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ABSTRACT 

  

 The stability of a two-dimensional, incompressible water droplet, with two 

cylindrical-caps that is pinned in a channel, is investigated through the development of 

an analytical model based on Yong-Laplace relationship. The center of mass of the 

droplet is derived analytically by assuming a perfectly 2-D circular shape of the droplet 

cap. The derived analytical expressions are validated through the use of CFD.  In the 

simulations, FLUENT with a 2-D pressure based solver is utilized, and Gambit with 2-

D rectangular mesh is used to generate the grid. The pinned droplet states are measured 

by the location of the center of mass. The stability of the droplet states without gravity 

is evaluated by the growth rate    of the Hamiltonian of the system computed by CFD 

for various drop sizes.  

 When a droplet is suspended on the straight channel and under no gravity 

conditions, it is proven analytically and through the use of CFD that there is a critical 

droplet volume, Vcr, where asymmetric droplet states appear in addition to the basic 

symmetric states when the drop volume V >Vcr. It is demonstrated that when V<Vcr the 

symmetric droplet states become stable and the growth rate of the disturbance decays. 

However, when V>Vcr and the growth rate σH is positive, the symmetric states become 

unstable and the asymmetric states become stable. The bifurcation of asymmetric states 

at Vcr has a pitchfork nature, and the growth rate σH increases with the volume size.  

 When the channel holding the droplet is contracted, the pitchfork bifurcation 

diagram of the droplet system changes into two separate branches of equilibrium states. 

The analytical expression of those stability branches has been developed for various 
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contraction ratios  . The primary branch describes a gradual and stable change of the 

droplet from a nearly symmetric to asymmetric state as the droplet volume, V, is 

increased. The secondary branch appears at a modified critical volume, Vmcr, and 

describes two additional asymmetric states for V>Vmcr. It is demonstrated that the large-

amplitude states along the secondary branch are stable whereas the small-amplitude 

states are unstable.  

 When the capillary length and the channel width have the same order of 

magnitude, the effect of gravity is not negligible. An analytical expression is developed 

to find the effect on gravity, in terms of    on the behavior of a vertically suspended 

droplet in straight channel. When gravity is considered, the droplet stability behaves 

similar to that of the contracted channel apart from one conditions; unlike the contracted 

channel, there exists a maximum volume on each of the primary and secondary branch 

where the droplet no longer sustains its weight. The maximum volume on the primary 

branch, Vp_max, is smaller than the maximum volume on the secondary branch, Vs_max. A 

critical   value,  cr, is also found. That critical value describes the maximum condition 

at which the droplet will have only one range of solutions at the primary branch, and no 

longer sustain stability on the secondary branch. All analytical solutions are validated 

with CFD. 

 



1 

1 CHAPTER ONE: INTRODUCTION AND OBJECTIVES 

 

1.1  Review of the Literature 

 

 Micrometer and less-than-a-millimeter droplets have been extensively studied to 

eliminate many mechanical components from several high performance consumer 

products, as well as practical application such as an electronically switchable adhesion 

devices [1], which are devices that combines two concepts: capillarity based adhesion 

through surface tension force, and device switch-ability through electronic controls. It 

uses grab and release process that operates within a fraction of a second (see Figure 

1.1).  

 
Figure 1.1 Capillary-based switchable adhesion device shows the grab-release process 

(Courtesy of Vorgel and Steen [1]) 

 

 Another practical application is the use of small-scale droplets as an electronic 

liquid pistons for capillarity based pumping [2]. With this application system, two 

adjoining magnetized fluid droplets can behave as an electronically controlled switch or 
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oscillator by balancing of the capillary, magnetic and inertial forces. As shown in 

Figure 1.2, the oscillatory movement can be utilized to move the adjacent liquid,  

 

 
 

Figure 1.2 Electromagnetic liquid pistons for capillary-based pumping (Courtesy of 

Malouin et al. [2]) 

 

 

forming an electromagnetic liquid piston.  

 As the design of integrated circuits become smaller and circuit devices become 

more dense, cooling techniques become very challenging, and as a result, micro-

droplets have been utilized for thermal management [3] and cooling [4] applications for 

such devices.  One of these devices uses a platform that employs nanoliter-sized 

discrete liquid droplets immersed in oil in order to independently actuate the cooling 
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droplets in user-defined patterns over an array of electrodes by use of electrowetting 

(see Figure 1.3), thus, getting rid of the need for external pumps. 

 

Figure 1.3 Schematic side and top views of the electrowetting chip (Courtesy of Paik et 

al. [2]). 

 

 

The device has proven experimentally to reduce as much as 30% of temperature 

increase in small-scale electronic devices.  

 Also, there has been great interest recently in the use of small liquid droplet 

systems in surveillance and defense applications such as cell phone cameras and high 

performance camcorder that can be used in micro and large scale UAVs. Optical 

focusing in high performance cameras is usually a slow process, but most of the delay 

comes from time spent to mechanically move the camera's lenses until the image is in 
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focus. Lopez and Hirsa [5] have developed a liquid lens application for adaptive optics 

that can provide fast focusing response. Figure 1.4 shows the application of a micro-

droplet developed by Lopez and Hirsa for a fast optical focusing device [6], using an 

oscillating liquid lens. The liquid lens is formed by trapping a drop of water in a hole on 

a Teflon plate, and a speaker generates a variable air pressure in one side of the plate. 

This variable pressure produces a frequency, which then varies the shape of the lens and 

its focal length (see Figure 1.5) depending on the instantaneous air pressure inside the 

chamber.     

 

 
 

Figure 1.4 The schematics of fast focusing droplet (Courtesy of Stan C.A [6])    
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Figure 1.5 A liquid lens droplet shows the instantaneous focal length f(t) (Courtesy of 

Stan C.A [6]). 

 

 

 Small liquid droplets (1 mm or smaller) characteristically maintain their spherical 

shapes due to surface tension. When the characteristic length of a system is much less 

than the capillary length, surface tension becomes the dominant force on the bulk liquid. 

However, when the characteristic length becomes comparable to the capillary length, 

forces such as inertial and gravity force should be considered.  

 The coupled-droplet system that is pinned in a cylindrical tube and is slightly 

less than a millimeter in diameter has been studied experimentally by Lopez and Hirsa 

[5] and Olles et al. [7], and analytically investigated by Theisen et al. [8] for optical 
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applications. In their analytical model, they assumed that the shape of the free surface of 

the droplet remains spherical at all time. In their analyses, two droplet states were 

observed: 1) a symmetric state with two equal sized sub-hemispherical caps at both 

ends of the tube (Figure 1.6(a)), and 2) an asymmetric state with a super-hemisphere at 

one end and a sub-hemisphere at the other end (Figure 1.7). In our discussion, these top 

and bottom hemispherical caps are referred to as VU and VL, which are the upper and 

lower droplet cap volumes with radii of curvatures of RU and RL, respectively. Their 

theoretical analyses also found a critical volume of the droplet Vcr, which has a volume 

of 
 

 
   

 , where rt is tube radius (3D case). Note that in Figure 1.6, V=1 when 

VU+VL=Vcr and   
     

   
  , the derivation is discussed in Chapter 3. At Vcr, 

asymmetric states appear as a pitchfork bifurcation nature when VU+VL > Vcr (Figures 

1.6 (b and c)). 

 

 

Figure 1.6 Various droplet states: (a) Droplet caps volume is less than critical volume 

V<1. (b) Droplet cap volume is equal to critical volume, RU=RL, V=1 (c) Droplet cap 

volume is greater than critical volume V>1. 
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Figure 1.7 Super- and sub-hemispherical caps of a suspended liquid droplet 

 

 

 Slobozhanin and Alexander [9] have observed similar transition phenomena in 

their system (See Figure 1.8a). They considered that two droplets are suspended from a 

two circular holes of two equal radii in a horizontal plate and connected by a liquid 

layer that lays above the plate, which means that the droplets were coupled. When both 

of the hole sizes are the same, these droplets introduce a critical volume where 

asymmetric states appear as VL1+VL2 >Vcr, and symmetric state appears as VL1+VL2 

<Vcr (see Figure 1.8b). VL1 and VL2 are the two droplet cap volumes suspended from the 

two circular holes.  
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Figure 1.8 (a) The transition from the unstable to stable state. (b) Bifurcation diagram as 

found by Slobozhanin and Alexander (Courtesy of Slobozhanin and Alexander [9]). 

 

 Slater et al. [10] investigated a suspended droplet behavior subjected to periodic 

forcing and also observed a pitchfork bifurcation nature of the droplet profiles. They 

considered two spherical cap droplets pinned to a cylindrical tube. The movement of the 

droplet was modeled as a second-order nonlinear dynamical system, and the capillary 

pressure caused a force to act from either top or bottom of the droplet. That force is a 
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function of the cylindrical tube's radius squared. They also found that the shape of static 

droplets that are smaller than a millimeter is nearly spherical.  

 An experimental study by Russo and Steen [11] focused on an axisymmetric 

capillary liquid bridge formed between circular endplates. They showed a loss of 

symmetry of the liquid profile while preserving the liquid volume and increasing an 

aspect ratio of the cylindrical tube's diameter to its length beyond a critical value (see 

Figure 1.9). Their analysis demonstrated that the symmetric state loses its stability to 

asymmetric disturbances at the critical bifurcation breaking point (critical volume). 

Their experimental results supported their analysis. 
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Figure 1.9 Photographs of liquid bridges during an experiment showing an initial 

cylindrical shape (top left), then a bridge symmetric distribution (top right), finally a 

loss of symmetry (bottom) (Courtesy of Russo and Steen [11]).   

 

  

 Ramalingam and Basaran’s [12] considered a system that consists of sessile and 

pendant droplets coupled through a pipe that was filled with water under the condition 

of zero gravity (see Figure 1.10). Their double droplet system is surrounded by gas, and 

it was excited by the gas pressure surrounding one of the droplet caps. They also 

observed a pitchfork bifurcation nature of the droplet profiles when the pressures 

around the droplet caps were equal. 
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Figure 1.10 A schematic, as shown in reference [12], describes the sessile and pendant 

droplets coupled through a pipe (Courtesy of Ramalingam and Basaran [12]) 

 

 

 Bostwick’s and Steen’s [13] performed a numerical study on an inviscid 

spherical liquid droplets held by surface tension. In their study, they observed a 

deformation of a droplet's free surface. An oscillation was observed on the droplet with 

large cap volumes at large amplitudes. They found that the deformation of the large cap 

volumes has a significant effect on the droplet behavior and state. Such a droplet 

deformation will be observed in our study and discussed in Chapter 3. 

 Asymmetry in channel radii (rU ≠ rL) changes the behavior of the bifurcation 

diagram. Slobozhanin and Alexander [9] investigated this asymmetry in their analytical 

study. They found that due to this asymmetry, the bifurcation diagram changes from its 

pitchfork nature to two separate stability branches, as shown in Figure 1.11. The first 

branch consists of only a stable state, whereas the second branch consists of stable and 

unstable states. The stable and unstable states bifurcate from a critical droplet volume 

that is larger than that of when the two channel radii are equal (rU = rL). All the states for 

the first and second branches were found to be asymmetric.  
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Figure 1.11 The change of the bifurcation diagram from its pitchfork nature to two 

separate stability branches (Courtesy of Slobozhanin and Alexander [9]) 

 

 The contraction of a channel is a geometrical asymmetry, now the review of a 

force field asymmetry will be discussed; particularly the gravitational field. Both Lopez 

and Hirsa [5], and Theisen et al. [8] had also considered gravity in their analytical and 

experimental study. The gravitational force in both studies is counteracted by using an 

air pressure chamber controlled by an acoustic wave (see Figure 1.12). The effects of 

gravity, through the bond number, and the external pressure field are included in their  

 



13 

 

Figure 1.12 Water droplet trapped in a hole drilled in a Teflon plate, and a speaker 

generates variable air pressure on one side of the plate (Courtesy of Lopez and Hirsa 

[5]). 

 

analytical model. The Bond number, which measures the relative importance of 

gravitational force to the surface tension force [14], is defined as       
   , where   

is the droplet density, g is the acceleration due to gravity, rt is the tube radius, and   is 

the surface tension. 

 Hirsa et al. [15] performed analytical as well as experimental work on low 

dissipation capillary switches using water droplets with the consideration of gravity and 

pressure bias resulted from electrochemical effect. In the experiment, electrical 

conductive rings were pushed into the end of each hole in the cylindrical tube holding 

the droplet. Then, an electrochemical actuator of a small voltage (1 Volt) was applied 

on the bottom ring relative to the top ring, which then oxidized the surfactant on the 

bottom droplet cap, and reduced it on the top cap. This process decreased the surface 

activity on the top and increased it on the bottom of the droplet, which as a result 

counterbalanced the gravity effect in their switch system. The gravity and pressure 

fields in their experiment changed the pitchfork bifurcation diagram into two separate 
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branches. One branch (primary branch) describes a stable and a smooth transition of 

droplet states from nearly symmetric to asymmetric states near Vcr. The other branch 

(secondary branch) describes asymmetric states, starts from a modified critical volume, 

Vmcr > Vcr, and bifurcates into stable and unstable states. The capillary length,      , in 

their experiment was 3 mm for water, which was not much larger than their 

characteristic length of 0.89 mm. Their experiment was in a close agreement with their 

analytical model within the range of their droplet volumes they have studied.  

 Vogel and Steen's [1] work, which was illustrated earlier, is about a switchable 

adhesion device that is based on the surface tension force from a number of small liquid 

droplets that form liquid bridges between two objects. The droplets in the electronically 

controlled capillary adhesion device is suspended at zero voltage against gravity force 

until that force is counterbalanced using a small release of voltage of the opposite sign. 

Their method was similar to the work investigated by Malouin et al. in [16] and [2]. A 

time varying electromagnetic field was applied to control and to drive the coupled 

droplets through a cylindrical tube whose diameter is 1.7 mm.  

 Slobozhanin and Alexander [9] also investigated the gravitational effect on the 

stability of liquid droplet states analytically. Similar to the non-gravity case, the two 

droplets were suspended from two circular holes of two equal radii in a horizontal plate 

and connected by a liquid layer lying above the plate. Since the gravity has an effect on 

both droplets in the same direction, the droplet shape will be the same if the masses are 

the same, and different if the masses are different. In their analysis, gravity force was 

applied to both droplets with the same masses, and the effect of gravity on the two 

droplet caps cancels. Gravitational force, however, leads to the breakage of the 
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suspended droplets as the droplets reach to a maximum volume. The maximum droplet 

volume corresponded to the droplet characteristic length which is defined similar as the 

capillarity length,      . Beyond that characteristic length, a breakage of the droplet 

was observed.  

 Similar behavior of a maximum volume of suspended droplet is also observed 

by Majumdar and Michael [17]. In their work they studied the equilibrium and the 

stability of equilibrium of two dimensional pendent drops hanging under gravity force 

and surface tension. They showed that a droplet can be deformed if it is hanged from a 

horizontal lower edge of a plate, when it does, there is a limit point (critical point for 

droplet volume) at which the droplet loses its stability, and that volume is the maximum 

droplet volume.  

 Slater et al. [10] found that at earth gravity, the shape of static droplets that are 

smaller than a millimeter are nearly spherical. However, they pointed out that the 

gravity at that small scale induces a small perturbation known as “g-jitter” in the droplet 

system, which increases the instability of certain droplet states. 
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Figure 1.13 The symmetric behavior of a vertical liquid bridge under gravity (top), and 

loss of symmetry when tilted (bottom)   

 

 Chen and Chang [18] investigated a two-dimensional bridge [19] with a 

consideration of a slight tilt angle. This was a similar experimental orientation 

constructed by Russo and Steen [11]. With the absence of gravitational effects they 

found an existence of Vcr and an appearance of asymmetric bridge profiles depending 

on the aspect ratio of the bridge diameter (or channel length) to the liquid bridge length. 

When the vertical liquid bridge is considered with the introduction of gravitational 

effects, they found that the droplet volume will stay symmetric (see Figure 1.13) until it 

reaches a breaking point at      
   

   
  , where   is the bridge's diameter to length 
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ratio. However, when the bridge is tilted, a transition from symmetric to asymmetric 

state is observed.   

1.2  Objectives 

 The review of the previous experimental and analytical investigations on 

stability of liquid droplets shows that a channel contraction and gravity have little effect 

on the dynamics when the bond number is near zero. However, even at B≈0, 

gravitational effects become significant when V>>1, in addition, any level of channel 

asymmetry will cause an asymmetry in the droplet stability state.  Therefore, both cases 

have to be further investigated. To our knowledge there is no CFD study that 

investigates the stability of the droplet suspended from a straight channel, or when 

subjected to either channel contraction or gravitational force effect. As the channel 

contraction ratio gets larger, the bifurcation diagram might deviate from its pitchfork 

nature of the straight channel case. Similarly, when gravity is considered and the droplet 

volume gets larger, the gravity force will have a large effect on the droplet behavior, 

and the bifurcation diagram might deviate from its pitchfork nature of the non-gravity 

case into the other form, such as two separate branches: primary and secondary 

branches. Moreover, for any value of gravity, there must be a maximum volume of the 

droplet to sustain its weight in the system, and the maximum volume of the primary 

branch might be different from that of the secondary branch.  

Our analytical study investigates a droplet's  behavior while suspended from a 

straight channel. In the study, the Hamiltonian of the droplet system is derived to verify 

its stability. When a channel contraction is introduced, the droplet stability behavior 

changes, and an analytical investigation is performed for various contraction ratios to 
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study this behavior. We also examined the effect of a gravitational force on a droplet 

suspended vertically in a straight channel. An analytical model is developed to test the 

various conditions of droplet behaviors under gravitational force effect. The validity of 

the analytical model, which assumes a spherical droplet cap volumes, is validated using 

CFD to determine the stable and unstable states. The physical mechanism that drives the 

droplet stability state is also studied and carefully reviewed. To our knowledge, there is 

no analytical investigation has been developed to study the limit of gravitational force 

effect on a vertically suspended droplet. Also no CFD examinations has been done to 

verify the droplet states under the previous conditions.    

 The dissertation is organized as follows: The CFD approach used to simulate the 

droplet system is described in Chapter 2, and then a detailed description of the 

analytical and CFD results of droplet suspended in a straight channel is shown in 

Chapter 3. The effect of a channel contraction, with analytical and CFD verifications is 

studied in Chapter 4. The gravity effect on the droplet transition behavior as well as 

droplet stability in the system obtained by the simulation and the analytical model are 

discussed in Chapter 5. Summary and future work are in Chapter 6.  
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2 CHAPTER TWO: NUMERICAL SCHEME 

 

 CFD simulations are used to demonstrate the droplet states and to validate the 

analytical model derived in later chapters. Dimensions of the simulation domain, shown 

in Figure 2.1, are described as follows. A half channel length, L, and width, r, are 0.91 

mm and 0.84 mm, respectively. A water droplet is suspended in the channel surrounded 

by air in our system. Bulk water density and viscosity are  = 998.2 kg/m
3
 and 

=1.003x10
-3

 kg/m-s, and air is at 1 atm pressure with a density, air=1.225 kg/m
3
 and a 

viscosity, =1.7894x10
-5

 kg/m-s. The interfacial tension   at the water-air interface is 

0.072 N/m [8, 20]. The simulation domain is a closed rectangular space, and the channel 

is located at the center of the domain. Velocity boundary conditions along the domain 

boundaries and channel walls are the tangency and no-slip conditions during the 

simulations, respectively. 
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Figure 2.1 Geometry and dimension of the simulation domain 

 

 

The two-dimensional incompressible viscous Navier-Stokes equations are solved for 

both air and water [21]:  

 

   

   
 

   

   
  ,          (2.1) 
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where the density  , pressure p, the kinematic viscosity      , and dynamic viscosity 

   are constants during the simulation. Of course, the liquid pressure is not constant. 
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The parameters   and   represent the velocity and position vectors, respectively, and g 

is the gravitational acceleration. The subscripts 1 and 2 denote horizontal and vertical 

components of the vectors.  

The CFD simulation is performed with the use of FLUENT 6.3 CFD package 

[20] with parallel processing. The number of processors ranges between 4 and 6 

processors. FLUENT 6.3 CFD package is a control volume (CV) based solver that uses 

the CV technique to convert a general transport equation into an algebraic equation, 

which can be solved numerically as follows [20, 22] 

 

     
          

 

  
                                       ,      (2.3) 

 

where   is the transport equation variable. For example, for     the equation 

becomes the continuity equation, and for     (velocity) it becomes the momentum 

equation.    is the cell volume,    is the change in time, A is the cell area, and 

subscripts f and c denote for the variable value at the cell face and at the cell center, 

respectively (see Figure 2.2 ).    is the flow speed across a cell face,  is a coefficient 

for the diffusion term, and S is a source term. This numerical method integrates the 

transport equation at each control volume, which results in a discrete equation that 

expresses the conservation law on a control volume basis. 
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Figure 2.2 Cells structure with central cell in the middle 

 

  

 For domain discretization, a multiphase Volume of Fluid (VOF) model [23], for 

water and air, is used. This model, which is designed for two or more immiscible fluids, 

is an interface tracking technique that is applied to a fixed Eulerian mesh [24]. In each 

domain cell, the volume fraction of the liquid  is tracked, and a single set of the 

momentum equations is shared by the fluids. The VOF model can be applied in tracking 

any transient or steady liquid-gas interface, prediction of jet breakup [25], the dynamics 

of the liquid after a dam break [26], the dynamics of large bubbles in a liquid, sloshing, 

filling, free-surface flows, and stratified flows [23, 27-29]. The limitation of the VOF 

model is that it is restricted to the use of pressure-based solver; therefore, a density 

based solver is not applicable with this model [20]. In addition, a void or blank region, 

where there exists no fluids of any type in the simulation domain is not allowed in the 

VOF model. This indicates that, the control volume has to be filled with single- or 

multi-combinations of fluid phases. Furthermore, if the VOF model is used, the second-

order implicit time step formulation cannot be used [20, 23]. Therefore, tracking the 

interface between the phases is achieved by solving the continuity equation for the 
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volume fraction of one of the phases. For example, in order to solve the volume fraction 

   for the water phase at a water and air interface, the equation is as follows [20, 30]:  

 

       

  
                          

 
   ,      (2.4) 

 

where      is the mass transfer from water to air, and      is the mass transfer from air 

to water. The density and velocity of the water phase are    and     . When discretizing 

the continuity equation using the implicit scheme, we get  

 

  
     

      
   

 

  
         

     
       

                 
 
        ,    (2.5) 

 

where the superscript (n+1) and (n) are the index for the new time step and the current 

time step, respectively.     
  is the face value of the water volume fraction [20, 23],      

is the volume of the cell, and Uf is the volume flux through the cell face. After solving 

for the volume fraction of the water phase   , the properties for the transport equations 

are determined by the knowledge of the component phases in each control volume. The 

density and the viscosity in each cell can be calculated by 

 

               , and         (2.6) 

               .          (2.7) 

 

The new density  and viscosity  are then substituted in the momentum Eqs. (2.2a) and 

(2.2b) to solve for the flow field properties. As mentioned earlier, the VOF model 
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requires the use of pressure based solver for incompressible flow, which is one of the 

two numerical solvers that FLUENT provides [31]. It utilizes a projection method 

algorithm [20] that decouples the computations of the velocity and pressure fields [32]. 

The governing equations are non-linear and coupled, and the solution loop is carried out 

iteratively, as shown in Figure 2.3, in order to obtain a converged numerical result. Each 

iteration in the pressure-based solver consists of the following steps [20, 31]: 

 

 

 
Figure 2.3 Pressure-based solution diagram 



25 

 

 

1. Fluid properties are updated based on the current or previous time steps. 

2. The momentum equations are solved using the recently updated values of pressure 

and mass flux through the face from equation 2.3. 

3. The pressure correction continuity equation is solved using the velocity field found in 

step two. 

4. The mass flux, pressure, and velocity field are updated using the pressure from step 3 

5. The convergence of the iterative scheme is checked. 

 

This sequential type algorithm is considered to be efficient when it comes to computer 

memory. Only the equations that need to be discretized are stored one at a time. 

 The momentum equations are solved by the implicit method whose numerical 

stability condition dictates the scheme as unconditionally stable [33]. However, because 

the selection of a large time step leads to an increase in truncation errors [33], a 

simulation time step 1x10
-6

 seconds is used. The time step is selected to satisfy the 

absolute convergence criterion of 1x10
-3

 for continuity, x and y components of velocity, 

and volume fraction of the water. Tecplot [34] is used to generate all CFD illustrations 

for this work. 
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3 CHAPTER THREE: STRAIGHT CHANNEL WITH ZERO 

GRAVITY 

 

 The droplet of a two-dimensional, viscous, Newtonian, and incompressible fluid 

surrounded by the air is studied in a channel where the droplet is suspended. The 

channel is located in the center of the computational domain, and the channel width and 

length are 2r and 2L, respectively (see Figure 2.1). RU and RL are the upper and lower 

cap radii of the water drops. 

 

3.1 Mathematical Model 

 

 In order to estimate steady-state (or equilibrium) solutions of a droplet in the 

channel, we first consider a non-gravity case, g=0, where the Young-Laplace equation 

describes the relationship between the pressure difference across the two droplet caps 

and the size of the droplet caps [22, 35]. In a dimensional form, it is written as follows: 

 

     
 

  
 

 

  
 ,              (3.1) 

 

where    is the pressure difference, pL-pU, in a droplet, and   is the surface tension, 

which is independent of the curvature R. This relationship suggests that the droplet state 

will be equilibrated at   =0, which leads to RU=RL. Thus, we will find the equilibrium 

flow states that satisfy the condition RU=RL. The flow state will be described in terms of 

the center of mass of the droplet, Y, in the y-direction. This parameter is used as a 
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measure of the asymmetry of a droplet state; when Y=0 the droplet is symmetric. The 

normalized center of mass is defined as        . Here, Ycm can be computed by CFD 

simulations or by an analytical model, assuming that the droplet-air interfaces remain 

circular arcs. The analytical dimensional expression for the center of mass of the droplet 

state is derived in the Appendix-A and is written as follows 

  

  
 

  
        

 

  
       ,         (3.2) 

 

where all symbols on the right hand side of the above equation are defined in the 

appendix.  Note that these terms depend on    and    in Equation (A-4) (see Figure A-

1). For g=0,       condition that is needed to achieve steady-state induces       

or         . When      ,       and       which leads to the symmetric 

state (     ). On the other hand, when         ,       or      , which 

are asymmetric states. These two cases show that the asymmetric states may be 

established in two possible ways, which are opposite to each other. Note that when 

       ,        
   

 
, where               . For convenience, the 

normalized total droplet cap volume, V, is defined as 

 

  
     

   
 

     

   
.         (3.3) 

 

Here, V = 1 at the critical volume. These solutions, based on the above analytical 

expressions, demonstrate that only the symmetric states exist when    . However, 
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when    , steady asymmetric states exist in addition to an unsteady symmetric state 

see Figure 3.1.  

 

 
 

Figure 3.1 Analytical expression of the center of mass Ycm shows a pitchfork 

bifurcation at V=1.   

 

 

 A numerical approach to evaluating the stability of each droplet state for various 

droplet sizes is to compute the convergence rate of Hamiltonian,   , of the systems. The 

Hamiltonian is defined as the sum of the kinetic energy and the potential energy 

associated with the system [36]: 

 

                     (3.4) 

 

where the kinetic energy (Ke) and the potential energy (Pe) are defined as:  
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   , and                (3.5) 

where  , h, v, and a are the droplet mass, the distance between a reference state and the 

location of the center of mass of the droplet, the velocity, and acceleration of the droplet 

with respect to the center of mass, respectively.   

The Hamiltonian    is normalized using the liquid surface tension   and the channel half 

width r as follows 

   
 

   
           (3.6) 

The time,  , throughout this work is normalized using the liquid density  , channel half 

width r, and the liquid surface tension  , using this following relation: 

   
 

      
           (3.7) 

   

3.2 CFD Model Validation 

  

 The sensitivity of the CFD simulations to grid refinement and time step 

reduction is investigated. The investigation concentrates on V = 0.5. Discussions on the 

droplet's behavior, in this case, are described in the Results and Discussions section. For 

the model validation, the droplet state is initially perturbed, the disturbance decays in 

time, and the droplet returns to a symmetric state. Meshes with 5000, 15000, 25000, 

50000, and 100000 nodes are used in the grid refinement analysis. Results of the center 

of mass of the droplet at the equilibrium states obtained from the simulations using the 

various meshes are shown in Figure 3.2(a). The figure demonstrates the convergence of 
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the computed steady-state results with mesh refinement. Note that the ideal location of 

the center of mass is zero since the equilibrium state of the droplet is a symmetric state 

for V≤1. It is found that the meshes with 15000 and 25000 nodes provide sufficient 

accuracy for the computations when compared with computations using the more 

refined mesh with 100000 nodes and the coarse mesh with 5000 nodes. The absolute 

values of the variations of steady-state locations of the center of mass of the droplet 

from the ideal location are about 0.5 and 0.4% for 15000 and 25000 nodes, respectively.  
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Figure 3.2 (a) Center of mass (normalized) at the equilibrium state with respect to the 

number of nodes for V=0.5. (b) Decay rate (normalized) with respect to the number of 

nodes for V=0.5. 

 

Results of the decay rate of time-history plot of Hamiltonian of the system obtained 

from the CFD simulations based on the dynamics of the center of mass location are also 
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investigated (see Figure 3.2(b)). The dynamics of a Hamiltonian near a steady-state may 

decay exponentially [36]. In studying the decay rate of the system, a suitable mode of 

the following form: 

 

                                   (3.6) 

 

is considered where A is an amplitude of the mode and    is the non-dimensional decay 

rate of the Hamiltonian. The parameter,  H, is evaluated at various times during a run by 

post processing the fluent results. Details of the discussion of the decay rate obtained 

from CFD simulations are described in the Results and Discussion section. 

 The Figure 3.2 demonstrates the convergence of the computed dynamic 

parameters with mesh refinement. It is found that the mesh with 25000 nodes provides 

sufficient accuracy for the computations when compared with computations using the 

more refined mesh with 100000 nodes and the coarse mesh with 15000 nodes. The 

absolute value of the variations of decay rate compared with the value obtained from 

100000 nodes is about 1.5% for 25000 nodes. Numerical results for the above 

mentioned test cases show sufficient accuracy for the computations with 25000 nodes 

for both static and dynamic tests when even finer meshes were used. Moreover, the 

simulation time is about 30% of the time required for the mesh with 100000 nodes. 

Therefore, we choose to use 25000 nodes in our CFD simulations. 
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Figure 3.3 Mesh refinements over the corners. 

 

 In order to be capable of simulating various droplet sizes, two sizes of the 

computational domain have been prepared through the use of GAMBIT [20]. A larger 

domain is for simulations with larger droplet sizes V > 1.6, and a smaller domain is for 

smaller droplets, V ≤ 1.6. Dimensions, node and cell numbers of both computational 

domains are summarized in Table 3.1. Figure 3.3 shows a local mesh grid refinement 

that is introduced near the channel walls and corners to reduce singularities and improve 

interfacial accuracy.  

 

Table 3.1 Domain properties: Domain 1 for larger droplet volumes, Domain 2 for 

smaller droplet volumes. 

 Dimensions (mm) Number of Nodes 

(≈) 

Number of Cells 

(≈) 

Domain 1 (large) 15.8 x 9.6 32000 45000 

Domain 2 

(small/intermediate) 

7.8 x 3.7 25000  27000 
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3.3 Results and discussion: 

 The dynamics of various drop size cases in a channel for both V < 1 and V > 1 is 

studied using CFD. In the first case, a V = 0.5 is studied using the smaller domain 

(Domain 2 in Table 3.1) for computational efficiency. In this case V < 1, and the 

symmetric state is unconditionally stable to any disturbance. The initial large 

disturbance, Ycm(  =0)=0.4 is introduced on the droplet, and the schematic view is 

shown in Figure 3.4(a). It can be seen that even a large asymmetric disturbance is 

relatively quickly decayed with an oscillatory motion and dissipated due to the viscosity 

of the fluids (see Figure 3.4(b)). After approximately   =3, the droplet returns to a 

symmetric state and stays there as expected (see Figure 3.4(c)). Similar droplet 

dynamics were observed with any other disturbance sizes of V<1. However, the 

simulation time taking the disturbance to decay becomes longer by increasing the initial 

disturbance size and shorter when decreasing the drop sizes. These phenomena have 

been observed in the analytical and experimental studies mainly by Theisen et al [8]and 

Hirsa et al [5].   
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Figure 3.4 Droplet states at V=0.5 (a) Initial state at   =0, (b) Intermediate state at   =1, 

(c) Final state at   =3. 

 

 Figure 3.5(a) shows a time-history plot of the center of mass of the droplet for V 

=0.5. The disturbed symmetric droplet state for Ycm(  =0)= 0.4 is used as the initial 

condition. The time-history plot shows a damped oscillatory motion with exponentially 

decaying amplitude. The oscillatory amplitude is large at the beginning depending on 

the size of initial disturbance, and the oscillatory motion is damped due to the viscous 

dissipation in the fluid, and the droplet returns to a symmetric state in time.  
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Figure 3.5 (a) Temporal change of center of mass at V=0.5. (b)Temporal change of 

center of mass at V=2.5 and V =4.5. 

 

 

 To demonstrate the convergence to a symmetric state at V = 0.5, the time history 

plots of a Hamiltonian of the system are presented in Figure 3.6(a). It can be seen that 

for the two cases of initial disturbances, Ycm(  =0)=0.4 and 0.2, at V = 0.5 the dynamics 
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of the disturbance are similar: after a nonlinear transient and when the disturbance 

becomes sufficiently small,    decays exponentially,          , and with almost the 

same rate of decay (          for both values of initial Ycm. 

Also shown in Figure 3.6(b) are time-history plots of the H for V=0.5 and 0.95. The 

comparison between          for       and          for        shows that 

the decay rate of a disturbance decreases as V increases toward the critical value and the 

flow loses its stability characteristics. 
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Figure 3.6 (a) The time history plots of the Hamiltonian at V=0.5 with initial 

disturbances Ycm(  =0)=0.4 and Ycm(  =0)=0.2 (b) The time history plot of the 

Hamiltonian at V=0.5 and V=0.95 with an initial disturbance Ycm(  =0)=0.2. 
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 Now, cases with the droplet V>1 are studied. For V>1, both smaller and larger 

domains are used for 1<V≤1.6 and V>1.6, respectively. The initially symmetric droplet 

state for V=1.4 at Ycm(  =0)=0 is illustrated in Figure 3.7(a). The liquid droplet slowly 

transit to asymmetric state (Figure 3.7(b)), and after approximately   =6 the droplet 

reaches to a stable asymmetric state (see Figure 3.7(c)). Similar dynamics were also 

observed at any other V > 1. However, the simulation time taking the disturbance to 

decay becomes shorter as increasing the initial disturbance size and longer as increasing 

the drop size. These transition phenomena have been also observed in the analytical and 

experimental studies by Theisen et al [8] and Hirsa et al [5]. 

 

 
 

Figure 3.7 Droplet states at V=1.4 (a) Initial state at   =0, (b) Intermediate state at   =1.6 

(c) Final state at   =6 

 

Figure 3.5(b) shows a time-history plot of the center of mass of another two droplet 

cases of V =2.5 and 4.5. The initial condition is symmetric state (Ycm=0), the numerical 
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inaccuracy and round-off errors generate a very small asymmetric droplet disturbance 

for both cases. The time-history plots show the relatively small asymmetric disturbances 

that grow slowly in time and evolve in a nonlinear oscillation process. This oscillatory 

motion is damped due to the viscous dissipation in the flow, and the droplets for both 

cases reach steady asymmetric states. According to the figure the amplitudes of 

oscillatory motions are larger for larger V which affect a difference in the time it takes 

to damp the oscillatory motions to the steady asymmetric states. We also observe that 

the growth of the initial transition processes is faster for V=2.5 than that for V=4.5 

which affects a difference in the time it takes to the asymmetric states. More discussions 

regarding the initial growth rate will be described based on the growth rates of 

Hamiltonian. 
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Figure 3.8 (a) The time history plot of the Hamiltonian at V=1.4 and 4.5. (b) The time 

history plot of the Hamiltonian at V=1.4 and 4.5. 

 

 The time history plots of a Hamiltonian for V>1 are shown in Figure 3.8(a) and 

Figure 3.8(b). Figure 3.8(a) describes the early growth rate of two droplet volumes 

V=1.4 and V=4.5 from symmetric states, and they are         for       and 

        for      . For 0<V<1.8 We have observed that the growth rate becomes 
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larger with droplet size.  The nonlinear effects become important as V increases above 

1.6. Then the growth rate reaches a maximum at V = 1.8 (         and decreases for 

higher values of V. It is also observed that the growth of the Hamiltonian at V=4.5 starts 

to appear at a later time, around   =1.6. This is due to the time it takes for large droplets 

to create instability out of numerical errors in the symmetric solution and the slow 

reaction of the larger mass of the droplet.  

 The decay rates of Hamiltonian,   , for the same two droplet volumes, V=1.4 

and 4.5 are shown in Figure 3.8(b). They are          and       for       and 

   , respectively.  We found that the decay rate becomes smaller as the volume size, V, 

increases. Then, the decay rate reaches a minimum at Vmin =1.8 (          and 

increases for higher V.  
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Figure 3.9 Stability characteristics of (a) the symmetric and (b) asymmetric states as 

functions of V. 

 

 The results of the growth and decay rates for various other droplet sizes are 

summarized in Figure 3.9(a) and (b). In Figure 3.9(a), it is found that    for symmetric 

states grows monotonically with V, up to V=1.8. Moreover,      when V<1 and 
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     when V>1. The parameter    has a maximum at V=1.8 and is less for higher 

values of V. This is due to the slow reaction of the larger mass of the droplet. It is found 

that    is positive in the range 1<V<13. Note that when V=13, the droplet cap volumes 

become too large for the droplet surface tension to sustain their shapes. Thus, there is a 

collapse of the larger cap of the droplet. However, such large V cases are beyond the 

scope of this work. 

 Figure 3.9(b) shows that    for asymmetric states is negative for all V>1. The 

   decays monotonically with V, reaches a maximum decay rate at V=1.8, and becomes 

less for higher values of V. For V > 1.8 we observed that the time taking to complete 

the transition process becomes longer as V increases because both the growth rates from 

the symmetric states and the decay rates to the asymmetric states become slower. 

 The pitchfork bifurcation diagram obtained from the analytical model in 

Equation (3.2) is described as solid lines in Figure 3.10. It shows that the droplets have 

steady symmetric solutions for all V<1, and steady asymmetric solution for V>1. There 

also exists a Vcr (equals  r
2
) of the droplet where asymmetric states suddenly bifurcate 

from the branch of symmetric states.  
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Figure 3.10 Comparison of the normalized center of mass obtained from the analytical 

expression with the simulation results. 

 

 The transition phenomena observed by CFD simulations can be explained by the 

Young-Laplace equation (3.1). A Large radius of curvature will result in a lower 

pressure across the droplet, and a lower radius of curvature will result in a higher 

pressure, while the interfacial tension stays constant. In the first case V<1, the droplet is 

initially in a symmetric state (RU=RL). When the droplet state is slightly disturbed (see 

Figure 3.11(a)), the droplet state becomes slightly asymmetric, and the upper radius of 

curvature R'U becomes shorter than that of the lower R'L. According to the Young's 

Laplace relationship, the pressure at the upper cap becomes higher than the one at the 

lower, and this pressure difference induces a driving force to move back the droplet to 

the initial symmetric state. 
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Figure 3.11 A symmetric droplet at state (blue) and a slightly perturbed state (red 

dashed lines) for (a) V<1, (b) V>1, (c) An asymmetric droplet state (blue) and a slightly 

perturbed state (red dashed lines) for V>1 

 

In the second case we consider that the droplet is initially symmetric (RU=RL) 

and that the cap volume is greater than the critical volume V>1 (see Figure 3.11(b)). 

Then, the droplet state is disturbed and becomes slightly asymmetric such that the upper 

radius of curvature R'U becomes longer than the lower one R'L. Based on the Young's 

Laplace relationship, the pressure at the lower cap becomes higher than the one at the 

upper, and this pressure difference induces a driving force to move the droplet to upper 

side that leads the droplet to become more asymmetry.  

Finally, we consider that the droplet is in a steady asymmetric state, RU=RL (see 

Figure 3.11(c)) and that the cap volume is greater than the critical volume V>1. When 

the droplet is slightly disturbed and becomes more asymmetric, the upper radius of 

curvature R'U becomes shorter than the lower one R'L. This leads that the pressure at the 

upper cap becomes higher than the one at the lower, and this pressure difference 

induces a driving force to move back the droplet to the steady asymmetric state. 
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Therefore, the droplets do not escape from the channel in the range of droplet volumes 

we have simulated. 

 From the above discussions, we found that when V<1 the symmetric state is 

found to be the only solution of the problem. However, when V>1 the symmetric state 

becomes unstable (described as a dashed line in Figure 3.10) and the two asymmetric 

states become the stable solutions. This discussion is verified by the CFD simulation 

results in Figure 3.10. It shows an excellent agreement between the analytical solutions 

and simulation results, especially near the critical volume. As V is increased above 3, 

the droplet asymmetry predicted by the analytical model becomes slightly larger than 

those found in the numerical simulations (within less than 2% deviation). The reason for 

the deviation might be related to the assumption of the circular shape of the droplet cap 

in the model. It is more difficult for the droplet cap to maintain its circular shape as V is 

increased.  
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Figure 3.12 Extreme lateral tilting in droplet shape at a large droplet volume (V=4.5, 

  =8.5) 

 

 In a few simulations, we noticed that as the droplet reaches the steady state the 

droplet interface thickness (which is the transition region between liquid and air phases)  

starts to become asymmetric like the one that is shown in the right side of the lower cap 

of the droplet in Figure 3.4(c) and the left side of the lower cap of the droplet in Figure 

3.7(c). In addition, there are also a few cases where a tilting of droplet in a lateral 

direction is observed, such as the one shown in upper droplet cap in Figure 3.4 (b) and a 

more extreme tilting case is shown in Figure 3.12. The reasons behind these 

observations are, first, the asymmetric nature of the mesh used for these simulations, 

and second, the parallel algorithm that FLUENT uses to divide the domain in order to 

perform the iteration [20]. When the mesh is asymmetric, the location of nodes are not 



49 

equal between the centerline of the droplet body, and that leads to different error 

generation along the two sides of the droplet centerline. When parallel processing is 

used, every processor does the iterating task differently due to the difference in 

truncation and round-off of data output in each processor. This leads to a different error 

accumulation and residual results between processors [37]. Consequently, there is a 

slight asymmetry that will grow as the simulation time increases. Also, according to 

reference [38] the presence of simulation noise that comes from the numerical scheme, 

errors from numerical round-off, and small differences in tessellation, which is the 

creation of 2D  mesh using a repetition of geometrical shape with no overlapping and 

no gaps, cause the simulation models that are in fact symmetric to lack perfect 

symmetry. Figure 3.13 shows that when a symmetric mesh is used the problem with the 

interface-thickness asymmetry is eliminated. However, Figure 3.14(a) shows that when 

the symmetric mesh is used with parallel processing, the lateral movement of the 

droplet still clearly appears. This problem is eliminated when the same symmetric mesh 

is used with a single processor (Figure 3.14(b)). The simulation time using a single 

processor with a symmetric mesh takes a tremendous amount of time, at least a week. 

Therefore, parallel processing with local refinement is used throughout this work. The 

observed asymmetric cases may have a small effect on the droplet dynamics, but it was 

observed that it has no significant effect on the droplet final state (as shown on Figure 

3.15), and the droplet final state is what is needed for this research work. 
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Figure 3.13 The final states of (a) V=0.5 and (b) V=1.4, (illustrated initially in Figures 

3.4(c) and 3.7(c)) show interface symmetry when a symmetric mesh is used. 

 

 

Figure 3.14 Droplet state at   =3.15 for V=1.7 (and  =0.106, which will be discussed 

later in Chapter 5) using a symmetric mesh with (a) parallel processing, and (b) single 

processing.    
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Figure 3.15 Temporal change of center of mass for V=0.5 for both symmetric and 

asymmetric mesh, showing that the final state for both cases is the same.  
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4 CHAPTER FOUR: CONTRACTING CHANNEL WITH ZERO 

GRAVITY 

 

 The symmetry-breaking state at the critical volume, Vcr, is expected to be a 

structurally unstable state, i.e., it is expected that the presence of even a slight degree of 

asymmetry in the experimental apparatus or in the numerical schemes changes the 

pitchfork bifurcation diagram into two separate branches of flow states. The theoretical 

studies of Slobozhanin et al demonstrate that the pitchfork bifurcation is sensitive to 

imperfections of geometry. This chapter provides the analysis of the effects of slight 

contraction of the channel geometry on the droplet behavior. 

 

4.1 Mathematical Model 

A droplet of a two-dimensional, viscous, Newtonian and incompressible fluid 

suspended from a contracted 2-D channel is investigated. Similar to the straight one, the 

channel is located in the center of the computational domain, and its width is 2ru on the 

upper side of the channel, and 2rL on the lower side of the channel. The length of the 

channel is 2L. RU and RL are the upper and lower cap radii of water drop curvatures, 

respectively. A contracting channel with the contraction ratio, ε, where   
     

  
, is 

considered (see Figure 4.1). 
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Figure 4.1 Contracting channel 

 

The steady state solution of the contracted channel droplet is calculated from the 

capillary force using the Young-Laplace equation.  Starting by writing the capillary 

force equation 

 

               .          (4.1) 

 

Rewriting the Equation 4.1 in terms of the Young-Laplace relationship  
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 .         (4.2) 

 

At equilibrium, the right hand side of equation 4.2 is equal to zero 

 

     
 

  
   

 

  
   ,         (4.3) 

 

and after rearranging we get the relation between RU and RL  as follows: 

 

   
  

  
  .           (4.4) 

 

In terms of the contraction ratio   equation 4.4 is written as  

 

          .          (4.5) 

 

For the contracting channel, the same procedure as of that in the straight channel is 

used, where the relation between    and    is used to find the droplet state using the 

center of mass equation   found from Appendix B 

  

  
 

  
        

 

  
        

 

   
         .     (4.6) 
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The center of mass in Equation 4.6 is normalized with the upper channel width, rU, 

which is kept fixed for all the contraction run cases. That is Ycm=Y/rU.  The center of 

mass dependence of the droplet volume is discussed in the next section.  

4.2 Results and discussion: 

The analytical expression to compute the center of mass of the droplet at the 

steady state is studied here. The details of the derivation of the model are in Appendix 

B. The model shows that for any contraction ratio    , the bifurcation diagram 

deviate from its pitchfork nature for the straight channel case into two separate 

branches, a primary and a secondary branch. Note that when    , the channel is 

contracted in an opposite direction.   

 

Figure 4.2 Analytical solutions for      0.10 and 0.20. 
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Figure 4.2 shows three analytical solutions for three contracting channel cases;   

    0.10, and 0.20. From the figure we see the case for the straight channel, ε=0, which 

was discussed in Chapter 3. It was observed in that chapter that the symmetric state for 

V>Vcr is the unstable state, and the asymmetric state is stable. As the contracting ratio 

increases above zero, ε=0.10 and 0.20, we see that the critical volume Vcr is shifted to 

the right to become a modified critical volume Vmcr, and separate branches start to 

appear; a primary and secondary branch. The derivative of the center of mass Ycm with 

respect to the cap volume at the modified critical volume Vmcr is equal to infinity, 

         .  The primary branch shows a smooth transition from a small-amplitude 

of a nearly symmetric state to a large-amplitude asymmetric state. When droplet cap 

volume is close to zero, V≈0, the location of the center of mass Ycm gets a little larger as 

the contraction ratio ε increases. The reason for this non-zero value is that the 

calculation of the center of mass, when V is near zero, considers only the volume of the 

droplet inside the contracted channel, which is slightly asymmetric depending on ε. On 

the other hand, when the droplet cap volume is large, V>>1, the location of center of 

mass becomes similar to that of the straight channel, because as the cap-volumes get 

much larger, the volumes inside the channel become negligible. In Figure 4.2, we also 

noticed that the transition of the primary branch near the critical volume, Vcr, becomes 

smoother as ε gets larger. The secondary branch, in the other hand, consists of two 

droplet states; small and large-amplitude states that bifurcate from the modified critical 

volume Vmcr, where the value of Vmcr is larger than Vcr. As the contraction ratio ε 

increases, the modified critical volume, Vmcr, is increased. When droplet volume 
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increases, the center of mass location at the large-amplitude branch becomes similar to 

that of the straight channel, the reason for this is because when the droplet cap volume 

becomes significantly large, the volume of the liquid within the contracted channel 

becomes negligible, and therefore it becomes similar to that of the straight channel of 

ε=0. However, this similarity becomes untrue as the droplet cap volume, V, reaches the 

modified critical volume, Vmcr. For the small-amplitude branch, it is noticed that it 

deviates further from the symmetry line as the droplet total cap volumes, V, increase. 

This deviation rate with respect to the droplet cap volumes increases as the contraction 

ratio ε becomes larger. The reason for this deviation is that when ε becomes large, the 

balance in the radius of curvature of equation 4.3 will be valid only when one of the 

droplet caps appears mostly on one side of the channel. The capillary equilibrium at 

Equation 4.2 will also be valid at that location.   

 In order to verify the analytical solution and determine the unstable state, three 

CFD cases of ε=0.20 are used at two different volumes and three different settings. The 

first case has a droplet volume of V=1.6 and an initial center of mass of Ycm(  =0)=-1.22 

(Figure 4.3(a)). At that location, the upper radius of curvature is infinite and the lower 

one is finite. According to Equation 4.2, the resultant upward force will be only from 

the bottom cap droplet. In Figure 4.2 we see that V=1.6 is below the modified critical 

volume for ε=0.20, therefore, there exist only one asymmetric solution at the primary 

branch at Ycm=1.14. In Figure 4.3 (b) we see a transition of the droplet from lower 

asymmetric state to the upper asymmetric state at   =1.1. Figure 4.3 (c) shows the final 

steady-state of the droplet at the primary branch, and it is located at a center of mass of 

Ycm=1.13 at   =4. The analytical result is in a good agreement with the CFD result. This 



58 

result shows that the equilibrium state at the primary branch is a stable state and that 

there is no equilibrium droplet state at Ycm  < 0.   

 

 

Figure 4.3 Droplet states for        at V=1.6 with Vmcr=1.9 a) Initial state at   =0, (b) 

Intermediate state at   =1.1, (c) Equilibrium state at   =4. 

 

 

 The second case is for V=2.5 and the center of mass is at Ycm(  =0)=-0.55, which 

is slightly below the low-amplitude secondary branch  (see Figure 4.4(a)). According to 

the stability diagram in Figure 4.2, that center of mass location is just below the 

analytical small-amplitude line of the secondary branch, where the analytical center of 

mass location for that droplet volume is Ycm=-0.60. Therefore, at that location the radius 

of curvatures are not in equilibrium as in Equation 4.4. According to Equation 4.2, this 

non-equilibrium force balance implies that the upper capillary force is larger than the 

lower one. Therefore, the difference in capillary forces shifts the droplets to the lower 

direction, where it will eventually reaches equilibrium steady state.  Figure 4.4 (b) 

shows the transition of the droplet from its unsteady location at   =1.9 toward its stable 
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steady-state location in Figure 4.4 (c) at Ycm=-1.48 and   =4. From the analytical results, 

the droplet's center of mass anticipated final location is on the large-amplitude 

asymmetric line of the secondary branch, where the final equilibrium state is at Ycm=-

1.41. The CFD result showed a good agreement with the analytical one. These results 

show that the small-amplitude state may be the unstable state, and the large-amplitude 

state is the stable state.  

 

 

Figure 4.4 Droplet states for        at V=2.5 with Vmcr=1.9 a) Initial state at   =0, (b) 

Intermediate state at   =1.9, (c) Equilibrium state at   =4. 

 

 

 The final case is for the same volume as the second case, but with an initial 

location of center mass that is slightly above the small-amplitude equilibrium state. 

Figure 4.5 (a) shows the initial location of a droplet suspended on channel with 

contracting ratio of ε=0.20. The initial center of mass is at Ycm(  =0) =-0.13. At that 

state, the radius of curvatures are not balanced as in Equation 4.5, therefore, the upward 

capillary force in Equation 4.2 leads the droplet to transit (see Figure 4.5 (b)) to the 
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equilibrium steady-state of the primary branch as shown in Figure 4.5 (c) at Ycm=1.58. 

Analytically, the location of the center of mass at the equilibrium steady-state for this 

case is Ycm=1.60. The CFD results once again match very well the analytical ones, and 

they show that the small-amplitude equilibrium state of the secondary branch is unstable 

whereas the large-amplitude of the primary branch is stable.    

 

 

Figure 4.5 Droplet states for        at V=2.5 with Vmcr=1.9 a) Initial state at   =0, (b) 

Intermediate state at   =1.8, (c) Equilibrium state at   =6. 

 

 

 Additional simulation results for various droplet cap volumes are shown on 

Figure 4.6. Two CFD cases of contraction ratio ε were used; ε=0.10 and 0.20. Figure 

4.6 shows that there exists CFD results above the modified critical volume, Vmcr, for 

both primary and secondary stable state branches. For volumes less than Vmcr, CFD 

results exist only on the primary branch. For the unstable state of the secondary branch, 

we see that there are no equilibrium CFD results. Moreover, it is difficult to obtain CFD 

results at the modified critical volume, Vmcr, of the secondary branch, because any 
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numerical disturbance will have a large effect on the stability at that location, which 

leads the droplet to shift to the stable steady state at the primary branch. Note that the 

secondary-small amplitude state exists mathematically obtained from Equations 4.5 and 

4.6. At that location, the droplet radii of curvature RU and RL has the relation of 

Equation 4.5, that is           . When the droplet state is disturbed,    changes 

to either smaller or greater than        . Thus, the pressure at the lower cap changes 

to either larger or smaller than the upper cap, and this pressure difference induces a 

driving force to move the droplet to either the stable asymmetric state of the primary 

branch or the secondary branch. All CFD results show a good agreement with the 

analytical ones for both contraction ratios. These results lead to the conclusion that the 

large-amplitude solutions are the stable state, and the small-amplitude ones are the 

unstable state.   
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Figure 4.6 Analytical expression (solid line for stable, dashed line for unstable), and 

CFD solution (dotted marks) of center of mass for        and        

 

 An explicit explanation of the physical mechanism of the droplet behavior is 

illustrated in the next paragraphs. In the first case, when V<Vmcr, and the droplet's 

center of mass location is at  the unsteady state, as shown in Figure 4.7.  
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Figure 4.7 Initial condition starting from an unsteady state. 

 

At that state, the upper radius of curvature is infinite, and the lower radius of curvature 

is finite. According to Equation (4.2), the resultant force is equal to: 

        
 

  
   

 

  
 ,         

this leads Equation (4.2) to become 

        
 

  
   , 

and the resultant force is positive.  It shifts the droplet in the upward direction with the 

above capillary. 

Without any perturbation or disturbance, the resultant force will push the droplet to 

reach its final steady state as shown in Figure 4.3(c). At that state, Equation 4.5 applies, 

and the resultant force is equal to zero, 
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   .        (4.3) 

 The second case is for V>Vmcr, and the droplet's center of mass location is 

starting at the unstable  secondary branch location. At that location the droplet is at 

equilibrium, Equation (4.5) applies, and therefore Equation (4.3) also applies.  

 
Figure 4.8 Perturbation is introduced to an unstable droplet in an equilibrium state.  

 

As the droplet is perturbed as shown in Figure 4.8, the upper radius of curvature 

becomes smaller, R'U < RU, and the lower radius of curvature becomes larger, R'L > RL. 

Therefore, according to Equation (4.3) the resultant capillary force becomes negative as 

follows 

     
 

  
 
   

 

  
 
   , 
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and that negative resultant force will leads the droplet's center of mass location to move 

toward stable equilibrium secondary branch, where  

            , and 

     
 

  
 
   

 

  
 
   .  

 The final case is also for V>Vmcr, and the droplet's center of mass is at an 

equilibrium stable state of the secondary branch. At that location, both Equation (4.3) 

and (4.5) apply. When the droplet is perturbed in the lower direction (see Figure 4.9), 

the radii of curvature both    

  

 

Figure 4.9 Perturbation is introduced to a stable droplet in an equilibrium state. 

 

become larger. However, the amount of increase for the radius of curvature is larger for 

the upper radius than that for the lower one. That is, R'U >> RU, and R'L>RL. Therefore, 
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R'U> R'L, and this leads to have the first term of Equation 4.3 to become larger than the 

second term. Therefore, when the lower perturbation occurs 

     
 

  
 
   

 

  
 
   , 

and that positive resultant force will push back the droplet' center of mass to return to 

the stable equilibrium state of the secondary branch.  
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5 CHAPTER FIVE: STRAIGHT CHANNEL WITH GRAVITY 

 
 In this chapter, a droplet of a two-dimensional, viscous, Newtonian, and 

incompressible fluid surrounded by air is studied in a channel where the droplet is 

suspended and under a variable gravitational force. Similar to the previous chapters, the 

channel is located in the center of the computational domain, and the channel's width 

and length are 2r and 2L, respectively (see Figure 3.2 in chapter 3).  RU and RL are the 

upper and lower cap radii of curvatures, respectively. 

 

5.1 Mathematical model 

 Similar to the contracting channel case, the presence of gravity, g>0, alters the 

equilibrium relationship between RU and RL. In order to consider the effect of gravity 

on the droplet stability, we start by performing a vertical force balance on the droplet 

system 

 

               ,        (5.1) 

 

where        is the inertia force of the droplet and depends on liquid density  , the total 

droplet volume    , and the acceleration of the center of mass location    . The inertia 

force term is written as follow: 

 

           
     

   
.         (5.1a) 
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The first term of the right hand side of equation (5.1),   , is the capillary force that 

resulted from the two droplet caps. The parameter    can be expressed as functions of 

the channel half width   and the pressure difference between the droplet caps     

   ,  

 

            .                   (5.1b) 

 

With the Young-Laplace relation, the capillary force can also be written as 

 

        
 

  
 

 

  
 .         (5.1c) 

 

In Equation (5.1),   , which is the viscous force along the channel walls per unit depth, 

is written as 

 

       
 

  
  ,                   (5.1d) 

 

where      
     

  
 
 

 is the shear force along a wall,   is the channel half length,   is 

viscosity, and      is velocity in vertical direction. Finally, the gravitational force is 

denoted as   , and it is expressed as 

 

        ,          (5.1e) 
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where VT is the total droplet volume.  Rewriting equation (5.1), we get 

 

    
     

   
     

 

  
 

 

  
      

     

  
 
 

 

  
       .    (5.2) 

 

As the system approaches to the final equilibrium state, terms associated with velocities 

and accelerations will be diminished. Thus, equation (5.2) yields 

 

      
 

  
 

 

  
      .        (5.2a) 

 

Re-arranging the above obtains the relationship between    and   , 

 

   
 

 

  
 
    

   

  .                   (5.2b) 

 

Since total volume consists of two droplet cap volumes      and the channel volume 

  , equation (5.2 b) is then written as 

 

   
 

 

  
          

  

   

  .        (5.2c) 

 

When the radius of curvature   is normalized by the channel half width  , equation 

(5.2b) becomes 
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,                  (5.2d) 

 

where   is a design parameter defined as 
     

 
. The parameter   depends on the 

geometry of the system and fluid properties. Thus, it remains unchanged for each design 

case. The parameter   and the bond number B has a relation of     , where c is a 

coefficient that describes the ratio of the channel half width, r, and height, L. On the 

other hand,   is a run parameter defined as 
      

   
. The run parameter varies with the 

droplet cap volume.  

From equation (5.2d), the maximum beta value,     , occurs when      goes to 

infinity, or  

 

      
 

     

   ,            (5.3) 

 

where the    subscript denotes as an initial value. 

 

5.2 Results and discussion  

In a preliminary study for g=0,   and   are equal to zero. Thus,       (see 

Equation  (5.2d). The analytical solution is shown in Figure 3.9 and fully explained in 

Chapter 3. As gravity is introduced,   and   values become positive. The first case is for 

g=9.81 m/s
2
. The fluid properties (   ) are kept the same as in the preliminary case 

(g=0), thus for g=9.81 m/s
2
,        . Corresponding analytical and CFD results are 

shown in Figure 5.1. In this case, there exists only one stable state that gradually 
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changes from nearly symmetric to asymmetric state as volume increases to V=2.2. The 

volume V=2.2 in this case is called the primary branch maximum volume Vp_max, and it 

depends on      as VU approaches to zero (or     approaches to infinity). This 

analytical prediction has been verified by CFD results, represented as dotted marks 

along the analytical stable solution. Note that the CFD solution starts to deviates from 

2.2<V<3.4, the reason for this will be explained later. For V>3.4, there exists no CFD 

solution because the mass of the droplet is sufficiently large that the capillary force 

cannot keep the droplet pinned in the channel. 

 

Figure 5.1 Analytical expression (thick solid line), and CFD solution (dotted marks) for 

        

 

 For cases with    , the bifurcation diagram will shift from its symmetric state 

at Ycm=0. In an effort to determine the existence of the secondary branch state, the value 
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of   is varied. Four values of   are tested in our study;                       and 

0.208. Figure 5.2 shows the analytical as well as the CFD solution for the         

value, which corresponds to a gravity of 2 m/s
2
. The figure shows that the critical 

volume for g=0 is shifted to Vmcr, where Vmcr=1.38. The primary state extends from 

V=0 to Vp_max=8.62 (as it will be shown later on Figure 5.3). Starting from the modified 

critical volume Vmcr, the secondary state bifurcates into stable and unstable states. The 

upper branch of the secondary state is stable, while the lower branch (dashed line) is an 

unstable state. The discussions of stability of the droplet state using CFD will be 

described later in this chapter.  In the unstable state, Equation (5.2d) still holds, but the 

droplet cannot maintain its state due to numerical inaccuracy that creates a slight 

disturbance, which leads to shifting the droplet to either the primary or secondary 

asymmetric stable state. All solutions have been tested by CFD simulations (dotted line 

in Figure 5.2), and they are in close agreement with analytical solutions. At Vmcr the 

numerical disturbance will have a significant effect on the stability of the center of 

mass, therefore, it is difficult to obtain CFD results at that location.   
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Figure 5.2 Analytical expression (thick solid line), and CFD solution (dotted marks) of 

center of mass for         

   

 

 The analytical solutions for the four   cases, which are verified with CFD, are 

shown in Figure 5.3. In the figure, there are 4 primary lower branches (Ycm<0). The 

primary maximum volume, Vp_max, that the droplet can sustain while Ycm<0, increases 

with decreasing the value of  , as indicated in Figure 5.3. Solutions of the secondary 

branch are in a form of airfoil-like closed loops, where the leading edge of the loop is 

the modified critical volume Vmcr. The large-amplitude asymmetric state along the 

secondary branch is stable, and the small-amplitude asymmetric state along the 

secondary branch is unstable. Note that these states meet again at the trailing edge of the 
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loop, which is defined as a secondary maximum volume Vs_max. From both CFD and 

analytical cases, we found that as the value of   increases, the value of Vmcr gets larger 

and Vs_max becomes smaller, which leads to the solution loops to become nested. When 

  reaches a value of approximately 0.127, the secondary branch disappears. The 

corresponding value is called the critical  , or    =0.127, which is a universal value for 

this droplet system. Note that for       there exists only a primary branch. When 

     , the secondary branch exists, and the maximum volume of the primary state, 

Vp_max, is located in between the modified critical volume, Vmcr, and the secondary 

maximum volume, Vs_max. The reason for this is when the droplet is asymmetric on the 

secondary branch, i.e., Ycm>0, the lower radius of curvature produces a large upward 

force against the droplet's weight, which sustains the droplet for larger VU. When 

droplet is on the opposite side residing at the primary branch, the lower radius of 

curvature is much smaller; therefore, the upward force cannot sustain the droplet 

volume.  
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Figure 5.3 Stability chart for                   ,                ,          
       and                   . 

 

 It should be noted that at droplet volumes near the maximum, the CFD results of 

the center of mass location start to deviate from its analytical one, and in other cases it 

goes beyond the maximum droplet volume (also as shown in Figure 5.1). Figure 5.4 

shows the case for  =0.106. As the primary branch of the analytical solution reaches its 

maximum value of Vp_max=4.5, we notice that there still exists a CFD solution beyond 

Vp_max. From the figure we see that the CFD maximum volume is Vp=5.5, that is a 

deviation value of 22% from the analytical volume. Similarly, on the secondary branch, 

there was a deviation in the center of mass Ycm at volumes greater than V=3. At V=6, 
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the analytical Ycm at Vs_max is 2.42, while CFD results show 10% deviation at Ycm=2.18. 

The reason for these variations in the simulation results is due to the failure of a 

perfectly spherical droplet cap assumption. This is evident in the deformation (see 

Figure 5.5) of the droplet surfaces on the CFD simulation especially at larger droplet 

volumes.  However, the analytical solution predicts very well up to Vp_max, which 

implies that the droplet maintains its spherical shape around that volume.  In addition, 

unlike the CFD results on the primary branch, on the secondary branch there was no 

CFD results beyond the Vs_max. The reason is that the inertial force resulting from the 

gravity and the upper capillary force at that location are much larger than the lower 

capillary force from the droplet. Therefore, the droplet forcefully moves downward and 

completely detaches from the channel wall.   

On the primary branch, the location of the center of mass near V=5.5 starts to 

deviate significantly due also to the deformation of the droplet. As seen in Figure 5.5, 

when the droplet starts to deform (red dashed line in the figure), the radius of curvature 

becomes smaller than that of the perfectly circular case (blue dashed line), and that 

imposes a larger lower capillary force. The upper radius of curvature is very large as the 

upper cap is almost flat; therefore, the upper capillary force is negligible. Therefore, at 

that state, the lower capillary force is at equilibrium with the opposite gravitational 

force and the upper capillary force as well.  
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Figure 5.4 Deviation of CFD results (dots) from the analytical ones (solid and dashed 

lines) at  =0.106. 
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Figure 5.5 Droplet final state at V=5.5 and  =0.106, shows a deformation on the droplet 

surface. 

 

 To further verify the analytical stability state numerically, a single value of 

        (g=5 m/s
2
) is tested for five droplet volumes: V=1.7 for the case below the 

modified critical volume Vmcr,; three cases of V=3, which are within the upper and 

lower solution of the secondary branch; and V=7, which is greater than the secondary 

maximum volume Vs_max, where there are no solutions. Figure 5.6(a) shows the CFD 

image of the initial condition of the first case, namely,         and V=1.7, where the 

initial center of mass is Ycm(  =0)=0.92. At this time, both capillarity and gravity 

produce a downward force. According to the stability chart (Figure 5.3), the initial cap 
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volume is smaller than Vmcr, which results in not having any solution on the secondary 

branch; however, there exists an analytical solution on the primary branch at Ycm=-1.03. 

Figure 5.6(b) shows the simulation transition (  =0.5) of the droplet, which still moving 

downward.  Figure 5.6(c) shows the equilibrium state, where Ycm=-1.01. Analytical and 

CFD results are in good agreement.  

 

 

 

Figure 5.6 Droplet states for         at V=1.7 with Vmcr=2.25  (a) Initial state at   =0, 

(b) Intermediate state at   =0.5, (c) Equilibrium state at   =3. 

 

 

 When the droplet volume is V=3, and starting with an initial center of mass 

location that lies above the unstable state line, the equilibrium state should be on the 

upper-stable state line. Figure 5.7(a) shows the CFD simulation of the initial state of 

V=3, and the center mass is Ycm=1.78. As the droplet in the simulation begins to move, 
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it oscillates within the region above the unsteady state (Figure 5.7(b)), and then it settles 

at the steady asymmetric state of the secondary branch at Ycm=1.48 and   =5 (Figure 

5.7(c)). The analytical solution on Figure 5.3 shows that the upper stable state for V=3 

and         is Ycm=1.47, which is a close match with the CFD results.  

 
 

Figure 5.7 Droplet states for         at V=3 with Vmcr=2.25 and Vs_max=6.07  a) 

Initial state at   =0, (b) Intermediate state at   =1.1, (c) Equilibrium state at   =5. 

 

The third case is for V=3, and the initial condition is at the unstable state of the 

secondary branch at Ycm(  =0)=1.02, as shown in Figure 5.8(a). The droplet shifts from 

the unstable state to the stable state of the secondary branch and stays in equilibrium at 

at Ycm= 1.49 at   =3. This simulation case proves that the small-amplitude secondary 

branch is the unstable state.  
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Figure 5.8 Droplet states for         at V=3 with Vmcr=2.25 and Vs_max=6.07  a) 

Initial state at   =0, (b) Intermediate state at   =0.9, (c) Equilibrium state at   =3. 

 

 

 The fourth case is also for V=3, and the initial condition is below the unstable 

state line. Figure 5.9 (a) shows the initial condition at Ycm(  =0)=-1.78, which is well 

below the unstable state line. The droplet then transits towards the primary stable state 

as shown at   =0.9 in Figure 5.9 (b). The equilibrium state occurs at   =2.5 and Ycm=-1.74 

(Figure 5.9 (c)), which matches very well with the analytical solution results of Ycm=-

1.76, shown on the stability graph on Figure 5.3. 
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Figure 5.9 Droplet states for         at V=3 with Vp_max=4.29 a) Initial state at   =0, 

(b) Intermediate state at   =0.9, (c) Equilibrium state at   =2.5. 

 

 The final case is for the much larger volume of V=7 which is larger than Vs_max. 

This implies that there is no stable state for this droplet on both primary and secondary 

branches. As shown in Figure 5.10 (a), the initial state is at Ycm(  =0)=1.02. At that 

center of mass, the gravity force exerted on the droplet exceeds any capillary force the 

droplet cap can sustain; therefore, it goes through the channel, shown at   =1.3 on Figure 

5.10 (b), and fully detaches from the channel walls at   =1.7 (Figure 5.10 (c)). This result 

is expected from the analytical results.  
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Figure 5.10 Droplet states for         at V=7 with Vmcr=2.25 and Vs_max=6.07. a) 

Initial state at   =0, (b) Intermediate state at   =1.3, (c) Detachment   =1.7. 

 

 The physical mechanism of the droplet behavior is discussed next. The first case 

is for V<Vmcr, and the droplet's center of mass is starting from an asymmetric and 

positive center of mass, away from the stable primary branch, as shown in Figure 5.11. 

 

Figure 5.11 Asymmetric initial condition for a droplet under gravitational force. 
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 According to the Young-Laplace relation of Equation (5.1c), the capillary force 

is written as follows: 

         
 

  
        

   

  
     , 

and therefore, there is a negative capillary force in addition to negative gravitational 

force that lead the droplet's center of mass to move towards the stable primary branch 

solution. Note that we neglected the opposite shear force resulted from the fluid 

viscosity due to its minimal effect. The viscous force will have a contribution on the 

timing at which the droplet reaches its final state, but not on the final state location, 

which is our concern here. 

 The second case is for V>Vmcr, the droplet's center of mass is located at the 

unstable secondary branch. At that location, both radii of curvatures are in equilibrium 

as in Equation (5.2d), and their resultant force is equal the total gravitational force, as 

shown in Equation (5.2a). With little modification Equation (5.2a) is as follows 

    
 

  
 

 

  
      . 
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Figure 5.12 Initial unstable state of a droplet under gravitational force. 

 

When a small perturbation is introduced to the droplet on a direction opposite to the 

gravitational force, as shown in Figure 5.12, the upper radius of curvature becomes 

larger, R'U > RU, and the lower one becomes smaller, R'L < RL. When that occurs, the 

capillary term of Equation 5.2 becomes larger than the gravitational term. That is, 

    
 

  
 
 

 

  
 
      , 

and that will cause the droplet to move opposite of the gravitational force, and shifts 

toward the stable state of the secondary branch. 

 The final case is for V > Vmcr, and the center of mass of the droplet is on the 

stable state of the secondary branch. At that location, both Equations (5.2a) and (5.2d) 

apply. As a little disturbance is introduced as shown in Figure 5.13, the lower radius of 

curvature becomes much larger, R'L>>RL, and the upper radius of curvature also 
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becomes larger but not as much as the lower one, R'U > RU. Therefore, the negative 

force resulting from the upper radius of curvature is much larger than the lower one, and 

the resultant force from both caps is less than the gravitational force, that is, 

    
 

  
 
 

 

  
 
      . 

This downward force will bring the droplet's center of mass location back to its stable 

state at the secondary branch. 

 

Figure 5.13 Initial stable state of a droplet under gravitational force  

 

  As discussed in the previous section, in addition to gravity  , the   parameter is 

also a function of the channel volume   , density  , and surface tension  . This 

indicates that the change of these variables will yield a similar droplet final state. 
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However, although the initial states are the same, the droplet dynamics toward the 

equilibrium state will not be the same, as discussed in the next paragraph.  

 

  

Figure 5.14 The time rate of change of the center of mass at         

 

 

 Three CFD cases are performed where the   value remains fixed. Some of the 

fluid properties that are variable in  , as well as of gravity, have been changed from 

their original values, that is, g=9.81 m/s
2
,              ,             and 

       . The three cases are for V=3, and in the first case, the gravity is reduced by 

50%, and all the fluid properties are kept the same. In the second case, the density is 

reduced by 50%, and in the third and final cases the surface tension is doubled. It should 

be noted that after each change,   is now 0.106, and the channel volume    is kept 

constant for all cases. From Figure 5.14 one can observe that the final center of mass 
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reaches the final steady state at Ycm=1.4 for all the three cases. The oscillation, 

however, for each case differs, especially for the gravity-change case where it reaches 

the steady state at   =7. For the surface tension case, the droplet reaches the steady state 

at   =5, and for the density case, the center of mass reaches the final steady state at little 

shorter time than in the surface tension case, at   =4.5. It can be seen that there is a small 

difference when varying the surface tension and density; however, the big difference 

occurs when altering the gravity value.  

 When density or gravity is reduced by half, Fg becomes halved according to 

equation (5.1e). However, the density case also reduces the inertia of the system (see 

equation (5.1a)), which reduces the amplitude of oscillation and the time to converge to 

the steady-state. On the other hand, the gravity case does not reduce the inertial force of 

the system, indicating that the system induces higher amplitude of oscillation and longer 

time to converge to the steady-state.  

 When the surface tension is doubled, the force balance equation (5.1) of the 

surface tension case becomes same as that of density case if the viscous force term is 

doubled. Since the viscous term is smaller for the surface tension case, the oscillation 

motion becomes longer and induces longer time to converge to the steady-state. Such a 

difference in droplet dynamics might affect the final droplet state depending on its 

initial state. For example, high amplitude of the droplet oscillation might pass the 

unstable state line and loses its stability on the secondary branch, which could lead to 

settling on the primary branch, or detaching completely out of the channel walls.   
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6 CHAPTER SIX: SUMMARY AND FUTURE WORK 

 

6.1 Summary 

 We studied the stability of a two-dimensional, incompressible water droplet, 

with two cylindrical-caps that is pinned in a straight channel, through the use of CFD. 

Suspended droplet states are measured by the location of the center of mass of the 

droplet initially with zero gravity effect, then followed by a contraction in the channel 

holding the droplet  >0, and finally with the effect of gravity,  >0.  When g is neglected 

and channel is straight, there is a critical droplet volume, Vcr, where a bifurcation of 

asymmetric states occurs. For V<Vcr, there exists only one stable and symmetric droplet 

state. On the other hand, when V>Vcr, there exist three droplet states: two asymmetric 

stable states and one symmetric unstable state. Analytical and CFD simulation results 

showed that these equilibrium states would be achieved when the upper and lower radii 

of curvature were equal.  We then computed Hamiltonian of the droplet system using 

CFD simulations for various droplet volumes. We demonstrated that    for symmetric 

cases grows monotonically with V. Moreover,      when V<1 and      when 

V>1.    becomes the maximum at V=1.8 and less for higher values of V. This was due 

to the slow reaction of the larger mass of the droplet. Yet, it is found that    is always 

positive in the range of our study 1<V<13.  We also found that    for asymmetric cases 

is negative for all V<1. The    decays monotonically with V, reaches a maximum 

decay rate at V=1.8, and becomes less for higher values of V. For V > 1.8 we observed 

that the time taking to complete the transition process becomes longer as V increases 

because both the growth rates from the symmetric states and the decay rates to the 
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asymmetric states become slower. We also explained this transition phenomena based 

on the Laplace-Young equation. The CFD simulations clarify the relationship between 

the experimental observations and the theoretical analysis of the droplet behavior. 

 When the channel holding the droplet has a contraction ratio of  >0, the 

bifurcation diagram loses its pitchfork nature shape, and two separate branches appear. 

A primary branch then goes from nearly symmetric state to asymmetric location as it 

passes through the droplet's critical volume. The primary branch is found to be stable at 

all its equilibrium states.  The secondary branch is also asymmetric, and it bifurcates 

from a modified critical volume Vmcr. The large-amplitude state of the secondary branch 

is stable, and the small-amplitude is unstable. As the contraction ratio   gets larger,  the 

modified critical volume Vmcr also becomes larger. We found that the unstable branch 

of the secondary branch deviates further from the symmetry line as the droplet volume 

gets larger. In addition, that deviation rate with respect to the droplet cap volume 

becomes higher as   becomes large. However, no maximum droplet volumes were 

observed.     

 When g is considered,   and   have values greater than zero, which alters the 

relationship between RU and RL. Gravity also changes the pitchfork bifurcation diagram 

of a droplet system into two separate branches with equilibrium (and steady) states. 

Similar to the contracted channel case, the primary branch describes a gradual and 

stable change of the droplet state from nearly symmetric to asymmetric as the droplet 

volume, V, is increased above Vcr. The secondary branch appears at a modified critical 

volume, Vmcr, and describes two additional asymmetric states for V>Vmcr. Both 

branches have maximum volumes to sustain its weight. The value of Vp_max decreases as 
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  increases. The secondary branches of droplet states are in the form of nested loops 

that consist of an upper stable state and a lower unstable state. Both upper and lower 

states of the secondary branch are bounded by Vmcr and Vs_max. As the value of   

increases, Vmcr increases, and Vs_max decreases, which leads to smaller loops that are 

nested inside each other.  There is a limit value of   for the secondary stability branch to 

exist, and this limit is called    . Using analytical results, the critical   is approximately 

equal to    ≈      . When      , there is only one stable droplet state, and that is 

the primary asymmetric state that extends from V=0 to Vp_max. When      , both 

primary and secondary branches exist. Changing some of the major properties of  , 

namely     and g, has a significant effect on the dynamics of the center of mass. 

Gravity, however, has the most impact as it shows a higher amplitude oscillation that 

can lead the droplet to move from the secondary stability branch towards its primary 

stable branch. However, it will settle there if and only if V<Vp_max. When V>Vp_max, 

analytically there should be no solution. However, CFD shows more solutions beyond 

the Vp_max, all these solutions deviate as the droplet volume gets larger until it reaches a 

certain volume where the droplet will just detach from the channel walls. The deviation 

is due to the deformation of the droplet interface as the volume gets beyond Vp_max, and 

the detachment from the channel wall is because the droplet becomes sufficiently large 

that the capillary force cannot keep the droplet pinned in the channel.    

  

6.2 Future work  

 The current study has successfully showed the limitation of gravity force, 

through the value of β, that a droplet can sustain while it is suspended in a vertical 
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direction. Also it showed the effect of the contraction in channel wall on the stability 

behavior of the droplet system. However, more CFD studies can be done to investigate 

the stability of a similar droplet system design, also more ideas can implemented from 

combining both current studies to improve existing applications that have already been 

tested experimentally. 

 In the current investigation, the stability of the droplet is studied under a 

constant gravitational force. A suggested future study might be the case to consider 

periodic external force field, which has been done experimentally by many researchers 

(references [5, 10, 15, 39, 40]). Another investigation may include reducing the droplet 

system to the nano-scale, and observe the droplet stability behavior at that very small 

scale. Another recommendation might be to examine the behavior of the droplet when 

surfactant molecules are introduced at the droplet interface as that may have effect on 

the droplet surface tension, and therefore the droplet's capillary force. A final 

recommendation is to investigate the introduction of two types of asymmetry in the 

droplet system; a force field asymmetry through the gravitational force and geometrical 

asymmetry through the contraction of a channel, and examine their effect on stability of 

the droplet system.   
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APPENDIX A: CENTER OF MASS CALCULATION FOR 

STRAIGHT CHANNEL 

 
  

The center of mass at the equilibrium state has been formulated so that it is as a function 

of    and  . 

 

Figure A-1 Droplet domain labels. 

 

The total droplet volume, VT, is the sum of the two cap volumes       and the 

volume of the liquid in the channel   , where  

           ,         (A-1) 

      , and          (A-2) 
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                     (A-3) 

The subscript, i, denotes the upper or lower cap, (U or L). 

From Figure A-1 

          
 

  
 .         (A-4) 

After substituting equation A-4 in equation A-3, Equation A-1 yields 

       
 

 
   

              
                  (A-5) 

Eliminating radius of curvature    for the droplet height    

             
  

 
          (A-6) 

  

  
        

  

 
             

  

 
        

  

  
  

 

 
               (A-7) 

After futher manipulation we get the radius of curvature    as a function of the radius of 

the channel and the droplet height as follows: 

   
  
    

   
          (A-8) 

Based on the relation between the variable point       and the integration variable    in 

Figure A-1, we find: 

  
    

  
     

 

  
   

      
  

 
 

   
  .              (A-9) 

Since   
       

    
 ,           becomes       

     
     

  
  
    

  
                      (A-10) 

Now we calculate the    and    , where    is the center of mass for    

                                

Since         , the center of mass becomes 
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where             
  
    

  
     

 

 

 
    

 

 
 

Using reference [41], the above integral becomes  
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8 APPENDIX B: CENTER OF MASS CALCULATION FOR 

CONTRACTED CHANNEL  

 

 The center of mass at the equilibrium state has been formulated so that it is as a 

function of    and   . The total droplet volume, VT, is the sum of the two cap volumes 

      and the volume of the liquid in the channel     and    , where  

                ,                   (B-1) 

          and                  (B-2b) 

          and                  (B-2b) 

   
 

 
  
                     (B-3) 

The subscript, i, denotes the upper or lower cap, (U or L). 

From Figure A-1  

          
  

  
 .         (B-4) 

After substituting equation A-4 in equation A-3, Equation A-1 yields 

       
 

 
   

              
                  (B-5) 

Eliminating radius of curvature    for the droplet height    

             
  

 
          (B-6) 

  

  
        

  

 
             

  

 
        

  
 

  
  

 

 
        (B-7) 

After futher manipulation we get the radius of curvature    as a function of the radius of 

the channel and the droplet height as follows: 

   
  
    

 

   
                     (B-8) 
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Based on the relation between the variable point       and the integration variable    in 

Figure A-1, we find: 
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Since   
       

    
 ,           becomes       
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Now we calculate the    and    , where    is the center of mass for    

                              
    

 
 

    

 
  

Since         , the center of mass becomes 
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Using reference [41], the above integral becomes  
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