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Abstract

Proposed in this dissertation is a novel reduced order modeling (ROM) framework

called optimal spatiotemporal reduced order modeling (OPSTROM) for nonlinear

dynamical systems. The OPSTROM approach is a data-driven methodology for the

synthesis of multiscale reduced order models (ROMs) which can be used to enhance

the efficiency and reliability of under-resolved simulations for nonlinear dynamical

systems. In the context of nonlinear continuum dynamics, the OPSTROM approach

relies on the concept of embedding subgrid-scale models into the governing equations

in order to account for the effects due to unresolved spatial and temporal scales.

Traditional ROMs neglect these effects, whereas most other multiscale ROMs account

for these effects in ways that are inconsistent with the underlying spatiotemporal

statistical structure of the nonlinear dynamical system.

The OPSTROM framework presented in this dissertation begins with a general

system of partial differential equations, which are modified for an under-resolved

simulation in space and time with an arbitrary discretization scheme. Basic filtering

concepts are used to demonstrate the manner in which residual terms, representing

subgrid-scale dynamics, arise with a coarse computational grid. Models for these

residual terms are then developed by accounting for the underlying spatiotemporal

statistical structure in a consistent manner. These subgrid-scale models are designed

to provide closure by accounting for the dynamic interactions between spatiotemporal

macroscales and microscales which are otherwise neglected in a ROM. For a given

resolution, the predictions obtained with the modified system of equations are optimal

(in a mean-square sense) as the subgrid-scale models are based upon principles of

mean-square error minimization, conditional expectations and stochastic estimation.
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Methods are suggested for efficient model construction, appraisal, error measure, and

implementation with a couple of well-known time-discretization schemes.

Four nonlinear dynamical systems serve as testbeds to demonstrate the technique.

First we consider an autonomous van der Pol oscillator for which all trajectories

evolve to self-sustained limit cycle oscillations. Next we investigate a forced Duffing

oscillator for which the response may be regular or chaotic. In order to demonstrate

application for a problem in nonlinear wave propagation, we consider the viscous

Burgers equation with large-amplitude inflow disturbances. For the fourth and final

system, we analyze the nonlinear structural dynamics of a geometrically nonlinear

beam under the influence of time-dependent external forcing.

The practical utility of the proposed subgrid-scale models is enhanced if it can be

shown that certain statistical moments amongst the subgrid-scale dynamics display to

some extent the following properties: spatiotemporal homogeneity, ergodicity, smooth

scaling with respect to the system parameters, and universality. To this end, we

characterize the subgrid-scale dynamics for each of the four problems. The results

in this dissertation indicate that temporal homogeneity and ergodicity are excellent

assumptions for both regular and chaotic response types. Spatial homogeneity is

found to be a very good assumption for the nonlinear beam problem with models

based upon single-point but not multi-point spatial stencils. The viscous Burgers flow,

however, requires spatially heterogeneous models regardless of the stencil. For each of

the four problems, the required statistical moments display a functional dependence

which can easily be characterized with respect to the physical parameters and the

computational grid. This observed property, in particular, greatly simplifies model

construction by way of moment estimation.

We investigate the performance of the subgrid-scale models with under-resolved

simulations (in space and time) and various discretization schemes. For the canonical

Duffing and van der Pol oscillators, the subgrid-scale models are found to improve

xiv



the accuracy of under-resolved time-marching and time-spectral simulations by one

to two orders of magnitude. The models are also found to improve the reliability

of predictions for both regular and chaotic response types by eliminating the onset

of artificial regularity due to strong numerical damping with a coarse temporal grid.

For the viscous Burgers flow and nonlinear beam problems, both subgrid spatial

and temporal scales prove to be important as finite-difference-based simulations are

expedited by coarsening the computational grid in space and time. For the viscous

Burgers flow, the subgrid spatial and temporal models alone appear to be insufficient

for error reduction, but when used in conjunction, the models are shown to improve

statistical descriptions of the flow by five-fold. For the nonlinear beam, we perform

a set of numerical experiments designed to capture the complex bifurcation behavior

of the beam response. Maps for the Lyapunov exponents are also obtained with

greater accuracy by including the subgrid-scale models. We find that a specified level

of accuracy can be obtained one to two orders of magnitude faster by including the

models instead of refining the computational grid.
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CHAPTER 1

Introduction

Multiscale structures are prevalent in many nonlinear dynamical systems. Interactions

between large-scale and small-scale structures are often responsible for many features,

including bifurcations, chaos, intermittency, turbulence, and other phenomena [1, 2].

For many scientific and engineering applications, however, not all of the multiscale

structures in a system may be important. Occam’s razor (also known as the principle

of parsimony) suggests that at some point, it may be appropriate to neglect the scales

below a certain threshold. Mathematical models based upon principles of continuum

mechanics, for example, neglect atomistic and molecular processes which typically

occur on nanometer (10−9m) length scales and femtosecond (10−15s) time scales [3].

As a general rule for a practical study, the analyst should consider only those physical

processes deemed important and measurable when deriving a set of partial differential

equations (PDEs) to model a system and define a problem.

A complete problem definition consists of a set of PDEs along with the necessary

boundary conditions (BCs) and initial conditions (ICs). Once a problem is defined,

the next step in an analysis is to solve the equations for the quantities of interest. If

an exact analytical solution to the PDEs can be found (often this is not the case),

the fidelity of any model is limited by the difference between the exact solution and

the true physical process, also referred to as the epistemic error [4–6].

Additional forms of error may occur when analytical solutions are not possible and

numerical solutions with computers must be sought [7,8], as illustrated in Figure 1.1.

Discretization errors occur as a result of representing the set of continuous PDEs as

1



Physical process Governing PDEs
with ICs and BCs

Discretized
equations

Numerical
solution

Epistemic
errors

Discretization
errors

Numerical
errors

Physical laws
& assumptions

Discretization
schemes

Digital
computers

Figure 1.1: Forms of error in the numerical analysis of nonlinear dynamical systems.
The blue boxes indicate the various stages of numerical analysis, the yellow diamonds
indicate the tools with which each step is made, and the red ovals indicate the various
forms of error which occur as a result of the analysis.

algebraic expressions in a discrete domain space, which is typically referred to as the

computational mesh or grid [9]. Discretization errors are intrinsic to any numerical

analysis based upon finite-difference (FD), finite-element (FE), finite-volume (FV) or

spectral schemes with a coarse grid [10]. Numerical errors, which are also referred to

as round-off errors, occur during simulation due to finite machine precision and are

unavoidable with modern digital computers [11, 12].

In this dissertation, we propose a novel theoretical framework that can be used

to reduce discretization errors in under-resolved numerical simulations for nonlinear

dynamical systems. As the technique will be developed for a general set of PDEs, we

acknowledge that epistemic errors may exist and numerical errors will also be present.

The remainder of this introduction is organized as follows. To provide context for the

proposed theoretical framework, in Section 1.1, we discuss the notion of fully resolved

simulations. Then we review the vast amount of literature on reduced order modeling

in Section 1.2 and multiscale modeling in Section 1.3. The need for a new approach

will be established in Section 1.4, and in Section 1.5, we outline the key features of the

proposed theoretical framework. Section 1.6 provides an overview of the dissertation.
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1.1 Fully resolved simulations

The range of scales to be represented in a numerical simulation is determined by the

computational grid (both spatial and temporal) and the accuracy of the discretization

scheme. Often the analyst aims to predict only large-scale quantities of interest and

practical relevance [13]. For some systems, however, it may be necessary to resolve

small-scale quantities below the threshold of interest due to widespread coupling be-

tween multiscale spatiotemporal structures [14]. Hence, with a standard discretization

scheme, a highly refined computational grid may be required for reliable predictions.

A so-called fully resolved simulation (FRS) contains negligible discretization errors

and renders the most accurate solution with respect to the scales considered relevant.

Here we draw a distinction between the scales deemed important in a physical

process (macroscale) and those considered negligible (microscale). We further distin-

guish the scales resolved in a numerical simulation (coarse) from those left unresolved

(subgrid). These are subtle differences which become moot if the PDEs are considered

to be an exact description of the physical process and a FRS solution can be found.

For under-resolved simulations, however, distinction of these scales can be important.

1.2 Reduced order modeling

For many systems, the computational expense required to obtain a FRS can be pro-

hibitive. When a large number of degrees of freedom (DOFs) are used in a simulation,

the required memory can exceed available resources and the computation time can

become unwieldy. These challenges can, in principle, be overcome by developing a

reduced order model (ROM) [15, 16]. The primary objective of a ROM is to predict

macroscale behavior as accurately as possible with a reduced computational burden

such that
cost of ROM
cost of FRS � 1.
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Standard ROMs are able to provide affordable simulations by resolving fewer scales

than a FRS.

The development of ROMs (in space and time) has become an interdisciplinary

endeavor [15, 16]. From a mathematical perspective, the construction of a ROM

typically involves to the expansion of a problem field into a set of known basis vectors

whose unknown coefficients are found using either a Ritz or weighted residual method

[17]. Normal mode analysis (NMA) for solid mechanics [17, 18] is perhaps the most

well-known example in which the basis vectors are functions of space. The harmonic

balance (HB) approach [19,20] is a classic example of constructing a ROM with basis

vectors that are functions of time. In electrical engineering, ROMs are commonly

developed for nonlinear circuit analysis by means of Krylov subspace techniques,

Hankel norm model reduction, and Schur interpolation [15]. Many of the ROMs

fundamental to the fields of aerodynamics and aeroelasticity are based upon Volterra

series [16] and proper orthogonal decomposition (POD) [21]. For many of these

“standard” ROMs, the construction process is based upon prior knowledge about the

system obtained from highly resolved simulation. Information from a select number

of resolved modes is typically retained, whereas information about effects due to

unresolved scales is typically discarded. By no means should this be considered an

exhaustive list, but the common theme with standard ROMs is that they produce

coarse approximations of the true solution.

We suggest that any simulation method should be considered a ROM if it fails to

provide the resolution of a FRS. This includes standard discretization schemes based

upon FD, FE, FV and spectral methods. Consider, for example, a FD-based time-

marching simulation for an initial value problem: in order to completely resolve all

relevant time scales, the analyst should choose a sufficiently small timestep. Equiva-

lently, for a time-spectral simulation [22], the choice becomes one of retaining enough

temporal modes. But for many problems, the timestep or number of temporal modes
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Figure 1.2: Resolutions achievable (in a limiting sense) by varying the computational
grid (in space and time) with an appropriate scheme (one that is stable, consistent
and convergent): under-resolved in space and under-resolved in time (USUT), fully-
resolved in space and under-resolved in time (FSUT), under-resolved in space and
fully-resolved in time (USFT), and a fully resolved simulation (FRS). Ω denotes the
spatial domain in which the system resides and T denotes the largest time scale. Any
simulation other than a FRS should be considered a ROM.

required for a FRS may be just as prohibitive as the required spatial grid. In practice,

the analyst may achieve a more affordable simulation (i.e. a ROM) by coarsening the

computational grid or reducing the number of DOFs. Such an approach, however,

often comes with a compromise in accuracy. As illustrated in Figure 1.2, a ROM

may be under-resolved in space and under-resolved in time (USUT), fully-resolved

in space and under-resolved in time (FSUT), or under-resolved in space and fully-

resolved in time (USFT). Not all resolutions in Figure 1.2 may be feasible, or even

possible, depending on the numerical method and available resources.

When ROM simulations are used to help make decisions in engineering design and

analysis, discretization errors due to coarse computational grids can potentially lead to

unexpected outcomes and result in unexpected failure of the system. As an example,

we discuss a well-known case study conducted by Symonds and Yu [23]. This particu-

lar case study has been identified by Cook and his colleagues [24] as a cautionary tale

of computer misuse in engineering. Symonds and Yu considered a simply supported

beam with elastic-plastic constitutive properties subjected to a uniformly distributed

pressure pulse. The problem was sent out to ten analysts regarded as experts with
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Figure 1.3: Case study into the effects of under-resolution for an elastic-plastic beam,
conducted by Symonds and Yu [23] and reproduced courtesy of ASME. The beam is
simply supported on both ends and is subjected to a uniformly distributed pressure
pulse. Shown in the figure are solutions for the transverse displacement obtained by
ten expert analysts with various structural dynamics codes and computational grids.

the objective to predict the time-history for transverse displacement. The simulation

results, shown in Figure 1.3, were obtained with ten reputable structural dynamics

codes, including ABAQUS, ANSYS, MARC and others. Two of the curves, labeled 3b

and 3c, were obtained from the same code with two different timesteps, and yet they

suggest that the beam will reach two different equilibrium points as a result of plastic

deformation. So long as all of the codes are consistent, the differences in the curves

are the result of coarse spatial and temporal grids chosen by the analysts. Without

further analysis, it is impossible to tell which of the curves, if any, are correct.

The origin of errors intrinsic to any ROM can be traced back to the subgrid-scale

dynamics and their interactions with the resolved dynamics. Macroscale quantities in

a nonlinear system are, in fact, coupled with the microscale quantities [3]. Therefore,

without proper knowledge about the subgrid-scale dynamics, the discretized equations
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describing the evolution of the resolved quantities cannot be solved accurately [13].

This sort of issue is known throughout the physics literature as the closure problem [2].

In a standard ROM, closure is implicitly neglected as the subgrid-scale dynamics, and

their statistical moments, are effectively set to zero. For many applications, though,

neglecting closure can lead to intolerable discretization errors. To be useful for design

and analysis, a reliable ROM should not violate the constraint

ROM errors in quantities of interest < tolerance (problem-specific).

From an engineering perspective, the analyst is faced with a predicament when all

affordable ROMs are unreliable, or equivalently, when all reliable ROMs are unafford-

able. The search for remedies to this dilemma has become one of many focal points

in the field of multiscale modeling.

1.3 Multiscale modeling

The body of literature on multiscale modeling is both multidisciplinary and extensive.

A review article by Horstemeyer [14] provides historical perspective while focusing on

scientific and engineering applications. Another review article by Fish [3] compares

technical aspects of various types of methods that have emerged throughout the

years. Broadly speaking, multiscale modeling can refer to any simulation technique

capable of extracting certain quantities of interest from problems in which important

features exist on multiple scales [14]. The term enrichment is often used to signify

various forms of improvement in a simulation [3]. Throughout the literature, multi-

scale methods are typically classified as either information-passing or concurrent [3].

Information-passing (also referred to as serial or parameter-passing) methods involve

one-way coupling and are formulated to enrich the simulation of one set of scales using

information obtained previously from another set of scales. Concurrent (also referred
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to as hand-shaking) methods generally involve two-way coupling as microscale and

macroscale quantities are computed simultaneously “on-the-fly” [3].

Much of the work in recent years has concentrated on bridging scale methods, most

of which attempt to improve the description of a physical process by solving one set of

PDEs for macroscale dynamics while solving another set of equations for microscale

dynamics. An extensive overview of various bridging scale methods can be found in

a review article by Liu and Park [25] and in a book by Liu and his colleagues [26].

Belytschko and Xiao [27], for example, developed a framework for coupling molecular

dynamics (MD) simulations with continuum mechanics simulations based upon the

FE method. Wagner and Liu et al [28, 29] also presented a framework for projecting

MD simulations onto a global set of coarse scale shape functions. Kadowaki and

Liu [30] proposed a bridging scale method in which two continuum-based FE meshes

(one coarse, the other fine) are coupled for a class of localized failure problems. In the

field of fluid mechanics, bridging scale methods have been developed for problems in

non-Newtonian flows and microfluidics [31]. For instance, numerical simulations based

upon the Lattice Boltzmann method have been used as microscale models to enrich

solutions for flows governed by the continuum-based Euler equations [32] and Navier-

Stokes equations [33]. In this sense, the common objective of most atomistic-to-

continuum and continuum-to-continuum bridging scale methods is to reduce epistemic

errors by accounting for information otherwise neglected by a set of PDEs based upon

continuum mechanics.

Multiscale modeling can also refer to methods geared to address closure, or reduce

discretization errors, by accounting for information unresolved by standard ROMs.

In the fluids literature, for example, a simulation that completely resolves all relevant

spatial and temporal scales in the Navier-Stokes equations is said to be a direct nu-

merical simulation (DNS) [34]. Conceptually equivalent to a FRS, the computational

expense required for a DNS is often prohibitive. As an alternative, the numerical
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method known as large-eddy simulation (LES) [35, 36] is formulated to resolve only

the large-scale motions in a turbulent flow whereas the smallest scales [37], which

are most expensive to resolve, are modeled in various ways [35, 36]. With the LES

approach, these subgrid-scale models are embedded into the governing equations and

are designed to provide closure (to some degree) by accounting for the effects due

to unresolved spatial scales. Out of all the subgrid-scale models for LES, the one

proposed by Smagorinsky [38,39] is perhaps the most widely known.

The framework to be presented in this dissertation shares several features with

the LES approach in addition to a number of other multiscale methods. For example,

Hughes and his colleagues [40] presented a class of variational multiscale (VMS)

methods to enrich coarse scale FE solutions by assuming the fine scale structures to

be residual-free bubbles that vanish on the coarse scale element boundaries. As such,

with the VMS method, the fine scales structures can be “condensed out” of the coarse

scale FE solution. Hughes first developed the VMS method for problems with spatial

dependence [41] and later extended the technique for problems with time dependence

[42]. Liu et al [43] also developed a reproducing kernel particle method (RKPM)

for under-sampled spatial and temporal discretization schemes. More recently, Fish

and his colleagues [44] proposed a general framework for improving the accuracy

of spatial ROMs by adding to the governing equations information based upon a

nonlocal quadrature scheme.

Our proposed framework also shares some features with a class of heterogeneous

multiscale methods (HMMs) described by E and his colleagues [13]. In the spatial

domain, Abdulle [45] proposed a HMM for elliptical and parabolic PDEs. In the time

domain, Engquist [46] and Sharp [47] developed HMMs to improve the numerical

properties of stiff ODEs with multiple time scales. HMMs have also been developed

by E [48] and Vanden-Eijnden [49] for stochastic ODEs governing advection and

diffusion processes with multiple time scales.
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Other temporal multiscale models have been developed to provide enrichment

in the form of numerical stability, convergence or solvability [3]. To this end, a

variety of time-integration strategies have been deployed, including multi-time-step

methods [50, 51], time-homogenization [52], variational techniques [53] and domain

decomposition into orthogonal [54] and proper generalized [55] components. Unlike

the more popular spatial multiscale methods, however, enrichment in the form of

temporal accuracy is seldom addressed, let alone in an optimal sense.

1.4 Reduced order modeling with optimal prediction

A wide variety of mathematical formalisms have been proposed [56] to address the

issue of closure in multiscale ROMs. In this dissertation, we employ the first-order

optimal prediction formalism, which originates from concepts first put forth in the

statistical physics literature by Mori [57] and Zwanzig [58], and was further developed

by Chorin and his colleagues [59–62]. The optimal prediction formalism is based upon

principles of mean-square error minimization [63], conditional expectations [64] and

stochastic estimation [65,66]. Chorin first presented what is known as the first-order

optimal prediction formalism within the context of nonlinear dynamical systems [59].

He later proposed a higher-order version [60], specialized the technique for use with

Hamiltonian systems [61], and modified the system of equations to include the effects

due to non-Markovian memory [62].

In the analysis of turbulent flows, for example, a special (data-driven) variant of

LES known as optimal LES (OLES) [67–71] is based upon the optimal prediction

formalism such that the mean-square error is minimized between the subgrid-scale

models and the quantities for which they are designed to replace. The OLES approach

can be used to expedite numerical simulations for turbulent flows (by coarsening the

computational grid in the spatial domain) while maintaining reliable predictions for

the quantities of interest (by preserving the underlying spatial statistical structure).

10



Previous OLES models have been appraised for their ability to account for the effects

of subgrid-scale convection and diffusion terms, which arise due to the use of coarse

spatial grids [67–71]. It should be emphasized, however, that in OLES and all other

known LES models to date, only the effects due to subgrid spatial scales are addressed.

Valid or not, all time scales are assumed to be fully resolved. As such, OLES models

are able to improve the accuracy of predictions for multi-point in space, but only

single-point in time statistics of turbulent flows. This limitation may perhaps be the

reason why some state of the art LES models are unable to accurately predict the

evolution of certain flow structures [72,73]. Nevertheless, the basic principles behind

OLES can be applied to any nonlinear dynamical system in addition to turbulent

flows. As such, we consider OLES to be a specialized form of optimal spatial reduced

order modeling (OPSROM).

Beyond what is done in OLES and OPSROM, there exists an opportunity to

improve the efficiency of numerical simulations for nonlinear dynamical systems (by

coarsening the computational grid in time) while maintaining reliable predictions for

the quantities of interest (by preserving the underlying temporal statistical structure).

To this end, LaBryer, Attar and Vedula proposed the optimal temporal reduced

order modeling (OPTROM) framework for nonlinear dynamical systems [74, 75].

With OPTROM, subgrid-scale models based upon the optimal prediction formalism

are embedded into the governing equations (like OLES and OPSROM) in order to

account for the effects due to unresolved time scales (unlike OLES and OPSROM).

As a proof of concept, LaBryer, Attar and Vedula used the OPTROM approach to

improve the accuracy of under-resolved simulations for the canonical van der Pol [74]

and Duffing [75] oscillators with coarse time-marching and time-spectral schemes.

Since the van der Pol and Duffing oscillators contain no spatial dependence, there

was no need to address subgrid spatial scales. Both of these problems will be studied

extensively in this dissertation.
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1.5 Optimal spatiotemporal reduced order modeling

For nonlinear dynamical systems with spatiotemporal dependence, we hypothesize

that it may be possible to improve the reliability and efficiency of under-resolved

simulations by accounting for the combined effects due to subgrid spatial and temporal

scales. In this context, we aim to fill a knowledge gap by addressing several research

questions, including: What kind of information is required in order to model the

effects due to subgrid spatial and temporal scales? Out of all possible choices for the

subgrid-scale models, which functional forms will provide optimal predictions for the

quantities of interest? What are the ways in which these models can be constructed?

When can one expect these models to successfully improve the reliability and efficiency

of under-resolved simulations?

In this dissertation, we propose the new optimal spatiotemporal reduced order

modeling (OPSTROM) framework [76–78], which can be used to expedite numerical

simulations for nonlinear dynamical systems (by coarsening the computational grid

in space and time) while maintaining reliable predictions for the quantities of interest

(by preserving the underlying spatiotemporal statistical structure). The proposed

framework is essentially the combination of any spatiotemporal ROM with a special

type of two-way interactive subgrid-scale model, and therefore, can be classified as

a form of concurrent multiscale modeling [3]. The OPSTROM framework is based

upon the following key features:

• Effects due to unresolved spatial and temporal scales are accounted for

• Subgrid-scale dynamics are derived using filters tailored to the ROM

• Subgrid-scale models are designed to interact with the resolved scales

• Model construction is data-driven, and is based upon principles of mean-square

error minimization, conditional expectations and stochastic estimation
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• By construction, the subgrid-scale models are consistent with the underlying

spatiotemporal statistical structure

Whereas some of the features listed above can also be found in several other multiscale

models, when taken as a whole, they make the OPSTROM framework unique. The

final feature, in particular, distinguishes OPSTROM from most other HMM, VMS,

LES and bridging scale methods. Unlike the OLES approach for turbulent flows,

OPSTROM accounts for subgrid temporal scales (in addition to subgrid spatial scales)

and is formulated for any nonlinear dynamical system (in addition to turbulent flows).

To the author’s knowledge, OPSTROM marks the first application of the optimal

prediction formalism to a spatiotemporal multiscale ROM.

The OPSTROM approach has practical application for a wide range of multiscale

problems in engineering and physics, particularly if the inputs required for model

construction (multi-point statistical moments amongst the subgrid-scale dynamics)

display (at least to some extent) the following statistical properties: spatiotemporal

homogeneity, ergodicity, smooth scaling with respect to the system parameters, and

universality [79]. Each of these properties have been observed to a large degree in

turbulent flows [2]. Smagorinsky-type LES models, for example, are based on the

assumption of universal dissipation on the microscale level [80]. In this dissertation,

we expect to find (as others have suggested [79, 81]) a similar type of behavior in

other nonlinear dynamical systems. While this proposed work will concentrate on

continuum-based ROMs, the technique should also be applicable to multiscale ROMs

in which the subgrid-scale dynamics are derived from molecular dynamics or statistical

physics based simulations.
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1.6 Overview

This dissertation is organized as follows. In Chapter 2, we present the OPSTROM

framework for nonlinear dynamical systems. Our presentation of the technique will

begin with a derivation of subgrid-scale dynamics and subgrid-scale models followed

by suggestions for practical application, including simplifying assumptions for model

construction, appraisal, error measures and implementation. Then, in Chapter 3,

we describe four nonlinear dynamical systems with unique features that will serve

as testbeds to demonstrate the technique. We will investigate the canonical van

der Pol and Duffing oscillators, a viscous Burgers flow subject to large amplitude

inflow disturbances, and a geometrically nonlinear beam under the influence of time-

dependent external forcing. In Chapter 4, we characterize the subgrid-scale dynamics

for each of the four problems. The results of this characterization will greatly influence

the construction of subgrid-scale models. In Chapter 5, we study the performance

of standard ROM, OPTROM, OPSROM and OPSTROM simulations with various

subgrid-scale models. We aim to determine which ROM(s) provide the best trade-off

between computational expense and accuracy for each problem. Various tools and

measures will be used in order to investigate the numerical solutions, including time

history plots, Fourier transformations, contour plots, surface plots, Poincaré maps,

phase portraits, bifurcation diagrams and Lyapunov exponents. Concluding remarks

and recommendations for future work are offered in Chapter 6.
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CHAPTER 2

Proposed theoretical framework

As discussed in the previous chapter, the objective of the optimal spatiotemporal

reduced order modeling (OPSTROM) framework is to expedite numerical simulations

for nonlinear dynamical systems (by coarsening the computational grid in both space

and time) while maintaining reliable predictions for the quantities of interest (by

preserving the underlying spatiotemporal statistical structure). The technique to be

presented here is valid for any nonlinear dynamical system governed by PDEs in space

and time. The number of states and spatial dimensions may be arbitrarily large, and

the trajectories may be regular or chaotic. Such a system can be written as

Au = R (u,x, t) in Ω, (2.1)

along with an appropriate set of BCs and ICs. The system contains NS states in

u (x, t) with components ui, which evolve in physical space and time, where x is a

vector of ND spatial coordinates with components xk and t is the time. A is a linear

time-derivative operator (typically first-order or second-order) and R is a generally

nonlinear function of the states, their spatial derivatives, position and time. Ω denotes

the spatial domain in which the system resides.

We presume the analyst has chosen to discretize the governing equations with a

coarse computational grid out of necessity or convenience. The chosen scheme does

not properly resolve all spatiotemporal scales of interest, and therefore, discretization

errors will occur (at times substantial). If certain statistical information is known

a priori about the interactions between unresolved spatiotemporal scales and resolved
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spatiotemporal scales, it can be used to improve the accuracy of numerical solutions.

Such a method will now be outlined.

2.1 Subgrid-scale dynamics

In this section, we demonstrate the manner in which subgrid-scale dynamics arise

in the governing PDEs using basic filtering concepts. For the sake of pedagogy, we

assume the analyst has a priori knowledge of the true solution u for any set of

parameters. Where this knowledge comes from is not of immediate importance. To

be discussed in Section 2.8, complete knowledge of u should not be considered a

requirement, but rather, knowledge of some invariant statistical measures should be

sufficient for model construction.

Under-resolved solutions can be considered filtered representations of the true

solution, as depicted in Figure 2.1. Similar to what is done for LES of turbulent

flows [2,35] and other multiscale methods [25,40], the true signal u can be decomposed

into filtered ũ and residual û components

u (x, t) = ũ (x, t) + û (x, t) . (2.2)

The filtering operation [2, 35] used to obtain ũ can be represented as an integral

transform in space and time

ũ (x, t) =
∫ ∫

G (x′, t′) u (x− x′, t− t′) dx′dt′. (2.3)

The amount of information contained in ũ is generally less than that contained in u.

Such irreversible loss of information introduces an intrinsic error, which serves as a

lower bound for any ROM. The kernel G can take on any form. For certain schemes,

G can be split into spatial and temporal kernels, Gx and Gt, such that the filtering
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Figure 2.1: Decomposition of the true solution ui(xk, t) into filtered ũi(xk, t) and
residual ûi(xk, t) components.

operation in (2.3) is a two-step process. Equivalently, in the Fourier domain, the

filtering operation can be written as a Fourier smoothing or spectral cutoff filter

˜̄ukl = G (l, k) ūkl , (2.4)

where l and k denote the spatial and temporal wavenumbers, ū are the true Fourier

modes, ˜̄u are the filtered Fourier modes, and G (l, k) is the Fourier filter.

To produce ũ with any ROM, each term in the governing PDEs and BCs in (2.1)

must be filtered with the chosen G (x′, t′) or G (l, k). Doing so effectively separates the

coarse quantities from the subgrid-scale quantities. This filtering operation can also

be viewed as a non-invertible mapping from an infinite-dimensional solution space to

a finite-dimensional space [22]. The modified governing PDEs become

Ãu = Â�R (u,x, t). (2.5)

We can rewrite (2.5) in terms of ũ by introducing the residual field τ , which accounts
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for all forms of commutation error associated with the filtering operator:

Aũ = R (ũ,x, t) + τ (u, ũ,x, t) (2.6)

τ (u, ũ,x, t) = α (u, ũ,x, t) + γ (u, ũ,x, t)

α (u, ũ,x, t) = Aũ− Ãu

γ (u, ũ,x, t) = Â�R (u,x, t)−R (ũ,x, t) .

The system in (2.6) represents the set of PDEs modified for a ROM. We refer to

the total residual field τ as the subgrid-scale dynamics. For problems in continuum

mechanics, it may be insightful to refer to α as the subgrid-scale acceleration and

γ as the (mass normalized) subgrid-scale force. This terminology aligns with the

fluids literature [36] in which unresolved components of the Navier-Stokes equations

are commonly referred to as the subgrid-scale viscosity and subgrid-scale convection.

Additional residual terms, referred to as subgrid-scale boundary conditions (not shown),

will arise if the BCs contain nonlinear terms or derivative operators.

It should be noted at this point that standard ROMs ignore the residual fields in

(2.6). Closure is neglected as the following equations are solved for instead:

Aũ ∼= R (ũ,x, t) . (2.7)

While for some applications the solution to (2.7) may be acceptable, for others the

solution to (2.7) may contain intolerable errors, especially if there are many interacting

scales. When the residual terms in (2.6) are neglected, the filtering operation used to

construct the ROM is no longer consistent with the filter relating u to ũ.
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2.2 Subgrid-scale models

If the exact expression for τ is known, the filtered solution ũ can be obtained by

solving the modified PDEs in (2.6). For most systems, however, it is not feasible [60]

to derive an exact expression for τ due to its functional dependence on the true

solution u. Our approach is to evolve a simpler form of the governing equations

instead of the true form in (2.6) by removing the functional dependence of τ on u.

This can be done by modeling τ as a function of the filtered solution ũ. If we letM

represent the model for τ , we can rewrite (2.6) as

Aũ ∼= R (ũ,x, t) +M (ũ,x, t) . (2.8)

The next task is to find a model which best approximates the projection of τ onto

ũ. Out of all possible representations forM, it can be shown (see Appendix A) that

the mean-square error betweenM and τ is minimized when the model takes on the

form of a conditional average:

M (ũ,x, t) = 〈τ (u, ũ,x, t) |φ〉 , (2.9)

where φ is the subset of ũ onto which τ is projected

φ = {ũ (x′, t′) : x′ ∈ Ω, 0 ≤ t′ ≤ t}. (2.10)

Note thatM depends not on u but ũ. Choosing a model of the form in (2.9) is the

premise of first-order optimal prediction [60]. No other model can be more accurate

(in a mean square sense). Our selection of φ in (2.10) may include any subset of ũ

in the spatial domain, Ω, and any portion of the time history from zero to present

time. Besides introducing a model and following the mean-square error minimization
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approach in Appendix A, derivation of the result in (2.9) can also be motivated [61]

by choosing to remove the functional dependence of τ on u by simply taking the

mean of (2.6) conditional on φ.

An exact model for 〈τ |φ〉 (or any quantity in the system for that matter) can be

found ifM takes on the form of the generalized Langevin equation [58,60]:

M(ũ,x, t) = P(ũ,x, t) +
∫ t

0
κ(t′) 〈τ (u, ũ,x, t− t′)|φ〉 dt′ +N (x, t), (2.11)

or simply, M = P + K +N . The Markovian contribution P is the projection of

〈τ |φ〉 onto the known data ũ at present time. K is a manifestation of non-Markovian

memory (referred to as the friction [58]), which depends on the history of the data

from zero to present time, and the kernel κ represents the memory function. The

noise N is uncorrelated with the known data (the portion of τ orthogonal to ũ), and

hence, is unpredictable without some additional knowledge other than ũ. Similar

types of Langevin descriptions have been used by Liu and his colleagues for a number

of bridging scale methods [25].

Developing an exact model for 〈τ |φ〉 as in (2.11) is often impractical [61], in

which case the closure problem now becomes one of estimating 〈τ |φ〉 as accurately as

possible. Such models have been developed in previous works [65,66] using principles

of stochastic estimation. The premise behind the technique is to assume 〈τ |φ〉 and ũ

are correlated in space and time. It is then possible to predict 〈τ |φ〉 ifM is chosen

to be some function of ũ. The stronger the correlation (positive or negative), the

more accurately we should be able to estimate 〈τ |φ〉. The most general form of such

a model can be written in the form of a Volterra series expansion [66] with respect

to ũ. As shown in (2.10), the support for such a model may span the entire spatial

domain in Ω and may include any portion of the time history from zero to present

time. Simpler (and perhaps more useful) approximations can be made with a local
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estimate such that the model has limited extent in space and time. Such methods

will be explored in Section 2.5 whereM will be projected onto a multivariate power

series in terms of discrete values of ũ. To write such an expansion, the field variables

must first be discretized.

2.3 Discretization

The subgrid-scale dynamics in Section 2.1 and subgrid-scale models in Section 2.2

were derived in terms of the continuous field variables in the physical domain. In the

following sections, we demonstrate how these general concepts translate to the discrete

field variables in the computational domain. To this end, we consider an arbitrary

numerical method which requires full discretization of the governing PDEs in space

and time. Spatial discretization of (2.6) into NN spatial DOFs results in a system

of nonlinear ordinary differential equations (ODEs) in time. The semi-discretized

(in space) components of ũ can be written as (ũi)j (t), where the outer subscript

denotes the spatial node with coordinates (xk)j. Temporal discretization results in a

system of nonlinear algebraic equations to be solved for at NT temporal DOFs. The

fully-discretized components of ũ become (ũi)nj , where the outer superscript denotes

the timestep with time tn. Similarly, the remaining field variables in (2.6) can be

written as (Ri)nj , (τi)nj , (αi)nj and (γi)nj . The total number of DOFs to be solved for

in a simulation is NS ×NN ×NT .

Computational grids for the discrete field variables (in physical space and time)

are illustrated in Figures 2.2 and 2.3 for a FRS and a ROM. Observe that the spacing

between neighboring spatial nodes and timesteps for the fully resolved signal (∆xFRS
k

and ∆tFRS) is smaller than the spacing for the coarse signal (∆xROM
k and ∆tROM).

This comes from the notion that ROMs provide less resolution in space and time.

Uniform grid parameters ∆xk and ∆t could also be written as (∆xk)nj and (∆t)nj to

allow for spatial nonuniformity and temporal grid adaptation.
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Figure 2.2: Spatial grids for a FRS and a ROM.

1.65 1.7 1.75 1.8
-0.05

0

0.05

0.1

0.15

0.2

0.25

(ui)j(t)
(u~i)j(t)

(u~i)j
n-1

(ui)j
n

(ui)j
n+1

(ui)j
n-1

(u~i)j
n (u~i)j

n+1

!tROM

!tFRS

tn-1 tn tn+1

Figure 2.3: Temporal grids for a FRS and a ROM.

2.4 Discrete subgrid-scale dynamics

The discrete subgrid-scale dynamics depend largely on the chosen filtering operation.

Previous works in LES for turbulent flows [67,82] have recognized the importance of

filter selection. In this work, we suggest that the filtering operation used to derive the

subgrid-scale dynamics should be tailored to the chosen ROM. To demonstrate, we
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consider a scenario in which the analyst has a priori knowledge of the true solution,

u, which we assume to be equivalent to the FRS solution. Any filter may be selected

arbitrarily by the analyst in order to produce ũ. One filter in particular, however,

would result in ũ being equivalent to the a posteriori result of the chosen ROM if the

discretization errors could (hypothetically) be removed. We consider such a filter to

be consistent with the ROM, as shown in Figure 2.4. The choice of any other filter

is said to be inconsistent with the ROM.

Taylor-series-based FD schemes, for example, produce space-time-limited signals,

which require finite support in physical space and infinite support in the Fourier

domain [22]. A consistent filter for a ROM based on a FD scheme should produce

a signal which coincides with the FRS result at every spatial node and timestep.

A comb-type sampling filter [22] should then be applied, in which case the filtered

states (ũi)nj and fully resolved states (ui)nj are equivalent at coincidental grid points,

as depicted in Figure 2.4. The subgrid-scale dynamics, (αi)nj and (γi)nj , can then be

calculated by applying the FD expressions for A(ui)nj and (Ri)nj in (2.6) to the filtered

signals. Note that the actual kernel G in (2.3) need not be known when a comb-type

sampling filter is chosen to produce (ũi)nj .

To illustrate application of a comb-type sampling filter, we consider a system in

which Au = ∂u/∂t. A temporal ROM can be constructed using a first-order accurate

backward FD scheme. The subgrid-scale acceleration in (2.6) then becomes

(αi)nj = (ui)j(tn)− (ui)j(tn −∆tROM)
∆tROM

(2.12)

− (ui)j(tn)− (ui)j(tn −∆tFRS)
∆tFRS

.

Since we have chosen a comb-type sampling filter, the first term on the right hand

side of (2.12) is equivalent to ∂(ui)nj /∂t + εt, where εt represents the O(∆tROM) dis-

cretization errors for the FD scheme. From the definition of a FRS, the second term
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Figure 2.4: Filtered representations of a FRS signal, ui(xk, t). Possible choices for
ũi(xk, t) can be obtained with consistent filters, which of course depend on the ROM,
or inconsistent filters, which can be chosen arbitrarily. Comb-type sampling filters are
typically consistent with FD, FE and FV schemes, whereas cutoff filters are typically
consistent with spectral schemes.

on the right hand side of (2.12) is an error-free representation of ∂(ui)nj /∂t. The

expression for (αi)nj in (2.12) then becomes (αi)nj = εt. When added to the modified

PDEs in (2.6), (αi)nj eliminates all discretization errors associated with the temporal

FD scheme. The choice of any other filter for a temporal FD scheme would introduce

additional forms of error.

Similarly, for a system in which R = −u · ∇u, a spatial ROM can be constructed

using a second-order accurate central FD scheme. With the selection of a comb-type

sampling filter, the subgrid-scale force in (2.6) then becomes

(γi)nj =(uk)nj
(ui)n((xk)j + ∆xROM

k )− (ui)n((xk)j −∆xROM
k )

2∆xROM
k

(2.13)

−(uk)nj
(ui)n((xk)j + ∆xFRS

k )− (ui)n((xk)j −∆xFRS
k )

2∆xFRS
k

.
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Again, since we have chosen a consistent filter, we have (γi)nj = −εx, where εx repre-

sents the O((∆xROM
k )2) discretization errors in (2.13). When added to the modified

PDEs in (2.6), (γi)nj eliminates the discretization errors associated with the spatial

FD scheme. The choice of any other filter for a spatial FD scheme would introduce

additional forms of error.

Spectral schemes, such as the HB method [19, 20], produce band-limited signals,

which require finite support in Fourier space and infinite support in physical space [22].

A consistent filter for a spectral-based ROM should recover (exactly) the same number

of FRS Fourier modes to be resolved by the ROM (NN and NT ). If the FRS data is

represented in physical space, it should be transformed to the Fourier domain where

the filtering operation takes place. The Fourier modes should then be truncated using

a spectral cutoff filter [22] to match the desired resolution. The cutoff filter in (2.4)

is given by

G(l, k) =


1 if l ≤ NN and k ≤ NT

0 if l > NN or k > NT .
(2.14)

Once the filtering operation is complete, the filtered Fourier modes (˜̄ui)kl can then be

transformed back to physical space to obtain (ũi)nj and the subgrid-scale dynamics

can readily be calculated. Note that the subgrid-scale dynamics have a convenient

property when a cutoff filter is chosen: the filtering operator commutes through the

time-derivative operator, Ãu = Aũ, in which case the subgrid-scale acceleration is

zero and only the subgrid-scale force remains. When added to the modified PDEs in

(2.6), (γi)nj eliminates the truncation errors associated with the spectral scheme.

Other filtering operations for FD and spectral schemes are conceivable. FE and

FV schemes can be treated in a similar manner. Depending on the application, the

analyst may consider an inconsistent filter to be appropriate. Regardless of the ROM,

the chosen filter should represent the desired a posteriori result when applied to the

FRS solution.
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2.5 Discrete subgrid-scale models

Discrete subgrid-scale models can be derived using a stochastic estimate [65,66] with

local support in space and time. Analogous to a Volterra series, we proceed by

expanding (Mi)nj , the model for the ith state at spatial node j and timestep n, in the

form of a multi-point (in space and time) power series about the filtered states (ũi)nj :

(Mi)nj ∼= (Ai)nj (2.15)

+
MS∑
α

MN∑
ξ

MT∑
µ

(Biα)nµjξ (ũα)µξ

+
MS∑
α,β

MN∑
ξ,η

MT∑
µ,ν

(Ciαβ)nµνjξη (ũα)µξ (ũβ)νη

+ . . .

The subgrid-scale model in (2.15) involves a constant term (Ai)nj , a linear kernel

(Biα)nµjξ and a quadratic kernel (Ciαβ)nµνjξη . Higher-order expansions are indeed possible.

Information considered useful in the estimate are MS states at MN spatial nodes and

MT timesteps. The multi-point spatiotemporal stencil implied by the summation

in (2.15) may be taken to be as large or small as desired, as long as the required

information is available (recall Figures 2.2 and 2.3). With regards to implementation,

this choice may be influenced by the amount of information the analyst is willing to

process and store during a simulation.

The fidelity of the subgrid-scale model in (2.15) depends not only on the functional

form and chosen stencil size, but also on the accuracy of the estimation coefficients.

Out of all possible choices, it can be shown (see Appendix B) that the mean-square

error between the conditional average in (2.9) and the multi-point power series ap-

proximation in (2.15) is minimized when the following system of stochastic equations
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are satisfied: ¨
(τi)nj

∂
= (Ai)nj (2.16)

+
MS∑
α

MN∑
ξ

MT∑
µ

(Biα)nµjξ
¨
(ũα)µξ

∂
+

MS∑
α,β

MN∑
ξ,η

MT∑
µ,ν

(Ciαβ)nµνjξη

¨
(ũα)µξ (ũβ)νη

∂¨
(τi)nj (ũγ)λφ

∂
= (Ai)ηξ

¨
(ũγ)λφ

∂
+

MS∑
α

MN∑
ξ

MT∑
µ

(Biα)nµjξ
¨
(ũα)µξ (ũγ)λφ

∂
+

MS∑
α,β

MN∑
ξ,η

MT∑
µ,ν

(Ciαβ)nµνjξη

¨
(ũα)µξ (ũβ)νη (ũγ)λφ

∂¨
(τi)nj (ũγ)λφ (ũδ)ρψ

∂
= (Ai)ηξ

¨
(ũγ)λφ (ũδ)ρψ

∂
+

MS∑
α

MN∑
ξ

MT∑
µ

(Biα)nµjξ
¨
(ũα)µξ (ũγ)λφ (ũδ)ρψ

∂
+

MS∑
α,β

MN∑
ξ,η

MT∑
µ,ν

(Ciαβ)nµνjξη

¨
(ũα)µξ (ũβ)νη (ũγ)λφ (ũδ)ρψ

∂
.

The key feature of the stochastic estimate used here is thatM in (2.15) can be used

to predict any quantity in a system, assuming the desired quantity is correlated with

ũ. To obtain the estimation coefficients for any model, the desired quantity should

be substituted forM in Appendix B. For OPSTROM,M is used to approximate

〈τ |φ〉. Each of the moments amongst ũ and τ in (2.16) are interpreted as inputs

required for model construction. These inputs can be evaluated numerically once the

true solution is obtained and a filter is chosen for the ROM. The mean operator 〈·〉

is to be calculated over the spatiotemporal domain of interest. Once the moments

are evaluated, the estimation coefficients in (2.15) can be found by solving the linear

algebraic system of equations in (2.16).

The size of the linear algebraic system in (2.16) depends on the number of states

to be included in the model MS, the spatial stencil MN , temporal stencil MT , and
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the order of the approximation. While it is reasonable to expect that increasing

the number of these parameters will lead to a better prediction for τ , the presence of

distant and poorly correlated data can sometimes worsen the estimate [68]. Moreover,

no guarantees can be made regarding whether or not the equations we obtain in (2.16)

can be solved [61]. Certain models may not be realizable. In addition to our choice

of ũ, other quantities in R could be used to improve the estimate.

2.6 Optimal reduced order modeling variants

The analyst may choose to implement one of several optimal reduced order modeling

variants depending on which terms (if any) in the subgrid-scale dynamics are deemed

important. We refer to these variants as follows: (i) standard ROM, which completely

neglects the subgrid spatiotemporal structure,

M ∼= 0, (2.17)

(ii) OPTROM, which accounts for the subgrid temporal structure due to a coarse ∆t

and takes on the following form with a consistent filter in the time domain

M ∼= 〈α|φ〉 , (2.18)

(iii) OPSROM, which accounts for the subgrid spatial structure due to a coarse ∆xk

and takes on the following form with a consistent filter in the spatial domain

M ∼= 〈γ|φ〉 , (2.19)

and (iv) OPSTROM, which accounts for the total subgrid spatiotemporal structure,

M = 〈τ |φ〉 = 〈α|φ〉+ 〈γ|φ〉 . (2.20)
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The OPSROM approach is analogous to OLES for turbulent flows [67–71], whereas

the OPTROM and OPSTROM variants were originally proposed by LaBryer, Attar

and Vedula [74–77]. All four variants will be investigated for the problems with

spatiotemporal dependence in Chapter 5.

2.7 Simplifying assumptions

The optimal subgrid-scale model (Mi)nj and its coefficients in (2.15) may vary as a

function of the ICs, BCs, location xk, time t, spatial grid (∆xk)j, temporal grid ∆t

and each of the physical parameters in the governing PDEs. This complex functional

dependence carries over from the multi-point moments amongst (τi)nj and (ũi)nj in

(2.16). In theory, a unique subgrid-scale model could be derived for every conceivable

set of parameters in a simulation. However, to be useful for large-scale systems with

spatiotemporal dependency, we must explore methods to reduce the amount of inputs

required for model construction. In this context, the utility of a subgrid-scale model

can be enhanced when the multi-point moments in (2.16) display to some extent the

following statistical properties: (i) spatial homogeneity, (ii) temporal homogeneity,

(iii) ergodicity, (iv) a functional dependence which can easily be characterized with

respect to the system parameters (referred to hereafter as “smooth scaling” [79]), and

(v) universality.

To efficiently construct a subgrid-scale model for any nonlinear dynamical system,

the analyst should determine which parameters affect the multi-point moments in

(2.16). An observed lack of sensitivity to space or time would justify the assumption of

spatiotemporal homogeneity, in which case the functional dependence on grid location

can be removed from the multi-point moments in (2.16) and stochastic estimation

coefficients in (2.15). For example, the coefficients (Ai)nj , (Biα)nµjξ and (Ciαβ)nµνjξη in

(2.15) then become (Ai), (Biα)µξ and (Ciαβ)µνξη . The model (Mi)nj reduces to (Mi) and

can be used at every spatial node and timestep in a simulation. Somewhat related is
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the concept of ergodicity, which in a physical sense implies that the long-term behavior

of a system “forgets” about the initial state from which it evolves. In a mathematical

sense, it is necessary to show that the time average for any one trajectory should be

equivalent to the ensemble average for the entire system [83,84]. For our purposes, a

system is considered ergodic if the sensitivity to ICs can be removed from the subgrid-

scale model. Further simplifications can be made if smooth scaling is observed when

characterizing the functional dependence of the multi-point moments with respect

to the physical parameters and/or grid parameters. Smooth scaling would enable

efficient construction of empirical functions (or interpolants) with which the analyst

may estimate the multi-point moments. To be discussed in Section 2.8, models based

upon these estimated moments would allow for rapid computation of the estimation

coefficients once the system parameters are specified. Statistical universality [79], if

observed, would further reduce the sensitivity of the subgrid-scale models to BCs,

constitutive parameters, geometries, load configurations, or other system parameters.

Many of these simplifications will be made for the models constructed in Chapter 4.

As an example to support what may seem like an ambitious task, a great deal of

research has already been conducted in order to characterize microscale dynamics for

turbulent flows governed by the Navier-Stokes equations [2]. Macroscale turbulent

flow structures may be highly irregular, anisotropic and sensitive to many system

parameters. It is somewhat remarkable, then, that microscale flow structures (also

referred to as the Kolmogorov microscales [37]) typically obey to a large degree many

of the statistical properties listed above. We expect (as others have suggested [79,81])

that a similar type of microscale behavior can be found in other nonlinear dynamical

systems besides turbulent flows, even though the macroscale dynamics may be quite

complicated. Many of these properties do in fact hold true for the nonlinear dynamical

systems in Chapter 4.

30



2.8 Model construction

A general procedure for constructing optimal subgrid-scale models prior to simulation

is outlined in Table 2.1. Observe in Step 3 that several options are currently available

for acquiring statistical knowledge about the subgrid-scale dynamics. The approach

described in Sections 2.1–2.5 will be referred to hereafter as direct calculation,

an algorithm for which is provided in Table 2.2. Some questions naturally arise

regarding the utility of models based upon direct calculation: How are such models

useful if FRS data is required a priori for every simulation? Why would the analyst be

interested in OPSTROM (or any ROM for that matter) if the fully resolved solution

is already available? In response, direct calculation by itself is often not practical for

use. Nevertheless, it serves as the theoretical foundation upon which more practical

models can be based. To address the issue of practicality, we suggest models based

upon estimation of the subgrid-scale moments as described in Table 2.3.

To construct a model based upon estimated moments, the analyst should first

identify the range of system parameters that may be explored in future analysis.

Consider, for example, a two-parameter system with p ∈ [p1, pn] and q ∈ [q1, qm].

The next step is to obtain FRS data for a small set of these parameters, such as

pi × qj where pi = {p1, p2, ..., pn} and qj = {q1, q2, ..., qm}. From the small set of FRS

data, the analyst can acquire statistical knowledge about the subgrid-scale dynamics

via direct calculation in Table 2.2. Empirical functions can then be developed to

characterize (or interpolate) the multi-point moments with respect to the system

parameters. Certain interpolation schemes may be particularly appealing as they

allow for future refinement with additional nodes. The number of interpolation nodes

to be used is left to the analyst. However, the observed type of scaling behavior with

respect to the parameters should influence this choice. As with any interpolation

scheme, precautionary measures should be taken to avoid peculiarities such as Runge’s
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1. Identify and discretize the nonlinear dynamical system in (2.1)
2. Specify system parameters that may affect the subgrid-scale dynamics:

(a) Physical parameters in (2.1)
(b) Computational grid (∆xk and ∆t) and/or number of modes
(c) Boundary conditions (BCs) and initial conditions (ICs)

3. Acquire statistical knowledge about the subgrid-scale dynamics:
Option I : Direct calculation (Table 2.2)
Option II : Estimation (Table 2.3)
Option III : Theoretical reconstruction
Option IV : Experimental reconstruction
End result → Required moments amongst τ and ũ in (2.16)
Determine which subgrid-scale terms are important:
OPTROM : Model only the subgrid-scale acceleration (α)
OPSROM : Model only the (mass normalized) subgrid-scale force (γ)
OPSTROM : Model the complete subgrid-scale dynamics (τ = α+ γ)

4. Choose a form for the subgrid-scale modelM in (2.15):
(a) Order for the stochastic estimate
(b) Spatial stencil (MN)
(c) Temporal stencil (MT )
(d) Number of states (MS)

5. Assemble the linear system of stochastic equations (2.16)
6. Solve (2.16) for the estimation coefficients A, B and C
7. Optional: Repeat Steps 4–6 if the following occur:

(a) Large a priori errors (the model provides a poor estimate)
(b) Ill-conditioned system in (2.16) (the model is unrealizable)

Table 2.1: General procedure for constructing an optimal subgrid-scale model

phenomenon [11]. From a conceptual standpoint, constructing models based upon

estimated moments is somewhat analogous to building a Smagorinsky model for the

subgrid stress in LES for turbulent flows; in particular, Smagorinsky models that take

into account dynamic similarity and scale separation [80].

The estimation approach in Table 2.3 is one way to reduce or eliminate dependence

on FRS data. Empirical functions for the subgrid-scale moments can easily be added

to any nonlinear dynamics solver for a given set of governing equations. The required

inputs (moments amongst τ and ũ) in (2.16) can then be calculated (estimated) from

the empirical functions once the desired model and system parameters are specified.

The estimation coefficients for M can readily be found by solving (2.16) prior to
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1. Establish criteria for a FRS solution
2. Obtain FRS data u, which is independent of the solution method
3. Define the filtered solution ũ for the chosen ROM
4. Compute the subgrid-scale dynamics τ in (2.6)
5. Compute the raw moments amongst ũ and τ in (2.16)

Table 2.2: Direct calculation of subgrid-scale dynamics

1. Identify the range of system parameters under consideration
2. Choose a small set of discrete values for each parameter
3. For all possible combinations of system parameters, compute the raw

moments amongst τ and ũ via direct calculation in Table 2.2
4. Develop empirical functions with which to model (or interpolate) the

moments with respect to the system parameters

Table 2.3: Estimation of subgrid-scale dynamics

simulation. This approach also provides the analyst with a certain amount of freedom

when constructing a model: unused moments in (2.16) need not be determined.

Other approaches are conceivable for model construction besides direct calculation

and estimation. As an alternative to using FRS data, information about the subgrid-

scale dynamics can (at least in principle) be obtained from theory, experiments, or

reconstructions from multiple sources. Such ideas may be explored in future research.

2.9 Model appraisal

To appraise a subgrid-scale model, we wish to know the conditions under which the

a posteriori ROM solution, denoted here as v(x, t), will be exact with respect to the

filtered FRS solution, ũ(x, t). It seems rather obvious that choosingM = τ ∀ x, t

would accomplish this task, but herein we shall find this requirement unnecessarily

strict. We consider a system in which Au = ∂u/∂t. The desired scenario is to evolve

the system using an under-resolved discretization scheme with spatial grid ∆x and

timestep ∆t such that

v (x, t) = ũ (x, t) ∀ x, t. (2.21)
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We assume that the ROM and filtered FRS solutions are given the same BCs and ICs,

v(x, t0) = ũ(x, t0). For the first timestep of integration, t1 = t0 + ∆t, the solutions

to (2.6) and (2.8) in terms of the generalized Langevin quantities in (2.11) become

ũ(x, t1) = ũ(x, t0) +
∫ t1

t0

∫
Ω

R dxdt+
∫ t1

t0

∫
Ω
τ dxdt, (2.22)

v(x, t1) = v(x, t0) +
∫ t1

t0

∫
Ω

R dxdt+
∫ t1

t0

∫
Ω

(P +K+N )dxdt. (2.23)

In order for v(x, t1) = ũ(x, t1) to be true, we require the last integrals in (2.22) and

(2.23) to be equivalent. Since ultimately we desire v = ũ ∀ x, t, the integration should

also hold for all spatial nodes, (xk)j and timesteps, tn. Integration of each quantity

can be restated in terms of the spatiotemporal average over ∆x and ∆t, denoted by

〈·〉∆t∆x. Our appraisal criterion then becomes

〈M〉∆t∆x = 〈τ 〉∆t∆x = 〈P〉∆t∆x + 〈K〉∆t∆x + 〈N 〉∆t∆x ∀ x, t. (2.24)

A subgrid-scale model satisfying (2.24) will produce exact solutions for v (x, t) with

respect to ũ (x, t). In other words, the spatiotemporal average of a model over the

coarse computational grid should be equivalent to that of the actual subgrid-scale

dynamics. M and τ need not be identical ∀ x, t.

The generalized Langevin quantities in (2.24) can have profound implications on

the choice of data to include in the model. Great simplifications can be made if it can

be shown a priori that 〈P〉∆t∆x = 〈τ 〉∆t∆x: either the non-Markovian memory cancels

with the noise (unlikely), or 〈K〉∆t∆x and 〈N 〉∆t∆x are both zero, in which case the

subgrid-scale dynamics depend only on the chosen states at present time. If such an

observation is true, the desired condition in (2.21) can be achieved with a one-point

temporal stencil (MT = 1 with tn). If instead it can be shown for a given model that

〈P〉∆t∆x 6= 〈τ 〉
∆t
∆x, then the subgrid-scale dynamics either depend on past information

from the chosen states (K), information from states excluded in the model (N ), or
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some combination of both. To increase the accuracy of such a model, additional states

can be included and a multi-point temporal stencil can be used. While it has been

shown [58, 60] that the expected value of the noise N should vanish for t ∈ [0,∞),

this property does not necessarily hold for a time average in a finite domain.

2.10 Error measures

Prior to simulation, it is good practice to check how accuratelyM approximates τ ,

if known. This can be done after the estimation coefficients are found and before

OPSTROM solutions are computed. Based upon the appraisal criterion in (2.24), we

define the global a priori error for the ith state to be

ei =

≠(
〈τi〉∆t∆x − 〈Mi〉∆t∆x

)2∑1/2

〈τ 2
i 〉

1/2 , (2.25)

where the mean operator 〈·〉 is calculated over the spatiotemporal domain of interest.

Limiting values for the a priori error have the following interpretations: As e → 0,

the appraisal criterion (2.24) is satisfied, i.e., the ROM solution will be exact with

respect to ũ. As e→ 1, the subgrid-scale model is zero, i.e., a standard ROM is used.

A small (nonzero) a priori error should only serve as an indication of the model’s

ability to approximate τ for a given FRS field; it does not necessarily guarantee

improvement in the solution.

Perhaps of greater interest is how the a posteriori solutions (standard ROM and

OPSTROM) compare to the FRS solution if available. Analogous to the error measure

in (2.25), we define the global a posteriori error for each state in physical space as

Eui =

〈Ä
uFRS
i − uROM

i

ä2〉1/2

〈Ä
uFRS
i

ä2〉1/2 . (2.26)
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For spectral methods, however, it may be convenient to conduct the error analysis

in the Fourier domain. We define the a posteriori errors for (ūi)kl , the harmonic

amplitudes of the ith state, as

(Ēi)kl =
∥∥∥∥∥(ūFRS

i )kl − (ūROM
i )kl

(ūFRS
i )kl

∥∥∥∥∥ . (2.27)

For time-periodic systems in which the fundamental frequency is unknown, i.e. for

autonomous systems, the frequencies ωFRS and ωROM are typically incommensurate.

For such systems, the time interval of interest in (2.26) can be taken over one FRS

period and the signals can be translated to be in phase at the beginning of the time

averaging window. We may also measure the frequency error

Eω =

∥∥∥ωFRS − ωROM
∥∥∥

ωFRS . (2.28)

Other forms of error are conceivable. Note that the a posteriori errors may be small

while the a priori errors may be large, and vice versa. This phenomenon is somewhat

common in turbulence modeling [2].

2.11 Implementation

The OPSTROM approach is applicable to any spatiotemporal discretization scheme,

including FD, FE, FV and spectral methods. Following a spatial discretization of the

modified PDEs (with an arbitrary method of choice), the next step is to discretize

the resulting system of ODEs in the time domain. In this section we demonstrate

implementation with two well-known time-discretization schemes: the implicit Euler

(IE) time-marching and harmonic balance (HB) time-spectral methods.
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2.11.1 Time-marching formulation

Implicit time-marching schemes [8] are particularly appealing for OPSTROM as they

allow the analyst to evolve solutions with very coarse timesteps (in contrast to explicit

schemes in which stability limitations are common). Perhaps the most basic yet robust

example is the first-order accurate implicit Euler (IE) time-marching scheme [8]. Once

the initial conditions are specified, standard ROM solutions to (2.7) with the IE

scheme can be evolved by

(ui)n+1
j = (ui)nj + ∆t

î
(Ri)n+1

j

ó
, (2.29)

whereas OPSTROM solutions to (2.8) with the IE scheme can be evolved by

(ui)n+1
j = (ui)nj + ∆t

î
(Ri)n+1

j + (Mi)n+1
j

ó
. (2.30)

Our choice of the IE scheme is based on several appealing features, most importantly

its unconditional stability for stiff systems [8], provided the iterative root finding

scheme used to solve the equations is able to converge at each timestep. In this

dissertation, we employ a Newton-Raphson (NR) scheme with a numerical Jacobian

and a banded matrix solver [10, 11].

The standard IE scheme is a single-point method as it uses information from

one timestep, tn+1. However, the subgrid-scale model may require information from

additional timesteps if a multi-point temporal stencil is used. For instance, if we use

a linear estimate forMn+1 with a three-point backward temporal stencil (MT = 3),

the IE scheme in (2.30) then becomes

(ui)n+1
j = (ui)nj + ∆t

î
(Ri)n+1

j

ó
(2.31)

+ ∆t
î
(Ai)n+1

j + (Bi)n+1
j (ui)n+1

j + (Bi)nj (ui)nj + (Bi)n−1
j (ui)n−1

j

ó
.
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The equations in (2.31) now contain information from (ui)n+1
j , (ui)nj and (ui)n−1

j .

In this sense, when the subgrid-scale model is included, the scheme is no longer

a true first-order implicit Euler, but rather, it becomes a higher-order multi-point

implicit time-marching scheme in which the estimation coefficients determine the

order of accuracy. Comparisons can be made to other multi-point methods, such

as the implicit Adams-Bashforth-Moulton family [8]. One major difference is that

multi-point OPSTROM simply requires knowledge of u at several timesteps. Most

multi-point methods, however, require evaluation of R at several timesteps, which is

typically more difficult and expensive. When adding an optimal subgrid-scale model

to any discretization scheme, the effects on stability and/or convergence are unknown

and should be taken into consideration. Such effects could be favorable or adverse.

2.11.2 Time-spectral formulation

Time-spectral methods allow for rapid computation of steady state solutions for time-

periodic systems. Any computational expense associated with a transient response

is completely avoided. Here we provide an OPSTROM formulation for the harmonic

balance (HB) methodology [19], which is perhaps the most widely used time-spectral

method in nonlinear dynamics. The common approach with all HB schemes is to find

a Fourier series approximation for the true (FRS) response of a system. We begin

with the semi-discretized (in space) governing equations and assume that the field

variables are smooth and periodic in time with period T = 2π/ω, where ω is the

fundamental frequency. The field variables can then be written as

u(t) = û0 +
NH∑
k=1

î
û2k−1 cos(kωt) + û2k sin(kωt)

ó
, (2.32)

where k is the wavenumber and NH is the total number of temporal Fourier modes

(harmonics) retained in the expansion. The total number of terms in each Fourier
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series is NT = 2NH+1. Expansions for the forces R(t) and subgrid-scale modelM(t)

are of the same form as the states u(t) in (2.32).

With the classical HB approach, the Fourier series expansions for the field vari-

ables are substituted into the governing equations (2.8) and a Galerkin projection is

performed with respect to the Fourier modes, resulting in

ωAÛ− R̂ − M̂ = 0, (2.33)

where

Û =


(û1)0

1 . . . (ûNS)0
NN

... (ûi)nj
...

(û1)2NH
1 . . . (ûNS)2NH

NN

 . (2.34)

The HB solution array Û in (2.33) contains NS ×NN ×NT components. Arrays for

the forces R̂ and subgrid-scale model M̂ are of the same form. An expression for the

NT ×NT wavenumber matrix A can be found in [85]. If the system is linear, solutions

for the Fourier coefficients can be found analytically. For the nonlinear case, solutions

must be obtained numerically using an iterative root finding scheme.

Implementing the classical HB approach for large-scale nonlinear dynamical sys-

tems can be cumbersome, especially when many harmonics are retained. Nonlinear

terms (and the subgrid-scale model) must be expressed as a function of the Fourier

coefficients, which are often complicated to derive, and do not exist in most standard

computational fluid (CFD) or structural dynamic (CSD) codes.

Many variants of HB technology have emerged throughout the years [20]. In this

dissertation, we will use a novel time domain formulation of the HB methodology

called the high dimensional harmonic balance (HDHB) approach as it allows for

straightforward implementation into large-scale CFD [86, 87] and CSD [88] codes.

The Fourier coefficients can be directly related to the time domain variables using
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the NT ×NT discrete Fourier transform operator F , the analytical expression [85] for

which depends only on the selection of NH . The relationships are given by

Û = FŨ, R̂ = FR̃, M̂ = FM̃. (2.35)

Thus, if the field variables are known in one domain (time or Fourier), they can be

transformed to the other using F or F−1. This allows for the HB system (2.33) to

be recast into the time domain, where expressions for the subgrid-scale models (and

estimation coefficients) are known. The field variables are represented at NT evenly

spaced time intervals for one period of oscillation, and the solution array becomes

Ũ =


(ũ1)0

1 . . . (ũNS)0
NN

... (ũi)nj
...

(ũ1)2NH
1 . . . (ũNS)2NH

NN

 , (2.36)

where the uniform spacing between each point in time is given by

tn = 2πn
ωNT

where NT = 2NH + 1. (2.37)

It is now possible to transform the classical HB system of equations into the time

domain. The resulting HDHB system of nonlinear algebraic equations becomes

ωDŨ− R̃ − M̃ = 0, (2.38)

where the time-derivative operator D is given by

D = F−1AF . (2.39)

Hence, solution of the HDHB equations is similar in concept to the solution of implicit
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time-marching schemes with one subtle difference: the time-derivative operator for

HDHB is fully populated, whereas most implicit time-marching schemes are sparse

and banded [88]. No modifications need to be made if the fundamental frequency is

known. For systems in which the fundamental frequency is unknown, the governing

equations must be modified to accommodate one additional variable in ω. This can

be done by imposing a phase condition on the first harmonic of motion [89].

In order to solve the HDHB system of equations, in this dissertation we employ

a NR scheme with a numerical Jacobian and a banded matrix solver [88]. For each

simulation, the physical parameters must be specified, an initial guess is required, and

the number of Fourier modes must be chosen. If the nonlinear terms are polynomial-

type [90], and the Fourier series expansions are treated properly [88,91], the classical

HB and HDHB formulations are identical in their respective domains. As such, we

hereby refer to the HDHB approach as the HB for brevity. Once the HB solution is

found, the NT Fourier coefficients for each state can be obtained from (2.35), and the

NH + 1 harmonic amplitudes can be calculated by

(ūi)0
j = (ûi)0

j and (ūi)kj =
[Ä

(ûi)2k−1
j

ä2 +
Ä
(ûi)2k

j

ä2]1/2
. (2.40)

If the smallest relevant time scale for the true solution is given by ∆tFRS, and NH is

chosen such that 2π/NTω ≤ ∆tFRS, then the selection of NH in (2.37) provides FRS

resolution. Otherwise, the HB scheme should be considered a ROM, in which case

OPSTROM can be used to decrease the errors.

A special case was discovered by LaBryer, Attar and Vedula [74] when developing

an OPTROMmodel for the HB approach. Under certain conditions (see Appendix C),

an exact subgrid-scale model (one with zero a priori error) can be constructed when

one harmonic (NH = 1) is retained in the analysis and certain conditions are satisfied.

No other schemes with this property have been found by the authors to date.
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2.12 Summary of proposed theoretical framework

In this chapter, we outlined the new OPSTROM framework for nonlinear dynamical

systems. The approach can be used to construct data-driven spatiotemporal ROMs

with minimum errors with respect to the chosen resolution. We began by modifying

a general system of PDEs for an under-resolved simulation (in space and time) with

an arbitrary discretization scheme. Basic filtering concepts were used to demonstrate

the manner in which subgrid-scale dynamics arise with a coarse computational grid.

Subgrid-scale models were then developed to account for the underlying spatiotem-

poral structure by embedding statistical information into the governing equations

on a multi-point spatiotemporal stencil. Unlike most other multiscale ROMs, this

information is formulated to be consistent with the underlying spatiotemporal sta-

tistical structure. Predictions with the modified system of equations are based upon

principles of mean-square error minimization, conditional expectations and stochastic

estimation, thus rendering the optimal solution with respect to the chosen resolution.

Four variants of the OPSTROM technique were described: (i) standard ROM, (ii)

OPTROM, (iii) OPSROM, and (iv) OPSTROM, depending on which terms in the

subgrid-scale dynamics are deemed important. Practical methods were suggested for

model construction, appraisal, and error measure. Implementation was demonstrated

for the IE time-marching and HB time-spectral schemes.
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CHAPTER 3

Selected nonlinear dynamical systems

This chapter describes four nonlinear dynamical systems to serve as testbeds for the

OPSTROM framework. The governing equations for each system will be written in

the form Au = R(u,x, t) to match the general PDEs in (2.1) then modified for the

OPSTROM approach and discretized. First we consider an autonomous van der Pol

oscillator, which contains no spatial dependence and allows us to focus exclusively on

subgrid time scales for time-periodic solutions. Next, we describe a Duffing oscillator

under the influence of time-dependent external forcing. Unlike the unforced van der

Pol oscillator, the Duffing oscillator is capable of undergoing a variety of response

types. For the third system, we consider the viscous Burgers equation, which is a

parabolic PDE describing nonlinear wave propagation. Time-periodic inflow BCs

will be applied to excite the Burgers flow. For the final system, we investigate the

response of a geometrically nonlinear beam under the influence of time-dependent

external forcing, which is perhaps the most interesting example in the sense that it

contains spatiotemporal dependence, and like the Duffing oscillator, is also capable of

undergoing a variety of response types including time-periodicity, asymmetry, period

N -tupling, intermittency and chaos.

3.1 Van der Pol oscillator description

The van der Pol oscillator [92] is one of the most extensively studied systems in the

field of nonlinear dynamics by virtue of its ability to produce self-sustained limit

cycle oscillations (LCOs) as a single DOF system [1]. The governing equation models
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a mechanical oscillator with nonlinear damping, which plays the role of an energy

source and sink as the system evolves. In this dissertation, we choose to study the

unforced van der Pol oscillator, for which all nonzero initial trajectories evolve to

self-sustained LCOs [1]. When external forces are applied, the response may exhibit

frequency entrainment or chaos [93]. In the absence of external forces, the evolution

is described by
∂2u

∂t2
− α

Ä
1− u2ä ∂u

∂t
+ u = 0, (3.1)

where u is the displacement. The first term on the left-hand side of (3.1) represents

the (mass normalized) acceleration, the second term nonlinear damping, and the

third term a linear (Hookean) restoring force. The physical parameter α controls

the strength of the nonlinearity. If we let the displacement be u1 = u and velocity

be u2 = ∂u/∂t, the second-order governing equation in (3.1) can be rewritten as a

first-order system to match the general PDEs in (2.1) accordingly

∂

∂t


u1

u2

 =


u2

−αu2
1u2 + αu2 − u1

 . (3.2)

The system now contains two states as opposed to one in displacement and velocity.

Solutions for the displacement and velocity in (3.2) can be evolved with a time-

marching or time-spectral scheme. We presume that the method of choice does not

completely resolve all time scales. Following the framework in Chapter 2, we modify

the governing equations in (3.2) to include the subgrid-scale dynamics as in (2.6).

The subgrid-scale acceleration for the van der Pol oscillator is given by

α =


∂ũ1

∂t
−
fi∂u1

∂t

∂ũ2

∂t
−
fi∂u2

∂t


, (3.3)
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and the subgrid-scale force becomes

γ =


0

αũ2
1ũ2 − ·�αu2

1u2

 . (3.4)

The subgrid-scale force in (3.4) vanishes for time-marching schemes with a consistent

comb-type sampling filter, whereas the subgrid-scale acceleration in (3.3) vanishes for

time-spectral schemes with a consistent spectral cutoff filter.

In this work, the modified governing equations for the van der Pol oscillator will be

discretized for standard ROM and OPTROM simulations with the IE time-marching

scheme described in Section 2.11.1 and the HB time-spectral scheme described in

Section 2.11.2. We will also use the well-known fourth-order accurate Runge-Kutta

(RK4) time-marching scheme [10, 11] to obtain FRS solutions. For the IE and HB

schemes, we model the subgrid-scale dynamics with the stochastic estimate in (2.15).

Once the subgrid-scale dynamics are characterized in Chapter 4, standard ROM and

OPTROM solutions will be compared to FRS results in Chapter 5.

3.2 Duffing oscillator description

The Duffing oscillator [94–97] is a single DOF nonlinear dynamical system capable

of undergoing a time-periodic or chaotic response. Physically, the system models a

damped mechanical oscillator with a nonlinear spring (hardening or softening) under

the influence of time-dependent external forcing, or “pumping”. While several variants

of the Duffing equation have been studied throughout the literature, we investigate

the following nondimensional form

∂2u

∂t2
+ 2ζ ∂u

∂t
+ u+ u3 = F sin (ωt) , (3.5)
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where u is the displacement. The first term on the left-hand side of (3.5) represents the

(mass normalized) acceleration, the second term linear (viscous) damping, the third

term a linear (Hookean) restoring force, and the fourth term a nonlinear (hardening)

restoring force. The right-hand side of (3.5) models time-periodic external forcing.

The physical parameter ζ is the viscous damping ratio, F is the external forcing

amplitude and ω is the forcing frequency. Each of these nondimensional parameters

can be related to dimensional quantities [85]. By letting the displacement be u1 = u

and velocity be u2 = ∂u/∂t, we can rewrite (3.5) as

∂

∂t


u1

u2

 =


u2

−2ζu2 − u1 − u3
1 + F sin (ωt)

 , (3.6)

which matches the general PDEs in (2.1) and hence can be modified for OPTROM.

The subgrid-scale acceleration for the Duffing oscillator is given by

α =


∂ũ1

∂t
−
fi∂u1

∂t

∂ũ2

∂t
−
fi∂u2

∂t


, (3.7)

and subgrid-scale force takes on the following form

γ =


0

ũ3
1 − ũ3

1

 . (3.8)

As with the van der Pol oscillator, the modified governing equations for the Duffing

oscillator will be discretized for standard ROM and OPTROM simulations with the

IE time-marching scheme and the HB time-spectral scheme. We will also employ the

RK4 time-marching scheme to compute FRS solutions.
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3.3 Viscous Burgers flow description

Much of our knowledge about the nature of convection and diffusion in fluids has been

learned through various studies of the viscous Burgers equation [98–102]. Throughout

the years, Burgers’ equation has also become a popular testbed for CFD algorithms

due to its relative simplicity and close resemblance to the Navier-Stokes equations [10].

For example, in order to test the numerical properties of a time-spectral method,

Maple and his colleagues [103] explored time-periodic solutions to Burgers’ equation

for a set of oscillating BCs. Perhaps most relevant to this dissertation, Das and

Moser [104] developed OLES models for the forced Burgers equation with an initial

velocity distribution similar to that of a turbulent flow. Bernstein [105] later tested

the performance of OLES models with memory for the Burgers equation with slowly

dissipating shocks. When added to the simulations, their subgrid-scale models were

found to improve predictions for the velocity and energy spectra. We emphasize,

however, that Das and Moser [104] and Bernstein [105] considered only the effects of

subgrid-scale convection and viscosity due to the use of a coarse spatial grid. In both

studies, Das and Moser [104] and Bernstein [105] neglected the existence subgrid-

scale accelerations due to the use of a coarse temporal grid, unlike the OPTROM and

OPSTROM formulations in this dissertation.

The one-dimensional Burgers equation is a parabolic PDE for modeling nonlinear

wave propagation with diffusion. The evolution of velocity field u(x, t) is governed by

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2 , (3.9)

where the first term represents the local acceleration, the second term nonlinear con-

vection, and the third term diffusion due to viscosity, ν. Independent variables in

(3.9) are the time, t, and spatial location, x, in the domain [0, L]. When the viscous

term in (3.9) is neglected, the result is a hyperbolic PDE capable of producing shock
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discontinuities. Retaining the viscous term results in parabolic behavior.

Large-amplitude flow disturbances are implemented via a Dirichlet-type BC at

the x = 0 inflow location. At the x = L outflow location, we specify a transparent

(or non-reflective [106]) Neumann-type BC. We impose

u(0, t) = U (1 + sin (2πft)) , ∂u(L, t)
∂x

= 0, (3.10)

where U represents the disturbance amplitude and f = 2π/ω is the disturbance

frequency. For a sufficiently small spatial grid with spacing ∆x, the transparent BC

at x = L is not felt upstream and has negligible effect on the flow [106]. Moreover,

the transparent BC at x = L is difficult to see in highly resolved simulations due to

the fine spacing between the end grid points at x = L and x = L−∆x.

Nondimensionalizing the system in (3.9) and (3.10) will enable us to investigate the

flow in a generic manner. We proceed by letting U represent the characteristic velocity

and L represent the characteristic length. By nondimensionalizing the variables

û = u

U
, x̂ = x

L
, t̂ = Ut

L
, (3.11)

and introducing the Reynolds number, Re, and Strouhal number, St, as

Re = UL
ν
, St = fL

U
, (3.12)

we can rewrite the Burgers equation in the following nondimensional form (dropping

the û, x̂ and t̂ notation in favor of u, x and t for convenience):

∂u

∂t
+ u

∂u

∂x
= 1
Re

∂2u

∂x2 . (3.13)
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The nondimensional BCs at x = 0 and x = 1 become

u(0, t) = 1 + sin (2π St t) , ∂u(1, t)
∂x

= 0. (3.14)

Although the Burgers equation contains one state (as opposed to two with the Duffing

and van der Pol oscillators), the velocity field is more difficult to solve for because

the system must be discretized in both space and time.

Following the theoretical framework in Chapter 2, the subgrid-scale acceleration

due to a coarse temporal grid is given by

α = ∂ũ

∂t
− ∂̃u

∂t
, (3.15)

and the subgrid-scale force due to a coarse spatial grid becomes

γ =
Ñ
ũ
∂ũ

∂x
−
fl
u
∂u

∂x

é
+ 1
Re

Ñfi∂2u

∂x2 −
∂2ũ

∂x2

é
. (3.16)

To align with the fluids literature [36], we refer to the individual components of γ in

(3.16) as the (mass normalized) subgrid-scale convection (first term) and subgrid-scale

diffusion (second term). The subgrid-scale acceleration in (3.15) has historically been

neglected in previous works on OLES [104,105]. In this work, we consider the standard

ROM, OPTROM, OPSROM and OPSTROM variants.

The modified governing PDEs for the Burgers equation will be discretized in space

and time with two conventional finite difference schemes. The first will be used for

FRS, whereas the second will be used for ROM simulations with a coarse space-time

computational grid. Spatial derivatives are approximated using second-order accurate

central differencing for x ∈ (0, 1) with ghost nodes at the boundaries [10]. The fourth-

order accurate explicit Runge-Kutta method is used to semi-discretize in time for the

first scheme. The fully discretized equations of motion are denoted as Runge-Kutta
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centered-space (RKCS). As we shall see in the results, the RKCS scheme is able to

fully resolve all time scales with a fine grid, but suffers from numerical instability with

coarse timesteps. To allow for a coarse temporal grid for ROM simulations, we also

employ the IE time-marching scheme described in Section 2.11.1. The fully discretized

equations of motion are denoted as backward-time centered-space (BTCS) [10].

3.4 Nonlinear beam description

As a fourth and final example, we will study the nonlinear structural dynamics of a

slender beam under the influence of a time-dependent, distributed transverse load.

The nonlinear governing equations were originally derived by Crespo da Silva [107,108]

for a flexural-flexural-torsional-extensional beam, then simplified to the problem of

interest by Hall and Hanagud [109]. Linear elastic behavior is assumed and moments

of inertia are neglected. Moderate axial and transverse displacements are allowed,

and as a result, many of the geometric nonlinearities which are typically neglected

in classical linear Euler-Bernoulli beam theory become important. We restrict our

consideration to third-order nonlinearities in the transverse displacement and second-

order nonlinearities in the axial displacement. The nondimensionalized system con-

tains a total of eight parameters. Independent variables are time t and axial distance

along the length of the beam x, while the dependent variables are axial displacement

u and transverse displacement v. Physical parameters, which presumably will affect

the subgrid-scale dynamics, are the damping ratio ζ, square of the slenderness ratio Λ,

forcing amplitude F and forcing frequency ω. Note that each of the nondimensional

parameters can be related to dimensional quantities given by Hall and Hanagud [109].

The governing PDEs can be written in the same form as the general system in (2.1)

along with an appropriate set of BCs and ICs. The system contains NS = 6 states in
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u (x, t) with components ui, which are given by

u1 = ∂u

∂t
u4 = ∂v

∂t

u2 = u u5 = v

u3 = u′′ u6 = v′′,

(3.17)

where the primes denote derivatives with respect to x. The six components of the

nonlinear force vector in (2.1) are

R1 = Λ [u3 + u′5u6] R4 = F (x, t)− ζu4 − u′′6

+u6u
′
6 + u′5u

′′
6 +Λ

î
u3u

′
5 + u′2u6 + 3

2u6 (u′5)2ó
+ [2u′2u′′6 + 4u3u

′
6 + 3u′3u6 + u′′3u

′
5]

+
î
2u′′6 (u′5)2 + 2 (u6)3 + 8u′5u6u

′
6
ó

R2 = u1 R5 = u4

R3 = u′′1 R6 = u′′4.

(3.18)

The transverse loading function F (x, t) in R4 can take on any form. To align with the

work of Hall and Hanagud [109], we consider a time-dependent, distributed sinusoidal

load of the form

F (x, t) = F sin(πx) sin(ωt) ∀ x ∈ [0, 1], t ∈ [0,∞). (3.19)

We will investigate the response of the beam with three different types of essential

BCs. Our primary focus will be on a set of simply supported (SS) BCs at x = 0 and

x = 1, which can be written as

u2|x=0,1 = 0, u5|x=0,1 = 0, u3|x=0,1 = 0, u6|x=0,1 = 0. (3.20)

In our search for universality in Chapter 4, we also wish to know if the subgrid-scale
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models developed for the SS beam will be valid for other BCs as well. As such, we

will also consider briefly the following set of clamped-clamped (CC) BCs:

u2|x=0,1 = 0, u5|x=0,1 = 0, u′2|x=0,1 = 0, u′5|x=0,1 = 0, (3.21)

and a set of clamped-free (CF) BCs for an inextensional cantilevered beam:

u5|x=0 = 0, u′5|x=0 = 0, u6|x=1 = 0, u′6|x=1 = 0. (3.22)

When deriving the governing PDEs for the extensional beam, Crespo da Silva [107]

assumed the deformations would be “restricted in magnitude” such that trigonometric

nonlinearities in the strain components could be expanded in a third-order Taylor

series about the equilibrium solution, u = v = 0. This is a very good assumption

for the SS and CC problems. For the CF problem, however, the beam will undergo

large transverse displacements in response to the loads considered in this study as

a result of having a free end. As such, we will solve an inextensional form of the

governing PDEs given by Crespo da Silva [110,111] for the CF problem instead of the

extensional form [107,108] from which the forces in (3.18) were derived. Moments of

inertia are again neglected. The inextensional assumption has been shown in other

references [112] to be an excellent assumption for cantilevered beams undergoing large

deflections due to distributed transverse loads.

Following the theoretical framework in Chapter 2, we derive the subgrid-scale

dynamics for the beam. Subgrid-scale boundary conditions also exist for the CC and

CF beams due to the presence of spatial derivatives, but are neglected in this study.
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The six components of the subgrid-scale acceleration are given by

α1 = ∂ũ1

∂t
−
fi∂u1

∂t
α4 = ∂ũ4

∂t
−
fi∂u4

∂t

α2 = ∂ũ2

∂t
−
fi∂u2

∂t
α5 = ∂ũ5

∂t
−
fi∂u5

∂t

α3 = ∂ũ3

∂t
−
fi∂u3

∂t
α6 = ∂ũ6

∂t
−
fi∂u6

∂t
,

(3.23)

and the six components of the subgrid-scale force take on the following form:

γ1 = Λflu′5u6 − Λũ′5ũ6 γ4 = −ũ′′6 + ũ′′6

+flu6u′6 − ũ6ũ
′
6 +Λ

ïflu3u′5 + flu′2u6 + 3
2
‚�
u6 (u′5)2

ò
+flu′5u′′6 − ũ′5ũ′′6 −Λ

î
ũ3ũ

′
5 + ũ′2ũ6 + 3

2 ũ6 (ũ′5)2ó
+
[
2flu′2u′′6 + 4flu3u′6 + 3flu′3u6 + flu′′3u′5]

− [2ũ′2ũ′′6 + 4ũ3ũ
′
6 + 3ũ′3ũ6 + ũ′′3ũ

′
5]

+
ï
2„�u′′6 (u′5)2 + 2fl(u6)3 + 8 ·�u′5u6u′6

ò
−
î
2ũ′′6 (ũ′5)2 + 2 (ũ6)3 + 8ũ′5ũ6ũ

′
6
ó

γ2 = 0 γ5 = 0

γ3 = ũ′′1 − ũ′′1 γ6 = ũ′′4 − ũ′′4.

(3.24)

The modified PDEs for the beam will be discretized in space and time with the

same FD schemes as the Burgers equation. The RKCS scheme will be used to compute

FRS solutions with a highly refined computational grid, and the BTCS scheme will

be used for ROM simulations with a coarse computational grid.

3.5 Summary of selected systems

Four nonlinear dynamical systems were described in this chapter, and will be used to

investigate various aspects of the OPSTROM framework. The canonical van der Pol

and Duffing oscillators contain no spatial dependence, which will allow us to focus
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exclusively of subgrid time scales and the OPTROM approach. The van der Pol

oscillator features a nonlinear damping mechanism, which plays the role of an energy

source and sink as the system evolves to a steady state LCO. The Duffing oscillator

features a nonlinear stiffness term, which allows for both regular and chaotic response

types when subjected to time-periodic external forcing. The viscous Burgers equation

with time-periodic BCs will enable us to demonstrate application of all four reduced

order modeling variants (standard ROM, OPTROM, OPSROM and OPSTROM)

to a fluid dynamics problem with spatiotemporal dependence. The nonlinear beam

problem also contains spatiotemporal dependence, but is capable of undergoing a

variety of structural response types ranging from time-periodic to chaotic. For each

of these systems, we derived the subgrid-scale accelerations and forces. Discretization

schemes were then described for both FRS and ROM simulations.
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CHAPTER 4

Characterization of subgrid-scale dynamics

In this chapter, we characterize the subgrid-scale dynamics for each of the nonlinear

dynamical systems and corresponding discretization schemes described in Chapter 3.

The findings will then be used to guide the construction of subgrid-scale models for

OPTROM, OPSROM and OPSTROM simulations.

Recall that the discrete subgrid-scale models in (2.15) require a priori knowledge

of multi-point statistical moments (or correlations [113]) amongst τ and ũ as shown

in (2.16). In order to acquire such knowledge, FRS solutions will be computed for a

select number of physical parameters. Each FRS solution will be filtered to match

the desired ROM. For the IE and BTCS schemes, we apply a consistent comb-type

sampling filter in space and time. For the HB scheme, we apply a consistent spectral

cutoff filter. The subgrid-scale dynamics τ for each problem will then be computed

using the expressions for α and γ derived in Chapter 3. The required multi-point

moments amongst τ and ũ, several of which are given by¨
(τi)nj

∂
,
¨
(ũi)nj

∂
,
¨
(τi)nj (ũk)mp

∂
,
¨
(ũi)nj (ũk)mp

∂
, (4.1)

will then be obtained by direct calculation as shown in Table 2.2. The mean operator

〈·〉 for each moment is to be computed over the spatiotemporal domain of interest.

The purpose of the modelM is to approximate τ over whatever domain is chosen.

In addition to the raw moments required for the models (see (2.16) and (4.1)),

normalized moments (or correlation coefficients [113]) will also be useful in studying

the statistical properties. To this end, the second-order moments amongst τ and ũ
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will sometimes be normalized by the following quantity

Qik =
¨
(τi)2∂1/2 ¨(ũk)2∂1/2 , (4.2)

such that they vary in the domain [−1, 1]. A value of 1 indicates that τ and ũ are

(perfectly) positively correlated, 0 indicates that they uncorrelated, and −1 indicates

that they are (perfectly) negatively correlated. The stronger the correlations, positive

or negative, the more accurately we should be able to estimate τ [65, 66].

While all of the moments in (4.1) are important, some are worth studying more

than others. In particular, we shall find that the
¨
(τi)nj (ũk)mp

∂
moments are most

sensitive to the system parameters, and therefore, will be the focus of this analysis.

In general, the observations to be made for the
¨
(τi)nj (ũk)mp

∂
moments also hold (often

to a greater extent) for the other moments in (4.1).

As discussed in Section 2.7, it may be possible to increase the practical utility of

the subgrid-scale models by making some simplifying assumptions. For each of the

problems, we explore the extent to which the following properties are valid:

• Spatial homogeneity

• Temporal homogeneity

• Ergodicity

• A functional dependence which can easily be characterized with respect to the

system parameters (referred to as “smooth scaling” for brevity)

• Universality

If observed, smooth scaling would enable efficient construction of models based upon

estimated moments as shown in Table 2.3. Once the “best” models are established

for each problem, performance of the standard ROM, OPTROM, OPSROM and

OPSTROM schemes will be investigated in Chapter 5.
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4.1 Van der Pol oscillator characterization

The subgrid-scale dynamics for the van der Pol oscillator in (3.3) and (3.4) depend

only on the strength of the nonlinear damping coefficient (α) and the temporal grid

(∆t or NH). In this work, we consider nonlinear damping coefficients within the range

α ∈ (0, 20]. (4.3)

To eliminate any potential ambiguity, we focus exclusively on steady state LCOs. For

the time-marching solutions, transients are allowed to decay due to the presence of

physical and numerical damping.

In order to characterize the subgrid-scale dynamics for the van der Pol oscillator,

FRS solutions are obtained for a select number of α values. To achieve a true FRS

solution with a time-marching scheme, an infinitesimally small timestep must be used

to evolve the solution. Similarly, an infinite number of modes must be retained with a

time-spectral scheme. To be practical, however, we consider a simulation to be a FRS

when all variables (u1, u2 and ω) are resolved to within machine precision (O(10−16)).

For this problem, FRS solutions are computed with the RK4 time-marching scheme

with a very fine timestep of ∆t = 10−6, which completely resolves all variables to

within machine precision for α ∈ (0, 20].

Steady state FRS solutions are shown in Figure 4.1 for α = {0+, 5, 10, 15, 20},

where 0+ denotes the upper limit as α→ 0. Observe in Figure 4.1a that the system

undergoes self-sustained relaxation oscillations with frequency ω and period T =

2π/ω. Energy is rapidly introduced to the system near the origin in the form of

negative damping. An abrupt transition to positive damping occurs away from the

origin, whereupon energy is slowly extracted from the system. When the system is

almost linear (α → 0), the response becomes sinusoidal with ω = 1 and T = 2π.

When the nonlinearity is large (α→∞), the response approaches a square wave with
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Figure 4.1: Steady state FRS solutions for the van der Pol oscillator with five different
nonlinearities: α = {0+, 5, 10, 15, 20}. The FRS solutions are computed with the RK4
time-marching scheme with a very fine timestep of ∆t = 10−6.

infinite period. Only the odd harmonic amplitudes are shown in Figure 4.1b, as the

even (and zeroth) harmonic amplitudes are effectively zero.

As an alternative to the RK4 scheme, we could have chosen to produce FRS

solutions with the IE or HB schemes, but the timestep (IE) or number of harmonics

(HB) needed to satisfy our criteria for a FRS would require excessive computational

resources. This can be seen in Figure 4.2, where the LCO frequency errors (2.28) are

compared for a fixed nonlinearity of α = 20. The largest ∆t represents the coarsest

grid for which each scheme is stable or able to converge. Decreasing ∆t improves the

resolution until machine precision is reached. For α = 20, it is not feasible to obtain

FRS solutions with the IE or HB schemes. Similarly, as an alternative to the IE and

HB schemes, we could choose to produce ROM simulations with the explicit RK4

time-marching scheme. Due to its conditional stability, however, RK4 scheme is not

a good choice for ROM simulations with coarse timesteps.

From each of the FRS solutions in Figure 4.1, the subgrid-scale moments are ob-

tained by direct calculation, as described in Table 2.2. For now, it is sufficient to state
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Figure 4.2: LCO frequency errors for the van der Pol oscillator with α = 20 computed
with the RK4, IE and HB schemes with various timesteps.

that the required moments are homogeneous in time when the system has reached a

steady state response and the mean operator 〈·〉 is evaluated over one period of oscil-

lation. This is due to the fact that the mean of a time-periodic function is invariant

when the domain of integration is taken over one period [113]. Moreover, since there

exists only one stable LCO to which all nonzero trajectories evolve, the required mo-

ments are also ergodic. The concepts of temporal homogeneity and ergodicity will be

explored in greater detail in Section 4.4 for the nonlinear beam. Spatial homogeneity

is meaningless for this problem as it contains no spatial dependence.

In order to characterize the functional dependence of the moments with respect

to the system parameters, we employ a fourth-order bivariate Lagrange interpolation

scheme. For the IE scheme, we consider parameters within the range of α ∈ (0, 20] and

∆t ∈ [10−3, 10−1]. The interpolation nodes are chosen to be α = {0+, 5, 10, 15, 20} and

five logarithmically spaced values of ∆t. Two of the estimated moments required for

model construction models are shown in Figure 4.3. Observe that the moments scale

smoothly with respect to α and ∆t, which implies that the functional dependence

can easily be characterized with a small amount of FRS data (five solutions).

Various choices can be made for the van der Pol oscillator with regards to the
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Figure 4.3: Estimated moments amongst τni and ũmk for the van der Pol oscillator as
a function of the nonlinearity α ∈ (0, 20] and timestep ∆t ∈ [10−3, 10−1] for the IE
scheme. A fourth-order bivariate Lagrange interpolation scheme is used to estimate
the moments with nodes at α = {0+, 5, 10, 15, 20} and five logarithmically spaced ∆t
values. For each of the five α-nodes, the moments are calculated directly from the
FRS solutions in Figure 4.1.

functional form of the subgrid-scale model, including the order of approximation, the

number of states (MS) and the extent of support in time (MT ). For the IE scheme, we

select a linear stochastic estimate with two states and a two-point temporal stencil,

which uses (Ai)n and (Biα)nµ with MS = 2 and MT = 2 in (2.15). A total of 34

moments (inputs) are required in (2.16) for this particular model, 16 of which are

redundant, and two of which are shown in Figure 4.3. Within the specified range of

α and ∆t, the chosen subgrid-scale model is found to provide the best combination of

simplicity (low number of coefficients and correlations) and performance (low errors)

for the IE scheme. Including quadratic and cubic terms in the estimate does not

improve predictions. Further increasing the temporal stencil size improves the a priori

errors, but not the a posteriori errors.

Moments required for the HB scheme are also interpolated as a function of the

nonlinearity α ∈ (0, 20] using fourth-order Lagrange polynomials. A consistent spec-

tral cutoff filter is used to compute the filtered solution. Each of the FRS solutions in

Figure 4.1 are transformed to the Fourier domain where all modes greater than NH
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are truncated. The filtered spectra are then transformed back to the time domain

where the moments amongst τ and ũ are calculated. Due to the application of a

consistent spectral cutoff filter, the subgrid-scale acceleration vanishes, leaving only

the subgrid-scale force to be modeled.

For the HB scheme, we select a linear subgrid-scale model with two states and a

one-point temporal stencil, which uses (Ai)n and (Biα)nµ withMS = 2 andMT = 1 in

(2.15). When one harmonic is retained in the HB scheme (referred to throughout the

literature as the describing function method), the direct subgrid-scale model is exact

(zero a priori error). An explanation for this result is provided in Appendix A. The

model appraisal criterion described in Section 2.9 suggests that ROM solutions with

this particular model will also be exact. This actually occurs in Section 5.1 when

direct models are used. When multiple harmonics are retained with the HB scheme,

however, the a priori errors are nonzero but small nevertheless.

We emphasize that a total of five FRS solutions are used to construct subgrid-scale

models for the van der Pol oscillator with the IE and HB schemes. In Section 5.1,

however, we also compute FRS solutions for each α in order to determine the accuracy

of ROM solutions. For the canonical van der Pol oscillator, it is feasible to do so.

4.2 Duffing oscillator characterization

The subgrid-scale dynamics for the Duffing oscillator in (3.7) and (3.8) depend on

each of the physical parameters (F , ω and ζ) and the temporal grid (∆t or NH).

In this dissertation, we analyze the complex response of the Duffing oscillator as a

function of the external forcing amplitude F and frequency ω. Analogous to focusing

on one physical specimen, we fix the damping ratio ζ to 0.1 for the remainder of this

study. We consider the following parametric values:

ζ = 0.1, F ∈ (0, 150], ω ∈ [0.5, 5]. (4.4)
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The frequency range is chosen to surpass the natural frequency of oscillation for the

linearized system, ω0 = 1, while the large range of forcing amplitudes renders an

assortment of highly nonlinear solutions.

In order to characterize the functional dependence of the required multi-point mo-

ments with respect to the forcing parameters, FRS solutions are obtained for sixteen

combinations of F and ω, as shown in Table 4.1. Each solution is evolved beyond 100

forcing cycles. A variety of trajectories are encountered when transients are allowed

to decay due to damping, including symmetric time-periodicity, asymmetry, period

N -tupling and chaos. Four of these solutions, for example, are shown in Figure 4.4.

From each of the sixteen FRS solutions in Table 4.1, the required moments are

obtained via direct calculation. Temporal homogeneity and ergodicity are excellent

assumptions when the response is time-periodic and symmetric. When the response

is asymmetric or chaotic, however, the moments display at least some sensitivity to

the initial conditions and the time domain over which the mean operator is evaluated.

Nevertheless, these variations are subtle, and we still consider temporal homogeneity

and ergodicity to be reasonable assumptions for all response types. Moments for

the chaotic solutions are evaluated over 100 forcing cycles, and moments for the

asymmetric solutions are averaged with respect to all observed outcomes. Later in

Section 4.4, we will explore in greater detail the validity of temporal homogeneity and

ergodicity for both regular and chaotic response types.

ω

5 P P P P P Periodic steady state
2.5 P AP 3P 3P AP Asymmetric periodic

1 P 3P 2P C NP Period N -tupling
0.5 P AP C C C Chaotic

0+ 50 100 150
F

Table 4.1: Qualitative FRS solution behavior for the Duffing oscillator at sixteen
discrete points in the forcing parameter space F ∈ (0, 150] × ω ∈ [0.5, 5] for which
moments amongst τni and ũmk are calculated directly.
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(a) F = 10 and ω = 0.5: Periodic
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(b) F = 50 and ω = 0.5: Asymmetric
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(c) F = 50 and ω = 1.0: Period tripling
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(d) F = 100 and ω = 0.5: Chaotic

Figure 4.4: Time history of FRS solutions for the Duffing oscillator with a select
number of forcing parameters. Transients have decayed for periodic solutions as each
simulation is evolved beyond 100 forcing cycles.

For the Duffing oscillator, we employ a local bilinear interpolation scheme to

approximate the functional dependence of the moments with respect to F and ω.

Two of these moments, for example, are shown in Figure 4.5. The subset of forcing

parameters from Table 4.1 serve as interpolation nodes. Observe that the moments

scale smoothly with respect to F and ω, which implies that the functional dependence

can easily be characterized. Other moments required for the models scale in a similar

manner with respect to F and ω. This finding is particularly interesting, if not
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Figure 4.5: Estimated moments amongst τni and ũmk for the Duffing oscillator in the
forcing parameter space F ∈ (0, 150] × ω ∈ [0.5, 5]. A local bilinear interpolation
scheme is used to estimate the moments with nodes at F = {0+, 50, 100, 150} and
ω = {0.5, 1, 2.5, 5}, as indicated by the intersecting dotted lines. At each node, the
moments are calculated directly from the FRS solutions in Table 4.1 with a consistent
comb-type sampling filter for the IE scheme with coarse timestep of ∆t = 10−2.

surprising, considering a wide variety of trajectories were encountered, ranging in

complexity from time-periodic to chaotic.

The required moments also scale smoothly with respect to the temporal grid, ∆t,

results for which are not shown here, as they resemble closely those for the nonlinear

beam in Section 4.4. Note that additional FRS solutions need not be obtained to

characterize the moments with respect to ∆t; only the comb-type sampling filter

needs to be modified. In this sense, characterizing the functional dependence of the

moments with respect to ∆t requires less effort than with respect to F and ω.

Estimated moments allow for efficient model construction. The number of FRS

solutions (interpolation nodes) needed to characterize the moments should generally

be influenced by the observed scaling behavior with respect to the parameters of

interest. Smooth scaling, as in Figure 4.5, simplifies this task. Less smooth results

(due to a more complicated functional dependence) would require additional nodes

and/or higher-order interpolants. As shown in Table 4.2, the estimated moments in

Figure 4.5 are quite accurate for a representative set of forcing parameters. When
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Moment Estimation Direct calculation Error

〈ũn1 ũn1 〉 0.2171×102 0.2026×102 0.072¨
ũn1 ũ

n−1
1
∂

0.2168×102 0.2024×102 0.071
〈ũn2 ũn2 〉 0.4098×103 0.3656×103 0.121¨
ũn2 ũ

n−1
2
∂

0.4107×103 0.3662×103 0.122
〈τn1 ũn1 〉 0.1936×101 0.1775×101 0.091¨
τn1 ũ

n−1
1
∂

0.1952×101 0.1810×101 0.078
〈τn1 ũn2 〉 -0.3237×101 -0.3815×101 -0.152¨
τn1 ũ

n−1
2
∂

-0.2648×101 -0.3215×101 -0.176

Table 4.2: Subgrid-scale moments for the Duffing oscillator with an arbitrarily chosen
set of external forcing parameters (F = 125 and ω = 4.0) for which the response is
time-periodic and symmetric. Two methods of moment calculation are compared:
direct calculation from an FRS solution obtained a priori (accurate but inefficient),
and estimation (as shown in Figure 4.5). The moments are calculated for the IE
scheme with a coarse timestep of ∆t = 10−2. Relative errors for the estimated
moments are shown the final column.

compared to the moments obtained via direct calculation, the estimated moments in

Table 4.2 vary by less than 20%.

Various choices can be made for the Duffing oscillator with regards to model

construction. For the IE scheme, we select a linear stochastic estimate with two

states and a two-point temporal stencil, which uses (Ai)n and (Biα)nµ with MS = 2

and MT = 2 in (2.15). This particular model is well-conditioned and provides a

favorable combination of low a priori and a posteriori errors. For the HB scheme,

we also select a linear stochastic estimate with two states, but we consider the effects

of various stencils (MT = 1, 2 and 3) when multiple harmonics are retained. The

performance of a one-point cubic model will also be discussed briefly in Section 5.2.

For this problem, the subgrid-scale models are based upon moment estimation for the

IE scheme and direct calculation for the HB scheme.

65



4.3 Viscous Burgers flow characterization

For the viscous Burgers flow, we aim to characterize the subgrid-scale dynamics for

the following flow parameter space:

Re ∈ [100, 103], St ∈ (0, 3]. (4.5)

The properties of interest are spatiotemporal homogeneity, ergodicity, and scaling

behavior with respect to the flow parameters (Re and St).

First we characterize the spatiotemporal dependence of the required multi-point

moments for a representative set of flow parameters (Re = 100 and St = 3). An FRS

solution is computed for these parameters using the RKCS scheme with a very fine

grid (∆x = 10−4 and ∆t = 10−8). Due to the parabolic nature of the governing PDE

and the time-periodic inflow BCs, temporal homogeneity and ergodicity are found

to be excellent assumptions when the flow is given time to convect downstream and

the mean operator is taken over one period of oscillation. Both the single-point and

multi-point moments are found to vary significantly in space, however, as shown in

Figures 4.6, 4.7 and 4.8.

Observe in Figure 4.6 that the mean of ũnj grows slightly as the flow convects

downstream, whereas the second moment is relatively homogeneous and the higher

moments of the flow dissipate. In addition to the single-point moments shown in

Figure 4.6, multi-point moments amongst ũnj may be required for the subgrid-scale

models. For brevity, it is sufficient to state through observation that the multi-point

moments amongst ũnj vary in a similar manner to those in Figure 4.6.

Multi-point (in time) moments amongst the velocity and subgrid-scale acceleration

are shown in Figure 4.7. The mean of αnj is effectively zero, but the moments amongst

ũnj and αnj are relatively large upstream. As the flow convects downstream, the time

scales become less important and the moments decay. Note that the information
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Figure 4.6: Spatial variation in select moments amongst the filtered velocity field
ũnj for the Burgers flow with Re = 100 and St = 3. The FRS solution is filtered in
space and time with a consistent comb-type sampling filter for the BTCS scheme with
∆x = 10−2 and ∆t = 10−2. Temporal homogeneity is assumed as the time domain for
the mean operator is taken over one period of oscillation, whereas the spatial domain
is infinitesimally small.

shown in Figure 4.7 is all that needs to be known about α to construct a spatially

heterogeneous model for OPTROM with a linear stochastic estimate on a three-point

backward temporal stencil.

Multi-point (in space) moments amongst the velocity and subgrid-scale force are

shown in Figure 4.8. Observe that the mean of γnj is greatest far upstream, where

convection is dominant and the spatial scales are most complex. The multi-point

moments amongst ũnj and γnj display an even greater degree of functional dependence

on the spatial location. Such variation all but necessitates the use of heterogeneous

subgrid-scale models. The information shown in Figure 4.8 is all that needs to be

known about γ in order to construct a heterogeneous model for OPSROM with a

quadratic stochastic estimate with diagonal coefficients and a three-point spatial sten-

cil. Previous research in optimal LES [69, 70, 104, 105] has suggested that quadratic

estimates may in fact be necessary to accurately model subgrid-scale convection terms.

The next step is to characterize the functional dependence of the required moments
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with respect to the flow parameters. To this end, FRS solutions are obtained for

the sixteen possible combinations of the following Reynolds and Strouhal numbers:

Re = {100, 101, 102, 103} and St = {0+, 0.75, 1.5, 3.0}. Four of these solutions are

shown in Figure 4.9. The moments required for the subgrid-scale models are then

calculated directly from the FRS solutions. Temporal homogeneity is assumed, but

spatial dependence is preserved. A local bilinear interpolation scheme is then used

to estimate the moments in the continuous flow parameter space. Hence, the sixteen

discrete values of flow parameters serve as interpolation nodes.

Representative sets of estimated moments amongst ũnj , αnj , and γnj are shown in

Figures 4.10, 4.11 and 4.12 at the x = 0.5 spatial location. Observe that the moments

amongst ũnj in Figure 4.10 vary smoothly with respect to Re and St, which allows

for the functional dependence to be easily characterized. Moments amongst ũnj , αnj

and γnj in Figures 4.11 and 4.12 also display a similar type of scaling with respect

to the flow parameters. The subgrid-scale accelerations in Figure 4.11 appear to

be significant unless the flow is heavily damped (Re → 0) and slowly fluctuating

(St→ 0). The subgrid-scale forces in Figure 4.12 are also greatest for large Reynolds

numbers, but seem to be affected less by the Strouhal number.

In order to determine the accuracy of the estimated moments in Figures 4.10, 4.11

and 4.12, one additional FRS solution is obtained for a new set of flow parameters

(Re = 50 and St = 2.25). Several of the multi-point moments required for model

construction are compared in Table 4.3. The moments are obtained by means of

estimation (sampled from the information in Figures 4.10, 4.11 and 4.12) and direct

calculation from the FRS solution for Re = 50 and St = 2.25. As shown in Table 4.3,

the estimated moments amongst the velocity are generally 95% accurate, whereas the

moments amongst the subgrid-scale force and acceleration are found to be 80% accu-

rate. We deem these to be good results considering additional forms of uncertainty

are embedded within the stochastic estimate.
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Figure 4.9: Snapshots of FRS solutions for the viscous Burgers flow with a select
number of flow parameters. In each figure, the spatial distributions are shown at two
different times during the inflow disturbance cycle: the beginning (t = 0, solid curve)
and the peak (t = T/4, dashed curve).

The moments in Figures 4.10, 4.11 and 4.12 can also be tabulated for different

grids by filtering the FRS data with different ∆x and ∆t values. Additional FRS data

need not be obtained for such a task. For instance, when filtered with ∆x = 10−3

and ∆t = 10−3, the moments are also found to vary smoothly with respect to Re

and St. Once tabulated, the moments can be interpolated with respect to the grid

parameters ∆x and ∆t in addition to the flow parameters.
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Figure 4.10: Estimated moments amongst the filtered velocity ũnj for the Burgers flow
in the flow parameter space Re ∈ [100, 103]× St ∈ (0+, 3]. A local bilinear interpola-
tion scheme is used to estimate the moments with nodes at Re = {100, 101, 102, 103}
and St = {0+, 0.75, 1.5, , 3}, as indicated by the intersecting dotted lines. One FRS
solution is obtained at each of the sixteen nodes, and a consistent comb-type sam-
pling filter is applied with ∆x = 10−2 and ∆t = 10−2 in order to characterize the
moments. Temporal homogeneity is assumed, but spatial nonuniformity is considered
as the mean operator is evaluated over an infinitesimal spatial domain and one cycle
of oscillation. The moments here are compared at the x = 0.5 spatial location.

One of the objectives of this study is to determine which terms in the subgrid-scale

dynamics are important for problems with spatiotemporal dependence. As such, we

will model individually the subgrid-scale accelerations due to a coarse temporal grid

(OPTROM) and the subgrid-scale forces due to a coarse spatial grid (OPSROM).

When used in conjunction, the OPTROM and OPSROM models account for the
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Figure 4.11: Estimated moments amongst the subgrid-scale acceleration, αnj , and
filtered velocity, ũnj , for the Burgers flow in the flow parameter space Re ∈ [100, 103]×
St ∈ (0+, 3]. The moments here are compared at the x = 0.25 and x = 0.5 locations.
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n
j

〉
at x = 0.25

Reynolds Number, Re

St
ro

uh
al

 N
um

be
r, 

St

 

 

1 10 100 1000
0+

0.75

1.5

3

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(d)
〈
γnj ũ
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Figure 4.12: Estimated moments amongst the subgrid-scale force, γnj , and filtered
velocity, ũnj , for the Burgers flow in the flow parameter space Re ∈ [100, 103] × St ∈
(0+, 3]. The moments here are compared at the x = 0.25 and x = 0.5 locations.
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Moment Estimation Direct calculation Error¨
ũnj
∂

0.11501×101 0.11819×101 0.026¨
ũnj ũ

n
j

∂
0.13682×101 0.14323×101 0.044¨

ũnj ũ
n−1
j

∂
0.13677×101 0.14318×101 0.044¨

ũnj ũ
n−2
j

∂
0.13660×101 0.14305×101 0.045¨

ũnj ũ
n
j−1
∂

0.13680×101 0.14320×101 0.044¨
ũnj ũ

n
j+1
∂

0.13678×101 0.14319×101 0.044¨
ũnj ũ

n
j ũ

n
j

∂
0.16839×101 0.17771×101 0.052¨

ũnj ũ
n
j ũ

n
j ũ

n
j

∂
0.21441×101 0.22535×101 0.048¨

αnj ũ
n
j

∂
0.53069×10−1 0.43953×10−1 0.207¨

αnj ũ
n−1
j

∂
0.52217×10−1 0.43650×10−1 0.196¨

αnj ũ
n−2
j

∂
0.45786×10−1 0.41569×10−1 0.101¨

γnj ũ
n
j−1
∂

0.12074×10−2 0.15192×10−2 0.205¨
γnj ũ

n
j

∂
0.96578×10−3 0.12604×10−2 0.233¨

γnj ũ
n
j+1
∂

0.87746×10−3 0.10049×10−2 0.126

Table 4.3: Subgrid-scale moments for the Burgers flow with an arbitrarily chosen
set of flow parameters (Re = 50 and St = 2.25) at the x = 0.5 midfield location.
Two different methods of moment calculation are compared: direct calculation from
an FRS solution (accurate but inefficient) and estimation (as shown in Figures 4.10,
4.11 and 4.12). The moments are calculated for a coarse computational grid with
∆x = 10−2 and ∆t = 10−2. Relative errors for the estimated moments are shown the
final column.

complete subgrid-scale spatiotemporal statistical structure (OPSTROM). All of the

models will be spatially heterogeneous. For the subgrid-scale accelerations, we select

a linear stochastic estimate with a three-point temporal stencil, which uses (Ai)nj
and (Biα)nµjξ with MN = 1 and MT = 3 in (2.15). For the subgrid-scale forces,

we select a quadratic stochastic estimate with a three-point spatial stencil, which

uses (Ai)nj , (Biα)nµjξ and (Ciαβ)nµνjξη with MN = 3 and MT = 1 in (2.15). Only the

diagonal quadratic coefficients are retained to avoid ill-conditioning. In other words,

(Ciαβ)nµνjξη = 0 if ξ 6= η. This particular quadratic model is chosen (i) to match the

functional form of the subgrid-scale convection in (3.16), and (ii) due to its superior

performance in comparison to linear models for this problem.
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4.4 Nonlinear beam characterization

For the nonlinear beam, we characterize the subgrid-scale dynamics with respect to

the external forcing amplitude F and frequency ω. Unless otherwise stated, the BCs

will be SS. Analogous to focusing on one physical beam specimen, the slenderness ratio

Λ and damping ratio ζ will be fixed. To align with the work of Hall and Hanagud [109],

Holmes [95], and Abhyankar [114], we consider the following parametric values:

Λ = 442368 F ∈ (0, 15]

ζ = 1.0 ω ∈ [1, 15].
(4.6)

For verification, the values of Λ and ζ are consistent with the computational study of

Hall and Hanagud [109] in which solutions for F ∈ (0, 10] and ω = 3.76 were explored.

The frequency range in (4.6) is chosen to surpass the first natural frequency of the

linearized SS beam model, ω1 = π2 [18], while the range of forcing amplitudes renders

an assortment of highly nonlinear solutions.

FRS solutions for the beam are obtained with the explicit RKCS scheme with a fine

computational grid (∆x = 5×10−3 and ∆t = 10−6). As shown by the grid convergence

study in Appendix D, the RKCS scheme is able to fully resolve all spatiotemporal

spectra to within ε < 10−6. However, the RKCS is a poor choice for ROM simulations

due to numerical instability with coarse timesteps. As such, the unconditionally stable

BTCS scheme will be used in Section 5.4 for ROM simulations that are under-resolved

in space and under-resolved in time (USUT), as described in Figure 1.2. Also shown

in Appendix D, the BTCS scheme can be used to compute USUT solutions several

orders of magnitude faster than the FRS.

A variety of beam trajectories will be encountered in this study. In the time

history of the response, we may find periodicity, asymmetry, period N -tupling, in-

termittency and chaos. Weak turbulence [115, 116], which for this problem implies
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simultaneous spatial irregularity and temporal chaos, is not observed for the SS BCs

in (3.20) and parameters in (4.6). To uncover a few of these trajectories, we sweep the

forcing amplitude F ∈ (0, 15] with a fixed frequency of ω = 3.76. FRS solutions for

six of these forcing amplitudes are shown in Figure 4.13. For small forcing amplitudes

(F � 1), the response is nearly identical to the result of linear Euler-Bernoulli beam

theory. For example, two peaks can be seen in the Figure 4.13a response for F = 0.1.

As F increases, the nonlinearities become important and bifurcations occur. The first

bifurcation appears around F = 0.15, whereupon a mode of local vibration is added

to the response for a total of six peaks. A second bifurcation occurs near F = 1.0 and

the response gains yet another mode of vibration for a total of ten peaks, as shown in

Figure 4.13b. For larger forcing amplitudes, a variety of response types emerge, in-

cluding asymmetric periodicity (Figure 4.13c), period doubling (Figure 4.13d), higher

period N -tupling and chaos (Figure 4.13e). Chaotic regions act as a transitional phase

in which two or more asymmetric branches merge to form a symmetric branch of a

higher mode [109]. As shown in Figure 4.13e and 4.13f, increasing F can sometimes

increase or decrease the complexity of solutions.

First we address the extent to which spatial homogeneity applies by studying the

subgrid-scale dynamics for the FRS solution in Figure 4.13f for F = 10 and ω = 3.76.

The normalized moments amongst τ and ũ are shown in Figure 4.14 on a three-point

temporal stencil (tn, tn−1, tn−2). The time domain for the mean operator is taken to be

one steady state forcing cycle while the spatial domain is taken to be infinitesimally

small, i.e. one spatial node, which enables us to observe any spatial variation in the

moments. Very little spatial variation (at most 8% in the x-direction) can be seen in

the Figure 4.14 normalized moments, which indicates that spatial homogeneity should

be an inexact yet excellent assumption for models with multi-point temporal stencils.

In addition to the time-periodic solution studied in Figure 4.14, similar results are

observed for asymmetric and chaotic solutions.

76



168 170 172 174 176
Time, t

-0.02

-0.01

0

0.01

0.02

M
id

po
in

t d
is

pl
ac

em
en

t, 
u 5*

100 102 104 106
Forcing cycle number

(a) F = 0.1: Periodic

168 170 172 174 176
Time, t

-0.02

-0.01

0

0.01

0.02

M
id

po
in

t d
is

pl
ac

em
en

t, 
u 5*

100 102 104 106
Forcing cycle number

(b) F = 1: Periodic

168 170 172 174 176
Time, t

-0.02

-0.01

0

0.01

0.02

M
id

po
in

t d
is

pl
ac

em
en

t, 
u 5*

100 102 104 106
Forcing cycle number

(c) F = 7: Asymmetric periodic
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Figure 4.13: Time history of FRS solutions for the midpoint displacement of the
SS beam for a select number of forcing amplitudes with a fixed forcing frequency of
ω = 3.76. Transients have decayed for periodic solutions as each simulation is evolved
beyond 100 forcing cycles.
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Figure 4.14: Spatial variation in select moments amongst (τi)nj and (ũk)mp on a three-
point backward temporal stencil (MT = 3) for the SS beam with an external forcing of
F = 10 and ω = 3.76. The periodic FRS solution for this case is filtered in space and
time with ∆x = 1.0×10−1 and ∆t = 1.0×10−2. Temporal homogeneity is assumed as
the mean operator 〈·〉 is taken over the 100th forcing cycle t ∈ [100(2π/ω), 101(2π/ω)],
whereas the spatial domain is infinitesimally small x ∈ (xj −∆x, xj + ∆x).

Now consider the normalized moments amongst τ and ũ on a three-point spatial

stencil (xj−1, xj, xj+1) shown in Figure 4.15. A high degree of spatial dependence

can be seen, especially near the boundaries where the beam is simply supported and

the displacement is zero, thus rendering the spatial homogeneity assumption invalid

for multi-point spatial stencils. For example, the
¨
(τ4)nj (ũ5)nj−1

∂
/Q45 moments vary

between 0 and -0.832 in the x-direction. This finding does not necessarily prohibit the

analyst from constructing a homogeneous model with a multi-point spatial stencil,

although one could expect perhaps less than optimal results.

Temporal variation in the normalized moments for F = 10 and ω = 3.76 are

shown in Figures 4.16 and 4.17. The beam is driven from its equilibrium position at

t = 0 (zero initial conditions), and the moments are calculated at the beginning of

each forcing cycle as the system undergoes a transient response. Hence, the domain

for the mean operator is taken to be t ∈ [tn− 2π/ω, tn] and x ∈ [0, 1]. Eventually the

transient vibrations dissipate and the system reaches a periodic steady state response
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Figure 4.15: Spatial variation in select moments amongst (τi)nj and (ũk)mp on a three-
point central spatial stencil (MN = 3) for the SS beam with an external forcing of
F = 10 and ω = 3.76. The moments are calculated with the same parameters as
Figure 4.14.

well before the 100th forcing cycle. Temporal homogeneity is an exact assumption

for the periodic response over one forcing cycle; this is true regardless of the chosen

stencil (MS,MN ,MT ). Temporal homogeneity is also an exact assumption over N

forcing cycles when the beam undergoes period N -tupling for different loads.

Moments for chaotic solutions must be treated somewhat differently. Consider, for

example, the FRS solution in Figure 4.13e for a forcing combination of F = 8.5 and

ω = 3.76. Temporal variations in the moments are shown in Figures 4.18 and 4.19 with

various stencils. In both figures, the spatial domain for the mean operator is taken

to be x ∈ [0, 1]. First we consider Figures 4.18a and 4.19a in which the time domain

for the mean operator is taken to be one forcing cycle. The signature feature of chaos

here resembles noise in the subgrid-scale dynamics. As seen in Figures 4.18b and

4.19b, extending the time domain for the mean operator to ten forcing cycles filters

out much of the apparent noise. For example, when the mean operator is calculated

over one forcing cycle, the
¨
(τ5)nj (ũ5)nj

∂
/Q55 moments vary between 0.081 and 0.316

as a function of time. By extending the time domain for the mean operator to ten

forcing cycles, the same moments vary between 0.195 and 0.264 as a function of time.
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Figure 4.16: Temporal variation in select moments amongst (τi)nj and (ũk)mp on a
three-point backward temporal stencil (MT = 3) for the SS beam with an external
forcing of F = 10 and ω = 3.76. The FRS solution is filtered with ∆x = 1.0×10−1

and ∆t = 1.0×10−2. The mean operator 〈·〉 is taken over the entire spatial domain
x ∈ [0, 1] and one transient forcing cycle t ∈ [tn − 2π/ω, tn].
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Figure 4.17: Temporal variation in select moments amongst (τi)nj and (ũk)mp on a
two-state stencil (MS = 2) for the SS beam with an external forcing of F = 10 and
ω = 3.76. The moments are calculated with the same parameters as Figure 4.16.
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(a) Mean taken over one forcing cycle
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(b) Mean taken over ten forcing cycles

Figure 4.18: Temporal variation in select moments amongst (τi)nj and (ũk)mp on a
three-point backward temporal stencil (MT = 3) for the SS beam with an external
forcing of F = 8.5 and ω = 3.76. The FRS solution is filtered with ∆x = 1.0×10−1

and ∆t = 1.0×10−2. The mean operator 〈·〉 is taken over the entire spatial domain
x ∈ [0, 1] and over one or ten chaotic forcing cycles (t ∈ [tn − 2π/ω, tn] or t ∈
[tn − 10(2π/ω), tn]).
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(b) Mean taken over ten forcing cycles

Figure 4.19: Temporal variation in select moments amongst (τi)nj and (ũk)mp on a
two-state stencil (MS = 2) for the SS beam with an external forcing of F = 8.5 and
ω = 3.76. The moments are calculated with the same parameters as Figure 4.18.

81



By further extending the time domain to 100 forcing cycles, the same moments vary

between 0.231 and 0.233 (less than 1% variation) for all time. In summary, temporal

homogeneity appears to be a valid assumption so long as the trajectories remain on

the same attractor and the mean is evaluated over t ∈ [0,∞). To be practical, in this

study, t→∞ is approximated as 100 forcing cycles.

In summary, spatial homogeneity and temporal homogeneity are both found to

be excellent (sometimes exact) assumptions for multi-point temporal and multi-state

moments. The multi-point spatial moments, however, appear to be nonhomogeneous

for this problem. This is true for both regular and chaotic response types. With these

assumptions, a subgrid-scale model with a one-point spatial stencil can be used at

every grid location (xj and tn), which greatly simplifies model construction and imple-

mentation. Ergodicity would further suggest that the required moments are invariant

to ICs. This is in fact true for symmetric periodic solutions and approximately true

for chaotic solutions in a long-term sense. Asymmetric periodic solutions, however,

are sensitive to ICs. Fortunately, differences in the moments for asymmetric solutions

(not shown) are subtle. Given these observations, and considering the higher level of

difficulty required to develop models which are sensitive to ICs, we hereafter assume

the evolution of the random filtered field to be an ergodic process for the purpose of

model construction. For the case of asymmetric solutions, the moments are calculated

based upon the expected value of all observed outcomes. In Section 5.4.4, it will be

demonstrated that simulations with models constructed in this manner are able to

predict asymmetric solution branches which are sensitive to ICs.

With the limitations of spatiotemporal homogeneity and ergodicity understood,

the next step is to determine how the subgrid-scale moments scale with respect to the

parameters of interest. In particular, we are interested in characterizing the functional

dependence of the required moments with respect to the forcing parameters (F and ω)

and grid parameters (∆x and ∆t).
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ω

15 P AP AP C P P Periodic steady state
10 P AP 3P 2P 3P AP Asymmetric periodic

6.5 P AP P C C NP Period N -tupling
3.76 P P P P P C Chaotic

1 P P P P P
0+ 3 6 10 15

F

Table 4.4: Qualitative FRS solution behavior for the SS beam at discrete points in
the forcing space F ∈ (0, 15] × ω ∈ [1, 15] for which moments amongst (τi)nj and
(ũk)mp are obtained via direct calculation. The indicated values of F and ω serve as
interpolation nodes for estimated moments.

In order to characterize the functional dependence of the moments with respect to

the forcing parameters, FRS solutions are obtained for the twenty-five combinations

of F and ω shown in Table 4.4. Each solution is evolved beyond 100 forcing cycles.

Periodicity, asymmetry, period N -tupling and chaos are all observed. The required

moments are then calculated for each FRS solution. We employ a local bilinear

interpolation scheme to approximate the functional dependence of the moments with

respect to the forcing parameters. The discrete values of F and ω in Table 4.4 serve

as the interpolation nodes. Twelve of these moments, for example, are shown in

Figures 4.20 and 4.21. Observe that the moments vary smoothly with respect to F

and ω, which implies that the functional dependence can easily be characterized with

a relatively small amount of FRS data. As with the Duffing oscillator, this finding is

interesting, considering the variety of response types encountered for the beam.

In addition to the forcing parameters, interpolants are also used to characterize the

functional dependence of the required moments with respect to the grid parameters

(∆x and ∆t). Grids within ∆x ∈ [5.0 × 10−3, 2.5 × 10−1] and ∆t ∈ [10−6, 10−2]

are considered. Additional FRS solutions need not be obtained for this task; only

the comb-type sampling filter needs to be modified. In this sense, developing model

dependence for ∆x and ∆t is much simpler than F and ω. As shown in Figure 4.22,

the required moments for F = 10 and ω = 3.76 are easily characterized with respect
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Figure 4.20: Estimated moments amongst (τi)nj and (ũk)mp for the SS beam on a two-
state stencil (MS = 2) in the forcing space F ∈ (0, 15]×ω ∈ [1, 15]. The FRS solutions
are filtered with ∆x = 1.0×10−1 and ∆t = 1.0×10−2. A local bilinear interpolation
scheme is used to model the moments with nodes at F = {0+, 3, 6, 10, 15} and ω =
{1, 3.76, 6.5, 10, 15}, indicated by the intersecting dotted lines.
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Figure 4.21: Estimated moments amongst (τi)nj and (ũk)mp for the SS beam on a
three-point temporal stencil (MT = 3) in the forcing space F ∈ (0, 15] × ω ∈ [1, 15].
The moments are calculated with the same parameters as Figure 4.20.
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〉 Timestep, !t

Sp
at

ia
l g

rid
 si

ze
, !

x

 

 

10  10  10  

10  

10  

!2

!1

0

1

2

x 10!5

e-5

e-5

e-5

e-5

-2-3-4

-2

-1

(b)
〈
(τ5)nj (ũ5)nj
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Figure 4.22: Estimated moments amongst (τi)nj and (ũk)mp for the SS beam on a three-
point temporal stencil (MT = 3) with one state for an external forcing of F = 10
and ω = 3.76 and various grids (∆x and ∆t). Similar models are constructed for all
forcing parameters in Table 4.4.
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to the grid parameters. Similar results are computed for all FRS solutions shown in

Table 4.4. Observe that moments for the subgrid-scale dynamics can be simplified in

the following limiting cases: τ → α as ∆x → ∆xFRS and τ → γ as ∆t → ∆tFRS.

Hence, the moments in Figure 4.22 can be used to construct subgrid-scale models for

the OPTROM, OPSROM and OPSTROM variants.

With the subgrid-scale dynamics now characterized with respect to F , ω, ∆x, and

∆t for the SS set of BCs in (3.20), the next task is to explore the extent to which

universality applies (if at all). Scaling and universality are in fact twin concepts [79]:

the moments are either sensitive to a certain parameter, in which case the functional

dependence could be characterized, or the moments are invariant, in which case the

models are universal with respect to that parameter.

In our search for universality, we are looking for a lack of functional dependence

in the subgrid-scale dynamics with respect to the BCs and the remaining physical

parameters (Λ and ζ). Consider, for example, the CC set of BCs described in (3.21)

and the CF set of BCs in (3.22). We compute FRS solutions for each of these BCs

with an external forcing of F = 10 and F = 8.5 with ω = 3.76. From the FRS

solutions, a select number of temporal moments are compared in Figures 4.23 and

4.24. Based upon these moments, the subgrid-scale dynamics do in fact appear to

be sensitive to the BCs. First observe the stronger correlations amongst τ and u for

the CC case. Also note the decreased sensitivity to the three-point temporal stencil

for the CC and CF moments, which is evident by the narrower separation between

the curves in Figures 4.23 and 4.24. These differences suggest that a subgrid-scale

model developed for the SS beam may not be applicable to the CC and CF beams.

A unique subgrid-scale model may be required for each set of BCs, and in this sense,

the models are not universal with respect to the BCs.

Universality with respect to BCs is a common feature in the microscale dynamics

of turbulent flows [79]. To help rationalize the observed lack of universality with
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Figure 4.23: Temporal variation in moments amongst (τi)nj and (ũk)mp for the SS, CC
and CF beams on a three-point backward temporal stencil for an external forcing of
F = 10 and ω = 3.76. The response evolves to a periodic steady state for the SS, CC
and CF boundary conditions. FRS solutions are filtered with ∆x = 1.0 × 10−1 and
∆t = 1.0 × 10−2. The mean operator 〈·〉 is taken over the the entire spatial domain
x ∈ [0, 1] and one transient forcing cycle t ∈ [tn − 2π/ω, tn].
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Figure 4.24: Temporal variation in select moments amongst (τi)nj and (ũk)mp for the
SS, CC and CF beams on a three-point backward temporal stencil for an external
forcing of F = 8.5 and ω = 3.76. The SS response is chaotic, whereas the CC
and CF responses evolve to a periodic steady state. FRS solutions are filtered with
∆x = 1.0 × 10−1 and ∆t = 1.0 × 10−2. The mean operator 〈·〉 is taken over the the
entire spatial domain x ∈ [0, 1] and one transient forcing cycle t ∈ [tn − 2π/ω, tn].
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respect to BCs for this beam problem, turbulence has been described as a mechanism

for the microscale dynamics to “forget” about the BCs through a loss of large-scale

spatial correlation [116]. For this beam problem, however, only temporal chaos is

observed. Spatial chaos (or weak turbulence [115, 116]) is not found for the range of

parameters considered in this study. Without turbulence, and the subsequent loss

of spatial correlation, we infer that the microscale structures may be sensitive to the

BCs throughout the entire system.

Additional FRS simulations are computed in order to determine that the subgrid-

scale dynamics are also sensitive to Λ and ζ. Besides the fixed values in (4.6), each of

the moments amongst τ and ũ are found to vary with respect to Λ = {105, 106, 107}

and ζ = {0.01, 0.1}. Hence, the moments are not universal with respect to Λ and ζ,

but if desired, empirical functions could also be constructed to estimate the moments

as a function of these parameters. Such a task is outside the scope of this dissertation.

Accurate subgrid-scale models can be constructed efficiently with the knowledge

we have learned about the subgrid-scale behavior of the nonlinear beam. Various

choices can be made with regards to model construction, including the functional

form of the model, the number of states, and the extent of support in space and time.

As shown in Appendix E, the subgrid-scale models described in Table 4.5 provide

the best combination of a priori and a posteriori error minimization and simplicity

for this particular beam problem. Note the grid limitations in Table 4.5 for the

OPTROM and OPSTROM variants: multi-point temporal models cannot be realized

for a very small ∆t. This is due in part to the subgrid-scale accelerations tending

toward zero as the temporal resolution improves and also in part to the close proximity

between neighboring timesteps. Hence, the difference between multi-point temporal

moments approaches machine precision. Choosing instead a one-point stencil to avoid

ill-conditioning does not improve predictions. This could in fact signal a diminishing

need to model subgrid-scale accelerations.
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Variant Stochastic estimate States Grid limitations

OPSROM [MS,MN ,MT ] = [2, 1, 1] (u4)nj , (u5)nj None
OPTROM [MS,MN ,MT ] = [1, 1, 3] (u5)nj , (u5)n−1

j , (u5)n−2
j ∆t . 5.0×10−4 †

OPSTROM [MS,MN ,MT ] = [1, 1, 3] (u5)nj , (u5)n−1
j , (u5)n−2

j ∆t . 5.0×10−4 †

† Models are ill-conditioned as the moments amongst (ũ5)nj , (ũ5)n−1
j and (ũ5)n−2

j

become indistinguishable with double machine precision.

Table 4.5: Subgrid-scale models for the nonlinear beam with OPSROM, OPTROM
and OPSTROM. For this particular beam problem, a linear stochastic estimate with
homogeneous coefficients (in space and time) and the stencils above provides the best
combination of accuracy and simplicity.

4.5 Summary of characterization of subgrid-scale dynamics

In this chapter, we characterized the subgrid-scale dynamics for the four nonlinear

dynamical systems. With regards to the statistical moments required as inputs for

model construction, we explored the extent to which the following properties are

valid: spatial homogeneity, temporal homogeneity, ergodicity, scaling with respect to

the system parameters, and universality. For all of the problems considered in this

dissertation, temporal and ergodicity were found to be excellent assumptions for the

purpose of model construction. For the canonical van der Pol and Duffing oscillators,

the required statistical moments were also found to scale smoothly with respect to

the system parameters. These observed properties enabled efficient construction of

linear subgrid-scale models based upon estimated moments with multi-point temporal

stencils. For the viscous Burgers flow, the required moments were found to be spatially

dependent as the flow convected downstream. Smooth scaling was observed with

respect to the Reynolds number and Strouhal number. For the (mass normalized)

subgrid-scale forces, we selected a spatially heterogeneous quadratic model based upon

estimated moments with a three-point spatial stencil, whereas for the subgrid-scale

accelerations, we selected a spatially heterogeneous linear model based upon estimated
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moments with a three-point temporal stencil. For the nonlinear beam problem, the

required moments were found to be homogeneous in space to a large extent, with

the exception of multi-point spatial moments. Smooth scaling was observed with

respect to the external forcing and grid parameters. For the beam, we constructed

spatially homogeneous linear models based upon estimated moments with a one-point

spatial stencil and a three-point temporal stencil. The models were not found to be

universal, however, with respect to the BCs for the chosen physical parameters, grid

parameters, and nondimensionalization procedure. Therefore, unique subgrid-scale

models were developed for the SS, CC and CF beam problems. The performance of

all of these models will be tested in the following chapter.
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CHAPTER 5

Performance of optimal reduced order models

In this chapter, we aim to determine which of the general ROM approaches described

in Chapter 2 (standard ROM, OPTROM, OPSROM or OPSTROM) provide the best

trade off between computational expense and accuracy for the nonlinear dynamical

systems described in Chapter 3. We consider ROMs that are under-resolved in space

(when applicable) and under-resolved in time (USUT), as illustrated in Figure 1.2.

Several variants of the subgrid-scale models constructed in Chapter 4 will be tested

to determine which ones are best for each problem. FRS solutions will be used as a

baseline for comparison.

The canonical van der Pol and Duffing oscillators in Sections 5.1 and 5.2 contain

time dependence only. As such, under-resolved simulations in time will be performed

with the IE time-marching and HB time-spectral schemes. We denote standard ROM

and OPTROM simulations with the IE scheme as IE and IE+OPTROM, respectively.

The timestep ∆t chosen for the IE scheme will be indicated in all figures. Standard

ROM and OPTROM simulations with the HB scheme are denoted as HBNH and

HBNH+OPTROM, where NH indicates the number of harmonics retained.

The viscous Burgers flow and forced nonlinear beam problems to be studied in

Sections 5.3 and 5.4 contain spatiotemporal dependence. USUT simulations for these

problems will be performed with the BTCS scheme and a coarse spatiotemporal grid.

Standard ROM, OPTROM, OPSROM and OPSTROM simulations are denoted as

USUT, USUT+OPTROM, USUT+OPSROM and USUT+OPSTROM, respectively.

The chosen spatial grid ∆x and timestep ∆t will be indicated in all figures.
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Various tools and measures will be used to detect improvement in the OPTROM,

OPSROM and OPSTROM solutions, including time history plots for displacement

and velocity, snapshots of the spatial configuration, Poincaré maps, phase portraits,

Fourier transformations for spatial and temporal spectra, bifurcation diagrams and

Lyapunov exponents. Each of the a posteriori error measures defined in Section 2.10

will also be used when FRS data is available.

All simulations in this study are processed on a computer with a 2.6GHz central

processing unit (CPU) and 4GB of random access memory (RAM). Absolute simu-

lation times will be reported with respect to the processing time for this machine,

measured in minutes, hours or days. For some problems, the simulation times will

also be normalized by the time required to compute an equivalent FRS solution. We

denote the normalized simulation times as T .

5.1 Van der Pol oscillator results

For the autonomous van der Pol oscillator, all nonzero initial trajectories evolve to

self-sustained LCOs. For each simulation, we specify the strength of the nonlinearity

α and choose a coarse temporal grid (∆t or NH). With the IE scheme, we specify

nonzero ICs and evolve the system long enough for transients to decay. Equivalently,

with the HB scheme, we provide an initial guess for the steady state LCO and drive

the residual to zero. The quantities of interest for this problem are the displacement

u1, velocity u2, and unknown frequency of oscillation ω. As described in Section 4.1,

for the subgrid-scale models, we use a linear stochastic estimate with two states and

a two-point temporal stencil.

5.1.1 Time-marching solutions

Time-marching solutions for a representative nonlinearity value (α = 10) are shown

in Figure 5.1 with a coarse timestep of ∆t = 10−2. When compared to the FRS result
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Figure 5.1: Time-marching solutions for displacement of the van der Pol oscillator
with a fixed nonlinearity of α = 10: FRS (black), standard IE with a coarse timestep
of ∆t = 10−2 (red) and IE with OPTROM and ∆t = 10−2 (blue).

(RK4 with ∆t = 10−6), the standard IE solution under-predicts the displacement

and velocity (not shown explicitly in Figure 5.1) and over-predicts the frequency of

oscillation. However, when the subgrid-scale model is used during the simulation, the

OPTROM solution is nearly identical to the FRS result. Hence, the subgrid-scale

model has accomplished exactly what it was designed for: capturing the effects of the

subgrid-scale dynamics on the coarse-grained solution.

The unknown frequency of oscillation is one of the most important features in the

study of autonomous systems. LCO frequency curves for the van der Pol oscillator

can be generated by plotting solutions for ω as a function of the nonlinearity. In

Figure 5.2, we compare frequencies for α ∈ (0, 20] with increments of ∆α = 0.1. The

standard IE solutions with ∆t = 10−2 over-predict the frequency for all α, whereas the

OPTROM solutions are consistently accurate. It should be noted that the unknown

frequency of oscillation is not explicitly solved for in the IE equations. In other

words, the subgrid-scale model was designed to improve the evolution of u1 and u2,

not ω. Improvement in the frequency is an indirect result of predicting the resolved

states more accurately. Moreover, the consistent comb-type sampling filter used to
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Figure 5.2: Time-marching solutions for the fundamental frequency of the van der
Pol oscillator versus the nonlinearity α ∈ (0, 20]: FRS (black), interpolated FRS with
a fourth-order Lagrange polynomial (dotted), standard IE with a coarse timestep of
∆t = 10−2 (red) and IE with OPTROM and ∆t = 10−2 (blue).

derive the subgrid-scale model implicitly assumes that the frequencies of the FRS and

OPTROM solutions are identical. The FRS and OPTROM frequencies in Figure 5.2

are in fact close but not identical. Despite the frequencies being incommensurate, we

deduce that the comb-type filtering operation need not be modified.

It is worth mentioning here that as an alternative to OPTROM, one could choose

to interpolate FRS solutions. We test this idea by interpolating the FRS solutions

for ω with the same basis functions used to estimate the moments in Section 4.1,

i.e. a fourth-order Lagrange polynomial with nodes at α = {0+, 5, 10, 15, 20}. The

interpolated FRS frequencies, shown in Figure 5.2, are actually less accurate than

the OPTROM results. The analyst could also interpolate FRS solutions for u1(t)

and u2(t), but this would prove to be a more difficult and less profitable task. These

findings support our preference for the OPTROM approach.

Frequency and displacement errors for the IE solutions with ∆t = 10−2 are shown

in Figure 5.3. Including the subgrid-scale model in the governing equations reduces

the errors by roughly two orders of magnitude for large α. There are two instances
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Figure 5.3: Errors for the van der Pol oscillator versus the nonlinearity α ∈ (0, 20]:
standard IE scheme with a coarse timestep of ∆t = 10−2 (red) and IE with OPTROM
and ∆t = 10−2 (blue).

in which the frequency error Eω for the OPTROM scheme is fortuitously zero. This

does not occur at the interpolation nodes used to estimate the moments, i.e., the

subgrid-scale model is not exact.

Recall that the subgrid-scale models for the IE scheme were developed in Sec-

tion 4.1 as bivariate functions of α and ∆t. Now we investigate the performance of

the models by computing a large set of IE solutions for α ∈ (0, 20] with increments

of 0.1 and ∆t ∈ [10−3, 10−1] with increments of 10−3. Contours for the frequency and

displacement errors are shown in Figures 5.4 and 5.5 on the same scale. Errors for the

standard IE solutions are greatest for large α and ∆t. This is also when the greatest

error reduction occurs with OPTROM. Therefore, the subgrid-scale models are most

needed, and most effective, when a coarse-grid is used and the nonlinearity is large.

The blank regions marked with a ∗ in Figures 5.4 and 5.5 indicate that the NR

scheme, which is used to solve the IE equations at every timestep, failed to converge

for that particular combination of α and ∆t. Observe that the subgrid-scale models

somewhat improve the convergence of the NR scheme: the size of the non-convergent
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(b) IE+OPTROM

Figure 5.4: Frequency error contours for the van der Pol oscillator with the IE time-
marching scheme. The blank region marked with a ∗ indicates that the NR scheme
(used to solve the IE equations at each timestep) failed to converge for the chosen
parameters.
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Figure 5.5: Displacement error contours for the van der Pol oscillator with the IE
time-marching scheme. The blank region marked with a ∗ indicates that the NR
scheme (used to solve the IE equations at each timestep) failed to converge for the
chosen parameters.

regions in Figures 5.4 and 5.5 are slightly decreased and the average number of NR

iterations required for convergence (not shown) are reduced. While this particular

observation of improved convergence for the IE scheme is quite encouraging, it should

not be considered a generalization for all time-marching schemes.
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5.1.2 Time-spectral solutions

The number of harmonics to be retained in the HB scheme is left to the analyst. Recall

from Figure 4.1b that the even harmonic amplitudes are effectively zero for the van

der Pol oscillator. For this reason, an odd number of harmonics will be retained.

Only a small number of harmonics are required for a coarse-grained solution, and in

this sense, the HB approach may be considered a computationally efficient alternative

to time-marching. However, the accuracy is somewhat limited due to the assumed

Fourier mode shapes. When a high fidelity solution is desired, a large number of

harmonics may be required, in which case it can become more economical to evolve

the system to a steady state solution with a time-marching scheme.

Reduced order HB solutions (HB1, HB3 and HB5) are shown in Figure 5.6 for a

representative nonlinearity value of α = 10. Observe that the standard HB results

are unreliable, primarily due to the erroneous frequencies. When the subgrid-scale

models are included in the governing equations, significant improvement can be seen

in the HB+OPTROM solutions.

The HB1+OPTROM solution in Figure 5.6 is exact with respect to the frequency

and first mode of the FRS solution. This result occurs for two reasons: First, the

direct subgrid-scale model for HB1 is exact (contains zero a priori error as shown

in Appendix C). Second, the models based upon estimated moments use α = 10

as an interpolation node. The HB3+OPTROM and HB5+OPTROM solutions for

displacement may be considered more accurate overall than HB1+OPTROM due to

the increased number of modes, but the first modes and frequencies are not exact.

HB solutions for the frequency are compared in Figure 5.7 for all α ∈ (0, 20]. The

standard HB1 scheme incorrectly renders the linear solution (ω = 1) regardless of

the nonlinearity. When more harmonics are retained and the nonlinearity is small,

the standard HB scheme provides fairly accurate solutions for the frequency. As

the nonlinearity increases, however, the standard HB frequencies diverge from the
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Figure 5.6: Harmonic balance (and FRS) solutions for displacement of the van der
Pol oscillator with a fixed nonlinearity of α = 10: standard HB (red) and HB with
OPTROM (blue). The choice of NH harmonics corresponds to NT = 2NH + 1 evenly
spaced timesteps (dots) for one steady state period.

FRS result and asymptotically approach some irrational number. Also shown in

Figure 5.7, the frequencies improve when the subgrid-scale models are included in the

simulations. The HB1+OPTROM solutions for ω are exact at the model interpolation

nodes (α = {0+, 5, 10, 15, 20}) and very close to the FRS result everywhere else.
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Figure 5.7: Harmonic balance solutions for the fundamental frequency of the van der
Pol oscillator versus the nonlinearity α ∈ (0, 20]: FRS (black), standard HB (red) and
HB with OPTROM (blue). The HB1+OPTROM frequencies are exact with respect
to the FRS at the Lagrange interpolation nodes (where the direct model is exact).

Frequency and displacement errors for the HB solutions are shown in Figure 5.8.

When the nonlinearity is very small, the standard HB scheme is quite reliable when

several harmonics are retained. As α increases, however, the standard HB scheme

suffers from large errors. Including the subgrid-scale models in the simulations reduces

the frequency errors Eω by about two orders of magnitude and the displacement errors

Eu1 by nearly one order of magnitude. The error reduction in Figure 5.8 indicates

that subgrid-scale models are most needed, and most effective, with the HB scheme

when the system is highly nonlinear.

5.1.3 Summary of results for the van der Pol oscillator

The autonomous van der Pol oscillator served as a testbed for OPTROM with the IE

time-marching and HB time-spectral schemes. For large nonlinearities, the standard

IE and HB schemes proved to be unreliable as large errors occurred in the displace-

ment and fundamental frequency of oscillation. However, when the subgrid-scale

models were included in the simulations, a posteriori errors for the solutions were
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Figure 5.8: Frequency and displacement errors for the van der Pol oscillator versus
the nonlinearity α ∈ (0, 20]: standard HB (red) and HB with OPTROM (blue). The
frequency errors for HB1+OPTROM (not shown due to scale) are zero at the model
interpolation nodes.

reduced by one to two orders of magnitude. Despite not being taken into account

when developing the subgrid-scale models, the greatest error reduction occurred in

solutions for the unknown frequency of oscillation. This improvement is believed to be

an indirect result of predicting the resolved states (displacement and velocity) more

accurately. As expected from the analysis in Appendix C, OPTROM solutions with

the HB scheme were exact (produced first mode of FRS) with one harmonic retained.

5.2 Duffing oscillator results

Depending on the selected physical parameters (F , ω and ζ), the Duffing oscillator

may undergo regular or chaotic response types, as shown in Table 4.1. The robust

IE time-marching scheme will be used to explore the entire forcing parameter space

defined in (4.4). Only for regular response types is the Duffing oscillator well-suited for

HB analysis. As such, we use the HB time-spectral scheme to explore a much smaller

forcing parameter space for which we expect the response to be time-periodic.
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5.2.1 Time-marching solutions

Time marching solutions for the response are compared in Figures 5.9 and 5.10 for

two sets of forcing parameters with various resolutions. The FRS solutions (RK4 with

∆t = 10−6) are assumed to be exact, whereas the coarse IE results (both standard and

OPTROM with MS = 2 and MT = 2) contain errors, but are faster to compute by

several orders of magnitude. Several types of plots for these two quantities are shown

in Figures 5.9 and 5.10, including the time histories for displacement and velocity,

phase portraits, uniform sampling Poincaré maps, zero velocity Poincaré maps, and

temporal spectra obtained by discrete Fourier transformation. The uniform sampling

Poincaré maps record the values of displacement and velocity at the beginning of each

forcing cycle, and are useful in detecting chaos and period N -tupling sequences. The

zero velocity Poincaré maps record the configurations for which the system experiences

zero velocity, and are useful in detecting the development of high frequency content.

Considered first in Figure 5.9 are symmetric time-periodic solutions for an external

forcing of F = 125 and ω = 1.25. IE results (standard and OPTROM) are calculated

with a coarse timestep of ∆t = 10−2. The system is driven from its equilibrium

position at t = 0 and transients are allowed to decay as each solution is evolved

beyond 100 forcing cycles. Observe in the time history plots (Figures 5.9a and 5.9b)

and phase portrait (Figure 5.9f) that OPTROM significantly improves predictions for

the transverse displacement and velocity. This improvement can be seen more clearly

in the Poincaré maps (Figures 5.9c and 5.9d), where the OPTROM results are three

times closer to the FRS. Note that the finite number of points in the Poincaré sections

is a signature feature of periodicity. Improvement in the Poincaré maps is primarily

due to the ability OPTROM to resolve more accurately a wide range of time scales,

such as the 9th and 17th modes of the temporal spectra (Figure 5.9e).

In addition to regular solutions, OPTROM can also improve predictions for chaotic

response types. Figure 5.10 shows a chaotic FRS solution for an external forcing of
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Figure 5.9: FRS, standard IE and OPTROM solutions for the Duffing oscillator with
an external forcing of F = 125 and ω = 1.25. ROM solutions are obtained using the
IE scheme with a coarse timestep of ∆t = 10−2.
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Figure 5.10: FRS, standard IE and OPTROM solutions for the Duffing oscillator
with an external forcing of F = 125 and ω = 2.25. ROM solutions are obtained using
the IE scheme with a coarse timestep of ∆t = 10−2.
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F = 10 and ω = 15 alongside IE results (standard and OPTROM). Most notably,

observe that the OPTROM solution is rightfully chaotic, whereas the standard IE

result is artificially periodic and asymmetric. As the system evolves, orbits for the

FRS and OPTROM solutions completely cover subsets of the phase plane, which

is one of the classic signs of chaos. No two trajectories are exactly alike, and an

infinite number of points are possible within certain sections of the Poincaré maps.

The standard IE scheme, however, falsely produces only six points of zero velocity

and returns to the same state at the beginning of each forcing cycle. The FRS and

OPTROM spectra are in excellent agreement, whereas the even IE spectra are over-

predicted due to the asymmetric periodic response.

5.2.2 Lyapunov exponents

Our next task is to determine for a large forcing parameter space when the Duffing

oscillator will undergo stable oscillations (regularity) or unstable oscillations (chaos)

as it evolves. There is, however, no universally accepted definition for chaos. For

practical matters, we defer to the widely accepted definition of chaos [1] as long-

term aperiodic behavior in a deterministic system that exhibits sensitive dependence

to initial conditions. To this end, Lyapunov exponents have been used extensively

throughout the literature [1] to discriminate between regular and chaotic response

types. A variety of numerical methods have been developed to calculate Lyapunov

exponents for both discrete and continuous nonlinear dynamical systems [117].

We consider the fate of two infinitesimally close phase trajectories. As the system

evolves in time, the trajectories will either coalesce (an indication of regularity) or

diverge (an indication of chaos) at an exponential rate. This rate of convergence or

divergence is known as the Lyapunov exponent, λ, where

‖δi(t)‖ ∼= ‖δ0
i ‖eλt (5.1)
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and (δi)j(t) are the infinitesimal separations for each state. In this work, we compute

the local Lyapunov exponents (local in phase space) for displacement by following two

infinitesimally close trajectories for ten forcing cycles. A total of three simulations are

required for each λ computation: First we perform a simulation in which transients

are driven out of the system as it evolves to a nearby basin of attraction. Then we

perform a nominal simulation in which the system is driven for ten forcing cycles

with initial conditions on the basin of attraction, followed by a perturbed simulation

in which the initial conditions for displacement are perturbed by δ0
1 = 10−9. A linear

least squares curve fit is then used to approximate the exponential rate of separation

in (5.1). While it is typical to consider the maximal Lyapunov exponent [117] when

predicting chaos for a high dimensional system, here we focus on the local Lyapunov

exponents for displacement. We ignore the exponents for velocity as they typically

share the same sign with those for displacement in a long-term sense [118].

A negative Lyapunov exponent (λ < 0) is a strong indication of regularity, whereas

a positive exponent (λ > 0) is a sign of (but does not guarantee) chaos. For certain

system parameters and ICs, it may be possible for a trajectory to undergo transient

chaos [119] or intermittency before eventually reaching one of many regular orbits, in

which case the Lyapunov exponents may be positive in the short-term, whereas the

long-term behavior of the system may be regular.

For the Duffing oscillator, we aim to determine which combinations of F and ω

produce regular or chaotic behavior. A large solution space needs to be explored, and

it is not feasible to obtain FRS solutions for every simulation. Instead, we employ

the efficient IE scheme (standard and OPTROM) with various timesteps. To provide

a baseline for comparison, we also compute the exponents with the highly accurate

RK4 scheme with a timestep of ∆t = 10−4. The RK4 results, shown in Figure 5.11,

indicate that the majority of the forcing parameter space (about 82%) is dominated by

regular behavior, whereas the remainder (about 18%) is populated with concentrated
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Figure 5.11: Highly resolved Lyapunov exponent map for the Duffing oscillator in the
forcing parameter space F ∈ (0, 150] × ω ∈ [0.5, 5.0] with increments ∆F = 1 and
∆ω = 0.05. A total of 13,741 simulations are shown. Solutions are calculated with
the RK4 scheme with ∆t = 10−4. Regions of blue indicate chaos whereas regions of
red indicate regularity.

regions of chaos. Such maps have been aptly described in the nonlinear dynamics

literature [118] as self-similar “islands of chaos” embedded in large “seas of regularity”.

In general, but not without exception, the Lyapunov exponents of largest magnitude

(both positive and negative) live in the lower frequency space.

Given the computational resources allocated for this study, the RK4 results in

Figure 5.11 required 107 hours of simulation time. Fully resolved simulations with

a timestep of ∆t = 10−6 would require more than a year to compute. As shown in

Figure 5.12 and Table 5.5, similar results can be obtained orders of magnitude faster

with the IE schemes (standard and OPTROM) with a coarse timestep.

The standard IE results in Figures 5.12a, 5.12c and 5.12e suggest that the islands

of chaos tend to disappear as the timestep is coarsened. We infer this result is due

to increased numerical damping, which impedes the development of higher temporal

modes. Previous research [97] has found that increased physical damping also tends

to decrease the likelihood of a chaotic response.

Results for the IE scheme with OPTROM in Figures 5.12b, 5.12d and 5.12f indi-

cate that the subgrid-scale models significantly improve the accuracy of predictions
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(a) IE with ∆t = 10−2
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(b) OPTROM with ∆t = 10−2
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(c) IE with ∆t = 10−3
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(d) OPTROM with ∆t = 10−3
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(e) IE with ∆t = 10−4
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(f) OPTROM with ∆t = 10−4

Figure 5.12: Coarse Lyapunov exponent maps for the Duffing oscillator in the forcing
parameter space F ∈ (0, 150]×ω ∈ [0.5, 5.0] with increments ∆F = 1 and ∆ω = 0.05.
A total of 13,741 simulations are shown in each map.
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Timestep RK4 IE OPTROM

∆t = 10−2 — 2.7 3.2
∆t = 10−3 — 26.1 28.2
∆t = 10−4 107.2 215.4 221.3

Table 5.1: Computation times (in terms of hours of CPU time) required to produce
the Lyapunov exponents for the Duffing oscillator in Figures 5.11 and 5.12.

Timestep RK4 IE OPTROM

∆t = 10−2 — 3.44% 13.00%
∆t = 10−3 — 14.10% 14.95%
∆t = 10−4 17.78% 17.49% 17.71%

Table 5.2: Percentage of the F × ω forcing parameter space for which the Lyapunov
exponents for the Duffing oscillator are positive in Figures 5.11 and 5.12.

for the Lyapunov exponents. Fewer regions of artificial regularity occur, as shown

for a representative set of forcing parameters in Figure 5.10. This improved accuracy

is quantified in Table 5.2, where we record the percentage of the forcing parameter

space for which the exponents are positive. With a coarse timestep of ∆t = 10−2, the

IE scheme with OPTROM predicts 13% of the space to be chaotic in contrast to 3%

with the standard IE scheme.

5.2.3 Time-spectral solutions

In this section, HB time-spectral solutions (standard and OPTROM) will be compared

to the FRS results in Fourier space. We first consider solutions for a fixed forcing

amplitude of F = 1.25 with various forcing frequencies within the range ω ∈ (0, 2.40].

A frequency marching procedure will be used to generate solution branches for the

harmonic amplitudes below the resonant frequency, which are commonly referred to

throughout the literature as backbone curves [1, 96]. With the frequency marching

procedure, the forcing amplitude is fixed, the frequency is incrementally advanced
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Figure 5.13: HB1 solutions for the Duffing oscillator generated by frequency marching
with a fixed forcing amplitude of F = 1.25: FRS (black), standard HB1 (red), and
HB1 with OPTROM (blue).

forward or backward, and the solution from the previous simulation is used as the

initial guess for the NR solver. Backbone curves are produced by extracting the

harmonic amplitudes from each solution. Only the odd harmonic amplitudes will be

presented since the even (and zeroth) harmonics are effectively zero for this problem.

HB1 solutions for the first harmonic amplitude ū1
1 are shown in Figure 5.13. First

note that the FRS solution for ū1
1 contains what appear to be a number of resonant

structures below the natural frequency (ω = 1 for the linearized system and ω = 2.40

for the nonlinear system). These structures are referred to throughout the literature as

undertones or subharmonics and are known to be rich in spectral content [96]. Next,

observe that the standard HB1 scheme is incapable of picking up any subharmonic

structures. When the direct subgrid-scale model is included in the HB1 simulation,

the solutions for ū1
1 are identical to the FRS result. Recall from Section 4.2 that the

subgrid-scale model developed for the HB1 scheme is exact (contains zero a priori

error as shown in Appendix C), and is based upon a linear stochastic estimate with two

states (MS = 2) and a one-point temporal stencil (MT = 1). Multi-point temporal

stencils are not realizable for HB1 as the models are ill-conditioned.
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Figure 5.14: HB3 solutions for the Duffing oscillator generated by frequency marching
with a fixed forcing amplitude of F = 1.25.

The HB3 solutions in Figure 5.14 resolve the first and third harmonic amplitudes,

ū1
1 and ū3

1. First note that the standard HB3 scheme successfully picks up the first

subharmonic near ω = 0.5, but does not detect any of the lower subharmonics. Several

subgrid-scale models are tested with the HB3 scheme, all of which are based upon a

linear stochastic estimate with two states (MS = 2). The first model uses a one-point

temporal stencil (MT = 1), the second a two-point temporal stencil (MT = 2) and

the third a three point temporal stencil (MT = 3). None of these models are exact

for the HB3 scheme. Each OPTROM model is successful in predicting additional

subharmonic structures in ū1
1, but only the three-point model improves predictions

for ū3
1. This observation suggests that multi-point temporal stencils may, at times,

be necessary to improve the accuracy of fine time scales.

HB5 solutions for ū1
1, ū3

1 and ū5
1 are shown in Figure 5.15. The standard HB5

scheme accurately predicts the first two subharmonics. This trend of picking up

additional structures continues as more modes are retained. From the exploded view

in Figure 5.15c, it can be seen that only the three-point OPTROM model improves

ū5
1, similar to what was observed for ū3

1 with HB3. The differences between the HB5
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Figure 5.15: HB5 solutions for the Duffing oscillator generated by frequency marching
with a fixed forcing amplitude of F = 1.25.

solutions and the FRS are less noticeable here compared to the HB1 and HB3 results,

which indicates (i) an overall improvement in the fidelity of the solution as more

modes are retained and (ii) a diminishing need for OPTROM.

We now examine the average a posteriori errors for the harmonic amplitudes

across the backbone curves. Recall that the error for the kth harmonic amplitude of

the ith state Ēk
i is defined in (2.27). Here we average the Ēk

i quantities across the

entire backbone curve; for F = 1.25 the average is taken over ω ∈ (0, 2.40]. Shown in

Figure 5.16 are Ē1
1 , Ē3

1 and Ē5
1 as a function of NH for each scheme. Notice the errors
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1

Figure 5.16: A posteriori errors for the HB solutions for the Duffing oscillator in
Figures 5.13–5.15. Each amplitude error Ēk

1 shown here represents the average value
over the backbone curve ω ∈ (0, 2.40] for F = 1.25.

for all schemes tend to zero as more harmonics are retained. The step-like convergence

behavior is due to the fact that the even amplitudes are practically zero. Therefore,

retaining an even number of modes does not significantly improve the accuracy. The

vast majority of the error occurs in the subharmonic region.

All three OPTROMmodels in Figure 5.16 improve the accuracy of the HB scheme,

but the greatest example of error reduction can be seen in Figure 5.16a. When one or

two harmonics are retained, the one-point OPTROM model is exact, thus rendering
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the Ē1
1 error zero. As more harmonics are retained, however, the Ē3

1 and Ē5
1 errors

in Figures 5.16b and 5.16c experience marginal improvement at best with the one-

point model. Only the three-point model significantly reduces the Ē3
1 and Ē5

1 errors.

This observation is due to the fact that only the three-point model was able to pick

up additional structures in ū3
1 and ū5

1. When a moderate number of harmonics are

retained, the three-point model renders the best results. As more harmonics are

retained (beyondNH = 7), it becomes difficult to discern improvement in the accuracy

of the resolved Fourier modes. From this observation, we can infer that the OPTROM

models are most beneficial for this problem with low to moderate resolutions.

In addition to the multi-point models based upon a linear stochastic estimate, a

one-point cubic model was also investigated, the results for which will not be shown

here. For the HB1 and HB2 schemes, the one-point cubic model improves solutions

for ū1
1, but not to the same degree as the one-point linear model. When three or more

harmonics are retained, the cubic model actually worsens the HB result. A rationale

for the poor performance of this model is as follows: When a cubic approximation is

used in (2.15) and (2.16), higher-order moments among ũni and τni (up to sixth-order)

are required to compute the estimation coefficients. These higher-order moments turn

out to be orders of magnitude smaller than the first-order and second-order moments

required for the linear model. So, in essence, the poor performance of the cubic model

is due to the use of poorly correlated data [65,66,68].

As a final demonstration for the Duffing oscillator, we investigate the ability of the

OPTROM models to predict subharmonic structures for variable forcing amplitudes

and frequencies. To this end, we generate surfaces for the first harmonic amplitude

ū1
1 in the forcing parameter space F ∈ (0, 1.25] × ω ∈ (0, ωp], where ωp is the peak

frequency of the backbone. The surfaces for ū1
1 are compared in Figure 5.17. The

FRS and HB1 solutions with OPTROM in Figures 5.17a and 5.17c are identical. In

contrast, the standard HB1 solution in Figure 5.17b fails to predict any subharmonics.
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Figure 5.17: Surfaces for the first harmonic amplitude ū1
1 of the Duffing oscillator in

the forcing space F ∈ (0, 1.25]× ω ∈ (0, ωp] with ∆F = 0.01 and ∆ω = 0.01.

5.2.4 Summary of results for the Duffing oscillator

The Duffing oscillator allowed us to investigate the OPTROM approach for a system

in which the response may be regular or chaotic. The subgrid-scale models developed

for the IE time-marching scheme were found to improve the reliability of under-resolved

predictions for both regular and chaotic response types. By reducing discretization

errors in the form of strong numerical damping, the models were able to prevent the

occurrence of artificial regularity.

The subgrid-scale models were also found to significantly improve the accuracy

of under-resolved predictions for Lyapunov exponents. Simulations for the Lyapunov
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exponents were carried out in a large forcing parameter space with three different

time-marching methods: a highly resolved RK4 scheme, a coarse standard IE scheme,

and a coarse IE scheme with OPTROM. The RK4 scheme proved to be accurate but

expensive, as simulations required several days of processing time. The coarse IE

simulations (standard and OPTROM) were both computed up to 50 times faster, but

the OPTROM results were found to be four times more reliable.

Several different types of subgrid-scale models were tested with the HB time-

spectral scheme for computing time-periodic solutions. The model based upon a

linear stochastic estimate with two states and one-point temporal model once again

proved to be exact (zero a priori and a posteriori errors) for the HB scheme with

one harmonic retained. When a moderate number of harmonics were retained, multi-

point subgrid-scale models were found to be most effective for accurately predicting

subharmonic structures. For this problem, the need for OPTROM, and its efficacy,

proved to be greatest for low to moderate resolutions with the HB scheme.

5.3 Viscous Burgers flow results

For the viscous Burgers flow, we compute USUT simulations with the BTCS scheme

for two sets of flow parameters. For the first set of parameters (Re = 100 and St = 3),

we investigate the performance of three different subgrid-scale models calculated

directly from the FRS solution. We model individually the subgrid-scale accelerations

due to a coarse temporal grid (OPTROM) and the (mass normalized) subgrid-scale

forces due to a coarse spatial grid (OPSROM). When these models are used in

conjunction, they account for the complete subgrid-scale spatiotemporal statistical

structure (OPSTROM). For the second set of parameters (Re = 50 and St = 2.25),

we test the performance of the subgrid-scale models based upon estimated moments

constructed in Section 4.3.
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5.3.1 Performance of direct models

Fully evolved solutions for a flow with Re = 100 and St = 3 are shown in Figure 5.18.

The FRS solution is calculated with the explicit RKCS scheme and a very fine grid

(∆x = 10−4 and ∆t = 10−8) to resolve all scales within 10−6 absolute error. The ROM

solutions (standard USUT, OPTROM, OPSROM and OPSTROM) are all calculated

with the implicit BTCS scheme and a very coarse grid (∆x = 10−2 and ∆t = 10−2).

Substantial errors can be seen in the standard USUT solution as the velocity field

appears to be over-damped as it convects downstream.

The remaining solutions in Figure 5.18 are obtained with various types of models,

all of which are nonhomogeneous in space and homogeneous in time. The first type

of model, OPSROM, is similar to those used in OLES in the sense that it considers

only the subgrid-scale convection and diffusion due to the use of a coarse spatial

grid. This particular OPSROM model is based upon a quadratic stochastic estimate

with diagonal coefficients and a central three-point spatial stencil (uses ũnj−1, ũnj and

ũnj+1 to predict γ). The results in Figure 5.18 indicate that OPSROM provides only

marginal improvement, likely due to the unaddressed numerical damping associated

with the coarse timestep. Both the spatial and temporal spectra appear to be largely

unaffected by OPSROM alone.

The second type of model in Figure 5.18, OPTROM, considers only the subgrid-

scale acceleration due to the use of a coarse temporal grid. This particular OPTROM

model is based upon a linear stochastic estimate with a backward three-point temporal

stencil (uses ũn−2
j , ũn−1

j and ũnj to predict α). The results in Figure 5.18 indicate

that the OPTROM model reduces the numerical damping associated with a coarse

timestep, but errors are still present as the downstream velocities are under-predicted.

Moderate improvement can be seen in the spatial and temporal spectra, especially in

the lower mode numbers.
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(c) Spatial spectra for Figure 5.18a
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(d) Temporal spectra for Figure 5.18b

Figure 5.18: Velocity profile for the Burgers flow with Re = 100 and St = 3 calculated
with various resolutions. The FRS solution is calculated using the explicit RKCS
scheme with a fine grid (∆x = 10−4 and ∆t = 10−8). All other simulations (standard
USUT, OPSROM, OPTROM and OPSTROM) are under-resolved in space and time
and are calculated using the implicit BTCS scheme with a coarse grid (∆x = 10−2

and ∆t = 10−2). The under-resolved simulations are obtained nearly four orders
of magnitude faster than the FRS. Including the subgrid-scale models adds a small
amount of expense (less than 20%) to the simulations.
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When used individually, both the OPTROM and OPSROM models in Figure 5.18

appear to be insufficient for eliminating the discretization errors, which suggests that

the subgrid spatial and temporal scales are both important and need to be considered.

To this end, the OPSTROM model is designed to account for the complete subgrid-

scale spatiotemporal structure. The OPSTROM solution in Figure 5.18 is in excellent

agreement with the FRS result throughout the entire spatial domain. Enrichment can

be seen in nearly all of the spatiotemporal spectra.

5.3.2 Performance of models based upon estimated moments

Fully evolved solutions for a new flow with Re = 50 and St = 2.25 are shown in

Figure 5.19. The FRS solution is again calculated with a very fine grid (∆x = 10−4

and ∆t = 10−8), and the ROM solutions (standard USUT and OPSTROM) are

calculated with a very coarse grid (∆x = 10−2 and ∆t = 10−2). Again, the USUT

solution appears to be over-damped as the flow convects downstream. Two different

types of OPSTROM models are compared. The first model is calculated directly

from the FRS solution, whereas the second is constructed from estimated moments in

Section 4.3. Both OPSTROM models are found to significantly improve the accuracy

solutions throughout the entire domain. Enrichment can be seen in virtually all modes

of the spatial and temporal spectra.

As discussed in Chapter 2, the subgrid-scale models are formulated to preserve

the underlying spatiotemporal statistical structure. As a final result, we explore the

extent to which the statistical moments are actually preserved in the ROM solutions.

Compared in Table 5.3 are selected moments amongst the velocities for the FRS,

standard USUT, and OPSTROM (with models based upon estimated moments) so-

lutions from Figure 5.19. The errors, stated in parenthesis, are generally greatest for

the higher-order moments. When compared to the FRS moments, the OPSTROM

approach is typically five times more accurate than the standard USUT scheme.
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(c) Spatial spectra for Figure 5.19a
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Figure 5.19: Velocity profile for the Burgers flow with Re = 50 and St = 2.25 calcu-
lated with various resolutions. The FRS solution is calculated using the explicit RKCS
scheme with a fine grid (∆x = 10−4 and ∆t = 10−8). All other simulations (standard
USUT and OPSTROM) are under-resolved in space and time and are calculated us-
ing the implicit BTCS scheme with a coarse grid (∆x = 10−2 and ∆t = 10−2). Two
different types of subgrid-scale models are derived for OPSTROM: one calculated
directly from the FRS solution shown in the figures (accurate but impractical) and
the other derived from the estimated moments shown in Figures 4.10, 4.11 and 4.12.
The under-resolved simulations are obtained nearly four orders of magnitude faster
than the FRS. Including the subgrid-scale models adds a small amount of expense
(less than 20%) to the simulations.
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Moment FRS OPSTROM (error) USUT (error)¨
ũnj
∂

1.1819 1.1807 (0.0010) 1.1779 (0.0034)¨
ũnj ũ

n
j

∂
1.4323 1.4268 (0.0038) 1.4060 (0.0184)¨

ũnj ũ
n−1
j

∂
1.4318 1.4263 (0.0038) 1.4057 (0.0182)¨

ũnj ũ
n−2
j

∂
1.4305 1.4252 (0.0037) 1.4046 (0.0181)¨

ũnj ũ
n
j−1
∂

1.4320 1.4265 (0.0038) 1.4058 (0.0183)¨
ũnj ũ

n
j+1
∂

1.4319 1.4265 (0.0038) 1.4057 (0.0183)¨
ũnj ũ

n
j ũ

n
j

∂
1.7771 1.7607 (0.0092) 1.7001 (0.0433)¨

ũnj ũ
n
j ũ

n
j ũ

n
j

∂
2.2535 2.2219 (0.0140) 2.0809 (0.0766)

Table 5.3: A posteriori moment comparison for FRS and ROM (standard USUT and
estimated OPSTROM) solutions for the Burgers flow in Figure 5.19. Relative errors
for the standard USUT and OPSTROM simulations are stated in parenthesis.

5.3.3 Summary of results for the viscous Burgers flow

For the viscous Burgers flow, we tested the performance of the various subgrid-scale

models by comparing ROM solutions (standard USUT, OPTROM, OPSROM and

OPSTROM) to the FRS. Solutions with the OPSROM scheme (which accounts for

the subgrid spatial structure only and is analogous to OLES for turbulent flows)

appeared to be significantly overdamped as the flow convected downstream. Solutions

with the OPTROM scheme (which accounts for the subgrid temporal structure only)

were also found to be under-predicted. As such, the OPSROM and OPTROM models

alone were found to be insufficient for error reduction. The full OPSTROM solutions,

however, were in excellent agreement with the FRS. Enrichment was observed in both

the spatial and temporal spectral modes. OPSTROM models based upon estimated

moments were found to be approximately five times more accurate than the standard

USUT scheme in preserving the underlying spatiotemporal statistical structure for a

given resolution.
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5.4 Nonlinear beam results

In this fourth and most extensive example, we compute USUT simulations with the

BTCS scheme for the geometrically nonlinear beam under the influence of time-

periodic external forcing. Depending on the selected physical parameters, the beam

response may undergo symmetric time-periodicity, asymmetry, period N -tupling,

chaos and intermittency. Such behavior makes the beam an excellent problem for

OPSTROM. The SS beam will be the focus of this analysis, although CC and CF

beams will also be considered briefly. First we investigate the performance of various

direct subgrid-scale models for both chaotic and regular response types. Spatially

homogeneous, linear models will be used with MS = 1, MN = 1 and MT = 3, as

constructed in Section 4.4. Direct models alone are often not practical for use as they

require a priori knowledge of moments calculated from FRS solutions. To address

the issue of practical application, the performance of models based upon estimated

moments will also be tested. Following validation of the models based upon estimated

moments, we demonstrate the ability of the OPSTROM approach to accurately and

efficiently trace bifurcation diagrams, map the temporal complexity of solutions, and

predict regions of chaos and regularity in a large forcing parameter space.

5.4.1 Performance of direct models

We first investigate the accuracy and computational efficiency of the direct subgrid-

scale models for the SS beam. We consider several combinations of external forcing

parameters (F and ω) for which the response may be regular or chaotic. FRS and

USUT solutions for the SS beam are compared in Figures 5.20–5.24 with various

types of models and resolutions. Solutions for the CC and CF beams are also shown

in Figures 5.25 and 5.26. In each figure, the response is characterized by the transverse

velocity and displacement at the midpoint location, written as u∗4 and u∗5, respectively.
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Six different types of plots for these two quantities are shown in Figures 5.20–5.26,

including the time histories, phase portraits, uniform sampling Poincaré maps, zero

velocity Poincaré maps, and temporal spectra obtained by discrete Fourier transfor-

mation. The uniform sampling Poincaré maps record the values of u∗4 and u∗5 at the

beginning of each forcing cycle, and are useful in detecting chaos and periodN -tupling

sequences. The zero velocity Poincaré maps record the configurations for which the

beam experiences zero midpoint velocity, and are useful in detecting the development

of high frequency content in the response.

Considered first in Figure 5.20 are time-periodic solutions for the SS beam with an

external forcing of F = 10 and ω = 3.76. USUT results (standard and OPSTROM)

are calculated with a moderate spatial grid (∆x = 10−1) and a very coarse timestep

(∆t = 10−2). The beam is driven from its equilibrium position at t = 0 and transients

are allowed to decay as each solution is evolved beyond 100 forcing cycles. Observe

in the time history plots (Figures 5.20a and 5.20b) that OPSTROM significantly

improves predictions for the transverse displacement and velocity. This improvement

can be seen more clearly in the uniform sampling Poincaré map (Figure 5.20c), where

u∗4 and u∗5 obtained with FRS and OPSTROM are in close agreement at the beginning

of each forcing cycle. The zero velocity Poincaré map (Figure 5.20d) reveals 22

occasions for which the FRS and OPSTROM schemes predict zero transverse velocity;

the standard USUT scheme falsely predicts only 10 such occasions. The finite number

of points in the Poincaré sections is a signature feature of periodicity. Improvement

in the zero velocity Poincaré map is primarily due to the model’s ability to predict

additional time scales, which can be seen in the temporal spectra (Figure 5.20e). In

particular, note the improved resolution of the secondary peak at the 13th temporal

mode, which is primarily responsible for the majority of zero velocity points.

Results for the same set of forcing parameters (F = 10 and ω = 3.76) are shown in

Figure 5.21, but with a moderate spatial grid (∆x = 10−1) and a moderate timestep
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(∆t = 10−3). For this resolution, the FRS and OPSTROM results are in excellent

agreement. Standard USUT results have improved as well (compared to the very

coarse results in Figure 5.20), but errors are still prevalent, particularly in the uni-

form sampling Poincaré map (Figure 5.21c) and phase portrait (Figure 5.21f). The

temporal spectra in Figure 5.21e indicate that OPSTROM has almost completely

resolved all temporal modes, even those below the FRS threshold in Appendix D

(ε < 10−6). Hence, for a fraction of the computation time (T = 1.02 × 10−3 for this

set of grid parameters), OPSTROM is nearly identical to the FRS.

OPSTROM can also prevent the onset of artificial chaos. Figure 5.22 shows USUT

results for the SS beam with the same forcing parameters (F = 10 and ω = 3.76),

but with a very coarse spatial grid (∆x = 2.5 × 10−1) and a very fine timestep

(∆t = 10−5). Note the application of OPSROM (models the subgrid-scale force only)

as the complete OPSTROM model cannot be realized for the highly resolved ∆t

(recall the grid limitations in Table 4.5). This combination of grid parameters is

actually a poor choice, as the solutions in Figure 5.22 are less accurate than those

in Figures 5.20 and 5.21, and the computation times are more expensive by one to

two orders of magnitude. Artificial chaos occurs with the standard USUT scheme, an

erroneous result characterized by the fully populated section of the phase plane and

an uncountable number of points in the Poincaré maps. Artificial chaos also gives

rise to even modes in the temporal spectra, which are not shown in Figure 5.22e for

clarity. OPSROM is more reliable, as the response is rightfully periodic.

In addition to regular solutions, OPSTROM can also improve predictions for

chaotic dynamics. Figure 5.23 shows a chaotic FRS solution for the SS beam with a

new set of external forcing parameters (F = 10 and ω = 15) alongside USUT results

(standard and OPSTROM). Most importantly, observe that the OPSTROM solution

is rightfully chaotic, whereas the standard USUT result is artificially periodic. As the

system evolves, orbits for the FRS and OPSTROM solutions completely cover subsets
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Figure 5.20: USUT solutions (standard and OPSTROM) for the SS beam with an
external forcing of F = 10 and ω = 3.76 with a moderate spatial grid (∆x=1.0×10−1)
and a very coarse timestep (∆t=1.0×10−2).
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Figure 5.21: USUT solutions (standard and OPSTROM) for the SS beam with an
external forcing of F = 10 and ω = 3.76 with a moderate spatial grid (∆x=1.0×10−1)
and a moderate timestep (∆t=1.0×10−3).
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Figure 5.22: USUT solutions (standard and OPSROM) for the SS beam with an ex-
ternal forcing of F = 10 and ω = 3.76 with a very coarse spatial grid (∆x=2.5×10−1)
and a very fine timestep (∆t=1.0×10−5).
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Figure 5.23: USUT solutions (standard and OPSTROM) for the SS beam with an
external forcing of F = 10 and ω = 15 with a moderate spatial grid (∆x=1.0×10−1)
and a very coarse timestep (∆t=1.0×10−2).

128



168 169 170
Time, t

-0.01

0

0.01

M
id

po
in

t d
isp

la
ce

m
en

t, 
u 5*

100 100.5 101 101.5 102
Forcing cycle number

FRS
USUT
USUT+OPTROM

(a) Displacement time history

168 169 170
Time, t

-0.1

-0.05

0

0.05

0.1

M
id

po
in

t v
el

oc
ity

, u
4*

100 100.5 101 101.5 102
Forcing cycle number

(b) Velocity time history

-0.003 -0.002 -0.001 0
Midpoint displacement, u5*

-0.02

0

0.02

0.04

M
id

po
in

t v
el

oc
ity

, u
4*

FRS
USUT
USUT+OPTROM

(c) Uniform sampling Poincaré map

-0.01 -0.005 0 0.005 0.01
Midpoint displacement, u5*

0

0.2

0.4

0.6

0.8

1

Po
sit

io
n 

in
 fo

rc
in

g 
cy

cl
e

(d) Zero velocity Poincaré map

1 11 21 31
Temporal wavenumber, k (odd)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

H
ar

m
on

ic
 a

m
pl

itu
de

, (
 u_ 5* 

)k

FRS
USUT
USUT+OPTROM

(e) Temporal spectra

-0.01 -0.005 0 0.005 0.01
Midpoint displacement, u5*

-0.1

-0.05

0

0.05

0.1

M
id

po
in

t v
el

oc
ity

, u
4*

(f) Phase portrait

Figure 5.24: USUT solutions (standard and OPTROM) for the SS beam with an
external forcing of F = 1 and ω = 3.76 with a moderate spatial grid (∆x=1.0×10−1)
and a very coarse timestep (∆t=1.0×10−2).
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Figure 5.25: USUT solutions (standard and OPSTROM) for the CC beam with an
external forcing of F = 10 and ω = 3.76 with a moderate spatial grid (∆x=1.0×10−1)
and a very coarse timestep (∆t=1.0×10−2).
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Figure 5.26: USUT solutions (standard and OPSTROM) for the CF beam with an
external forcing of F = 2 and ω = 3.76 with a moderate spatial grid (∆x=1.0×10−1)
and a very coarse timestep (∆t=1.0×10−2).
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of the phase plane, which is one of the classic signs of chaos. No two trajectories are

exactly alike, and an infinite number of points are possible within certain sections of

the Poincaré maps. The standard USUT scheme, however, falsely produces only two

points of zero velocity and returns to the same state at the beginning of each forcing

cycle. The FRS and OPSTROM solutions contain odd and even spectra, whereas the

standard USUT spectra are simply odd. Notice the USUT spectra are cut off at the

20th mode due to the choice of ω = 15 and ∆t = 10−2.

Depending on the problem and chosen grid, OPTROM or OPSROM models alone

may sometimes be sufficient for error reduction. Consider, for example, the external

forcing amplitude shown in Figure 5.24 (F = 1), which is smaller in magnitude than

those in Figures 5.20–5.23. As such, there are fewer spatial and temporal scales

to resolve. Nevertheless, the standard USUT solution in Figure 5.24 experiences

large errors in the form of increased numerical damping with a moderate spatial grid

(∆x = 10−1) and a very coarse timestep (∆t = 10−2). The phase portrait for the

standard USUT solution is also missing a loop in Figure 5.24f. Hence, the winding

number [120] for the standard USUT solution is two in contrast to three for the FRS

solution. The OPTROM solution, however, is in excellent agreement with the FRS.

With OPTROM, errors for the temporal spectra in Figure 5.24e are generally reduced

by one order of magnitude. Although subgrid spatial and temporal scales both exist

for this set of forcing parameters, the subgrid temporal scales are far more significant.

This observation explains, in part, why OPTROM is so effective.

Although the assumption of universality with respect to BCs was found to be

weak in the previous chapter, the performance of models based on this assumption

will nevertheless be investigated here. Considered first in Figure 5.25 are OPSTROM

results for the CC beam with F = 10 and ω = 3.76. All solutions are time-periodic.

OPSTROM results are compared for two different subgrid-scale models: one derived

from the SS solution (shown not to be universal) and the other derived from the CC
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solution (the “correct” model). Observe that, as expected, the OPSTROM results

with the CC model compare favorably to the FRS. Somewhat surprisingly, the SS

model still does a good job of predicting both the large-scale and small-scale behavior

compared to the standard USUT result. One can infer that at least some of the

subgrid-scale structures for the CC beam are accurately predicted by the SS model.

As a final example, in Figure 5.26, we compare OPSTROM results for the CF

beam with F = 2 and ω = 3.76. All solutions are time-periodic. Compared to the

FRS result, the standard USUT solution appears to be overdamped as it is smaller in

magnitude and lagging in phase. Again, two different types of subgrid-scale models

are investigated: one derived from the SS solution (shown not to be universal) and the

other derived from the CF solution (the “correct” model). Results for the SS model

are not shown because the NR scheme does not converge, even when the FRS result

is provided as an initial guess at coincidental grid points. The OPSTROM solution

with the CF model, however, is in excellent agreement with the FRS result.

5.4.2 Computational efficiency

For a given computational grid, Figures 5.20–5.26 suggest that OPSTROM is more

reliable than the standard USUT approach with a coarse grid. Before running a large

number of simulations, however, it is worthwhile to determine which computational

grids provide the maximum computational efficiency for this particular problem.

Our next task is to determine which combination(s) of ∆x and ∆t provide the

greatest accuracy with respect to the computation time for the SS beam. This will

be done for the standard USUT scheme in addition to the OPSROM, OPTROM and

OPSTROM variants. For each scheme, a number of simulations are run for an external

forcing of F = 10 and ω = 3.76 with various grids. Shown in Figures 5.27–5.30 are

intersecting contours for the a posteriori errors in velocity and displacement (shaded

in gray and defined in Part I) and normalized computation times (lines of constant T )
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as a function of ∆x and ∆t. For each scheme, the maximum computational efficiency

is found by tracing a curve through which the a posteriori errors are minimized with

respect to the computation time. Any combination of ∆x and ∆t on or near these

efficiency curves would be a good choice for a simulation. Any other grid would be

inefficient and wasteful.

For this problem, OPSTROM is the most efficient scheme for fast simulations,

as shown in Figure 5.31. A specified level of accuracy can be achieved one order of

magnitude faster with OPSTROM when a moderate or large ∆t is chosen. When the

performance of arbitrary grids are compared, as opposed to the most efficient grids in

Figure 5.31, the benefits of OPSTROM become even more pronounced. OPSTROM

remains the most efficient option in Figure 5.31 until a very small ∆t is used, at

which point subgrid-scale accelerations become difficult to model. For a very small

∆t, the subgrid-scale accelerations are effectively numerical noise, and OPSROM then

becomes the most efficient scheme. OPSROM is more accurate than standard USUT

with respect to the grid, but not always with respect to the computation time, as the

subgrid-scale models add a small amount of expense to the simulations.

It should be noted that the computational efficiency results in Figures 5.27–5.30

are generated with respect to simulations computed using fixed order schemes and

double floating point precision. As such, more comprehensive results could in fact

be obtained if both the scheme order and precision were varied. While the issue

of interpolation order has been given significant attention in the numerical analysis

literature, the impact of floating point precision on the accuracy and efficiency of

simulation has only recently been investigated [121, 122]. Questions regarding the

impact of floating point precision on computational efficiency curves such as those

generated in Figures 5.27–5.30 would appear to be still unanswered for many problems

in nonlinear dynamics, including the modeling of turbulent flows.
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Figure 5.27: Computational efficiency of the standard USUT scheme with various
grids (∆x and ∆t) for the SS beam with an external forcing of F = 10 and ω = 3.76.
The contours shaded in gray indicate the a posteriori errors for velocity Eu4 and
displacement Eu5 . The intersecting contour lines (unshaded) indicate the normalized
computation times, T . The maximum computational efficiency is found by tracing a
curve (red) through which the a posteriori errors are minimized for a given computa-
tion time. Large errors occur for ∆x = 2.5×10−1 and small ∆t as a result of artificial
chaos (see Figure 5.22), an effect prevented with larger values of ∆t due to increased
numerical damping.
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Figure 5.28: Computational efficiency of the USUT scheme with OPSROM (M
models γ only) and various grids (∆x and ∆t) for the SS beam with an external
forcing of F = 10 and ω = 3.76. The maximum computational efficiency is traced
with the green curve. All steady state solutions are rightfully periodic; artificial chaos
does not occur. The OPSROM technique is more accurate than the standard USUT
scheme with respect to the grid, but not necessarily with respect to T , as the models
add a small amount of computational expense.
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Figure 5.29: Computational efficiency of the USUT scheme with OPTROM (M
models α only) and various grids (∆x and ∆t) for the SS beam with an external
forcing of F = 10 and ω = 3.76. The maximum computational efficiency is traced
with the magenta curve. Artificial chaos occurs for ∆x = 2.5×10−1 and all values
of ∆t as the OPTROM model improves the apparent temporal resolution from the
standard USUT scheme in Figure 5.27. Hence, the errors are actually worse for
∆x = 2.5×10−1 and large ∆t. The OPTROM technique does, however, improve
predictions for small ∆x and large ∆t when a subgrid-scale model can be realized.
The chosen model cannot be realized for ∆t . 5.0×10−4 due to the grid limitation in
Table 4.5.
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Figure 5.30: Computational efficiency of the USUT scheme with OPSTROM (M
models α and γ) and various grids (∆x and ∆t) for the SS beam with an external
forcing of F = 10 and ω = 3.76. The maximum computational efficiency is traced with
the blue curve. All steady state solutions are rightfully periodic. The OPSTROM
technique outperforms all other schemes when a subgrid-scale model can be realized.
The chosen model cannot be realized for ∆t . 5.0×10−4 due to the grid limitation in
Table 4.5.
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Figure 5.31: Maximum computational efficiency curves for the USUT schemes in
Figures 5.27–5.30 for the SS beam with an external forcing of F = 10 and ω = 3.76.
A specified level of accuracy can be achieved approximately one order of magnitude
faster with OPSTROM than with the standard USUT scheme when a moderate or
large ∆t is chosen.

5.4.3 Performance of models based upon estimated moments

In order to validate the subgrid-scale models based upon estimated moments, we

compare USUT results (standard and OPSTROM) to a FRS solution for the SS

beam with an arbitrary set of forcing parameters (F = 11.5 and ω = 9.5). As

shown in Figure 5.32, the FRS solution indicates that the beam undergoes a chaotic

response for this particular set of forcing parameters. Observe that the standard

USUT result with a coarse grid falsely predicts a symmetric time-periodic solution.

This can be seen clearly in the uniform sampling Poincaré map as the standard USUT

response returns to the same state at the beginning of each forcing cycle. Exactly six

instances of zero velocity per steady state forcing cycle can be seen in the uniform

sampling Poincaré map for the standard USUT response. The OPSTROM simulation,

however, correctly predicts a chaotic response as an infinite number of points appear

to be possible in sections of the Poincaré maps. The dominant modes in the temporal

spectra are also in excellent agreement with the FRS.
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Figure 5.32: USUT solutions (standard and OPSTROM) for the SS beam with an
external forcing of F = 11.5 and ω = 9.5 with a moderate spatial grid (∆x=1.0×10−1)
and a very coarse timestep (∆t=1.0×10−2).
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Again, we emphasize that the FRS solution in Figure 5.32 is shown strictly for

the sake of comparison. In other words, the FRS data in Figure 5.32 was not used to

construct the subgrid-scale model. Estimated moments, two of which are shown in

in Figure 4.21, were used instead to construct the model. The OPSTROM results to

be presented in Sections 5.4.4–5.4.6 are based upon models with estimated moments.

5.4.4 Tracing bifurcations

In order to analyze the complex bifurcation behavior of the beam response, we sweep

the forcing amplitude F ∈ (0, 15] with a fixed frequency of ω = 15. Simulations

are carried out with three schemes: standard USUT with a coarse grid (fast), USUT

with OPSTROM and a coarse grid (fast), and standard USUT with a fine grid (slow

but presumably accurate). Recorded in Figure 5.33 are bifurcations that occur in the

midpoint velocity at the beginning of each forcing cycle. As shown by the computation

times in Figure 5.33, the coarse USUT simulations (standard and OPSTROM) are

two orders of magnitude faster than the fine USUT simulation.

Some of the forcing amplitudes in Figure 5.33 appear to generate well-defined

branches for regular orbits in addition to chaotic attractors. This observation can

be attributed to one of two possibilities: First, it may in fact be possible for regular

and chaotic attractors to coexist for certain parameters, in which case the fate of any

one trajectory depends heavily on the choice of ICs [1]. The second scenario involves

the selection of physical parameters for which only regular attractors exist, but the

response undergoes transient chaos [119] or intermittency before eventually reaching

one of many regular orbits. Such orbits, if plotted in phase space, may nearly intersect

at the basin boundaries but not become entangled with them [119]. Depending on

the ICs, there may be enough energy in the transient response for the trajectory to

jump from one potential well to another, thus displaying characteristics of chaos until

dissipation drives the system to a regular orbit. Distinguishing between these two
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(c) Fine USUT with ∆x = 1.0× 10−1 and ∆t = 1.0× 10−4 (18 days)

Figure 5.33: Forcing amplitude bifurcations for the midpoint velocity u∗4 of the SS
beam (recorded at the beginning of each forcing cycle) with a fixed forcing frequency of
ω = 15. The conglomeration of dots represent 1,500 solutions evolved for 100 forcing
cycles with initial conditions sampled from (u4)0

j = V sin(πxj) with V ∈ [−0.5, 0.5].
Predictions are compared for three different simulations: coarse USUT (red), coarse
USUT with OPSTROM (blue), and fine USUT (black). Computation times are stated
in parenthesis. Similar FRS bifurcations would require years of simulation time, and
therefore, are not feasible given the computational resources allocated for this study.
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cases is difficult; the only way to be certain is to simulate all possible ICs and evolve

all possible trajectories for infinite time.

As demonstrated in Figure 5.33a, the coarse USUT scheme fails to predict any

bifurcations for the entire range of forcing parameters. All trajectories evolve to a

symmetric periodic response, one of which can be found in Figure 5.23 for F = 10.

Strong numerical damping due to the coarse grid impedes the development of higher

modes which are primarily responsible for the bifurcated motions.

The bifurcation diagrams for the coarse OPSTROM and fine USUT schemes in

Figures 5.33b and 5.33c are qualitatively similar, the primary difference being the

forcing amplitudes at which the bifurcations occur. As we progress through the range

of forcing amplitudes, we record the value of F at which the bifurcations occur with

the fine USUT solution followed by the value of F for the OPSTROM solution in

parenthesis, i.e. F and (F ). Small forcing amplitudes produce symmetric periodic

solutions until F = 2.6 (2.2), at which point the first bifurcation gives rise to asym-

metric solutions. One qualitative exception occurs with the fine USUT solution: a

brief pocket of multi-period motions can be found between F = 1.5 and F = 1.6.

Beyond F = 5.9 (5.7), a variety of trajectories emerge, including period N -tupling

(up to octupling), transient chaos and intermittency. Full-fledged chaos eventually

takes over until F = 12.3 (9.9); beyond this point symmetric periodic solutions begin

to appear for some ICs. Transient chaos ultimately dies out and this new branch of

symmetric solutions persists beyond F = 15 (15). Similar bifurcation cycles occur

for higher forcing amplitudes. As stated by Hall and Hanagud [109], chaos acts as a

transitional mechanism with which two or more asymmetric branches merge to form a

symmetric branch of a higher mode. Increasing F can sometimes increase or decrease

the complexity of solutions.
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5.4.5 Temporal complexity

Consider a scenario in which the analyst needs to predict the number of times the total

kinetic energy in a system goes to zero. To this end, we record the number of zero

velocity points (peaks)NP in the response normalized by the forcing period T = 2π/ω.

This quantity (NP/T ) is also somewhat indicative of the dominant temporal modes.

If the higher temporal modes (e.g. the thirteenth mode for F = 10 and ω = 3.76

in Figures 5.20 and 5.21) have significant amplitudes, many peaks will appear in the

response. Note that the quantity NP/T indicates the number of temporal modes

resolved by the scheme as opposed to the true number of temporal modes, unless of

course a FRS is used, in which case they may be considered one and the same.

Contours for the quantity NP/T are mapped in Figure 5.34 for the continuous

forcing space F ∈ (0, 15] × ω ∈ [1, 15]. Simulations are performed with ∆x = 10−1

and three timesteps: ∆t = 10−2, 10−3 and 10−4. Results for the standard USUT

and OPSTROM schemes (OPSROM for ∆t = 10−4) are compared side-by-side in

Figure 5.34. Observe that increasing F and ω can sometimes increase or decrease the

temporal complexity. A sudden change in contrast indicates an abrupt shift in the

response behavior. Grainy regions are generally a sign of chaos. Convergence with

respect to the timestep is apparent, and moreover, the subgrid-scale models appear

to accelerate this convergence. Notice in particular the discrepancies between the

coarse and fine USUT predictions in Figures 5.34a and 5.34e. Assuming the fine

USUT results in Figure 5.34e are more accurate, the coarse OPSTROM results in

Figure 5.34b appear to be quite reliable.

The computation times required to produce the temporal complexity maps in

Figure 5.34 are summarized in Table 5.5. Note that the coarse OPSTROM simulation

in Figure 5.34b is nearly two orders of magnitude faster than the fine USUT simulation

in Figure 5.34e, and yet the results are quite similar.
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(b) OPSTROM with ∆t = 1.0×10−2
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(d) OPSTROM with ∆t = 1.0×10−3
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(f) OPSROM with ∆t = 1.0×10−4

Figure 5.34: Number of zero velocity points NP per forcing period T for the SS beam
in the forcing parameter space F ∈ (0, 15]× ω ∈ [1, 15] with increments of ∆F = 0.2
and ∆ω = 0.2. The beam is driven from its equilibrium position for 20 forcing cycles.
A total of 5,396 simulations are shown in each map.
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Timestep USUT OPSTROM

∆t = 10−2 3.9 4.5
∆t = 10−3 34.2 35.7
∆t = 10−4 321.6 326.4

Table 5.4: Computation times (in terms of hours of CPU time) required to produce
the temporal complexity maps for the SS beam in Figure 5.34 with ∆x = 10−1 and
the indicated ∆t values. Similar FRS results for this problem would require several
years of simulation.

5.4.6 Lyapunov exponents

In this section, we will investigate which combinations of F and ω result in regular

or chaotic behavior. To this end, we compute Lyapunov exponents for the beam in

the same manner as the Duffing oscillator in Section 5.2.2. For this beam problem,

we compute the local Lyapunov exponents for the midpoint transverse displacement

by following the uniform sampling Poincaré sections of two infinitesimally close tra-

jectories for ten forcing cycles. Two simulations are required for each λ computation:

first, a nominal simulation in which the beam is driven from its equilibrium position

with (ui)0
j = 0, and then a perturbed simulation in which the beam is given an initial

displacement of (u5)0
j = (δ5)0

j = D sin(πxj) with D = 10−9. A linear least squares

curve fit is then applied to approximate the exponential rate of separation in (5.1).

As described in Section 5.2.2, a positive Lyapunov exponent is a very good, but

inexact, predictor of chaos. For certain parameters and ICs, a trajectory may undergo

transient chaos [119] or intermittency before eventually reaching one of many regular

orbits, in which case the Lyapunov exponents may be positive in the short-term,

whereas the long-term behavior of the system may be regular. While it is typical to

consider the maximal Lyapunov exponent [117] for high dimensional systems, here

we focus on the local Lyapunov exponents for the midpoint displacement as they are

found to be equivalent to the maximal Lyapunov exponents in a long-term sense.
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Figure 5.35: Convergence of Lyapunov exponents for the SS beam with F = 10
(regular) and F = 8.5 (chaotic) with ω = 3.76. USFT exponents in Figure 5.35a
converge to the FRS result as the spatial grid is refined to ∆x = 5.0×10−3. USUT
exponents in Figure 5.35b converge to the USFT result with ∆x = 10−1 as the
timestep is refined.

Lyapunov exponents for the beam are found to converge slowly with respect to the

grid parameters. Figure 5.35 shows examples of these exponents for two trajectories,

one regular (F = 10 and ω = 3.76) and the other chaotic (F = 8.5 and ω = 3.76),

computed with the standard USFT and USUT schemes. As the spatial grid is refined,

the USFT exponents converge to the FRS result. Artificial chaos and regularity are

possible with a coarse ∆x. As expected, USUT exponents converge (albeit slowly)

toward the USFT result for ∆x = 10−1 as ∆t → ∆tFRS. For a sufficiently large ∆t,

numerical dissipation in the USUT scheme overpowers the physics, thus preventing

the onset of chaos for F = 8.5.

Maps for the Lyapunov exponents are shown in Figure 5.36 for the continuous

forcing parameter space F ∈ (0, 15] × ω ∈ [1, 15]. Similar to what we saw for the

Duffing oscillator, the maps in Figure 5.36 can be described as self-similar “islands of

chaos” embedded in large “seas of regularity” [118]. Several USUT schemes (standard,

OPSTROM and OPSROM) are used to calculate the exponents with a fixed spatial

grid (∆x = 10−1) and various timesteps (∆t = 10−2, 10−3 and 10−4). We assume that
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(d) OPSTROM with ∆t = 1.0×10−3
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(f) OPSROM with ∆t = 1.0×10−4

Figure 5.36: Lyapunov exponent maps for the SS beam in the forcing parameter space
F ∈ (0, 15]×ω ∈ [1, 15] with increments of ∆F = 0.2 and ∆ω = 0.2. A total of 5,396
simulations are shown in each map. Additional chaotic regions may appear as the
resolution is refined.
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Timestep USUT OPSTROM

∆t = 10−2 3.9 4.5
∆t = 10−3 34.2 35.7
∆t = 10−4 321.6 326.4

Table 5.5: Computation times (in terms of hours of CPU time) required to produce
the Lyapunov exponent maps for the SS beam in Figure 5.34 with ∆x = 10−1 and
the indicated ∆t values. Similar FRS results for this problem would require several
years of simulation.

the Lyapunov exponents for the standard USUT scheme in Figures 5.36a, 5.36c and

5.36e become more accurate as the ∆t is refined from 10−2 to 10−3 and 10−4. With

this assumption, the OPSTROM (and OPSROM) results in Figures 5.36b, 5.36d and

5.36f appear to be more reliable. While the prediction of chaos is admittedly an

inexact process, for a given resolution, the OPSTROM models appear to improve the

reliability of the USUT predictions for the Lyapunov exponents.

The computation times required to produce the Lyapunov exponent maps in Fig-

ure 5.34 are summarized in Table 5.5. Given the computational resources allocated

for this study, similar FRS results would require several years of simulation. As shown

in Table 5.5, simulations with the USUT scheme (both standard and OPSTROM)

can be carried out in a matter of hours.

5.4.7 Summary of results for the nonlinear beam

We demonstrated the capabilities of OPSTROM through a computational study of

a simply supported nonlinear beam under the influence of time-periodic external

forcing. We studied the performance of various ROM simulations (standard USUT,

OPTROM, OPSROM and OPSTROM) with a coarse computational grid in space and

time. Two different types of subgrid-scale models were investigated. For the first type

of model, the required moments were calculated directly from FRS solutions. The

second type of model was based upon estimated moments. Both models were based
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upon a spatially homogeneous stochastic estimate with a one-point spatial stencil and

a three-point temporal stencil.

Analysis of the direct subgrid-scale models allowed for appraisal by comparison

with FRS solutions. Substantial errors were found in the standard ROM solutions

for the beam response. The OPSTROM approach significantly improved predictions

for all states, including the transverse displacement and velocity. Results in the form

of Poincaré maps, phase portraits and temporal spectra compared favorably with the

FRS. For certain parameters, the models were even able to prevent the onset of arti-

ficial chaos and regularity. All three variants of the direct models were investigated,

including OPTROM, OPSROM and OPSTROM. In general, the OPSTROM model

rendered the best performance of the three. For very small timesteps, however, the

subgrid-scale accelerations diminished and became difficult to model. OPSROM then

became the best option available.

Results for the models based upon estimated moments focused on three scenarios

in which it is both practical and profitable to develop subgrid-scale models a priori.

Each case involved the exploration of a large forcing parameter space. For the first

scenario, bifurcation diagrams were accurately traced with a highly resolved standard

ROM in 18 days. With a sweep of the forcing amplitude, symmetric periodic orbits

split off into branches for asymmetric and multi-period orbits, followed by transient

chaos, intermittency and full-fledged chaos. For larger forcing amplitudes, the chaotic

trajectories eventually returned to symmetric orbits. An OPSTROM scheme qual-

itatively captured all of this behavior with a coarse grid in about six hours. The

standard ROM failed to predict any bifurcations with the same grid. In the second

scenario, contours for the number of zero velocity points per forcing cycle were ac-

curately predicted with OPSTROM in a matter of hours as opposed to weeks with

the standard ROM. A similar amount of computational savings were observed in the

third and final scenario where OPSTROM was found to accurately predict regions
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of chaos and regularity. Given the constraints on computational resources for this

study, similar FRS predictions would require several years of processing time.
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CHAPTER 6

Conclusion

In closing, we summarize the salient features of the proposed theoretical framework

and provide a recap of the results for the four nonlinear dynamical systems. We also

identify some areas for future research, most of which pertain to the development of

efficient techniques for model construction.

6.1 Summary of proposed theoretical framework

In this dissertation, we presented a new data-driven reduced order modeling (ROM)

framework called optimal spatiotemporal reduced order modeling (OPSTROM) for

nonlinear dynamical systems. With the proposed framework, the governing equations

for a general system are modified for an under-resolved simulation with an arbitrary

discretization scheme and a coarse grid in space and time. Basic filtering concepts are

used to derive residual terms referred to as subgrid-scale dynamics, which are typically

neglected in standard ROMs. With the OPSTROM approach, these subgrid-scale

dynamics are modeled using the optimal prediction formalism, which is based upon

principles of mean-square error minimization, conditional expectations and stochastic

estimation. These subgrid-scale models are designed to provide closure and reduce

discretization errors by interacting with the coarse variables as the system evolves

in space and time. As most multiscale models include some kind of knowledge or

assumptions about the interactions between resolved scales and unresolved scales, the

proposed models are formulated to include statistical information that is consistent

with the underlying spatiotemporal statistical structure. This is the distinguishing
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feature of the proposed OPSTROM framework.

The OPSTROM approach has practical application for a wide range of multiscale

problems in computational physics and engineering. When a fully resolved simulation

(FRS) is not feasible, the OPSTROM approach can be used to expedite simulations

by coarsening the computational grid in space and time with an appropriate scheme

(one that is stable, consistent and convergent) while maintaining reliable predictions

for the quantities of interest. Several variants of the technique are in fact conceivable:

standard ROM (which neglects the subgrid spatiotemporal structure), OPTROM

(which accounts for the subgrid temporal structure), OPSROM (which accounts for

the subgrid spatial structure), and OPSTROM (which accounts for the complete

subgrid spatiotemporal structure). The OPTROM and OPSTROM variants are new,

whereas OPSROM is analogous to the numerical method known as optimal large-eddy

simulation (OLES) for turbulent flows.

Model construction requires inputs in the form of multi-point statistical moments

amongst the state variables and subgrid-scale dynamics. In order to provide a sound

derivation, we have assumed a priori knowledge of the required moments. We suggest

such information can in principle be obtained from statistical analysis of fully resolved

simulations, theory, experiments, or reconstructions from multiple sources. Practical

utility of the proposed models is enhanced when the required moments display to some

degree the following properties: spatiotemporal homogeneity, ergodicity, universality

and smooth scaling with respect to the system parameters and computational grid.

Spatiotemporal homogeneity, if observed, would imply that the same model can be

used at every grid point and timestep in a simulation. Should smooth scaling be found,

subgrid-scale models can be efficiently constructed by characterizing (or estimating)

the required moments with empirical functions (or interpolants) based upon a select

number of realizations. Once a model is established for a system, the OPSTROM

approach can easily be implemented into any solver.
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6.2 Summary of results for selected systems

Four nonlinear dynamical systems served as testbeds for the OPSTROM framework.

The van der Pol and Duffing oscillators enabled us to focus exclusively on OPTROM

and the effects of subgrid time scales. The viscous Burgers flow and nonlinear beam

allowed us to test the OPTROM, OPSROM and OPSTROM variants for problems

with spatiotemporal dependence. For each of the four systems, the objectives were

(i) to characterize the subgrid-scale dynamics, and (ii) to determine which general

ROM approach (standard ROM, OPTROM, OPSROM or OPSTROM) provides the

best trade off between computational expense and accuracy. For the van der Pol

and Duffing oscillators, fully resolved simulations were performed with an explicit

fourth-order accurate time-marching scheme, whereas ROM simulations were carried

out with a time spectral method and an implicit first-order accurate time-marching

scheme. For the viscous Burgers flow and nonlinear beam problems, a second-order

accurate central differencing scheme was used for spatial semi-discretization. In the

time domain, fully resolved simulations were performed with an explicit fourth-order

accurate time-marching scheme, and ROM simulations were also carried out with an

implicit first-order accurate time-marching scheme.

Our study of the van der Pol oscillator demonstrated that the OPTROM approach

is effective for autonomous systems. Temporal homogeneity and ergodicity were found

to be excellent assumptions for the required statistical moments. Subgrid-scale models

based upon direct calculation from FRS solutions and moment estimation were found

to improve the accuracy of coarse time-marching and time-spectral simulations by

one to two orders of magnitude. Solutions for the unknown frequency of oscillation

experienced the greatest improvement, despite not being taken into account when

deriving the models. This improvement is an indirect result of evolving the resolved

states (displacement and velocity) more accurately. A special case was also discovered
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for the time-spectral scheme: an exact subgrid-scale model (one with zero a priori

and a posteriori error) can be derived when one harmonic is retained in the analysis.

No other schemes with this property have been found.

Analysis of the forced Duffing oscillator revealed that the OPTROM approach is

also effective for systems excited by external forcing. The subgrid-scale dynamics were

characterized easily and accurately by means of moment estimation with respect to

external forcing parameters. Temporal homogeneity and ergodicity were found to be

excellent assumptions for the required statistical moments for both regular and chaotic

response types. Time-marching simulations for the Duffing oscillator were expedited

by coarsening the temporal grid. Substantial errors occurred in the form of strong

numerical damping (which impedes the development of high frequency modes) and

artificial regularity (in place of a true chaotic response). The OPTROM approach was

shown to improve the reliability of predictions for both regular and chaotic response

types. Time-spectral simulations were also carried out with subgrid-scale models

based upon single-point and multi-point temporal stencils. As with the van der Pol

oscillator, an exact subgrid-scale model was derived with one harmonic retained in

the analysis. For higher fidelity simulations with multiple harmonics retained, models

based upon multi-point temporal stencils performed best with respect to their ability

to predict subharmonic structures (also referred to as undertones) in the response.

For the time-marching and time-spectral schemes, the OPTROM approach provided

the best trade off between computational expense and accuracy.

Numerical simulation of the viscous Burgers equation (nonlinear wave propagation

with diffusion) allowed us to demonstrate application of the OPSTROM approach to

a fluid dynamics problem with spatiotemporal dependence. Large-amplitude inflow

disturbances were prescribed to excite the flow. Characterization of the subgrid-scale

dynamics revealed spatial variation of the required multi-point moments and smooth

scaling with respect to the flow parameters (Reynolds number and Strouhal number).
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These observed properties enabled efficient construction of spatially heterogeneous

subgrid-scale models with a relatively small amount of FRS data (sixteen solutions).

We investigated the performance of the models by comparing various ROM solutions

(standard ROM, OPTROM, OPSROM and OPSTROM) to the FRS. When used

independently, simulations with the OPTROM and OPSROM models were found to

be insufficient for error reduction. When used in conjunction, however, simulations

with the OPSTROM models were in excellent agreement with the FRS. Enrichment

was observed in both the spatial and temporal spectral modes. The best model for the

subgrid spatial scales was found to be a quadratic estimate with a three-point central

spatial stencil, whereas the best model for the subgrid temporal scales was found

to be a linear estimate with a three-point backward temporal stencil. Simulations

with OPSTROM models based upon estimated moments were found to be five times

more accurate than the standard ROM in preserving the underlying spatiotemporal

statistical structure for a given resolution in space and time.

In our most extensive example, we investigated the nonlinear structural dynamics

of a geometrically nonlinear beam under the influence of time-dependent external

forcing. The response of the beam with simply supported boundary conditions was

the primary focus of the study, although we also considered briefly the response with

clamped-clamped and clamped-free boundary conditions. A variety of trajectories

were encountered in a parametric study of the beam dynamics, including symmetric

time-periodicity, asymmetry, period N -tupling and chaos.

Through a characterization of the subgrid-scale dynamics for the nonlinear beam,

the required statistical moments displayed a large degree of temporal homogeneity.

A large degree of spatial homogeneity was also observed in the single-point, but

not multi-point, spatial moments. It was also determined that the evolution of the

random filtered field could be assumed to be an ergodic process for the purpose

of model construction. The study of the multi-point correlations also determined
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that the functional relationship between the spatiotemporal correlations and system

parameters (both physical and computational) could be represented accurately with

approximating functions constructed using a limited amount of FRS data (twenty-

five solutions) and local bilinear interpolation. This finding is particularly noteworthy

since, as previously mentioned, a variety of different trajectories were encountered in

the parameter space, ranging in complexity from time-periodic periodic to chaotic.

Finally, the required moments were found to depend on the form of the boundary

conditions, and in this sense, the developed subgrid-scale models cannot be considered

universal with respect to these problem constraints.

In order to determine the best ROM approach for the nonlinear beam, several

types of subgrid-scale models were tested. Simulations with the standard ROM were

found to be unreliable, often leading to large errors and incorrect predictions in the

form of artificial chaos and regularity. Simulations with the OPTROM, OPSROM and

OPSTROM variants improved the reliability of predictions for all states, including

the transverse displacement and velocity. Results in the form of Poincaré maps,

phase portraits and temporal spectra compared favorably with the FRS. For certain

parameters, the models even prevented the onset of artificial chaos and regularity.

Homogeneous models (in space and time) based upon a linear stochastic estimate with

a three-point temporal and one-point spatial stencil were found to provide the best

combination of accuracy and simplicity. Out of all the ROMs considered in this study,

OPSTROM emerged as the best option available with a coarse spatiotemporal grid.

As the temporal grid was refined, however, the subgrid-scale accelerations diminished

and became difficult to model, in which case OPSROM became the best option.

With the best models established for the nonlinear beam, we conducted a series

of numerical experiments designed to capture the complex bifurcation behavior of

the dynamic response in a large forcing parameter space. For the first experiment,

bifurcation diagrams were accurately traced with a highly resolved standard ROM
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in eighteen days. With a sweep of the forcing amplitude, symmetric periodic orbits

split off into branches for asymmetric and multi-period orbits, followed by transient

chaos, intermittency and full-fledged chaos. For larger forcing amplitudes, the chaotic

trajectories eventually returned to symmetric orbits. An OPSTROM scheme with a

much coarser grid and subgrid-scale models based upon estimated moments captured

all of this behavior in about six hours. The standard ROM failed to predict any bifur-

cations with the same grid. In the second numerical experiment, maps for the number

of zero velocity points per forcing cycle were accurately predicted with OPSTROM

in a matter of hours, as opposed to weeks with the standard ROM. In the third and

final experiment, maps for the Lyapunov exponents were drawn with a specified level

of accuracy one to two orders of magnitude faster with OPSTROM.

In summary, the subgrid-scale dynamics were easily characterized for each of the

nonlinear dynamical systems with a small amount of FRS data. Model construction

was greatly simplified for each problem due to the observed levels of spatiotemporal

homogeneity and predictable scaling behavior in the required multi-point statistical

moments with respect to the system parameters. Out of the four ROM variants

(standard ROM, OPTROM, OPSROM, and OPSTROM), the OPSTROM approach

was found to provide the best overall performance with a coarse computational grid.

6.3 Areas for future research

The theoretical advancements made in this dissertation have created some exciting

opportunities for future research in the field of multiscale modeling. The OPSTROM

approach has proven to be robust, versatile, and widely applicable to any nonlinear

dynamical system. In this regard, an immediate impact can be made for a number

of multiphysics problems which are gathering substantial interest in both industry

and academia [123–125]. Fluid-structure interaction (FSI) problems [126, 127], for

example, often require high-fidelity simulations (which are expensive to perform) and
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could benefit greatly from the OPSTROM approach. In Appendix F, we demonstrate

how the OPSTROM approach can be extended to enhance the reliability and efficiency

of under-resolved simulations for FSI problems. First we discuss implementation with

FSI problems in general, then we specialize the approach for an aeroelastic problem

related to the field of flapping flight. In Appendix F, subgrid spatial and temporal

scales are considered for both the fluid and structure. Details for discretization and

dynamic coupling are also discussed.

Future work by the author and his advisors will concentrate on application of

OPSTROM to large-scale problems in the fields of nonlinear fluid and structural

dynamics. In particular, we are interested in applications to turbulent flows and

nonlinear structural dynamical systems in which weak turbulence may occur. In the

field of turbulent flows, it would be considered a major advancement if one could show

that the OPSTROM approach may, in certain cases, be more effective than OLES

(or OPSROM) in terms of computational efficiency and error reduction.

In addition to its intended application, it may be possible to modify or extend the

OPSTROM framework for the purpose of nonlinear system identification [128, 129].

Such an approach would begin with a priori knowledge of the system response from

measured experimental data. In order to derive a set of governing PDEs, one could

assume a general system of the form Au = M. Note the absence of the nonlinear

force vector R in comparison to the general system in (2.1). Instead, we leave it

to the stochastic estimateM to determine which terms (both linear and nonlinear)

should be retained in the governing equations. In order to determine the unknown

stochastic estimation coefficients, we follow the direct calculation approach developed

in Chapter 2, with the exception that the statistical moments required for model

construction come from measured experimental data instead of an FRS solution. In

this sense, it may be possible to derive a set of governing equations with the optimal

prediction formalism as an alternative to physical laws and assumptions, as illustrated
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in Figure 1.1. With this approach, it may also be possible to reduce epistemic errors

with the nonlinear system identification approach in addition to discretization errors

with OPSTROM. As an example to support what may seem to be an adventurous

proposal, a number of studies in the field of LES [130–133] have used measured

experimental data from turbulent flows to derive (or tune) the unknown coefficients

for Smagorinsky-type subgrid-scale viscosity models [38, 39].

The remainder of this concluding section will discuss a number of unanswered

questions which remain in regards to the construction of optimal subgrid-scale models.

First of all, additional work can be done to identify trends and perhaps establish some

general rules for choosing the functional form of the stochastic estimate. In other

words, for a given system, it would be helpful to know a priori which model design

parameters, including the power series order (linear, quadratic, cubic) and stencil sizes

(MS, MT , MS), are likely to provide the best estimates. Furthermore, there exists a

need to determine the conditions under which one may assume a model to be spatially

homogeneous and perhaps universal. For some systems, it may be possible to obtain

the multi-point statistical moments required for model construction from theory as

an alternative to FRS simulations or experimental data. Finally, from a continuum

mechanics perspective, it may also be possible to construct a unified subgrid-scale

model for the general field equations as a function of the constitutive parameters.

With regards to the order of the stochastic estimate, the obvious choice would

be to choose a model which matches the highest order of the nonlinear terms in the

governing PDEs. For example, in order to model the subgrid-scale convection in

the viscous Burgers flow (which contains a second-order nonlinearity), we selected a

quadratic stochastic estimate, owing to the observation of its superior performance

in comparison to a linear stochastic estimate. This choice aligns with the quadratic

estimates selected in previous works [69,70] to model the subgrid-scale convection for

OLES of turbulent flows. Langford and Moser stated [67] that quadratic estimates
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should in general be required for the Navier-Stokes equations. However, Langford and

Moser also stated [67] that multi-point linear estimates may at times be sufficient if

it can be shown that the flow is Galilean invariant. A number of a priori testing

procedures have also been proposed by Meneveau [130] in order to determine the

correct functional form of subgrid-scale models.

The choice of the order for the stochastic estimate is not always straightforward,

however, as we recall our study of the Duffing oscillator for which a linear estimate was

found to perform better than a cubic estimate, despite the third-order nonlinearity

in the restoring force. This surprising result was attributed to the use of poorly

correlated data required as inputs for the high-order models [65, 66, 68]. Similarly,

for the nonlinear beam problem, a linear estimate was found to provide the best

predictions, despite the third-order nonlinearities in the restoring force. In addition

to our previous explanation, it may also help to consider the dominant order of the

nonlinearity in the governing equations. For example, given the small transverse

displacements for the nonlinear beam (u � 1), the first-order components of the

restoring force are orders of magnitude stronger than third-order components. This

in fact may be the primary cause for the poorly correlated data in the higher-order

models. Future work could be done to clarify this issue.

The spatial stencil size chosen for a subgrid-scale model should be influenced

by several issues, including (i) the spatial domain of influence on the subgrid-scale

dynamics, (ii) the amount of information used in the spatial discretization scheme,

(iii) the computational expense required for a given stencil, and (iv) the amount of

pre-processing required to obtain the required inputs. In general, the subgrid-scale

dynamics may be influenced by the entire spatial domain. For many systems, though,

one might expect a stronger functional dependence on information from nearby spatial

locations. Nevertheless, issue (i) is certainly problem-dependent. With regards to

issue (ii), a good choice for the stencil size may be to match that of the spatial
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discretization scheme. Such a choice would also correspond to a consistent filter used

to derive the subgrid-scale dynamics. In this dissertation, for example, a second-order

accurate central differencing scheme (a three-point spatial stencil) was used for the

viscous Burgers flow. Coincidentally, a three-point spatial stencil was found to provide

the best estimate for the subgrid-scale convection and diffusion. For the nonlinear

beam problem, however, we avoided the use of multi-point spatial stencils in order

to construct a spatially homogeneous model. For the beam, a one point model was

found to provide reasonable predictions, perhaps due to the relative lack of spatial

complexity. Previous works in OLES have used various multi-point spatial stencils to

model subgrid-scale convection and diffusion, including one-point [67], two-point [65],

three-point [70], and even up to 125-point (5×5×5) stencils [68,134]. Efforts have also

been taken [70,134] to design skew-symmetric stencils [135] with symmetry-preserving

properties in order to avoid numerical pathologies such as instability. Finally, the

detrimental effects associated with issues (iii) and (iv) could influence one to avoid

using excessively large spatial stencils.

Similarly, the temporal stencil size chosen for the model could include any portion

of the history from zero to present time. Including non-Markovian memory effects

has been shown to improve predictions for some systems [62,105]. In this work, it was

found that increasing the multi-point temporal stencil size improved predictions for

the subgrid-scale accelerations with a coarse temporal grid. There are complications,

however, with using too much data in the estimate [65,66,68]. Retaining information

from distant timesteps can lead to poorly correlated data and worsen the estimate.

Moreover, for the nonlinear beam problem, the multi-point temporal moments became

indistinguishable as the temporal grid was refined. From a computational standpoint,

the memory required for storing information from previous timesteps can also become

prohibitive for high dimensional systems. Future work could perhaps shed some light

on the chosen stencil size in both space and time.
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As discussed in the previous section, universal behavior [79] was not found in the

subgrid-scale models for the nonlinear beam. The multi-point moments required for

model construction appeared to be sensitive to the boundary conditions throughout

the entire spatial domain. We hypothesized that weak turbulence [115,116], and the

subsequent loss of spatial correlation, may in some cases be required for universal

behavior in nonlinear structural dynamical systems. Even with weak turbulence,

however, one might still expect the subgrid-scale dynamics to be spatially nonhomo-

geneous near the structural boundaries. This hypothesis is similar in concept to wall

effects in turbulent flows [2]. Previous research in LES for turbulent flows has ad-

dressed the need for spatially heterogeneous models near wall boundaries [136, 137].

Similar methods could be developed for the OPSTROM approach with nonlinear

structural dynamical systems.

Finally, from a continuum mechanics perspective, it may be possible to construct

universal subgrid-scale models for the general field equations [138]. Such a task would

effectively remove the problem-dependence from the model construction process. The

models would simply depend on each of the system parameters in addition to the

chosen discretization scheme. For example, a three-dimensional anisotropic Hookean

material would in general require characterization with respect to 21 independent

constitutive parameters [138]. Material symmetries would decrease this functional

dependence to 9 parameters (orthotropic), 5 parameters (transverse isotropic), and

2 parameters (isotropic). Of course, materials with nonlinear, viscous, and plastic

behavior would introduce additional complexities. External forcing parameters should

also be taken into account. Some degree of spatial homogeneity and universal behavior

would also be required if such models are to be independent of problem geometry.

We acknowledge that this final proposal for future research may seem like a daunting

task, but we also emphasize from an interdisciplinary perspective the tremendous

value such models could potentially provide.
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Appendix A – Conditional average

From a statistical perspective [113], the purpose of the subgrid-scale modelM is to

estimate one random variable τ in terms of another random variable ũ. We seek a

function of ũ, written asM (ũ), to approximate τ such that the mean-square error

is minimal; hence,

e =
¨
[τ −M (ũ)]2

∂
=
∫ ∞
−∞

∫ ∞
−∞

[τ −M (ũ)]2 f (τ , ũ) dτdũ, (A.1)

where f (τ , ũ) is the joint PDF of ũ and τ . Knowledge of f is not required, but

can be found given u and ũ. From the definition of a conditional PDF, f (τ , ũ) =

f (τ |ũ)f (ũ), and (A.1) becomes

e =
∫ ∞
−∞
f (ũ)

∫ ∞
−∞

[τ −M (ũ)]2 f (τ |ũ) dτdũ. (A.2)

Since f must be positive everywhere, both integrands are positive. The mean-square

error is minimized with respect to ũ if

∂e
∂M = 0 =

∫ ∞
−∞
f (ũ)

∫ ∞
−∞

2 [τ −M (ũ)]f (τ |ũ) dτdũ, (A.3)

which holds if the inner integral evaluates to zero. That is, if

M (ũ) =
∫ ∞
−∞
τf (τ |ũ) dτ = 〈τ |ũ〉 . (A.4)

Hence, out of all possible representations forM (ũ), the mean-square error is mini-

mized when the model is equal to the mean of τ conditional on ũ.
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Appendix B – Stochastic estimate

A stochastic estimate [65] for the modelM can be found by expanding the conditional
average in the form of a multivariate power series about the event ũ = 0. Since the
expansion must be truncated at some level, terms up to quadratic are retained in
(2.15). The unknown coefficients A, B and C are determined by minimizing the
mean-square error between the power series and the conditional average:

(ei)nj =

∞(Mi)nj − (Ai)nj −
MS∑
α

MN∑
ξ

MT∑
µ

(Biα)nµjξ (ũα)µξ −
MS∑
α,β

MN∑
ξ,η

MT∑
µ,ν

(Ciαβ)nµνjξη (ũα)µξ (ũβ)νη

2
ª
.

(B.1)

The orthogonality principle [113] states that each term in the mean-square error (B.1)
must be statistically uncorrelated with the known data in the domain of interest. For
the quadratic estimate, the following inner products must be orthogonal:

0 =

∞(Mi)nj − (Ai)nj −
MS∑
α

MN∑
ξ

MT∑
µ

(Biα)nµjξ (ũα)µξ −
MS∑
α,β

MN∑
ξ,η

MT∑
µ,ν

(Ciαβ)nµνjξη (ũα)µξ (ũβ)νη

 , 1
∫

(B.2)

0 =

∞(Mi)nj − (Ai)nj −
MS∑
α

MN∑
ξ

MT∑
µ

(Biα)nµjξ (ũα)µξ −
MS∑
α,β

MN∑
ξ,η

MT∑
µ,ν

(Ciαβ)nµνjξη (ũα)µξ (ũβ)νη

 , (ũγ)λφ

∫
0 =

∞(Mi)nj − (Ai)nj −
MS∑
α

MN∑
ξ

MT∑
µ

(Biα)nµjξ (ũα)µξ −
MS∑
α,β

MN∑
ξ,η

MT∑
µ,ν

(Ciαβ)nµνjξη (ũα)µξ (ũβ)νη

 , (ũγ)λφ (ũδ)ρψ

∫
The system in (B.2) can be simplified to the form in (2.16) first by lettingM = 〈τ |ũ〉,

then by expanding the inner products, commuting the mean operator through additive

terms, assuming constant coefficients and rearranging the final result. The stochastic

estimation coefficients can be found with knowledge of the moments amongst τ and

ũ, assuming they form a linearly independent system in (2.16).
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Appendix C – An exact subgrid-scale model

As a special case, an exact subgrid-scale model (one with zero a priori error) can

be constructed for the HB scheme if (and only if) one harmonic is retained in the

analysis (also referred to throughout the literature as the describing function method).

Necessary conditions apply: the governing system of equations must contain odd

polynomial-type nonlinearities in R and the response must be time-periodic. Hence,

the fully resolved solution for such a system contains only odd temporal harmonics

in (2.32). Following the application of a consistent spectral cutoff filter to u(t), the

filtered solution can be written as

ũ(t) = û0 + û1 cos(ωt) + û2 sin(ωt). (C.1)

An analytical expression for τ can be derived by substituting the expansions for u

and ũ into (2.6) and simplifying the result using the appropriate power-reduction

and product-to-sum trigonometric identities. The subgrid-scale force (for a third-

order nonlinearity) can then be written as

τ (t) = τ̂ 0 + τ̂ 1 cos(ωt) + τ̂ 2 sin(ωt) + τ̂ 5 cos(3ωt) + τ̂ 6 sin(3ωt). (C.2)

Higher-order terms (from the FRS) are truncated by the spectral cutoff filter. For the

subgrid-scale model, we choose a linear estimate with arbitrary spatially dependent

coefficients

M(t) = Â+
MS∑MN∑

B̂
1
û1 cos(ωt) +

MS∑MN∑
B̂

2
û2 sin(ωt). (C.3)
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Now consider the a priori error in (2.25), which is based on the subgrid-scale quan-

tities averaged over ∆x and ∆t (2.22–2.24). Recall from (2.37), the timestep corre-

sponding to the choice of one harmonic (NH = 1) is ∆t = 2π/3ω. If we integrate τ

from t to t+ ∆t, the time-averaged result can be written as

〈τ 〉∆t∆x = η̂0 + η̂1 cos(ωt) + η̂2 sin(ωt), (C.4)

where the coefficients η̂0, η̂1 and η̂2 depend only on û0, û1 and û2. The third

harmonic terms in 〈τ 〉∆t∆x vanish due to integration over ∆t = 2π/3ω. Similarly, the

time-averaged model becomes

〈M〉∆t∆x = µ̂0 + µ̂1 cos(ωt) + µ̂2 sin(ωt), (C.5)

where the coefficients µ̂0, µ̂1 and µ̂2 are functions of Â, B̂1, B̂2, û0, û1 and û2.

Observe that the basis functions for 〈τ 〉∆t∆x and 〈M〉∆t∆x are identical, and they form

a complete orthogonal set. Like terms can be equated. If the number of states in

the model MS is equal to the number of states in the system NS, the estimation

coefficients can be solved for in terms of û0, û1 and û2. We can also express 〈τ 〉∆t∆x in

terms of the estimation coefficients. There are no unresolved terms. This is the reason

an exact subgrid-scale model (zero a priori error) can be achieved with the describing

function method. Higher-order HB schemes do not enjoy the same properties since

〈τ 〉∆t∆x contains additional terms left unresolved by 〈M〉∆t∆x.

We return to the generalized Langevin representation [60] of the HB subgrid-scale

model in Section 2.9: The non-Markovian memory term in (2.24) must be zero for this

particular model due to the selection of a one-point temporal stencil (meaning the

dynamics are not projected onto past or future data). The Markovian contribution

in (2.24) (the projection onto present data) is complete for the describing function

method because we can express 〈τ 〉∆t∆x exactly in terms of the estimation coefficients.
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It naturally follows that the mean of the noise term (orthogonal dynamics) must be

zero. Higher-order HB schemes give rise to components in 〈τ 〉∆t∆x orthogonal to the

data in 〈M〉∆t∆x. In this sense, the nonzero a priori errors for higher-order HB schemes

can be attributed to the unresolved noise.
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Appendix D – Grid convergence for the nonlinear beam

The true response of the nonlinear beam could possibly cover an infinite range of

spatiotemporal scales. For practical matters, a simulation may be considered fully

resolved if the computational grid resolves all variables to within some tolerance, ε.

The choice of ε is left to the analyst and may vary depending on the application.

Influential factors may include precision limitations of the physical or computational

variety. Our criterion for a FRS for the beam is straightforward: all spatiotemporal

spectra must be converged to within ε < 10−6. Any scheme (stable, consistent and

convergent) can produce a FRS if the grid parameters (∆x and ∆t) are chosen to be

sufficiently small. Otherwise, the simulation should be considered a standard ROM

when the subgrid-scale models are excluded. The ROMs considered in this study may

be under-resolved in space and under-resolved in time (USUT), fully resolved in space

and under-resolved in time (FSUT), or under-resolved in space and fully resolved in

time (USFT), as described in Figure 1.2.

The RKCS and BTCS schemes are both investigated with respect to their ability

to achieve the four different resolutions in Figure 1.2. To this end, we apply a strong

external forcing (F = 10 and ω = 3.76) for which the beam evolves to a time-periodic

response when transients are allowed to decay. In a sense, this task becomes a typical

convergence study as shown in Figures D.1, D.2 and D.3. The end result of achievable

resolutions are shown in Table D.1, along with the normalized computation times.

We first consider the explicit RKCS scheme, which is prone to numerical instability

with coarse timesteps. For example, when the spatial grid is chosen to be ∆x =

5.0 × 10−3, choosing a timestep of ∆t & 10−6 renders the scheme unstable. Further

decreasing ∆t below 10−6 does not affect the outcome within the FRS tolerance.
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Scheme FRS USFT FSUT USUT

RKCS ∆x = 5.0×10−3? ∆x = 1.0×10−1 NP NP
∆t = 1.0×10−6† ∆t = 1.0×10−6†

T = 1.0 T = 5.81×10−2

BTCS NF NF ∆x = 5.0×10−3? ∆x = 1.0×10−1

∆t = 1.0×10−2 ∆t = 1.0×10−2

T = 3.72×10−2 T = 1.09×10−4

? Required to satisfy FRS criteria
† Required for numerical stability
NP Not possible due to instability with a coarse ∆t
NF Not feasible due to computational expense with required ∆t

Table D.1: Resolutions achievable for the SS beam with the RKCS and BTCS schemes
(FRS, USFT, FSUT and USUT) with corresponding computation times. Required
grid values are in black; representative grid values are in red. The FRS completely
resolves all spectra to within ε < 10−6 for F = 10 and ω = 3.76. Computation times
T are normalized by 0.325 hours, which is the time required to evolve a FRS for one
forcing cycle on a computer with a 2.6GHz CPU and 4GB of RAM.

Hence, the stable timestep with ∆x = 5.0 × 10−3 also happens to be converged. As

shown in Table D.1, under-resolved timesteps with USUT and FSUT simulations are

not possible with the RKCS scheme. However, as shown in Figure D.1, USFT and

FRS results can be found by refining the spatial grid with ∆t fixed. For each spatial

grid, a time history of the midpoint displacement is shown alongside a snapshot

of the quarter-forcing cycle (QFC) spatial configuration. A spectral breakdown of

both the spatial and temporal signals reveals a response dominated by odd modes.

Even modes are effectively zero and are omitted for clarity. Temporal structures are

quite complex, but only three spatial modes exist within the threshold of interest.

Despite this simple spatial structure, the RKCS scheme requires a fine spatial grid

with ∆x = 5.0×10−3 to resolve all spatiotemporal spectra to within FRS tolerance.

This is due in part to the widespread coupling between microscale and macroscale

spatiotemporal structures that occurs in nonlinear systems. In particular, notice a

coarse ∆x significantly affects both the resolved spatial and temporal spectra.
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Figure D.1: Spectral breakdown of USFT and FRS solutions for the SS beam with
an external forcing of F = 10 and ω = 3.76. Results are obtained using the RKCS
scheme in Table D.1 with ∆t = 10−6 and the indicated ∆x values. Artificial chaos
occurs with ∆x = 2.5×10−1; all other simulations are rightfully time-periodic.
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Figure D.2: Spectral breakdown of FSUT and FRS solutions for the SS beam with
an external forcing of F = 10 and ω = 3.76. Results are obtained using the schemes
in Table D.1 with ∆x = 5.0×10−3 and the indicated ∆t values. All simulations are
rightfully time-periodic.
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Figure D.3: Spectral breakdown of USUT and FRS solutions for the SS beam with
an external forcing of F = 10 and ω = 3.76. Results are obtained using the schemes
in Table D.1 with ∆x = 1.0×10−1 and the indicated ∆t values. All simulations are
rightfully time-periodic.
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With the unconditionally stable BTCS scheme, an implicit set of equations must

be solved at every timestep with an iterative root finding scheme. Hence, for the same

computational grid (∆x and ∆t), BTCS calculations are more expensive than RKCS.

However, the ability to coarsen ∆t allows the analyst to obtain affordable FSUT and

USUT solutions with the BTCS scheme. Observe, for example, in Table D.1 that

a USUT solution with ∆x = 10−1 and ∆t = 10−2 can be calculated four orders

of magnitude faster than the FRS solution. While FRS and FSUT simulations are

possible with the BTCS scheme, for this study the RKCS scheme is more efficient for

these resolutions, and therefore, will be used to produce FRS solutions.

Returning to Figure 1.2, the coarsest (and fastest) USUT resolution is limited by

the beam dimensions and convergence of the BTCS solver. For the beam spanning

x ∈ [0, 1], the largest spatial grid compatible with the chosen FD scheme is ∆x =

2.5×10−1. The largest timestep is limited as convergence becomes difficult with the

NR method for ∆t & 10−2. Computational grids chosen from ∆x ∈ [5.0× 10−3, 2.5×

10−1] and ∆t ∈ [10−6, 10−2] are considered viable in this study.

FSUT solutions can be obtained with the BTCS scheme as shown in Figure D.2.

The spatial grid is fixed at the FRS result ∆x = 5.0×10−3, whereas the temporal grid

is based upon coarse ∆t values. Large errors in the temporal spectra indicate a high

level of coupling between the microscale and macroscale temporal structures. The

most significant errors occur in the thirteenth mode, which is primarily responsible

for the secondary vibrations. The spatial spectra display a weaker degree of coupling.

USUT solutions can also be found with the BTCS scheme. Shown in Figure D.3 are

solutions for a representative spatial grid of ∆x = 10−1 with the same ∆t increments

as Figure D.2. The choice of a coarse ∆x = 10−1 primarily affects the accuracy of the

higher spatial modes, although some influence can be seen in the dominant temporal

structures. The USUT scheme is the fastest of all ROMs for this problem, as shown

in Table D.1, where the computation times are reduced by four orders of magnitude.
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Appendix E – Subgrid-scale models for the nonlinear beam

Before solving a PDE with OPSTROM, the analyst should determine which subgrid-

scale models are “best” for the problem at hand. Influential factors may include

error measures, convergence and practical utility. For the nonlinear beam problem,

we investigate the performance of several subgrid-scale models for a representative

set of forcing parameters (F = 10 and ω = 3.76) and grid parameters (∆x = 10−1

and ∆t = 10−2). For appraisal criteria, we consider the a priori and a posteriori

errors defined in Section 2.10 for transverse velocity and displacement, computation

times, the average number of NR iterations per timestep required for convergence,

and ease of implementation. Models under consideration include linear and quadratic

estimates with one or two states (MS) and multi-point stencils in space (MN) and time

(MT ). Temporal homogeneity is assumed as the solution for F = 10 and ω = 3.76

is periodic. Both spatially homogeneous and nonhomogeneous models are compared.

Performance is summarized in Table E.1.

The most basic model in Table E.1 uses a linear stochastic estimate with one state

(MS = 1) and a one-point stencil (MN = 1 and MT = 1). Out of all possible states,

the transverse displacement (u5)nj renders the best predictions with the most basic

model. For the values of F , ω, ∆x and ∆t considered here, including quadratic terms

in the estimate does not improve upon the linear models as the quadratic coefficients

are effectively zero. Using two states in the estimate (MS = 2) with transverse

displacement (u5)nj and velocity (u4)nj does in fact improve the predictions. Including

additional states, however, is prohibited by the fact that (u5)nj and (u6)nj are almost

perfectly (negatively) correlated, resulting in an ill-conditioned set of equations for the

model coefficients. Moments amongst the longitudinal states ((u1)nj , (u2)nj and (u3)nj )
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A priori A posteriori Computation NR
[Model parameters] errors, eu4 | eu5 errors, Eu4 | Eu5 time, T iters
Standard USUT

[None] 1.000 | 1.000 0.709 | 0.157 1.09×10−4 3.52

USUT with homogeneous linear OPSTROM [(Ai)nj , (Biα)nµjξ ]

[MS = 1, MN = 1, MT = 1] 0.701 | 0.817 0.681 | 0.146 1.18×10−4 3.52
[MS = 1, MN = 3, MT = 1] 0.838 | 0.802 0.696 | 0.149 1.21×10−4 3.55
[MS = 2, MN = 1, MT = 1] 0.401 | 0.808 0.560 | 0.110 1.25×10−4 3.67
[MS = 1, MN = 1, MT = 3] 0.379 | 0.154 0.552 | 0.106 1.29×10−4 3.84

USUT with spatially nonhomogeneous linear OPSTROM [(Ai)nj , (Biα)nµjξ ]

[MS = 1, MN = 1, MT = 1] 0.682 | 0.817 0.682 | 0.146 1.28×10−4 3.52
[MS = 1, MN = 3, MT = 1] 0.699 | 0.672 0.650 | 0.137 1.36×10−4 3.51
[MS = 2, MN = 1, MT = 1] 0.389 | 0.806 0.560 | 0.110 1.35×10−4 3.68
[MS = 1, MN = 1, MT = 3] 0.369 | 0.153 0.550 | 0.105 1.89×10−4 3.84

USUT with homogeneous quadratic OPSTROM [(Ai)nj , (Biα)nµjξ , (Ciαβ)nµνjξη ]

[MS = 1, MN = 1, MT = 1] 0.701 | 0.817 0.681 | 0.146 1.21×10−4 3.52
[MS = 2, MN = 1, MT = 1] 0.401 | 0.808 0.560 | 0.110 1.36×10−4 3.67
[MS = 1, MN = 1, MT = 3] 0.379 | 0.154 0.552 | 0.106 1.39×10−4 3.84

USUT with spatially nonhomogeneous quadratic OPSTROM [(Ai)nj , (Biα)nµjξ , (Ciαβ)nµνjξη ]

[MS = 1, MN = 1, MT = 1] 0.682 | 0.817 0.682 | 0.147 1.30×10−4 3.52
[MS = 2, MN = 1, MT = 1] 0.389 | 0.806 0.561 | 0.109 1.47×10−4 3.67
[MS = 1, MN = 1, MT = 3] 0.369 | 0.153 0.549 | 0.106 1.99×10−4 3.85

[MS = 1, MN = 1, MT = 1] models use [(u5)nj ]
[MS = 1, MN = 3, MT = 1] models use [(u5)nj−1, (u5)nj , (u5)nj+1]
[MS = 2, MN = 1, MT = 1] models use [(u4)nj , (u5)nj ]
[MS = 1, MN = 1, MT = 3] models use [(u5)n−2

j , (u5)n−1
j , (u5)nj ]

Table E.1: Appraisal metrics for various subgrid-scale models for the SS beam with
an external forcing of F = 10 and ω = 3.76. All models are developed for the BTCS
scheme with the OPSTROM variant and a computational grid of ∆x=1.0×10−1 and
∆t=1.0×10−2. Additional models are conceivable; however, increasing the order of
the estimate, number states (MS), spatial stencil (MN) and temporal stencil (MT ) can
produce an ill-conditioned (linearly dependent) system in the stochastic estimation
equations. For this set of forcing parameters and resolution, the model highlighted
in blue is considered to provide the best combination of accuracy, computational
efficiency and simplicity.
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are several orders of magnitude smaller, and therefore, relatively insignificant. We

model (τ1)nj , (τ2)nj and (τ3)nj , but (u1)nj , (u2)nj and (u3)nj are not used in the estimate.

The spatially nonhomogeneous models in Table E.1 require unique moments and

coefficients at each node, and as a result, implementation is more difficult in the

pre-processing stage. Nevertheless, the nonhomogeneous models should theoretically

provide more accurate predictions. This can be seen in Table E.1 where the a priori

errors are marginally better for most nonhomogeneous models. Ultimately of greater

importance, however, are the a posteriori errors, which in most cases vary by less than

1%. The three-point spatial models (MN = 3) deserve some discussion as they are

significantly affected by the spatial homogeneity assumption. Compared to the single-

point model, the homogeneous three-point models actually increase the a posteriori

errors. This result could have been foreseen given the correlations in Figure 4.15. The

nonhomogeneous three-point models do, however, decrease the a posteriori errors, but

not to the same degree as some of the other options. More sophisticated multi-point

spatial models (MN > 1 with MT > 1 and/or MS > 1) are not realizable. Given the

longer computation times, lack of major benefit, and difficulty in implementation, we

hereby restrict our consideration to spatially homogeneous models with a one-point

spatial stencil. It should be made clear, however, that for some problems (such as the

viscous Burgers flow), it can be expected that limiting models in this way will not be

profitable.

For this problem, we consider the “best” subgrid-scale model for OPSTROM to be

a linear stochastic estimate with a three-point backward temporal stencil (MT = 3).

The transverse displacements (u5)nj , (u5)n−1
j and (u5)n−2

j provide the model with

enough information to predict the velocity and acceleration at each timestep. More-

over, since (u5)nj is almost perfectly (negatively) correlated with (u6)nj , the transverse

curvature can also be known with a high degree of accuracy. All of this information is

contained (in a statistical sense) in the stochastic estimate. The chosen OPSTROM
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model is highlighted in blue in Table E.1. Additional models were investigated but

are not shown here, some of which were found to produce an ill-conditioned set of

equations for the model coefficients.

We repeat the analysis in Table E.1 to determine the “best” subgrid-scale models

for OPSROM and OPTROM. For the OPTROM variant, we select a linear estimate

based upon the transverse displacement with a three-point temporal stencil. For the

OPSROM variant, we select a linear estimate based upon the transverse displacement

and velocity with a one-point stencil. All models are homogeneous in space and time.

The “best” models for each scheme are summarized in Table 4.5.
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Appendix F – Potential application to fluid-structure

interaction problems

In this Appendix, we draft a proposal for future research in which the OPSTROM

framework may be used to enhance the reliability and efficiency of simulations for

fluid-structure interaction (FSI) problems. We begin with a background discussion

on the nature of FSI problems in Section F.1. Implementation of the OPSTROM

approach will then be developed in a general manner. The Navier-Stokes equations

for an isothermal, incompressible Newtonian flow are modified for OPSTROM in

Section F.2, and the field equations for a generic solid continuum are modified for

OPSTROM in Section F.3. Details regarding the dynamic coupling of the fluid and

structure are discussed in Section F.4. Finally, in Section F.5, we propose for future

research an engineering design problem involving high-fidelity aeroelastic simulation

of a flapping dragonfly wing.

F.1 Background on fluid-structure interactions

Many engineering systems consist of solid structures that are in contact with at least

one fluid. In general, the physics of the fluid and structure are strongly coupled.

When a fluid flows around a structure, loads are exerted in the form of pressure and

shear stress [139]. Such loads may result in structural deformation, which in turn

alters the flow of the fluid. This feedback cycle is known throughout the literature as

FSI, and often plays a pivotal role in engineering design [126,127].

A special form of FSI known as aeroelasticity is commonly used to describe the

mutual interaction among inertial, elastic, and aerodynamic forces [140]. The Collar

diagram [140], illustrated in Figure F.1, is often used to visualize such interactions.
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Inertial forces
(dynamics)

Elastic forces
(solid mechanics)

Aerodynamic forces
(fluid mechanics)

Figure F.1: The Collar diagram [140], which describes aeroelasticity as the mutual
interaction amongst inertial, elastic, and aerodynamic forces.

Several aerospace engineering subdisciplines can be identified by pairing nodes in the

Collar diagram. Flight dynamics, for example, considers the combination of dynamics

and fluid mechanics. Structural dynamics considers dynamics and solid mechanics.

Static aeroelasticity considers fluid mechanics and solid mechanics. The combined

effect of all three subdisciplines is known as dynamic aeroelasticity.

Flutter is perhaps the most well-known aeroelastic phenomenon and arguably

one the most difficult to predict [140, 141]. Flutter is characterized by self-excited

vibrations in which a structure feeds upon energy extracted from a fluid. From a

mathematical perspective, flutter is the result of a Hopf bifurcation [142] due to

parameter modulation of the flow velocity. Below some critical flow velocity, which

is also known as the flutter velocity, small perturbations to an aeroelastic system are

dissipated through aerodynamic or structural damping. Above the flutter velocity,

negative damping occurs, in which case small perturbations to the system result in

stable or unstable oscillations. In many cases, such as the Tacoma Narrows bridge

collapse [143], flutter can lead to catastrophic structural failures.

Other forms of FSI can be found outside the aerospace arena, including biomedical,

civil, chemical, naval and petroleum engineering. To name a few, FSI simulations have

been conducted for abdominal aortic aneurysms, heart valves, coronary stents, bridge

decks, reactive surface flows, marine catenary risers and biological flyers [126,127].
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Recent demand has escalated for flapping-wing micro aerial vehicles (MAVs) with

high maneuverability, portability and stealthiness, in addition to the ability to perch

and hover. Such attributes would be ideal for covert operations in perilous situations.

Inspiration has been drawn from biological flyers such as insects, birds, and bats, but

their abilities to generate sufficient lift remains somewhat of a paradox [144–146].

A number of mechanisms have been identified to enable biological flyers, including

dynamic stall, leading edge vortex shedding, and wake capturing [147–151]. With each

of these phenomena, wing flexibility seems to play a very important role [152–155].

From a biomimicry perspective, these flight-enabling mechanisms need to be better

understood for the purpose of MAV design.

Historically, the primary obstacle to high-fidelity aeroelastic simulation of flapping

flight is computational expense [156, 157]. Nevertheless, the latest advancements in

supercomputing infrastructure are leading to the possibility of solving the underlying

FSI equations to the level of detail required to gain significant insight. Despite the

remarkable progress made in supercomputing, innovative solution techniques are still

needed to make high-fidelity simulations possible for such problems. In this regard,

the author believes that the OPSTROM approach can play a pivotal role in future

aeroelastic analysis of flapping flight.

F.2 Fluid dynamic equations of motion

The governing equations of motion for an isothermal, incompressible Newtonian flow

are hereby modified for a FSI simulation with the OPSTROM approach. In place of

the true velocity field v and pressure p, the Navier-Stokes equations [139] are written

in terms of the filtered velocity field ṽ and pressure p̃. There is no need to filter the

fluid density ρF, as it is assumed to be constant. We consider the fluid to reside in the

spatial domain ΩF, which is enclosed by the surface ΓF = ΓD
F ∪ ΓN

F ∪ ΓFSI, where ΓD
F

and ΓN
F are the open surfaces on which Dirichlet and Neumann boundary conditions
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are specified, respectively, and ΓFSI denotes the fluid-structure interface (wetted area).

The modified Navier-Stokes equations for the incompressible flow become

ρF

Ç
∂ṽ
∂t

+ (ṽ · ∇) ṽ
å

= ∇ · ‹σF + bF + τF1 in ΩF (F.1)

∇ · ṽ = τF2 in ΩF. (F.2)

The first equation in (F.1) represents conservation of momentum, whereas the second

equation in (F.2) represents conservation of mass, or continuity. In the momentum

equation, the first term on the left-hand side describes local acceleration, and the

second term describes nonlinear convection. On the right-hand side of the momentum

equation, ‹σF denotes the filtered fluid stress tensor, and bF is the vector of body forces

per unit volume, which in the presence of a gravitational field becomes bF = ρFg.

For an incompressible Newtonian fluid in which µ represents the dynamic viscosity,

the true stress tensor is given by

σF = −pI + µ
Ä
∇v + (∇v)Tä , (F.3)

whereas the filtered stress tensor in (F.1) takes on the following form

‹σF = −p̃I + µ
Ä
∇ṽ + (∇ṽ)Tä . (F.4)

The final terms in the modified Navier-Stokes equations (τF1 and τF2) represent the

subgrid-scale dynamics for OPSTROM, and are unique from what can be found in

the fluids literature. Like the general system in (2.5), τF1 and τF2 in (F.1) and (F.2)

can be split into subgrid-scale forces and accelerations. For the modified momentum

equation in (F.1), the subgrid-scale dynamics are given by τF1 = αF1 + γF1, where

αF1 = ρF

(
∂ṽ
∂t
− ∂̃v
∂t

)
(F.5)
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γF1 = ρF

Å
(ṽ · ∇) ṽ−‰�(v · ∇) v

ã
+
( ·�∇ · σF −∇ · ‹σF

)
. (F.6)

Similarly, for the modified continuity equation in (F.2), the subgrid-scale dynamics

are given by τF2 = αF2 + γF2, where

αF2 = 0 (F.7)

γF2 = ∇ · ṽ−‡∇ · v. (F.8)

Models for the subgrid-scale dynamics (F.1) and (F.2) can be constructed with the

stochastic estimate in (2.15). For a compressible flow with thermal gradients [139],

the modified Navier-Stokes equations must also include a third equation to describe

conservation of energy. In addition to the terms in (F.5)–(F.8), one should also take

into account the residual fields due to filtered density and energy for such a flow.

The modified Navier-Stokes equations in (F.1) and (F.2) are, in general, subject

to the following three types of boundary conditions

ṽ = vD
F + βD

F on ΓD
F βD

F = ṽ− v (F.9)‹σF · ñF = tN
F + βN

F on ΓN
F βN

F = ‹σF · ñF − σF · nF

ṽ = ∂uFSI

∂t
+ βFSI

F on ΓFSI βFSI
F = ṽ− v,

where nF is the outward unit normal vector to the fluid surface, ñF is the filtered

unit normal vector, vD
F are the prescribed velocities on the Dirichlet surface, tN

F are

the prescribed tractions on the Neumann surface, and uFSI are the time-dependent

structural displacements on the fluid-structure interface. For the latter boundary

condition, we have assumed the contact surface to be impermeable and without slip.

The final terms (βFSI
F , βD

F , and βN
F) represent the subgrid-scale boundary conditions

for the fluid.
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F.3 Structural dynamic equations of motion

We consider the solid structure to be a continuum governed by the field equations [138].

In place of the true displacement field u, the field equations are written in terms of

the filtered displacements ũ and are modified for OPSTROM. The structure resides

in the spatial domain ΩS enclosed by the surface ΓS = ΓD
S ∪ΓN

S ∪ΓFSI, where ΓD
S and

ΓN
S are the open surfaces on which Dirichlet and Neumann boundary conditions are

specified. The fluid-structure interface is defined by ΓFSI = ΩF ∩ΩS. The modified

field equations for the structure become

ρS
∂2ũ
∂t2

= ∇ · ‹σS + bS + τ S in ΩS, (F.10)

where ρS represents the density of the structure. The left-hand side of (F.10) describes

the inertial loads per unit volume. On the right-hand side, ‹σS denotes the filtered

stress tensor and bS is the vector of body forces per unit volume, which in the presence

of a gravitational field becomes bS = ρSg. The final term in the modified field

equations, τ S = αS + γS, represents the subgrid-scale dynamics for OPSTROM, the

components for which are given by

αS = ρS

Ñ
∂2ũ
∂t2
−
fl∂2u
∂t2

é
(F.11)

γS =
(·�∇ · σS −∇ · ‹σS

)
. (F.12)

As with the modified fluid equations, both the filtered and unfiltered structural stress

tensors are required to compute the subgrid-scale forces in (F.11) and (F.12). Such

expressions depend only on the constitutive properties of the solid material, which

may be elastic, viscoelastic or plastic [138].

The modified field equations for the structure in (F.10) are, in general, subject to
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the following three types of boundary conditions

ũ = uD
S + βD

S on ΓD
S βD

S = ũ− u (F.13)‹σS · ñS = tN
S + βN

S on ΓN
S βN

F = ‹σS · ñS − σS · nS‹σS · ñS = −‹σF · ñF + tFSI + βFSI
S on ΓFSI βFSI

S = ‹σS · ñS − σS · nS + ‹σF · ñF − σF · nF,

where nS is the outward unit normal vector to the structural surface, ñS is the filtered

unit normal vector, uD
S are the prescribed displacements on the Dirichlet surface, tN

S

are the prescribed tractions on the Neumann surface, and tFSI are the externally

applied tractions to the fluid-structure interface. The final terms (βFSI
S , βD

S , and βN
S )

represent the subgrid-scale boundary conditions for the structure.

F.4 Fluid-structure coupling

The governing equations for the fluid and structure in Sections F.2 and F.3 must

be discretized and coupled in order to simulate FSI problems. Throughout the FSI

literature [158–164], there exist two fundamentally different approaches for solving

the coupled equations: monolithic and partitioned. The OPSTROM technique can

be used to improve the reliability and efficiency of under-resolved simulations based

upon either the monolithic or partitioned approach.

In the monolithic approach [158–161], the governing equations for the fluid and

structure are solved simultaneously. The structural equations are typically recast into

first-order form and semi-discretized in space. The resulting structural equations are

then combined with the fluid equations, also semi-discretized in space, to form a single

system of first order ODEs. The system is then fully discretized in time and solved

using a preferred time-integration scheme. In order to eliminate the possibility of

numerical instability, implicit time-marching schemes are often preferred [164]. One

of the potential pitfalls to monolithic schemes is the requirement for both the fluid

and structural subsystems to be integrated with the same resolution. In many cases,

196



however, the range of time scales for the fluid and structural subsystems may be

quite different. Hence, in order to sufficiently resolve the physics for one subsystem,

excessive computational resources may be wasted on the other.

In the partitioned approach [162–164], the governing equations for the fluid and

structure are solved separately with different time-integration schemes and coupled

in various ways as the subsystems evolve. Potential benefits to partitioning include

(i) reduced computational expense with respect to memory and processing time, (ii)

reduced number of subiterations per timestep, (iii) increased flexibility with respect

to time-integration strategies, and (iv) increased modularity, which enables the use of

pre-existing (off-the-shelf) software [159]. Potential drawbacks to partitioning include

(i) increased computational expense with respect to networking time, (ii) increased

difficulty in boundary condition enforcement, and (iii) decreased time-accuracy [159].

Whether a monolithic or partitioned framework is used, dynamic coupling is often

complicated by the different frames of reference in which the fluid-structure interface

is defined. Most CSD solvers use a Lagrangian frame of reference (which is attached to

the structure) in ΩS, whereas CFD solvers typically use an Eulerian frame of reference

(which is fixed in space) in ΩF. Should these frames of reference be used for the fluid

and structure, the time-dependent boundary conditions on ΓFSI must be updated in

their respective domains by means of coordinate transformation. This mapping can

often lead to various numerical pathologies [159,164]. One of the most effective strate-

gies to facilitate this coupling is to use an arbitrary Lagrangian-Eulerian (ALE) frame

of reference for the fluid [158, 165]. With the ALE technique, the frame of reference

is neither fixed in space or attached to the fluid. Instead, the computational mesh

inside ΩF is allowed to move arbitrarily to optimize performance, while the nodes on

ΓFSI are fixed to the fluid-structure interface [158,165]. Details for implementing the

OPSTROM approach with the ALE technique are currently unknown and may be

addressed by future research.
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F.5 Aeroelastic analysis of a flapping dragonfly wing

In this Section, we set up a problem for future work in which the OPSTROM approach

can be used to simulate a dragonfly in flight. Whereas a number of recent works

have indeed investigated flying insects via aeroelastic simulation, we hereby propose

an engineering design problem. Dragonflies have evolved to overcome physiological

limitations such as muscle strength, endurance, joint flexibility, and wing constitutive

properties. From a biomimicry perspective, MAVs need not be burdened by the same

limitations. In this regard, the goal of MAV design should not be to imitate biological

flyers, but rather to learn from their success and borrow inspiration.

The first step of this proposed research is to reproduce via aeroelastic simulation

what dragonflies are able to achieve in the real world. The next step is to glean from

the simulations as much as possible about the underlying physics and flight-enabling

mechanisms. An engineering design problem can then be formulated in which, under

certain constraints, the goal is to optimize performance metrics such as lift, endurance

and maneuverability with respect to a number of design parameters such as the wing

geometry, material properties and flapping kinematics. Such a task would require

many high-fidelity simulations to explore an entire design space, in which case the

OPSTROM approach may be the best option available.

Dragonflies are endowed with two pairs of strong transparent wings, and are able

to achieve great maneuverability in flight. Lift mechanisms include classical lift at

low angles of attack, supercritical lift at high angles of attack, and vortex shedding

along the leading edge of the forewings [166]. Wing flexibility and aeroelastic effects

seem to play an important role in lift generation [152–156]. Flapping is controlled

by powerful muscles at the root of the wings, which can regulate angle of attack,

stroke-frequency, amplitude, and the phase between forewings and hindwings [166].

The anatomy of a hindwing is shown in Figure F.2.
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Figure F.2: Physical specimen of a dragonfly hindwing from Thomas et al [166].

Figure F.3: Finite element mesh of a dragonfly wing from LaBryer and Attar [88]. The
mesh is divided into three regions: (i) the leading edge (dark-blue), which contains
the stiffest longitudinal veins, (ii) the root (red), which is thick and moderately stiff,
and (iii) the wing membrane (light-blue), which is thin and relatively compliant.

The nonlinear structural dynamics of a dragonfly wing can be modeled with the

FE method. For this problem, we suggest the geometrically nonlinear VC1 plate

elements of Attar [167], which are based upon von Kármán plate theory [168] and

contain four nodes, each capable of translations (u, v, w) in (x, y, z) and rotations

(θ, φ) in (x, y). In addition to the displacement DOFs, the VC1 elements contain two

internal shear DOFs for a total of twenty-two DOFs. The VC1 plate elements have

proven to be accurate and efficient for small to moderate deflections in comparison

to elements based upon higher-order plate theories [167]. For complicated geometries

and large deflections (beyond what one would expect to find in a dragonfly wing),

elements based upon higher-order plate theories may be appropriate.

LaBryer and Attar [88] recently used the geometrically nonlinear VC1 elements

to simulate the nonlinear structural dynamics of a dragonfly with prescribed root

rotations in a vacuum (no aerodynamic loads). Their finite element model, shown in

Figure F.3, contains approximately 103 DOFs. The wing geometry and constitutive

behavior are based on previous experimental work by Bao and his colleagues [169].
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The finite element model in Figure F.3 has a length from root to tip of L = 3 cm

and is divided into three regions: (i) the dark-blue leading edge area, which contains

the strongest longitudinal veins, (ii) the red anal veins area, and (iii) the light-blue

wing membrane area. Regions (i, ii, iii) have thicknesses of (0.135 mm, 0.135 mm,

0.025 mm) and elastic modulii of (60 GPa, 12 GPa, 3.7 GPa), respectively. The true

viscoelastic behavior of the wing is approximated with a viscous damping coefficient

of 0.05, a uniform density of 1200 kg/m3, and a lumped mass matrix. The Poisson

ratio is unknown, and is assumed to be 0.25 [169].

Previous works have modeled the flapping motion of insect wings with so-called

“figure-of-eight” kinematics [170–172]. For the dragonfly wing, we adapt the following

equations developed by Berman and his colleagues [171] to prescribe wing rotations

at the root

φ(t) = φm
sin−1K

sin−1 (K sin (2πft)) (F.14)

θ(t) = θm cos (2πNft+ Φθ) + θ0

η(t) = ηm
tanhC tanh (C sin (2πft+ Φη)) ,

where φ is the upstroke angle, θ is the forward stroke angle, and η is the pitch angle.

Zero root displacements are assumed. All together, there are eleven parameters with

which to prescribe the stroke. The system of equations in (F.14) become the Dirichlet-

type boundary conditions for the root surface in (F.13). Specification of the stroke

parameters can be considered part of the engineering design problem.

The final task is to simulate the fluid dynamics of the air flow. Due to the low

Reynolds number of insect flight (Re < 1000), the air is assumed to be incompressible.

Viscous effects, however, are known to be important [145], and the air should be

treated as a Newtonian fluid according to Section F.2. On the outer surface, the

Dirichlet and Neumann boundary conditions in (F.9) should be specified according
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to the design objectives. To hover, for example, the free stream velocity should be set

to zero. In order to discretize the incompressible Navier-Stokes equations in space, we

suggest a high-order accurate FD scheme. In order to discretize the equations in time,

we suggest the implicit Euler scheme in (2.30) modified for OPSTROM. Simulations

can be carried out with the FDL3DI Navier-Stokes solver [173,174] with the addition

of subgrid-scale models for OPSTROM.
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Nomenclature

Roman

A Wavenumber matrix for the harmonic balance method

A Constant coefficient for the multi-point stochastic estimate

(Ai)nj ith state of A at spatial node j and timestep n

(Ai) Homogeneous (in space and time) constant coefficient

A Linear time-derivative operator

B Linear coefficient for the multi-point stochastic estimate

(Biα)nµjξ ith state of B at spatial node j and timestep n

(Biα)µξ Homogeneous (in space and time) linear coefficient

bF Fluid body forces

bS Structural body forces

C Quadratic coefficient for the multi-point stochastic estimate

(Ciαβ)nµνjξη ith state of C at spatial node j and timestep n

(Ciαβ)µνξη Homogeneous (in space and time) quadratic coefficient

D Time-derivative operator matrix for the HDHB method

E A posteriori errors with components Ei

Ē A posteriori errors for the harmonic amplitudes in Fourier space

Eω A posteriori frequency error

e A priori errors with components ei

F Discrete Fourier transform operator matrix

F−1 Inverse discrete Fourier transform operator matrix
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F(x, t) Transverse loading function for the beam

F External forcing amplitude for the Duffing oscillator and beam

∆F Forcing amplitude increment

f(ũ, τ ) Joint PDF of ũ and τ

f(τ |ũ) Conditional PDF of τ on ũ

f Temporal frequency

G(x, t) Filtering kernel in physical space and time

G(l, k) Filtering kernel in Fourier space

g Gravitational acceleration

I Identity matrix

K Non-Markovian component ofM (projection onto past data)

M(ũ,x, t) Subgrid-scale model

(Mi)nj ith state ofM at spatial node j and timestep n

(Mi) Homogeneous (in space and time) subgrid-scale model

MN Spatial stencil for the subgrid-scale model

MS Number of states for the subgrid-scale model

MT Temporal stencil for the subgrid-scale model

N Noise component ofM (orthogonal to the chosen data)

ND Number of spatial dimensions in a system

NH Number of harmonics

NN Number of spatial nodes

NP Number of peaks in the response

NS Number of states in a system

NT Number of timesteps

nF Outward unit normal vector to the fluid surface

ñF Filtered outward unit normal vector to the fluid surface
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nS Outward unit normal vector to the structural surface

ñS Filtered outward unit normal vector to the structural surface

O(h) Terms on the order of h and higher

P Markovian component ofM (projection onto present data)

p Fluid pressure

p̃ Filtered fluid pressure

Qik Quantity by which moments amongst τi and ũk are normalized

R(u,x, t) Nonlinear system function with components Ri

(Ri)nj ith state of R at spatial node j and timestep n

Re Reynolds number

St Strouhal number

T Forcing period or response period

T Normalized simulation time with respect to the FRS time

tFSI Prescribed tractions on the fluid-structure interface

tN
F Prescribed tractions on the Neumann fluid surface

tN
S Prescribed tractions on the Neumann structural surface

t Time

tn nth timestep

∆t Uniform timestep

(∆t)nj Nonuniform timestep

∆tFRS Timestep for a fully resolved simulation

∆tROM Timestep for a reduced order model

U Characteristic velocity for the Burgers flow

u(x, t) State vector with components ui(xk, t)

ũ Filtered state vector

û Residual state vector
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ū Harmonic amplitudes of u in Fourier space

uFSI Time-dependent displacements on the fluid-structure interface

ũD
S Prescribed displacements on the Dirichlet structural surface

(ui)nj ith state of u at spatial node j and timestep n

u∗4 Transverse velocity of the beam at the midpoint location

u∗5 Transverse displacement of the beam at the midpoint location

v Fluid velocity

ṽ Filtered fluid velocity

vD
F Prescribed velocities on the Dirichlet fluid surface

x Spatial location with components xk

(xk)j Spatial grid coordinates

∆xk Uniform spatial grid parameter

(∆xk)nj Nonuniform spatial grid parameter

∆xFRS
k Spatial grid for a fully resolved simulation

∆xROM
k Spatial grid for a reduced order model

Greek

α(u, ũ,x, t) Subgrid-scale acceleration

αF1,F2 Subgrid-scale accelerations for the fluid

αS Subgrid-scale accelerations for the structure

(αi)nj ith state of α at spatial node j and timestep n

α Nonlinear damping coefficient for the van der Pol oscillator

βD
F Subgrid-scale Dirichlet-type BCs for the fluid

βN
F Subgrid-scale Neumann-type BCs for the fluid

βFSI
F Subgrid-scale BCs for the fluid on the fluid-structure interface
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βD
S Subgrid-scale Dirichlet-type BCs for the structure

βN
S Subgrid-scale Neumann-type BCs for the structure

βFSI
S Subgrid-scale BCs for the structure on the fluid-structure interface

ΓFSI Fluid-structure interface (total wetted area)

ΓD
F Fluid surface subject to Dirichlet-type BCs

ΓN
F Fluid surface subject to Neumann-type BCs

ΓD
S Structural surface subject to Dirichlet-type BCs

ΓN
S Structural surface subject to Neumann-type BCs

γ(u, ũ,x, t) Subgrid-scale force

γF1,F2 Subgrid-scale forces for the fluid

γS Subgrid-scale forces for the structure

(γi)nj ith state of γ at spatial node j and timestep n

δ Infinitesimal separation used to calculate λ

εt Temporal discretization errors

εx Spatial discretization errors

ζ Damping ratio for the Duffing oscillator and beam

η Pitch angle in the “figure-of-eight” flapping wing motion

θ Forward stroke angle in the “figure-of-eight” flapping wing motion

κ Memory kernel for the generalized Langevin description ofM

Λ Slenderness ratio for the beam

λ Lyapunov exponent

µ Dynamic fluid viscosity

ν Kinematic fluid viscosity

ρF Fluid density

ρS Structural density

σF Fluid stress tensor
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‹σF Filtered fluid stress tensor

σS Structural stress tensor‹σS Filtered structural stress tensor

τ (u, ũ,x, t) Subgrid-scale dynamics

τF1,F2 Subgrid-scale dynamics for the fluid

τ S Subgrid-scale dynamics for the structure

(τi)nj ith state of τ at spatial node j and timestep n

φ Subset of ũ onto which τ is projected for the model,M

φ Upstroke angle in the “figure-of-eight” flapping wing motion

Ω Spatial domain in which the system resides

ΩF Spatial domain in which the fluid resides

ΩS Spatial domain in which the structure resides

ω External forcing frequency for the Duffing oscillator and beam

ωp Peak frequency of the backbone curve

∆ω Forcing frequency increment

Symbols

0+ Upper limit of zero

∇ Gradient operator

∇· Divergence operator

∇× Curl operator

∇2 Laplacian operator

× Vector cross product

→ Approaches

: Such that
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∀ For all

∈ An element of

∪ The union of

∩ Intersected with

〈u〉 Mean or expectation of u

〈u|v〉 Mean of u conditional on v

〈u,v〉 Inner product of u and v

‖u‖ L2 norm of u

uT Transpose of u
N∑
i

Summation from i to N

Abbreviations

ALE Arbitrary Lagrangian-Eulerian

BC Boundary condition

BTCS Backward in time, centered in space

CC Clamped-clamped

CF Clamped-free

CFD Computational fluid dynamics

CPU Central processing unit

CSD Computational structural dynamics

DFT Discrete Fourier transform

DNS Direct numerical simulation

DOF(s) Degree(s) of freedom

FD Finite-difference

FE Finite-element
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FRS Fully resolved simulation

FSI Fluid-structure interaction

FSUT Fully-resolved in space and under-resolved in time

FV Finite-volume

HB Harmonic balance

HDHB High dimensional harmonic balance

HMM Heterogeneous multiscale method

HPC High performance computing

IC Initial condition

IE Implicit Euler

LCO Limit cycle oscillation

LES Large-eddy simulation

MAV Micro aerial vehicle

MD Molecular dynamic

NF Not feasible

NMA Normal modal analysis

NP Not possible

NR Newton-Raphson

ODE Ordinary differential equation

OLES Optimal large-eddy simulation

OPSTROM Optimal spatiotemporal reduced order model(ing)

OPSROM Optimal spatial reduced order model(ing)

OPTROM Optimal temporal reduced order model(ing)

PDE Partial differential equation

PDF Probability density function

POD Proper orthogonal decomposition
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QFC Quarter-forcing cycle

RAM Random access memory

RK4 Fourth-order accurate Runge-Kutta

RKCS Runge-Kutta in time, centered in space

RKPM Reproducing kernel method

ROM Reduced order model(ing)

SS Simply supported

USFT Under-resolved in space and fully-resolved in time

USUT Under-resolved in space and under-resolved in time

VC1 Geometrically nonlinear Von Kármán plate elements

VMS Variational multiscale
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