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Abstract 

The need for spatial thinkers is evident in the growing concerns regarding the 

performance of U.S. students in mathematics and the lack of interest in spatially-driven 

fields such as science, technology, engineering, and mathematics.  Although the focus 

on spatial research has fluctuated over decades of educational reform, a platform has 

been established through the support of national organizations such as the National 

Research Council (2006) and the National Council of Teachers of Mathematics 

(NCTM, 2000).  Even with such powerful recognition, purposeful cultivation of spatial 

thinking is commonly overshadowed by other factors in the mathematics classroom, 

especially at the undergraduate level.  According to NCTM, problem solving is an 

integral part of all mathematics learning.  Further, research has linked spatial thinking to 

problem solving, indicating that spatial thinking is a necessary skill for success in 

solving problems in mathematics.  This embedded case study examined how the 

inclusion of spatial tasks influenced problem-solving performance, spatial thinking 

ability, and beliefs of undergraduate mathematics students.  Data were collected through 

quantitative instruments, such as the Purdue Spatial Visualization Test, the 

Mathematical Processing Instrument, and the Spatial Thinking Attitude Survey, as well 

as qualitative instruments, such as student-written journal responses, focus group 

interviews, and observations.  The findings of this study suggest the inclusion of spatial 

thinking tasks has an influence on students’ spatial visualization ability, problem-

solving strategies, and beliefs about the relevance of spatial thinking.  As long as 

problem solving remains a goal for learners of mathematics, spatial thinking must be 

fostered in students of mathematics as well as those who desire to teach mathematics.
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Chapter I 

INTRODUCTION 

Meaningful mathematics learning is almost always based in spatial imagery.  

While some forms of mathematical reasoning do not require imagery, the majority 

of mathematical activities involve a spatial component (Wheatley & Abshire, 

2002).  Spatial thinking, therefore, plays an integral part in mathematical ability 

(Anderson, 2000) and is an essential skill for success in the STEM fields of 

science, technology, engineering, and mathematics.  Proficiency in spatial ability 

can lead to a multitude of career choices.  A quick Internet search will reveal sites 

that list over 100 different occupations that rely on adept spatial skills, many of 

which are currently in demand or are projected to be in demand in the next decade 

(Halpern, et al., 2007).   

Spatial thinking is a skill used in everyday life, the workplace, and 

mathematics to solve problems using concepts of space, visualization, and 

reasoning.  The inclusion of spatial ability in education is crucial for the future 

disciplines of science, engineering, architecture, medicine, geography, and 

mathematics, to name a few.  With specific reference to mathematics, the research 

has shown a high correlation between spatial ability and success in life (Mohler, 

2008), spatial ability and general mathematics achievement (Brating & Pejlare, 

2008; Casey, et al., 2008; Pittalis & Christou, 2010; Unal, Jakubowski, & Corey, 

2009), spatial ability and creativity in mathematical thinking (Clements, 1998; 

Lohman, 1993), and spatial ability and problem solving (Battista, Wheatley, & 

Talsma, 1989; Edens & Potter, 2007; Hegarty & Kozhevnikov, 1999; Lean & 
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Clements, 1981; Moses, 1977; National Research Council [NRC], 2006; Tartre, 

1990; van Garderen, 2006).   

The significance of spatial reasoning in the teaching and learning of 

mathematics is reinforced by the National Council of Teachers of Mathematics 

(NCTM) standards from kindergarten through grade 12.  The geometry standard 

explicitly states that all instructional programs should enable students to “use 

visualization, spatial reasoning, and geometric modeling to solve problems” 

(NCTM, 2000, p. 41).  Alongside the geometric standard, NCTM promotes a 

problem-solving standard that highlights four outcomes through enabling students 

to “build new mathematical knowledge through problem solving; solve problems 

that arise in mathematics and other contexts; apply and adapt a variety of 

appropriate strategies to solve problems; [and] monitor and reflect on the process of 

mathematical problem solving” (p. 41).     

Additionally, the National Research Council (NRC, 2006) suggests that 

spatial reasoning is essential for progress in mathematical problem solving and 

states, “spatial thinking can be learned and it should be taught in all levels of the 

education system” (p. 3).  Traditional problem-solving strategies encourage 

students to find a pattern, make a table, work backwards, guess and check, draw a 

picture, make a list, or write a number sentence.  Wheatley and Reynolds (1999) 

stress the necessity of creating a mental image before using diagrams to help solve 

problems.  They imply that in order for a student to construct a useful illustration 

for problem solving—one of the seven strategies previously listed—they must first 

create a useful mental image.  Albert Einstein conveyed this same idea in a letter to 
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his friend, Jacques Hadamard, in 1945 when Einstein explained that his thought 

processes began with a play of visual images (Hadamard, 1996).  Van de Walle 

(2010) and Johnson (2008) agree that spatial skills are important and that students 

can develop spatial skills given appropriate design and implementation with spatial 

experiences over a period of time.  Again, the NRC (2006) agrees that spatial 

ability can be developed through activities in education, and, further, that this skill 

will develop within each student according to each individual’s proclivity.  With 

spatial thinking as one thread in the foundational fabric of mathematical reasoning 

and ability, growth in this skill can have a tremendous impact on the overall 

development of a student’s ability to mathematically problem solve. 

Foundation of the Problem 

For more than 100 years, leaders in government, industry, and education 

have decried the performance of U.S. students in mathematics.  In 1892, concerned 

with the state of secondary education, the National Education Association (NEA) 

appointed the Committee of Ten to study core courses and provide a national force 

for standardizing secondary school curriculum.  The committee examined nine 

areas of study and became concerned that the quality of education was being 

negatively affected because too much was being asked of students.  The reactions 

to the report released by the Committee of Ten were generally positive.  However, 

the impact the report had on schools was minimal, because the committee was 

appointed during a time of social unrest.  

In 1940, with World War II at the center of attention, much of the decade 

was spent educating students for functional competence rather than increasing the 
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rigor of mathematical content.  Mathematics was considered an important 

component of success in the engineering and technical support needed by the war 

effort.  The induction testing of military recruits, however, revealed that many 

youth and young adults were underprepared in mathematical content (Senk & 

Thompson, 2003).  Researchers at universities agreed and began to voice their 

concerns for the lack of higher levels of mathematics offered in school programs 

(Fauvel & Van Maanen, 2000).  The new technologies of World War II and the 

lack of qualified manpower needed to fill new positions in government, 

engineering, and other facets of industry, revealed the weaknesses of the 

Depression-era mathematics curriculum.  Six years after the war ended, a content-

based curriculum, which eventually became known as “New Math,” was catapulted 

into acceptance with the successful launching of the Soviet Union’s Sputnik, the 

first space satellite, on October 4th, 1957.  The American press treated Sputnik as a 

major humiliation and called attention to the low quality of math instruction in 

schools.  In response, U.S. legislators hurriedly passed the National Defense 

Education Act, pumping millions of dollars into science and mathematics 

education, desperate to stay competitive in the “space race” (U.S. Department of 

Education, n.d.).   

Teaching for meaning became a goal during the 1960s as psychologists 

pushed for an emphasis in “discovery learning,” a teaching method of inquiry-

based instruction founded in the idea that it is best for learners to discover facts and 

relationships for themselves.  Jerome Bruner and Jean Piaget were the lead 

psychologists in this movement.  They recommended that school curricula 
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emphasize the individual student by allowing them to problem solve and formulate 

solutions based on their own knowledge of the world around them (Coxford & 

Jones, 2002).  The 1969 moon landing meant that the U.S. had won the “space 

race,” and funding for curriculum development dwindled, as did the movements for 

“New Math” and discovery learning.  

In the early 1980s, shortly after standardized testing had become the norm, 

there was a widespread recognition that the quality of mathematics education had 

been deteriorating.  This recognition resulted in various reports and commissions 

calling for an investigation of K-12 education.  Of these reports, two stand out: An 

Agenda for Action and A Nation at Risk.  Both reports held strong opinions about 

the need for change in school curriculum.  NCTM released An Agenda for Action in 

1980, and it became a strong position statement, placing the organization at the 

head of mathematics education.  The report called for new directions in 

mathematics curriculum implementation, which would later be codified in 1989 in 

the form of national standards.  Specifically, this document emphasized the need 

for problem-solving skills, manipulatives, and the implementation of calculator use 

in the classroom. 

Today, two primary influences shape mathematics instruction in the U.S.: 

NCTM’s Principles and Standards for School Mathematics (2000), and the “No 

Child Left Behind Act” of 2001 (NCLB).  However, reform is always on the 

horizon and by the 2014-2015 school year, a new document will be added to this 

list.  Rooted in the NCTM Process Standards (2000), the Common Core State 

Standards for Mathematics (CCSSM) will be implemented across the nation and 
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were “designed to be robust and relevant to the real world, reflecting the knowledge 

and skills that our young people need for success in college and careers” (CCSSI, 

2010).  For the time being, most students today are learning under the inquiry-

based umbrella set forth by Principles and Standards, which emphasize both 

content and process standards, including problem solving and spatial reasoning.  In 

contrast, the NCLB Act, former President George W. Bush’s reauthorization of the 

Elementary and Secondary Education Act, required school districts to show 

adequate yearly progress for all students in mathematics, forcing many districts to 

focus heavily on preparation for the standardized tests used to measure this 

progress.  Currently, the NCLB Act faces reform under President Obama, and 

promises to “win the future and prepare [U.S.] students to out-educate and out-

compete the world” (U.S. Government, 2011, p. 1). Further, President Barack 

Obama indicates that his mission is to create students who are ready for college 

and, eventually, careers.  While reform to strengthen NCLB will, most likely, be 

welcomed, it is unlikely the emphasis on accountability for student performance 

will diminish.   

Whatever the relative merit of these efforts, the harsh truth is that in more 

than four decades of regular standardized testing, both international and internal 

assessments of our students’ mathematics achievement reflect little, if any, 

improvement.  Since 1959, the International Association for the Evaluation of 

Educational Achievement (IEA) has conducted numerous international comparative 

studies of the mathematics and science performance of students.  The most recent 

report, the 2007 Trends in International Mathematics and Science Study (TIMSS), 
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revealed disappointing news about the progress of U.S. students compared to other 

countries worldwide.  While increases in achievement at different grade levels have 

been attained, the mathematics achievement of U.S. students continues to lag 

behind.  The National Center for Education Statistics (2003) noted that the 

improvement is deceiving since U.S. students scored as much as 66 points below 

economic competitors like Japan.  According to the 2007 TIMSS study, benchmark 

results show that fourth- and eighth-grade students did not perform well in the 

“knowing and reasoning domains in terms of comparisons with other countries” 

(Gonzales, Williams, Roey, Kastberg, & Brenwald, 2009, p. 13).  Also, the number 

of students in both the fourth and eighth grades with advanced scores trailed behind 

students from seven other nations (Gonzales, et al., 2009).   

Alongside the TIMSS report, other studies have confirmed similar 

distressing results.  For instance, the Program for International Student Assessment 

(PISA) released highlights from its 2006 study on U.S. performance of science and 

mathematics literacy.  Among the findings, this study concluded that, on average, 

the U.S. was below the international average on the mathematical literacy scale 

(Baldi, Jin, Skemer, Green, & Herget, 2007).  Assessment results for college-bound 

students are of equal concern.  According to the report released in August 2010 by 

ACT (2010), only 24% of all high school graduates met or surpassed all four of the 

ACT College Readiness Benchmarks.  Only 43% of those tested in the graduating 

class of 2010 met the mathematics benchmark.  This benchmark is defined as the 

minimum score to indicate a 75% chance of making a “C” or higher, or a 50% 

chance of obtaining a “B” or higher in a typical college algebra course.  These 



8 

results further verify the Rasmussen, et al. (2011) concern over the percentage 

increase of college students that are in need of remedial mathematics courses.  

More specifically, the TIMSS report revealed an interesting gap in 

geometric knowledge, an area grounded in spatial ability.  The lowest performance 

from U.S. eighth grade students was in the geometric and spatial strand, where they 

scored 20 points below the international average of the 41 participating TIMSS 

countries.  However, the ranking for eighth grade students in the U.S. was near 

average in algebra, fractions, data representation, analysis, and probability.  In 

summary of the report, the U.S. overall score in mathematics was in the top third, 

but in geometry and spatial ability, the U.S. was in the bottom half for eighth grade 

students.  Within the geometry and spatial thinking strand, the number of correct 

problems is low, “…indicating that substantial room for improvement remains in 

this content area” (Sowder, Wearne, Martin, & Strutchens, 2004, p. 124).  Clearly, 

when considering both national and international education in mathematics, 

classrooms in the U.S. do not promote the kind of reasoning and problem-solving 

skills desired. 

Problem Statement 

Despite decades of reform, U.S. mathematics education faces its greatest 

challenge yet: how to overcome our nation’s lackluster performance and transform 

educational practices allowing students to develop as mathematical problem 

solvers.  In Adding It Up, authors Kilpatrick, Swafford, and Findell note that 

although U.S. students “may not fare badly when asked to perform straightforward 

computational procedures, they tend to have a limited understanding of basic 
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mathematics concepts.  They are also notably deficient in their ability to apply 

mathematical skills to solve even simple problems” (2001, p. 4).  Improving 

performance, however, is easier if there is evidence of what students know, what 

they do not know, and where progress is already being made; and one only needs to 

visit past research to help answer these questions in part.  

 Despite the pervasiveness of spatial thinking in research and 

recommendations, this skill is still largely unrecognized in the educational system 

(Casey, Andrews, Schindler, Kersh, Samper, & Copley, 2008; Clements & Sarama, 

2002; National Research Council, 2006).  In A Visual Approach to Algebra, 

Frances Van Dyke briefly discusses the advantage to teaching concepts visually or, 

at least, with a visual component.  Developmentally, students’ ability to think in 

images precedes the capacity to think in words, and understanding follows the same 

model (Van Dyke, 1998).  This natural order of learning supports activities that 

involve imagery and is, therefore, beneficial to all students. 

Spatial thinking can help students in mathematical problem solving (Lean & 

Clements, 1981; Moses, 1977; National Research Council, 2006; Sorby, 2009).  A 

majority of research literature links the concept of spatial reasoning to 

mathematical ability, and more specifically, to problem solving.  The National 

Research Council (2006) claims that spatial representations can help students in 

learning mathematics and in problem solving.  Literature in this area suggests that 

mathematics educators should, 

1) have students generate their own representations; 
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2) use spatial representations to provide multiple and, where possible, 

interlocking and complimentary representations of situations, especially 

where the phenomena are not readily available to direct sensory 

perception; 

3) use a wide variety of spatial representations; 

4) use spatial representations to convey different types of thinking (e.g. 

data about how something is structured now, how it could or should 

appear in the future or did appear in the past); and 

5) learn where—and which types of—spatial representations can be useful.    

(National Research Council, 2006, p. 108) 

Further, NCTM recommends that academic programs “enable all students to use 

visualization, spatial reasoning, and geometric modeling to solve problems” 

(NCTM, 2000, p. 41).  These same suggestions should be taken seriously at the 

university level since students of this age are also capable of honing this important 

skill (Sorby, 2009).  

 With all recommendations considered, it is unfortunate that students today 

are still not getting adequate training in spatial skills (Sommer, 1978; Tall, 1991; 

Wheatley G. , 1991), including undergraduate candidates (Mohler, 2008; Sorby, 

2009).  This lack of opportunity to develop spatial thinking could reside in 

mathematics teachers’ underdevelopment in their own spatial ability (Richardson & 

Stein, 2008).  Regardless, the outcome of insufficient training in spatial thinking 

has created a need for an increase in spatial training for mathematics students and 

educators alike (Kotze, 2007).  Luckily, a multitude of studies suggest that spatial 
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reasoning can be improved through rich, mental and hands-on experiences that are 

appropriate for the age of the student (see Mohler, 2008; Van de Walle, Karp, & 

Bay-Williams, 2010). 

 Although numerous studies exist that relate spatial ability to problem 

solving, few, if any, have been conducted with university-age students with varying 

majors in a regular undergraduate mathematics course.  Former research with 

undergraduate-age participants indicates that engineering students (Mohler & 

Miller, 2008), education majors (Battista, Wheatley, & Talsma, 1982), and students 

in the arts (Edens & Potter, 2007) are all beneficiaries from spatial instruction in 

their field of interest.  The goal of exposing university students in mathematics to 

spatial tasks is to expand their ability to utilize spatial visualization to better 

understand the world around them, and enhance their overall problem-solving 

capability.    

Purpose of the Study 

 Spatial visualization plays an important role in any productive mathematical 

endeavor; it is one of the processes by which mental representations are created.  

This qualitative research study explored the influential nature of spatial reasoning 

tasks on spatial and problem-solving abilities of undergraduate students in a low-

level mathematics course.  A combination of spatial activities were used to exercise 

this skill and ranged from drawing activities (see Van Dyke, 1998; Wheatley, 2007) 

and mental activities (Wheatley, 2007), to hands-on manipulations with three-

dimensional (3D) materials (see Johnson, 2008; Winter, Lappan, Phillips, & 
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Fitzgerald, 1986).  The tasks used varied and, when possible, correlated to the 

mathematical objective presented in class. 

Focus of the Study 

 In consideration of the international reports, a question emerges: why do 

U.S. students’ performance lag behind when compared to students’ peers in other 

countries?  The answer to this question could reside in a number of explanations.  

This study posits that U.S. students of mathematics are weak in spatial reasoning 

skills and are therefore not performing well on assessments that require 

mathematical problem solving.  NCTM recognizes spatial ability as a foundation 

for learning mathematics and recommends that a variety of spatial representations 

be made available to students when learning how to represent and solve problems 

(NCTM, 2000).  Additionally, the NRC urges for spatial thinking instruction to be 

“infused across and throughout the curriculum,” and for mathematics instruction to 

“create skills that promote a lifelong interest in spatial thinking” (2006, p. 109). 

In consideration of NCTM and NRC’s recommendations for mental 

representations, the study that follows examined how spatial ability of university 

students affects their ability to problem solve in mathematics.  The study was 

shaped by the following theoretical assumptions: 

• Students construct their learning, individually and collectively, in relation to 

their experiences (Piaget, 1970; Vygotsky, 1978). 

• Ideal learning environments include opportunities for students to construct 

meaning and engage in spatial tasks to further understanding (Bishop, 1980; 

Wheatley G. H., 1991). 
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• Spatial reasoning supports student learning and mathematical problem 

solving (Tartre, 1990; van Garderen, 2006). 

These assumptions, if implemented with careful thought and consideration for 

student learning, will foster mathematical thinking, spatial reasoning, and, 

hopefully, problem solving in the classroom. 

 In consideration of the assumptions stated, the following questions will 

guide this study: 

1. How does the integration of spatial activities in an undergraduate 

mathematics content course impact student spatial ability? 

2. In what ways does the integration of spatial reasoning tasks into an 

undergraduate mathematics content course influence problem-solving 

strategies? 

3. How does the integration of spatial reasoning tasks influence the beliefs on 

spatial thinking of pre-service elementary teachers? 

These questions were formed through the influence of the pragmatics 

worldview of experientialism, the theory that personal experience is the basis of 

knowledge.  Pragmatism derives, in part, from the work of Peirce, James, Mead 

and Dewey (Cherryholmes, 1992).  Many forms of this philosophy exist, but for 

this study, pragmatism as a worldview arises out of actions, situations, and 

consequences.  Pragmatism strives to understand consequences of actions, is 

problem-centered, pluralistic, and is real-world practice oriented (Creswell, 2009).  

This pragmatic study is concerned with what strategies work and possible solutions 

to the problems presented above (Patton, 1990).  A pragmatic researcher is less 
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concerned with methods, but rather, emphasizes the research questions and all 

approaches available to understand the problem (Creswell, 2009).   

As earlier stated, there is presently a paucity of studies that examine the 

effects of spatial reasoning on problem solving for undergraduate students.  

Pragmatist studies are not confined to a limiting research method, meaning multiple 

forms of data can be collected.  This study used an embedded case study design, 

which includes both quantitative and qualitative components, to adequately answer 

the aforementioned research questions.  The results of this research study are 

important because they may provide a partial explanation for why the performance 

of U.S. students remains far behind the performance of economic competitors, and 

it will contribute to the body of literature regarding the preparation of students of 

mathematics at the undergraduate level to problem solve through sharpening spatial 

reasoning skills. 

Organization of the Study 

 The contents of each of the five chapters describing this study are as 

follows: Chapter I consists of the introduction, foundation of the problem, problem 

statement, purpose of the study, and focus of the study of the study.  Chapter II will 

be a review of the literature as it pertains to the study.  Chapter III will include the 

methodology, which consists of the research design, definition of terms, 

assumptions and limitations, participant information, instruments, data collection 

procedures, and analysis of the data.  Chapter IV will analyze the results, while 

Chapter V will discuss the implications of the results and make suggestions for 

future research.  
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Summary 

 Spatial reasoning is a foundational component for meaningful mathematical 

learning. It is a skill used in everyday life and a necessity to succeed in any career 

under the STEM umbrella.  Academically, spatial aptitude can support general 

mathematical achievement, creativity in mathematical thinking, and mathematical 

problem solving.  NCTM (2000) and NRC (2006) both recommend that spatial 

skills be taught in the classroom to encourage successful problem solving.  This 

suggestion, among many others, is the result of decades of educational reform and 

standardized testing.  From the launching of Sputnik to the “No Child Left Behind 

Act” of 2001, America’s citizens and government have been at odds over the lack 

of progress concerning mathematics education.  Results from the most recent 

TIMSS (2007) report, PISA (2006) assessment, and ACT (2010) release only 

further the debate.  Clearly, U.S. students are not being given the opportunity to 

develop the reasoning and problem-solving skills needed to shine locally, not to 

mention in the global spotlight desired by U.S. leadership.   

 The education system in the U.S. is resilient and may overcome this 

detriment if instructional programs across the nation start pushing the inclusion of 

problem-solving skills in the classroom.  One component research has linked to 

problem solving is spatial reasoning.  Students’ ability to think in images precedes 

their ability to think in words.  Therefore, spatial thinking is essential in the 

learning of mathematics.  Unfortunately, this skill is being overlooked in U.S. 

classrooms, a mistake that educational programs cannot afford to make if they wish 

to test competitively.  The purpose of this study is to determine the influence of 
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spatial tasks on the ability of undergraduate students to problem solve and think 

spatially.  Further, students’ beliefs concerning the importance of spatial ability will 

also be addressed.  As with any qualitative study, this study has several factors 

limiting generalizations.  Even with all things considered, the aim of this study is to 

shed light on the influence of spatial thinking and its ability to help students in 

mathematics.  A review of the literature will help set the stage for which this study 

is built. 
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Chapter II 

REVIEW OF THE LITERATURE 

Of the many contributions that American psychologist Jerome Bruner made 

to the scientific study of education, perhaps none is more influential than his 

assertion that students must be challenged to learn and that educators must support 

their doing so.  In 1959, Bruner reported that students learn about geography in one 

of two ways and offered the following example on how to foster thinking: 

One group learned geography as a set of rational acts of induction—that 

cities spring up where there is water, where there are natural resources, 

where there are things to be processed and shipped.  The other group 

learned passively that there were arbitrary cities at arbitrary places by 

arbitrary bodies of water and arbitrary sources of supply.  One learned 

geography as a form of activity.  The other stored some names and positions 

as a passive form of registration. (Bruner, 1959, p. 188) 

Bruner goes on to describe the work of the first group highlighting the type of 

environment created when rich thinking is promoted: 

We hit upon the happy idea of presenting this chunk of geography not as a 

set of knowns, but as a set of unknowns.  One class was presented blank 

maps, containing only tracings of the rivers and lakes of the area as well as 

the natural resources.  They were asked as a first exercise to indicate where 

the principle cities would be located, where the railroads, and where the 

main highways.  Books and maps were not permitted and “looking up facts” 

was cast in a sinful light.  Upon completing this exercise, a class discussion 
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was begun in which children attempted to justify why the major city would 

be here, a large city there, a railroad on this line, etc. 

 The discussion was a hot one.  After an hour, and much pleading, 

permission was given to consult the rolled up wall map.  I will never forget 

one student, as he pointed his finger at the foot of lake Michigan, shouting, 

“Yipee, Chicago is at the end of the pointing-down lake.”  And another 

replying, “Well, OK: but Chicago’s no good for the rivers and it should be 

here where there is a big city (St. Louis).”  These children were thinking, 

and learning was an instrument for checking and improving the process.  To 

at least a half dozen children in the class it is not a matter of indifference 

that no big city is to be found at the junction of Lake Heron, Lake 

Michigan, and Lake Superior.  They were slightly shaken up transportation 

theorists when the facts were in. (Bruner, 1959, pp. 187-188) 

 Clearly, this group of students was engaged in meaningful thinking, spatial 

thinking, and all it took was a simple map and well-written prompts.  This example 

is just one of many that encompassed the need for spatial skills.  Hidden behind 

many of the daily tasks of everyday life, the workplace, and science, spatial 

thinking is integral to the success of problem solving, and mathematics is no 

exception. 

Teachers have a responsibility to create classrooms that meet the standards 

necessary in order to prepare students for the demands of the 21st century, which 

includes proficiency in spatial thinking.  To meet this responsibility, teachers must 

expect more than passive learning and create opportunities for students to actively 
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engage in activities that allow them to construct their own knowledge.  The 

philosophy of learning from which this study was designed is known as the 

constructivist learning theory.  The basis of the constructivist theory is the belief 

that learners construct their own understanding and meaning based on prior 

knowledge and information they acquire through experience (Noddings, 2006; 

Richardson, 2003).  Constructivism recognizes that knowing is active, it is 

individual, and that it is based on previous knowledge (Ernest, 2010).  The first 

principle of constructivism is based on the idea of construction as expressed by von 

Glassersfeld, “knowledge is not passively received but actively built up by the 

cognizing subject” (1989, p. 182).  The constructivist theory originated with 

Dewey’s pragmatism pedagogy (Reich, 2007).  In the constructivist theory, 

activities that are grounded provide individuals with the opportunity to draw upon 

prior knowledge, learn through practice, problem solve, and reflect on the learning 

process and knowledge gained (Bruner, 1960; Richardson, 2003).  

Problem-solving and decision-making activities are core components to the 

constructivist-learning model.  Both Dewey (1933) and Vygotsky (1978) contend 

that each student in a learning environment has different prior knowledge, which 

affects how each responds to new information since prior knowledge serves as a 

foundation for decisions the student employs (Bruner, 1960).  Further, in a 

constructivist approach, learners participate in activities that foster communication 

during and after the learning process (Ernest, 2010).  Such activities should provide 

the opportunity for students to collaborate and share in the process of constructing 

their ideas with others (Lunenburg, 1998).  This process allows students to develop 
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a shared understanding of the topic.  Engaging in communication after an activity 

allows students the opportunity to “develop a metawareness [sic] of their own 

understanding and learning process” (Richardson, 2003, p. 1626).  Adhering to this 

learning process allows students to extend their knowledge to other contexts 

(Boddy, Watson, & Aubusson, 2003), within mathematics and otherwise.  

The goal of this chapter is to review the research literature that is pertinent 

to the study of undergraduate mathematics students’ spatial ability, their problem-

solving skills, and their beliefs pertaining to spatial thinking.  The research 

questions, which guide this study, are: 

1. How does the integration of spatial activities in an undergraduate 

mathematics content course impact student spatial ability? 

2. In what ways does the integration of spatial reasoning tasks into an 

undergraduate mathematics content course influence problem-solving 

strategies? 

3. How does the integration of spatial reasoning tasks influence the beliefs on 

spatial thinking of pre-service elementary teachers? 

The major areas of research relevant to the present study include: 

1. Spatial Thinking: A historical background including the developmental 

research supporting spatial thinking, followed by connections regarding 

gender, aptitude, teaching, and research regarding the difficulties of 

measuring an introspective activity. 
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2. Problem Solving: Problem solving as a goal, followed by historical 

contributions, connections to teaching, teachers, and research regarding 

methods used to measure this goal. 

3. Spatial Thinking and Problem Solving: Connections between spatial 

thinking and mathematics, Krutetskii’s factors in mathematical 

performance, connections between spatial thinking and problem solving, 

and implications for teaching mathematics. 

4. Beliefs regarding spatial thinking and problem solving. 

Spatial Thinking 

The Beginnings of the Research 

 The history of spatial thinking is rich in theory and research.  While an 

exhaustive description of the history behind spatial thinking is not practical, an 

overview is appropriate to provide an introduction to the focal points of the 

research study. With implications for nearly every technical field, spatial ability has 

been an active thread of research for some time.  As early as 1880, spatial abilities 

were under study when Sir Francis Galton began recording on his systematic 

psychological inquiry into mental imagery.  Since that time, research in the field 

has continued and the chronology of spatial ability research can be broken into four 

major fields of activity (Mohler, 2008).   

 Starting with Galton, the first range of research occurred from 1880 until 

approximately 1940.  While many credit Galton (1911) with being the initiator of 

the research, it was not until the 1920s that publications emerged with a special 

focus in spatial thinking.  Contributions during this time acknowledged spatial 
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ability and, for the first time, defined the ability as separate from general 

intelligence.  More specifically, researchers classified intellect into two categories: 

the first being verbal/rational/logical and the second being visual-

spatial/nonverbal/intuitive.  Researchers still use these divisions today (Cooper, 

2000).   

The first published identification of spatial ability was a 1921 paper by 

Thorndike.  He drew a defining distinction between classes of intelligence and 

argued that standard intelligence tests only measured abstract intelligence (1921).  

Thorndike’s publication set the stage for all spatial ability research that would 

follow.  Other researchers, such as McFarlane (1925) and Kelley (1928), also 

influenced some of the better-known researchers of this time.  El Koussy (1935), a 

researcher who more clearly defined spatial thinking as the capacity “to obtain, 

manipulate, and utilize visual spatial imagery” (p. 86), compiled 28 tests of spatial 

intelligence, both his own and those of other researchers.   

Thurstone (1938) first introduced the concept of kinesthetic imagery, which 

is the visual factor of spatial intelligence.  His theory was that intelligence was 

made up of several primary mental abilities as opposed to a single, holistic factor.  

He further described three aspects of kinesthetic imagery as being able to recognize 

an object when viewed from different angles, being able to imagine the internal 

movement of parts within a configuration, and the ability to visualize one’s body 

within the object for the purpose of viewing the object from every perspective 

possible.  Thurstone recognized that the ability to think spatially was one from a set 

of abilities that was needed to be successful in mathematics (Bishop, 1980). 
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Between 1940 and 1960 there was an acknowledgement of multiple space 

factors and a surge of instruments developed to assess them.  During this time, 

researchers focused their efforts on creating measures of assessment and definitions 

for spatial areas of ability.  Which, as it turned out, was a somewhat futile effort.  

Some of these researchers denied the importance of the skill and deemed it 

unimportant for practical purposes (Mohler, 2008).  This undervaluation created 

confusion among the scholarly community resulting in contradictory names and 

definitions for spatial factors that created complications for the instruments used to 

measure them.  Nevertheless, spatial testing gained a strong foothold due to the 

large-scale assessments conducted by the U.S. military to help place and assign 

recruits (see Guilford & Zimmerman, 1947).  By the end of this period, researchers 

agreed that spatial thinking was not unitary and multiple tests were available for 

use (Eliot & Smith, 1983). 

Developmental Research 

 The goal of developmental research is to help answer questions related to 

how and when spatial ability develops.  Research in this area began around the 

1960s and continued through the 1980s.  Perhaps the most influential to this body 

of knowledge is the work of Swiss developmental psychologist, Jean Piaget.  With 

the belief that material and social conditions determined a child’s development, 

Piaget (1970) posited that the development of space begins at infancy.  Piaget and 

Inhelder (1967) are credited with much of what has been accepted with respect to 

children’s construction of conceptual space.  They defined two types of spatial 

ability, Perceptual Spatial Ability and Conceptual Spatial Ability, when a child 
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interacts with his or her environment.  Perceptual Spatial Ability is defined as the 

ability to perceive the spatial relationships between objects, while Conceptual 

Spatial Ability is the ability to build and manipulate a mental model of the 

environment (Piaget & Inhelder, 1967).  Further, Piaget and Inhelder (1967) 

suggest that children progress through three stages in the development of their 

cognitive spatial ability: preoperational, concrete, and the formal operational stage.  

 Another theory that is sequential in nature is the van Hiele model of 

geometric thought.  Developed in the 1950s by Dutch mathematics educators P.M. 

van Hiele and D. van Heile-Geldof, this theory suggested that all students progress 

through five levels of geometric reasoning, and must master one level before 

moving onto the next.  Each level describes how a student thinks and to what level 

a student is able consider geometric ideas, not necessarily how much knowledge a 

student has.  These levels, as arranged from lowest to highest, include: Level 1—

Visualization, Level 2—Analysis, Level 3—Informal Deduction, Level 4—

Deduction, and Level 5—Rigor (Van de Walle, Karp, & Bay-Williams, 2010).  The 

van Hiele Level 1, Visualization, is a nonverbal level and is of most interest to this 

study.  At this level, recognition is the primary focus as figures are recognized by 

appearance alone.  Therefore, this level is heavily dependent upon visual 

processing (Van Hiele, 1999).  As the van Hiele levels increase, there is a decrease 

in emphasis of visual processing skills and in increased emphasis on verbal 

knowledge (Clements & Battista, 1992).   

 There have been many studies that have focused on developmental issues.  

A more recent study confirmed that developmental stages concerning spatial 
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thinking do occur in children, but that they may be different from what Piaget and 

Inhelder proposed.  According to Huttenlocher, Newcombe, and Vasilyeva (1999), 

there exist more than three stages and that some children are able to think using 

some forms of advanced spatial thinking earlier than once thought.  Other studies 

have focused on spatial ability differences with respect to age or how the ability 

changes over time, and can be found in works by Battista (1990); Salthouse, 

Babcock, Mitchell, Palmon, and Skovronek (1990); Tartre (1990a); and Coleman 

and Gotch (1998).  While scientists agree that stages of development exist for 

spatial thinking and that the ability progresses with age, there is not a general 

consensus when these abilities develop.  Furthermore, research indicates that age is 

not the sole indicator of spatial aptitude.   

Differential Research 

 Is it is possible that sex and general intelligence are also factors in a child’s 

ability to reason spatially?  The research seems to indicate that a relationship does 

exist.  Since the mid-1970s, research has investigated specifics regarding spatial 

thinking.  Sex differences, modifications for high and low level learners, biological 

factors, and improvement on methods of measurement are among some of the 

branches research in spatial ability has explored.   

 When considering differential research, sex is easily the most recognized 

factor for deliberation.  Literature consistently notes the discrepancies in spatial 

performance between males and females.  Maccoby and Jacklin (1974) ignited a 

surge of interest within this area when they suggested four areas in which sex 

differences become apparent, most notably in spatial ability.  When considering 
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differences in spatial ability, three big questions usually emerge: Do sex differences 

exist?  If so, how significant are they?  What causes them—biological or 

environmental factors?  The research that was conducted in response to these 

questions is expansive.  Unfortunately, differential research in this area appears to 

be one of the most contested, resulting in an inconclusive consensus (La Pierre, 

1993).   

 There is a plethora of research that supports the existence of male 

dominated sex differences in spatial thinking (Boakes, 2009; Cochran & Wheatley, 

1982; McDaniel, 1976; Shepard & Metzler, 1971; Voyer, 1998).  Eals and 

Silverman (1994) posit that male dominance in spatial ability exists and that the 

dominance holds across “regions, classes, ethnic groups, ages and virtually every 

other conceivable demographic variable” (p. 95).  In a 1990 study, 145 geometry 

students, both male and female, were given paper-and-pencil tests that measured 

spatial visualization, logical reasoning, geometric achievement, geometric problem 

solving, use of drawing strategy, use of visualization without drawing, use of 

nonspatial strategy, correct drawings made, and discrepancy between the logical 

and spatial score (Battista).  There was no evidence of difference in logical 

reasoning among the sexes, but males scored significantly higher than females on 

spatial visualization and geometric problem solving.   

Another study, however, examined fourth and fifth-grade students’ 

drawings to determine the relationship between spatial understanding and 

mathematical problem solving (Edens & Potter, 2007).  Students were asked to 

draw a picture of themselves with their friends playing on the school playground.  
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In addition, they were asked to include their school building in the background and 

a dog in front of them in the picture.  Interestingly, the analysis of the results 

indicated that a significant difference existed between boys and girls with regard to 

spatial understanding, but in the girls’ favor.  Since this study contained a verbal 

component, one possible explanation for this unique finding is the fact that females 

are more fluent in verbal communication and, therefore, had an advantage (Kimura, 

1996).  Other studies, however, would not find these results so surprising. 

 A seminal study by Linn and Peterson (1985) examined sex differences in 

spatial abilities by focusing on three distinct areas of spatial reasoning: spatial 

perception, mental rotation, and spatial visualization.  The researchers suggested 

that females use less effective strategies than males, which influence performance 

on spatial tasks.  For example, Linn and Peterson observed that females tend to be 

more cautious, double check their answers more frequently, take more time 

answering questions, and noted that females find spatial tasks more difficult than 

males (Yilmaz, 2009).  The results of this study found that of the three areas of 

focus—spatial perception, mental rotation, and spatial visualization—there was 

little to no difference in performance on spatial perception and spatial visualization.  

A separate study confirmed that the only area where there was a significant 

difference in ability concerning sex was mental rotation (Casey et al., 2008).  These 

studies suggest that bias among sex differences may only exist in certain areas of 

spatial thinking.  

 Researchers Fennema and Sherman (1977) took this suggestion one step 

further by asserting that they “do not support either the expectations that males are 
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invariably superior in mathematics achievement and spatial visualization or the idea 

that differences between the sexes increase with age and/or mathematics difficulty” 

(p. 69).  They argued that some studies might not control participants’ backgrounds 

as they should, skewing differences among the sexes.  Similar studies supported the 

idea that the differences in spatial ability among the sexes are either very small or 

nonexistent (Fennema & Tartre, 1985; Lord & Holland, 1997).   

 Perhaps to what extent sex differences exist is of less importance than what 

can be done about the gap to help improve discrepancies in spatial understanding.  

Along with examining if spatial differences subsist in spatial ability, many 

researchers also considered if or how the differences could be modified.  Some 

research suggests that the learning gap between sexes with respect to spatial 

thinking can be reduced (Ben-Chaim, Lappan, & Houang, 1988; Fennema & 

Sherman, 1978; Spence, Yu, Feng, & Marshman, 2009; Stransky, Wilcox, & 

Dubrowski, 2010) while others furhter state that the gap can be eliminated (Lord, 

1987; Sorby, 2009).  In one study, a group of 116 first-grade children were split up 

and placed in either a control group or an experimental group and were 

administered a mental rotation test (Tzuriel & Egozi, 2010).  The experimental 

group received instruction aimed at improving representation and transformation of 

spatial information while the control group received a substitute program.  After 

three months, the two groups retested and the results revealed that initial 

differences among the sexes in spatial ability were eliminated in the experimental 

group but not the control group.  This study, along with the others stated, indicated 
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that training can improve spatial ability at any age using methods aimed at spatial 

improvement.   

 The results between sex differences and spatial ability have led researchers 

to investigate possible differences resulting from biological factors.  Studies 

searching to discover gender differences include those focused on left- or right-

handedness (Gilleta, 2007), brain activity (Jausovec & Jausovec, 2007), and the 

parietal lobe of the brain with reference to gray and white matter (Koscik, O'Leary, 

Moser, Andreasen, & Nopolous, 2009) to name a few.  In the latter, researchers 

found that structural differences in the parietal lobe of the brain significantly 

corresponded to spatial ability when measured using the Mental Rotations test.  

Women were found to have more gray matter volume in their parietal lobe, a 

disadvantage with respect to spatial ability, while men were found to have a larger 

surface area of the parietal lobe, an advantage when measuring spatial rotations.   

Psychologists and educational researchers are not the only scientists 

interested in this area of study.  There exists a need for spatial thinking in the 

workplace as it pertains to fields in science, technology, engineering and 

mathematics, also known as STEM, which is currently neglected (Lubinski, 2010; 

Wai, Lubinski, & Benbow, 2009).  Further, Wai, Lubinski, and Benbow (2009) 

noted that students who have an aptitude for spatial thinking go on to pursue STEM 

domains.  Since both men and women are pursuing careers in STEM fields, efforts 

to deveolp spatial ability should not be isolated to a specific sex.  But what about 

gifted or remedial students; should instruction in spatial reasoning differ?  
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Shepard (1988) compiled autobiographical accounts of notable figures in 

the arts, sciences, and literature who claimed to be influenced, at least in part, by 

spatial thinking in the creation of original ideas.  For example, Einstein described 

developing the concept of spatial relativity in part through experiments in his mind 

where he imagined the properties of space and time.  In a study involving sixth-

grade students, Van Garderen (2002) classified three levels of learners—students 

with a learning disorder, average achieving students, and gifted students—and 

observed the types of images students were using to solve mathematical word 

problems.  He found that differences in imagery use existed among the three 

groups, where the highest level of spatial reasoning was observed in the gifted 

group.  Regardless of which types of students prefer to use spatial reasoning, Wai, 

Lubinski, and Benbow (2009) would argue that spatial ability assessment and 

training would benefit all students and that, “basic science indicates that students 

throughout the ability range could profit from spatial ability assessments and the 

provision of educational opportunities aimed at developing spatial ability” (p. 818).  

Therefore, it is crucial that spatial training be available for all learners and a 

priority for teachers in classroom instruction. 

Spatial Thinking in the Classroom 

 Is spatial thinking really a key to science, technology, engineering, and 

mathematics—the so-called STEM disciplines?  Several studies conducted over the 

last fifty years seem to indicate just that.  One of the most robust studies, named 

Project Talent, started in the 1950s and tracked approximately 400,000 for people 

from their high school years until just recently (Wai, Lubinski, & Benbow, 2009).  
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The study found that people who tested high in spatial ability were much more 

likely to choose a career in a STEM field than those with lower scores.  Further, 

these same students tended to have higher verbal and mathematical scores as well.  

Luckily, research has shown that spatial skills are beneficial for all students, even 

those who end up serving in a non-STEM related field (Mohler, 2008; National 

Research Council, 2006).  Studies such as Project Talent support the National 

Council of Teachers of Mathematics (NCTM) demand for spatial thinking in the 

classroom (2000).  The National Research Council (NRC) recognized the 

importance of spatial ability and calls for the skill to be emphasized beyond high 

school stating, “spatial thinking can be learned, and it can and should be taught at 

all levels in the education system” (2006). 

 Even with highest recommendations, spatial thinking is still overlooked as 

an important tool in education (Casey et al., 2008; Clements & Sarama, 2011; 

Wheatley, 1991).  McArthur and Wellner (1996) acknowledged that the spatial 

ability of students is becoming poorer due to decreased focus of this skill in 

schools.  This is problematic because studies have described spatial skills, such as 

mental rotation, as a “critical mediator” with performance on the mathematics 

portion of the SAT exam—an assessment used to grant students admission into 

undergraduate programs (Casey, Nuttall, & Pezaris, 1997, p. 676).  Such results 

should not be a surprise since the recommendation to include imagery in education 

is far from new.  Svensen (1948) noted that physical and non-physical things can be 

visualized and that with the “increase in accuracy of representation and 

visualization has come the life and growth of civilized man” (p. 20).  Svensen 
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continues, “Thus I repeat that the accuracy of visualization is the yardstick of 

education.  The power of visualization has been and must continue to be developed 

as an essential factor in education” (p. 20).  Svensen’s challenge begs the question: 

Who is responsible for making sure today’s students are given the opportunity to 

sharpen their spatial thinking?  Rowe (1945) would argue that it is the “instructor’s 

job to teach [students] to visualize and to think” (p. 3).   

 Since spatial ability is malleable, spatial thinking can and should be fostered 

with the right kind of instruction.  It has been shown that spatial thinking improves 

more over the school year than over the summer months (Huttenlocher, Levine, & 

Vevea, 1998), so teachers should feel some sense of accomplishment.  In one study, 

undergraduates were given extended, semester-long practice on mental rotation 

using the game of Tetris (Terlecki, Newcombe, & Little, 2008).  Results showed 

that training effects were massive, lasted several months, and generalized to other 

spatial tasks such as constructing two- and three-dimensional images.   

However strong the case is for teaching spatial thinking, there are some 

challenges with convincing pre- and in-service teachers to prioritize 

implementation of the skill.  Because spatial thinking is not a subject, not 

something in which children are explicitly tested, it often gets lost among reading, 

mathematics, and the other content areas standardized testing demands attention in 

classroom instruction.  Another challenge is with regards to teacher training.  

Studies have found that space and shape are problematic areas for teachers (Kotze, 

2007) and, more troublesome, that “the majority of teachers have had minimal 

experiences with spatial tasks as part of their own K-12 mathematics curriculum; 
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thus, their spatial ability is underdeveloped” (Richardson & Stein, 2008, p. 107).  

Presmeg (1986) found that mathematics teachers who are visual are more inclined 

to teach holistically: 

It was found that teachers in the non-visual group were more inclined to 

adopt a lecturing style, and to teach formally, logically, rigorously, in a 

matter which could be called convergent…the visual group of teachers—

and to some extent the middle group—used many other teaching aspects 

which are summed up in one characteristic principle, as follows.  The visual 

teachers made connections between mathematics curriculum and many 

other areas of pupils’ experience, including other subjects, other parts of the 

syllabus, mathematics learned in past years, and, above all, the real world.  

Visual teachers expressed in their teaching many traits commonly 

associated with creativity …Non-visual teaching had the effect of leading 

visualizers to believe that success in mathematics depends on rote 

memorization of rules and formulae. (p. 46) 

To combat this discrepancy among teachers of mathematics, and to best prepare 

pre-service teachers for the challenges of the classroom, some researchers have 

advised that spatial ability training be a part of pre-service teacher programs (Lord 

& Holland, 1997; Unal, Jakubowski, & Corey, 2009).  Unal, Jakubowski, and 

Corey (2009) point out that, “it was identified that instructional activities that 

afford opportunities for fostering spatial abilities must be included in pre-service 

programmes so that future teachers have a mathematical foundation from which to 

teach” (p. 997). 
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When a teacher creates an environment rich in spatial thinking, students are 

more likely to learn in a meaningful way.  Explicitly, Wheatley and Abshire (2002) 

explain,  

Meaningful mathematics is usually (always?) image-based.  While there 

may be certain forms of mathematical reasoning that do not use imagery, 

most mathematical activity has a spatial component.  If school mathematics 

is only procedural, students may fail to develop their capacity to form 

necessary images of mathematical images of mathematical patterns and 

relationships. (p. 32) 

To help students use spatial reasoning to their benefit, it is important to 

understand how students develop naturally.  As stated earlier, many psychologists 

believe that students learn in stages.  Bruner (1973), in particular, believes that a 

child explores new things first through action then through imagery before, finally, 

using language to describe and comprehend the world around them.  A thorough 

description of one young lady, Elaine, going through this process can be found in a 

study conducted by Reynolds and Wheatley (1997).  Elaine, a fifth-grade student, 

was recorded and given the following task: “A videotape can record two hours on 

short play and four hours on long play.  After recording thirty minutes on short 

play, how many minutes can it record on long play?” (p. 101).  After a brief 

discussion about the meaning of  “short play” and “long play,” Elaine thought 

about the problem and began drawing.  When reviewing the video, the authors 

noted, “It was almost possible to turn off the sound and see the solution emerge 

through her drawings and hand movements” (p. 102).  Elaine was successful in 



35 

solving the stated task, along with others, by initially constructing images that 

eventually led her to a solution.  Elaine’s well-developed spatial thinking skills 

gave her mathematical power, which enabled her to construct, examine, and 

reconstruct complex relationships—a goal for all students. 

Measuring Spatial Thinking 

 Measurement of spatial abilities has an extensive history and usually takes 

on four general types of tests: performance tests, paper-and-pencil tests, verbal 

tests, and film or dynamic computer-based tests (Lohman, 1993).  How the tests are 

conducted, however, are of less importance than what area of spatial thinking they 

cover.  In general, researchers suggest three categories of spatial ability: spatial 

perception, mental rotation, and spatial visualization (Clements & Battista, 1990; 

Linn & Peterson, 1985).  Consequently, there exists an abundance of tests that can 

be used to measure each of these categories.   

Debate over the best method to assess spatial thinking is evident in the 

literature.  This should come as no surprise since measuring spatial thinking is 

much like grabbing smoke—the very act of reaching out to take hold of it disperses 

it.  When considering measuring spatial ability, one must question how three-

dimensional spatial reasoning can be tested thoroughly on paper, a two-dimensional 

medium.  Yilmaz (2009) suggested focusing on spatial factors to measure spatial 

ability while others suggest administering tests to measure different stages of 

development (Sorby, 2009).  Thus far, research has not provided a fail-proof 

method but it does offer several assessments that can be used with confidence; one 

example is the Purdue Spatial Visualization Test (PSVT).   
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The PSVT is comprised of three parts: Developments, Rotations, and 

Views.  Each test is designed to measure one of the three categories of spatial 

ability described previously.  The Developments section consists of 12 questions 

designed to measure an individual’s spatial visualization through spatial 

structuring, the Rotations section consists of 12 questions designed to measure an 

individual’s mental rotation ability, and the Views section consists of 12 questions 

designed to measure in individual’s spatial perception.  Other tests commonly used 

to measure spatial ability such as the Mental Rotations Test, the Paper Folding 

Test, the Card Rotations Test, and the Cube Comparison Test tend to only 

emphasize one of the three components of spatial ability.  Since spatial thinking is 

found in multiple contexts, each unique, and each can be used to measure multiple 

areas of interest, researchers have also developed their own spatial thinking 

instruments to satisfy individual research requirements (Ganesh, Wilhelm, & 

Sherrod, 2009). 

Attempting to understand and discuss spatial thinking, which is by 

definition intuitive and nonverbal, is a difficult task indeed.  It could be argued that 

any attempt to verbalize the processes involved in spatial activity ceases to be 

spatial thinking.  Any evidence about how the skill is manifested must be indirect 

since it is impossible to experience another’s spatial thoughts.  The resulting 

indirectness of the research in this area does set limits, but should not curtail it.  If 

spatial thinking is important to meaningful learning, then researchers must find 

ways to identify, measure, and improve the skill. 
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Problem Solving in Mathematics 

Goals of Problem Solving 

 Learning to solve problems is a principal focus in the study of mathematics.  

A primary goal of mathematics teaching and learning is to develop the ability to 

solve a wide variety of complex mathematics problems.  To many mathematically 

knowledgeable people, mathematics is synonymous with solving problems; solving 

contextual problems, creating patterns, interpreting figures, proving theorems, etc.  

On the other hand, persons who are not well versed in mathematical reasoning 

often think that any activity involving numbers is problem solving.  The sad truth is 

that most of what is happening in schools is simply procedural knowledge (Wilson, 

Fernandez, & Hadaway, 1993).   

 Problem solving is, by definition, engaging in a task for which the solution 

method is not obvious or known in advance.  In other words, problem solving is 

what you do when you do not know what to do.  NCTM (2000) believes that 

problem solving is an integral part of mathematics learning and asks that,  

Instructional programs from prekindergarten through grade 12 enable all 

students to build new mathematical knowledge through problem solving; 

solve problems that arise in mathematics and in other contexts; apply and 

adapt a variety of appropriate strategies to solve problems; [and] monitor 

and reflect on the process of mathematical problem solving. (p. 52) 

By engaging in problem solving in mathematics, students should learn to develop 

new strategies of thinking, habits of questioning and curiosity, and confidence in 

dealing with a situation that causes perturbation.  It would then seem intuitive that 
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problem-solving activities would provide opportunities for students to expand their 

strategies, not stifle them.  Unfortunately, with the expectation that the teaching and 

learning of mathematics is procedural, some attempts at incorporating problem 

solving have done more harm than good.  

Historically, the term problem solving has had more than one meaning.  

Many times, problem solving is thought of as “solving highly structured word 

problems appearing in texts” (Wheatley & Abshire, 2002, p. 19).  Attributing some 

relationship to Polya’s problem-solving strategies, some textbooks use a four-step 

method to teach problem solving.  Strategies such as Polya’s have been taken to 

imply linear thinking when problem solving, an unfortunate misinterpretation.  

Polya’s four-phase heuristic process guides students to understand the problem, 

devise a plan, carry out the plan, and then check the result (Polya, 1973).  While the 

steps of Polya’s plan are linear, it is unlikely they were written to be as rigid as 

most textbooks present them—with little room for students to think for themselves. 

Cognitive Process of Problem Solving 

It can be argued that in order to teach mathematical problem-solving skills 

effectively, an understanding between the demands of problem solving and 

cognitive processes involved should be reached.  Wu (2004) identified two 

problem-solving cognitive processes: the factor-analytic approach and the 

information processing approach.  The former approach is generally empirical in 

that the characteristics are identified through the use of exploratory factor analysis.  

Based on these factors, conclusions can be made about the nature of mathematical 

thinking.  One sub factor in this area is visual perception.  Information processing 
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approach, on the other hand, is concerned with the sequential steps of cognitive 

demand involved when solving a mathematical problem.  Polya’s problem-solving 

strategies fall into this category.  Another well-known information processing 

theorist refined Polya’s steps and defined mathematical problem solving in five 

episodes: reading, analysis, exploration, planning/implementation, and verification 

(Schoenfeld, 1983).  Polya’s and Schoenfeld’s stages of problem solving can serve 

as useful prompts for students to evaluate their own thought processes.  Without 

these processes, early problem solving can be somewhat ad hoc and disorganized.  

Approaching problem solving in a systematic way can help students acquire the 

necessary skills to move past a set of steps and onto more creative strategies.  

Implications for Teachers 

Pre- and in-service teachers need to have well-developed problem-solving 

skills so they can aid students in learning mathematics through problem solving.  

While teaching problem solving to pre-service teachers, Krulik and Rudnck (1982) 

determined that before teachers can provide effective instruction in mathematical 

problem solving, they themselves must become adequate problem solvers.  If 

teachers were more fluent problem solvers, they might be more apt to create space 

for problem-solving opportunities in their classrooms.  Unfortunately, teachers are 

often hesitant to include problem solving in their everyday routine for a number of 

reasons: problem solving is too difficult, it takes up too much class time, school 

curriculum is already too heavy a load and there is no room for additional goals, 

since problem solving is not tested it is also not important, problem solving is not 

in the textbook, and lastly, the belief that basic facts must first be mastered before 
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students can be expected to problem solve (Wilson, Fernandez, & Hadaway, 1993).  

These ideas short change the students and misrepresent the true meaning of 

learning mathematics.  

As the emphasis on problem solving in mathematics increases, the need for 

evaluation of progress in problem solving becomes more pressing.  While correct 

answers will always be desired, just knowing if an answer is correct or incorrect 

will no longer suffice.  Schoenfeld (1988) warns: 

All too often we focus on a narrow collection of well-defined tasks and train 

students to execute those tasks in a routine, if not algorithmic fashion.  Then 

we test the students on tasks that are very close to the ones they have been 

taught.  If they succeed on those problems, we and they congratulate each 

other on the fact that they have learned some powerful mathematics 

techniques.  In fact, they may be able to use such techniques mechanically 

while lacking some rudimentary thinking skills.  To allow them, and 

ourselves, to believe that they “understand” the mathematics is deceptive 

and fraudulent. (p. 30) 

Creating an atmosphere where problem solving is the norm and choosing problems 

wisely is a difficult, but necessary, part of teaching mathematics.  Further, it is the 

teacher’s job to embed opportunities for the students to use strategies of problem 

solving that will cross content areas (NCTM, 2000). 

Measuring Problem Solving 

 The art of problem solving is the heart of mathematics.  Thus, mathematics 

instruction should be designed so that students experience mathematics as problem 
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solving.  The challenge here is to choose tasks that help create this experience.  

Teachers and future educators will have several variables to juggle when selecting 

tasks, two such variables are: task variables and subject variables.  Should a task be 

chosen based on the complexity of the problem or for the relevance to the subject at 

hand?  A 1979 study considered these questions (Days, Klum, & Wheatley, 1979).  

Fifty-eight eighth-grade students were divided into concrete- and formal-

operational groups and given a series of problems. The problems ranged from 

simple to complex and the students were interviewed about their problem-solving 

strategies.  Analysis of the interviews revealed that formal-operational students 

used a greater variety of processes on the complicated problems than the simple 

problems.  Also, problem structure had a greater effect on problem difficulty for the 

formal group than in the concrete group.  In summary, the researchers concluded 

that both task variables and subject variables should be considered when teaching 

problem solving.  This is a reasonable request for educators since the first person in 

the classroom that must become a problem solver is the teacher. 

Spatial Thinking and Problem Solving 

 Effective problem solving in mathematics depends in part on spatial 

thinking.  “Meaningful mathematics learning is usually (always?) image-based.  

While there may be certain forms of mathematical reasoning that do not use 

imagery, most mathematical activity has a spatial component” (Wheatley & 

Abshire, 2002, p. 32).  While it is important to know algebraic symbols and 

productive procedures to get answers, it is also important to be able to think about a 



42 

problem conceptually.  Without the help of an illustration, consider the following 

problem: 

Imagine a large cube made up of twenty-seven smaller cubes, that is, three 

layers of nine cubes each.  Imagine further that the entire outer surface of 

the large cube is painted red and ask yourself how many of the smaller 

cubes will be red on three sides, two sides, one side, and no side at all. 

(Arnheim, 1980, p. 491) 

As long as you are thinking of the 27 cubes as a pile of blocks, attempting to count 

sides, your procedure is mostly mechanical.  Now, think of the cubes as a well-

structured centrally symmetrical structure, like a Rubik’s cube, that you can rotate 

in your mind.  With practice, this ability will allow you to make quick and accurate 

conjectures about the number of sides that are painted red.  The thinking required 

by an exercise such as this is the substance of mathematical thinking. 

Connections Between Spatial Thinking and Mathematics 

 In the example above, was it seeing or thinking that solved the problem?  

Obviously, the distinction between the two is absurd since each is dependent upon 

the other.  It is well documented that spatial ability is positively related to the 

achievement and understanding of mathematics (Battista, 1980; Brating & Pejlare, 

2008; Fennema & Sherman, 1977).  Further, spatial skills help students with sense 

making in practical, every day areas as well.  The National Council of Teachers of 

Mathematics (1989) recommends that spatial thinking be included in the 

mathematics classroom because “spatial understandings are necessary for 
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interperting, understanding, and apreciating our inherently geometric world” (p. 

48).   

 According to Clements and Battista (1992), high correlations were found 

between mathematics achievement and spatial ability at all grade levels.  In a 

different study, undergraduate pre-service teachers showed mathematical growth 

after a period of spatial instruction (Unal, Jakubowski, & Corey, 2009).  In 1985, 

Fennema and Tarte confirmed through research that a high correlation exists 

between spatial visualization and mathematics for both girls and boys. 

Creativity in mathematics is also important for meaningful understanding, 

and spatial thinking is a tool that helps students do just that (Clements, 1998).  

Empirical evidence has indicated that spatial imagery reflects general intelligence 

as well as specific abilies that are highly related to solve mathematical problems, 

especially nonroutine problems (Wheatley, Brown, & Solano, 1994).  The National 

Research Council (2006) recognizes that spatial representations can help students 

in learning and problem solving and suggests that educators: 

(1) have students generate their own spatial representations; (2) use spatial 

representations to provide multiple and, where possible, interlocking and 

complimentary representations of situations, especially when the 

phenomena are not readily available to direct sensory perception; (3) use a 

wide variety of spatial representations; (4) use spatial representations to 

convey a variety of kinds of thinking…; and (5) learn where—and which 

types of—spatial representations can be useful. (p. 108) 
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Whether working in a numerical or geometric setting, when students are engaged in 

learning mathematics meaningfully, as opposed to rote computation, it is quite 

likely some form of imagery is being used (Wheatley & Abshire, 2002).  Clearly, 

spatial thinking can be powerful.  However, using spatial representation is not a 

panacea. 

 Some resarchers do not believe spatial thinking is essential for success in 

mathematics.  Krutetskii was one example (1976).  Spatial abilities may be 

conceptualized on a continuum from concrete to abstract, implying that students 

may differ greatly when using imagery (Presmeg, 1992).  Similarly, Krutetskii’s 

research was also based on two factors.  Krutetskii (1976) identified two factors in 

school mathematical performance.  The first of these was a verbal/logical 

component of thinking which contributed to the level of mathematical ability, while 

the second was a preference for visual/nonvisual methods of problem solving 

which contributed to the form of mathematical thinking.  While Krutetskii 

acknowledged that spatial ability could play a role in mathematical reasoning, he 

concluded that success in problem solving was related to a logical reasoning 

component of mathematical ability rather than the ability to form spatial images.  

Further, Lean and Clements (1981) found that students who preferred to use 

verbal/logical means to process mathematical information outperformed those who 

preferred visual methods on a mathematical and spatial test.  It is arguable, 

however, that the methods used to measure problem-solving performance in these 

studies confounded the results (Fennema & Tartre, 1985). 
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Connections Between Spatial Thinking and Problem Solving 

 Spatial thinking can be useful in problem solving in many aspects of life.  

Everything from understanding directions and maps to shooting a basketball to 

rearranging furniture are spatial activities.  In this research study, spatial thinking 

and problem solving were the two factors being investigated with respect to 

mathematics.  As with the connection between spatial thinking and general 

mathematics, there is a profusion of research linking spatial thinking to 

mathematical problem solving (Battista, 1990; Edens & Potter, 2007; Hegarty & 

Waller, 2005; Moses, 1977; Reynolds & Wheatley, 1997).  Fisher (2005) stated,  

Visual knowledge is valuable as an aid to thinking, not only for potential 

artists, scientists, architects, and engineers but for all children.  Visualizing 

can help in the expression of information and ideas.  Visual expression 

provides a means of formulating and solving problems. (p. 16) 

A great example of this can be found in Marriott’s (1978) study of two 

comparable sixth-grade classes learning about fractions.  The children in the 

experimental class made their own sets of circular cutouts and then used the shapes 

to embody fractional concepts throughout the time they spent studying fractions.  

The other class received a thorough but traditional algorithmic treatment on how to 

work with fractions.  When the two classes were tested, no statistically significant 

differences were found from the pre- and post-test gains.  However, a qualitative 

analysis of the data showed that the children who had learned using the cutouts 

were much more likely to solve using diagrams, usually circular.  Furthermore, this 

group of children tended to think about fraction questions by creating visual 
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images, which involved circles and sectors of circles, while the other group relied 

solely on numerical algorithms.  

 The students in the experimental group were more likely to have learned 

about fractions in a way that was meaningful to them and, therefore, were more 

likely to be able to use the knowledge outside of a mathematics classroom. Battista 

(2007) explains that, “individuals reason about a situation by activiating mental 

models that enable them to simulate interactions within the situaton so that they can 

explore possible scenarios and solutions to problems” (p. 861).  In an earlier 

example, a research study was described where a little girl, named Elaine, was able 

to construct powerful mental solutions to mathematical situations (Reynolds & 

Wheatley, 1997).  Elaine was performing reasoning just as Battista (2007) 

described.  It is clear that she was able to draw from a rich background of previous 

imaging experiences to construct a context to the mathematical tasks she was given. 

 In 2006, van Garderen studied sixth-grade students with varying 

mathematical abilities.  Sixty-six students were divided into three groups based on 

ability: students with learning disabilities, average-achieving students, and gifted 

students.  These groups were assessed on measures of mathematical problem 

solving, visual imagery representation, and spatial visualization ability and 

compared.  The instrument used to measure mathematical problem solving was 

called the Mathematical Processing Instrument, the same used in this study, where 

significant and positive correlations between each of the spatial visualization 

measures and mathematical word problem-solving performance were found.  

Further, the results indicated that gifted students performed better on both of the 
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spatial measures than the other two groups.  In general, students who performed 

well on the mathematical problem-solving measure also scored well on the spatial 

measures, implying a correlation.  

 Measuring problem solving and spatial reasoning is common in 

mathematics education research and it is almost always performed in one way, by 

having students complete mathematical tasks that involve a spatial component.  

One of the better-known instruments that use this approach is the Mathematical 

Processing Instrument (MPI), created by Suwarsono (1982) to test seventh-grade 

students’ preference for using imagery on nonroutine tasks.  The instrument has 

been mildly modified and validated over the years and continues to be a reliable 

source for measuring spatial thinking and problem solving (Clements, 1981; Lean 

& Clements, 1981; Presmeg, 1986; Van Garderen, 2006).  A more in-depth review 

of this instrument will be presented in the next chapter. 

 Overall, the variety of outcomes indicated by research would seem to infer 

that the relationship between spatial thinking and mathematical problem solving is 

complex, multi-dimensional, and sometimes difficult to measure.  The variables are 

the types of spatial thinking being measured and the classification of the 

mathematics being used for problem solving.  One goal of the research in this area 

was to discover how best to teach problem solving in mathematics because we 

know that a student who has “the ability to construct and transform mental images 

leads to flexibility and power.  In doing mathematics, it is advantageous to know 

more than one way to solve a problem or complete a routine task” (Wheatley & 

Reynolds, 1999, p. 374). 
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Implications for Teachers 

 An embedded area of interest for this research study was to examine what 

relationships exist between spatial thinking and teaching.  Wheatley and Abshire’s 

(2002) book points out that students who reason using dynamic images also tend to 

be powerful mathematics students.   

When students are encouraged to develop mental images and to use those 

images in mathematics, they show suprising growth.  Even though 

individual differences in imaging among children are striking, all students 

can learn to use mental imagery effectively.  Thus, every mathematics 

teacher or parent should make improving spatial sense a priority. (p. 32) 

Lord and Holland (1997) discovered that pre-service secondary mathematics and 

science teachers were higher in spatial ability than pre-service teachers in other 

disciplines.  Research has also shown that teachers who are more confident in their 

own spatial abilities are more likely to use such strategies in their classroom 

(Battista, 1990; Presmeg, 1986).  Explicitly, Presmeg (1986) points out that 

teachers “in the visual group used and encouraged visual methods” (p. 308) while 

teachers in the other groups did not.  

 If teacher educators expect pre-service teachers to use spatial strategies in 

future mathematics classrooms, spatial thinking needs to be a part of the pre-service 

teacher’s curriculum.  Since “teachers will tend to teach in ways that are consistent 

with how they learned mathematics” (Sundberg & Goodman, 2005, p. 29), 

including spatial thinking activities in teacher education programs is essential.  

Having pre-service teachers in a mathematics class can either be a phenomenal 
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opportunity or an educational disappointment.  Sommer (1978) posits that the 

education system is partly to blame for the poor reputation with regards to spatial 

thinking by claiming, “School more than any other institution is responsible for 

downgrading visual thinking.  Most educators are not only disinterested in 

visualization, they are positively hostile to it” (p. 54).  Much needs to be done to 

reverse this trend and perhaps a good place to start would be to identify and 

influence beliefs and attitudes about spatial thinking. 

Beliefs Regarding Spatial Thinking and Problem Solving 

 In general, attitudes pertaining to mathematics are comprised of two 

elements: “feelings about mathematics and feelings about oneself as a learner of 

mathematics” (Reyes, 1980, p. 164).  Comparably, this quote could be restated as 

attitudes pertaining to spatial thinking are similar in that there are two factors: 

feelings about spatial thinking and feelings about oneself as a learner of spatial 

thinking.  These feelings about spatial thinking can be better described as beliefs.  

These convictions, either positive or negative, can alter the confidence of a person’s 

ability to think spatially and/or problem solve mathematically.  

Problem Solving 

 In 1985, Silver recognized that beliefs about mathematics should be studied 

to better understand how students learn problem solving.  National assessment data 

indicate that a staggering 83% of seventh-grade and 81% of eleventh-grade 

students agree or strongly agree with the erroneous belief that there is always a rule 

to follow when solving mathematics (Dossey, Mullis, Lindquist, & Chambers, 

1988).  Once students come to believe that mathematics is constructed of 
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memorization and sequential rule applying, it is difficult for them to respond 

meaningfully to tasks that require decision making.  Wheatley and Abshire (2002) 

explain it this way: 

Many students are not confident problem solvers because they believe good 

problem solvers know what to do and will write down the solution in an 

orderly set of steps.  Since they don’t know what “the first step” is, they do 

nothing.  Once they come to believe there is no one first step and that 

problem solving involves exploration, they are on their way to becoming 

effective problem solvers. (p. 22) 

Schoenfeld (1988, 1989) reported results from a year-long study of detailed 

observations, analysis of recorded instruction, and follow-up questionnaire data 

from two tenth-grade geometry classes.  The participants were chosen based on 

high performance on a state exam.  The students reported beliefs that they could be 

creative in mathematics and that the subject helped them think clearly, yet, they 

also claimed that mathematics was best learned through memorization.  These 

contradictory beliefs should cause concern for educators.  Unfortunately, some of 

these beliefs have stemmed directly from teachers themselves.  

 There is a common misconception that boys are better at mathematics-

related material than girls.  When formed early, gender stereotyped expectations do 

not disappear with age (Casey, Nuttall, & Pezaris, 1997).  Research has shown that, 

generally, these biases are incorrect.  An interesting study by Moe and Pazzaglia 

(2006) divided high school students into three groups, both male and female, and 

assigned the Mental Rotation Test as a pre- and post-measure.  After the first 
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assessment, the first group was told that males were better at mental rotation, the 

second group was told that women were better at mental rotation, while the third 

group was not given any gender preference before taking the second test.  The 

posttest revealed that females showed a significant decrease in the first group, an 

improvement in the second, and no difference in the third.  Taken together, the data 

suggested that beliefs in gender superiority are able to affect performance on a 

spatial test.  Armed with this knowledge, teachers should set the standard of beliefs 

in their classrooms.  Polya (1973) said it best:  

The first rule about teaching is to know what you are supposed to teach.  

The second rule of teaching is to know a little more than what you are 

supposed to teach…Yet it should not be forgotten that a teacher of 

mathematics should know some mathematics, and that the teacher wishing 

to impart the right attitude of mind toward problems to his students should 

have acquired that attitude himself. (p. 173) 

Spatial Thinking 

 Research has shown that teachers who are more confident in their own 

spatial abilities are more likely to incorporate spatial learning into their classrooms 

(Battista, 1990).  One of the many positive aspects of spatial thinking is the power 

it has in mathematics, espeically problem solving.  One easy way to incorporate 

spatial thinking into a mathematics classroom is through the use of drawing images 

or shapes to represent mathematical problems.  Clements (1998) points out that 

drawing is a type of representation that demonstrates understanding of an idea or 

concept.  Additionally, teachers need to avoid infusing students with anxiety about 
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spatial tasks (Newcombe, 2010) and believe in all learners.  Although there is an 

absence of literature associated with attitudes regarding spatial thinking, teachers’ 

beliefs about the topic are of obvious importance.  Teachers’ attitudes toward 

spatial thinking, problem solving, and students’ abilities to perform these tasks will 

impact student beliefs and motivation as well. 

 Beliefs cannot be changed easily.  When problem solving is mistaken for 

answer getting and mathematics as a set of rules, beliefs about mathematics will be 

shaped accordingly.  Many students are content with the way they view 

mathematics and their competence in learning the subject matter (Kloosterman & 

Stage, 1992).  It is not uncommon for a student to request the “steps” for a problem 

in lieu of thinking creatively to craft an autonomous solution.  This misrepresents 

the learning of mathematics.  Students need to believe that they can do time-

consuming problems and that time thinking about a problem is time well spent.  

They need to believe that word problems are important to the learning of 

mathematics, not the punishment at the end of a homework assignment.  They need 

to believe that effort and spatial thinking will help them better understand the 

beauty and power of mathematics.  Teachers can play a significant role in helping 

shape their students’ beliefs in this way. 

Summary 

 This literature review includes both theoretical perspectives and empirical 

studies supporting the following propositions, which constitute the conceptual 

framework of this study: (a) students construct their learning, individually and 

collectively, in relation to their experiences; (b) ideal learning environments 
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include opportunities for students to construct meaning and engage in spatial tasks 

to further understanding; and (c) spatial reasoning supports student learning and 

mathematical problem solving.  In response to this review, I have identified at least 

two significant gaps in the literature I hope to address in this study.   

The first concerns the influence of spatial reasoning and problem-solving 

strategies among undergraduate students in a low-level mathematics course.  

Studies have shown that students with high spatial ability scores perform better on 

questions requiring problem-solving skills (Pribyl & Bodner, 1987; Small & 

Morton, 1983).  Further, spatial ability has shown to be malleable across age 

groups including elementary age students (Edens & Potter, 2007), secondary 

students (Tartre, 1990a), and undergraduate students (Mohler & Miller, 2008).  

However, very few studies have included undergraduate students as participants 

and none have focused the research on students in low-level undergraduate 

mathematics courses.  Since all students benefit from spatial thinking, this group of 

learners may benefit greatly from spatial tasks. 

The examination of how the inclusion of spatial tasks influence pre-service 

teachers’ beliefs about spatial thinking is a second critical gap in the literature.  

Some studies have identified general beliefs about spatial thinking among pre-

service teachers, but none have considered the beliefs in the context of a low-level 

mathematics course.  This is important since the mathematics classroom is where 

pre-service teachers will, in part, form their beliefs about mathematics teaching and 

learning. 
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This study provided an opportunity to consider spatial thinking as a tool for 

problem solving and space for pre-service teachers to reconsider their beliefs about 

spatial thinking in a mathematics classroom.  Insight into these areas could provide 

support for future educational policy within the mathematics classroom and pre-

service teacher programs.  The introduction in chapter one and the review of the 

literature in this chapter establish the foundation for this study.  Using the theory of 

constructivism as a starting point, three research questions and a method for 

studying these questions was designed.  Chapter three provides a description of this 

design and the details of the research project itself. 
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Chapter III 

METHODOLOGY 

The purpose of this case study was to understand how spatial reasoning 

tasks influenced the development of spatial ability, problem-solving ability, and 

pre-service teachers’ beliefs about spatial thinking in undergraduate students of 

mathematics.  Both quantitative and qualitative data were collected as part of this 

embedded case study design.  This chapter provides a description of the 

instruments used to collect data as well as methods performed to organize and 

analyze the data.  Quantitative instruments such as the Purdue Spatial Visualization 

Test (PSVT), the Mathematical Processing Instrument (MPI), and the Spatial 

Thinking Attitude Survey (STAS), together with qualitative data garnered through 

student-written journal responses, focus group interviews, and observations were 

collected as data and analyzed to address the research questions in this study. 

An amalgamation of quantitative and qualitative instruments provided a 

means in which to evaluate the influence spatial tasks had on students of 

mathematics.  Specifically, the MPI and the PSVT were used as pre- and post-

measures of students’ problem-solving and spatial abilities, respectively.  The 

STAS survey helped to identify pre-service teachers’ perceptions of the importance 

of spatial thinking over the course of the study.  Since the MPI and PSVT share 

some overlap, collecting both quantitative and qualitative data concerning spatial 

and problem-solving ability informed the researcher through interpretation of the 

results from two different perspectives.  Analysis of the qualitative data partnered 
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with the qualitative instruments assisted in answering the guiding questions of this 

study: 

1. How does the integration of spatial activities in an undergraduate 

mathematics content course impact student spatial ability? 

2. In what ways does the integration of spatial reasoning tasks into an 

undergraduate mathematics content course influence problem-solving 

strategies? 

3. How does the integration of spatial reasoning tasks influence the beliefs of 

pre-service elementary teachers concerning spatial thinking? 

According to Clark and Creswell (2007), “case study design is sensible 

because it will allow all methods available to be used to address the research 

questions” (p. 9).  The single case studied was an undergraduate mathematics 

content course, and the units studied were the students enrolled in that course.  A 

focus group was organized and consisted of pre-service elementary teachers.  Pre- 

and post-assessments in spatial ability, pre- and post-tests in mathematical problem 

solving, journals, observations, and the focus group served as means for data 

collection.  The quantitative data and subsequent analysis provided a general 

understanding of the research questions, while the qualitative data and analysis 

offered a rich description of the statistical results by exploring the views of 

participants more in depth (Creswell, 2009; Marshall & Rossman, 2011). 

Rationale for Methodology 

 A controversy exists regarding the mixture of quantitative and qualitative 

methods of data collection, as case study allows.  Yin (2009) argues that while case 



57 

study is considered a form of qualitative research; it goes beyond that description 

“by using a mix of quantitative and qualitative evidence” (p. 19).  However, some 

quantitative and qualitative purists believe that these approaches should not be 

mixed due to the fact that the theoretical perspectives that inform each of the 

designs are in opposition.  These purists contend that multiple realities abound and 

that it is impossible for the knower and the known to be separated since the knower 

is the one source of reality (Guba, 1990).   

Morse (1991) differentiates between the paradigms by explaining that a 

quantitative precedence is guided by a post-positivistic worldview, a qualitative 

precedence is guided by a naturalistic worldview, while the combination of the two, 

either equally or unequally divided, is driven by the pragmatic worldview.  For the 

purpose of this study, pragmatism, as a philosophy, is an approach that assesses the 

truth of meaning in terms of practical application.  Further, pragmatism asserts that 

research methods should be mixed in accordance with the best opportunities for 

answering important research questions (Creswell, 2009).  Dewey was a pragmatist 

and was interested in examining practical consequences and empirical findings to 

help better understand real world phenomena.  He stated that “in order to discover 

the meaning of the idea [we must] ask for its consequences” (Dewey, 1948, p. 132).  

Since the research questions in this study were “how” questions that are best 

answered using both quantitative and qualitative data, a pragmatist approach was 

fitting.  In keeping with the nature of this study, by using the pragmatist approach, 

research became a problem-solving activity. 
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Qualitative Research 

 Case study design aligns with the methods of qualitative research.  

Qualitative inquiry – even when absolute conclusions or truths are not the result, or 

even the goal – supports literature by giving insight into the area of focus.  Stake 

(1995) characterized qualitative study as holistic, naturalistic, interpretive, and 

empathetic.  As defined by Marshall and Rossman (2011), qualitative research is 

typically “enacted in naturalistic settings, draws on multiple methods that respect 

the humanity of the participants in the study, focuses on content, is emergent and 

evolving, and is fundamentally interpretive” (p. 2).  Maxwell (2005) discussed the 

research questions most appropriate for qualitative study, a good method when 

trying to understand the process by which events and actions take place.  Denzin 

and Lincoln (2005) offer this definition: 

Qualitative research is a situated activity that locates the observer in the 

world.  It consists of a set of interpretive, material practices that make the 

world visible.  These practices transform the world…At this level, 

qualitative research involves an interpretive, naturalistic approach to the 

world.  This means that qualitative researchers study things in their natural 

settings, attempting to make sense of, or interpret, phenomena in terms of 

the meanings people bring to them. (p. 3) 

In summary, while qualitative research does adhere to guidelines to ensure 

trustworthiness, it does not attempt to separate the researcher from the research, the 

subjects from their setting, questions from context, or perception from reality.  One 

method of qualitative research that incorporates these ideals is case study—a 
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method that can opt to include quantitative measures, but is based in qualitative 

strategies (Creswell, 2009). 

Case Study 

 Qualitative research can take many forms.  Shutz, Chambless, and DeCuir 

(2004) state, “When we conceptualize research as a problem-solving activity, we 

also suggest that any method, within moral and ethical constraints, can be used” (p. 

274).  Case study, defined by Stake (1995), but cited by Creswell (2009) is,  

…a strategy of inquiry in which the researcher explores in depth a program, 

event, activity, process, or one or more individuals.  Cases are bounded by 

time and activity, and researchers collect detailed information using a 

variety of data collection procedures over a sustained period of time. (p. 13) 

In discussing the circumstances for designing a case study, Yin (2009) identified 

three conditions that make it an appropriate choice: a) the researcher’s questions are 

“how” or “why” questions, explanatory in nature, which need to be observed over 

time; b) the investigator does not control behavioral events; and c) the focus is on 

contemporary, as opposed to historical, events.   

 An embedded case study is a special style of case study design in that it 

contains a sub-unit of analysis (Yin, 2009).  An embedded case study methodology, 

like case study, lends itself a means of integrating both quantitative and qualitative 

methods into a single study.  The sub-units, usually an individual or focus group, 

allows for a more detailed level of inquiry.  For this study, the focus group helped 

determine whether or not spatial skills differ among undergraduate students based 

on their respective major areas of study and the influence these activities have on 
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pre-service teachers’ beliefs on spatial thinking.  Yin (2009) suggests an embedded 

case study approach when the boundaries between the phenomenon of interest and 

context are not clearly evident.   

 One criticism of case study is that this particular methodology provides 

little room for generalization (Yin, 2009).  However, Stake (1995) argues that 

particularization, not generalization, is the point of case study research when he 

states: “We take a particular case and come to know it well, not primarily as to how 

it is different from others but what it is, what it does” (p. 8).  Further, Yin explained 

that case studies generalize to “theoretical propositions and not to populations and 

universes” (p. 15).  The case study researcher, then, must not simply tell the story 

of the case, but rather interpret the data and develop conclusions that might be 

applicable beyond the case itself. 

An embedded case study design was determined to be most appropriate 

since this study aimed to document and explore undergraduate students’ spatial 

abilities and the influence this skill had on mathematical problem solving and 

beliefs about spatial reasoning.  According to Yin (2009), a single case is 

appropriate when it is representative or typical of the phenomenon in study.  For a 

single-case study, the objective is “to capture the circumstances and conditions of 

an everyday or commonplace situation” (p. 48).  In this study, the single case, an 

undergraduate mathematics course, was divided into subunits for analysis.  This 

subgroup was an embedded unit, called a focus group, and was used to collect in-

depth information that helped analyze data collected from the entire class.  Using 

more than one unit of analysis, as described by Yin (2009), utilizes embedded case 
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study methods and made up the design used to answer the three focus questions in 

this study. 

Definitions 

 Little consensus exists on the definition of spatial intelligence, and this is 

complicated by the use of a variety of terms to describe the phenomenon.  For 

example, “spatial reasoning,” “spatial skills,” “spatial intuition,” “spatial 

perception,” “spatial thinking,” “spatial ability,” “spatial relations,” “spatial 

orientation,” “spatial insight,” “spatial imagery,” and “spatial visualization” are all 

terms that imply an interaction with a spatial environment through images and have 

been used interchangeably throughout the literature, and this list is not exhaustive.  

To complicate matters, there are some definitions with similar descriptions but 

different names, as well as identical names for different components of spatial 

ability (Yilmaz, 2009).  For the purpose of flow in writing, “spatial reasoning,” 

“spatial ability,” “spatial skill,” and “spatial thinking” were chosen to represent the 

key areas of study in this paper.  Any variation in terms will be discussed in this 

section.  The terms that are used throughout this research are defined below.   

• Spatial Ability: the ability to effectively generate, retain, compare, retrieve, 

manipulate, and transform well-structured mental images (Lohman, 1993). 

• Spatial Reasoning: the process and ability to go beyond information given 

and reason with spatial images. 

• Spatial Skill: the mental skills involved when thinking and reasoning 

through the comparison, manipulation, and transformation of mental 

pictures (Casey et al., 2008). 
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• Spatial Thinking: thinking concerned with objects in space, their locations, 

their shapes, their relations to each other, and the paths they take when they 

move (Newcombe, 2010). 

• Problem Solving: the cognitive process directed at achieving a goal when no 

solution method is obvious to the problem solver (Meyer, 1992). 

• Pictorial Imagery: the construction of vivid and detailed visual images 

(Hegarty & Kozhevnikov, 1999). 

• Schematic Imagery: the representation of spatial relationships between 

objects and imagining spatial transformations (Hegarty & Kozhevnikov, 

1999). 

• Undergraduate or University Student: refers to students whose major course 

of study requires completion of a low-level mathematics course, namely 

Elements of Mathematics I. 

• Elements of Mathematics: a small, private, midwestern university’s Survey 

of Mathematics course designed to give the liberal arts student a 

comprehensive overview of the applications of mathematics in today’s 

society.  Topics include set theory, logic, probability, systems of 

numeration and number theory. 

Assumptions and Limitations 

 When human subjects are involved, assumptions and limitations are 

unavoidable, and this study is no exception.  One assumption is that although the 

researcher is also the instructor of the course from which participants were selected, 

responses from the participants were authentic and uninfluenced by the researcher’s 
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dual role.  One limitation is that this study only examined one mathematics course, 

which included a total of 35 students.  The dynamic of this group of students is 

predominately white, middle to upper-middle class, and enrolled in Elements of 

Mathematics.  Being a sample of convenience, the results may not be suitable for 

generalization to the general population of those taking a Survey of Mathematics 

course.  Second, due to the fact that the researcher of this study has taught the 

Elements course every semester for five years, in addition to teaching teacher-

preparation courses that focus on spatial skills, there is a possibility that the 

researcher had some preconceived ideas regarding problem solving, spatial 

thinking, and the abilities of students in both areas.  Third, this study will be time-

sensitive since it took place over the course of one semester.  The data collected 

through this study will be time-intensive, so only a subset of the participants will be 

interviewed, which might limit the generality of this set of data.  Lastly, in 

qualitative research, the researcher is also an instrument; therefore, all coding and 

interpretations of the formal and informal interviews, observations, journals, and 

student work will be through the researcher’s lens, albeit grounded in the data (Yin, 

2009). 

 The positionality of the researcher can also be viewed as a limitation.  For 

mathematics education researchers, as with all researchers, lived experiences 

impact researcher positionality.  This positionality ultimately informs the research 

questions asked, the data gathered, and the interpretations drawn from that data 

(Foote & Bartell, 2011).  To begin describing positionality, Harvey (1996) calls for 
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researchers to examine the similarities and differences between themselves and 

their research participants.   

 As will be further discussed in the third chapter of this paper, I have a dual 

role in this study since I am both teacher and researcher.  Since I was the instructor 

of the course under study, the main differences between my students and myself 

were our roles in the classroom.  Since I had the most authority in the classroom, I 

set the expectations and temperament.  Because of this, I took intentional measures 

to create a learning environment where communication was accepted and valued 

between teacher-student and student-student relationships.  The similarities 

between my students and myself were much more apparent.  I am a Caucasian 

female with an education degree.  A little more than half of the students in the 

course declared education as their field of study.  Over 70% of the participants 

were female while 88.6% of the participants identified themselves as Caucasian.  

Another significant similarity between my students and myself was our religion.  

This study took place at a faith-based institution where the vast majority shared a 

common religious belief.  This likeness in spirituality created an automatic 

camaraderie in the classroom.  

  My experience as an educator has influenced my position on spatial 

thinking and problem solving.  I am of the opinion that problem-solving ability is 

enhanced by spatial ability, but not necessarily always dependent on it.  I think 

many problems encountered in mathematics, at any level, involve a spatial 

component.  Lastly, I believe that problem solving should be a priority in every 

mathematics classroom.  Therefore, any aspect of thinking that can encourage 
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effective problem solving should be considered a worthy endeavor.  These 

positions were recognized and considered when making decisions about how to 

create and conduct the various aspects of this study.  

Trustworthiness 

 Although qualitative research is not judged using statistical tests that 

measure validity and trustworthiness, Merriam (1998) offered six basic strategies 

that enhance the validity of qualitative research: triangulation, member checking, 

long-term observation, peer examination, participatory research, and bias 

declaration.  This study included five of the six recommendations to enhance 

validity: triangulation, member checking, long-term observation, peer examination, 

and bias declaration.  Specifically, sequential triangulation was utilized as a method 

of collecting data, and this strategy allowed the findings to be corroborated 

(Creswell, 2009).  Triangulation of data was generated through the MPI and PSVT 

scores, focus group interviews, and observations; along with the researcher’s notes, 

these measures helped strengthen the study.  Patton (2002) noted the following: 

Understanding inconsistencies in findings across different kinds of data can 

be illuminative and important.  Finding such inconsistencies ought not to be 

viewed as weakening the credibility of results, but rather as offering 

opportunities for deeper insight into the relationship between inquiry 

approach and the phenomena under study. (p. 556) 

 According to Merriam (2002), member checking requires taking the 

findings and final report to the participants who validate the accuracy of the 

information. Participants in this study were given the opportunity to verify data 
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throughout the study through weekly discussions during class time.  Long-term 

observation requires repeated observations over the course of a period of time.  

Observations for this study took place twice a week, for 75 minutes each time, over 

an eight-week period or time.  Asking a third party, a colleague from the math 

department in this case, for verification of themes satisfied the peer examination 

recommendation.  The cooperating colleague was asked to verify results throughout 

the study and at the final stage. 

In addressing personal bias, the role of the researcher is a necessary 

consideration.  It has been suggested that a good qualitative researcher be familiar 

with the phenomena, interested in contextual understanding, aware of personal bias, 

and competent in gathering data (Miles & Huberman, 1994; Yin, 2009).  In 

addition to reading widely on the topics involved, tools and methods recommended 

by qualitative research were used to maintain an understanding and focus in 

examining this case study.  It should be noted that the possibility of researcher 

influence exists on the interpretations of the interviews, observations, and artifacts, 

due to the fact that the researcher is also the instructor of the course being studied 

(Creswell, 2009).   

However, there are positive aspects to being both the teacher and 

researcher.  In response to the responsibilities of the teacher as researcher, Stake 

(1995) notes that the “intention of research is to inform, to sophisticate, to assist the 

increase of competence and maturity, to socialize, and to liberate.  These also are 

the responsibilities of the teacher” (pp. 91-92).  Considered this way, the teacher as 

researcher is a natural fit.  Marshall and Rossman (2011) agree that researching 
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one’s own classroom has advantages since teachers have “relatively easy access to 

participants, reduced time expenditure for certain aspects of data collection, a 

feasible location for research, [and] the potential to build trusting relationships” (p. 

101).   

In response to the fact that the researcher is naturally a data collection 

instrument in qualitative research, a journal was kept and referred to throughout the 

study to aid in researcher reflexivity (Watt, 2007).  Thoughts about the experience 

of conducting the study as well as details about decisions made were described in 

the journal for review during the study and final analysis.  Further, an effort was 

made throughout the study to build strong teacher-student relationships so constant 

communication with the participants could be maintained to help avoid bias in the 

study.  

Procedure 

 The focus of this study was a specific case, bounded by place and time, 

using multiple sources of data as required by case study design (Stake, 1995).  The 

bounded system used for this study was a course at a small, private midwestern 

university over the course of 12 weeks, as shown in Figure 1.  The research 

questions were answered through data collected from formal instruments such as 

the MPI, the PSVT, and the STAS.  Informal measures such as group interviews, 

observations, and journals were also used to clarify any findings.  Any willing 

student, who had declared elementary education as their major, formed the focus 

group (FG). 
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Figure 1. Synopsis of the embedded mixed methods case study design. 

 To explore the research questions, pre- and post-tests were administered, as 

well as eight weeks of spatial tasks in between.  During the first phase, I, the 

researcher and instructor of the course, described the study to my students therefore 

satisfying the requirements set forth by the IRB concerning student consent (see 

Appendix A).  A colleague of mine was responsible for passing out and collecting 

these forms in my absence to ensure student privacy.  After obtaining consent, the 

participants took the MPI and the PSVT.  In addition, the focus group responded to 

the STAS questionnaire.   

During phase two, results from both the MPI and the PSVT were recorded 

and analyzed.  Once the STAS results were combined, the focus group met to 

discuss general feedback on the MPI and the PSVT.  Additionally, I asked the 

focus group members to expand on their responses to the STAS survey.  The third 

phase devoted eight weeks to spatial tasks where participants had the opportunity to 

engage in spatial activities during every class period.  These activities ranged from 

pencil and paper tasks to working with 3D materials, and were not necessarily in 

conjunction with the mathematical objective of the day.  Class time was also used 

for observations, informal interviews with all participants, and student journals.

Phase 5 Phase 4 Phase 3 Phase 2 Phase 1 

Research 
Proposal and 

Student Consent 
Pre Measures: 

MPI 
PSVT 

STAS (FG) 

Week 2 Weeks 3-10 Week 11 Week 12 

Focus group 
interview. 

Implementation 
of spatial tasks. 

Post Measures: 
MPI 

PSVT 
STAS (FG) 

Focus group 
interview. 



69 

 After eight weeks, at the start of phase four, students took the identical post-

measures of the MPI and the PSVT.  The focus group also re-took the STAS.  

Finally, during the fifth phase, I conducted interviews with the focus group after the 

data were analyzed.  Participants were asked about any significant changes in 

ability or beliefs that surfaced in the findings. 

Examples of Spatial Tasks 

During phase three, participants engaged in a number of spatial tasks.  Each 

task took between 10 and 20 minutes, depending on class discussion, and typically 

took place at the beginning of class.  These tasks were specifically chosen to 

engage students in spatial thinking by encouraging students to create, manipulate, 

rotate, transform and/or recall mental images.  It is through these activities that 

students were encouraged to think spatially before solving the task at hand.  Six 

specific tasks are highlighted below.  However, variations of these activities were 

also included and will be discussed in chapter four.  The following represent the six 

types of activities participants were asked to perform.  

Quick Draw is a student activity that encourages the transformation of self-

constructed images.  According to Wheatley (2007), “Quick Draw is designed to 

develop powerful imagery that will come in to play in both numerical and 

geometric settings and to encourage students to explore alternative ways to solve a 

problem” (p. 1).  In Quick Draw, students are shown a unique figure for three 

seconds (see Figure 2), then asked to “draw what they saw” once the figure was 

concealed (p. 5).  The image was projected using a document camera large enough 

for all students to see at one time, covered, then revealed. 
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Figure 2. Example of a Quick Draw figure. 

When needed, students were allowed a second or third three-second viewing of the 

image before engaging in whole-class discussion.  Since the image was covered up 

before the students were allowed to sketch, they were forced to reconstruct the 

figure using the mental images they had created.  Once all students completed their 

drawings, the class engaged in discussions about the image, and students were 

asked to share their strategies and consider the images created by their classmates.  

Through questions such as “What did you see?”, “How did you decide to draw your 

figure?”, “What did you draw first?”, and “How would you explain your drawing?” 

the participants discussed how they conceptualized the shape during the viewing 

stage and then shared strategies on reconstructing the image.  Typically, student 

interpretations ranged from simple two-dimensional (2D) explanations to complex 

3D comparisons to real-life objects.  Once students understood the method of this 

activity, a lack of discussion was rarely a problem.   

 Unit cubes are a powerful manipulative for spatial tasks.  They can be used 

to create 3D models of 2D representations or can be used as a stand-alone figure 

that students must consider when drawing 2D illustrations.  The fact is, “most 

students’ mathematical experience with the three-dimensional world is obtained 

from two-dimensional pictures” (Winter, Lappan, Phillips, & Fitzgerald, 1986, p. 
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3).  Therefore, it is necessary that students learn to deal with 2D representations of 

3D objects if they are expected to perform in a mathematical setting.  Further, as 

students work with unit cubes to construct 3D formations, they “use their spatial 

skills in more discriminating ways” and learn to “visually distinguish between a 

left-right or a front-back orientation in both two and three dimensions” (p. 3).  As 

stated, there are many ways to use unit cubes in a spatial task. For example, I gave 

students a map of the top, front, and right side of a figure (see Figure 3) and asked 

them to create the 3D model with the cubes.  Since the maps are not true 

representations of the top, front, or right side of a figure, the guess-and-check 

method was rarely effective, forcing students to think spatially about the figure. 

 

Figure 3. Map of three sides of a 3D figure and solution. 

Participants took pride in this activity and requested that the 3D solution not be 

revealed until they had solved it first.  This activity was also completed in reverse 

order by presenting a 3D figure, then asking the students to draw the 2D 

representations of at least three of its sides.   

 Drawing and sketching was often part of the in-class spatial activities.  In 

the “Sketch” activities, students were asked to mentally rotate a 2D image of a 3D 

figure made from unit cubes then to sketch the new figure or mentally fold the net 

of a figure and sketch the image (Serra, 1992).  See Figure 4 for an example.  Dot 

or graph paper was provided to those who preferred to use it.   
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Figure 4. Examples of a sketching activity. 

Once participants finished sketching the new image, I encouraged them to create 

the shape with unit cubes or sketch the image from different perspectives.   

Another activity with unit cubes is one that I call Complete the Cube. For 

example, I showed students Figure 5 and asked them to create the 3D shape 

required to make the image on the left a solid cube like the image on the right. 

 

Figure 5. Complete the Cube activity. 

To check students’ solutions, I created the 3D figure on the left and let students 

connect the two.   

One more way unit cubes were used to support spatial thinking was the 

“dunk” activity.  For instance, I showed a 2D representation of a 3D figure, or 

created the 3D replica of a figure, and showed it to students (see Figure 6).  The 

image or figure was then concealed and the students were asked to determine the 
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number of cubes, or sides of cubes, that would get wet if the figure were dunked 

into a bucket of water.   

 

Figure 6. The Dunk task. 

Once all students decided on an answer, they were encouraged to discuss and 

defend their answers before the image was once again revealed.  These activities 

were great for encouraging dialogue since rich imagery and dialogue result from 

activities that incorporate unit cubes (Winter, Lappan, Phillips, & Fitzgerald, 1986).  

 Graphs and tables are very important for mathematics representation and 

communication (NCTM, 2000), and they are also a great tool when working 

towards spatial thinking.  Van Dyke (1998)—who recognized that visualization 

needs to be fostered in the classroom to “help students understand mathematics 

concepts and strengthen their connection with mathematics” (p. v)—created the 

following activity.  Given Figure 7, students were informed that each flask was 

filled by a steady drip of water and that the graphs described the height of the water 

as a function of volume.  Then, students were instructed to match each flask to a 

graph.  Discussion amongst participants was a common occurrence during this 

activity and the topic of conversation was almost always spatially driven.  Once 
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students had matched each of the graphs to a flask, they were asked to defend their 

answers.   

 

Figure 7. The Flask task. 

Asking students to create a graph or sketch a flask of their own, then having 

another student produce the coordinating graph or flask, easily created an extension 

of this activity.  The participants in this study appreciated this task as they enjoyed 

creating activities that their peers helped solve.   

Participants and Setting 

 The participants who were asked to engage in the above activities consisted 

of 33 undergraduate students who were enrolled in the researcher’s Elements of 

Mathematics, Fall 2011 course.  Originally, 35 participants were expected to take 

part in the study.  However, two of the participants were absent for more than 75% 

of the course and, therefore, all data collected from these two participants was 

omitted from the study, resulting in a total of 33 active participants.  Further, due to 

the fact that quantitative and qualitative data were collected over the course of 12 

weeks, the sample size of 33 fluctuated due to excused and unexcused absences of 

the participants.   
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The Elements of Mathematics course was a low-level mathematics course 

designed for liberal arts students.  The class met twice a week for 75 minutes each.  

A comprehensive overview of relevant mathematics in today’s society was covered 

during that time.  Topics such as set theory, logic, probability, systems of 

numeration and number theory was considered.  Spatial thinking was treated as a 

support topic to these areas and was addressed on a daily basis.  The goal was to 

implement at least 15-20 minutes of intentional spatial thinking activities into each 

class meeting with additional tasks, such as journaling, completed outside of class 

time. The in-class activities were typically implemented at the beginning of class.   

The physical classroom was located in the University’s Mathematics and 

Engineering building on the top floor.  The classroom could hold up to 45 students, 

so ample space was available when students needed to maneuver location.  

Students sat at large tables that could easily accommodate individual or group 

work.  Large whiteboards surrounded the perimeter of the classroom.  In the front 

right corner of the classroom was a large screen with a projector.  A document 

camera, speakers, and laptop connections were also available for use.  The 

document camera was used for projecting images and student solutions.  When 

time allowed, students were encouraged to work out the daily spatial activity on 

one of the white boards or use the document camera to project their solution for 

whole-class discussion.  All 33 of the participants presented solutions or led class 

discussion at some point in the semester. 

Participants varied both physically and mentally.  Any student with a math 

ACT score at or above 23, not majoring in a STEM field, was required to take the 
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Elements of Mathematics course.  The participants, also students, in this study 

attended a small, private university situated in the midwestern United States.  

Although the sample was one of convenience, as described by Gall, Gall, and Borg 

(2007), Creswell (2009) and Merriam (2002) noted that in conducting qualitative 

research, the participants are purposely selected because they exhibit characteristics 

relevant for the investigation. These university students were partly chosen out of 

convenience, but they also satisfied purposeful selection because they were 

enrolled in a course that evaluated mathematical problem solving as a consideration 

of satisfactory completion.  All participants were informed about the study and only 

those who volunteered, following IRB protocol, were included in the study.  A 

demographic survey was obtained during the first two weeks of the course and 

results are documented below in Table 1. 

Table 1  

Demographic Information 

N=33  

Category   

Age  

Mean 19.61 

Standard Deviation 4.37 

Range 17-29 

Sex  

Female 75.7% 

Male 24.3% 
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Race  

Caucasian 90.9% 

African American 0.0% 

Hispanic 0.0% 

Native American 0.0% 

Asian 0.0% 

Other 9.1% 

College Major  

Education 51.5% 

Graphic Design/Art 12.1% 

English/Writing 9.1% 

Family Studies 9.1% 

Other 18.2% 

 

There were 17 purposely sampled participants who served as the focus 

group and took part in pre- and post- group interviews as well as one group 

interview during phase three. These 17 students, all of which had declared 

education as their major area of focus, were comprised of 13 females and four 

males.  Their average age was 19.12 and all 17 were Caucasian.  Of these 

participants, 10 were freshmen, three were sophomores, three were juniors, and one 

was a senior.  All members of the focus group had taken high school Algebra I, 

Geometry, and Algebra II with the exception of one participant who had taken 

Algebra I and Geometry, but not Algebra II.  The fact as to whether the participants 

had taken three credits of high school mathematics was noted, but was determined 



78 

to be of no importance for two reasons.  First, all students in the focus group had 

taken high school geometry, the course most commonly noted as being heavily 

concerned with spatial thinking.  Second, any changes to a student’s spatial and 

problem-solving ability incurred throughout the semester were assumed to be with 

respect to the participants’ initial level of spatial and problem-solving aptitude 

recorded at the beginning of the semester. 

The Elements of Mathematics course was chosen because these particular 

students did not choose to major in an academic field of STEM, which may 

complicate the results since students who traditionally pursue STEM fields are 

naturally strong in spatial thinking (Newcombe, 2010; Wai, Lubinski, & Benbow, 

2009).  The intention of the study was to examine spatial reasoning with respect to 

problem solving, which was not a direct topic of study for the course.  Apart from 

some diagrams and other visual aids, this course was void of topics that would 

specifically encourage spatial thinking.   

Instrumentation 

 Data were collected throughout the 12-week study.  There was a 

combination of qualitative and quantitative data collected with the expectation that 

both sets of data obtained would combine their strengths and result in a more 

rigorous analysis.  The participants in this study were measured by a number of 

instruments to help gather these data.  According to Creswell (2009), qualitative 

research involves multiple methods that are interactive, humanistic, and involve 

active participation.  Qualitative research is “emergent” and not “tightly 

prescribed,” which lends this method to gathering “multiple forms of data” (p. 
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175).  Three instruments were used in this study: the Purdue Spatial Visualization 

Test, the Mathematical Processing Instrument, and the Spatial Thinking Attitude 

Survey, as well as observations, journals, and a focus group.  Together, this 

collection of quantitative and qualitative data helped answer the research questions 

posed in this study. 

Purdue Spatial Visualization Test 

 The Purdue Spatial Visualization Test (PSVT), developed by Guay (1980), 

is comprised of three parts: Developments, Rotations, and Views (see Appendix B).   

This instrument was chosen because of the various aspects of spatial thinking it 

measures.  The Developments section (PSVT/DEV) measures spatial structuring, 

the Rotations section (PSVT/ROT) measures an individual’s mental rotation 

ability, while the Views section (PSVT/VIEW) measures spatial perception.  The 

three sections consist of 12 problems each.  In this study, the three areas were each 

scored separately since each test measured a unique aspect of spatial thinking.  

Once separate scores were tallied, an overall score was assigned.  To restrict 

analytical processing, Bodner and Guay (1997) used a time limit, where the 

minutes allowed were half the number of questions, or 30 seconds per question.  

Since there were a total of 36 questions, 18 minutes were given to complete the full 

PSVT.   

 Assessing the individual sections of the PSVT was completely objective 

and based on the answer key provided by the test makers.  The correct number of 

answers for each section was recorded, as well as the number of problems 

considered incomplete or not attempted.  The overall score was simply the sum of 
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the three sections making the overall percentage of correct answers for each 

participant easily accessible.  Example problems from each of the three sections are 

as follows: 

 

Figure 8. PSVT/DEV example problem. 

 

Figure 9. PSVT/ROT example problem. 
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Figure 10. PSVT/VIEW example problem. 

In the PSVT/DEV section, students were asked to choose the 3D object, 

from options A-E, which represented the development when folded.  The shaded 

portion of the development was representative of the bottom of the object.  For the 

PSVT/ROT portion, participants were asked to rotate an object in the same manner 

as the example above it and choose the correct answer from the options available.  

Finally, in the PSVT/ROT section of the test, students were asked to view the 

object from the viewpoint of the black dot and select what it would look like from 

the answers given.    

The PSVT has been found to be a reliable instrument – with Kuder-

Richardson-20 (KR-20) coefficients of internal consistency being reported as .87, 

.89, and, .92, respectively – for the Developments, Rotations, and Views section of 

the PSVT (Guay, 1980).  Permission to use this instrument was granted and can be 

found in Appendix E. 
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Mathematical Processing Instrument  

The Mathematical Processing Instrument (MPI) was developed by 

Suwarsono (1982) as an instrument to measure a student’s performance in 

mathematical problem solving in either a visual or non-visual mode (see Appendix 

C).   The MPI consists of 20 problems, either taken from previous studies (Hegarty 

& Kozhevnikov, 1999; Lean & Clements, 1981) or composed specifically for this 

study.  The uniqueness of this instrument relies on the fact that each of the word 

problems includes a spatial component, lending the solver the opportunity to use 

imagery in the solving process.  Validity for the MPI can be found in Suwarsono’s 

dissertation and later confirmed in a study led by Lean and Clements (1981) and 

again by Presmeg (1986).    

Scoring the MPI can be difficult since images play a role in the grading 

strategy.  Hegarty and Kozhevnikov (1999) assist in this task by differentiating 

between two types of imagery: pictorial imagery and schematic imagery.  Pictorial 

imagery is defined as detailed visual images, while schematic imagery is an 

individual’s representation of the spatial relationship between objects and mental 

spatial images.  Schematic imagery, not pictorial imagery, has been linked to 

spatial ability and will be considered when scoring the MPI.   

The MPI was given during phases one and four of the study and was timed 

and scored as previously described.  Three minutes for each question, or one hour 

total, was given to complete the test (Hegarty & Kozhevnikov, 1999).  The original 

MPI developed by Suwarsono included 30 word problems, but this study only used 



83 

20 questions due to time constraints.  Scores for each problem were given 

according to the following criteria: 

+2 for a correct answer and reasoning was based on schematic imagery. 

+1 for an incorrect answer and reasoning was based on schematic imagery. 

0 points for no attempt or unclear method. 

-1 for an incorrect answer and no use of schematic imagery attempted. 

-2 for a correct answer and no use of schematic imagery attempted. 

For example, the first question on the MPI asked,   

At each of the two ends of a straight path, a man planted a tree; then again 

every 5 meters along the path he planted another tree.  The length of the 

path is 15 meters.  How many trees are planted? 

Figure 11 shows a solution where schematic imagery was used and the correct 

answer was concluded.  

 

Figure 11. Example of schematic imagery. 

Clearly, this student used an image of trees and lines to help create a solution.  The 

next figure also includes trees, but in this example, the relation of the trees is either 

pictorial or unclearly related to the solution.   
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Figure 12. Example of pictorial imagery. 

Figure 12 shows a solution where the correct answer was also obtained but the 

image was pictorial, not schematic.  Even though both students gave the correct 

solution to the problem, the score given to each attempt was different based on the 

approach.  The solution in Figure 11 earned a score of +2 while a score of -2 was 

given to the example in Figure 12.  Thus, for this study, the 20 problems on the 

MPI could result in a possible individual score ranging from -40 to +40 on a purely 

analytical to visual scale.   

This study took into consideration both the success in solving the given 

problem and the manner in which the problem was represented.  To give a measure 

with which to compare the PSVT, standard grading, where correct responses were 

scored, was also performed.  Therefore, two scores were obtained for both the pre- 

and post-measure of the MPI: the analytical/visual score and the grade.  Permission 

to use this instrument could not be obtained.  However, it may not be necessary, as 

many other studies have used the original or modified version without knowable 

consent (Hegarty & Kozhevnikov, 1999; Lean & Clements, 1981; Lowrie, 2001; 

Lowrie & Kay, 2001).  
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Spatial Thinking Attitude Survey 

 The Spatial Thinking Attitude Survey (STAS), developed by Hanlon 

(2009), was a 15 question, five-point, Likert-type survey (see Appendix D).  The 

survey had two areas of focus, with one measuring beliefs regarding spatial 

thinking and the other dealing with confidence regarding the drawing of a 2D or 3D 

shape subsequent to the mental construction of such shape.  The STAS was 

developed through a sequential exploratory mixed method study where reliability 

statistics show the STAS to have a coefficient alpha of 0.877.  Focus group 

participants were asked to take this survey outside of class during phase one and 

phase four.  The 15 questions were scaled as following: 1 = strongly disagree, 2 = 

disagree, 3 = neutral, 4 = agree, and 5 = strongly agree.  The possible range for raw 

individual scores ranged from 15 to 75.  Permission to use this instrument can be 

found in Appendix F.  

Focus Group 

 According to Rea and Parker (2005), focus groups provide “semi-structured 

discussion among individuals deemed to have some knowledge of or interest in the 

issues associated with the research study” (p. 31).  Further, research has shown that 

teachers who are more confident in their own spatial abilities are more likely to 

incorporate spatial thinking into learning situations in their own classrooms 

(Battista, 1990).  The focus group for this study consisted of the 17 willing 

participants who had declared education as their major area of study.  Their 

common interest in education gave the group a sense of community and helped 

keep discussion guided (Marshall & Rossman, 2011).  To ensure a higher response 
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rate and participation, the focus group met at times chosen by the members.  This 

focus group was relevant to the study since these participants will be responsible 

for teaching spatial skills to their own future students.  The focus group participated 

in three discussions outside of class, with one discussion taking place in each of the 

phases two, three, and five.  The researcher used a guided interview method, as 

described by Marshall and Rossman (2011), to gain insight on the views and 

abilities in problem solving and spatial thinking of the participants.  See Appendix 

H for guiding questions for each of the three interviews.  This method was chosen 

since some of the questions were asked in a traditional interview style, where all 

participants were expected to answer, and others naturally became a part of group 

discussion as tangents to an individual’s answer.  

To ensure qualitative data trustworthiness, member checking and peer 

examination were utilized once the audio-recorded discussions had been 

transcribed (Merriam, 1998).  Ideas or emerging themes based on the transcripts of 

the interviews were reviewed to corroborate the data obtained from other sources 

(Patton, 2002).  In addition, the researcher was in bi-weekly contact with the focus 

group during class time where any concerns or questions were addressed verbally 

with the participants.    

Observations 

 Like interviews, observations represent a powerful tool for the qualitative 

researcher.  Bernard (2002) provided five reasons for participant observation: (1) it 

makes it possible for the researcher to gather multiple forms of data; (2) it reduces 

the problem of reactivity, which occurs when people change their behavior when 
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they know they are being studied; (c) it helps the researcher to ask questions that 

are sensible to the participants; (d) it gives the researcher an intuitive sense of the 

happenings of a situation; and (e) observation is sometimes the only way to address 

a research problem adequately (pp. 333-335).  Stake (1995) and Yin (2009) also 

advocate the use of multiple observations as a means of triangulating data.   

 For this study, bi-weekly observations were conducted, as the researcher 

was also the instructor for the course.  During phase three, the researcher 

maintained a journal of in-class notes that assisted in identifying or confirming 

themes that surfaced in other data.  Since these notes were used primarily to 

address questions and conversations between the researcher and the students, these 

data were not coded and themed.  However, the content of these notes were 

discussed with the participants to help ensure validity.  

Other Data Sources 

 Throughout the 12-week study, participants were occasionally asked to 

respond to journal questions.  These prompts can be found in Appendix G.  

Marshall and Rossman (2011) contend that artifacts such as journals are potentially 

“rich in portraying the values and beliefs of participants in the setting” (p. 160).  A 

total of 10 journal questions were given to the students throughout phases three, 

four, and five.  The number of journal questions was determined by time 

availability and by an as-needed basis as questions and topics of discussion 

surfaced throughout the study.  These prompts served as another insight into the 

participants’ beliefs and ability to think spatially.  
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Data Analysis 

 The process of data analysis involves moving into a deeper understanding 

of the data by representing the data, and interpreting the deeper meaning of the data 

(Creswell, 2009).  The quantitative data were analyzed using statistical methods by 

means of Microsoft Excel to determine whether the implementation of spatial tasks 

significantly influenced undergraduates’ spatial ability and mathematical problem 

solving.  Using a .05 significance level, a paired t-test performed on each of the 

three instruments, the MPI, PSVT, and STAS, was conducted to assess for overall 

differences in the pre- and post-results for each measure.  Also of importance, this 

test calculated descriptive statistics such as mean, variance, and standard deviation 

for the MPI and PSVT. 

 Another statistical analysis focused on finding correlations between the two 

independent variable measures, the PSVT and the MPI, since these two instruments 

both contained spatial components.  A linear correlation test was used to test for a 

relationship between the PSVT and grades from the MPI.  This test was chosen for 

several reasons: the subjects were independent, the post-PSVT and post-MPI were 

measured independently, neither instrument was a controlled measure, and a clear 

alternative to testing for linear correlation was not apparent. The final analysis 

focused on changes in responses on the STAS for those in the focus group. 

 The qualitative data were analyzed to determine whether the 

implementation of spatial tasks influenced undergraduate students’ spatial ability, 

problem solving, and beliefs about spatial thinking.  All focus group discussions 

and written responses were coded and classified using the constant comparison 
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method to create a framework for interpretation (Creswell, 2009).  To do this, 

verbal and written responses were written on note cards and laid out.  Note cards 

with similarities were grouped together.  As codes became evident a new note card 

was made, in a different color, and considered as a possible theme.  These possible 

themes were discussed with the students or posed as journal questions.  The 

ongoing analysis allowed for the reduction of data into themes and emerging 

patterns (Gall, Gall, & Borg, 2007).  At the end of the semester, all data were 

considered as a whole and final codes and themes were decided upon.  All findings 

were corroborated with a colleague who reviewed the data.  These themes will be 

described, interpreted, and presented as findings in the next chapter (Creswell, 

2009).   

Ethical Considerations 

 Following IRB protocol, all participants were informed of the study and 

given an assurance of confidentiality as part of the informed consent process 

(Appendix A).  To ensure privacy, all participants’ scores and responses were 

coded and pseudonyms were used.  Additionally, considering the researcher was 

also the instructor of the course under study, a third party, a colleague of the 

researcher, collected and stored informed consent forms in the absence of the 

researcher.  All data collected that could be used in future research, including 

transcripts, test scores, and written responses, are to be kept in a locked drawer and 

destroyed after three years. 
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Summary 

 Case study research is helpful in exploring an exemplary model to inform 

educators of effective strategies and practices implemented in the classroom.  The 

case study methodology described in this chapter was the most effective way for 

conducting a study of this nature.  Merriam (1998) stated, “A case study design is 

employed to gain an in-depth understanding of the situation and outcomes in 

context…insights gleaned from case studies can directly influence policy, practice, 

and future research” (p. 19).  To reach this level of understanding, the three 

research questions posed are best answered through case study design, which is 

used in this study.  Overall, data were collected through instruments such as the 

MPI, the PSVT, and the STAS, as well as through methods such as focus group 

discussions, classroom observations, and student-written journal responses.  All 

data, quantitative and qualitative, was analyzed to provide in-depth answers to the 

guiding questions in consideration and is presented in the next chapter.   
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Chapter IV 

RESULTS 

Both quantitative and qualitative data from undergraduate mathematics 

students were collected as part of this embedded case study for the purpose of 

understanding the influence of spatial thinking activities on spatial visualization 

abilities, problem-solving strategies, and pre-service teachers’ beliefs about spatial 

thinking.  This chapter provides an accounting of the data acquired from the 

quantitative instruments, such as the Purdue Spatial Visualization Test (PSVT), the 

Mathematical Processing Instrument (MPI), and the Spatial Thinking Attitude 

Survey (STAS), as well as qualitative data garnered through student-written journal 

responses, focus group interviews, and observations.  The pre- and post-measures, 

focus group interviews, and implementation of spatial tasks occurred over 12 

weeks and were broken up into five phases.   

During the first phase, IRB requirements were met and pre-measures of the 

MPI, the PSVT, and the STAS were given.  The focus group met for the first time 

during phase two before implementation of the spatial tasks began in phase three.  

The focus group met for the second time during phase three as well.  Post-measures 

of the MPI, the PSVT, and the STAS were given during phase four.  During the 

final stage of the study, identified as phase five, the focus group met for the third 

and final time.   

The embedded piece of this study, the focus group, was comprised of the 

subgroup of participants who had declared elementary education as their major area 

of study.  As stated, this group met on three separate occasions: once during phases 
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two, once during phase three, and once during phase five.  The purpose of the focus 

group was to give deeper insight into the participants’ experiences with the study 

and beliefs about spatial thinking.  

Implementation began with a description of the study followed by 

satisfaction of IRB requirements (Appendix A).  Pre-measures of the PSVT, the 

MPI and the STAS were also given to participants during the first phase.  Once all 

three pre-measures were scored, the focus group met to discuss initial perceptions 

about the three pre-assessments and areas of interest concerning spatial thinking 

(Appendix H).  During the following eight weeks, daily spatial thinking activities 

and reflective journal prompts were incorporated into classroom practices. 

Naturally, class discussions ensued which provided insightful classroom 

observations regarding these assignments.  The second of three focus group 

interviews also took place during this phase.  A feel for students’ beliefs 

concerning spatial thinking during the eight weeks of implementation was the focus 

of this discussion.  During the final two weeks of the study, post-measures of the 

PSVT, the MPI, and the STAS were executed and scored, as well as the final focus 

group discussion.  These data were collected and fully analyzed after grades for the 

course had been finalized and posted for the semester.  

Results from the quantitative data were used to determine if the integration 

of eight weeks of spatial activities resulted in significant differences in scores on 

the PSVT, the MPI, and individual statements on the STAS.  Analysis of the 

qualitative data, responses to journal prompts, focus group interviews, and 

observations, was used to examine the influence of the spatial tasks on students’ 
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perceptions about spatial thinking as well as pre-service elementary teachers’ 

beliefs about spatial thinking.  Moreover, this same data were used to evaluate how 

pre-service teachers’ viewed their own understanding of spatial thinking and its 

relevance in their daily lives and future classrooms.  After the quantitative data 

were scored and tested, and the qualitative data were coded and themed, the data 

were analyzed in its entirety and conclusions were drawn.  This section will present 

the findings for each of the three themes that emerged from the qualitative data 

gathered as well as results from the PSVT, the MPI, and the STAS which were 

chosen to help answer the three focus questions of this study. 

The literature review provided both theoretical perspectives and empirical 

studies supporting the following propositions, which constitute the conceptual 

framework of this study: (a) students construct their learning, individually and 

collectively, in relation to their experiences; (b) ideal learning environments 

include opportunities for students to construct meaning and engage in spatial tasks 

to further understanding; and (c) spatial reasoning supports student learning and 

mathematical problem solving.  Based on this conceptual framework, the following 

research questions guiding this study were: 

1. How does the integration of spatial activities in an undergraduate 

mathematics content course impact student spatial ability? 

2. In what ways does the integration of spatial reasoning tasks into an 

undergraduate mathematics content course influence problem-solving 

strategies? 
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3. How does the integration of spatial reasoning tasks influence the beliefs on 

spatial thinking of pre-service elementary teachers? 

This chapter is presented in three key sections to address the guiding 

research questions.  The following three sections reflect the themes found through 

qualitative analysis of focus group discussions, participants’ written responses to 

journal questions, and relevant findings from observational notes obtained from 

class.  The themes were drawn based on triangulated data that identified patterns 

and relationships.  Quantitative analysis of the PSVT, the MPI, differences in the 

pre- and post-results of these measures, and any correlation between these two 

instruments are presented as findings.  Data collected from the focus group, 

including results from the STAS and the views of the pre-service elementary 

teachers as they relate to spatial thinking and problem solving, help support these 

themes and the discussions surrounding them.  Spatial activities performed in class 

are explained and discussed.  Finally, a summary is provided to identify and clarify 

contributing factors that led to changes in spatial ability, problem-solving 

strategies, and beliefs about spatial thinking. 

Improving Problem Solving and Spatial Thinking 

Students’ Perceptions and Beliefs 

 The first theme that emerged through the collected data was that problem 

solving and spatial thinking could improve with practice.  During phase two of this 

study, just after the pre-PSVT and pre-MPI were completed, students commented 

on the difficulty of the two measures.  The in-class conversation was light-hearted 

as students compared thoughts and strategies on the two instruments.  Comments 
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such as “It’s been too long since I’ve thought about problems like on [the MPI]” 

and “I think I could do better on [the PSVT] if I could take it again now that I’ve 

thought about the shapes” surfaced in student-to-student conversations.  In 

response, I asked the focus group to discuss the difficulty of the pre-MPI and pre-

PSVT (Appendix H).  Maggie, a 20-year-old female and focus group member, 

summed up the group responses when she said, “I felt like I knew the stuff on the 

[MPI] and [PSVT], but I just couldn’t quite do it.  At least I don’t think I did.  I 

know if I were to practice solving problems like [on the MPI] and practice working 

with shapes like [on the PSVT], I would do much better.  I just need to practice.”  

Further, the second and fifth journal prompt given to students asked them to discuss 

their ability to think spatially and the importance of problem solving (Appendix G).  

Grouped together, responses from class discussions, the focus group, and journal 

responses revealed the first theme.  Below are a few examples of student responses: 

• I don’t like word problems, I never have, but I always do better with them 

after I practice awhile. 

• Mrs. Prugh, are we going to do problems like [those on the MPI and PSVT] 

this semester?  I hope so.  I think it would help me do better if I practice. 

• It’s hard to think about those types of problems [on the PSVT] because it’s 

tricky thinking.  But once I can get the hang of it, I know I can do it. 

• I think I would do better on [the MPI and PSVT] if we could work on 

similar problems in class. 

Participants were given the opportunity to practice spatial thinking 

throughout phase three of this study.  During the first class of phase three, students 
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were given the following Quick Draw image (see Figure 13) and asked to recreate 

the image once it was concealed.   

 

Figure 13. Quick Draw image. 

An interesting conversation about perspective ensued when I asked the students to 

describe their strategies when recreating the image (see Figure 14).   

 

Figure 14. Student recreation of the Quick Draw image. 

One student, a 19-year-old female named Erin, described the figure as “two books 

standing open on…maybe a table or something…with the texting facing towards 

me and the edges touching.”  Other members of the class considered this 

explanation and offered further insights.  “I see it from a different perspective,” 

followed Brett, a 19-year-old male who sat next to Erin.  He continued, “I think the 
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way you draw your picture all depends on your perspective.  I see the two books, 

but for me they are opening away from me.  I think that makes a difference.”  I 

asked the class to define perspective and how it pertained to the Quick Draw 

activity.  Erin answered, “I think of perspective as how I look at something, my 

point of view, and it can affect how I see the [Quick Draw] picture before it’s 

covered up.”  Another student, a 20-year-old female named Lexi, indicated that she 

first saw four parallelograms that reminded her of “two rooftops where I am in the 

air looking down.”  “I guess my perspective,” Lexi explained, “was from the top.  

What’s neat is how all of our pictures still look the same…or mostly the same.”  

Other explanations were offered, but the conversation about perspective and point 

of view eventually ignited the first discussion about spatial thinking.   

By the end of the first week of phase three, students had responded to the 

first and second journal prompts (see Appendix G) that asked students to describe a 

situation where spatial thinking was emphasized and describe their ability to think 

spatially.  Over half the class stated that they used spatial reasoning in some form 

on a daily basis.  With respect to ability, 13 students described themselves as 

having strong spatial ability, 13 students described themselves as having average or 

normal spatial ability, and seven students admitted to having poor spatial ability.  

The pre-PSVT revealed a discrepancy between the students’ self assessment and 

actual ability. 

Students’ Initial Abilities   

Participants in this study believed they could improve their spatial thinking.  

The PSVT, a quantitative instrument, was used in this study and found that 
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students’ spatial visualization skills did improve.  The PVST (Guay, 1980) was 

made up of three sections, the Developments section (PSVT/DEV), the Rotations 

section (PSVT/ROT), and the Views section (PSVT/VIEW), each measuring a 

different aspect of spatial ability for a total of 36 questions.  The scoring for each 

section of the PSVT consisted of a raw score between 0 and 12 before being added 

together for an overall score. Using Excel, the descriptive statistics of mean and 

range were obtained with N=33 for the pre-PSVT (see Table 2).   

Table 2   

Descriptive Statistics for the Pre-PSVT 

  Mean Range 

PSVT/DEV 5.76 1-12 

PSVT/ROT 4.73 1-12 

PSVT/VIEWS 3.79 0-12 

PSVT Total 14.27 6-36 

Note. PSVT=Purdue Spatial Visualization Test, 
DEV=the Developments section, ROT=the Rotations 
section, and VIEW=the Views section. 

Individual scores revealed that 72.7% of the participants answered over half of the 

36 questions incorrectly.  Also of interest was the number of questions not 

attempted on the pre-PSVT.  While scoring the PSVT, when an answer was 

counted incorrect, a note was made as to whether the problem had been attempted 

or not.  Of the total 1,188 questions given on the pre-PSVT, 146 (12.3%) of the 

questions were not attempted, with the majority of these questions coming from the 

Views section.  Clearly, this portion of the instrument gave students the most 

trouble. 
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 The Views portion of the PSVT was designed to measure how well 

someone could visualize a 3D object from various viewing positions (Figure 15). 

 

Figure 15. PSVT/VIEW sample problem. 

The example above shows an object sitting in the center of a glass box with a black 

dot on the upper right vertex.  The test-taker was asked to select the figure, from 

options A-E, which represented the figure when viewed from the position of the 

black dot.  The answer was E.  The focus group expressed their frustration with this 

portion of the instrument.  

 The focus group met for the first time during phase two of this study, just 

after the pre-PSVT was scored but before spatial exercises had begun.  Michelle, a 

19-year-old female who had been homeschooled during her junior high and high 

school years, was the first to bring up the Views section during the group 

discussion.  In almost a whisper, Michelle stated that, “the [PSVT/VIEW] part of 

the spatial test we took was really difficult.”  She continued, “I used to make 

sculptures in high school for art projects so I thought it would be easy for me.  I 

feel like I didn’t do very well.  Maybe it was because the shapes were so difficult.”  

Mitch, an 18-year-old male and friend of Michelle’s, followed this statement by 
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adding, “Yeah, I agree.  I think I would have done better if the test showed both 

sides of the shape.  Like, the front and the back.  Then I could have been able to see 

it better.  I felt like I didn’t know what the whole shape looked like on a lot of the 

problems.”  When I asked others in the focus group how they felt they performed 

on the PSVT (Appendix H), Katy responded that she felt she had “done okay 

except for the last problems on the [PSVT/VIEW] part.”  The Views portion of the 

PSVT was not the only instrument where students’ confidence seemingly waned.  

 Surprisingly, several members of the focus group felt as though they did not 

perform well on the pre-MPI, even though the graded scores indicated a much 

higher success rate as measured by this instrument than the initial PSVT.  The MPI, 

developed by Suwarsono (1982), is an instrument intended to measure a student’s 

performance in mathematical problem solving in either a visual or non-visual mode 

(Appendix C).  This test was primarily scored on a +2 to -2, visual to non-visual 

scale, but was also graded for correct responses for discussion purposes.  Without 

regard to how the problem was solved, the graded scores of the pre-MPI revealed 

that 75.8% of the students answered more than half of the twenty questions 

correctly, with 56% of this group scoring at or above the 70% mark. Participants 

had a much higher attempt rate on the pre-MPI as well.  An individual score of “0” 

was given to problems where no clear attempt was made.  Of the 660 total 

questions given to the class on the pre-MPI, only 11 (1.7%) of the questions were 

skipped over completely.  Since the average score of the focus group was 

comparable to the average score of the class as a whole, 64.7% to 60.6% 
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respectively, the similarity of statements overheard from both groups was not 

surprising.  

 While discussing the MPI, focus group members were quick to voice their 

beliefs that they could “improve with practice” even though they felt disdain for 

“word problems.”  Descriptive words such as “confusing,” “complicated,” and 

“hate” surfaced while the pre-MPI was the topic of discussion.  One student, a 22-

year-old male named Seth, felt like some of the questions might have been a trick.  

“Mrs. Prugh, were all of the questions [on the MPI] real?” he asked.  I asked him to 

define “real” and he explained, “Well, I think that some of the questions on [the 

MPI] were a math joke.  I tried working out every problem, and I thought I would 

be able to solve them, but when I tried to work them out there wasn’t enough 

information.  I think that maybe ‘not possible’ was the solution to some of the 

problems.”   

I gave the students a few seconds to think about Seth’s remark, but before I 

replied, the youngest student in the focus group, 17-year-old Ashlee, responded, “A 

lot of math problems have more than one solution, and [the MPI] probably had 

questions like that.  You probably knew how to solve it, but maybe you were 

solving for the wrong solution.  I know problem solving has always been hard for 

me, and [the MPI] reminded me of that.”  I seized the opportunity to briefly discuss 

solution strategies with the focus group and examples where “more than one 

solution” might be appropriate.  While I may not have convinced Seth that the MPI 

did not include trickery as a questioning strategy, I did discover that many of the 

students felt as thought there was hope when learning to problem solve. 
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 As previously noted, the first theme that emerged from the data indicated 

that participants in this study believed spatial thinking ability and problem-solving 

ability could improve with practice.  Regularly, statements such as “I knew this 

would get easier for me” and “I knew I could do this eventually” were verbally 

concluded at the end of in-class spatial activities.  The quantitative results from the 

pre- and post-measures used in this study supported this belief.  The MPI and the 

PSVT were given as measures to determine each participants’ preference for using 

spatial strategies when problem solving and spatial visualization abilities, 

respectively.  

Dependent sample t-tests were used to evaluate the changes in the pre- and 

post-measures of these instruments.  The null hypothesis, H0: no significant 

difference between the pre- and post-intervention scores, and the alternative 

hypothesis, H1: significant difference between the pre and post intervention scores 

were set with a significance level of .05.  A two-tailed test was chosen since a 

difference in the pre- and post-data was desired and an increase or decrease was not 

guaranteed.  This test was selected since the sample data consisted of matched 

pairs, or, more specifically, the students in this study.  Also, the sample was a 

simple random sample for the population, which included those who would be 

required to take the Elements of Mathematics course.  Lastly, since the sample 

population was greater than 30, normal distribution was assumed.   

Students’ Abilities and the Mathematical Processing Instrument 

The MPI was an instrument designed to measure a student’s preference for 

solving mathematical problems in a visual or non-visual manner.  Assessing this 
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instrument was challenging since there were two components to consider: a visual 

or non-visual attempt at the solution and a correct or incorrect answer.  The greatest 

challenge was with scoring the latter, the visual component.  Hegarty and 

Kozhevnikov (1999) offered great insight on how to grade visual-spatial 

representations when they differentiated between pictorial imagery and schematic 

imagery.  Schematic imagery—imagery that is engaged when an individual 

represents the spatial relationship between objects and, therefore, imagines spatial 

images —was considered when scoring this instrument.  For this study, the 20 

problems on the MPI could have resulted in a possible individual score ranging 

from -40 to +40 on a purely analytical to visual scale.  This scale was useful for 

tallying information to gain simple percentages before any other statistical analysis 

was conducted. 

Once the pre- and post-measures of the MPI were scaled, differences in the 

sets of data were immediately observed and considered.  Of the total 660 possible 

questions given to the 33 students on the MPI, 55.6% of the questions on the pre-

MPI were attempted using a spatial approach.  This percentage rose to 62.3% on 

the post-MPI.  Strategy used on individual questions was noted as well.  Number 

six on the MPI posed the following scenario: 

From a long stick of wood, a man cut 6 short sticks, each 2 feet long.  He 

then found he had a piece 1 foot long left over.  Find the length of the 

original stick. 

Questions 1, 15, and 20 each dropped 3% on the number of participants who chose 

to use spatial imagery on the pre-MPI versus the post-MPI, while question six, 
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above, dropped the most at 6.1%.  Conversely, data revealed that 14 of the 

questions had a percentage gain with respect to those who chose to use schematic 

imagery as to the problem-solving strategy.  Of the most significant, questions 2, 

14, 16, and 19 increased by 12.1% while questions 9 and 12 increased by 18.2% 

and 21.2% respectively.  The only two questions that showed no change were 

questions 7 and 10.   

 The preference for using a spatial strategy on the MPI was not the only 

initial change found in the pre- to post-results.  The grades on the MPI changed as 

well, increasing from an average grade of 60.6% on the pre-measure to 67.7% on 

the post-measure.  In addition, an astounding 90.9% of the participants were able to 

correctly answer at least half of the problems with 73.3% of these students 

performing at or above the 70% mark. With these changes in mind, a t-test was 

performed to test for a significant difference between the pre- and post-MPI results.  

 A t-test for paired samples was conducted to compare the preference of 

using a visual-spatial approach for problem solving before and after eight weeks of 

spatial tasks.  There was a significant difference in the scores for the pre-MPI 

(M=4.76, SD=14.16) and the post-MPI (M=8.76, SD=15.94) conditions; 

t(32)=2.42, p=0.02.  Therefore, the null hypothesis was rejected.  These results 

suggest that the inclusion of spatial tasks had an effect on the participants’ 

preference for using a spatial approach when solving problems on the MPI.  

Specifically, these results suggest that the inclusion of spatial activities for eight 

weeks increased the preference for using schematic drawings and, therefore, a 

spatial approach when solving mathematical problems, as well as the accuracy with 
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which spatial thinking was used.  One of the spatial activities used during this study 

that encouraged spatial thinking was building three-dimensional figures using unit 

cubes. 

Spatial Activity: Unit Cubes 

 When unit cubes were brought into class for the first time, students 

expressed their excitement to “play with blocks.”  After explaining that the 

manipulatives were called “Unit Cubes,” I passed out a set of 20 blocks to each 

student (see Figure 16).  

 

Figure 16. Unit Cubes 

First, I asked the students to describe their unit cubes.  Initially, students gave 

superficial answers such as “I have three reds,” “[the unit cubes] connect,” and 

“there are 10 different colors.”  Soon after, Eric, an 18-year-old graphic arts 

student, pointed out that all the cubes had the same dimensions.  I asked him to 

further explain.  “Well,” he demonstrated, “if you ignore the little piece that 

connects to another piece and set them side-by-side, they are all the same shape and 

are all the same height.”  I responded by asking the entire class if two figures with 

the same shape and height would always have identical dimensions.  Eric quickly 

amended his explanation, “Oh, wait, what I meant to say is that if you set them 

side-by-side you can see that they have the same height, the same width, and the 
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same…uh…depth!  Right? Like, you can see they take up the same amount of 

space.”  Others nodded with approval and, after a short discussion about side 

lengths, agreed that each cube had the same dimension and were therefore identical.  

This conversation set the stage for future dialogue when only 2D figures were 

available for discussion concerning 3D objects.  From here, I felt the class was 

ready to start the activity of building with Unit Cubes. 

 Given the following image, I asked the students to recreate the image using 

their unit cubes (see Figure 17).   

 

Figure 17. 2D image of a 3D figure. 

To no surprise, the students recreated the figure with ease.  I then asked them to 

hold their figure under the table, where they could not see it, and asked them to 

imagine seeing their figure from afar.  I specifically asked, “What would your 

figure look like if you set it on the ground, stood directly over it, and viewed it 

from above?  Would it appear different?”  About half the class nodded in 

agreement.  I asked those students to draw what their figure would look like from 

an arial view.  For the others, I asked them to physically stand over their figures, 

and then draw what they had seen.  Once everyone had completed their sketch, I 

had them hold up their drawings.  Figure 18 demonstrates the variation in student 

answers. 



107 

 

Figure 18. Student sketches of the “top” of Figure 17. 

I asked the class to look around the room and consider the drawings.  Emilia, a 19-

year-old female, was puzzled.  “Hey, why does your drawing [pointing to a 

classmate’s sketch] look like a ‘Z’?” she asked.  I replied by asking Emilia why her 

sketch looked like an “L.”  She initially thought she made a mistake.  “Did I do 

something wrong?” she asked.  By the time Emilia had asked the knee-jerk 

question and handed me her figure and drawing to critique, most of the class had 

realized the discrepancy in their drawings.  “Emilia, your drawing isn’t wrong, you 

just drew [the figure] from a different angle!  See, my picture is an ‘L,’ too!” 

realized Katy.  Handing the figure and drawing back to Emilia, I explained to the 

class that they had just sketched maps of the figure they created with unit cubes.  I 

then asked if they thought it possible for a stranger to recreate their 3D figure given 

the three different maps they had created and a set of unit cubes.  The students 

decided it was possible, so for the next class, we did just that.   

 At the beginning of class, students were again given sets of unit cubes and 

presented with the map of three sides of a figure (see Figure 19).  They were asked 

to create the figure, represented by the maps, using the cubes.   
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Figure 19. Map of three sides of a figure and solution. 

This activity was considerably more challenging, but students persisted.  After 

several successful rounds of this activity, Seth noted that he was getting better at 

creating the figures.  “I can tell I’m getting faster [at constructing the figures] 

because it used to take me a long time.  I just have to remember not to take the 

maps literally—like you said, they are just a representation.”  This activity was 

often modified by only giving maps of two sides of a figure or by completing the 

task in reverse.  For example, I would present a 2D image (see Figure 20) of a 3D 

figure and ask the students to draw the matching top, front, and side maps.   

 

Figure 20. 2D image of a 3D figure. 

The activities that involved unit cubes were always seemingly well received 

by the participants.  The focus group mentioned that they would use these activities 

with their future students.  18-year-old Alison stated that she enjoyed the unit cube 

tasks because they taught her “how to think of figures in a different way.”  She 
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believed that learning to think of figures in more than one way would be “really 

good for students since math has so many shapes in it.”  Undoubtedly, the ability to 

perceive “shapes” using multiple strategies is beneficial on instruments such as the 

PSVT.   

Students’ Abilities and the Purdue Spatial Visualization Test 

  The Purdue Spatial Visualization Test (PSVT), developed by Guay (1980), 

was comprised of three parts: Developments, Rotations, and Views (Appendix B).   

The Developments section (PSVT/DEV) measured spatial structuring, the 

Rotations section (PSVT/ROT) measured mental rotation ability, while the Views 

section (PSVT/VIEW) measured spatial perception.  Students were given 18 

minutes to complete the test and four scores were given: one for each of the three 

sections and an overall grade.  Each section had 12 problems for a total of 36 

questions.   

Initial assessment of the data revealed an increase in the test scores and a 

decrease in the number of incomplete responses.  For the PSVT/DEV section, there 

was a 27.9% increase on the number of correct responses from the pre- to post-

PSVT.  The PSVT/ROT portion showed a 33.3% increase while the PSVT/VIEW 

section increased by 60% in correct responses from the pre- to post-results.  The 

individual increases resulted in an overall increase of 38.2% on the total scores of 

the pre- versus post-PSVT.  One reason for the success was the ability of the 

students to complete the test.  As noted earlier, of the 1,188 total questions given to 

the students on the pre-measure of the PSVT, 12.3% of those questions were left 

completely blank.  On the post-measure, however, that number dropped 
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considerably to .4%, a 96.6% drop.  To evaluate whether these changes were 

significant, a t-test was used on various aspects of the data.  

Paired samples t-tests were conducted to compare the spatial abilities of 

students in three areas—Developments, Rotations, and Views—before and after 

eight weeks of spatial tasks.  A t-test was performed on each of the three pre- and 

post-results individually and subsequently on the overall scores.  A significant 

difference was found in the scores for all areas tested.  A summary of the relevant 

statistics can be found in Table 3.  

Table 3      

Paired Samples T-test Data for the PSVT   

N=33      

 M SD Range t-value p-value 

PSVT/DEV      

Pre 5.76 3.2 0-12 

Post 7.36 3.3 1-12 
3.98 0.0004* 

PSVT/ROT      

Pre 4.73 2.7 1-12 

Post 6.3 2.76 2-12 
3.9 0.0005* 

PSVT/VIEW      

Pre 3.79 3.43 0-12 

Post 6.06 3.01 1-12 
3.99 0.0004* 
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TOTAL SCORE 

Pre 14.27 6.71 6-36 

Post 19.73 7.64 7-36 
6.2 0.0000006* 

Note. PSVT=Purdue Spatial Visualization Test, DEV=the 
Developments section, ROT=the Rotations section, and VIEW=the 
Views section. 

*Significant at the p<.05 level (2-tailed).    

These results suggest that the inclusion of spatial tasks had an effect on the 

participants’ spatial ability with regard to developments, rotations, and views when 

solving problems on the PSVT.  Specifically, these results suggest that the 

inclusion of spatial activities for eight weeks increased the students’ ability to think 

spatially.  Responses from the journal questions and the focus group interview from 

phase three of the study highlighted some of the class activities that students felt 

had an impact on their ability to perform spatially.  

Spatial Activity: Mental Rotations 

The second focus group interview took place during week nine of the study 

and lasted for over two hours.  The guiding questions I had prepared (see Appendix 

H) proved to be worthwhile in that they provided entry into discussion of other 

related topics of interest for the focus group participants.  This helped create open 

dialogue in which everyone participated.  When I asked the focus group if they 

could see themselves incorporating spatial thinking activities into their future 

curriculum, every member responded in the affirmative.  Jill, an 18-year-old 

freshman, explained, “I want to use the [spatial] activities we do in class in my 

classroom because I have learned so much from them.  I think it would be good for 
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my students to be good at thinking this way so early on.”  Erin continued, “Yeah, I 

think we should all use [spatial] activities when we teach someday.  Even if we 

don’t teach math.”  Specifically, the participants mentioned two in-class activities 

they felt helped them improve their spatial thinking: rotating the Quick Draw 

figures and sketching 2D representations of 3D objects.   

The third time participants engaged in a Quick Draw task, I changed the 

rules.  Usually, students were shown an image for approximately three to five 

seconds and asked to draw the figure once it was covered.  This day in class, 

however, I instructed the students to rotate the image 90° before drawing it on 

paper, without initially drawing the original (see Figure 21).  Before the activity 

began, we discussed what a 90° rotation might look like for other objects in the 

classroom since the topic of rotations was not covered in the regular course 

material.   

 

Figure 21. Quick Draw image and student solution of a 90° rotation. 

 Focus group participants were not the only students influenced by this 

activity.  The seventh journal prompt asked students to reflect on an activity that 

had an impact on their spatial skills (Appendix G).  In her response, Wendy 

described the modified Quick Draw activity as follows: “The thing that sticks out to 
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me most would definitely be the rotating of a shape that we saw for just five 

seconds.  I really had to think about the exact lines of the shape, as well as how it 

would appear if it was shown in the opposite directions.  This influenced my spatial 

thinking by helping me to be able to manipulate items or shapes more willingly in 

my head.”  This was just one activity where students had to mentally manipulate 

images prior to drawing them.  Another activity mentioned by the focus group 

participants was the “Sketch the Cubes” activity.  Seth felt like this activity “really 

helped [his] spatial thinking because [he] had to think in 3D and then draw in 3D.”  

 The sketching activity asked students to view an image made from unit 

cubes, rotate the image mentally, and then sketch the new image on paper (see 

Figure 22).   

 

Figure 22. Sketch the Cubes activity and student solution.  

When all the students had completed their sketches, I passed out sets of unit cubes 

and let the students create the figure.  With the 3D model complete, I asked 

participants to compare and discuss their drawings.  At first, students voiced 

frustrations with their inability to draw 3D images.  Prompted by this response, I 

handed out grid paper to those who preferred it.  Eventually, students became 

comfortable with this activity and, without instruction, sketched the image from 

several different viewpoints before creating the figure with unit cubes.  Michelle, a 
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member of the focus group, stated in the final interview session that the activities 

that involved drawing “helped [her] figure out solutions on the [MPI] and PSVT 

when [she] took them the second time.”  She concluded, “I could tell I was much 

better at thinking spatially.”  This admission led me to wonder if the two 

instruments, the MPI and the PSVT, had any correlation. 

Correlation Test for the PSVT and MPI 

 A t-test for paired samples was computed to assess the relationship between 

the overall scores of the post-PSVT and the graded scores of the post-MPI. This 

test was chosen for several reasons: the subjects were independent, the post-PSVT 

and post-MPI were measured independently, neither instrument was a controlled 

measure, and a clear alternative to testing for linear correlation was not apparent.  

The test revealed a correlation between the overall scores of the post-PSVT and the 

graded scores of the post-MPI, r=0.467, p=0.006.  A scatter plot summarizes these 

results (Figure 23).   

 

Figure 23. Scatter plot of the overall scores of the post-PSVT and  
graded scores of the post-MPI. 
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Overall, there was a positive correlation between the graded scores of the post-MPI 

and the total scores of the post-PSVT.  Increases on the graded scale of the post-

MPI correlated with increases on the overall scores of the post-PSVT.  While not a 

statistical measure, qualitative data indicated that confidence in taking these tests 

also increased.   

Students’ Confidence Levels in the PSVT and MPI 

After taking the post-PSVT and the post-MPI, participants were asked to 

write about their confidence levels while taking the pre- and post-measure for both 

instruments (Appendix G).  One student wrote about how poorly she felt she 

performed on the tests but did not mention her confidence levels, four students 

discussed how they felt confident taking both the pre- and post-measures, while the 

other 28 participants reported gaining confidence in their answers from the pre- to 

post-tests.  Among those last 28 answers, words and phrases such as “more 

comfortable,” “easier,” “more confident,” and “better equipped” surfaced in the 

writings.  Wendy explained, “The first time I took the test, I felt that I had done 

extremely poorly.  I rushed through it because I really had no idea what I was 

doing.  The second time, however, I felt much more confident.  When [Mrs. Prugh] 

first handed out the test that second time, I was a little worried thinking I wouldn’t 

have improved.  As I took the test though, my confidence went up a great deal as I 

realized, ‘Yes! I know how to do this!’”   

Encouraged by the overwhelming response, I asked the focus group 

members to tell me how they felt they performed on the two measures during the 

third and final group interview (Appendix H).  Erin enthusiastically responded that 
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she felt more confident by stating, “I instantly saw an improvement while I was 

taking both tests at the end of the semester as opposed to the beginning.  I was 

excited to see that I was having an easier time figuring things out and rationalizing 

through them.  I even finished the spatial test the second time I took it!  The first 

time, I think I only got halfway through before time was up.  That right there is 

definitely a sign of improvement.”  Wyatt, a 22-year-old male, attributed, in part, 

his improvement on these tests to the “Blind Cube” activity.  He described the 

activity as “something that helped me think of how shapes are related.” 

Spatial Activity: Blind Cube Task 

The “Blind Cube” task was an extension of one of the many unit cube 

activities conducted during phase three of this study.  After asking the class to 

create a figure with their set of unit cubes, I asked them to pair themselves with 

another student in class. To begin this exercise, both partners dismantled their 

figures.  One partner closed their eyes while the other created a new figure using 

his or her set of unit cubes before handing it to the partner with their eyes closed—

the “blind” partner.  Without looking, the “blind” student would get to feel the 

figure for approximately 10 seconds before returning it.  Once the figure was 

hidden from sight, the student opened their eyes and attempted to recreate the 

figure using his or her own set of unit cubes.  Once complete, the original figure 

was revealed and compared to the recreation.  To add more of a challenge, the 

second time the participants performed this task, the “blind” student was instructed 

to keep their eyes closed until they were finished recreating the figure.  The class 

dialogue that followed this task indicated that students connected with this activity 
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and the spatial thinking it promoted.  Lori, a 19-year-old graphic arts major, 

enjoyed this task because “it took creative thinking to figure out how to build the 

figure.  I think like this in my art classes, so I knew if I really focused I would be 

able to recreate [the original] figure.”  This was not the first mention of “creative 

thinking” when discussing spatial activities.  This idea emerged throughout 

discussions and responses to journal questions and eventually became a theme. 

The Uniqueness of Spatial Thinking  

 The idea that spatial thinking was a unique way of thinking was the most 

unexpected theme that surfaced through the analysis of the qualitative data.  

Throughout discussions and journal responses, phrases such as “creative thinking,” 

“new way of thinking,” “deep thinking,” “artistic thinking,” and “thinking outside 

the box” were common descriptions when discussing spatial activities and 

associated thought processes.   When asked if the in-class spatial tasks were 

difficult, Ashlee responded, “It’s not that the stuff we do in class is that hard, it’s 

just different.  It takes a different kind of thinking to work through those activities.”  

Another student commented that she had to be “in the spatial mindset” to be able to 

do well on the tasks given in class.  Clearly, students were not considering spatial 

thinking as a common mental practice.   

 The first journal prompt given to the participants during phase three of this 

study asked participants to reflect on experiences involving spatial thinking.  It 

read, 

Thinking back on previous experiences, can you identify instances where you: 

a. Used spatial skills or spatial thinking? 
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b. Were taught spatial thinking? 

c. Were in a situation where spatial thinking was emphasized? 

There was significant crossover in the responses when describing real-world 

applications to spatial thinking.  Many students discussed how spatial ability was 

important in certain aspects of art, such as sculptures, paintings, drawings, graphic 

design, and illustration.  A sophomore graphic arts major named Jacob was 

confident in his spatial thinking skills and expressed that he used his ability often, 

writing, “My freshman year I was in a 3D design class, and if you had no spatial 

thinking, you couldn’t excel.  You had to figure out how things would look in 3D 

and put them into the computer.”  Other responses mentioned spatial thinking 

during “particular activities” such as driving and parking, the game of Tetris, 

geometry topics, and building blocks.  Students regarded these activities as special 

since a “unique part of the brain” was used when engaged in the above activities.  

The second and third most mentioned topics included packing a car and rearranging 

furniture, respectively.  Of the 11 students who mentioned one or both of these 

topics, 10 admitted to having just used the skill when they prepared to return to 

college for the school year.  Interestingly, only 9 of the 33 participants wrote about, 

either directly or indirectly, using spatial thinking on a regular basis.  The first 

interview with the focus group offered more depth to these responses.   

Focus Group Beliefs About Spatial Thinking 

 Pre-STAS analysis showed that the average response to questions 4, 10, and 

14, was “Disagree.”  These questions can be found in Appendix D but are listed 

here for convenience:  
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4. Spatial thinking skills are useful in other areas besides mathematics. 

10. I can see spatial thinking in many aspects of my daily life. 

14. I struggle drawing two-dimensional shapes. 

Students could select “Strongly Disagree,” “Disagree,” “Neutral,” “Agree,” or 

“Strongly Agree” to the questions on the Spatial Thinking Attitude Survey (STAS).  

Not a single focus group member selected “Strongly Agree” for any of the above 

statements while “Strongly Disagree” was selected five times on questions 4 and 14 

and twice on question 10.  Prompted by these responses, I asked the focus group 

three similar but not identical questions (Appendix H): 

• Do you think there are any other areas besides mathematics where spatial 

thinking skills are useful?  Explain. 

• Does spatial thinking ever play a role in your daily life?  Explain. 

• Do you generally find drawing 2D shapes easy or difficult?  Explain. 

Jill was the first to respond to the opening question.  “There might be, but I think 

math class is where we use them the most.  I’ve probably done things that have 

involved spatial thinking all throughout my school years, especially in elementary 

school,” she explained.  Michelle agreed, “This way of thinking,” referring to 

spatial thinking, “is useful when creative thinking is involved.  We use it when we 

are solving math problems and doing art projects.”  Rephrasing the question, I 

asked the focus group participants if the only time spatial thinking is used would be 

in a mathematics or art class.  “No,” Mitch replied. “I think I probably use spatial 

thinking all the time.  Like when I build stuff or sketch pictures or try to estimate 

the shortest route on a trip.”  Seizing the opportunity to address the third question, I 
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asked Mitch to explain how he uses spatial thinking when he sketches.  “Well, I’m 

not an artist or anything, but I like to sketch cars and bikes and stuff.  I have to 

imagine what the car I’m drawing would look like on paper before I draw it, or it 

looks all funny.  And sometimes I will draw the same car from different sides.  

That way I can see what it would look like in real life,” he described.  Following 

this explanation, I asked the rest of the group if they ever sketched 2D or 3D shapes 

for recreation or academic purposes and whether or not they found it difficult.   

 Lisa, an 18-year-old freshman, expressed that she enjoyed drawing, 

especially for fun, and used images whenever possible to help solve problems.  

“I’m a very visual learner,” she explained, “so being able to draw is really 

important to me.  I think it helps me with a lot of things like rearranging a room and 

drawing maps.  I struggle a little more when I have to draw in 3D though.”  Four 

other participants’ responses mirrored Lisa’s in that they felt being able to think in 

images was valuable, but that their 3D representations were lacking.  Several of the 

in-class activities designed to enhance spatial thinking included a drawing 

component, so I decided to incorporate these tasks as soon as possible.  Two tasks 

in particular were presented on days where 15 to 20 minutes were spent discussing 

3D images: the “Folding Cubes” activity and the “Sketch the Figure” activity.  

Spatial Activity: Mental Folding 

 The first of these, the “Folding Cubes” activity, began by showing students 

the net of a cube and its result when folded on the lines (see Figure 24).  
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Figure 24. The net of a cube and solution. 

After a discussion about nets and the properties of a cube, like the number of sides 

and vertices, a cluster of nets was shown to the students (see Figure 25).  

Participants were asked to decide which of the images would create a solid cube 

when folded on the lines.   

 

Figure 25. Example of the Folding Cubes activity. 

The first time this activity was presented, the class could not reach an 

agreement on a single set of solutions.  So, the class took a poll for each color 

before I prompted them to redraw the nets they felt could not form a cube, cut them 

out, and fold them to check their answers.  After this, a re-vote was taken and it 

was unanimous that all the nets, at least for this example, would create a solid cube.  

This discovery astonished Alison: “I just couldn’t believe that the purple and 

orange net could create a cube! I still can’t make the purple cube in my mind like I 

can the other colors.  But now that I can fold the [net] into a cube with my hands, I 
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can see it!”  Eric offered a strategy: “I also had a hard time with the orange net.  

But with the net that I made, I can see that it’s easier if it’s flipped upside down,” 

he said as he demonstrated by turning his net in the air, “I think from now on I will 

rotate any net I don’t feel can make a cube before I decide for sure.  I think it’s 

easier that way.”  This activity offered the students the chance to sketch in 2D but 

think in 3D.  

Desiring to give the students the opportunity to think and sketch in 3D, the 

“Sketch the Figure” task was introduced once students were proficient with the 

“Folding Cubes” activity.  In this exercise, students were given the nets of various 

3D shapes and asked to sketch the shape when folded into a solid figure (see Figure 

26).  Blank paper and grid paper were always available for students to use if they 

chose.   

 

Figure 26. Example of a Sketch the Figure activity and student solution. 

At first, students could draw the figure from any viewpoint of choice.  The third 

time this task was performed, however, I instructed the students to draw the figure 

from two different viewpoints.  For example, I might have asked students to draw 

Figure 26 from a top view and a side view.  This encouraged participants to think 

about the figure from different angles.  When asked to discuss the “Folding Cubes” 
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and “Sketch the Figure” activities, the notion of spatial thinking as a unique way of 

thinking surfaced, reinforcing the theme.  “This [Sketch the Figure] activity really 

stretches my brain,” Jill commented, “so I know I must be thinking spatially.” 

 At the end of each task, I inquired about the challenges and difficulties of 

creating the figures both mentally and on paper.  Lexi admitted that these tasks 

were challenging.  “Mrs. Prugh, this new way of thinking is hurting my brain.  It’s 

difficult,” she began, “but I also think it’s fun.  I wish I would have learned to think 

this way sooner because it would have helped me in geometry.”  Emilia described 

the “Folding Cubes” activity as “tricky” but she enjoyed the activities as a whole.  

She claimed that activities like “Folding Cubes” and “Sketch the Figure” helped 

her brain “get ready to think about math.”  Kelly, a junior English major, 

summarized the general ideas of the class when she stated, “Spatial thinking is 

really deep thinking.  These [activities] are challenging because we aren’t used to 

thinking this way—but it’s good that we do.  They teach us how to think creatively, 

which we must know how to do if we expect to do well in a math class…or 

probably in any class.”  Several students nodded in unison at this remark.  Kelly’s 

thought on the importance of spatial thinking was not a solitary opinion. 

Problem Solving and Spatial Thinking as Important Life Skills 

 The third theme that emerged from coding the focus group discussions and 

journal responses was that problem solving and spatial thinking are important life 

skills.   No matter the topic, whether it be discussing an activity or responding to a 

journal prompt, participants in this study continually acknowledged the importance 

of problem solving and spatial thinking skills.  Jill wrote that spatial skills “are very 
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important.  They are used in everyday life, all of the time.” Other participant 

responses supported this belief: 

• I think that being able to use spatial skills are very important.  Everyday 

people face problems where they need to use their spatial thinking skills.  

For example, knowing how to look at things from a different perspective, 

using your mind to think and not just our intuition, is something that we 

need to do everyday. 

• I think that spatial thinking skills are important for daily life.  It helps with 

multiple things.  If you are not able to think spatially then I believe that it is 

harder to do things sometimes. 

• I think that spatial thinking skills are [a] very important quality to have in 

life.  Spatial thinking skills are seen all around us.  For example, being able 

to look at a building and know how many stories high it is, or even knowing 

how many objects can fit into another object.  That is how general and often 

used spatial thinking is. 

• I do think [spatial thinking skills] are important and relate to real life.  I 

think spatial reasoning skills are important when trying to quickly decide 

where objects should be placed in relation to size and shape. 

A common occurrence was for students to share stories of when and how they had 

used spatial thinking or problem-solving strategies in other areas of life outside of 

class.  Robyn, a 19-year-old female, began a class discussion when she exclaimed, 

“I think these spatial thinking skills are more important than we realize!  Did you 

know that I used my spatial reasoning and problem-solving skills twice already 
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today?  It’s true.  My communications class got cancelled so I got to eat lunch 

before coming to class.  Since I was coming from the cafeteria, I had to visualize 

how far I needed to walk and then used my problem-solving skills to estimate how 

quickly I needed to eat so I wasn’t late for class!  I was really proud of myself.”  

Other student-to-student conversations centered on the practicality of problem-

solving strategies outside of mathematics. 

 Directly addressing this phenomenon, the fifth journal prompt given to the 

participants asked if they thought problem solving was important in everyday life 

(Appendix G).  All 33 students felt that problem-solving skills were not only 

important but “very important” or, even, “extremely important” in everyday life.  

Students recognized that problem solving was not only an important skill needed to 

succeed in a mathematics course, but also in every other area of study.  In his 

response to whether problem solving was important, Wyatt declared, “Yes! You 

may not realize sometimes when you’re trying to resolve something or put 

something together, but you are using problem solving.  Life is about putting things 

together and using your mind.  Math makes you use that and brings it out to its 

fullest ability.  Math is just practice for everyday problem solving.”  Ashlee agreed, 

“Problem solving is present in absolutely everything that we do.  It is important to 

be able to think and work out things in your head so that you can make the best 

possible decision.”  One math-related task presented in class, which was designed 

to be a problem-solving activity through spatial thinking, was the “dunk” task.    
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Spatial Activity: Mental Cubes 

 The “dunk” task was designed to help students create strong mental images 

they could manipulate to answer questions.  For example, I would ask students to 

imagine a 3x3x3 cube.  If needed, I would show an example (see Figure 27). 

 

Figure 27. Example of a 3x3x3 cube. 

Having concealed the example, I asked students to figure out how many individual 

cubes with one, two, or three sides would get wet if the figure was dunked into a 

bucket of water (see Figure 28).   

 

Figure 28. Example solution to a Dunk problem. 

Similar to the “dunk” task, the “complete the cube” activity used unit cubes as a 

manipulative to help with spatial thinking.  In this activity, students were given an 

image of an incomplete cube and asked to create the figure that would complete it 

(see Figure 29).  After viewing the image for 5 to 10 seconds, students were asked 

to create the missing part of the cube with their set of unit cubes.  
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Figure 29. Example of a Complete the Cube activity. 

To check students’ solutions, I created the incomplete cube shown to the class and 

allowed students to “fit” their solutions to mine.  If their attempt did not work, I 

permitted students to study the picture of the incomplete cube and try again.  These 

two activities generated a healthy amount of student-to-student discourse.  While 

helping a fellow classmate with a “complete the cube” activity, I overheard Ashlee 

encouraging a struggling friend stating, “Try it again.  You need to think like a 

sculptor.  Think, what would I have to chisel away to make that figure [pointing to 

the image I had put back up on the projector]?  Now, make that piece.”  Over time, 

students were able to mentally manipulate cubes with more efficiency and their 

opinions of these tasks began to change.  “When we first did a [“dunk”] activity, I 

didn’t like it because I couldn’t figure out how some cubes only had one side that 

got wet and another had two.  I thought they all had the same.  But, after the first 

time, I could see what was happening with the separate cubes and now I get it—I 

like it,” explained Seth, a member of the focus group.  Other focus group 

participants shared their opinions on spatial thinking as well.   
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Student Beliefs and the Spatial Thinking Attitude Survey 

 During phases one and four of this study, the focus group took the Spatial 

Thinking Attitude Survey (STAS).  The STAS, developed by Hanlon (2009), was a 

15-question, five-point, Likert-type survey (see Appendix D).  The survey had two 

areas of focus: one area measured beliefs regarding spatial thinking and the other 

measured confidence regarding the drawing of a 2D or 3D shape.  Initial 

assessment of the data revealed changes concerning the average answers for each of 

the 15 questions.  Table 4 summarizes these results.  

Table 4    

Summary of the Changes in Average Responses on the Pre- and Post-STAS 

n=17    

Statement Pre-STAS Post-STAS Difference 

1 3.06 3.41 0.35 

2 3.18 4.24 1.06 

3 3.29 4.12 0.82 

4 2.59 3.82 1.24 

5 3.47 4.18 0.71 

6 3.35 4.18 0.82 

7 3.41 3.65 0.24 

8 3.53 3.88 0.35 

9 3.41 3.82 0.41 

10 2.71 3.65 0.94 

11 3.00 3.47 0.47 
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12 2.82 2.71 -0.12 

13 3.06 3.12 0.06 

14 2.12 2.06 -0.06 

15 3.41 3.12 -0.29 

Note. STAS=Spatial Thinking Attitude Survey. Also, these numbers 
represent the average response for each question. 

 
Initial considerations of the data revealed the majority of responses on questions 

12, 14, and 15 were either “Disagree” or “Strongly Disagree”; all other questions 

reflected an increase of change, indicating that more students agreed with the 

statement on the post-PSVT.  To evaluate whether these changes were significant, a 

t-test was administered on each of the 15 statements.  

A t-test for paired samples was conducted to compare students’ responses 

on each of the 15 statements on the pre-STAS and post-STAS taken before and 

after eight weeks of spatial tasks, respectively.  A significant change occurred in 

seven of the responses.  A summary of the p-values can be found in Table 5.  

Table 5  

Paired Samples T-test for the STAS 

n=17  

Statement p-value 

1 0.083 

2 0.001* 

3 0.011* 

4 0.00008* 
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5 0.002* 

6 0.0002* 

7 0.260 

8 0.111 

9 0.130 

10 0.002* 

11 0.041* 

12 0.608 

13 0.718 

14 0.718 

15 0.136 

Note. STAS=Spatial Thinking Attitude Survey. 

*Significant at the p<.05 level (2-tailed).  

These results suggest the inclusion of spatial tasks had an effect on the participants’ 

beliefs regarding seven of the statements on the STAS.  Specifically, these results 

suggest the inclusion of spatial activities significantly altered the beliefs in these 

seven areas: 

• Spatial thinking skills are important for students to be successful at the 

elementary school level. 

• I am sure that I can improve my spatial thinking abilities. 

• Spatial thinking skills are useful in other areas besides mathematics.  

• Spatial thinking skills can be developed.  

• I can see spatial thinking in many aspects of my daily life. 
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• I am confident that I can draw geometric shapes accurately. 

• I will incorporate spatial thinking activities into the classroom. 

Data collected from the focus group interview from phase five of the study 

highlighted a class activity that members hoped to use in their future classroom: the 

“snowflake” task. 

Spatial Activity: The Snowflake Task 

 The paper-folding activity, or the “snowflake” task as named by the 

participants, was a simple task that encouraged students to mentally manipulate a 

folded piece of paper (Wheatley & Reynolds, 1999).  The students were given a 

blank 8.5x11 inch sheet of paper and a pencil and were instructed to watch as I 

folded and cut an identical 8.5x11 inch sheet of paper.  To start the mental exercise, 

I twice folded my piece of paper while the students watched.  Then, I used scissors 

to cut small shapes from the folded piece of paper (see Figure 30).  At this point, I 

asked students to “shade in” all the areas on their piece of unfolded paper they 

thought were missing from my piece of paper. 

 

Figure 30. Example of the Snowflake activity. 
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On occasion, pursuant to students’ requests, I identified the location of the folds on 

my piece of paper.  Once everyone was finished, I revealed the “snowflake” by 

unfolding the paper in the reverse order in which I had folded it prior to cutting.  I 

then asked students to discuss their thinking process while shading in the missing 

pieces.  I asked: “How is your snowflake different than mine?” and, for example, 

“Why is this diamond shape in the middle of the snowflake?”  To create more of a 

challenge, I added a fold, changed the folding pattern, or rotated the folded piece of 

paper before cutting it.  These changes were made as the students watched every 

move.  When asked why they would like to use this activity in their future 

classrooms, focus group members described the activity as one that would engage 

students in spatial thinking in a “fun way.”   

Pressing the topic, I asked the members if they felt similar activities that 

encouraged spatial thinking were important enough to incorporate throughout the 

year as more than just a “fun” activity (Appendix H).  With the majority of the 

room nodding, Michelle vocalized the general consensus: “I think being able to use 

spatial skills are very important, so I think we need to be teaching it in every grade.  

Everyday, people face problems where they need to use their spatial thinking skills.  

Spatial skills help us think outside the box and help our minds grow.”  Wyatt 

followed, “Yeah, doing [spatial thinking] activities that you don’t know how to do 

makes you think.  That’s what makes spatial learning fun.  I plan to use [spatial] 

activities when I can.”  While the participants might not know exactly how often 

they will incorporate spatial activities into their future classrooms, they were all in 

agreement that spatial thinking is important and worthy of instruction time. 
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Conclusion 

This embedded case study investigated the influential nature of spatial 

thinking activities on students’ spatial visualization ability, problem-solving 

strategies, and beliefs about spatial thinking.  Quantitative data were analyzed to 

examine the influence of eight weeks of spatial activities on these areas.  

Additionally, qualitative data were gathered through focus group discussions, 

written responses, and observations and were analyzed in conjunction with the 

quantitative data to answer the three research questions.   

Both quantitative and qualitative data were analyzed to examine the impact 

of integration of spatial activities on student spatial visualization ability.  

Qualitative data revealed that students believed their spatial abilities could improve.  

The sixth journal prompt, given near the end of the study, asked students if they felt 

their spatial ability had improved. Of the 33 participants, 29, or 87.9% of the 

students, felt that their spatial thinking abilities had improved, an opinion supported 

by the results from the PSVT.  The results of the quantitative data gathered from 

the pre- and post-PSVT revealed a significant difference on all three areas of the 

PSVT—the Developments, Rotations, and Views sections—which resulted in a 

significant difference on the overall scores as well.  Completion rate of the 

instrument also improved, as there was a 96.6% drop on the number of questions 

left blank from the pre- to post-measure of the PSVT.  Specifically, the results 

suggest the inclusion of spatial activities for eight weeks increased the students’ 

ability to think spatially as measured by the PSVT.   
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Both quantitative and qualitative data were analyzed to investigate the 

influence of spatial reasoning tasks on students’ mathematical problem-solving 

strategies.  Qualitative analysis revealed that the majority of students felt as though 

spatial thinking was a unique way of thinking, stating that spatial thinking was 

“creative thinking,” “a mindset,” or a “new” way of thinking.  Further, responses to 

journal prompts established the view that students felt that spatial thinking was 

important when problem solving, even if they did not or could not explain their 

reasoning. Regardless, this “new” way of thinking proved to be helpful when 

solving the 20 questions on the MPI.  The results of the quantitative analysis on the 

pre- and post-MPI showed a significant difference in the scores from the pre- to 

post-MPI.  This finding suggests that the inclusion of spatial tasks had an effect on 

the participants’ preference for using a spatial approach when solving problems on 

the MPI.  Specifically, these results suggest that the inclusion of spatial activities 

for eight weeks increased the preference for using schematic drawings and, 

therefore, a spatial approach when solving mathematical problems as measured by 

the MPI.   

Together, quantitative and qualitative data were analyzed to explore the 

influence of spatial tasks on pre-service elementary teachers’ beliefs about spatial 

thinking.  Qualitative data analysis revealed that participants in this study thought 

that problem solving and spatial thinking were important life skills.  Students 

specifically expressed why they thought spatial thinking skills were important 

through written responses to journal prompt number three (Appendix G).  Focus 

group members, who were all pre-service elementary teachers, verbally expressed 
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this belief through group discussions and further confirmed their thoughts through 

the STAS survey.  The quantitative results showed a significant difference in 

opinion on seven statements on the STAS.  Specifically, these results suggest the 

inclusion of spatial activities significantly altered the pre-service teachers’ beliefs 

in these seven areas: 

• Spatial thinking skills are important for students to be successful at the 

elementary school level. 

• I am sure that I can improve my spatial thinking abilities. 

• Spatial thinking skills are useful in other areas besides mathematics.  

• Spatial thinking skills can be developed.  

• I will incorporate spatial thinking activities into the classroom. 

• I can see spatial thinking in many aspects of my daily life. 

• I am confident that I can draw geometric shapes accurately. 

Additionally, focus group members were able to discuss the in-class spatial 

activities and their preferences regarding which tasks they plan to use in their future 

classrooms.   

 In Chapter V, a summation of the findings, along with conclusions, are 

offered.  Chapter V also presents a discussion of the consequences of the results 

with respect to implications regarding practices for mathematics education and pre-

service teacher education programs in addition to a discussion concerning future 

directions for research in the area of spatial thinking.  
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Chapter V 

CONCLUSION 

Spatial thinking is not only necessary for success in many aspects of daily 

life, but it is also an essential skill for STEM fields from which many scientific 

discoveries and progress are made (National Research Council, 2006).  The 

importance of spatial thinking throughout a child’s kindergarten through grade-12 

education is emphasized in the geometric standards set forth by the National 

Council of Teachers of Mathematics (NCTM, 2000).  This recommendation is 

mirrored through the work of the National Research Council (NRC), which asserts 

that spatial thinking is a learnable skill that should be matriculated throughout a 

student’s educational experience.  Spatial activities are a worthwhile investment in 

the mathematics classroom, since the skill of spatial thinking has been repeatedly 

linked to problem solving (Battista, 1990; Edens & Potter, 2007; Hegarty & Waller, 

2005; Moses, 1977; Reynolds & Wheatley, 1997).   

Additionally, taking into consideration that future teachers of mathematics 

will most likely teach material in the same manner in which they learned it 

(Sundberg & Goodman, 2005) and are more likely to incorporate spatial activities 

in their own classrooms if they are confident in their own abilities (Battista, 1990), 

mathematics courses required for education majors have the opportunity to promote 

the learning of this skill in current as well as future learners of mathematics.  The 

inclusion of spatial tasks in the classroom could lead to more effective problem-

solving strategies and improved instructional strategies in the K-12 classroom.  For 

these changes to be made, present and future students must be given the 
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opportunity to engage in spatial thinking whenever possible, especially in the 

mathematics classroom. 

Overview of the Study 

 The purpose of this embedded case study was to understand how the 

inclusion of spatial tasks influenced undergraduate students’ spatial visualization 

ability, problem-solving strategies, and beliefs about spatial thinking.  Despite 

decades of reform, the U.S. still trails economic competitors like Japan (National 

Center for Education Statistics, 2003).  One missing piece to this puzzle could be 

the lackluster ability of U.S students to think spatially and problem solve with 

regard to mathematics (IEA, 2008).  Despite the pervasiveness of spatial thinking 

research and recommendations, this skill is largely unrecognized in the educational 

system (National Research Council, 2006).  As a result, this study examined how 

the inclusion of spatial tasks could influence problem-solving performance, spatial 

thinking ability, and beliefs of undergraduate mathematics students.  The following 

section will provide insight into understanding undergraduate students’ problem-

solving ability, spatial ability, and beliefs about spatial thinking by addressing the 

three research questions that guided this study: 

1. How does the integration of spatial activities in an undergraduate 

mathematics content course impact student spatial ability? 

2. In what ways does the integration of spatial reasoning tasks into an 

undergraduate mathematics content course influence problem-solving 

strategies? 
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3. How does the integration of spatial reasoning tasks influence the beliefs on 

spatial thinking of pre-service elementary teachers? 

The participants were 33 undergraduate students who were enrolled in the 

researcher’s Elements of Mathematics, Fall 2011 course.  The course was a low-

level mathematics course designed for liberal arts students, so the participants’ 

majors ranged in concentration.  A little over half of the participants were 

education majors while the others had declared interest in areas such as art, 

English, and family studies.  In addition to demographic information, quantitative 

and qualitative data were collected during the 12 weeks of study.  Quantitative data 

were collected through the Purdue Spatial Visualization Test (PSVT), the 

Mathematical Processing Instrument (MPI), and the Spatial Thinking Attitude 

Survey (STAS).  Qualitative data were garnered through student-written journal 

responses, focus group interviews, and observations.  The focus group was 

comprised of the 17 participants who had declared elementary education as their 

area of study.  This group met on three separate occasions: once during phases two, 

three, and five.  The purpose of the focus group was to give deeper insight into the 

participants’ experiences with the study and beliefs about spatial thinking.  

Implementation began with a description of the study followed by 

satisfaction of IRB requirements (Appendix A).  Pre-measures of the PSVT, the 

MPI and the STAS were also given to participants during the first phase.  Once all 

three pre-measures were scored, the focus group met to discuss initial perceptions 

about the three pre-assessments and areas of interest concerning spatial thinking 

(Appendix H).  During the following eight weeks, daily spatial thinking activities 
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and reflective journal prompts were incorporated into classroom practices. Class 

discussions regarding these assignments ensued, allowing for insightful classroom 

observations.  The second of three focus group interviews also took place during 

the first phase.  A feel for students’ beliefs concerning spatial thinking during the 

eight weeks of implementation was the focus of this discussion.  During the final 

two weeks of the study, the final focus group discussion was held, and post-

measures of the PSVT, the MPI, and the STAS were executed and scored.  These 

data were collected and fully analyzed after grades for the course had been 

finalized and posted for the semester.  

Results from the quantitative data were used to determine if the integration 

of eight weeks of spatial activities resulted in significant differences in scores on 

the PSVT, the MPI, and individual statements on the STAS.  Analysis of the 

qualitative data—responses to journal prompts, focus group interviews, and 

observations—was used to examine the influence of the spatial tasks on the 

perceptions and beliefs about spatial thinking on students and pre-service 

elementary teachers.  Moreover, this same data were used to evaluate how pre-

service teachers viewed their own understanding of spatial thinking and its 

relevance in their daily lives and future classrooms.  After the quantitative data had 

been scored and tested and the qualitative data had been coded and themed, the data 

were analyzed in its entirety and conclusions were drawn.  This section presents the 

findings for each of the research questions, implications for undergraduate-level 

mathematics education, and recommendations for action and further study. 
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Summary of the Findings 

Spatial Tasks and Spatial Ability 

The first research question investigated the influence of spatial tasks on 

students’ spatial visualization abilities in an undergraduate mathematics content 

course.  Spatial visualization abilities are crucial to learning.  Bruner (1973) 

believed children explore new things first through action then through imagery 

before, finally, using language to describe and comprehend the world around them.  

Through this reasoning, spatial thinking is a necessary step to learning.   

To help investigate the first research question, both qualitative and 

quantitative data were collected and analyzed.  Qualitative analysis on student-

written responses and focus group discussions revealed that students believed their 

spatial thinking abilities could improve with practice.  This was encouraging given 

the fact that 60.6% of the class described themselves as possessing average or 

below-average ability at best in response to journal prompt number two, which 

asked students to describe their ability to think spatially.  With respect to the 

quantitative analysis, the PSVT was used as a pre- and post-measure to assess 

student spatial visualization ability at the beginning and end of the study.  The 

PSVT, developed by Guay (1980), was comprised of three parts: Developments, 

Rotations, and Views (Appendix B).   The Developments section (PSVT/DEV) 

measured spatial structuring; the Rotations section (PSVT/ROT) measured mental 

rotation ability; while the Views section (PSVT/VIEW) measured spatial 

perception.  Initial assessment of the data revealed an increase in test scores and a 

decrease in the number of incomplete responses.  For the PSVT/DEV section, there 



141 

was a 27.9% increase on the number of correct responses from the pre- to post-

PSVT.  The PSVT/ROT portion showed a 33.3% increase in correct responses, 

while the PSVT/VIEW section demonstrated a 60% increase in correct responses 

from the pre- to post-results.  The individual increases resulted in an overall 

increase of 38.2% on the total scores from the pre-PSVT to the post-PSVT.  Paired 

samples t-tests were conducted to evaluate whether these changes were significant.   

A t-test was performed on each of the three pre- and post-results 

individually and later on the overall scores.  The results of the quantitative analysis 

revealed a difference in the scores for all areas tested.  Notably, these changes were 

most evident in the overall pre-PSVT scores (M=14.27, SD=6.71) and the overall 

post-PSVT scores (M=19.73, SD=7.64), with t(32)=6.2, p=0.0000006.  

Specifically, these results suggest that inclusion of spatial activities for eight weeks 

increased the students’ ability to think spatially, as measured by the PSVT.  Van 

Garderen (2002) found that differences in imagery use existed among different 

levels of learners, where the highest level of spatial reasoning was observed in a 

gifted group.  Regardless of the level of giftedness the participants would be 

assigned if tested, these results support the participants’ predictions as well as the 

NRC’s (2006) assertion that spatial thinking can be learned.  This implies that 

spatial imagery is useful for all levels of learners, not just the gifted.  This 

knowledge is powerful with respect to problem solving since the two have been 

repeatedly linked.  
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Spatial Tasks and Problem Solving 

The second area of focus in this study involved spatial thinking and 

problem solving.  Specifically, the second research question sought to identify 

ways for which the inclusion of spatial tasks influenced mathematical problem-

solving strategies.  Learning to solve problems is a principal reason for studying 

mathematics.  Problem solving is engaging in a task for which the solution method 

is not obvious or known in advance, and the NCTM (2000) strongly believes this 

activity is an integral part of mathematics learning.  Wu (2004) identified two 

problem-solving cognitive processes: the factor-analytic approach and the 

information-processing approach.  The former approach is generally empirical, and 

one factor in this area is visual perception—the concept that spatial/visual aptitude, 

however strong, will play a role in mathematical problem solving. Several studies 

support this conjecture (Battista, 1990; Edens & Potter, 2007; van Garderen, 2006).   

Analysis of the relevant qualitative data collected in this study exposed 

several themes that involved problem solving.  Students felt their problem-solving 

skills could improve with practice and were important for everyday situations.  

Another interesting theme emerged in addition to the previous two themes.  

Participants in this study believed spatial thinking was unique way of thinking.  

Phrases such as “new way of thinking,” “creative thinking,” and “spatial mindset” 

were just a few of the descriptions students used when discussing spatial thinking.  

Students’ perceptions of this “unique” way of thinking did not hinder them from 

using the skill to aid in problem solving as measured by the MPI.  
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 The MPI was used as a measure to identify the students’ preference for 

solving problems using a visual or non-visual approach.  Schematic imagery, as 

defined by Hegarty and Kozhevnikov (1999), was used when scoring this 

instrument.  Of the 660 possible questions given to the 33 students on the MPI, 

55.6% of the questions on the pre-MPI were attempted using a spatial approach.  

This percentage rose to 62.3% on the post-MPI.  The average grade on the pre-MPI 

to post-MPI changed as well, increasing from 60.6% to 67.7%.  As with the PSVT, 

a t-test for paired samples was used to compare the students’ preference for using a 

visual-spatial approach for problem solving before and after eight weeks of spatial 

task implementation.  A significant difference was revealed in the scores for the 

pre-MPI (M=4.76, SD=14.16) and the post-MPI (M=8.76, SD=15.94) conditions; 

t(32)=2.42, p=0.021.  These results suggest that inclusion of spatial tasks had an 

effect on the participants’ preference for using a spatial approach when solving 

problems on the MPI.  Specifically, these results suggest that the inclusion of 

spatial activities increased the preference for using schematic drawings and, 

therefore, a spatial approach when solving mathematical problems.   

This study showed a positive correlation between the PSVT and the MPI, 

and thereby strengthened the body of existing literature on the relationship between 

spatial thinking and problem solving (Battista, 1990; Edens & Potter, 2007; 

Hegarty & Waller, 2005; Moses, 1977; Reynolds & Wheatley, 1997).  

Improvement on one post-measure typically indicated improvement on the other. 

Through journal responses and discussions, participants stated they had “more 

confidence” when taking the MPI the second time.  Fisher (2005) explained that 
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“visual expression provides a means of formulating and solving problems” (p.16), 

so improvement on these two instruments makes sense.  Based on these results, it is 

apparent that exercises in spatial thinking affect spatial ability as well as one’s 

preference for using a spatial approach when problem solving in mathematics.  A 

change in students’ beliefs seems like a logical extension of the change in students’ 

confidence and ability. 

Spatial Thinking and Pre-service Teachers’ Beliefs 

 In addition to examining the influence spatial tasks had on ability, this study 

explored the impact of spatial activities on beliefs of pre-service elementary 

teachers.  The beliefs of pre-service teachers are an important component of spatial 

thinking and problem solving, since research has shown that teachers who are more 

confident in their own spatial abilities are more likely to use such strategies in their 

classrooms (Battista, 1990; Presmeg, 1986).  Again, both qualitative and 

quantitative data were collected and analyzed to address this question.   

 Analysis of the qualitative data revealed that students felt the ability to think 

spatially was an important life skill.  However, this was not a unanimous consensus 

at the beginning.  During the first interview with the focus group, I asked 

participants if they felt spatial thinking was useful in any other area besides 

mathematics (Appendix H).  One group member explained that she was not sure 

and felt that “math class is where we use [spatial thinking] the most.”  Qualitative 

analysis on the STAS showed considerable change in teacher beliefs concerning the 

usefulness of spatial thinking outside of mathematics. 
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 The STAS, developed by Hanlon (2009), was a 15-question, five-point, 

Likert-type survey that partially focused on measuring beliefs regarding spatial 

thinking (Appendix D).  Question number four asked if “spatial thinking skills are 

useful in other areas besides mathematics.”  Seven of the 17 students answered 

“Disagree” or “Strongly Disagree” on the pre-STAS while on the post-STAS only 

two students answered “Disagree” or “Strongly Disagree”.  A t-test for paired 

samples was used to measure the significant change in responses on question 

number four of the STAS as well as the other 14 statements.  A significant change 

was found for the following seven areas of spatial thinking and geometrical 

drawing: 

• Spatial thinking skills are important for students to be successful at the 

elementary school level. 

• I am sure that I can improve my spatial thinking abilities. 

• Spatial thinking skills are useful in other areas besides mathematics.  

• Spatial thinking skills can be developed.  

• I will incorporate spatial thinking activities into the classroom. 

• I can see spatial thinking in many aspects of my daily life. 

• I am confident that I can draw geometric shapes accurately. 

These results indicate that eight weeks of spatial tasks changed the beliefs of pre-

service elementary teachers.  Specifically, after the implementation of spatial 

activities, the participants were more likely to believe that spatial skills are 

malleable, useful outside the mathematics classroom, and worthy of inclusion in 

future curricula.  This shift in beliefs can be tied back to Bruner’s (1973) theory 
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that learners explore concepts through a linear progression, starting with action, 

then imagery, and finally through language.  The “hands-on” exercises students 

experienced, possibly for the first time, throughout the eight weeks of 

implementation promoted understanding of spatial concepts and allowed students 

the opportunity to identify other areas in everyday life where spatial skills are 

useful. 

Implications 

 Results of this study contain implications for mathematics courses as well 

as courses required for pre-service elementary teachers.  Ultimately, the 

responsibility falls upon mathematics educators to prioritize problem solving and 

sense making as opposed to rote memorization in the mathematics classroom.  

Spatial thinking is one key component to achieving this goal.  Further, the 

utilization of spatial thinking skills in future mathematics classrooms is dependent 

upon an emphasis of fostering such skills in teacher education programs.  In either 

scenario, inclusion of spatial thinking activities is vital to the success of the 

objectives of the course.   

 With respect to undergraduate mathematics education, this study revealed 

that undergraduate learners of low-level mathematics have the potential to increase 

their spatial thinking skills. This result has many implications for this particular 

population of students.  The participants in this study indicated that they felt spatial 

thinking was an important life skill, and that it could improve with practice.  Many 

focus group members also admitted to “not liking math” or not being “good at 

math” through group discussions.  The possibility exists that the reason these 
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students felt left behind in previous mathematics courses is because their spatial 

skills were subpar.  Since spatial aptitude has been linked to problem-solving 

ability, inclusion of this skill could also result in more powerful problem solvers in 

the mathematics classroom—an overarching goal of any mathematics course.  

Therefore, the benefits of spatial thinking activities are two-fold: enhanced spatial 

thinking ability and more efficient problem-solving skills.  If the goal is for every 

student of mathematics to think critically and problem solve, then inclusion of 

spatial thinking as a primary focus simply cannot be ignored.  The inclusion of 

spatial thinking could also have a positive impact in the areas of STEM. 

 A current need exists for qualified persons in science, technology, 

engineering, and mathematics in the U.S.  While each of these four areas is distinct, 

overlap exists with respect to the presence of problem solving and the need for 

practiced spatial thinkers.  Inclusion of spatial activities in undergraduate 

mathematics classrooms can potentially further develop the spatial skills of those 

already interested in the STEM fields and encourage those who might not consider 

the possibility otherwise.  This outcome will be best realized if spatial skills are 

fostered throughout a child’s educational experience.  

 Spatial thinking and related activities should be included in the elementary 

classroom and in teacher education programs.  This study showed that exposure to 

eight weeks of spatial tasks changed pre-service teachers’ beliefs about the 

importance of spatial thinking.  Specifically, participants’ beliefs about the 

malleability of spatial thinking, the practical applications of spatial thinking, and 

the importance of spatial activities in the classroom changed during this study.  As 
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a result of this change, participants expressed their desire to use spatial activities in 

their future curricula.  This is encouraging, because spatial thinking is recognized 

as an important component in the mathematics classroom. 

Spatial thinking is emphasized throughout the standards set by NCTM 

(2000); consequently, it is a crucial component to teacher education programs.  

Further, pre-service teachers need to be comfortable not only with implementing 

spatial thinking activities in their own classrooms but also with learning through 

spatial thinking activities themselves.  Since teachers are more likely to teach in a 

manner in which they were taught, incorporating space for spatial thinking 

activities into teacher education programs is vital.  The responsibility to help 

prepare pre-service teachers lies within both education courses and content courses. 

The inclusion of eight weeks of spatial tasks resulted in increased spatial 

visualization ability, effective problem-solving strategies, and positive beliefs about 

spatial thinking in this study.  The findings and conclusions of this study could be 

used to redefine objectives to include or increase a spatial focus for courses in 

undergraduate mathematics as well as teacher education programs.  Utilization of 

spatial thinking activities as a component in mathematics and mathematics 

education curricula could support the efforts of leaders in mathematics and 

mathematics education to maximize student ability in problem solving and 

effectiveness of pre-service teachers in future classrooms. 

Recommendations for Future Research 

 This case study focused on how implementation of spatial tasks influenced 

spatial visualization ability, problem-solving strategies, and pre-service teachers’ 
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beliefs about spatial thinking.  Additional qualitative or mixed methods studies 

could attempt to flesh out the three themes that emerged through this study: that 

problem solving and spatial thinking are important life skills, that spatial thinking is 

a unique way of thinking, and that both problem solving and spatial thinking can 

improve with practice.  Additionally, future research with respect to pre-service 

teachers is needed to bring about the necessary updating of teacher education 

programs.  Such studies might investigate the following: 

1. A change in mathematical ability could greatly alter beliefs about spatial 

thinking.  A similar study could be conducted in upper-level mathematics 

courses to investigate differences in student beliefs.  

2. With further exploration into the belief that spatial thinking is a unique way 

of thinking, a future study could attempt to identify how mathematics 

students think they use spatial thinking in problem solving and other areas. 

3. Longitudinal studies could be conducted following pre-service teachers 

through other mathematics courses and into in-service teaching.  An 

investigation as to how spatial thinking evolved for these students or how it 

was utilized in later mathematics courses and classroom curriculum could 

be conducted. 

4. This study disclosed a discrepancy between the participants’ self assessment 

and actual ability on the pre-PSVT.  Further mixed methods research could 

investigate student confidence and actual ability with another instrument 

designed to measure spatial ability. 
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5. This study could be repeated with careful consideration to specific spatial 

activities.  Selective elimination could reveal which, if any, of the specific 

spatial tasks have a unique influence on spatial ability or beliefs.  

Finally, more longitudinal studies are needed to address the issue of 

novelty.  This study found changes in spatial ability and beliefs based on 

implementation of spatial tasks.  Questions remain regarding whether participants 

will continue to use spatial strategies when problem solving and whether beliefs 

will revert back once there is an absence of weekly spatial activities.  At this time, 

very little research is available exploring spatial thinking within the confines of 

lower-level mathematics courses at the collegiate level.  Comparisons between this 

study and similar research could be investigated to determine if different 

implementation practices affect student performance.  Future studies in spatial 

thinking are important if we wish to make the most of mathematics teaching and 

learning. 

Concluding Comments 

The need for practiced spatial thinkers is evident in the growing concern 

over performance of U.S. students in mathematics as well as lack of interest in 

spatially driven fields such as science, technology, engineering, and mathematics.  

In addition to this need, spatial thinking is a beneficial skill that reaches beyond the 

STEM fields, as good problem-solving techniques are valuable for everyday life.  

A participant in this study told of a stressful situation at his job at a local video 

rental store: 
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Last week I was put in charge of five employees and instructed to box up all 

the old VHS tapes in the warehouse.  The problem was that the boxes I was 

given to use were all different sizes so I couldn’t just count out the number 

of tapes for each box.  Instead, I used spatial thinking to estimate how many 

tapes could be packed into each box.  Then I gave the box and the estimated 

number of tapes to a coworker and asked them to pack it.  There were a lot 

of boxes.  I felt good when I was done because I was never more than three 

tapes over or under the number needed.  My spatial thinking saved me a lot 

of time that day. 

Clearly, this student was using spatial thinking and problem solving well outside 

the confines of a mathematics classroom.  This is expected and encouraging since 

one goal of education is to promote autonomous thinkers.  Without critical 

thinking, human life would cease to make the necessary changes and adjustments 

necessary for survival.  Since spatial thinking is related to problem solving, and 

problem solving is important in many facets of life, spatial thinking should be a 

skill that is fostered and encouraged within the classroom.   

Focus on spatial research has fluctuated over decades of educational reform 

and has established a platform through the support of national organizations such as 

the National Research Council (2006) and the National Council of Teachers of 

Mathematics (2000).  Even with such powerful recognition, purposeful cultivation 

of spatial thinking is commonly overshadowed by other factors in the mathematics 

classroom.  More often than not, spatial thinking is a second-hand skill fostered 

through interaction with shapes and taught in courses with a geometric focus. 
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Currently, the message being sent to students of mathematics is that spatial thinking 

is unimportant or, worse, best utilized when no other strategies, such as procedural 

steps, are available.  This approach to spatial teaching puts present as well as future 

students at a disadvantage.  

According to NCTM, problem solving is an integral part of all mathematics 

learning.  Further, research has linked spatial thinking to problem solving, 

indicating that spatial thinking is a necessary skill for success in solving problems 

in mathematics.  Therefore, students must be given the opportunity to foster this 

skill from the beginning to the conclusion of their educational experience.  

Thankfully, research, including this study, has shown that this vital skill can be 

improved as late as post-secondary school.  Spatial skills need to be intentionally 

nurtured if educators desire to give students a global competitive edge and help 

students develop an effective arsenal of strategies to problem solve.  While this 

skill is not explicitly tested by state exams, the benefits of honing spatial skills will 

pay off long after the final bells of a classroom have rung.  If the purpose of 

education is to create productive citizens to advance our way of life, then spatial 

thinking must be incorporated into the classroom.  To do this, we must first equip 

our future teachers.  

 The role of research concentrating on pre-service teachers’ spatial thinking 

and spatial ability needs to be a priority if change is desired.  The spatial thinking 

and beliefs surrounding spatial thinking of pre-service educators is a critical 

component to the likelihood of this skill being fostered in future mathematics 

classrooms.  The spotlight is now on teacher education programs, because pre-
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service teachers must first be proficient spatial thinkers before they are able to 

infuse this skill into their own teaching methods.  Mathematics courses—especially 

those required for education majors—should be used as a fundamental piece to this 

design.  In conclusion, for change to occur, inclusion of spatial thinking and spatial 

thinking activities must permeate the mathematics classrooms and teacher 

education programs of today and tomorrow.  
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Appendix B 

Sample Problems from the Purdue Spatial Visualization Test 
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Appendix C 

Mathematical Processing Instrument 

 

 

 

The Mathematical Processing Instrument (MPI) 

1. At each of the two ends of a straight path, a man planted a tree; then again every 5 meters 

along the path he planted another tree.  The length of the path is 15 meters.  How many 

trees were planted? 

2. On one side of a scale there is a 1kg weight and half a brick. On the other side there is 

one full brick.  The scale is balanced.  What is the weight of the brick? 

3. A balloon first rose 200 meters from the ground, then moved 100 meters to the east, and 

finally dropped straight to the ground.  How far was the balloon from its original starting 

point? 

4. In an athletics race, Jim is four meters ahead of Tom, and Peter is three meters behind 

Jim.  How far is Peter ahead of Tom? 

5. A square (A) has an area of 1 square meter.  Another square (B) has sides twice as long.  

What is the area of B? 

6. From a long stick of wood, a man cut 6 short sticks, each 2 feet long.  He then found he 

had a piece of 1 foot long left over.  Find the length of the original stick. 

7. The area of a rectangular field is 60 square meters.  If its length is 10 meters, how far 

would you have traveled if you walked the whole way around the field? 

8. Jack, Paul, and Brian all have birthdays in the 1
st
 of January, but Jack is one year older 

than Paul and Jack is three years younger than Brian.  If Brian is 10 years old, how old is 

Paul? 

9. The diameter of a tin of peaches is 10 cm.  How many tins will fit in a box 30 cm by 40 

cm (one layer only)? 

10. Four young trees were set out in a row 10 meters apart.  A well was situated beside the 

last tree.  A bucket of water is needed to water two trees.  How far would a gardener have 

to walk altogether If he had to water the four trees using only one bucket? 

11. A hitchhiker set out on a journey of 60 miles.  He walked the first 5 miles and then got a 

lift from a lorry driver.  When the driver dropped him off he still had half of his journey 

to travel.  How far had he traveled in the lorry? 

12. How many picture frames 6 cm long and 4 cm wide can be made from a piece of framing 

200 cm long? 

13. On one side of a scale there are three pots of jam and a 100 g weight.  On the other side 

there are a 200 g and a 500 g weight.  The scale is balanced.  What is the weight of a pot 

of jam? 

14. A ship was Northwest.  It made a turn of 90 degrees to the right.  An hour later it made a 

turn through 45 degrees to the left.  In what direction was it then traveling? 

15. There are 8 animals on a farm.  Some of them are hens and some are rabbits.  Between 

them they have 22 legs.  How many hens and how many rabbits are on the farm? 

16. A passenger who had traveled half his journey fell asleep.  When he awoke, he still had 

to travel half the distance that he had traveled while sleeping.  For what part of the entire 

journey had he been asleep? 

17. Ten plums weigh as much as three apricots and one mango.  Six plums and one apricot 

are equal in weight to a mango.  How many plums balance the scales against one mango? 

18. What time is it now if the time that has passed since noon constitutes a third of the time 

that remains until midnight? 

19. One day Amy and Rea visit a library together.  After that, Amy visits the library regularly 

every two days, at noon.  Rea visits the library every three days, also at noon.  If the 

library is open every day, how many days after the first visit will it be before Amy and 

Rea are, once again, in the library together? 

20. A mother is six times as old as her daughter.  The difference between their ages is 25 

years. How old are they? 
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Appendix D 

Spatial Thinking Attitude Survey 

 

 

 

CONTINUED ON BACK PAGE 

SPATIAL THINKING  

ATTITUDE SURVEY 

 

Spatial thinking is a combination of a person’s intuition with respect to direction, 

distance, location, pattern and shape and the relationships among direction, distance, 

location, pattern and shape, as well as a person’s ability to visualize and manipulate 

direction, distance, location, pattern and shape in space.  

 

Please indicate the degree to which you agree or disagree with each statement below by 

circling the appropriate number to the right of the statement. 

 

Strongly Disagree     Disagree        Neutral           Agree           Strongly Agree 

 

              1                              2                         3                       4                               5 

 

1.  Achievement in mathematics is directly 

     related to spatial thinking ability. 

 

1 2 3 4 5 

2.   Spatial thinking skills are important for  

      students to be successful at the elementary 

      school level.  

 

1 2 3 4 5 

3.   I am sure that I can improve my spatial  

      thinking abilities.  

 

1 2 3 4 5 

4.   Spatial thinking skills are useful in other 

      areas besides mathematics. 

 

1 2 3 4 5 

5.  Spatial thinking skills can be developed. 

 

1 2 3 4 5 

6.   I will incorporate spatial thinking activities  

      into  the classroom. 

 

1 2 3 4 5 

7.  Spatial thinking skills are important in order  

     for students to be successful in math at the  

     high school level. 

 

1 2 3 4 5 

8.   I believe that I will need to have good spatial 

      thinking  skills for my future. 

 

1 2 3 4 5 

9.  There are some manipulatives that can   

     encourage the development of spatial thinking. 

 

1 2 3 4 5 

10. I can see spatial thinking in many aspects of  

      my daily life. 

    

1 2 3 4 5 
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Please indicate the degree to which you agree or disagree with each statement below by 

circling the appropriate number to the right of the statement. 

 

 

Strongly Disagree     Disagree        Neutral           Agree           Strongly Agree 

 

              1                              2                         3                       4                               5 

 

 

11. I am confident that I can draw geometric 

      shapes accurately. 

 

1 2 3 4 5 

12. When I am asked to picture a  

       three-dimensional object, I have a hard time. 

 

1 2 3 4 5 

13. Manipulating shapes in my head is  

      challenging. 

 

1 2 3 4 5 

14. I struggle drawing two-dimensional shapes. 

 

 

1 2 3 4 5 

15. I struggle drawing three-dimensional 

shapes. 

 

 

1 2 3 4 5 
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Appendix E 

Permission to Use the Purdue Spatial Visualization Test 
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Appendix F 

Permission to Use the Spatial Thinking Attitude Survey 
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Appendix G 

Journal Prompts 

 

 

 

Journal Prompts 
Fall 2011 

 
1. Thinking back on previous experiences, can you identify instances where 

you: 
a. Used spatial skills or spatial thinking? 
b. Were taught spatial skills? 
c. Were in a situation where spatial thinking was emphasized? 

 
2. How would you describe your ability to think spatially? 

 
3. Do you think spatial thinking skills are important in general?  Why or why 

not? 
 

4. Thinking back to previous experiences, can you identify instances where 
you: 

a. Were expected to problem solve? 
b. Were taught to problem solve? 
c. Were in a situation where problem solving helped you answer a 

question? 
 

5. Do you think problem solving is important in everyday life?  Why or why 
not? 
 

6. Do you think your spatial skills have improved throughout this semester?  
Please explain.  

 
7. Reflecting on the problems and activities we did throughout the semester, 

describe something we did in class that had an impact on your spatial 
reasoning skills.  Further, how did it influence your spatial thinking ability? 
 

8. Do you feel your ability to problem solve has improved throughout the 
semester?  Please explain. 

 
9. Reflecting on the problems and activities we did throughout the semester, 

describe something we did in class that had an impact on your problem 
solving skills.  Further, how did it influence your problem solving abilities? 

 
10.  This semester you took a spatial test (PSVT) and a problem-solving test 

(MPI) two separate times.  Discuss your confidence level taking those 
tests at the beginning and end of the semester. 
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Focus Group Guided Interview Questions 

 

 

Focus Group Guiding Questions 
Fall 2011 

 
 
Group Interview—Phase 2 
 

1. Ask participants for general thoughts on the PSVT and the MPI.  Avoid 
discussing specific questions so post-measure will not be compromised.  

a. Were the questions difficult for you?  Why or why not? 
b. How do you feel you performed on the PSVT? 
c. How do you feel you performed on the MPI? 

 
2. Ask participants for general feedback on the STAS.  

 
3. Due to the fact that the general group answer to questions four, ten, and 

fourteen on the STAS was “Disagree”, ask the following: 
a. Do you think there are any other areas besides mathematics where 

spatial thinking skills are useful?  Explain. 
b. Does spatial thinking ever play a role in your daily life?  Explain. 
c. Do you generally find drawing 2D shapes easy or difficult?  Explain. 

 
 
Group Interview—Phase 3 
 

1. How important is the development of spatial thinking and/or problem 
solving skills in your future students?  

a. Is this development your responsibility? 
b. Are these skills something you can help foster? 

 
2. Discuss the in-class activities.  Which activities do you like or dislike?  

Explain. 
a. Would you have benefitted from these activities, or more of these 

activities, in your elementary or secondary education?  Explain. 
b. Do you think your future students would enjoy any of the mentioned 

activities? 
 

3. Could you see yourself incorporating spatial thinking activities into your 
future classroom curriculum?  

a. If yes, when would you use them? 
b. If yes, how would you use them? 
c. If no, why not? 
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Group Interview—Phase 5 
 

1. Ask participants for general thoughts on the second PSVT and MPI.  Do 
NOT give students their results so that confidence levels are not altered.  
Specific questions may be discussed. 

a. Were the questions easier or more difficult for you the second time?   
b. How do you feel you performed on the PSVT compared with the 

first time you took it? 
c. How do you feel you performed on the MPI compared with the first 

time you took it? 
 

2. Due to the fact that the average group response to questions two, three, 
four, five, six, and ten changed category, ask the following: 

a. Prompted by Q2 and Q6: Do you think spatial skills are important 
enough to incorporate into your future classroom?  Explain. 

b. Prompted by Q3 and Q5: Do you think spatial thinking skills can be 
developed and/or improved?  Explain. 

c. Prompted by Q4 and Q10: How and/or where are spatial skills 
useful in daily life?  Explain. 

 
3. Discuss general feedback on the STAS. 

 
 


