

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

RESOURCE PLANNING WITH EMBEDDED JUST-IN-TIME CHARACTERISTICS

FOR MAKE-TO-ORDER DISCRETE PRODUCTION SYSTEMS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

WASSAMA SANGPLUNG
Norman, Oklahoma

2011

RESOURCE PLANNING WITH EMBEDDED JUST-IN-TIME CHARACTERISTICS
FOR MAKE-TO-ORDER DISCRETE PRODUCTION SYSTEMS

A DISSERTATION APPROVED FOR THE
SCHOOL OF INDUSTRIAL ENGINEERING

BY

 Dr. Scott Moses, Chair

 Dr. Hillel Kumin

 Dr. Hank Grant

 Dr. Suleyman Karabuk

 Dr. Le Gruenwald

© Copyright by WASSAMA SANGPLUNG 2011
All Rights Reserved.

IV

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my advisor,

Dr. Scott Moses, for his excellent guidance, support, patience, and caring during my

doctoral studies. His professional expertise and experiences motivated me to

accomplish my PhD degree. I would also like to thank Dr. Hillel Kumin, Dr. Hank

Grant, Dr. Suleyman Karabuk, and Dr. Le Gruenwald for serving on my dissertation

committee and for their valuable advice.

I would like to thank the School of Industrial Engineering, University of

Oklahoma for granting me a scholarship and giving me an opportunity to be a part of

this prestigious school. I am also thankful to all the staff of the school of industrial

engineering, Amy Piper, Jean Shingledecker, and Cheryl Carney for their always kind

support.

I would like to thank all the friends I made along the way, for making my stay in

Norman so memorable.

Finally, my greatest gratitude goes to my family; my father, my mother, my

brother, and my husband, who have always supported, encouraged, and believed in me.

Without their unconditional love, I would not have been where I am now.

V

Contents

List of Tables .. VIII

List of Figures ... XI

Abstract .. XIII

1 Introduction ... 1

1.1 Overview ... 1

1.1.1 An optimization approach ... 4

1.1.2 A tabu search approach.. 5

1.2 Research objectives ... 5

1.3 Organization of the dissertation .. 6

2 Literature review ... 8

2.1 Introduction ... 8

2.2 Resource planning in make-to-order environments .. 8

2.3 An optimization approach for resource planning .. 11

2.4 A tabu search approach for resource planning .. 18

3 An optimization approach for resource planning .. 24

3.1 Introduction ... 24

3.2 Problem statement ... 26

3.3 Solution initialization concept .. 27

3.3.1 Backward scheduling ... 28

3.3.2 Scheduling an unplanned job ... 30

3.4 Mathematical model.. 30

3.5 Computational experiments .. 36

3.5.1 Experimental parameters ... 36

3.5.2 Experimental design .. 38

VI

3.5.3 Data generation .. 40

3.6 Results and analysis .. 42

3.6.1 Impact of method for solution initialization .. 42

3.6.2 Impact of variability .. 71

3.7 Summary ... 74

4 A tabu search approach for resource planning .. 77

4.1 Introduction ... 77

4.2 Problem statement ... 79

4.3 Mathematical model.. 79

4.4 Tabu search for resource planning .. 82

4.4.1 Solution initialization .. 84

4.4.2 Neighborhood structure ... 84

4.4.3 Tabu list ... 98

4.4.4 Aspiration criteria .. 98

4.4.5 Termination criteria ... 99

4.5 Computational experiments .. 100

4.5.1 Experimental parameters ... 100

4.5.2 Experimental design .. 102

4.6 Results and analysis .. 102

4.6.1 Effects of variability on algorithm performance ... 115

4.6.2 A comparative study of heuristic approaches .. 122

4.7 Summary ... 127

5 A comparative study of the optimization and tabu search approaches 129

5.1 Introduction ... 129

5.2 Computational experiments .. 129

VII

5.3 Results and analysis .. 131

5.4 Summary ... 136

6 Resource planning application ... 137

6.1 Introduction ... 137

6.2 The components of the planning application .. 137

6.2.1 Solution initialization stage ... 138

6.2.2 Overloading improvement algorithm (OIA) stage 140

6.2.3 Makespan improvement algorithm (MIA) stage ... 141

7 Conclusions and suggestions ... 142

7.1 Conclusions ... 142

7.2 Future study .. 145

References ... 146

Appendix A: Java code for the resource planning application 150

Appendix B: An instance of the application running .. 203

VIII

List of Tables

Table 1: Summary of experimental parameters .. 40

Table 2: Example of input data generation ... 42

Table 3: Results for weighted cost 5/15/10/70 and resource utilization [65%, 95%] 43

Table 4: Results for weighted cost 5/15/10/70 and resource utilization [75%, 95%] 44

Table 5: Results for weighted cost 5/15/10/70 and resource utilization [85%, 95%] 45

Table 6: Results for weighted cost 5/15/10/70 and resource utilization [75%, 110%] .. 46

Table 7: Results for weighted cost 5/15/10/70 and resource utilization [55%, 140%] .. 47

Table 8: Results for weighted cost 5/70/10/15 and resource utilization [65%, 95%] 48

Table 9: Results for weighted cost 5/70/10/15 and resource utilization [75%, 95%] 49

Table 10: Results for weighted cost 5/70/10/15 and resource utilization [85%, 95%] .. 50

Table 11: Results for weighted cost 5/70/10/15 and resource utilization [75%, 110%] 51

Table 12: Results for weighted cost 5/70/10/15 and resource utilization [55%, 140%] 52

Table 13: Results for weighted cost 25/25/25/25 and resource utilization [65%, 95%] 53

Table 14: Results for weighted cost 25/25/25/25 and resource utilization [75%, 95%] 54

Table 15: Results for weighted cost 25/25/25/25 and resource utilization [85%, 95%] 55

Table 16: Results for weighted cost 25/25/25/25 and resource utilization [75%, 110%]

 .. 56

Table 17: Results for weighted cost 25/25/25/25 and resource utilization [55%, 140%]

 .. 57

Table 18: Data for the testing instance ... 95

Table 19: Example of NBH point generation ... 96

IX

Table 20: Summary of experimental parameters .. 102

Table 21: Results for number of operations [3, 5] and due date tightness [5] 103

Table 22: Results for number of operations [3, 5] and due date tightness [5, 10] 104

Table 23: Results for number of operations [3, 5] and due date tightness [5, 15] 105

Table 24: Results for number of operations [3, 5] and due date tightness [5, 20] 106

Table 25: Results for number of operations [3, 10] and due date tightness [10] 107

Table 26: Results for number of operations [3, 10] and due date tightness [10, 15] ... 108

Table 27: Results for number of operations [3, 10] and due date tightness [10, 20] ... 109

Table 28: Results for number of operations [3, 10] and due date tightness [10, 25] ... 110

Table 29: Results for number of operations [3, 15] and due date tightness [15] 111

Table 30: Results for number of operations [3, 15] and due date tightness [15, 20] ... 112

Table 31: Results for number of operations [3, 15] and due date tightness [15, 25] ... 113

Table 32: Results for number of operations [3, 15] and due date tightness [15, 30] ... 114

Table 33: Percentage of tardiness improvement in MIA .. 118

Table 34: Total weighted cost comparison results at number of operations [3, 5] 123

Table 35: Total weighted cost comparison results at number of operations [3, 10] 124

Table 36: Total weighted cost comparison results at number of operations [3, 15] 125

Table 37: Summary of experimental parameters .. 130

Table 38: Comparative results for constant number of operation at 3 132

Table 39: Comparative results for constant number of operation at 5 133

Table 40: Java source files for the resource planning application 138

Table 41: Sample input data for the resource planning application 139

Table 42: Summary of functions in OIA .. 140

X

Table 43: Summary of functions in MIA ... 141

XI

List of Figures

Figure 1: Planning framework .. 2

Figure 2: A generic tabu search procedure ... 20

Figure 3: MTO environment .. 27

Figure 4: Loading profile of the backward scheduling example 29

Figure 5: Total cost impact at 5/15/10/70 for; (a) LPST and (b) UP 59

Figure 6: Total cost impact at 5/70/10/15 for; (a) LPST and (b) UP 60

Figure 7: Total cost impact at 25/25/25/25 for; (a) LPST and (b) UP 61

Figure 8: Percentage of early and tardy jobs for; (a) 5/15/10/70, (b) 5/70/10/15, and (c)

25/25/25/25 ... 64

Figure 9: Optimality gap at different objective costs for; (a) 5/15/10/70, (b) 5/70/10/15,

and (c) 25/25/25/25 ... 66

Figure 10: Optimality gap of resource utilization [85%, 95%], weighted cost 5/70/10/15,

and medium process time at due date tightness; (a) 3, (b) (3, 6), (c) (3, 9), and (d) (3,

12) ... 69

Figure 11: Percentage of result difference between LPST and UP 70

Figure 12: Effects of due date tightness at cost ratio 5/70/10/15 72

Figure 13: Effects of resource utilization at different weighted costs 74

Figure 14: Tabu search algorithm procedure .. 83

Figure 15: Pull method results (a) Before: Operation start time = (3, 4, 5); and (b)

After: Operation start time = (2, 3, 5) ... 87

XII

Figure 16: Push method results (a) Before: Operation start time = (1, 2, 3); and (b)

After: Operation start time = (1, 3, 5) ... 88

Figure 17: OIA load graph (a) Ideal initial solution; and (b) The output of OIA 95

Figure 18: Solution for move point (a) {(1, 3)}; and (b) {ф} .. 97

Figure 19: Load graph of the MIA result ... 98

Figure 20: OIA computational times at number of operations; (a) [3, 5], (b) [3, 10], and

(c) [3, 15] .. 116

Figure 21: OIA Computational time comparison ... 117

Figure 22: Percentage of tardiness improvement at number of operations; (a) [3, 5], (b)

[3, 10], and (c) [3, 15] ... 120

Figure 23: Percentage of tardiness improvement at different number of operations ... 121

Figure 24: Heuristic comparisons at number of operations (a) [3, 5]; (b) [3, 10]; and (c)

[3, 15] ... 127

Figure 25: Percentage of improvement at number of operations; (a) 3 and (b) 5 134

Figure 26: Example of customer demand data (salesOrder.txt) 139

Figure 27: Example of routing data (routing.txt) ... 139

XIII

Abstract

Adopting a make-to-order (MTO) production mode allows manufacturers to

accommodate a wider variety of customer requirements without a prohibitive increase

in inventory of finished products. Since MTO production involves a wide variety of

process features, a resource plan is necessary to coordinate production of customer

orders so that resources are used efficiently and customer order due dates are met.

This dissertation develops optimal and heuristic methods that embed

characteristics of the just-in-time (JIT) philosophy to create resource plans for MTO

environments. JIT is a well-known productivity concept in which jobs are attempted to

be started near to and finished on their due dates in order to reduce work in process

(WIP), inventory, lead time, and cost. In the JIT philosophy, an ideal plan for a single

order would have zero queue time, zero earliness, and zero lateness. The methods

remain cognizant of the ideal plan for an order as they make adjustments to the actual

plan for each order that are necessary to accommodate resource constraints.

A new binary integer linear programming (BILP) model is formulated to solve

resource planning problems in MTO environments. The objective function contains

weighted costs for earliness, tardiness, lead time, and subcontractor capacity. The initial

solution is generated using the ideal plan for each order. Extensive computational

results show that this initialization method often reduces computational time such that

the BILP model can reach the optimal solution within an acceptable amount of time

when it otherwise could not.

XIV

Due to the extremely limited scalability of optimal methods, which renders them

inappropriate for most realistic make-to-order environments, a heuristic method

utilizing tabu search is developed to solve resource planning problems. This is a two-

phase algorithm. Like the optimal method, the tabu search algorithm in the first phase

also generates an initial solution using the ideal plan for each order, and it then creates a

finite capacity plan. It furthermore remains cognizant of the ideal plan in the second

phase as it searches for solutions that respect resource constraints but that have good

performance in terms of order earliness, tardiness, and lead time. A benchmark study of

the developed algorithm reveals that the tabu search algorithm provides better solutions

in terms of problem scalability and solution quality than other methods including the

BILP optimization approach and other heuristic approaches such as FIFO or EDD.

1

CHAPTER 1

Introduction

1.1 Overview

In recent years, an intensely competitive market has emphasized the concept of

customer-driven manufacturing which means that manufacturers are required to deal

with more differentiated product features, tight delivery performance and low product

cost. The production environment has shifted from make-to-stock (MTS) to make-to-

order (MTO). MTO production focuses on creating products when the customer orders

are placed. This is why an MTO environment can enhance production performance by

reducing inventory, shortening product lead time and increasing the availability of

customer preferred features. However, this method also involve more complexity in

production management since MTO production processes each job with an individual

routing and it also maintains little or no inventory, thus preventing it from absorbing

any fluctuations.

A challenge of MTO production is how manufacturers can visualize existing

resource capacity and effectively utilize the resources to support customer requirements.

The main constraints of MTO production are not only capacity limitations, but also

various product customization requirements. The combination of a great number of jobs

and various routing types would create unbalanced resource requirements at different

times. This situation could induce a severe capacity shortage problem.

2

Capacity planning is an important tool for production management and

improvement. Efficient capacity planning can make production run smoothly and more

easily detect certain production problems, such as capacity shortage and product

delayed shipment, at an earlier stage. Planning can be categorized into the following

three levels based on its function and focused activity: strategic planning, tactical

planning, and operational planning. A framework of the position of each planning type

(Giebels et al. 2000) can be seen in Figure 1.

Figure 1: Planning framework

This dissertation emphasizes role of capacity planning at the tactical level, such

as resource planning. A tactical plan, unlike a strategic plan or an operational plan,

concerns the status of the available capacity of resources in a production system. It

typically determines capacity availability and allocates sufficient resources to respond

to customer orders as optimally and profitably as possible.

Maximizing profitability is the most desired objective in manufacturing. To

achieve the goal, manufacturers must consistently produce high quality products with

Technological
Planning

Company
management

Production
planning

Strategic

Tactical
Order acceptance

Macro process
planning

Resource
planning

Operational
Micro process

planning
Scheduling

Aggregate capacity planning

3

low unit costs, and high service levels such as on-time order promising (Revelle 2001).

An appropriate resource plan can establish the feasibility and suitability of a set of

customer orders which significantly affects manufacturing efficiency and respects to a

manufacturer’s profitability (Hans 2001).

MTO resource planning is considered as a job shop planning problem. To

generate a resource plan, two solving methods, which are an optimization and heuristic

approaches, are typically used. The optimization modeling approach is a conventional

method that aims to find an optimal solution. The optimization algorithm is successfully

applied to solve small problem instances. However, it could not solve large problem

instances within a limited time frame. Problem scalability and variability are the key

factors that increase problem difficulty and limit solver performance. The optimizer will

require more computational time to reach an optimal solution or even a good feasible

solution. This is because a job shop planning problem is among the hardest

combinatorial optimization problems or NP-hard problems. It means that an optimal

solution cannot be executed within the polynomial computational time when a problem

is complicated.

Approximation algorithms or heuristic approaches are alternative methods

which are widely used in solving planning problems since they are able to provide a

near optimal solution with reasonable computational time. Tabu search is introduced to

develop an ideal schedule of resource planning since, compared with other heuristic

methods, can provide near-optimal solutions that are among the most effective tackling

difficult problems (Gendreau 2002).

4

In manufacturing, many approaches and algorithms from a number of

researchers have been proposed to enhance system performance. One of the most

effective productivity concepts is just-in-time (JIT) philosophy. The JIT concept is

widely used as a basic idea in productivity improvement; its core idea is to produce jobs

at the right times and places. Applying JIT to resource planning can create a resource

plan as similar as an ideal plan in which jobs attempt to be processed and finished on

their due date in order to reduce work in process (WIP), finished goods inventory, job

lead times and production cost.

JIT philosophy is adapted to develop these two solving methods, the

optimization and heuristic approaches, to increase planning performance as well as an

ability to deal with variability in the system. A basic means of applying this ideal

concept to each of the solving methods is described below.

1.1.1 An optimization approach

In a generic integer linear programming model, a branch and bound algorithm is

used to find an optimal solution. The main procedure of the algorithm is to explore a

tree of continuous relaxations of the original mathematical model. Danna et al. (2004)

stated that the system is particularly effective when the continuous relaxation of the

problem is a good approximation of the convex hull of the feasible solution. This

statement also aligns with the suggestion of Tanaka et al. (2003), Rabadi et al. (2004),

and Fischetti et al. (2005) that an effective initial solution helps a solver reach a solution

faster. Thus, a solution initialization approach is developed for tuning optimizer

performance. A new proposed algorithm adapts the ideal concept of JIT planning to

5

generate initial solutions. It is expected that an ideal initial solution can guide an

optimizer to better solution spaces and reach an optimal solution more efficiently.

1.1.2 A tabu search approach

Tabu search is a meta-heuristic method that uses non-randomness to search the

directions and creates short-term memory to prevent search cycling (Glover 1986). The

neighborhood structure is a main element of tabu search which directly affects the

efficiency of new solutions. This is because it is used to design solution spaces and seek

efficient solutions. With JIT philosophy, a new local search algorithm is formulated to

find feasible solutions that come as close as possible to being ideal. Also, a new

parameter which defines the distance between a current solution and an ideal solution is

determined in order to narrow the search and guide the search direction toward a desired

solution.

1.2 Research objectives

The objectives of this research are summarized as follows.

(1) Develop a new binary integer linear programming (BILP) model to represent

resource planning problems. The model is formulated to find an optimal resource

plan that satisfies multiple quality criteria such as earliness, tardiness, and lead time.

To consider all criteria and solve them simultaneously, a weighted cost approach is

implemented into the objective function. An effective initial solution based on the

JIT concept is implemented for initializing numerical computation in order to

improve optimizer performance. An analysis of the solution’s performance is

presented in terms of how an effective initial solution enhances planning capability.

6

(2) Develop a tabu search heuristic approach to solve resource planning problems. A

new local search algorithm embedded the JIT concept is developed to determine

resource plans that are as close as possible to customer due dates in order to

minimize earliness, tardiness, and lead time. An investigation of algorithm

performance is emphasized to define the ability to solve combinatorial problems.

(3) Investigate and gain insight into the impact of variability on planning performance

of both the optimization and tabu search approaches in terms of solution quality

such as computational time and optimality gap.

1.3 Organization of the dissertation

 This dissertation is organized as follows. Chapter 2 reviews the related literature

on generic planning in MTO environments, the optimization and tabu search approaches

to solving generic capacity planning problems and specific planning problems like

resource planning.

 Chapter 3 presents a new binary integer linear programming (BILP) model to

represent resource planning problems. Rather than starting the calculation from scratch

or choosing random solutions, an efficient solution initialization concept is introduced

to guide an optimizer toward the desired solutions. An investigation of the performance

of planning results with different combinatorial problems is examined.

Chapter 4 presents a new tabu search algorithm to solve resource planning

problems. The proposed algorithm is created with the JIT concept in which a resource

plan aims to improve a solution from earliness, tardiness, and lead time. An

experimental study is conducted to investigate the algorithm’s performance at different

7

testing problems. Furthermore, a benchmark study of the proposed algorithm and other

heuristic methods is also examined.

Chapter 5 performs a comparative study of the tabu search algorithm and the

optimization approach. The experiments investigate the effects of the scalability and

planning performance of these two solving methods. An analysis is then performed in

order to define the most effective approach.

Chapter 6 presents a new resource planning application which is developed by

using the Java language. The details of this application, such as the component list and

the function of each component, are presented.

Chapter 7 discusses the conclusions of this dissertation and makes suggestions

for future studies.

8

CHAPTER 2

Literature review

2.1 Introduction

In this chapter, the relevant literatures of tactical planning in discrete time

environments are reviewed. The scope of the study consists of generic resource

planning in MTO environments, an optimization approach and a tabu search approach

for resource planning.

2.2 Resource planning in make-to-order environments

A basic concept of MTO systems is to process jobs when they are required. It

differs from make-to-stock (MTS) production in that MTS will early produce orders and

store them as inventory. Even though MTS production has an advantage in fast response

of customer requirements, it has many disadvantages such as stocking inventory,

increasing product lead time, and reflecting a higher total cost. Moreover, it has

constraints on supporting a wider variety of product features. Manufacturing hence has

been shifted to MTO production.

Capacity planning for MTO can be categorized into three levels which are

strategic planning, tactical level planning, and operational planning. The planning

position framework can be seen in Figure 1. Strategic planning is a plan which defines

the direction of manufacturers made by management level. It is a long range plan which

focuses on resources, such as capital and people, and aligns to business strategies. In

tactical planning level, a plan aims to create resource assignment to support customer

9

demands from strategic planning with respect to their due dates. Certain levels of

capacity adjustment, such as using alternative resources and working overtime, are

allowed in this planning level. Operational planning is a short term planning which

presents operating schedule of customer orders by details such as start date and time by

operations of each order. The great explanation of distinction among these three

planning types can be seen in Hans (2001).

Resource planning is considered as a tactical planning strategy which is located

between strategic planning and operational planning. An improvement of tactical

planning is necessary. This is because a feasibility and suitability of a tactical plan in

resource assignment positively maintains production smoothing and customer order

promising. However, there has not been much research on an improvement of tactical

planning. Much attention has been paid to research improvement of strategic planning

and operational planning since strategic planning directly involves business goal and

profitability and operational planning concerns a detailed task plan with respect to

production outputs.

The relevant research is addressed by Hans (2001). He proposed two solving

methods, which are the deterministic modeling approach and various heuristic methods,

for generating resource plan in tactical planning problems. In an optimization approach,

the MILP model was developed to find an optimal resource plan which provided

reliable due date and minimizes total cost from subcontracting capacity and tardiness

penalty. The optimization model provided an order plan which indicated periods of

tasks of each order. However since there are exponentially many feasible orders, the

model was difficult to obtain an optimal solution within a reasonable time. The heuristic

10

methods, such as stand-alone heuristic, rounding heuristic, and improvement heuristic,

was implemented to solve resource loading problems with the branch and price

algorithms.

Regarding resource planning, it appears that several solving methods have been

developed to create an efficient resource plan. The general purpose of planning is to

optimally manage existing resources and provide sufficient capacity to ensure meeting

customer requirements as well as maintain manufacturing efficiency. Various

alternatives to increase capacity, such as increasing lead time of some customer orders,

expanding operator capacity, and using subcontracting capacity, are considered to

smooth production from variability. Wullink et al. (2004a) applied the flexible resource

loading under uncertainty approach from Hans (2001) to solve the robust resources

loading problems. They used subcontractor capacity as capacity flexibility to deal with

uncertainty activities in the production system. Two multi-objective optimization

approaches was developed a robust resource plan which trade-off between the costs for

using nonregular capacity and the robustness of a plan.

Wullink et al. (2004b) presented the mixed integer linear programming (MILP)

model to quote reliable due dates for robust resource planning in manufacturer-to-order

production system. Their scenario-based solution approach aimed to manage resource

capacity when involved a wide range of variability types such as work content, capacity

availability, resource requirement, and activity occurrence. A planning investigation

was paid attention to a trade-off between the expected delivery performance, such as

tardiness, and the expected costs of using non-regular capacity.

11

Although the previous studies have developed the computational models to

solve resource planning problems and used the alternative methods to increase the

robustness of an optimization modeling approach, the previous research has been

particularly attempted to minimize either subcontracting cost or tardiness cost.

Limitation of concerned objectives in solving methods could drop quality of resource

planning since it ignores other performance criteria.

According to planning performance directly reflects manufacturing efficiency

which respects to maximizing profitability, several improvement concepts have been

proposed to increase a quality of planning. In recent years, significant emphasis has

been placed on Just-in-time (JIT) philosophy. JIT has been described as improvement

strategy with the objective of producing the right product at the right time. Adapting JIT

into planning, customer orders attempt to be processed and finished exactly on their due

date to reduce work in process (WIP), inventory, and production costs (Baker and

Scudder 1990). Hence, to obtain an efficient resource plan, an integration of multiple

objectives should represent an improvement in all facets like the JIT concept. For

instance, a resource plan with embedded JIT not only aims to generate a feasible set of

operation times of jobs but it also need to improve production performance in terms of

job earliness, tardiness, lead time, WIP, inventory, and other operating costs such as

alternative capacities.

2.3 An optimization approach for resource planning

Resource planning problems of MTO production is considered as a job shop

planning problem. An integer linear programming (ILP) model has been widely used to

represent the problems. ILP is the minimization or maximization of a linear function

12

subject to linear equality and inequality constraints. With n variables and m constraints,

the ILP model can be expressed as the form below;

 minimize cT x

 subject to Ax <= b

 l i <= xi <= ui for i = 1 ... n

 xi integer for all i in D which is a subset of {1 ... n},

 where A is a m x n matrix

When all unknown variables are binary (0 and 1), it is called binary integer

linear programming (BILP). The binary variables present the accepted or rejected

situations. For instance, if an event occurs, the variable is 1. Otherwise, the variable is

0. Meanwhile, when some or all of the variables are integer values, the model is known

as mixed integer linear programming (MILP).

NP-hard or nondeterministic polynomial-time hard is a class of problems in

which it is not provably NP and at least as hard as the hardest problems in NP. It means

that it requires exponential time or even worse to solve a solution. From Fisher et al.

(1983), it is clear that resource planning problem is NP-hard since the problem instances

of this research involve with 3 or more machines and number of operations per job.

In an ILP model, there are several methods to enhance an ability of optimizer to

determine a great solution. This research focuses an improvement in three areas as

follows:

(1) Branch and bound improvement

(2) Constraint relaxation

(3) Solution initialization

13

(1) Branch and bound improvement

The ILP model is a mathematical optimization technique that aims to determine

an optimal solution. The problem is considered to be solved when an optimum is found.

Complicated problems, such as high variability of input data and a large number of

variables, will deter solver performance and result in longer computational time. Many

authors have developed and applied various strategies to improve an ability of ILP

model for solving a planning problem. In ILP problems, a branch and bound algorithm

is typically used to solve an optimal solution. Its procedure consists of three main

elements: initialization, branching, and bounding (Clausen 1999). The algorithm uses a

dynamically constructed tree structure to represent solution spaces. The search starts at

a root node or an initial solution. The branching operation then determines the next set

of possible nodes from which the search could progress. The bounding procedure

selects the operation which will continue the search and is based on an estimated lower

bound (LB) and the currently best achieved or upper bound (UB) solution (Jain and

Meeran 1999).

 Branch and bound algorithm has been developed so far to enhance solution

performance. Fisher (1973) applied Lagrangian Relaxation (LR) to tighten lower bound

in branch and bound algorithm. Potts (1980) and Carlier (1982) proposed the techniques

to tight bounds of the single machine problem. They found that the strongest bound was

obtained from the makespan of the bottleneck resource. Fisher et al. (1983) proposed

surrogate duality relaxation by assigning a weighted linear combination to certain

constraints to yield strong lower bound. Sourd and Kedad-Sidhoum (2003) focused on

producing a good lower bound which was determined based on the decomposition of

14

the tasks into single execution time operations to obtain good feasible schedules and

efficient branching rules. All the past research emphasizes tightening bounds to reduce

search space for obtaining an optimal solution.

 Currently, a MILP improvement focuses on an integration of branch and bound

and local search which provides more promising solutions than the previous research.

Fischetti and Lodi (2003) proposed local branching strategy for exploring an explicit

neighborhood of a MILP solution. They developed the proposed method based on three

main procedures of local search which are defining a neighborhood, searching the

neighborhood, and performing diversification. The concept of this solution strategy is

exploring neighborhoods by means of a black box general purpose MIP solver, thus

exploiting the level of complexity by the MIP solvers. The method efficiently solves a

complicated MIP problem. However, the disadvantage of this method mentioned by

Danna et al. (2004) is an increasing cost of each node from accumulative dense reverse

neighborhood constraints.

Danna et al. (2004) applied some ideas of Fischetti and Lodi (2003) and

developed a new technique which was the relaxation induced neighborhood search

(RINS) for improving MILP neighborhood search. They proved that the RINS

performed better than the local branching method from Fischetti and Lodi (2003). The

proposed method can provide the good solutions within limited times and it also

improved a given solution which was either good or poor quality. This is because the

RINS explores a neighborhood of both the incumbent and the continuous relaxation.

Furthermore, this method is convenient to implement in MILP solving since it has been

embedded as a tool in the commercial solver package ILOG CPLEX, MILP solver.

15

Thus to enhance branch and bound performance, the RINS method is applied to solve

the resource planning model of this research.

(2) Constraint relaxation

 Constraint relaxation is necessary to reduce model complexity. The relaxation

will modify some attributes of the relationship defined by a constraint. As the term

“relaxation” implies, the modification allows a wider range of relationships. Once a

constraint is relaxed, the problem is altered because a relationship that was not allowed

in the original problem is now acceptable (Beck 1994). Relaxing problem constraints

can reduce some difficulty and enhance an optimizer capability to find an optimal

solution. In ILP, relaxing a constraint means increasing the right-hand side for a ≤

constraint and decreasing the right-hand side for a ≥ constraint (Heyl 2010).

 There are many ways to relax constraints in production system. Miyashita

(1997) discussed the suggestion about problem adjustment when the solution cannot be

solved with a reasonable time in multi-agent distributed scheduling problems. He

addressed that some constraints should be relaxed to allow some flexibility in

modifying local schedules among agents in order to obtain a feasible job shop plan. The

relaxed samples are expanding lead time of jobs, increasing capacity of resources (over

time), canceling jobs, subcontracting jobs to other planner agents, and subcontracting

some operations to other scheduler agents.

Subcontracting capacity is widely used as flexibility in capacity planning

problems. Kamien and Li (1990) proposed the process of distributing capacity load

between subcontracting firms and subcontractors and proposed production planning

16

model to achieve production smoothing. Frederix (2000) improved the make-or-buy

decision process between using its own capacity and subcontracted facilities to solve

resource constraints. Bertrand and Sridharan (2001) used subcontractor in a make-to-

order manufacturing system to minimizing tardy deliveries and maximize delivery

reliability.

It obviously sees that subcontracting capacity can make some improvement in

various production level instances since it can relax a capacity constraint and absorb

variability. However this alternative capacity is expensive. A trade-off between a

capacity gain and an increasing production cost needs to be emphasized.

Merzifonluoglu et al. (2006) proposed the profit-maximizing production planning

model for determining optimal plan and internal production capacity levels of

subcontracting and overtime capacities. Bertrand and Sridharan (2001) developed

heuristic decision rules for determining when and which orders should be subcontracted

in a make-to-order manufacturing system to minimize total cost while minimizing tardy

deliveries and maximize delivery reliability.

From the point of view of the above research, subcontracting capacity is applied

into the deterministic tactical planning model of this research as capacity constraint

relaxation. To generate an efficient resource plan, a trade-off of cost and additional

capacity will be investigated.

(3) Solution initialization

An effective initial solution is also an important feature which can improve

performance of ILP models. It is well known that performance of branch and bound

17

algorithm relies on the quality of the implemented upper bound. A good approximation

of initial solution, which is served as an upper bound, potentially explores the solution

faster and obtains an effective optimal solution since it can speed up the search from

guiding solutions to the good paths (Danna et al. 2004)

Various algorithms such as dispatching rules and individual algorithms have

been created to initialize a solution. Tanaka et al. (2003) proposed the earliest due date

(EDD) sequence rule and the adjacent pairwise interchange (API) heuristic for

initializing the solution in the single-machine earliness-tardiness scheduling problem.

Zribi et al. (2008) applied the dispatching rules, assignments, earliest due date (EDD),

earliest operation due date (EOD), modified due date (MDD), and modified operation

due date (MOD), for initializing an algorithm of tabu search to minimize total tardiness

in the flexible job shop problem.

Corry and Kozan (2004) investigated several initial solutions settings, which are

earliest due date (EDD), first in first out (FIFO), critical ratio rule (CR), and least slack

remaining (SL), for the constraint job shop scheduling problems. They studied the

algorithm performance when those initial solutions were applied to the meta-heuristic

approaches, tabu search and simulated annealing. The results proved that a good initial

solution dramatically reduced the computational times to solve the minimizing problem

of total tardiness in the system.

Regarding solution initialization method, an individual algorithm on particular

theories or objectives is another approach to improve an ILP model. Rabadi et al. (2004)

applied the shortest adjusted processing time (SAPT) heuristic for starting their initial

18

solution in the machine scheduling problem. Branch and bound was used to search an

optimal job sequence. The results shown that jobs with shorter adjusted processing

times tend to be scheduled closer to the median position of the schedule and those with

longer adjusted processing times were far from the median position.

Fischetti et al. (2005) introduced the scheme called Feasibility Pump (FP) to

find a feasible solution for a generic MILP problem. Their approach started the problem

with an almost feasible solution. The numerical results presented that FP outperformed

ILOG CPLEX in most of the cases on the capability to determine the first feasible

solution.

In the previous literatures, most authors mentioned that using a good initial

solution substantially reduced the amount of computational time and improved the

quality of solutions. In addition, it appears that an efficient solution, which provides the

closer solution to an optimal solution, will provide better and more robust performance

in solving problem instances than just applying a random solution or basic dispatching

rules. An initial solution algorithm based on the JIT concept is therefore adapted to

improve an optimization model to generate a resource plan which has good earliness,

tardiness, and lead time

2.4 A tabu search approach for resource planning

An optimization algorithm successfully provides optimal solutions in small

instance problems. Even though there are many reinforcement algorithms to improve an

optimizer performance, the main drawback of optimization method is time-consuming

when it deals with complicated problems. Also, job shop scheduling problems are

19

considered NP-hard problems which mean the computational effort grows exponentially

with the increment of the problem size (Lawler et al. 1989). To determine an optimal

solution, the optimization algorithm may not be an effective method to provide a

solution within a reasonable time.

On the other hand, heuristic algorithms, which include priority dispatch rules

(He et al. 1993), shifting bottleneck approach (Balas and Vazacopoulos 1998), meta-

heuristic methods, and so on, have been developed and widely adapted since they can

provide a near optimal solution within a relatively short computational period. In recent

years, many meta-heuristic algorithms have been proposed for job shop planning, such

as simulated annealing (Li and Mcmahon 2007), Tabu search (Taillard 1989, Nowicki

and Smutnicki 1996), genetic algorithm (Zhang et al. 2008), ant colony optimization

(Eswaramurthy and Tamilarasi 2009) and particle swarm optimization (Guoa et al.

2009). A greater overview of local search algorithms can be seen from Vaessens et al.

(1996) and Jain and Meeran (1999).

Among different heuristic approaches, tabu search is widely recognized as an

appropriate and efficient approach. Tabu search has been initially developed by Glover

(1986). This method is an enhancement of well-known hill climbing heuristic, which

uses a memory function to avoid being trapped at a local minimum. The general

procedure of tabu search (Dell’ Amico 1993) is presented in Figure 2. Let S denote a set

of feasible solutions. The main procedure of tabu search starts from creating an initial

solution independently and then using local search algorithm to define a set of

neighborhood solutions N(s) which each solution s � S. A solution will be moved from

the current solution to the best solution s* in N(s) when it satisfies the aspiration criteria

20

such as the minimum cost function c(s) and the attribute of the selected best solution is

not forbidden. To prevent solution cycling and guide the search to unexplored solution

regions, the attributes of solutions between the previous solution and new solution will

be stored in the memory, which is called tabu list. If the attribute of the new solution

match with information in the tabu list, the best solution of the system s* would be

remained until found new best solution which satisfies the aspiration criteria and does

not belong to the tabu list. The neighborhood search will be repeated until the stopping

criteria are true.

begin
(find an initial feasible solution s);
best := c(s);
s* := s;
Tabu_list := �;
repeat

Cand(s) := {s' � N(s): the move from s to s' does not belong to
 Tabu_list or it satisfies an aspiration criterion};

(choose �� � Cand(s) : �� has the minimum estimation of the cost
function);
(put a move which leads from �� to s in Tabu_list);
s := ��;
if c(s) < best then
begin

s* : = s;
best := c(s)

end
until stopping_criteria = TRUE;
return s*

end

Figure 2: A generic tabu search procedure

Tabu search has been successfully applied to a large number of combinatorial

optimization problems, especially in production scheduling domains. In job shop

planning, Taillard (1989) has initially and successfully used tabu search to solve the job

21

shop scheduling problem. So far, numerous algorithms have been proposed and

developed (Dell’Amico and Trubian 1993, Barnes and Chambers 1995, Nowicki and

Smutnicki 1996, Armentano and Scrich 2000, and Zhang et al. 2007).

The implementation of tabu search is problem-oriented in that it needs to be

defined in the individual elements such as initial solution, moving scheme,

neighborhood searching strategy, tabu list, and aspiration criteria (Nowicki and

Smutnicki 1996). A neighborhood searching strategy is a significant procedure since an

efficient algorithm is able to guide tabu search to reach a feasible solution faster and

more efficiency. Taillard (1989) generated the neighborhoods from moving the pairs of

successive operations on the critical path. Dell’Amico and Trubian (1993) developed

two neighborhood structures from Van Laarhoven et al. (1992). Nowicki and Smutnicki

(1996) developed Taillard’s algorithm by considering the move only at the first and the

last two blocks of single critical path. Armentano and Scrich (2000) presented the tabu

search approach to minimize total tardiness for the job shop scheduling problem. The

method used dispatching rules to obtain an initial solution and the neighborhoods are

created based on the critical path of the jobs. From that previous research, all research

has been focused to generate neighborhoods by selecting possible moves on critical path

in order to minimize tardiness and makespan.

According to the JIT concept, it can be seen that improving only tardiness or

makespan might not be an optimal way to improve production system. On the other

hand, it might create either more WIP or inventory when jobs avoid lateness by

finishing early. From this point of view, resource plans need to be developed based on

22

JIT. This means that jobs will be executed on their due date or closely to the due date as

possible in order to minimize both tardiness and earliness.

The most relevant works that involve the neighborhood structure with the JIT

concept are discussed as follows. He et al. (1993) proposed the improvement method in

job shop planning which attempted to move backward and forward in some specific

operations of tardy jobs in order to reduce total tardiness. Their proposed algorithms,

the right shift move and the left shift move, successfully improved the tardiness. Even

though the algorithm was created based on JIT, an improvement considered only the

tardiness problem and ignored other factors such as earliness and lead time. This

situation can create longer job lead time or greater number of WIP.

James (1997) presented the tabu search approach to minimize total tardiness for

the job shop scheduling problem. His scheme applied the random candidate selection

procedure to generate neighborhoods and then used the early and tardy based approach

to narrow the candidates down further. This research mainly solved common due date

problems in which all jobs are due on the same date.

Imanipour and Zegordi (2006) developed the tabu search with backward

scheduling in flexible job shop (FJS) problem. Rather than routing is known and fixed,

FJS planning is involved with varied routings, which each operation of jobs can be

processed on alternative available machines. Their objective was to define the best

routing of each job which minimized total weighted tardiness and earliness. The

backward algorithm was used to determine the start time of each operation of jobs in

operational planning. In spite of the algorithm focused to process the jobs close to the

23

due dates, they ignored the limitation of due date tightness. Disregarding of lead time to

process each job can cause an infeasible plan.

Zhu et al. (2010) proposed a modified a tabu search method in the job shop

planning problems with concerned JIT environment. To improve a solution based on the

JIT philosophy, they started the algorithms from developing an initial schedule which

was generated by an arbitrarily selected dispatching rule. Their proposed neighborhood

structure performed the forward and backward moves with the feasibility and lower

bound checks to reduce computational effort and create feasible operational plan. This

research restricted to solve the problems with common number of operations per job to

minimized three costs of WIP holding cost, earliness cost, and tardiness cost.

Despite some progress gained by applying JIT concept, there are still a few

researches which expand this ideal concept to the complex job shop problems such as

multiple machines, uncommon due date, and uncommon number of operations. These

variabilities reflect more complicated problem. Under these circumstances, this research

proposes a tabu search approach which adapts the JIT concept to the main elements of

algorithms including initial solution and neighborhood structures. A resource plan at the

tactical level aims to create with an efficient performance of earliness, tardiness, and

lead time.

24

CHAPTER 3

An optimization approach for resource planning

3.1 Introduction

This chapter presents an optimization model to study resource planning in make-

to-order (MTO) environments. With characteristics of the MTO system, jobs arrive the

system with different periods of time and they are also attempted to be processed on

different routings. This situation creates unbalanced resource requirement which may

cause capacity shortage problem in certain periods. To visualize the production system

and efficiently manage existing resources, resource planning is essentially used to

obtain an appropriated schedule that accommodates time to utilize the available

resources based on customer demands. Customer demands generally need to be satisfied

with short lead time and low production cost. In manufacturing, certain production

constraints and variabilities, such as demand fluctuation, resource availability, process

customization, etc., reflect increasing difficulties of resource planning. To generate an

efficient resource plan, a binary integer linear programming (BILP) model is therefore

proposed to represent the system. The model is formulated to find an optimal resource

plan that satisfies multiple criteria such as minimizing tardiness and earliness,

minimizing job lead time, and maximizing resource utilization. To consider all criteria

and solve them simultaneously, a weighted cost approach is applied into the objective

function in which our primary goal is minimizing total weighed cost. In the

optimization model, which involves some variability such as due date tightness,

resource availability, and routing variation, an additional capacity is applied as system

25

flexibility to smooth a production system. This alternative capacity is assumed as a

relaxing capacity constraint since regular capacity is restricted.

Even though the optimization approach can provide an optimal solution, a NP-

hard problem like a job shop planning problem exponentially increases computational

time to reach an optimal solution or a feasible solution, especially when dealing with

problem scalability and variability. In a BILP problem, a branch and bound algorithm is

used to find an optimal solution. The basic concept of this algorithm is to explore a tree

of continuous relaxations of the original BILP model. To increase an optimizer

performance, one of the effective techniques is starting the calculation with a good

approximate solution. This aligns with the suggestion from the research of Tanaka et al.

(2003), Danna et al. (2004), Rabadi et al. (2004), and Fischetti et al. (2005) in which

they stated that an effective initial solution can help the solver reach a solution faster.

To improve the quality of planning for dealing with variability, this study

focuses on two topics. The first topic is to propose an efficient solution initialization

approach for tuning an optimizer performance. To generate a resource plan which is

similar to an ideal plan, a just-in-time (JIT) concept is applied for initializing a solution.

The idea of JIT is to process and finish jobs on their due dates in order to reduce WIP,

inventory, and lead time. This first study aims to investigate the performance of an

effective initial solution whether it can provide a better solution quality in terms of

objective value, earliness, tardiness, and optimality gap.

The second topic is to study an impact of planning results under variability from

job release date, job due date, resource utilization, process time, and penalty cost in

26

individual area. The BILP model is used to determine the optimal resource plan that

satisfies the customer requirements as well as minimizing total cost. Although the

additional capacity is used to smooth production system, a higher operating cost from

using these capacities affects increasing total cost of the system also. Hence, a trade-off

between solution quality and additional cost is an interesting topic to be investigated.

An effective plan would be generated by considering all objectives to ensure

profitability whether using its own or additional resources.

This chapter is organized as follows. Section 3.2 describes the scope of an

interesting problem. Section 3.3 concentrates on the methods of solution initialization.

Section 3.4 presents the mathematical model for resource planning in MTO

environments. Section 3.5 presents the details of experimental parameters and

experimental design. Section 3.6 discusses the results of the resource planning which

consist of the optimization improvement based on solution initialization and the effect

of variability on production system. Finally, section 3.7 draws the conclusion of this

study.

3.2 Problem statement

A resource planning problem is considered as job shop planning under restricted

resource availability. The overview of an interesting production system in this research

is shown in Figure 3. This job shop system consists of a set of H independent machine

groups. In the system, job i needed to be processed on j operations. Each job can be

processed on different routings and each operation must be executed on one machine at

any instance of time without preemption. An arrival time of job is uniform distribution.

Process time for each operation internally is known upon its arrival. Different

27

processing times in different jobs and operations are allowed in the model. Due to a

discrete time concept, a planning horizon is cut into intervals called time buckets. Each

time bucket consists of three types of capacities which are a current capacity of the

existing resources, an additional capacity from subcontractor, and an additional capacity

from extra resources. When the current capacity insufficiently supports customer

requirements, the additional capacity from subcontracting and extra resources will be

used to cover the excess demands with a high operating cost.

Figure 3: MTO environment

3.3 Solution initialization concept

A complicated problem from data variability, problem size, and model

complexity could drop performance of an optimizer to find a solution in terms of

28

computational time or optimality gap. To enhance its capability, a good approximation

of feasible solutions is proposed to start branch and bound approach and to efficiently

guide to an optimal solution. In this research, two different settings of initial solution

are proposed. The first algorithm generates a first feasible solution which is close to an

ideal solution in which jobs are required to finish as close as possible to their due dates.

A backward scheduling method is applied to project the solution which is close to

optimal planning. Even though this plan creates an ideal resource plan, the limitation of

capacity will cause overloaded capacities in certain resources. These excess capacities

will be covered with additional resources at highly charged cost. Thus, the solution

needs to be improved for obtaining a better resource plan with lower total cost. The

second algorithm is used as a benchmark method. This method will assign the first

solution that is far from the optimal solution by assuming all jobs are unplanned.

Although the initial solution from an unplanned job method is all zero, it might be

easier if the optimizer will repair the solution. The details of each method are described

as follows.

3.3.1 Backward scheduling

In order to create a solution close to an ideal plan, a backward scheduling, or a

latest possible start time concept (LPST), is used. This sequence begins by loading the

last operation of a job to finish by its due date. It then continues by loading the

preceding operation of the job to finish at the start time of the next operation. This

process is continued, working backward in time, until the first operation of the job is

loaded. An advantage of backward algorithm is that a schedule can be generated with

no tardiness and earliness. Also, this method can reduce inventory, WIP and job lead

29

time. To initialize a solution, resource constraint relaxation is assigned by assuming

ideal resource capacity. This means that resource can support as many jobs as possible

without capacity restriction. This situation will create an overloaded capacity of the

existing resources. Total loading in some periods might fall in the usage area of the

additional capacities from subcontractor and extra resources. It is assumed that the cost

of extra resources capacity is much more expensive than the cost of subcontracting

capacity. Therefore, for additional capacity utilization, subcontracting capacity will be

considered to use firstly then extra resource capacity.

Figure 4: Loading profile of the backward scheduling example

Although the initial solution from the LPST can provide an efficient solution

that all jobs can be finished by their due dates, using the additional capacity

dramatically increased total cost of the system. To trade off the additional capacity and

the operating cost, the optimizer will reassign an operation start time of each operation

of each job (Xijk) to minimize the total cost.

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Order 4 Extra resources capacity
Order 4 /Opn 2

Order 5 /Opn 1
/Opn 3 Order 1

Order 1 /Opn 3 Order 4
/Opn 2 /Opn 3 Subcontracting capacity

Order 5
/Opn 2

Order 1 Order 2
/Opn 1 /Opn 1 Order 2 Order 2
Order 3 /Opn 2 /Opn 3

Order 3 /Opn 2 Order 3
Order 5 /Opn 1 /Opn 3
/Opn 1

Regular capacity

1 2 3 4 5 6 7 8 9 10 Time bucket

30

For a clearer view, an instance of backward scheduling will be presented. There

are 5 jobs needed to be processed in the shop floor. Job list is (3, 2, 1, 5, 4) and due date

is (7, 10, 8, 6, 9). Each job requires three identical operations. Jobs will be loaded to the

system based on the job list. In this case, job 3 will be the first load. Since job 3 has due

date at the beginning of period 7, the last operation (operation 3) should be processed

and finished within period 6, and then calculate backward for the rest of operations.

Thus, the times of operation 2 and 1 will be period 5 and 4, respectively. Figure 4

illustrates the loading profile of five jobs and the initial solution for this case is ((4,5,6),

(7,8,9), (5,6,7), (3,4,5), (6,7,8)).

3.3.2 Scheduling an unplanned job

This method assumes that no jobs are processed in a planning horizon.

Therefore, all operation start times of each operation of each job (Xijk) in the

initialization stage are assigned to be zero. Another cost function called an unplanned

job cost is newly generated to use in the model. This cost will be charged a job that is

not planned in the planning horizon. The initial solution for this case would have a very

high total cost from penalty of unplanned jobs. According to the proposed initial

solution is far from an optimal solution, an optimizer attempts to minimize total cost by

reducing the unplanned jobs and assigning a better resource plan.

3.4 Mathematical model

The notation of all parameters in the optimization model is denoted as follows:

Pij = Process time of operation j of job i

Rij = Routing: index of resource that performs operation j of job i

Si = Earliest start date of job i

31

iD = Due date of job i

iF = Finish date of job i

hkB = Capacity of bucket k for resource h

s
hkB = Subcontracting capacity of bucket k for resource h

x
hkB = Extra resources capacity of bucket k for resource h

e
iP = Earliness penalty for job i

t
iP = Tardiness penalty for job i

l
iP = Lead time penalty for job i

s
hP = Subcontracting penalty for resource h

x
hP = Extra resources capacity penalty for resource h

u
iP = Unplanned penalty for job i

e
iC = Earliness cost for job i

t
iC = Tardiness cost for job i

l
iC = Lead time cost for job i

sC = Total subcontracting cost

xC = Total extra resources capacity cost

uC = Total unplanned cost

i = Index for set of jobs; i = 1…I

j = Index for set of operations required by a job; j = 1…J

h = Index for set of resources; h = 1…H

32

k = Index for set of buckets on each resource; k = 1…K

Decision variable:

xijk = 1 if operation j of job i is planned in bucket k, 0 otherwise

In order to generate resource loading plans, six cost functions must be achieved:

(1) the minimization of costs due to earliness; (2) the minimization of costs due to

tardiness; (3) the minimization of costs due to time spent during the process; (4) the

minimization of costs due to the additional capacity provided by subcontractor; (5) the

minimization of costs due to using extra resources capacity; and (6) the minimization of

costs due to unplanned jobs. With the above notation, the planning problem can be

stated as the following optimization model.

Minimize

(i) Earliness cost Ce

∑
=

−−
I

i

e
iii PFD

1

))()1((

if Fi < (Di - 1) (1)

(ii) Tardiness cost Ct

+ ∑
=

−−
I

i

t
iii PDF

1

)))(1((

if Fi (Di - 1) (2)

(iii) Lead time cost Cl

+ ∑
=

+−
I

i

l
ikii PkxF

1
1)1(

(3)

(iv) Subcontracting cost Cs

+∑∑ ∑∑
= = = =

−

H

h

s
h

K

k
hk

I

i

J

j
ijijk PBPx

1 1 1 1

)(

where Rij = h

≥

33

 if ∑∑
= =

I

i

J

j
ijijk Px

1 1

 ≤ hkB ; s
hP = 0 (4)

(v) Extra resources capacity cost Cx

+∑∑ ∑∑
= = = =

+−

H

h

x
h

K

k

s
hkhk

I

i

J

j
ijijk PBBPx

1 1 1 1

)()(

where Rij = h

 if ∑∑
= =

I

i

J

j
ijijk Px

1 1

 ≤)(s
hkhk BB + ; x

hP = 0 (5)

(vi) Unplanned job cost Cu

 + ∑ ∑
= =

−

I

i

u
i

K

k
ki Px

1 1
11

(6)

Subject to

(vii) Start time constraints

∑
=

K

k
kikx

1
1 ≥ iS i =1,…, I (7)

(viii) Precedence constraints

∑
=

K

k
ijkkx

1

 < ∑
=

+

K

k
kjikx

1
)1(

i = 1,…, I, and j = 1,…, J (8)

(ix) Production constraints

∑
=

K

k
ijkx

1

 ≤ 1 i = 1,…, I, and j = 1,…, J (9)

(x) Capacity constraints

∑∑
= =

I

i

J

j
ijijk Px

1 1

 ≤ hkB + s
hkB + x

hkB

where Rij = h h = 1,…, H and k = 1,…, K (10)

34

(xi) Binary constraints

 ijkx

∈ {0, 1} i = 1,…, I, j = 1,…, J and k = 1,…, K (11)

Where

 iF = { }K

kiJkkx 1max =
(12)

 The descriptions of six cost functions are presented below:

• Earliness cost Ce: The earliness cost represents penalty from an early finished

job. If the completion time Fi is less than the due date (Di-1), the penalty would

be charged. As in equation (1), an earliness cost is the amount of earliness time

multiplied with an earliness penalty eiP

• Tardiness cost Ct: The tardiness cost represents penalty from a tardy job. If the

completion time Fi is later than the due date (Di-1), the penalty would be

charged. As in equation (2), an tardiness cost is the amount of lateness time

multiplied with an tardiness penalty tiP

• Lead time cost Cl: The lead time cost of equation (3) penalizes each time unit

that job is in the system. This cost is charged since the job is processed until it is

finished.

• Subcontracting cost Cs: The subcontracting cost represents penalty cost from

using capacity of subcontractor. This cost occurs when total job loading in each

bucket k of resource h is over regular capacity. Then, an additional capacity

from subcontractor is needed to support an exceeding loading with a

subcontracting penalty shP as shown in equation (4).

35

• Extra capacity cost Cx: The extra capacity cost represents penalty cost (x
hP) by

using capacity of other resources, except from current capacity or subcontractor

as Equation (5). This cost occurs when total loading in each bucket k of resource

h is over the summation of regular and subcontracting capacities.

• Unplanned job cost Cu: Equation (6) presents total unplanned job penalty. This

cost would active when job is not planned on the planning horizon. It normally

occurs when the initial solution is set by an unplanned job method.

Manufacturing environment has several particular characteristics that lead to be

the constraints of system. In this research, five restrictions are considered in which they

can be described as follows:

• Starting time constraint: This constraint is used to ensure that an operated

bucket of the first operation of job i should be processed after the earliest start

time Si or later on. Therefore, equation (7) implies that the operation time for the

first operation of each job would be greater or equal the job’s release time.

• Precedence constraint: The operation precedence constraint states that an

operation j cannot be started before its previous operation is completed. The

precedence relation is given in equation (8).

• Production constraint: Due to discrete time planning, each operation j of job i is

restricted to load in one bucket at a time only. Equation (9) implies that the

summation of all operated buckets in the planning horizon for an operation j of

job i is equal to one.

• Capacity constraint: Total capacity in each bucket consists of capacity from

current resource hkB , subcontractor s
hkB , and extra resource xhkB . Therefore,

36

total loading of assigned jobs in bucket k of resource h should not be exceeded

total capacity as shown in equation (10).

• Binary constraint: Decision variable Xijk of the model represents operation j of

job i is processed on bucket k. The solution is represented by a binary variable 0

and 1 as equation (11). If operation j of job i is loaded on bucket k, decision

variable is 1. Otherwise, it is 0.

3.5 Computational experiments

A real manufacturing system involves several variabilities both from outside and

inside production system. According to law of variability, increasing variability can

reduce the performance of a production system (Hopp and Spearman 2004). The

computation experiments are numerically conducted to test an effectiveness of the

model at different solution initialization settings and variabilities. To determine the

ability of the resource planning model and its accuracy, the experiments aim to study

the effect of system performance from four variability parameters which are weighted

cost, due date tightness, resource utilization, and process time. The details of these

parameters and experimental design are described in section 3.5.1 and 3.5.2,

respectively.

3.5.1 Experimental parameters

(1) Weighted cost

In the objective function, weighted cost is an important factor that is used to

convert multiple objectives function to be a single objective function. Cost in six areas,

which are earliness cost (EC), tardiness cost (TC), lead time cost (LC), subcontracting

cost (SC), extra capacity cost (XC), and unplanned job cost (UC), is needed to be

37

minimized. Since the variation of the weighted costs can significantly impact the

planning results, it is expected that if any cost area is high, an optimizer will avoid that

cost and search for a better result to minimize total cost. For example, if the tardiness

cost is the most expensive cost, the planning tends to avoid job lateness. To study the

effect of this variation, the experiments are created by varying cost in four areas, which

are EC, TC, LC, and SC. For another two costs, UC and XC, which stand for the initial

solution purpose, are fixed for all scenarios. UC and XC are assigned to equal to $500

per job and $300 per unit, respectively. Penalty in four areas is charged by dollar per

unit and the summation of these four costs per unit is equal to $100. Three cases of

weighted cost EC/TC/LC/SC are proposed as follows: 5/15/10/70, 5/70/10/15, and

25/25/25/25.

(2) Due date tightness

Due date tightness is an allowance time for processing job on the shop floor. It is

also one of important factors since an ability to quote reliable due date or short due date

tightness is necessary for recent competitive market. The experiments will observe the

performance of planning when the tightness values are varied with uniform distribution

from constant due date to larger range of due date. Since different due date tightness

reflects different problem complexity, four levels of due date tightness, such as 3, [3, 6],

[3, 9], and [3, 12], are generated to test the model.

(3) Resource utilization

Resource utilization is used to define system congestion. Five levels of

utilization are generated as uniform distribution to test the model, which are [65%,

95%], [75%, 95%], [85%, 95%], [75%, 110%], and [55%, 140%]. Each case obtains an

38

average utilization at 80%, 85%, 90%, 92.5%, and 97.5%, respectively. Furthermore,

the resource utilization parameter also uses to generate input data by determining the

problem size or the number of jobs based on the congestion level in each testing

problem.

(4) Process time

Process time is one of factors that explicitly impact the system performance

when it has variability. Varied process time directly affects the number of bucket

requirement, utilization of resource, and job cycle time. The experiment proposes three

levels of process time variability to study the impacts. First is constant process time at

five. Second is medium process time variability with uniform distribution [3, 7]. Last is

high process time variability with uniform distribution [1, 9]. The mean process time for

all three cases is equal so that the results from those cases are comparable.

3.5.2 Experimental design

The problem represents resource allocation in job shop production. Input data is

generated based on resource utilization by using the data generator. Each job has an

individual routing, which is randomly selected from three of five independent machines,

to process the job. As discrete time planning, the planning horizon is divided into 15

time buckets. Loading capacity per bucket consists of regular capacity, subcontracting

capacity, and extra resources capacity. The first two capacities are assumed to have a

limited capacity at 100 units for all instances, but the extra resources capacity will have

unlimited capacity. In order to study the system behavior when variabilities occur, the

performance indicators, such as total cost, earliness, tardiness, and optimality gap are

used to evaluate the problem. The experiments will be performed on a Pentium IV 1.73

39

GHz PC with 2 GB RAM. ILOG CPLEX 12 is implemented as an optimization solver

to find a solution. Computational time for each case is limited at 1,800 seconds.

Recall that this research aims to investigate the impact of different solution

initialization on the optimizer’s improvement. Two proposed initial setting approaches

are the latest possible start time (LPST) and unplanned job (UP) methods. In CPLEX, it

uses branch and bound method to find an optimal solution. As branch and bound

approaches explore a tree of continuous relaxations of the original MIP model, the

system would particularly improve when the search area is more robust (Danna et al.

2003). Relaxation Induced Neighborhood Search (RINS) is one of the effective methods

to enhance the search quality (Danna et al. 2004). RINS is a heuristic that explores a

neighborhood of the current incumbent solution to find a new improved incumbent. The

strength of RINS is that it explores a neighborhood both of the incumbent and of the

continuous relaxation which plays symmetrical roles. This allows for RINS to improve

quickly on poor incumbents and to be robust with respect to lose continuous relaxation.

RINS is already included in CPLEX. It easily implement in CPLEX by simply setting

parameter IloCplex::MIPEmphasis = 4. In this research, RINS is applied to develop our

MIP model in both solution setting experiments. A greater detail of RINS is described

in Danna et al. (2003 and 2004).

From Table 1, with three levels of weighted cost, four levels of due date

tightness, five levels of resource utilization, three levels of process time, and two levels

of initialization method, there are 360 combinations of experiment total.

40

Table 1: Summary of experimental parameters

3.5.3 Data generation

In MTO environments, jobs arrive a factory with different timelines. This

situation reflects the variation of resource requirement in each period. To simulate the

system, the number of job is generated based on the level of resource utilization. Instead

of generating random job numbers to meet a required utilization; the resource utilization

is used to define the number of job in each bucket. According to random number, the

number of job as well as problem size in each scenario will be different. The procedure

for creating an input data is described in the following steps.

Parameter Level

Weighted cost 5/15/10/70

(EC/TC/LC/SC) 5/70/10/15

25/25/25/25

Due date tightness 3

(buckets) [3, 6]

[3, 9]

[3, 12]

Resource utilization / [65%, 95%] / 80%

Average utilization [75%, 95%] / 85%

[85%, 95%] / 90%

[75%, 110%] / 92.5%

[55%, 140%] / 97.5%

Process time (units) 5

[3, 7]

[1, 9]

Solution initialization LPST

settings UP

41

Step 1: Generate resource utilization for each bucket k by random selecting a desired

resource utilization from range [a, b] where a and b are the lowest and the

highest resource utilizations, respectively.

 Utlizationk = random[a, b]

Step 2: Determine a number of jobs in each bucket k.

 Jobk =

 time process Average

capacity Regular* nUtilizatio k

Step 3: Find a resource factor. This factor is used to convert the number of jobs to

represent total jobs requirement for all resources.

 Factor =

++

bucket of Number

1)- operation of (Number

 resource of Number

 operation of Number
1

Step 4: Calculate total jobs in bucket k.

 Total jobk = Round down (Jobk * Resource factor, 0)

Step 5: Calculate a final number of jobs in bucket k by adjusting Total jobk based on

utilizationk.

 Number of jobk = (Total jobk* bucketk) - ∑
−

=

1

1

k

m

Total jobm

 For instance, to generate an input data, assume that total capacity per bucket is 100

units with total 15 buckets in the planning horizon. Resource utilization is distributed

uniformly [65%, 95%]. A job has to be processed on three operations in which each

operation has an average process time at five. Table 2 shows the example of how the

input data is determined in each bucket. In this case, total job is 96 jobs (the summation

of 28, 20, and 48).

42

Table 2: Example of input data generation

3.6 Results and analysis

This section presents the results of the optimization approach at various

variabilities, such as weighted penalty, due date tightness, resource utilization, and

process time. The result explanations are divided into two sections. The first part is the

effectiveness of the solution initialization methods on the optimizer’s performance

improvement. The second part is the analysis of variability impact on planning results.

3.6.1 Impact of method for solution initialization

 The numerical results of all experiments are presented in Tables 3-17. These

tables are summarized the performance indicators of two initial setting methods at

weighted cost 5/15/10/70, 5/70/10/15, and 25/25/25/25, respectively. From the tables,

the impact of resource planning based on the performance measurement is analyzed and

described in the following section.

Bucket Resource
utilization

Job
loading

per

Job Resource
factor

Total job Total job * Bucket Number of
jobs

1 82% 82 16.4 1.73 28 28 28

2 70% 70 14.0 1.73 24 48 20

3 94% 94 18.8 1.73 32 96 48

43

Table 3: Results for weighted cost 5/15/10/70 and resource utilization [65%, 95%]

LPST UP

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

3 Constant 364 0% 32.9 74 0% 32.8 132

Medium 384 0% 33.0 507 0% 33.0 817

High 319 0% 31.4 42 0% 31.3 66

[3, 6] Constant 364 2% 30.7 1,800 2% 30.7 1,800

Medium 429 33% 44.7 1,800 50% 60.1 1,800

High 390 18% 43.8 1,800 27% 41.0 1,800

[3, 9] Constant 416 31% 43.6 1,800 49% 58.9 1,800

Medium 360 11% 33.6 1,800 38% 48.3 1,800

High 429 28% 41.7 1,800 62% 78.8 1,800

[3, 12] Constant 372 4% 31.3 1,800 59% 73.1 1,800

Medium 408 12% 33.9 1,800 74% 115.7 1,800

High 377 5% 31.7 1,800 64% 83.7 1,800

Number
of jobs

Process time
Duedate
tightness

44

 Table 4: Results for weighted cost 5/15/10/70 and resource utilization [75%, 95%]

LPST UP

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

3 Constant 416 3% 33.5 1,800 2% 33.3 1,800

Medium 377 3% 32.0 1,800 3% 31.9 1,800

High 429 3% 33.8 1,800 2% 33.6 1,800

[3, 6] Constant 377 2% 30.8 1,800 2% 30.8 1,800

Medium 416 5% 31.5 1,800 11% 33.6 1,800

High 396 10% 33.2 1,800 19% 37.2 1,800

[3, 9] Constant 429 22% 38.3 1,800 53% 63.6 1,800

Medium 377 4% 31.4 1,800 58% 71.7 1,800

High 403 13% 34.6 1,800 75% 119.1 1,800

[3, 12] Constant 364 3% 36.4 1,800 55% 66.2 1,800

Medium 442 9% 33.1 1,800 72% 106.5 1,800

High 416 4% 31.4 1,800 74% 114.1 1,800

Duedate
tightness

Process time
Number
of jobs

45

Table 5: Results for weighted cost 5/15/10/70 and resource utilization [85%, 95%]

LPST UP

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

3 Constant 416 0% 33.2 653 0% 33.2 931

Medium 416 10% 35.6 1,800 5% 33.7 1,800

High 416 4% 33.4 1,800 4% 33.2 1,800

[3, 6] Constant 416 8% 32.6 1,800 5% 31.7 1,800

Medium 429 7% 32.3 1,800 20% 37.6 1,800

High 416 5% 31.5 1,800 57% 69.6 1,800

[3, 9] Constant 429 13% 34.3 1,800 61% 76.4 1,800

Medium 403 5% 31.6 1,800 72% 105.3 1,800

High 416 8% 32.5 1,800 70% 85.6 1,800

[3, 12] Constant 429 3% 30.9 1,800 59% 73.7 1,800

Medium 416 7% 32.4 1,800 39% 49.4 1,800

High 442 5% 31.6 1,800 72% 106.9 1,800

Duedate
tightness

Process time
Number
of jobs

46

Table 6: Results for weighted cost 5/15/10/70 and resource utilization [75%, 110%]

LPST UP

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

3 Constant 507 29% 49.8 1,800 23% 46.4 1,800

Medium 494 31% 50.4 1,800 14% 41.3 1,800

High 390 3% 34.0 1,800 3% 34.1 1,800

[3, 6] Constant 456 32% 44.1 1,800 41% 50.9 1,800

Medium 507 62% 78.4 1,800 75% 118.0 1,800

High 416 33% 44.8 1,800 28% 41.9 1,800

[3, 9] Constant 390 17% 36.0 1,800 61% 76.7 1,800

Medium 455 19% 37.1 1,800 79% 145.6 1,800

High 442 32% 44.0 1,800 74% 115.1 1,800

[3, 12] Constant 396 36% 46.6 1,800 63% 80.4 1,800

Medium 372 22% 38.4 1,800 73% 110.9 1,800

High 429 29% 42.2 1,800 81% 156.4 1,800

Duedate
tightness

Process time
Number
of jobs

47

Table 7: Results for weighted cost 5/15/10/70 and resource utilization [55%, 140%]

LPST UP

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

3 Constant 451 44% 64.2 1,800 44% 64.5 1,800

Medium 598 72% 109.9 1,800 58% 92.8 1,800

High 416 46% 67.0 1,800 47% 67.6 1,800

[3, 6] Constant 528 63% 80.6 1,800 58% 70.6 1,800

Medium 420 71% 103.9 1,800 74% 115.7 1,800

High 552 96% 121.2 1,800 80% 152.8 1,800

[3, 9] Constant 455 26% 40.8 1,800 63% 81.0 1,800

Medium 506 93% 94.9 1,800 79% 142.7 1,800

High 559 77% 132.8 1,800 83% 172.3 1,800

[3, 12] Constant 442 63% 81.0 1,800 68% 93.6 1,800

Medium 450 72% 105.4 1,800 78% 137.2 1,800

High 585 95% 124.3 1,800 79% 141.2 1,800

Duedate
tightness

Process time
Number
of jobs

48

 Table 8: Results for weighted cost 5/70/10/15 and resource utilization [65%, 95%]

Duedate Process time Job LPST UP

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

3 Constant 429 0% 32.8 30 0% 32.8 36

Medium 416 0% 34.0 70 0% 34.0 72

High 341 0% 32.0 8 0% 32.0 10

[3, 6] Constant 416 6% 32.5 1,800 13% 34.4 1,800

Medium 390 3% 31.7 1,800 15% 35.1 1,800

High 408 5% 31.5 1,800 31% 43.5 1,800

[3, 9] Constant 429 7% 32.2 1,800 36% 46.9 1,800

Medium 348 2% 30.9 1,800 30% 42.6 1,800

High 377 2% 30.9 1,800 33% 44.5 1,800

[3, 12] Constant 377 7% 32.3 1,800 33% 45.1 1,800

Medium 364 2% 30.8 1,800 71% 103.3 1,800

High 377 5% 31.7 1,800 64% 83.8 1,800

49

 Table 9: Results for weighted cost 5/70/10/15 and resource utilization [75%, 95%]

LPST UP

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

3 Constant 390 0% 32.0 17 0% 32.0 24

Medium 416 0% 32.4 27 0% 32.4 26

High 429 0% 33.1 41 0% 33.1 44

[3, 6] Constant 416 7% 32.2 1,800 17% 35.9 1,800

Medium 384 3% 31.2 1,800 12% 34.8 1,800

High 372 0% 31.1 1,705 6% 32.1 1,800

[3, 9] Constant 396 7% 32.2 1,800 32% 43.2 1,800

Medium 429 7% 32.1 1,800 67% 90.2 1,800

High 390 5% 37.9 1,800 43% 52.4 1,800

[3, 12] Constant 442 6% 32.0 1,800 37% 47.6 1,800

Medium 403 6% 31.8 1,800 77% 133.2 1,800

High 377 0% 30.7 649 37% 47.5 1,800

Duedate
tightness

Process time
Number
of jobs

50

Table 10: Results for weighted cost 5/70/10/15 and resource utilization [85%, 95%]

LPST UP

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

3 Constant 429 0% 32.4 9 0% 32.4 13

Medium 429 0% 32.3 10 0% 32.3 18

High 390 0% 31.4 5 0% 31.4 6

[3, 6] Constant 416 4% 31.4 1,800 6% 31.9 1,800

Medium 390 3% 31.2 1,800 6% 32.0 1,800

High 403 3% 31.1 1,800 24% 39.5 1,800

[3, 9] Constant 416 3% 31.0 1,800 31% 43.2 1,800

Medium 408 6% 32.0 1,800 44% 53.9 1,800

High 416 5% 31.4 1,800 74% 114.5 1,800

[3, 12] Constant 396 5% 31.7 1,800 36% 46.7 1,800

Medium 396 4% 31.3 1,800 76% 123.0 1,800

High 416 4% 31.4 1,800 70% 100.0 1,800

Duedate
tightness

Process time
Number
of jobs

51

Table 11: Results for weighted cost 5/70/10/15 and resource utilization [75%, 110%]

LPST UP

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

3 Constant 456 0% 35.6 478 0% 35.6 451

Medium 377 0% 32.4 27 0% 32.4 24

High 432 0% 35.6 498 0% 35.7 499

[3, 6] Constant 507 14% 34.9 1,800 22% 38.4 1,800

Medium 429 21% 38.4 1,800 68% 93.8 1,800

High 420 44% 53.4 1,800 25% 40.2 1,800

[3, 9] Constant 442 13% 34.3 1,800 46% 55.5 1,800

Medium 455 15% 35.4 1,800 46% 55.8 1,800

High 444 44% 53.2 1,800 75% 120.4 1,800

[3, 12] Constant 442 8% 32.5 1,800 45% 54.3 1,800

Medium 455 6% 32.0 1,800 72% 106.9 1,800

High 494 55% 66.9 1,800 79% 142.2 1,800

Duedate
tightness

Process time
Number
of jobs

52

Table 12: Results for weighted cost 5/70/10/15 and resource utilization [55%, 140%]

LPST UP

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

3 Constant 588 17% 39.5 1,800 16% 39.0 1,800

Medium 429 3% 37.6 1,800 3% 37.6 1,800

High 624 60% 115.5 1,800 63% 124.2 1,800

[3, 6] Constant 442 22% 39.3 1,800 24% 40.3 1,800

Medium 450 38% 48.9 1,800 73% 109.4 1,800

High 598 78% 134.6 1,800 73% 112.6 1,800

[3, 9] Constant 650 44% 53.3 1,800 69% 97.4 1,800

Medium 456 44% 53.6 1,800 72% 107.0 1,800

High 495 85% 204.1 1,800 76% 127.6 1,800

[3, 12] Constant 598 38% 48.1 1,800 72% 107.1 1,800

Medium 528 45% 54.9 1,800 75% 119.0 1,800

High 480 87% 238.1 1,800 82% 164.1 1,800

Duedate
tightness

Process time
Number
of jobs

53

Table 13: Results for weighted cost 25/25/25/25 and resource utilization [65%, 95%]

LPST UP

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

3 Constant 320 0% 79.4 22 0% 79.5 27

Medium 363 0% 80.4 123 0% 80.4 124

High 390 0% 78.5 88 0% 78.4 53

[3, 6] Constant 416 12% 84.9 1,800 16% 89.0 1,800

Medium 360 4% 78.4 1,800 4% 78.6 1,800

High 364 2% 77.7 1,800 3% 78.0 1,800

[3, 9] Constant 336 2% 77.2 1,800 3% 77.6 1,800

Medium 403 6% 79.5 1,800 31% 109.3 1,800

High 403 3% 78.1 1,800 28% 104.1 1,800

[3, 12] Constant 416 8% 81.5 1,800 32% 110.5 1,800

Medium 325 4% 78.5 1,800 29% 105.4 1,800

High 364 7% 80.3 1,800 41% 126.6 1,800

Duedate
tightness

Process time
Number
of jobs

54

Table 14: Results for weighted cost 25/25/25/25 and resource utilization [75%, 95%]

LPST UP

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

3 Constant 416 0% 78.6 45 0% 78.5 55

Medium 442 0% 81.9 1,185 0% 81.9 1,106

High 416 0% 80.6 333 0% 80.6 336

[3, 6] Constant 351 4% 78.5 1,800 7% 80.9 1,800

Medium 364 2% 77.0 1,800 6% 80.1 1,800

High 429 5% 78.6 1,800 29% 104.9 1,800

[3, 9] Constant 442 7% 80.5 1,800 32% 111.0 1,800

Medium 363 5% 78.7 1,800 28% 104.3 1,800

High 360 0% 77.0 934 6% 79.7 1,800

[3, 12] Constant 377 2% 77.1 1,800 6% 79.4 1,800

Medium 429 7% 80.4 1,800 45% 136.0 1,800

High 364 0% 76.8 821 2% 77.0 1,800

Duedate
tightness

Process time
Number
of jobs

55

Table 15: Results for weighted cost 25/25/25/25 and resource utilization [85%, 95%]

LPST UP

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

3 Constant 429 0% 79.8 60 0% 79.8 55

Medium 390 0% 80.6 9 0% 77.0 11

High 429 0% 78.9 45 0% 78.8 44

[3, 6] Constant 416 2% 77.0 1,800 18% 91.9 1,800

Medium 429 6% 79.7 1,800 10% 83.6 1,800

High 429 4% 78.3 1,800 16% 88.9 1,800

[3, 9] Constant 403 4% 78.3 1,800 27% 167.7 1,800

Medium 429 4% 78.2 1,800 40% 125.3 1,800

High 416 11% 83.8 1,800 37% 119.2 1,800

[3, 12] Constant 442 5% 78.7 1,800 34% 113.0 1,800

Medium 403 4% 80.0 1,800 57% 172.6 1,800

High 416 4% 83.2 1,800 35% 115.6 1,800

Duedate
tightness

Process time
Number
of jobs

56

Table 16: Results for weighted cost 25/25/25/25 and resource utilization [75%, 110%]

LPST UP

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

3 Constant 429 5% 84.9 1,800 5% 85.0 1,800

Medium 507 6% 85.4 1,800 6% 85.4 1,800

High 468 7% 85.8 1,800 7% 85.8 1,800

[3, 6] Constant 418 9% 82.6 1,800 23% 97.5 1,800

Medium 420 18% 91.6 1,800 24% 98.9 1,800

High 456 15% 87.8 1,800 41% 127.9 1,800

[3, 9] Constant 390 5% 79.2 1,800 33% 111.5 1,800

Medium 468 9% 83.3 1,800 63% 201.3 1,800

High 429 30% 107.9 1,800 34% 113.5 1,800

[3, 12] Constant 468 11% 84.2 1,800 43% 130.7 1,800

Medium 396 26% 101.2 1,800 56% 171.8 1,800

High 372 16% 89.5 1,800 34% 122.2 1,800

Duedate
tightness

Process time
Number
of jobs

57

Table 17: Results for weighted cost 25/25/25/25 and resource utilization [55%, 140%]

LPST UP

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

Optimality
gap

Best solution
(unit: x$1,000)

Computational
time (sec.)

3 Constant 507 11% 91.0 1,800 11% 91.0 1,800

Medium 490 25% 103.6 1,800 22% 100.9 1,800

High 442 5% 85.4 1,800 6% 86.3 1,800

[3, 6] Constant 528 29% 106.1 1,800 31% 109.4 1,800

Medium 550 25% 99.9 1,800 64% 207.7 1,800

High 504 37% 118.4 1,800 53% 159.3 1,800

[3, 9] Constant 598 27% 103.2 1,800 41% 126.6 1,800

Medium 564 93% 221.4 1,800 69% 240.4 1,800

High 533 38% 120.2 1,800 50% 151.5 1,800

[3, 12] Constant 564 32% 110.9 1,800 67% 226.4 1,800

Medium 468 48% 145.5 1,800 66% 202.8 1,800

High 650 50% 150.8 1,800 68% 237.8 1,800

Duedate
tightness

Process time
Number
of jobs

58

(1) Total cost (objective function value)

In order to visualize the effect of weighted cost, the graphs between total cost

and resource utilization is shown in Figures 5-7. The graphs present total cost impacts

of three weighted costs at different ranges of due date tightness. Two initialization

methods, LPST and UP, are compared in each figure. The results show that the LPST

method obtained a lower total cost than the UP method. This can be explained that

LPST assign the initial solution that is closer to a local minimum or an optimal solution

than UP. A narrow search influences a better result and a faster computational time in

individual node until it meets the optimal solution. At different resource utilizations,

LPST provides more consistent outputs than UP. Resource utilization is a major factor

which reflects the increasing of total cost, especially in the UP method. According to

the zero initial solution from UP, the optimizer would need more computational time to

reach the optimal solution. Moreover, if the problems involve high congestion in the

system, it would be more difficult to obtain a solution within limited time.

For a clearer view, the scenario with weighted cost 5/70/15/10 is selected to

observe more result details between two initial solution settings. In Figure 6, the graphs

show that different ranges of due date do not provide different total costs in LPST when

resource utilization is less than 100%. Meanwhile, total cost in UP tends to increase

when due dates are spread out. This can be explained with the search space and

variability concepts. A large search space with high variability of data increases

problem complexity while lower variability of parameters can reduce time to reach an

optimal solution and gain more optimizer power.

59

Figure 5: Total cost impact at 5/15/10/70 for; (a) LPST and (b) UP

0

50

100

150

200

250

300

350

400

[65%,
95%]

[75%,
95%]

[85%,
95%]

[75%,
110%]

[55%,
140%]

To
ta

l c
os

t

Resource utilization

3
[3, 6]
[3, 9]
[3, 12]

0

50

100

150

200

250

300

350

400

[65%,
95%]

[75%,
95%]

[85%,
95%]

[75%,
110%]

[55%,
140%]

To
ta

l c
os

t

Resource utilization

3
[3, 6]
[3, 9]
[3, 12]

(a)

(b)

60

Figure 6: Total cost impact at 5/70/10/15 for; (a) LPST and (b) UP

0

50

100

150

200

250

300

350

400

[65%,
95%]

[75%,
95%]

[85%,
95%]

[75%,
110%]

[55%,
140%]

To
ta

l c
os

t

Resource utilization

3
[3, 6]
[3, 9]
[3, 12]

0

50

100

150

200

250

300

350

400

[65%,
95%]

[75%,
95%]

[85%,
95%]

[75%,
110%]

[55%,
140%]

To
ta

l c
os

t

Resource utilization

3
[3, 6]
[3, 9]
[3, 12]

(a)

(b)

61

Figure 7: Total cost impact at 25/25/25/25 for; (a) LPST and (b) UP

In addition, it can be seen that an interaction of variability parameters would

turn down the quality of the solution. As a result, total cost of both setting methods

0

50

100

150

200

250

300

350

400

[65%,
95%]

[75%,
95%]

[85%,
95%]

[75%,
110%]

[55%,
140%]

To
ta

l c
os

t

Resource utilization

3
[3, 6]
[3, 9]
[3, 12]

0

50

100

150

200

250

300

350

400

[65%,
95%]

[75%,
95%]

[85%,
95%]

[75%,
110%]

[55%,
140%]

To
ta

l c
os

t

Resource utilization

3
[3, 6]
[3, 9]
[3, 12]

(a)

(b)

62

would be increased when due date tightness range is wider and resource utilization is

higher, for instance at due date tightness [3, 9] and [3, 12], and average resource

utilization above 90%, [75%, 110%] and [55%, 140%] . This is because high variability

of due date tightness and resource utilization generate less available spots in the

production plan. To meet customer requirements, using an additional capacity,

producing jobs earlier or delaying jobs, are considered as options. Then, these influence

an increased total cost.

(2) Earliness and tardiness

 Figure 8 presents the percentage of early jobs (E) and tardy jobs (T) at different

weighted costs. The graphs display the comparison of the early and tardy job rates

between two initialization methods. It can be seen that LPST provides a lower number

of early and tardy jobs than UP in all weighted cost scenarios. The same explanation as

in the total cost impact is also used to describe this result that an effective initial

solution influences a better solution and a faster execution time.

 Figure 8(a) shows the different trend lines of the percentage of early and tardy

jobs at weighted cost 5/15/10/70. It can be seen that the number of early jobs is

increased when due date tightness has a larger range. Meanwhile, the number of tardy

jobs is decreased. This can be explained that a majority cost reflects a reduced cost in its

area. At weighted cost 5/15/10/70, a subcontracting cost is the highest penalty cost so

that the optimizer attempts to generate the resource plan that meets all customer

requirements by using some alternative methods, either pulling the demands to produce

ahead or postponing the shipment, rather than applying additional capacity from

subcontractor or extra resources. If the earliness cost is cheaper than the tardiness cost,

63

this will impact the increasing percentage of early jobs instead. For the spiked tardy job

rate at due date tightness 3, it is because each job requires at least 3 periods to process

and finish the job. To avoid a highly charged cost from subcontractor, lateness is only a

possible option to complete a job when the capacity is a constraint. The tardiness rate

then drops when due date tightness is varied.

 The other cost scenarios, Figure 8(b) and 8(c), provide the same trend for both

the earliness and tardiness rates. They illustrate that the percentage of early jobs is

greater than the percentage of tardy jobs. The explanation can be drawn by the majority

cost concept as well. For example, at weighted cost 5/70/10/15, with the highest

tardiness cost, finishing early or using subcontracting capacity are preferred options to

minimize total cost in the system.

0%

20%

40%

60%

80%

100%

3 [3, 6] [3, 9] [3, 12]

P
e

rc
en

ta
ge

 o
f

jo
bs

Due date tightness

E-LPST
T-LPST
E-UP
T-UP

(a)

64

Figure 8: Percentage of early and tardy jobs for; (a) 5/15/10/70, (b) 5/70/10/15, and

(c) 25/25/25/25

0%

20%

40%

60%

80%

100%

3 [3, 6] [3, 9] [3, 12]

P
e

rc
en

ta
ge

 o
f

jo
bs

Due date tightness

E-LPST
T-LPST
E-UP
T-UP

0%

20%

40%

60%

80%

100%

3 [3, 6] [3, 9] [3, 12]

P
e

rc
en

ta
ge

 o
f

jo
bs

Due date tightness

E-LPST
T-LPST
E-UP
T-UP

(b)

(c)

65

(3) Optimality gap

Figure 9 presents the optimality gap after computational time 1,800 seconds at

different resource utilization and weighted costs. All graphs show in the same trend

lines that the optimality gaps are increased when the problem utilization is higher and

range of due date is wider. It makes more sense that when the problem is more

complicated, the optimizer may hardly find the optimal solution within the limited time.

The average utilization range 80%-90%, [65%, 95%], [75%, 95%], [85%, 95%],

provides a lower optimality gap, while the average utilization above 90%, [75%, 110%]

and [55%, 140%], is turned to be a harder problem that causes the optimality gap to

increase.

0%

20%

40%

60%

80%

100%

[65%,
95%]

[75%,
95%]

[85%,
95%]

[75%,
110%]

[55%,
140%]

P
er

ce
nt

a
ge

 o
f

op
tim

a
lit

y
ga

p

Resource utilization

LPST

UP

(a)

66

Figure 9: Optimality gap at different objective costs for; (a) 5/15/10/70, (b)

5/70/10/15, and (c) 25/25/25/25

0%

20%

40%

60%

80%

100%

[65%,
95%]

[75%,
95%]

[85%,
95%]

[75%,
110%]

[55%,
140%]

P
e

rc
e

nt
a

ge
 o

f o
pt

im
a

lit
y

ga
p

Resource utilization

LPST

UP

0%

20%

40%

60%

80%

100%

[65%,
95%]

[75%,
95%]

[85%,
95%]

[75%,
110%]

[55%,
140%]

P
e

rc
e

nt
ag

e
of

 o
pt

im
al

ity
 g

a
p

Resource utilization

LPST

UP

(b)

(c)

67

For further investigation on the planning performance, the optimality gap

reduction is collected from the start time until either the time of finding the optimal

solution or reaching computational time at 1,800 seconds. The cases at medium process

time, resource utilization [85%, 95%], and weighted cost 5/70/10/15 is chosen to

discuss this study. Figure 10 shows the relationships of computational time and solution

optimality gap at different due date tightness. The effect obviously shows that LPST is

able to reach the optimal or good solution faster than UP. Since LPST provides a closer

feasible solution at the beginning of the period, the optimizer requires shorter

computational time to solve an optimal solution. In addition, it can be observed that

when the problem has low variability such as constant due date, both initial setting

methods are able to find the optimal solution with short computational time as shown in

Figure 10(a). Meanwhile, in Figure 10(b)-(d), wider ranges of due date make the

problem more difficult and then they influence the increasing optimality gap. The

difference of optimality gap between the LPST and UP methods is more increased when

the range of due date tightness is larger. This is because when the job’s due dates are

scattered along the planning horizon, they create some fractional capacities in time

buckets. Moreover, because the planning is considered operation dependent sequencing,

it is more difficult to load jobs in the planning to fit with small available slot of

capacities and obtain an optimal solution. Hence, it reflects a higher optimality gap.

68

0%

20%

40%

60%

80%

100%

0 200 400 600 800 1000 1200 1400 1600 1800

P
er

ce
nt

a
ge

 o
f

op
tim

a
lit

y
ga

p

Computational time (sec.)

LPST

UP

0%

20%

40%

60%

80%

100%

0 200 400 600 800 1000 1200 1400 1600 1800

P
e

rc
e

nt
ag

e
of

 o
pt

im
al

ity
 g

ap

Computational time (sec.)

LPST

UP

(a)

(b)

69

Figure 10: Optimality gap of resource utilization [85%, 95%], weighted cost

5/70/10/15, and medium process time at due date tightness; (a) 3, (b) (3, 6), (c) (3,

9), and (d) (3, 12)

0%

20%

40%

60%

80%

100%

0 200 400 600 800 1000 1200 1400 1600 1800

P
e

rc
en

ta
ge

 o
f

op
tim

al
ity

 g
a

p

Computational time (sec.)

LPST

UP

0%

20%

40%

60%

80%

100%

0 200 400 600 800 1000 1200 1400 1600 1800

P
e

rc
en

ta
ge

 o
f

op
tim

al
ity

 g
a

p

Computational time (sec.)

LPST

UP

(c)

(d)

70

Figure 11: Percentage of result difference between LPST and UP

From all experimental results, the conclusions can be drawn as follows. First,

LPST is the most effective method. It can provide an efficient solution faster and better

than UP. Figure 11 shows the summarized comparison results between LPST and UP of

two indicators, optimality gap and total cost. This plot shows an incremental percentage

of result difference of LPST over UP. It means that LPST provides increasingly better

solutions in both indicators when the system has more variability. This supports the

conclusion that an efficient initial solution significantly improves the optimizer’s

performance. Second, the interactions of variability influence the solution quality

dropping. Even though an initial solution is provided, because of problem difficulty, the

optimizer cannot find an optimal solution within limited time. This case occurs when

the system’s parameters have a wider range of due date and higher resource utilization.

When a problem is difficult to solve and some specified initial solutions do not lead

directly to an optimal solution, CPLEX will apply a quick heuristic to repair the

-50%

0%

50%

100%

150%

200%

250%

3 [3, 6] [3, 9] [3, 12]

P
e

rc
e

nt
 o

f d
iff

e
re

nt
 b

et
w

ee
n

LP

S
T

 a
nd

 U
P

Due date tightness

Optimality gap

Cost

71

solution. It therefore requires more computational time to search and obtain the

solution. Last, UP also performs effectively in certain conditions. It is able to provide a

good solution when the problem is not complicated such as at constant due date 3.

Although it is not obvious that the UP method provided the better performance, the

proper parameter conditions also allow UP to reach the optimal solution with short

computational time.

3.6.2 Impact of variability

This section describes the behavior of system performance when dealing with

variability. There are four factors affecting the planning results, which are weighted

cost, due date tightness, resource utilization, and process time. The results from

weighted cost 5/70/10/15 and LPST initialized method is selected to describe the

solution impact, since these conditions are similar to a real manufacturing environment

when tardy jobs need to be reduced as many as possible due to customer satisfaction.

(1) Weighted cost

A weighted cost is a main factor that substantially impacts the planning results.

The highest penalty will determine the direction of the loading plan. For instance, at

5/70/10/15 (EC/TC/LC/SC), a high tardiness cost leads planning to complete jobs on

time or earlier to avoid a penalty cost from lateness. An additional capacity might be

used to relieve congestion in the system as well as pulling the jobs to produce early. In

this case, the majority cost comes from either earliness cost or subcontracting cost. The

main idea of the weighted cost variability impact is to avoid a major charged cost and to

create the resource plan with minimum total cost.

72

Figure 12: Effects of due date tightness at cost ratio 5/70/10/15

 (2) Due date tightness

Figure 12 presents the relation of due date tightness and average total cost at

different process times. In constant and medium process time variabilities, total costs

among due date tightness level are not significantly different. But it clearly shows a

huge difference when process time and due date tightness have greater data variance.

The interaction of due date tightness and process time increases the problem difficulty.

The optimizer cannot provide an efficient solution with short computational time. A

fractional capacity might be a major factor. When process time is constant, jobs are able

to be loaded in time buckets without or less waiting time. As variability is increased,

some longer process times would create holes or fractional capacities in time buckets.

To avoid a tardiness penalty, producing job in the early period or using subcontracting

capacity are considered as alternatives. Although the due date tightness does not show

much difference of impact among their levels, it can be seen that some variability factor

0

20

40

60

80

100

120

140

3 [3, 6] [3, 9] [3, 12]

A
ve

ra
ge

 to
ta

l c
os

t

Due date tightness

Constant

Medium

High

73

allows relaxation in the system and provide a better solution. For instance, at due date

tightness [3, 6], it is the proper range of due date variability in which jobs can be loaded

on the existing resources without congestion.

(3) Resource utilization

Figure 13 shows the relation of resource utilization and average total cost at

different weighted costs. From the graph, total cost is not apparently different when

resource utilization is at [65%, 95%] to [85%, 95%] in all three weighted cost cases.

This is because subcontracting capacity can cover the excess requirements and smooth

production system. While at resource utilization [75%, 110%] and [55%, 140%], some

overload capacities occur in certain periods. Subcontracting capacity is required more to

meet the customer demands. However, some tardiness jobs cannot be avoided, because

resources are fully utilized. This reflects tardiness cost to be increased. In addition,

when the resource planning problem is more complicated, the optimizer hardly reaches

an optimal solution or even a good feasible solution within limited time. This causes the

ineffective planning’s results as well.

(4) Process time

In Figure 12, the effect of process time variability does not show a significant

different result when process time is 5 and [3, 7] but the variability obviously impact the

objective value, or total cost, when process time is [1, 9]. This is because the more

difference of process times, the more unbalance of resource requirements. An option of

using an alternative capacity, producing job early, or delaying a shipment, is considered

to smooth the production system so that the total cost is increased.

74

 Figure 13: Effects of resource utilization at different weighted costs

3.7 Summary

This chapter proposes a new model for resource planning problems in MTO

environments. The planning model is formulated as a binary integer linear programming

with multiple objective functions in which the goal of the model is to minimize

weighted costs from earliness, tardiness, lead time, subcontracting capacity, extra

resources capacity, and unplanned jobs. The output of the planning model is an

operation start time to process each job. In a production system, variability always gets

involved and it is the main factor to drop the system performance and efficiency of

resource planning. The research is divided in the study into two parts which are

investigating solution initialization to improve resource planning and observing the

impact of resource planning under variability.

0

20

40

60

80

100

120

140

[65%,
95%]

[75%,
95%]

[85%,
95%]

[75%,
110%]

[55%,
140%]

A
ve

ra
ge

 to
ta

l c
os

t

Resource utilization

5/15/10/70

5/70/10/15

25/25/25/25

75

In the first part, two solution initialization approaches, including the latest

possible start time method (LPST) and the unplanned job method (UP), are generated to

improve the optimizer efficiency. From the results, the conclusion is that LPST provides

the optimal solutions faster and better than UP. LPST is an effective method that

requires shorter computational time to search and obtain a feasible solution. This is

because LPST can create an initial solution that is close to a local minimum or an ideal

planning. A narrows search leads the optimizer to find the feasible solution directly.

However, the initial solution method also has a limitation. It cannot help the optimizer

to determine the solution easier if the problem is more complicated with high variability

of various parameters. Even though LPST performs very well in most cases, UP also

provides a good solution in some problem conditions, for instance at due date tightness

3.

In the second part, the results of resource planning under different variabilities,

such as weighted cost, due date tightness, resource utilization, and process time, are

examined. From this experiment, some behaviors of the system can be concluded as

follows. First, variability creates either congestion or fractional resource availability,

which influences ineffective planning and drops performance of optimizer. The

interaction of variability affect the efficiency of production planning more when

variability have larger scale, for instance the interaction of wider range of due date

tightness and higher resource utilization. Second, some variability allows relaxation in

the system. For example, the problem with due date tightness [3, 6] can reduce the

congestion of the system and provide more sufficient resources for other jobs. Last,

subcontracting is an essential flexibility to absorb variability. It can relieve the

76

congestion issues in a production system and also improve resource planning to be more

efficient.

A resource planning model with initial solution successfully improves the

quality of planning solutions. The effective initial solution based and ideal planning

(LPST) is able to enhance the planning performance, optimality gap and total cost, up to

59% averagely from another method (LP). In practice, this model is also useful for

decision support such as forecasting capability of a system or predicting the impact

when short-term capacity is inadequate and congestion cannot be reduced with

subcontracting. However, an optimization approach has its drawbacks to solve

problems, when the problems become larger or more complicated. It results in a long

computational time. Applying a heuristic approach is an interesting method to enhance

the solving performance. The next chapter will therefore present the study of a heuristic

method for solving resource planning problems.

77

CHAPTER 4

A tabu search approach for resource planning

4.1 Introduction

In the previous chapter, the optimization method is successfully applied for

solving the small planning instances. However, it could not solve the large scale

instances in reasonable time. There are many factors that limit the planning execution

and its performance, such as problem size and data variability. Approximation

algorithms or heuristic approaches are quite a good alternative method for solving

planning problems since they are able to provide a near optimal solution with

reasonable computational time.

Planning performance directly reflects manufacturing efficiency, which mainly

respects to maximizing profitability. Several improvement concepts have been proposed

to increase a quality of planning. The just-in-time (JIT) philosophy is recognized as an

efficient productivity strategy. It has been described as an approach with the objective

of producing the right product at the right time. Adapting JIT into planning, customer

demands attempt to be processed and finished exactly on their due date to reduce WIP,

inventory, and production costs (Baker and Scudder 1990). The planning with the JIT

concept seems to be an ideal planning in which the system would not have both

earliness and tardiness. From this perspective, this study is motivated to create a

resource plan based on the JIT concept. A particular resource planning problem under

MTO environments, which is the same as the previous chapter, is presented. The system

78

represents a job shop production with distinct job features. Each job has different

machine routings, process lengths and due dates. The resource planning aims to

determine a feasible resource assignment in which the objective is to improve total

weighted cost of earliness, tardiness, and lead time.

To deal with a complicated planning problem, tabu search is applied to solve the

problem since a feasible solution can be obtained with a limited time (Glover 1986). In

order to create an efficient resource plan, the JIT concept is implemented to develop a

proposed algorithm through all main procedures of tabu search from the solution

initialization to the solution performance measurement. A resource plan is initially

generated by simulating an ideal plan from a backward scheduling approach. According

to finite capacity, the initial plan might be infeasible due to overloading capacities in

some periods. An improvement algorithm is generated to improve the initial resource

plan to be feasible and toward an ideal plan. The improvement algorithm is decomposed

into two sub-algorithms based on the objective function: the overloading improvement

algorithm (OIA) and the makespan improvement algorithm (MIA). These two

algorithms basically are used to search a new solution and to generate a feasible plan

that comes as close as possible to an ideal solution. OIA aims to improve the initial

solution from overloading capacities. Meanwhile, MIA is used to continually improve

the solution obtained from OIA. The objective of MIA is to improve earliness,

tardiness, and lead time. An improvement of all these parameters can reduce makespan

in the system so that this algorithm is called the makespan improvement. Neighborhood

structure is an important procedure in tabu search that affects the efficiency of a new

solution. A latest possible start time (LPST) concept, which presents the latest start time

79

to finish a job on time, is proposed to design a moving space in the neighborhood

structure. Then, an integration of pull and push approaches is developed as a scheduler

to create a new resource plan based on an ideal plan.

In the remainder, this chapter is organized as follows. Section 4.2 describes the

problem statement. Then, Section 4.3 illustrates the mathematical model for tabu

search. Section 4.4 describes the details of procedure and parameter required in the

proposed tabu search algorithm. Section 4.5 presents the computational experiments and

Section 4.6 discusses the planning results of the tabu search algorithm. Finally, Section

4.7 summarizes the conclusion of this research.

4.2 Problem statement

A set of I jobs need to be planned on a set of H resources in order to minimize a

weighted cost function with costs for the earliness, tardiness and lead time of each job.

A variable number of operations for each job are allowed, and each job follows a

different routing (sequence that the job visits resources). A discrete-time model of

capacity is used. On each resource, a planning horizon is uniformly divided into

intervals (time buckets), which capacity can vary if desired. Since tactical-level

planning is emphasized, consecutive operations for a job are not allowed to be

processed in the same bucket, and each operation is performed in a single bucket.

4.3 Mathematical model

In this section, a new binary integer linear programming formulation of job shop

planning problems is described. The model provides optimal solutions for small

instances that can be compared to solutions obtained with the more scalable tabu search

80

method described in Section 4.4. This model is similar to the model in the previous

chapter, but a difference is that this model emphasizes job planning on only existing

resources. The additional capacities from subcontractor and extra resources are not

allowed in the model. The notation of all parameters is denoted as follows.

T(i, j) = Index of bucket when operation j of job i is planned

Lij = Latest possible start time of operation j of job i

Pij = Process time of operation j of job i

Rij = Routing: index of resource that performs operation j of job i

Ji = Number of operations of job i

Si = Earliest start date of job i

Di = Due date of job i

Fi = Finish date of job i

Bhk = Capacity of bucket k for resource h

Pi
e = Earliness penalty for job i

Pi
t
 = Tardiness penalty for job i

Pi
l = Lead time penalty for job i

Ci
e
 = Earliness cost of job i

Ci
t
 = Tardiness cost of job i

Ci
l
 = Lead time cost of job i

i = Index for set of jobs; i = 1…I

j = Index for set of operations required by a job; j = 1…Ji

h = Index for set of resources; h = 1…H

k = Index for set of buckets on each resource; k = 1…K

81

Decision variable:

 xijk = 1 if operation j of job i is planned in bucket k, 0 otherwise

Model:

Minimize ∑
=

++
I

i

l
i

t
i

e
i CCC

1

)(

subject to

∑
=

K

k
kikx

1
1 Si i = 1…I (13)

∑
=

K

k
ijkkx

1

 < ∑
=

+

K

k
kjikx

1
)1(i = 1…I, j = 1…Ji -1 (14)

∑
=

K

k
ijkx

1

 1 i = 1…I, j = 1…Ji (15)

∑∑
= =

I

i

J

j
ijijk

i

Px
1 1

 Bhk

where Rij = h h = 1…H, k = 1…K (16)

ijkx

∈

{0,1} (17)

where

T(i, j) = ∑
=

K

k
ijkkx

1

 (18)

Fi = T(i,Ji) (19)

Ci
e = ((Di - 1) - Fi)(Pi

e) if Fi < (Di - 1) (20)

Ci
t = (Fi - (Di - 1))(Pi

t) if Fi (Di - 1) (21)

Ci
l = (Fi - T(i, 1) + 1)(Pi

l) (22)

≥

≤

≤

≥

82

The explanations of each constraint and equation are described as follows.

Constraint (13) ensures that jobs are not planned on resources before they are available

to start. Constraint (14) enforces operation precedence constraints. Constraints (15) and

(17) ensure operations are planned in only one bucket. Constraint (16) enforces resource

capacity constraints. Equation (18) defines the operation start time of each operation of

a job. Equation (19) defines the finish date of a job, which is used to calculate the

various costs for each job. Equation (20) defines the earliness cost for a job, equation

(21) defines the tardiness cost for a job, and equation (22) defines the lead time cost for

a job.

4.4 Tabu search for resource planning

Tabu search is a global iterative optimization approach which means the search

moves from one solution to another better solution in neighborhood spaces (Taillard

1989). The approach tries to find local optimality with a strategy of forbidding certain

moves in order to prevent search cycling. A forbidden move is called tabu. The tabu

move will be held in a memory with a relatively short time and then it will be released

from the tabu status and changed to be accessible (Glover 1986).

A tabu search procedure begins with generating an initial solution. Then the next

step is to define a solution space and search for neighborhoods. The generated

neighborhoods are all possible moves from the current solution space. The next solution

is selected by evaluating all neighborhoods and moving to the neighborhood that

provides the best performance. The move will be updated in the short term memory

called tabu list. This tabu restriction is used to prevent cycling of moving. Then, the

aspiration criteria checking procedure is performed to accept or reject the neighborhood

83

to be the best solution of the system. The last procedure is a stopping criteria procedure.

The stopping criteria are used to terminate the search procedure when a solution is

found or any stopping condition is satisfied.

Figure 14: Tabu search algorithm procedure

This study proposes the new tabu search method to generate resource plans.

Recall that an ideal resource plan is a plan that jobs need to be completed on their due

date in order to avoid the costs from WIP, finished goods inventory, and backorder. The

procedure of the proposed algorithm is illustrated in Figure 14. The details of each

procedure will be described based on the following main elements of tabu search:

solution initialization, search space and neighborhood structure, tabu list, aspiration

condition, and stopping criteria.

Generate an initial plan

Determine time-phased
resource loading

(Phase 1) OIA: Eliminate
overloads and create a

capacity-feasible plan by
pulling and pushing tasks

(Phase 2) MIA: Attempt
to improve earliness,

tardiness, and makespan

Terminate system

No

Yes

Yes

No
Are any buckets

overloaded?

Is the stopping criteria
met?

84

4.4.1 Solution initialization

Starting a problem with a good solution will help the solver reach the solution

faster (Danna et al. 2004). Therefore, to create the first resource plan that is similar to

an ideal schedule, the backward scheduling approach with no capacity constraints is

used to initialize a solution. The backward scheduling approach begins by loading the

last operation of a job to finish at its due date. It then continues by loading the job's

preceding operation to finish at the start time of the last operation. This process is

continued, working backward in time, until the first operation of the job is loaded. The

advantage of a backward algorithm is that a schedule can be generated with no late job.

Also, this method helps to minimize WIP and shorten job lead time. To initialize a

solution, resource constraint relaxation is assigned by assuming an ideal resource

capacity. It means that a resource can support as many jobs as possible without capacity

restriction. Even though this method provides the optimal planning with zero earliness

and lateness, it still affects overloaded capacity where the total loading might be greater

than available capacity in some periods. A greater detail of the backward scheduling

approach can be seen in section 3.3.1.

4.4.2 Neighborhood structure

In local search, neighborhood structure is one of the most important procedures

which are used to search and develop new solutions. It directly dominates the efficiency

of new solutions in terms of solution quality. Unnecessary and infeasible moves need to

be eliminated as much as possible to reach a desired solution more efficient (Zhang et

al. 2007). The JIT concept has been applied into neighborhood structure in order to

narrow the search and reduce inappropriate moves as well as generate a feasible plan,

85

which is close to an ideal solution. With the JIT concept, the proposed algorithm based

on tabu search is developed and divided into two phases, which are the overloading

improvement algorithm (OIA) and the makespan improvement algorithm (MIA). The

approach uses the ideal plan based on JIT as the initial resource plan. Phase 1, the

Overloading Improvement Algorithm (OIA), will make the ideal plan feasible rather

than attempting to construct a good feasible plan from scratch. Minimal adjustments to

task times are performed to create a finite-capacity plan. Phase 2, the Makespan

Improvement Algorithm (MIA), searches for alternate finite-capacity plans which have

decreased earliness, tardiness and lead time. The details of both algorithms are

described as follows.

(1) Overloading Improvement Algorithm (OIA)

According to the limitation of capacity, the initial solution from the backward

planning approach will create some overloaded capacities. The proposed algorithm

attempts to improve the resource plan from these capacity shortages and make the plan

become feasible. The OIA procedure begins with choosing the maximum overloading

bucket in the horizon. The jobs in the bucket are identified and put in the list for

assigning the move. Each job represents individual neighborhood. Since we allow to

move one job at a time, the neighborhood is a new solution from moving the job out of

the overloaded bucket to reduce the capacity shortage. The selected job will be

offloaded to other sufficient buckets by using the pull and push methods. These both

methods are similar to the solution generating concept implemented in He et al. (1993).

The pull method is used to move a job to process in the earlier bucket positions.

86

Meanwhile, the push method is used for pushing a job to process in the later bucket

positions.

In the backward capacity approach, each job needs to be processed at the latest

possible start time. On the other hand, this approach generates the upper bound of the

solution. Hence, when some buckets are overloaded, the pull method will be the first

approach applied to reduce the excess loading. The pull method is used until either

finding a new sufficient bucket loading or reaching the earliest start date of the job. If

the job is shifted back until reaching the start date without finding a new available

bucket, the push method will be implemented. The moving also includes the rest of the

operations in the job. However, the moving in the other operations will be selected

based on the moving type of the first move. If the pull method is applied, the

precedence operations will be moved to the position ahead of the current bucket. If the

push method is implemented, the successive operations will be focused to move. After

moving all concerned operations, a new neighborhood is generated. This procedure will

be repeated until all jobs in the overloaded bucket are moved. To enumerate the total

neighborhood for individual iterations, it can be determined that the total neighborhood

is equal to the number of jobs in the maximum overloaded bucket. For example, if the

max overloaded bucket contains two jobs, two different neighborhoods can be created.

To clarify the procedure of pull and push methods, Figures 15 and 16 present

load graphs of these methods at different machines and buckets. The dotted line

presents loading capacity for each resource. It assumes that a job has to be processed on

three operations. The job that plans to be offloaded from the overloaded bucket is called

the target job. From Figure 15(a), the target job has the operation start time sequence at

87

bucket (3, 4, 5). It can be seen that the overloaded capacity is at bucket 4 of machine 2

or at operation 2 of the target job. To eliminate the overloaded capacity, the pull method

will be used by pulling the overloaded operation in bucket 4 to the nearest available

bucket in bucket 3. Once operation 2 is moved, the precedence operation like operation

1 has to be moved also. Operation 1 will be processed in bucket 2. Figure 15(b) shows

the consequence which the new operation start time sequence is (2, 3, 5).

Figure 15: Pull method results (a) Before: Operation start time = (3, 4, 5);

and (b) After: Operation start time = (2, 3, 5)

In Figure 16, the push system will be applied in case the overloaded operation

cannot be shifted to the left side due to reaching the earliest start date. The overloaded

operation at bucket 2 will be pushed out to bucket 3. Also, the successive operation has

to be pushed out as well. In this case, the new operation start time sequence is (1, 3, 5).

Resource Resource

1
MC1 1 MC1

2
2

MC2 MC2

3 3
MC3 MC3

1 2 3 4 5 6 7 Bucket 1 2 3 4 5 6 7 Bucket
(a) (b)

88

Figure 16: Push method results (a) Before: Operation start time = (1, 2, 3);

and (b) After: Operation start time = (1, 3, 5)

To define the best neighborhood, three-tier hierarchy decision making, which

consists of smallest maximum overload, minimum total tardiness, and minimum

number of overloaded buckets, is implemented. The procedure of the best neighborhood

determination considers one tier of measurement at a time by starting from the first tier.

If the first tier provides more than one best solution, the second and third tier will be

used to determine the final best neighborhood respectively. Otherwise, the best

neighborhood is obtained.

After the best neighborhood is found, the next step is to decide whether the best

neighborhood can be the best solution of the problem. Aspiration criteria, which are the

conditions to determine the acceptance of a new best neighborhood as a new best

solution for the next iteration, are used to evaluate the solution. The criteria consist of

three-tier hierarchy of decision making such as minimum of maximum overload, total

tardiness, and total lead time. The procedure to find the best solution is as same as the

procedure of the best neighborhood determination in which if the first tier such as

Resource Resource

MC1 1 MC1 1

2
2

MC2 MC2

3 3
MC3 MC3

1 2 3 4 5 6 7 Bucket 1 2 3 4 5 6 7 Bucket
(a) (b)

89

minimum of maximum overload cannot define the best solution, the second and third

tier will be successively considered. Whether or not the best neighborhood becomes the

best solution, the best neighborhood will be used to start the next iteration.

(2) Makespan Improvement Algorithm (MIA)

The algorithm continues to improve a resource plan in terms of earliness,

tardiness, and lead time. The JIT concept is applied into search space and neighborhood

structure, which are important procedures of local search, to lead the search to a desire

solution. The algorithm attempts to narrow the search space by identifying the distance

between a current solution and an ideal solution and defining appropriate moves. To

explore new solutions toward an ideal resource plan, neighborhood structure must

efficiently perform. Several schemes have been proposed to generate neighborhoods

(Tsubakitani and Evans 1992, Dell’Amico and Trubian 1993, James 1997). Three main

schemes include insert, swap, and a combined method of insert and swap. James (1997)

compared these three schemes and concluded that the best scheme was the hybrid of

insert and swap neighborhood since it effectively provide a variety of new solutions.

Therefore, in this algorithm both insert and swap schemes are applied to neighborhood

structure in which the purpose is to move the late or early jobs back in order to close to

an ideal solution.

The MIA procedure begins with obtaining an initial solution from OIA which it

may contain either early or tardy jobs. To improve the solution, a target job is defined as

a job which has maximum absolute lateness. A target job (i, j) represents each operation

j of target job i. A set of possible neighborhood (NBH) points, where the notation (y, z)

represents a NBH point (NBH job y, NBH operation z), is then generated. The

90

insert/swap method will interchange the target job with the selected NBH jobs in the

horizon. In this algorithm, two new parameters, earliest possible start time (EPST) and

latest possible start time (LPST) are introduced. These two parameters are used to

determine the range of possible operation start time of each job and also define properly

selected NBH jobs. The EPST is the earliest time that each operation of a job can be

processed immediately since the job arrives the system. The EPST (Eij) of each job i

and operation j can be determined as equation (23). Whereas the LPST is the latest time

that each operation of a job is processed and the job can be finished on time. This

parameter is used to identify jobs that can be the NBH jobs. The LPST (Lij) of each job i

and operation j can be determined as equation (24). The notation of the parameters is

described in section 4.3.

Eij = Si + j – 1 (23)

Lij = (Di – 1) – (Ji – j) (24)

The search of NBH points is different depending on the type of the target job. If

the target job is tardy, the search will focus on the resource of the last operation of the

target job. This is to guarantee that the new solution of the target job will not be

processed later than the current plan. Meanwhile, if the target job is an early job, the

search will emphasize the resource of the first operation of the target job.

In order to define the NBH points, the results from two methods, the insert and

swap methods, are considered. In the insert method, the sufficient buckets, which can

process the target job without moving any other jobs, are considered. In this case, the

NBH job will be updated as null (�) in a set of NBH points. For the swap method, if the

91

target job is tardy, the job which has equal or greater LPST will be accepted to be a

NBH point. Otherwise, the job which has equal or lesser LPST will be selected. The

search space for both two schemes is considered dependent on the type of target job as

follows:

Tardy job: Start = EiJi

 End = T(i, Ji) – 1

Early job: Start = T(i, 1) + 1

 End = Li1

When a set of NBH points is defined, the next step is creating the neighborhood

of each NBH point. The neighborhood of MIA is a new solution when interchange the

target job with the NBH point and other related jobs. To generate new neighborhoods,

several jobs in the horizon will be considered to move by using the pull and push

methods. These jobs can be categorized into two types which are a NBH job and move

job. The NBH job (y, z) represents each NBH point or the job that swaps with the target

job (i, j) when j = Ji in the tardy target job case or j = 1 in the early target job case.

Meanwhile, the move job (y, z) represents the job that swaps with the target job (i, j)

when j ≠ Ji in the tardy target job case or j ≠ 1 in the early target job case. The details of

neighborhood generation are summarized as follows.

Procedure:

Step 1: Insert or swap the target job (i, j) with a NBH job (y, z) and determine the

new operation start times of the target job.

 Tardy job: T(i, Ji) = T(y, z)

 Early job: T(i, 1) = T(y, z)

92

 Step 2: Find the new operation start time (T(y, z)) for the NBH job (y, z) or move

job (y, z). This also includes the successive operations in the NBH (or

move) job. The search method will be performed based on the condition of

operation z as shown below.

(1) If operation z is equal to one, the pull method is used to search the new

operation start time. The search would not be processed earlier than the

earliest start date of the NBH (or move) job y. If the pull method

cannot provide the new solution, the push method is then used to

search an available bucket.

 (2) If operation z is not equal to one, the push method is used to search the

new operation start time by starting the search after the operation start

time of the previous operation of the NBH (or move) job (y, z).

 Step 3: Find the new operation start times for the rest operations (m) of the target

job (i, j) and their possible move jobs as the following steps.

(1) For each operation, define the search range which depends on whether

a target job is tardy or early. For tardy jobs, the search considers earlier

operation start times that could reduce tardiness. For early jobs, the

search considers later operation start times that could reduce earliness,

but it would not cause the job to become tardy.

Tardy jobs: Start = Eim where m = Ji -1,…, 1

 End = T(i, j) – (Ji – m)

Early jobs: Start = T(i, j) + (m-1) where m = 2,…, Ji

 End = Lim

93

(2) Determine the new operation start time for the operation m of the target

job by using the insert and swap methods. The insert method is

implemented first. If it cannot provide any solution, the swap method

will be used. If the solution cannot be found, skip to the next NBH

point or terminate the system if the NBH point list is empty.

 (i) Insert method: When a bucket with availability is located in the

obtained search range, the operation m will be inserted into the

bucket and then the search of the operation m will be terminated.

Also, if an operation of jobs in the obtained search range is 1 and it

can be pulled to process in the previous available buckets but not

earlier than its earliest start date, the bucket can be free up and

process the operation m. The move job in this case will be

considered to be null.

 (ii) Swap method: Comparing the Lim of the target job with the LPST

of the jobs in the obtained search range. The move job is the job

which its LPST is equal or greater than Lim for the tardy target job

or equal or lesser than Lim in the early target job. The search will be

break once one move job is found.

(3) Update the new operation start time (T) for the operation m of the

target job.

(4) If the move job is null, proceed to task (5) of step 3. Otherwise,

proceed to step 2 to find the new operation start time (T) of move job (y,

z).

94

(5) Check whether there are any operation m of target job (i, j) that has not

been updated. If yes, repeat task (1) of step 3. Otherwise, proceed to

step 4.

Step 4: Update the new solution and evaluate the solution performance, such as

earliness, tardiness, and lead time.

The above procedure is repeated for all NBH points. To evaluate the best

neighborhood, three-tier hierarchy decision making is used to determine the solution in

which the three tiers consist of total tardiness, total earliness and total lead time. These

criteria, total tardiness, total earliness, and total lead time, is also applied for accepting

the best solution of the system in the aspiration criteria procedure.

To clarify the MIA procedure, the simple instance is presented as follows. There

are four jobs needed to be planned. All assumptions, such as job routing, earliest start

date and due date, are shown in Table 18. An initial solution is generated by using the

backward scheduling approach. The load graph of the initial solution is presented in

Figure 17(a) in which the dotted line represents resource capacity and the diagonal strip

presents an available bucket. Each box presents a job which is processed in a specific

bucket. In each box, the first number represents a job number and the second number

represents an operation number. From Figure 17(a), it can be seen that the original

resource capacity cannot support all requirements in period 2 at MC1, period 3 at MC2,

and period 4 at MC3. OIA is applied to improve these overloading capacities. It is

assumed that the OIA output is illustrated in Figure 17(b).

95

Table 18: Data for the testing instance

Figure 17: OIA load graph (a) Ideal initial solution; and (b) The output of OIA

The MIA procedure starts from defining a maximum deviation time. From

Figure 17(b), the target job with a maximum tardiness is selected, which is job 4

(tardiness = 2 buckets). The next step is determining the NBH points. The search

focuses at the resource of the last operation of job 4 which is MC3. The search range

starts from the earliest start time of job (4, 3), which is bucket 3, to the previous current

bucket of job (4, 3), which is bucket 5. The NBH points are determined by using LPST

parameter and accept the job which has an equal or larger LPST than the LPST’s target

job (4, 3) (LPST = 4). The NBH points can be created as Table 19 below and the

example of NBH generation is shown in the following steps.

Job Routing Earilest start date Due date

1 M1, M2, M3 1 5

2 M2, M3, M1 1 5

3 M3, M1, M2 1 5

4 M1, M2, M3 1 5

Resource Resource
41

MC1 11 32 23 MC1 41 11 32 23

42
MC2 21 12 33 MC2 21 12 33 42

 43
MC3 31 22 13 MC3 31 22 13 43

1 2 3 4 5 6 7 Bucket 1 2 3 4 5 6 7 Bucket
(a) (b)

96

Table 19: Example of NBH point generation

Step 1: At the NBH point = {(1, 3), 4}, the target job (4, 3) is swapped with

the NBH job (1, 3) and then update the new operation start time (T).

T(4, 3) = 4

Step 2: Find the new operation start time of the NBH job 1. The push method

is used and it can be found that the nearest available bucket for the

NBH job 1 is bucket 5. Update the new operation start time of the

NBH job (1, 3) to be 5.

 T(1, 3) = 5

 New operation start times of NBH job 1 = {2, 3, 5}

Step 3: Find the new operation start time for the rest operations of the target

job 4.

Target job (4, 2):

(1) Create the search range: Start = bucket 2 and End = bucket 3.

(2) Consider job (2, 1) in bucket 2. The insert method can be used to

find the nearest available bucket by pulling job (2, 1) to process in

bucket 1. Then insert job (4, 2) into bucket 2.

(3) Update the new operation start times (T).

 T (4, 2) = 2

 T (2, 1) = 1

Bucket number Job in bucket LPST NBH point {NBH job(y , z), bucket}

3 (2, 2) (2, 2) = 3 {-}

4 (1, 3) (1, 3) = 4 {{(1, 3), 4}}

5 � � {{(1, 3), 4}, { �, 5}}

97

 New operation start time of move job 2 = {1, 3, 4}.

Target job (4, 1):

(1) Create the search range: Start = bucket 1 and End = bucket 1.

(2) Do not need to search for the new operation start time since the

start time and the end time are in the same bucket.

 New operation start time of target job 4 = {1, 2, 4}

Step 4: Update the new solution of this NBH point.

 Operation start time = {{2, 3, 5}, {1, 3, 4}, {2, 3, 4}, {1, 2, 4}}

Figure 18: Solution for move point (a) {(1, 3)}; and (b) {ф}

This procedure will be repeated for another NBH point. Figure 18 presents the

load graph results for both NBH points. In Figure 18(a) and (b), these two results

provide the same performance results which they have one bucket of total tardiness,

zero buckets of total earliness, and fifteen buckets of total lead time. Either solution can

be chosen to start for the next iteration. MIA will keep improving the solution until it

meets the stopping criteria. The details of stopping criteria are discussed in section

4.4.5. The final result for this instance is presented in Figure 19. It can be observed that

Resource Resource

MC1 41 11 32 23 MC1 41 11 32 23

MC2 21 42 12 33 MC2 21 42 12 33

MC3 31 22 43 13 MC3 31 22 13 43

1 2 3 4 5 6 7 Bucket 1 2 3 4 5 6 7 Bucket
(a) (b)

98

this plan can improve total tardiness, total earliness, and total lead time to zero buckets,

one bucket, and fourteen buckets, respectively.

Figure 19: Load graph of the MIA result

4.4.3 Tabu list

 Tabu list is the short term memory that is used to prevent cycle searching. This

list contains a set of tabu points or an array of pairs of moving jobs and moving

positions. When the best neighborhood is chosen, this data will be updated in the tabu

list. Tabu point will be prohibited from reversing until either passing a predefined

number of iterations or finding a better solution from this reversing. In this research, the

size of tabu list is varied based on number of jobs in problem instances. Glover (1986)

reported that the best tabu size is approximately seven. However, Tsubakitani and

Evans (1992) mentioned that the size of tabu list depends on the problem size and local

search heuristics. It should be set as small as possible but long enough to prevent the

cycling.

4.4.4 Aspiration criteria

 Aspiration criteria are the conditions which determine the acceptance of a new

best neighborhood as a new best solution for the next iteration. This research divided

Resource

MC1 11 41 32 23

MC2 21 12 42 33

MC3 31 22 13 43

1 2 3 4 5 6 7 Bucket

99

the aspiration criteria into two parts based on the proposed algorithms: OIA and MIA.

Both algorithms use a hierarchical decision making approach to accept or reject a new

neighborhood. In OIA, the three-tier decision making hierarchy which consists of

minimum of maximum overload, total tardiness, and total lead time is applied.

Meanwhile, in MIA, the three emphasized tiers are total tardiness, total earliness, and

total lead time. In hierarchical decision making, the best solution will be determined by

measuring one parameter at a time. The measurement will consider from the highest

priority parameter which is the first tier parameter. If the first tier measurement cannot

decide the best solution, the second and third tier will be successively considered.

4.4.5 Termination criteria

 The terminate condition in the algorithm procedure consists of three criterion. In

OIA, the process will be repeated until one of three stopping criteria is met. The first

criterion is zero overloaded capacity. The second criterion is reaching the number of

sequential iterations without improvement of an objective value. The third criterion is

reaching the predefined number of total iteration. If the first condition is satisfied, the

system will be moved forward to MIA. Otherwise, the system will be terminated.

 In MIA, there also have three stopping criteria. The first is a number of

sequential iterations without improvement of an objective value. The second is a

predefined computational time. The third is a predefined number of total iteration. If

any condition is satisfied, the system will be terminated.

100

4.5 Computational experiments

 The experiments are conducted to test the performance of the tabu search

procedure. The study is separated into two sections. The first section is to investigate

the performance of the tabu search algorithm in combinatorial problems. The second

section is to test the efficiency of the tabu search algorithm on large problem instances

and compare the solutions to the dispatching rules, such as first in first out (FIFO) and

earliest due date (EDD). Both experiments are to investigate the impacts of planning

improvement at different variabilities and then identify the most impacted parameter on

the solution performance. The algorithms are coded up on Eclipse 3.5.0 with the Java

language and run on a personal computer with a 1.73 GHz processor.

4.5.1 Experimental parameters

In order to observe the solution impact at different problem scalability and

difficulty, the instances are generated at different variability levels of three interesting

parameters: number of operations per job, due date tightness, and resource utilization.

The number of operations presents process requirement in each job. Since the problem

presents job shop planning with multiple machines, each job requires an individual

routing based on an assigned number of operations. These different process lengths

reflect different problem complexities. Three levels of number of operations are

proposed. The factor level is varied from small range to larger range of uniform

distribution of number of operations as shown in Table 20. To interpret the data, if an

instance has the number of operations at [3, 10], it means that each job will randomly

generate the number of operations from 3 to 10 operations.

101

The second parameter, due date tightness, is time allowed to process a job. Since

different ranges of due time reflect machine requirement at varied periods of time, four

levels of due date tightness, as in Table 20, are considered. These due date ranges are

varied based on the number of operations per job.

The last parameter, resource utilization, represents the congestion in the system

as well as number of jobs. To be able to measure the levels of planning difficulty and

determine the performance impact from that variance, resource utilization is used to

define a number of jobs in each planning instance. Seven levels of percentage of

loading per bucket at the bottleneck resource are varied with the uniform distribution

[25%, 95%], [45%, 95%], [65%, 95%], [7%, 95%], [85%, 95%], [75%, 110%], and

[55%, 140%]. An average resource utilization of each level is 60%, 70%, 80%, 85%,

90%, 92.5%, and 97.5%, respectively.

For other fixed parameters, processing time of each job on each machine is

randomly generated with uniform distribution [300, 700] seconds. In the planning

horizon, loading capacity per bucket is 86,400 seconds and the length of the horizon is

varied based on the number of operations parameter. Cost is used as performance

measurement. All costs are assumed as follows: earliness cost = $30/bucket, tardiness

cost = $50/bucket, and lead time cost = $20/bucket. A size of tabu list is assumed to be

7 when the number of jobs (N) is less than 225 jobs and a round down number of N/32

when the number of jobs (N) is greater than 225 jobs (Tsubakitani and Evans 1992). An

unimproved solution number for terminating the system is set to 500.

102

Table 20: Summary of experimental parameters

4.5.2 Experimental design

In the experiment, the problems are coordinately tested with the complicated

conditions on variability and scalability from distinct job configurations (routings and

due dates) and resource availability. Since there are three levels of number of

operations, four levels of due date tightness, and seven levels of resource utilization, 84

total experiments are studied. The computational time is assumed to be unlimited for

OIA, but it is limited at 1,800 seconds for MIA. The experiment is divided into two

parts which are the study of performance of the tabu search algorithm at different

variabilities and the comparative study of the tabu search algorithm with the other

heuristics, FIFO and EDD.

4.6 Results and analysis

 This section presents the numerical results of performance indicators, such as

earliness time, tardiness time, total lead time, and computational time at different

combinatorial problems. Tables 21-32 illustrate the summary of the solution

improvement in each stage of the tabu search algorithm, solution initialization, OIA,

and MIA.

Number of operations Due date tightness Planning horizon (buckets)

[3, 5] 5, [5, 10], [5, 15], [5, 20] 25

[3, 10] 10, [10, 15], [10, 20], [10, 25] 35

[3, 15] 15, [15, 20], [15, 25], [15, 30] 45

103

Table 21: Results for number of operations [3, 5] and due date tightness [5]

Resource
utilization

Number
of jos

Stage Iteration
Tardiness

time
(Bucket)

Earliness
time

(Bucket)

Total lead
time

(Bucket)

Number of
overloaded

buckets

Computational
time (seconds)

[25%, 95%] 230 Initial solution 0 0 0 933 4 0

OIA 4 2 2 935 0 8

MIA 509 0 5 934 0 1,800

[45%, 95%] 304 Initial solution 0 0 0 1,222 5 0

OIA 7 1 8 1,222 0 11

MIA 472 0 11 1,223 0 1,800

[65%, 95%] 350 Initial solution 0 0 0 1,434 23 0

OIA 41 114 14 1,489 0 76

MIA 79 51 26 1,459 0 1,800

[75%, 95%] 379 Initial solution 0 0 0 1,530 25 0

OIA 60 293 10 1,630 0 141

MIA 99 214 16 1,565 0 1,800

[85%, 95%] 402 Initial solution 0 0 0 1,593 29 0

OIA 73 424 15 1,693 0 128

MIA 119 359 15 1,624 0 1,800

[75%, 110%] 389 Initial solution 0 0 0 1,541 32 0

OIA 59 252 11 1,647 0 131

MIA 101 208 17 1,583 0 1,800

[55%, 140%] 410 Initial solution 0 0 0 1,617 35 0

OIA 88 439 11 1,748 0 181

MIA 118 395 14 1,679 0 1,800

104

Table 22: Results for number of operations [3, 5] and due date tightness [5, 10]

Resource
utilization

Number
of jos

Stage Iteration
Tardiness

time
(Bucket)

Earliness
time

(Bucket)

Total lead
time

(Bucket)

Number of
overloaded

buckets

Computational
time (seconds)

[25%, 95%] 287 Initial solution 0 0 0 1,002 6 0

OIA 11 2 10 1,012 0 16

MIA 393 0 29 1,010 0 1,800

[45%, 95%] 306 Initial solution 0 0 0 1,207 12 0

OIA 31 4 47 1,238 0 84

MIA 77 0 60 1,278 0 1,800

[65%, 95%] 354 Initial solution 0 0 0 1,426 25 0

OIA 53 148 49 1,499 0 84

MIA 92 101 68 1,537 0 1,800

[75%, 95%] 384 Initial solution 0 0 0 1,499 26 0

OIA 77 236 31 1,691 0 138

MIA 106 181 54 1,622 0 1,800

[85%, 95%] 405 Initial solution 0 0 0 1,614 36 0

OIA 106 359 15 1,839 0 231

MIA 84 276 49 1,723 0 1,800

[75%, 110%] 411 Initial solution 0 0 0 1,624 42 0

OIA 107 369 44 1,813 0 249

MIA 120 286 75 1,760 0 1,800

[55%, 140%] 405 Initial solution 0 0 0 1,596 44 0

OIA 122 521 54 1,873 0 275

MIA 75 407 85 1,786 0 1,800

105

Table 23: Results for number of operations [3, 5] and due date tightness [5, 15]

Resource
utilization

Number
of jos

Stage Iteration
Tardiness

time
(Bucket)

Earliness
time

(Bucket)

Total lead
time

(Bucket)

Number of
overloaded

buckets

Computational
time (seconds)

[25%, 95%] 225 Initial solution 0 0 0 889 7 0

OIA 12 5 13 901 0 12

MIA 488 0 45 891 0 1,800

[45%, 95%] 318 Initial solution 0 0 0 1,287 20 0

OIA 65 94 59 1,473 0 131

MIA 146 37 168 1,510 0 1,800

[65%, 95%] 351 Initial solution 0 0 0 1,414 30 0

OIA 88 197 84 1,661 0 124

MIA 119 98 171 1,730 0 1,800

[75%, 95%] 386 Initial solution 0 0 0 1,544 36 0

OIA 137 313 67 1,921 0 234

MIA 108 265 86 1,881 0 1,800

[85%, 95%] 404 Initial solution 0 0 0 1,587 40 0

OIA 137 483 121 1,934 0 231

MIA 93 359 140 1,965 0 1,800

[75%, 110%] 409 Initial solution 0 0 0 1,603 43 0

OIA 165 463 185 2,085 0 288

MIA 103 290 284 2,126 0 1,800

[55%, 140%] 415 Initial solution 0 0 0 1,657 37 0

OIA 168 595 127 2,178 0 330

MIA 10 412 234 2,135 0 1,800

106

Table 24: Results for number of operations [3, 5] and due date tightness [5, 20]

Resource
utilization

Number
of jos

Stage Iteration
Tardiness

time
(Bucket)

Earliness
time

(Bucket)

Total lead
time

(Bucket)

Number of
overloaded

buckets

Computational
time (seconds)

[25%, 95%] 269 Initial solution 0 0 0 1,097 21 0

OIA 48 36 35 1,224 0 59

MIA 221 0 215 1,243 0 1,800

[45%, 95%] 324 Initial solution 0 0 0 1,298 28 0

OIA 95 199 139 1,562 0 182

MIA 198 77 306 1,595 0 1,800

[65%, 95%] 358 Initial solution 0 0 0 0 0 0

OIA 0 221 186 1,883 0 277

MIA 156 111 301 1,920 0 1,800

[75%, 95%] 388 Initial solution 0 0 0 1,564 39 0

OIA 153 436 153 2,003 0 298

MIA 113 279 273 2,106 0 1,800

[85%, 95%] 394 Initial solution 0 0 0 1,586 39 0

OIA 188 434 197 2,175 0 314

MIA 96 298 270 2,295 0 1,800

[75%, 110%] 406 Initial solution 0 0 0 1,612 43 0

OIA 181 450 293 2,145 0 373

MIA 95 287 324 2,309 0 1,800

[55%, 140%] 433 Initial solution 0 0 0 1,699 40 0

OIA 231 691 260 2,481 0 568

MIA 78 489 382 2,530 0 1,800

107

Table 25: Results for number of operations [3, 10] and due date tightness [10]

Resource
utilization

Number
of jos

Stage Iteration
Tardiness

time
(Bucket)

Earliness
time

(Bucket)

Total lead
time

(Bucket)

Number of
overloaded

buckets

Computational
time (seconds)

[25%, 95%] 390 Initial solution 0 0 0 0 10 0

OIA 18 2 10 2,584 0 101

MIA 56 0 11 2,582 0 1,800

[45%, 95%] 437 Initial solution 0 0 0 2,836 12 0

OIA 19 0 24 2,847 0 123

MIA 31 0 21 2,850 0 1,800

[65%, 95%] 486 Initial solution 0 0 0 3,133 23 0

OIA 66 338 28 3,262 0 437

MIA 50 276 47 3,210 0 1,800

[75%, 95%] 528 Initial solution 0 0 0 3,450 35 0

OIA 95 645 35 3,843 0 750

MIA 30 556 63 3,675 0 1,800

[85%, 95%] 554 Initial solution 0 0 0 3,561 42 0

OIA 102 860 33 4,062 0 788

MIA 26 778 57 3,893 0 1,800

[75%, 110%] 580 Initial solution 0 0 0 3,769 56 0

OIA 142 1,228 37 4,572 0 1,228

MIA 16 1,159 62 4,485 0 1,800

[55%, 140%] 560 Initial solution 0 0 0 3,620 55 0

OIA 119 1,039 17 4,193 0 984

MIA 30 1,034 17 3,994 0 1,800

108

Table 26: Results for number of operations [3, 10] and due date tightness [10, 15]

Resource
utilization

Number
of jos

Stage Iteration
Tardiness

time
(Bucket)

Earliness
time

(Bucket)

Total lead
time

(Bucket)

Number of
overloaded

buckets

Computational
time (seconds)

[25%, 95%] 365 Initial solution 0 0 0 2,430 12 0

OIA 20 1 20 2,477 0 124

MIA 6 0 18 2,490 0 1,456

[45%, 95%] 442 Initial solution 0 0 0 2,878 18 0

OIA 46 66 1,446 2,947 0 286

MIA 35 37 114 3,024 0 1,800

[65%, 95%] 490 Initial solution 0 0 0 3,154 26 0

OIA 79 307 94 3,446 0 530

MIA 41 231 120 3,378 0 1,800

[75%, 95%] 535 Initial solution 0 0 0 3,383 37 0

OIA 96 449 78 3,708 0 898

MIA 35 360 121 3,680 0 1,800

[85%, 95%] 547 Initial solution 0 0 0 44 152,100 0

OIA 130 725 36 4,027 0 1,008

MIA 20 577 130 3,995 0 1,800

[75%, 110%] 574 Initial solution 0 0 0 3,734 56 0

OIA 148 877 98 4,343 0 1,279

MIA 32 728 174 4,272 0 1,800

[55%, 140%] 578 Initial solution 0 0 0 3,725 54 0

OIA 162 1,136 102 4,431 0 1,427

MIA 30 939 226 4,321 0 1,800

109

Table 27: Results for number of operations [3, 10] and due date tightness [10, 20]

Resource
utilization

Number
of jos

Stage Iteration
Tardiness

time
(Bucket)

Earliness
time

(Bucket)

Total lead
time

(Bucket)

Number of
overloaded

buckets

Computational
time (seconds)

[25%, 95%] 391 Initial solution 0 0 0 2,538 14 0

OIA 25 15 36 2,613 0 134

MIA 40 2 59 2,622 0 1,800

[45%, 95%] 459 Initial solution 0 0 0 3,071 39 0

OIA 101 309 94 3,603 0 733

MIA 47 185 151 3,561 0 1,800

[65%, 95%] 512 Initial solution 0 0 0 3,361 44 0

OIA 443 442 186 4,095 0 1,191

MIA 40 330 246 4,099 0 1,800

[75%, 95%] 522 Initial solution 0 0 0 3,342 55 0

OIA 137 616 104 4,001 0 1,369

MIA 40 514 162 3,891 0 1,800

[85%, 95%] 554 Initial solution 0 0 0 3,575 69 0

OIA 191 927 176 4,525 0 1,567

MIA 38 753 223 4,508 0 1,800

[75%, 110%] 586 Initial solution 0 0 0 3,786 77 0

OIA 223 1,061 101 5,087 0 1,917

MIA 26 959 175 4,870 0 1,800

[55%, 140%] 617 Initial solution 0 0 0 4,059 90 0

OIA 263 1,337 173 5,326 0 2,630

MIA 26 1,171 271 5,239 0 1,800

110

Table 28: Results for number of operations [3, 10] and due date tightness [10, 25]

Resource
utilization

Number
of jos

Stage Iteration
Tardiness

time
(Bucket)

Earliness
time

(Bucket)

Total lead
time

(Bucket)

Number of
overloaded

buckets

Computational
time (seconds)

[25%, 95%] 386 Initial solution 0 0 0 2,516 32 0

OIA 69 106 106 2,886 0 371

MIA 59 51 205 2,959 0 1,800

[45%, 95%] 442 Initial solution 0 0 0 2,844 42 0

OIA 120 289 146 3,447 0 817

MIA 57 173 278 3,466 0 1,800

[65%, 95%] 493 Initial solution 0 0 0 3,149 62 0

OIA 176 547 160 4,261 0 1,255

MIA 37 404 263 4,298 0 1,800

[75%, 95%] 531 Initial solution 0 0 0 3,437 65 0

OIA 194 706 209 4,602 0 1,477

MIA 41 527 219 4,653 0 1,800

[85%, 95%] 560 Initial solution 0 0 0 3,578 83 0

OIA 238 937 204 5,164 0 1,932

MIA 38 742 249 5,150 0 1,800

[75%, 110%] 574 Initial solution 0 0 0 3,707 90 0

OIA 234 1,117 216 5,131 0 1,934

MIA 36 967 284 5,131 0 1,800

[55%, 140%] 599 Initial solution 0 0 0 3,884 98 0

OIA 303 1,299 238 5,731 0 2,955

MIA 26 1,119 361 5,678 0 1,800

111

Table 29: Results for number of operations [3, 15] and due date tightness [15]

Resource
utilization

Number
of jos

Stage Iteration
Tardiness

time
(Bucket)

Earliness
time

(Bucket)

Total lead
time

(Bucket)

Number of
overloaded

buckets

Computational
time (seconds)

[25%, 95%] 477 Initial solution 0 0 0 4,355 8 0

OIA 24 0 14 4,382 0 485

MIA 9 0 13 4,383 0 1,800

[45%, 95%] 544 Initial solution 0 0 0 4,932 17 0

OIA 42 29 55 5,037 0 825

MIA 17 14 51 5,053 0 1,800

[65%, 95%] 641 Initial solution 0 0 0 5,726 30 0

OIA 104 604 82 6,136 0 2,861

MIA 11 511 121 6,074 0 1,800

[75%, 95%] 679 Initial solution 0 0 0 6,240 62 0

OIA 144 1,134 96 7,149 0 3,904

MIA 4 1,125 96 7,101 0 1,800

[85%, 95%] 716 Initial solution 0 0 0 6,599 76 0

OIA 177 1,397 83 7,734 0 6,358

MIA 9 1,297 107 7,655 0 1,800

[75%, 110%] 735 Initial solution 0 0 0 6,563 73 0

OIA 197 1,808 99 8,025 0 5,713

MIA 10 1,700 139 7,896 0 1,800

[55%, 140%] 756 Initial solution 0 0 0 6,662 84 0

OIA 225 2,323 129 8,366 0 6,590

MIA 13 2,163 190 8,197 0 1,800

112

Table 30: Results for number of operations [3, 15] and due date tightness [15, 20]

Resource
utilization

Number
of jos

Stage Iteration
Tardiness

time
(Bucket)

Earliness
time

(Bucket)

Total lead
time

(Bucket)

Number of
overloaded

buckets

Computational
time (seconds)

[25%, 95%] 487 Initial solution 0 0 0 4,385 16 0

OIA 26 0 73 4,410 0 885

MIA 14 0 58 4,427 0 1,800

[45%, 95%] 562 Initial solution 0 0 0 4,961 25 0

OIA 49 115 136 5,098 0 1,019

MIA 24 66 130 5,166 0 1,800

[65%, 95%] 624 Initial solution 0 0 0 5,648 39 0

OIA 105 433 172 6,126 0 2,934

MIA 15 385 194 6,049 0 1,800

[75%, 95%] 671 Initial solution 0 0 0 5,859 43 0

OIA 140 837 173 6,704 0 3,543

MIA 9 737 254 6,562 0 1,800

[85%, 95%] 712 Initial solution 0 0 0 6,415 77 0

OIA 185 1,364 111 7,909 0 5,537

MIA 11 1,214 202 7,772 0 1,800

[75%, 110%] 718 Initial solution 0 0 0 6,359 70 0

OIA 195 1,374 121 7,616 0 5,529

MIA 14 1,266 166 7,527 0 1,800

[55%, 140%] 796 Initial solution 0 0 0 7,115 122 0

OIA 279 2,562 135 9,533 0 8,539

MIA 10 2,398 221 9,401 0 1,800

113

Table 31: Results for number of operations [3, 15] and due date tightness [15, 25]

Resource
utilization

Number
of jos

Stage Iteration
Tardiness

time
(Bucket)

Earliness
time

(Bucket)

Total lead
time

(Bucket)

Number of
overloaded

buckets

Computational
time (seconds)

[25%, 95%] 496 Initial solution 0 0 0 4,317 15 0

OIA 39 12 118 4,542 0 715

MIA 9 7 66 4,604 0 1,800

[45%, 95%] 564 Initial solution 0 0 0 4,932 27 0

OIA 87 197 135 5,495 0 1,863

MIA 15 142 173 5,502 0 1,800

[65%, 95%] 673 Initial solution 0 0 0 6,011 83 0

OIA 195 1,046 289 7,321 0 5,168

MIA 13 968 296 7,320 0 1,800

[75%, 95%] 672 Initial solution 0 0 0 6,052 57 0

OIA 160 836 179 7,027 0 6,697

MIA 14 764 210 7,005 0 1,800

[85%, 95%] 715 Initial solution 0 0 0 6,519 104 0

OIA 240 1,292 173 8,353 0 7,691

MIA 11 1,145 268 8,255 0 1,800

[75%, 110%] 726 Initial solution 0 0 0 6,463 93 0

OIA 238 1,413 125 8,442 0 6,947

MIA 11 1,326 189 8,276 0 1,800

[55%, 140%] 794 Initial solution 0 0 0 7,152 132 0

OIA 334 2,393 135 10,007 0 10,232

MIA 9 2,270 199 9,864 0 1,800

114

Table 32: Results for number of operations [3, 15] and due date tightness [15, 30]

Resource
utilization

Number
of jos

Stage Iteration
Tardiness

time
(Bucket)

Earliness
time

(Bucket)

Total lead
time

(Bucket)

Number of
overloaded

buckets

Computational
time (seconds)

[25%, 95%] 458 Initial solution 0 0 0 4,059 21 0

OIA 38 7 209 4,230 0 767

MIA 18 4 88 4,348 0 1,800

[45%, 95%] 566 Initial solution 0 0 0 5,108 50 0

OIA 138 240 254 6,117 0 3,081

MIA 20 169 244 6,226 0 1,800

[65%, 95%] 656 Initial solution 0 0 0 5,842 90 0

OIA 216 833 323 7,716 0 5,525

MIA 16 755 255 7,839 0 1,800

[75%, 95%] 683 Initial solution 0 0 0 6,091 103 0

OIA 252 1,020 303 7,879 0 6,677

MIA 13 924 328 7,879 0 1,800

[85%, 95%] 713 Initial solution 0 0 0 6,466 122 0

OIA 303 1,442 301 8,789 0 9,702

MIA 14 1,347 314 8,829 0 1,800

[75%, 110%] 733 Initial solution 0 0 0 6,651 131 0

OIA 339 1,501 348 9,158 0 9,873

MIA 8 1,402 425 9,086 0 1,800

[55%, 140%] 786 Initial solution 0 0 0 7,092 156 0

OIA 359 2,285 330 10,036 0 11,263

MIA 9 2,152 428 9,897 0 1,800

115

4.6.1 Effects of variability on algorithm performance

From the results above, the execution performance of both algorithms, OIA and

MIA, when dealing with the variability in the system is investigated and discussed.

 (1) OIA performance

The computational times required to improve infeasible solutions to be feasible

solutions are observed. Figure 20 displays the graphs of computational time at different

number of operations. Each graph presents the times at varied due date tightness and

resource utilization. The results show that an increasing of computational time depends

on an incremental range of three combined parameters, number of operations, due date

tightness and resource utilization. The largest effect of the solution comes from the

number of operations parameter. When the range of number of operations becomes

large, it reflects a longer process time and then affects a greater computational time to

solve a feasible resource plan.

0

500

1000

1500

2000

2500

3000

[25%,
95%]

[45%,
95%]

[65%,
95%]

[75%,
95%]

[85%,
95%]

[75%,
110%]

[55%,
140%]

O
IA

 c
o

m
pu

ta
tio

na
l t

im
e

 (
se

c.
)

Resource utilization

[5]

[5, 10]

[5, 15]

[5, 20]

(a)

116

Figure 20: OIA computational times at number of operations; (a) [3, 5], (b) [3, 10],

and (c) [3, 15]

0

2000

4000

6000

8000

10000

12000

[25%,
95%]

[45%,
95%]

[65%,
95%]

[75%,
95%]

[85%,
95%]

[75%,
110%]

[55%,
140%]

O
IA

 c
o

m
pu

ta
tio

na
l t

im
e

 (
se

c.
)

Resource utilization

[10]

[10, 15]

[10, 20]

[10, 25]

0

2000

4000

6000

8000

10000

12000

[25%,
95%]

[45%,
95%]

[65%,
95%]

[75%,
95%]

[85%,
95%]

[75%,
110%]

[55%,
140%]

O
IA

 c
om

pu
ta

tio
na

l t
im

e
 (

se
c.

)

Resource utilization

[15]

[15, 20]

[15, 25]

[15, 30]

(b)

(c)

117

In Figure 21, the graph plots the average computational times at different groups

of number of operations. Obviously, the computational times are dramatically increased

when process flow is longer. Resource utilization is also a significant factor which

drops the performance of solution when it is increased. The congestion in the system

leads the solver to require more execution time to search and obtain the feasible

solution. The least solution impact is the results of the due date tightness parameter. It

can be seen that the different ranges of due date tightness insignificantly reflect the

computational time in most instances. However, when the instances involve all

combined variabilities such as the problem with number of operations [3, 15] and

resource utilization above [45%, 95%], the solver apparently needs more time to solve

the solution.

Figure 21: OIA Computational time comparison

0

2000

4000

6000

8000

10000

12000

[25%,
95%]

[45%,
95%]

[65%,
95%]

[75%,
95%]

[85%,
95%]

[75%,
110%]

[55%,
140%]

O
IA

 c
o

m
pu

ta
tio

na
l t

im
e

 (
se

c.
)

Resource utilization

[3, 5]

[3, 10]

[3, 15]

118

Table 33: Percentage of tardiness improvement in MIA

Resource utilization

[25%, 95%] [45%, 95%] [65%, 95%] [75%, 95%] [85%, 95%] [75%, 110%] [55%, 140%]

[3, 5] [5] 100% 100% 55% 27% 15% 17% 10%

[5, 10] 100% 100% 32% 23% 23% 22% 22%

[5, 15] 100% 61% 50% 15% 26% 37% 31%

[5, 20] 100% 61% 50% 36% 31% 36% 29%

[3, 10] [10] 100% 100% 18% 14% 10% 6% 0%

[10, 15] 100% 44% 25% 20% 20% 17% 17%

[10, 20] 87% 40% 25% 17% 19% 10% 12%

[10, 25] 52% 40% 26% 25% 21% 13% 14%

[3, 15] [15] 100% 52% 15% 1% 7% 6% 7%

[15, 20] 100% 43% 11% 12% 11% 8% 6%

[15, 25] 42% 28% 7% 9% 11% 6% 5%

[15, 30] 43% 30% 9% 9% 7% 7% 6%

Due date
tightness

Number of
operations

119

(2) MIA performance

In the section, the efficiency of MIA, such as the percentage of tardiness

improvement, at different sizes of number of operation is observed. Table 33 shows the

results summary in each scenario. Meanwhile, Figure 22 presents the graphs of these

results. The percentage of tardiness improvement is determined from the tardiness

deviation between the OIA and MIA outputs. As a result, the smallest size of the

problem like number of operations [3, 5] seems easier to be improved the tardiness than

the other cases of number of operations, number of operation [3, 10] and [3, 15]. The

longer process and dependent machine requirements increase the difficulty of problem

in finding an efficient planning, especially when the production system is busy. Thus,

the interaction of number of operation and resource utilization is a major impact

parameter that reflects the solver performance to improve the planning solution.

0%

20%

40%

60%

80%

100%

120%

[25%,
95%]

[45%,
95%]

[65%,
95%]

[75%,
95%]

[85%,
95%]

[75%,
110%]

[55%,
140%]

P
e

rc
e

nt
a

ge
 o

f
ta

rd
in

es
s

im
pr

ov
em

e
nt

Resource utilization

[5]
[5, 10]
[5, 15]
[5, 20]

(a)

120

Figure 22: Percentage of tardiness improvement at number of operations; (a) [3,

5], (b) [3, 10], and (c) [3, 15]

0%

20%

40%

60%

80%

100%

120%

[25%,
95%]

[45%,
95%]

[65%,
95%]

[75%,
95%]

[85%,
95%]

[75%,
110%]

[55%,
140%]

P
e

rc
e

nt
a

ge
 o

f
ta

rd
in

es
s

im
pr

ov
em

e
nt

Resource utilization

[10]
[10, 15]
[10, 20]
[10, 25]

0%

20%

40%

60%

80%

100%

120%

[25%,
95%]

[45%,
95%]

[65%,
95%]

[75%,
95%]

[85%,
95%]

[75%,
110%]

[55%,
140%]

P
e

rc
e

nt
a

ge
 o

f
ta

rd
in

es
s

im
pr

ov
em

e
nt

Resource utilization

[15]
[15, 20]
[15, 25]
[15, 30]

(b)

(c)

121

Figure 23 summarizes the percentage of tardiness improvement at different

number of operations. Tardiness improvement is mostly influenced by complicated

problems. A graph shows that MIA performs well at low resource utilization from

[25%, 95%] to [65%, 95%]. This is because low congestion allows jobs to move around

and search for a better solution. Meanwhile, for higher resource utilization, a tight

capacity limits the search space. When there is not much room for improvement, the

output turns out with a low percent improvement. The percentage of the improvement

also highly depends on the number of operations and resource utilization factors. The

percentage of tardiness improvement is dropped because of longer number of operations

and higher resource utilization.

Figure 23: Percentage of tardiness improvement at different number of operations

0%

20%

40%

60%

80%

100%

120%

[25%,
95%]

[45%,
95%]

[65%,
95%]

[75%,
95%]

[85%,
95%]

[75%,
110%]

[55%,
140%]

P
e

rc
e

nt
a

ge
 o

f
ta

rd
in

es
s

im
pr

ov
em

e
nt

Resource utilization

[3, 5]

[3, 10]

[3, 15]

122

4.6.2 A comparative study of heuristic approaches

This experiment is an algorithm comparative study with the dispatching rules,

FIFO and EDD. In FIFO, jobs will be forwardly processed as early as the resources are

available. While in EDD, jobs will be initially sorted from the earliest due date to the

latest due date and then loaded in the plan with backward planning method. Both

methods consider the planning procedure as a finite capacity. Recall that total cost is

weighted with the ratio 30:50:20 for earliness: tardiness: lead time. Tables 34-36

present the total weighted cost results among three solving methods at different number

of operations. Figure 24 graphically presents a total weighted cost comparison of the

solving approaches at distinguished resource utilization in each number of operations

case. The results illustrate that the tabu search algorithm outperforms all instances of the

other approaches. Tabu search effectively provides the lowest total costs. With all

averaged outputs, tabu search has 49% lower expected total weighted cost than FIFO

and 59% lower than EDD. In the variability impact, the total weighted cost has the same

result trend as the previous experiment in which a greater level of variability,

particularly from high variability of due date tightness and resource utilization, will

drop the quality of solution.

123

Table 34: Total weighted cost comparison results at number of operations [3, 5]

TS FIFO EDD

[5] [25%, 95%] 230 18,830 25,140 18,880

[45%, 95%] 304 24,790 33,430 24,850

[65%, 95%] 350 32,510 40,030 38,280

[75%, 95%] 379 42,480 46,530 52,290

[85%, 95%] 402 50,880 53,600 63,690

[75%, 110%] 389 42,570 49,620 47,950

[55%, 140%] 410 53,750 60,010 66,830

[5, 10] [25%, 95%] 287 21,070 42,780 33,460

[45%, 95%] 306 27,360 53,090 43,550

[65%, 95%] 354 37,830 59,180 59,400

[75%, 95%] 384 43,110 64,920 73,210

[85%, 95%] 405 49,730 68,660 78,690

[75%, 110%] 411 51,750 70,520 86,970

[55%, 140%] 405 58,620 75,830 94,520

[5, 15] [25%, 95%] 225 19,170 50,980 39,390

[45%, 95%] 318 37,090 64,390 63,690

[65%, 95%] 351 44,630 74,940 78,880

[75%, 95%] 386 53,450 80,050 92,060

[85%, 95%] 404 61,450 89,230 107,090

[75%, 110%] 409 65,540 90,170 115,740

[55%, 140%] 415 70,320 97,370 190,650

[5, 20] [25%, 95%] 269 31,310 64,510 54,830

[45%, 95%] 324 44,930 75,880 62,430

[65%, 95%] 358 52,980 86,620 98,390

[75%, 95%] 388 64,260 91,020 112,620

[85%, 95%] 394 68,900 94,640 121,150

[75%, 110%] 406 70,250 98,440 120,120

[55%, 140%] 433 86,510 114,520 149,890

Total weighted costDue date
tightness

Resource
utilization

Number of
jobs

124

Table 35: Total weighted cost comparison results at number of operations [3, 10]

TS FIFO EDD

[10] [25%, 95%] 390 51,970 90,600 52,440

[45%, 95%] 437 57,630 101,650 58,140

[65%, 95%] 486 79,410 112,820 96,430

[75%, 95%] 528 103,190 125,680 143,880

[85%, 95%] 554 118,470 136,890 163,230

[75%, 110%] 580 149,510 153,970 193,450

[55%, 140%] 560 132,090 146,030 183,500

[10, 15] [25%, 95%] 365 50,340 108,480 71,750

[45%, 95%] 442 65,750 130,990 92,760

[65%, 95%] 490 82,710 143,000 141,500

[75%, 95%] 535 95,230 155,110 160,830

[85%, 95%] 547 112,650 158,070 167,800

[75%, 110%] 574 127,060 172,300 203,860

[55%, 140%] 578 140,150 177,370 217,130

[10, 20] [25%, 95%] 391 54,310 134,700 91,750

[45%, 95%] 459 85,000 159,460 142,480

[65%, 95%] 512 105,860 173,880 175,690

[75%, 95%] 522 108,380 176,140 187,960

[85%, 95%] 554 134,500 189,100 226,940

[75%, 110%] 586 150,600 203,700 240,600

[55%, 140%] 617 171,460 221,660 277,160

[10, 25] [25%, 95%] 386 67,880 149,340 122,190

[45%, 95%] 442 86,310 164,460 152,740

[65%, 95%] 493 114,050 186,680 201,450

[75%, 95%] 531 125,980 199,180 229,860

[85%, 95%] 560 147,570 216,400 259,070

[75%, 110%] 574 159,490 220,130 273,970

[55%, 140%] 599 180,340 235,880 309,340

Total weighted costDue date
tightness

Resource
utilization

Number of
jobs

125

Table 36: Total weighted cost comparison results at number of operations [3, 15]

TS FIFO EDD

[15] [25%, 95%] 477 88,050 169,830 88,560

[45%, 95%] 544 103,290 192,120 114,470

[65%, 95%] 641 150,660 222,760 186,610

[75%, 95%] 679 201,150 293,120 274,600

[85%, 95%] 716 221,160 263,470 318,710

[75%, 110%] 735 247,090 282,170 354,310

[55%, 140%] 756 277,790 305,220 397,910

[15, 20] [25%, 95%] 487 90,280 206,400 116,680

[45%, 95%] 562 110,520 233,930 154,040

[65%, 95%] 624 146,050 254,870 212,390

[75%, 95%] 671 175,710 275,280 274,580

[85%, 95%] 712 222,200 299,720 357,460

[75%, 110%] 718 218,820 297,380 350,900

[55%, 140%] 796 314,550 562,130 483,510

[15, 25] [25%, 95%] 496 94,410 240,050 146,130

[45%, 95%] 564 122,330 267,740 194,920

[65%, 95%] 673 203,680 311,360 329,310

[75%, 95%] 672 184,600 303,600 299,390

[85%, 95%] 715 230,390 337,300 377,100

[75%, 110%] 726 237,490 341,190 387,680

[55%, 140%] 794 316,750 387,050 487,030

[15, 30] [25%, 95%] 458 89,800 235,250 150,320

[45%, 95%] 566 140,290 292,740 249,320

[65%, 95%] 656 202,180 338,570 354,540

[75%, 95%] 683 213,620 349,110 370,580

[85%, 95%] 713 253,350 359,150 427,150

[75%, 110%] 733 264,570 378,050 444,790

[55%, 140%] 786 318,380 417,630 519,940

Total weighted costDue date
tightness

Resource
utilization

Number of
jobs

126

0

100000

200000

300000

400000

500000

[25%,
95%]

[45%,
95%]

[65%,
95%]

[75%,
95%]

[85%,
95%]

[75%,
110%]

[55%,
140%]

To
ta

l w
ei

gh
te

d
co

st

Resource utilization

TS FIFO EDD

0

100000

200000

300000

400000

500000

[25%,
95%]

[45%,
95%]

[65%,
95%]

[75%,
95%]

[85%,
95%]

[75%,
110%]

[55%,
140%]

To
ta

l w
ei

gh
te

d
co

st

Resource utilization

TS FIFO EDD

(a)

(b)

127

Figure 24: Heuristic comparisons at number of operations (a) [3, 5]; (b) [3, 10];

and (c) [3, 15]

4.7 Summary

This study proposes a new tabu search algorithm approach to solve resource

planning problems. To provide efficient planning, the planning algorithm based on the

JIT philosophy is developed in which the algorithm’s objective is to improve earliness,

tardiness, and lead time in the system. The proposed algorithm is divided into two sub-

algorithms: the overloading improvement algorithm (OIA) and the makespan

improvement algorithm (MIA). The algorithm procedure begins with initializing a

solution as an ideal solution by using the backward scheduling method. Since the initial

plan would not be feasible due to overload capacity, OIA is first used to improve these

overloaded capacities. After the resource plan becomes feasible, MIA is implemented to

improve earliness, tardiness, and lead time. The neighborhood searching procedure of

these two algorithms is created by using the pull and push methods coordinated with the

0

100000

200000

300000

400000

500000

[25%,
95%]

[45%,
95%]

[65%,
95%]

[75%,
95%]

[85%,
95%]

[75%,
110%]

[55%,
140%]

To
ta

l w
ei

gh
te

d
co

st

Resource utilization

TS FIFO EDD(c)

128

latest possible start time (LPST) factor, in order to develop a resource plan to come

closest to an ideal plan.

The algorithm is tested on varied scales of planning problems. The experiments

show that the algorithms effectively perform in the combinatorial problems of the

variabilities of due date tightness, number of operations, and resource utilization. The

obtained results illustrate the efficiency of the tabu search algorithm in terms of solution

quality, both total weighted cost and percentage of solution improvement. Tabu search

works well in the infeasible solution improvement and the tardiness and lead time

improvement when the instances have small and medium sizes with less and medium

variability of input data. However, when the problem conditions have more variability,

such as larger range of due date tightness or greater resource utilization, difficulty to

manage and allocate jobs to process on the available resources is increased. It also

hardly obtains a good planning result within a limited time. In addition, the performance

of tabu search over the other heuristic methods, such as FIFO and EDD, is examined.

The results show that the tabu search algorithm outperforms these two heuristic

approaches. In the following chapter, the study continues to investigate a comparative

study of the optimization and tabu search approaches.

129

CHAPTER 5

A comparative study of the optimization and tabu search approaches

5.1 Introduction

In the previous chapter, the tabu search approach has been studied and compared

with the other heuristic methods. The output presented that tabu search can provide the

better results of the objective values in all cases. In this chapter, a benchmark study is

presented to further examine the performance of the tabu search approach. The

comparison between the tabu search and optimization approaches aims to investigate a

capability of the optimizer to generate resource plans. According to the limitation of the

optimization approach, testing problems will be created with easier and simpler

assumptions by excluding some variation of the studied parameters in order to reduce

the complexity of the problem instances. Next, the numerical experiments and

computational results of this study are presented.

5.2 Computational experiments

This experiment will use the same parameters as in the previous tabu search

study that the problem will involve with data variability from due date tightness and

resource variability. However, to maintain a lesser difficulty level of testing problems, a

variability of the number of operations will be fixed. All parameters of this experiment

are summarized as shown in Table 37.

130

Table 37: Summary of experimental parameters

The experiment attempts to observe the impact of solution performance when

the number of operations for all jobs is fixed at three operations and five operations

while the available machines are 10 machines. This means that each job can be

randomly selected to process on 10 different types of machine. In the solving procedure,

the tabu search problem instances are solved by using the tabu search algorithm which

is implemented by the Java language and executed on a personal computer with a 1.73

GHz processor. For the optimization approach, ILOG CPLEX 12.0 is implemented to

Parameters

Number of
operations = 3

Number of
operations = 5

Due date tightness 3 5

[3, 6] [5, 10]

[3, 9] [5, 15]

[3, 12] [5, 20]

Resource utilization

Available machines

Planning bucket

Weighted cost ($/unit)

 Tardiness cost

 Earliness cost

 Lead time cost

 Overloading cost

30

20

100

[75%, 110%]

[55%, 140%]

10

25

50

[85%, 95%]

Level of factors

[25%, 95%]

[45%, 95%]

[65%, 95%]

[75%, 95%]

131

solve an optimal solution of the BILP model. The computational times of both methods

are limited at 1,800 seconds. A total cost and an optimality gap are used as a

performance indicator to evaluate the solution quality.

5.3 Results and analysis

In this section, the results comparison between the tabu search (TS) and BILP

optimization approaches are presented at different due date tightness and resource

utilization. Table 38 reports total weighted cost and computational time where the

number of operations is three. The results show that TS yields reasonable results that

are close to the BILP output. The BILP method seemingly provides better solutions than

the TS method. However, it appears only when the problem has less variabilities of due

date tightness and resource utilization. It can be seen that TS can perform better than

BILP when the instances involve a high level of the variabilities from due date tightness

and resource utilization. An interaction of these variabilities reduces an ability of BILP

to reach the optimal solution within the limited computational time.

To clarify more about the efficiency of the TS method, an extension instance is

generated by increasing the number of operations to five operations per job. Table 39

illustrates the performance results for fixed number of operations at five. In this case,

the quality of the TS solutions is often higher than the BILP results after 1,800 sec. It is

obvious that TS can solve the instances that BILP does not solve.

132

Table 38: Comparative results for constant number of operation at 3

Duedate Resource

tightness utilization TS BILP TS BILP

[3] [25%, 95%] 15,560 * 15,600 1,800 75

[45%, 95%] 20,250 20,150 1,800 1,092

[65%, 95%] 23,120 22,980 1,800 1,730

[75%, 95%] 28,070 25,539 1,800 1,800

[85%, 95%] 37,210 29,660 1,800 1,800

[75%, 110%] 52,270 35,280 1,800 1,800

[55%, 140%] 64,710 51,910 1,800 1,800

[3, 6] [25%, 95%] 14,900 15,050 1,800 35

[45%, 95%] 20,390 19,810 1,800 1,459

[65%, 95%] 25,260 23,740 1,800 1,800

[75%, 95%] 25,320 25,240 1,800 1,800

[85%, 95%] 35,370 33,643 1,800 1,800

[75%, 110%] 42,110 35,800 1,800 1,800

[55%, 140%] 68,650 57,090 1,800 1,800

[3, 9] [25%, 95%] 15,400 15,210 1,800 84

[45%, 95%] 18,870 18,410 1,800 1,800

[65%, 95%] 26,430 25,220 1,800 1,800

[75%, 95%] 31,600 * 33,600 1,800 1,800

[85%, 95%] 35,750 * 46,990 1,800 1,800

[75%, 110%] 40,950 * 43,390 1,800 1,800

[55%, 140%] 37,500 * 43,200 1,800 1,800

[3, 12] [25%, 95%] 16,880 16,440 1,800 156

[45%, 95%] 22,120 20,630 1,800 1,800

[65%, 95%] 34,700 * 41,230 1,800 1,800

[75%, 95%] 35,320 * 37,129 1,800 1,800

[85%, 95%] 41,430 * 47,540 1,800 1,800

[75%, 110%] 43,960 * 514,940 1,800 1,800
[55%, 140%] 65,740 * 90,760 1,800 1,800

* TS provided a better result than BILP.

Total weighted cost Computaitonal time (sec)

133

Table 39: Comparative results for constant number of operation at 5

Duedate Resource

tightness utilization TS BILP TS BILP

[5] [25%, 95%] 25,300* 25,660 1,800 103

[45%, 95%] 33,750 33,510 1,800 714

[65%, 95%] 48,850 * 18,280,200 1,800 1,800

[75%, 95%] 45,700 * 1,363,030 1,800 1,800

[85%, 95%] 63,790 * 3,080,300 1,800 1,800

[75%, 110%] 69,260 * 26,748,100 1,800 1,800

[55%, 140%] 86,190 * 44,502,000 1,800 1,800

[5, 10] [25%, 95%] 26,850 26,810 1,800 355

[45%, 95%] 30,930 30,650 1,800 1,111

[65%, 95%] 37,680 37,420 1,800 1,800

[75%, 95%] 48,110 44,200 1,800 1,800

[85%, 95%] 59,060 * 585,390 1,800 1,800

[75%, 110%] 55,460 * 37,779,200 1,800 1,800

[55%, 140%] 53,350 * 558,410 1,800 1,800

[5, 15] [25%, 95%] 36,660 34,690 1,800 1,590

[45%, 95%] 36,470 35,720 1,800 1,800

[65%, 95%] 50,130 * 68,220 1,800 1,800

[75%, 95%] 58,500 * 82,390 1,800 1,800

[85%, 95%] 62,420 * 86,070 1,800 1,800

[75%, 110%] 70,920 * 71,186,300 1,800 1,800

[55%, 140%] 101,100 * 2,962,360 1,800 1,800

[5, 20] [25%, 95%] 45,100 * 75,240 1,800 100

[45%, 95%] 40,400 * 40,560 1,800 1,800

[65%, 95%] 56,840 * 88,250 1,800 1,800

[75%, 95%] 63,350 * 1,199,810 1,800 1,800

[85%, 95%] 74,410 * 96,409,500 1,800 1,800

[75%, 110%] 83,050 * 112,144,600 1,800 1,800
[55%, 140%] 82,260 * 110,819,200 1,800 1,800

* TS provided a better result than BILP.

Total weighted cost Computaitonal time (sec)

134

Figure 25: Percentage of improvement at number of operations; (a) 3 and (b) 5

0%

20%

40%

60%

80%

100%

120%

[3
],[

2
5%

, 9
5%

]
[3

, 6
],[

25
%

, 9
5%

]
[3

, 9
],[

25
%

, 9
5%

]
[3

, 1
2]

,[2
5%

, 9
5%

]
[3

],[
4

5%
, 9

5%
]

[3
, 6

],[
45

%
, 9

5%
]

[3
, 9

],[
45

%
, 9

5%
]

[3
, 1

2]
,[4

5%
, 9

5%
]

[3
],[

6
5%

, 9
5%

]
[3

, 6
],[

65
%

, 9
5%

]
[3

, 9
],[

65
%

, 9
5%

]
[3

, 1
2]

,[6
5%

, 9
5%

]
[3

],[
7

5%
, 9

5%
]

[3
, 6

],[
75

%
, 9

5%
]

[3
, 9

],[
75

%
, 9

5%
]

[3
, 1

2]
,[7

5%
, 9

5%
]

[3
],[

8
5%

, 9
5%

]
[3

, 6
],[

85
%

, 9
5%

]
[3

, 9
],[

85
%

, 9
5%

]
[3

, 1
2]

,[8
5%

, 9
5%

]
[3

],[
7

5%
, 1

10
%

]
[3

, 6
],[

75
%

, 1
10

%
]

[3
, 9

],[
75

%
, 1

10
%

]
[3

,
12

],[
7

5%
, 1

10
%

]
[3

],[
5

5%
, 1

40
%

]
[3

, 6
],[

55
%

, 1
40

%
]

[3
, 9

],[
55

%
, 1

40
%

]
[3

,
12

],[
5

5%
, 1

40
%

]

P
er

ce
nt

ag
e

of
 s

ol
ut

io
n

im
p

ro
ve

m
en

t

Due date tightness, Resource utilization
TS BILP

0%

20%

40%

60%

80%

100%

120%

[5
],[

2
5%

, 9
5%

]
[5

, 1
0]

,[2
5%

, 9
5%

]
[5

, 1
5]

,[2
5%

, 9
5%

]
[5

, 2
0]

,[2
5%

, 9
5%

]
[5

],[
4

5%
, 9

5%
]

[5
, 1

0]
,[4

5%
, 9

5%
]

[5
, 1

5]
,[4

5%
, 9

5%
]

[5
, 2

0]
,[4

5%
, 9

5%
]

[5
],[

6
5%

, 9
5%

]
[5

, 1
0]

,[6
5%

, 9
5%

]
[5

, 1
5]

,[6
5%

, 9
5%

]
[5

, 2
0]

,[6
5%

, 9
5%

]
[5

],[
7

5%
, 9

5%
]

[5
, 1

0]
,[7

5%
, 9

5%
]

[5
, 1

5]
,[7

5%
, 9

5%
]

[5
, 2

0]
,[7

5%
, 9

5%
]

[5
],[

8
5%

, 9
5%

]
[5

, 1
0]

,[8
5%

, 9
5%

]
[5

, 1
5]

,[8
5%

, 9
5%

]
[5

, 2
0]

,[8
5%

, 9
5%

]
[5

],[
7

5%
, 1

10
%

]
[5

,
10

],[
7

5%
, 1

10
%

]
[5

,
15

],[
7

5%
, 1

10
%

]
[5

,
20

],[
7

5%
, 1

10
%

]
[5

],[
5

5%
, 1

40
%

]
[5

,
10

],[
5

5%
, 1

40
%

]
[5

,
15

],[
5

5%
, 1

40
%

]
[5

,
20

],[
5

5%
, 1

40
%

]

P
er

ce
nt

ag
e

of
 s

ol
ut

io
n

im
p

ro
ve

m
en

t

Due date tightness, Resource utilization
TS BILP

(b)

(a)

135

To visualize the method performance in terms of the ability for determining

solutions, Figure 25 illustrates the percentage of solution improvement at two scenarios

of the number of operations. The percentage of solution improvement can be derived

from the reverse of optimality gap. Each graph plots the optimality gap of the TS and

BILP methods at different levels of due date tightness and resource utilization. From

these graphs, some observations can be summarized as follows.

i) At the number of operations 3 in Figure 25(a), the solution improvement between two

solving methods is not significantly different in most cases. Even though BILP

performs better than TS especially at the smaller range of due date tightness and lower

resource utilization problem conditions, a greater variability of due date tightness and

resource utilization, for instance when due date tightness has a wider range up to [3, 12]

and resource utilization is greater than [65%, 95%] or an average of 80%, drops the

capability of the BILP’s optimizer in solving a good solution. According to the

complexity of problem, the optimization approach like BILP cannot provide a good

solution as expected. The heuristic approach tends to be more promising method to find

an efficient resource plan.

ii) At the enlarged problem, Figure 25(b) presents the percentage of solution when the

number of operations is five. The graph shows that the percentage of solution

improvement of these two solving methods is significantly different when the problem

has an interaction with high variability parameters. TS can provide a greater percentage

of solution improvement than BILP when the resource utilization is increased above

[75%, 95%] or an average of 85% for all due date tightness cases. Based on the

experiments, they can be concluded that the tabu search approach with relatively large

136

problem instances effectively obtains reasonable result plans when dealing with the

combinatorial variabilities.

5.4 Summary

In this chapter, the benchmark study of the quality of resource plans between the

tabu search and optimization approaches is presented. The results show the effect of

solution improvement rates in which the interaction of variability between number of

operations, due date tightness and resource utilization mainly reflect the solver

performance. As a result, the tabu search method provides a lower percentage of

improvement than the optimization approach when the planning instances have small

problem sizes and less variabilities. However, the results of these two methods are not

significantly different. On the other hand, at the larger problem size and greater range of

due date tightness and resource utilization, the tabu search algorithm outperforms the

optimization approach to obtain an efficient resource plan.

137

CHAPTER 6

Resource planning application

6.1 Introduction

In this chapter, the new resource planning application is presented. This

planning application is developed to generate a resource plan based on the JIT

philosophy by using the tabu search algorithm. It is implemented as one of the solving

algorithms in a CONPLAN which is a concurrent both discrete and continuous events

simulation system developed by Dr. Scott Moses, chair of the dissertation committee.

The proposed method is considered in a part of a discrete event system which events

occur instantly in specific periods of time. The application is created by using the Java

language in which it is divided into several components based on the functions of each

element of the tabu search procedure. The details of each component of the planning

application are described in the next section.

6.2 The components of the planning application

The planning application consists of three main components which include

solution initialization stage, Overloading Improvement Algorithm (OIA) stage, and

Makespan Improvement Algorithm (MIA) stage. Each main component has several

subcomponents which represents a function in the tabu search algorithm. The summary

of all java source files, both the main component and subcomponent parts, is presented

in Table 40. The function explanations of each component are described as follows. The

java code of all source files can be seen in Appendix A.

138

Table 40: Java source files for the resource planning application

6.2.1 Solution initialization stage

As mentioned before, this application is embedded in the CONPLAN system.

Some input data and basic functions of the CONPLAN will be used in the application.

For instance, the input data of job number, job amount, release date, due date, routing,

and process time. The required data will be read from several input data text files (.txt)

in the CONPLAN and then they will be converted to the desired data matrices for

implementing in the algorithm’s calculation. Figure 26 presents the example of the

customer demand data file. Some data from this file, such as job name, amount, routing

type, job arrival time, and job due time, will be used. Figure 27 presents the example of

the routing data which consists of machine requirement and process time. The summary

of required data and the samples of the data are shown in Table 41.

order_12340,1,1,2,0,A,Item_E1,Item_E1,Item_E1,2009, 09,02,08,00,00,2009
,10,08,08,00,00,2009,10,08,08,00,00,2009,10,08,08,0 0,00,2009,10,08,08,
00,00,2009,10,08,08,00,00,2009,10,08,08,00,00,100,1 00,100,0,,Facility1
,truck,truck,truck,0.0

Main function Sub function

1. initTabu.java

2. tabuSearch.java 2.1 localSearch.java

2.2 tabuBucketedHeap.java

2.3 evaluate.java

2.4 loadingRequirement.java

2.5 updateTabu.java

3. tabuSearchMIA.java 3.1 targetJob.java

3.2 localSearchMIA.java

3.3 evaluateMIA.java

3.4 loadingRequirementMIA.java

3.5 updateTabuMIA.java

139

order_12341,1,1,2,0,A,Item_E15,Item_E15,Item_E15,20 09,09,03,08,00,00,2
009,10,12,08,00,00,2009,10,12,08,00,00,2009,10,12,0 8,00,00,2009,10,12,
08,00,00,2009,10,12,08,00,00,2009,10,12,08,00,00,10 0,100,100,0,,Facili
ty1,truck,truck,truck,0.0
order_12342,1,1,2,0,A,Item_E15,Item_E15,Item_E15,20 09,09,08,08,00,00,2
009,10,13,08,00,00,2009,10,13,08,00,00,2009,10,13,0 8,00,00,2009,10,13,
08,00,00,2009,10,13,08,00,00,2009,10,13,08,00,00,10 0,100,100,0,,Facili
ty1,truck,truck,truck,0.0
order_12343,1,1,2,0,A,Item_E16,Item_E16,Item_E16,20 09,09,11,08,00,00,2
009,10,13,08,00,00,2009,10,13,08,00,00,2009,10,13,0 8,00,00,2009,10,13,
08,00,00,2009,10,13,08,00,00,2009,10,13,08,00,00,10 0,100,100,0,,Facili
ty1,truck,truck,truck,0.0
order_12344,1,1,2,0,A,Item_E10,Item_E10,Item_E10,20 09,09,12,08,00,00,2
009,10,09,08,00,00,2009,10,09,08,00,00,2009,10,09,0 8,00,00,2009,10,09,
08,00,00,2009,10,09,08,00,00,2009,10,09,08,00,00,10 0,100,100,0,,Facili
ty1,truck,truck,truck,0.0

Figure 26: Example of customer demand data (salesOrder.txt)

Routing_E1,Facility1,production,,,0,O-
01,M1,false,1,0.0,0,0,0,,611,0,0.0,0,0.0,null,0.0,0 ,0.0,0.0,0.0,0.0
Routing_E1,Facility1,production,,,0,O-
02,M8,false,1,0.0,0,0,0,,601,0,0.0,0,0.0,null,0.0,0 ,0.0,0.0,0.0,0.0
Routing_E1,Facility1,production,,,0,O-
03,M3,false,1,0.0,0,0,0,,616,0,0.0,0,0.0,null,0.0,0 ,0.0,0.0,0.0,0.0
Routing_E1,Facility1,production,,,0,O-
04,M16,false,1,0.0,0,0,0,,603,0,0.0,0,0.0,null,0.0, 0,0.0,0.0,0.0,0.0
Routing_E2,Facility1,production,,,0,O-
05,M15,false,1,0.0,0,0,0,,601,0,0.0,0,0.0,null,0.0, 0,0.0,0.0,0.0,0.0
Routing_E2,Facility1,production,,,0,O-
06,M8,false,1,0.0,0,0,0,,589,0,0.0,0,0.0,null,0.0,0 ,0.0,0.0,0.0,0.0
Routing_E2,Facility1,production,,,0,O-
07,M14,false,1,0.0,0,0,0,,605,0,0.0,0,0.0,null,0.0, 0,0.0,0.0,0.0,0.0
Routing_E2,Facility1,production,,,0,O-
08,M11,false,1,0.0,0,0,0,,597,0,0.0,0,0.0,null,0.0,0,0.0,0.0,0.0,0.0

Figure 27: Example of routing data (routing.txt)

Table 41: Sample input data for the resource planning application

Data list Sample data

salesOrder order_12340

releaseDate 2010,09,02,08,00,00

plannedDueDate 2010,10,08,08,00,00

amount 100

routitng [M1, M8, M3, M16]

processTime [611, 601, 616, 603]

140

6.2.2 Overloading improvement algorithm (OIA) stage

The objective of the OIA function is to improve the initial solution from

overloaded capacities. The explanation of the OIA concept to find the feasible solution

is described in section 4.4.2. The java source file of OIA is separated to six source files

based on the functions of tabu search, such as searching neighborhoods, evaluating new

solutions, and updating the best solution and other parameters. These files include

tabusearch.java, localSearch.java, tabuBucketedHeap.java, evaluate.java,

loadingRequirement.java, and updateTabu.java. The function of each source file is

described in Table 42.

Table 42: Summary of functions in OIA

Source file Function
tabuSearch.java It is a main function that is used to call the other

sub functions. The procedure starts from
initializing a solution to obtaining a new feasible
solution without overloaded capacity.

localSearch.java Seeking neighborhood solutions to find a new
best solution.

tabuBucketedHeap.java It is a sub function in localSearch.java in which
the function is used to determine a new operated
time of each operation of each job.

evaluate.java Evaluating the performance of solutions in terms
of tardiness and lead time.

loadingRequirement.java Determining loading requirements per resource
and bucket. This also includes defining
overloaded capacity buckets that need to be
improved.

updateTabu.java Updating tabu data, such as tabu job and
movement postions, after receiving a new best
solution.

141

6.2.3 Makespan improvement algorithm (MIA) stage

After OIA improves the solutions to be feasible, the next improvement is to use

MIA to improve the solution from earliness, tardiness, and lead time. The details of the

MIA concept can be seen in section 4.4.2. In this stage, there consist of six source files,

which are tabuSearchMIA.java, targetJob.java, localSearchMIA.java,

evaluateMIA.java, loadingRequirementMIA.java, and updateTabuMIA.java. The

function of each source file is summarized in Table 43.

Table 43: Summary of functions in MIA

A small instance for the application running can be seen in Appendix B. It will

present an instance of how to connect the proposed planning application with

CONPLAN and some examples of input data and planning results.

Source file Function
tabuSearchMIA.java It is a main function that is used to call the other

sub functions. The procedure starts from calling
the initial solution from OIA and improving the
solution until meeting the stopping criteria.

targetJob.java Identifying a target job which reperesents the
job which needs to be improved in the first
priority due to maximum tardiness or earliness.

localSearchMIA.java Seeking neighborhood solutions to find a new
best solution.

evaluateMIA.java Evaluating the performance of solutions in terms
of earliness, tardiness and lead time.

loadingRequirementMIA.java Determining loading requirements per resource
and bucket.

updateTabuMIA.java Updating tabu data, such as tabu job and
movement postions, after receiving a new best
solution.

142

CHAPTER 7

Conclusions and suggestions

7.1 Conclusions

In this dissertation, the solving approaches for resource planning problems in

MTO environments are studied. The purpose of study is to create an efficient resource

plan with embedded the JIT philosophy. The basic concept of the JIT concept is that

jobs will be processed when they are required. This leads to reduce WIP, finished goods

inventory, job lead time and also to increase flexibility of the production system to

accept new orders. In a real manufacturing system, production involves variability, both

from outside and inside the system, in which they significantly reduce an ability to

manage resources in effective ways. The dissertation proposes two new solving

methods, which are the optimization approach or the tabu search heuristic approach, to

solve a resource planning problem. The JIT concept is applied as a fundamental concept

to develop the algorithms and enhance performance of resource planning.

In Chapter three, a new binary integer linear programing model for resource

planning is presented. The solution initialization approach with JIT is proposed to start

the calculation since a good starting solution is expected to guide the optimizer to

desired solutions. The goal of the model is to minimize total weighted costs from

earliness, tardiness, lead time, subcontracting capacity, extra resources capacity, and

unplanned jobs. The effect of factors of interest, such as weighted cost ratio, due date

tightness, resource utilization, and process time, is examined. The experiments

143

demonstrate that the optimization algorithm struggles to obtain optimal solutions for

instances as variability of data increases and the size of instances increases, where size

is the number of jobs and operations per job being planned. However, using the JIT-

based initial solution improves performance of the optimizer. It allows optimal solutions

to be obtained for moderately larger instances.

In Chapter four, a new planning algorithm coordinated with the heuristic

method, called tabu search, is introduced. The algorithm is formulated by adapting the

JIT concept into core procedures of tabu search, search space and neighborhood

structure, in order to improve the quality of planning solutions in terms of earliness,

tardiness, and lead time. The experiments investigate the impact of factors of interest,

such as number of operations, due date tightness, and resource utilization. Furthermore,

the benchmarking results of the tabu algorithm and the other heuristic methods, FIFO

and EDD, are examined. The results illustrate that tabu algorithm outperforms the other

two methods. It can provide good solutions though dealing with combinatorial problems

of variability and scalability.

In Chapter five, the comparative study between the tabu search approach and the

optimization approach is presented. The numerical studies examine the performance of

these two solving methods by measuring the performance indicators, including

computational time, optimality gap, and objective solution. The analysis illustrates that

the tabu search solutions are not quite different from the optimization solutions when

the instances have small size and less variability. But the results of tabu search are

significantly better than another method when the size of problems and the range of

variability are greater.

144

In Chapter six, the details of resource planning application are presented. The

application is coded with the Java language. The architecture of the application is

created and categorized based on the basic functions of tabu search: solution

initialization, local search, evaluation, and tabu update. The function explanations of

each source file are also presented in this chapter.

Up until now, the contribution of this dissertation can be concluded as follows.

(1) The resource planning model for job shop planning problems is developed. An

effective initial solution can improve the performance of the optimizer since it obtains

good optimal solutions within reasonable time in specific problem conditions, such as

small problem sizes and less variabilities. The model is useful for planning problem

instances which need to analyze and decide what is an efficient method to support

customer requirements either managing existing resources or using additional

capacities. (2) The new two-phase resource planning algorithm that embeds JIT

concepts into a tabu search procedure is proposed, which are overloading improvement

algorithm (OIA) and makespan improvement algorithm (MIA). The proposed algorithm

obviously provides a better solution than the optimization problem when problems

involve scalability and variability. In addition, tabu search solutions also insignificantly

differ from the optimal solutions by the optimization approach in the small problem

instances. (3) With variability concerned, the tabu search method can provide more

promising solutions than the optimization approach and the heuristic approaches, FIFO

and EDD, since the tabu search algorithm, based on the JIT concept, can explore and

attempt to move solutions to ideal solution spaces. It therefore turns out with a lesser

145

computational time and optimality gap in the optimization benchmark analysis and a

better objective value in the other heuristic methods analysis.

7.2 Future study

Tactical-level planning does not allow consecutive operations for a job to be

processed in the same time bucket. Each operation can be loaded in a single bucket

only. From this condition, the future work can expand the study by applying tabu search

with the JIT concept to the operational capacity planning like weekly or daily planning.

This means that consecutive operations for a job can be processed next to each other.

With the concept of producing the right job at the right time, the operational plan might

be improved more on smoothing production flow and reducing WIP. So that is an

interesting topic for investigation.

Furthermore, this dissertation studies the results of resource planning from the

heuristic methods, tabu search, FIFO, and EDD. In order to differentiate the planning

results, other heuristic methods such as genetic algorithms, ant colony optimization, and

particle swarm optimization might be a good alternative method to investigate

numerical results and performance of resource planning.

146

References

Armentano, V.A. and Scrich, C.R. (2000), Tabu search for minimizing total tardiness in
a job shop, International Journal Production Economics, vol. 63, pp. 131-140.

Baker, K.R. and Scudder, G.D. (1990), Sequencing with earliness and tardiness
penalties: a review, Operations Research, vol. 38, pp. 22-36.

Balas, E. and Vazacopoulos, A. (1998), Guided local search with shifting bottleneck for
job shop scheduling. Management Science, vol. 44, no. 2, pp.262-275.

Barnes, J.W. and Chambers, J.B. (1995), Solving the job shop scheduling problem
using tabu search, IIE Transactions, vol. 27, pp. 257-263.

Beck, J.C. (1994), A Schema for Constraint Relaxation with Instantiations for Partial
Constraint Satisfaction and Schedule Optimization, Master thesis, Department of
Computer Science, University of Toronto.

Bertrand, J.W.M. and Sridharan, V. (2001), A study of simple rules for subcontracting
in make-to-order manufacturing, European Journal of Operational Research, vol.
128, pp. 509-531.

Carlier, J. (1982), The one-machine sequencing problem, European Journal of
Operational Research, vol. 11, pp. 42-47.

Clausen, J. (1999), Branch and bound algorithm-Principles and Examples, Department
of Computer Science, University of Copenhagen, Denmark.

Corry, P. and Kozan, E. (2004), Job scheduling with technical constraints, Journal of
the operational research society, vol. 55, pp. 160-169.

Danna, E., Rothberg, E., and Le, Pape C. (2003), Integrating mixed integer
programming and local search: A case study on job shop scheduling problems,
Proceedings CPAIOR.

Danna, E., Rothberg, E., and Le, Pape C. (2004), Exploring relaxation induced
neighborhoods to improve MIP solutions, Springer-Verlag, 10.1007/s10107-004-
0518-7.

Dell’Amico, M. and Trubian, M. (1993), Applying tabu search to the job shop
scheduling problem, Annals of Operations Research, vol. 41, pp. 231-252.

Eswaramurthy, V.P. and Tamilarasi, A. (2009), Hybridizing tabu search with ant colony
optimization for solving job shop scheduling problems, International Journal of
Advanced Manufacturing Technology, vol. 40, pp. 1004-1015.

Fisher, M. L. (1973), Optimal solution of scheduling problems using Lagrange
multipliers: Part I, Operations Research, vol. 21, pp. 1114-1127.

147

Fisher, M.L., Lageweg, B.J., and Lenstra, J.K. (1983), Surrogate duality relaxation for
job shop scheduling, Discrete Applied Mathematics, vol. 5, pp. 65-75.

Fischetti, M. and Lodi, A. (2003), Local branching, Mathematical Programming, vol.
98, pp. 23–47.

Fischetti, M., Glover, F., and Lodi, A. (2005), The feasibility pump, Mathematical
Programming, vol. 104, pp. 91-104.

Frederix, F. (2000), An extended enterprise planning methodology for the discrete
manufacturing industry, European Journal of Operational Research, vol. 129, pp.
317-325.

Gendreau, M. (2002), An introduction to tabu search, [Online] Available at:
http://opim.wharton.upenn.edu/~sok/papers/g/Gendreau_ANINTRODUCTIONTOT
ABUSEARCH.pdf

Giebels, M.M.T., Hans, E.W., Gerritsen, M.P.H., and Kals, H.J.J. (2000), Capacity
planning for make- or engineer-to-order manufacturing; the importance of order
classification, 33rd CIRP Manufacturing Systems Conference, Stockholm.

Glover, E. (1986), Future paths for integer programming and links to artificial
intelligence, Computers and Operations Research, vol. 13, pp. 533-549.

Guoa, Y.W., Lib, W.D., Milehama, A.R., and Owena, G.W. (2009), Optimization of
integrated process planning and scheduling using a particle swarm optimization
approach, International Journal of Production Research, vol. 47, no. 14, pp. 3775-
3796.

Hans, E.W. (2001), Resource loading by branch-and-price techniques, Ph.D. thesis,
University of Twente, Netherlands.

He, Z., Yang, T., and Deal, D.E. (1993), A multiple-pass heuristic rule for job shop
scheduling with due dates, International Journal of Production Research, vol. 31,
pp. 2677-2692.

Heyl, J. (2010). Linear programming powerpoint slides for Operations Management, by
Krajewski/Ritzman/Malhotra, Pearson Education.

Hopp, W. and Spearman, M. (2004), Factory Physics, 2nd edn, McGraw-Hill/Irwin.

Imanipour, N. and Zegordi, S.H. (2006), A heuristic approach based on tabu search for
early/tardy flexible job shop problems, Scientia Iranica, vol. 13, no. 1, pp. 1-13.

Jain, A.S. and Meeran, S. (1999), Deterministic job shop scheduling: past, present and
future, European Journal of Operational Research, vol. 113, pp. 390-434.

James, R.J.W. (1997), Using Tabu search to solve the common due date early/tardy
machine scheduling problem, Computers and Operations Research, vol. 24, no. 3,
pp. 199-208.

148

Kamien, M.I. and Li, L. (1990), Subcontracting coordination flexibility and production
smoothing in aggregate planning, Management Science, vol. 36, pp. 1352-1363.

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., and Shmoys, D.B. (1989),
Sequencing and scheduling: Algorithm and Complexity, Report BS-R89xx, Centrum
voor Wiskunde en Informatica, Amsterdam, Netherlands.

Li, W.D. and Mcmahon, C.A. (2007), A simulated annealing-based optimization
approach for integrated process planning and scheduling, International Journal of
Computer Integrated Manufacturing, vol. 20, pp. 80-95.

Merzifonluoglu, Y., Geunes, J., and Romeijn, H.E. (2006), Integrated capacity, demand,
and production planning with subcontracting and overtime options, Naval Research
Logistics, vol. 54, pp. 433-447.

Miyashita, K. (1997), Iterative constraint-based repair for multiagent scheduling,
AAAI Technical report WS-97-05.

Nowicki, E. and Smutnicki, C. (1996), A fast taboo search algorithm for the job shop
problem, Management Science, vol. 42, no. 6, pp. 797-813.

Potts, C.N. (1980), Analysis of a heuristic for one machine sequencing with release
dates and delivery times, Operations Research, vol. 28, pp. 1436-1441.

Rabadi, G., Mollghasemi, M., and Anagnostopoulos, C. G. (2004), A branch and bound
algorithm for the early/tardy machine scheduling problem with a common due-date
and sequence dependent setup time, Computers and Operations Research, vol. 31,
pp. 1727-1751.

Revelle, J.B. (2001), Manufacturing handbook of best practices: An innovation,
productivity and quality focus, CRC Press, Florida.

Sourd, F. and Kedad-Sidhoum, S. (2003), The one-machine problem with earliness and
tardiness penalties, Journal of Scheduling, vol. 6, no. 6, pp. 533-549.

Taillard, E. (1989), Parallel taboo search technique for the job shop scheduling problem,
Working Paper ORWP, Departement de Mathematiques, Ecole Polytechnique
Federale De Lausanne, Lausanne, Switzerland.

Tanaka, S., Sasaki, T., and Araki, M. (2003), A Branch and bound algorithm for the
single machine weighted earliness-tardiness scheduling problem with job
independent weights, IEEE, 0-7803-7952-7/03.

Tsubakitani, S. and Evans, J. R. (1992), Applying tabu search to the mean tardiness
sequencing problem, University of Cincinnati.

Van Laarhoven, P.J.M., Aarts, E.H.L., and Lenstra, J.K. (1992), Job shop scheduling by
simulated annealing, Operation Research, vol. 40, no. 1, pp. 113-125.

149

Vaessens, R.J.M., Aarts, E.H.L., and Lenstra, J.K. (1996), Job shop scheduling by local
search, INFORMS Journal on Computing, vol. 8, pp. 302-317.

Wullink, G., Hans, E.W., and Harten, A. V. (2004a), Robust resource loading for
engineer-to-order manufacturing, Beta Research School for Operations,
Management and Logistics, University of Twente, Netherlands.

Wullink, G., Gademann, A.J.R.M., Hans, E.W., and Harten, A. V. (2004b), Scenario-
based approach for flexible resource loading under uncertainty, International
Journal of Production Research, vol. 42, no. 24, pp. 5079-5098.

Zhang, C.Y., Li, P., Guan, Z., and Rao, Y. (2007), A tabu search algorithm with a new
neighborhood structure for the job shop scheduling problem, Computers and
Operations Research, vol. 34, pp. 3229-3242.

Zhang, C.Y., Rao, Y., and Li, P. (2008), An effective hybrid genetic algorithm for the
job shop scheduling problem, International Journal of Advanced Manufacturing
Technology, vol. 39, pp. 965-974.

Zribi, N., Kacem, I., El-kamel, A., and Borne, P. (2008), Minimizing the total tardiness
in a flexible job-shop, Ecole Centrale de Lille, University of technology of Troyes,
France.

Zhu, ZC., Ng, KM., and Ong, HL. (2010), A modified tabu search algorithm for cost-
based job shop problem, Journal of the Operational Research Society, vol. 61, pp.
611 –619.

150

Appendix A

Java code for the resource planning application

1. initTabu.java

public class initTabu extends tabuSearch
{
public void initData(ArrayList conplanInitList, ArrayList conplanOrderList) {

try{
Database database = Database.getDatabase(Database.PLANNING);
ConfigReaderWriter config = new ConfigReaderWriter("conf/index.conf");
bucketSize = Integer.parseInt(config.get("BucketedHeap.bucketSize"));

 depth = Integer.parseInt(config.get("BucketedHeap.depth"));
 bucketedHeap = new BucketedHeap(depth, bucketSize);
 baseIndex = bucketedHeap.buckets();

List<SalesOrder> sales = (List<SalesOrder>) database.getTable(
"SalesOrder").getAll(); //unchecked cast

 for(Iterator<SalesOrder> i = sales.iterator(); i.hasNext();) {
 SalesOrder so = (SalesOrder) i.next();
 plannedDueDate.add(so.getShipDateRequested());
 release.add(so.getArrivalTime());
 amount.add(so.getQuantityRequested());

List<ItemBOMRouting> ItemRoutings = (List<ItemBOMRouting>)
databse.getTable("ItemBOMRouting").getAll(new Where("item",
so.getItemRequested())); //unchecked cast
for(Iterator<ItemBOMRouting> j = ItemRoutings.iterator();
j.hasNext();) {

 ItemBOMRouting ibr = (ItemBOMRouting) j.next();
List<Routing> routings = (List<Routing>) database.getTable(
"Routing").getAll(new Where("name", ibr.getRoutingName()));
//unchecked cast

 ArrayList mc = new ArrayList();
 ArrayList pt = new ArrayList();
 ArrayList initNode = new ArrayList();
 String name = so.getNumber();
 int t=0;
 for(int d = 0; d<conplanOrderList.size(); d++) {
 String init = (String) conplanOrderList.get(d);
 if(name.equals(init)&&t==0){
 ArrayList conplanList = (ArrayList) conplanInitList.get(d);
 ++t;
 int g = 1;

for(Iterator<Routing> k = routings.iterator(); k.hasNext();)
{

int opnIndex = Integer.parseInt(conplanList.get(g-
1).toString())+baseIndex;

 Routing r = (Routing) k.next();
 initNode.add(opnIndex);
 mc.add(r.getResource());
 pt.add(r.getUnitRuntime());
 ++g;
 }
 }

151

 }
 machine.add(mc);
 processTime.add(pt);
 PST.add(initNode);
 }

}
List<Resource> rs = (List<Resource>) database.getTable("Resource"
).getAll(); //unchecked cast

 for(Iterator<Resource> r = rs.iterator(); r.hasNext();) {
 Resource m = (Resource) r.next();
 machineName.add(m.getName());
 }
 //set tabu list size
 if(PST.size()>=200){
 tabuListSize = (int)(PST.size()/32);
 }
 else{
 tabuListSize = 7;
 }
 }
 catch(java.io.FileNotFoundException notfound) {
 System.err.println("Failed to open conf/index.conf file");
 }
 }
}

152

2. tabuSearch.java

public class tabuSearch {
 public int timeOffset = 1253923200;
 public static int iteration = 1000;
 public static int runTime=1800;
 public static int terminatedIteration = 30;
 public static int terminatedMIA = 10;

 static ArrayList amount = new ArrayList();
 static ArrayList bestList = new ArrayList();
 static ArrayList candOperatedList = new ArrayList();
 static ArrayList candLoadingList = new ArrayList();
 static ArrayList diffTimeList = new ArrayList();
 static ArrayList idealplanList = new ArrayList();
 static ArrayList jobList = new ArrayList();
 static ArrayList machine = new ArrayList();
 static ArrayList machineName = new ArrayList();
 static ArrayList mc = new ArrayList();
 static ArrayList mcList = new ArrayList();
 static ArrayList newPST = new ArrayList();
 static ArrayList nPST = new ArrayList();
 static ArrayList newPSTList = new ArrayList();
 static ArrayList overloadedOrder = new ArrayList();
 static ArrayList overloadedOperation = new ArrayList();
 static ArrayList PST = new ArrayList();
 static ArrayList processTime = new ArrayList();
 static ArrayList plannedDueDate = new ArrayList();
 static ArrayList release = new ArrayList();
 static ArrayList swapPairList = new ArrayList();
 static ArrayList startList = new ArrayList();
 static ArrayList tdvList = new ArrayList();
 public static ArrayList timeList = new ArrayList();
 public static ArrayList indexList = new ArrayList();

 static ArrayList [] resourceLoad;
 static ArrayList [] candResourceLoad;
 static ArrayList [] startResourceLoad;

 public static String maxMachine;
 public static String[] candMaxMachine;

 public static int baseIndex;
 public static int bucketSize;
 public static int bestMakespan;
 public static int bestTardiness;
 public static int bestMaxOverload;
 public static int bestNumOverload;
 public static int bestEarliness;
 public static int countSolution;
 public static int depth;
 public static int deviatedPosCount;
 public static int maxBucket;
 public static int minPoint;
 public static int msCountList;
 public static int MIACount;
 public static int nJob;
 public static int nMachine;
 public static int numElements;
 public static int maxRootBucket;
 public static int planningBucket;

153

 public static int startTime;
 public static int totalBucket;
 public static int tabuListSize;

 public static int[] candMakespan;
 public static int[] candMaxOverload;
 public static int[] candNumOverload;
 public static int[] candTardiness;
 public static int[] candEarliness;
 public static int[] candBucketFrom;
 public static int[] candBucketTo;
 public static int[] candHeap;
 public static int[] candMaxBucket;
 public static int[] deviatedTime;
 public static int[] dueDate;
 public static int[] earliness;
 public static int[] earlinessList;
 public static int[] heap;
 public static int[] makespanList;
 public static int[] msTardiness;
 public static int[] msEarliness;
 public static int[] tabuCount;
 public static int[] tardiness;
 public static int[] tardinessList;
 public static int[] jobFrom;
 public static int[] jobTo;
 public static int[] maxJList;
 public static int[] tabuBucketFrom;
 public static int[] tabuBucketTo;
 public static int[] tabuJ;
 public static int[] tabuO;
 public static int[][] bestLoading;
 public static int[][] candLoading;
 public static int[][] loading;
 public static int[][] nbhLoading;
 public static int[][] startLoading;

 public static boolean[] jobCondition;

 public static boolean checkBucket;
 public static boolean exitCondition;
 public static boolean tCheck;

 public static BucketedHeap bucketedHeap;

 public static void main(ArrayList conplanInitList, ArrayList
 conplanOrderList) {
 initTabu it = new initTabu();
 it.initData(conplanInitList, conplanOrderList);
 totalBucket = baseIndex;
 planningBucket = baseIndex;
 nMachine = machineName.size();
 jobFrom = new int [tabuListSize];
 jobTo = new int [tabuListSize];
 maxJList = new int[tabuListSize];
 tabuBucketFrom = new int[tabuListSize];
 tabuBucketTo = new int[tabuListSize];
 tabuJ = new int[tabuListSize];
 tabuO = new int[tabuListSize];
 loading = new int [nMachine][totalBucket];
 nbhLoading = new int [nMachine][totalBucket];
 bestLoading = new int [nMachine][totalBucket];
 candLoading = new int [nMachine][totalBucket];

154

 startLoading = new int [nMachine][totalBucket];
 resourceLoad = new ArrayList [machineName.size()];
 candResourceLoad = new ArrayList [machineName.size()];
 startResourceLoad = new ArrayList [machineName.size()];
 startList = new ArrayList();
 jobList = new ArrayList();
 bestList = new ArrayList();
 idealplanList = new ArrayList();
 startTime = (int)(System.currentTimeMillis()/1000);
 countSolution = 0;

 for (int itn=0; itn<iteration; itn++) {
 //Solution initialization
 if (itn==0) {
 //(1) Get initial solution from CONPLAN
 for (int p1=0; p1<PST.size(); p1++){
 ArrayList jl = (ArrayList) PST.get(p1);
 jobList.add(jl);
 startList.add(jl);
 bestList.add(jl);
 idealplanList.add(jl);
 }

 //(2) Initialize tabu list
 updateTabu tabu = new updateTabu();
 tabu.initList();

 //(3) Evaluate Tardiness and Makespan of initial solution
 evaluate value = new evaluate();
 value.objValue(jobList);
 bestTardiness = value.totalTardiness;
 bestEarliness = value.totalEarliness;
 bestMakespan = value.makespan;

 //(4) Find overloading in each bucket
 loadingRequirement load = new loadingRequirement();
 load.loadingReq(jobList);
 bestMaxOverload = load.maxOverload;
 bestNumOverload = load.nOverloadedBucket;

}

 else {

//(5) Start next iteration with the best solution from previous run
 jobList = new ArrayList();
 for (int p=0; p<startList.size(); p++){
 ArrayList start = (ArrayList) startList.get(p);
 jobList.add(start);
 }
 loadingRequirement load = new loadingRequirement();
 load.loadingReq(jobList);
 }

 //Set a resource heap load
 for(int i=0; i<machineName.size(); i++){
 startResourceLoad[i] = resourceLoad[i];
 }

 //**(6) Skip to MIA
 if(bestMaxOverload == 0){
 tabuSearchMIA ms = new tabuSearchMIA();
 ms.msTabuSearch();
 int OIATime = (int)(System.currentTimeMillis()/1000);

155

 break;
 }

 else {
 //(7) Generate neighborhood candidate
 newPSTList = new ArrayList();
 localSearch candidate = new localSearch();
 candidate.searching();

 //(8) Select the best candidate
 bestCandidate(candidate.nMove);
 int newBestMaxOverload = candMaxOverload[minPoint];
 int newBestNumOverload = candNumOverload[minPoint];
 int newBestTardiness = candTardiness[minPoint];
 int newBestEarliness = candEarliness[minPoint];
 int newBestMakespan = candMakespan[minPoint];

 //(9) Check Tabu list
 boolean tc = tabuCheck(minPoint);

 //(10) update status to start the next iteration
 int caseNumber;

 //Change sign in maxOverload condition from > to <
 //Case1: Get the best answer #1

if (((tc==true) || (tc==false)) &&
(bestMaxOverload<newBestMaxOverload)) {

 caseNumber = 1;
 bestMaxOverload = candMaxOverload[minPoint];
 bestNumOverload = candNumOverload[minPoint];
 bestTardiness = candTardiness[minPoint];
 bestEarliness = candEarliness[minPoint];
 bestMakespan = candMakespan[minPoint];
 maxMachine = candMaxMachine[minPoint];
 maxBucket = candMaxBucket[minPoint];

 bestList = (ArrayList) newPSTList.get(minPoint);
 startList = bestList;
 }

 //Case2: Get the best answer #2

else if (((tc==true) || (tc==false)) &&
(bestMaxOverload==newBestMaxOverload) &&
(bestTardiness>newBestTardiness))

 {
 caseNumber = 2;
 bestMaxOverload = candMaxOverload[minPoint];
 bestNumOverload = candNumOverload[minPoint];
 bestTardiness = candTardiness[minPoint];
 bestEarliness = candEarliness[minPoint];
 bestMakespan = candMakespan[minPoint];
 maxMachine = candMaxMachine[minPoint];
 maxBucket = candMaxBucket[minPoint];
 bestList = (ArrayList) newPSTList.get(minPoint);
 startList = bestList;
 }

 //Case3: Get the best answer #2

else if (((tc==true) || (tc==false)) &&
(bestMaxOverload==newBestMaxOverload) &&
(bestTardiness==newBestTardiness)&&(bestMakespan>newBestMakespan)
)

156

 {
 caseNumber = 3;
 bestMaxOverload = candMaxOverload[minPoint];
 bestNumOverload = candNumOverload[minPoint];
 bestTardiness = candTardiness[minPoint];
 bestEarliness = candEarliness[minPoint];
 bestMakespan = candMakespan[minPoint];
 maxMachine = candMaxMachine[minPoint];
 maxBucket = candMaxBucket[minPoint];
 bestList = (ArrayList) newPSTList.get(minPoint);
 startList = bestList;
 }

 //Case4: Some improvement (not Tabu) #1
 else if ((tc==false) && (bestMaxOverload>=newBestMaxOverload) &&
 (bestTardiness<=newBestTardiness))
 {
 caseNumber = 4;
 startList = (ArrayList) newPSTList.get(minPoint);
 maxMachine = candMaxMachine[minPoint];
 maxBucket = candMaxBucket[minPoint];
 }

 //Case5: Some improvement (not Tabu) #2
 else if ((tc==false) && (bestMaxOverload>newBestMaxOverload) &&
 (bestTardiness>newBestTardiness))
 {
 caseNumber = 5;
 startList = (ArrayList) newPSTList.get(minPoint);
 maxMachine = candMaxMachine[minPoint];
 maxBucket = candMaxBucket[minPoint];
 }

 //Case6: Some improvement (Tabu)
 else {
 caseNumber = 6;
 int maxOverload= bucketSize*totalBucket;
 int minTardiness = bucketSize*totalBucket;
 int minMakespan = bucketSize*totalBucket;
 int maxOverload1;
 int minPoint1;

 for (int m=0; m< candidate.nMove; m++) {
 boolean tc1= tabuCheck(m);
 if ((candMaxOverload[m] < maxOverload) && (tc1==false)) {
 maxOverload = candMaxOverload[m];
 minPoint = m;
 }

else if ((candMaxOverload[m] == maxOverload) &&
(tc1==false)) {

 if (candTardiness[m] < minTardiness){
 maxOverload1 = candMaxOverload[m];
 minPoint1 = m;
 }

else if
(candTardiness[m]==minTardiness&&candMakespan[m]<minMak
espan){

 maxOverload1 = candMaxOverload[m];
 minPoint1 = m;
 }
 else {
 maxOverload1 = maxOverload;
 minPoint1 = minPoint;

157

 }
 maxOverload = maxOverload1;
 minPoint = minPoint1;
 }
 }

 startList = (ArrayList) newPSTList.get(minPoint);
 maxMachine = candMaxMachine[minPoint];
 maxBucket = candMaxBucket[minPoint];
 }

 //(12) Update tabu list
 updateTabu tabuList = new updateTabu();
 tabuList.updateList(minPoint);

 //(13) Solution summary
 System.out.println("Best solution summary:");
 System.out.println(" bestList= "+bestList);
 System.out.println(" FinalBestMaxOverload ="+bestMaxOverload);
 System.out.println(" FinalBestNumOverload ="+bestNumOverload);
 System.out.println(" FinalBestTardiness ="+bestTardiness);
 System.out.println(" FinalBestEarliness ="+bestEarliness);
 System.out.println(" FinalBestMakespan ="+bestMakespan);
 System.out.println(" Iteration ="+itn);

 //(14) Count the unimproved answers to terminate
 if (caseNumber==4||caseNumber==5||caseNumber==6) {
 countSolution = countSolution + 1;
 }
 else {
 countSolution = 0;
 }
 }
 }

 int endTime = (int)(System.currentTimeMillis()/1000);
 int computationalTime = endTime-startTime;
 }//Main class

public static void bestCandidate(int nMove){
 //Find a minimum overloadedBucket, tardiness, and earliness
 int minO = bucketSize*totalBucket;
 int minT = bucketSize*totalBucket;
 int minM = bucketSize*totalBucket;
 int minN = bucketSize*totalBucket;

 for (int m=0; m < nMove; m++) {
 if (candMaxOverload[m] < minO) {
 minO = candMaxOverload[m];
 minT = candTardiness[m];
 minM = candMakespan[m];
 minN = candNumOverload[m];
 minPoint = m;
 }
 else if (candMaxOverload[m] == minO) {
 if (candTardiness[m] < minT){
 minO = candMaxOverload[m];
 minT = candTardiness[m];
 minM = candMakespan[m];
 minN = candNumOverload[m];
 minPoint = m;
 }

158

 else if (candTardiness[m] == minT) {
 if (candNumOverload[m] < minN){
 minO = candMaxOverload[m];
 minT = candTardiness[m];
 minM = candMakespan[m];
 minN = candNumOverload[m];
 minPoint = m;
 }
 else if (candNumOverload[m] == minN){
 if (candMakespan[m] < minM){
 minO = candMaxOverload[m];
 minT = candTardiness[m];
 minM = candMakespan[m];
 minN = candNumOverload[m];
 minPoint = m;
 }
 }
 }
 }
 }

}

 public static boolean tabuCheck(int minPoint) {
 //Check Tabu list
 tCheck=false;
 int countTabu = 0;
 for (int t=0; t<tabuListSize; t++) {

int tabuJob =
Integer.parseInt(overloadedOrder.get(minPoint).toString());
int tabuOpn =
Integer.parseInt(overloadedOperation.get(minPoint).toString());
if ((tabuJob==tabuJ[t])&&((tabuOpn==tabuO[t]))){
++countTabu;
}
if(countTabu>0)
 tCheck = true;
else

 tCheck = false;
 }
 return tCheck;
 }
}

159

2.1 localSearch.java

public class localSearch extends tabuSearch {
 boolean checkTime = true;
 boolean condition;
 boolean pushCondition;
 int nMove;
 int overloadedOpn;
 int newBucket;
 public tabuBucketedHeap bh;

 public void searching() {
 overloadedOrder = new ArrayList();
 overloadedOperation = new ArrayList();

 //Create candidate list from overloadedBucket
 Iterator m = machine.iterator(); m.hasNext();
 for(int c=0; c<machine.size(); c++){
 mc = (ArrayList)m.next();
 for(int d=0; d<mc.size(); d++){
 String mt = ((ArrayList)machine.get(c)).get(d).toString();

int opnTime =
Integer.parseInt(((ArrayList)jobList.get(c)).get(d).toString());

 if ((mt.equals(maxMachine))&&(opnTime == maxBucket)) {
 overloadedOrder.add(c);
 overloadedOperation.add(d);
 }
 }
 }

 nMove = overloadedOrder.size();
 candMaxOverload = new int [nMove];
 candNumOverload = new int [nMove];
 candTardiness = new int [nMove];
 candEarliness = new int [nMove];
 candMakespan = new int [nMove];
 tabuCount = new int [nMove];
 candBucketFrom = new int [nMove];
 candBucketTo = new int [nMove];
 candMaxMachine = new String [nMove];
 candMaxBucket = new int [nMove];
 bh = new tabuBucketedHeap();

 for(int l=0; l<nMove; l++){
 //Generate Neighborhood
 int ovOrder = Integer.parseInt((overloadedOrder.get(l).toString()));
 int ovOp = Integer.parseInt(overloadedOperation.get(l).toString());
 newSequence(ovOrder, ovOp);

 //Evaluate the solution
 evaluate candValue = new evaluate();
 candValue.objValue(newPST);
 candValue.bucketLocation(l, startList, newPST);
 candBucketFrom[l] = candValue.bucketFrom;
 candBucketTo[l] = candValue.bucketTo;
 candTardiness[l] = candValue.totalTardiness;
 candEarliness[l] = candValue.totalEarliness;
 candMakespan[l] = candValue.makespan;
 loadingRequirement loading = new loadingRequirement();
 loading.updateLoading();

160

 loading.overloadedBucket();
 candMaxOverload[l] = loading.maxOverload;
 candNumOverload[l] = loading.nOverloadedBucket;
 candMaxMachine[l] = maxMachine;
 candMaxBucket[l] = maxBucket;
 }
 }

 public void newSequence(int ovOrder, int ovOpn) {
 //Create new lists of order in each operation
 newPST = new ArrayList();
 Iterator m = machine.iterator(); m.hasNext();
 for(int a=0; a<machine.size(); a++){
 nPST = new ArrayList();
 mc = (ArrayList)m.next();

 if(a==ovOrder){
 overloadedOpn = ovOpn;
 checkPositiveTime(a);
 if(checkTime == true){
 pullBucket(a);
 }
 else if (checkTime == false){
 pushBucket(a);
 }
 }
 else {
 for(int b=0; b<mc.size(); b++){

newBucket =
Integer.parseInt(((ArrayList)jobList.get(a)).get(b).toString(
));

 nPST.add(newBucket);
 }}
 newPST.add(nPST);
 }
 newPSTList.add(newPST);
 }

 public void pullBucket(int a) {
 long pet;
 condition = true;
 nPST = new ArrayList();
 pushCondition = false;
 mcList = new ArrayList();

//(1) search the newBuckets for overloaded operation and predecessor
operation
for (int b=0; b<overloadedOpn+1; b++){

 int c = overloadedOpn-b;
 int mcName = 0;

int length =
Integer.parseInt(((ArrayList)processTime.get(a)).get(c).toString())*
Integer.parseInt(amount.get(a).toString());
int oprBucket =
Integer.parseInt(((ArrayList)jobList.get(a)).get(c).toString());

 if(c==overloadedOpn){
 pet = timeOffset+bh.endTimeOf(oprBucket);
 }
 else{
 oprBucket = Integer.parseInt((nPST.get(0)).toString())-1;
 pet = timeOffset+bh.endTimeOf(oprBucket);
 }

161

 String m = ((ArrayList)machine.get(a)).get(c).toString();
 for(int i=0; i<machineName.size(); i++){
 String mcn = machineName.get(i).toString();
 if(m.equals(mcn)){
 mcName = i;
 }
 }
 startHeap(mcName);
 long pst = bh.findPSTBackward(pet, length);

int newBucket = (int)Math.ceil(baseIndex + (pst-
timeOffset)/bucketSize);

 checkCondition(a, c, newBucket);
 if(pushCondition == true){
 pushBucket(a);
 break;
 }

 //update loading
 heap[oprBucket] += length;
 heap[newBucket] -= length;

 //update parent
 bh.updateParents(oprBucket);
 bh.updateParents(newBucket);

 //update heap in adjusted resoruce
 mcList.add(mcName);
 candResourceLoad[mcName] = new ArrayList();

 for(int i = 0; i < heap.length; i++){
 candResourceLoad[mcName].add(heap[i]);
 }
 nPST.add(0,newBucket);
 }

 //(2) search the newBuckets for successor Operation
 for (int b=0; b<mc.size()-(overloadedOpn+1); b++){
 int c = b+overloadedOpn+1;
 if((condition=true) && (c>overloadedOpn)){

newBucket =
Integer.parseInt(((ArrayList)jobList.get(a)).get(c).toString());
nPST.add(newBucket);

 }
 }
 }

 public void checkCondition(int job, int opn, int newBucket){

//Check the bucket whether start earlier than release date. If yes, go
to pushBucket.

 long r = Integer.parseInt(release.get(job).toString());
 int rd = (int)baseIndex + (int)(r-timeOffset)/bucketSize;

if(newBucket< baseIndex || newBucket<rd||(newBucket==baseIndex&opn!=0))
{

 condition = false;
 pushCondition = true;
 }
 }

public void pushBucket(int a) {
 int mcName = 0;
 nPST = new ArrayList();

162

 mcList = new ArrayList();

 for (int b=0; b<mc.size(); b++){
 String m = ((ArrayList)machine.get(a)).get(b).toString();
 //Get heap for machine in opn b
 for(int i=0; i<machineName.size(); i++){
 String mcn = machineName.get(i).toString();
 if(m.equals(mcn)){
 mcName = i;
 }
 }
 startHeap(mcName);

 if(b < overloadedOpn){

newBucket =
Integer.parseInt(((ArrayList)jobList.get(a)).get(b).toString());

 }
 else{

int length =
Integer.parseInt(((ArrayList)processTime.get(a)).get(b).toString(
))*Integer.parseInt(amount.get(a).toString());
int oprBucket =
Integer.parseInt(((ArrayList)jobList.get(a)).get(b).toString());
long est = timeOffset+bh.endTimeOf(Integer.parseInt((nPST.get(b-
1)).toString()))+bucketSize;

 long pst = (int) bh.findPSTForward(est, length);
 newBucket = (int)Math.ceil(baseIndex + (pst-

timeOffset)/bucketSize);

 //update loading
 heap[oprBucket] += length;
 heap[newBucket] -= length;

 //update parent
 bh.updateParents(oprBucket);
 bh.updateParents(newBucket);

 //update heap in adjusted resoruce
 mcList.add(mcName);
 candResourceLoad[mcName] = new ArrayList();

 for(int i = 0; i < heap.length; i++){
 candResourceLoad[mcName].add(heap[i]);

 }
 }
 nPST.add(newBucket);
 }
 }

 public boolean checkPositiveTime(int a) {
 int count = 0;
 for(int b=0; b<mc.size(); b++){

int processOpn =
Integer.parseInt(((ArrayList)jobList.get(a)).get(b).toString());

 int rDate = (int)
(baseIndex+((Integer.parseInt((release.get(a)).toString())-
timeOffset)/bucketSize));

 if ((processOpn==0) || (processOpn==rDate)) {
 ++count;
 }
 if (count > 1) {
 checkTime = false;
 }

163

 }
 return checkTime;
 }

 public void startHeap(int mcName){
 for(int i=0; i<heap.length; i++){

heap[i] =
Integer.parseInt(startResourceLoad[mcName].get(i).toString());

 }
 }
}

164

2.2 tabuBucketedHeap.java

public class tabuBucketedHeap extends tabuSearch {
 private int maxOverlapNodes;
 private double minNodeAvailability;
 private int bucketPosition;

 public int buckets() {
 return baseIndex(); // half of the nodes are leaf nodes, which is what
 // baseIndex actually calculates
 }

 public long findPSTBackward(long PET, int length) {
 int time = (int) (PET - timeOffset);
 long PST = findPSTDescendMax(0, maxRootBucket, time, length);
 if(PST == -1)
 return -1; // never found capacity
 else
 return PST + timeOffset;
 }

 public long findPSTForward(long EST, int length) {
 int time = (int) (EST - timeOffset);
 long PST = 0;

 // if space is available
 if(heap[0] > length) {
 // calculate the PST
 PST = timeOffset + findPSTDescend(0, maxRootBucket, time, length);
 boolean acceptPST;
 do {
 acceptPST = true;
 List<Integer> overlapNodes = overlap((int)(PST - timeOffset),

length, null);

if(maxOverlapNodes > 0 && overlapNodes.size() > maxOverlapNodes)
{

 acceptPST = false;
 }

 if(overlapNodes.size() > 2) {
 overlapNodes.remove(0);
 overlapNodes.remove(overlapNodes.size() - 1);

 // check to see if each node has adequate availability

for(Iterator<Integer> i = overlapNodes.iterator(); i.hasNext();
) {

 int index = ((Integer) i.next()).intValue();
if(((double) heap[index] / (double) bucketSize) <=
minNodeAvailability)

 acceptPST = false;
 }
 }

// if we do not like the PST (acceptPST is false), move search
forward

 if(!acceptPST) {
 time += bucketSize;

PST = Math.max(timeOffset + findPSTDescend(0, maxRootBucket,
time, length), EST);

 }

165

 } while(!acceptPST);

 // now that we have a PST, adjust it's position within the node
 switch(this.bucketPosition) {
 case 1: PST = Math.max(PST, EST);
 break;
 case 2: PST = PST + bucketSize - length; // end of bucket - length
 break;
 case 3: // already at start of node
 break;
 case 4: PST = PST + bucketSize / 2; // midpoint of node
 break;
 default:
 System.err.println("Invalid bucketPosition - assuming 3");
 }
 // our final PST
 return PST;
 } else {

return timeOffset + maxRootBucket + 1; // return, basically, an
invalid time

 }
 }

 public int amountBefore(int index, int PET) {
 int start = startTimeOf(index);
 int end = endTimeOf(index);
 if(end < PET){
 return heap[index];
 }
 if(PET < start){
 return 0;
 }
 else{
 return Math.min(heap[index], PET - start);
 }
 }

private int findPSTDescend(int index, int maxBucketSize, int time, int
length) {

 if(heap[index] <= 0)
 return maxRootBucket + 1; // not available for consumption
 if(index < baseIndex()) {
 if(time < startTimeOf(rightChild(index))) {
 int possiblePST = findPSTDescend(leftChild(index),
 maxBucketSize / 2, time, length);
 if(possiblePST > maxRootBucket) {
 return findPSTDescend(rightChild(index),
 maxBucketSize / 2,
 time,
 length);
 } else {
 return possiblePST;
 }
 } else {
 // only right child eligible
 return findPSTDescend(rightChild(index), maxBucketSize / 2,
 time, length);
 }
 } else {
 // this node has available capacity, is located on the
 // base level, and is far enough to the right
 return (index - baseIndex()) * maxBucketSize;
 }

166

 }

public int findPSTDescendMax(int index, int maxBucketSize, int PET, int
length) {

 if(amountBefore(index, PET) > 0) {
 if(index < baseIndex()) {

return Math.max(findPSTDescendMax(leftChild(index),
maxBucketSize / 2, PET, length), findPSTDescendMax(rightChild(
index), maxBucketSize / 2, PET, length));

 } else {
 // accumulate to the end point to determine PST
 int amountAfter = 0;

for(int i = index + 1; i < baseIndex() + (PET/bucketSize); i++)
{

 amountAfter += amountBefore(i, PET);
 }
 if(amountAfter + amountBefore(index, PET) >= length){

return Math.min(PET - length, endTimeOf(index) - (length
- amountAfter));

 } else
 return -1;
 }
 } else {
 return -1;
 }
 }

 private void indexOutOfBounds(PlannedOperation op) {
 RTPDate pst = new RTPDate(op.PST);

System.err.println("Attempting to insert operation outside of the
planning horizon at time " + pst.getDateAs(RTPDate.ISO) + " for order "
+ op.salesOrderID + " operation " + op.id + " with task size " +
op.operationTime);

 }

private List<Integer> overlap(int time, int amount, PlannedOperation op)
{

 List<Integer> updatedNodes = new ArrayList<Integer>();
 int nodeIndex = baseIndex() + time / bucketSize;
 int leftToRemove = amount;

 // go along base and remove capacity
 try {
 while(leftToRemove > 0) {
 if(heap[nodeIndex] > leftToRemove) {
 leftToRemove = 0;
 } else {
 leftToRemove -= Math.max(heap[nodeIndex], 0);
 }
 updatedNodes.add(new Integer(nodeIndex));

 if(leftToRemove > 0)
 nodeIndex++;
 }
 } catch(ArrayIndexOutOfBoundsException array) {
 indexOutOfBounds(op);
 }
 return updatedNodes;
 }

 private int startTimeOf(int index) {
 int pos = index;

167

 int depthMultiplier = 1;
 int depth = 0;
 if(index == 1) {
 depth = 1;
 } else {
 while(pos >= depthMultiplier) {
 pos -= depthMultiplier;
 depthMultiplier *= 2;
 depth++;
 }
 }
 int bucketSizeForDepth = maxRootBucket / (int) Math.pow(2, depth);
 int offsetWithinDepth = index - (int) Math.pow(2, depth) + 1;
 return bucketSizeForDepth * offsetWithinDepth;
 }

 public int endTimeOf(int index) {
 int pos = index;
 int depthMultiplier = 1;
 int depth = 0;
 if(index == 1) {
 depth = 1;
 } else {
 while(pos >= depthMultiplier) {
 pos -= depthMultiplier;
 depthMultiplier *= 2;
 depth++;
 }
 }
 int bucketSizeForDepth = maxRootBucket / (int) Math.pow(2, depth);
 int offsetWithinDepth = index - (int) Math.pow(2, depth) + 1;
 return bucketSizeForDepth * (offsetWithinDepth + 1) - 1;
 }

 private int baseIndex() {
 return heap.length / 2;
 }

 public void updateParents(int index) {
 if(index != 0) {
 int parentIndex = parent(index);

heap[parentIndex] = heap[leftChild(parentIndex)] + heap[
rightChild parentIndex)];

 updateParents(parentIndex);
 }
 }
 private int rightChild(int index) {
 return index * 2 + 2;
 }

 private int parent(int index) {
 if(index == 0)
 return 0;
 return (index - 1) / 2; // integer division is always 'floored' in Java
 }

 private int leftChild(int index) {
 return index * 2 + 1;
 }
}

168

2.3 evaluate.java

public class evaluate extends tabuSearch {
 int minTime;
 int maxTime;
 int makespan;
 int totalTardiness;
 int totalEarliness;
 int bucketFrom;
 int bucketTo;
 int totalMs = 0;
 int[] startTime = new int[PST.size()];
 int[] finishTime = new int[PST.size()];
 int[] ms = new int[PST.size()];

 public void objValue(ArrayList jobList){
 int[] dueDateBucket = new int [PST.size()];
 int[] tardiness = new int[PST.size()];
 int[] earliness = new int[PST.size()];

 //Find duedate
 int j = 0;
 Iterator d = plannedDueDate.iterator();
 while(d.hasNext()){

dueDateBucket[j] = baseIndex+(Integer.parseInt(d.next().toString())-
timeOffset)/bucketSize;

 ++j;
 }

 //Calculate finish time and makespan
 int k = 0;
 int minStartTime = bucketSize;
 int maxFinishTime = 0;
 Iterator pst = jobList.iterator(); pst.hasNext();
 for (int p=0; p<jobList.size(); p++){
 ArrayList pst1 = (ArrayList)pst.next();
 for (int p1=0; p1<pst1.size(); p1++){
 if(p1==(pst1.size()-1)){

startTime[k] =
Integer.parseInt(((ArrayList)jobList.get(p)).get(0).toString(
));
finishTime[k] =
Integer.parseInt(((ArrayList)jobList.get(p)).get((pst1.size()
-1)).toString());

 //Calculate earliest start time
 if(startTime[k]<minStartTime){
 minStartTime = startTime[k];
 }

 //Calculate latest finish time
 if(finishTime[k]>maxFinishTime){
 maxFinishTime = finishTime[k];
 }

 //Calculate makespan by job
 ms[p] = (finishTime[p]-startTime[p])+1;
 totalMs = totalMs + ms[p];
 ++k;
 }
 }}

169

 minTime = minStartTime;
 maxTime = maxFinishTime;
 makespan = totalMs;

 //Calculate total earliness and tardiness
 for (int i=0; i<PST.size(); i++){
 if ((finishTime[i]+1)>=(dueDateBucket[i])){
 earliness[i] = 0;
 tardiness[i] = ((finishTime[i]+1)-dueDateBucket[i]);

 }
 else {
 earliness[i] = (dueDateBucket[i]-(finishTime[i]+1));
 tardiness[i] = 0;
 }
 totalEarliness = totalEarliness+earliness[i];
 totalTardiness = totalTardiness+tardiness[i];
 }
 }

 public void bucketLocation(int list, ArrayList startList, ArrayList

jobList) {
 Iterator p = startList.iterator(); p.hasNext();
 for (int i=0; i<startList.size(); i++){
 ArrayList p1 = (ArrayList)p.next();
 for (int j=0; j<p1.size(); j++){

int tJob =
Integer.parseInt((overloadedOrder.get(list).toString()));
int tOpn =
Integer.parseInt((overloadedOperation.get(list).toString()));

 if(i==tJob && j==tOpn) {

bucketFrom =
Integer.parseInt(((ArrayList)startList.get(i)).get(j).toStrin
g());
bucketTo =
Integer.parseInt(((ArrayList)jobList.get(i)).get(j).toString(
));

 }
 }
 }
 }
}

170

2.4 loadingRequirement.java

public class loadingRequirement extends tabuSearch {
 int maxOverload;
 int nOverloadedBucket;
 ArrayList heapLoad = new ArrayList();
 ArrayList heapList = new ArrayList();

 public void loadingReq(ArrayList jobList) {
 bucketLoading(jobList);
 overloadedBucket();
 }

 public void bucketLoading(ArrayList jobList) {
 initHeap (depth, bucketSize);
 updateLoad();
 }

 public void initHeap(int depth, int bucketSize) {
 numElements = (int) Math.pow(2, depth) - 1;
 if(numElements <= 0) {

System.err.println("loadingRequirement: Invalid number of elements,
probably caused by an invalid depth (negative or overly large)");

 System.exit(1);
 }

 // create the heap
 heap = new int[numElements];

 // initialize the elements
 int index = numElements - 1;
 int bucketForLevel = bucketSize;
 int n = 1;
 int elemForLevel = (int) Math.pow(2, depth - n);

 while(index >= 0) {
 for(int i = 0; i < elemForLevel; i++)
 heap[index - i] = bucketForLevel;
 index -= elemForLevel;
 bucketForLevel *= 2;
 n++;
 elemForLevel /= 2;
 }

 maxRootBucket = heap[0];

 for(int j = 0; j < numElements; j++){
 heapList.add(heap[j]);
 }
 for(int k = 0; k < machineName.size(); k++){
 resourceLoad[k] = heapList;
 }
 }

 private void updateLoad() {
 Iterator j= jobList.iterator(); j.hasNext();
 for(int a=0; a<jobList.size(); a++){
 ArrayList k = (ArrayList)j.next();
 for(int b=0; b<k.size(); b++){

171

int index =
Integer.parseInt(((ArrayList)jobList.get(a)).get(b).toString(
));

 int time = Integer.parseInt(
 (ArrayList)processTime.get(a)).get(b).toString());

int quantity = Integer.parseInt(amount.get(a).toString());
 String mcID = ((ArrayList)machine.get(a)).get(b).toString();
 int ID = 0;
 for(int c=0; c<machineName.size(); c++){
 String m = (machineName.get(c)).toString();
 if(m.equals(mcID)){
 ID = c;
 }
 }
 removeCapacity(ID, index, time, quantity);
 updateHeapLoad(ID);
 }
 }
 }

 private void removeCapacity(int ID, int nodeIndex, int time, int amount) {
 for(int i = 0; i < heap.length; i++){
 heap[i] = Integer.parseInt(resourceLoad[ID].get(i).toString());
 }

 int leftToRemove = amount*time;
 // go along base and remove capacity
 while(leftToRemove > 0) {
 //Infinite planning
 heap[nodeIndex] -= leftToRemove;
 leftToRemove = 0;
 tabuBucketedHeap parent = new tabuBucketedHeap();
 parent.updateParents(nodeIndex);
 }
 }

 private void updateHeapLoad(int ID){
 heapLoad = new ArrayList();
 for(int i = 0; i < heap.length; i++){
 heapLoad.add(heap[i]);
 }
 resourceLoad[ID] = heapLoad;
 }

 public void overloadedBucket() {
 int overload = 0;
 int count = 0;
 maxOverload = 0;

 for(int i=0; i<resourceLoad.length; i++){
 for(int j=0; j<heap.length; j++){
 heap[j] = Integer.parseInt(resourceLoad[i].get(j).toString());
 if (heap[j] < 0&&j>=(int)heap.length/2){
 overload = heap[j];
 ++count;
 }

 if (overload < maxOverload) {
 maxOverload = overload;
 maxMachine = machineName.get(i).toString();
 maxBucket = j;
 }
 }}

172

 nOverloadedBucket = count;
 if (count == 0){
 maxOverload = 0;
 }
 }

 public void updateLoading(){
 for(int i=0; i<mcList.size(); i++){
 for(int j=0; j<machineName.size(); j++){
 int k = Integer.parseInt(mcList.get(i).toString());
 if(j==k)
 resourceLoad[j]=candResourceLoad[j];
 else
 resourceLoad[j]=resourceLoad[j];
 }}
 }

}

173

2.5 updateTabu.java

public class updateTabu extends tabuSearch {
 int tJob;
 int tOpn;
 int bucketFrom;
 int bucketTo;

 public void initList() {
 for (int t=0; t<tabuListSize; t++) {
 tabuJ[t] = 0;
 tabuO[t] = 0;
 tabuBucketFrom[t] = 0;
 tabuBucketTo[t] = 0;
 }
 }

 public void updateList(int mPoint) {
 for (int t=0; t<tabuListSize; t++) {
 if (t < tabuListSize-1) {
 tabuJ[t] = tabuJ[t+1];
 tabuO[t] = tabuO[t+1];
 tabuBucketFrom[t] = tabuBucketFrom[t+1];
 tabuBucketTo[t] = tabuBucketTo[t+1];
 }
 else if (t == (tabuListSize-1)){
 for(int l=0; l<overloadedOrder.size(); l++){
 if(l == mPoint){

tJob =
Integer.parseInt((overloadedOrder.get(l).toString()));
tOpn =
Integer.parseInt((overloadedOperation.get(l).toString()));

 }
 }
 tabuJ[t] = tJob;
 tabuO[t] = tOpn;
 tabuBucket(tJob, tOpn);
 tabuBucketFrom[t] = bucketFrom;
 tabuBucketTo[t] = bucketTo;
 }
 }
 }

 @SuppressWarnings("unchecked")
 public void tabuBucket(int tJob, int tOpn) {
 Iterator p = startList.iterator(); p.hasNext();
 for (int i=0; i<startList.size(); i++){
 ArrayList p1 = (ArrayList)p.next();
 for (int j=0; j<p1.size(); j++){
 if(i==tJob && j==tOpn) {

 bucketFrom =

Integer.parseInt(((ArrayList)jobList.get(i)).get(j).toStri
ng());

 ArrayList bestCandidateList = (ArrayList)
newPSTList.get(minPoint);

 bucketTo =
Integer.parseInt(((ArrayList)bestCandidateList.get(i)).get
(j).toString());

 }
 }}

174

 }
}

175

3. tabuSearchMIA.java

public class tabuSearchMIA extends tabuSearch {
 int minTardiness;
 int minEarliness;
 int minMakespan;
 int bestT;
 int bestE;
 int bestM;
 int newBestT;
 int newBestE;
 int newBestM;
 boolean checkTabu;
 boolean[] tabuCondition;

 public void msTabuSearch() {
 int msStartTime = (int)(System.currentTimeMillis()/1000);
 //(1) Solution initialization
 updateTabuMIA tb = new updateTabuMIA();
 tb.initList();
 bestT = bestTardiness;
 bestE = bestEarliness;
 bestM = bestMakespan;
 exitCondition = false;
 countSolution = 0;

 //initialize tabu
 for(int i=0; i<tabuListSize; i++){
 maxJList[i] = -1000;
 }

 //(2) Start searching
 for(int msItn=0; msItn<iteration; msItn++){
 jobCondition = new boolean [machine.size()];
 for(int i=0; i<machine.size(); i++){
 jobCondition[i] = true;
 }
 jobList = startList;
 loadingRequirementMIA lr = new loadingRequirementMIA();
 lr.bucketLoading(jobList);
 //Start loading
 for(int i=0; i<nMachine; i++){
 for(int j=0; j<totalBucket; j++){
 startLoading[i][j] = loading[i][j];
 }
 }

 //(3) Find a target job
 targetJob tj = new targetJob();
 tj.deviationPlan();

 //(3-1)If no tardiness or earliness, terminate
 if(deviatedPosCount==0){
 System.out.println("Best solution summary:");
 System.out.println(" Iteration ="+msItn);
 System.out.println(" bestList= "+bestList);
 System.out.println(" FinalBestTardiness ="+bestT);
 System.out.println(" FinalBestEarliness ="+bestE);
 System.out.println(" FinalBestMakespan ="+bestM);
 System.out.println(" FinalMinPoint ="+minPoint);
 break;

176

 }

 //(4) Search for neighbors
 MIACount = 0;
 localSearchMIA ls = new localSearchMIA();
 ls.jobPerBucket();
 if(MIACount>=terminatedMIA){
 break;
 }

 //(5) Update maxJob in tabu
 ls.tabuMaxJob(ls.maxJob);

 //(6)Evaluate the solutions
 earlinessList = new int [msCountList];
 tardinessList = new int [msCountList];
 makespanList = new int [msCountList];
 evaluateMIA em = new evaluateMIA();
 for(int e=0; e<msCountList; e++){
 ArrayList co = (ArrayList) candOperatedList.get(e);
 em.msEvaluate(co, e);
 }

 if(exitCondition == true){
 break;
 }

 //(5) Check Tabu list
 tabuCondition = new boolean [msCountList];
 for (int i=0; i<msCountList; i++){
 tabuCondition[i] = true;
 }

 //(6) Choose the best candidate
 selectBestCase();
 newBestT = minTardiness;
 newBestE = minEarliness;
 newBestM = minMakespan;

 //(7) Update Tabu list
 boolean check = tabuListCheck(minPoint);

 //(8) update status to start the next round
 int caseNumber;
 //Case1: Get the best answer #1
 if (((check==true) || (check==false)) && (bestT>newBestT))
 {
 caseNumber = 1;
 bestT = newBestT;
 bestE = newBestE;
 bestM = newBestM;
 bestList = (ArrayList) candOperatedList.get(minPoint);
 startList = bestList;
 }

 //Case2: Get the best answer #2
 else if (((check==true) || (check==false)) && (bestT==newBestT) &&
 (bestE>newBestE))
 {
 caseNumber = 2;
 bestT = newBestT;
 bestE = newBestE;
 bestM = newBestM;

177

 bestList = (ArrayList) candOperatedList.get(minPoint);
 startList = bestList;
 }

 //Case3: Get the best answer #2
 else if (((check==true) || (check==false)) && (bestT==newBestT) &&
 (bestE==newBestE) && (bestM>newBestM))
 {
 caseNumber = 3;
 bestT = newBestT;
 bestE = newBestE;
 bestM = newBestM;
 bestList = (ArrayList) candOperatedList.get(minPoint);
 startList = bestList;
 }

 //Case4: Some improvement (not Tabu) #1
 else if ((check==false) && (bestT<=newBestT) &&
 (bestE<=newBestE) && (bestM<=newBestM))
 {
 caseNumber = 4;
 startList = (ArrayList) candOperatedList.get(minPoint);

 }

 //Case5: Some improvement (not Tabu) #2

else if ((check==false) && (bestT<newBestT) && (bestE>newBestE) ||
(bestM>newBestM))

 {
 caseNumber = 5;
 startList = (ArrayList) candOperatedList.get(minPoint);
 }

 //Case6: Some improvement (not Tabu) #2
 else if ((check==false) && (bestT==newBestT) &&
 (bestE<newBestE) && (bestM>newBestM))
 {
 caseNumber = 6;
 startList = (ArrayList) candOperatedList.get(minPoint);
 }

 //Case7: Some improvement (Tabu)
 else {
 caseNumber = 7;
 for(int i=0; i<msCountList; i++){
 tabuCondition[i] = true;
 }
 for(int i=0; i<msCountList; i++){
 for(int j=0; j<tabuListSize; j++){

int swap1 =
Integer.parseInt(((ArrayList)swapPairList.get(i)).get(0).t
oString());
int swap2 =
Integer.parseInt(((ArrayList)swapPairList.get(i)).get(1).t
oString());
if(swap1==jobFrom[j]&&swap2==jobTo[j] ||
swap2==jobFrom[j]&&swap1==jobTo[j]) {

 tabuCondition[i] = false;
 }
 }}
 selectBestCase();
 startList = (ArrayList) candOperatedList.get(minPoint);
 }

178

 //(9) Update tabu list
 updateTabuMIA tabuUpdate = new updateTabuMIA();
 tabuUpdate.updateList(minPoint);

 //(10) Update Loading
 lr.bucketLoading(startList);

 //(11) Solution summary
 System.out.println("Best solution summary:");
 System.out.println(" Iteration ="+msItn);
 System.out.println(" bestList= "+bestList);
 System.out.println(" FinalBestTardiness ="+bestT);
 System.out.println(" FinalBestEarliness ="+bestE);
 System.out.println(" FinalBestMakespan ="+bestM);
 System.out.println(" FinalMinPoint ="+minPoint);

 //(12) Count the unimproved answers to terminate
 if (caseNumber==4||caseNumber==5||caseNumber==6||caseNumber==7) {
 countSolution = countSolution + 1;
 }
 else {
 countSolution = 0;
 }

 //(13-1) terminated criteria: iteration
 if (countSolution >= terminatedIteration) {
 iteration = msItn;
 }
 //(13-2) terminated criteria: time
 int currentTime = (int)(System.currentTimeMillis()/1000);

 if(currentTime-msStartTime>=runTime){
 iteration = msItn;
 }

 //(13-3) No tardiness or Earliness
 if(bestT==0&&bestE==0){
 iteration = msItn;
 }

 }// Itn loop
 //Print out the best loading
 loadingRequirementMIA lr = new loadingRequirementMIA();
 lr.bucketLoading(bestList);
 for(int i=0; i<nMachine; i++){
 String mcName = machineName.get(i).toString();
 }

 //Convert to time
 convertToTime(bestList);
 int msEndTime = (int)(System.currentTimeMillis()/1000);
 int msTotalTime = msEndTime-msStartTime;
 }

 public void selectBestCase(){

//Find a minimum tardiness, earliness, and makespan among the
candidates

 int minE = bucketSize*totalBucket;
 int minT = bucketSize*totalBucket;
 int minM = bucketSize;
 int minP = 0;

179

 for (int m=0; m < msCountList; m++) {
 if (tardinessList[m] < minT && tabuCondition[m]==true) {
 minT = tardinessList[m];
 minE = earlinessList[m];
 minM = makespanList[m];
 minP = m;
 }
 else if (tardinessList[m] == minT && tabuCondition[m]==true) {
 if (earlinessList[m] < minE && tabuCondition[m]==true){
 minT = tardinessList[m];
 minE = earlinessList[m];
 minM = makespanList[m];
 minP = m;
 }
 else if (earlinessList[m] == minE && tabuCondition[m]==true) {
 if (makespanList[m] < minM && tabuCondition[m]==true){
 minT = tardinessList[m];
 minE = earlinessList[m];
 minM = makespanList[m];
 minP = m;
 }
 }
 }
 }
 minTardiness = minT;
 minEarliness = minE;
 minMakespan = minM;
 minPoint = minP;
 }

 public boolean tabuListCheck(int minPoint) {
 checkTabu=false;
 int tabuCount = 0;
 for (int t=0; t<tabuListSize; t++) {

int swapFrom =
Integer.parseInt(((ArrayList)swapPairList.get(minPoint)).get(0).toSt
ring());
int swapTo =
Integer.parseInt(((ArrayList)swapPairList.get(minPoint)).get(1).toSt
ring());

 if (((swapFrom==jobFrom[t]) && (swapTo==jobTo[t])) ||
 ((swapFrom==jobTo[t]) && (swapTo==jobFrom[t]))) {
 ++tabuCount;
 }
 }
 if(tabuCount>0){
 checkTabu = true;
 }
 else {
 checkTabu = false;
 }
 return checkTabu;
 }

 public void convertToTime(ArrayList bList){
 ArrayList convertedTime;
 ArrayList node;
 timeList = new ArrayList();
 indexList = new ArrayList();
 Iterator b = bList.iterator(); b.hasNext();
 for(int x=0; x<bList.size(); x++){
 ArrayList bl = (ArrayList)b.next();
 convertedTime = new ArrayList();

180

 node = new ArrayList();
 for(int y=0; y<bl.size(); y++){

int currentBucket =
Integer.parseInt(((ArrayList)bList.get(x)).get(y).toString());

 int nodeIndex = currentBucket-baseIndex;
 long time = ((currentBucket-baseIndex)*bucketSize)+timeOffset;
 convertedTime.add(time);
 node.add(nodeIndex);
 }
 timeList.add(convertedTime);
 indexList.add(node);
 }
 }

}

181

3.1 targetJob.java

public class targetJob extends tabuSearch {
 ArrayList lpstList = new ArrayList();
 public void deviationPlan() {
 tdvList = new ArrayList();
 deviatedPosCount = 0;
 Iterator m = machine.iterator(); m.hasNext();
 for(int i=0; i<machine.size(); i++){
 ArrayList n = (ArrayList)m.next();
 int totalDeviation = 0;
 for(int j=0; j<n.size(); j++){

int ojList =
Integer.parseInt(((ArrayList)jobList.get(i)).get(j).toString());
int idList =
Integer.parseInt(((ArrayList)idealplanList.get(i)).get(j).toStrin
g());

 int dv = ojList-idList;
 totalDeviation = totalDeviation+dv;

 if(j==0){
 lpstList.add(idList);
 }

 if(dv!=0){
 ++deviatedPosCount;
 }
 }
 tdvList.add(totalDeviation);
 }
 lateness();
 }

 public void lateness(){
 diffTimeList = new ArrayList();
 for(int i=0; i<jobList.size(); i++){
 ArrayList j = (ArrayList)jobList.get(i);

int dd = (int)(baseIndex +
(Integer.parseInt(plannedDueDate.get(i).toString())-
timeOffset)/bucketSize);
int finish =
Integer.parseInt(((ArrayList)jobList.get(i)).get(j.size()-
1).toString());

 int diffTime = (finish+1)-dd;
 diffTimeList.add(diffTime);
 }
 }
}

182

3.2 localSearchMIA.java

public class localSearchMIA extends tabuSearch {
 ArrayList addJob = new ArrayList();
 ArrayList jobInBucket = new ArrayList();
 ArrayList jobInMachine = new ArrayList();
 ArrayList jobListInBucket = new ArrayList();
 ArrayList newBkList = new ArrayList();
 ArrayList newMPSTList = new ArrayList();
 ArrayList mbkList = new ArrayList();
 ArrayList mbkIndex = new ArrayList();
 ArrayList nbList = new ArrayList();
 ArrayList tnbList = new ArrayList();
 ArrayList mnbList = new ArrayList();
 ArrayList tmnbList = new ArrayList();
 ArrayList swPairList = new ArrayList();
 ArrayList candPSTList = new ArrayList();
 ArrayList startJobInBucket = new ArrayList();
 int maxdiffTime;
 int maxJob;
 int newBk;
 int currentBk;
 int problemSize;
 boolean insertCondition;
 boolean nbhCondition;
 boolean maxJobCondition;
 boolean updateCondition;
 boolean pullCondition;
 ArrayList clList = new ArrayList();
 ArrayList oldIndex = new ArrayList();
 ArrayList newIndex = new ArrayList();
 ArrayList updateJob = new ArrayList();
 ArrayList newJob = new ArrayList();
 int type;
 int start = 0;
 int end = 0;
 int focusBk;
 int mdType = 0;

 public void jobPerBucket(){
 //Identify job per machine per bucket
 for(int i=0; i<nMachine; i++){
 jobInMachine = new ArrayList();
 for(int j=0; j<(int)(heap.length/2)+1; j++){
 int b = j+(int)heap.length/2;
 jobInBucket = new ArrayList();
 Iterator m = machine.iterator(); m.hasNext();
 for(int c=0; c<machine.size(); c++){
 ArrayList mc = (ArrayList)m.next();
 for(int d=0; d<mc.size(); d++){
 String mt = ((ArrayList)machine.get(c)).get(d).toString();
 int mcNumber = mcNumber(mt);

int oprBucket =
Integer.parseInt(((ArrayList)startList.get(c)).get(d).toSt
ring());

 if (((mcNumber)==i)&&(oprBucket==b)) {
 addJob = new ArrayList();
 addJob.add(c);
 addJob.add(d);
 jobInBucket.add(addJob);
 }

183

 }}
 jobInMachine.add(jobInBucket);
 }
 jobListInBucket.add(jobInMachine);
 }
 startJobInBucket = jobListInBucket;
 generateNbh();
 }

 public void generateNbh(){
 for(int x=0; x<nMachine; x++){
 for(int y=0; y<totalBucket; y++){
 candLoading[x][y]= startLoading[x][y];
 }
 }
 candLoadingList = new ArrayList();
 candOperatedList = new ArrayList();
 swapPairList = new ArrayList();
 maxJob = 0;

 //(1) Choose a target job
 maxJobCondition = true;
 chooseTargetJob();

 //(2) Insert method
 insertMethod();

//(3) Swap method: If cannot pull, swap method will be used.
 if(insertCondition == false){
 candOperatedList = new ArrayList();
 candLoadingList = new ArrayList();
 newPSTList = new ArrayList();
 swapMethod();
 }

 //(4) If cannot find the solution for this maxJob, choose other maxJob
 if(maxJobCondition==false){
 MIACount++;
 //if it can't find the new solution up to 10 itn, then quit.
 if(MIACount<terminatedMIA){
 jobCondition[maxJob]=false;
 jobPerBucket();
 }
 }
 }

 public void insertMethod(){
 clList = new ArrayList();
 newBkList = new ArrayList();
 jobList = startList;
 insertCondition = true;
 ArrayList mc = (ArrayList)machine.get(maxJob);
 for(int d=0; d<mc.size(); d++){
 //Start from the first operation

currentBk =
Integer.parseInt(((ArrayList)jobList.get(maxJob)).get(d).toString())
;

 //check new available bucket
 if(type==1){//tardiness
 if(d==0){

184

start =
Math.max((int)(baseIndex+(Integer.parseInt(release.get(maxJob
).toString())-timeOffset)/bucketSize), baseIndex);

 }
 else{
 start = Integer.parseInt((newBkList.get(d-1)).toString())+1;
 }
 end = currentBk;
 }
 else {//earliness
 if(d==0){
 start = currentBk;
 }
 else{
 start = Integer.parseInt((newBkList.get(d-1)).toString())+1;
 }

end = (int)(baseIndex +
(Integer.parseInt(plannedDueDate.get(maxJob).toString())-
timeOffset)/bucketSize)-(mc.size()-d-1);

 }

 //Start insertion
 if(end-start==0){
 newBk = currentBk;
 }
 else if (end-start!=0) {
 newbucketForInsert(start, end, d);
 }

 //if found new available bucket, break and then move to next opn.
 if(insertCondition == false){
 break;
 }
 newBkList.add(newBk);
 updateCandLoading(maxJob, d, currentBk, newBk);
 }
 //update new operated bucket
 if(insertCondition == true){

 //Get the new solution
 candPSTList = new ArrayList();
 Iterator jl = jobList.iterator(); jl.hasNext();
 for(int a=0; a<jobList.size(); a++){
 ArrayList ojl = (ArrayList)jobList.get(a);
 if(a!=maxJob){
 candPSTList.add(ojl);
 }
 else{
 candPSTList.add(newBkList);
 }
 }
 msCountList = 1;
 insertCondition = true;
 candOperatedList.add(candPSTList);

 //Update tabu
 swPairList = new ArrayList();
 swPairList.add(-1);
 swPairList.add(-1);
 swapPairList.add(swPairList);
 }
 }

185

 public void newbucketForInsert(int start, int end, int currentOpn) {
 for(int c=0; c<end-start; c++){
 checkBucket = false;
 int nb = c+start;
 checkAvailability(maxJob, currentOpn, nb);
 if (checkBucket == true){
 newBk = nb;
 break;
 }
 }
 if(checkBucket==false){
 insertCondition = false;
 }
 }

 public void swapMethod() {
 swapPairList = new ArrayList();
 int moveJob;
 int moveOpn;
 int mscount = 0;
 int focusJob = 0;
 ArrayList jobSize = (ArrayList)jobList.get(maxJob);
 problemSize = jobSize.size();

 //(1)Search for nbh points
 //tardiness
 if(type==1){

start =
(int)(baseIndex+(Integer.parseInt(release.get(maxJob).toString())-
timeOffset)/bucketSize)+(problemSize-1);
end =
Integer.parseInt(((ArrayList)jobList.get(maxJob)).get(problemSize-
1).toString());

 searchNBHForSwap(start, end, problemSize-1);
 }
 //earliness
 else{

start =
Integer.parseInt(((ArrayList)jobList.get(maxJob)).get(0).toString())
;
end =
(int)(baseIndex+(Integer.parseInt(plannedDueDate.get(maxJob).toStrin
g())-timeOffset)/bucketSize)-(problemSize-1);

 searchNBHForSwap(start, end, 0);
 }

 for(int a=0; a<tnbList.size(); a++){
 nbhCondition = true;
 mbkList = new ArrayList();
 mbkIndex = new ArrayList();
 newMPSTList = new ArrayList();
 clList = new ArrayList();
 newBkList = new ArrayList();
 updateJob = new ArrayList();
 oldIndex = new ArrayList();
 newIndex = new ArrayList();
 int focusP;

 //(2)setting
 //(2-1)set candLoading
 for(int x=0; x<nMachine; x++){
 for(int y=0; y<totalBucket; y++){

186

 candLoading[x][y]= startLoading[x][y];
 }
 }

 //(2-2)set jobList
 jobList = startList;

 //(2-3)set jobInBucket
 jobListInBucket = new ArrayList();
 jobListInBucket = startJobInBucket;

 //(3)Find new bucket from the last opn
 for(int b=0; b<problemSize; b++){
 int e;
 if(type==1){
 e = problemSize-(b+1);
 focusP = problemSize-1;
 }
 else{
 e = b;
 focusP = 0;
 }

currentBk =
Integer.parseInt(((ArrayList)jobList.get(maxJob)).get(e).toString
());

 //First opn or last opn
 if(e==focusP){

moveJob =
Integer.parseInt(((ArrayList)tnbList.get(a)).get(0).toString(
));
moveOpn =
Integer.parseInt(((ArrayList)tnbList.get(a)).get(1).toString(
));
newBk =
Integer.parseInt(((ArrayList)tnbList.get(a)).get(2).toString(
));

 if(moveJob<0&&moveOpn<0){
 focusJob = -1;
 }
 else{
 focusJob = moveJob;
 }

 //Assign the new bucket to max job (from the last operation)
 if(type==1){
 newBkList.add(0,newBk);
 }
 else{
 newBkList.add(newBk);
 }
 updateCandLoading(maxJob, e, currentBk, newBk);
 updateJobListInBucket(maxJob, e, currentBk, newBk);
 if((moveJob!=maxJob)&&(focusJob>=0)){
 newbucketForMovedJob(moveJob, moveOpn, newBk, e);
 if(nbhCondition==false){
 break;
 }
 //Update list for move job
 mbkList.add(newMPSTList);
 mbkIndex.add(moveJob);
 }

187

 }
 //other operations
 else{
 if(type==1){
 focusBk = Integer.parseInt(newBkList.get(0).toString());
 }
 else{
 focusBk = Integer.parseInt(newBkList.get(e-1).toString());
 }
 //Searching for max job, create tmnbList
 searchForOtherOperation(focusBk, e);

 //If no any available bucket, move to next NBH
 if(tmnbList.size()==0){
 nbhCondition = false;
 break;
 }

moveJob =
Integer.parseInt(((ArrayList)tmnbList.get(0)).get(0).toString
());
moveOpn =
Integer.parseInt(((ArrayList)tmnbList.get(0)).get(1).toString
());
newBk =
Integer.parseInt(((ArrayList)tmnbList.get(0)).get(2).toString
());

 if(moveJob<0&&moveOpn<0){
 focusJob = -1;
 }
 else{
 focusJob = moveJob;
 }

 //Assign the new bucket to max job (from the last operation)
 if(type==1){
 newBkList.add(0,newBk);
 }
 else{
 newBkList.add(newBk);
 }
 updateCandLoading(maxJob, e, currentBk, newBk);
 updateJobListInBucket(maxJob, e, currentBk, newBk);

 if((moveJob!=maxJob)&&(focusJob>=0)){
 //Assign the new bucket to move job
 newbucketForMovedJob(moveJob, moveOpn, newBk, e);
 if(nbhCondition==false){
 break;
 }
 //Update list for move job
 mbkList.add(newMPSTList);
 mbkIndex.add(moveJob);
 }
 }//end else
 }// end all operations

 if(nbhCondition==true){
 //Get the new solution
 candPSTList = new ArrayList();
 ArrayList nPSTList = jobList;
 Object[] np = nPSTList.toArray();

188

 Object[] ml = mbkList.toArray();
 for(int d=0; d<mbkIndex.size(); d++){
 for (int n=0; n<np.length; n++){
 int mj = Integer.parseInt(mbkIndex.get(d).toString());
 if(n==mj){
 np[n] = ml[d];
 }
 else if(n==maxJob){
 np[n] = newBkList;
 }
 else{
 np[n] = np[n];
 }
 if(d==mbkIndex.size()-1){
 candPSTList.add(np[n]);
 }
 }
 }
 if (candPSTList.size()>0){
 candOperatedList.add(candPSTList);
 candLoadingList.add(clList);
 swPairList = new ArrayList();
 swPairList.add(maxJob);
 swPairList.add(focusJob);
 swapPairList.add(swPairList);
 ++mscount;
 }
 }
 }// end all NBH
 //If it didn't give any solution, find next maxJob
 if(candOperatedList.size()==0){
 maxJobCondition=false;
 }
 msCountList = mscount;
 insertCondition = true;
 }

 public void searchForOtherOperation(int focusBk, int maxOpn){
 tmnbList = new ArrayList();
 int range;
 int nb;
 String mt = ((ArrayList)machine.get(maxJob)).get(maxOpn).toString();
 int mn = mcNumber(mt);

int start = (int)(baseIndex +
(Integer.parseInt(release.get(maxJob).toString())-
timeOffset)/bucketSize);
int maxJobT =
Integer.parseInt(((ArrayList)processTime.get(maxJob)).get(maxOpn).toStr
ing());

 int maxJobQ = Integer.parseInt(amount.get(maxJob).toString());
 ArrayList x = (ArrayList)jobListInBucket.get(mn);

int duedate = (int)(baseIndex +
(Integer.parseInt(plannedDueDate.get(maxJob).toString())-
timeOffset)/bucketSize);

 //Find time range to search bk
 if(type==1){//tardiness
 range = focusBk-(start+maxOpn);
 }
 else{//earliness
 range = (duedate-maxOpn)-focusBk;
 }

189

 //Check LPST backward from prev to currentBk
 for(int b=0; b<range; b++){
 boolean findBk = false;
 if(type==1){
 nb = focusBk-(b+1);
 }
 else{
 nb = focusBk+(b+1);
 }
 ArrayList y = (ArrayList) x.get(nb-baseIndex);

 //(1) If have enough capacity, add in list
 if((bucketSize-candLoading[mn][nb-baseIndex])>=(maxJobT*maxJobQ)){
 mnbList = new ArrayList();
 mnbList.add(-1);
 mnbList.add(-1);
 mnbList.add(nb);
 tmnbList.add(mnbList);
 break;
 }

 //(2) If have some jobs, check LPST
 else{
 //(2-1) check in current jobInBucket
 for(int c=0; c<y.size(); c++){
 int gap = 0;
 ArrayList jobPair = (ArrayList) y.get(c);
 int job = Integer.parseInt(jobPair.get(0).toString());
 int opn = Integer.parseInt(jobPair.get(1).toString());
 checkUpdate(job, opn, nb);

if(updateCondition==true){
 int mvSt =

Integer.parseInt(((ArrayList)PST.get(job)).get(opn).toStri
ng();
int maxSt =
Integer.parseInt(((ArrayList)PST.get(maxJob)).get(maxOpn).
toString());

 //Check gap between operation of move job
 if(opn==0){

gap = mvSt-(int)(baseIndex +
(Integer.parseInt(release.get(job).toString())-
timeOffset)/bucketSize);

 }
 else{

gap = mvSt-
Integer.parseInt(((ArrayList)PST.get(job)).get(opn-
1).toString());

 }

//Check if off load this job, is it enough for the current
job?
int moveT =
Integer.parseInt(((ArrayList)processTime.get(job)).get(opn
).toString());
int moveQ = Integer.parseInt(amount.get(job).toString());
int currentT =
Integer.parseInt(((ArrayList)processTime.get(maxJob)).get(
maxOpn).toString());
int currentQ =
Integer.parseInt(amount.get(maxJob).toString());
int freeCap = (bucketSize-candLoading[mn][nb-
baseIndex])+(moveT*moveQ);

190

 //Add in the list
 if(type==1){//tardiness
 if (mvSt>=maxSt && (freeCap>=(currentT*currentQ))){
 mnbList = new ArrayList();
 mnbList.add(job);
 mnbList.add(opn);
 mnbList.add(nb);
 tmnbList.add(mnbList);
 findBk = true;
 break;
 }

//If st<maxSt but it's possible to pull in this job,
add in the list.
else if(mvSt<maxSt && freeCap>=(maxJobT*maxJobQ) &&
gap>0){
 mnbList = new ArrayList();

 mnbList.add(job);
 mnbList.add(opn);
 mnbList.add(nb);
 tmnbList.add(mnbList);
 findBk = true;
 break;
 }
 }
 else if (type==2){//earliness
 if (mvSt<=maxSt && (freeCap>=(currentT*currentQ))){
 mnbList = new ArrayList();
 mnbList.add(job);
 mnbList.add(opn);
 mnbList.add(nb);
 tmnbList.add(mnbList);
 findBk = true;
 break;
 }
 }
 }
 }//end (2-1)

 if(findBk==true){
 break;
 }

 //(2-2) Check any new job of the bucket from the update list
 searchForJob(nb, mn);
 for(int d=0; d<newJob.size(); d++){
 int gap = 0;
 ArrayList jobPair = (ArrayList) newJob.get(d);
 int job = Integer.parseInt(jobPair.get(0).toString());
 int opn = Integer.parseInt(jobPair.get(1).toString());

int mvSt =
Integer.parseInt(((ArrayList)PST.get(job)).get(opn).toString(
));
int maxSt =
Integer.parseInt(((ArrayList)PST.get(maxJob)).get(maxOpn).toS
tring());

 //Check gap between operation of move job
 if(opn==0){

gap = mvSt-(int)(baseIndex +
(Integer.parseInt(release.get(job).toString())-
timeOffset)/bucketSize);

191

 }
 else{

gap = mvSt-
Integer.parseInt(((ArrayList)PST.get(job)).get(opn-
1).toString());

 }

 //If offload this job, is it enough for the current job?

int moveT =
Integer.parseInt(((ArrayList)processTime.get(job)).get(opn).t
oString());
int moveQ = Integer.parseInt(amount.get(job).toString());
int currentT =
Integer.parseInt(((ArrayList)processTime.get(maxJob)).get(max
Opn).toString());
int currentQ =
Integer.parseInt(amount.get(maxJob).toString());
int freeCap = (bucketSize-candLoading[mn][nb-
baseIndex])+(moveT*moveQ);

 if(type==1){
 if (mvSt>=maxSt && (freeCap>=(currentT*currentQ))){
 mnbList = new ArrayList();
 mnbList.add(job);
 mnbList.add(opn);
 mnbList.add(nb);
 tmnbList.add(mnbList);
 findBk = true;
 break;
 }

//If st<maxSt but it's possible to pull in this job, add
in the list.
else if(mvSt<maxSt && freeCap>=(maxJobT*maxJobQ) &&
gap>0){

 mnbList = new ArrayList();
 mnbList.add(job);
 mnbList.add(opn);
 mnbList.add(nb);
 tmnbList.add(mnbList);
 findBk = true;
 break;
 }
 }

 else if (type==2){//earliness
 if (mvSt<=maxSt && (freeCap>=(currentT*currentQ))){
 mnbList = new ArrayList();
 mnbList.add(job);
 mnbList.add(opn);
 mnbList.add(nb);
 tmnbList.add(mnbList);
 findBk = true;
 break;
 }
 }
 }//end (2)
 }//end else
 }// end search
 }

public void newbucketForMovedJob(int mJob, int mOpn, int mBucket, int
maxOpn){

 boolean updateCondition = true;

192

 //(1)Find new bucket for move job
 newMPSTList = new ArrayList();
 ArrayList j = (ArrayList) jobList.get(mJob);
 for(int c=0; c<j.size(); c++){
 switch (type){
 case 1://tardiness-push
 if(c<mOpn){

newBk =
Integer.parseInt(((ArrayList)jobList.get(mJob)).get(c).toStri
ng());

 }
 else {

int oldBk =
Integer.parseInt(((ArrayList)jobList.get(mJob)).get(c).toStri
ng());

 int prevOpnBk = newBk;

 if(c==0&&mOpn==0){
 pull(mJob, c, oldBk);
 if(pullCondition==false){
 push(mJob, c, oldBk);
 }
 }
 else{
 push(mJob, c, prevOpnBk);
 }
 updateCandLoading(mJob, c, oldBk, newBk);
 updateJobListInBucket(mJob, c, oldBk, newBk);
 }
 newMPSTList.add(newBk);
 break;

 case 2://earliness-pull
 int d = (j.size()-1)-c;
 if(d>mOpn){

newBk =
Integer.parseInt(((ArrayList)jobList.get(mJob)).get(d).toStri
ng());

 }
 else {

int oldBk =
Integer.parseInt(((ArrayList)jobList.get(mJob)).get(d).toStri
ng());

 int sucOpnBk = newBk;
 pull(mJob, d, sucOpnBk);
 if(pullCondition==false){
 nbhCondition = false;
 updateCondition = false;
 break;
 }
 updateCandLoading(mJob, d, oldBk, newBk);
 updateJobListInBucket(mJob, d, oldBk, newBk);
 }
 newMPSTList.add(0, newBk);
 break;
 }
 }
 if(updateCondition==true){
 updateJobList(mJob,newMPSTList);
 }
 }

 public void push(int mJob, int mOpn, int prevBk){

193

 checkBucket = true;
 newBk = prevBk+1;
 checkAvailability(mJob, mOpn, newBk);
 if(checkBucket == false){
 push(mJob, mOpn, newBk);
 }
 }

 public void pull(int mJob, int mOpn, int prevBk){
 pullCondition = true;
 checkBucket = true;
 newBk = prevBk-1;

int est = (int)(baseIndex +
(Integer.parseInt(release.get(maxJob).toString())-
timeOffset)/bucketSize)+mOpn;

 if(newBk<baseIndex||newBk<est){
 pullCondition = false;
 }

 if(pullCondition==true){
 checkAvailability(mJob, mOpn, newBk);
 if(checkBucket == false){
 pull(mJob, mOpn, newBk);
 }
 }
 }

 public void searchNBHForSwap(int start, int end, int focusOpn){
 int gap = 0;
 tnbList = new ArrayList();
 //Find the nbh from the last operation
 String mt = ((ArrayList)machine.get(maxJob)).get(focusOpn).toString();
 int mcNumber = mcNumber(mt);

int maxJobT =
Integer.parseInt(((ArrayList)processTime.get(maxJob)).get(focusOpn).toS
tring());

 int maxJobQ = Integer.parseInt(amount.get(maxJob).toString());

//Check the jobs that are in the same machine and the range from Est to
current bucket

 ArrayList x = (ArrayList)jobListInBucket.get(mcNumber);

 for(int b=0; b<end-start; b++){
 int nb;
 if(type==1){//tardiness
 nb = b+start;
 }
 else{//earliness
 nb = (b+1)+start;
 }
 ArrayList y = (ArrayList) x.get(nb-baseIndex);

 //(1) Check the capacity. If true, add in list

if((bucketSize-startLoading[mcNumber][nb-
baseIndex])>=(maxJobT*maxJobQ)){

 nbList = new ArrayList();
 nbList.add(-1);
 nbList.add(-1);
 nbList.add(nb);
 tnbList.add(nbList);
 }

194

 //(2) If have some jobs, check LPST
 else{
 for(int c=0; c<y.size(); c++){
 ArrayList jobPair = (ArrayList) y.get(c);
 //(1)Check LPST of the move job with the max job
 int job = Integer.parseInt(jobPair.get(0).toString());
 int opn = Integer.parseInt(jobPair.get(1).toString());

int st =
Integer.parseInt(((ArrayList)PST.get(job)).get(opn).toString(
));
int maxSt =
Integer.parseInt(((ArrayList)PST.get(maxJob)).get(focusOpn).t
oString());

 //(2)Check gap between operation of move job
 if(opn==0){

gap = st-(int)(baseIndex +
(Integer.parseInt(release.get(job).toString())-
timeOffset)/bucketSize);

 }
 else{

gap = st-
Integer.parseInt(((ArrayList)PST.get(job)).get(opn-
1).toString());

 }

//(3)Check if off load this move job, is it enough for the
current job?
int moveT =
Integer.parseInt(((ArrayList)processTime.get(job)).get(opn).t
oString());
int moveQ = Integer.parseInt(amount.get(job).toString());
int freeCap = (bucketSize-startLoading[mcNumber][nb-
baseIndex])+(moveT*moveQ);

 //(4)Add the possible move
 if(type==1){//tardiness
 if (st>=maxSt && (freeCap>=(maxJobT*maxJobQ))){
 nbList = new ArrayList();
 nbList.add(job);
 nbList.add(opn);
 nbList.add(nb);
 tnbList.add(nbList);
 }

//If st<maxSt but it's possible to pull in this job, add
in the list.

 else if(st<maxSt && freeCap>=(maxJobT*maxJobQ) && gap>0){
 nbList = new ArrayList();
 nbList.add(job);
 nbList.add(opn);
 nbList.add(nb);
 tnbList.add(nbList);
 }
 }

 else if(type==2){//earliness
 if (st<=maxSt && (freeCap>=(maxJobT*maxJobQ))){
 nbList = new ArrayList();
 nbList.add(job);
 nbList.add(opn);
 nbList.add(nb);
 tnbList.add(nbList);

195

 }
 }
 }
 }}
 }

 public void updateCandLoading(int job, int opn, int oldBk, int nBk){
 String m = ((ArrayList)machine.get(job)).get(opn).toString();
 int mn = mcNumber(m);
 oldBk -=baseIndex;
 nBk -=baseIndex;

int machineTime =
Integer.parseInt(((ArrayList)processTime.get(job)).get(opn).toString())
;

 int quantity = Integer.parseInt(amount.get(job).toString());

 //update new loadings
 candLoading[mn][oldBk] = candLoading[mn][oldBk]-(machineTime*quantity);
 candLoading[mn][nBk] = candLoading[mn][nBk]+(machineTime*quantity);

 //Put the change in the list
 ArrayList cList = new ArrayList();
 cList.add((mn));
 cList.add(oldBk);
 cList.add(candLoading[mn][oldBk]);
 clList.add(cList);
 cList = new ArrayList();
 cList.add((mn));
 cList.add(nBk);
 cList.add(candLoading[mn][nBk]);
 clList.add(cList);
 }

 public boolean checkAvailability(int i, int j, int nb) {
 boolean condition = false;
 nb = nb-baseIndex;

int p =
Integer.parseInt(((ArrayList)processTime.get(i)).get(j).toString());

 int q = Integer.parseInt(amount.get(i).toString());
 String m = ((ArrayList)machine.get(i)).get(j).toString();
 int mn = mcNumber(m);

 //Check with update bucket from updateJob
 for(int a=0; a<updateJob.size(); a++){

int x =
Integer.parseInt(((ArrayList)updateJob.get(a)).get(0).toString());
int y =
Integer.parseInt(((ArrayList)updateJob.get(a)).get(1).toString());

 int z = Integer.parseInt(newIndex.get(a).toString());
 if(x==i&&y==j&&z==nb){
 checkBucket = true;
 condition = true;
 break;
 }
 }

 if(condition==false){
 if((p*q) <= (bucketSize-candLoading[mn][nb])) {
 checkBucket = true;
 }
 else{
 checkBucket = false;
 }

196

 }
 return checkBucket;
 }

 public void chooseTargetJob(){
 maxdiffTime = 0;
 int count = 0;
 for(int i=0; i<diffTimeList.size(); i++){
 int md = Math.abs(Integer.parseInt(diffTimeList.get(i).toString()));
 if (md>maxdiffTime&&jobCondition[i]==true&&md!=0) {
 maxdiffTime = md;
 maxJob = i;
 }
 else{
 ++count;
 }
 }

 // if can't find max job, clear tabu search
 if(count==diffTimeList.size()){
 for (int t=0; t<machine.size(); t++) {
 jobCondition[t] = true;
 }
 for (int r=0; r<tabuListSize; r++) {
 maxJList[r] = -1000;
 }
 chooseTargetJob();
 }
 else{
 mdType = Integer.parseInt(diffTimeList.get(maxJob).toString());
 if(mdType>0){
 type = 1;
 }
 else{
 type = 2;
 }
 for(int j=0; j<tabuListSize; j++){
 if(maxJob==maxJList[j]){
 jobCondition[maxJob] = false;
 chooseTargetJob();
 break;
 }
 }
 }
 }

 public void updateJobList(int changeJob, ArrayList newList){
 ArrayList jList = new ArrayList();
 for(int a=0; a<jobList.size(); a++){
 if(a==changeJob){
 jList.add(newList);
 }
 else{
 jList.add(startList.get(a));
 }
 }
 jobList = jList;
 }

 public void updateJobListInBucket(int job, int opn, int oldBk, int newBk){
 String m = ((ArrayList)machine.get(job)).get(opn).toString();
 int n = mcNumber(m);
 ArrayList addJ = new ArrayList();

197

 addJ.add(job);
 addJ.add(opn);
 addJ.add(n);
 updateJob.add(addJ);
 newIndex.add(newBk);
 oldIndex.add(oldBk);
 }

 public void checkUpdate(int job, int opn, int nb){
 updateCondition = true;
 for (int a=0; a<updateJob.size(); a++){

int x =
Integer.parseInt(((ArrayList)updateJob.get(a)).get(0).toString());
int y =
Integer.parseInt(((ArrayList)updateJob.get(a)).get(1).toString());

 int z = Integer.parseInt((newIndex.get(a)).toString());
 if(x==job&&y==opn&nb!=z){
 updateCondition = false;
 }
 }
 }

 public void searchForJob(int nb, int mc){
 newJob = new ArrayList();
 //find new job in this bucket
 for (int a=0; a<newIndex.size(); a++){
 int bk = Integer.parseInt((newIndex.get(a)).toString());
 ArrayList j = (ArrayList) updateJob.get(a);
 if(bk==nb){
 newJob.add(j);
 }
 }

 //check with old bk, then delete if found the same job
 for (int b=0; b<oldIndex.size(); b++){
 int obk = Integer.parseInt((oldIndex.get(b)).toString());
 if(obk==nb){

int j =
Integer.parseInt(((ArrayList)updateJob.get(b)).get(0).toString())
;
int o =
Integer.parseInt(((ArrayList)updateJob.get(b)).get(1).toString())
;

 for (int c=0; c<newJob.size(); c++){

int nj =
Integer.parseInt(((ArrayList)newJob.get(c)).get(0).toString()
);
int no =
Integer.parseInt(((ArrayList)newJob.get(c)).get(1).toString()
);

 if(nj==j&&no==o){
 newJob.set(c, "");
 }
 }
 }
 }
 }

 public void tabuMaxJob(int maxJob){
 for (int t=0; t<tabuListSize; t++) {
 if (t < tabuListSize-1) {

198

 maxJList[t] = maxJList[t+1];
 }
 else {
 maxJList[t] = maxJob;
 }
 }
 }

 public int mcNumber(String mc){
 int mcName = 0;
 for(int a=0; a<machineName.size(); a++){
 String mcn = machineName.get(a).toString();
 if(mc.equals(mcn)){
 mcName = a;
 }
 }
 return mcName;
 }
}

199

3.3 evaluateMIA.java

public class evaluateMIA extends tabuSearch {
 int msMakespan;

 @SuppressWarnings("unchecked")
 public void msEvaluate(ArrayList oprb, int count){
 msTardiness = new int [machine.size()];
 msEarliness = new int [machine.size()];
 deviatedTime = new int [machine.size()];
 int []eachMS = new int [machine.size()];
 int minStartTime = bucketSize;
 int maxFinishTime = 0;
 int totalE = 0;
 int totalT = 0;
 int totalMS = 0;
 Iterator o = oprb.iterator(); o.hasNext();
 for (int i=0; i<machine.size(); i++){

int start =
Integer.parseInt(((ArrayList)oprb.get(i)).get(0).toString());

 ArrayList ob = (ArrayList)o.next();
int finish =
Integer.parseInt(((ArrayList)oprb.get(i)).get(ob.size()-
1).toString());
int dueBucket = (int)(baseIndex +
(Integer.parseInt(plannedDueDate.get(i).toString())-
timeOffset)/bucketSize);

 if((finish+1)>=dueBucket){
 msEarliness[i] = 0;
 msTardiness[i] = (finish+1)-dueBucket;
 }
 else {
 msEarliness[i] = dueBucket-(finish+1);
 msTardiness[i]= 0;
 }

 for (int d=0; d<ob.size(); d++){

int jobPt =
Integer.parseInt(((ArrayList)oprb.get(i)).get(d).toString());
int jobDd = dueBucket-(ob.size()-d);

 int dvt = jobPt-jobDd;
 deviatedTime[i] = deviatedTime[i]+dvt;
 }

 eachMS[i] = (finish-start)+1;
 //Calculate earliest start time
 if(start<minStartTime){
 minStartTime = start;
 }
 //Calculate latest finish time
 if(finish>maxFinishTime){
 maxFinishTime = finish;
 }
 totalE = totalE + msEarliness[i];
 totalT = totalT + msTardiness[i];
 totalMS = totalMS +eachMS[i];
 }
 earlinessList[count] = totalE;
 tardinessList[count] = totalT;
 msMakespan = (maxFinishTime-minStartTime)+1;

200

 makespanList[count] = totalMS;
 }
}

201

3.4 loadingRequirementMIA.java

public class loadingRequirementMIA extends tabuSearch {
 public void bucketLoading(ArrayList jobList) {
 for(int i=0; i<nMachine; i++){
 for(int j=0; j<totalBucket; j++){
 loading[i][j] = 0;
 }}

 //Loading per machine per bucket
 for(int i=0; i<nMachine; i++){
 String mcName = machineName.get(i).toString();
 for(int j=0; j<baseIndex+1; j++){
 int k = j+baseIndex;
 Iterator m = machine.iterator(); m.hasNext();
 for(int c=0; c<machine.size(); c++){
 ArrayList mc = (ArrayList)m.next();
 for(int d=0; d<mc.size(); d++){
 String mt = ((ArrayList)machine.get(c)).get(d).toString();

int opnTime =
Integer.parseInt(((ArrayList)jobList.get(c)).get(d).toStri
ng());
int machineTime =
Integer.parseInt(((ArrayList)processTime.get(c)).get(d).to
String());
int quantity = Integer.parseInt(amount.get(c).toString());

 if ((mt.equals(mcName))&&(opnTime==k)) {
 loading[i][j] +=(machineTime*quantity);
 }
 }}
 }
 }
 }

 public void updateLoading(){
 for(int x=0; x<nMachine; x++){
 for(int y=0; y<totalBucket; y++){
 if(candLoading[x][y]>0) {
 loading[x][y]=candLoading[x][y];
 }
 else{
 loading[x][y]=startLoading[x][y];
 }
 }
 }
 }
}

202

3.5 updateTabuMIA.java

public class updateTabuMIA extends tabuSearch {
 int moveFrom;
 int moveTo;

 public void initList() {
 for (int t=0; t<tabuListSize; t++) {
 jobFrom[t] = 0;
 jobTo[t] = 0;
 }
 }

 public void updateList(int mPoint) {
 for (int t=0; t<tabuListSize; t++) {
 if (t < tabuListSize-1) {
 jobFrom[t] = jobFrom[t+1];
 jobTo[t] = jobTo[t+1];
 }
 else if (t == (tabuListSize-1)){
 for(int l=0; l<msCountList; l++){
 if(l == mPoint){

moveFrom =
Integer.parseInt(((ArrayList)swapPairList.get(l)).get(0).t
oString());
moveTo =
Integer.parseInt(((ArrayList)swapPairList.get(l)).get(1).t
oString());

 }
 }
 jobFrom[t] = moveFrom;
 jobTo[t] = moveTo;
 }
 }
 }
}

203

Appendix B

An instance of the application running

1. Service architecture file

In order to implement the proposed planning application into the CONPLAN, a

XML description file is used to define service architecture. The XML file will list all

events occurring in the process flow and then map the events with specific services, for

instance in order to generate a resource plan (an event), the tabu search algorithm (a

service) is chosen to be a solving method. The planning algorithm is thus embedded in

the CONPLAN. In this planning application, the XML file, called tabu.xml, is created

for illustrating services implementation. The code is shown as follows.

<architecture>
<events>
</events>
<external-event-generators>
 <generator name="init" class="src.conplan.generators.InitGenerator" />
</external-event-generators>
<services>

 <service name="planner1" archetype="Planner"
state="src.conplan.state.IndexPlanner">

<listens for="src.conplan.events.Init"
class="src.conplan.listeners.Ignore" />

 <listens for="src.conplan.events.UnplannedOrder"
class="src.conplan.listeners.PlanOrder" />

 <listens for="src.conplan.events.SystemState"
class="src.conplan.listeners.Ignore" />

 <listens for="src.conplan.events.CapacityShortage"
class="src.conplan.listeners.Ignore" />

 <listens for="src.conplan.events.GlobalPlanning"
class="src.conplan.listeners.PerformGlobalPlanning" />

 </service>

<service name="order3" archetype="OrderCreation"
state="src.conplan.state.OrderCreationFromFile">

<listens for="src.conplan.events.Init"
class="src.conplan.listeners.CreateUnplannedOrder" />

</service>
<service name="utility" archetype="Other"
state="src.conplan.state.HaltOnComplete">

204

<listens for="src.conplan.events.IncrementWait"
class="src.conplan.listeners.CreateHalt" />
<listens for="src.conplan.events.DecrementWait"
class="src.conplan.listeners.CreateHalt" />
<listens for="src.conplan.events.Init"
class="src.conplan.listeners.CreatePeriodic" />
<listens for="src.conplan.events.PeriodicTrigger"
class="src.conplan.listeners.CreatePeriodic" />

 </service>
 </services>
</architecture>

2. Input data arrays

Input data from the text files will be converted to a desired array pattern. For a

data format of date and time, the data will be inputted with the format pattern

YYYY,MM,DD,HH,MM,SS. It then needs to be converted to long number format for

using in the tabu search algorithm. For instance a release date of job 1 is

2009,09,02,08,00,00. To start the calculation, this data will be changed to 1251878400.

The example of all input data arrays needed for the planning algorithm is shown below.

Hardcoded TimeOffset: 2009,09,26,00,00,00,
due date= [1254988800, 1255334400, 1255420800, 1255420800, 1255075200,
1255593600, 1255593600, 1255680000, 1255593600, 1255248000, 1255075200,
1254643200, 1254902400, 1255161600, 1255507200]
release date= [1251878400, 1251964800, 1252396800, 1252656000, 1252742400,
1252915200, 1253001600, 1253174400, 1253433600, 1253520000, 1253606400,
1253692800, 1253692800, 1253779200, 1253865600]
routing= [[M19, M11, M3, M2], [M14, M2, M7, M16, M3, M10], [M14, M2, M7, M16,
M3, M10], [M1, M5, M12, M11, M2, M8, M19, M13, M15], [M19, M11, M3, M2], [M1,
M5, M12, M11, M2, M8, M19, M13, M15], [M14, M2, M7, M16, M3, M10], [M14, M2,
M7, M16, M3, M10], [M1, M5, M12, M11, M2, M8, M19, M13, M15], [M19, M11, M3,
M2], [M14, M2, M7, M16, M3, M10], [M19, M11, M3, M2], [M19, M11, M3, M2],
[M14, M2, M7, M16, M3, M10], [M14, M2, M7, M16, M3, M10]]
process time= [[594, 594, 605, 203], [599, 594, 585, 628, 600, 658], [599,
594, 585, 628, 600, 658], [580, 585, 582, 596, 597, 593, 615, 628, 605], [594,
594, 605, 203], [580, 585, 582, 596, 597, 593, 615, 628, 605], [599, 594, 585,
628, 600, 658], [599, 594, 585, 628, 600, 658], [580, 585, 582, 596, 597, 593,
615, 628, 605], [594, 594, 605, 203], [599, 594, 585, 628, 600, 658], [594,
594, 605, 203], [594, 594, 605, 203], [599, 594, 585, 628, 600, 658], [599,
594, 585, 628, 600, 658]]
amount= [100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
100, 100]
machine= [M1, M10, M11, M12, M13, M14, M15, M16, M17, M18, M19, M2, M20, M3,
M4, M5, M6, M7, M8, M9]

205

3. An example of the planning results

In the planning application, there are two types of number formats: long number

and time bucket number, which are used to present the output, an operation start time of

each operation of each job. The long number represents time at the beginning of a

bucket in a planning horizon. Meanwhile, the bucket number represents a number of

discrete interval times in a planning horizon. The example results of calculation

obtained from the tabu search algorithm are shown as follows.

Hardcoded TimeOffset: 2009,09,26,00,00,00,
due date= [1254988800, 1255334400, 1255420800, 1255420800, 1255075200,
1255593600, 1255593600, 1255680000, 1255593600, 1255248000, 1255075200,
1254643200, 1254902400, 1255161600, 1255507200]
release date= [1251878400, 1251964800, 1252396800, 1252656000, 1252742400,
1252915200, 1253001600, 1253174400, 1253433600, 1253520000, 1253606400,
1253692800, 1253692800, 1253779200, 1253865600]
routing= [[M19, M11, M3, M2], [M14, M2, M7, M16, M3, M10], [M14, M2, M7, M16,
M3, M10], [M1, M5, M12, M11, M2, M8, M19, M13, M15], [M19, M11, M3, M2], [M1,
M5, M12, M11, M2, M8, M19, M13, M15], [M14, M2, M7, M16, M3, M10], [M14, M2,
M7, M16, M3, M10], [M1, M5, M12, M11, M2, M8, M19, M13, M15], [M19, M11, M3,
M2], [M14, M2, M7, M16, M3, M10], [M19, M11, M3, M2], [M19, M11, M3, M2],
[M14, M2, M7, M16, M3, M10], [M14, M2, M7, M16, M3, M10]]
process time= [[594, 594, 605, 203], [599, 594, 585, 628, 600, 658], [599,
594, 585, 628, 600, 658], [580, 585, 582, 596, 597, 593, 615, 628, 605], [594,
594, 605, 203], [580, 585, 582, 596, 597, 593, 615, 628, 605], [599, 594, 585,
628, 600, 658], [599, 594, 585, 628, 600, 658], [580, 585, 582, 596, 597, 593,
615, 628, 605], [594, 594, 605, 203], [599, 594, 585, 628, 600, 658], [594,
594, 605, 203], [594, 594, 605, 203], [599, 594, 585, 628, 600, 658], [599,
594, 585, 628, 600, 658]]
amount= [100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
100, 100]
machine= [M1, M10, M11, M12, M13, M14, M15, M16, M17, M18, M19, M2, M20, M3,
M4, M5, M6, M7, M8, M9]
initPST= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [41, 42, 43, 44,
45, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [42, 43, 44, 45], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]

Iteration(OIA) =0

jobList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [41, 42, 43, 44,
45, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [42, 43, 44, 45], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
MaxOverload= -112700 at machine= M2 and bucket= 45
newPSTList= [[[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [35, 36, 37, 38,

206

40, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [42, 43, 44, 45], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]]
MaxOverload= -53000 at machine= M2 and bucket= 43
newPSTList= [[[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [35, 36, 37, 38,
40, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [42, 43, 44, 45], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]], [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [41, 42, 43, 44,
45, 46, 47, 48, 49], [37, 40, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [42, 43, 44, 45], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]]
MaxOverload= -53300 at machine= M2 and bucket= 45
newPSTList= [[[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [35, 36, 37, 38,
40, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [42, 43, 44, 45], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]], [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [41, 42, 43, 44,
45, 46, 47, 48, 49], [37, 40, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [42, 43, 44, 45], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]], [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [41, 42, 43, 44,
45, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [35,
36, 37, 38, 40, 46, 47, 48, 49], [42, 43, 44, 45], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]]
MaxOverload= -53000 at machine= M2 and bucket= 43
newPSTList= [[[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [35, 36, 37, 38,
40, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [42, 43, 44, 45], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]], [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [41, 42, 43, 44,
45, 46, 47, 48, 49], [37, 40, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [42, 43, 44, 45], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]], [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [41, 42, 43, 44,
45, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [35,
36, 37, 38, 40, 46, 47, 48, 49], [42, 43, 44, 45], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]], [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [41, 42, 43, 44,
45, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]]
MaxOverload= -92400 at machine= M2 and bucket= 45
Best candiddate summary:
 MaxOverload= -92400
 BestNumOverload= 11
 BestTardiness= 0
 BestEarliness 4
 BestMakespan= 90

207

 bestList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [41, 42, 43, 44,
45, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
 startList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [41, 42, 43, 44,
45, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]

Best solution summary:
 bestList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [41, 42, 43, 44,
45, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
 FinalBestMaxOverload =-92400
 FinalBestNumOverload =11
 FinalBestTardiness =0
 FinalBestEarliness =4
 FinalBestMakespan =90
 Iteration =0

Iteration(OIA) =1

jobList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [41, 42, 43, 44,
45, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
startList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [41, 42, 43, 44,
45, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
MaxOverload= -92400 at machine= M2 and bucket= 45
newPSTList= [[[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [34, 35, 36, 37,
39, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]]
MaxOverload= -53000 at machine= M2 and bucket= 43
newPSTList= [[[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [34, 35, 36, 37,
39, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]], [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [41, 42, 43, 44,
45, 46, 47, 48, 49], [37, 39, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]]
MaxOverload= -53000 at machine= M2 and bucket= 43
newPSTList= [[[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [34, 35, 36, 37,

208

39, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]], [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [41, 42, 43, 44,
45, 46, 47, 48, 49], [37, 39, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]], [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [41, 42, 43, 44,
45, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [34,
35, 36, 37, 39, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]]
MaxOverload= -53000 at machine= M2 and bucket= 43
Best candiddate summary:
 MaxOverload= -53000
 BestNumOverload= 12
 BestTardiness= 0
 BestEarliness 4
 BestMakespan= 97
 bestList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [34, 35, 36, 37,
39, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
 startList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [34, 35, 36, 37,
39, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]

Best solution summary:
 bestList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [34, 35, 36, 37,
39, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
 FinalBestMaxOverload =-53000
 FinalBestNumOverload =12
 FinalBestTardiness =0
 FinalBestEarliness =4
 FinalBestMakespan =97
 Iteration =1

Iteration(OIA) =2

jobList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [34, 35, 36, 37,
39, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
startList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [34, 35, 36, 37,
39, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
MaxOverload= -53000 at machine= M2 and bucket= 43

209

newPSTList= [[[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [37, 38, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [34, 35, 36, 37,
39, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]]
MaxOverload= -39200 at machine= M13 and bucket= 48
newPSTList= [[[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [37, 38, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [34, 35, 36, 37,
39, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]], [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [32, 33, 34, 35, 38, 44, 45, 46, 47], [40, 41, 42, 43], [34, 35, 36, 37,
39, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]]
MaxOverload= -39200 at machine= M13 and bucket= 48
newPSTList= [[[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [37, 38, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [34, 35, 36, 37,
39, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]], [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [32, 33, 34, 35, 38, 44, 45, 46, 47], [40, 41, 42, 43], [34, 35, 36, 37,
39, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]], [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [42, 43, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [34, 35, 38, 41], [34, 35, 36, 37,
39, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]]
MaxOverload= -39200 at machine= M13 and bucket= 48
Best candiddate summary:
 MaxOverload= -39200
 BestNumOverload= 7
 BestTardiness= 0
 BestEarliness 4
 BestMakespan= 102
 bestList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [37, 38, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [34, 35, 36, 37,
39, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
 startList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [37, 38, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [34, 35, 36, 37,
39, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]

Best solution summary:
 bestList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [37, 38, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [34, 35, 36, 37,
39, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
 FinalBestMaxOverload =-39200

210

 FinalBestNumOverload =7
 FinalBestTardiness =0
 FinalBestEarliness =4
 FinalBestMakespan =102
 Iteration =2

Iteration(OIA) =3

jobList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [37, 38, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [34, 35, 36, 37,
39, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
startList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [37, 38, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [34, 35, 36, 37,
39, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
MaxOverload= -39200 at machine= M13 and bucket= 48
newPSTList= [[[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [37, 38, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [32, 33, 34, 35,
38, 45, 46, 47, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]]
MaxOverload= -53000 at machine= M2 and bucket= 38
newPSTList= [[[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [37, 38, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [32, 33, 34, 35,
38, 45, 46, 47, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]], [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [37, 38, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [34, 35, 36, 37,
39, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 38, 45, 46, 47, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]]
MaxOverload= -53000 at machine= M2 and bucket= 38
Best candiddate summary:
 MaxOverload= -53000
 BestNumOverload= 7
 BestTardiness= 0
 BestEarliness 4
 BestMakespan= 104
 bestList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [37, 38, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [34, 35, 36, 37,
39, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
 startList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [37, 38, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [32, 33, 34, 35,
38, 45, 46, 47, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]

Best solution summary:
 bestList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [37, 38, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [34, 35, 36, 37,
39, 46, 47, 48, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,

211

42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
 FinalBestMaxOverload =-39200
 FinalBestNumOverload =7
 FinalBestTardiness =0
 FinalBestEarliness =4
 FinalBestMakespan =102
 Iteration =3

Iteration(OIA) =4

jobList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [37, 38, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [32, 33, 34, 35,
38, 45, 46, 47, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
startList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [37, 38, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [32, 33, 34, 35,
38, 45, 46, 47, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
MaxOverload= -53000 at machine= M2 and bucket= 38
newPSTList= [[[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [32, 33, 34, 35,
38, 45, 46, 47, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]]
MaxOverload= -34600 at machine= M15 and bucket= 49
newPSTList= [[[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [32, 33, 34, 35,
38, 45, 46, 47, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]], [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [37, 38, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [31, 32, 33, 34,
37, 45, 46, 47, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]]
MaxOverload= -34600 at machine= M15 and bucket= 49
newPSTList= [[[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [32, 33, 34, 35,
38, 45, 46, 47, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]], [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [37, 38, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [31, 32, 33, 34,
37, 45, 46, 47, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]], [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [37, 38, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [32, 33, 34, 35,
38, 45, 46, 47, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[33, 34, 36, 37], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]]
MaxOverload= -34600 at machine= M15 and bucket= 49
Best candiddate summary:
 MaxOverload= -34600

212

 BestNumOverload= 3
 BestTardiness= 0
 BestEarliness 4
 BestMakespan= 105
 bestList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [32, 33, 34, 35,
38, 45, 46, 47, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
 startList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [32, 33, 34, 35,
38, 45, 46, 47, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]

Best solution summary:
 bestList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [40, 41, 42, 43], [32, 33, 34, 35,
38, 45, 46, 47, 49], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [41,
42, 43, 44, 45, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [39, 40, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
 FinalBestMaxOverload =-34600
 FinalBestNumOverload =3
 FinalBestTardiness =0
 FinalBestEarliness =4
 FinalBestMakespan =105
 Iteration =4

|
|
|
|
|
|

Iteration(OIA) =11

jobList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [37, 38, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
startList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [37, 38, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
MaxOverload= -13900 at machine= M2 and bucket= 41
newPSTList= [[[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [31,
32, 33, 34, 38, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [37, 38, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]]
MaxOverload= -53000 at machine= M2 and bucket= 38
newPSTList= [[[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,

213

40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [31,
32, 33, 34, 38, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [37, 38, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]], [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [32, 33, 36, 40], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [37, 38, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]]
MaxOverload= 0 at machine= M2 and bucket= 38
MaxOverload= 0
newPSTList= [[[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [31,
32, 33, 34, 38, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [37, 38, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]], [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [32, 33, 36, 40], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [37, 38, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]], [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [32, 33, 36, 40], [37, 38, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]]
MaxOverload= 0 at machine= M2 and bucket= 38
MaxOverload= 0
Best candiddate summary:
 MaxOverload= -53000
 BestNumOverload= 2
 BestTardiness= 0
 BestEarliness 5
 BestMakespan= 121
 bestList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [37, 38, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
 startList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [32, 33, 36, 40], [37, 38, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]

Best solution summary:
 bestList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [38, 39, 40, 41], [37, 38, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
 FinalBestMaxOverload =-13900
 FinalBestNumOverload =1
 FinalBestTardiness =0
 FinalBestEarliness =5
 FinalBestMakespan =120
 Iteration =11

Iteration(OIA) =12

214

jobList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [32, 33, 36, 40], [37, 38, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
startList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [32, 33, 36, 40], [37, 38, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
MaxOverload= 0 at machine= M2 and bucket= 38
MaxOverload= 0
newPSTList= [[[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[31, 32, 35, 37], [32, 33, 36, 40], [37, 38, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]]
MaxOverload= 0 at machine= M2 and bucket= 38
MaxOverload= 0
newPSTList= [[[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[31, 32, 35, 37], [32, 33, 36, 40], [37, 38, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]], [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [32, 33, 36, 40], [35, 36, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]]
MaxOverload= 0 at machine= M2 and bucket= 38
MaxOverload= 0
Best candiddate summary:
 MaxOverload= 0
 BestNumOverload= 0
 BestTardiness= 0
 BestEarliness 6
 BestMakespan= 127
 bestList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [32, 33, 36, 40], [35, 36, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
 startList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [32, 33, 36, 40], [35, 36, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]

Best solution summary:
 bestList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [32, 33, 36, 40], [35, 36, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
 FinalBestMaxOverload =0

215

 FinalBestNumOverload =0
 FinalBestTardiness =0
 FinalBestEarliness =6
 FinalBestMakespan =127
 Iteration =12

Iteration(OIA) =13

jobList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [32, 33, 36, 40], [35, 36, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
startList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [32, 33, 36, 40], [35, 36, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
MaxOverload= 0 at machine= M2 and bucket= 38
MaxOverload= 0

Iteration(MIA)= 0

startlist= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [37, 38, 39, 41], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [32, 33, 36, 40], [35, 36, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
NBH list= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [38, 39, 40, 44], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [32, 33, 36, 40], [35, 36, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
totalEarliness 0= 3 totalTardiness 0= 0 totalMakespan (by job)= 129
 msMakespan= 19
Best candidate summary:
 minTardiness= 0
 minEarliness= 3
 minMakespan= 129
 minPoint= 0
 bestList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [38, 39, 40, 44], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [32, 33, 36, 40], [35, 36, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
 startList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [38, 39, 40, 44], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [32, 33, 36, 40], [35, 36, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
Best solution summary:
 Iteration =0
 bestList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [38, 39, 40, 44], [38, 39, 40, 41, 42, 43],

216

[35, 36, 37, 38], [32, 33, 36, 40], [35, 36, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
 FinalBestTardiness =0
 FinalBestEarliness =3
 FinalBestMakespan =129
 FinalMinPoint =0

Iteration(MIA)= 1

startlist= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [38, 39, 40, 44], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [32, 33, 36, 40], [35, 36, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
NBH list= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [38, 39, 40, 44], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [34, 38, 39, 41], [35, 36, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
totalEarliness 0= 2 totalTardiness 0= 0 totalMakespan (by job)= 128
 msMakespan= 19
Best candidate summary:
 minTardiness= 0
 minEarliness= 2
 minMakespan= 128
 minPoint= 0
 bestList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [38, 39, 40, 44], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [34, 38, 39, 41], [35, 36, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
 startList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [38, 39, 40, 44], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [34, 38, 39, 41], [35, 36, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
Best solution summary:
 Iteration =1
 bestList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [38, 39, 40, 44], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [34, 38, 39, 41], [35, 36, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
 FinalBestTardiness =0
 FinalBestEarliness =2
 FinalBestMakespan =128
 FinalMinPoint =0

Iteration(MIA)= 2

startlist= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [38, 39, 40, 44], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [34, 38, 39, 41], [35, 36, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
NBH list= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,

217

40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [40, 41, 44, 45], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [34, 38, 39, 41], [35, 36, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
totalEarliness 0= 1 totalTardiness 0= 0 totalMakespan (by job)= 127
 msMakespan= 19
Best candidate summary:
 minTardiness= 0
 minEarliness= 1
 minMakespan= 127
 minPoint= 0
 bestList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [40, 41, 44, 45], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [34, 38, 39, 41], [35, 36, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
 startList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [40, 41, 44, 45], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [34, 38, 39, 41], [35, 36, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
Best solution summary:
 Iteration =2
 bestList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [40, 41, 44, 45], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [34, 38, 39, 41], [35, 36, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
 FinalBestTardiness =0
 FinalBestEarliness =1
 FinalBestMakespan =127
 FinalMinPoint =0

Iteration(MIA)= 3

startlist= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [40, 41, 44, 45], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [34, 38, 39, 41], [35, 36, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
Final solution summary:
 bestList= [[39, 40, 41, 42], [41, 42, 43, 44, 45, 46], [36, 37, 44, 45, 46,
47], [39, 40, 41, 42, 43, 44, 45, 46, 47], [33, 34, 38, 43], [34, 35, 36, 37,
40, 43, 44, 45, 48], [44, 45, 46, 47, 48, 49], [45, 46, 47, 48, 49, 50], [32,
33, 34, 35, 41, 46, 47, 48, 49], [40, 41, 44, 45], [38, 39, 40, 41, 42, 43],
[35, 36, 37, 38], [34, 38, 39, 41], [35, 36, 41, 42, 43, 44], [43, 44, 45, 46,
47, 48]]
 FinalBestTardiness =0
 FinalBestEarliness =1
 FinalBestMakespan =127
 FinalMinPoint =0
Resource loading:
M1 0 58000 0 58000 0 0 0 0 58000 0 0
 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
M10 0 0 0 0 0 0 0 0 0 0 0
 0 65800 65800 0 65800 65800 65800 65800 65800 0 0
 0 0 0 0 0 0 0 0 0

218

M11 0 0 0 59400 59600 59400 59600 59400 0 59400 59400
 59600 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
M12 0 0 0 58200 0 58200 0 0 0 0 58200
 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
M13 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 62800 62800 0 62800 0 0 0 0
 0 0 0 0 0 0 0 0 0
M14 0 0 0 0 59900 59900 0 59900 0 0 59900
 0 59900 59900 59900 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
M15 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 60500 60500 60500 0 0 0
 0 0 0 0 0 0 0 0 0
M16 0 0 0 0 0 0 0 0 0 0 62800
 62800 0 62800 62800 62800 62800 62800 0 0 0 0
 0 0 0 0 0 0 0 0 0
M17 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
M18 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
M19 0 0 59400 59400 59400 0 0 0 59400 59400 0
 0 0 61500 61500 0 61500 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
M2 0 0 0 0 0 59400 59400 20300 59400 59700 80000
 79700 80000 59400 79700 59400 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
M20 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
M3 0 0 0 0 0 0 60500 60500 60500 0 60500
 60000 60000 60500 60000 60000 60000 60000 60000 0 0 0
 0 0 0 0 0 0 0 0 0
M4 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
M5 0 0 58500 0 58500 0 0 0 0 58500 0
 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
M6 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
M7 0 0 0 0 0 0 0 0 0 58500 58500
 0 58500 58500 58500 58500 58500 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
M8 0 0 0 0 0 0 0 0 0 0 0
 0 59300 59300 0 59300 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
M9 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
bestList= [[1254614400, 1254700800, 1254787200, 1254873600], [1254787200,
1254873600, 1254960000, 1255046400, 1255132800, 1255219200], [1254355200,
1254441600, 1255046400, 1255132800, 1255219200, 1255305600], [1254614400,
1254700800, 1254787200, 1254873600, 1254960000, 1255046400, 1255132800,
1255219200, 1255305600], [1254096000, 1254182400, 1254528000, 1254960000],
[1254182400, 1254268800, 1254355200, 1254441600, 1254700800, 1254960000,
1255046400, 1255132800, 1255392000], [1255046400, 1255132800, 1255219200,
1255305600, 1255392000, 1255478400], [1255132800, 1255219200, 1255305600,
1255392000, 1255478400, 1255564800], [1254009600, 1254096000, 1254182400,

219

1254268800, 1254787200, 1255219200, 1255305600, 1255392000, 1255478400],
[1254700800, 1254787200, 1255046400, 1255132800], [1254528000, 1254614400,
1254700800, 1254787200, 1254873600, 1254960000], [1254268800, 1254355200,
1254441600, 1254528000], [1254182400, 1254528000, 1254614400, 1254787200],
[1254268800, 1254355200, 1254787200, 1254873600, 1254960000, 1255046400],
[1254960000, 1255046400, 1255132800, 1255219200, 1255305600, 1255392000]]
indexList= [[8, 9, 10, 11], [10, 11, 12, 13, 14, 15], [5, 6, 13, 14, 15, 16],
[8, 9, 10, 11, 12, 13, 14, 15, 16], [2, 3, 7, 12], [3, 4, 5, 6, 9, 12, 13, 14,
17], [13, 14, 15, 16, 17, 18], [14, 15, 16, 17, 18, 19], [1, 2, 3, 4, 10, 15,
16, 17, 18], [9, 10, 13, 14], [7, 8, 9, 10, 11, 12], [4, 5, 6, 7], [3, 7, 8,
10], [4, 5, 10, 11, 12, 13], [12, 13, 14, 15, 16, 17]]
msStartTime= 1295854924
msEndTime= 1295854925
msComputationalTime(sec)= 1
OIA calculation time= 1295854925
startTime= 1295854924
endTime= 1295854925
computationalTime(sec)= 1

