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Chapter I 

Gene Expression and Regulation during Male Gametophyte Development in 

Flowering Plant 

--Literature Review 

ABSTRACT 

Double fertilization is a defining characteristic of flowering plants (angiosperms), which 

requires a pair of sperm cells to be transported to the embryo sac and then fuse with egg 

cell and central cell to form a zygote and endosperm, respectively. Understanding this 

process is vital to the world ecology and agriculture. Since its discovery over a century 

ago, the process has been cytologically well characterized. In recent years, tremendous 

efforts have been made to dissect the molecular mechanisms involved in the process. 

Pollen consists of one vegetative cell and one generative cell or two sperm cells and is 

considered as a key player for successful double fertilization. This review focuses on 

male germline initiation and male gametophyte development. The review begins with an 

introduction of double fertilization process in flowering plant, followed by a brief 

overview of morphology and cytology of male gametophyte development. This chapter 

will focus on the recent advances in molecular characterization of male gametophyte and 

male germline development. The review concludes with the current understanding of 

male gametophyte and germline development and future perspectives on male 

reproductive research. 

Key words: double fertilization, male gametophyte development, pollen, sperm cell, 

germline, gene expression, transcriptomic profile, Arabidopsis, Plumbago, lily, maize, 

cell cycle, cell fate. 
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Abbreviations: EST – expressed sequence tag; FACS - fluorescence-activated cell 

sorting; FGU - female germ unit; MGU - male germ unit; PMI – pollen mitosis I; PMII – 

pollen mitosis II. 

I. Introduction to double fertilization 

In flowering plants, the life cycle alternates between two distinct forms, diploid and 

haploid, or sporophyte and gametophyte. The change from haploid to diploid requires 

double fertilization to form a seed to begin the next generation. Double fertilization is one 

of defining characteristics of flowering plant (angiosperm), in which two fertilization 

events take place—one sperm cell from the mature male gametophyte fusing with the egg 

in the embryo sac to give rise to the embryo, and another sperm cell being incorporated 

into the central cells to give rise to the nutritive endosperm (Russell, 1992b; Southworth, 

1996; Lord and Russell, 2002; Raghavan, 2003; Weterings and Russell, 2004; Berger, 

2008). Since double fertilization was discovered more than a century ago by Guignard 

(Guignard, 1899) and Nawaschin (Nawaschin, 1898), this unique reproductive biological 

process has attracted enormous interests from molecular biologists to crop breeders. 

Double fertilization contributes to the success of flowering plants which dominate plant 

life on the earth and thus is a vital biological process to the world ecology. Seeds or 

grains, which are the products of double fertilization, make up most of food consumed by 

humans. The manipulation of double fertilization process may help create more 

productive crops. 

Three components of the plant are especially important in double fertilization – 

pollen (containing the male germ unit, MGU), embryo sac (containing the female germ 

unit, FMU), and the sporophytic tissue (mainly tapetum in anther and female 
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reproductive tract) (Huang and Russell, 1992; Mogensen, 1992). Successful double 

fertilization requires that all three parts develop normally, and the cell cycles of the male 

and female gametes are synchronized (Christensen et al., 1998; Friedman, 1999; 

Weterings and Russell, 2004; Borges et al., 2008).  

Male gametogenesis starts with cell division of diploid sporophytic cells which 

results in a sporogenous initial – pollen mother cell (PMC). The PMC undergoes meiosis 

to form a haploid tetrad. The tetrad separates and releases free microspores. These 

uninucleate microspores undergo a subsequent asymmetric mitotic division to produce a 

binucleate pollen grain, with a small generative cell housed within a large vegetative cell. 

The generative cells  then divide to form two sperm cells before pollen maturity in plants 

with trinucleate pollens (e.g. Arabidopsis and maize), or divide after pollen germination 

to form two sperm cells in the pollen tube for plants with binucleate pollens (e.g. tobacco 

and petunia) (Cresti et al., 1992; McCormick, 1993; Southworth, 1996; McCormick, 

2004; Weterings and Russell, 2004; Ma, 2005).  

Female gametogenesis also starts from a diploid tissue called the nucellus. One 

cell of the nucellus develops into a megaspore mother cell, which undergoes meiosis to 

give rise to four haploid megaspores. The three micropylar megaspores undergo 

programmed cell death. The chalazal end megaspore becomes functional and undergoes 

three rounds of mitosis to form an eight-nucleate embryo sac within an ovule. The two 

polar nuclei fuse to form a central cell during late megagametogenesis. The typical 

unfertilized mature embryo sac consists of seven cells: three antipodal cells, one large 

central cell, one egg cell and two synergids (Cresti et al., 1992; Robinson-Beers et al., 
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1992; Christensen et al., 1997; Christensen et al., 1998; Weterings and Russell, 2004; 

Sundaresan and Alandete-Saez, 2010; Yang et al., 2010).  

When pollination starts, pollen grains germinate after they land on the stigma, 

grow through the style and are guided towards FGU to meet their female partners. The 

pollen tube penetrates the micropyle and releases its two sperm cells into one of two 

synerdids. Then, the two sperm cells are delivered to the egg and central cell finishing 

double fertilization. The flowering plant life cycle, gametogenesis, and fertilization 

process based on Arabidopsis are illustrated in Figure I-1 according to Cresti 1992, 

Russell 1992 and Weterings 2004 (Cresti et al., 1992; Russell, 1992a; Weterings and 

Russell, 2004). 

Several major steps are critical to the double fertilization process: (1) male and 

female gamete development, (2) tapetum development and anther dehiscence, (3) pollen 

tube growth and traveling within the female tract, (4) female guidance of pollen tube 

growth and pollen tube arrest, (5) release of sperm cells into the synergids, (6) gamete 

recognition and fusion, and (7) reprogramming parental genes for zygote and endosperm 

development (Cresti et al., 1992; Russell, 1992a; Christensen et al., 1998; Faure, 2002; 

Raghavan, 2003; Ma, 2005; Berger, 2008). The morphologic and cytological aspects of 

these steps have been well studied over the past century.  In the last two decades, with the 

completion of Arabidopsis and other plant genome sequencing projects, availability of T-

DNA insertion knockdown mutants and development of new technology (Microarray, 

high-throughput sequencing, FACS cell sorting, etc.), our understanding of gene 

expression regulation in plant reproduction has expanded greatly.  
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II. The morphologic and cytological aspects of male gametophyte development: an 

overview 

The formation of the male gametophyte occurs in anthers of very young flower buds. The 

meristematic tissue in young flower bud primordium grows and differentiates to form 

vegetative tissues and organs, eventually developing into reproductive organs containing 

diploid sporogenous cells. The sporophytic cell divides to produce a tapetal initial cell 

and a sporogenous initial cell (also called pollen mother cell, PMC). Each PMC 

Figure I-1. Angiosperm life circle. Modified from Lidwien van der Horst and John  
Slippens (www.vcbio.science.ru.nl/images/pollen). 

Diploid sporophyte generation Haploid gmetophyte generation 
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undergoes meiosis to form a tetrad of haploid cells, which are held together by a wall of 

callose. The tetrad separates and releases as free microspores by the action of callase, an 

enzyme produced by the tapetum layer of the anther. The uninucleate microspore 

enlarges. Consequently,  a single large vacuole is formed in the center of the cell and the 

microspore nucleus migrates to a peripheral position against the cell wall (Owen and 

Makaroff, 1995; Yamamoto et al., 2003). The microspore then undergoes an asymmetric 

cell division known as Pollen Mitosis I (PMI) to produce a larger vegetative cell and a 

smaller generative cell. The asymmetric division at PMI is essential for the correct 

cellular patterning of the male gametophyte, since the resulting two daughter cells each 

harbors a distinct cytoplasm and possesses unique gene expression profiles that confer 

their distinct structures and cell fates (Twell et al., 1998). The vegetative cell receives 

most of the microspore cytoplasm. The entire generative cell is surrounded by the unique 

“cell-within-a cell” structure (Russell et al., 1996). After PMI, the large vegetative cell 

has dispersed nuclear chromatin and exits the cell cycle in G1. The vegetative cell 

nurtures the developing germ cell and grows into the pollen tube following successful 

pollination. This pollen tube grows through the stylar tissues of the gynoecium to deliver 

twin sperm cells to the embryo sac. On the other hand, the smaller generative cell 

undergoes morphogenesis and migration, entering the interior of the vegetative cell and 

forming a highly polarized spindle-shaped cell. This cell has condensed nuclear 

chromatin and continues through a further round of mitosis, called Pollen Mitosis II 

(PMII), to produce two small sperm cells (Mogensen, 1992; Russell and Strout, 2005). 

The male gametic lineage is immersed in and thus dependent on the pollen vegetative cell 

for nutrition and transportation. This second cell division can take place during pollen 
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maturation in the anther for plants with trinucleate pollen (e.g., Arabidopsis, plumbago 

zeylanica  and maize), or can divide after pollination to form two sperm cells in the 

pollen tube for plants with binucleate pollen (e.g., lily, tobacco and petunia). The diagram 

illustrated in Figure I-2 describes these steps. Additional descriptions can be found in 

several reviews (Russell, 1986; Mogensen, 1992; McCormick, 1993; Southworth, 1996; 

McCormick, 2004; Singh and Bhalla, 2007; Singh et al., 2008; Borg et al., 2009).   

Extensive light and electron microscopic studies on Plumbago zeylnica have 

revealed that the sperm cells are elongate, spindle-shaped, intact cells with a plasma 

membrane enclosing the usual organelles such as a nucleus, mitochondia, endoplasmic 

reticulum (ER), ribosomes, golgi bodies, vesicles, microtubules, and in some sperm cells, 

plastids. In the mature pollen of Plumbago zeylanica, the two sperm cells are enclosed 

together within the inner vegetative cell plasma membrane, and linked by a common cell 

wall traversed by plasmodesmata. One sperm cell is physically associated with the 

vegetative nucleus (Svn, or Sperm associated with vegetative nucleus) and possesses 

more mitochondria than the other sperm cell (Sua, or Sperm unassociated with vegetative 

nucleus) which, in contrast, is unassociated with the vegetative nucleus and is rich in 

plastids (Figure I-3) (Russell, 1980; Russell and Cass, 1981; Russell, 1984; Russell, 1986; 

Russell et al., 1996). The cytological evidence also supports that sperm cytoplasmic 

organelles can be transmitted to the egg cell and central cell along with sperm nuclei 

(Russell, 1980; Russell, 1983; Russell, 1986). 
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Figure I-2. Schematic description of male gametophyte development. GCN, generative 

cell nucleus; SCN, sperm cell nucleus; VCN, vegetative cell nucleus. Modified from Sing, 

2007; Twell, 2002;  Southworth, 1996 (Southworth, 1996; Twell, 2002; Singh and Bhalla, 

2007). 
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Figure I-3. Two dimorphic sperm cells in Plumbago zeylanica mature pollen. VN: 

vegetative nucleus. Svn: the sperm cell associated with the vegetative nucleus, numerous 

mitochondria and a few plastids. Sua: the sperm cell unassociated with the vegetative 

nucleus, numerous plastids and a few mitochondria (Russell, 1984). 

III. Genetic control of anther and tapetum development    

The meristematic tissue in young flower buds differentiates to produce sporogenous cells. 

The sporophytic cell divides to give rise to a sporogenous initial cell as well as a tapetal 

initial cell. The tapetum is derived from subsequent division of tapetal initial cells. The 

tapetum and other layers of nonreproductive cells make up the wall of the anther lobes 

and surround the microsporocytes. The tapetum plays critical functions for microspores 

releasing from tetrad. Several genes have been identified that are critical to early anther 

development (Scott et al., 2004; Ma, 2005).  The Arabidopsis SPOROCYTELESS 

(SPL)/NOZZLE (NZZ) gene is important for early anther cell division and differentiation 

(Schiefthaler et al., 1999; Yang et al., 1999b). Mutations in SPOROCYTELESS (SPL) 

block sporocyte formation in Arabidopsis. Sporogenous cells and nonreproductive tissues, 

including the tapetum, are absent in spl mutants (Schiefthaler et al., 1999; Yang et al., 

1999b). Consequently, the spl/nzz mutants fail to produce pollen and are male sterile. 

SPL/NZZ is strongly expressed in the microsporocytes and tapetum. The SPL gene 

encodes a novel nuclear protein related to MADS box transcription factors and is 

expressed during microsporogenesis and megasporogenesis. This data suggests that the 

SPL gene product is a transcriptional regulator of sporocyte development in Arabidopsis 

(Yang et al., 1999b).  Arabidopsis homeotic gene AGAMOUS (AG) is well-known for the 

specification of reproductive organs (stamens and carpels) during the early steps of 
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flower development (Bowman et al., 1989; Yanofsky et al., 1990; Bowman et al., 1991). 

AG encodes a MADS-box transcription factor in that controls microsporogenesis  by 

activation of the SPL/NZZ (Yanofsky et al., 1990; Ito et al., 2004). Using an inducible 

system for AG activity, SPL is one of the genes transcriptionally activated after AG  is 

induced, suggesting that the AG protein may be a direct regulator of SPL expression (Ito 

et al., 2004).  

The leucine-rich repeat receptor like kinase family (LRR-RLK) has over 200 

members in Arabidopsis. They are involved in cell-cell communication and signal 

transduction (Shiu and Bleecker, 2001; Fritz-Laylin et al., 2005). The EXCESS 

MICROSPOROCYTES1/ EXTRA SPOROGENOUS CELLS (EMS1/EXS) belongs to 

the same subfamily X of the LRR-RLKs as BRI1 (BRASSINOSTEROID 

INSENSITIVE1) does (Shiu and Bleecker, 2001). Mutations in the EMS1/EXS gene 

cause the formation of additional male sporocytes (MMCs) along with a lack of tapetal 

cells (Canales et al., 2002; Zhao et al., 2002). As a result, these mutants cannot produce 

any viable pollen grains and are male sterile. The ems1/exs mutant anthers lack the 

tapetum, but meiocytes can complete the meiotic nuclear division. Although the ems1 

male sporocytes can complete meiotic nuclear divisions, they fail to carry out cytokinesis. 

Instead, these cells undergo cell degeneration and thus fail to produce microspores. The 

action of EMS1/EXS is hypothesized to be a trigger for a signaling pathway essential for 

tapetal cell differentiation (Zhao et al., 2002). Moreover, the same developmental 

phenotypes are observed for mutations in the TAPETUM DETERMINENT1 (TPD1) gene, 

which encodes a predicted small secreted protein (Yang et al., 2003). TPD1 could 

regulate cell fate in coordination with EMS1/EXS (Yang et al., 2003; Yang et al., 2005). 
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Another two LRR-RLK genes in subfamily II of the LRR-RLKs are also discovered to 

have the same function (Albrecht et al., 2005; Colcombet et al., 2005). The SOMATIC 

EMBRYOGENESIS RECEPTOR KINASE (SERK) genes encode LRR-RLKs belonging to 

the 14-member subfamily II (Shiu and Bleecker, 2001). Arabidopsis SERK3, also named 

BAK1 (BRI1-Associated Kinase1), is a component in brassinosteroid perception/signaling 

pathways (Li et al., 2002; Nam and Li, 2002). SERK2 is the closest homolog to SERK1 

and is also related to SERK3/BAK1. Phenotypic analyses of serk1 serk2 double mutants 

show that SERK1 and SERK2 have a crucial and redundant function in anther 

development and male gametophyte maturation. Single knockout mutants of SERK1 and 

SERK2 show no obvious phenotypes. But the serk1 serk2 double mutant produced more 

sporogenous cells that were unable to develop beyond meiosis. Furthermore, serk1 serk2 

double mutant anthers lack tapetal cell layer deveopment, which accounts for the 

microspore abortion and male sterility. Fertility can be restored by a single copy of either 

SERK1 or SERK2 gene. The SERK1 and SERK2 proteins can form homodimers or 

heterodimers in vivo, suggesting they are interchangeable in the SERK1/SERK2 

signaling complex.  Taken together, these findings demonstrate that the SERK1 and 

SERK2 receptor kinases function redundantly as an important control point for 

sporophytic development which is key to male gametophyte production (Albrecht et al., 

2005; Colcombet et al., 2005). 

Additionally, several MYB transcription factor genes are also involved in tapetum 

differentiation and anther development.  AtMYB103 is expressed specifically in the 

tapetum and is required for normal tapetum morphology and pollen development 

(Higginson et al., 2003). AtMYB33 and AtMYB65 are microRNA-regulated genes that 
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function redundantly in tapetum formation and anther development. In the myb33 myb65 

double mutant, the tapetum undergoes hypertrophy at the pollen mother cell stage, 

resulting in premeiotic abortion of pollen development. However, myb33 myb65 sterility 

is conditional, where fertility increases under both higher light or lower temperature 

conditions. Thus, MYB33/MYB65 facilitate, but are not essential for, anther development 

(Millar and Gubler, 2005). 

Other tapetum related genes include ABORTED MICROSPORES (AMS) 

(Sorensen et al., 2003),  and MALE STERILE1 (MS1) (Wilson et al., 2001). The ams 

mutant’s anthers have both the tapetum and male sporocytes and can complete meiosis, 

but the tapetum and microspores degenerate soon after meiosis. The ms1 mutant’s anthers 

exhibit microspore degeneration following their release from the tetrad, and tapetum 

becomes abnormal at this time. A particularly interesting Arabidopsis mutant is called fat 

tapetum, which appears normal in early anther development, but the mutant tapetum 

becomes enlarged at meiosis and the middle layer persists and also enlarges in a way 

similar to the tapetum (Sanders et al., 1999). More Arabidopsis mutant analyses (Sanders 

et al., 1999; Boavida et al., 2009) indicate that additional genes likely participate in the 

differentiation of anther cell layers. 

IV. Plant male meiosis and its genetic control 

In the anthers of flowering plants, pollen mother cells undergo meiosis to produce 

haploid microspores. Meiosis is essential for sexual reproduction because it facilitates 

stable sexual reproduction as well as recombination and independent assortment of 

homologous chromosomes, allowing for a greater diversity of genotypes in the 

population.  During meiosis, the nuclear DNA of a diploid germ cell undergoes DNA 
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replication followed by two rounds of division, meiosis I and meiosis II, resulting in four 

haploid daughter cells (Dawe, 1998; Yang and Sundaresan, 2000; Ma, 2005). Meiosis I is 

unique and involves the segregation of homologous chromosomes (homologs), whereas 

meiosis II is similar to mitosis and results in the segregation of sister chromatids. 

Following meiosis II, the cell undergoes cytokinesis to produce four haploid cells. The 

process can be divided to Prophase I (including leptotene, zygotene, pachytene, diplotene, 

and diakinesis), Metaphase I, Anaphase I, Telophase I, prophase II, Metaphase II, 

Anaphase II, and Telophase II.  

Plant meiosis has been traditionally studied using cytological and genetic analysis. 

Over the past two decades, new experimental approaches such as forward and reverse 

genetics have been used to identify genes involved in meiosis in model plants such as 

Arabidopsis. Because meiotic defects could result in sterile or semi-sterile male gametes, 

many novel meiotic genes have been successfully uncovered using mutants with defects 

in meiosis.  

During meiosis, in the stage before anaphase I, sister chromatid cohesion requires 

the cohesion complex consisting of several subunits. Mutations in the Arabidopsis 

SYN1/DIF1 gene (Arabidopsis homolog of the yeast REC8 gene, which encodes a 

meiosis-specific cohesin subunit) (StoopMyer and Amon, 1999; Watanabe and Nurse, 

1999), result in defects in chromosome condensation and pairing (Bai et al., 1999; Bhatt 

AM, 1999), suggesting that the cohesion complex also plays a role in condensation, 

which may indirectly affect pairing. The localization pattern of this protein indicates that 

it plays an important role in maintaining both chromosome arm and centromere cohesion 

during late stages of meiosis I (Cai et al., 2003). In addition to SYN1, the Arabidopsis 
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SWI1/DYAD gene is also required for sister chromatid cohesion and centromere 

organization during meiosis (Siddiqi et al., 2000; Mercier et al., 2001; Agashe et al., 2002; 

Ravi et al., 2008). In swi1/dyad mutant male meiosis, sister chromatid cohesion is lost 

and 20 separated chromatids are seen at late prophase I to metaphase I instead of the 

normal 5 bivalents. Female meiosis in the swi1 mutant undergoes a mitosis-like division, 

presumably because the defect in cohesion causes the centromeres to behave like mitotic 

centromeres. These defects lead to the production of two diploid cells in place of four 

haploid megaspores, and failure to form a female gametophyte. The dyad allele of SWI1 

causes female specific sterility without affecting pollen development. The dyad plants are 

partial sterile, and a few seeds (1 to 10) per plant can be produced. The most fertile 

ovules in dyad plants form seeds that are triploid, arising from the fertilization of an 

unreduced female gamete by a haploid male gamete. This result suggests that a single 

gene of SWI1 is responsible for the successful induction of functional apomeiosis,  which 

is a major component of apomixis (Ravi et al., 2008). 

Chromosome pairing, synapsis, and recombination ensure the appropriate 

recognition and association of homologs and the proper segregation of genetic 

information into haploid meiotic products.  The wheat Pairing homoeologous locus Ph1 

is required for correct homologs pairing (pairing of chromosomes from the same 

subgenome) but suppressing homeologous pairing (pairing of chromosomes from 

different subgenomes), since in ph1 mutant wheat meiotic cells, homeologous 

chromosomes may also pair  (Gill and Gill, 1996; Martinez-Perez et al., 2001). The 

Arabidopsis asy1 mutant is defective in synapsis in male and female meiosis, resulting in 

the formation of only one to three bivalents per cell, instead of the normal five (Ross et 
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al., 1997; Caryl et al., 2000). The rice pair2 mutation affects a rice homolog of the 

Arabidopsis ASY1 gene, and the pair2 mutant is defective in pairing at pachytene and has 

univalents at diakinesis (Nonomura et al., 2004). Another Arabidopsis gene, AHP2, is 

also involved in pairing and bivalent formation (Schommer et al., 2003). Arabidopsis 

homologs for yeast pairing and recombination genes, such as AtSPO11-1 (Grelon et al., 

2001), AtRAD50 (Gallego et al., 2001),  AtMRE11 (Puizina et al., 2004), AtDMC1  

(Couteau et al., 1999), and AtXRCC3 (Bleuyard and White, 2004), show important 

functions in chromosome pairing and recombination during  meiosis in Arabidopsis. 

Several Arabidopsis genes seem to be involved in the process for homologous 

chromosome separation and segregation, such as ASK1, MMD1/DUET, and a homolog to 

yeast CDC45. The Arabidopsis ask1 mutant is abnormal in chromosome separation and 

segregation at anaphase I (Yang et al., 1999a). An Arabidopsis mutant (atk1) with 

reduced male fertility was isolated from a population of transposon insertional lines. The 

atk1 and formed abnormal meiotic spindles and had uneven chromosome segregation 

(Chen et al., 2002). Arabidopsis MMD1/DUET gene that encodes a protein with a C-

terminal PHD-finger domain may be a critical regulator of meiosis (Reddy  et al., 2003; 

Yang et al., 2003 ). Mutations in this gene cause meiotic defects, a failure to produce 

normal pollen, and male sterility. During early meiosis, the mmd1 (male meiocyte death1) 

mutant appears normal up to diakinesis (Yang et al., 2003 ). From diakinesis to telophase 

II, meiotic cells show signs of programmed cell death, including chromosome 

fragmentation and cytoplasmic shrinkage. All meiotic cells die before cytokinesis. The 

duet mutant shows a delayed meiotic cytokinesis and formation of mostly dyads instead 
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of tetrads (Reddy  et al., 2003). The abnormal microspores produced from the mutant 

meiocytes then undergo one or two mitotic divisions before degeneration. 

An Arabidopsis homolog to the yeast cell-cycle gene CDC45 is expressed in early 

floral buds that include meiotic cells. RNAi transgenic plants where CDC45 is silenced 

have fertility defects (Stevens et al., 2004). Further analysis indicates that the RNAi lines 

produce polyads instead of tetrad from meiosis and subsequent nonviable pollen grains.  

Several genes are genetically important for meiotic cytokinesis. Among these 

mutants are the Arabidopsis stud (std) and tetraspore (tes) mutants. In the mutant 

meiocytes, the nuclear meiotic events are normal, but cell plate formation is incomplete 

during cytokinesis, resulting in a giant microspore with four nuclei. During the 

subsequent pollen development, the four nuclei undergo mitotic divisions separately, 

producing four vegetative nuclei and up to eight sperm cells within a large abnormal 

“pollen grain.” This pollen grain behaves as a single male gametophyte and produces 

only one pollen tube, resulting in significantly reduced male fertility (Hulskamp et al., 

1997; Spielman et al., 1997).  

V. Male gametophyte development and gene control 

After the tetrad separates and releases as free microspores, each uninucleate microspore 

undergoes an asymmetric mitotic division to produce a small generative cell and a larger 

vegetative cell. The generative cell  then divides to form two sperm cells (Cresti et al., 

1992; Mogensen, 1992; McCormick, 1993; Southworth, 1996; McCormick, 2004; 

Weterings and Russell, 2004; Ma, 2005). Although the unique “cell-within-a cell” 

structure means that the male gametic lineage -- sperm cells and their precursor 

generative cell depend on the pollen vegetative cell for nutrition and transportation, male 
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germ cells are known to have their own enriched and unique molecular repertoire and 

gene regulation network (Twell, 2002; McCormick, 2004; Singh and Bhalla, 2007; Singh 

et al., 2008; Borg et al., 2009; Gou et al., 2009). Over last two decades, significant 

progresses have been made on male gametophyte specific gene expression, regulatory 

elements for male lineage identity, molecular mechanisms controlling male gametophyte 

development, and male gene involved in fertilization and early embryogenesis.   

5.1. Genome-wide transcriptome studies of pollen 

In recent years, genomics approaches such as high-throughput transcriptome sequencing 

and microarray assays have enabled the analysis of male gametophyte gene expression on 

a genome-wide scale.  

The first Arabidopsis pollen microarray assays were performed by two 

independent group using first generation of Affymetrix Arabidopsis Genome Gene Chip 

microarray (Becker et al., 2003; Honys and Twell, 2003). Since this 8K chip only covers 

approximately one-third of the Arabidopsis genome, even with FACS sorted pollen, a 

limited number of genes were identified as pollen specific (Becker et al., 2003; Honys 

and Twell, 2003; Borg et al., 2009). The development of the Affymetrix 23K Arabidopsis 

ATH1 array, which covers approximately 80% of Arabidopsis genes, enables 

transcriptome profiling of the male gametophyte on a much larger scale.  The first large 

scale Arabidopsis pollen microarray dataset was generated from four stages of male 

gametophyte development (uninucleate microspores, bicellular pollen, tricellular pollen, 

and mature pollen) from ecotype Landsberg erecta (Honys and Twell, 2004). A total of 

13,977 genes are expressed in the male gametophyte, and 9.7% of the expressed genes 

seem to be male-gametophyte-specific. The different stages of pollen have overlapping, 
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yet different expression profiles. The transition from bicellular to tricellular pollen is 

accompanied by a decline in the number of diverse mRNA species and an increase in the 

proportion of male gametophyte-specific transcripts. The majority of male gametophyte-

expressed genes (52%) can be grouped into four clusters comprising early expressed 

genes repressed after PMII. Several large gene clusters collectively containing 1,899 

genes (13.6%) are associated with pollen maturation, and they are activated or 

upregulated between the bicellular pollen (BCP) and tricellular pollen (TCP) stages, In 

contrast, a discrete cluster set of 298 genes is upregulated only after  the TCP stage. The 

core cell-cycle genes, transcription factors and core translation factors that could 

correspond to components of gametophytic regulatory networks were identified from the 

assay.  

Another dataset is derived from mature pollen grains from Arabidopsis ecotype 

Columbia by using Affymetrix Arabidopsis ATH1 arrays (Pina et al., 2005).  The 

comparison of gene family and Gene Ontology (The Gene Ontology Consortium, 2000) 

representation in the transcriptome of pollen and vegetative tissues indicates a smaller 

and overall unique transcriptome (6,587 genes expressed) with greater proportions of 

selectively expressed (11%) and enriched (26%) genes in pollen grains than in any 

vegetative tissue.  Relative Gene Ontology category representations in pollen and 

vegetative tissues reveal functions of the pollen transcriptome toward signaling, vesicle 

transport, and the cytoskeleton, suggesting that these pollen expressed genes may be 

involved in pollen germination and pollen tube growth. In addition, factors associated 

with G2/M in the cell cycle are strongly expressed revealing that may play a role in the 

first mitotic division of the zygote.  
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An increasing number of publicly available sporophytic datasets have allowed 

comparative analyses to be performed with the male gametophyte transcriptome 

(Zimmermann et al., 2004). Using bioinformatic tools  to compare a number of 

sporophytic datasets , Twell et al. (Twell et al., 2006) estimated that ~5% of genes 

expressed in mature pollen are pollen-specific, a number about half of the  initial 

estimates of 10% from individual datasets (Honys and Twell, 2004; Pina et al., 2005). 

The genes with specific or enhanced expression in the male gametophyte-specific genes 

are often characterized by having very high expression levels. Many of these genes 

encode proteins with predicted functions related to pollen germination or tube growth 

(Honys and Twell, 2004; Pina et al., 2005; Twell et al., 2006; Borg et al., 2009).  

Some pollen-specific genes likely code for allergens. Russell et al. recently profiled rice 

pollen gene expressions using the Affymetrix 57K rice GeneChip microarray, and found 

that some most abundant pollen-specific genes to be putative allergens (Russell et al., 

2008).  

5.2. Gametophytic mutants affecting pollen development and pollen specific gene 

expression 

A number of interesting mutants showing defective pollen phenotypes have been 

described in Arabidopsis based on morphology or DAPI (4',6-diamidino-2-phenylindole) 

staining characteristics of pollen (Chen and McCormick, 1996; Johnson and McCormick, 

2001; Lalanne and Twell, 2002). Among them, sidecar pollen (Chen and McCormick, 

1996) and gemini pollen (Park et al., 1998) are two representative (or best characterized) 

mutants. At the mature pollen stage, 7% of heterozygotes sidecar pollen show the sidecar 

phenotype, namely an extra cell within the pollen exine. The sidecar pollen (scp) 
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mutation causes some of the developing pollen grains to undergo a premature and 

symmetric cell division. This extra mitosis produces two vegetative cells prior to the 

asymmetric division, and thus, 43% of the mutant pollen grains are aborted. As a result, 

these two cells are then unable to undergo the normal mitotic divisions to form the 

generative cell and two sperm cells. The gemini pollen1 (gem1) mutant also exhibits 

defects in the divisional pattern. Among the mutant pollen grains, equal, unequal, and 

partial divisions can all be observed at the first mitotic division (Park et al., 1998), 

suggesting that the mutation may affect the positioning of the nucleus. GEM1 is identical 

to MOR1 (Whittington et al., 2001). MOR1/GEM1 belongs to the MAP215 family of 

microtubule-associated proteins and plays a vital role in microspore polarity and 

cytokinesis by stimulating growth of the interphase spindle and phragmoplast microtubule 

arrays at pollen mitosis I (Twell et al., 2002). In another mutant, limpet pollen, the 

generative cell remains outside the cytoplasm of the vegetative cell and against the pollen 

wall, suggesting that the migration of the generative cell is defective (Howden et al., 

1998). 

In mature pollen grain, the vegetative nucleus and the two sperm cells are 

components of the MGU. Screening of pollen grains from mutagenized plants has 

identified mutants with abnormal organization or positioning of the MGU (Lalanne and 

Twell, 2002). The gum (germ unit malformed) and mud (MGU displaced) mutants are 

defective in the organization of the MGU such that the vegetative nucleus stays near the 

pollen wall and away from the sperm cells. In mud mutant pollen grains, the entire MGU 

is mislocalized near the pollen wall on one side of the cytoplasm. Further analysis of 
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these mutants and the corresponding genes should provide new insights into the control 

of the integrity and positioning of the MGU.  

The analysis on two Arabidopsis plastidic glucose 6-phosphate/phosphate 

translocator GPTs indicate that  GPT1 is essential to pollen maturation and embryo sac 

development (Niewiadomski et al., 2005). The homozygous T-DNA insertion mutants 

gpt1-1 and gpt1-2 are lethal, and the heterozygous line shows distorted segregation and 

reduced male and female transmission rates. TEM observations show that the gpt1 

mutant pollen development is associated with reduced formation of lipid bodies and small 

vesicles and the disappearance of dispersed vacuoles, resulting in disintegration of the 

pollen structure and thus abortion of the pollen. Meanwhile, the embryo sac development 

in the mutant is also defective. Although the embryo sac cell division is normal, the polar 

nuclei fail to fuse.  The loss of GPT1 function probably results in disruption of the 

oxidative pentose phosphate cycle, which in turn affects fatty acid biosynthesis 

(Niewiadomski et al., 2005). 

 Notably, the tomato LAT52 gene encoding a cystein-rich protein is specifically 

expressed in the vegetative cell during pollen maturation (Twell et al., 1990; Bate and 

Twell, 1998). The LAT52 promoter, isolated and analyzed by several groups (Twell et al., 

1991; Eyal et al., 1995; Bate et al., 1996; Bate and Twell, 1998) by testing gain-of-

function and loss-of-function gene constructs in transient assays in pollen and in somatic 

cells as well as in stably transformed plants, seems to contain a 30-bp element that 

defines pollen specificity.  Gene expression driven by the promoter can be detected in 

uninucleate microspores in Arabidopsis (Eady et al., 1994) and this promoter shows 

strong gene expression at all developmental stages after the bicellular pollen stage, even 
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after delivery into mature pollen via particle bombardment (Twell et al., 1991; Eyal et al., 

1995).  

Genes regulating pollen tube growth and navigation inside in female tract are also 

important for successful fertilization. Recently, Arabidopsis VANGUARD1 (VGD1) was 

identified to play an important role in pollen tube growth. VGD1 encodes a pectin 

methylesterase homologous protein that may modify the cell wall and thus enhances the 

interaction of pollen tube with the female style and transmitting tract. The vdg1 mutant 

showed retarded pollen tube growth and resulted in a significant reduction of male 

fertility (Jiang et al., 2005).  

A recent report on a collection of Ds transposon insertion mutants associated with 

defects in pollen development, pollen germination, pollen tube growth and pollen tube-

embryo sac interaction in Arabidopsis could help decipher a more complete 

understanding of the genetic basis of pollen development and functions (Boavida et al., 

2009). 

5.3. Male germ cells (generative cell and sperm cells) transcriptional profile 

Although sperm cells and their precursor generative cells are small and dependent on the 

vegetative cell, male germ cells are known to have their own enriched and unique 

molecular repertoire with both separate and overlapping systems of genetic control 

(Singh et al., 2008). Male germline cells transcribe their own separate pools of stable, 

translatable mRNA (Zhang et al., 1993; Blomstedt et al., 1996), and synthesize proteins 

unique to the germline (Ueda and Tanaka, 1995b, 1995a). EST sequencing and 

microarray assay are powerful tools for the analysis of gene expression in generative cells 

and sperm cells. Data generated using these tools have been available for several model 
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plant species. The cDNA libraries have been constructed from the generative cells of 

Lilium longi-florum (lily) (Xu et al., 1998; Okada et al., 2006a), sperm cells of Plumbago 

zeylanica (Gou et al., 2009), sperm cells of Oryza sativa (rice) (Gou et al., 2001), sperm 

cells of Zea mays (maize) (Engel et al., 2003), and generative cells of Nicotiana tobacco 

(tobacco) (Xu et al., 2002). cDNA microarray and Affymetrix GeneChip arrays have 

been employed for comparative transcriptome studies of Arabidopsis, lily, rice and 

Plumbago (Okada et al., 2007; Borges et al., 2008; Gou et al., 2009; Russell et al., 2010b). 

Genes identified as male germline-expressed from the above studies can be classified into 

three categories: (1) housekeeping genes expressed constitutively in male germline, 

pollen vegetative cell and other plant cells; (2) genes found in several cell types, but up-

regulated in the male germ cells; and (3) germ cell specific genes (Singh et al., 2008). 

Some germ cell-specific genes share functions with somatic counterparts, whereas others 

are unique in sequence and function exclusively in germline cells. The latter is the most 

attractive to plant reproduction community as this may recover molecular mechanisms 

underlying male gamete development and for controlling gamete interactions.  Much of 

current transcriptomic information is from four plants: lily, Plumbago, maize and 

Arabidopsis. 

5.3.1. Lily generative cell transcriptional profile 

As model for bicellular pollen biology, lily is a classical experimental material for the 

study of pollen development and male gamete gene regulation because it has abundant 

pollens and there is a well-established protocol for isolation of sufficient intact generative 

cells (Tanaka, 1988; Blomstedt et al., 1996; Xu et al., 1998; Okada et al., 2006a). Xu et al. 

(Xu et al., 1999b) constructed the first generative cells cDNA library using  purified lily 
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generative cells by a discontinuous Percoll gradient centrifugation. Initial analysis 

identified several germline-specific genes including LGC1 which encodes a membrane 

protein (Xu et al., 1999b), male germline histone isoforms gcH2A and gcH3 (Xu et al., 

1999a; Ueda et al., 2000), a polyubiquitin gene LG52 (Singh et al., 2002), and a strongly 

upregulated gene which is a highly conserved DNA repair gene and homologous to 

human ERCC1 (Xu et al., 1998).  

Another study by Okada et al. (Okada et al., 2006a) is on male gamete cell gene 

expression through EST analysis of cDNAs derived from isolated lily generative cells. In 

order to gain new insight on expression profile of male gamete genes, the group also 

compared lily generative cell expressed genes with genes in other plants. A total of 886 

ESTs derived from lily generative cell cDNA library are assembled into 637 unique 

contigs, 39% of which show sequence similarity to Arabidopsis genes with known 

functions. Interestingly, genes related to the ubiquitin pathway are over-represented, 

suggesting the key role of ubiquitin-dependent proteolysis in gametogenesis. A total of 

168 and 129 lily generative cell contigs are highly similar to maize sperm cell ESTs and 

Arabidopsis male gametophyte-specific transcripts, respectively, and 55 male 

gametophyte-specific genes appear to be conserved in lily, Arabidopsis and maize, 

suggesting functional conservation of the male gamete-expressed genes across different 

plant genera.  

Microarray experiments of lily generative cells found that only 17% of the 

generative cell-expressed genes can hybridize to sporophytic sources of mRNA. Thus, 

83% of lily generative cell transcripts seem to be male germ cell-specific. No other plant 
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cell type analyzed to date produces such a high ratio of cell-specific transcripts (Okada et 

al., 2007).  

5.3.2. Plumbago dimorphic sperm cells transcriptional profile 

plumbago zeylanica is a model plant for the study of sperm cell dimorphism and 

preferential fertilization.  Sperm cell dimorphism and preferential fertilization may be 

common in flowering plants. A survey of 19 plant species found that 17 display 

dimorphism (Saito et al., 2002; Weterings and Russell, 2004). Preferential fertilization 

has been reported in other flowering plant species too, including maize and tobacco 

(Roman, 1948; Carlson, 1969, 1986; Rusche et al., 1997; Tian et al., 2001; Faure et al., 

2003).  

In plumbago zeylanica, mature pollen is tricellular and contains a vegetative cell 

and two strongly heteromorphic sperm cells (Russell and Cass, 1981; Russell, 1984). The 

sperm cell associated with the vegetative nucleus (Svn) is the larger cell and contains 

many mitochondria (mean 256.18) and very few plastids (mean 0.45). The smaller sperm 

cell (Sua) is unassociated with the vegetative nucleus and contains abundant plastids 

(mean 24.3) and smaller, less numerous mitochondria (mean 39.8) (Russell, 1984; 

Russell, 1986). Because the embryo sac of the plant lacks synergids, a property that 

greatly simplifies the observation of events occurred inside the embryo sac, Plumbago 

zeylanica is frequently used to trace the fate of sperm cells during double fertilization 

(Russell, 1980; Russell, 1982; Russell, 1983). Using this model plant, preferential 

fertilization in plant reproduction was first documented about two decades ago. Sua 

selectively fuses with the egg in >95% of cases examined, whereas Svn usually fuses 

with central cells (Russell, 1985; Russell, 1986). The differences between the two sperm 
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cells may correlate with differences in gene expression that affects post-fertilization 

development, since the male cytoplasm in this plant is known to be transmitted into 

female gametes during double fertilization (Russell, 1980; Russell, 1983; Weterings and 

Russell, 2004). 

To elucidate possible expressional differences between the sperm cells, a method 

to isolate and collect two sperm cell types based on micropipetting individual sperm cell 

types has been developed (Zhang and Russell, 1998). Two cDNA libraries have been 

prepared from each sperm type, and sequencing of clones from each has highlighted 

some differences in the repertoire of genes expressed in each sperm type. EST expression 

patterns and functional classification of the transcripts using Gene Ontology (The Gene 

Ontology Consortium, 2000) suggest strong transcriptome divergence in the two 

Plumbago sperm cell types. Over 1500 representative ESTs from these two sperm cell 

types have been submitted to GenBank, including 893 sequences isolated from Sua and 

629 sequences from Svn. The Sua ESTs are assembled into 426 distinct sequences, 

comparing to 419 distinct sequences for Svn ESTs. Of the ~ 1500 genes, 13.3% represent 

products with unknown function and 60.8% of the sequences do not have any homology 

in other plants. Only 25.9% could be classified into functional categories, where the 

largest groups were genes involved in metabolism, protein modification, transcription and 

biosynthesis. Of those sequences with no known homology in the GenBank protein 

database, the Svn has slightly more unique sequences, with 62.8% having no hits, versus 

58.9% in the Sua. The high percentage of no hits and unclassified sequences indicates 

that current databases provide inadequate coverage of genes involved in angiosperm male 

gamete biology. Similar to lily generative cells, there is a conspicuous upregulation of 
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ubiquitin, as well as metabolic, transcriptional, and biogenetic activity. Interestingly, 

ubiquitin expression in terms of EST count is much higher in the Svn (Gou et al., 2009). 

Genes that are highly upregulated in only one of the two sperm cells illustrates the 

likelihood of independent regulatory elements controlling expression in each of the two 

sperm cells of Plumbago (Singh et al., 2002).  

The differential expression between Svn and Sua was validated through 

suppression subtractive hybridization, cDNA microarrays, real-time RT-PCR and in situ 

hybridization.  Some male germline genes were differentially expressed in the Sua, while 

others specifically expressed in the Svn. The Sua, which targets the egg cell, has a greater 

abundance of transcripts relating to transcription, translation and protein modification, 

and thus appears to reflect a profile similar to anticipated patterns of expression in the 

embryo.  The Svn, which targets the central cell and forms the endosperm, displays 

greater abundance of transcripts relating to metabolism and phytohormone biosynthesis. 

Notably, multiple copies of IPT (isopentenyl transferase) transcripts were detected in Svn 

cDNA library. IPT is an enzyme governing the limited-rate step for cytokinin 

biosynthesis (Mok and Mok, 2001; Miyawaki et al., 2004; Miyawaki et al., 2006 ). 

Although cytokinin causes negligible responses in pollen (Miyawaki et al., 2004), 

cytokinin levels are strongly elevated during endosperm proliferation and appear to 

control endosperm growth and development (Day et al., 2008). The Svn appears to have a 

more strongly divergent program than the Sua, since many upregulated genes from the 

SSH cDNA library of the Svn lack homology with other sequences in public database 

(Gou et al., 2009; Russell et al., 2010a). 
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5.3.3. Maize sperm cells transcriptional profile 

There are 5,093 ESTs representing maize sperm-expressed transcripts in GenBank. They 

were sequenced from  a maize cDNA library constructed using sperm cells isolated by 

FACS, followed by EST sequencing (Engel et al., 2003).   A characteristic feature of the 

grass genome has been a relatively high representation of transposable elements, for 

which the sperm lineage is no exception. Annotated retrotransposons represent 9.46% of 

the maize sperm ESTs, but there are fewer annotated transposons (0.06%). In contrast, 

female gametophytes showed less than one-fifth the number of retrotransposons (1.69%) 

and more annotated transposons (1.44%) (Yang et al., 2006), reflecting differential 

expression of such elements in the male germlineage. Sperm-specific EST sequences 

from maize have been successfully used to identify Arabidopsis sperm-specific gene 

candidates, many of which have been validated to be expressed specifically in sperm cells 

of Arabidopsis (Engel et al., 2005). Several such genes expressed in male germ cells in 

Arabidopsis (Gamete Expressed 1, 2, 3, GEX1, 2, 3) were identified by comparative 

analysis of the maize sperm cell EST sequences with the Arabidopsis genome (Engel et 

al., 2005; Alandete-Saez et al., 2008). 

5.3.4. Arabidopsis sperm transcriptional profile 

Arabidopsis is widely used as a model plant for functional genomics. However, its sperm 

transcriptomic studies are hard to perform because the sperm cells are not easily 

accessible. The first genome-wide Arabidopsis sperm cell transcritome study was 

reported by Borges et al. (Borges et al., 2008) who used FACS to isolate sperm cells from 

Arabidopsis  for assay. To use FACS, they first transformed Arabidopsis plant with GFP 

driven by the AtGEX2 promoter. The promoter is known to express strongly in sperm 
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cells. The direct comparison of their transcriptome with those of pollen and seedlings, as 

well as with additional ATH1 data sets from a variety of vegetative tissues shows that 

sperm cells have fewer expressed genes (5829 genes, or 27% of genes represented in the 

chip) than those detected from pollen (7177 genes, or 33%) and seedling (14464 genes, or 

64%). However, the sperm cell seems to have a distinct and diverse transcriptional profile. 

Functional classifications of genes up-regulated in sperm cells shows that genes involved 

in DNA repair, ubiquitin-mediated proteolysis, and cell cycle progression are 

overrepresented. The candidate genes involving in sperm cell development and 

fertilization identified in this study can be directly tested in Arabidopsis. These results 

provide useful information to decipher the role of sperm-expressed proteins (Borges et al., 

2008).  

To summarize, plant sperm cell transcriptome profiling from several model plants 

indicates that a number of sperm-specific genes are conserved across species, and sperm 

expressed genes seem to be involved in general metabolism, cellular organization, DNA 

synthesis, chromatin structure, and protein degradation.  

5.4. Male germline specific gene expression  
 
The previous session reviewed global patterns of sperm transcriptome profile. Here I will 

review individual genes specifically expressed in sperm cells and their regulation. There 

are numerous interests in identifying and characterizing germ-specific genes since they 

may play vital roles in germline development and fertilization. Many germline specific 

genes have been identified from either genome-wide transcriptomic study or 

gametophytic mutant screening. These genes have various molecular functions and are 

involved in different biological processes.  
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5.4.1. Male germline specific genes involved in ubiquitin pathway 
 
Ubiquitin is a highly-conserved regulatory protein that is ubiquitously expressed in all 

eukaryotic cells. Ubiquitin is mainly involved in the ubiquitination pathway which was 

initially characterized as an ATP-dependent proteasomal degradation system.  The 

ubiquitin system provides a critical regulatory mechanism in many cellular processes, 

including protein degradation, transcription, DNA repair, chromatin structure, signal 

transduction, autophagy, and cell-cycle control (Kerscher et al., 2006). Mammalian 

systems show that ubiquitin has specialized functions in mammalian gametogenesis 

(Baarends et al., 1999). Mouse gene knockout studies have shown that inactivation of 

components of the ubiquitin system leads to impaired gametogenesis (Roest et al., 1996).  

In flowering plants, genes encoding ubiquitin-pathway-related proteins such as 

polyubiquitin, proteasome subunit, ubiquitin-conjugating enzyme, Skp1 and Ring box 

protein are highly upregulated in the generative cells of lily (Okada et al., 2007), sperm 

cells of Arabidopsis (Borges et al., 2008), sperm cells of Plumbago (Singh et al., 2002; 

Gou et al., 2009), and sperm cells of maize (Engel et al., 2003).  In Arabidopsis, 

ubiquitination related genes are the second most abundant in sperm-enriched genes 

(Borges et al., 2008). While in Plumbago, polyubiquitin, ubiquitin ligase, and ubiquitin-

conjugating enzyme are the most abundant in both Svn and Sua sperm cell cDNA 

libraries (Gou et al., 2009)..  

In lily generative cell cDNA library, the clone LG52 contains two ubiquitin units. 

To determine whether the ubiquitin gene was generative cell-specific, its expression was 

measured in various tissues including the generative cells, mature pollen, leaf, stem and 

petal. A strong hybridization signal was detected in generative cells, but no signal was 
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detected in other floral and vegetative organs except in the cytoplasm of mature pollen 

where only a weak hybridization signal was detected, indicating that the gene 

corresponding to LG52 cDNA is transcribed in the generative cell nucleus (Singh et al., 

2002). Using the lily generative cell mRNA to cross-hybridize Plumbago sperm-

expressed genes, a Plumbago homolog was identified which encodes a polyubiquitin with 

three ubiquitin repeats. Both RT-PCR analysis and in situ hybridization experiments 

demonstrated that the Plumbago polyubiquitin was expressed in both sperm cells, but 

expression in mitochondria-rich sperm (Svn) cells was much higher than in the plastid-

rich sperm (Sua) cells (Singh et al., 2002; Singh et al., 2008). The high level of 

expression of ubiquitin-pathway-related genes in generative cells and one of the 

Plumbago sperm cell types suggests that the ubiquitin proteolysis system plays a critical 

role in the male gametogenesis of higher plants (Singh et al., 2002). 

5.4.2. Male germline specific histone variants and epigenetic remodeling in male 

germlines 

Microarray expression profiling in Arabidopsis has revealed that among several tissue 

types, sperm cells and pollen have the fewest genes expressed (Becker, 2007; Borges et 

al., 2008). Comparing to the vegetative nucleus, the generative nucleus and sperm have 

very condensed chromatin and DNA is heavily methylated (Slotkin et al., 2009). In lily, 

2D gel electrophoresis identified at least five nuclear basic proteins which are either 

specific to or enriched in generative cell nuclei (Ueda and Tanaka, 1994). Two of these 

generative cell specific proteins gH3 and gH2B are variants of histones H3 and H2B. 

Immunocytochemical staining of these histone variants demonstrated that they were not 

only present in generative cells but also in the two sperm cells produced from the division 
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of the generative nucleus in pollen tube (Ueda and Tanaka, 1995b).  In a lily generative 

cell cDNA library, transcripts encoding histone variants are generally abundant, and 

ESTs for histone H3 are particularly over-represented (Xu et al., 1999a; Ueda et al., 2000; 

Okada et al., 2005a; Okada et al., 2005b; Okada et al., 2006b). Generative cell specific 

expression of histone variants, especially histone H3, may be a common characteristic of 

the male germline in flowering plants (Xu et al., 1999a; Okada et al., 2005b; Singh et al., 

2008). Immunocytochemical studies have further demonstrated that histone variants gH3 

and gcH3 are incorporated in male germline chromatin in a replication independent 

manner (Singh et al., 2008). 

In a maize sperm cell cDNA library, 20 out of 1,100 ESTs are for histone H3, 

while < 5 ESTs are found for other histones (Engel et al., 2003). In Plumbago sperm 

cDNA libraries, male gamete-expressed chromatin related genes included histones H2A, 

H2B, H3 and H4 that are up-regulated in both Svn and Sua sperm cells (Gou et al., 2009). 

In Arabidopsis, at least three H3-variant genes are expressed in male germline cells, 

including the male gamete-specific variant gene AtMGH3 and variant H3.3 (Okada et al., 

2005b). Male germline histone variants possibly play an important role in epigenetic 

regulation of gene expression (Grewal and Moazed, 2003). The lily variant gH3 histone, 

for instance, can only be localized in generative nucleus chromatin. In addition to variant 

histones, generative cells also show evidence of chromatin modification, as indicated by 

the localization of a strong methylation signal at lysine residue position 4 (H3K4) and 

position 9 (H3K9) of the generative nucleus H3 histone (Okada et al., 2006b).  

Sequence similarity searches using lily germline specific histone H3 as the query 

identified MGH3, an Arabidopsis male germline-specific gene (Okada et al., 2005a).  In 
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situ hybridization and monitoring of promoter activity with the β-glucuronidase (GUS) 

reporter demonstrates that MGH3 is specifically expressed in both the germ cell and 

sperm cells (Okada et al., 2005a).  However, an MGH3 insertion mutant did not show 

aberrant phenotypes. This  may arise from functional redundancy among histone H3 

genes (Okada et al., 2005a). Recent studies on the dynamics of the male germlineage 

marker MGH3-mRFP1 and the centromeric histone H3 marker HTR12-GFP in the zygote 

and endosperm nuclei indicated active replication-independent replacement of paternal 

histone H3.3 in the zygote and replication-coupled removal in the endosperm. This study 

also revealed a spatial segregation of paternal chromatin (marked by HTR12-GFP) from 

maternal chromatin in the endosperm, but not in the zygote. Thus, the differential paternal 

chromatin remodelling involving histone H3 variants, which may also be coupled to 

parental imprinting of the endosperm, distinguishes the two products of fertilization 

(Ingouff et al., 2007). 

 In Arabidopsis, the chromatin remodeling ATPase DECREASE IN DNA 

METHYLATION 1 (DDM1) is down-regulated in the vegetative nucleus but accumulates 

in sperm cells. DDM1 is a master regulator of transposable element (TE) activity. In the 

vegetative nucleus most TE lost DNA methylation and active TE transcription is 

observed (Slotkin et al., 2009). Generally, TE transcripts are sources for 24nt siRNAs 

which negatively regulate gene expression at transcriptional level by guiding DNA 

methylation. Interestingly, siRNAs of 21nt from Athila retrotransposons are generated in 

the vegetative nucleus. The 21mer siRNAs seem to be mobile and can accumulate in the 

sperm cells to specifically silence TE.  
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5.4.3. Genes associated with male germline specification 

The genome-wide germline transcriptomic assay is valuable to identify germline up-

regulated or specific genes (Xu et al., 1998; Xu et al., 1999b; Engel et al., 2003; Engel et 

al., 2005; Okada et al., 2006a; Borges et al., 2008; Gou et al., 2009). Genes specifically 

or highly expressed in germline cells may play an important role in the specification of 

functional sperm cells.  

LGC1 (Lily Generative Cell-specific 1) is the most impressive such gene that is 

exclusively expressed in the male gametic cells of lily. Identified from a RNA gel blot 

with cDNA clones from generative cell cDNA library (Xu et al., 1999b), LGC1 showed 

strong hybridization signal to RNA of generative cells, but weak hybridization signal to 

RNA of pollen, and no detectable hybridization to RNAs of other tissues when cDNA of 

LGC1 was used as probe for Northern blot hybridization. RT-PCR also confirmed the 

results of Northern blot hybridization. In situ hybridization further showed that LGC1 

mRNA is restricted to the generative cell in mature pollen. The temporal expression 

analysis of LGC1 showed LGC1 mRNA was not detected in the microsporocyte, tetrad, 

or unicellular microspores; but LGC1 mRNA started to transcribe only in the generative 

cell at the later bicellular stage of pollen. Very high level of LGC1 mRNA was detected 

in mature pollen and sperm cells after generative cell division (Xu et al., 1999b). LGC1 

encodes a small protein of 128 amino acids with a hydrophobic domain having 

characteristics of a GPI anchor, suggesting membrane localization of this protein. The 

male gametic cell specific LGC1 and membrane surface characteristic suggested a 

putative function in sperm-egg recognition and fusion (Xu et al., 1999b). 
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LGC1 is abundantly expressed in the lily germline, as 11 of 886 sequenced lily 

generative cell ESTs were found in generative cell cDNA library (Okada et al., 2006a). 

LGC1 homologs are also present in Arabidopsis and rice genomes. The LGC1 ortholog in 

Arabidopsis is also exclusively  expressed in generative and sperm cells (Singh et al., 

2008). 

GCS1 (Generative Cell-Specific 1) is another lily generative cell specific gene 

(Mori et al., 2006). GCS1 cDNA clone was detected in the generative cell and the 

expression specificity was validated by RT–PCR. The immunolocalization of GCS1 

protein in lily pollen grains showed GCS1 was distributed in the region surrounding the 

generative nucleus in pollen grains. The knockout mutation in Arabidopsis GCS1 

specifically blocked male transmission and fertilization. During double fertilization, 

sperm cells were observed within the degenerated synergid but failed to fuse with the 

female gametes. Mori and colleagues thus presented two lines of evidence that support an 

important role for GCS1 in angiosperm fertilization. First, expression of GCS1 is specific 

to male gametes and location of expression is at the cell surface; second, disruption of 

GCS1 in Arabidopsis prevents gamete interaction, indicating that GCS1 is essential for 

successful gamete attachment, fusion, or both. However, the failure of gamete fusion in 

gcs1 mutants could also arise from defective transport of sperm cells to their respective 

fusion sites on the egg and central cells. GCS1 encodes a novel protein without known 

domains. All homologues have a common structure with an N-terminal putative 

transmembrane peptide and a prominent hydrophobic putative transmembrane domain 

located in the C-terminal region, followed by a unidefined histidine-rich region. GCS1 

may be anchored by its C-terminal transmembrane domain, which localize to the sperm 
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surface and serve as facilitators of gamete fusion (Mori et al., 2006). Single-copy GCS1 

homologues with a conserved domain structure are present in Arabidopsis, rice, green 

and red algae, slime mould and protozoan parasites. All these evidences point to a 

fundamental role of GCS1 in membrane fusion during fertilization.  Arabidopsis plants 

with a gene knockout for a GCS1 homologue gene, HAP2, also fail in fertilization. Sperm 

cells of hap2 mutant plants are incapable of fertilizing the egg or central cell, leading to 

the degeneration of the egg cell (von Besser et al., 2006; Frank and Johnson, 2009). 

HAP2/GCS1 protein is the first identified flowering plant sperm surface protein that is 

essential for fertilization (Mori et al., 2006; von Besser et al., 2006; Frank and Johnson, 

2009). 

Comparative study of maize sperm cell specific transcripts with Arabidopsis 

sequences led to the identification of germline specific genes GEX1, GEX2 and GEX3 

and their promoters in Arabidopsis (Engel et al., 2005; Alandete-Saez et al., 2008). These 

genes belong to membrane-associated proteins which are expressed in male germ cells in 

Arabidopsis. GEX1 and GEX2 are predicted to have three and six transmembrane 

domains, respectively, while GEX3 is predicted to have only one. Fluorescent protein 

GFP fusions indicate that all three proteins are plasma membrane-associated. 

Promoter::GFP analysis indicated that GEX1 is expressed in sperm cells, ovules, root, 

and guard cells, but not in generative cells and vegetative cells.  GEX2 is expressed in 

both the generative cells and sperm cells, but not in vegetative cell or other tissues (Engel 

et al., 2005). GEX3 is expressed in the vegetative cell and sperm cells, and a low level of 

expression in the egg cell of the female gametophyte (Alandete-Saez et al., 2008). The 

function of GEX1 and GEX2 has not yet been elucidated, while analysis of transgenic 
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GEX3 knockdown and over-expression lines revealed reduced seed set caused by a 

female defect (Alandete-Saez et al., 2008). The discovery of these different gamete 

surface proteins with potential roles in signaling during pollen tube guidance and 

fertilization suggest complex communications between the different cells of the male and 

female gametophyte (Borg et al., 2009).  

Several other interesting germline-specific genes are identified by screening of 

Arabidopsis pollen defective mutants. These genes include DUO1, DUO2, DOU3, 

MGH3/HTR10, HAP2/GCS1, HAP5, and HAP12. 

Arabidopsis duo1 and duo2 mutants appear to have normal pollen morphology but 

generative cell division is blocked due to the formation of bicellular pollen at anthesis 

(Durbarry et al., 2005). Both duo mutants progress normally through the first haploid 

division at pollen mitosis I (PMI) but fail at distinct stages of generative cell cycle. The 

generative cells in duo1 pollen complete S-phase but fail to enter mitosis II at G2-M 

transition, whereas the generative cells in duo2 pollen enter PMII but arrest at pro-

metaphase suggesting a specific role for DUO2 in mitotic progression (Durbarry et al., 

2005). DUO1 is expressed exclusively in the male germline, with expression first 

detected in the germ cell soon after asymmetric division at PMI (Rotman et al., 2005). A 

map-based cloning experiment revealed Arabidopsis gene At3g60460 corresponds to 

mutations in duo1 mutants. DUO1 encodes a novel R2R3-MYB transcription factor that 

is expressed specifically in the male germline and the DUO1 protein reportedly 

accumulated in the nucleus of the generative and sperm cells, with a proposed function of 

promoting the generative cell by activating specific targets such as cyclin genes.  
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DUO3 has overlapping roles with DUO1 in male germ cell division and sperm 

cell specification (Brownfield et al., 2009a; Brownfield et al., 2009b). DUO3 is 

conserved throughout the land plants and contains motifs conserved in the 

GONADLESS-4 (GON-4) protein, a cell lineage regulator of gonadogenesis in 

Caenorhabditis elegans (Friedman et al., 2000). The generative cells in mutant duo3-1 

either fail to divide or show a delay in division, unlike DUO1, DUO3 which promotes 

entry into mitosis independent of the G2/M regulator CYCB1;1. Further studies indicate 

that DUO3 is a positive regulator of germ cell fate, and like DUO1, DUO3 is required for 

the normal expression of the germline markers GCS1 and GEX2. However, DUO3 is not 

required for MGH3 expression, distinguishing the role of DUO3 in sperm cell 

specification from that of DUO1. Furthermore, DUO3 has an essential sporophytic role in 

cell division and embryo patterning. Together, DUO3 plays essential developmental roles 

in cell cycle progression and cell specification in both gametophytic and sporophytic 

tissues (Brownfield et al., 2009a; Brownfield et al., 2009b). 

Pollen tube guidance has been known controlled by female gametophyte (FG) 

factors. Several female gametophytic genes, such as AtFER (FERONIA) (Escobar-

Restrepo et al., 2007), ZmEA1 (Zea mays EGG APPARATUS1) (Marton et al., 2005), 

TfLUREs (Torenia fournieri Cysteine-Rich Polypeptides) (Okuda  et al., 2009), AtMYB98 

(Kasahara  et al., 2005), and AtCCG (CENTRAL CELL GUIDANCE) (Chen  et al., 2007)  

have been reported for their important roles in pollen tube guidance and reception. 

However, the recent report of  Arabidopsis sperm-specific gene HAP2 shows its unique 

function involved in pollen tube guidance and fertilization (von Besser et al., 2006; Frank 

and Johnson, 2009). Arabidopsis mutant hap2 was identified through screening for 
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distorted inheritance (Johnson et al., 2004). HAP2 is characterized as a sperm-specific 

gene. In defective mutant, generative cell divides normally but sperm cells fail to fuse 

with either the egg cell or the central cell (Johnson et al., 2004; von Besser et al., 2006). 

The absence of fertilization in hap2 mutants is not due to defects in sperm development 

and migration of sperms within the pollen tube or pollen tube growth, but due to 

misdirecting pollen tube to its ovule targeting and failure of initiation of fertlization. 

HAP2 was found to be allelic to GCS1 (Mori et al., 2006) as described in previous 

paragraph. The data generated from different groups suggest that HAP2 has unique 

function involved in pollen tube guidance and fertilization (Mori et al., 2006; von Besser 

et al., 2006; Frank and Johnson, 2009). 

5.4.4. Genes involved in cell division during Pollen Mitosis I (PMI) and Pollen 

Mitosis II (PMII) 

After the tetrad separates and releases from anther as free microspores, each microspore 

undergoes an asymmetric mitotic division (PMI) to produce a small generative cell and a 

larger vegetative cell. The vegetative cell exits the cell cycle in G1 while the generative 

cell continues through a further round of mitosis at PMII to produce two sperm cells. 

Both PMI and PMII are critical for male gamete development.  

The germline cells transcriptomic studies provide genome-wide snapshot for 

genes controlling cell cycle during male gametogenesis. Affymetrix ATH1 arrays of 

Arabidopsis four stages of male gametophyte development (Honys and Twell, 2004) and 

mature pollen (Pina et al., 2005) revealed that a significant number of cell cycle genes are 

expressed in pollen.  
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Cell divisions in plants are controlled by universally conserved molecular 

machinery across higher eukaryotes, and the core key components are Ser/Thr kinases 

called cyclin-dependent kinases (CDKs). Cell cycle progression depends on correct 

localization of CDKs that are regulated by phosphorylation, cyclin proteolysis, and 

protein-protein interaction (Boruc et al., 2010). Among 61 core cell-cycle genes predicted 

in a genome-wide analysis in Arabidopsis (Vandepoele et al., 2002), fifty-five genes were 

present on the ATH1 GeneChip. ATH1 array data generated from four stages of male 

gametophyte development (uninucleate microspores, bicellular pollen, tricellular pollen, 

and mature pollen) showed 45 CDKs (82% of 55) were expressed in the male 

gametophyte (Honys and Twell, 2004), and all CDK families and subfamilies were 

representated. The majority of gametophytic core cell-cycle genes showed similar 

expression profiles, with a decline in mRNA abundance after UNM stage to zero (or low 

levels) at TCP and MPG stages. This pattern is consistent with the termination of 

proliferation of the microspore and generative cell before pollen maturation. The dynamic 

expression of core cell cycle is presented in Figure I-4 based on Honys and Twell’s 

additional data (Honys and Twell, 2004).  

ATH1 GeneChip array analysis revealed that 23 of the 55 genes analyzed are 

expressed in mature pollen grains (Pina et al., 2005). The comparison of pollen core cell 

cycle genes expression profile with vegetative tissues is shown in Figure I-5. The chart is 

generated from data list in Pina, 2005 (Pina et al., 2005). 
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Figure I-4. Arabidopsis male gametophyte transcriptomic expression profiles of core cell 

cycle genes in haploid spores of different developmental stages. The chart is generated 

from additional data presented by Honys and Twell  (Honys and Twell, 2004). UMN, 

uninucleate microspores; BCP, bicellular pollens; TCP, immature tricellular pollens; 

MPG, mature pollen grains. 

Sperm cells in Arabidopsis stay in the S-phase at anthesis and continue through 

the cell cycle during pollen tube growth to reach G2 just prior to fertilization (Friedman, 

1999). The vegetative nucleus is thought to be arrested in G1. These data together with a 

recent schematic overview of the mechanistic regulation of the G1/S transition in plants 

(De Veylder et al., 2003),  suggest that the block could be achieved by a combination of 
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absence of essential components needed for the G1/S transition and an up-regulation of 

potential repressors and of potential factors of increased cell cycle duration (Pina et al., 

2005).  

Both ATH1 array analyses showed overlapping gene expression profiles (Honys 

and Twell, 2004; Pina et al., 2005). Interestingly, the D3-type cyclin CYCD3;1, CYCD3;2, 

and CYCD3;3 were not expressed in pollen in both datasets.  D3-type cyclin has been 

characterized as promoting S-phase entry (Schnittger et al., 2002; Dewitte et al., 2003). It 

can form complexes with A-type cyclin-dependent kinases (CDK). The CDK interacting 

proteins CKS1 and CKS2 are expressed in pollen, and CKS2 is highly enriched. 

Overexpression of CKS1 leads to growth inhibition in roots through increased cell cycle 

duration, associated with an equal extension of both the G1 and G2 phases (De Veylder et 

al., 2001). CKS2a assumably has similar function with CKS1.  Its over-expression in 

pollen might be an additional factor inhibiting cell cycle progression. The detailed 

analysis of the complement of mRNAs in pollen encoding CDKs and cyclins reveals a 

rather unexpected picture. Following a schematic overview of the mechanistic regulation 

of the G2/M transition (De Veylder et al., 2003), pollen seems to feature most of the 

transcripts needed for the G2/M transition, although they seem to be kept in their inactive 

state. 
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Figure I-5. Core cell cycle gene expression profile in pollen, leaf, seedling and silique. 

The chart is generated from Pina 2005 (Pina et al., 2005). 

The Arabidopsis sperm Genechip ATH1 array showed that the cell cycle genes 

are also highly enriched in sperm cells (Borges et al., 2008). 

The genetic studies have also provided insights into the genes important during 

cell cycle progression. The analysis of Chromatin Assembly Factor-1 (CAF-1) pathway 

mutants (fas1, fas2, msi1), indicates that chromatin integrity is also important for germ 

cell division (Chen et al., 2008). The loss-of-function mutants in CAF-1 pathway display 

a delay and arrest of cell cycle during pollen development.  The fas1, fas2 and msi1 

mutants showed range of phenotypes with some pollens arresting before PMI, some 

arresting before PMII, and some successfully dividing to produce tricellular pollen. This 
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indicates that the CAF-1 pathway has a wide role in male gametophyte cell division that 

could involve direct or epigenetic deregulation involving nucleosome and chromatin 

reassembly following replication (Chen et al., 2008). CAF-1 deficient pollens are able to 

fertilize and the bicellular pollen correctly expresses germ cell-fate markers (Chen et al., 

2008).  

A number of mutants have been identified in Arabidopsis in which bicellular 

pollen (a single germ cell within the vegetative cell) is produced due to a failure of PMII. 

Analysis of T-DNA insertion mutants in the single A-type cyclin-dependent kinase 

CDC2A (homolog of  CDC2, also called CDKA;1) in Arabidopsis revealed an essential 

role in germ cell division (Iwakawa et al., 2006; Nowack et al., 2006). In cdka;1 mutants, 

PMII (generative cell division) fails and DNA synthesis (S) phase of the cell cycle is 

delayed. However, this single germ cell is able to fertilize exclusively with the egg cell.   

A similar phenotype of the cdka;1 mutant was observed in the fbl17 (the F-box-

Like 17) mutant (Kim et al., 2008). F-box proteins associate with Skp1 and CUL1 to form 

SKP1-CUL1-F-box protein (SCF) E3 ubiquitin protein ligase complexes. These SCF 

complexes are involved in the ubiquitination of proteins targeted for proteasome-

dependent degradation (Petroski and Deshaies, 2005). Substrate specific F-box proteins 

play a critical role in controlling cell cycle and diverse developmental processes through 

targeted degradation of various proteins (Cardozo and Pagano, 2004). FBL17 is 

transiently expressed in the male germline after PMI and targets the CDK inhibitors 

KRP6 and KRP7 for proteasome-dependent degradation, enabling the germ cell to 

progress through S-phase (Kim et al., 2008). Conversely, vegetative cell cycle 

progression is inhibited since FBL17 is not expressed in the vegetative cell and persistent 



 45

levels of KRP6/7 continue to inhibit CDKA;1. The fbl17 mutant pollen phenotype and its 

similarity to cdka;1 mutant pollen can be explained by stabilization of KRP6/7 in the 

germ cell in the absence of FBL17, resulting in continued inhibition of CDKA;1. 

Germline-specific expression of FBL17 thus enables differential control of the cell cycle 

in the germ and vegetative cells, and allows the progression of germ cells through S-phase 

(Kim et al., 2008; Borg et al., 2009).  

A single germ cell phenotype is also present in duo pollen (duo) mutants as 

reviewed in 5.4.3. In these mutants, asymmetric microspore division at PMI is completed, 

but the germ cell fails to undergo cell division at PMII. Unlike fbl17, cdka;1 and CAF-1 

pathway-deficient mutant pollen, duo1 pollen cannot fertilize. This suggests that, in 

addition to cell cycle defects, key features of gamete differentiation and function are 

incomplete in duo1. DUO1 may therefore act as a germ cell fate determinant linking cell 

division and gamete specification. DUO1 orthologues are present throughout the 

angiosperms (Rotman et al., 2005; Borg et al., 2009).  

5.4.5. Transcriptional regulation of male germ-line-specific gene expression 
 
As previously mentioned, transcriptome analyses and mutant screening have identified a 

significant number of male germline-specific genes which are expressed exclusively in 

flowering plants. Naturally we want to know the transcriptional regulation control of the 

cell specificity of male germ-cell-specific genes. Germline Restrictive Silencing Factor 

(GRSF) identified in lily (Haerizadeh et al., 2006) has illustrated one such mechanism. 

Singh et al. (Singh et al., 2003 ) demonstrates that a 0.8 kb promoter sequence of 

LGC1 is sufficient to regulate the expression of reporter genes in a cell-specific manner. 

The transient expression of GFP driven by the promoter in lily pollen was only observed 
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in the generative cell, while stable transgenic tobacco with P-LGC1::GUS also showed 

the generative cell-specific expression, indicating that the transcriptional factors required 

to control the specificity of expression of LGC1 promoter are conserved in male germ-

line cells. Deletion analysis of the LGC1promoter showed the presence of a 43 bp 

nucleotide regulatory silencer element whose absence from the promoter led to a 

constitutive pattern of expression of the truncated promoter in all the plant tissues tested. 

Gel retardation assays showed that nuclear extracts of lily petal cells contain a protein 

that specifically interacts with the LGC1 silencer sequence (Singh et al., 2003 ). The gene 

encoding this repressor protein was recently cloned by southwestern blotting of a lily 

petal cDNA expression library (Haerizadeh et al., 2006). The protein named GRSF is a 

DNA-binding repressor protein encoded by a gene expressed ubiquitously in plant tissues 

with the exception of generative cells. Immunolocalization showed that GRSF is present 

in the nuclei of uninucleate microspores and pollen vegetative cells but is absent in the 

generative cell nucleus. Chromatin immunoprecipitation assays showed that GRSF 

interacts with LGC1 promoter and the male germline specific histone gcH3. Promoter 

mutagenesis experiments led to the identification of a conserved 8-bp motif in the LGC1 

and gH3 promoters. This sequence motif is likely to be core-binding site for GRSF. 

These evidences support the hypothesis that the expression of male germ-cell-specific 

genes is controlled by GRSF through repressing their expression in non-germline cells 

(Haerizadeh et al., 2006; Singh and Bhalla, 2007).  

Interestingly, the putative GRSF binding sites have been found in the promoter 

regions of three Arabidopsis germline expressed genes, DUO1, MGH3, and GEX2. These 

Arabidopsis genes may be direct targets of GRSF or a similar functionally conserved 
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repressor that represses their expression in non-male germline cells (Haerizadeh et al., 

2006). However, the core GRSF-binding domain is not conserved in the promoter regions 

of AtGEX1 and GCS1/HAP2 which are only expressed in sperm cells, suggesting that 

they could be regulated by a different, GRSF-independent mechanism. A model for male 

germline development control proposed by Borg et al based on the data from lily and 

Arabidopsis is presented in Figure I-6 (Borg et al., 2009). 

 

Figure I- 6. A schematic model for male germline specification and maintenance with 

data incorporated from lily and Arabidopsis proposed by Borg and Twell (Borg et al., 

2009). 
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VI. Summary and Perspectives  

Double fertilization in flowering plants requires that pollen and pollen tube precisely 

deliver a pair of sperm cells to the embryo sac to fuse with their female partners – egg 

cell and central cell to form the zygote and endosperm, respectively. Highly specialized 

pollen grains consisting of one vegetative cell and one generative cell or two sperm cells 

are considered as a key player for successful double fertilization. Recent advances in the 

molecular mechanisms underlying male germline initiation and male gametophyte 

development reviewed in this chapter help us better understand double fertilization from 

a new angle beyond morphology and cytology.  

Pollen development starts from diploid sporogenous cells and undergoes meiosis 

to produce microspores. Genes controlling anther development and meiosis are mainly 

identified from male sterile mutant screening in Arabidopsis. The comprehensive 

transcriptomic studies for male gametophytes from several different plant species have 

extended our knowledge about the complexity and dynamics of haploid gene expression 

in the developing gametophyte and germline cells at a genome level. In coupling with 

both forward and reverse genetic approaches, a number of genes have been identified that 

are expressed exclusively in germlines.  These genes regulate germline specification and 

gametophyte formation (Twell et al., 2006; Singh and Bhalla, 2007; Singh et al., 2008; 

Borg et al., 2009).  

However, progresses in molecular mechanisms in male germline development are 

mainly from a few model plants. For other unique plant systems for reproduction study 

such as Plumbago and Torenia, lacking of genomic sequence and genetic tools limits 

functional characterization for interesting genes. The next generation sequencing 
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technology appears to be a very powerful tool for reproduction studies in plants which 

have not been tractable with traditional genomics approaches. Using the new sequencing 

technology, we can quickly and cheaply profile expressions of coding genes, non-coding 

genes and small RNAs, and monitor epigenetic status of the genome. Comprehensive 

gene regulatory networks can be obtained by analyzing these different types of data using 

systems biology approach. 

Despite recent findings on GRSF transcriptional repression to differentiate 

somatic from germ cell lineages in lily (Haerizadeh et al., 2006), other regulatory 

mechanisms for male germ-cell differentiation are likely to exist and should be uncovered. 

Studies to define consensus cis-element motifs and/or shared transcriptional factors that 

control the male germ-line specificity of different gene clusters will likely yield valuable 

data (Singh and Bhalla, 2007). 

miRNAs and siRNAs are small regulatory RNAs which regulate gene expression 

at transcriptional and post-transcriptional levels. Many biological processes seem to be 

regulated by these small RNAs. The latest finding on sperm-specific siRNA regulation in 

facilitating gametophyte formation and double fertilization (Ron et al., 2010) opens a new  

avenue for study miRNA and  siRNA pathway in gamete development. 

The application of proteomic technologies in this field will further define the 

developmental synthesis and functional roles of proteins involved in germline 

development, pollen tube growth and fertilization (Becker, 2007; Chen et al., 2007).  
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In conclusion, although much of knowledge on male gametophyte development has been 

gained through transcriptome expression profiling and genetic approaches in last two 

decades, much remains to be discovered and uncovered. 
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Chapter II 

Functional Analysis of Plumbago zeylanica Sperm-Specific Isopentenyltransferase 

(IPT) Gene in Heterologous Systems Reveals Its Role in Gametophytic Cell Division 

ABSTRACT 

Plumbago zeylanica is a unique model plant for the study of flowering plant 

heterospermy and preferential fertilization. During double fertilization, one sperm cell, 

which is physically associated with the vegetative nucleus (Svn) and possesses more 

mitochondria, will fuse with central cell to form endosperm.  Whereas, the other sperm 

cell (Sua), which is unassociated with the vegetative nucleus and is rich in plastids, will 

fuse with the egg to form zygote. In order to determine whether gene expression 

differences in the two sperm cells of Plumbago zeylanica relate to their fertilization fate, 

populations of Sua and Svn sperm cells were isolated from mature pollen and 

representative cDNA libraries were constructed. We also employed the suppression 

subtractive hybridization (SSH) and cDNA microarray to identify cell type-specific genes 

in each sperm type. Among the differentiatially expressed transcripts, one group of ESTs 

which are highly up-regulated in Svn seems to encode isopentenyltransferase (IPT). We 

obtained the full length cDNA and promoter sequence of the Plumbago zeylanica IPT 

gene, named PzIPT1. Expression analysis of PzIPT1 using pollen whole mount In situ 

hybridization, semi-quantitative and quantitative RT-PCR showed that PzIPT1 was 

highly expressed in Svn, but much lowly expressed in Sua and pollen. We further 

characterized the gene’s function in Arabidopsis and tobacco. To examine the expression 

specificity of the gene in cell/tissue types, we transformed Arabidopsis and tobacco with 

reporter genes of GFP and GUS driven by the PzIPT1 promoter. The 
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pPzIPT1::GFP/GUS in Arabidopsis are predominantly expressed in the sperm cell and 

synergids. In tobacco, however, the reporter genes are expressed in the vegetative cells of 

pollen and ovule. In transgenic Arabidopsis, the reporter genes are also detected in 

vegetative tissues including maturation zone of root, leaf of young seedling, tip of mature 

rosette leaf and cauline leaf. The expression pattern of pPzIPT1::GFP/GUS is different 

from those of nine Arabidopsis IPTs promoter::GUS, suggesting that PzIPT1 is 

functionally different from known vegetative expressed IPTs. Overexpression of PzIPT1 

driven by AtIPT3 promoter can restore Arabidopsis AtIPT3, 5, 7 knockout triple mutant 

atipt357 phenotype. Cytokinin oxidases (CKX) are enzymes that catalyze the irreversible 

degradation of N6-substituted purine cytokinins and can be used for cytokinin-deficient 

phenotype analysis. We used PzIPT1 promoter to drive AtCKX1 expression in 

Arabidopsis, and the transgenic plants showed reduced seed setting but otherwise were 

normal. The detailed cytological study showed that cytokinin deficiency is responsible 

for defects in both male and female gametogenesis. The plant with insufficient cytokinin 

has the first gametophytic mitosis blocked. The defective microspore and megaspore 

were arrested in uninucleate stage. These results suggest that PzIPT1 is a gametophyte-

specific IPT and plays an important role in gametophytic cell division. We also showed 

that PzIPT1 paternal transcripts and proteins can be transmitted to the embryo sac and 

may initiate early cell division in endosperm and embryo development. 

Key words: isopentenyltransferases, cytokinin, cytokinin oxidases, gametophyte 

development, sperm cell, pollen, ovule, cell division, paternal transmission, Plumbago 

zeylanica, Arabidopsis, tobacco. 
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Abbreviations: IPT – isopentenyltransferases; CK – cytokinin; CKX – cytokinin oxidase; 

EST – expressed sequence tag; HAP – hours after pollination; Svn – sperm cell associated 

with the vegetative nucleus; Sua – sperm cell unassociated with the vegetative nucleus;  

PMI – pollen mitosis I; PMII – pollen mitosis II; WT – wild type; FACS - fluorescence-

activated cell sorting; VN – vegetative nucleus; DAPI – 4',6-diamidino-2-phenylindole.  

INTRODUCTION 

Double fertilization is a sexual reproduction system unique to flowering plants. In the 

system, three parts of plant are involved: pollen (or the Male Germ Unit, MGU) 

(Mogensen, 1992), embryo sac (or the Female Germ Unit, FMU) (Huang and Russell, 

1992), and the sporophytic tissue (mainly tapetum in anther and female reproductive tract) 

(Ma, 2005). During the double fertilization process, twin sperm cells are transported to 

embryo sac via a pollen tube and fuse with their female partners – the egg cell and central 

cell to form zygote and endosperm, respectively (Russell, 1992; Southworth, 1996; Lord 

and Russell, 2002; Raghavan, 2003; Weterings and Russell, 2004; Berger, 2008). The 

twin sperm cells are not always identical. They may differ in size, shape, organelle types 

and numbers, and  nuclear DNA content (Carlson, 1969; Russell and Cass, 1981; Russell, 

1984; Carlson, 1986; Mogensen, 1992; Saito et al., 2002; Weterings and Russell, 2004). 

The dimorphic sperms are called heterospermy cells. Sperm cell dimorphism may be 

common in flowering plants, as a survey of 19 plant species found that 17 displayed 

dimorphism (Saito et al., 2002; Weterings and Russell, 2004). In plants with sperm cell 

dimorphism, the sperm cells do not randomly fertilize the egg or the central cell. Rather, 

the sperm with a certain morphology selectively fuses with the egg while the other sperm 



 69

with a diffrernt morphology tends to fuse with the central cell. This phenomenon is called 

“preferential fertilization” (Russell, 1983; Russell, 1985).  

Plumbago zeylanica is a well-documented model plant for both cytoplasmic 

heterospermy and preferential fertilization. Its mature pollen contains a vegetative 

nucleus and two strongly heteromorphic sperm cells (Russell and Cass, 1981; Russell, 

1984). The sperm cell that physically associated with the vegetative nucleus (Svn) is the 

larger cell and contains many mitochondria (mean = 256.18) and few plastids (mean = 

0.45). The other sperm cell (Sua) unassociated with the vegetative nucleus is smaller and 

contains abundant plastids (mean = 24.3), less numerous mitochondria (mean = 39.8) 

(Russell and Cass, 1981; Russell, 1984; Russell, 1986). During double fertilization, the 

dimorphic sperm cells, Sua and Svn, selectively fuse with the egg to form the zygote and 

central cells to form the endosperm, respectively (Russell, 1985; Russell, 1986). Because 

the embryo sac of Plumbago lacks synergids, a property that greatly simplifies the 

observation of events occurring inside the embryo sac, the plant is an ideal model to trace 

the fate of sperm cells during double fertilization (Russell, 1980; Russell, 1982; Russell, 

1983). The differences between the two sperm cells may have different gene expression 

profiles that may determine the fate of the two sperm cells and affect post-fertilization 

development, since the male cytoplasm in this plant is known to be transmitted into 

female gametes during double fertilization (Russell, 1980; Russell, 1983; Weterings and 

Russell, 2004). Maize (Zea mays) is another example of heterospermy and preferential 

fertilization. Some lines of maize carry supernumerary B chromosomes which are 

frequently distributed unevenly at the second pollen mitosis. As a result, one sperm cell 

contains B chromosomes and the other has none (Roman, 1948). The fate of the two 
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maize dimorphic sperm cells is different: the sperm cell carrying B chromosomes is 

selectively targeted to the egg cell (Roman, 1948; Carlson, 1969, , 1986).   

Although the cytology of double fertilization has been well established, the 

molecular mechanism of this process remained largely unknown until the last decade. As 

many genetic and genomic tools become available, such as genome sequences from a 

number of plants, high throughput gene expression profiling and FACS cell sorting; 

significant progresses have been made in understanding the molecular mechanisms 

controlling gametophyte development, double fertilization and early embryogenesis. 

Sperm cells and their progenitor – the generative cell - are small in size, and 

therefore, it is generally believed that the sperms may be dependent on cytoplasm of 

vegetative cell for nutrition and transport. But studies in recent years have showed that 

male germ cells have their own enriched and unique molecular repertoire and gene 

regulatory networks (Twell, 2002; McCormick, 2004; Singh and Bhalla, 2007; Singh et 

al., 2008; Borg et al., 2009; Gou et al., 2009).  Comprehensive transcriptomic studies for 

male gametophytes from lily, maize, Arabidopsis, rice and tobacco have extended our 

knowledge of the complexity and dynamics of haploid gene expression in the developing 

gametophyte and germline cells. In coupling with both forward and reverse genetic 

approaches, a significant number of genes have been identified expressed exclusively in 

the germline that regulate gamete specification and gametophyte formation (Twell et al., 

2006; Singh and Bhalla, 2007; Singh et al., 2008; Borg et al., 2009). Over the last decade, 

several cDNA libraries have been constructed for generative cells of lily (Lilium longi-

florum) (Xu et al., 1998; Okada et al., 2006a), sperm cells of rice (Oryza sativa) (Gou et 

al., 2001; Russell et al., 2010b), sperm cells of maize (Zea mays) (Engel et al., 2003), and 
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generative cells of tobacco (Nicotiana tobacco) (Xu et al., 2002). cDNA microarray and 

Affymetrix GeneChip array have been employed for comparative transcriptome studies 

of germ cells in Arabidopsis, lily, and rice (Okada et al., 2007; Borges et al., 2008; 

Russell, 2010). Data generated from the above studies have revealed a genome wide 

picture of the transcriptional profile of male germline cells. Functional characterization of 

these ESTs and microarray datasets shows that similar classes of genes are expressed in 

the germ cells of different species and many of the genes are conserved across species.  

These genes are involved in general metabolism, cellular organization, DNA synthesis, 

chromatin structure, and protein degradation. Interestingly, proteins involved in the 

ubiquitin-mediated proteolysis pathway are upregulated in plant germline cells. 

Ubiquitin-pathway-related proteins such as polyubiquitin, proteasome subunit, ubiquitin-

conjugating enzyme, Skp1 and Ring box protein are highly upregulated in the generative 

cells of lily (Okada et al., 2007), sperm cells of Arabidopsis (Borges et al., 2008), sperm 

cells of Plumbago (Singh et al., 2002), and sperm cells of maize (Engel et al., 2003).  

Singh et al. (Singh et al., 2002) used cross hybridization with lily generative cell mRNA 

to screen sperm-expressed genes in Plumbago, and identified a clone which encodes a 

polyubiquitin gene with three ubiquitin repeats. Polyubiquitin genes from both species 

are specifically expressed in their germ cells (Singh et al., 2002). Moreover, the 

Plumbago polyubiquitin gene is expressed at a much higher level in mitochondria-rich 

sperm (Svn) cells than in plastid-rich sperm (Sua) cells (Singh et al., 2002; Singh et al., 

2008). The recent finding and functional characterization of the F-box protein FBL17 

provides another line of evidence supporting the importance of the ubiquitination 

pathway in male gametophyte development (Kim et al., 2008). Another conserved class 
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of genes encodes male germline-specific histone variants possibly involved in chromatin 

remodeling. Generative cell-specific expression of histone variants, particularly histone 

H3, is likely a common characteristic of the male germline in flowering plants (Xu et al., 

1999a; Okada et al., 2005b; Singh et al., 2008). Histone H3 proteins are upregulated in 

germ cells of lily, maize, Plumbago and Arabidopsis (Engel et al., 2003; Okada et al., 

2005a; Okada et al., 2005b; Okada et al., 2006b; Gou et al., 2009).  

Since germline-expressed genes may play vital roles in germline development and 

fertilization, tremendous efforts have been made to identify such genes. The identified 

germline-expressed genes are involved in different biological processes. LGC1 (Lily 

Generative Cell-specific 1) is the most impressive such gene that is exclusively expressed 

in the male gametic cells of lily. It was identified from a RNA gel blot with cDNA clones 

from generative cell cDNA libray (Xu et al., 1999b). The male gamete-specific 

expression and membrane surface characteristic suggested a putative function for LGC1 

in sperm-egg recognition and fusion (Xu et al., 1999b). LGC1 homologs are also present 

in Arabidopsis and rice genomes. The Arabidopsis ortholog seems to be expressed only 

in generative and sperm cells (Singh et al., 2008). Deletion analysis of the LGC1 

promoter identified a 43 bp regulatory silencer element. GRSF (Germline Restrictive 

Silencer Factor) is a protein specifically interacting with the LGC1 silencer sequence. 

GRSF gene seems to be expressed ubiquitously in all plant tissues but absent in 

generative cells (Haerizadeh et al., 2006). GRSF represses the expression of LGC1 in 

non-germline cells (Haerizadeh et al., 2006; Singh and Bhalla, 2007).  

GCS1 (Generative Cell-Specific 1) is another lily generative cell-specific gene 

isolated from lily male germ cells by differential display (Mori et al., 2006). The 
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knockout mutant in Arabidopsis GCS1 ortholog HAP2 specifically blocks male 

transmission and fertilization (Mori et al., 2006) (von Besser et al., 2006; Frank and 

Johnson, 2009). In the mutant, sperm cells are observed within the degenerated synergid 

but fail to fuse with the female gametes (Mori et al., 2006). GCS1 protein is not similar to 

any genes of known functions and has no obvious functional motifs. Functional analysis 

from both groups show HAP2/GCS1 protein is associated with sperm surface and 

essential for successful gamete attachment, fusion, or both (Mori et al., 2006; von Besser 

et al., 2006; Frank and Johnson, 2009). GCS1 orthologs from Arabidopsis, rice, green and 

red algae, and in slime mould and protozoan parasites share a conserved domain structure, 

suggesting a fundamental role in membrane fusion during fertilization.  

AtGEX1, AtGEX2 and AtGEX3 (Gamete Expressed 1, 2, 3, GEX1, 2, 3) are 

Arabidopsis genes expressed in sperm cells identified by comparative analysis of maize 

sperm cell specific ESTs with Arabidopsis sequences (Engel et al., 2005; Alandete-Saez 

et al., 2008). These three genes belong to a membrane-associated protein family 

expressed in male germ cells in Arabidopsis. A number of Arabidopsis germline-specific 

genes such as DUO1, DUO2, DUO3, MGH3/HTR10, HAP1, HAP5, and HAP12 were 

identified by screening of Arabidopsis pollen defective mutants. DUO1 and DUO2 are 

germline specific and can block generative cell division, resulting in the formation of 

bicellular pollen at anthesis (Durbarry et al., 2005). DUO1 encodes a novel R2R3-MYB 

transcription factor which is expressed specifically in the male germline and the protein 

accumulates in the nucleus of generative and sperm cells. DUO1 may function to 

promote generative cell by activating specific targets such as cyclin genes (Rotman et al., 

2005). DUO3 has overlapping roles with DUO1 in male germ cell division and sperm 



 74

cell specification (Brownfield et al., 2009a; Brownfield et al., 2009b). The generative 

cells in mutant duo3-1 either fail to divide or show a delay in division. DUO3 plays 

essential developmental roles in cell cycle progression and cell specification in both 

gametophytic and sporophytic tissues (Friedman et al., 2000). 

As above described, most mutant screenings for and transcriptomic studies on the 

sperm cell-expressed and specific genes are in Arabidopsis and lily, whose sperms are not 

dimorphic. Therefore, findings from these studies are not directly applicable to the 

understanding of the double fertilization process for plants with dimorphic sperms.  

Although maize is a good genetic system for molecular characterization of fertilization 

(Dresselhaus et al., 1994; Engel et al., 2003; McCormick, 2004; Marton et al., 2005), the 

sperm cell dimorphism and preferential fertilization is characterized by the differences in 

the number of B-chromosomes in the sperm (Rusche et al., 1997) and may be different 

from cytoplasmic heterospermy represented by Plumbago zeylanica. To determine 

whether gene expression differences relate to fertilization fate in the two sperm cells of 

Plumbago, we have employed a series of tools to characterize the molecular mechanisms 

controlling the sperm dimorphism and preferential fertilization. The tools include the 

isolation of two populations of Sua and Svn sperm cells from the mature pollen (Zhang and 

Russell, 1998), representative cDNA library construction (Gou, Yuan, Wei & Russell, 

2009), expression profiling by EST sequencing, subtractive cDNA library construction, 

and microarray analysis. We obtained 826 ESTs from Sua and 606 ESTs from Svn 

representative cDNA libraries. Gene Ontology (The Gene Ontology Consortium, 2000) 

annotation of these ESTs suggests a strong transcriptome divergence in the two 

Plumbago sperm cell types Sua and Svn (Gou, Yuan, Wei & Russell, 2009). The most 
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abundant ESTs are involved in protein turnover and cell maintenance, suggesting that 

ubiquitin-dependent proteolysis may play a critical role in gametogenesis, zygote 

initiation and early embryo development. We randomly selected a total of 4,608 SSH 

clones for microarray analysis. Clones with 4-fold or higher expression difference 

between the Sua and Svn clones were sequenced. A total of 106 up-regulated clones from 

the Sua and 149 up-regulated clones from the Svn were obtained with high quality EST 

sequences. Interestingly, one group of transcripts is Svn sperm-specific and also highly 

expressed.  11 clones have been found among the 149 up-regulated clones of the Svn. 

Sequence comparison suggest that this group of transcripts is homologous to 

isopentenyltransferase (IPT) gene (Gou, Yuan, Wei & Russell, 2009). The IPT enzyme 

catalyzes the first step of cytokinin biosynthesis and governs the rate limiting steps in 

cytokinin biosynthesis (Kakimoto, 2003). It is already known that, in Arabidopsis, the 

expression of IPTs is highly correlated with endosperm growth (Miyawaki et al., 2004). 

Because Plumbago Svn sperm specifically targets central cell during double fertilization to 

produce endosperm, this Svn up-regulated IPT may play an important role in endosperm 

development. As the sperm cytoplasm is known to be transmitted during fertilization in 

Plumbago (Russell, 1980), sperm-contributed IPT mRNA and protein are probably 

transmitted during fertilization and could affect early endosperm development. We 

therefore propose that Svn sperm IPT is transmitted to the endosperm during its fusion 

with the central cell, and the transmitted IPT initiates endosperm cell division and 

development.  

To test our hypothesis, we cloned the full-length cDNA sequence and the 

promoter sequence of this gene for further expression and function analysis. Full-length 
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cDNA of the Plumbago IPT was recovered from the Svn cDNA library via plaque 

hybridization screening. The screening yielded several positive clones with very similar 

sequences. The sequence, designated as PzIPT1, was used for further functional analysis 

(Yuan, 2007).  The deduced polypeptide sequence (shown in Figure II-1) indicates the 

presence of an ATP/GTP binding signature motif GxxxGK(S/T) of IPTs (Saraste and 

Wittinghofer, 1990) in PzIPT1 at the N-terminal (22-33 position), and the whole protein 

sequence matches the common pattern of IPTs: 

GxTxxGK[ST]xxxx[VLI]xxxxxxx[VLI][VLI]xxDxxQx(57,60)[VLI][VLI]xGG[ST], 

where x represents any amino acid residue, and x(m,n) denotes amino acid residues of m 

to n in number (Kakimoto, 2001; Kakimoto, 2003). The structure of the predicted amino 

acid sequence of the full-length cDNA of PzIPT1 indicates that PzIPT1 belongs to the 

family of IPTs (Yuan, 2007).  

Our preliminary results from semi-quantitative RT-PCR, quantitative RT-PCR, 

and in situ hybridization revealed that PzIPT1 is highly expressed in the Svn (Yuan, 2007).  

We used RT-PCR and real-time RT-PCR approaches to get PzIPT1 tissue expression 

profiles on a panel of Plumbago tissue types (roots, stems, leaves, sepals, petals, 

unpollinated mature ovaries, pollinated ovaries, unicellular pollen, bicellular pollen, 

mature pollen, sperm cell Svn and Sua) (Figure II-2A, II-2B). Of all the examined tissues, 

the PzIPT1 transcripts can only be detected in the male gametophyte and male gamete 

(mature pollen and sperm cells) but not any other tissues. Since pollen contains sperm 

cells, the weak signal presumably reflects sperm cell transcripts. The results also show 

higher PzIPT1 expression levels in Svn compared to Sua. The whole-mount in situ 

hybridization in mature pollen of Plumbago using an antisense PzIPT1 RNA probe 
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detected a strong signal only in Svn, but not in Sua or the vegetative cell (Figure II-2C). 

These results strongly support that PzIPT1 is preferentially expressed in Svn.   

We cloned the promoter of PzIPT1 from a Plumbago genomic DNA library using 

a nested PCR technique. A large PCR product (1089 bp) was obtained from the upstream 

region of PzIPT1 and the sequence analysis identified a typical TATA box (TATAAA) 

located at -29 from the transcription start site and a number of putative transcriptional 

regulatory elements (Yuan, 2007). The PzIPT1 promoter does not possess the putative 

GRSF binding site which is found in the promoter regions of three germline expressed 

genes, DUO1, MGH3, and GEX2 in Arabidopsis (Haerizadeh et al., 2006).  

We have established a highly efficient tissue culture system in Plumbago (Wei et 

al., 2006). However, a stable transformation system for this species is not yet available. 

Thus, it is difficult to analyze functions of PzIPT1 in Plumbago. As a model plant widely 

used for gene characterization, Arabidopsis was chosen for our experiments for PzIPT1 

promoter specificity and other general functional analysis. we also examined PzIPT1 

promoter activity in transgenic tobacco which has been reported for sperm cell 

dimorphism (Tian et al., 2001),  

 



 78

 

Figure II-1. Nucleotide and derived amino acid sequences of PzIPT1 cDNA. Box 

indicates the putative polyadenylation consensus signals AGTAAA and (A)TTAAA(T). 

The consensus pattern of IPTs (GxTxxGK[ST]xxxx[VLI]xxxxxxx[VLI][VLI] 

xxDxxQx(57,60)[VLI][VLI]xGG[ST]) is shown in red letters. * = stop codon (Yuan, 

2007). 
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Figure II-2. Semi-quantitative RT-PCR, quantitative RT-PCR, and in situ hybridization 

verified that PzIPT1 is highly expressed in Svn. A. Semi-quantitative RT-PCR analyses of 

the expression patterns of PzIPT1 in multi-tissues. The number in the right indicated PCR 

cycles.  PzIPT1 transcript is highly expressed in Svn, with low expression in Sua, and very 

low expression in other tissues. Histone 3.3 was used as a loading control. B. Real-time 

PCR analysis confirms the results obtained from RT-PCR using 10ng cDNA from 

different tissues and cells. Different colors represent different samples; the expression 

level in Sua was normalized to 1. C. In situ hybridization of mature pollen of Plumbago 

zeylanica with PzIPT1 antisense probe shows that PzIPT1 is exclusively expressed in Svn.  

Left: brightfield microscopy; center: overlayed DAPI epifluorescence/brightfield 

microscopy; Right: DAPI epifluorescence microscopy. VN = vegetative nucleus (Yuan, 

2007).  

RESULTS 

I. PzIPT1 is a paralog of Arabidopsis AtIPT3  

Cytokinins (CKs) are a group of phytohormones that play an important role in plant 

growth and development by regulating cell division and cell differentiation, leaf 

senescence, apical dominance, shoot meristem formation, root initiation, seed 

germination, flower development, photosynthesis, chloroplast differentiation and 

pathogen responses (Mok and Mok, 2001). The cytokinin content in plant cell is mainly 

determined by two opposite biological processes -- biosynthesis and degradation. 

Isopentenyltransferase (IPT), first identified from slime mold (Taya et al., 1978) and 

subsequently from A. tumefaciens (Barry et al., 1984), is a cytokinin biosynthesis enzyme 
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catalyzing the first and rate-limiting step of cytokinin biosynthesis. IPTs are found in 

different organisms, including bacteria, fungi, plants, insects and mammals. Figure II-3A 

shows a phylogenetic tree for deduced PzIPT1 amino acid sequence and previously 

reported IPTs, generated by CLUSTALW program (http://www.ddbj.nig.ac.jp/). The 

phylogenetic tree has three branches: DMAPP:ATP/ADP isopentenyltransferases, 

DMAPP:AMP isopentenyltransferases, and DMAPP:tRNA isopentenyltransferases 

(Figure II-3A). PzIPT1 is in the DMAPP: ATP/ADP isopentenyltransferase group.  This 

group contains only plant IPTs, suggesting that DMAPP:ATP/ADP 

isopentenyltransferases  play a major role in plant cytokinin biosynthesis (Kakimoto, 

2001; Kakimoto, 2003).  

In Arabidopsis, there are 9 AtIPTs identified computationally (Takei et al., 2001; 

Miyawaki et al., 2004). Among them, AtIPT1, 3–8 shows DMAPP:AMP 

isopentenyltransferase activity (Takei et al., 2001); and AtIPT2 and AtIPT9 code for 

DMAPP : tRNA isopentenyltransferases (Takei et al., 2001).  A phylogenetic tree built 

using PzIPT1 and nine Arabidopsis AtIPTs is shown in Figure II-3B.  PzIPT1 is closely 

related to AtIPT3 with 49% sequence similarity.  pAtIPT3::GUS/GFP is highly expressed 

in the vegetative phase with strong GUS/GFP activities in the phloem of vascular tissue 

and weak activities in the pericycle of roots (Miyawaki et al., 2004; Takei et al., 2004). 

Quantitative RT-PCR showed the expression of AtIPT3 in all organs, but at very low 

level in the reproductive tissues and siliques (Takei et al., 2004). Comparing to Plumbago 

PzIPT1 expression pattern in quantitative RT-PCR and in situ hybridization experiments 

shown in Figure II-2, it appears that PzIPT1 is a DMAPP: ATP/ADP 

isopentenyltransferase and may have similar function with AtIPT3 but has distinctly 



 82

different tissue-specificity. Therefore, PzIPT1 and AtIPT3 seem to be paralogous rather 

than orthologous. The Arabidopsis AtIPT3 is also a key determinant of CK biosynthesis 

in response to nitrate (Miyawaki et al., 2004; Takei et al., 2004).  The loss-of-function 

mutant atipt3 has no visible phenotype, but atipt357 triple mutant and atipt1357 

quadruple mutant have short and thin plants, fewer rosette leaves, reduced shoot apical 

meristem size and thin inflorescence (Miyawaki et al., 2006 ).  The atipt1357 quadruple 

mutant also shows aborted seeds (Miyawaki et al., 2006 ). 
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Figure II-3. Comparison of PzIPT1 and previously reported IPTs 

A. The phylogenetic tree of representative isopentenyltransferases. There are three groups 

of IPTs:DMAPP:AMP isopentenyltransferases, DMAPP:tRNA isopentenyltransferases, 

and DMAPP:ATP/ADP isopentenyltransferases. PzIPT1 belongs to DMAPP:ATP/ADP 
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isopentenyltransferase. CLUSTALW program (http://www.ddbj.nig.ac.jp/) was used to 

generate the tree. Relative branch lengths are approximately proportional to phylogenetic 

distance. B. An unrooted phylogenetic tree generated from the amino acid sequences of 

PzIPT1 proteins and its homologs in Arabidopsis. The PzIPT1 shares high similarity with 

AtIPT3. 

II.  PzIPT1 promoter::GUS/GFP expression in heterologous system 

2.1. pPzIPT1::GUS/GFP expression pattern in transgenic Arabidopsis 

Since the transformation system in Plumbago zeylanica has not been established, we 

examined the expression specificity of PzIPT1 in Arabidopsis by observing the 

expression of beta-glucuronidase (GUS) (Jefferson et al., 1987) and green fluorescent 

protein (GFP) (Siemering et al., 1996; Tsien and Miyawaki, 1998) reporter genes driven 

by the PzIPT1 promoter. The constructs of  pPzIPT1::GUS and pPzIPT1::GFP (Figure 

II-4A)  were introduced into Arabidopsis wild type (WT) Col-0 by floral dipping (Clough 

and Bent, 1998). We screened for homozygous lines in T3 generation based on the 

segregation of Basta resistance. Basically, we chose 3:1 (resistant : susceptible) 

segregation patterns in T2 generation and then selected all resistant line in T3 as 

homozygous line. For each construct, at least 5 independent transgenic homozygous lines 

were observed for reporter gene expression. The expression patterns described here are 

from the majority of the lines. The GUS histochemical expression assays were carried out 

following Jefferson’s protocol with minor modifications  (Jefferson et al., 1987), and 

GFP expression patterns were observed by epifluorescence or confocal microscopy. The 

expression of the reporter genes was examined in male and female gametophytes as well 

as vegetative tissues throughout the plant life circle. As expected, GUS and GFP are 
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expressed in both sperm cells, but not in vegetative cells of the pollen (Figure II-4B, C, D, 

and F). Because Arabidopsis sperm cells are not dimorphic, it is not surprising that the 

reporter genes are expressed in both sperm cells. Interestingly, reporter genes are also 

expressed in unpollinated and pollinated ovules (Figure II-4E, G, H and J), specifically in 

synergids of unpollinated ovule (Figure II-4E and J). Since Plumbago does not have 

synergids, the information about whether PzIPT1 is expressed in synergids in Plumbago 

can not be determined.   

To examine the dynamic expression of PzIPT1, we performed a time course of 

pPzIPT1::GUS/GFP expression in Arabidopsis ovule and pollen. The young flowers of 

pPzIPT1::GUS homozygous line were hand emasculated at floral mid stage 12 according 

to Smyth et al. and Schneitz et al. (Smyth et al., 1990; Schneitz et al., 1995). In this 

experiment, the time of 30 hours after emasculation is set as 0 HAP (hour after 

pollination). This is because that natural pollination occurs at stage 13, which is 30 hours 

after the mid stage 12. We sampled at different time points from -30 HAP to 96 HAP. For 

each time point, 30 - 50 siliques were collected and analyzed by GUS staining. Flower 

and ovule development stages are determined based on  Christensen et al. (Christensen et 

al., 1997) and Smyth et al. (Smyth et al., 1990). 

The GUS expression was observed in developing ovules at -30 HAP with even 

distribution within embryo sac (Figure II-5B). Anthers were manually removed at this 

time point which corresponds to flower development stage mid 12 and the ovule 

development early two-nucleate stage (stage FG2) (Figure II-5A). At -15 HAP when 

flower development stage is between mid - late 12 and the ovule is in late two-nucleate 

stage (stage FG3) or early four-nucleate stage (stage FG4) (Figure II-5A), GUS 
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expression in the embryo sac increases in the micropylar end (Figure II-5C). At 0 HAP,  

when natural pollination occurs if anthers have not been removed, the flower 

development stages is between late 12 and 13, and the ovule is in early four-nucleate 

stage (stage FG4) or eight-nucleate stage (FG5) (Figure II-5A). GUS expression in the 

embryo sac becomes even stronger in the micropylar end (Figure II-5D).  At +12 HAP, 

GUS expression is mainly distributed in the embryo sac near the micropylar end (Figure 

II-5E). Flower development stage at this time is between late 12 and 14 and the ovule 

reaches seven-celled stage (stage FG6) (Figure II-5A). The GUS expression pattern 

remains the same at +18 HAP (Figure II-5F) as that at +12 HAP. Flower development 

stage at +18 HAP is between 13 and 14 and the ovule is in four-cell stage (stage FG7) 

(Figure II-5A). Six hours later at +24 HAP, the ovule is mature and in four-celled stage 

(stage FG7) (Figure II-5A). The GUS expression is specifically restricted to the synergids 

in the embryo sac (Figure II-5G). The unpollinated ovule at +36 HAP is still at a four-cell 

stage (stage FG7) (Figure II-5A), and the GUS expression pattern does not change much 

from the previous time point (Figure II-5H). At +48 HAP, flower organs begin to fall off, 

and the unpollinated ovule is about to degenerate. A very weak GUS signal is detected in 

the micropylar end at this time point (Figure II-5I).  At +96 HAP, no GUS signal is 

detected in the developing ovule and the unpollinated ovule has collapsed (Figure II-5J). 

Transgenic Arabidopsis with the pPzIPT1::GFP construct was also used to follow 

the time course of GFP expression during the ovule and pollen development. GFP 

expression showed similar trend to GUS expression (data not shown). At +24 HAP, GFP 

signal was restricted in synergids (Figure II-5K). During pollen development, the GFP 

signal was detected early in the generative cell of bicellular pollen (Figure II-5L and 5M). 
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The time course study of reporter gene expression in male and female 

gametophytes suggests that the PzIPT1 promoter is active during both male and female 

gametogenesis of Arabidopsis. The reporter genes driven by the PzIPT1 promoter are 

expressed as early as the first gametophytic mitosis – GFP and GUS expression were 

detected in the generative cell of bicellular pollen (Figure II-5L and 5M) and ovule at 

two-nucleate stage of (Figure II-5B). 

The systematic examination of pPZIPT1::GUS expression in transgenic 

Arabidopsis lines showed that GUS was also expressed in vegetative tissues too. In seeds 

imbibed for two days, no GUS expression was detected (Figure II-6A and B). But strong 

GUS signal was observed in radicles of 2-day old germinated seedlings (Figure II-6C).  

In 5-day old seedlings, GUS was expressed in the tip of cotyledon and also at the junction 

of hypocotyl and radicle (Figure II-6D).  In 7-day-germinated seedlings, GUS expression 

was observed in the tip of true leaf, cotyledon and root maturation zone (Figure II-6E).  

In older seedlings (10-day and 2-week old seedlings), GUS was expressed in the tip of 

young true leaf, cotyledon and root maturation zone, but not in the older leaves (Figure 

II-6F and G). At the reproductive phase (flowering stage), GUS was expressed in the tip 

of cauline leaf, but not in rosette leaf (Figure II-6L and M).  GUS expression was 

detected in stigma and the abscission zone of pollinated silique, but not in the 

unpollinated young flower (Figure II-6N). Notably, GUS expression was not detected in 

shoot and root meristems (Figure II-6C, 6D, 6E, 6F, 6G, 6H, 6I, and 6N). In the radicle 

and secondary roots, GUS expression was only in the maturation zone (zone of 

differentiation), but not in elongation zone or root meristematic zone (Figure II-6H, J and 

K). It has been well-accepted that the root tip is the major site of cytokinin synthesis. The 
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cambium, the shoot apex, and immature seeds are also thought to synthesize cytokinins 

(Letham, 1994 ; Emery et al., 2000; Kakimoto, 2003).  Cytokinin content analysis also 

showed that cytokinins are most abundant in young, rapidly dividing cells of shoot and 

root meristems (Kakimoto, 2003). However, since pPzIPT1::GUS was not expressed in 

root tip, shoot and root meristems, this novel expression patterns indicates that PzIPT1 is 

distinctly different from all other known IPTs, whose function is associated with 

vegetative tissues. Therefore, we propose that PzIPT1 is probably a germline (sperm and 

synergid) specific IPT involved in gametogenesis and embryogenesis.  
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Figure II-4. GUS and GFP expression in sperm cells, unpollinated and pollinated ovule 

of transgenic Arabidopsis harboring pPzIPT1::GUS/GFP. A. Schematic illustration of 

pPzIPT1::GUS/GFP construct for Arabidopsis transformation. B. GFP expression in 

sperm cells (Confocal microscopy). Bar = 10 µm. C. GFP expression in sperm cells in 

homozygous line (epifluorescence microscopy). Bar = 20 µm. D. Pair of green (GFP) 

sperm cells in germinated pollen tube (Confocal microscopy image is courteously 

provided by Lili Ge). Bar = 20 µm. E. GFP expression in synergid cells of unpollinated 

ovule. Bar = 20 µm. F. GUS expression in sperm cells. Bar = 10 µm. G. GUS expression 

in unpollinated ovule. Bar = 500 µm. H. GUS expression in pollinated ovule.  Bar = 1 

mm. I. GUS expression in synergid cells of unpollinated ovule. Bar = 30 µm. 
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Figure II-5. GUS and GFP expression pattern in developing ovule (hand emasculated) 

and pollen in transgenic Arabidopsis plants harboring pPzIPT1::GUS/GFP. A.  

Schematic illustration of megagametogenesis stage modified from Christersen 

(Christensen et al., 1997) B. GUS expressed in developing ovule at -30 HAP. At this 

stage, anthers were manually removed. Flower development stage is in mid 12 and ovule 

is in early two-nucleate stage (stage FG2). C. GUS expressed in developing ovule at -15 

HAP. At this time point, flower development stage is between mid and late 12 and the 

ovule is in late two-nucleate stage (stage FG3) or early four-nucleate stage (stage FG4). 

D. GUS expressed in developing ovule at 0 HAP. At this stage, natural pollination occurs 

if anthers have not been removed. Flower development stage is between late 12 and 13 

and the ovule is in early four-nucleate stage (stage FG4) or eight-nucleate stage (FG5). E. 

GUS expressed in developing ovule at +12 HAP. At this time point, flower development 

is between late stage 12 and stage 14 and ovule is in seven-celled stage (stage FG6). F. 

GUS expressed in developing ovule at +18 HAP. At this time, flower development stage 

is between 13 and 14 and ovule is in four-celled stage (stage FG7). G. GUS expressed in 

developing ovule at +24 HAP. At this time point, flower development stage is between 

13 and late 14 and ovule is in four-celled stage (stage FG7). H. GUS expressed in 

developing ovule at +36 HAP. At this time point, flower development stage is at late 14 

and ovule is still in four-celled stage (stage FG7). I. GUS expressed in developing ovule 

at +48 HAP. At this time point, flower organs begin to fall off and unpollinated ovule is 

about to degenerate. J. GUS expressed in developing ovule at +96 HAP. At this stage, 

unpollinated ovules have collapsed. K. At +24 HAP, GFP signal was restricted in 
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synergids. L and M. GFP signal was detected early in the generative cell of bicellular 

pollen. 

 

Figure II-6. GUS expression in vegetative tissues of transgenic Arabidopsis harboring 

pPzIPT1::GUS/GFP. A. No GUS expression in imbibed seeds (with seed coat). B. No 

GUS expression in imbibed seeds (without seed coat). C. GUS expression in junction of 

hypocotyl and radicle in 2-day old germinated seedlings. D. GUS expression in the tip of 
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cotyledon and at the junction of hypocotyl and radicle in 5-day old seedlings, but not in 

the shoot meristem or root meristem.  E. GUS expression in the tip of true leaf, cotyledon 

and root in 7-day old seedlings, but not in the shoot meristem and root meristem. F. GUS 

expression in the tip of true leaf, cotyledon and root in 10-day old seedlings, but not in 

the shoot meristem and root meristem. G. GUS expression in the tip of young true leaf, 

cotyledon and root in 2-week old seedlings, but not in the older leaf, shoot meristem and 

root meristem. H. GUS expression in zone of cell maturation (zone of differentiation) of 

root, but not in elongation zone and meristematic zone of root. I. DZ, differentiation zone; 

EZ, elongation zone; MZ, meristematic zone of the Arabidopsis root (Grieneisen et al., 

2007). J. Close look of root from 7-day-germinated seeling. GUS expression in zone of 

cell maturation (zone of differentiation) of root, but not in elongation zone and 

meristematic zone of root. K. Close look of radicle and hypocotly from 2-day-germinated 

seeling. GUS expression in zone of differentiation of root and junction of hypocotyl and 

radicle, but not in elongation zone and meristematic zone of root. L. No GUS expression 

in rosette leaf of mature plant (flowering stage). M. GUS expression in tip of cauline leaf. 

N. GUS expression in stigma and abscission zone of pollinated silique, but not in stigma 

and abscission zone of unpollinated young flower. 

2.2. pPzIPT1::GUS/GFP expression in transgenic tobacco 

Since Arabidopsis sperm cells are not dimorphic and the PzIPT1 promoter driving 

reporter genes in transgenic Arabidopsis are expressed in both sperm cells, we also 

assayed the expression of pPzIPT1::reporter in tobacco whose sperm cells appear to be 

dimorphic when they enter the pollen tube (Tian et al., 2001). The pPzIPT1:GFP/GUS 

constructs (Figure II-7A). were introduced into tobacco via A. tumefacien-mediated 



 95

transformation following Horsch’s protocol with modifications (Horsch et al., 1985). 

Briefly, the in vitro cultured leaf explants were inoculated with Agrobacterium strain 

LBA4401 containing the binary vector plasmid of pPzIPT1::GUS/GFP.  Infected leaf 

stripes were then cultured on MS shoot-inducing medium with kanamycin selection 

(Figure II-7B). The survived shoots were transferred to root-inducing medium (Figure II-

7C). Transgenic plantlets were transferred to the greenhouse and allowed to grow to 

flowering stage for GUS and GFP analysis (Figure II-7D).  Tobacco mature pollen is 

bicellular and contains a generatetive cell and a vegetative cell (see Figure I-2). The 

generative cell undergoes PMII in the pollen tube to produce sperm cells. We obtained 

pollen tubes by a semi-vivo culture protocol (Cao et al., 1996; Tian et al., 2001).  Pollen, 

pollen tube, ovule and other vegetative tissues were subjected to GUS histochemical 

staining for GUS expression assessment or direct epifluorescence microscopy for GFP 

expression pattern analysis. Surprisingly, PzIPT1 promoter in transgenic tobacco lost its 

sperm cell specificity, and GUS was expressed in the vegetative cell of pollen (Figure II-

7E and 7F), newly germinated pollen tube (Figure II-7H), ovule (Figure II-7G), petals 

and young seedling (data not shown), but not in the generative cell and sperm cells 

(Figure II-7H, 7I, 7J and 7K).  GFP also showed the same expression pattern as GUS 

(data not shown). The differences of PzIPT1 promoter activities in Plumbago, 

Arabidopsis and tobacco suggest that different plant species may have different 

transcriptional machinery.  
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Figure II-7. GUS expression pattern in transgenic tobacco driven by PzIPT1 promoter. A. 

Schematic illustration of pPzIPT1::GUS/GFP constructs for tobacco transformation. B. 

Transgenic tobacco shoots arise on the selective medium. C. transgenic shoots are rooted 

in the root inducing medium. D. Transgenic tobacco plants are transferred to greenhouse. 

E. GUS expression in the pollen of R1 transgenic plants harboring pPzIPT1::GUS. F. 

GUS proteins are evenly distributed in the vegetative cell of the pollen. G. GUS is 

expressed in the chalazal end of the ovule. H and J. GUS is expressed in the newly 

formed pollen tube, but not in the generative cell. H shows light microscopy image and J 

shows epifluorescence microscopy image of DAPI stained generative cell nucleus. I and 

K. GUS expression is not detected in the tip of germinated/elongated pollen tube nor in 

sperm cells. I shows light microscopy image and K shows epifluorescence microscopy 

image of DAPI stained sperm cell nucleus. 

2.3. PzIPT1 is localized in the cytoplasm 

Because the pPzIPT1::GFP construct used for Arabidopsis transformation does not 

contain PzIPT1, the localization of GFP which is evenly distributed in the sperm cell 

(Figure II- 4B, 4C, and 4D) may not reflect the subcellular localization of PzIPT1. So we 

built another construct where GFP was fused with C-terminal of PzIPT1 protein driven 

by the PzIPT1 promoter (pPzIPT1::PzIPT1-GFP) (Figure II-8A). The construct was 

stably transformed into Arabidopsis to determine the localization of the expressed 

PzIPT1 protein in the cell. The epifluorescence microscopy images and confocal 

microscopy optical sections in transgenic Arabidopsis pollen show that the fusion protein 

is distribute in the cytoplasm of sperm cell, with a weak signal detected in the sperm 

nucleus (Figure II-8B and 8C). The construct was also transiently expressed in tobacco 
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leaves by Agrobacterium infiltration. The PzIPT1-GFP fusion protein was also detected 

in the cytoplasm of epidermal cells of tobacco leaf (Figure 8D). The localization of 

PzIPT1 in the cytoplasm is consistent with  AtIPT3’s subcellular localization (Miyawaki 

et al., 2006 ), and also supports the proposed function of PzIPT1 as an ATP/ADP 

dependent isopentenyltransferase catalyzing the first step of cytokinin biosynthesis in 

cytoplasm. 

 

Figure II-8. Subcellular localization of PzIPT1. A. Schematic illustration of 

pPzIPT1::PzIPT1-GFP construct. B. The epifluorescence microscopy image showing 

PzIPT1-GFP fusion protein expressed in the cytoplasm of sperm cells in transgenic 

Arabidopsis pollen. C. The confocal microscopy optical sections in transgenic 

Arabidopsis pollen showing PzIPT1-GFP fusion protein is distribute in the cytoplasm of 

sperm cells, but weak signal in nuclei of sperm cells. D. The PzIPT1-GFP fusion protein 

is expressed transiently in the cytoplasm of epidermal cells of tobacco leaf. 
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III. The complementation of PzIPT1 in Arabidopsis atipt 357 triple mutant indicates 

that PzIPT1 is a functional IPT 

As mentioned in previous paragraphs, sequence similarity search identified nine IPT 

homologs in Arabidopsis genome (Kakimoto 2001; Takei, et al. 2001). Seven of them 

encode ATP/ADP isopentenyltransferases (AtIPT1, 3-8) and play a major role in 

cytokinin biosynthesis. We are particular interested in AtIPT3 because PzIPT1 shares 

high sequence similarity with AtIPT3. PzIPT1 and AtIPT3 are phylogenetically classified 

into a subfamily of which another two Arabidopsis IPTs, AtIPT5 and AtIPT7, are also 

members (Figure II-3B).  T-DNA insertion knockout mutants analysis did not detect 

visible phenotypes in single or double mutants of any possible mutant combination for 

AtIPT1, 3, 5, and 7. However, the atipt357 triple mutant and the atipt1357 quadruple 

mutant are short, with thin aerial parts, fewer rosette leaves, reduced shoot apical 

meristem size and thin inflorescence. The quadruple mutant has a more severe defective 

phenotype including seed development (Miyawaki et al., 2006 ). The atipt1357 quadruple 

mutant phenotype can be partially rescued by trans-zeatin (tZ) which is an active 

cytokinin (Miyawaki et al., 2006 ), suggesting that the growth defect in atipt1357 is 

caused by cytokinin deficiency. The overexpression of AtIPT3 under native promoter 

pATIPT3 in atipt3567 mutant background was able to completely recover the phenotype 

of atipt3567 mutant. This strongly suggests that the mutation in AtIPT3 is mainly 

responsible for the cytokinin deficient phenotype (Miyawaki et al., 2006 ). We compared 

atipt357 triple and atipt1357 quadruple mutants for their reproductive development and 

did not detect any defects in pollen and ovule development in both mutants (Figure II-9 

and Table 1). We also examined the male and female gametophyte development of 
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atipt357 triple mutant and atipt1357 quadruple mutant. The flower of atipt357 is normal 

as in WT (Figure II-9A and 9B), but the flower of atipt1357 has smaller petals and 

shorter anther filaments which barely reaches stigma in anthesis (Figure II-9C). The 

pollen viability by Alexander’s staining method (Alexander, 1969) showed all pollen in  

atipt357 triple mutant and the atipt1357 quadruple mutant are viable (Figure II-9D, 9E, 

and 9F). However, atipt1357 quadruple mutants have mild anther dehiscence defects. Not 

all pollen is freely released from the anther. Pollen has a rough pollen wall and stick 

together (Figure II-9F). We used DAPI DNA stain to study male gametophyte 

development. Pollen development from meiosis to 3-nucleate pollen stage seems to be 

normal (Figure II-9M, 9N, and 9O). We also observed ovule development using cleared 

whole-mount ovule (Liu and Meinke, 1998) and did not find any defects in atipt357 triple 

mutants and atipt1357 quadruple mutants (data not shown). Seed development in 

atipt357 triple mutants seems also normal compared to WT (Figure II-9G, 9H, 9K, and 9J, 

Table II-1), while seed abortion in atipt1357 quadruple mutants was observed (Figure II-

9I and 9L, Table II-1). Because there are no major defects in pollen and ovule in 

atipt1357 quadruple mutants, seed abortion is most likely from abnormal development of 

the pollinated ovule or caused by short anther filaments. Our observations, together with 

results from others  (Miyawaki et al., 2006 ), point to a role of AtIPT3 in plant vegetative 

growth but not in male and female development.  

Although pPzIPT1::GUS/GFP is mainly expressed in sperms and synergids in 

Arabidopsis, it is also expressed in vegetative tissues, indicating that PzIPT1’s function is 

not restricted to the gametophyte development. To test whether PzIPT1 can complement 

the phenotype of atipt357 triple mutant and atipt1357 quadruple mutant, we expressed 
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PzIPT1 under AtIPT3 promoter in these mutants (Figure II-10A). The T1 transgenic 

plants of atipt357 triple mutant showed a partially rescued mutant phenotype (Figure II-

10B and 10C). This result confirms that PzIPT1 is a functional IPT.  

Table II-1. Seed setting comparison for atipt357, atipt1357 and Col-0 

Lines Siliques 
analyzed Seed setting (%) Standard 

Error 

Col-0 22 98.5 8.03 

atipt357 19 98.6 8.12 

atipt1357 17 90.9 13.69 



 102

 

Figure II-9. Phenotype of atipt 357 and atipt1357 mutant flower, pollen and seed. Left 

panel: Flower and seed phenotype of WT Col-0. A. Flower; D. Alexander’s staining of 
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pollen. G. Mature seeds. J. developing seeds in silique. M. DAPI staining of mature 

pollen. Middle panel: Flower and seed phenotype of atipt357 triple mutant. B. Flower; E. 

Alexander’s staining of pollen. H. Mature seeds. K. Developing seeds in silique. N. 

DAPI staining of mature pollen. Right panel: Flower and seed phenotype atipt1357 

quadruple mutant. C. Flower phenotype; F. Alexander’s staining of pollen. I. Mature 

seeds. L. Developing seeds in silique. O. DAPI staining of mature pollen. 

 

 

 

Figure II-10. Complementation of PzIPT1 in atipt357 triple mutant. A. schematic 

diagram for pAtIPT3::PzIPT1 construct. B. pAtIPT3::PzIPT1 recovering the phenotype 

of atipt357 mutant at early stage. Left, Col-0; middle, atipt357 mutant; right, T1 

transgenic plant of pAtIPT3::PzIPT1 in atipt357 mutant. C. pAtIPT3::PzIPT1 
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complementation of atipt357 at late stage. Left, Col-0; middle, atipt357 mutant; right, T1 

transgenic plant of pAtIPT3::PzIPT1 in atipt357 mutant. 

IV. Overexpressing of Arabidopsis cytokinin oxidase1 (CKX1) in male and female 

gametophytes driven by PzIPT1 promoter reveals PzIPT1 function in gametophytic 

cell division 

Cytokinin homeostasis in cells is determined by rates of biosynthesis, import, export and 

degradation (Mok and Mok, 2001). Cytokinin biosynthesis and degradation are two 

opposite biological processes which govern cytokinin concentration in tissues. In contrast 

to IPT which is essential for cytokinin biosynthesis, cytokinin oxidases/dehydrogenases 

(CKXs) are responsible for cytokinin catabolism and degradation (Schmülling et al., 

2003a). CKXs catalyze the irreversible degradation of the cytokinins of 

isopentenyladenine and zeatin, and their ribosides in a single enzymatic step by oxidative 

side-chain cleavage (Mok and Mok, 2001; Schmülling et al., 2003a). CKXs are important 

in controlling local cytokinin levels and contribute to the regulation of cytokinin-

dependent processes. In Arabidopsis, there are seven CKXs, which have different 

expression patterns. Overexpressing AtCKXs  in Arabidopsis and tobacco showed 

enhanced CKX activities, reduced cytokinin concentration and a typical cytokinin-

deficiency phenotype (Werner et al., 2001; Werner et al., 2003). Constitutive 

overexpression of individual AtCKX genes driven by 35S promoter led to an 

approximately 30%–45% reduction in the endogenous content of different cytokinin 

metabolites. The phenotypical analysis of these cytokinin-deficient plants identified 

developmental and physiological processes that are under cytokinin control (Werner et al., 

2001; Schmülling et al., 2003b; Werner et al., 2003).  
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Since knockdown or knockout mutants for PzIPT1 are lacking and chemical 

inhibitors that can specifically target the gene are also not available, we overexpressed 

AtCKX1 driven by the gamete-specific PzIPT1 promoter, in the hope that the strategy 

might deplete cytokinins in male and female gametophytes and thus result in a phenotype 

mimicking PzIPT1’s ‘loss of function’ phenotype. This alternative approach may help 

decipher the function of cytokinins during male and female gametophyte development. 

Figure II-11A shows a construct that AtCKX1 (At2g41510) is under the control of 

PzIPT1 promoter. The pPzIPT1::AtCKX1 transgenic plants exhibit varied fertility by the 

term of seed production. Seed setting reduction ranges from 0 – 80%. But for most 

transgenic lines, fertility is reduced by 40 – 50% (Table II-2). Except for the defects in 

seed setting, the transgenic plants seem to be as normal as the WT (Figure II-11). Further 

analysis focused on the lines with ~ 40-50% fertility reductions.    Based on Basta 

resistance segregation patterns in T2 generation, we observed a distorted segregation 

which does not follow the 3:1 resistant:susceptible pattern in all independent transgenic 

lines. Generally, T2 lines have more susceptible plants than expected. To screen 

transgenic homozygous lines based on Basta resistance, we screened multiple generations 

in several independent lines but failed to obtain any homozygous lines (Table II-3). We  

suspect that the homozygous seeds are either aborted during embryo development or 

embryo-lethal during germination. Thus, heterozygous lines were used for further 

analysis. 
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Table II-2. Seed setting percentage of different Arabidopsis transgenic lines and Col-0 

Lines (T5) Siliques 
analyzed 

Seed setting 
average (%) 

Standard  

Error 

CKX-1-6 49 54.4 20.00 

CKX1-3-3 41 53.2 19.32 

CKX1-4-9 42 53.6 19.71 

CKX1-6-11(fertile) 14 99.0 13.71 

Col-0 22 98.5 8.03 

 

Table II-3. Basta resistant plants percentage in different generations of 

pPzIPT1::AtCKX1  (%) 

Lines T3 T4 T5 T6 Average 
Standard 

Error 

CKX1-1-6 58.8 55.1 61.7 51.9 56.9 18.32 

CKX1-3-3 50.0 48.9 56.4 53.1 52.1 11.41 

CKX1-4-9 57.1 62.8 63.3 57.5 60.2 10.96 

Expected 75 75 75 75 75 0 

 

The transgenic plants seem to have a normal vegetative growth from young 

seedling to anthesis (Figure II-11B). In late fruit maturation stages, transgenic plants are 

taller than the WT (data not shown) due to longer inter-nodes of the transgenic plant 

(Figure II-11C). Compared to the WT, transgenic plants have taller stigma (Figure II-11D) 

and shorter siliques (Figure II-11C, 11H, and 11I). In young siliques, most aborted ovules 

are due to a fertilization failure (Figure II-11F and II-12). Occassioally, fertilized ovules 
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aborted during later stages of seed development (Figure II-11F arrow), resulting in 

abnormally developed seeds from transgenic plants (Figure II-11E). 

 

Figure II-11. Phenotype of transgenic plants harboring pPzIPT1::AtCKX1. A. Schematic 

diagram for pPzIPT1::AtCKX1 construct; B. Transgenic plants (left and middle) and the 

WT (right); C. Internodes of transgenic plants (left and middle) are longer than those of 

the WT (right); D. Flowers of the WT (left) and the transgenic plant (right. Note taller 

stigma in the transgenic plant flower); E. Mature seeds from transgenic plants; F. 

Developing seeds in a silique. Arrows indicating aborted seeds; G. Average silique length. 

Blue: transgenic plant, orange: WT plant; H. Siliques of the transgenic plant; I. Siliques 

of the WT. 
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As reported by Werner et al. (Werner et al., 2003), constitutive overexpression of 

AtCKX1 under 35S promoter resulted in strong phenotypic changes during all growth 

phases. Shoot and leaf development was retarded and the size of the meristematic cells 

was significantly decreased. The transgenic plants show severely reduced vegetative 

growth and delayed flowering (Werner et al., 2003). However, pPzIPT1::AtCKX1 plants 

had no vegetative growth defects, indicating that PzIPT1 only plays a minor role in 

vegetative growth. Although  pPzIPT1::GUS  was expressed in vegetative tissues as 

described in section 3, it was never expressed in shoot and root meristems. This may 

explain why PzIPT1 does not affect plant vegetative growth.  

We made reciprocal crosses of the transgenic plant with WT Col-0 to evaluate 

whether male, female or both affects fertility. The seed settings for F0 were counted and 

the result is in Table II-4. Assuming near perfect fertility of the WT as either male or 

female parent, any reduction in fertility should be due to the transgene. Then the result of 

the reciprocal crosses between CKX1-1-6  and Col-0 suggets that the female parent is 

responsible for sterility and the male parent does not seem to matter much, since CKX1-

1-6 (♀) × Col-0 (♂) gives 71.7% seed settings, while the seed setting for the cross Col-0 

(♀) × CKX1-1-6 (♂) is up to 94.7% (Table II-4). However, the pollen Alexander’s 

staining showed about 30-50% of transgenic pollen are abnormal and non-viable (Figure 

II-12), suggesting that the male parent should be responsible for reduced seed settings. 

This inconsistency may be due to repetitive manual pollination of the same flower. The 

process may have increased the population of normal pollen on the stigma and thus 

shadowed the effects of non-viable pollen on seed setting. To evaluate the artifact, we 

compared manual pollination of CKX1-1-6 heterozygous line with natural pollination (no 
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human interruption). Manual pollination increased seed setting by ~20% (Table II-4). 

Thus, both parents seem to cause sterility.  

Table II-4. Reciprocal cross of pPzIPT1::AtCKX1 with WT Col-0 seed setting 

comparison  

Lines Siliques 
analyzed

Seed setting 
average (%) 

Standard  

Error 

Col-0(♀)  × CKX1-1-6 (♂) 37 94.7 14.50 

CKX1-1-6 (♀)  × Col-0 (♂) 49 71.7 18.57 

CKX1-1-6 natural 49 54.4 10.00 

CKX1-1-6 manual 29 74.2 4.74 

Col-0 natural 22 98.5 8.03 

Col-0 manual 17 98.8 5.01 

 

The Basta resistance test for F1 plants of reciprocal crosses showed less than 40% 

percent of plants were carrying the transgene, regardless of whether the transgenic plant 

was male or female parent (Table II-5).  This result indicates that the transgene can be 

transmitted equally through male and female parents. 

Table II-5. The Basta resistant plant percentage for F1 of reciprocal crosses  

Cross F1 Basta r (%) 

♀Col-0 × ♂CKX1-1-6 30.5 

♀CKX1-1-6 × ♂Col-0 39.8 

Expected 50 
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We conducted a RT-PCR experiment to evaluate AtCKX1 expression in different 

independent lines, including three lines used for phenotype analysis (CKX1-1-6, CKX1-

3-3 and CKX1-4-9) and one line without fertility reduction (CKX1-6-11). The rosette 

leaves, cauline leaves and flowers were sampled from plants at anthesis stage for RNA 

extraction. The primers were designed spanning the intron for AtCKX1 (At2g41510) to 

yield an ~500 bp PCR product. Arabidopsis tubulin8 was used as internal control.  In 

lines with reduced fertility (CKX1-1-6, CKX1-3-3 and CKX1-4-9), the expression of 

AtCKX1 was higher in the flower compared to the rosette leaf, cauline leaf and WT 

flower (Figure II-12) as we expected. Ovule abortion and reduced pollen viability were 

observed in these lines (Figure II-12). For the fertile line CKX1-6-11, the expression 

level in the flower was about the same as in the WT flower, but lower than in other 

transgenic lines (Figure II-12). This is consistent with the observed phenotype of viable 

pollen and fertile ovules (Figure II-12). 
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Figure II-12. AtCKX1 expression driven by pPzIPT1 was elevated in the flower tissue of 

transgenic plants and causes unviable pollen and aborted seeds. Top panel, Left: RT-PCR 

showing AtCKX1 is highly expressed in flower of different transgenic lines. RL- rosette 
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leaf; CL- cauline leaf; FL- flower; Tub8- tubulin8, served as internal control. Middle: 

young silique showing aborted ovules and normal WT ovule. Right: pollen viability 

showed by Alexander’s staining.  The bottom panel shows young siliques of reciprocal 

crosses of CKX1-1-6 and Col-0 and parent lines. 

Since AtCKX1 catalyzes the degradation of cytokinins, driven by PzIPT1 

promoter, the level of cytokinins in male and female gametophyte can be dropped below 

the normal level. We examined whether cytokinin-deficiency reduced fertility and caused 

defects in male gametogenesis. As mentioned before, we could not obtain homozygous 

pPzIPT1::AtCKX1 transgenic plants, so we used pPzIPT1::AtCKX1 heterozygous 

transgenic lines which produce both WT and transgenic pollens. Actually, the 

heterozygous plant is advantageous because it provides a uniform developmental 

environment for the WT and transgenic pollen development. Since the development of all 

pollen within an individual flower is synchronized, we can track in which pollen 

development stage the defect for transgenic spores occur in the same flower. We 

examined male gametophyte development from early development stages -- pollen 

mother cell meiosis I, meiosis II, tetrad, to uninucleate microspores, bicellular, and 

mature tricellular pollen using DAPI nuclear staining. Before the uninucleate microspore 

stage, there was no obvious difference between transgenic and WT plants (Figure II-13B-

I).  However, about 36% of spores were arrested at the uninucleate microspore 

asymmetric mitosis I stage (772 arrested uninucleate microspores out of 2130 total spores 

examined) (Figure II-13J-K). DAPI nuclear stain showed the arrested uninucleate pollen 

with loose and specked nuclei when the WT pollen advanced to bicellular and early 

tricellular stages (Figure II-13J-M). Light microscopy showed shrunken cytoplasm and 



 113

nucleus in the arrested uninucleate pollen (Figure II-13K, M, O, P). As the WT pollen 

progressed to mature tricellular stage, the nucleus of the arrested uninucleate pollen 

became smaller in size or totally disappeared (Figure II-13P).  We could occasionally 

observe the symmetric pollen mitosis I (Figure II-13N) and the retarded pollen 

development (Figure II-13O). This suggested that PzIPT1 played an important role in 

pollen development, particularly for the advancement from mitosis I to later stages. 
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Figure II-13.  Pollen development in WT and pPzIPT1::AtCKX1 transgenic plants. A. 

schematic depiction showing microgametogenesis in Arabidopsis WT plants. B and C 

showing pollen mother cells in the WT (B) and pPzIPT1::AtCKX1 (C). D and E showing 

pollen mother cells undergoing meiosis I in the WT (D) and pPzIPT1::AtCKX1 (E). F 

and G showing tetrads in the WT (F) and pPzIPT1::AtCKX1 (G). H and I showing 

uninucleate microspores in the WT (H) and pPzIPT1::AtCKX1 (I). J and K showing 

bicellular pollen in the WT (J) and pPzIPT1::AtCKX1 (K). Some pollen were arrested at 

uninucleate stage (K). L and M showing tricellular pollens in the WT (L) and 

pPzIPT1::AtCKX1 (M). Some pollen were still arrested at uninucleate stage. N showing 

symmetric unclear division during PMI in pPzIPT1::AtCKX1 transgenic lines. O showing 

occasionally, pollen development can be retarded. The defective pollen is in bicellular 

stage (left) while WT progressed to tricellular stage (right). P showing arrested 

uninucleate pollen was shrunken and unviable. Scale bar = 10 um. 

To examine whether pPzIPT1::AtCKX1 affects female gametogenesis, we also 

compared female gametophyte development in pPzIPT1::AtCKX1 heterozygous 

transgenic plants. Similar to synchronization of pollen development in a flower, ovule 

and embryo sac development are synchronous within a silique in Arabidopsis. We 

compared each development stage of transgenic and WT female gametophyte from the 

same individual siliques. In the early stages of a WT ovule, a single sporophytic cell - 

megaspore mother cell undergoes meiosis to produce four haploid megaspores during 

megasporogensis. While three of the megaspores near the micropylar end undergo 

programmed cell death, the chalazal end megaspore becomes functional and undergoes 

three rounds of mitosis to form an eight-nucleate embryo sac within an ovule. Subsequent 
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fusion of two polar nuclei (form a central cell) to form a seven-cell-mature embryo sac 

consisting: three antipodal cells, one large central cell, one egg cell and two synergids. 

The three antipodal cells then degenerated to form mature four-nucleate embryo sac 

(Christensen et al., 1997; Drews and Yadegari, 2002) (Figure II-14A).  

The whole mount clearing method (Liu and Meinke, 1998) in combination with 

differential interference contrast (DIC) microscopy was used to investigate ovule 

development in pPzIPT1::AtCKX1 transgenic plants.  Aniline blue staining was 

performed to visualize callose accumulation in the newly formed cell wall during 

megasporogenesis (Rodkiewicz, 1970). In both WT and pPzIPT1::AtCKX1 ovules, 

meiosis was normal (Figure II-14B and C) because we could observe the accumulation of 

three bands of callose, which marks the position of newly formed cell walls that divide 

the four meiotic nuclei into the tetrad. In the functional megaspore stage FG1 (FG1 and 

all other developmental stages are defined by Christensen et al., 1997), all ovules in 

pPzIPT1::AtCKX1 seemed as normal as the WT (Figure II-14D, E, and F). In stage FG2-

3, about 30-40% ovules were arrested at the uninucleate stage (Figure II-14H and I) 

whereas the WT ovules in the same silique developed normally to the two-nucleate stage 

(Figure II-14G and H). The arrested uninucleate embryo sac did not undergo any cell 

division and retained uninucleate stage afterwards, while their corresponding WT siblings 

underwent sequential two mitotic divisions and cellularization to form four-nucleate, 

eight-nucleate, seven-nucleate and mature late-four-nucleate embryo sac (Figure II-14J to 

14X ).  The arrested embryo sac had no central vacuole and did not enlarge (Figure II-14J 

to 14X), while the embryo sac in their WT siblings enlarged and formed a big central 

vacuole and several small vacuoles. The arrested embryo sac did not enlarge, the inner 
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and out integuments in arrested ovule still underwent active cell division and elongated 

like the WT. In the WT, the elongated inner and outer integuments enclose the embryo 

sac, but in the arrested ovule, the inner and out integuments remain open.  

Both male and female gametophytogenesis were arrested at the first round of 

mitosis in pPzIPT1::AtCKX1 plants, strongly suggesting that PzIPT1 is involved in both 

male and female gametophyte development, particularly in gametophyte mitosis I. 
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Figure II-14.  Megagametogenesis  in WT and pPzIPT1::AtCKX1 transgenic plants. A. 

schematic depiction showing megagametogenesis in Arabidopsis WT plants. B and C 

showing megaspore mother cell undergoes meiosis to produce four haploid megaspores 

in WT and pPzIPT1::AtCKX1 transgenic plants, respectively. In both B and C, left: UV 

micrographs showing three bands of callose accumulation, which represents the position 

of newly formed cell walls that divide the four meiotic nuclei into the tetrad; right: light 

micrographs corresponding to UV micrographs.   D, E, and F showing at FG1 stage, all 

ovules in pPzIPT1::AtCKX1 were found normal as that in WT. H, K, N, Q, T, and W 

showing two ovules in the same silique, one WT ovule developed normally whereas the 

other was arrested at the uninucleate stage at FG2-3, FG4, FG5, FG6, FG7 and post 

pollination stages, respectively. G, J, M, P, S, and V showing higher magnification 

micrograph of WT ovules developed normally at FG2-3, FG4, FG5, FG6, FG7 and post 

pollination stages, respectively. I, L, O, R, U, and X showing higher magnification 

micrograph of arrested ovules in the same silique with their WT siblings at FG2-3, FG4, 

FG5, FG6, FG7 and post pollination stages, respectively.   

V. Plumbago Svn-specific PzIPT1 can be transmitted to the ovule and may play an 

important role in early embryogenesis 

It has been long assumed that sperms only pass over the haploid male genome to embryo. 

But the cytological evidence in Plumbago zeylanica indicated that the male cytoplasm 

can be transmitted into female gametes during double fertilization (Russell, 1980).  

Recent studies from mammals also suggested that sperm cells deliver transcripts and 

proteomes to the egg that are crucial to zygote and embryo early development 

(Ostermeier et al., 2004). Since PzIPT1 is specifically expressed in Svn in Plumbago and 
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expressed in both sperm cells in Arabidopsis, we investigated whether or not PzIPT1 

transcripts and proteomes are transmitted to female gametes during double fertilization. 

The RT-PCR experiment was performed in Plumbago pollinated and unpollinated 

ovules at different HAP (Hours After Pollination). In Plumbago zeylanic, fertilization 

usually occurs around 7-8 HAP. Our RT-PCR result showed Plumbago Svn-specific 

PzIPT1 transcripts were detected in fertilized ovules (9HAP) shortly after fertilization 

(Figure II-15), but not detectable in later stages. The experiment was repeated, and the 

same results were obtained. 

 

Figure 15. RT-PCR result for PzIPT1 expression in different stage of pollinated ovules 

of Plumbago. Numbers for HAP (Hour After Pollination); C – Control, hand emasculated 

and unpollinated ovules; S – Sample, hand emasculated and pollinated ovules. GE – 

genomic DNA as PCR template. 

To analyze paternal transmission of PzIPT1 proteomes in Arabidopsis, the 

homozygous line of pPzIPT1:GUS transgenic Arabidopsis was used as the male parent to 

cross with the WT Col-0. Then, the pollinated ovules were sampled from 0 - 80 HAP for 

GUS staining and light microscope examination. GUS expression in early zygotic and 

embryonic developmental stages (5 to 36 HAP) was observed. GUS expression started in 

pollinated ovules when the sperm cell just arrived within the synergids, accumulating 

over a 12-hour period to reach the highest expression level (18 HAP), then the GUS 
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signal started to decrease. At 36 HAP, we could not detect any GUS signal. Is the strong 

GUS expression at 18 HAP from paternal transmission or from activation of delivered 

sperm genome after fertilization? The result from Dr. Ueli Grossniklaus’s lab (Vielle-

Calzada JP, 2000) showed that most of the paternal genome is transcriptionally inactive 

during early embryogenesis. Transcription of paternal genes is initiated after fertilization, 

most likely in the 32-64 cell stage of embryo formation (>68 HAP) in Arabidopsis 

(Vielle-Calzada JP, 2000). Although their conclusion may not be true for every individual 

gene (Vielle-Calzada et al., 2001; Weijers et al., 2001), it is reasonable to believe that at 

least some, if not all, pPzIPT1:GUS transcripts are delivered to the zygote and endosperm 

by sperm cells, along with some pPzIPT1::GUS protein products. To further test this 

hypothesis, we used DsRed1-E5 fluorescent protein in pTimer vector 

(http://www.clontech.com) driven by pPzIPT1 to discriminate newly translated and aged 

fluorescent proteins.  
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Figure II-16. GUS expression in ovules of WT (♀) x pPzIPT1::GUS (♂) (HAP – hours 

after pollination) 
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The DsRed1-E5 protein is a mutant form of the DsRed fluorescent reporter, 

containing two amino acid substitutions which increase its fluorescence intensity and 

endow it with a distinct spectral property: as the fluorescent protein matures, it changes 

color in a matter of hours, depending on the expression system used. When first 

synthesized, DsRed1-E5 is green. As time passes, the green fluorophore undergoes 

additional changes that cause its fluorescence to shift to longer wavelengths—when fully 

matured, the protein is bright red (Matz MV, 1999; Terskikh A, 2000). DsRed1-E5’s 

invariable green-to-red shift can be used as a timer to track the on-off phases of gene 

expression during embryogenesis and cell differentiation (Terskikh A, 2000). These 

properties indicate that the ratio of green to red fluorescence can be used to determine the 

age of DsRED-E5 protein, which could facilitate the visualization of dynamics of 

promoter activity and reflect promoter corresponding gene expression (Terskikh et al., 

2000). Analysis of the fluorescence ratios clearly provided more accurate insight into the 

timing of promoter activity (Terskikh A, 2000; Mirabella et al., 2004).   

We placed DsRed1-E5 under the control of PzIPT1 promoter, and transformed it 

into Arabidopsis. We obtained five independent transgenic homozygous lines by Basta 

resistance screening. All lines showed strong expression of DsRed1-E5 in sperm cells 

and synergids. This was consistent with our previous GUS and GFP expression patterns. 

From the time course study of unpollinated ovule, the earliest expression of DsRed1-E5 

in the ovule can be detected at the flower developmental stage late 11 (Figure II-17A). At 

this stage, only green fluorescent protein can be detected, indicating the beginning of 

DsRed1-E5 protein synthesis. After mid-stage 12, both green and red fluorescence of 

DsRed1-E5 were detectable in the ovule with strong expressions from Stage 13 (referred 
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as 0 hr at this time point, when anthers were manually removed to prevent male 

interference with female expression pattern) to 48 hours after stage 13 (Figure II-17B, C, 

D, E, F, and G). Then, DsRed1-E5 protein started to turn over (Figure II-17H, I, and J). 

In the ovule, the green fluorescent signal was coupled with the red fluorescent signal. 

This indicated that in the ovule, DsRed1-E5 protein kept synthesizing while the mature 

protein also accumulated.    

In male gametophyte, pollens were sampled from the anther at anthesis stage 

(pollen just start to shed), 12 hours after shedding and 24 hours after shedding to examine 

DsRed1-E5 protein expression. When pollen just shed, both green and red fluorescence 

were detected in sperm cells (Figure II-18A). This indicated that DsRed1-E5 protein was 

synthesized before the pollen developed to mature stage. Then, at 12 hours after shedding, 

most of DsRed1-E5 protein became red (mature) and only weak green fluorescence could 

be detected (Figure II-18B). At 24 hours after shedding, all DsRed1-E5 protein was red 

(mature) and no green fluorescence could be detected (Figure II-18C), indicating no 

active translation of DsRed1-E5 protein. To analyze the DsRed1-E5 protein translation 

and maturation in sperm cells during pollination, in vitro germination of pollen tube was 

performed based on the protocol Boavida et al. developed  (Boavida and McCormick, 

2007). The observation also showed no newly translated protein in pollen tube after 24-

hour germination (Figure II-19A to 19E). 
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Figure II-17. DsRed1-E5 expression in the unpollinated ovule. 
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Figure II-18. DsRed1-E5 expression in mature pollen. 
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Figure II-19. DsRed1-E5 expression in the germinated pollen tube. 
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To discriminate sperm transcripts and proteomes transmission from genome DNA 

activation in the pollinated ovule, we made the cross between the WT (♀) and 

homozygous lines of pPzIPT1::DsRed1-E5 (♂). The pollinated ovules were sampled 

from 0 HAP to 72 HAP for epifluorescent microscope observation. Both green and red 

fluorescence was detected in the ovule at 8 HAP and 12 HAP (Figure II-20 B and C). At 

18 HAP, a strong red fluorescence signal and a weak green fluorescence signal were 

detected in the ovule. The mature DsRed1-E5 protein was present in the ovule until 48 

HAP, then DsRed1-E5 protein was turned over. This observation indicated that no active 

DsRed1-E5 gene transcription and translation occurred after the fertilization (around 8 

HAP). The observations from both Col-0 х pPzIPT1::GUS and Col-0 х 

pPzIPT1::DsRed1-E5 strongly suggest that transcripts and proteomes sperm PzIPT1 can 

be transmitted to the pollinated ovule and may play an important role in early 

embryogenesis. 
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Figure II-20. DsRed1-E5 expression in the pollinated ovule of WT (♀) х 

pPzIPT1::DsRed1-E5 (♂) 
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DISCUSSION 
 
PzIPT1 is a gametophyte-specific isopentenyltransferase and catalyzes cytokinin 

biosynthesis locally for germline cell division 

It is generally assumed that the root is the main site for cytokinin synthesis. The other 

organs, such as cambium, the shoot apex, and immature seeds are also thought to 

synthesize cytokinins (Letham, 1994 ; Emery et al., 2000; Kakimoto, 2003).  Although 

AtIPTs promoter::GUS expressed in a wide range of organs and cell types (Miyawaki et 

al., 2004; Miyawaki et al., 2006 ), to our knowledge, there have been no reports showing 

expression patterns of known plant IPTs linked to male and female germline.   

Arabidopsis IPTs  are most abundant in young, rapidly dividing cells of shoot, root 

meristems and other vegetative tissue (Kakimoto, 2003; Miyawaki et al., 2004). Our 

results from pPzIPT1::GUS/GFP/DsRed1-E5 showed no reporter gene expressed in root 

tip, shoot and root meristems (Figure II-6), but strong expression in male and female 

gametophyte. This indicated that PzIPT1 is distinctly different from the known IPTs and 

is a gametophyte-specific isopentenyltransferase. It has been also accepted that 

cytokinins can be transported easily through vascular tissues to the place where plant 

needs for cell division and other biological functions (Oka, 2003; Hirose et al., 2008). 

The microspore and megaspore are not diploid sporophytic tissues anymore and may lost 

vascular connection to their maternal origins for efficient cytokinins translocation. Thus, 

locally synthesized cytokinins by PzIPT1 may play an important role for germline cell 

division. Recent report from Sundaresan’s lab about auxin-dependent patterning and 

female gamete specification also support our hypothesis (Pagnussat et al., 2009). They 

showed that localized auxin synthesis, along with auxin degradation/conjugation have 
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more important influence in establishing the female gametophyte patterning, rather than 

auxin efflux that regulates patterning in the diploid sporophytic tissues. Is locally 

synthesized cytokinin by PzIPT1 sufficient for germline cell division? Our results from 

overexpression of AtCKX1, a major enzyme for cytokinin degradation in Arabidopsis, 

under PzIPT1 promoter showed the microspore and megaspore mitosis I were impaired. 

Together, we believe that PzIPT1 is a gametophyte-specific isopentenyltransferase and 

catalyzes cytokinin biosynthesis locally for germline cell division. 

Overexpression of AtCKX1 under PzIPT1promoter partially blocks germline mitosis 

I, but not totally arrest mitosis I 

The data we generated from reciprocal crosses of pPzIPT1::AtCKX1 and WT (Table II-4 

and II-5) indicated that not all microspores and megaspores carrying transgene (CKX1) 

were arrested at mitosis I, but some can “escape” or “bypass” the defective stage and 

undergo normal mitosis. Thus, the transgenic progenies can be obtained by self cross and 

reciprocal crosses with WT. This is true because we got heterozygous transgenic 

progenies from self cross of heterozygous lines. In table II-5, transgene can be 

transmitted to their progenies at 30% for male gametes and 39% for female gametes 

(expecting 50% if no impairment for gametes). As mentioned before, WT ovules were 

pollinated multiple times with heterozygous pPzIPT1::AtCKX1 pollen, which increased 

chances for WT pollen to successful pollination. This is why we get higher percentage of 

female transmission rate than male although the male gametes were expected to be 

transmitted at the same rate as female.  

Phenotype difference between 35S::AtCKXI and PzIPT1::AtCKX1 supports that 

PzIPT1 is a gametophyte-specific IPT 
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It is interesting that the phenotype of overexpressing AtCKXI under constitutive 35S 

promoter in Arabidopsis is very different from expressing AtCKX1 gene under PzIPT1 

promoter. 35S::AtCKX1 had severe defective vegetative growth and delayed flowering 

(Werner et al., 2003); whereas PzIPT1::AtCKX1 vegetative growth was normal as WT 

except the reduced fertility. Noteworthy, the dwarf and stunted 35S::AtCKX1 also 

showed reduced seed setting (Werner et al., 2003). The authors also they conducted 

experiments to discriminate potential defects in male and female gametophyte 

development (personal communication). They did reciprocal crosses for heterozygous 

35S:CKX1 and WT and result showed that the transgene in female gametophyte was 

perfectly transmitted (almost 1:1 of sensitive vs. hygromycin-resistant F1 progenies); 

whereas the transmission of transgene in male gametophyte was slightly affected 

(approximately 1:1.3 of resistant vs. sensitive progenies). They believed this male 

impairment was caused by extremely severe plant that could only produce very small 

amounts of pollen grains and aborted ovules were due to lacking of pollen grains and 

consequently abortion of non-fertilized ovules. This may be similar to our observation for 

quadruple mutant of atipt1357, in which, male and female gametophytes developed 

normally and aborted seeds were due to insufficient pollen grains or fertilized ovules 

stopped developing. The phenotypic difference between 35S::AtCKXI and 

PzIPT1::AtCKX1 also supports that PzIPT1 is a gametophyte-specific IPT. 

Cyclin genes and gametophyte cell division 

Cytokinin is well-known for its function in promoting cell division. The CYCD3 D-type 

cyclins were shown the essential role for cytokinin-mediated cell division in vegetative 

tissues (Dewitte et al., 2007). The Affymetrix ATH1 arrays of Arabidopsis four stages of 
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male gametophyte development (Honys and Twell, 2004) and mature pollen (Pina et al., 

2005) revealed that a significant number of cell cycle genes are expressed differently in 

four stages of male gametophyte development (see chapter I for detail). Among them, 

several genes seems linked to pollen  mitosis I. CYCH;1, CYCD4;2, KRP2, CDKA;1, 

CYCA3;2, DEL2 and CKS2 showing big fold changes between uninucleate microspores 

and bicellular pollen could be involved in pollen mitosis I. The further pursuing of 

gametophyte cell division related cyclin genes linked with PzIPT1 will be the most 

interesting. 

Is PzIPT1 regulated by environmental stress? 

The PzIPT1’s close parolog AtIPT3 was reported to be regulated by nitrogen availability 

and is a key determinant of cytokinin biosynthesis in response to rapid changes in the 

availability of nitrogen (Miyawaki et al., 2004; Takei et al., 2004). AtIPTs may also be 

regulated by other environmental changes (Takei et al., 2001; Miyawaki et al., 2004; 

Takei et al., 2004).  In our hand, it seems PzIPT1 is also regulated by some 

environmental stresses. In the crosses of WT (♀) х pPzIPT1:GUS/DsRed1-E5 (♂), even 

the strong sperm-expressed GUS/DsRed1-5E homozygous lines were used to pollinate 

WT ovules, we were not able to get every pollinated ovule with expression of paternal 

transmitted GUS or DsRed1-E5. This may be due to manually disrupted pollination 

process and therefore creating stress for small and sensitive male and female gametes. 

Another coincidence also leads to this consideration. The pPzIPT1::AtCKX1 plants were 

usually grown in long day (16 hr light / 8 hr dark). For one time, due to mechanical 

problem with the growth chamber, the plants were temporally moved to short day growth 

chamber (12 hr light / 12 hr dark) when plants were about to flower. The fertility 
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increased significantly after light/dark period changed (60% - 70% seed setting 

comparing to 50% in long day).  The well-designed experiment should be performed in 

the future to uncover the mystery here.  

CONCLUSION 

Plumbago zeylanica is a representative for both sperm dimorphism and preferential 

fertilization. Isolation and characterization of genes differentially expressed in two 

dimorphic sperm cells that related to their fertilization fate is vital to understand the 

molecular control of sperm dimorphism and preferential fertilization. Plumbago 

isopentenyltransferase1 (PzIPT1) was identified as such a gene which is highly expressed 

in Svn sperm cell. The PzIPT1 expression specificity was confirmed by pollen whole 

mount In situ hybridization, semi-quantitative and quantitative RT-PCR in Plumbago. 

Here, we showed the further functional analysis of PzIPT1 in heterologous systems 

(Arabidopsis and tobacco). The pPzIPT1::GFP/GUS in transgenic Arabidopsis were 

predominantly expressed in the sperm cells and synergids; and were also expressed in 

vegetative tissues but not in root and shoot meristems. The expression pattern of 

pPzIPT1::GFP/GUS is different from those of nine Arabidopsis IPTs promoter::GUS, 

suggesting that PzIPT1 is functionally different from known vegetative expressed IPTs 

and is probably a germline-specific IPT. Overexpression of PzIPT1 driven by AtIPT3 

promoter can restore the phenotype of Arabidopsis atipt357 triple mutant suggests that 

PzIPT1 is a functional IPT. The overexpression of Arabidopsis cytokinin oxidase 1 

(AtCKX1) gene  under PzIPT1 promoter which mimicks ‘loss of function’ reveals PzIPT1 

is involved male and female gametophyte mitosis I. Together, we believe that PzIPT1 is a 

gametophyte-specific isopentenyltransferase and catalyzes cytokinin biosynthesis locally 
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for gametophytic cell division. We also showed that PzIPT1 paternal transcripts and 

proteomes can be transmitted to the embryo sac and may initiate early cell division in 

endosperm and embryo development. 

MATERIALS AND METHODS 

Plant material 

Plants of Plumbago zeylanica L. were grown in the greenhouse at University of 

Oklahoma under a light cycle of 14 h light/10 h dark at 25-28°C. The anthers were 

emasculated before anthesis for hand pollination. The pollinated and unpollinated ovules 

were sampled at different time point for RT-PCR experiment to examine the PzIPT1 

expression.  

All Arabidopsis thaliana plants used in this study were in the Col-0 background. 

The seeds were sowed in moist soil and kept at 4°C for 2 days to one week. Then move to 

growth chamber with a light cycle of 16 h light/8 h dark at 22°C. For systematic analysis 

of pPzIPT1::GUS expression pattern, homozygous transgenic seeds were surface 

sterilized three times with 70% ethanol, followed by one time with 100% ethanol. Then 

seeds were dried in clean hood. The sterilized seeds were sprinkled on ½ MS medium 

and germinated in growth chamber with same condition as soil-grown plant. 

Tobacco seeds were geminated on ½ MS medium and the leaves were used for 

Agrobacterium-mediated transformation. The transgenic plants were grown in the same 

condition as Plumbago. 

Plant transformation 

Agrobacterium tumefaciens-mediated Arabidopsis transformation was performed mainly 

based on a simplified floral dipping method (Clough and Bent, 1998). For selection of 
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transformants, seeds were selected based on the herbicide Basta resistance with the Basta 

concentration at 200 mg L–1.  

Tobacco transgenic plants were produced by Agrobacterium-mediated 

transformation of leaf discs and screened on semi-solid one-half Murashige and Skoog 

(Murashige and Skoog, 1962) agar plate plus 50 µg/ml kanamycin and 1% sucrose. 

Transgenic tobacco plants were transferred into soil to grow till flowering. 

Molecular cloning 

All the constructs were created in the backbone of pBIB vector (Becker, 1990). For 

herbicide screening, the Pnos promoter and the kanamycin resistance gene in the T-DNA 

region of pBIB-HYG-35S and pBIB-HYG were replaced by the Pmas promoter and 

BASTA coding region PCR-amplified from vector pSKI015 and flanked by HindIII and 

BglII restriction sites to make binary plant transformation vectors pBASTA-35S and 

pBASTA, respectively. The Gateway cassette and GFP coding sequence were PCR 

amplified from pEarleyGate103 and inserted into pBASTA-35S and pBASTA at the 

KpnI and SacI sites to create pBASTA-35S-GWR, pBASTA-35S-GWR-GFP and 

pBASTA-GWR-GFP. The Svn-specific promoter pPzIPT1 was PCR amplified with 

primers CYTPromHindIII (5’-AGTAAGCTTGCTGCAGAAAAATTAACCAAAT-3’) 

and CYTProm3Kpn (5’-TAAGGTACCCCGCTCGCTCAGTGAGTTACTGT-3’) and 

cloned into pBASTA-35S-GWR-GFP and pBASTA-35S-GWR at the HindIII and SalI 

sites to replace the 35S promoter, resulting in pBASTA-pPzIPT1-GWR-GFP and 

pBASTA-pPzIPT1-GWR, respectively.  

To investigate the subcellularlocalization of PzIPT1 protein, the coding region of 

PzIPT1 was amplified by primers IPTBPB1 (5’-AAAAAGCAGGCTATGGCTAC 
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TGACCGTCAAGTGAC-3’) and PzIPT1PB2 (5’-AGAAAGCTGGGTCAAGAA 

AAGCCTTCACGGTATCA-3’) and cloned into pBASTA-pPzIPT1-GWR-GFP to obtain 

expression construct pBASTA-pPzIPT1-PzIPT1-GFP by in vitro DNA recombination 

with the help of Invitrogen Gateway technology. 

To rescue the mutant phenotype of atipt357, promoter of Arabidopsis AtIPT3 and 

the coding region of PzIPT1 were fused by PCR with primers Pipt3PB1g (5’- 

AAAAAGCAGGCTTTTGCCAAGAGTTCAAGCGAAC-3’), PzIPT1Pipt3-R (5’- 

TCACTTGACGGTCAGTAGCCATGATGAAACGCTTTGCAATATAAA-3’), 

Pipt3PzIPT1-F (5’-TTTATATTGCAAAGCGTTTCATCATGGCTACTG ACCGTCAA 

GTGA-) and PzIPT1PB2, and the resulting fusion product pAtIPT3::PzIPT1 was cloned 

into pBASTA-GWR-GFP with the help of Gateway technology to obtain expression 

construct pBASTA-pAtIPT3::PzIPT1-GFP. 

RT-PCR was performed to amplify Arabidopsis AtCKX1 coding sequence using 

primers ATCKX1PB1 (5’-AAAAAGCAGGCTATGGGATTGACCTCATCCTTACG-3’) 

and ATCKXPB2 (5’-AGAAAGCTGGGTTTATACAGTTCTAGGTTTCGGCAGT-3’). 

The amplified AtCKX1 coding sequence was cloned into pBASTA-pPzIPT1-GWR to 

obtain expression construct pBASTA-pPzIPT1-AtCKX1. 

The reporter gene GFP was PCR amplified from pBIN-m-gfp5-ER and inserted 

into pBASTA at the XbaI and SacI sites, resulting in vector pBASTA-GFP. To clone the 

promoter of PzIPT1, an 1129 bp PCR fragment containing 63 bp 5’ UTR cDNA 

sequence of PzIPT1 was inserted into pBASTA-GFP at the HindIII and SalI sites to make 

pBASTA-pPzIPT1-GFP. The coding region of Timer (pTimer, Clontech) was cloned into 

sites XbaI and NotI of pBluescript II SK(+), resulting in pSK-Timer. Then pSK-Timer 
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was digested with XbaI and SacI to transfer the Timer sequence into pBASTA-pPzIPT1-

GFP to replace the GFP reporter gene. The resulting construct was named pBASTA-

pPzIPT1::Timer. 

RNA isolation 

Ten pollinated and unpollinated ovules of Plumbago were sampled each time 

point at 5HAP, 7HAP, 8HAP, 9HAP, 10HAP, 12HAP, 24HAP, and 48HAP for RNA 

extraction. Pooled samples from 10-15 of pPzIPT1::AtCKX1 transgenic Arabidopsis 

plants were collected for rosette leaf, cauline leaf, and flower samples. All tissues were 

frozen immediately in liquid nitrogen and stored at -80ºC until used.  Total RNA was 

isolated from 200 mg tissue powder using the RNeasy Plant Mini Kit (Qiagen) according 

to the manufacturer’s instructions.  

RT-PCR  

Semi-quantitative reverse transcription PCR (RT-PCR) analysis was carried out using the 

SuperScript TM One-Step RT-PCR with Platinum Taq Kit (Invitrogen). Prior to RT-PCR 

reaction, RNA samples were treated using the TURBO DNA-free Kit (Ambion) to 

remove contaminating DNA. For each RNA sample, 0.5µg RNA template was used in 

each reaction (25 µl). The primers used in pPzIPT1::AtCKX1 transgenic plants are: 

At2g41510_For (5’-TTGACCTCATCCTTACGGTTCC-3’) and At2g41510_Rev (5’-

CACCACCTGAGACATCAACA-3’). Arabidopsis β-Tubulin8 used as internal control 

and primer pair of β-Tubulin8_F (5’-CGTGGATCACAGCAATACAGAGCC-3’) and β-

Tubulin8_R (5’-CCTCCTGCACTTCCACTTCGTCTTC-3’) were used. The following 

program was used for all RT-PCR reactions: 50ºC for 15 min (for cDNA synthesis), 94ºC 

for 5 min followed by 25 or 28 cycles of 15 seconds at 94ºC, 30 seconds at 55ºC, and 45 
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seconds at 72ºC. The RT-PCR products were visualized in 1% agarose gels under UV 

light.  

Preparation of whole-mount cleared ovules 

Cleared pistils of pPzIPT1::AtCKX1 transgenic Arabidopsis plants at different 

developmental stages were prepared as described by Liu 1998 (Liu and Meinke, 1998) 

with slight modification. Briefly, the inflorescence was fixed in ethanol-acetic acid (3:1) 

overnight at 4°C and dehydrated by two subsequent 1 h steps in 90% and 70% ethanol. 

The pistil was then cleared in Hoyers solution (100 g chloral hydrate, 5 ml glycerol in 30 

ml water) overnight at 4°C. Pistils were dissected and observed using Nikon Eclipse E 

800 widefield microscope equipped with DIC optics. Images were recorded with 

Retiga1300 image camera. 

Alexander’s staining of pollen 

Dissected anthers from fresh flower were incubated with Alexander’s staining solution 

(Alexander, 1969) under the coverslip for 15 min at room temperature. Observation was 

performed with a Nikon Eclipse E 800 widefield microscope. Images were recorded with 

Retiga1300 image camera. 

GUS staining  

Transgenic Arabidopsis plants harboring pPzIPT1-GUS were used for histochemical 

detection of GUS activity (Jefferson et al., 1987). Plant tissues were vacuum-infiltrated in 

GUS staining solution containing 100 mM NaPO4, 2 mM K3Fe(CN)6, 0.1% Triton-X-

100 and 0.5 mg ml-1 X-Gluc, incubated at 37°C overnight and de-colored  in 70% ethanol. 
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Semi-vivo culture of tobacco pollen tube 

In order to examine GUS/GFP expression in sperm cells of transgenic tobacco plants 

harboring pPzIPT1-GUS, a semi-vivo culture of tobacco pollen tube method was used to 

get viable sperm cells (Cao et al., 1996). Briefly, unopened flowers just before the 

anthesis were hand pollinated. After7-9 h of pollen tube growth in vivo, styles were 

excised and floated on the surface of the modified Brewbaker’s medium (15% sucrose + 

0.01% (W/V) boric acid + 0.03% (W/V) Ca(NO3)2, at pH 4.60) with end immersed in the 

medium. The cultured styles were kept at 27°C in growth chamber until pollen tube 

emerged. After sperm cells were formed, the styles were stained with GUS solution or 

directly observed for GFP expression using an epifluorescence microscope (Leitz Dialux 

20) equipped with GFP filters set. 

Arabidopsis pollen tube in vitro germination 

Freshly anther-dehisced flowers were used for pollen tube germination according to 

Boavida et al.  (Boavida and McCormick, 2007). Anthers were dabbed onto surface of 

semi-solid germination medium on microscope slides.  The medium contains 0.01% boric 

acid, 5mM CaCl2, 5mM KCl, 1mMMgSO4, 10% sucrose pH7.5, 1.5% low-melting 

agrose. Then, the slides were incubated in moisture chamber (square plastic plate with 

wet paper towel) at 25°C.  

DAPI staining of  pollen 

DAPI (4',6-diamidino-2-phenylindole, dihydrochloride) from Molecular Probes 

(Invitrogen) was dissolved in de-ionized water at a concentration of 10 mg/ml to make 

1000X stock. The working solution can be diluted in de-ionized water or PBS buffer. 

Apply a few drops working solution on fixed or fresh pollen and stain for 10-30 minutes. 



 143

The excitation wavelengths around 370 nm and emission peaks around 450 nm were used 

to set filter. 

Aniline Blue staining  

0.01% in 50 mM K2HPO4 decolored aniline blue solution was used to stain callose 

accumulation in the newly formed cell wall during megasporogenesis (Rodkiewicz, 

1970). The stained cell wall was visualized with the same wavelengths setting as for 

DAPI staining. 

Microscopy analysis of fluorescent protein 

GFP specimens were observed under epifluorescence microscopes (Leitz Dialux 20 and 

Nikon Eclipse E 800 widefield microscope) equipped with GFP filter setting of the 

excitation wavelengths around 488 nm and emission peaks around 515 nm. Reproductive 

organs with GFP reporter were also observed by an Olympus FluoView 500 laser 

scanning microscope with argon laser excitation at 488 nm and 505–550 emission filter 

set.  

DsRed1-E5 specimens were observed under Nikon Eclipse E 800 epifluorescence 

microscopes equipped with both GFP filter setting and DS-Red filter setting of the 

excitation wavelengths around 560 nm and emission peaks around 610 nm. The DsRed1-

E5 specimens were also observed by a Zeiss LSM 510 Meta laser scanning microscope 

with argon laser settings for GFP (excitation 488 nm / emission 500-530 nm), and DS-

Red (excitation 545 nm / emission 565-615 nm).  
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