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ABSTRACT 

 

Upgrading of light oxygenates derived from biomass conversion, such as 

propanal and glycerol, to more valuable aromatics for biofuels has been demonstrated 

on zeolite catalysts.  Aromatics with a high ratio of C9/(C8+C7) and little benzene are 

produced at much higher yield from oxygenates than from olefins at mild conditions 

over HZSM-5.  It is proposed that C9 aromatics are predominantly produced via acid-

catalyzed aldol condensation.  This reaction pathway is different from the pathway of 

propylene and other hydrocarbon aromatization that occurs via a hydrocarbon pool at 

more severe conditions with major aromatic products C6 and C7.  In fact, investigation 

on the effect of crystallite size HZSM-5 has shown a higher ratio of C9/(C8+C7) 

aromatics on small crystallite.  This is due to faster removal of products from the 

shorter diffusion path length.  As a result, a longer catalyst lifetime, less isomerization, 

and less cracking were observed on small crystallites.  Beside crystallite size, pore 

geometry of zeolites was also found to significantly affect aromatic production for 

both conversion of propanal and glycerol.  It is shown that the structure of the HZSM-

22, with a one-dimensional and narrower channel system, restricts the formation of 

aromatics.  In contrast, a higher yield of aromatic products is observed over HZSM-5 

with its three-dimensional channel system.  By increasing channel dimension and 

connectivity of the channels, increasing catalyst activity was also observed due to 

more accessible acid sites.  It was also found that glycerol is highly active for 
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dehydration on zeolites to produce high yields of acrolein (propenal), a high value 

chemical.  To maximize aromatics from glycerol conversion, HZSM-5 and HY were 

found to be effective.  A two-bed reactor of Pd/ZnO and HZSM-5 was used to first 

deoxygenate/hydrogenate glycerol over Pd/ZnO to intermediate oxygenates that can 

further aromatize on HZSM-5.  The end results are very promising with significant 

improvement in aromatic yield.  Further improvement of aromatization and catalyst 

lifetime was also found with ZnHZSM-5 wherein the Zn evidently modifies the 

acidity.  These model compound results show that the optimized use of zeolites for 

production of alkyl aromatics from light oxygenates at mild conditions may be 

effective for bio-oil refining. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Overview 

   Biofuels is one of the key developments among other renewable energy 

initiatives to reduce fossil energy dependence, providing neutral CO2

Conversion of biomass to fuels is mainly through two main strategies: (1) bio-

conversion via fermentation to alcohol and (2) thermo-chemical with catalyst 

upgrading.  The first strategy has been proven in ethanol production from sugar cane 

and corn, although there are several issues by using these feedstocks including little or 

no net reduction of CO

 emissions, and 

contribute to the requirements of increasing energy consumption in the next several 

decades.   In fact, it has been shown that in the next three decades, the projection for 

the U.S. transportation consumption will increase more than 50% and could reach 

100% if the rate of consumption is the same for the 1980 – 2008 [1].  Rapid expansion 

of biofuel production has been seen in the last ten years.  Indeed, as shown in Figure 

1.1, the global production of mostly ethanol and some biodiesel has significantly 

increased from 3 to 15 billion gallons from 2000 to 2007 [2].  In addition, the “Billion 

Ton Study” has envisioned a feasible goal of 30% replacement of petroleum 

consumption by biofuels [3].   

2

  

 emissions, low energy efficiency, rising feedstock prices,  
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Figure 1.1 – Global biofuel production from 2000 to 2007 

 

 

 

 

Figure 1.2 – European biodiesel production from 1998 to 2007 
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competition with food sources and high cost.  Recent developments have focused on 

cellulosic ethanol from non-food source biomass that shows significant reduction of 

CO2 emission by 85% and higher yield [4].   In the second strategy, biomass can be 

directly converted to synthesis gas CO, H2, CH4, C2Hx

The bio-oil product from pyrolysis is a complex mixture of hundreds of 

compounds including aldehydes, ketones, acids, furans, phenols and other oxygenates 

as well as water, and thus has a low heating value [5-6].  The composition of bio-oil 

varies considerably depending on feedstock and reaction conditions (a range of 

composition might be: 54-58% C, 5.5-7% H, 35-40% O, and 0-0.2% N).  Furthermore, 

they are thermally and chemically unstable and need to be converted to make them 

compatible with transportation fuels.  For instance, acetaldehyde and propanal found 

in bio-oils can further oxidize to form corrosive acids or participate in polymerization 

reactions to form heavy products during storage and transportation.  While small 

oxygenates are liquid, they tend to have high volatility and increase the vapor pressure 

of fuels.   In contrast to hydrotreating [5-7] that converts the light oxygenates to gases, 

causes losses in liquid yield, and consumes valuable hydrogen, the conversion of light 

oxygenates via condensation and aromatization to larger, more stable molecules 

appears to be an attractive opportunity to enhance the liquid quality and yield. 

 by gasification processes with 

subsequent liquid fuel production or to liquid bio-oil by fast pyrolysis processes.   

Conversion of vegetable oil to biodiesel is another approach to utilize rich oil 

type of biomass resources such as canola, soy, corn, and others.  In this process, fatty-  
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Figure 1.3 – Annual global production of glycerol from 2002 to 2007[8] 
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acid-methyl-esters (FAMEs) are produced via a transesterification reaction of the 

original triglycerides with methanol.  Although fuel from this type of biomass has 

been criticized because of using raw materials from food production, its production 

has progressively increased both in EU as shown in Figure 1.2 [9].  In the production 

of biodiesel, large amounts of glycerol are produced as a byproduct.  Although 

glycerol and its derivatives are currently high value chemicals in the pharmaceutical 

and food industries among others, their volume from substantial increases of biodiesel 

production will greatly exceed the chemicals market.  As shown in Figure 1.3, crude 

glycerol production reaches up to 600 kt in 2007[8].  In addition, the amount of 

unused impure crude glycerol, which is mostly burned, increased significantly from 0 

in 2002 to 260 kt in 2007 as depicted in black column in the same figure.  Glycerol 

can be reacted to produce chemical feedstocks, especially for production of acrolein 

(propenal) [8, 10-11].  However, there has been much less attention to the direct 

conversion of glycerol to fuel molecules that are compatible with existing fuels, such 

as gasoline.   

 

1.2. Selecting a model compound and catalyst 

The complexity of bio-oil has created a great challenge in understanding reaction 

pathways and tailoring catalysts toward desirable fuel components.  Thus, model 

compounds have been studied over different types of catalysts. e.g., metals[12], metal 

oxides[13-14] and zeolites[15-17].  Propanal is among the small aldehydes that can be  
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found in bio-oil light oxygenate components.  Thus, it has been used as the model 

compound in this research.   

Zeolites are crystalline microporous materials made of aluminosilicates with a 

well defined pore structure.  More than 175 unique zeolite frameworks have been 

found[18].  They are commonly used as adsorbents, such as zeolite 3A for purifying 

ethanol from water or used as catalysts such as HY for FCC processes (fluidized-

catalytic-cracking) or HZSM-5 for the MTG process (methanol-to-gasoline).  Some 

examples of zeolite frameworks are shown in Figure 1.4 and the aromatization 

reaction of n-alkanes in a zeolite is illustrated in Figure 1.5.  In fact, the reactions of 

aldehyde, ketone, acid, and furanic compounds on HZSM-5 have been extensively 

investigated [15-16] and in some of these studies substantial amounts of aromatics 

have been observed in the final products.  Thus, in this research, HZSM-5 was chosen 

as the main zeolite catalyst for all the studies. 

 

1.3 Objectives and methodology 

The objectives of this research are to understand the reaction pathways and the 

effects of different factors including catalyst properties and reaction conditions on the 

conversion of oxygenates to aromatics on acidic zeolites, particularly HZSM-5.  From 

those results, one can find conditions and catalyst properties to maximize alkyl 

aromatics or selectively control product distribution for desirable applications.  Alkyl  
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Figure 1.4 – Example zeolite framework of HZSM-5 (left) and HY (right)[18] 

 

 

 

Figure 1.5 – Illustration of reaction in zeolite.[18] 
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aromatics make an excellent high octane, low vapor pressure blending component for 

gasoline.  Benzene, however, is strictly regulated to very low levels and is undesirable.  

Aromatization from light hydrocarbons, typically produces significant benzene among 

the aromatics. 

To achieve those objectives, a study of the reactions of propanal and propylene 

on HZSM-5 was conducted to study reaction pathways of aromatic formation from 

oxygenates and olefins.  Chapter 2 is devoted to this subject, while in Chapter 3 the 

effect of catalyst properties on conversion of propanal was studied on different 

crystallite sizes of HZSM-5.  Chapter 4 is the follow-up on the effect of pore 

structures by comparing the two zeolites HZSM-5 and HZSM-22.  Finally, Chapter 5 

gives an example of conversion of glycerol on different zeolites.   From the 

understanding of reaction pathways, improvement of aromatic yield and catalyst 

performance can be achieved by combination of Pd/ZnO and HZSM-5 as well as by 

modified HZSM-5 incorporating Zn to alter the nature of the acid sites.  
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CHAPTER 2 

EXPERIMENTAL 

 

2.1. Catalyst preparation 

   A commercial HZSM-5 (Si/Al = 45) zeolite was supplied by Süd-Chemie, 

Inc.  Other ZSM-5 samples were synthesized hydrothermally [1-2] using sodium 

aluminate (Aldrich) dissolved in deionized water as the Al source to which 

tetrapropylammonium hydroxide (Fluka, 20%) TPAOH) was first added under stirring 

as the structure directing agent, silica gel (Ludox, 40%) was then added dropwise 

while stirring, as the Si source. The resultant gel composition was 150 SiO2:1.0 

Al2O3:8 TPAOH:1600 H2O (Si/Al=75). After stirring at 700 rpm for 10 h at room 

temperature, the gel was transferred to a Teflon-lined autoclave, where the zeolite 

crystallized at 180°C over 5 days with stirring at 60 rpm. The solid product was 

recovered by filtration, washed, dried at 110°C, and finally calcined in air at 550°C for 

6 h to remove the template.  The Si/Al ratio of the synthesized ZSM-5 sample was 

specified by modifying the amount of Al in the original recipe.  The proton form of the 

zeolites was obtained from ion-exchange with NH4NO3 at 80°C for 10 h.  The process 

was repeated to completely replace the cations in the zeolite with NH4
+
.  The final 

synthesized HZSM-5 catalyst was obtained after drying at 100°C for 10 h and 

calcining at 600 °C for 3 h in dry air.  
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ZSM-22 was synthesized following the procedure described in [3].  Briefly, 

Al2(SO4)3 solution was mixed with KOH solution, to which hexamethyl enediamine 

solution was added. Then, silica gel solution was added. The incubation of the 

resultant gel was carried out at room temperature for 24 h at 500 rpm stirring. The 

crystallization was performed in an autoclave at 160 °C for 2 days with at 500 rpm 

stirring. The product was recovered by washing, filtering and calcination at 550 °C for 

4 h in flowing air.  The final HZSM-22 was obtained by the same method of ion-

exchange described above. 

 

2.2. Catalytic measurement 

The catalytic performance of the different catalyst samples was examined in a 

quartz reactor (1/4 inch o.d.) at atmospheric pressure, unless otherwise mentioned in 

each Chapter.    The catalyst sample (40-60 mesh) was packed in the reactor between 

two layers of quartz wool. The thermocouple was affixed to the external wall of the 

reactor close to the catalyst bed. During pretreatment period, the temperature of the 

catalyst bed was increased to 400 °C using a rate of 10 °C/min and held constant at 

400 °C for 1 h in flowing H2 (35 mL/min) before reaction. Liquid propanal or glycerol 

(from Aldrich) was fed using a syringe pump (kd scientific) equipped with a needle at 

a rate of 0.12 mL/min. The liquid was completely vaporized in the line before entering 

the reactor. All lines were kept at 300 °C to avoid condensation of reactant and 

products. The products were analyzed online using a gas chromatograph (GC 6890, 

Agilent) equipped with a flame ionization detector (FID). The effluent was trapped in 
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methanol using an ice-water bath, and analyzed using a QP2010s GC-MS (Shimadzu).  

Both GCs are equipped with an INNOWax capillary column. The reactor system was 

shown in Figure 2.1. 

When operating at higher pressure, liquid products, including water, were 

collected in a cold trap after accumulating for each hour of time on stream.  Non-

condensed products passed through the back pressure regulator and went to vent and 

were not quantified, but some samples were sent to an online GC for product 

identification.  After each run, the reactor was purged with dry carrier gas for 15 

minutes to collect the residual products from the reactor.  The collected liquid 

products were found to settle into two phases: a hydrocarbon phase containing 

aromatics and an aqueous phase containing the oxygenates with product water.  Each 

phase was then individually analyzed using the same GCs described above. 

Quantification of products was done by combination of GC-MS analysis and 

injection of known amounts of standard compounds. The space time (W/F) is defined 

as the ratio of catalyst mass (g) to organic mass flow rate (g/h). The different range of 

W/F was used in each, but in general was varied from 0.1 to 2 h. The propanal 

conversion and product yield were calculated based on mole of carbon. 
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Figure 2.1 – Reactor system diagram and picture at atmospheric pressure  

and aromatic products shown in a vial. 
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2.3. Catalyst Characterization 

Powder X-ray diffraction (XRD) patterns of the zeolite samples were recorded 

using a Bruker D8 Discover diffractometer.  High resolution scanning electronic 

microscopy (SEM) observations were performed on gold-coated samples in a Jeol 

JSM-880 electron microscope equipped with X-ray elemental analyzer.  

The acid properties of the various zeolites were characterized by temperature 

programmed desorption of isopropylamine (IPA-TPD), using a 1/4 in-diameter quartz 

reactor. Before each experiment, the zeolite sample (50 mg) was pretreated for 0.5 h in 

flowing He (30 mL/min) at 600°C to eliminate any adsorbed water. Then, the 

temperature was reduced to 100°C and the sample was exposed to IPA (5 μL/pulse, 10 

pulses, 3 min/pulse). After exposure to the adsorbate, He flowed for 0.5 h to remove 

weakly adsorbed IPA. To start the TPD, the temperature was increased to 650°C at a 

heating rate of 10°C/min. The evolution of desorbed species was continuously 

monitored by a Cirrus mass spectrometer (MKS) recording the following signals 

m/z=17 and 16 (NH3), 18 (H2O), 44 (IPA), and 41 (propylene). The density of acid 

sites was quantified by calibrating the MS signals using the average of ten 100-L-

pulses of propylene.  

The amounts of coke deposits were quantified by temperature programmed 

oxidation (TPO) by passing a 2% O2/He stream over a 20 mg spent catalyst sample, 

using a linear heating rate of 10°C/min. The signals of H2O (m/z=18), CO2 (m/z=44), 

and CO (m/z=28) were continuously monitored by MS. Quantification was calibrated  

on the basis of the signals from 100 μL CO2 and CO pulses in flowing He. 
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CHAPTER 3 

 

A COMPARISON OF THE REACTIVITIES  

OF PROPANAL AND PROPYLENE ON HZSM-5 

 

Abstract 

The reactivities of propanal and propylene have been compared on HSZM-5 

zeolites (Si/Al = 45 and 25).  Propanal is found to be much more reactive than 

propylene and to form mostly 2-methyl-2-pentenal and C9 aromatics as early products 

in the reaction network. Propylene, in contrast, requires more severe conditions to 

form C6 and C7 aromatics.  It is proposed that propanal undergoes acid-catalyzed aldol 

condensation to form 2-methyl-2-pentenal. This dimer undergoes further condensation 

to form the aldol trimer, which subsequently dehydrates and cyclizes into C9 

aromatics.  In contrast, it is well known that propylene, like other olefins, undergoes 

aromatization via oligomerization and formation of a hydrocarbon pool.  While in the 

conversion of propanal, propylene is also produced, it appears that it does not play a 

major role in the formation of aromatics under conditions of shorter space times and 

lower temperatures, at which propanal produces aromatics in significant amounts. 

Keywords: HZSM-5, aromatization, oxygenates conversion, aldehyde conversion, 

aldol condensation, deoxygenation, biofuels. 
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3.1. Introduction 

Substantial production of oxygenates from biomass conversion and biodiesel 

production has generated growing interest in processes for upgrading these 

compounds to fuels and chemicals.  Bio-oil production from fast pyrolysis of biomass 

has been estimated to have lower operating and capital costs compared to other 

biomass conversion processes [1-2].  Bio-oil contains large amounts of reactive 

oxygenated compounds with various functional groups including aldehydes, ketones, 

acids, and polyols.  The composition of bio-oil varies considerably depending on 

feedstock and reaction conditions (a range of composition might be: 54-58% C, 5.5-

7% H, 35-40% O, and 0-0.2% N) but contain large amounts of oxygenate species such 

as aldehydes, alcohols and acids., and thus has a low heating value [3,4]. Furthermore, 

these oxygenates are thermally and chemically unstable and need to be converted to 

make them compatible with transportation fuels [3-4].  For instance, acetaldehyde and 

propanal found in bio-oils can further oxidize to form corrosive acids or participate in 

polymerization reactions to form heavy products during storage and transportation.  

While small oxygenates are liquid, they tend to have high volatility and increase the 

vapor pressure of fuels.   In contrast to hydrotreating [3-5] that converts the light 

oxygenates to gases, causes losses in liquid yield, and consumes valuable hydrogen, 

the conversion of light oxygenates via condensation and aromatization to larger, more 

stable molecules appears to be a an attractive opportunity to enhance the liquid quality 

and yield.  
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The complexity of bio-oil has created a great challenge in understanding 

reaction pathways and tailoring catalysts toward desirable fuel components.  Thus, 

model compounds have been studied over different types of catalysts. e.g., metals, 

metal oxides, and zeolites.  Reforming sugar/carbohydrate compounds from pretreated 

biomass, such as sorbitol, to produce synthesis gas and alkanes has been well 

demonstrated on metal catalysts by Dumesic et al. [6].  They have also proposed a 

strategy for making non-oxygenated diesel compounds, C9-C15, in sequential steps: 

dehydration, aldol condensation, and hydrodeoxygenation.  At the same time, 

condensation of small aldehydes, acids, or ketones to form higher boiling point n- and 

iso- alkanes has been studied on metal oxide catalysts [7-8].   In contrast to noble 

metal and metal oxide catalysts, acidic zeolites [9-11] have the ability to directly 

convert oxygenates to primarily isoalkanes and aromatics in the gasoline boiling 

range.  

HZSM-5 has been extensively studied for the conversion of methanol to 

hydrocarbons, in relation to the well-known MTG process (methanol-to-gasoline) 

[12], as well as other similar processes, such as the integrated gasoline synthesis 

process from Haldor Topsøe [13].   

The reactions of aldehyde, ketone, acid, and furanic compounds on HZSM-5 

also have been extensively investigated [9-11, 14].  In these studies substantial 

amounts of aromatics have been observed in the final products.  In general, the most 

widely accepted aromatization pathway is that oxygenates are first converted to olefins 

and these are then oligomerized and dehydrocyclized to form aromatics [9].  Other 
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studies have found that greater aromatization activity is observed with propanal 

compared to other C3 oxygenates such as ketone, alcohol, acid, or ester [14-16].  

Similarly, researchers from our group have found that aromatics are produced to a 

much greater extent when starting from methyl-octanoate than when starting from n-

octane [17-18]. They have proposed that aromatics are produced from the direct ring 

closure of an oxygenated intermediate keeping the original carbon chain, rather than 

via cracking / oligomerization / cyclization.   

Therefore, it appears important to conduct a direct side-by-side comparison of 

the reactivity of a simple aldehyde and the corresponding olefin to determine whether 

they follow different reaction paths or they go through a common path.   In this 

contribution, we report the results of the propanal conversion to aromatics in 

comparison with the conversion of propylene, obtained on two HZSM-5 catalysts 

under identical reaction conditions. 

 

3.2. Experimental 

3.2.1. Catalyst Preparation.   

A commercial HZSM-5 (Si/Al = 45) zeolite was supplied by Süd-Chemie, Inc.  

Another ZSM-5 sample was synthesized in-house following a synthesis method 

described elsewhere [19].  The Si/Al ratio of the synthesized ZSM-5 sample was 

specified to be 25 by modifying the amount of Al in the original recipe.  The proton 

form of the zeolites was obtained from ion-exchange with NH4NO3 at 80°C for 10 h.  
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The process was repeated to completely replace the cations in the zeolite with NH4
+.  

The final synthesized HZSM-5 catalyst was obtained after drying at 100°C for 10 h 

and calcining at 600°C for 3 h in dry air.  The two zeolite samples used in this work 

are identified as HZSM-5(45) and HZSM-5(25), corresponding to the commercial 

HZSM-5 (Si/Al = 45) and the in-house synthesized HZSM-5 (Si/Al = 25), 

respectively. 

3.2.2. Equipment and Procedures.   

The continuous flow reactor used in the catalytic measurements was a 1/4“ 

outside diameter, quartz tube fixed bed reactor.  The reactor was heated in a split-tube 

furnace (Thermal Craft) with a digital feedback temperature controller (Omega).  

Before each run, the catalyst was treated in situ with H2 (35 sccm) for 1 h at 400°C.  

Propanal, obtained from Sigma-Aldrich, was fed into the reactor by using a syringe 

pump (KD Scientific) at a constant flow rate of 0.12 ml/h.  Ultra high purity propylene 

was obtained from Airgas.  The reactions were carried out at atmospheric pressure in 

flowing H2 at different space times (weight of catalyst to organic mass feed rate ratio: 

W/F).   

In the pulse experiments, the same diameter quartz tube was used as in the 

continuous flow configuration.  The catalyst was pretreated with the same procedure 

mentioned above.  Liquid propanal was introduced into the reactor in 5 μl (liquid) 

pulses using a GC syringe (Hamilton 10μl).  Propylene was introduced into the system 

using a 6-port valve with a 5 ml sample loop.  For temperature programmed reaction-

desorption experiments, propanal was pre-adsorbed by sending twenty 5 μl pulses at 
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250 °C.  After flushing with He, the reactor was heated up to 600 °C with a ramp rate 

10 °C/min.  

3.2.3. Product analysis.   

Every 30 min on stream, products were analyzed online by GC/FID (HP6890).  

The products were sampled using a 6-port valve with a 250 µl sample loop heated to 

290 °C.  After each run, the reactor was purged with pure He for 15 min to collect the 

residual products that desorb from the catalyst bed.  The liquid products collected in 

solvent methanol were then identified by GC/MS (Shimadzu Q-2010).  Both GCs are 

equipped with HP-INNOWax columns.  In the pulse experiments, the products were 

analyzed by a mass spectrometer (MS) detector (MKS Cirrus 200). 

3.2.4. Characterization.  

The commercial and in-house synthesized HZSM-5 samples were 

characterized by X-ray powder diffraction (Bruker D8 Discover) and scanning 

electron microscopy (SEM) to confirm the crystal structure and determine the 

morphology and crystallite size of the zeolites.  The acidity of the HZSM-5 was 

determined by temperature programmed desorption (TPD) of iso-propyl amine (IPA) 

in a quarter inch quartz tube reactor with 50 mg of catalyst connected to an online MS 

detector (MKS Cirrus 200).  Before each TPD run, the sample was pretreated in He at 

400 °C for 1 h and then cooled down to 100 °C.  The IPA adsorption was carried out 

by injecting four liquid pulses of IPA (4 µl each pulse) over the sample in He at 100 

°C, at 2.5 min intervals.  The catalyst was then flushed in He flow for 30 min at 100 

°C and the TPD was started, using a temperature ramp of 10 °C/min up to 650 °C.  
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The MS signals of m/z 44 (IPA), 41 (propylene), 17 (ammonia), 18 (water), 16 

(fragment of ammonia) were monitored.  The signals were calibrated with a 5 ml loop 

of 2 wt% ammonia in He.  

 

3.3. Results 

3.3.1. Characterization.  

The XRD pattern of the synthesized HZSM-5 sample is in agreement with 

those reported in the literature[12].  The SEM results show that the synthesized sample 

has a crystallite size of 1-2 µm, significantly larger than the commercial HZSM-5 

(100-150 nm).   

The TPD profiles of the commercial HZSM-5(45) and synthesized HZSM-

5(25) in Figure 3.1 show the evolution of propylene from adsorbed IPA with a 

maximum at about 350 °C.  It has been suggested that the decomposition of adsorbed 

IPA is catalyzed by strong Brønsted sites and therefore the amount of propylene 

desorbed can be directly related to the density of Brønsted acid sites [20-21].   

The calculated Si/Al ratios of the samples were obtained from elemental 

analysis in SEM by EDX.  The summary of the physical properties of the HZSM-

5(45) and HZSM-5(25) samples are shown in Table 3.1.  
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Table 3.1. Total acid density and Si/Al of zeolites 

Zeolite  Si/Ala   Acidityb 

(mmol/g)  

HZSM-5 (25)  25   0.421  

HZSM-5 (45)  53   0.330  

aSi/Al ratio calculated from elemental analysis in SEM by EDX 
bBrønsted acid density derived from IPA-TPD 
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Figure 3.1.  IPA-TPD profiles propylene evolution of HZSM-5 (45) and HZSM-5 (25) 

 

 



25 
 

3.3.2. Conversion of Propanal and Propylene in a Steady Flow Reactor 

Propanal was converted to aromatics (C6-C9), gas (C1-C3), and isoalkenes (C4-

C9) on HZSM-5 (45) at 400°C.  The variation of product yields with space time (W/F) 

are shown in Figure 3.2 over the range of 0.07-0.25 h for data taken after 1 h on 

stream.  In this range, the propanal conversion ranged from 59.5% to 99.8%.  

Aromatics and gas (C1-C3) yields increased more rapidly compared to the isoalkenes 

(C4-C9) yield as W/F increased.  In fact, aromatics were always observed as major 

products even at the shortest W/F studied.  In this range of W/F, the highest yield of 

aromatics was 51.9% obtained at 0.25 h W/F. The second major products were gases 

(C1-C3) of which the majority was propylene.  The isoalkenes (C4-C9) were always 

relatively minor products.   

A separate experiment under the same conditions as those used for propanal 

conversion, was conducted feeding 2-methyl-2-pentene to determine its propensity for 

further reaction and aromatics formation.  The results showed that this isoalkene is 

reactive, forming only propylene and other isoalkenes, but did not form aromatics.  

These results are summarized in Table 3.2. 

Conversion of propylene was performed at the same temperature, 400 °C, as 

the propanal experiments but to longer space times, up to W/F=4 h.  However, the 

level of conversion with this feed was much lower and only traces of aromatics were 

obtained (<1%), as shown in Table 3.3.  This result indicates that these reaction 

conditions are insufficient for the reaction to proceed through the intermediate steps 

typically observed at higher temperature, in which aromatization occurs via  
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Figure 3.2. W/F series of propanal conversion on HZSM-5 (45) at 400 oC 
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Table 3.2. Product distribution of propanal and 2-methyl-2-pentene 

Feed  Propanal  2-methyl-2-pentene  

Conditions  W/F=0.2 h 
HZSM-5 (45) 
 400 oC  

W/F =0.2 h 
HZSM-5 (45)  
400oC  

TOS (min)  60  60  

Conversion  94.4  96.0  

Gas (C1-C3)  37.8 44.6  

isoalkenes (C4-C9)  5.5 51.4  

Aromatics  51.1 -  

C6 (Benzene)  0.1 - 

C7 (Toluene)  10.3 -  

C8 (Xylene)  13.1 -  

C9 (MEB&TMB)  20.2  -  

C10+  7.3  -  
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Table 3.3.  Product distribution of propanal and propylene 

Feed  Propanal  Propylene  

Conditions  W/F=0.07 h 
HZSM-5 (45) 

 400 oC  

W/F =0.13 h 
HZSM-5 (45) 

400 oC  

W/F =4 h 
HZSM-5 (45) 

400oC  

W/F =4h 
HZSM-5 (25) 

500oC  

TOS (min)  60  150  60  150  60  150  60  150  

Conversion  52.5  39.4  76.3  56.8  42.4  41.0  65.6  64.4  

Gas (C1-C3)  27.0  22.5  32.2  29.9  -  -  38.4  36.6  
isoalkenes  
(C4-C9)  0  0  3.4  1.0  41.8  40.6  9.7  10.6  

Aromatics  25.9  16.8  40.7  25.8  0.7  0.5  17.5  17.2  

C6 (Benzene)  0.0  0.0  1.0  0.0  0.3  0.3  3.5  3.5  

C7 (Toluene)  4.2  2.4  6.9  4.2  0.2  0.1  9.0  9.0  
C8 (Ethyl-
benzene)  0.8  0.5  1.3  0.9  -  

 
0.2  0.2  

C8 (p-Xylene)  2.7  1.5  3.8  2.4  0.2  0.1  1.3  1.3  

C8 (m-Xylene)  2.3  1.4  3.9  2.5  -  
 

2.6  2.5  

C8 (o-Xylene)  2.1  2.2  1.5  2.3  -  
 

1.0  0.9  

C9  11.2  7.1  15.5  10.6  -  
 

-  -  

C10+  2.5  1.7  6.3  2.9  -  
 

-  -  

C9/others  0.93  0.89  0.84  0.86  
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oligomerization of olefins.  In order to obtain significant yields of aromatics from 

propylene, a synthesized HZSM-5 with a higher acid density (Si/Al=25) was used and 

operated at a higher temperature of 500 °C and longer W/F.   Table 3.3 shows that the 

propylene conversion under these severe conditions and with a much more active 

catalyst can reach a similar range to that obtained with propanal conversion.  Only in 

this case, the aromatics yield from propylene becomes significant.  These results are 

summarized in Figure 3.3.  At short W/F, in contrast to the behavior observed with 

propanal, the major products are alkenes and light gases C1-C2.  At longer W/F, yields 

of both aromatics and light gases continued to increase while the yield of alkenes 

reached a maximum and then declined.  This trend suggests that the alkenes were 

consumed to produce more aromatics as well as cracking products.  This behavior has 

been extensively reported in the literature for the aromatization of alkanes [22-23].  

An interesting point is that aromatics formation with propanal was much higher than 

that from propylene.  For example, at a similar conversion level (~60%), only 10% 

aromatic yield was obtained in comparison to 30% obtained with propanal.  

Understandably, at the severe conditions used in the propylene experiments, the extent 

of cracking is much greater.  

The aromatic product distribution at 60 min and 150 min time on stream (TOS) 

for both the propanal and propylene experiments are summarized in Table 3.3.  The 

conditions were adjusted so that in both cases the conversions were in about the same 

range.  It is clearly seen that propanal yields larger amounts of heavier aromatics and 

much lower amounts of C6 (benzene) and C7 (toluene) compared to those from  
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Figure 3.3. W/F series of propylene conversion on HZSM-5 (25) at 500 oC 
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propylene.  That is, C8 (xylene), C9 (trimethylbenzene (TMB) and methylethylbenzene 

(MEB)), and C10+ aromatics were observed as products from propanal but not from 

propylene at this conversion level.  Because the distribution of aromatics produced 

from propanal appears to be different than those produced from propylene, transient 

pulse reaction experiments were performed for both propylene and propanal at the 

reaction conditions used in their respective steady flow experiments in order to better 

see the evolution of the product distributions through to the formation of the 

aromatics. 

One difference in reaction conditions between experiments feeding propanal or 

propylene is the presence of water.  The conversion of propanal, either via dehydration 

or aldol pathways, results in the formation of an equimolar amount water.  In 

pyrolysis, it is also known that substantial amounts of water are produced and may be 

expected to be present in catalytic conversion of bio-oil and its oxygenate fractions. 

Therefore the effect of water on the catalysis may be an important consideration.  An 

experiment was conducted with propanal as the feed in which water was injected part 

way through the run, injected for a period of time, and then stopped while the 

experiment was continued.  The result showed that during the period when water was 

being injected, activity was reduced. After the water addition was stopped, the activity 

returned to a comparable level as if the water had never been injected.  
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3.3.3. Transient Conversion of Propanal. 

The pulse reactor was loaded with 10 mg of HZSM-5 (45) and pretreated at 

400 °C in He at a flow rate of 30 sccm.  Propanal was introduced into the reactor, at 

400 °C by injecting consecutive 5µl pulses until the catalyst was deactivated.  This 

point was determined by observing the increase in the unreacted propanal peak size 

until it remained constant.  The online MS detector was set to monitor the following 

signals: m/z 18 (Water), m/z 28 (C2H4 and CO), m/z 41 (Propylene and fragment from 

the Dimer), m/z 58 (Propanal), m/z 78 (C6-B), m/z 92 (C7-T), m/z 98 (C6 Dimer: 2-

methyl-pentenal), m/z 105 (C9: TMB and MEB), m/z 106 (C8: xylene), m/z 138 (C9 

Trimer: dimethyl-heptenal).  A reference sample containing all the aromatics in equal 

volumes, showed that the MS responses for C8 and C7 were somewhat higher than C9, 

but no attempt at calibration was made.  The products obtained were consistent with 

the flow reactor results mentioned above.  As shown in Figure 3.4a, the largest signals 

were primarily C9 (TMB and MEB) and C8 (X), less C7 (T), and traces of C6 (B).  As 

the number of propanal pulses increased, catalyst deactivation was evidenced by a 

decrease in the size of the product peaks and an increase in the propanal peak.  The 

water signal was reduced but did not completely disappear.  In addition, the dimer (D) 

product was detected only in the last few pulses as deactivation proceeded, although 

the signal was small.  The products from the first pulse showed a mixture of aromatics 

from C6-C9 with the C8 (X) and C9 aromatics more pronounced compared to C6 (B) 

and C7 (T).  As deactivation proceeded, it appears that C9 and the dimer, were the only 

significant products observed at lower conversion.  It also was observed that the ratio  
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Figure 3.4. Pulse series of propanal on HZSM-5 (45) at different temperatures: 
            a) 400 oC; b) 350 oC; c) 300 oC 
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of C9 to C8 aromatics increased as the catalyst deactivated, as shown in Figure 3.5.  

This trend suggests that aldol dimerization and then aromatization of an aldol trimer 

may be the initial pathway for aromatics formation under these mild conditions, as has 

been shown on other acidic systems [24-25].  When C9 (TMB) was pulsed into the 

system at this temperature, a mixture of aromatics: C7 (T), C8 (X), C9 (TMB), but no 

C6, was observed.  With increasing number of pulses of TMB, deactivation occurred 

accompanied by a decrease in the amount of lighter aromatics. This experiment also 

showed that at 400 °C in this system, there are certainly cracking reactions taking 

place. 

The same experiments were performed at lower temperatures, 350 °C and 300 

°C with the results shown in Figures 3.4b and 3.4c.  Much lower signals for products 

and much higher propanal signals show the decreased conversion obtained at the 

lower temperatures.  A significantly higher C9 aromatics signal was observed 

compared to those for C8 (X), C7 (T), C6 (B), with a much higher ratio than at 400 °C.  

As the catalyst deactivates, the C9 aromatics again become the dominant aromatic 

product.  At even lower temperatures, i.e. 300 °C, C9 aromatics appeared as the only 

major aromatic product but rapid deactivation occurred.  In contrast to the results 

obtained at higher temperature, the dimer product was observed with the first pulses 

but not in the subsequent ones.  The results at lower temperatures also suggest that as 

the conversion is lowered and the contribution from cracking decreases, the observed 

products are those expected as initial products from the aldol pathway, while the  

 



35 
 

 

 

 

2 4 6 8 10 12 14 16 18 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
R

at
io

Pulse

 C9/C7
 C9/C8

 

Figure 3.5. Pulse series of propanal on HZSM-5 (45) at 400 oC 
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lighter aromatics may result mostly from secondary cracking reactions of heavier 

aromatics. 

A temperature programmed reaction-desorption experiment was conducted 

under the pulse reactor conditions. First, 20 pulses of propanal (5 μl) were injected 

over the catalyst while keeping the temperature at 250 °C; then, the temperature was 

increased with a linear heating ramp of 10 °C per min.  During the isothermal period 

at 250 °C shown in Figure 3.6a, the dimer and C9 aromatics were the only products 

observed until the catalyst deactivated.  With later pulses, while the dimer continued to 

appear, production of aromatics rapidly decreased, as shown by the disappearance of 

the C9 aromatic peak.  This trend suggests that while the weaker acid sites and even 

the Lewis acids may catalyze the aldol condensation of propanal to form the dimer (2-

methyl-pentenal), stronger Brønsted acid sites, which are the first to deactivate, are 

required for the cyclization and dehydration steps required to produce C9 aromatics. 

After the isothermal pulse injections, He was allowed to flow for 10 min 

before the temperature ramp was started. As shown in Figure 3.6b, water along with 

significant amounts of C9 aromatic appeared concurrently during the 316-330 °C 

range.  Smaller peaks of C8 (X) and C7 (T) were also observed.  This evolution of 

products suggests that some adsorbed intermediates are converted to the C9 aromatics 

at higher temperature.  The fact that water was produced along with formation of the 

C9 aromatics points at the participation of a step involving the dehydration of an 

oxygenated intermediate. This is consistent with an aldol pathway forming a cyclic 

trimer oxygenate, which could be a precursor to aromatics.  
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3.3.4. Transient Conversion of Propylene. 

For the propylene pulse experiments, the same reactor system described above 

was used.  The first experiment was conducted with 200 mg of the commercial 

HZSM-5 (45) at a temperature of 500 °C.  No conversion to aromatics was observed 

under these conditions.  In the second experiment, 200 mg of the synthesized HZSM-5 

(25) and a temperature of 500 °C were employed.  As shown in Figure 3.7, propylene 

was converted to C6 (B) and C7 (T) aromatics as the major products and only a small 

amount of C8 (X) and C9 aromatics were observed.  This result is consistent with those 

observed in the flow reactor described above.  This result further confirms that the 

initial aromatic formed from propylene conversion is C6 (B), but that propylene does 

not convert to aromatics at 400 °C on HZSM-5 with a Si/Al of 45, in marked contrast 

with propanal. 

 

3.4. Discussion 

It is well established that aromatization of propane proceeds via alkene 

intermediates yielding benzene as a primary aromatic product [22-23].  Other 

aromatics and light alkanes are the products of subsequent alkylation, 

diproportionation, and cracking reactions from a surface hydrocarbon pool [26-27].  

The results observed in this contribution for the propylene conversion are in good 

agreement with these concepts.  However, the results from the propanal conversion 

studies show much higher aromatization activity at milder reaction conditions and a 

significant difference in the initial aromatic product distribution compared to the  
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results observed with propylene under the conditions at which aromatization occurs.  

This is an important difference that has not been previously pointed out.  2-methyl-2-

pentene has a structure similar to those isoalkenes that might be derived from the 

hydrolysis of the aldol dimer (2-methyl-2-pentenal) of propanal.  As shown in Table 

3.2 above, no aromatics were produced from this isoalkene when it was fed by itself.  

This evidence suggests that aromatics are not predominantly produced from isoalkenes 

C4-C9 but instead from a surface oxygenate pool.    

The C9 aromatic, TMB, is an interesting aromatic product to consider because 

it could, in principle, be produced from either alkylation of benzene or direct 

cyclization of a propanal trimer formed via an aldol condensation pathway.  The fact 

that no C9 aromatic was observed as a major product from a propylene feed at the 

conditions studied indicates that this alkylation pathway is not significant.  By 

contrast, TMB along with EMB were observed as the major initial aromatic products 

from propanal, especially at low conversion of propanal either at low W/F, after some 

deactivation, or at lower temperatures. This result holds even in the presence of 

significant amounts of propylene formed from the propanal feed.    

The reaction pathway involving condensation followed by cyclization of the 

aldol trimer is proposed in the scheme shown in Figure 3.8.  It can be suggested that 

the ring closure involves the highly active hydrogen in position alpha to the carbonyl. 

After the ring closure, the carbonyl group can tautomerize to the enol form and further 

dehydrate to TMB and EMB on an acid site in the zeolite.  These first aromatic 

products can then undergo the typical secondary reactions on acid sites, such as  
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Figure 3.8. Propose mechanism of TMB formation from propanal aldol trimer 
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Figure 3.9. Proposed pathway of propanal conversion 
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dealkylation and disproportionation, producing light products and other aromatics.  

The overall proposed pathway for propanal conversion is shown in Figure 3.9. 

 

3.5. Conclusions 

The conversion of propanal at 400 °C has been investigated on an HZSM-5 

zeolite and compared to the well-known behavior of propylene, which was also 

studied on a second, higher acidity, HZSM-5.  While C9 aromatics are the major 

products formed initially from propanal, propylene does not produce significant 

aromatics and is much less reactive under these conditions.  It is suggested that the 

ring closure of propanal-derived products involves tautomerization of a 

polyunsaturated aldehyde (Trimer) to an enol form, followed by 1,6-cyclization and 

subsequent dehydration to TMB and EMB on acid sites. These aromatics can then 

undergo secondary reactions such as dealkylation, disproprotionation and cracking.   

This pathway for aromatics formation is much more effective than the conventional 

acid-catalyzed alkane/alkene conversion on zeolites.  In addition, it takes place at 

milder conditions than those required from alkane/alkenes, with consequently lower 

rates of deactivation and less undesirable cracking.  

Acknowledgements 

Support from the National Science Foundation (EPSCoR 0814361), US 

Department of Energy (DE-FG36GO88064), Oklahoma Secretary of Energy and the 

Oklahoma Bioenergy Center are greatly appreciated.   



44 
 

References   

[1] D.A. Simonetti, and J.A. Dumesic, Chemsuschem 1 (2008) 725-733. 

[2] J.N. Chheda, G.W. Huber, and J.A. Dumesic, Angew Chem Int Edit 46 (2007) 

7164-7183. 

[3] D. Mohan, C.U. Pittman, and P.H. Steele, Energy & Fuels 20 (2006) 848-889. 

[4] S. Czernik, and A.V. Bridgwater, Energy & Fuels 18 (2004) 590-598. 

[5] R. Maggi, and B. Delmon, Hydrotreatment and Hydrocracking of Oil Fractions 

106 (1997) 99-113. 

[6] G.W. Huber, and J.A. Dumesic, Catal Today 111 (2006) 119-132. 

[7] E.L. Kunkes, E.I. Gürbüz, and J.A. Dumesic, J Catal 266 (2009) 236-249. 

[8] K.M. Dooley, A.K. Bhat, C.P. Plaisance, and A.D. Roy, Appl Catal A-Gen 320 

(2007) 122-133. 

[9] A.G. Gayubo, A.T. Aguayo, A. Atutxa, R. Aguado, M. Olazar, and J. Bilbao, 

Ind Eng Chem Res 43 (2004) 2619-2626. 

[10] J.D. Adjaye, and N.N. Bakhshi, Biomass Bioenerg 8 (1995) 131-149. 

[11] J.L. Grandmaison, P.D. Chantal, and S.C. Kaliaguine, Fuel 69 (1990) 1058-

1061. 



45 
 

[12] S.L. Meisel, in: C.D.C.R.F.H. D.M. Bibby, and S. Yurchak, (Eds.), Studies in 

Surface Science and Catalysis, Elsevier. 17-37. 

[13] J. Topp-Jørgensen, in: C.D.C.R.F.H. D.M. Bibby, and S. Yurchak, (Eds.), 

Studies in Surface Science and Catalysis, Elsevier. 293-305. 

[14] G.J. Hutchings, P. Johnston, D.F. Lee, A. Warwick, C.D. Williams, and M. 

Wilkinson, J Catal 147 (1994) 177-185. 

[15] F. Bandermann, and J. Fuhse, Chemie Ingenieur Technik 59 (1987) 607-608. 

[16] C.D. Chang, and A.J. Silvestri, J Catal 47 (1977) 249-259. 

[17] T. Sooknoi, T. Danuthai, L.L. Lobban, R.G. Mallinson, and D.E. Resasco, J 

Catal 258 (2008) 199-209. 

[18] T. Danuthai, S. Jongpatiwut, T. Rirksomboon, S. Osuwan, and D.E. Resasco, 

Appl Catal A-Gen 361 (2009) 99-105. 

[19] X. Zhu, L. Lobban, D. Resasco, and R. Mallinson, J Catal (2010) (in press). 

[20] W.E. Farneth, and R.J. Gorte, Chem Rev 95 (1995) 615-635. 

[21] T.J.G. Kofke, R.J. Gorte, G.T. Kokotailo, and W.E. Farneth, J Catal 115 

(1989) 265-272. 

[22] J.A. Biscardi, and E. Iglesia, J Catal 182 (1999) 117-128. 

[23] T. Mole, J.R. Anderson, and G. Creer, Appl Catal 17 (1985) 141-154. 



46 
 

[24] P. Dejaifve, J.C. Vedrine, V. Bolis, and E.G. Derouane, J Catal 63 (1980) 331-

345. 

[25] G.S. Salvapati, K.V. Ramanamurty, and M. Janardanarao, J Mol Catal 54 

(1989) 9-30. 

[26] S. Kolboe, Acta Chemica Scandinavica Series a-Physical and Inorganic 

Chemistry 40 (1986) 711-713. 

[27] I.M. Dahl, and S. Kolboe, J Catal 149 (1994) 458-464. 

 
 

 



47 
 

CHAPTER 4 

 

EFFECTS OF HZSM-5 CRYSTALLITE SIZE ON STABILITY AND 

AROMATICS DISTRIBUTION FROM CONVERSION OF 

PROPANAL 

 

Abstract 

The conversion of propanal on large (2-5 µm) and small (0.2-0.5 µm) crystallite 

HZSM-5 at 400 oC and atmospheric pressure showed significant effects on catalyst 

stability and product distribution.  Improved catalyst stability was observed on small 

crystallites due to faster removal of products from the shorter diffusion path length of 

the small crystallites, reducing the formation of coke precursors.  The main isomer of 

the C8 aromatic products observed on small crystallites was the thermodynamically 

preferred meta-xylene, while the shape-selective preferred para-xylene was the 

predominant product on large crystallites.  The higher internal diffusion rate of the 

para isomer results in higher shape-selectivity with the longer path of the large-

crystallite zeolite. At the same time, higher ratio of C9/(C8+C7) aromatics was 

observed on the small crystallites.  As previously shown, the C9 aromatics are the 

initial aromatics produced from propanal via aldol condensation followed by 

cyclization. These C9 aromatics have less opportunity to crack to lighter aromatics on 

the small crystallites. It is concluded that the use of smaller crystallite HZSM-5 
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improves results for production of alkyl aromatics from light oxygenates at mild 

conditions that may prove useful for bio-oil upgrading. 

Keywords: Propanal; HZSM-5; Zeolites; Crystallite size; Aromatization; Shape 

selectivity; Bio-oil upgrading; Biofuels 

 

4.1. Introduction 

Bio-oil contains a large fraction of oxygenated compounds that are thermally 

and chemically unstable and need to be deoxygenated to form fuel compatible 

molecules [1-2].  Conversion of methanol to hydrocarbons has been extensively 

studied on HZSM-5[3-4].  There have also been many studies of the conversion of 

small oxygenates such as molecules with aldehyde, ketone, alcohol, and acid 

functionalities [5-7] as well as large oxygenates such as methyl-esters [8-9] on HZSM-

5. 

The effect of crystallite size has been recognized as an important factor in 

MTG, MTO, and alkylation of aromatics.  This has been examined with HZSM-5[10] 

and SAPO-34[11-12].  The results from those studies show that light olefins are 

selectively produced on smaller crystallite sizes of less than 2 µm.  Those authors also 

found that in larger crystallites, intermediates can be converted in consecutive steps 

before they desorb from the crystallite and thus, more secondary products and faster 

deactivation were observed due to longer intra-crystalline diffusion path lengths.  In 

smaller crystallites, they observed faster equilibration of methanol and DME at low 
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conversion and excellent catalyst lifetime.   However, it was also found that catalyst 

active sites on the external surface, responsible for non-shape-selective products, are 

more significant on small crystallite size zeolites[13].   

Significant yields of alkyl aromatic products were found from conversion of 

propanal on HZSM-5 at mild conditions in previous work[14].  Those results showed 

that the initial aromatics had significant alkylation and were predominantly produced 

via an aldol condensation pathway instead of a hydrocarbon pool. 

Although the effect of crystallite size has been studied for some applications, 

there has been little research done with bio-oil derived oxygenate compounds.  In this 

contribution a comparative study of catalyst activity and product distribution from 

propanal conversion are examined on small and large crystallite HZSM-5.   

 

4.2. Experimental 

4.2.1. Catalyst Preparation.   

Small crystallite HZSM-5 with a Si/Al ratio of 45 was obtained from Süd-Chemie, 

Inc.  The large crystallite HZSM-5 was synthesized following synthesis methods 

described elsewhere [15].  The Si/Al ratio of the synthesized large crystallite ZSM-5 

was specified to be 45 by modifying the amount of Al in the original recipe.  The 

proton form of this zeolite was obtained by ion-exchange with NH4NO3 at 80 °C for 

10 hrs.  The process was repeated to completely replace the cations in the zeolite with 
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NH4
+.  The final large crystallite HZSM-5 was obtained after drying at 100 °C for 10 

hr and calcining at 600 °C for 3 hr in dry air. 

4.2.2. Equipment and Procedures.   

The reactor was a 6 mm OD quartz tube fixed bed continuous flow reactor.  The 

reactor was heated by a split-tube furnace (Thermal Craft) with a digital feedback 

temperature controller (Omega).  The catalyst was treated in situ with H2 for 1 hr at 

400 oC before each run and hydrogen continued to flow during the reaction 

experiments.  Propanal, obtained from Sigma-Aldrich, was fed into the reactor by a 

syringe pump (kd Scientific).  The reaction was carried out at atmospheric pressure at 

different space times (weight of catalyst to organic mass feed rate ratio, W/F, from 0.1 

h to 1 h, with a carrier gas flow of 35 cc/min .   

4.2.3. Product analysis.   

For each half hour time-on-stream (TOS), products were analyzed online by 

GC/FID (HP6890).  The products were sampled using a 6-port valve with a 250 µl 

sample loop heated at 290 oC.  After passing through the valve, the stream passed 

through a condenser. After each run, the reactor was purged with dry carrier gas for 15 

minutes to collect the residual products from the reactor in the condenser.  The 

condensable liquid products were collected in methanol and were then identified by 

GC/MS (Shimadzu Q-2010).  Both GCs were equipped with HP-INNOWax columns.   
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4.3. Characterization 

The synthesized HZSM-5 was characterized by X-ray powder diffraction 

(Bruker D8 Discover diffractometer).  Scanning electron microscopy (Jeol JSM-880 

electron microscope) was used to observe the morphology and crystallite size of both 

zeolites.   

The acidity of the catalysts was determined by temperature programmed 

desorption (TPD) of iso-propylene amine (IPA) with an online mass spectrometer 

(MS) detector (MKS Cirrus.)  The TPD was performed in a 6 mm quartz tube reactor 

with 50 mg of catalyst.  The catalyst sample was first pretreated in He at 400 oC for 1 

hr and cooled down to 100 oC.   

The adsorption of IPA was carried out in flowing He at 100 oC with 10 liquid 

pulses of IPA, 5 µl for each pulse and 3 min between pulses.  The temperature 

program was from ambient to 650 oC with a rate of 10 oC/min in flowing He.  The MS 

signals of m/z 44 (IPA), 41 (propylene), 17 (ammonia), 18 (water), 16 (fragment of 

ammonia) were monitored.  The results were calibrated with a pulse of propylene 

using a 100 µl loop.  

4.4. Results 

4.4.1. Characterization  

The HZSM-5 XRD pattern of the synthesized large crystallites was confirmed 

by comparing with the literature[16].  As depicted in Figure 4.1, the SEM images  
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a) Small crystallite HZSM-5 

 

 

b) Large crystallite HZSM-5 

 
 

Figure 4.1. SEM of small (a) and large (b) crystallite HZSM-5 (Si/Al= 45) 
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show that the large crystallite HZSM-5 has an average crystallite size around 2-5 µm, 

while the small crystallite HZSM-5 has a much smaller crystallite size averaging 

around 0.2-0.5 µm.   

Figure 4.2 shows the acidity profile of the large and small crystallite HZSM-5.  

The decomposition of IPA to propylene is due to Bronsted acid sites activated at high 

temperature [17].  The peak maximum in propylene evolution is observed at 350 oC.  

The large crystallite HZSM-5 has an acidity of 321 µmol/g.  The small crystallite 

HZSM-5 has a similar propylene peak and acidity of 337 µmol/g.  The calculated 

acidity, based upon the Al/Si ratio is 370 µmol/g. 

4.4.2. Catalyst activity  

Propanal conversion was performed on the small and large crystallite HZSM-5 

at 400 oC and atmospheric pressure.  The products are grouped into 3 categories: gas 

(C1-C3, mostly propylene), isoalkenes (C4-C9, mostly 2-pentene and iso-pentene), and 

aromatics (C7-C9+).    

Figure 4.3 shows the conversion as a function of W/F with curves for different 

TOS for both crystallite sizes.  The results for the small crystallites are represented by 

solid lines, and the large crystallites by dashed lines.  The TOS increases for each 

curve from the left to the right.  It is clear that these curves are very close together at 

different W/F for the small crystallites.  This indicates that for increasing TOS, there 

was no significant reduction in conversion, i.e. deactivation.  In contrast, the results 

for the large crystallites show gaps between the individual TOS curves.  At the same  
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Figure 4.2. Acidity profile of small and large crystallite HZSM-5 (Si/Al=45) 
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Figure 4.3.  Effect of crystallite size on catalyst activity at different W/F and TOS  
at 400 oC, opened symbol (large crystallite), solid symbol (small crystallite) 
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W/F, conversion decreased significantly with increasing TOS, indicating significant 

deactivation.   

In Figure 4.4, conversion and product yields are shown as a function of TOS at 

400 oC and W/F= 0.2 h. The left figure shows the results from the small crystallites 

and the right figure shows the results for the large crystallites.  Only modest 

deactivation was observed with small crystallites under these conditions. However, the 

large crystallites showed a large decrease in conversion as well as aromatics and gas 

with TOS.  The isoalkenes yield declined more slowly, indicating an increasing 

selectivity as deactivation proceeded while aromatization and cracking decreased.   

Figure 4.5 combines results for both W/F and TOS and shows that similar 

trends for product yields were observed as a function of conversion for both sized 

crystallites. This indicates that the catalytic function is not significantly changed with 

the crystallite size.  However, some effect can be seen with a somewhat higher yield of 

isoalkenes for the large crystallites.   

 The effect of crystallite size is significant when comparing the ratio of para-

xylene with the sum of the ortho- and meta- xylene [p/(o+m)] as depicted in Figure 

4.6.  At all conversion levels, the p/(o+m) ratio of the larger crystallites is much higher 

compared to that of the small crystallites.   This behavior has also been observed in the 

literature for the conversion of hydrocarbons or methanol to aromatics on HZSM-

5[10].  When comparing the ratio of C9/(C8+C7) aromatics, the results show, in  
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Figure 4.4. Effect of crystallite size on product distribution and conversion  

with TOS at 400 oC 
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Figure 4.5. Product yields versus conversion at 400 oC (combined TOS and W/F data),  
solid line (small crystallite), dash line (large crystallite) 
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Figure 4.7, a  much higher ratio of C9/(C8+C7) on the small crystallites.  This ratio 

decreases at longer W/F, where conversion is 100 %, with increasing amounts of 

excess catalyst and reaches a value similar to the large crystallites at W/F= 1 h on both 

crystallite sizes. 

 

4.5. Discussion  

It is known in the literature [11, 18]  that the different diffusivities of different 

sized and shaped products in the intracrystalline channels is the predominant 

mechanism for shape selectivity in HZSM-5 for the molecules of interest in this study. 

The HZSM-5 pore structure is a 10 member ring with a 3-dimensional channel system 

with two types of intersections with window openings of 0.54 x 0.56 nm and 0.51 x 

0.55 nm and a maximum diameter of the intersections of about 0.9 nm.  For this 

reason,  aromatic molecules such as benzene, having a critical diameter of 0.68nm, 

and alkyl aromatics can easily form within the intersections of the HZSM-5 channels 

[19] and diffuse out.  However, in a large crystallite, the diffusion path-length is 

longer, and differences in diffusion rates help control the selectivity.   

Even at the shortest TOS, the large crystallites showed significant deactivation 

with lower conversion at the same W/F as the small crystallites. As previously 

mentioned, and shown in Figure 4.3, it may be seen that the larger crystallite curve 

approaches the small crystallite curve as TOS decreases, e.g. from right to left.  In the 

limit of zero TOS, the curves should be co-incident, with no-deactivation of the large  
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Figure 4.6. Effect of crystallite size on p-xylene ratio as function of conversion for 
different W/F at TOS= 30 min 
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crystallites.  With the longer diffusion path-length of the larger crystallites, products 

take longer to diffuse out and have more time to form coke precursors and coke.  

The effect of diffusion is also apparent in the evolution of the p/(m+o) ratio, 

shown in Fig. 6.  A much higher p/(m+o) ratio was obtained with the large-crystallite 

HZSM-5 since the higher diffusion coefficient of para-xylene helps this molecule 

diffuse out of the large crystallites more rapidly than the ortho and meta isomers, 

which are retained longer with a greater probability of isomerizing to the para, the 

preferred shape-selective product.  In contrast, on small crystallites, with a shorter 

diffusion path length, all of the products are able to exit rapidly and the p/(m+o) ratio 

is much lower, being meta-xylene the favored product.   

Aromatization of hydrocarbons and alcohols in HZSM-5 is generally accepted 

as occurring by oligomerization of intermediate olefins by the hydrocarbon pool 

pathway [20].  According to this consecutive oligomerization pathway, one would 

expect more isoalkenes and less aromatics on small crystallites because they have less 

chance (shorter time in the channels) to complete formation of the aromatics.  

However, the fact that aromatics were always present even at the lowest conversion, 

on the small crystallites, suggests that aromatics are produced from a pathway other 

than the hydrocarbon pool mechanism.  In fact, it has been found that a predominant 

pathway for aromatics formation under these mild conditions is by aldol condensation 

with cyclization and dehydration of the aldol trimer of propanal[14] to give C9 

aromatics under these mild conditions.  Due to the shorter diffusion path length of the 
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small crystallites, the C9 aromatics leave the channels of a small crystallite with less 

chance of cracking to smaller secondary aromatic products, or coking.  The effect is 

less pronounced, or not observed, at high levels of conversion where excess acid sites 

are available to react with the larger products, increasing the cracking.  As a result, 

lighter aromatics, and a decrease in the ratio shown in Fig. 7 were observed at high 

conversion on the small crystallites. 

 

4.6. Conclusions 

The effect of crystallite size of HZSM-5 has been investigated for conversion 

of propanal to aromatics at mild conditions, 400 oC and atmospheric pressure.  Much 

slower deactivation was observed on the small crystallites, compared to the large 

crystallites, due to rapid removal of products from the shorter path length channels, 

reducing production of coke precursors and coke.  The smaller crystallites, with a 

shorter diffusion path length, showed significantly less isomerization of the product 

xylenes to the shape-selective preferred para-xylene because of its greater diffusion 

coefficient.  A higher fraction of C9 aromatics, the initial aromatic products from the 

predominant aldol pathway, was observed on small crystallites due to a shorter time 

for cracking before diffusion out of the channels.  These results suggest that the use of 

smaller crystallite HZSM-5 improves results for production of alkyl aromatics from 

light oxygenates at mild conditions that may prove useful for bio-oil upgrading. 
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CHAPTER 5 

 

A COMPARISON OF THE EFFECTS OF CHANNEL STRUCTURE 

OF ZEOLITES HZSM-5 AND 22 ON CONVERSION OF PROPANAL 

TO ISOALKENES AND ALKYL-AROMATICS 

 

Abstract 

A comparison of the conversion of propanal at 400 oC over zeolites with 

different channel structures using HZSM-22 and HZSM-5 shows significant effects on 

the product distribution.  It is shown that the structure of the HZSM-22, with a one-

dimensional and narrower channel system, restricts the formation of aromatics.  Thus, 

considerably less aromatics and a higher yield of C4-C9 isoalkenes is produced on 

HZSM-22. In contrast, a higher yield of aromatic products is observed over HZSM-5 

with its three-dimensional channel system.  By increasing channel dimension and 

connectivity of the channels, increasing catalyst activity was also observed, in 

agreement with literature.  The influence of water, which is produced from the 

dehydration of the intermediates during condensation, is investigated by addition to 

the feed and is found to reduce activity but the effect is reversed when the water 

addition is stopped.  
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5.1. Introduction 

Production of oxygenates from biomass conversion has created the need to 

upgrade these compounds to fuels and chemicals to maximize yield and value.  Bio-oil 

produced from pyrolysis contains a large fraction of oxygenated compounds with 

reactive functional groups such as aldehydes, ketones, acids, and polyols that are 

thermally and chemically unstable and need to be deoxygenated to fuel compatible 

molecules [1-2].  Bio-oil also contains substantial water, perhaps up to 50 % by 

weight.  In addition, converting light oxygenates to larger, more stable, molecules can 

retain liquid yield in contrast to hydrotreating [1-3], that consumes hydrogen while 

lowering liquid yields because of conversion to light hydrocarbon gases.  The 

complexity of bio-oil has created a great challenge in understanding the effect of 

catalyst properties and tailoring them to achieve stable production of desirable fuel 

products.  Thus, model compounds have been studied extensively on different types of 

catalysts: metals[4-5], metal oxides[6], and zeolites[7], for example.   

Acidic zeolites can directly convert oxygenates to primarily isoalkenes and 

aromatics in the gasoline boiling range. HZSM-5 has been employed in conversion of 

methanol commercially by the well known and well studied MTG process (Methanol-

to-Gasoline)[8].  It has been found that substantial amounts of aromatics are observed 
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in the final products.  In general, the major aromatization pathway reported is that 

oxygenates first convert to olefins and these then oligomerize and dehydrocyclize to 

form aromatics.  However, other studies have found that greater aromatization was 

observed with propanal compared to other C3 oxygenates (ketone, alcohol, acid, 

ester)[9-11] as well as other oxygenates compared with alkanes [12-13].  Significant 

aromatics formation from propanal at mild conditions has been found to occur 

predominantly via an acid-catalyzed aldol pathway instead of via oligomerization and 

formation of a hydrocarbon pool [14].   

The zeolite channel structure is one of the factors controlling product 

selectivity via shape selectivity.  This relationship has been characterized by the 

“Constraint Index” in the paper of Frillette et al. [15].  It associates the activity and 

selectivity of a zeolite to the ratio of the cracking of n-hexane and 3-methylpentane.  

HZSM-5 has a unique three-dimensional channel system that reduces coke formation 

and enhances catalyst lifetime.  This type of pore structure allows the production of 

gasoline boiling range molecules such as aromatics.  Another 10-MR zeolite, but with 

a tubular pore one-dimensional channel structure,  HZSM-22, is reported to be stable 

and selective for trimerization of propene [16].  Although there are extensive studies 

on these two zeolites, the effect of the zeolite channel structures on conversion of 

small oxygenates such as propanal has not been studied. 

An important factor in the reaction of oxygenates is the water produced as a 

major byproduct of the deoxygenation reactions and its presence has significant effects 

on the zeolite catalysts’ performance.  Its stoichiometric yield can be up to 31 %wt 
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(propanal), 56 %wt (methanol), and 59 %wt (glycerol).  As mentioned above, water is 

also a substantial component of the bio-oil produced from pyrolysis.  The effect of 

addition of water has been investigated for the MTO reaction [17-18].  Those authors 

found that water reduced catalyst activity but improved lower olefin selectivity.  This 

was ascribed to preferential adsorption of water molecules on the acid sites, therefore 

facilitating desorption of lower olefins and inhibiting oligomerization.  The presence 

of water also showed reduced deactivation that could be due to inhibition of the 

formation of larger oligomers that are coke precursors [19].  

 

5.2. Experimental 

5.2.1. Catalyst Preparation.   

HZSM-5 and HZSM-22 samples with a Si/Al ratio of 45 were synthesized 

following synthesis methods described elsewhere [20-21].  The Si/Al ratio of the 

synthesized ZSM-5 sample was specified to be 45 by modifying the amount of Al in 

the original recipe.  The proton form of the zeolites was obtained by ion-exchange 

with NH4NO3 at 80 °C for 10 hrs.  The process was repeated to completely replace the 

cations in the zeolite with NH4
+.  The final synthesized HZSM-5 and HZSM-22 

catalysts were obtained after drying at 100 °C for 10 hr and calcining at 600 °C for 3 

hr in dry air. 
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5.2.2. Equipment and Procedures.   

The reactor was a 6mm ID quartz tube fixed bed continuous flow reactor.  The 

reactor was heated by a split-tube furnace (Thermal Craft) with a digital feedback 

temperature controller (Omega).  The catalyst was treated in situ with H2 for 1 hr at 

400 oC before each run.  Propanal, obtained from Sigma-Aldrich, was fed into the 

reactor by a syringe pump (KD Scientific).  The reaction was carried out at 

atmospheric pressure and at different space times (weight of catalyst to mass feed rate 

ratio, W/F) from 0.1 h to 2 h with a hydrogen carrier flowing at 35 sccm.   

5.2.3. Product analysis.   

At each half hour time on stream, products were analyzed online by GC/FID 

(HP6890).  The products were sampled using a 6-port valve with a 250 µl sample loop 

heated at 290 oC.  After each run, the reactor was purged with dry carrier gas for 15 

minutes to collect the residual products from the reactor.  The condensable liquid 

products were collected in a solvent (Methanol) and were then identified by GC/MS 

(Shimadzu Q-2010).  Both GCs are equipped with HP-INNOWAX columns.   

 

5.3. Characterization 

The synthesized HZSM-5 and HZSM-22 were characterized by X-ray powder 

diffraction (Bruker D8 Discover diffractometer).  Scanning electron microscopy (Jeol 

JSM-880 electron microscope) was used to observe the morphology of the synthesized 

zeolites.   
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The acidity of HZSM-5 and HZSM-22 was determined by temperature 

programmed desorption (TPD) of iso-propylene amine (IPA) with an online mass 

spectrometer (MS) detector (MKS Cirrus.)  The TPD was performed in a 6mm quartz 

tube reactor with 50 mg of catalyst.  The catalyst sample was first pretreated in He at 

400 oC for 1 hr and cooled down to 100 oC 

The adsorption of IPA was carried out in flowing He at 100 oC with 10 liquid 

pulses of IPA with 5 µl for each pulse and 3 min between pulses.  The temperature 

program was from ambient to 650 oC with a rate of 10 oC/min in flowing He.  The MS 

signal of mass 44 (IPA), 41 (propylene), 17 (ammonia), 18 (water), 16 (fragment of 

ammonia) were monitored.  The results were calibrated with a 100 µl loop of 

propylene.  

The amounts of coke deposits were quantified by temperature programmed 

oxidation (TPO) by passing a 5% O2/He stream over a 50 mg spent catalyst sample, 

using a linear heating rate of 5 °C/min. The signals of H2O (m/z=18), CO2 (m/z=44), 

and CO (m/z=28) were continuously monitored by MS. Quantification was calibrated  

on the basis of the signals from 100 μL CO2 and CO pulses in flowing He. 
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5.4. Results 

5.4.1 Characterization  

The SEM images and XRD patterns of HZSM-5 and HZSM-22 samples are 

shown in Figure 5.1 and are similar to those in the literature [20-21].  No significant 

impurities or amorphous materials are seen in the XRD patterns as shown in Figure 

5.1a.  The SEM images show that all the samples have similar crystallite sizes 

averaging around 2-4 µm.  While the crystal shape of HZSM-5 is nearly cuboid, the 

crystal shape of the HZSM-22 is a single needle or conglomerates of needles as seen 

in Figure 5.1b.  The SEM images also confirmed that there are no amorphous 

materials present in the samples.   

Figure 5.2 shows the acidity profile of the HZSM-5 and HZSM-22.  The 

decomposition of IPA to propylene is due to Bronsted acid sites activated at high 

temperature [22].  The peak maximum in propylene evolution is observed at 350 oC.  

HZSM-5 has higher amounts of Bronsted sites, 350 µmol/g, compared to HZSM-22, 

297 µmol/g.  The measured acidities of both catalysts are lower than the calculated 

acidity for a Si/Al=45 of 370 µmol/g due to some inaccessible sites, but HZSM-5 is 

closer to the theoretical value due to its more extensive pore structure.   

5.4.2. Catalyst activity  

Propanal conversion was performed on HZSM-22 and HZSM-5 at 400 oC and 

atmospheric pressure.  The products are grouped into 3 categories: gas (C1-C3, mostly  
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Figure 5.1. XRD (a) & SEM (b) of synthesized HZSM-22 and HZSM-5 
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Figure 5.2. Acidity profile of HZSM-5 and HZSM-22 (both with Si/Al=45) 



74 
 

propylene), isoalkenes (C4-C9, mostly 2-pentene and iso-pentene), and aromatics (C7-

C9+).    

At the same W/F, HZSM-5 shows higher activity toward propanal conversion 

compared to HZSM-22, as shown in Figure 5.3.  For W/F of 0.5h, the conversion is 

significantly higher for HZSM-5.  The lower level of conversion for HZSM-22 at that 

W/F shows no deactivation, while HZSM-5 has significant deactivation, even from the 

earliest TOS measured.  At W/F= 1h, the conversion on HZSM-5 was 100% for some 

time, reflecting excess catalyst, before sufficient deactivation begins affecting the 

observed conversion after two hours.  For HZSM-22 at that W/F, the conversion at the 

shortest TOS was already at 63% and showing deactivation with a slope similar to that 

of HZSM-5, once its conversion is reduced below 100 %.  If we compare at similar 

conversions, with HZSM-5 at a W/F of 0.5h and HZSM-22 at a W/F of 1.0h, we see 

that the slope, or deactivation rate, initially appears similar, but at longer TOS the 

HZSM-22 deactivation rate is reduced compared to that for HZSM-5.  

In Figure 5.4, conversion and product yields are shown as a function of W/F. 

At short W/F in both zeolites, isoalkenes are the major product. However, at longer 

W/F, aromatics and gas become the dominant products on HZSM-5 in contrast to 

HZSM-22, where isoalkenes remain the major product.   

Figure 5.5 shows the major product categories as a function of TOS for one 

W/F for each catalyst at similar conversion, W/F = 1h for HZSM-22 and 0.5h for 

HZSM-5.  As the deactivation occurs, the aromatic and gas product yields decline  
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Figure 5.3. Conversion vs. TOS HZSM-22 & HZSM-5 at 400 oC,  
0.12ml/h of propanal 
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Figure 5.4. W/F series of HZSM-5 & HZSM-22 at 400 oC and TOS=60 min 
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Figure 5.5. TOS of HZSM-5 & HZSM-22 at 400 oC 
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significantly with TOS on HZSM-5 while the isoalkene yield stays quite flat, 

indicating an increasing selectivity. For HZSM-22, all of the yields decline 

proportionally and the selectivities are essentially unchanged as deactivation proceeds.   

 Figure 5.6 combines results for both W/F and TOS and shows that similar 

trends for product yields are also observed as a function of conversion. This indicates 

that the catalytic function of HZSM-22 is not dramatically affected at lower 

conversions either at short W/F or from deactivation at longer TOS.  HZSM-5 

however, shows decreased aromatization at both low W/F and long TOS, in agreement 

with the literature indicating that the isoalkenes are intermediates for aromatization.  

5.4.3. Coke analysis of HZSM-22 and HZSM-5 

TPO was conducted on used catalyst samples from the experiments shown in 

Figure 5.5, after 120 minutes on stream and at W/F = 1h for HZSM-22 and at W/F = 

0.5h for HZSM-5.  The TPO profile for HZSM-22 was found to follow a bell-shape 

curve with a broad CO2 peak from 400 oC to above 800 oC as shown in Figure 5.7a.  

While for HZSM-5, the peak of CO2 is much larger and shows a maximum at 650 oC.  

Figure 5.7b shows the water peak which occurs over the temperature range of the CO2 

peaks up to 800 oC, but not above.  There is little difference between the coke on the 

two catalysts below 800 oC other than the amount, with both having a similar 

H2O/CO2 signal ratio that decreases with increasing temperature, shown in Figure 

5.7c.  The highest temperature peak that appears only for HZSM-22 may be an artifact 

that occurs because HZSM-22 has long needle shaped crystallites with pore openings  
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Figure 5.6. Product distribution as the function of conversion on HZSM-5 &  
HZSM-22, at 400 oC, with both data from TOS and W/F  
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Figure 5.7. TPO of HZSM-22 at W/F=1h & HZSM-5 at W/F=0.5h, TOS=2h  
%coke (HZSM-22) = 2.2%, %coke (HZSM-5) = 3.8%, Total coke (HZSM-22) = 1.10 

mg/50mg CAT, Total coke (HZSM-5) = 1.98 mg/50mg CAT 
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on the ends that may cause a diffusion limitation for oxygen with coke present, 

causing a delay in the burning of the coke deep in the crystals.   

5.4.4. Effect of water on catalyst activity 

To understand the effect of water on catalyst activity, water was added to the 

feed at a 2:1 water to propanal molar ratio after the first hour of TOS, continued for 

one hour and the water was stopped after that while the feed of propanal was 

continued, in an experiment with HZSM-22.  The results show that the catalyst 

activity dropped as soon as water was fed.  However, the catalyst activity was 

regained after the water was removed from the feed (Figure 5.8.)  When the same 

experiment was conducted with HZSM-5, a similar effect was observed. 

 

5.5. Discussion  

As described above, there are significant differences in the results for catalyst 

activity and product distribution between HZSM-5 and HZSM-22.  Both zeolites have 

a medium pore 10 oxygen member ring structure, but, as shown in Table 5.1, the 

HZSM-5 pore structure is 3-dimensional with two types of intersections with window 

openings of 0.54 x 0.56 nm and 0.51 x 0.55 nm and a maximum diameter at the 

intersections of about 0.9 nm.  HZSM-22 has unidimensional channels along the 

length of the crystallites that have pore openings of 0.55 x 0.45 nm giving more 

restricted accessiblity.  For this reason, there are more inaccessible sites on HZSM-22,  
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Table 5.1 – Structure properties of HZSM-22 and HZSM-5 
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Figure 5.8. Effect of water with propanal conversion on HZSM-22 & 5 
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which is demonstrated by the IPA TPD results.  With a higher measured acidity level, 

higher channel dimension, and more connectivity of channels, it is expected that the 

HZSM-5 has a higher activity.  In addition, the pore restrictions of HZSM-22 [21] 

reduces access and may limit diffusion, which can further reduce activity. Moreover, 

aromatic molecules, having a critical diameter of 0.68nm and larger, bigger than the 

HZSM-22 channels, fit well within the intersection of the HZSM-5 channels.  Thus, 

aromatics are easier to produce with HZSM-5 compared to HZSM-22, as is well 

known in the literature [23].  In addition, the cyclization of oligomers to form 

aromatics is more difficult in the smaller straight channels of HZSM-22.  In fact, it has 

been shown using the “Refined Constraint Index” that the value for ZSM-22 is 14.5, 

higher than that of ZSM-5, which has a value of 10.2 [21].  This indicates HZSM-22 is 

more shape-selective.  As found in previous work for propanal conversion on HZSM-

5[14], significant aromatics were formed via cyclization of an aldol trimer.  The 

channel structure of HZSM-22 may be expected to have significantly reduced 

formation and cyclization of the trimer to form aromatics via the aldol pathway.  

The results from the W/F series are also consistent with previous work [14] 

where at short W/F, the aldol dimer oxygenate has been proposed as the major 

intermediate that decomposes to form isoalkenes on acid sites in HZSM-5.  As W/F 

increases, an aldol trimer oxygenate is produced and converts to alkyl aromatics in 

HZSM-5, with a decrease in selectivity for isoalkenes.  The increasing gas yield at 

higher W/F results from contributions of both dealkylation reactions of aromatics and 

cracking of isoalkenes.  However, on HZSM-22, the channels prevent significant 
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formation of the trimer or aromatics, even with high conversion at long W/F.  The 

isoalkenes that form are also less susceptible to cracking, thus the gas yield remains 

relatively low.  

It is well recognized that intracrystalline coke formation is directly related to 

zeolite channel structure [24-25].  The TPO results clearly indicate that much more 

coke was observed on HZSM-5 even at smaller W/F.  The similar deactivation rates at 

shorter TOS suggest that the coverage of acid sites by coke precursors occurs at 

similar rates.  At longer TOS, as conversion is lowered, the availability of coke 

precursors is lower and the deactivation rate slows.  The smaller decrease in 

deactivation rate for HZSM-5 reflects the fact that it already has almost double the 

amount of coke and is thus more severely impacted.  In addition to coke, water also 

affected the performance of catalyst activity, but not the selectivity.  The key reason is 

the reversible competitive absorption of water on the active acid sites.  The fact that, in 

the case of bio-oil, water will be ubiquitously present, suggests that its effect can be 

overcome by additional catalyst.   

 

5.6. Conclusions 

Direct conversion of propanal to gasoline components is demonstrated on two 

different structure types of medium pore zeolites. High yields of aromatics were found 

on HZSM-5 with its 3 dimensional pore structure. However, less aromatics and higher 

C4-C9 isoalkenes yield were found on HZSM-22 with its 1 dimensional pore structure. 
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The restricted pore dimensions of HZSM-22 limited the formation of bulky aromatic 

molecules while allowing formation of isoalkenes from C4-C9, indicating a different 

shape-selective control.  Propanal conversion increases on HZSM-5 with its increased 

micropore volume and connectivity of the channels.  In contrast, a decrease in activity 

is associated with decreased micropore volume and no connectivity of the channels.  

Deactivation rates are similar at short times on stream, but HZSM-5 has a significantly 

higher capacity for coke. The presence of water as a byproduct reversibly deactivates 

sites due to competitive adsorption. 
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CHAPTER 6 
 

CATALYTIC AROMATIZATION OF GLYCEROL FOR BIOFUELS 

 

Abstract 

Substantial production of oxygenates from biomass conversion and biodiesel 

production create interest in upgrading these compounds to C6+ gasoline range 

hydrocarbon products as well as chemicals.  Glycerol is the byproduct of biodiesel 

production and also is a model for polyol compounds in the products produced from 

cellulosic biomass conversion, pyrolysis in particular.  This paper screens the 

oligomerization of glycerol on different zeolites from 300 to 400 oC and from 

atmospheric pressure to 300 psi in hydrogen.  The main products in glycerol 

conversion using one dimensional zeolites MOR, OMEGA, and ZSM-22 are partially 

deoxygenated to carbonyl products, mainly propenal and acetol, with little evidence of 

oligomerization.  However, it is found that glycerol can be converted to high yields of 

aromatics over HY and HZSM-5.  Aromatics formation was observed at longer 

contact times, and at higher temperatures (i.e. W/F 1h and 400 oC).  When the HZSM-

5 catalyst bed was preceded by a bed containing a deoxygenation/hydrogenation 

catalyst, Pd/ZnO, the aromatics yield was further increased.  The effect of Zn loading 

on HZSM-5 was also investigated.  The presence of Zn enhances catalyst lifetime and 

shifts the product distribution to lighter hydrocarbon compounds.  The observed 
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catalytic functions occur in the presence of substantial fractions of water, produced in 

the initial deoxygenation/dehydration of glycerol.  The results shown are consistent 

with previous studies showing that the formation of aromatics is via an aldol 

condensation pathway at these relatively mild conditions.  

 

Keywords: glycerol; zeolites; biodiesel; aromatization; biofuels; HZSM-22; HZSM-5; 

Zn-HZSM-5  

 

6.1. Introduction 

Biodiesel is among the biofuels in development to reduce the dependency on 

fossil fuels.  However, in the production of biodiesel using the transesterification 

reaction large amounts of glycerol are produced as a byproduct.  Although glycerol 

and its derivatives are currently high value chemicals in the pharmaceutical and food 

industries among others, their volume from substantial increases of biodiesel 

production will greatly exceed the chemicals market.  Additionally, glycerol is a 

model for polyols produced during pyrolysis of cellulosic feedsocks.  Glycerol can be 

reacted to produce chemical feedstocks, especially for production of acrolein 

(propenal)[1-5].  However, there has been much less attention to the direct conversion 

of glycerol to fuel molecules that are compatible with existing fuels, such as gasoline.  

Therefore, the objective of this work is to study the conversion of glycerol to produce 

fungible hydrocarbon fuel molecules via catalytic conversion on zeolite catalysts.   
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Methanol to Gasoline (MTG) is a well known process for converting methanol 

to hydrocarbons developed by Mobil [6-8].  The products obtained by this reaction are 

hydrocarbons, principally aromatics, in the gasoline boiling range (C6-C10).  Acidic 

zeolites such as HZSM-5 have been used as catalysts for MTG.  The conventional 

reaction pathway includes three main sequential steps: (i) the dehydration of methanol 

to dimethyl ether; (ii) the dehydration of dimethyl ether to olefins; and (iii) the 

oligomerization of olefins to paraffins and aromatics. Costa and Gayubo et al. [9-11] 

reported the successful transformation of other alcohols and oxygenates, such as, 

propanol, butanol, acetone, and butanone to higher paraffins and olefins over HZSM-

5.  The proposed reaction scheme involves the dehydration of oxygenates to the 

corresponding olefins and paraffins as the first step, followed by oligomerization.  

Hoang et al [12] have shown that propanal is aromatized by oligomerization via an 

aldol pathway under mild conditions where olefins do not form significant aromatics. 

In the methanol to gasoline process (MTG), the 10-MR (10-membered ring) 

zeolite, HZSM-5 was employed.  This type of pore structure allows the production of 

larger molecules from C6-C10 aromatics using its unique molecular traffic control of 

the three-dimensional channel system that also reduces the impact of coke formation, 

enhancing catalyst lifetime.  A uniform 10-MR tubular one dimensional pore zeolite 

such as ZSM-22 is reported to be stable and selective for trimerization of propene[13], 

but did not produce substantial yields of aromatics.  In the methanol to olefins process 

(MTO) [14], a small pore diameter zeolite was used, such as SAPO-34 with an 8-MR 
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opening.  In that process, the main products are light olefins in the range of C2-C4, 

with insufficient space for formation of aromatics and larger oligomers.   

Zinc has been found in the literature to be a promoter of aromatization on 

HZSM-5[15-17]. Introducing Zn into the zeolite framework redistributes acid-site 

strength and generates relatively strong Lewis acid sites that favor aromatization.  It 

was observed that the total acidity of the zeolite was not reduced.  Biscardi et. al [18] 

has suggested that the role of Zn is to facilitate the dehydrocyclodimerization reaction.  

Incorporation of Zn has also shown enhancement of aromatization and significant 

improvement of catalyst lifetime in conversion of alkyl-methyl-esters over HZSM-

5[19].  

The objective of this work is to investigate the conversion of glycerol using 

acidic zeolites with different pore geometries, specifically HZSM-5, HY, HZSM-22, 

HMOR, and H-OMEGA, to form aromatics.    In order to achieve higher aromatics 

yields, a study of a dual bed system, Pd/ZnO followed by HZSM-5, and also of 

Zn/HZSM-5 were investigated.   

 

6.2. Experimental  

6.2.1. Catalyst Preparation.   

HZSM-5 and HOMEGA zeolites were supplied by SUD-CHEMIE.  HY and 

Na-MOR zeolites were supplied by Zeolyst International.  Na+ ions in the Na-MOR 

zeolites were replaced with NH4
+ ions by ion exchange with a  NH4NO3 solution at  
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80 oC for 10 h calculated to obtain 20%HNaMOR and 40%HNaMOR, respectively.  

The ZSM-22 zeolite was synthesized by following a procedure in the literature[20].  

The XRD and SEM images, shown in previous work [21] confirmed that the structure 

was highly crystalline ZSM-22.  HZSM-22 was obtained from a complete exchange 

with a 1M solution of NH4NO3.  The properties of the zeolites used are shown in 

Table 6.1.  Zn-HZSM-5 was prepared by ion exchange with a Zinc (II) nitrate solution 

to give a material with a Zn loading of 5 or 7 wt%.  The ZnO-supported Pd catalyst 

(Pd/ZnO) were prepared by incipient wetness impregnation (IWI) with Palladium (II) 

nitrate solution (Aldrich) with an amount to obtain a metal loading of 1% Pd. 

6.2.2. Equipment and Procedures.     

The reactor was a 10 mm inner diameter, 316 stainless steel, fixed bed continuous 

flow tubular reactor.  The reactor was heated by a split-tube furnace (Thermal Craft) 

with a digital feedback temperature controller (Omega).  The catalyst was treated in 

situ with He or N2 for 1hr at 400 oC before each run.  Glycerol was fed using a syringe 

pump or high pressure piston pump, depending on reaction pressure.  At elevated 

pressure, a back pressure regulator was used, but at atmospheric pressure, this was 

removed.  The reaction was carried out over a range of temperatures from 300 oC to 

400 oC and at W/F from 0.1h.to 1h (mass of catalyst/mass rate of organic).  During 

reaction, the glycerol was fed together with a H2 carrier at a flow rate of 35 cc/min, 

giving a molar ratio of H2: glycerol of 15:1. 
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When operating at higher pressure, liquid products, including water, were 

collected in a cold trap after accumulating for each hour of time on stream.  Non-

condensed products passed through the back pressure regulator and went to vent and 

were not quantified, but some samples were sent to an online GC for product 

identification.  After each run, the reactor was purged with dry carrier gas for 15 

minutes to collect the residual products from the reactor.  The collected liquid 

products were found to settle into two phases: a hydrocarbon phase containing 

aromatics and an aqueous phase containing the oxygenates with product water.  Each 

phase was then individually analyzed using an FID gas chromatograph (HP 6980) 

equipped with a capillary HP-INNOWax column and products were identified using a 

Shimadzu (Q2010) GC/MS.  For some experiments at atmospheric pressure, where no 

back pressure regulator was required, all products were directly sent to the GC for 

online analysis.  This provided a consistent basis for determining yields of all products 

without having to estimate separately based on the collected phase volumes. 

 

6.3. Results 

6.3.1. Activity and stability of the zeolites.  

The reactivity of zeolites with varying pore size and channel geometry has 

been investigated (Table 6.1).  Experiments for glycerol conversion were performed 

on HZSM-5, HY, HOMEGA, HNaMOR, and HZSM-22 at W/F= 0.5 hr, 300 oC and 

400 oC and 300 psi pressure.   
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Table 6.1. – Pore structure of zeolite catalysts use 

Zeolite 
Catalyst  

Topology 
code  

Channel 
structure 

Ring 
Members  

Pore diameter, 

 Ao  

HMOR  (MOR)  1-D  12-MR  

8-MR  

6.5 x 7 (large) 

2.6 x 5.7 (small) 

H-OMEGA  (MAZ)  1-D  12-MR  

8-MR  

7.4 x 7.4 (large) 

3.1 x 3.1 (small)  

HZSM-22  (TON)  1-D  10-MR  4.6 x 5.7 (medium)  

HY  (FAU)  3-D  12-MR  7.4 x 7.4 (large)  

ZSM-5  (MFI)  3-D  10-MR  5.1 x 5.5 (medium) 

5.3 x 5.6 (medium)  
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Table 6.2. Products observed from glycerol conversion over HNaMOR, H-OMEGA, 
and HZSM-22 zeolite catalysts at 300 oC and 400 oC, W/F= 0.5h 

Catalysts 
Pressure   

(psig) 

Temperature  

(oC) 

Products 

 observed 

HNaMOR  
0 300 Oxygenates 

0 400 Oxygenates    

HOMEGA 0 400 Oxygenates 

 
300 400 Oxygenates  

HZSM-22 0 400 Oxygenates    

    
   

 

 

Table 6.3.  Products observed from HZSM-5 and HY zeolite catalysts  
at 300 oC and 400 oC, W/F= 0.5h 

Catalysts Pressure 
(psig) 

Temperature  

(oC) 
Products observed 

HZSM-5 

0 400 Oxygenates and Aromatics 

300 300 Oxygenates 

300 400 Oxygenates and Aromatics 

HY 
300 300 Oxygenates 

300 400 Oxygenates and Aromatics 
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Condensed products obtained from the conversion of glycerol over HNaMOR, 

HOMEGA, and HZSM-22 catalysts are all oxygenates, primarily propenal, acetol, 

acetaldehyde and small amounts of heavier oxygenates, in that order, and no 

hydrocarbons phase, including aromatics, were produced at W/F= 0.5 h (Table 6.2).  

The heavier oxygenates were identified by the GC/MS as a number of molecules such 

as: 3-methyl-2-Butanone, 2-Cyclopenten-1-one, 4-hydroxy-4-methyl-2-Pentanone, 3-

Hepten-1-none, 5-ethyl-4-methyl-3-Heptanone. Results at atmospheric pressure were 

similar.  At elevated pressure, 300 psi, the condensed products were also only 

oxygenates for the conversion of glycerol over HOMEGA.  Table 6.3 provides a 

summary of products from the conversion of glycerol over HZSM-5 and HY catalysts.  

It was found that at low temperature, 300 oC, oxygenate compounds were produced on 

HZSM-5 and HY catalysts, acetaldehyde, formaldehyde, propenal, acetol and small 

amounts of heavier oxygenates.  At higher temperature, 400 oC, aromatics were 

identified. Aromatic compounds were also formed at elevated pressure (300 psi).  

Similar behavior was also observed on HY.   

 The detailed product distribution from the experiment at 400 oC, 300 psi and 

W/F= 0.5 h over the different zeolites is shown in Table 6.4.  For 1-D zeolites, 

propenal is the major product and its yield is 80% on HZSM-22.  While only a small 

amount of heavier oxygenates was observed on HZSM-22, they were more significant 

on HNaMOR and HOMEGA.  In contrast, on 3-D zeolites HZSM-5 and HY, 

aromatics, including C9, xylenes toluene and benzene, were observed.  It should be 

pointed out  
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Table 6.4. Product distribution on different zeolites, T=400 oC, TOS=3 hrs,  
W/F= 0.5 hr, 300 psi 

CATALYST  HZSM-5  HY  HOMEGA  HNaMOR  HZSM-22  

Conversion (%)  95.1  95.2  75.2  92.9  100  

Oxygenates  
(% yield)  

76.1  85.2  75.2  92.9  100  

Acetaldehyde  5.4  13.6  5.9  14.2  14.1  

Propanal  4.7  13.7  0  8.9  1.1  

Propenal  59.4  30.7  10.7  27.4  80.4  

Acetol  1  8.2  14.7  7  2.5  

Large oxygenates C4+  5.6  19  43.8  35.4  1.9  

Hydrocarbons  
(% yield)  

20.9  10.1     

Benzene  1.2  0.3     

Toluene  2.6  0.9     

C8 aromatics  3.6  1.9     

C9 aromatics  3.9  3.3     

C10 aromatics  4.5  3.1     

C11 aromatics  2  0.6     

C12 aromatics  3.1  0     
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that fewer aromatics were produced on HY because deactivation has already occurred 

to a significant extent at TOS= 3h. 

6.3.2. Glycerol conversion on HZSM-5 & HZSM-22 at different W/F.   

Experiments on HZSM-5 over a range of W/F at 300 psi and 400 oC were 

performed.  The results show that only the aqueous phase was obtained at low W/F < 

0.3 h.  The product mixture, mainly contained propenal, with smaller amounts of 

acetol, acetaldehyde, propanal, propandiol, propenol, acetone, and other heavier 

oxygenates, as shown in Figure 6.1a.  As W/F was increased up to 1 h, the liquid 

products separated into two phases (aqueous and hydrocarbon).  The hydrocarbon 

phase consisted of C9-C12, xylenes, toluene and benzene aromatics.  The volume of 

aromatics increased with increasing W/F as shown in Figure 6.1b, up to a yield of 

about 35 % (carbon molar basis of liquid products) at these conditions.   

At atmospheric pressure, with otherwise the same conditions as above (with 

online GC analysis), the results give similar product compositions with oxygenate 

products, mainly propenal and acetaldehyde, and aromatic products containing C6-C9, 

as shown in Figure 6.2a. The olefin gas yield shown, is comprised mainly of propene 

with a smaller amount of ethene.  Experiments at much longer W/F, up to 8 h, were 

conducted to observe the change in product distribution even though glycerol 

conversion was 100% for all experiments.  Propenal is a primary product and, similar 

to the results at high pressure, aromatics appeared beginning at W/F= 0.25 and  
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Figure 6.1. The product selectivities of glycerol conversion over HZSM-5 as a 
function of W/F:  (a) Polar phase and (b) Non-polar phase.   Reaction conditions: T = 

400 oC, P = 300 psi, (data taken offline) 
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Figure 6.2. W/F series (a) and TOS (b) of glycerol conversion on HZSM-5, 400 oC, 
atmospheric pressure (data taken online) 

 

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10

C
on

ve
rs

io
n,

 y
ie

ld
 (%

)

W/F (h)

HZSM-5 (Si/Al=45), 400 oC, TOS = 1 h

Conversion

Propenal

Acetaldehyde

Propanal

heavy oxygenates

Olefin gas

Aromatics

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400

C
on

ve
rs

io
n,

 y
ie

ld
 (%

)

TOS (min)

HZSM-5 (Si/Al=45), 400 oC, W/F= 1 h

Conversion

Propenal

Acetaldehyde

Propanal

heavy oxygenates

Olefin gas

Aromatics

a) 

b) 



102 
 

increased with increasing W/F.   It can be seen that aromatic yields up to 60 % are 

observed, with some decrease at the longest W/F due to cracking, with a concomitant 

increase in olefin gas yield.   Figure 6.2b shows the results for W/F of 1 h as a function 

of time on stream (TOS).  Although conversion continued at 100% with increasing 

TOS, significant reduction of aromatics yield is observed while propenal increases, 

becoming the major product.  Aromatics require the internal pore configuration of the 

HZSM-5 to form and as deactivation and coking in the pores increases, this serial 

pathway is reduced [22], even with continued complete conversion of glycerol.  It 

should be pointed out that operation at 100 % conversion of glycerol is not an 

indicator of lack of deactivation, but rather that an excess of catalyst has been used 

and that deactivation has not proceeded to an extent that shows conversion of less than 

100 percent. In this case, the change in product yields is indicative of the occurrence 

of deactivation. 

In order to investigate the activity for glycerol conversion on HZSM-22, a 

series of experiments was performed at different W/F at 400 oC.  The results are 

shown in Figure 6.3.  The major products are propenal and acetaldehyde.  For 

increasing W/F from 0.12 hr to 4 hr, the propenal yield decreased from 84.4% to 

68.2%, while the acetaldehyde yield increased from 11.5% to 19.6%.  The olefin gas 

yield also increases with W/F from 0% to 4.3%.  The online samples at the shortest 

TOS did show peaks for non-aromatic hydrocarbons, however, no higher hydrocarbon 

products were observed after the first sample, even at W/F= 4hr.  Experiments  
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Figure 6.3. W/F (a) series and TOS (b) of glycerol conversion on HZSM-22, 400 oC, 
atmospheric pressure (data taken online) 
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operated for more than one day found continued 100 percent conversion to mostly 

propenal. 

In order to understand the cause for the lack of hydrocarbon products on 

HZSM-22, an experiment with a thin bed of HZSM-5 (equivalent to W/F= 0.1 h) 

followed by a bed of HZSM-22 (equivalent to W/F= 2 hr) was conducted at 400 oC.  

In this case, the major propenal product from HZSM-5 bed is directly contacted with 

HZSM-22.  However, the results show that no conversion to higher hydrocarbons was 

observed, but a lower propenal yield and increased olefin gas yield was obtained.  

Further investigation on HZSM-22 at W/F= 2 h was conducted with propanal, the 

saturated aldehyde of propenal, as the feed and high yields of isoalkenes and some 

aromatics were observed as the final products.  Propenal is more difficult to form 

aromatics because of lacking alpha hydrogen for aldol condensation which is the 

major path of forming aromatic from propanal. 

Investigation of the coke formed on HZSM-22 and HZSM-5 in these 

experiments shows that HZSM-5 has more coke than HZSM-22, shown in Figure 6.4 , 

although both zeolites have the same Si/Al of 45, it is known that HZSM-22 has 

somewhat less accessible acidity, 292 µmol/g versus 350 µmol/g determined by iso-

propylene amine temperature programmed desorption using the method described 

elsewhere[12].  The unidimensional pores opening at the ends of the needle shaped 

crystals suggests that a relatively small amount of coke can cause significant pore 

blockage that leads to significant inaccessible active sites in this channel system and 

limits the formation and removal of oligomers. 
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Figure 6.4. TPO of glycerol conversion on HZSM-5 & HZSM-22, 400 oC, 
atmospheric pressure 

 

Table 6.5. Liquid product volume on single bed HZSM-5and two beds PdZnO & 
HZSM-5, at 300 psi, T=400 oC, TOS=3 hrs, W/F= 0.5 hr 

Catalysts  HZSM-5 Two Catalytic Bed 
Reactor (PdZnO & 
HZSM-5)  

% Volume of Non-polar Phase 
(Hydrocarbon)  12  20  

% Volume of Polar Phase (aqueous)  88  80  

% Conversion of Glycerol  97.2  99.3 
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6.3.3. Glycerol conversion on Pd/ZnO followed by HZSM-5. 

 This study was made in order to separate the deoxygenation, oligomerization, 

and aromatization catalytic activities of the zeolite.  The reaction was carried out with 

two catalyst beds, the first with Pd/ZnO followed by HZSM-5, operated at 300 psi.   

The Pd/ZnO was placed in the first bed to partially deoxygenate the glycerol, 

followed by the acidic zeolite bed to oligomerize the intermediates to the final 

products.  The products obtained from the reactions over the two beds are shown in 

Table 6.5.  In most cases, nearly 100% of the glycerol was converted and the products 

formed two phases (aqueous and hydrocarbon).   

These results show that the Pd/ZnO (by itself) was able to deoxygenate 

glycerol to partially de-oxygenated compounds, such as formaldehyde, acetaldehyde, 

propanal, propenal, acetone, and 1,2 propandiol, in that order.  With the addition of the 

second bed, of HZSM-5, the oxygenate products from the first bed were able to react 

further to form aromatic compounds at 400 oC.  There was about 20% by volume of 

hydrocarbon phase in the serial bed experiment while only about half of that volume 

was obtained from the same conditions with HZSM-5 alone.  It is worth noting that 

the potential yield of the hydrocarbon phase by volume is a maximum of 45% (of total 

liquid) due to the formation of water. This is based on the stoichiometric conversion of 

glycerol to hydrocarbons (5).   

2C3H8O3  C6H8 + 6H2O                      (5) 

mass    80g         6x18g 

volume 90ml     108ml 
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Furthermore, at 400 oC small amounts of non-aromatic hydrocarbon products 

such as 2-methylbutane and 2-pentane were observed with the serial catalyst beds over 

HZSM-5, while no such products were found in the other experiments in this study, 

except the experiments with Pd/ZnO with HZSM-5 at 300 oC and the experiment with 

Pd/ZnO alone at 400oC.  This indicates that the oligomerization function of HZSM-5 

isn’t active at lower temperatures, in agreement with the literature [23].  This behavior 

is also consistent with the results in the previous section.  Hydrocarbon product 

distributions in the two cases of the two bed and single bed are shown in Figure 6.5.  

C8-C9 aromatics were found as the main compounds in the hydrocarbon phase.  It has 

been found that aromatics are predominantly produced from direct cyclization of the 

aldol trimer [12].  Pd/ZnO could facilitate the process by providing a fully 

hydrogenated monomer such as propanal that directly condenses by the aldol pathway 

to form the dimer and then the trimer.  The conversion of glycerol and the percentages 

of hydrocarbon volume obtained on Pd/ZnO, HZSM-5, and Pd/ZnO with HZSM-5 as 

a function of time on stream are shown in Figures 6.6a and 6.6b.  Compared to the 

single Pd/ZnO bed, glycerol conversion on HZSM-5 and Pd/ZnO with HZSM-5 did 

not decrease significantly with time on stream.  As shown in Figure 6.6b, the 

hydrocarbon phase yield from the two bed experiments accounted for 20% by volume, 

while from the HZSM-5 only, 12% by volume was obtained over the first 3 h.  The 

two bed experiments still provided a higher volume of hydrocarbons up to 6 h.  

However, no aromatics were produced after 6 h.   
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Figure 6.5. Hydrocarbon product distribution in HZSM-5 and Pd/ZnO&HZSM-5,  
at 400 oC, 300 psi 
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Figure 6.6– (a) Glycerol conversion at various intervals between the samples  
(b) Percentage by volume of hydrocarbon phase at various intervals between the 

sample at 300 psi and 400 oC 
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Based on these results, it can be concluded that all of the zeolites can dehydrate 

glycerol. However, to make aromatic products, oligomerization of the initial products 

is the key reaction and this may be achieved by selection of the appropriate zeolite 

pore structure and reaction conditions. 

6.3.4. The effect of Zn-HZSM-5.   

Zn-HZSM-5 was used to study the enhancement of aromatization activity from the 

conversion of glycerol.  The results are shown in Figure 6.7.  The role of Zn in 

increasing the aromatization yield was not pronounced in this case, in contrast to the 

work of Tanate et al [19], where aromatization via the hydrocarbon pool mechanism 

was significantly enhanced.  However, compared to HZSM-5, it appears that the 

presence of Zn prolongs the catalyst lifetime for producing aromatics.  The product 

distribution, shown in Figure 6.7, also showed lighter aromatics than when using 

HZSM-5.   

Another experiment was conducted with 7%wt Zn-HZSM-5 with online GC 

product analysis.  The product distribution versus TOS at W/F= 2 hr is shown in 

Figure 6.8.  The glycerol is completely converted to aromatics (C6-C9+) at about 60% 

yield and olefin gas at about 40% yield.   

 

6.4. Discussion 

Several possible pathways of glycerol conversion to chemicals and fuels [1] have 

been proposed, but three main steps  have been found from the above results:  
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Figure 6.7. (a) Percentage by volume of aromatics product on HZSM-5 and 5%wt Zn--
ZSM-5 (b) Aromatic product distribution of HZSM-5 and 5%wt Zn-HZSM-5. 
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(i) dehydration (ii) deoxygenation or further dehydration (iii) oligomerization (and 

aromatization).  

6.4.1. Dehydration.   

In the first step, glycerol is dehydrated to form acetol, propenal (acrolein), 

acetaldehyde, and formaldehyde.  The potential energy plot for glycerol dehydration  

has been determined by NREL using DFT calculations[24].  It has been found 

that decomposition of neutral glycerol requires high temperature but a substantial 

energy reduction occurs with addition of an acid catalyst and it is clear from these 

results, as well as others, that glycerol dehydration is highly active and long lived [5], 

even when other functions of the zeolites (oligomerization) are deactivated. 

6.4.2. Deoxygenation.   

In this step, oxygenates proceed through decarbonylation reactions to produce 

alkenes or, alternatively further dehydration, eventually producing coke and hydrogen.  

Acetol is subsequently dehydrated to form propenal, and can then undergo 

decarbonylation to produce ethylene.  Internally produced hydrogen is consumed by 

hydrogenation or hydrogenolysis reactions.  It should be pointed out that formation of 

large oxygenates might precede this step. Thus, larger isoalkenes could also be 

produced from the deoxygenation of these oxygenates, followed by oligomerization 

via an aldol pathway [12]. 
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6.4.3. Oligomerization.   

Finally, the C2-C3 alkenes as well as methanol are the precursors to produce 

hydrocarbons and aromatics by means of carbenium ion intermediates on the acid 

sites.  However, this function appears to be inactive at these mild conditions [12]. It 

has been shown that aldol condensation of propanal forms C9 aromatics via 

trimerization and cyclization, and that this is the predominant aromatization pathway 

in previous work at the mild conditions of this study [12].  However, the results from 

the experiments for the series of 2 beds with HZSM-5 followed by HZSM-22 has 

shown that propenal does not form aromatics and isoalkenes directly, in contrast to the 

results from propanal.  This suggests that propenal cannot oligimerize via the aldol 

reaction pathway due to the lack of hydrogen in the alpha position.  

Lastly, the point was made above that with the initial dehydration of the 

glycerol, substantial water is present during these reactions.  Also, the production of 

bio-oil from biomass pyrolysis produces substantial water.  Other work [21], as well as 

the present study, have demonstrated that water reduces the activity of the catalyst, but 

does not completely deactivate the initial dehydration, or the aromatization function of 

the catalysts. 

 

6.5. Conclusions 

In summary, three main conclusions can be drawn from this study.  First, the 

effect of pore diameter and the channel system of the zeolite plays a role in final 
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product distribution.  Glycerol was found to be effectively converted on HZSM-5 to 

aromatics.  Even under the limited screening regime of this study, an aromatics yield 

of up to 60% has been achieved.  Although one dimensional zeolites were not 

successful in converting glycerol directly to larger hydrocarbons, HZSM-22 was able 

to transform glycerol to a high yield of propenal, up to 80 %, an important chemical 

product.   Second, the presence of a Pd/ZnO catalyst bed before the HZSM-5 

demonstrated a significant enhancement of liquid hydrocarbon yield by partially 

deoxygenating, and hydrogenating, the feed to HZSM-5.  This could also be used in 

the same fashion with HZSM-22, to obtain good yields of higher isoalkenes.  Third, 

addition of Zn in HZSM-5 shows promising results for enhancing catalyst life while 

maintaining a high yield of aromatics through a change in the nature of the acid sites.  

From the proposed reaction pathway, there are three main reactions that lead to 

production of hydrocarbons from glycerol: dehydration, deoxygenation and 

oligomerization.  These results suggest a strategy for developing a selective catalyst 

for glycerol conversion to fungible fuels. 
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CHAPTER 7 

CONCLUSIONS 

 

The conversion of small oxygenates on zeolites has demonstrated promising 

results and significant understanding/findings.  The most important finding was in 

Chapter 3 in which it has been shown that the predominant pathway of aromatic 

formation is from aldol condensation and cyclization of trimer on HZSM-5 at milder 

conditions.  Under these conditions propylene does not produce significant aromatics 

and is much less reactive.  This pathway for aromatics formation is much more 

effective than the conventional acid-catalyzed alkane/alkene conversion on zeolites.  

In addition, it takes place at milder conditions than those required from 

alkane/alkenes, with consequently lower rates of deactivation and less undesirable 

cracking.  The practical impact of this is that highly alkylated aromatics are formed 

with little benzene. 

Chapter 4 and 5 investigated a number of effects of the zeolite structure and 

properties  of crystallite size and pore structure on the performance for production of 

aromatics.  The results from these chapters strongly support what was found in 

Chapter 3.  Significant initial C9 aromatics were produced on small crystallites due to 

rapid removal of products from its shorter intracrystalline diffusion path length.  As a 

result, much less deactivation, isomerization, and cracking were observed compared to 

the behavior over large crystallites.  The results from HZSM-22 and HZSM-5 also 
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show that steric effects on HZSM-22, with narrower pore openings and a single 

dimension channel structure were important.  Thus, production of aromatics on this 

zeolite was significantly reduced.  However, much higher isoalkenes yields were 

observed.  The effect of water was also investigated and the results show reduction in 

activity due to competitive adsorption.  But the activity of the catalyst was regained 

when no added water was introduced, and the catalyst was able to perform at a lower 

level, operating along the same pathway  

Chapter 6 gives an example of converting a highly oxygenated molecule to a 

high yield of aromatics.  The results show a promising concept of combination two 

catalyst beds for further increasing aromatic yield.  The importance of this idea is 

based on the finding in Chapter 3 that aromatics are produced more predominantly via 

the aldol pathway.  By deoxygenation/ hydrogenation of glycerol in the first step to the 

hydrogenated oxygenate intermediate, more aromatics were produced.   

 From the results established in this work, the author hopes that conversion of 

small oxygenates to alkyl aromatics on zeolites has been advanced in understanding 

and application.  Applying these findings should help in designing catalysts and 

reactor systems to achieve application in bio-oil refining.    
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APPENDIX  
 

 

A.1. GC Chromatograph sample at W/F = 0.4 h (Synthesized HZSM-5 Si/Al=45) 

 

C8 Aromatics 

C9 Aromatics 

C7 Aromatics 

Propanal 

C1-C3 Olefins 

C4-C9 isoalkenes 
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A.2. Sample Excel data sheet at W/F = 0.4 h (Synthesized HZSM-5 Si/Al=45) 

Data File F:\HOANG09\CRYSTA~1\09083105.D Sample Name: Z5S45-0.4 
 Instrument 1 9/8/2009 12:42:40 PM  

    
        H2/Propanal/ 35/0.12 

     HZSM-5-45-S 37 mg,  
      T=400 C, TOS=30 h  
      

        ===================================================================== 
Injection Date  : 8/31/09 10:28:46 PM           

    Sample Name     : Z5S45-0.4                       Location : Vial 1 
  Acq. Operator   : Trung                                Inj :   1 

                                                   Inj Volume : Manually 
   Acq. Method     : C:\HPCHEM\1\METHODS\OTG_INO.M 

  Last changed    : 8/31/2009 8:19:41 PM by Trung 
                     (modified after loading) 

    Analysis Method : C:\HPCHEM\1\METHODS\TRUNG.M 
  Last changed    : 8/22/2008 10:45:17 AM 

    ===================================================================== 
                         Area Percent Report                          

   ===================================================================== 

        Sorted By             :      Signal 
     Multiplier            :      1.0000 
     Dilution              :      1.0000 
     Sample Amount         :      1.00000  [ng/ul]   (not used in calc.) 

  
        
        Signal 1: FID1 A,  

      
        Peak RetTime Type Width Area Height Area 

 # [min] 
 

[min] [pA*s] [pA] % 
 ---- |------- |----|- ------ |---------- |---------- |--------| 
 1 4.724 C1-C3  0.0335 543.8693 233.8208 30.33496 
 2 4.788 isoalkene 0.0482 158.0865 48.84602 8.81746 
 3 4.912 isoalkene 0.0404 52.72895 18.98212 2.94102 
 4 4.976 isoalkene 0.0259 52.32749 31.3075 2.91863 
 5 5.142 isoalkene 0.028 3.05355 1.64632 0.17032 
 6 5.26 isoalkene 0.0416 11.60736 4.4573 0.64741 
 7 5.345 isoalkene 0.028 2.15233 1.20714 0.12005 
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8 5.428 isoalkene 0.0409 5.88037 1.98986 0.32798 
 9 5.869 isoalkene 0.0311 10.11734 5.10286 0.56431 
 10 6.152 isoalkene 0.0483 14.77268 4.11512 0.82396 
 11 6.238 Propanal 0.0342 333.5222 153.3092 18.6026 
 12 6.698 isoalkene 0.0342 3.57367 1.64094 0.19933 
 13 7.184 isoalkene 0.0354 4.36171 1.96908 0.24328 
 14 7.692 isoalkene 0.0308 4.35184 2.22963 0.24273 
 15 7.973 isoalkene 0.0375 4.04025 1.64478 0.22535 
 16 8.455 isoalkene 0.0332 4.33274 1.94314 0.24166 
 17 8.67E+00 Benzene 3.42E-02 2.19E+01 1.00E+01 1.22177 
 18 1.06E+01 Toluene 2.96E-02 1.54E+02 7.72E+01 8.57764 
 19 12.071 Ethylebenzen 2.84E-02 2.75E+01 1.51E+01 1.53129 
 20 12.211 p-Xylene 2.91E-02 2.15E+02 1.15E+02 12.00333 
 21 12.306 m-Xylene 0.0318 19.25968 8.85587 1.07423 
 22 12.956 o-Xylene 0.0302 5.70307 2.88685 0.3181 
 23 13.283 C9 aromatics 0.0325 6.93448 3.19448 0.38678 
 24 13.471 C9 aromatics 0.0367 91.18578 36.11563 5.086 
 25 14.218 C9 aromatics 0.0404 17.36874 6.24691 0.96876 
 26 19.367 C10+ 0.0345 11.62273 5.12329 0.64827 
 27 20.075 C10+ 0.0311 4.11E+00 2.00E+00 0.22947 
 28 20.166 C10+ 0.0417 9.56165 3.31059 0.53331 
 Totals 

   
1792.879 799.0594 

  

        ===================================================================== 
                          *** End of Report *** 

    
        nonArHC(C4-
C8) 47.6661 GAS 30.33496 

    ArHC(C6-
C10+) 33.7313 ISOALKENES 17.33114 

    Benzene 1.22177 AROMATICS 33.7313 
    Toluene 8.57764 BENZENE 1.22177 
    Ethyl-

benzene 1.53129 TOLUENE 8.57764 
    p-Xylene 12.00333 C8 14.92695 
    m-Xylene 1.07423 C9 6.44154 
    o-Xylene 0.3181 C10+ 1.41105 
    C9 5.47278 CONV 81.3974 
    Mesitylene 0.96876 

      C10+ 1.41105 
      CONV 81.3974 
      



130 

 

A.3. Sample TPO HZSM-22 
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CALCULATION TPO HZSM-22 w/f=1h 
 

  
P V = n R T 

  

   
tos=120min Pressure 1 atm 

 
CATALYST 0.05 g 

 

Gas 
constant 82.06 cc*atm/(mol*K) 

 
LOOP 100 ul 

 
Temperature 273 K 

 
Propylene 0.00446 mmol 

 

Total product 
(sccm) 0.1 

  
56.38 area m/e 44   mmol 0.00446 

        T(oC) Acid Site Area mmol umol umol/g g/g %C 

395 
 

115 0.0091 9.1 181.5769 0.002179 0.22 

560 
 

805.81 0.0638 63.8 1275.979 0.015312 1.53 

745 
 

226 0.0179 17.9 357.1683 0.004286 0.43 

TOTAL 
 

1146 0.0907 90.74 1814.72 0.021777 2.18 

                

 

 

A.4. Sample TPD IPA HZSM-22 
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CALCULATION ACID DENSITY FROM PROPYLENE 

      

 
CATALYST 0.1 G 

  

 
LOOP 100 UL 

  

 
PROPYLENE 0.00446 MMOL 

 
  

83.69 AREA m/z 41 
 

      T(OC) ACID SITE AREA MMOL UMOL UMOL/G 

  
   

    

ZSM-5  BRONSTED 640 0.0341 34.1 341.3597 

  
   

    
    

   
  

             
     

P V = N R T 
  

PRESSURE 1 ATM 
GAS 
CONSTANT 82.06 CC*ATM/(MOL*K) 

TEMPERATURE 273 K 

TOTAL PRODUCT 

(SCCM) 0.1 

  MMOL 0.00446 
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A.5. Example GCMS identification of products from glycerol  

Oxygenate compound 

Name 

Propanal 

2-Propenal 

Octane, 2-methyl- 

Tetrahydrofuran, 2,2-dimethyl- 

Ethanol 

1,3-Dioxolane, 2-ethyl-2-methyl- 

Benzene 

Furan, 2,5-dimethyl- 

2,3-Butanedione 

1,3-Dioxane, 2-methyl- 

2-Propen-1-ol 

Propanal, 3-methoxy- 

DL-Methyltartronic acid 

2-Butanone, 3-hydroxy- 

Acetol 

2-Cyclopenten-1-one 

Diaceone alcohol  

2-Cyclopenten-1-one, 2-methyl- 

1-Hydroxy-2-butanone 

2-Hexanone,4-hydroxy-5-methyl-3-propyl- 

CH3CH(OH)CH2C(O)CH3 

Acetic acid 

Ethanol, 2-(ethenyloxy)- 

Pentadecane 
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2-Cyclopenten-1-one, 3-methyl- 

Propanoic acid 

1,3-Dioxolane-4-methanol, 2-ethyl- 

 

Aromatic compounds 

Name 

Benzene 

Toluene 

Ethylbenzene  

Benzene, 1,3-dimethyl- 

Benzene, propyl- 

Benzene, 1-ethyl-2-methyl- 

Benzene, 1-ethyl-3-methyl- 

Benzene, 1,3,5-trimethyl- 

Styrene 

Benzene, 1-ethyl-2-methyl- 

Benzene, 1,2,3-trimethyl- 

Benzene, 1,2-diethyl- 

Benzene, 1-ethyl-3-methyl- 

Benzene, 1-ethenyl-3-methyl- 

Indane  

1H-Indene, 2,3-dihydro-2-methyl- 

Indan, 1-methyl- 

Benzene, 1-propenyl- 

Benzene, 1,2,4,5-tetramethyl- 

Benzene, 1,2,4,5-tetramethyl- 

1H-Indene, 2,3-dihydro-4-methyl- 

Indene 
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A.6. TPO of Propenal and Propanal on HZSM-5 & HZSM-22 
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A.7. Conversion of glycerol on HZSM-22 at higher temperature 

 

60 95 130 164 

C1-C3 13.26 7.23 8.22 7.53 

isoalkene 6.16 2.66 1.54 1.68 

Acetaldehyde 18.87 18.19 17.16 15.34 

Propanal 3.32 2.38 2.57 2.32 

Acetone 0.73 0.65 0.65 0.66 

Propenal 46.19 64.72 66.99 69.83 

BTX 6.71 2.33 1.27 1.30 

cyclopentenone 1.61 0.96 0.89 0.75 

others 3.15 0.88 0.72 0.60 

Total 100 100 100 100 
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Conversion of glycerol on HZSM-22 at 500 
o
C  

 

60 95 130 164 

C1-C3 24.87 18.37 16.51 15.61 

isoalkene 11.62 8.73 8.35 7.47 

Acetaldehyde 13.71 15.59 16.13 16.81 

Propanal 2.30 1.81 1.46 4.04 

Acetone 2.82 3.93 3.95 0.95 

Propenal 27.19 40.92 46.94 50.51 

BTX 12.42 7.65 4.53 3.24 

cyclopentenone 1.07 1.19 1.13 1.09 

others 4.01 1.81 1.00 0.00 

Total 100 100 100 100 
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A.8. Conversion of glycerol on HZSM-22 at longer TOS (stability test) 

 

 

 

A.9. Mechanism of oxygenates formation in glycerol dehydration 

a. Production of acrolein (propenal) 

   

b. Production of acetol (acetone alcohol) 
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c. Production of formaldehyde and acetaldehyde 

 

 

 

 

(3) 

(4) 
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