and calibration.
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Table 3.5: Calibrated streamflow statistics for verification period (2002 - 2006)

BASINS Blue River (bluo2) Tahlequah (talo2) Siloam Springs (sloa4)
PRECIPITATION INPUT MPE GCPE MPE GCPE MPE GCPE
STATISTICS
Observed mean (m3s−1) 4.6 4.6 18.8 18.8 13.3 13.3
Simulated mean (m3s−1) 5.8 5.5 23.9 24.4 15.5 15.8
Observed S.D. (m3s−1) 13.5 13.5 44.1 44.1 35.5 35.5
Simulated S.D. (m3s−1) 17.3 16.2 33.3 34.5 24.6 25.7
HRMSE (m3s−1) 13.4 12.2 29.1 28.6 26.5 26.4
Pearson correlation coefficient 0.65 0.68 0.76 0.77 0.67 0.68
Nash-Sutcliffe efficiency 0.01 0.18 0.57 0.58 0.44 0.45
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3.9 Summary

The fully distributed physics-based model, Vflo, operated in an offline con-

tinuous simulation mode produces acceptable accuracy for both continuous

streamflow and event peak discharge as evidenced by various performance

measures. While the transformation of rainfall into runoff is a complex pro-

cess, hydrologic modeling provides a means of assessing how well these vary-

ing runoff processes are represented. Calibration provides insight as to which

model parameters and hydrologic processes are likely controlling runoff. Real-

istic parameters were identified through calibration that in most cases changed

slightly from assumed a priori values. The largest change was soil depth con-

trolling saturation excess. For the Blue River, soil depth was reduced from

the 1080 mm estimated from the soil survey to 430 mm through calibration;

the saturated hydraulic conductivity changes from 0.66 to 0.94 cm/hr through

calibration; and channel roughness is decreased from 0.035 to 0.025, whereas

other parameters are unchanged as shown in Table 3.1. For the Illinois River,

the saturated hydraulic conductivity is decreased from 7.26 to 6.53 cm/hr;

soil depth increases from 711 to 1041 mm; channel roughness is reduced from

0.043 to 0.036, and channel width is decreased on average from 11.2 m to 9.9

m, whereas other parameters are unchanged (Table 3.1). Calibration showed

the Blue River basin responds more to soil depth than to hydraulic conductiv-

ity. Use of GCPE and the calibration procedure that treats saturation excess

and infiltration rate excess as operating simultaneously improves continuous

and event-based prediction accuracy. Model calibration improved the Nash-

Sutcliffe efficiency coefficient from 0.63 to 0.68 for the Blue River, while the

GCPE input improves the Nash-Sutcliffe efficiency coefficient from 0.39 to 0.68
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for the Blue River during the calibration period.

The major findings of this study may be summarized as follows:

1. Continuous and event-based calibration and verification identified an

optimum parameter set that minimized the objective function based on

Nash-Sutcliffe efficiency coefficient.

2. The Blue River exhibits both saturation excess and infiltration rate ex-

cess runoff processes. However, the Illinois River did not show distinct

differences between the two runoff processes.

3. There was more improvement in model accuracy from gauge correcting

the MPE input (GCPE) than from model calibration for the Blue River

basin during the calibration period.

4. Prediction accuracy during the verification period was lower than the

calibration period in the Blue River, where streamflow was dominated

by baseflow.

5. For the Illinois River basin, the model was able to reproduce the observed

streamflow with a Nash-Sutcliffe efficiency coefficient of 0.61 and 0.58 for

the calibration and verification periods respectively using GCPE.

Model results demonstrated that varying runoff processes may be occurring

within the Blue River basin. These processes could be accurately simulated

if both saturation and infiltration-rate excess runoff processes are accounted

for using accurate input. The identified optimal parameter set produced good

results in both continuous and event-based comparisons when using the more

accurate and representative precipitation input. The distributed model is sen-

sitive to uncertainties in model input, but not uniformly for all periods. During
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the 1996-2002 period, GCPE input was more important in achieving accurate

results than model calibration for the Blue River, while model calibration

proved more important in the Illinois River. During the 2002-2006 period,

calibration proved more important than using GCPE input during the 2002-

2006 in both the Blue and Illinois River basins. These results are important

because it demonstrates that input uncertainty is nearly unavoidable, and can

confound the proper identification and evolution of model states associated

with perturbations in parameters.
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Chapter 4

An Assessment of Distributed Flash Flood Forecasting

Accuracy using Radar and Rain Gauge Input for a

Physics-Based Distributed Hydrologic Model

4.1 Abstract

1 One approach to reducing societal impacts from flooding is to minimize

the public’s exposure by closing flooded intersections, warning, and evacuat-

ing affected stakeholders. Emergency responders must know when and where

flooding is likely to occur. This article describes the real-time performance of

a flash flood forecasting system for a significant flood event (September 7-8,

2010) in Austin, Texas. The system uses a physics-based distributed (PBD)

hydrologic model, Vflo, together with radar rainfall input to predict stage and

discharge at 222 locations in real-time. A comparison of model forecast accu-

racy using the operational rain gauge-adjusted radar rainfall input (GARR)

is made against rain gauge only (RGO) input for a recent flash flood. A col-

lection of calibrated hydrologic models for flash flood prone basins, within the

City of Austin, is used for the comparison. A 1.9 hr reduction in timing error

was achieved using GARR as input rather than RGO. The RMSE of peak

stage forecasts with GARR was 0.89 m, but with RGO input, the peak stage

1Adapted version of Looper, J. P., and Vieux, B. E. (2012). An Assessment of Distributed
Flash Flood Forecasting Accuracy using Radar and Rain Gauge Input for a Physics-Based
Distributed Hydrologic Model. Journal of Hydrology, 412, 114-132.
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RMSE increased to 1.77 m. The use of GARR as input to the PBD model not

only increases the forecast lead-time accuracy, but also the accuracy of forecast

peak stage across a range of basin sizes and with variable rain gauge densities

used for radar bias correction. Rain gauge density over the forecast basins was

one of the main determinants of forecast accuracy during an extreme event

that resulted in significant flooding in a major metropolitan area.

4.2 Introduction

Flash flood mitigation requires emergency responders to know when and where

flooding is going to happen. Flood impacts in urban areas are elevated due

to high population density, imperviousness, and flood wave acceleration due

to stream channelization. From a societal impact perspective, useful hydro-

logic forecasts provide time to close roads, re-route traffic, activate high-water

signals, and deploy emergency personnel before a flood occurs. Flood stage

forecasts in urban areas are especially difficult because the basin’s hydrologic

response time is the same order of magnitude as the emergency response time.

Due to the speed of flood waves in urban watersheds, there is often insufficient

time to make manual adjustments to model input or parameters. Flash flood

forecast accuracy and reliability depend strongly on model structure configu-

ration, input accuracy, and correct model parameter calibration. While any

model is a simplification of complex runoff and hydraulic processes, physics-

based distributed (PBD) hydrologic modeling uses the spatially variable hy-

draulic characteristics of a basin to determine hydrologic response at locations

distributed across an urban area.

This article describes the performance of the operational distributed flash
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flood forecasting system in Austin, Texas. The flash flood forecasting system

uses the PBD model, Vflo, and radar rainfall input to predict flood stage and

discharge at 222 locations in real-time. The study goal is to evaluate if the

flash flood forecasts issued using a merged input from radar and rain gauges

(GARR) was better than using a rain-gauges-only product (RGO). The City

of Austin is one of the most flash-flood prone regions in North America. The

forecast lead-time accuracy is critical for taking emergency actions. Evalu-

ative statistics are presented regarding the accuracy and reliability of flood

forecasts achieved using GARR compared to RGO input at 21 stream flow

gauges distributed throughout seven basins covering a combined area of 1200

km2. Figure 4.1 shows the drainage area boundaries with the rain gauge net-

work coverage (164 gauges) used to correct the radar rainfall input.

PBD hydrologic models use conservation equations to route runoff through

a network of channel and overland flow elements. Because the full dynamic

equations, referred to as St. Venant equations, are more complex than re-

quired for many watersheds, a simplified flow analogy such as the kinematic

or diffusive wave is often used. Vieux and Gauer (1994), among others, have

proposed the runoff routing using a numerical solution of the kinematic wave

equation through a gridded representation of the watershed based on infor-

mation derived from a digital terrain model and other geospatial data. The

discretization scheme and resulting numerical method for solving conservation

equations for open channel flow is often the finite difference solution (Julien

and Saghafian, 1991; Ogden and Julien, 1993; Downer and Ogden, 2004),

whereas finite volume modeling with 1-D and 2-D irregular meshes has been

employed by Cunge (1980), and Fang and Su (2006). The application of the

finite element solution in space and finite difference in time was employed in
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r.water.fea (Vieux and Gauer, 1994), and Vflo described in Vieux (2004a,b),

and its application to flood prediction in Looper et al. (2009), and Vieux et

al. (2009).

Flood warning systems provide lead-time for emergency responders to evac-

uate citizens and deploy resources to assess flood damage. To be useful, these

systems must provide adequate response time for mitigation of flood impacts,

especially where emergency response actions are taken based on the hydro-

logic forecast and warning. Creutin et al. (2009) compared social response

time to basin response time in terms of effectiveness, and found that for small

basins with drainage areas less than 100 km2, the rainfall spatial distribution

and accuracy were the most important determinants of effective flood warn-

ing. They reported the most important factors that reduced flood impacts

during extreme flash flood generating storms were: 1) continuous enhance-

ment of radar rainfall accuracy and its quality control; 2) providing access

to more accurate real time information about rainfall accumulations during

the decision-making process, and, 3) widespread access to information and

dissemination of products that are readily understandable by people at risk.

The system described herein incorporates these features, except that dissemi-

nation is not to the public but to city employees tasked with responding and

helping to protect the public from flood hazards. Thus, flood information

with relatively short lead time is useful. The methodology and results of the

radar-based flood alert system are presented in the following section.
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4.3 Methodology

4.3.1 Study Area

Rainfall and terrain characteristics of the City of Austin result in flooding as

a public safety issue. The City is located in central Texas on the Colorado

River that crosses the Balcones escarpment, separating the steeply sloped and

hilly topography called the Texas Hill Country from the flatter plains area

called the Blackland Prairies to the east. Steep slopes in the western part of

Austin and Travis County provide only a thin covering of topsoil derived from

limestone and shale geologic material. Austin is located near the Gulf Coast

of Texas, where tropical storms are capable of producing heavy precipitation.

The combined effect of ample atmospheric moisture near the Gulf coupled with

steep topography in the headwaters and flatter areas in receiving portions of

the watershed, that are either fully developed or are urbanizing with mixed

land use, leads to dangerous conditions from flash floods.

The City of Austin experiences flooding over a range of watershed sizes

that have response times with considerable variability making a distributed

framework useful for managing flood emergencies. A recent flood event, 7-8

Sep 2010, illustrates the vulnerability of the city to flooding. Tropical Storm

(TS) Hermine formed just off the south Texas coast on September 7, 2010,

when the system made landfall and traveled north towards the San Antonio-

Austin area over the day. Between the hours of 20:00 on 7 Sep10 through 05:00

on 8 Sep10 heavy rainfall occurred primarily on the west side of Austin. The

rainfall resulted in 32 road closures due to inundation; 9 structures flooded due

to creeks overflowing their banks; 30 structures that flooded due to localized
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flooding; 4 swift-water rescues (two on Bull Creek, one on Shoal Creek, and

one on Canyonwood in Travis County); and one death.

Portions of the watershed areas affecting the City are monitored with

stream gauges as shown in Figure 4.1. There are 222 forecast locations (watch

points) in the City, but only 21 have stream gauges, which are maintained

by the US Geological Survey. A distributed hydrologic model, Vflo described

below, provides a distributed framework for managing flood stage information

at these watch points. Table 4.1 presents the watershed areas and model res-

olution in the study area. The basin sizes range from 16.5 km2 to over 839

km2 and model grid sizes from 50 m to 250 m in horizontal resolution. In

real-time, the total area modeled with the PBD model is 1200 km2, which

runs continuously to track soil moisture, rainfall, and stream flow over each

model grid.
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Figure 4.1: Rain gauge and streamflow gauge networks covering the target
watersheds affecting the City of Austin TX
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Table 4.1: Model resolution, forecast watch points, and watershed area

Grid No. of No. of Drainage
Resolution (m) grids watch points Area (km2)

Shoal Creek 60 9000 38 32.4
Onion Creek 250 13426 7 839.1
Waller Creek 50 6588 27 16.5

Walnut Creek 150 6533 48 147.0
Bull Creek 70 11694 5 57.3

Boggy Creek 65 8429 43 35.6
Williamson Creek 150 3467 54 78.0

Total 59137 222 1205.9
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4.3.2 Radar Rainfall

The Flood Early Warning System (FEWS) rain gauge network consists of

telemetered gauges connected via SCADA (Supervisory Control and Data Ac-

quisition). SCADA reliably transmits rainfall data used in real-time opera-

tions. The rainfall used in real-time distributed hydrologic modeling consists

of radar at 1-km resolution, and rain gauge coverage in and surrounding the

target watersheds affecting the City of Austin. The rain gauge network is

composed of several heterogeneous networks as seen in Figure 4.1. Automated

rejection of erroneous gauge data greatly improves the bias correction of radar

in offline and online applications (Steiner et al., 1999; and Marzen and Fuel-

berg, 2005). The City of Austin radar coverage is primarily served by a sin-

gle S-band NEXRAD (WSR-88D) radar; however, two additional NEXRAD

radars can provide a backup if the primary radar is offline. Reflectivity is

converted by means of a default Z-R, but is continuously adjusted in real-time

by the rain gauge network with updates every 15 minutes. The study area is

located within 80 km of the radar with a beam top height of approximately

1.7 km; therefore, making overshooting unlikely except at the far reaches of

the modeled area to the north even with wintertime stratiform storms.

Dependence of runoff forecast reliability on precipitation input and soil

moisture, both in offline and real-time modes, has been demonstrated by stud-

ies reported by Vieux et al. (2009), Norbiato et al. (2008), and Anquetin et al.

(2010) among others. Bias correction of radar for hydrologic applications has

been demonstrated to improve stream flow prediction in both offline (Vieux

et al., 2009; Habib et al., 2008; Gourley and Vieux, 2005 and 2006; and Vieux

and Bedient, 2004), and in online applications (Vieux et al., 2003; Bedient et
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al., 2003). It is well recognized that bias correction of radar improves rainfall

estimation and resulting hydrologic prediction accuracy as reported by Collier

and Knowles (1986) and Mimikou and Baltas (1996); in urban areas presented

by Vieux and Vieux (2005) and Vieux and Bedient (2004); and in Borga et

al. (2010) in the overview of a special issue on flash floods and the articles

contained therein.

Hydrologic prediction requires precipitation that is accurate and represen-

tative for the watershed area. The initial use of GARR for input is described

as follows. While the method of adjustment depends on the hydrologic appli-

cation and the spatial extent of the area of interest, the mean field bias (MFB)

approach is useful for identifying gauges that are not consistent with the radar

using a spatially constant adjustment factor and also reducing the single rain

gauge error from corrupting the bias correction (Bedient et al., 2008). The

Local Bias (LB) approach to adjusting the radar rainfall applies a spatially-

variable ratio of gauge to radar accumulations (G/R) from surrounding gauges

with the closest gauge having the most weight (Seo and Breidenbach, 2002).

The LB approach used here distributes the variation of bias over the area

based on a 6-hour moving window that is updated every 15-minutes. The 6-hr

moving window is an integration period updated every 15 minutes, which is

similar to the window probability matching method (Rosenfeld, 1994). The

LB uses the ratio between the sum of each gauge divided by the sum of the

sampled radar values over each gauge. Gauge and radar accumulations were

computed for each moving window. All radar/gauge (RG) pairs were then

checked for statistical outliers. Exclusion of any gauge accumulation during a

moving window is based on control limits of two standard deviations from the

mean. After exclusion, remaining RG pairs are then distributed spatially over
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the analysis area using a Barnes objective analysis scheme (Barnes, 1964). The

resulting LB value over each radar bin is the multiplicative factor that adjusts

the radar. The Barnes objective analysis scheme is also used to perform the

spatial interpolate the rain gauge data for the rain gauge only (RGO) input.

The rain gauge network density is important for characterizing rainfall vari-

ability alone or in conjunction with radar. Collier (1986) recommended a rain

gauge spacing of 20 km to produce results as accurate as radar in Northwest

England for all precipitation types, e.g. frontal, showers, and bright-band af-

fected storms. Since then, many researchers and practitioners have employed

rain gauge networks for validation of the quantitative precipitation estimates,

evaluated inaccuracies in GARR on flood forecasting, and identified improve-

ments needed for uniform reliability of rainfall measurements. Errors in pre-

cipitation estimates derived from radar can lead to inaccurate stream flow

predictions and mis-calibration of hydrologic models (Winchell et al., 1998).

To overcome this inaccuracy in post-event analysis, Bouilloud et al. (2010) de-

veloped an effective Z-R relationship through optimization using rain gauges

to identify coefficients that minimized event-scale rainfall measurement dif-

ferences. They found that an effective Z-R relationship could be optimized

with respect to rain gauge accumulations measured at the event time scale,

and that this approach could compensate for range dependent errors associ-

ated with radar. Coefficients of the Z-R relationship can vary significantly

over time and space. Continuous updating of spatially variable radar bias cor-

rection factors is important for radar-based flood forecasting, especially where

local downdrafts during storms can enhance rainfall rates that would otherwise

go undetected by radar (Smith et al., 2007).
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4.3.3 Hydrologic Model

Each basin in the study area is modeled with a series of discrete elements

joined together forming a drainage network that are used to solve conserva-

tion of mass and momentum within the kinematic wave analogy (KWA). A

central component of the flash flood forecasting system is PBD model, Vflo

(Vieux, 2004a,b), which solves the KWA equations using the finite element

method (Vieux, 1988). The one-dimensional finite elements used in this ap-

proach are assigned as overland or channel cells with appropriate hydraulic

characteristics. Within the model, two coupled components generate the sim-

ulated hydrologic response: 1) routing of runoff according to a fully turbulent

open channel flow, and 2) runoff generation composed of infiltration rate ex-

cess (Hortonian), saturation excess (Dunne), or both operating simultaneously

in a watershed. Manning’s equation combined with the conservation of mass

forms the governing partial differential equation for overland flow (Eq. 4.1),

∂h

∂t
+
S1/2

η

∂h5/3

∂x
= R− I (4.1)

where h represents the flow depth in each element, S is the dominant land

slope, η represents the nodal hydraulic roughness centered in each grid cell, R

the rainfall rate over an element, and I the infiltration rate. Channel routing

in the model uses the following form of the kinematic wave equation,

∂A

∂t
+
∂Q

∂x
= q (4.2)

where Q is the discharge or flow rate in the channel; A is the wetted area

of the cross section; and q is the rate of lateral inflow per unit length of
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the channel. The hydraulics of the overland and channel cells combined in a

drainage network produce the hydrologic response of the basin without reliance

on unit-hydrograph functions. Channel cross-sectional geometry is used to

define the hydraulics, which are either surveyed or extracted from LiDAR

digital elevation data. Hydraulic roughness is assigned based on dominant

land cover in overland areas and as a composite η value in channels (Vieux,

2004b).

Vflo models the infiltration rate, I, using the Green and Ampt equation,

I = Ks

[
1 +

Ψf∆θ

F (t)

]
(4.3)

where Ks is the saturated hydraulic conductivity, Ψf is the wetting front

suction head, ∆θ is the soil moisture deficit, and F (t) is the cumulative infil-

tration depth. The available soil moisture deficit is depleted at the potential

evapotranspiration rate (PET). The soil moisture is also fully redistributed

throughout the soil profile on a daily basis. Green and Ampt parameters

are derived from soil water characteristics estimated by soil texture properties

(Saxton and Rawls , 2006). Grid cells that contain impervious cover only allow

infiltration to occur on the pervious portion of the cell. Infiltration is allowed

to continue until the wetting front reaches the bottom of the soil depth layer,

saturation occurs and then runoff equals rainfall.

4.3.4 Ordered Physics Based Parameter Adjustment

The ordered physics based parameter adjustment (OPPA) framework (Vieux

and Moreda, 2003) is a guided calibration process for PBD models. The OPPA

approach optimizes runoff volume parameters followed by the optimization
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of overland and channel hydraulic parameters. The OPPA method focuses

first on the parameters that influence runoff volume. The main parameters

controlling runoff volume in Vflo are soil depth and assumed porosity, and

saturated hydraulic conductivity. Adjusting these parameters simultaneously

includes both saturation excess and infiltration rate excess runoff-generating

processes of the basin. The main steps in the OPPA method are:

1. Estimate spatially distributed parameters from physical properties.

2. Assign channel hydraulic properties based on measured cross-sections

where available.

3. Study the sensitivity of each parameter (Figure 4.2).

4. Determine the optimum parameter set, which minimizes the respective

objective functions for runoff volume, timing, and peak discharge.

5. Perform continuous and event based simulations then re-adjust parame-

ters to account for interactions as necessary.

Spatially uniform scalar multipliers adjust a-priori distributed parameter

estimates derived from soil and channel parameters with the objective of mini-

mizing a function composed of the differences between observed and simulated

quantities, e.g. volume, peak stage, and timing.

Objective function selection requires consideration of which features of hy-

drologic prediction are important for system objectives. Within the OPPA

calibration procedure, parameters are first adjusted to minimize the error in

volume, Jv defined as,

Jv =

√∑n
i=1 (Vsim − Vobs)2

n
(4.4)
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Jv (in) NSE 

Figure 4.2: OPPA objective functions for Williamson Creek gauge (08158930).

where Vsim and Vobs are the simulated and observed runoff event volumes and

n is the number of calibration events.

Next, hydraulic roughness and channel geometry are adjusted to fine-

tune the timing aspects of hydrologic response, namely timing and peak dis-

charge/stage. A flood alert system depends on accurate stage prediction, but

confidence in the system requires accurate estimation of hydrologic response

throughout an event. A common objective function is the Nash-Sutcliffe Effi-

ciency, NSE, which is composed of the correlation, bias, and relative variability

between simulated and observed values described by Gupta et al. (2009) as,

NSE =

Correlation︷ ︸︸ ︷
2 · α · r −

V ariance︷︸︸︷
α2 −

Bias︷︸︸︷
β2
n (4.5)

where α = σsim
σobs

; βn = µsim−µobs
σobs

; r is the Pearson correlation coefficient; µ and

σ are the mean and standard deviation of the observed (obs) and simulated

(sim) series; α measures the variability between the simulated and observed
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series, and βn is the bias normalized by the standard deviation. Examples

of the objective surfaces that were obtained in the calibration process by the

OPPA method are shown in Figure 4.2. A batch process was used to explore

the parameter space to identify the most probable parameter sets based on

available rainfall events. The parameter scalars corresponding to minimum

error in these plots are identified through the OPPA model calibration for use

in real-time operation of the hydrologic models representing the basins.

4.4 Results

Evaluation of forecast stage accuracy obtained with GARR and RGO as input

to the PBD model is presented in terms of rainfall input accuracy and rain

gauge network density. Analysis focuses on the extreme event that identifies

whether useful hydrologic warnings can be obtained for a range of basin sizes

with variable rain gauge density.

4.4.1 Rainfall Accuracy

Rainfall inputs to a hydrologic model can affect the lead-time afforded for

emergency response. GARR and RGO were used as the primary inputs to the

hydrologic model. The GARR used in real-time, during this event, is produced

through bias correction of a standard Z-R relationship, Z = 300R1.4. However,

Z-R relationships can be modified depending on precipitation type. The bias

correction is computed over a 6-hr moving accumulation period updated every

15-min. The operationally computed time series of bias correction factors

for the nine months leading up to the extreme event on 7-8 Sep 2010, is

shown in Figure 4.3a, where the inset box indicates the extreme event period.
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The bias correction factor shown is the average of the local bias correction

factors, and shows considerable departure from a value of 1.0, i.e. perfect

agreement between radar and gauge. In Figure 4.3b, the mean bias is plotted

just for the extreme event period, 7-8 Sep 2010. The evolution of the bias

during TS Hermine is interesting because it starts out at 1.5 and above. This

magnitude of correction would be consistent with adjusting the convective Z-

R relationship to be more characteristic of a tropical Z-R of Z = 250R1.2.

As described by Vieux and Bedient (1998), the expected increase in rainfall

produced using the convective Z-R relationship would be 40% higher for

storms described by the tropical Z-R. Without bias correction, the rainfall

produced from radar alone would be biased low, requiring approximately a

50% increase to be useful as model input.

As mentioned earlier, the operational system used to support FEWS is

capable of rejecting erroneous rain gauge data in online modes of operation.

The map of rain gauges refused (or used) is presented in Figure 4.4. The rain

gauges refused are mostly due to zero rainfall measured by the rain gauge.

Those gauges Not Found would be those with telemetry failure during any

period. However, no such loss was detected in this period. The storm to-

tal shown in Figure 4.5 highlights the variability of rainfall, where sequential

storm cells embedded within TS Hermine trained from south to north over

the central part of Austin creating prolonged rainfall with several intense peri-

ods. The improvement in rainfall statistical agreement with rain gauges used

in operation is seen in Figure 4.6 for the period covered by the storm total.

The absolute average difference between radar sampled over each gauge and

the gauge accumulation is the 32.1% before and 15.6% after bias adjustment.

This accuracy is only an estimate since it is computed from the same gauges
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Figure 4.3: a) Mean bias correction time series from Jan-Sep 2010, b) Event
mean bias correction time series, 7-Sep-2010 to 8-Sep-2010
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Figure 4.4: Map of rejected and used gauges during the 7-8 Sep-2010 event

used in bias correction. Similar improvement in bias is found for the entire

9-month period.

While operational stream flow forecasts are produced by the Vflo model

using gridded rainfall directly, the basin-averaged rainfall for Bull Creek illus-

trates the temporal dimension of rainfall during this event seen in Figure 4.7.

The most intense rainfall, for the City of Austin, occurred over Bull Creek,

between 17:00 and 18:00 hours on 7-Sep 2010. The rainfall during the 6-hour

period ending at 3:45 CDT on 8-Sep, contained the greatest gauge accumula-

tion exceeding 203 mm, with a peak rainfall intensity of 70 mm/hr. During

this integration period, the mean bias correction was 1.528, which produced
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Figure 4.5: Gridded storm total produced by the online system during the 7-8
Sep-2010 event. Rainfall accumulation in mm
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Figure 4.6: Average difference between rain gauge and radar precipitation
estimates

an average difference between gauge and radar of +/- 10% computed with 76

of the 164 gauges ingested into the online system.

Figure 4.8 shows the calibration results for the Bull Creek basin. The

basin was calibrated using GARR input for four events during the 2007-2010

period. The September 7-8, 2010 event was significantly larger than the cali-

bration events providing a validation event for the Bull Creek model. Besides

producing GARR for model input, the system provides a backup product com-

posed only of the rain gauge amounts. Thus, it is important to consider what

the accuracy would be had RGO been used during the event. During the 7

- 8 Sep 2010 event, GARR was used solely, and the RGO product is tested

through reanalysis.
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Figure 4.7: Bull Creek radar rainfall estimated intensity and accumulation
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Figure 4.8: Scatterplot of Bull Creek peak discharge prediction
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4.4.2 Evaluation of Operational Distributed Flood Forecasting

Two aspects of the flood-forecasting problem were investigated for each rainfall

input, 1) prediction accuracy and 2) lead-time. The system must be able to

reproduce the observed behavior of stream flow response during an event. A

visual inspection of the hydrographs shown in Figure 4.9a-u illustrates the

performance of the PBD basin models during the event. The subplots show

the reliable correlation between the simulated and observed response during

both low and high stage conditions. Watch and warning levels shown are set

based on thresholds established by the FEWS staff at critical locations where

flooding can occur.

One aspect of a flood warning system is the accuracy attained with pre-

cipitation inputs to the operational model. For the presented hydrographs

(Figure 4.9a-u), the measured and forecast stage correlation coefficients range

from 0.73 to 0.98 for GARR input and from 0.63 to 0.97 for RGO input.

In some cases, both the GARR and RGO produce relatively low correlation

coefficients. Figure 4.10 shows the scatterplot of peak stage results using

GARR input. In comparison of simulated and observed peak stage using

GARR as input, the agreement in terms of the Mean Absolute Difference

(MAD) was 0.57 m, with an RMSE of 0.89 m. Thus, radar produced relatively

unbiased forecasts with a trendline slope of 1.084. Whereas, with RGO as

input, error in peak stage prediction shown in Figure 4.11 shows a doubling of

the error where the peak stage MAD is 1.18 m and the RMSE is 1.77 m. The

peak stage produced with RGO resulted in a trendline slope of 1.35, or a 27%

over prediction had the forecasts been produced with gauge measurements as

input rather than GARR.
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(a)

(b)

Figure 4.9: Subplots of forecast and observed stage hydrographs using GARR
input
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(c)

(d)

Figure 4.9: Subplots of forecast and observed stage hydrographs using GARR
input
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(e)

(f)

Figure 4.9: Subplots of forecast and observed stage hydrographs using GARR
input
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(g)

(h)

Figure 4.9: Subplots of forecast and observed stage hydrographs using GARR
input
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(i)

(j)

Figure 4.9: Subplots of forecast and observed stage hydrographs using GARR
input
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(k)

(l)

Figure 4.9: Subplots of forecast and observed stage hydrographs using GARR
input
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(m)

(n)

Figure 4.9: Subplots of forecast and observed stage hydrographs using GARR
input
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(o)

(p)

Figure 4.9: Subplots of forecast and observed stage hydrographs using GARR
input
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(q)

(r)

Figure 4.9: Subplots of forecast and observed stage hydrographs using GARR
input
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(s)

(t)

Figure 4.9: Subplots of forecast and observed stage hydrographs using GARR
input
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(u)

Figure 4.9: Subplots of forecast and observed stage hydrographs using GARR
input
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Figure 4.10: Scatterplot of peak stage simulated using GARR input versus the
observed stream flow gauges
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Figure 4.11: Scatterplot of peak stage simulated using RGO input versus the
observed stream flow gauges

4.4.2.1 Forecast Lead-Time and Error

In the unattended system, the lead-time is determined by the hydraulic re-

sponse of the system. In this case, lead-time is the time between generation of

a forecast with detected rainfall until the time when forecast stage exceeds the

flood warning level. Using both RGO and GARR, lead-time was calculated for

all of the 222 forecast locations. Many of these locations are ungauged so there

is not a measurement of when actual flooding occurred. Because lead-time is

critical for taking emergency action, it is evaluated here to determine whether

radar offers some advantages as opposed to a rain gauge-only system. The

difference between lead-times produced by GARR and RGO is assessed as,

∆ = TRL − TGL (4.6)

where ∆ is the difference between GARR lead-time, TRL , and RGO lead-time,

TGL . To visualize the shift in lead-time gained using GARR, the histogram of
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∆ is shown in Figure 4.12. The mode of the histogram lies between 0.25 - 0.5

hours meaning that forecasts based on radar (GARR) were ahead of forecasts

based on rain gauge (RGO). The maximum lead-time of 3 hours occurred in

Onion Creek, which is the largest basin simulated ( > 300 sq. km). There

were two locations where the lead-time from RGO exceeded the lead-time

achieved with GARR input.
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Figure 4.12: Histogram of differences between GARR and RGO lead-time

While the lead-time is the difference between two predicted quantities,

comparison with observed stream flow was possible at six locations where

flooding was both predicted to occur and actually did so. Forecast timing

error, ε, is defined as,

ε = |Tsim − Tobs| (4.7)

where Tsim is the simulated flooding time and Tobs is the observed flooding

time. During the 7-8 Sep 2010 event, there were six stage gauges where flooding

exceeded flood stage. The timing error for RGO and GARR input is shown
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in Figure 4.13. While the GARR forecast lead-time error at 08154700 was

larger than expected, the median GARR timing error was less than 30 minutes

excluding this location. The median timing error considering RGO as input

was 2.42 hours, or about 4.8 times that of GARR. Thus, compared to observed

stage, timing error was reduced by 1.9 hr (2.4-0.5) using GARR as input rather

than RGO.
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Figure 4.13: Flooding timing error for each rainfall input at USGS gauges
where flooding occurred
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4.4.2.2 Forecast Accuracy

Another measure of simulation accuracy between GARR and RGO inputs is

the Nash-Sutcliffe Efficiency (NSE) evaluated during the event from 15-minute

discharge values. Figure 4.14 shows a boxplot of NSE values together with the

key points of the probability density function. The y-axis scale is broken from

-3 to -10 since no data points fall in this range. The box portion contains the

inner quartile range (IQR) of the distribution while the whiskers are 1.5*IQR.

The median NSE for GARR was 0.78 while the median NSE for RGO was

-0.51. The majority (86%) of NSE for GARR are greater than zero while only

24% of NSE for RGO are greater than zero. There are four points for the

GARR input that are below the bottom whisker, which indicates these data

points as possible outliers. The y-axis scale is broken between -4 and -20 to

show the two outliers for the RGO input. These outliers correspond to the

points along the main stem of the Onion Creek basin. The Onion Creek basin

is located near the city limits where rain gauge density is reduced.

Analysis of the hydrograph response seen in the individual plots in Figure

4.9a-u illustrates the range of model performance that was achieved by each

input. Figure 4.15 shows representative hydrographs that correspond to the

upper (Q3) and lower (Q1) quartiles of the NSE probability distribution with

RGO and GARR inputs. With GARR input, the finer scale shape of the

hydrologic response is better represented than the RGO input, which tends to

dampen the variability in hydrologic response. Figure 4.16 shows the impact

of rain gauge density on simulated hydrograph accuracy measured by NSE.

As the area per rain gauge increases, the accuracy of simulated hydrographs

decreases significantly for the RGO input. However, the NSE for simulated
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Figure 4.14: Boxplot of Nash Sutcliffe Efficiency for rain gauge only (RGO)
and gauge adjusted radar rainfall (GARR) inputs to the City of Austin Vflo
models.

hydrographs generated using the GARR input is uniformly above zero up to

a gauge density of one per 321 km2. However, the accuracy that would be

obtained if RGO were used as input is uniformly at or below zero (negative

NSE), and tends to decrease sharply for gauge densities above one per 61 km2.

In addition, the variance produced from RGO input starts to increase rapidly

above this threshold, whereas the GARR prediction accuracy and its variance

is relatively stable across densities described by area per gauge in Figure 4.16.

The predictive stage accuracy resulting from use of RGO grows with the area

per gauge about 7 times faster than with radar as input, witnessed by the

trendline coefficient multiplying area per gauge of -0.0046 and -0.0322, for

GARR and RGO input, respectively.

For purposes of comparing the forecast stage accuracy from GARR used in

real-time and RGO in re-analysis, the absolute average difference of forecast

stage for each input is computed for the values in Figures 4.10 and 4.11.
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Recall that the accuracy of the GARR input is estimated by comparing the

radar sampled at the rain gauge locations. The absolute average difference

after bias correction was 15.6% during this event. Using the GARR as input,

the accuracy of peak stage forecasts was 17.7%, while the average difference

declines to only 27.6% with RGO.
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Figure 4.15: Simulated hydrographs representative of the upper (top) and
lower (bottom) quartiles of the NSE probability distribution for RGO (left)
and GARR (right) inputs.

4.5 Discussion

The September 7-8, 2010 event provided verification of the flash flood fore-

casting system. During this event, the accuracy of the bias corrected radar

input is 15.6% compared to gauge accumulations, which is a 51% improvement

over unadjusted radar. Rainfall input accuracy is a principal determinant of

hydrologic prediction accuracy as evidenced by the resulting peak stage and

timing accuracy. If only RGO were used, a higher density of rain gauges would
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Figure 4.16: Nash Sutcliffe Efficiency compared by rain gauge density.

be required to achieve the same simulated hydrograph accuracy delivered by

the GARR input. In fact, using the RGO input, the gauge density required

to achieve equivalent accuracy to the GARR input is approximately 5 times

denser. The predictive stream flow accuracy using RGO input diminishes with

rain gauge density about 7 times faster than with the GARR input.

Bias correction of the radar product resulted in better agreement with

rain gauge point measurements with an estimated average difference of 15.6%.

With GARR as input, the forecast stage accuracy of 17.7% is comparable to

the accuracy of the input. However, while RGO can produce some acceptable

results where the density is high, forecast stage accuracy declines with the

sparseness of the rain gauge network.

The scatterplots and boxplots between rainfall inputs indicated that there
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are possible outliers in modeled stream flow accuracy. The main two out-

liers were USGS gauge 08158827 (A=469 km2 per rain gauge) and 08159000

(A=831 km2 per rain gauge). These gauges are located in the Onion Creek

basin, which extend beyond the City limits and have sparse rain-gauge cov-

erage for use in radar bias correction or for RGO input. While the NSE for

these forecast points is strongly correlated with the rain gauge density, there

are additional reasons that could be causing a loss of simulated stream flow

accuracy in the Onion Creek basin. The Edwards Aquifer is a Karst recharge

zone that crosses the middle portions of the basin. Model structural errors in

this zone could also lead to the decrease in accuracy, especially since neither

RGO nor GARR produce accurate results in this watershed.

It is interesting to note that while the models were calibrated using lower-

flow events, during the extreme event, the accuracy was quite good with a

median NSE near 0.8 using GARR as input. During extreme events, the soil

properties may not be affecting the runoff and hence the prediction accuracy

due to saturation. Thus, when the soil porosity is completely filled, the accu-

racy of the forecast stage may be more dependent on rainfall accuracy than

factors controlling infiltration. From the extreme event on September 7-8, 2010

that forced so many stream levels above flood stage, insight was gained from

the re-analysis of RGO in terms of the gauge density and its effect on forecast

stage accuracy. The timing error was reduced by 1.9 hr (2.4-0.5) using GARR

as input rather than RGO. The use of GARR improved the accuracy in both

forecast lead-time and peak stage across a range of basin sizes and rain gauge

densities.
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4.6 Summary

The integration of radar with rain gauges and a PBD model showed more

accurate hydrologic prediction than could be achieved using rain gauge only

input during a recent flash flood event. Radar rainfall that is quality con-

trolled and bias-corrected in real-time is valuable for monitoring of evolving

precipitation and storm threats. Besides storm thresholds, GARR also serves

as distributed input to a real-time PBD model that forecasts flooding in ur-

ban watersheds within City of Austin. Distributed flash flood forecasts allow

decisions to be made as complex variable rainfall evolves over watersheds that

range from headwaters to major streams. During a recent severe storm, the

PBD approach to flash flood forecasting allowed emergency responders to close

bridges and street intersections based on reliable forecast stage information.

Through re-analysis, closer agreement between predicted and observed stage

was possible using the GARR input rather than RGO input. Further, the

timing error of forecast stage versus observed stage was reduced by 80% using

GARR input compared to RGO input. From evaluation of forecast accuracy,

it was found that the rain gauge density required to achieve equivalent ac-

curacy to the GARR input is approximately 5 times denser, and that the

predictive stream flow accuracy using RGO input diminishes with rain gauge

density about 7 times faster than with the GARR input. The use of GARR

as input to the PBD model not only increases the forecast lead-time and its

accuracy, but also the accuracy of forecast peak stage across a range of basin

sizes and with variable rain gauge densities used in real-time for radar bias

correction. Useful lead-time and accurate forecast stage distributed through-

out an urban area was obtained from the radar-based distributed flash flood
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forecasting system. These results show that forecasting is even more sensitive

to input uncertainty, particularly lead-time available to take precautionary

actions. Whereas in retrospective evaluations, inputs can be adjusted and ac-

curacy enhanced, the opportunity to do so in real-time is more limited, but

important for accurate model results.
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Chapter 5

Distributed Hydrological Forecast Reliability using

Next Generation Radar

5.1 Abstract

1 Stormwater runoff can significantly impact flooding in urban areas. Flood

prediction depends on model structure uncertainties and the accurate deter-

mination of rainfall. Three aspects of hydrologic forecasting in real-time and

hydrologic predictions in offline modes include: 1) distributed model reliabil-

ity, 2) accuracy of radar derived rainfall, and 3) scaling of basin input and

response. An existing flood alert system (FAS) that is operational for Brays

Bayou in Houston, Texas forms the basis for testing the relative magnitudes

of these effects on prediction accuracy. The importance of gauge-corrected

radar input was demonstrated through a probabilistic approach and by com-

parison to events with streamflow observations. The difference in discharge,

called dispersion, obtained from corrected and uncorrected radar input scales

with drainage area, but at a nonlinear rate and differs from storm to storm.

An additional comparison was made between the existing flood alert system’s

kinematic wave model, Vflo, and the full dynamic wave model, HEC-RAS.

Both models showed similar scaling with radar bias correction. Considering

1Adapted version of Looper, J. P., and Vieux, B. E. (2013). Distributed Hydrologic Fore-
cast Reliability Using Next-Generation Radar. Journal of Hydrologic Engineering, 18(2),
260-268.
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that random errors in rainfall rates measured by radar should cancel out over

large areas, the decline in forecast skill measured by the critical success index

(CSI) was not intuitive. Both empirical observations and the perturbation ex-

periment confirm that predictability decreased with increased drainage area.

This article shows the benefit of accurate radar rainfall, but that predictability

does not follow linear scaling across a range of drainage areas.

5.2 Introduction

Considerable attention has been focused recently on radar hydrology, and its

quantitative application in hydrologic modeling. Offline evaluation of hydro-

logic model prediction accuracy using archival radar and/or gauge data is a

necessary step for improving operational use in real-time forecasting. These

evaluations also provide opportunities to investigate the predictability of dis-

tributed hydrologic models used for decision making. The combination of dis-

tributed hydrologic modeling with high-resolution rainfall input derived from

radar and gauge observations, offers the potential for gaining insight into how

prediction accuracy scales with drainage area. Of particular importance is an

understanding of how corrections made to radar rainfall input affect uncer-

tainty in hydrologic predictions, and how it scales with drainage area.

5.2.1 Hydrologic Predictability

How predictable a natural system is defines whether a combination of model-

ing and observations can produce reliable forecasts of system behavior. Three

factors influencing predictability and limits to prediction were identified (NRC-

COHS, 2000), 1) Sensitivity to initial conditions 2) Sensitivity to boundary
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conditions 3) Impact of scaling on predictability The third type of predictabil-

ity addresses the scaling response of a basin due to the heterogeneity of land

cover, topography, drainage network, and precipitation. Because of this scal-

ing behavior, spatial and temporal averages do not necessarily result in more

predictable model performance due to strong transitions or changes in charac-

teristics (NRC-COHS, 2000 p. 13ff).

This investigation focuses on the third type of predictability. This study

identifies streamflow prediction accuracy using radar as input to a distributed

hydrologic model. The objectives of this study are, 1) How accurately can a

radar-based distributed flood forecasting system make predictions with and

without gauge-correction? 2) How much improvement is achieved through

gauge correction of the radar derived QPE? 3) Does the predictability and

improvement in prediction accuracy achieved through gauge-correction scale

linearly or nonlinearly with drainage area?

5.2.2 Study Area

The Brays Bayou watershed is located within the corporate limits of Houston,

Texas. The watershed is fully urbanized with impervious surfaces averag-

ing 40%. Within the watershed, urban impervious surfaces cover soils that

are generally of clay texture with hydraulic conductivities on the order of 1

mm/hr (0.04 in/hr). These soil and land cover conditions make soil moisture

and infiltration rates insignificant compared to rainfall rates encountered dur-

ing most storms. Therefore, the effects of soil infiltration and moisture on

the transformation of rainfall into runoff are insignificant. The topography of

Brays Bayou is typical of coastal plains particularly along the Gulf Coast, with

overland and channel slopes averaging less than 1% (Bedient et al., 2003). Be-
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cause this basin is essentially impervious, it is useful for hydrologic evaluation

of radar input (Vieux and Bedient, 2004). Observed streamflow in this basin

is derived from the interior gauging stations operated by the United States

Geologic Survey (USGS) at two locations, the Main Street gauge 08075000

with 245.8 km2 (94.9 mi2), and upstream at the Gessner gauge 08074810,

with 136.0 km2 (52.5 mi2).

5.2.3 Flood Alert System

Use of a physics-based distributed model, for operational flood forecasting in

Brays Bayou, is described in Bedient et al. (2003) and Vieux et al. (2004).

The PBD model called, Vflo, is a distributed hydrologic model that solves two

state variables, soil moisture, and runoff distributed throughout the drainage

network composed of channel and overland flow grid cells. The kinematic

wave analogy is solved using the finite element method in space and the finite

difference method in time (Vieux, 2004). Detailed geospatial data is used to

setup and calibrate the model. The distributed model has been calibrated and

produces reliable results (Vieux and Bedient, 2004), and is used herein to test

quantitative precipitation estimates (QPE) derived from radar.

The configuration of radar and rain gauge network, for the Brays Bayou

study area, provides high resolution gauge-corrected radar input to the model.

Two sources of input are considered here: 1) archived radar rainfall from the

Flood Alert System (FAS), and 2) gauge-corrected radar using quality con-

trolled rain gauge data to correct radar bias. The FAS system uses NWS

radar data (Level 2) from the nearby NEXRAD radar (KHGX), which is lo-

cated approximately 50 km away from the center of Brays Bayou. The rain

gauge network is operated by a local authority (HCOEM) for emergency man-
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agement purposes. Figure 5.1 shows the sample locations for evaluating hy-

drologic model response, the stream gauges operational in Brays Bayou, and

channel network of the basins used to test the hypotheses in this study. The

main channel of Brays Bayou flows from southwest in an easterly direction in

the lower right portion of the map in Figure 5.1 . The spatial distribution of

rain gauges is approximately 84 km2 per rain gauge. For purposes of testing

runoff sensitivity, 22 sample locations are chosen within the basin that range

in size from 6 to 310 km2.
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used for experiment
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5.2.4 Radar Rainfall Uncertainty

Uncertainties in radar rainfall estimates used as input to hydrologic models

can affect the accuracy of both offline prediction (post-analysis) and online

forecast (real-time) applications, as observed by Carpenter and Georgakakos

(2004) who considered ensemble streamflow forecasting in larger river basins

where presumably there is less control over the radar bias and sparse rain

gauge networks. The uncertainty inherent in precipitation derived from radar

has been well established as having both random and systematic (bias) com-

ponents, as described by Wilson and Brandes (1979), Doviak and Zrnic (1993)

among others. It is also supposed that random error in the radar rainfall

estimates, e.g. those caused by updrafts and downdrafts, should cancel out

over catchment areas of sufficient size. Disparities in the representativeness

of measurements of each sensor can cause disagreement between rainfall mea-

surements made by gauges and radar, as found by Ciach et al. (2003, 2006),

Chumchean et al. (2003), and Habib et al. (2004). Mandapaka et al. (2009)

estimated the spatial correlation distance to be about 20 km, which can in-

crease uncertainty in rainfall estimates derived from combinations of gauge

and radar. Effort expended on error separation to account for differences

between rain gauge and radar measurements is important for understanding

why observations from these sensors differ and where these errors come from.

Beyond the uncertainty in point-area rainfall estimation, from a hydrologic

perspective, understanding is needed on how these errors feed forward into

hydrologic prediction and forecasting, whether they average out, or if there is

scale dependency across catchment areas.

Conversion of reflectivity to rainfall rate is accomplished using a Z-R re-
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lationship that depends on the number and size of raindrops (Marshall and

Palmer, 1948). However, among the many sources of uncertainty, error can

be introduced due to differences between the assumed drop size distribution

(DSD) in a given Z-R relationship and the actual storm DSD. Considerable re-

duction in radar rainfall uncertainty can be achieved through bias correction

using rain gauges (Wilson and Brandes, 1979). The factors affecting radar

rainfall accuracy, and the improvement achieved through bias correction using

rain gauges are described by Chumchean et al. (2003), Morin et al. (1995),

Rosenfeld et al. (1993, 1994), Smith et al. (1996), Seo et al. (1999), Sanchez-

Diezma, et al. (2001), and Vieux and Vieux (2005a, 2005b).

Interest in characterizing radar adjustment techniques has accelerated with

the advent of distributed hydrologic models that are capable of integrating the

spatially distributed rainfall information (Gourley and Vieux, 2005, Habib et

al., 2008). Use of gauge-adjusted weather radar for hydraulic modeling of

sewer systems is becoming well established (Einfalt et al., 2005). An overview

of the hydrologic requirements for weather radar used in urban drainage is

described by Einfalt et al. (2004), who identified the radar processing require-

ments for hydrologic applications of various weather radar systems in Germany

and the United States. Vieux and Bedient (2004) demonstrated the impor-

tance of gauge-correction of radar, and the achievable streamflow accuracy of

distributed model predictions. In spite of point-area errors, it was found that

gauge-corrected radar rainfall produced rainfall (input) agreed with measured

streamflow (output) with a correlation coefficient of 0.94 for a single basin out-

let location, i.e. the USGS stream gauge 08075000 in Brays Bayou, whereas,

uncorrected radar produced much poorer agreement with streamflow. Even

with high quality bias-corrected radar rainfall and a well characterized basin,
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uncertainty in the rainfall estimates can still persist and create prediction er-

ror. Quantifying how this uncertainty in radar input propagates forward and

scales in a distributed model is described in the next section.

5.3 Methodology

5.3.1 Model Overview

The distributed model, Vflo, is used to test the sensitivity and scaling of

radar rainfall uncertainties (Vieux, 2004). This model represents the watershed

response using a drainage network composed of channel and overland flow cells

of regular size. The kinematic wave equations are solved numerically for the

drainage network based on conservation equations. The overland flow depth,

h, depends on flow from upslope areas, infiltration, I; rainfall intensity, R; land

surface slope, and hydraulic roughness. The kinematic wave equation in terms

of overland flow depth is,

∂h

∂t
+
S1/2

η

∂h5/3

∂x
= R− I (5.1)

where S is the land surface slope, η is the Manning’s roughness coefficient,

R is rainfall rate derived from radar rates sampled into each model grid, and

the distance, x, is measured from one cell to the next. Eq. 5.1 is modified

for channel cells to represent flow area in trapezoidal cross-sections, surveyed

cross-sections, or by means of a stage-discharge rating curve. The runoff in

each grid cell is modeled as saturation excess, or as infiltration rate excess

runoff. When the soil profile becomes saturated, rainfall becomes saturation

excess runoff. In the reconstruction of historical storm events, the initial degree
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of saturation can be based on antecedent conditions, or derived from contin-

uous simulation in cases where the antecedent soil moisture is a significant

influence on basin response.

The Vflo model is setup for Brays Bayou at a 120-m resolution, which is the

same resolution used in the online Vflo flood forecasting system for this basin,

and offline for evaluation of prediction accuracy. The basin model, in combi-

nation with radar input, serves as a test bed for evaluating hydrologic forecast

ability, and for identifying the limitations posed by radar rainfall accuracy.

Evaluation of runoff volume from the basin was measured by integration of

streamflow hydrographs and compared to gauge-corrected radar input. From

comparison of input to output volumes, approximately 7% of the rainfall in-

put infiltrated from the surface water system. Thus, the basin is essentially

impervious, making it useful for hydrologic evaluation of radar input.

5.3.2 Radar Rainfall Processing

Operationally, the FAS processes NEXRAD radar at a 1x1 km resolution

through a real-time correction scheme to reduce systematic errors (bias). The

system computes a running total of radar, R, and gauge, G, accumulations

over a 6-hour period with 15-minute updates. Appropriate Z-R relationships

are applied seasonally or for major storms through human interaction. The

system then applies a spatially variable bias correction factor. The mean of

these bias correction factors is referred to as the MFB based on qualified rain-

gauge accumulations. The MFB correction factor applied to the radar rainfall

is defined as,
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MFB =

∑n
i=1Gi∑n
i=1Ri

(5.2)

where Gi is the gauge accumulation; and Ri is the radar accumulation for each

radar-gauge pair. Each pair is automatically screened using a minimum storm

total threshold (MSTT) check. Further, any radar-gauge pair whose radar or

gauge event sum totals less than 0.10 inches is removed from analysis for that

event. The quality control identifies upper and lower control limits calculated

to identify statistical outliers. Any pair whose individual bias (G/R) or average

difference, AD, value that is in excess of 3 standard deviations of the mean

is considered an outlier and discarded from analysis during an event and in

operation. The agreement between gauge and corrected-radar accumulation is

computed as the average difference, AD,

AD =
100

n

n∑
i=1

Gi − (MFB ×Ri)

Gi

(5.3)

where the terms are as previously defined. Once the radar data is bias cor-

rected by the MFB, there remains random error associated with updrafts,

downdrafts or point-area differences, which suggests that AD is almost never

zero. Because understanding the uncertainty associated with flood forecasting

is the main goal of this study, we select extreme events with heavy precip-

itation known to cause localized or major flooding, whereas, the time series

of MFB factors are derived from the automated flood alert system (FAS).

The statistical characteristics of the selected events are shown in Table 5.1.

We will use the archival time series of MFB factors to derive the probability

distribution function (PDF).
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Table 5.1: Rainfall event probability distribution parameters

Gamma Distribution Parameters

Event Mean Field Bias α β
TSA1 1.08 33.8 0.032
TSA2 0.44 11.3 0.039
TSA3 0.69 68.3 0.01

FRANCES 1.48 26 0.057
8/15/2002 0.84 28.3 0.03
4/25/1997 1.3 35.9 0.036
1/6/1998 1.71 25.8 0.066
1/21/1998 1.22 36.3 0.034
2003-2007 1.17 7.7 0.15

5.3.3 Perturbation Scheme

The timeseries of MFB factors for a three year period, 2005-2007, is taken

from the operational system and evaluated to find the type of probability

distribution that the MFB follows. To test the impact of bias correction on

the prediction of peak discharge, the MFB is treated as a random variable.

The radar rainfall input time series is then multiplied by a random variable

from the MFB distribution, while preserving spatial and temporal variability

of the event.

While several candidate PDFs (e.g. log-normal or exponential) could be

fitted, a gamma distribution is selected and its goodness-of-fit evaluated using

the Kolmogorov-Smirnov test. The gamma distribution is found to fit the

entire dataset closely, as well as, individual events. It is not surprising that

the PDF for the period of record is gamma distributed, since each event is so

distributed. Each event is perturbed by factors from its own PDF to maintain

consistency and realistic storm variability.

The perturbation approach shown in Figure 5.2 seeks to determine the
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impact of the variability of rainfall on the generation of runoff. The rainfall,

, is modified for input to the model by applying the bias correction factor

from each event’s distribution function. The infiltration rate, f , is held as

a constant which is consistent with the conditions found in the study area.

Restating Eq. 5.1 in these terms yields,
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(5.4)

where the dependent streamflow, Q , and cross sectional area, A , become

random dependent variables filtered through the basin model. In Vflo, the

solution of Eq. 5.4 over the space-time domain Ω is implemented using non-

linear equations (kinematic wave) rather than linear equations such as the

unit hydrograph approach. The model has been setup, calibrated for a range

of events, and used operationally in forecasting Brays Bayou. Additional val-

idation of the KWE solution is described below where comparisons are made

that demonstrate sensitivity with a full dynamic model, HEC-RAS. The dis-

tributed model is thus used to test and identify the role that bias correction

plays in achieving accurate predictions along with the scaling relationships

evaluated at the sample locations within this basin.

The main steps in the procedure are,

1. Fit probability distribution functions to the measured bias correction

factors for each event (Figure 5.3).

2. Select bias correction factors at the 10th, 25th, 50th, 75th, 90th per-

centiles sampled from the probability distribution function.
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Figure 5.2: Stochastic framework for evaluating gauge corrected rainfall using
a distributed hydrologic model

3. Apply uniformly the bias correction factor to rainfall input which is

variable in space and time across an event (Figure 5.4).

4. Run the hydrologic model with each bias-corrected rainfall input.

5. Run the hydrologic model with uncorrected rainfall input.

6. Compute the difference between peak discharge generated from bias cor-

rected rainfall input and uncorrected rainfall input.

7. Compute the difference between the 25th and 75th percentiles.

The corresponding difference in discharge at each of the 22 sample locations

is then evaluated. The output is characterized by the difference in discharge
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Figure 5.3: a) Gamma distribution of mean field bias from 2005 -2007 for
Brays Bayou. b) gamma distribution for Tropical Storm Frances
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produced by the corrected and uncorrected input obtained by applying the bias

correction factors sampled from the input PDF at each percentile. This step

is repeated for each of the nine storm events to gain an ensemble of perturbed

input and resulting output differences in discharge. Streamflow measurements

are not available at the interior sample locations, thus the analysis described

next is the difference in corrected and uncorrected discharge as the random

variable resulting from the perturbed input filtered through the basin hydro-

logic model.

Estimating the sensitivity of hydrologic prediction to uncertainty in rainfall

input is accomplished by computing peak discharge using corrected radar input

(Qc), and peak discharge using uncorrected radar input (Qu), which is referred

to as dispersion, D, defined as
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D = Qc −Qu (5.5)

If the transformation of radar rainfall to runoff were a linear process, then

the corresponding difference, D, between the uncalibrated and calibrated radar

should increase linearly with the MFB applied.

For verification of the effects found for the KWA model, Vflo, a comparison

is included using the HEC-RAS unsteady dynamic wave model developed for

the Harris County Flood Control District as a part of their floodplain mapping.

Rainfall input to Vflo is perturbed by applying bias correction factors at each

percentile and then used to simulate the runoff at the upstream Gessner gauge

on Brays Bayou. Next, the simulated runoff at the upstream Gessner gauge is

routed downstream to the Main Street gauge using both Vflo and HEC-RAS.

Additionally, the observed runoff at the upstream Gessner gauge is routed

downstream to the Main Street gauge using both the Vflo and HEC-RAS

models as means of evaluating the model sensitivity for an actual storm event.

The simulations are then compared at the limits of the PDFs to see how the

solution techniques vary.

5.4 Results and Discussion

5.4.1 Dispersion Scaling with Drainage Area

We wish to find whether dispersion in predicted streamflow scales with drainage

area or if it is invariant with scale. From analysis of the long-term MFB factors,

the probability density functions follow a gamma distribution as seen in Fig-

ure 5.3, both for the period of record (2005-2007), and for a particular event,
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e.g. Tropical Storm Frances on September 8-13, 1998. The gamma probability

density function parameters for each event are shown in Table 5.1. From each

storm event PDF, the perturbed input is used to measure the response across

a range of catchment areas using the distributed model.

Another measure of dispersion is the inner-quartile range, which is the

difference in flow rates generated from the 75th percentile rainfall, F(0.75)

and 25th percentile rainfall, F(0.25). The 75th and 25th quartile rainfall are

the corresponding bias correction factors sampled at the quartile and applied

to the event. This measure of dispersion is consistent with that proposed

by Carpenter and Georgakakos (2004), which is the difference between the

flow rate generated from the 90th percentile and the flow rate from the 10th

percentile normalized by the 50th percentile flow rate.

Figure 5.5 shows that there is an increase in dispersion as witnessed by

the growing difference between peak discharge produced by bias correction

quartiles with drainage area. For the first portion of Tropical Storm Allison

(TSA1), the difference is increasing monotonically with drainage area with

some curvature (Figure 5.5). However, the rate of change is less than expected

from a unit-hydrograph assumption of linearity. Thus the effect dampens out

with increasing area.

For the second portion of Tropical Storm Allison (TSA2) dispersion also

increases between the 70 km2 and the 220 km2, but exhibits pronounced erratic

behavior for areas less than 70 km2 (Figure 5.6). Reasons for this decline could

be related to the storm event scale in relation to the basin size where random

errors in rainfall input did not cancel out. There is a sharp increase in the

differences between the gauge corrected and the uncorrected radar rainfall

input at the 50 km2 drainage area sample location. This location corresponds
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Figure 5.5: Dispersion scaling for a) Tropical Storm Allison (TSA1), b)Tropical
Storm Allison (TSA2), c)Tropical Storm Allison (TSA3) d) August 15, 2002
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Figure 5.5: Dispersion scaling for a) Tropical Storm Allison (TSA1), b)Tropical
Storm Allison (TSA2), c)Tropical Storm Allison (TSA3) d) August 15, 2002
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to the outlet of Keegan’s Bayou, a subbasin in the upper reaches of Brays

Bayou. From investigation of the individual radar scans, an intense cell was

found that developed over this area on June 7, 2001 at 01:15:00 CDT. If the

model had used a spatially uniform rainfall input, the effects of this intense

storm would have been smoother. At drainage areas larger than about 50 km2,

erratic departures area not present for this event.

For the third part of Allison (TSA3) shown in Figure 5.5c, there is an

increase in the dispersion with increasing drainage area as compared with other

events. There is a change in the rate of increase of the dispersion, ∆D/∆A,

at the 170 km2 drainage area, where rainfall spatial distribution is a possible

explanation for this scaling behavior, because there is a strong gradient of

rainfall depth from east to west across the basin, with heavier rainfall to the

east. In fact, when the rainfall is spatially averaged, i.e. lumped over the

basin, the increase becomes uniform in terms of dispersion increase, ∆D/∆A.

Dispersion in flow rate is found to scale with drainage area. As the drainage

area increases, the calibration of radar rainfall becomes more important for

simulating hydrologic processes. For instance, the difference between the flow

rates (dispersion) generated from rainfall at the 50th percentile bias is approx-

imately 1200 m3s−1 for 300 km2. However, the difference for the 100 km2

drainage basin is only 150 m3s−1 for a drainage area of 100 km2. Therefore

the dispersion increases nonlinearly as the drainage area increases. Consistent

results are evident in the remaining events shown in Figure 5.6.

As mentioned above, a comparison is performed between the kinematic

wave model, Vflo, and the dynamic wave model, HEC-RAS. Figure 5.7 shows

the degree to which rainfall input uncertainty is propagated through each of

the models. The flow is routed using each of the hydraulic models from the
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Figure 5.6: Dispersion scaling for a) Frances, b) January 6, 1998, c) April 25,
1997, d) January 21, 1998
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Gessner gauge to the Main Street gauge for the August 15, 2002 event. This

event had flows that were contained within the main channel and did not

have significant floodplain interactions, which allows for a simpler evaluation

of how each model propagates the uncertainty in bias correction factors. Also,

the observed flow from the Gessner gauge is routed to Main Street using the

HEC-RAS model. Simulations are performed for the F(0.01), F(0.5), and

F(0.99) bias correction factors. There is only a 2.8 m3s−1 difference between

the two models for the F(0.01) bias correction factor, a 15.1 m3s−1 difference

for the F(0.5) bias correction factor, and a 47.4 m3s−1 difference for the F(0.99)

bias correction factor. Also, the difference between observed discharge and the

Vflo model is only 0.4 m3s−1 for the F(0.5) bias correction factor, while peak

discharge produced by HEC-RAS is more attenuated as expected. However,

in terms of sensitivity to bias correction, these results demonstrate similarity

between the kinematic wave and the dynamic wave model for this basin.

The graph in Figure 5.8 shows a measure of the dispersion for all events on

the same plot for comparative purposes. The inner quartile range represents

the difference between the flow generated from the 75th percentile rainfall and

the flow generated from the 25th percentile rainfall. An interesting scaling

relationship is the apparent linear increase in dispersion for the Frances event.

The spatial distribution of the Frances storm event resulted in a relatively

uniform pattern over the basin, which could explain the scaling behavior with

drainage area. However, in TSA2 and TSA3 there is a non-linear relationship

between dispersion and drainage area, with pronounced changes in the rate of

dispersion increase with area.

We have demonstrated that the effect of bias correction becomes more im-

portant with larger drainage areas as shown by the increase in dispersion with
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Figure 5.7: Comparison of Vflo and HEC-RAS for the 2002-08-15 event for
the Main Street gauge

increased drainage area. The scaling is not constant but varies by storm show-

ing that rainfall spatio-temporal distribution of each event can play a major

or minor role. These results are derived from perturbation of rainfall input

based on the PDF of bias correction factors for each event. As distributed hy-

drologic modeling is used to predict stormwater runoff using spatially variable

input, the model performance at interior locations is scale dependent due to

the nonlinear behavior of the governing equations, and the spatial distribution

of rainfall. The next section addresses the effect of bias correction on predic-

tion skill and its scale behavior obtained through comparison of observed and

simulated peak discharge at two locations where streamflow records exist.
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Figure 5.8: Scaling of inner quartile range by drainage area

5.4.2 Predictability and Scaling

In order to assess the impact of increasing drainage area on the predictability,

comparison is made between the observed and simulated hydrographs. For this

basin there are two streamflow gauges located at Main Street (245.8 km2) and

Gessner (136 km2). The model predictability is evaluated using a contingency

table and skill scores, probability of detection (POD), false alarm ratio (FAR),

and critical success index (CSI). Physically, these measures indicate the ability

of the model to make accurate predictions at the locations tested. A high CSI

indicates that few false alarms (over-predictions) were made in relation to the

probability of detection of a flood event.
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Table 5.2: Contingency table showing hits, misses, false alarms and correct
negative outcomes

  Observed 
  Yes No 

Fo
re

ca
st

 Y
es

 

Hits – a False alarms - c 

N
o Misses - b Correct Negative - d 

 

A 2 x 2 contingency table consists of hits, misses, and false alarms and is

useful for evaluation of meteorological forecast skill (Wilks, 2006). Table 5.2

presents the possible forecast outcomes for an observed event.

The skill scores for the False Alarm Ratio, FAR, Probability of Detection,

POD, and Critical Success Index, CSI, are computed from the scalar attributes

as,

FAR =
b

a+ b
(5.6)

POD =
a

a+ c
(5.7)

CSI =
a

a+ b+ c
(5.8)

where the a, b, and c scalars are defined as in Table 5.2. Unlike applications

where there are discrete events, predicted and observed flow rates are contin-

uous variables. Therefore a threshold must be established to assign a hit or
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Table 5.3: Contingency table showing hits, misses, false alarms and correct
negative outcomes

 

 1 

Table 1 Rainfall event probability distribution parameters 

    
Gamma Distribution 

Parameters 
Event Mean Field Bias α β 
TSA1 1.08 33.8 0.032 
TSA2 0.44 11.3 0.039 
TSA3 0.69 68.3 0.010 

FRANCES 1.48 26.0 0.057 
2002-08-15 0.84 28.3 0.030 
1997-04-25 1.30 35.9 0.036 
1998-01-06 1.71 25.8 0.066 
1998-01-21 1.22 36.3 0.034 
2003-2007 1.17   7.7 0.150 

 
Table 2 Contingency table showing hits, misses, false alarms and correct negative outcomes 

  Observed 
  Yes No 

Fo
re

ca
st

 Y
es

 

Hits – a False alarms - c 

N
o Misses - b Correct Negative - d 

 
Table 3 Skill score measures between gauge corrected radar rainfall and uncorrected radar rainfall 

Sample Point  Area 
(km2) Precipitation Input CSI POD FAR 

Brays Bayou at  
Main Street 259 Uncorrected 0.25 0.33 0.50 

Gauge Corrected 0.75 0.86 0.14 
 

 
Precipitation Input CSI POD FAR 

Brays Bayou at 
Gessner 136 Uncorrected 0.43 0.60 0.40 

Gauge Corrected 1.00 1.00 0.00 
 

miss. The threshold used to define a hit, miss or false alarm is tested. Once

the threshold is settled on, the scalar attributes for the contingency table can

be computed for the events. A limited sensitivity to threshold magnitude is

evaluated as seen in Figure 5.9. Regardless of the threshold chosen, the cor-

rected radar product produces a higher CSI, whereas the uncorrected is lowest

for all cases. This pattern of forecast accuracy is consistent between the two

stream gauges. To summarize, the POD, FAR, and CSI are presented for all

events in Table 5.3. The CSI measure indicates the level of hits versus the

number of forecasts, which represents the ratio of correct forecasts to total

forecasts made.

The CSI improves 3-fold with gauge correction of the radar input showing

dramatic improvement in predictability with bias correction (Figure 5.10).

The results show interesting scaling behavior where the CSI decreases as the

drainage area increases from 136 km2 (Gessner) to 259 km2 (Brays) for both

corrected and uncorrected inputs.

This scale-dependence in peak behavior runs counter to the expectation of

cancellation of random errors over catchment area for volume, and thus the

decline in forecast skill measured by the CSI may not be intuitive. It should be

noted that the storm duration of the events used in the analysis was between
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6–17 hours. For shorter duration events, then peaks from sub-catchments may

not add together. The perturbation experiment confirmed that the dispersion

between corrected and uncorrected input scaled with drainage area, and for

some events, at a nonlinear rate. As expected the CSI dramatically increased

with gauge-corrected radar. However, both dispersion, D, and the CSI pre-

dictability measure decrease with increasing drainage area showing that they

are not scale invariant.

5.5 Summary

Identification of streamflow prediction accuracy using radar as input to a dis-

tributed hydrologic model for a relatively impervious basin is performed using

corrected and uncorrected radar input. Streamflow predictions are found to
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Figure 5.10: Simulated hydrographs for the 2002-08-15 event

depend on: 1) the gauge correction of the radar derived QPE; and 2) the

non-linear scaling of gauge-correction with watershed area. Rainfall input is

perturbed based on the PDF of bias correction factors for each event show-

ing how gauge correction scales with drainage area. Across storm events, the

difference between flow rates produced with corrected and uncorrected radar

input consistently increased with drainage area, but at non-constant rates.

The comparison between Vflo and the HEC-RAS model demonstrated simi-

larity between the kinematic wave and the dynamic wave model for this basin.

As confirmed by the perturbation experiment, the forecast skill decreases with

larger drainage areas. The perturbation of inputs is used to confirm results

obtained through comparison of forecast skill at two stream gauge locations.

The model skill improves 3-fold when gauge-corrected radar is used over pre-

dictions obtained with the use of uncorrected radar. Forecast skill is shown to
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be dependent on watershed scale, and the uncertainties do not average out for

larger areas. Thus larger basins are more difficult to forecast in terms of peak

stage which is critical for flood forecasting.
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Chapter 6

Distributed Hydrologic Model Calibration using the

Forward Sensitivity Method

6.1 Introduction

This chapter focuses on the level of complexity necessary to model the major

hydrologic processes of an urban watershed using a physics based approach.

Models of physical processes always require some level of abstraction from the

actual physical process to a simpler structure that can be harnessed to answer

the question at hand (Rosenblueth and Wiener, 1945). The inherent question

is how simple can we make the process. Physics based distributed hydrologic

models attempt to explain hydrologic processes using simplifications of physi-

cal processes. We usually have data about topography, land use, and soils that

can be used to estimate distributed a-priori parameters for a model. However,

these a-priori parameter estimates have uncertainty in them due to our lack of

knowledge about sub-scale processes that are occurring within the watershed.

For operational flash flood forecasting, we are forced to estimate effective pa-

rameters that when used with a model satisfactorily reproduce the behavior of

a watershed. This is due to both discretization and sub-scale processes that are

occurring with a grid point. Determining these effective parameters requires

starting with the a-priori parameters as an initial starting point and incremen-

tally adjusting the parameters to minimize an objective function that measures
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the difference between simulated state variables and observations. The main

question to be addressed in this chapter is in how to perform the adjustment

of a-priori parameters. Should the adjustment be performed using a spatially

uniform adjustment factor, or does the use of spatially distributed adjustment

factors further minimize the differences between simulated state variables and

observations? However a better question would be can a well characterized

distributed hydrologic model for an urban watershed be improved by a spa-

tially distributed calibration technique. The experiments will be performed

using the flood forecasting system described in chapter 5.

The Forward Sensitivity Method (Lakshmivarahan and Lewis, 2010) is a

new approach to data assimilation based on sensitivity analysis techniques.

Lakshmivarahan and Lewis (2010) has shown that the FSM is equivalent to

the 4DVAR technique (Le Dimet and Talagrand, 1986). The adjoint tech-

nique has been used by Castaings et al. (2009); Vieux et al. (1998); White

et al. (2003) to estimate parameters of a distributed hydrologic model. The

advantages of the FSM method as compared with the adjoint are the calcu-

lation of sensitivities with the forward model. This allows us to understand

how a parameter impacts the simulation results while we are calculating the

forward model. It also allows us to see the influence of individual observations

on the calibration process. Castaings et al. (2009) showed the power of using

a variational approach to model calibration for a simple overland and channel

separation. However, he did not investigate the use of higher numbers of pa-

rameter groupings. Higher numbers of parameter groupings will be explored

in this chapter.
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6.2 Methodology

6.2.1 Model Description

The forward model investigated within this chapter is the kinematic wave

equation.

6.2.1.1 Formulation

The kinematic wave equation is derived from the continuity equation (6.1)

∂A

∂t
+
∂Q

∂x
= q (6.1)

where A is the cross sectional area of flow, Q is the discharge, q is the lateral

inflow per unit of length perpendicular to the direction of flow. The lateral

inflow per unit of length can be further subdivided into,

q = (r − i)w (6.2)

where r is the rainfall rate, i is the infiltration rate, and w is the width of a

grid. Infiltration is handled using the Green and Ampt Model described in

Chapter 2.

The underlying assumption of the kinematic wave equation is that there is

a functional relationship between Q and A. This occurs under uniform flow

conditions. Assuming this form results in a greatly simplified representation

of the full dynamic wave equations.

Further, Henderson (1966) showed the relationship between the wave prop-

agation speed, dx
dt

, and the kinematic wave celerity, c. If Q = f(A) is continu-
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ously differentiable there exists a relationship dQ
dA

referred to as the kinematic

wave celerity. Substituting the kinematic wave celerity into (6.1) gives,

∂A

∂t
+
dQ

dA

∂A

∂x
= q (6.3)

Using the simplified momentum equation (i.e. assuming uniform flow)

results in a form of the momentum equation where gravity force is balanced

by the shear force (Sturm, 2001),

γA∆Lsin (θ) = τ0P∆L (6.4)

where γ is the specific weight of the fluid, A is the cross sectional area of flow,

∆L is the length between grid points, τ0 is the shear stress along the bottom

of the channel, and P is the wetted perimeter in contact with the fluid. sin (θ)

can be further approximated as the bed slope, S0 (i.e. tan (θ)) bed slope) for

very small values of θ. For steady uniform flow the bed slope is equal to the

slope of the energy grade line, Sf where

Sf =
hf
L

(6.5)

Therefore, (6.4) can be further rearranged as

hf
L

=
τ0P

γA
(6.6)

The uniform flow velocity, V , can then be approximated using Manning’s

formula

V =
C

η

(
A

P

)2/3

Sf
1/2 (6.7)
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Combining the main geometric terms for wetted perimeter and friction

slope,

G =
C

P 2/3
Sf

1/2 (6.8)

Therefore, the discharge, Q, is represented as,

Q = V A =
G

η
Am (6.9)

where m = 5
3

for Manning’s equation.

Eq. 6.9 can be differentiated with respect to A either analytically for regu-

lar geometries or numerically for irregular cross sections to yield the kinematic

wave celerity ∂Q
∂A

.

6.2.1.2 Discretization

Discretization of the kinematic wave equation can be handled using either

method of characteristics (Woolhiser and Liggett, 1967), finite difference, fi-

nite element techniques (Desai, 1979; Jayawardena and White, 1977; Vieux,

1988). A complete summary of the various techniques for kinematic wave

modeling is provided by Singh (1996). Vieux (1988) found that the finite

element technique could be useful for simulating overland runoff. He used

nodal values of roughness and slope to overcome instability problems within

the finite element discretization. A thorough comparison of finite difference

techniques was performed by Castantindies (1981). He compared a backward,

weighted average backward, backward central, backward central leap frog, dif-

fusive, unstable, and leap frog finite difference schemes. The results showed

that a forward time backward difference provided the most accurate and stable
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Figure 6.1: Finite difference stencil for forward time backward difference

results. Stephenson and Meadows (1986) further indicated that this forward

time backward finite difference technique most closely resembles the method

of characteristics. They indicated that both the method of characteristics and

the forward time backward difference only propagate information downstream

which is a constraint of the kinematic wave equation. Therefore, the kinematic

wave equation is discretized for this chapter using the forward time backward

difference finite difference form.

Ai,k+1 − Ai,k
∆t

+
Qi,k −Qi−1,k

∆x
= ri,k+1wi (6.10)

Rearranging and solving for Ai,k and substituting

Ai,k+1 = Ai,k −
∆t

∆x

(
Gi

ηi
Ami,k −

Gi−1

ηi−1

Ami−1,k

)
+ ri,k+1wi∆t (6.11)
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A1

...

Ai
...

An


k+1

=



A1

...

Ai
...

An


k

− ∆t

∆x



G1

η1
Am1 − G0

η0
Am0

...

Gi

ηi
Ami −

Gi−1

ηi−1
Ami−1

...

Gn

ηn
Amn −

Gn−1

ηn−1
Amn−1


k

+∆t



w1r1

...

wiri
...

wnrn


k+1

(6.12)

And in matrix form,



A1

...

Ai
...

An


k+1

=



A1

...

Ai
...

An


k

− ∆t

∆x



1 0 · · · 0 0

−1 1 0
...

...

0 −1
. . . 0 0

...
. . . . . . 1 0

0 . . . 0 −1 1





G1

η1
A1m

...

Gi

ηi
Aim

...

Gn

ηn
Anm


k

+∆t



w1r1

...

wiri
...

wnrn


k+1

(6.13)
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The system of equations can be modified for a branched network by mod-

ifying the spatial partial derivative of (6.1) by using the following,

∂Q

∂x
=

∑
Qo −

∑
Qi

∆̄x
(6.14)

where
∑
Qo represents the sum of the inflows to a cell and

∑
Qi represents the

sum of the outflows from a cell. The ∆̄x term represents the average length

of each grid point above a branch location.

6.2.2 Forward Sensitivity Method

The Forward Sensitivity Method (Lakshmivarahan and Lewis, 2010) was devel-

oped to show the equivalence between forward sensitivity analysis techniques

and the 4DVAR method. The optimization component of FSM can be used

for parameter estimation. The following section describes the calculation of

the forward sensitivities necessary for the parameter adjustment step. The fol-

lowing derivation shows the sensitivities with respect to Manning’s roughness.

Ai,k+1 = Ai,k −
∆t

∆x

(
Gi

ηi
Ami,k −

Gi−1

ηi−1

Ami−1,k

)
+ γri,k+1wi∆t (6.15)

6.2.2.1 First Order Sensitivities with Respect to Roughness

Ai,k+1 = Ai,k −
∆t

∆x

(
Gi

ηi
Ami,k −

Gi−1

ηi−1

Ami−1,k

)
+ ri,k+1wi∆t (6.16)

M(Ai,k) ≡ Ai,k −
∆t

∆x

(
Gi

ηi
Ami,k −

Gi−1

ηi−1

Ami−1,k

)
+ ri,k+1wi∆t (6.17)
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∂Ai,k+1

∂ηj
=

n∑
q=1

[
∂Mi,k

∂Aq,k

∂Aq,k
∂ηj

]
+

[
∂Mi,k

∂ηj

]
(6.18)

For 1 ≤ i ≤ n and 1 ≤ j ≤ p with ∂Ai(0)
∂ηj

= 0 as initial condition.

For i = j

∂Ai,k+1

∂ηj
=
∂Ai,k
∂ηj

− ∆t

∆x

(Gi

ηi
mAm−1

i,k

∂Ai,k
∂ηj

− Gi

η2
i

Ami,k

−Gi−1

ηi−1

mAm−1
i−1,k

∂Ai−1,k

∂ηj

) (6.19)

For i > j

∂Ai,k+1

∂ηj
=
∂Ai,k
∂ηj

− ∆t

∆x

(
Gi

ηi
mAm−1

i,k

∂Ai,k
∂ηj

− Gi−1

ηi−1

mAm−1
i−1,k

∂Ai−1,k

∂ηj

)
(6.20)

For i− 1 = j

∂Ai,k+1

∂ηj
=
∂Ai,k
∂ηj

− ∆t

∆x

(Gi

ηi
mAm−1

i,k

∂Ai,k
∂ηj

− Gi−1

ηi−1

mAm−1
i−1,k

∂Ai−1,k

∂ηj

+
Gi−1

η2
i−1

Ami−1,k

) (6.21)

For i− 1 < j

∂Ai,k+1

∂ηj
= 0 (6.22)

because Ai,k+1 is independent of ηj

The equations follow a general form of,

∂Ai,k+1

∂ηj
=
∂Ai,k
∂ηj

− ∆t

∆x

(Gi

ηi
mAm−1

i,k

∂Ai,k
∂ηj

− δi,j
Gi

η2
i

Ami,k

− Gi−1

ηi−1

mAm−1
i−1,k

∂Ai−1,k

∂ηj
+ δi−1,j

Gi−1

η2
i−1

Ami−1,k

) (6.23)
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where δ is the standard Kronecker delta function. It is helpful to notice that

the term G
η
mAm−1 is the kinematic wave celerity ∂Q

∂A
. Therefore, a generalized

notation for any cross sectional geometry would be,

∂Ai,k+1

∂ηj
=
∂Ai,k
∂ηj

− ∆t

∆x

(∂Q
∂A i

∂Ai,k
∂ηj

− δi,j
Gi

η2
i

Ami,k

−∂Q
∂A i−1

∂Ai−1,k

∂ηj
+ δi−1,j

Gi−1

η2
i−1

Ami−1,k

) (6.24)

The sensitivity equations can also be expressed in matrix form as,

Dη(Ak+1) = DA(Mk)Dη(Ak) +Dη(Mk) (6.25)

where DA(M) = ∂Mi

∂Aq
, Dη(A) = ∂Aq

∂ηj
and Dη(M) = ∂Mi

∂ηj

This can further be simplified for a branched network using the incidence

matrix, C,

Dη(Ak+1) = DA(Mk)Dη(Ak) +Dη(Mk) (6.26)

where DA(Mk) = I − ∆t
∆x

[C]
[
∂Q
∂A

]
k

and Dη(Mk) = ∆t
∆x

[C]
{
Q
η

}
k

Alternatively, if the adjustment is performed as a multiplier (β) it can be

shown that the sensitivity with respect to the multiplier,

∂Ai,k+1

∂βj
=
∂Ai,k
∂βj

− ∆t

∆x

(Gi

ηi
mAm−1

i,k

∂Ai,k
∂βj

− δi,j
Gi

ηiβi
Ami,k

−Gi−1

ηi−1

mAm−1
i−1,k

∂Ai−1,k

∂βj
+ δi−1,j

Gi−1

ηi−1βi−1

Ami−1,k

) (6.27)
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6.2.2.2 First Order Sensitivities with Respect to Rainfall (γ)

Ai,k+1 = Ai,k −
∆t

∆x

(
Gi

ηi
Ami,k −

Gi−1

ηi−1

Ami−1,k

)
+ γri,k+1wi∆t (6.28)

∂Ai,k+1

∂γj
=

n∑
q=1

[
∂Mi,k

∂Aq,k

∂Aq,k
∂γj

]
+

[
∂Mi,k

∂γj

]
(6.29)

For 1 ≤ i ≤ n and 1 ≤ j ≤ p with ∂Ai(0)
∂γj

= 0 as initial condition.

or in matrix form,

Dγ(Ak+1) = DA(Mk)Dγ(Ak) +Dγ(Mk) (6.30)

For i = j

∂Ai,k+1

∂γj
=
∂Ai,k
∂γj

− ∆t

∆x

(
Gi

ηi
mAm−1

i,k

∂Ai,k
∂γj

)
+ riwi∆t (6.31)

For i > j

∂Ai,k+1

∂γj
=
∂Ai,k
∂γj

− ∆t

∆x

(
Gi

ηi
mAm−1

i,k

∂Ai,k
∂γj

− Gi−1

ηi−1

mAm−1
i−1,k

∂Ai−1,k

∂γj

)
(6.32)

For i < j

∂Ai,k+1

∂γj
= 0 (6.33)

because Ai,k+1 is independent of γj

146



6.2.2.3 Example Propagation of Sensitivities

Figure 6.2 shows the evolution of the forward sensitivities for the Frances

event over the Brays Bayou basin (with a black outline). There are a total

of 16722 grid points upstream of this streamflow gauge. The sensitivities are

initially negative indicating that the cross sectional area is decreasing during

this period. The propagation of sensitivity is also driven by the wave celerity

in Eq. 6.26. During the first image, at t=10.5 hrs no rainfall has occurred over

the watershed. As the rainfall moves over the watershed the sensitivities fill in

upstream of the observation point at Main St. Thus at every point upstream

of the observation point the sensitivities indicate whether δA is increasing or

decreasing with respect to a change in roughness, δη. It can also be noted that

the positive sensitivities near the streamflow gauge. These positive sensitivities

indicate that the cells near the observation point will have a stronger influence

on parameter estimation.
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6.2.3 Parameter Adjustment Step

The following derivation follows from Lakshmirvarahan and Lewis (2010). Us-

ing the sensitivities derived from the Forward Sensitivity Method, the next

step is to adjust model parameters based on a least squares adjustment. If

we only allow variations in the parameters while assuming that there are not

perturbations to the initial conditions or boundary conditions, then we can

approximate the change in the state variable, ∆A, as

∆A = δA = Dη (A) δη (6.34)

It should be noted that δA can also include perturbations in initial con-

ditions and boundary conditions. However, this case strictly focuses on the

distributed parameter estimation problem.

The term on the right hand side Dη (A) δη represents the change in the

state variable, A, found by multiplying the sensitivity matrix with respect to

roughness, Dη (A), by the first variation of the roughness parameter, δη.

The change in the forward operator, ∆h, is approximated using the first

variation, δh, given by, where h(At) : <n −→ <m is the mapping from the

model space,<n, to the observation space, <m.

∆h = δh = DA (h) δA (6.35)

For the case where the observation and state variable represent the same

quantity,

h(A(t)) = A(t) (6.36)

153



Therefore,

DA (h)) = I (6.37)

where I is the identity matrix. Therefore, 6.35 is reduced to

δh = δA (6.38)

ef (ti) ≡ z(ti)− A(ti) = δh (6.39)

Finally, by setting 6.34 equal to 6.39 results in the following relationship,

Dη (A) δη = ef (ti) (6.40)

Then, 6.40 can further be expanded to handle multiple observations by

using the sensitivity matrix calculated at each time step. This is shown below

using the sensitivity for sequential times,



Dη(A)0

Dη(A)1

...

Dη(A)k

Dη(A)k+1

...

Dη(A)N



{δη} =



(ef )0

(ef )1

...

(ef )k

(ef )k+1

...

(ef )N



(6.41)

The least squares problem is then solved using the LSQR algorithm (Paige

and Saunders, 1983) based on the conjugate gradient method. The LSQR
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algorithm can handle large sparse matrices with under-determined, uniquely

determined, and overdetermined least squares problems. The LSQR method

also allows for damping function to handle ill-conditioned problems. The basic

least squares problem solved by LSQR is for the over-determined case where

the observations, n, are greater than the number of parameters,

DT
ηDηδη = DT

η ef (6.42)

6.2.4 Calibration and Validation

Experiments are performed using the Brays Bayou operational distributed

hydrologic model presented in Chapter 5. The events used that had sufficient

observed data (Vieux and Bedient, 2004) for data assimilation are,

Table 6.1: Events used for parameter estimation

Event Mean Field Bias Rainfall Depth (mm)1

TSA1 1.08 39.6
TSA2 0.44 74.3
Frances 1.48 163.4
1998-01-06 1.71 54.6
1998-01-21 1.22 55.1
2002-08-15 0.84 108.7

1 Depth in (mm) is computed from adjusted radar above Main

Street

White et al. (2003) provided a method that considered a scalar adjustment

method for calibrating a distributed hydrologic method. The forward sensitiv-

ity method builds on this method by adjusting the parameter estimates using

a vector of adjustments. A comparison is performed between the results of the

scalar method with the vector approach.
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6.2.4.1 A-priori Roughness Parameter Estimate

The overland flow is modeled using Manning’s roughness interpreted from land

use/cover maps of the watershed. For overland cells, roughness values are es-

timated using tabulated values reported by landuse type (Engman, 1986).

Spatial datasets of landuse type are obtained from the National Land Cover

Database (NLCD, 2001). Landuse classifications contained in the NLCD are

then reclassified to maps of overland roughness coefficients using lookup tables

based on Engman (1986). Channel cells are defined at locations in the water-

shed consistent with networks contained in the National Hydrography Dataset

(NHD) GIS database. Roughness values for channel cells are estimated from

lookup tables provided by Chow (1959), Barnes (1967), and from previous

modeling studies (Vieux et al. 2004b).

Spatially distributed parameter adjustment (SD) determines the spatial

distribution of parameter adjustments using the evolution of sensitivities de-

termined by the distributed hydrologic model dynamics. The method relies

on determining the number of parameter groups that represent the hydrologic

characteristics of a watershed. One criticism of distributed hydrologic models

has been the argument of over parameterization. Over parameterization oc-

curs as a model has too many parameters that cannot be identified. Within

distributed hydrologic models there can easily be greater than 100,000 param-

eters within the model. However, we usually only have measurements at a few

stream gauges within the watershed.

K-Folds Cross Validation (Efron and Tibshirani, 1995) is a technique for

determining the predictive error of a model (Figure 6.3). The technique in-

volves withholding a set of data from the model calibration procedure which
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Calibration Period
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Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6

Figure 6.3: K-Folds description

will be used to calculate validation statistics. For this study, I have sequen-

tially used the FSM calibration technique to estimate model parameters for

five of the six events. This procedure was performed for each combination of

five events. The sixth event was used each time to calculate the predictive

error measured in RMSE (m2).

6.3 Results and Discussion

6.3.1 Simulation Results

We tested the difference between the spatially uniform adjustment method

(P=1) and the spatially distributed adjustment method for groups of P =

{10, 20, 100}. Figures 6.4 and 6.5 show the final K-Folds verification hydro-

graphs for the USGS streamflow gauges at Main St. and Gessner respectively.

The top three panels of each figure show the results for P=10,20,100 while

the bottom panel shows the spatially uniform adjustment method (P=1). The
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main observation from the figures is that P=1 consistently over estimates the

peak discharge. The cause is due to the restriction that only one multiplier

is used for the entire roughness map. The hydrographs for P=1 are unbiased,

in the sense that there are an equal amount of residuals greater than and less

than the observed hydrograph. However, when the roughness multiplier is

overly constrained and not allowed to adjust each group of roughness values

then the peak discharge is over estimated.
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6.3.2 Prediction Error

The next step is to test the hypothesis is to estimate the hydraulic roughness

parameter for the basin by adjusting a multiplier of hydraulic roughness. Then

the runoff at interior gauge location (Gessner) can be used as an independent

verification point. The hypothesis test will be performed using the Mann-

Whitney-Wilcoxon (MWW) ranksum test with α = 0.05. The MWW ranksum

test is a nonparametric test that doesn’t assume normality.

H0: Null Hypothesis

The mean prediction error, measured as RMSE, from the model calibrated

for P = 1 will be equal to or less than the prediction error from the model

calibrated for P > 1.

HA: Alternative Hypothesis

The mean prediction error, measured as RMSE, from the model calibrated

for P = 1 will be greater than the prediction error from the model calibrated

for P > 1.

The hypothesis test will be performed between P=1 and P = {10, 20, 100}

for both the Main St. and Gessner gauges.

6.3.2.1 Gessner Hypothesis Tests

Test 1: Comparing P=1 and P=10

Using the Mann-Whitney-Wilcoxon ranksum for a one sided test (1- α),

the z-statistic is 2.79 with a p-value of 0.0026. Therefore, the null hypothesis

can be rejected between P=1 and P=10.

Test 2: Comparing P=1 and P=20

Using the Mann-Whitney-Wilcoxon ranksum for a one sided test (1- α),
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the z-statistic is 3.05 with a p-value of 0.0011. Therefore, the null hypothesis

can be rejected between P=1 and P=20.

Test 3: Comparing P=1 and P=100

Using the Mann-Whitney-Wilcoxon ranksum for a one sided test (1- α),

the z-statistic is 3.21 with a p-value of 0.0007. Therefore, the null hypothesis

can be rejected between P=1 and P=100.

6.3.2.2 Main St. Hypothesis Tests

Test 1: Comparing P=1 and P=10

Using the Mann-Whitney-Wilcoxon ranksum for a one sided test (1- α),

the z-statistic is 2.97 with a p-value of 0.00148. Therefore, the null hypothesis

can be rejected between P=1 and P=10.

Test 2: Comparing P=1 and P=20

Using the Mann-Whitney-Wilcoxon ranksum for a one sided test (1- α),

the z-statistic is 2.88 with a p-value of 0.00197. Therefore, the null hypothesis

can be rejected between P=1 and P=20.

Test 3: Comparing P=1 and P=100

Using the Mann-Whitney-Wilcoxon ranksum for a one sided test (1- α),

the z-statistic is 3.178 with a p-value of 0.00074. Therefore, the null hypothesis

can be rejected between P=1 and P=100.

The null hypothesis is that a scalar adjustment would have a smaller mean

prediction error measured by the root mean square error of cross sectional flow

area. Therefore, the null hypothesis can be rejected based on the results for

both Main St. and Gessner with a significance level of 95%. Also, Tables 6.2

and 6.3 show the confidence intervals on the RMSE prediction error from the

model. The RMSE is thus less when P > 1. Therefore, these results show
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Figure 6.6: RMSE (m2) convergence speed for Gessner

that a spatially distributed parameter adjustment outperforms the spatially

average parameter adjustment (P=1).

Table 6.2: RMSE (m2) for Gessner predictions of K-Folds Cross Validation
Results with bootstrap confidence intervals

Vector Dimension (P) Mean Lower CI (95%) Upper CI (95%)

1 (Scalar) 18.85 16.92 20.91
10 14.56 13.25 16.21
20 14.46 13.28 15.76
100 12.02 11.20 13.03
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Figure 6.7: RMSE (m2) convergence speed for Main St.

Table 6.3: RMSE (m2) for Main St predictions of K-Folds Cross Validation
Results with bootstrap confidence intervals

Vector Dimension (P) Mean Lower CI (95%) Upper CI (95%)

1 (Scalar) 23.25 20.76 25.95
10 17.87 15.95 20.24
20 17.84 16.11 19.86
100 17.42 15.68 19.32

Table 6.4: NSE for Gessner predictions of K-Folds Cross Validation Results
with bootstrap confidence intervals

Vector Dimension (P) Mean Lower CI (95%) Upper CI (95%)

1 (Scalar) 0.54 0.45 0.59
10 0.70 0.65 0.75
20 0.70 0.64 0.75
100 0.79 0.74 0.83
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Figure 6.8: Boxplot of verification NSE for Gessner

Table 6.5: NSE for Main St predictions of K-Folds Cross Validation Results
with bootstrap confidence intervals

Vector Dimension (P) Mean Lower CI (95%) Upper CI (95%)

1 (Scalar) 0.76 0.71 0.80
10 0.86 0.83 0.88
20 0.86 0.83 0.88
100 0.87 0.86 0.89
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Figure 6.9: Boxplot of verification NSE for Main St.
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6.4 Summary

This chapter has focused on testing the hypothesis that a model calibrated

using spatially distributed parameter adjustments will have less prediction er-

ror than a model calibrated by a spatially averaged parameter adjustment.

The model calibrated using spatially distributed parameter adjustments con-

sistently had less prediction error than the model calibrated using a spatially

average parameter adjustment. The results of the MWW ranksum hypothesis

test showed the mean of RMSE from the model calibrated by spatially dis-

tributed adjustments is less than the RMSE from the model calibrated using

the spatially average parameter adjustments. Further evidence was seen from

the box plots of Nash Sutcliffe Efficiency. The Nash Sutcliffe Efficiency of the

spatially distributed model was consistently higher than the spatially averaged

model. These results were consistent at both the calibration gauge at Main.

Street and at the interior gauge point at Gessner. These results show that the

hypothesis is correct. A spatially distributed parameter adjustment technique

leads to a reduction in prediction error compared with the spatially averaged

parameter adjustment technique.
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Chapter 7

Conclusions

The research presented within this dissertation focused on three areas identi-

fied as needing research in hydrologic modeling (National Research Council,

2002).

1. The fundamental system dynamics and propagation of perturbations,

2. Adequate characterization of model states, and

3. Procedures for generating model output with expected evolution of model

states.

The objectives of this dissertation were to address these needs in hydrologic

modeling by,

1. Assessing the influence of rain gauge adjustment of radar rainfall on

distributed hydrologic model calibration and operational performance.

2. Developing a technique of propagating uncertainty in radar rainfall through

a distributed hydrologic model.

3. Developing a technique for parameter estimation based on the evolution

of forward sensitivities through a distributed hydrologic model.

The first objective was accomplished by showing the influence of rain gauge

adjustment on operational flood forecasting performance (Ch. 3 and 4). The
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results of the analysis showed that considerable improvements in model per-

formance could be achieved by bias correcting operational radar rainfall input.

Unbiased forcing input is required to achieve adequate operational flood fore-

casting performance. Biases in the input will be propagated into the parameter

estimation step, and make it difficult to understand the processes occurring

within the basin. The second objective focused on the propagation of pertur-

bations in radar rainfall bias correction thru a distributed hydrologic model.

This propagation showed that prediction error increases with drainage area at

a nonlinear rate. The influence of bias correcting radar rainfall was also showed

how the skill of the model, as measured by the Critical Skill Index (CSI), de-

creased with increasing drainage area. The third objective focused on the

application of the Forward Sensitivity Method to understand the impacts of

spatially distributed parameter estimation on flood forecasting performance.

The main hypothesis tested using the Forward Sensitivity Method was that

a model calibrated using spatially distributed parameter adjustments will have

less prediction error than a model calibrated by a spatially averaged parameter

adjustment. A Mann-Whitney-Wilcoxon ranksum hypothesis test was used to

test the statistical significance. The results of the MWW ranksum hypothesis

test showed the mean of RMSE from the model calibrated by spatially dis-

tributed adjustments is less than the RMSE from the model calibrated using

the spatially average parameter adjustments. Further evidence was seen from

the box plots of Nash Sutcliffe Efficiency. The Nash Sutcliffe Efficiency of the

spatially distributed model was consistently higher than the spatially averaged

model. These results were consistent at both the calibration gauge at Main.

Street and at the interior gauge point at Gessner. These results show that the

hypothesis is correct. A spatially distributed parameter adjustment technique
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leads to a reduction in prediction error compared with the spatially averaged

parameter adjustment technique.

7.1 Recommendations

Future research stemming from this dissertation should focus on the use of

data assimilation techniques that include both parameter estimation and state

estimation. The Forward Sensitivity Method utilized within this dissertation

provides a physically based method of estimating both empirical and physical

parameters of the flood forecasting problem. Future areas of research for the

Forward Sensitivity Method within distributed hydrologic modeling are,

� What advantages would the Forward Sensitivity Method provide for soil

moisture state estimation compared with the commonly used Ensemble

Kalman Filter?

� How can the parameters be updated automatically for precipitation es-

timation techniques based on Z-R relationships and dual-pol algorithms

using the Forward Sensitivity Method?

� What is the best way to handle on/off switching behaviors within a data

assimilation technique? Switching behaviors occur as the soil profile

becomes saturated and runoff generation switches from infiltration rate

excess to saturation excess.

� How can we best combine data assimilation techniques such as the EnKF

with the FSM to provide both a stochastic and deterministic viewpoint

on both parameter and state estimation?
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Appendix A

Appendix

A.1 Forward Sensitivity Method Derivation for Simple

Model

The following derivation shows the structure of the forward sensitivities with

respect to roughness at each grid point using a simple 5 grid point plane

model. The 5-point grid is shown in the following figure with the depth of

flow indicated in blue. The cross sectional area, A, is the depth of flow, h,

multiplied by the width, w, of a grid point. The conservation equation that is

solved by the kinematic wave model,

∂A

∂t
+
∂Q

∂x
= rw (A.1)

where A is cross sectional flow area, Q is the flow rate, r is the rainfall rate,

and w is the plane width. The boundary condition is A(0, t) = 0, and ini-

tial condition is A(x, 0) = 0. Manning’s equation is a simplified form of the

momentum equation that relates discharge, Q, to cross sectional flow area, A.

Q = V A =
G

η
Am (A.2)

where m = 5
3

for Manning’s equation.
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Figure A.1: Grid for 5-point example

The kinematic wave equation is discretized using the forward time back-

ward difference finite difference form is,

Ai,k+1 = Ai,k −
∆t

∆x

(
Gi

ηi
Ami,k −

Gi−1

ηi−1

Ami−1,k

)
+ ri,k+1wi∆t (A.3)

For i = 1,

A1,k+1 = A1,k −
∆t

∆x

(
G1

η1

Am1,k −
G0

η0

Am0,k

)
+ r1,k+1w1∆t (A.4)

With the boundary condition A(0, t) = 0 therefore A0,k = 0 and eq. A.4

reduces to,

A1,k+1 = A1,k −
∆t

∆x

(
G1

η1

Am1,k

)
+ r1,k+1w1∆t (A.5)

Next, we will calculate the forward sensitivity,∂A
∂η

for A1 with respect to the

roughness at each grid point, j. For i = 1 and j = 0,
∂A1,k+1

∂η0
= 0 because η0

has no influence on A1,k+1 due to the boundary condition of A(0, t) = 0.
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For i = 1 and j = 1

∂A1,k+1

∂η1

=
∂A1,k

∂η1

− ∆t

∆x

(
G1

η1

mAm−1
1,k

∂A1,k

∂η1

− G1

η2
1

Am1,k

)
(A.6)

Or

∂A1,k+1

∂η1

=

(
1− ∆t

∆x

G1

η1

mAm−1
1,k

)
∂A1,k

∂η1

+
∆t

∆x

G1

η2
1

Am1,k (A.7)

For i = 1 and j > 1

∂A1,k+1

∂ηj
= 0 (A.8)

because ηj has no influence on A1,k+1

For i = 2

A2,k+1 = A2,k −
∆t

∆x

(
G2

η2

Am2,k −
G1

η1

Am1,k

)
+ r2,k+1w2∆t (A.9)

For i = 2 and j = 0

∂A2,k+1

∂η0

= 0 (A.10)

because η0 has no influence on A2,k+1 due to boundary condition of A(0, t) = 0

For i = 2 and j = 1

∂A2,k+1

∂η1

=
∂A2,k

∂η1

− ∆t

∆x

(G2

η2

mAm−1
2,k

∂A2,k

∂η1

− G1

η1

mAm−1
1,k

∂A1,k

∂η1

+
G1

η12
Am1,k

) (A.11)
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Or

∂A2,k+1

∂η1

=

[
∆t
∆x

G1

η1
mAm−1

1,k 1− ∆t
∆x

G2

η2
mAm−1

2,k

] ∂A1,k

∂η1

∂A2,k

∂η1


−∆t

∆x

G1

η12
Am1,k

(A.12)

For i = 2 and j = 2

∂A2,k+1

∂η2

=
∂A2,k

∂η2

− ∆t

∆x

(G2

η2

mAm−1
2,k

∂A2,k

∂η2

− G2

η2
2

Am2,k

−G1

η1

mAm−1
1,k

∂A1,k

∂η2

) (A.13)

or

∂A2,k+1

∂η2

=
∂A2,k

∂η2

− ∆t

∆x

(
G2

η2

mAm−1
2,k

∂A2,k

∂η2

− G2

η2
2

Am2,k

)
(A.14)

or

∂A2,k+1

∂η2

=

[
1− ∆t

∆x

G2

η2

mAm−1
2,k

] [
∂A2,k

∂η2

]
+

∆t

∆x

G2

η2
2

Am2,k (A.15)

For i = 2 and j > 2

∂A2,k+1

∂ηj
= 0 (A.16)

because ηj has no influence on A2,k+1.

For i = 3

A3,k+1 = A3,k −
∆t

∆x

(
G3

η3

Am3,k −
G2

η2

Am2,k

)
+ r3,k+1w3∆t (A.17)

For i = 3 and j = 0

∂A3,k+1

∂η0

= 0 (A.18)

because η0 has no influence on A3,k+1 due to boundary condition of A(0, t) = 0.
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For i = 3 and j = 1

∂A3,k+1

∂η1

=
∂A3,k

∂η1

− ∆t

∆x

(
G3

η3

mAm−1
3,k

∂A3,k

∂η1

− G2

η2

mAm−1
2,k

∂A2,k

∂η1

)
(A.19)

or

∂A2,k+1

∂η1

=

[
0 ∆t

∆x
G2

η2
mAm−1

2,k 1− ∆t
∆x

G3

η3
mAm−1

3,k

]
∂A1,k

∂η1

∂A2,k

∂η1

∂A3,k

∂η1

 (A.20)

For i = 3 and j = 2

∂A3,k+1

∂η2

=
∂A3,k

∂η2

− ∆t

∆x

(G3

η3

mAm−1
3,k

∂A3,k

∂η2

− G2

η2

mAm−1
2,k

∂A2,k

∂η2

+
G2

η2
2

Am2,k

) (A.21)

or in matrix form

∂A3,k+1

∂η2

=

[
0 ∆t

∆x
G2

η2
mAm−1

2,k 1− ∆t
∆x

G3

η3
mAm−1

3,k

]
∂A1,k

∂η2

∂A2,k

∂η2

∂A3,k

∂η2


−∆t

∆x

G2

η2
2

Am2,k

(A.22)

For i = 3 and j = 3

∂A3,k+1

∂η3

=

[
0 ∆t

∆x
G2

η2
mAm−1

2,k 1− ∆t
∆x

G3

η3
mAm−1

3,k

]
∂A1,k

∂η3

∂A2,k

∂η3

∂A3,k

∂η3


+

∆t

∆x

G3

η2
3

Am3,k

(A.23)
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For i = 3 and j > 3

∂A3,k+1

∂ηj
= 0 (A.24)

because ηj has no influence on A3,k+1 = 0.

For i = 4

A4,k+1 = A4,k −
∆t

∆x

(
G4

η4

Am4,k −
G3

η3

Am3,k

)
+ r4,k+1w4∆t (A.25)

For i = 4 and j = 0

∂A4,k+1

∂η0

= 0 (A.26)

because η0 has no influence on A4,k+1 due to boundary condition of A(0, t) = 0.

For i = 4 and j = 1

∂A4,k+1

∂η1

=

[
0 0 ∆t

∆x
G3

η3
mAm−1

3,k
1− ∆t

∆x
G4

η4
mAm−1

4,k

]


∂A1,k

∂η1

∂A2,k

∂η1

∂A3,k

∂η1

∂A4,k

∂η1


(A.27)

For i = 4 and j = 2

∂A4,k+1

∂η2

=

[
0 0 ∆t

∆x
G3

η3
mAm−1

3,k
1− ∆t

∆x
G4

η4
mAm−1

4,k

]


∂A1,k

∂η2

∂A2,k

∂η2

∂A3,k

∂η2

∂A4,k

∂η2


(A.28)
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For i = 4 and j = 3

∂A4,k+1

∂η3

=

[
0 0 ∆t

∆x
G3

η3
mAm−1

3,k
1− ∆t

∆x
G4

η4
mAm−1

4,k

]


∂A1,k

∂η3

∂A2,k

∂η3

∂A3,k

∂η3

∂A4,k

∂η3


−∆t

∆x

G3

η2
3

Am3,k

(A.29)

For i = 4 and j = 4

∂A4,k+1

∂η4

=

[
0 0 ∆t

∆x
G3

η3
mAm−1

3,k
1− ∆t

∆x
G4

η4
mAm−1

4,k

]


∂A1,k

∂η4

∂A2,k

∂η4

∂A3,k

∂η4

∂A4,k

∂η4


+

∆t

∆x

G4

η2
4

Am4,k

(A.30)
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Generalization of matrix form Dη(Ak+1) = DA(Mk)Dη(Ak) +Dη(Mk) where,

DA(Mk) =



0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



− ∆t

∆x
m



G0

η0
0 0 0 0

−G0

η0

G1

η1
0 0 0

0 −G1

η1

G2

η2
0 0

0 0 −G2

η2

G3

η3
0

0 0 0 −G3

η3

G4

η4


◦



Am−1
0 0 0 0 0

Am−1
0 Am−1

1 0 0 0

0 Am−1
1 Am−1

2 0 0

0 0 Am−1
2 Am−1

3 0

0 0 0 Am−1
3 Am−1

4


k

(A.31)

199



Dη(Ak) =



∂A0

∂η0

∂A0

∂η1

∂A0

∂η2

∂A0

∂η3

∂A0

∂η4

∂A1

∂η0

∂A1

∂η1

∂A1

∂η2

∂A1

∂η3

∂A1

∂η4

∂A2

∂η0

∂A2

∂η1

∂A2

∂η2

∂A2

∂η3

∂A2

∂η4

∂A3

∂η0

∂A3

∂η1

∂A3

∂η2

∂A3

∂η3

∂A3

∂η4

∂A4

∂η0

∂A4

∂η1

∂A4

∂η2

∂A4

∂η3

∂A4

∂η4


k

=



∂A0

∂η0
0 0 0 0

∂A1

∂η0

∂A1

∂η1
0 0 0

∂A2

∂η0

∂A2

∂η1

∂A2

∂η2
0 0

∂A3

∂η0

∂A3

∂η1

∂A3

∂η2

∂A3

∂η3
0

∂A4

∂η0

∂A4

∂η1

∂A4

∂η2

∂A4

∂η3

∂A4

∂η4


k

(A.32)

Dη(Mk) =
∆t

∆x



G0

η02
0 0 0 0

− G0

η02
G1

η12
0 0 0

0 − G1

η12
G2

η22
0 0

0 0 − G2

η22
G3

η32
0

0 0 0 − G3

η32
G4

η42


◦



Am0 0 0 0 0

Am0 Am1 0 0 0

0 Am1 Am2 0 0

0 0 Am2 Am3 0

0 0 0 Am3 Am4


k

(A.33)

200


	Acknowledgements
	List of Tables
	List of Figures
	Abstract
	Introduction
	Motivation
	Approach

	Literature Review
	Distributed Hydrologic Modeling
	Precipitation Uncertainty
	Parameter Estimation

	Assessing the Impacts of Precipitation Bias on Distributed Hydrologic Model Calibration and Prediction Accuracy
	Abstract
	Introduction
	Basin Characteristics
	Blue River
	Illinois River

	Model Formulation
	Runoff
	Infiltration
	Streamflow Routing
	Baseflow

	Model Parameterization
	Infiltration
	Hydraulic Roughness

	Hydrometeorological Inputs
	Multi-sensor Precipitation Estimates
	Evapotranspiration

	Distributed Model Calibration 
	Results and Discussion
	Uncalibrated Simulation Results
	Calibration Results 
	Optimal Parameter Values
	Continuous Streamflow Performance

	Verification Results

	Summary

	An Assessment of Distributed Flash Flood Forecasting Accuracy using Radar and Rain Gauge Input for a Physics-Based Distributed Hydrologic Model
	Abstract
	Introduction
	Methodology
	Study Area
	Radar Rainfall
	Hydrologic Model
	Ordered Physics Based Parameter Adjustment

	Results
	Rainfall Accuracy
	Evaluation of Operational Distributed Flood Forecasting
	Forecast Lead-Time and Error
	Forecast Accuracy


	Discussion
	Summary

	Distributed Hydrological Forecast Reliability using Next Generation Radar
	Abstract
	Introduction
	Hydrologic Predictability
	Study Area
	Flood Alert System
	Radar Rainfall Uncertainty

	Methodology
	Model Overview
	Radar Rainfall Processing
	Perturbation Scheme

	Results and Discussion
	Dispersion Scaling with Drainage Area
	Predictability and Scaling

	Summary

	Distributed Hydrologic Model Calibration using the Forward Sensitivity Method
	Introduction
	Methodology
	Model Description
	Formulation
	Discretization

	Forward Sensitivity Method
	First Order Sensitivities with Respect to Roughness
	First Order Sensitivities with Respect to Rainfall ()
	Example Propagation of Sensitivities

	Parameter Adjustment Step
	Calibration and Validation
	A-priori Roughness Parameter Estimate


	Results and Discussion
	Simulation Results
	Prediction Error
	Gessner Hypothesis Tests
	Main St. Hypothesis Tests


	Summary

	Conclusions
	Recommendations

	References
	Appendix
	Forward Sensitivity Method Derivation for Simple Model


