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Abstract 

The field of nanotechnology has been expanded by the discovery of fullerenes 

and carbon nanotubes (CNTs) in the 20
th

 century. Geim and Novoselov  won the Nobel 

prize in 2010 for their work on graphene sheets (GSs). Those materials with their 

outstanding properties have been suggested as reinforcement fillers in a variety of 

composite materials. By incorporating these nanomaterials into a polymer matrix, or 

dispersing them into a solution, the effective thermal conductivity of the resulting 

composite (Keff) can be increased. For example, this enhancement can range from 80% 

to 125% at 1.0wt% of CNTs over pure polymer for the case of epoxy composites or by 

a factor of almost 4 in the case of high concentration of single-walled carbon nanotubes 

(SWNTs) in poly-styrene. However, based on the properties of pristine CNTs and GSs, 

one would expect a much higher value of Keff of such composites, more than one order 

of magnitude according to the classica l theory of Maxwell. The presence of resistance 

to heat transfer at the nanoinclusion-polymer interface, known as the interfacial thermal 

resistance or Kapitza resistance, is the reason for this difference.  

Experimentally measuring and characterizing heat transport at the nanoscale are 

not trivial tasks and current theory in this area is limited to simple cases only. The 

acoustic mismatch theory and the effective medium theory provide a rough estimation 

of Kapitza resistance and Keff of the composites, respectively. However, the effect of 

dispersion pattern and the orientation of nanoinclusions inside the polymer matrix on 

Keff is still an open question. For the case of multi-walled carbon nanotubes (MWCNTs) 

embedded in polymer matrix, it is unknown whether thermal transfer occurs solely via 

the outermost wall or through the center of the tube.  



xx 

In this work, Monte Carlo (MC) simulations were developed to investigate heat 

transfer in nanocomposites. This approach is capable of taking into account the effect of 

different geometries, realistic orientations, and dispersion patterns of nanoinclusions on 

Keff. Furthermore, molecular dynamics (MD) simulations were employed coherently 

with MC simulations to characterize interfacial thermal resistance. Results from this 

work provide suggestions for producing superior thermal nanocomposites through the 

controll of Kapitza resistance and the configurations of nanoinclusions inside the 

polymer matrix.  
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Chapter 1: Introduction 

 

1.1. Thermal properties of carbon nanotubes and graphene sheets 

Heat dissipation continues to be a major challenge in the modern electronics 

industry as a result of miniaturization efforts.[1]  The need for superior heat-conducting 

materials became essential for design of the next generations of integrated circuits.[2] 

Similar thermal needs have been encountered in optoelectronics and photonics 

devices.[3] On the other hand, thermal insulator materials , which have the ability to 

strongly suppress thermal conductivity, are required to conserve energy in aerospace 

and other applications.  

Thermal conductivity (K) is a material property defined as the ability to conduct 

heat. It is introduced in Fourier’s Law for heat conduction in solid materials: 

TKq 
 

 (1.1.1) 

where q , K, T  are the local heat flux through a unit area per unit of time (Wm
-2

), the 

thermal conductivity (Wm
-1

K
-1

), and temperature gradient (Km
-1

), respectively. In 

anisotropic materials, K varies with orientation and is described by a tensor.  

There are both electrons and atomic vibration in crystals, known as phonons, 

that contribute to heat conduction. Because there is high concentration of free carriers in 

metals, the mechanism of heat conduction in metals is dominated by electrons. The 

electron’s contribution to thermal conductivity (Ke) can be determined from the 

electrical conductivity () through the Wiedemann-Franz law:[4] 

TLKe 0   (1.1.2) 

 



2 

where the Lorenz number, L0, equals 2.45x10
-8

 (V/K)
2
 and T is the temperature in 

Kelvin. On the other hand, heat conduction in carbon-based materials is usually 

dominated by phonons even for graphite, which has metal-like properties.[5] The 

phonon thermal conductivity, Kp, is expressed as [6] 


j

jjjp dCK  )()()( 2   (1.1.3) 

 

 

where j is the phonon branch, j is the phonon group velocity, j is the phonon 

relaxation time and Cj is the heat capacity of the given branch j. The phonon mean free 

path , which is the average distance a phonon can move between two collisions or 

scattering events, is related to the relaxation time and phonon group velocity as  

 =   (1.1.4) 

In solids, it is the acoustic phonons not the optical phonons that are responsible for 

carrying the bulk of heat. These phonons are usually scattered by other phonons, lattice 

defects, impurities, conduction electrons and interfaces that limit the value of Kp.[7] 

Based on the kinetic theory of ideal gases, Kp can also be calculated as [3, 8] 

 2)3/1()3/1( CvCK p    (1.1.5) 

In nature, diamond possesses the highest thermal conductivity of any known 

bulk material. Due to very strong sp
3
 carbon-to-carbon bond and light atomic mass, 

diamond crystals produce extremely high phonon frequencies and acoustic velocities.[9] 

Carbon nanotubes (CNTs) and Graphene Sheets (GSs) are allotropes of carbon that are 

1-atom thick. This class of nanomaterials is composed entirely of sp
2
 bonds, similar to 

those of graphite. These bonds, which are even stronger than sp
3
 bonds found in 

diamond, provide CNTs and GSs with unique properties. The thermal conductivity of 
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CNTs and GSs has been experimentally measured or calculated to be higher than that of 

diamond (Figure 1.1.1).  

 

 

Figure 1.1.1. Thermal properties of carbon-based materials. (a) Average values of 

thermal conductivity. (b) Thermal conductivity of bulk carbon allotropes as a function 
of temperature. Reported by Balandin et al.[3] 
 

Unlike bulk materials in which the phonon transport occurs in diffusive regimes, 

heat conduction in CNTs and GSs happens in diffusive-ballistic regime. This is because 

the phonon mean free path in these materials can exceed 500nm, even larger than the 

length of the nanoinclusions.[10-12] As a result, K keeps increasing as the size of the 
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system increases (Figure 1.1.2). Benedict et al.[13]  and Hone et al.[4] studied the 

specific heat of SWNTs and GSs over a wide range of temperatures. The ratio between 

the of phonon and electron contribution to the specific heat for these materials was 

reported to be 10
2
-10

4
.   

 

Figure 1.1.2. Length dependences of thermal conductivity (K) of single-walled carbon 

nanotubes (SWNT) and graphene nanoribbons (NGR) as calculated by Shiomi et al. 
Figure adapted from [14].   
 

1.2. Interfacial thermal resistance 

Interfacial thermal resistance, also known as thermal boundary resistance  

(TBR) or Kapitza resistance, is the resistance to thermal flow at the interface of two 

different materials (Figure 1.2.1). It was discovered in 1941 by Kapitza [15] at the 

interface of liquid helium and copper.   
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Figure 1.2.1. Plot of temperature distribution along the heat flux (z-direction) between 

two different mediums. There is a temperature drop and discontinuity  (T) at the 

interface due to Kapitza resistance. 
 

The mechanism of this resistance remained unknown until  Khalanikov et 

al.[16] proposed the acoustic mismatch model (AMM) in 1952. In this model, the heat 

flux is carried through the interface by acoustic waves propagating by the same law as 

the transmission of sound from one medium to another (Figure 1.2.2). Khalatnilov’s 

model provides a possible explanation of the principle cause of Kapitza resistance. 

However, for some cases, predictions are almost one order of  magnitude higher than 

experimental values.[17] Conserving the main idea that a major part of the heat flux 

through the interface is carried by acoustic waves, the diffuse mismatch model (DMM) 

developed by Swartz et al.[6] gives another estimation of Kapitza resistance.   
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Figure 1.2.2. Schematic plot of the acoustic mismatch model developed by Khalatnikov 
et al. The incident phonons with 3 branches ,1 longitudinal and 2 transverse waves, will 

be reflected or transmitted at the interface of 2 different mediums. Figure adapted from 
ref. [16] 
 

The phonon transmission probability, according to AMM model, is calculated as a 

function of incident phonons and properties at the interface as[18]  

2

122211

122211
21

)coscos(

coscos4






f  

 (1.2.1) 

where i,i,i (the subscript i=1 or 2) are the density, sound velocity, angle between the 

phonon wave vector of medium i and the normal direction to the interface, respectively 

(Figure 1.2.2). The average phonon transmission probability, favg12, is calculated as  

  

2/

0

2121 sincos)(



 dffavg  
 (1.2.2) 

  
Thus, the Kapitza resistance, Rbd, can be approximated as[6] 

21111

4




avg

bd
fC

R


 
 (1.2.3) 

where C1 is the specific heat capacity of medium 1, other parameters are described as in 

Equation (1.2.1) and (1.2.2). A crucial assumption in the AMM model is that no 

scattering occurs at the interface. There were, however, experimental evidences that 
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high frequency phonons got scattered at the interface and opened up new channels for 

heat transport.[19] Hence, this assumption was replaced with the opposite extreme in 

the DMM model: all phonons are assumed to be diffusely scattered at the interface.[6] 

Because Rbd is inversely proportional to favg12, the DMM model usually predicts 

Kapitza resistance as much as two orders of magnitude lower than experimental 

observations [20].  There have been lots of work to improve the acoustic models for 

better estimation of Kapitza resistance.[20-26] 

It is also essential to point out what will happen if both sides of the interface are 

identical. In that case, the value of f12 and favg12 are unity and 0.5, respectively. 

According to Equation (1.2.3), the Kapitza resistance does not vanish but still exists.  

Note that, this thermal resistance differs from contact resistance, as it exists even at 

atomically perfect interfaces. In general, this resistance is present at the interface 

between any materials and its value varies differently for each system.[27] Based on 

acoustic theory, [6] the more differences in density and sound velocity of two materials, 

the greater the value of Kapitza resistance will be. This is why the Debye temperature, 

the temperature at which the maximum frequency of phonon is activated, is often used 

to qualitatively compare the Kapitza resistance. For example, at room temperature, Rbd 

of  Bi/diamond was measured to be 11.7x10
-8

W
-1

m
2
K [28, 29], which is among the 

highest resistances for bulk materials. Bismuth is a metal containing free electrons as 

primary heat carriers, while diamond is a good insulator. As a result, the energy 

transport by means of electrons between these materials is suppressed. Furthermore, 

bismuth, which has low Debye temperature, has many phonons at low frequencies. 

Diamond, on the other hand, has very high Debye temperature with high-frequency 
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phonons. The significant difference in Debye temperature means that phonons do not 

efficiently couple across the Bi/diamond interface. In nanocomposites, the Debye 

temperature of common polymers is about 400K or lower, while it is higher than 2000K 

for CNTs and GSs. That also explains why the Kapitza resistance is a bottleneck for the 

heat transfer in nanocomposites. 

 

1.3. Effective thermal conductivity of nanocomposites 

Composite materials consist of two or more materials combined in such a way 

that each constituent remains distinguishable. Most composites have two constituents: a 

matrix and a reinforcement. The reinforcement is usually much stronger and stiffer than 

the matrix, and gives the composite its improved properties. For the case of 

nanocomposites, the reinforcements, also called inclusions, are CNTs or GSs that are 

dispersed inside common polymers. In terms of thermal conductivity, each constituent 

has its own value of K and the composite can be treated as a homogeneous material with 

an effective thermal conductivity, Keff.  

1.3.1. Maxwell model  

Estimation of the conductivity of heterogeneous solids was first contributed by 

Maxwell.[30] Considering a material made of spheres of thermal conductivity  Kp 

embedded in a continuous  matrix with thermal conductivity Km. Maxwell showed that 

for small volume fraction  , the effective thermal conductivity is  
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For non-spherical inclusions, the composite is anisotropic and K becomes a tensor. 

When square arrays of long cylinders are parallel to the z-axis (i.e. the direction of the 

heat flow), Rayleigh[31] showed that the zz component of the thermal conductivity 

tensor is 

m

mp

m

zzeff

K

KK

K

K )(
1

, 
  

 (1.3.2) 

  
and the other two components are 
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 (1.3.3) 

For complex nonspherical inclusions, no exact treatment is possible. Intended for 

simple unconsolidated granular beds, the following expression has proven 

successful:[8] 
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 (1.3.5) 

  
The gk is the shape factor for the granules of the medium, where g1 +g2 +g3 = 1 must be 

satisfied. For spheres, g1 = g2 = g3 = 1/3, and Equation (1.3.3) reduces to Equation 

(1.3.1). For unconsolidated solids, g1 = g2 = 1/8 and g3 = 3/4. 

1.3.2. Effective medium approximation 

Since Maxwell’s and Rayleigh’s models originally could not take into account 

the Kapitza resistance, Hasselman and Johnson[32] extended these theories and derived 
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an effective medium approximation (EMA) for calculating Keff that includes interfacial 

effects and particle size for simple inclusions. Nan et al. [33, 34]  generalized the EMA 

for various particle geometries and orientations. Considering an ellipsoidal particle in 

the matrix, let  be the angle between the material axis (z-direction) and the local 

particle symmetric axis. The orientation of this inclusion is calculated as 
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where  () is a distribution function describing ellipsoidal particle orientation. The 

geometrical shape factor Lii is given by 
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1133 21 LL    (1.3.8) 

where p = a3/a1 is the aspect ratio of the ellipsoid. The equivalent thermal conductivity 

along the symmetric axis of this ellipsoidal inclusion is calculated as[33] 

)/1/( mpiip

c

ii KKLKK    (1.3.9) 
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and Kp, Km are the thermal conductivity of  the particle and the matrix, respectively. 

Here a dimensionless parameter  is defined by 
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 (1.3.10) 

in which ak is the Kapitza radius, ak = RbdKm. Generally, 0  ak  , with ak = 0 

corresponding to the perfect interface. For the case of completely randomly oriented 
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ellipsoidal inclusions, cos
2
  = 1/3 and the effective thermal conductivity of  the 

isotropic composites becomes 

]2[3

)]1()1(2[3
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1.3.3. Numerical approach 

Heat transfer in nanocomposites has been simulated numerically with 

conventional numerical methods. [35, 36] A solution of the steady state heat conduction 

equation with finite element methods (FEM) taking into account the Kapitza resistance 

was first performed by Davis et al.[37] Considering a spherical inclusion of radius r 

embeded inside a matrix (Figure 1.3.1),  the steady state heat conduction equation is  

-.( KT)= 0  (1.3.13) 

where T is the temperature. In the matrix region, K=Km and in the particle K=Kp. At the 

interface, there is a temperature discontinuity given by Q=T/Rbd and the heat flux Q is 

conserved across the interface (Figure 1.3.1). The value of Keff of the composite is then 

found by integrating the flux over the surface as[37] 
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Figure 1.3.1. Axisymmetric model for computing the effective thermal conductivity of a 
composite of a matrix with thermal conductivity Km and a spherical inclusion with 
thermal conductivity Kp. At the interface, there exists a Kapitza resistance Rbd.[37]    

 

Results from this approach for spherical inclusions were in good agreement with 

experimental data and EMA[37]. Kumar et al. employed a similar approach to estimate 

Keff of CNT-based nanocomposites.[35, 36] Based on the Fourier conduction equation 

in the CNTs and the substrate, the temperature distribution was  calculated by a finite 

volume discretization scheme (FVD) and Keff was calculated as  
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This formula was derived by assuming CNTs as straight cylinder in thin box (2D). The 

first term in the numerator is the heat flow through the tubes in the lateral direction, 

while the second term represents the heat flow in the substrate. Ti and Ts are the 

temperature of tube segment and of the substrate, respectively. The computational 
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domain is represented by height (H), width (Lc) and thickness (t). Kt and Ks are the 

thermal conductivity of CNTs and substrate, respectively.  

Note that Fourier’s law of heat conduction assumes diffusive transport , while 

heat transfer in nanocomposites takes place in diffusive-ballistic regime due to the 

nano-sized inclusions.[3, 14, 38] Furthermore, measuring the electrical conductivity of 

CNT-based nanocomposites usually reveals a significant jump due to interconnecting 

network of tubes at very low wt.% of CNTs (0.05  4.0 wt.% [39, 40]), while there is no 

analogous observation for the case of thermal conductivity.[41] Kumar et al.’s approach 

did not capture this behavior because values of Kapitza resistance at the interface of 

CNT-substrate and CNT-CNT were roughly assumed. These values can be measured by 

experiments, which is not a trivial task, or calculated by atomistic simulations.  

 

1.4. Conclusions 

In summary, Keff of nanocomposites is a macroscopic property that depends on 

properties of the bulk material (density, sound velocity), the configuration of 

nanoinclusions (orientation, dispersion) and the atomistic property at the interface 

(Kapitza resistance). Unfortunately, most of the current models do not take into account 

all of the above effects due to the assumptions/simplifications made during the 

calculation of Keff.  The best approach to characterize Kapitza resistance at the interface 

is through atomistic simulations. However, due to computational cost, it is not efficient 

to employ this approach to calculate Keff of nanocomposites when the number of 

nanoinclusions and polymer molecules are hundreds of thousands. Therefore, another 

class of simulations is required at the mesoscopic scale that can receive input from 



14 

atomistic simulations (Kaptiza resistance) and can explicitly consider the effect of 

realistic geometries and dispersion pattern of nanoinclusions on the calculation of Keff.  

Details of this approach, based on off-lattice Monte Carlo simulations , are described in 

Chapter 2 – Methodology.  

The main purpose of this work is not only to replicate the experimental results 

but also to quantitatively provide suggestions to improve Keff of nanocomposites. In 

Chapter 3, we study the possibility of using another type of nanoinclusions with smaller 

Kapitza resistance than CNTs to enhance heat transfer. The importance of bundle-

geometry on Keff and a new type of Kapitza resistance at high vol.% of CNTs are 

discussed in Chapter 4. The question of whether the thermal energy transfer along a 

DWCNT occurs only through the outer CNT, or whether both CNTs contribute to heat 

transfer is answered in Chapter 5. Following that, Keff of MWNT-based composites, 

taking into account all of the factors discussed above, and suggestions for improving 

Keff are done in Chapter 6.    
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Chapter 2: Methodology 

2.1. Molecular dynamic simulations 

Molecular dynamics (MD) are very popular for simulating molecular-scale 

models of matter. This method was first developed in the 1950s, but it only began to 

attract widespread interest in the mid-1970s, when computers became powerful and 

affordable.[42] The essence of molecular dynamics can be simply stated as numerically 

solving the N-body problem of the classical equations of motion  





 iii frm  and 
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 (2.1.1) 

   
where mi is the mass of atom i. For this purpose, one need to be able to calculate the 

forces
if



acting on the atoms, and these are usually derived from potential energy 

function U( Nr


), where Nr


= (r1,r2,…,rN) represents the complete set of 3N atomic 

coordinates. 

In this work, MD simulations are performed with LAMMPS, Large−scale 

Atomic/Molecular Massively Parallel Simulator, which is an open source software 

developed at Sandia National Laboratories.[43]  

2.1.1. Pair potentials and many-body potentials 

The potential function, which is also called force field,  is a function describing 

the interactions between particles in the simulation.  The potential functions 

representing the non-bonded energy are calculated as a sum over interactions between 

the pair of particles in the system. The most popular of such a pair potential is the (12-6) 

Lennard-Jones (LJ) potential used for computing Van de Waals forces 
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where  is the depth of the potential well, LJ is the distance at which the inter-particle 

potential is zero and rd is the distance between particles. For the case of many-body 

potentials, the potential energy cannot be found by a sum over pairs of atoms, as these 

interactions are calculated explicitly as a combination of higher-order terms. One 

example of such many-body potentials is the Tersoff potential,[44] which was originally 

used to simulate carbon, silicon and germanium, and has been used for a wide range of 

other materials. This potential involves a sum over groups of three atoms, with the 

angles between the atoms being an important parameter in the potential energy function. 

 By employing the appropriate potentials, MD simulations can be used to study a 

wide range of phenomena in science. For example, the REBO/AIREBO potential [44-

46] can be used to simulate processes where chemical reactions occur. This is because, 

unlike molecular mechanics methods, the REBO/AIREBO force fields allow for bond-

breaking and bond-formation to occur during the simulations.[47]  

2.1.2. Non-equilibrium simulations 

Non-equilibrium molecular dynamics (NEMD) simulations are employed in this 

work to quantify the Kapitza resistance at the interface of the system of interest. During 

the NVE ensemble, in which the system is isolated from changes in moles (N), volume 

(V) and energy (E), heat flow will take place across the interface from the hot side to 

the cold one. The temperature difference between two sides, T, is recorded as a 

function of time, t, as  

/)0()( tetTtT    (2.1.3) 
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to obtain the time relaxation constant . The Kapitza resistance, Rbd, is calculated  from 

the time constant via the following relation, based on the lump capacitance model:[48-

51] 

T

T
bd

C

A
R


  

 (2.1.4) 

where AT is the interfacial area available for heat transfer.[52] The heat capacity of the 

hot side, CT, is calculated via independent simulations as[49] 
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 (2.1.5) 

where E is the total energy, kb is the Boltzmann constant and T is the absolute 

temperature of the system. Note that this approach is formulated based on the lump 

capacitance model, which requires the Biot number, Bi, to be less than 0.1.[51, 53] The 

Biot number is defined as the ratio of the conductive heat resistance within the object to 

the convective heat transfer resistance across the object's boundaries. 

2.1.3. Velocity autocorrelation function (VAF) 

Let A(t) and B(t) represent two time dependent signals (or waves) and define the 

time correlation function C(t) by 

)()()()(
1

lim)( 00

0

000 ttBtAdtttBtAtC  



 
 

 (2.1.6) 

This integral represents an average accumulated over time from t0. A is sampled at the 

time origin and B is sampled after a delay time t. Thus, C(t) depends on the length of the 

delay. When A and B are different quantities, C(t) is called cross-correlation function. 

When A and B are the same quantity, C(t) is called autocorrelation function. For 

example, considering a system of N particles and VAF at t=0 is calculated as 
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)( . The calculation stops after a fixed value 

of n, and starts again to calculate another VAF, beginning at a new time origin. The 

final VAF is therefore an average of all the VAFs that have been calculated during the 

simulation. The result is usually plotted as a function of time. If each particle does not 

interact with each other in the system, its velocity will not change with time. That 

means all calculated VAF, C(t), should be the same and the plot is a horizontal straight 

line. On the other hand, if the interaction between particles is weak but not negligible, 

i.e., in gas phase, the plot of VAF is an exponential decay, indicating the presence of 

weak forces slowly degrading the velocity correlation. In liquid or solid phase, each 

particle is strongly influenced by its neighbors. Its motion is therefore an oscillation 

around the equilibrium position. As a result, VAF in this case will oscillate between 

negative and positive values and slowly decays with time (Figure 2.1.1). 

 

Figure 2.1.1. Plot of velocity autocorrelation function, C(t), with time for gas, liquid 
and solid matters. 
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The velocity autocorrelation function (VAF), C(t), is usually employed to 

calculate the vibrational spectrum or diffusive properties of system of atoms in MD 

simulations. The vibrational spectrum for the system can be calculated by taking the 

Fourier Transform (FT) of the VAF as 






 dttCtiF )()exp(
2

1
)( 


  

 (2.1.7) 

and the vibrational density of states (VDOS) is then 

)()( 2  FD    (2.1.8) 

where  is the vibrational frequency of an atom. Since the Kapitza resistance occurs 

due to the differences in electronic and vibrational properties of both sides forming the 

interface, the overlapping extent between VDOS profiles is a qualitative measurement 

of the vibrational coupling. Higher overlap would allow more efficient heat flow 

through such harmonic coupling and smaller Kapitza resistance.[27, 48, 54] 

2.1.4. Green-Kubo relation 

When a weak external field is applied to a system which is at equilibrium, the 

properties of that system will change linearly according to the external field. For 

example, Ohm’s law states that the current I is linearly proportional to the applied 

voltage, V, as I =  V. Similarly, the local heat flux q is linearly proportional to the 

temperature gradient as described in Equation (1.1.1). In general, the linear response 

theory (LRT) states that a current output function of time S(t) will change linearly 

according to an input signal in the past, F(t’), as  






t

tFttdttS )()()( '''  
  

(2.1.9) 



20 

where (t-t’) is the linear response function. In the mid 1950’s, Green and Kubo 

reported a mathematical expression for calculating transport coefficients in terms of 

integrals of time correlations. The linear transport coefficients, L, are exactly related to 

the time dependence of equilibrium fluctuations in the conjugate flux, 


J , as   


 


0

)()0( tJJdtVL   
 (2.1.10) 

where =1/kbT (kb is Boltzmann constant) and V is the volume of the system. Following 

this formalism, the thermal conductivity of a system can be calculated as  
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 (2.1.11) 

Using MD simulations together with Green Kubo relation provides a powerful 

approach to study thermal properties of CNTs and GSs. The first attempts to calculate K 

of CNTs/GSs were performed in 2000, [10, 55] and those results were validated by 

experimental measurement conducted almost ten years later. [11, 56] Furthermore, it is 

possible to compute the interfacial therma l conductance across the interface, G, which is 

the inverse of Kapitza resistance, with the Green-Kubo theory[57] 
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(2.1.12) 

where A is area of the interface and Q  is the total energy flux from a group of atoms A 

to another group of atoms B as 
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Note that the expression in the above equation has the form of velocity multiplied by 

force, which equals the rate of work done. [57] 
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2.2. Monte Carlo simulations 

A Monte Carlo (MC) method is a statistical approach that involves using 

random numbers and probability to solve problems. It was first developed by Von 

Neumann and Ulam in 1946 during the Manhattan Project, in the Los Alamos National 

Laboratory. Monte Carlo methods are often used in computer simulations of physical 

and mathematical systems. These methods tend to be used when it is impossible to 

compute an exact result with a deterministic algorithm. 

For the case of heat transfer in nanocomposites, instead of treating the thermal 

transport in solids as a wave-like process, i.e. using phonons, the MC approach 

considers the heat flow to be the result of the movement of discrete heat walkers that 

travel through the material by Brownian motion.[58] Similar algorithms have been used 

for the simulation of heat or mass transfer in convective flows[59-61]  and in porous 

media [61, 62]. Based on Einstein’s Brownian motion theory [63],  at each time step, 

the walkers move through the matrix with random jumps that are evaluated in each 

space direction by drawing random numbers from a normal distribution with a zero 

mean and a standard deviation, , given   

tDm 2
 

 (2.2.1) 

where Dm is the thermal diffusivity of the matrix material and t is the time increment 

of the simulation. Because a heat walker is not allowed to jump across the CNTs within 

one time step, the value of t should be small enough to satisfy  < R, the radius of a 

CNT. Once a thermal walker arrives at the matrix-inclusion interface, it can either enter 

the inclusion based on a probability, designated as fm−i, or remain in the matrix with a 
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probability (1− fm−i). Note that the physical meaning of this probability is the average 

phonon transmission probability, which is described in Equations (1.2.2) and (1.2.3). 

Once a walker moves inside an inclusion, it is assumed to distribute randomly 

and uniformly inside the inclusion, because the thermal conductivity of the inclusion 

(be it a CNT or a GS) is about four orders of magnitude larger than the thermal 

conductivity of the matrix. In every subsequent time step, the heat walker can exit the 

inclusion based on another probability, designated as fi-m, that determines whether the 

walker will exit or will remain inside the inclusion, in which case it will be re-assigned 

a new position inside the inclusion randomly. Based on thermal equilibrium, and 

assuming that the Kapitza resistance is the same when entering and when exiting the 

inclusion, the probabilities fm−i and fi-m are related as follows:   

imifmii fACfV   
 

 (2.2.2) 

where Ai and Vi are the surface area and the volume of the inclusion, respectively, and 

Cf is a thermal equilibrium factor, which depends on the inclusion’s geometry and needs 

to be determined empirically.[64] As a heat walker exits the inclusion, it performs a 

random jump into the matrix or into another neighbouring inclusion. 

2.2.1. Generating the inclusions inside the computational box 

As discussed in Chapter 1, the accuracy of calculating Keff depends strongly on 

how realistic it is for the algorithm to be able to generate the CNTs and GSs inside the 

computational box.  

In order to create a randomly oriented thin parallelepiped, representing a perfect 

GS, one needs to generate three different random angles corresponding to the rotation of 

the GS axis in the three directions of the Cartesian coordinate system. If the GS is 
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required to be placed parallel or perpendicular to the x-axis (i.e., the axis parallel to the 

direction of heat flux), one can simply set the corresponding angle to be zero or /2, 

respectively. For the case of a straight rod, representing a perfect CNT, there are only 

two random angles required to generate randomly oriented cylinders. By changing the 

initial seed number used for the random number generator, the placement and 

orientation of the inclusions can be changed randomly.  

The configuration of CNTs and GSs in polymer matrix is not such that they are 

perfectly straight and uniformly dispersed. Instead, they can be twisted and bended into 

worm-like geometries and stacked together into bundles.[41, 65, 66] The following 

algorithm was developed to generate the worm-like CNTs in 3D. Each CNT is 

composed of the same number of segments, noted as N. Each of these segments is a 

straight solid cylinder. The length of each cylinder is noted as s and its radius is noted 

as R. The contour length of a CNT, noted as L, is equal to the segment length multiplied 

by the number of segments, while the end-to-end length of a CNT is noted as Le. In 

order to make a continuous and smooth CNT, we create solid spheres with the same 

radius at the junctions between two neighboring CNTs, as seen in Figure 2.2.1. The 

worm-like geometry of one CNT was created by first generating a random straight solid 

cylinder, noted as segment 1, inside the computational box. The placement and 

orientation of the first segment is random. The second segment is created at the end of 

the first segment. However, the relative angle between the second and the first segment, 

k, is not a random number between 0
o
 and 360

o
, but it is 0 < k < critical , instead. The 

critical angle, critical, is defined as the angle that the CNT is allowed to be bended 

without buckling [67-69]. This angle is a function not only of the CNT properties 
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(radius and aspect ratio) but also of the surrounding environment [70].  The third 

segment, and each segment thereafter, is generated with the same scheme. Note that 

there are two angles, the inclination angle, k, and the azimuth angle, k, that control the 

orientation of each segment in 3D, and critical and critical are defined in the same way as 

critical (Figure 2.2.1). The two angles are, thus, generated for each new segment as k+1 

=k + rand(0,critical) and k+1 = k + rand(0, critical).  After the first CNT is created, the 

2
nd

 CNT is randomly placed inside the box in such a way that it does not overlap with 

the previous one.  
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  a)       b)    c) 

Figure 2.2.1.  a) The orientation of a segment is defined by two angles,   and , b) the 

relative angles between segment k  and the next one is noted as k, c) a realistic 

geometry of one CNT in 3D is constructed by controlling critical and critical. Relative 

angles between 2 segments are random numbers k, k  that satisfy 0<k<critical and 

0<k<critical, respectively.  
 

The stiffness of a filament (i.e., CNTs, fibers, polymer chains) is related to its 

persistence length Lp, which is calculated as [71] 
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where var(an) is the variance of the mode amplitude of the N-1 components that are 

obtained when the nanotube shape (i.e., the tangent angle of the nanotube) is 

decomposed in Fourier modes. The mode amplitude coefficients are approximated as 
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Above, L is contour length, sk is the length of segment k , N is the number of segments, 

and k is the relative angle between two continuous segments. Hence, the filament can 

be considered as rigid when L << Lp. It can bend significantly when L >> Lp or it can be  

k 

sk 
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semi-flexible when L ≈ Lp. As already mentioned, the persistence length of  CNTs has 

been reported to cover a wide range of values, from hundreds of nm up to hundreds of 

m. Note that the methods employed to measure Lp could not distinguish between 

single-walled CNTs and small bundles [70, 72-74]. In our algorithm, sk = s = 

constant. By varying the critical angles between each segment, critical and critical , one 

can generate CNTs with different degrees of bending/twisting or, in order words, 

different values of Lp (Figure 2.2.1). For each simulation, the mean and variance of Lp 

are computed in order to control the geometry of CNTs. As a result, the pre-processing 

step of generating the configuration of CNTs inside the computational box is 

completed. The configuration of CNTs in this work is similar to those SEM images 

reported by Lee et al. [66, 75]. 

 

 

a)     b) 

Figure 2.2.2. a) SEM image of MWCNTs on ceramic filter (side view), adapted from 
Lee et al.[75] . The angles indicate the observation positions from the vertical line. b) 
One worm-like CNT (contour length of 450nm, end-to-end length of 180nm, 

persistence length of 100nm) consisting of 15 segments (in different colors) is generated 
inside a computation box of 450x200x200 grid. 
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2.2.2. Equilibrium simulations 

The thermal equilibrium factor, Cf, appearing in Equation (2.2.2) was obtained 

as follows: First, a single CNT was placed randomly inside a rectangular computational 

box of 450 x 200 x 200 grid points. Second, heat walkers were released at every grid 

cell and were allowed to perform their random walk. The fraction of heat walkers inside 

the CNT over the total number of heat walkers, noted as walker density, was calculated 

after increments of 500 time steps and the simulation was stopped once this value did 

not change more than 10% with simulation time. This was the equilibr ium state. The 

correct value (Cf = 0.35) was considered to have been reached when the volume fraction 

of the CNT was equal to the fraction of heat walkers that was inside the CNT (Figure 

2.2.3 b).  

 

a) Cf = 0.25    b) Cf = 0.35 

Figure 2.2.3. A slice through the computational box containing one CNT during 
equilibrium simulations. The density of heat walkers is plotted when a) Cf = 0.25 and b) 
Cf = 0.35. The correct value of Cf = 0.35 results in similar walker density between the 

CNT (in cubic grid) and the rest of the computational box.  
 

A similar procedure was employed to compute C f for a GS: first, one 

parallelepiped (representing a large GS) having dimensions of 2.52nm x 64.45nm x 
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0.34 nm was placed randomly inside a cubic computational box with sides equal to 

100nm (300 x 300 x 300 grid points). Second, the heat walkers were released at every 

grid cell and were allowed to perform their random walk. The fraction of heat walkers 

inside the GS was calculated after increments of 500 time steps and the simulation was 

stopped once this value did not change any longer with simulation time (equilibrium 

state). The correct value of the equilibrium factor of the GS (C f = 0.33) was considered 

to have been reached when the volume fraction of the parallelepiped was equal to the 

fraction of heat walkers inside the parallelepiped. Because there is one heat walker 

released at every grid cell at the beginning of the simulation, the number of heat walkers 

in each GS at equilibrium has to be equal to the number of grid cells constituting the GS 

or, in other words, the fraction of walkers staying inside the GS must be equal to the 

volume fraction of GS at thermal equilibrium conditions. Lastly, this value for C f was 

checked further by placing 88 parallelepipeds (2.52nm x 64.45nm x 0.34 nm) randomly 

inside the same cubic computational box and examining the fraction of heat walkers 

inside each GS as compared to the expected value of this fraction. At thermal 

equilibrium, the heat walkers should distribute uniformly and the theoretically expected 

value of the fraction of the walkers inside all the GS should be equal to the volume 

fraction of the GS. Figure 2.2.4 is a plot of the fraction of walkers inside each of the GS 

sheets in this case. 
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Figure 2.2.4. Fraction of walkers inside each GS with the sheet number (theoretically 
expected fraction of walkers) at thermal equilibrium state and C f = 0.33. There are 88 

sheets (2.52nm x 64.45nm x 0.34 nm) that are randomly dispersed inside a cubic 
computational domain with sides of 100 nm, so the fraction of the walkers within each 
sheet is expected to be equal to the volume fraction of one sheet (2.52 x 64.45 x 0.34 / 
1,000,000 = 5.52x10

-5
). Because there is one heat walker released at every grid cell, the 

number of heat walkers in each GS at equilibrium will be equal to the number of grid 

cells constituting the GS or, in other words, the fraction of walkers staying inside the 
GS must be equal to the volume fraction of GS at thermal equilibrium conditions.  

 

2.2.3. Isoflux simulations 

During isoflux simulations, thermal walkers were released from one side of the 

computational domain, at x = 0, representing the release of heat from a heated surface. 

At the same time, an equal number of cold walkers were released from the opposite 

plane, representing a cooled surface. To save computational time, the trajectories of 

these cold walkers were considered to be mirror images of the trajectories of the hot 

walkers. The time step was equal to 10
-4

 sec. The boundaries in the other two space 

directions were periodic. This scenario corresponds to the case of having a constant heat 

flux throughout the domain, and the temperature profile should be a straight line with a 

slope inversely proportional to the thermal conductivity of the composite.[8] The 

temperature was obtained by counting the number of heat walkers in each grid cell after 
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attaining steady state conditions, and subtracting the number of heat walkers originating 

from the cold side of the box from the number of heat walkers originating from the hot 

side of the box (Figure 2.2.5). [76] The same procedure was implemented for the pure 

matrix, without any inclusions present, and for nanocomposites with varying amounts 

of inclusions.  

The ratio between the temperature gradients without (i.e, when only the matrix 

was present in the domain) and with the inclusions is reported as the effective thermal 

conductivity of the nanocomposite divided by the thermal conductivity of the matrix 

(Keff/Km). Following this procedure, six different simulation runs were conducted to 

obtain results for the conditions of each numerical experiment. The error bar 

representing the standard deviation of the results was calculated using Student’s t-test 

with 95% level of confidence. 

 

Figure 2.2.5. A contour plot of heat walkers during isoflux simulation for system of 
CNTs-polymer composite. The hot walkers were released on the left side and cold 

walkers were released on the opposite side. The temperature gradient was obtained by 
counting number of walkers in each grid unit when the system attained the steady state. 
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Chapter 3: Effective Heat Transfer Properties of Graphene Sheet 

Nanocomposites and Comparison to Carbon Nanotube 

Nanocomposites1 

3.1. Introduction 

 Carbon nanotubes with their outstanding electrical, thermal and mechanical 

properties have been suggested as reinforcement fillers in a variety of composite 

materials. By incorporating CNTs into a polymer matrix, or by dispersing CNTs into a 

solution, the effective thermal conductivity of the resulting composite can be increased. 

For example, this enhancement has been found to be from 80% to 125% at 1 wt% over 

pure polymer for the case of epoxy composites,[78] or by a factor of almost 4 in the 

case of high volume fraction single-walled carbon nanotubes (SWNTs) in 

polystyrene.[41] Based, however, on the properties of pure CNTs, one would expect a 

much higher increase of the effective thermal conductivity of such composite materials, 

up to an order of magnitude according to the classical theory of Maxwell. The presence 

of resistance to heat transfer at the CNT-polymer interface, known as the Kapitza 

interfacial thermal resistance, is the reason for this difference.  

 The value of Kapitza resistance can be roughly estimated by the acoustic 

mismatch theory,[6] which attributed this resistance to phonon transport across the 

interface of dissimilar materials, as discussed in Chapter 1. The overall effective 

thermal conductivity of a system with nanoinclusions depends on the volume fraction of 

the nanoinclusions and on the interfacial thermal resistance. It has been suggested that 

the effective medium theory can provide insights about the thermal behavior of such 

                                              

 Most of the material presented in this Chapter has been published in ref.[77] K. Bui, H. M. Duong, A. 

Striolo, and D. V. Papavassiliou, The Journal of Physical Chemistry C 115 (2011) 3872. 
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systems[33], by taking into account the Kapitza resistance and different geometries of 

nanoinclusions. The effective thermal conductivity, Keff, of CNT nanocomposites can 

also be calculated numerically with Monte Carlo-based methods, following the 

approach developed by Duong et al.[58] This method offers the advantage of explicitly 

accounting for the random or controlled placement of the CNTs within the matrix, the 

Kapitza resistance between the CNTs and the matrix, and even the presence of a 

thermal boundary resistance between neighboring CNTs in contact with each other.[79, 

80] This method has been validated by comparisons to experimental data,[64] and it has 

also been used to estimate the Kapitza resistance effects for suspension systems.[81, 82]  

 The nature of interfacial thermal resistance at the atomic scale can be explored 

with molecular dynamics (MD) simulations.[83-85] It has been reported that the overlap 

of the thermal vibrational spectra between two materials is the key point to control the 

Kapitza resistance at the interface.[22, 86] Multiscale modeling, in which the Kapitza 

resistance is examined by atomic-scale simulations and a meso/macroscopic approach is 

employed to study the thermal properties of bulk materials, can be seen as a suitable 

approach to this problem. Clancy et al.[84] employed molecular dynamics simulations 

together with effective medium theory to study the effect of functionalization on 

Kapitza resistance and thermal conductivity of resulting nanocomposites. They 

concluded that functionalization of edges and faces of nanoparticles is modestly 

effective in improving the thermal conductivity of the composite. 

 Graphene sheets (GS) have attracted attention because they are both cheaper[87] 

and possess properties analogous to those of CNTs[88-90]. Balandin et al.[56] reported 

extremely high values of the thermal conductivity of single-layer GS that outperform 
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CNTs in terms of heat conduction. This result gives rise to the expectation that GS 

composites might be able to fulfill the promise of thermally conductive carbon-based 

nanocomposites. Recent theoretical and experimental investigations[91] suggest that 

electronic and magnetic properties of nano GS ribbons are strongly dependent on the 

edge structure.  Molecular dynamics simulation studies investigated the thermal 

conductivity of graphene sheets with different edge terminations, and with different 

shapes. It was found that graphene nanoribbons have outstanding ballistic transport 

properties[12, 92] and nanoribbons with zigzag long edges possess 125% higher 

thermal conductivity than that of armchair edges.[93, 94] When CNT and GS are 

dispersed in organic mediums, the nanocomposite thermal conductivity will be affected 

by the Kapitza resistance. To minimize the Kapitza resistance, it has been suggested 

that functional groups, like alkane chains, should be covalently bonded to CNTs or 

GSs.[95-97]
    

 While MD simulations have answered the question of whether GS has less 

Kapitza resistance than CNT or not,[86] the question of how much the macroscopic 

thermal properties of resulting nanocomposites are affected by the Kapitza resistance 

remains unanswered. In this chapter, we investigate the effective conductivity of GS 

nanocomposites by means of mesoscopic, off-lattice Monte Carlo simulations. In 

addition to the presentation of a computational methodology for the study of the 

macroscopic effects of GS orientation, dispersion and volume fraction on the effective 

thermal conductivity of GS nanocomposites, the contributions of this chapter are: (a) a 

comparison of the macroscopic thermal performance between CNT nanocomposites, 

GS nanocomposites and functionalized-GS nanocomposites, and (b) the utilization of 
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this methodology to calculate the Kapitza resistance of GS in polystyrene composites 

from recently conducted experiments. However, because of the coarse-grained level of 

description adopted herein, edge effects cannot be addressed. 

3.2. Simulation methodology and selection of simulation parameters   

 In the present work, instead of placing the walkers at the CNT-matrix interface 

before moving them out of the CNT,[58] the exiting walkers are randomly placed inside 

a shell whose outer surface is the inclusion-matrix interface. The thickness of this shell 

is determined by the standard deviation of the Brownian motion movement, equal to 2 

(see Equation (2.2.1)). The walkers jump out of the inclusion after being placed 

randomly inside that shell (see Figure 3.2.1). For the GS, which is very thin, the walkers 

jump out from their locations inside the GS without first being moved to the inclusion 

surface. This scheme results to a uniform and continuous distribution of the walker 

density inside and outside the inclusions, even across the interface, at conditions of 

thermal equilibrium. In prior versions of the algorithm,[58] there was a discontinuity of 

the walker density across the interface at thermal equilibrium conditions, which was 

incorporated into the value of Cf. The new algorithm is, therefore, physically more 

reasonable. 
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Figure 3.2.1. The thermal walkers can jump out of the inclusions by first arriving in a 
shell close to the inclusion-matrix interface (green area). This type of algorithm is 
computationally more efficient than letting walkers try to exit from anywhere inside the 

inclusion, and at the same time ensures a continuous and uniform distribution of the 
walkers across the interface at thermal equilibrium.  
 

 The numerical methodology for calculating the thermal equilibrium factor, Cf = 

0.35 and 0.33 for CNTs and GSs, respectively has been described in Chapter 2. In order 

to estimate the effective thermal conductivity of a CNT or a GS nanocomposite, a cubic 

computational domain with sides of 100 nm and 300x300x300 equally spaced grid 

points was utilized. While the CNTs were simulated as solid cylinders, the GSs were 

considered as rectangular sheets, resembling GS nanoribbons. The thickness of the GS 

was equal to the distance between two graphene layers in graphite, which is 

0.34nm,[98] and the radius of the CNTs was 0.4nm. Both the CNTs and the GSs were 

placed randomly inside the domain, with either random or controlled orientation relative 

to their axes, and were not in contact with each other (Figure 3.2.2). Isoflux simulations 

were performed to calculate Keff/Km and details of this procedure have been described in 

Chapter 2. Following this procedure, six different simulation runs were conducted to 

obtain results for the conditions of each numerical experiment. The error bar that 

appears in Figure 3.3.1–Figure 3.3.4  represents the standard deviation of the results 

calculated using Student’s t-test with 95% level of confidence. 
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a) 

b)  

Figure 3.2.2. a) 50 GSs (2.52nm x 64.45nm x 0.34nm), left panel, and 50 CNTs 
(diameter = 0.8nm, length = 64.45nm, aspect ratio L/d = 80.5), right panel, that are 
randomly placed with random orientation inside a cubic computational domain with 

sides of 100 nm. (b).  100 CNTs (diameter = 0.8nm, length = 64.45nm, aspect ratio L/d 
= 80.5), right panel, that are placed parallel and perpendicular to the direction of heat 
flux (also x-direction) inside a cubic computational domain with sides of 100 nm. 
 

 The value of the Kapitza resistance is a required input for the simulation. One 

can either estimate the Kapitza resistance based on a simplified theoretical approach 

(such as the acoustic mismatch model, AMM, or the diffuse mismatch model, DMM), 

or obtain it from experiments, or from MD simulations. It is also possible, if 

experimental values of the effective thermal conductivity of the nanocomposite are 

known, to use MC simulations in order to back-calculate the Kapitza resistance for the 

nanocomposite. In the latter case, different values of the Kapitza resistance are 
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assumed, the simulation is run for each case, and the correct Kapitza resistance is the 

one that yields results in agreement between the experiments and the simulations. 

Conventional numerical methods, like finite elements, have been used to obtain the 

conductivity for GS with a trial and error procedure when temperature data are available 

experimentally,[35] but the value of the Kapitza resistance cannot be obtained. When 

Keff of a composite is studied, with our particle-based and meshless algorithm, there is 

no need to generate a mesh that would fit the complicated geometry of inclusions 

dispersed into a matrix material, and to repeat the mesh generation every time a new 

configuration is examined. Furthermore, the incorporation of the Kapitza resistance at 

the interfaces happens in a natural way, through a probability, is one way to describe the 

Kapitza resistance (see Equation (1.2.2)).  
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Table 3.2.1. Properties and Kapitza resistance of SWNT and GS with and without 

functional groups in octane. The Kapitza resistance was calculated based on the 
acoustic mismatch (AMM) and the diffuse mismatch (DMM) model and with molecular 
dynamics simulations.[6, 49, 50, 99-101]  

Composite  SWNT-octane  GS-octane   FGS-octane  

Rbdx10
8
 (m

2
K/W)  

AMM  1.32  5.33  _ 

DMM 0.11 0.21 _ 

 MD 4.26  1.33  0.42 

 

SWNT  GS  Octane 

K (W/mK)[56]  3000-3500 4840-5300  0.124  

Properties at 25
o
C 

heat capacity 

(J/kgK) 

velocity of sound 

(m/s) 

density  

(kg/m
3
) 

Octane 2230 1171 710 

SWNTs  670 17500 1400 

GS _ 20000 2230 (graphite) 

 

 Table 3.2.1 is a summary of the theoretical predictions for the values of the 

Kapitza resistance for a CNT-octane and a GS-octane suspension system. Suspensions 

in octane were chosen because MD simulation results are available for CNTs, GSs and 

functionalized GSs (FGS) in such systems.[49, 50] Because of computing power 
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limitations, the MD simulations considered small GSs of 54 – 216 carbon atoms and 

FGS were obtained by attaching single or double alkane chains at the edges of these 

GSs. As can be seen in Table 3.2.1, not only do the AMM and the DMM approaches 

yield different values for the Kapitza resistance, but their predictions also differ from 

those obtained from MD calculations. The AMM can provide an estimate, but not a 

precise value of the Kapitza resistance, because it does not take into account phonon 

scattering events at the interface. The DMM assumes that all the phonons are diffusely 

scattered at the interface, or, in other words, the incident phonon forgets where it came 

from and scatters in both media with the same energy. This diffuse scattering 

significantly decreases the Kapitza resistance at the interfaces, where the dissimilarity 

between two materials is extremely large. These theories cannot predict the Kapitza 

resistance for the case of functionalized GS, since the material properties appearing in 

Equations (1.2.1)-(1.2.3) are properties for pure substances. In light of these differences, 

and the difficulty to obtain theoretical predictions for functiona lized GS, Kapitza 

resistance values inspired by MD simulations were used as input for the CNT-matrix, 

GS-matrix and functionalized GS-matrix Kapitza resistances in the MC simulations. It 

should be pointed out here that MD results have also shown that the Kapitza resistance 

for GS systems depends on the GS size, so only comparisons to experiments will 

validate our assumptions. The average phonon transmission probability of SWNT-

octane and GS-octane was calculated using Equation (1.2.3). Furthermore, the results of 

Konatham and Striolo[50] indicate that FGS can be dispersed in octane, providing 

justification to our assumption that functionalized GSs do not agglomerate. Assuming 

well-dispersed GS, GS-GS heat transfer resistances were not taken into account.  
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3.3. Results and discussion  

3.3.1. Graphene sheet nanocomposites compared to carbon nanotube nanocomposites 

 For comparison purposes, the CNT and GS considered in our simulations have 

the same length. The width of one GS is equal to the perimeter of a CNT. The FGS is 

modeled as having the same geometric shape and dimensions as a GS, with only 

difference in the value of the Kapitza resistance. Furthermore, in our calculations, a 

single value for the Kapitza resistance was assumed to apply everywhere at the interface 

between the matrix and the nano-inclusion, neglecting the effects of different GS edge 

types on the effective thermal conductivity. The number of CNTs and GSs used in each 

simulation run are presented in Table 3.3.1. Note that the volume of one CNT is smaller 

than that of one GS, so more CNTs are needed in order to keep the same vol% as with 

GSs. In our simulations, the CNTs are considered as straight cylinders with diameter d= 

0.8 nm and aspect ratio (length/width) = 80.5. By unfolding the CNTs, we obtained GSs 

with L/d = 25.6.  

Table 3.3.1. Number of CNTs and GSs used in the simulation.  

%volume 0.5 1.0 2.0 3.0 Length (nm) Length/Width Ai/Vi 

No. of CNTs 155 310 620 930 64.45 25.6 5.03 

No. of GSs 88 176 352 528 64.45 25.6 6.70 
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(a) 

 
(b) 
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(c) 

Figure 3.3.1. (a) Effective thermal conductivity of CNT composites (rectangles), GS 
composites (diamonds) and FGS composites (triangles) at various volume fractions. 
The inclusions are randomly placed with random orie ntation. The error bars indicate the 

variance of a student t-test with 95% level of confidence. (b) Distribution of the 
orientation of CNTs relative to the direction of the heat flux (i.e., x-direction). Zero 
degrees means the CNTs are parallel to x-direction and 90 degrees means the CNTs are 
perpendicular to x-direction. (c) Change of average distance between six closest 

neighbor CNTs with the amount of CNTs inside the composite.  
 

 The values of the effective thermal conductivity are presented in Figure 3.3.1a 

as a function of the volume fraction of CNTs, GSs and FGSs. The inclusions were 

randomly placed in the computational domain, and also had random orientation (i.e., a 

random angle of the CNT axis relative to the Cartesian coordinate system, and 

randomly oriented normal vectors to the GS planes). The inclusion placement algorithm 

worked sequentially, first randomly placing an inclusion and then checking whether this 

new inclusion intersected with previously placed inclusions. Also, for computational 

simplicity, neither GSs nor CNTs were allowed to intersect the faces of the 

computational box. Thus, despite the imposed random orientation, the distribution of 
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the angles is not exactly uniform, but it is symmetric. As shown in Figure 3.3.1b for 

CNTs, the distribution of the orientation angles for the lower volume fraction case is 

closer to being uniform. As detailed later, the CNT orientation affects the effective 

nanocomposite thermal conductivity. As it can be seen, GS composites exhibit higher 

values of Keff than CNT composites. This improvement is more obvious at larger 

volume fractions, where the use of functionalized GS can provide over four times 

enhancement of the thermal conductivity of the matrix. Our predictions show a 

significant enhancement of the thermal conductivity for GS-based nanocomposites. This 

result is due to several facts. In our calculations the Kapitza resistance is assumed to be 

smaller for GS and FGS than for CNT; and the surface to volume ratio of one GS is 

6.70, i.e., 33.3% higher than that of one CNT (Table 3.3.1).  

 

Figure 3.3.2. Effective thermal conductivity of CNT composites (rectangles), GS 
composites (diamonds) and FGS composites (triangles) at various volume fractions. 
The inclusions are randomly placed in the domain, but are aligned in the x-direction, so 
that they are parallel to the heat flux.  
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 The values of Keff for the case of randomly placed inclusions, but with their 

longest dimension oriented in the direction of the heat flux, are presented in Figure 

3.3.2 as a function of the volume fraction of CNTs, GSs and FGSs. This is the case that 

yields the highest values of Keff. With the same %vol, the effective thermal conductivity 

of GS composites is roughly 50% higher than that of CNT composites, while FGS 

composites are predicted to have Keff up to twice that of CNT composites.  

 Results in Figure 3.3.1 and in Figure 3.3.2 suggest that Keff of all 

nanocomposites increases as the inclusion (CNT, GS, or FGS) volume fraction 

increases. It should be pointed out that for the calculations discussed herein the 

nanoinclusions are well dispersed within the organic matrix. As the inclusion volume 

fraction keeps increasing, the average distance between the nanoparticles decreases (see 

for example Figure 3.3.1c for CNT composites), and the nanoparticles will eventually 

come in contact with each other. At those conditions, the nanoparticle-nanoparticle 

Kapitza resistance may become important, as suggested by Maruyama et al.[53], Zhong 

et al.[102]  and Duong et al.[80]. 

 The above results for CNTs are compared with results obtained from effective 

medium theory and the same volume fraction and size of the CNTs.  Details of the 

analytical formulas have been described in Chapter 2.[33, 34] As seen in Table 3.3.2, 

the analytical results overestimate the effective thermal conductivity for the cylinders 

that are parallel to the heat flux and underestimate these values for the case of randomly 

oriented cylinders compared to the simulation results. The reason of this major 

discrepancy for cylinders para llel to the direction of heat transfer is that there exists a 
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Kapitza resistance at the interfaces at both ends of the cylinders when the cylinders are 

parallel to the heat flux, but the analytical formula does not take into account this effect.  

 

Table 3.3.2. Effective thermal conductivity of CNT-, GS-Octane and comparison with 

theoretical results[33, 34] at different vol%. The dimensions of CNTs are as described 
in Table 3.3.1. For the case of randomly oriented CNTs, the simulation generates truly 

random cylinders and the analytical formula considers aligned cylinders with an angle    

relative to the heat flux that satisfies cos
2  = 1/3. 

%volume 0.5 1.0 2.0 3.0 

Keff/Km of CNT-octane 

Parallel , theory 121.96 242.92 484.85 726.77 

Parallel , simulation 8.35 24.62 105.23 209.09 

Random, theory 1.19 1.38 1.69 2.04 

Random, simulation 1.44 1.94 2.30 3.29 

Perpendicular, theory  1.01 1.02 1.04 1.06 

Perpendicular, simulation 0.99 0.99 0.99 1.00 

 Keff/Km of GS-octane 

Parallel , theory 196.56 392.12 783.24 1174.35 

Parallel , simulation 11.46 36.94 162.60 289.32 

Perpendicular, theory  1.00 1.01 1.02 1.03 

Perpendicular, simulation 0.99 0.99 0.98 0.99 
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3.3.2. Anisotropic heat transfer in nanocomposites with controlled morphology of 

CNTs, GSs and FGSs 

 When the inclusions were perpendicular to the heat flux (Figure 3.3.3) our 

results predict no enhancement in the thermal conductivity in any of the cases 

examined. The values obtained for Keff even decreased proportionally to the amount of 

inclusions placed in the system. The anisotropy ratio of the effective thermal 

conductivities of the composites with inclusions oriented parallel and perpendicular to 

the heat flux, (Keff-x/Keff-z, where Keff-x and Keff-z are the effective thermal conductivities 

in the direction of the heat flux and in the direction perpendicular to the heat flux, 

respectively), has values that are almost equal to Keff-x , since Keff-z is almost one for all 

cases. This anisotropy ratio represents the ratio of the largest to the smallest eigenvalue 

of the effective thermal conductivity tensor, often called the condition number of the 

tensor. As the inclusion volume fraction increases, the anisotropy ratio increases, 

reaching a value of over 350 for FGS and 4.5 vol%. It becomes evident that a material 

will behave as a thermally conducting material in one direct ion and as thermal shield in 

another, if the inclusions are properly oriented. Such properties would be possible to 

obtain with advanced CNT composites that have high volume fraction of oriented 

CNTs,[103, 104] but there is need for some experimental effort to produce 

nanocomposites with controlled orientation of the GS. 



47 

 

Figure 3.3.3. Effective thermal conductivity of CNT composites (rectangles), GS 
composites (diamonds) and FGS composites (triangles) at various volume fractions. 
The inclusions are randomly placed in the domain, but are aligned in the z-direction, so 
that they are perpendicular to the heat flux. For the GS cases, the plane of each GS is 

normal to the direction of the heat flux.  
 

3.3.3. Effects of aspect ratio of CNTs and GSs 

 Each GS was considered as a rectangular sheet, in which the heat can travel 

along two directions parallel to the GS plane. On the contrary, the CNT was a cylinder 

that acted as an one-dimensional heat conducting inclusion, especially at high aspect 

ratios. In order to study this effect on Keff of the composite, we simulated cases where 

the Kapitza resistance of the GS-matrix was set to be equal to that of the CNT-matrix 

resistance (as shown in Table 3.2.1). The simulations were performed at the same vol% 

(1.0%), with random inclusion orientation, but with different length/width ratios. 
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Figure 3.3.4. Effective thermal conductivity of CNT composites (rectangles) and GS 

composites (diamonds) at 1.0 vol% and different length/width ratios. The inclusions are 
randomly placed with random orientation.  
 

 As the length/width ratio (or length/perimeter ratio for the case of the CNTs) 

was equal to 25.6 for a GS and a CNT, no difference in Keff of the composites was 

observed (Figure 3.3.4). At high length/width ratio, the width of the GS is rather small 

compared to its length, and the heat conduction along the length is dominant like that of 

the CNT. However, Keff of GS composites is larger than that of CNT composites, when 

the width of the GS is comparable to its length, because the heat can travel along both 

directions in this case. Regarding the question of what type of composite would be more 

efficient for heat transfer, a CNT composite or a GS composite when the Kapitza 

resistance is the same for both, the answer depends on the length/width ratio (Figure 

3.3.4).  The value of Keff/Km increases as the length/width ratio increases from 5 to 25. 

Above this value, our predictions do not indicate enhancement of the effective thermal 
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conductivity for GS composites relative to CNTs. The inclusion type (CNTs or GSs) is 

only important in small length/width ratios.  

 It is also seen in Figure 3.3.4 that Keff of both the GS and the CNT composites 

increases with increasing length/width ratio. It has been observed with the use of MD  

simulations [14] that K of both SWNT and GS is proportional to the length indicating 

purely ballistic heat conduction. Shiomi et al.[14] found that as the length of CNTs and 

GSs increases, the distribution of effective phonon mean free paths becomes broader, so 

that phonons with relatively long mean free paths cause an increase of the thermal 

conductivity. This also justifies our simulation approach to randomly and uniformly 

place the walkers once inside the inclusion, instead of moving them with Brownian 

movements, so long as the length of the nanoinclusions is larger than the phonon free 

path. 

3.3.4. Comparison to experimental results 

 For CNT-based composites, validation of our protocol with comparison to 

experimental data has been described in our previous work[64, 81]. Kapitza resistances 

were estimated for CNT-epoxy (Rbd= 4.01×10
−8

 m
2
KW

−1
) and CNT-PMMA composites 

(Rbd= 9.53×10
−9

 m
2
KW

−1
). Based on experimental data of CNT-polyisoprene 

composites[105] at 1.0wt% (0.6vol%), Kapitza resistance was calculated (Rbd= 

8.14×10
−8

 m
2
KW

−1
) by varying the value of fm−i in the MC simulations until Keff from 

the simulations matched the experiment. Using the Kapitza resistance thus obtained, we 

computed Keff for CNT-polyisoprene composites at 5.0wt% (3.2vol%). As can be seen 

in Figure 3.3.5a, when the dispersion pattern of the CNTs is assumed to be the same at 
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1.0 and 5.0wt% CNTs within the nanocomposite, our MC simulations reproduce the 

experimental data even better than the effective medium theory from Nan et al.[33, 34].  

 A recent experimental report for GSs dispersed in polystyrene (GS-PS) at 

loadings less or equal to 2.0wt% substantiates the conclusion that GS nanocomposites 

are better thermal conductors than SWNT nanocomposites.[106] This report did not 

include an estimation of the Kapitza resistance at the GS-PS interface. However, by 

comparing the enhancement factor, Keff/Km, with our current work, we can obtain an 

estimate of the Kapitza resistance for the GS-PS system (Figure 3.3.5). For the same 

type of nano-inclusions and dispersion pattern, the ratio of the thermal conductivity of 

the composite divided by that of the polymer is affected by the Kapitza resistance rather 

than the type of the matrix material (polystyrene or octane). It is reasonable to conclude 

that composites with the same Keff/Km should have comparable Kapitza resistance, when 

the volume fraction of the inclusions and the dispersion pattern are the same.  
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a) 

 
b) 

Figure 3.3.5. a) Comparison of the enhancement factor (Keff/Km) of CNT-Polyisoprene 
composite from experiment[105], Nan’s theory[34] and this work. b) Comparison of the 

enhancement factor (Keff/Km) of GS-Octane (continuous line) and FGS-octane (dashed 
line) composites from this work with that of GS-PS composites from experiment (the 
designations PS1GNs and PS12GNs correspond to low grafting density and high 
grafting density samples, respectively, following the symbols in Fang et al.,[106]).  

 

 There is some uncertainty regarding the length/width ratio, the thickness and the 

dispersion pattern of the GSs used in the experiments, since the GSs can bend and even 
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change dramatically (28.5%) when varying the length/width ratio of the GSs. Assuming 

a pattern of randomly dispersed and randomly oriented GSs, we can see in Figure 3.3.5 

that the experimental data from Fang et al.[106] for PS1GNs (i.e., GSs with very small 

fraction of PS grafting) have a similar enhancement factor to that of GS-octane for 

randomly oriented GSs of similar %wt in the present work. The value of Kapitza 

resistance of GS as well as FGS used in our work is 1.33x10
-8

 and 0.42x10
-8 

m
2
KW

-1
,
 

respectively. The Kapitza resistance of GS-PS is, thus, comparable to that of GS-octane. 

 

 

3.4. Conclusions  

 In summary, using Monte Carlo methods, we have calculated Keff of GS 

nanocomposites taking into account this Kapitza resistance, and we have found that 

they can become an alternative to CNT composites from both a financial and a technical 

point of view.  Composites with functionalized GSs exhibit almost double Keff relative 

to CNT composites for inclusions oriented it the direction of the heat flux. Furthermore, 

by comparison with experiment data[105, 106], we found that the Kapitza resistance for 

a CNT-polyisoprene and for a GS-PS system are 8.14x10
-8

 and 1.33x10
-8

 m
2
KW

-1
, 

respectively.  The anisotropy ratio of the effective thermal conductivity tensor increases 

for GS nanocomposites, indicating that there is added value in pursuing the 

manufacturing of GS composites with controlled orientation of GS. Controlling the 

orientation of the GS in the composite can lead to the manufacturing of composites that 

have quite different thermal behavior in different directions. For example, for an 

anisotropy ratio of 350 (like the FGS case) the material can be a thermal insulator in one 
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direction and have a thermal conductivity 350 times larger than in a direction 

perpendicular to that.  Finally, it appears that the two-dimensional heat transfer is not 

important for GS with an aspect ratio larger than 25, and that the most important factor 

that affects the effective thermal conductivity is the value of Kapitza resistance. 
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Chapter 4: Heat Transfer in High Volume Fraction CNT 

Nanocomposites: Effects of Inter-nanotube Thermal Resistance2 

4.1. Introduction 

Due to the high specific surface area of carbon nanotubes (CNT) (i.e., 1315 m
2
/g 

for single-walled CNTs[108]), the transfer of heat in CNT-based composites is 

controlled by the thermal boundary resistance (also known as Kapitza resistance) at the 

nanotube-polymer interface. As a result of this resistance, while the electrical 

conductivity of SWNT composites has been reported to increase dramatically at 

percolation thresholds as low as 1.5wt%,[109] there is no radical enhancement of the 

thermal conductivity even above the percolation threshold. Can one bypass this poor 

performance by increasing the volume fraction of the nanotubes? Peters et al.[41] 

measured the effective thermal conductivity (Keff) of single-walled CNT-polystyrene 

(SWNT-PS) composites at various temperatures above and below the glass transition 

temperature, and various weight fractions of SWNTs using differential scanning 

calorimetry. As the wt% of CNTs increased from 10.0 to 30.0%, Keff of the composite 

was expected to increase by a factor of 3, but the measurements [41] showed an 

increase of ~ 15%. The reason for this behavior could be a poorer SWNT dispersion at 

high wt% and/or the presence of an additional thermal boundary resistance between the 

CNTs, when they are closely packed.   

Currently available data from molecular dynamics (MD) simulations indicates 

that the CNT-CNT thermal boundary resistance can be higher than the thermal 

boundary resistance between a CNT and a polymer matrix.[102, 110] If in fact this is 

                                              

 Most of the material presented in this chapter  has been published in ref.[107] K. Bui, B. P. Grady, and 

D. V. Papavassiliou, Chemical Physics Letters 508 (2011) 248.  
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the case, then an increase in the volume fraction of CNTs in a composite will not 

improve its thermal properties, unless there are chemical bonds connecting adjacent 

CNTs[110]. Experimental evidence supporting such results is needed. In the present 

work, off-lattice Monte Carlo (MC) simulations were used to replicate the thermal 

behavior of the SWNT-PS composites of Peters et al.[41] at different volume fractions 

and at various temperatures. In addition to validating the simulation, the thermal 

boundary resistance between SWNT-PS and SWNT-SWNT was back-calculated by 

fitting the simulation results to the experimental data. 

4.2. Simulation setup 

 Details of MC simulations have been described in Chapter 2. An improved 

algorithm that is more accurate and computationally more effective for a heat walker 

jumping out of a CNT was developed in Chapter 3. A similar algorithm was applied in 

this work. The simulation box was a cube with sides of 100 nm. The CNTs were 

modeled as cylinders with 0.4nm radius (similar to the CNT radius used in 

experiments[41]) placed randomly inside the domain and were not connected to each 

other (Figure 4.2.1). The length over diameter ratio (L/D) of the CNTs was equal to 80 

(see Table 4.2.1 for the simulation conditions, and see supplemental material for the 

justification of using L/D = 80 based on theory[33] and computations[81]) 
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Table 4.2.1. Properties of PS and number of CNTs used in the simulations.  

Temperature 

o
C 

Velocity of sound 

m/s
[111] 

 

CPS 

J/kgK
 [41]

 

PS  

kg/m
3
 
[112]

 

DPS 

x 10
3
 cm

2
/s 

[113]
 

-25 
2395

*
 1095 1110

*
 1.60

*
 

25 2325 1275 1070 1.25 

80 2200 1510 1030 1.05 

No. of CNTs (wt%, vol%)   470 (5.0%, 4.0%)   830 (10.0%, 8.2%)   2250 (30.0%, 25.7%) 

*
 extrapolated value from references 

 

a)       b) 

Figure 4.2.1. CNTs randomly placed inside the computational domain as single 
cylinders at low volume fraction (a) or arranged to form randomly oriented bundles at 

higher volume fraction (b). 
 

 The ratio between the temperature gradients with and without the inclusions 

(only PS present) provided the ratio of the thermal conductivity of the PS (KPS) divided 

by Keff for the composite. For each simulated case, 6 runs with different initial geometry 



57 

were carried out in order to quantify the uncertainty associated with the random 

placement of the CNTs (error bars in Figure 4.3.1) 

4.3. Results and discussion  

The value of fm−CN is an input for the MC simulation. When experimental results 

are available, fm-CNT can be varied until the computational thermal conductivity becomes 

equal to that of the experiment, Keff_exp/Keff_MC = 1. Using this inverse calculation 

method, we found the values of fm_CNT at different temperatures at 5.0wt% and at 

10.0wt% of CNT. According to the acoustic mismatch model (AMM),[6] the relation 

between fm−CN and the Kapitza resistance, Rbd, is fm−CN = 4 / (ρmCm νm Rbd), where the 

subscript m refers to the matrix material in contact with the CNT, ρ is the density, C is 

the specific heat and ν is the velocity of sound (see also Equation (1.2.3)). Our inverse 

approach leads to the calculation of Rbd, which lies between the two extremes found by 

AMM and the diffuse mismatch model (Table 4.3.1). Furthermore, using the value of 

Rbd calculated based on the Peters et al.[41] data, the Keff found with MC simulations at 

0.75wt% and 1.0wt% CNT loadings agree very well with experimental data obtained by 

another laboratory using the longitudinal steady state heat flow method (Jakubinet et 

al.[114], see Figure 4.3.1). Based on Table 4.3.1, we obtained the behavior of the 

Kapitza resistance with temperature: the Rbd increased with temperature. 
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Table 4.3.1. Phonon transmission probability, fm_CNT x10
3
, and Kapitza resistance, Rbd 

x10
8
(W/m

2
K)

-1
, calculated from AMM and DMM and from MC simulation. The value 

of  fm-CNT designated as accepted was used in the MC simulations from now on. 

Temp. 

fm-CNT 

AMM 

Rbd 

AMM 

Rbd 

DMM 

fm-CNT 

5.0wt% 

fm-CNT 

10.0wt%  

fm-CNT 

accepted 

Rbd 

accepted 

-25 
o
C 2.30 59.83 0.04 59.00 65.00 63.00 2.18 

25 
o
C 2.05 61.65 0.04 56.00 58.00 57.00 2.21 

80 
o
C 1.69 69.22 0.04 44.00 53.00 47.00 2.48 

 

 

Figure 4.3.1. Keff of CNT - PS composites. The experimental data (points designated as 
Ex) are from refs.[41, 114]. At each temperature, a single value of Kapitza resistance 
was used (Table 4.3.1) to simulate the thermal conductivity at various volume fractions 
(points designated as Si). The error bar was calculated by six different simulations at 

each point.  
 

However, the question remains: why is Keff of the 30wt% SWNT composite not 

increasing as much as anticipated? Our simulations for ≤ 10.0 wt% CNTs were carried 

out assuming that only Kapitza resistance at the SWNT-PS interface is important 

(Figure 4.3.1).  Because the simulation results agree with the experimental data and 
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because the experiments were carried out with care to disperse the CNTs, we can 

conclude that the Rbd  at the SWNT-PS interface was the dominant factor and the CNT-

CNT resistance had negligible effects up to 10.0wt%. Our simulation attempts to place 

randomly oriented cylinders inside the simulation box at 30.0wt% CNT (or 25.7% 

volume) indicated that this is impossible, as expected from Onsager’s theory that 

suggests that random placement of cylinders can be accomplished for vol% inversely 

proportional to the aspect ratio. However, arranging the cylinders in bundles and in 

contact with each other at high wt% could be a way to fit 30wt% of CNTs in the 

domain. Nan et al.[33, 34] suggested that Keff, when the CNTs are randomly oriented, is 

the same as that of parallel CNTs with an angle,  , relative to the direction of the heat 

flux such that cos
2 =1/3. Our results indicated that this angle is valid at low vol%, but 

it changes slightly at higher volume fraction of CNTs. Therefore, we placed the CNTs 

parallel to each other with an angle to the direction of heat flux. The value of Keff in this 

case was expected to be the thermal conductivity of SWNT-PS composites at 30.0wt% 

of CNT loading that included the same Rbd as in the case of 0.75wt% to 10.0wt%. As 

seen in Figure 4.3.1, the Keff obtained from our simulation at 30.0wt% of CNT was 

about 150% higher than the corresponding experimental data for all temperatures. That 

means that the CNT-PS resistance is not dominating but, instead, the effect of CNT-

CNT resistance must be considerable, to the point of suppressing the Keff of the 30wt% 

composites.  

The CNT-CNT resistance can be calculated based on the results of Duong et 

al.[80], who varied the ratio of the Kapitza resistance of the CNT-CNT interface (Rbd-C) 

relative to that of the CNT-polymer (Rbd-p) to obtain values of the ratio of the effective 
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thermal conductivities in these two cases. Duong et al. generated data for different vol% 

of CNT (see Figure 7 in ref. [80]). Using the ratio of Keff  resulting from the present 

simulations and the value obtained by Peters et al.[41]
 
that includes both CNT-PS and 

CNT-CNT resistance at 25.7vol% CNT, we can find the ratio of Rbd-C/Rbd-p by  

extrapolation of the data in Duong et al. [41] to 25.7 vol% of CNT. Value of the thermal 

conductivity of CNT-PS at 30wt% of CNT from experiments is 0.624 W/mK and that 

of simulation is 0.939 W/mK. The ratio of Keff-contact /Keff-non-contact  is then equal to 0.664. 

Based on Figure 7 of in ref. [80]). one can pick different values of the ration Rbd-C/Rbd-p 

and find the corresponding Keff-contact /Keff-non-contact ratio at the same vol% of CNT. The 

software “Data thief” was used to extract the data more precisely. Following that, a 

parabolic regression equation is found  and used to calculate the value of Keff-contact /  

Keff-non-contact at 25.7 vol% of CNT. The correct value of Rbd-C/Rbd-p ratio will allow     

Keff-contact /Keff-non-contact ratio at 25.7 vol%  equal to 0.664 as described above.  The value 

of Rbd-p is taken as 2.21x10
-8

 W
-1

m
2
K for CNT-PS, as seen in Table 3.2.1. The result of 

this calculation for the CNT-CNT resistance is RbdC-C=12.15x10
-8

 W
-1

m
2
K. This is 

higher than

 

0.11x10
-8

 W
-1

m
2
K obtained from AMM[6], but it is comparable to MD 

results (Zhong

 

et al.[102] reported 8–11x10
-8

 W
-1

m
2
K and Maruyama et al.[53] found 

24.8   W
-1

m
2
K, respectively).  
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Table 4.3.2. Thermal conductivity of CNT-PS composites at 300K with 10.0wt% of 
CNTs (8.0%vol.). The total number of CNTs is 1000. The CNTs that remained after 
placing them into bundles were randomly dispersed inside the simulation box, as seen in 

Figure 4.2.1b. 

No. of bundles   50   50   50   25   10   0 

No. of CNTs per bundle 15 10 4 15 15 0 

Keff , W/mK   0.33   0.38  0.45   0.42   0.54   0.57 

 

In order to examine further the effect of CNT bundling on Keff of high %vol 

composites, additional MC simulations were carried out at 10.0wt% of CNTs in the PS 

composite (Table 4.3.2). Kapitza resistance at the CNT-CNT interface was neglected. In

 

the simulations, each bundle of CNTs was generated by first creating a large cylinder 

having the same length as one CNT and the n the CNTs were placed randomly inside 

this cylinder (see Figure 4.2.1b). As can be seen in Table 4.3.2, both the number and the 

size of the bundles had a detrimental effect on Keff. This behavior is expected if we 

consider each bundle that contains several CNTs, as a single cylinder with a smaller 

aspect ratio than a single CNT.  

 

4.4. Conclusions  

 In conclusion, Monte Carlo simulations when validated with experimental data
 

can be used to calculate the Kapitza resistance at the CNT-PS interface as well as that at 

the CNT-CNT interface. Comparison to experiments and inverse calculation of the 

CNT-CNT resistance provided the value of 12.15x10
-8

 W
-1

m
2 

K. This is the first time 
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that the CNT-CNT resistance is found to be higher than the CNT-polymer resistance, 

based on an interpretation of experimental measurements. Furthermore, the Keff of 

CNT-based nanocomposites was found to decrease dramatically with the presence of 

bundles. 
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Chapter 5: Thermal Behavior of Double Walled Carbon Nanotubes 

and Evidence of Thermal Rectification3 

5.1. Introduction 

 Recent advances in synthesis and characterization of double-walled carbon 

nanotubes (DWNTs) suggest that these materials possess enhanced properties compared 

to those of single-walled carbon nanotubes (SWNTs).[116-119] Kim et al.[118] 

concluded that DWNTs are more thermally stable than SWNTs, as they can withstand 

temperatures as high as 2000
o
C without experiencing considerable morphological 

changes. Koziol et al.[119] reported the synthesis of nanotube fibers by directly 

spinning an aerogel of DWNTs. These fibers were up to three times stronger than 

commercial Kevlar fibers. Cumings et al.[120] characterized multi-walled carbon 

nanotubes (MWNTs) using TEM and found ultralow-friction and wear-free surfaces in 

these systems.  

 In terms of thermal properties, the focus of the present work, the exceptional 

thermal conductivity of CNTs and GSs[3] has generated promises towards 

manufacturing nanocomposites with superior thermal management capabilities. 

Unfortunately, the thermal boundary resistance (TBR, also known as Kapitza 

resistance)[6, 15] currently hinders such applications. The TBR is the major barrier to 

heat transfer between the CNTs and the surrounding polymeric matrix.[41, 95, 121, 

122] The TBR has been estimated, using molecular dynamics (MD) simulations, for 

several CNT-polymer and graphene-polymer interfaces (epoxy, polystyrene, PMMA, 

etc).[77, 79, 95, 97] Values on the order of 10
-8 

Km
2
W

-1
 have been reported, as seen in 

                                              

 Most of the material presented in this chapter  has been published in ref. [115] K. Bui, H. Nguyen, C. 

Cousin, A. Striolo, and D. V. Papavassiliou, The Journal of Physical Chemistry C 116 (2012) 4449.  
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Chapter 3 and 4. Functional groups can significantly reduce this resistance.[84, 85, 110, 

123] Increasing the thermal transport of nanocomposites by increasing CNT loading has 

been found not to be applicable in general because of the tendency of nanotubes to form 

bundles, and because the CNT-CNT TBR is expected to be even higher than that 

between the CNT and the surrounding matrix (Chapter 5).[53, 102, 107, 124] Yang et 

al.[125] concluded that the CNT-CNT TBR is strongly dependent on contact area. They 

reported a value of CNT-CNT TBR equal to 1.2x10
-8 

Km
2
W

-1 
when two CNTs are 

aligned and partially overlap each other. On the other hand, this value is ten times 

smaller, 1.2x10
-9 

Km
2
W

-1
, when two CNTs are crossing each other.  

 Prior MD simulations have been performed for DWNTs. Rivera et al.[126] 

suggested the possibility of creating nano-sized elements that oscillate along the axial 

direction at gigahertz frequencies. Zhang et al.[127] performed MD simulations of 

DWNT as rotational bearings and concluded that the interlayer friction coefficient is 

extremely small, suggesting applications as wear-less bearings. The present work stems 

from increasing interest focused on DWNTs, with special attention on thermal 

management opportunities. We seek to determine, via MD simulations, the Kapitza 

resistance between the two concentric nanotubes forming a DWNT. Our results clarify 

whether the thermal energy transfer along a DWNT occurs only through the outer CNT, 

or whether both CNTs contribute to heat transfer. Our results suggest that the TBR 

between the two nanotubes depends on the direction of heat flux (heat transfer occurs 

more easily from the outer to the inner CNT than in the opposite direction), suggesting 

possible applications for DWNTs in thermal rectification in the radial direction.[128, 

129] 
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 Thermal rectification properties have been reported for systems with defects in 

their structure or when impurities are present. Wu et al.[130] reported thermal 

rectification at intramoecular junctions formed by introducing pentagon-heptagon rings 

in SWCNTs. Chang et al.[131] concluded that as carbon and boron nitride nanotubes 

were mass-loaded with heavy molecules, the resulting nanoscale system yielded 

asymmetric axial thermal conductance with greater heat flow in the direction of 

decreasing mass density. Graphene ribbons also possess thermal rectification properties 

when their structure is asymmetric.[132] Through this work, we find that thermal 

rectification properties can be achieved in the radial direction for a pure, symmetric 

(around its longitudinal axis), and defect-free DWNT. 

5.2. Simulation setup 

5.2.1. Freestanding DWNTs 

DWNTs in vacuum were generated with different lengths, ranging from 2.8nm 

to 30nm. The chirality of the two nanotubes in a DWNT was either the same [i.e., a 

(5,5) SWNT inside a (10,10) SWNT, indicated as (5,5)-(10,10) DWNT], or different 

[i.e., (6,6)-(19,0) DWNT and (5,5)-(16,5) DWNT]. In all cases the inter-tube distance 

was 0.34nm. See Figure 5.2.1 for a simulation snapshot. MD simulations were 

performed using the package LAMMPS.[43] The Tersoff potential[44] was employed 

to describe the interaction among carbon atoms within one nanotube. The interaction 

between carbon atoms of different nanotubes was described using the 12-6 Lennard-

Jones (LJ) potential (see Equation (2.1.2)).  
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a)         b) 

Figure 5.2.1. The DWNT is composed of one armchair (6,6) SWNT inside a zigzag 
(19,0) CNT. The figure represents the lateral view of one section of the DWNT 
collected during the relaxation stage (a) and two cross-sections obtained at the midpoint 

of the DWNT (b). The two cross sections are obtained at a 1ps interval to illustrate how 
the SWNTs deform, relative to their original cylindrical shape, as the simulation 
progresses. 
 

 Details about the models and the parameters used and about the implemented 

protocol have been described elsewhere (see Appendix A).[49, 110, 121, 133] The 

methodology is based on non-equilibrium MD simulations as described in Chapter 2. 

The DWNT in vacuum was heated from 50 K to 300K, and then equilibrated at 300 K 

for 600 picoseconds (NVT ensemble). For the next 200 picoseconds, the system relaxed 

under the NVE ensemble in order to record 15 different and independent configurations. 

Each of the 15 configurations was used to initiate non-equilibrium simulations used to 

extract the thermal boundary resistance. One of the two SWNTs within the DWNT was 
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instantaneously heated to 500 K (‘hot’ SWNT). The hot SWNT was maintained at 500K 

for 10 picoseconds to relax the newly excited vibration modes (NVT ensemble), while 

the other SWNT was maintained rigid. Then the simulation progressed in the NVE 

ensemble with one SWNT at initial T of 500K, and the other at 300K. During the latter 

NVE portion of the simulation, heat flowed from the hot SWNT to the cold one. The 

temperature difference between the two SWNTs was recorded as a function of time and 

fitted to Equation (2.1.3) to obtain the relaxation constant, . The Kapitza resistance, 

Rbd, is obtained from  via Equation (2.1.4), based on the lumped capacitance model. 

[50, 51, 121, 123]  To obtain heat capacity of each nanotube, CT, each corresponding 

nanotube was isolated and simulated within the NVT ensemble at 300, 400 or 500 K for 

400ps (Equation (2.1.5)).  

 The lumped capacitance model is expected to hold when the temperature of the 

surrounding system does not change significantly during the NVE stage of the 

simulation. Although in the system simulated here the temperature of the cold SWNT 

changes with time, it is necessary to assess the validity of the underlying assumptions. 

The Biot number for this system, defined as Bi=hL/k  , where h is thermal conductance 

(equal to inverse of the Kapitza resistance in this case), L is the distance through which 

heat is transferred and k is the thermal conductivity of the SWNT, can be used to define 

a criterion for the applicability of the lumped capacitance model.[51] When Bi < 0.1, 

then the lumped capacitance model can be used, and Equation (2.1.4) is expected to 

yield reliable estimates for the Kapitza resistance.[51] In our case, assuming a typical 

value of k = 2900 W/(mK), L =0.34nm and h = 0.1 x 10
8
 W/(m

2
K), the Biot number is 

found to be 1.17 x 10
-4

, well below the value of 0.1.  



68 

5.2.2. DWNTs coated with amorphous silica 

The procedure of creating an amorphous silica coating is described as follows: 

first, a 10nm (5,5)-(10,10) DWNT was inserted at the center of a 5x5x15nm
3 

block of 

crystalline silica (cristobalite). Next the silica was slowly heated to 6000K and kept at 

that temperature for 20ps under NVT ensemble. Finally, the system was slowly cooled 

down to 300K. Both the heating and cooling rate are 10
12

 Ks
-1

, which is similar to the 

procedure described by Ong et al.[57]. Note that the DWNT was frozen during this 

process but there exists the Lennard Jones potential between the outer nanotube and the 

silica. By initially inserting the nanotube to the crystalline silica before the melting step, 

we can obtain a better coating than just simply placing the DWNT inside the amorphous 

silica (see Figure 5.2.2).    

 

Figure 5.2.2. Snapshot of the amorphous silica coating that coats a DWNT during NVE 
simulations.  

 

In order to calculate  simultaneously the Kaptiza resistance between two 

nanotubes as well as between the outer nanotube and the coating, Equation (2.1.4) is no 

longer applicable. This is because the lumped capacitance model, where Equation 
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(2.1.4) was derived, consists of only two components: the hot/cold object and the 

environment. For this system of interest, there are three components (the silica coating, 

inner and outer nanotube) that contribute to thermal transfer. Instead, the Green-Kubo 

method was used to calculate the Kapitza resistance in this system. As discussed in 

section 2.1.4, this method is an equilibrium approach to calculate the heat flow across 

the interface over time (NVE ensemble).  

 

5.3. Results and discussions 

5.3.1. Effect of nanotube length and chirality on Kapitza resistance 

 Shenogin et al.[121] investigated the Kapitza resistance of a CNT-octane system 

and found that the Kapitza resistance changes as a function of the CNT length. The 

results converged when the nanotube length approached 8.6 nm. The reason for this 

length dependence is the availability of more long-wavelength phonons for heat transfer 

as the tube length increases. Our results show that the Kapitza resistance between inner 

and outer nanotube increases as the length of the nanotube increases from 2.8nm to 

20.0nm, but then it reaches a plateau when the DWNT length is in the range of 20.0nm 

to 30.0nm (see Figure 5.3.1). Unlike the CNT-octane case, in which the soft phonons 

with frequencies less than 5 THz govern heat transfer, high frequency optical phonons 

in the range 60-65 THz appear to govern the heat transfer for the CNT-CNT system 

considered here (see Figure 5.3.2). Our results are consistent with results from Shiomi 

et al.,[38] who studied the heat conduction in a single-walled CNT using the heat pulse 

technique. They reported that at non-equilibrium condition, most of the energy is 
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distributed to the bands higher than 50 THz, corresponding to optical phonons. These 

can play a major role in heat transfer.   

 

 

Figure 5.3.1. Kapitza resistance between the two SWNTs composing DWNTs of 
different lengths and chiralities. The notations “i” and “o” indicate that either the inner 
or the outer nanotube was heated, respectively. The notations “acac”, “aczz” and “acch” 

indicate (5,5)-(10,10), (6,6)-(19,0) and (6,6)-(16,5) DWNTs, respectively. The error 
bars were calculated from 15 s imulations with different initial configurations with 
Student t-test (95% level of confidence). 
 

 Because of the structural similarities, one could expect that the Kapitza 

resistance is less when both SWNTs composing one DWNT have the same chirality. 

Our results (see Figure 5.3.1) indicate the contrary. The Kapitza resistance is sma ller for 

the armchair-zigzag DWNTs, and larger for armchair-armchair systems. Results for the 

DWNT composed by one (6,6) SWNT in a (16,5) SWNT lie in between the other two 

cases. To explain this finding, the Fourier transform of the velocity autocorrelation 
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function for carbon atoms is plotted in Figure 5.3.2. The frequencies at which maxima 

and minima of the vibration spectrum occur for the interior (6,6) SWNT match the 

frequencies of maxima and minima of the vibration spectrum of the (19,0) SWNT in a 

(6,6)-(19,0) DWNT. In comparison, the frequencies at the maxima and minima of the 

spectrum of the (5,5) SWNT do not match as well the maxima and minima of the 

(10,10) SWNT in a (5,5)-(10,10) DWNT. This implies that heat can transfer more easily 

between an armchair and a zigzag nanotube than in the other case. We also calculated 

the Kapitza resistance of a (6,6)-(16,5) DWNT of length 7.8nm, and the result lies in 

between those obtained for armchair-armchair and armchair-zigzag DWNTs (see Figure 

5.3.1).  

 
a)          b) 

Figure 5.3.2. Fourier transform of the velocity autocorrelation function for carbon 
atoms in (6,6)-(19,0) (a) and (5,5)-(10,10) DWNTs (b). Both DWNTs are of length 

4.8nm.  
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Figure 5.3.3. Distance between 2 neighbor carbon atoms belonging to inner and outer 
nanotubes in a DWNT during heat transfer. The notations “inn” and “out” indicate the 
nanotube that is heated. The length of the DWNTs is 4.8nm. The periodicity observed 
in the data corresponds to the periodicity of the relative rotation of the nanotubes 

composing the DWNT. 
 

 Visual analysis of our simulation results (sequences of snapshots such as those 

in Figure 5.2.1) showed that the two nanotubes in a DWNT can rotate relative to each 

other – a behavior explored by others with focus on wear-less bearings.[127] For the 

scope of this work, it is worth to point out that when the inner SWNT is heated the 

rotational period for the DWNTs is about 7 ps for the armchair-armchair DWNT, and 

40 ps for the armchair-zigzag DWNT (see Figure 5.3.3). Considering the period of 
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rotation obtained from Figure 5.3.3 and the Kapitza resistance of the corresponding 

DWNTs, we observe that higher rotation speeds lead to higher resistances to heat 

transfer, probably because of weaker coupling between the mechanical vibrations of the 

carbon atoms belonging to the two interacting nanotubes. Based on this observation it is 

likely that those DWNTs that provide poorer thermal transport properties will be those 

more suitable for the production of wear-less bearings. 

 Our estimates for the Kapitza resistance within concentric DWNTs are 

consistent with estimates reported by others for that between CNTs touching via their 

external wall.[53, 77, 95, 102, 110, 121] More importantly, the values of the Kapitza 

resistance obtained in all cases considered in this work are always larger than those 

typically observed at the CNT-polymer interface (e.g., 2.61×10
-8 

Km
2
W

-1
 for CNT-

epoxy[78], 0.95×10
-8 

Km
2
W

-1 
for CNT-PMMA[81], 2.21×10

-8 
Km

2
W

-1
for  CNT-

polystyrene[107]).  Our results, thus, suggest that when DWNTs are used in thermally-

conductive composites the heat is likely to transfer mainly through the outer SWNT, 

while the inner SWNT does not contribute to thermal management. (Note also that 

values of the Kapitza resistance in other solid-solid interfaces are smaller than the CNT-

CNT resistances calculated herein,  e.g., 0.12 ×10
-8 

Km
2
W

-1
 for GaN/SiC, and 0.1×10

-8  

Km
2
W

-1
  for GaN/Sapphire[134, 135].)  

5.3.2. Evidence of thermal rectification 

 Another important observation can be obtained from the results shown in Figure 

5.3.1. Specifically, given one DWNT, the Kapitza resistance estimated when the outer 

SWNT is heated is lower than that obtained when the inner SWNT is heated. This 

suggests that the heat flux preferably travels from the outer to the inner SWNT than 
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vice versa. This behavior is explained by mechanical observations. When a SWNT is 

heated, it expands in the radial direction, and vice versa, when it is cooled it contracts. 

When heat transfers from the outer to the inner SWNT within a DWNT, the inner 

SWNT expands upon heating, while the outer SWNT contracts upon cooling, 

improving mechanical coupling between the two nanotubes. On the other hand, when 

heat transfers from the inner to the outer SWNT the mechanical expansion/contraction 

leads to less mechanical coupling as the heat-transfer process progresses. This different 

behavior is quantified in Figure 5.3.4, in which the average distance between the two 

concentric SWNTs is shown when heat transfers from the outer to the inner, or from the 

inner to the outer. The average distance between the two SWNTs decreases in the 

former case, and increases in the latter. A small change in the tube-tube distance causes 

strong effects on the dispersion forces between the two nanotubes, thus affecting the 

Kapitza resistance. 

 
Figure 5.3.4. Average distance between two SWNTs decreases during the relaxation 
step as the outer or inner one is heated for (5,5)-(10,10) DWNT, as seen on the left 
panel. On the contrary, this average distance increases when the inner nanotube is 

heated due to the expansion/contraction behavior, as seen on the right pannel. Similar 
tendency is also observed for other DWNTs. 
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 In order to assess whether the difference in Kapitza resistance observed when 

heat transfers from the inner to the outer SWNT in DWNTs is sufficient to provide 

thermal rectification in the radial direction, we calculate the thermal rectification factor, 

RREC, defined as 

%100







K

KK
RREC

 (5.3.1) 

In the above equation, K+ is the thermal conductance (i.e., the inverse of the Kapitza 

resistance) as heat transfers from the outer to the inner SWNT and K- is thermal 

conductance in the opposite direction.  

Table 5.3.1. Thermal rectification factor in the radial direction, RREC, for (6,6)-(19,0) 
and (5,5)-(10,10) DWNTs of different lengths.  

Length (nm) 2.8 4.8 10.0 20.0 30.0 

(6,6)-(19,0) DWNT 
120.1% 106.3% 100.7% 100.6% 103.6% 

(5,5)-(10,10) DWNT 123.6% 122.4% 112.4% 108.3% 114.7% 

 

 As can be seen from Table 5.3.1, RREC is lightly smaller for the (6,6)-(19,0) 

compared to the (5,5)-(10,10) DWNT. As the DWNT length increases from 2.8 and 

4.8nm, RREC decreases about 20%. It reaches a plateau for longer DWNTs. This trend is 

similar to the one reported by Yang et al.[132] for asymmetric graphene ribbons. The 

rectification ratio was as high as 240% for short ribbons. As the length of the ribbons 

increased from 3.4 to 5.1nm, this ratio decreased from 240% to 92% and remained 

constant for longer ribbons. Those authors reported that, for asymmetric graphene 

ribbons, the graded geometric asymmetry is the key for the increase of the rectification 

ratio. On the other hand, evidence of thermal rectification in DWNTs is attributed here 
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to the expansion/contraction behavior of individual CNTs. Interestingly, our results 

suggest that symmetric (around their longitudinal axis) and defect-free DWNTs exhibit 

a RREC in the range of 103%-114% for DWNTs of length exceeding 10nm. 

5.3.3. Kapitza resistance between nanotube and silica 

As we can see in Figure 5.3.5, the Kapitza resistance between the outer nanotube 

and the silica coating (R_cs) is significantly smaller than that between the inner and 

outer nanotube (R_cc). This is a confirmation that, whether the DWNT is embedded or 

free standing, thermal transfer is expected to take place mainly at the outer nanotube. 

When increasing the nanotube length from 10 to 20nm, R_cc keeps increasing, while 

R_cs remains constant. This is due to the lack  of long-wavelength phonons in size-

limited nanotube (ballistic properties) that contribute to heat transfer between the inner 

tube and the outer one. For the case of amorphous silica, in which the phonon mean free 

path is a lot shorter, all of the available phonons are excited and contribute to heat 

transfer. Note that values of R_cc in Figure 5.3.5 are slightly smaller than those in 

Figure 5.3.1. As pointed out by Hu et al.[136], values of Kapitza resistance obtained 

from transient method (thermal relaxation) are several times larger than those calculated 

by the direct simulation method of heat flow across the interface.  

 



77 

 
Figure 5.3.5. Kaptiza resistance between the inner and outer nanotube (R_cc) , and 
between the outer nanotube  and silica (R_cs) at different length of the nanotube. The 
DWNT can be either (5,5)-(10,10), noted as acac, or (6,6)-(19,0), noted as aczz. 

 

 

5.4. Conclusions 

 To summarize, we employed both non-equilibrium and equilibrium molecular 

dynamics simulations to estimate the resistance to heat transfer (known as thermal 

boundary resistance or Kapitza resistance) between two concentric single walled carbon 

nanotubes forming a double walled carbon nanotube (DWNT), and between the outer 

nanotube and amorphous silica. We confirmed that, whether the DWNT is embedded or 

free standing, thermal transfer is expected to take place mainly at the outer nanotube. 

The calculations were performed for DWNTs of increasing length, and it was 

found that high frequency optical phonons in the range 60-65 THz govern heat transfer 

in the system considered here, unlike soft phonons of frequency less than 5 THz that 

were found to govern heat transfer between carbon nanotubes and octane. In agreement 

with results obtained for carbon nanotubes in configurations other than the one 
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considered here, our results show that the resistance to heat transfer between the 

concentric nanotubes is larger than that between carbon nanotubes and organic 

matrixes, suggesting that when DWNTs are used in thermally-conducting 

nanocomposites heat travels predominantly along the outer nanotube, while the inner 

nanotube does not contribute to thermal management. DWNTs of different chirality 

were considered, and it was found that the Kapitza resistance is smaller in armchair-

zigzag DWNTs than in armchair-armchair DWNTs. By examining the relative rotation 

of the two nanotubes, it was found that those carbon nanotubes that seem to have 

frictionless movement (faster rotation) are characterized by higher thermal boundary 

resistance, suggesting that mechanically coupling the vibrations of carbon atoms in the 

two concentric carbon nanotubes facilitates heat transfer. Comparing the thermal 

boundary resistance for DWNTs in which either the outer or the inner carbon nanotube 

was heated, it was found that, because of better mechanical coupling, heat transfer 

occurs much more easily from a hot outer carbon nanotube to a cold inner one than vice 

versa, yielding thermal rectification factors in the radial direction in the range 103-114 

% for longitudinal symmetric, defect-free DWNTs of length exceeding 10 nm. Even 

though a temperature difference of about 200K between two walls might not be 

practical, these results help understand heat transfer in carbon nanotubes, and they 

might be useful for opening up new opportunities for applications of double wa lled 

carbon nanotubes in thermal rectification applications.  
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Chapter 6: Numerical Calculation of the Effective Thermal 

Conductivity of Nanocomposites 

6.1. Introduction 

 The discovery of thermal boundary resistance (TBR) at the metal-liquid helium 

interface by Kapitza [15] has laid the foundation for extensive research in the field of 

interfacial heat transfer. Recently, the interest of scientists in this phenomenon has been 

re-invigorated  due to the emergence of carbon based nanomaterials, such as carbon 

nanotubes (CNTs) and graphene sheet nanoribbons (GSs) [41, 56, 78, 106, 114, 137, 

138]. Because of the outstanding properties of these nanomaterials, there have been 

quite high expectations to manufacture composites and fibers with also exceptional 

properties [3, 84, 119, 122, 139]. Nevertheless, due to the extremely high surface area 

of CNTs and GSs, TBR at the interface between the nanoinclusions and the polymer 

matrix plays a dominant role that suppresses the effective thermal conductivity (Keff) of 

composites [35, 41]. There have been numerous papers using either experiments or 

simulations to characterize/measure TBR and to suggest ways to improve heat transfer 

in nanocompsites [49, 50, 53, 80, 84, 124, 140].  

For the purposes of designing/producing composites with superior thermal 

management capabilities, it is essential to accurately predict Keff. This is not a trivial 

task, because of the not so well-known physical properties (i.e., TBR between CNT-

polymer and TBR between CNT-CNT, ballistic heat transport [14, 38]) and the 

uncertain configurations and dispersion state of CNTs or GSs in the polymer matrix. 

Analytical formulas derived from effective medium approximation (EMA) [33, 34] can 

be used to estimate Keff for CNT-based nanocomposites assuming that all CNTs are 
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straight cylinders and parallel to each other. Kumar et al. [35, 36] developed a 

computational model for thermal and electrical transport by explicitly generating a 

random network of straight cylinders representing CNTs in 2D. Their approach 

employed a finite volume discretization scheme to calculate the temperature distribution 

and Keff for CNT-based nanocomposites. However, results from both this approach and 

EMA did not agree with experimental data at high volume faction of CNTs in 

composites, because the TBR between neighbouring CNTs in contact is another crucial  

factor suppressing Keff [53, 107, 141, 142]. Furthermore, the configuration of CNTs and 

GSs in polymer matrix is not such that they are perfectly straight and uniformly 

dispersed. Instead, they can be twisted and bended into worm-like geometries and/or 

stacked together into bundles [41, 65, 66].  

The persistence length (Lp) is a commonly used parameter to quantify the 

flexibility of a chain [71]. The dynamic bending persistence length refers to bending 

behavior due to the thermal energy and the stiffness of a filament. On the other hand, 

the static bending persistence length is used when bending points are due to structural 

defects. When the contour length (L) of a CNT is larger than its Lp, the tube is usually 

under significant bending. In the absence of flow, single-walled CNTs behave like rigid 

rods (when L<< Lp) or as semiflexible rods (when L ≈ Lp). Measurements of Lp obtained 

for single-walled CNTs by real-time visualization have indicated values between 32 and 

174 m [70, 143]. Lee et al. [66, 75] reported the value of Lp for multi-walled CNTs to 

be 271 nm due to static bending, which is significantly smaller than the dynamic 

persistence length.  
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Recent work of Duong et al. [79] and Bui et al. [107] has reported that Keff could 

be reduced by up to 40% when CNTs are placed in bundles, instead of being well-

dispersed in the polymer matrix. To our knowledge, no prior work has investigated 

simultaneously both the effect of TBR and CNT persistence length on Keff. One possible 

reason is because of the complexity of generating realistic configurations of CNTs that 

mimic those under experimental conditions. Molecular dynamics (MD) simulations are 

capable of investigating TBR at the atomic scale. This approach is inefficient for the 

study of Keff for large systems, since the number of carbon atoms in CNTs in addition to 

those in the polymer molecules is in the millions [84]. In our previous work [77, 80, 

107, 133], an off-lattice Monte Carlo simulation technique has been developed and used 

to study heat transfer in CNT-based and GS-based nanocomposites for simple cases, 

where the inclusions are perfectly straight and well-dispersed. The purpose of the 

present work is to present an algorithm that is capable of generating rather realistic 

configurations of CNTs by incorporating the persistence length of CNTs in the polymer 

matrix. Following that, we employ off-lattice Monte Carlo (MC) techniques to study 

heat transfer in nanocomposites by taking into account simultaneously both the effect of 

TBR and the configuration of the CNTs. Finally, our results are validated with 

experiments for MWNT/epoxy systems and provide guidance to practically improve 

Keff.  

6.2. Methodology 

6.2.1. Algorithm for generating CNTs with worm-like geometry 

Each CNT is composed of the same number of segments, noted as N. Each of 

these segments is a straight solid cylinder. The length of each cylinder is noted as s  
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and its radius is noted as R. The contour length of a CNT, noted as L, is equal to the 

segment length multiplied by the number of segments, while the end-to-end length of a 

CNT is noted as Le. The procedure of generating worm-like CNTs has been described in 

section 2.2.1 of Chapter 2. By varying the critical angles between each segment, critical 

and critical, one can generate CNTs with different degrees of bending/twisting or, in 

order words, different values of Lp (Figure 2.2.1). For each simulation, mean and 

variance of Lp are computed in order to control the geometry of CNTs. As a result, the 

pre-processing step of generating the configuration of CNTs inside the computational 

box is completed. The configuration of CNTs in this work is similar to those SEM 

images reported by Lee et al. [66, 75] (see Figure 2.2.2). The next step is the simulation 

of heat transfer by means of Monte Carlo simulations.  

6.2.2. Monte Carlo simulations 

Details of Monte Carlo simulations has been described in section 2.2.2 of 

Chapter 2 for simple geometries. Note that the geometry of each worm-like CNT is 

different from the others due to the random relative angles between each segment. The 

MC simulations require an effective algorithm to distribute heat walkers randomly 

inside the current CNT or to place them close to the surface before jumping out of that 

CNT. This was done by developing a small program that extracted those grid cells that 

belong to the outer surface of each CNT and creating a shell that represents the outer 

surface of each CNT (Figure 6.2.1).  

As a result, a heat walker can be randomly placed inside a CNT by first picking 

an arbitrary grid cell belonging to that CNT, i.e., grid cell i with its centre located at (xi, 

yi, zi). Second, the heat walker is placed randomly within that grid cell. Similarly, a heat 
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walker can be placed randomly within a shell close to the surface of a CNT by picking 

an arbitrary grid cell belonging to those of the outer surface of that CNT (Figure 

6.2.1b). Because the size of the simulation box affects computational cost, there needs 

to be a balance between the resolution of the system and the computational cost. Our 

results suggest that the ratio of one unit length in simulation over 1nm in real scale is 

3:1 in order to model the CNTs effectively.  

 

  a)       b) 

Figure 6.2.1. a) One worm-like CNT (contour length of 450nm, end-to-end length of 
180nm, persistence length of 100nm) consisting of 15 segments (in different colors) is 
generated inside a computation box of 450x200x200 grid. b) A slice through the CNT 
revealing 2 distinct regions: those grid cells belonging to the shell that forms the outer 

surface of the CNT are marked in red while the remaining grid cells are in blue color.  
 

 

6.2.3. Estimation of persistence length from TEM images and validation with 

experiments 

Base on TEM images of MWNTs reported by Guo et al.[144], we can extract 

the position of each segment belonging to one nanotube and estimate Lp of that 

nanotube (see Equation (2.2.3)). This procedure is similar to those reported by Gittes et 
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al.[71] and Fakhri et al.[65]. These MWNTs, having the same Lp as those from 

experiments and L = 450nm, were generated inside the computational box for validation 

purposes. The size of the box is 450x300x300 mesh points, in which the longest 

dimension is the also the direction of heat flux (x-direction). In our simulations, 

periodic boundary conditions are applied in three directions and those tubes outside of 

the box are rolled back. Note that the MWNTs can be broken and possess unequal 

length under experimental conditions. In this work, the CNTs will be broken into new 

ones if they intercept the boundary in the x-direction as in Figure 6.2.3b. This scenario 

provides better replication of experimental conditions since individual CNTs will not 

possess exactly the same configuration in reality.  

 

 

 

Figure 6.2.2. TEM images of pristine MWNTs taken by Guo et al.[144]. The straight 
segments were drawn along the center of each nanotube. Position of these segments 
were recorded to calculate the persistence length (Lp).   
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a)      b) 

Figure 6.2.3. Five worm-like CNTs that were generated randomly inside the 
computational box. Different colors were used to distinguish different tubes. Periodic 
boundary condition was applied in 3 directions. a) Those segments of the tubes that are 
outside were rolled back through the other side of the box. b) Those segments of the 

tubes that intercepts with the boundary in x-direction, the direction of heat flux, were 
considered as different CNTs as they were rolled back into the box.   
 

6.3. Results and discussions 

6.3.1.  Equilibrium simulations 

Equilibrium simulations were performed to determine the shape factor, C f, 

which is described in Equation (2.2.2). As we can see in Figure 6.3.1, the value of the 

shape factor for one CNT was found to be 0.39. This value was double checked in 

another simulation, in which there were 5 CNTs placed inside the computation box. 

Because the orientation and placement of CNTs were random, the vol.% of each CNT 

was slightly different from each other (Table 6.3.1). By calculating the heat walker 

density inside each CNT during equilibrium simulations, we can see that these values 

were fluctuating around the vol.% of each CNT. This serves as comfirmation that C f= 

0.39 is the correct shape factor for the worm-like CNTs. 
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Figure 6.3.1. Heat walker density inside a CNT versus equilibrium shape factor, C f, 
during equilibrium simulations. The correct value of Cf = 0.39 will result in an equal 

value between walker density inside a CNT and the vol% of that CNT in the 
computation box.  

 
Table 6.3.1. Heat walker density of 5 CNTs inside a computational box during 

equilibrium. Because the heat walker density inside each CNT fluctuates around the 
vol% of corresponding CNT, it is confirmed that C f= 0.39 is a correct choice for the 
equilibrium shape factor. 

      

CNT index 1 2 3 4 5 

CNT vol% 3.72E-04 3.61E-04 3.64E-04 3.59E-04 3.62E-04 

% of 

walkers 

inside 

the CNTs 

t=1000t 3.70E-04 3.60E-04 3.68E-04 3.69E-04 3.62E-04 

t=1500t 3.70E-04 3.60E-04 3.68E-04 3.53E-04 3.61E-04 

t=2000t 3.77E-04 3.71E-04 3.61E-04 3.65E-04 3.63E-04 

t=2500t 3.68E-04 3.56E-04 3.58E-04 3.66E-04 3.65E-04 
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6.3.2. Isoflux simulations 

The distribution of heat walkers along the x-direction (also the direction of heat 

flux) for every 100,000 time steps during isoflux simulations is plotted in Figure 6.3.2. 

When the number of time steps is equal to or higher than 900,000, the slope is stable 

indicating that steady state has been reached. The effect of the number of heat walkers 

released in every time step on the results during isoflux simulations was also studied 

and plotted in Figure 6.3.3. When the number of heat walkers is equal or higher than 

90,000, stable results are obtained. Because of computational cost, we chose the number 

of time steps and number of heat walkers to be 900,000 and 90,000 respectively, which 

are large enough to obtain converged results. 

 

Figure 6.3.2. Distribution of heat walkers along the x-direction (i.e., the direction of the 
heat flux) for every 100,000 time steps during isoflux simulations. The inverse of the 

slope these lines is proportional to the thermal conductivity of the system. When the 
number of time steps is equal to or higher than 900,000, the slope is stable indicating 
the steady state. 
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Figure 6.3.3. Effect of number of heat walkers released every time step on the results 
during isoflux simulations. When the number of heat walkers is equal or higher than 
90,000, stable results is obtained. 
 

6.3.3. Effect of persistence length on Keff of nanocomposites 

To compare with our previous work for the case of straight CNTs [107], we 

performed isoflux simulations on a CNT-polystyrene system with various persistence 

lengths of CNTs at low CNT loading. We controlled the configurations of CNTs by 

changing the critical angles (critical and critical) between two segments from 90
o
 to 5.4

o
 

(Figure 6.3.4). As tabulated in Table 6.3.2, the CNT can be considered under significant 

bending (L >> Lp) or semi-flexible (L ≈ Lp). The TBRCNT-PS at 25
o
C is equal to 2.2x10

-8  

W
-1

m
2
K, which has been calculated in ref. [107] and was used as input for this work. It 

is reasonable to ignore TBRCNT-CNT in this work since the vol.% of CNTs was low.  
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  a)      b) 

Figure 6.3.4. Worm-like CNTs , with 15 segments/CNT, generated inside a 

computational box of 450x300x300 mesh points are used in isoflux simulations to 
calculate effective thermal conductivity. The contour length of each CNT is fixed at 
450nm and the persistence length is varied in each case: a) Lp =68.4nm , b) Lp = 
527.4nm.  
 

Table 6.3.2. Values of persistence length, Lp, and end-to-end length, Le, of the worm-
like CNTs were controlled by changing the critical angles between two segments. The 
contour length was fixed at 450nm for all cases. 

critical  = critical 90.0
o 

43.2
o
 21.6

o
 10.8

o
 5.4

o
 

Average Lp (nm) 33.6 68.4 132.6 280.3 527.4 

Average Le (nm) 126.2 174.5 292.7 353.5 431.2 
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Figure 6.3.5. Effect of persistence length on ratio of thermal conductivity of composites 
over polymer (Keff/Km) for CNT-polystyrene system. The error bar is standard deviation 
calculated from 6 different runs (6 different CNT configurations). Other parameters of 
CNTs are tabulated in Table 6.3.2. 

 

As we can see in Figure 6.3.5, since the persistence length of CNTs increases 

from 33.6nm to 280.3nm, Keff/Km of the system increases from 1.6 up to 50.0 for the 

same CNT vol.% . Also, by comparing Keff calculated under the same conditions in our 

previous work for the case of straight CNTs [107], we found that worm-like CNTs with 

L= 450nm and Lp in the range from 33.6 to 68.4nm exhibit Keff almost equal to that of 

straight CNTs with a length of L= 64nm. 

6.3.4. Contour length versus persistence length 

  Up to this point, we found evidence that short CNTs with high pers istence 

length can potentially have better contribution toward thermal transfer in 

nanocomposites compared to long CNTs under significant bending ( L >> Lp). This 

hypothesis was tested by conducting isoflux simulations at 1.0vol% of CNT, in which 

both the L and Lp of CNTs were varied over a wide range. For example, we increased L 

from 150nm to 750nm while decreasing Lp from 812nm to 30nm. As tabulated in Table 
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6.3.3, although L was decreased from 750nm to 450nm, Keff/Km increased from 1.79 to 

6.94. That improvement is explained because of the increase in Lp. However, when the 

CNT is too short (L< 450nm), the Keff/Km ratio decreased from 6.94 to 1.14 regardless 

of the higher values of Lp in these cases. 

 

Table 6.3.3. Relative thermal conductivity (Keff/Km) of nanocomposites at different 

values of contour length (L) and persistence length (Lp). The variance of Keff/Km was 
calculated based on 5 different runs for each case (different CNT configurations). The 
vol% of CNTs is equal to 1% for all cases. Higher end-to-end length (Le) of CNTs 
resulted in better heat transfer. 

Average Le (nm) 155 218 321 289 149 

Average Lp (nm) 30 55 179 398 812 

L (nm) 750 600 450 300 150 

Keff/Km  1.79 2.74 6.94 2.96 1.14 

Var(Keff/Km) 0.42 0.39 1.09 0.41 0.03 

 

Values of end-to-end length of CNTs, Le, in each case were also calculated for 

comparison. Note that Le is a length parameter which is the result of the deviation from 

the contour length due to bending of the CNT. In other words, Le accounts for both L 

and Lp in describing what is the realistic length of CNTs under experimental conditions. 

That explains why the tendencies of Le and the Keff/Km ratio are the same. 

6.3.5. Validation with experiments  

Generally, those parameters affecting Keff of nanocomposites include Kapitza 

resistance (TBRCNT-polymer, TBRCNT-CNT ), configuration (R, Lp, L), orientation and vol.% 

of CNTs. Experimental results of Guo et al.[144] for MWNT/epoxy will be used as 
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validation for our simulations. As discussed in Chapter 3, it is reasonable to ignore 

TBRCNT-CNT at low vol.% and the CNTs are randomly oriented according to 

experimental conditions. A value of TBRCNT-epoxy = 4.01x10
-8

 W
-1

m
2
K, as found in the 

literature[64], was used as input to our simulations. Average value of Lp (calculated 

from 50 configurations of MWNT) with and without the coating were calculated to be  

294nm and 272nm from the TEM images, respectively. That means the thin layer of 

coating, where the silica has been non-covalently coated on MWNT [144], did not alter 

the configuration of the nanotubes significantly. By keeping R, Lp and vol.% of CNTs to 

be the same as in the experiments, value of Keff/Km obtained from the simulations can be 

compared with experimental data. As we can see from Table 6.3.4, our simulations have 

successfully replicated the experimental results.  

Table 6.3.4. Ratio of effective thermal conductivity of pristine MWNT/epoxy 

nanocomposites over that of epoxy (Keff/Km) from experiments (Guo et al.[144]) and 
from simulations. The standard deviation (stdev) was calculated based on 5 different 
runs for each case.  

wt.%MWNT vol.%MWNT Keff/Km exp. Keff/Km sim. stdev 

 

0.5 0.35 1.27 1.23 0.08 

 

1.0 0.7 1.61 1.68 0.46 

 
 

6.3.6. How to improve Keff in nanocomposites 

The main purpose of our simulations is not only limited to replicate the 

experimental data but also to quantitatively provide suggestions to improve Keff. Many 

works have been done to suppress TBR at the interface of nanoinclusions and polymer 

matrix by functionalization.[84, 85, 110, 123] By comparing Keff/Km ratio from 

experiments [144] with our simulations under similar conditions, we proved that the 
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silica coating can suppress TBR by 40% (Figure 6.3.6). According to our work, if there 

is any surface modification method that can reduce TBR by 82%,  Keff/Km ratio can 

reach  up to 2.2 compared to the value of 1.6 for the case of pristine MWNT/epoxy.  

 

Figure 6.3.6. Ratio of effective thermal conductivity of 1wt.% MWNT/epoxy 
nanocomposites over that of pure polymer (Keff/Km) from experiments ( red circles, Guo 
et al.[144]) and from simulations (blue diamond) as a function of thermal boundary 
resistance (TBR). The error bar was calculated based on 5 different runs for each case. 

 

No prior work, by neither simulations nor experimental approach, has answered 

whether Lp of CNTs possesses a crucial effect on Keff like TBR. As seen in Figure 6.3.7, 

the value of Keff/Km varies significantly with Lp of the nanotube. When increasing Lp by 

five times (from 270nm to 1428nm), the value of Keff/Km increases from 1.6 to 2.0. This 

enhancement is comparable to the value of Keff/Km = 2.2 that is obtained by decreasing 

the TBR by five times (82% of reduction as seen in Figure 6.3.6). We report here that Lp 

of the nanotube is as important as TBR toward heat transfer in nanocomposites. 
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Figure 6.3.7. Effect of persistence length (Lp) on Keff/Km of 1wt.% pristine 
MWNT/epoxy. The error bar was calculated based on 5 different runs for each case.  

 

6.4. Summary 

We reported here a novel algorithm for generating worm-like CNTs in 3D with 

a realistic configuration. Our results suggest that shorter CNTs with high persistence 

length have stronger contribution toward heat transfer in nanocomposites compared to 

the case of longer CNTs under significant bending. We found that end-to-end length of 

CNTs was the most accurate parameter used to interpret  the contribution of CNT length 

to the heat transfer in nanocomposites. This approach was validated with experiments 

for MWNT/epoxy systems. For the first time, we reported that Lp of the nanotube is as 

important as TBR toward heat transfer in nanocomposites.  
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Future Work 

 

This work has provided an understanding of the Kapitza resistance between 

concentric nanotubes belonging to a DWNT,  and between the outer nanotube and the 

amorphous silica coating. Nevertheless, there are still unanswered questions that require 

further work in this topic, such as: 

 It is still unknown whether the Kapitza resistance is different along the axial 

direction of the nanotube. When a nanotube is long enough, the portion at the 

edge of the tube can be bended/moved quite easier than that at the middle of the 

tube. We believe the answer to this question can help to control the rate of heat 

transfer along the nanotube to the surrounding environment.  

 Unlike the case of free standing DWNT, the presence of the silica coating has 

suppressed relative rotation between two concentric nanotubes. There should be 

another mechanism, in addition to the coupling  strength between the vibrations 

of the carbon atoms, that helps to explain the dependence of Kapitza resistance 

on the chirality of CNTs. 

The off-lattice Monte Carlo simulations developed in this work have provided a very 

accurate tool to predict Keff in nanocomposites. This approach can also be used to 

investigate heat transfer in analogous systems such as carbon nanotube fibers and 

hierarchical carbon nanostructures. Again, a coherent use of both molecular dynamics 

and Monte Carlo simulations is a powerful key to unlock unanswered questions in this 

field.     
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Appendix: Potential Parameters  

 

Lennard Jones potential parameters 

Atoms ε/kB (K) σ (Å) cut-off (Å) 

C – C 28.02 3.400 13.800 

C – O 39.94 3.001 7.503 

C – Si 103.38 3.326 8.315 

 

The Tersoff potential is described as: 
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Tersoff potential parameters for carbon
**4

  

                       A (eV)                                                           1.3936×10
3
 

                       B (eV)                                                           3.467×10
2 

                       λ (Å
 -1

)                                                           3.4879 

                       μ (Å
 -1

)                                                           2.2119 

                          β                                                                 1.5724×10
-7

 

                          n                                                                 7.2751×10
-1

 

                          c                                                                 3.8049×10
4
   

                          d                                                                 4.384×10
0
 

                          h                                                                -5.7058×10
-1

  

                       R (Å)                                                              1.95 

                       S (Å)                                                              0.15       

 

                                              
** Lammps http://lammps.sandia.gov/doc/pair_tersoff.html 

http://lammps.sandia.gov/doc/pair_tersoff.html

