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Abstract

The rapid development of nanotechnology has enabled the fabrication of structures

much smaller than the mean free path of electrons and phonons. In modern electron-

ics, miniaturization is desired to increase the transistor density and the clock speed.

Electronic transport on the nanoscale has been studied for over three decades and

fascinating quantum effects have been observed. Phonon transport on this scale is

of significant interest because of the increased power dissipation in nanoelectronics,

which undermines the correct functionality of devices and limits their lifetime. Apart

from the effort to minimize heat generation, an efficient heat management scheme is

necessary.

Historically, thermal transport in bulk materials was described by the Fourier’s

law, in which the thermal conductivity is an intrinsic property of the material. Later

a more descriptive model, the Boltzmann approach for thermal transport, was de-

veloped and could explain the thermal conductivity down to a 100 nm length scale

at high temperatures. At low temperatures and in structures smaller than roughly

100 nm, thermal transport is described by the fully quantum mechanical Landauer-

Butticker formalism. In this context, accurate calculation of phonon transmission

probabilities is very important.

In this dissertation, I develop a continuum model to calculate phonon transmission

probabilities between media, which have high contrast in the elastic properties. In

this work, we include an interface transition layer between the two media and look

for interface properties that improve thermal transport.

xi



Secondly, I develop a new theoretical tool based on the R-Matrix theory to cal-

culate phonon transmission probabilities on the atomic scale. R-matrix theory is a

well developed theoretical approach commonly used in nuclear and atomic physics to

solve scattering problems. Recently, this approach has been successfully developed

to calculate electronic scattering in mesoscopic quantum devices. The key novelty of

R-matrix theory for phonons is that the only required information about the scat-

tering region is its normal modes, which are evaluated only once for a system. This

approach is computationally efficient and produces the same results as the modern

technique based on the non-equilibrium Green’s function (NEGF) approach. I present

a detailed theoretical explanation of this approach and results applying to graphene

nanoribbons. This theoretical development is presented focusing on two terminals

devices while the extension to the devices with multiple leads is straightforward.

Finally, I use molecular dynamics to study the thermal transport properties of

strained graphene nanoribbons. I find that the thermal conductivity of zigzag graphene

nanoribbons shows a weak dependence on moderate tensile strains, while that of arm-

chair graphene nanoribbons decreases significantly. This is a promising feature in

strain-induced device applications. Furthermore, we observe significant thermal rec-

tification (over 70%) in a rectangular armchair graphene nanoribbon by applying a

transverse force asymmetrically. The heat flux is larger from the less stressed region

to the more stressed region. These findings can potentially enable real-time tuning

of the thermal rectification by a mechanical force in nanostructures.

xii



Chapter 1

Nanoscale Thermal Transport

In most electronic and optoelectronic devices, large amounts of energy is dissipated as

heat. This is a waste and undermines the correct functionality of devices and limits

their life time. Apart from the effort to minimize heat generation, an efficient heat

management scheme is necessary. The incorporation of thermal interface materials

(TIM), materials filling the gap between the device and the heat sink, is one major

solution and the use of high thermal conductivity materials such as carbon nanotubes

and graphene for TIM is one promising approach [1]. The fundamental problem on

the nanoscale is poor thermal conductivity. At this scale thermal conductivity is

completely dominated by boundary surface scattering, impurity scattering and the

interface scattering [2, 3, 4, 5, 6]. This problem has gained huge attention in recent

years for both thermal management and energy harvesting applications. The remark-

able tunability of both electronic and thermal transport on the nanoscale is promising

for nanoscale thermoelectric applications [7, 8, 9]. Moreover, nanoscale thermal de-

vice operation is an another important application. Thermal devices, such as thermal

rectifiers [10], thermal transistors [11] and thermal memories [12] are a new class of

devices, whose operation is driven by the temperature gradients. These devices will

have useful applications not only in thermal circuits [13] but also in nanoscale thermal

management and thermo-electric applications. Furthermore, highly thermal conduct-

ing nano particles can be disperse in polymer to improve the thermal conductivity

1



of polymers which also have vast range of applications [14, 15, 16]. In this context,

understanding the thermal transport in length scales that is smaller than the mean

free path of phonons (λF ) in the bulk is of significant interest [17].

1.1 Thermal transport in bulk

Thermal conductivity(κ) is a measure of the ability to transfer thermal energy by

conduction, the main mechanism of thermal transport in solids. This property of

materials has been studied for a long time. French physicist Jean Baptiste Joseph

Fourier first gave a mathematical formula to describe thermal transport which is now

well known as Fourier’s law [18]. Fourier’s law states that the thermal flux(J(x)) is

proportional to the temperature gradient.

J(x) =
Q̇

A
= −κ

dT

dx
, (1.1)

where A is the cross-sectional area, Q̇ is the thermal current, dT
dx

is the temperature

gradient at “x” direction. The minus sign impose that the energy transfer is always

from the warmer side to the colder side of a material. This has been successfully used

in describing thermal transport on the macroscopic scale for almost two centuries.

The thermal conductivity (κ) is considered to depend only on the material and is

measured in units of W/mK. The κ of dielectric materials are mainly through the

lattice, while that of metals are dominated by electrons. Poor thermal conductivity

materials are known as thermal insulators. For example, the κ of polypropylene

is about 0.25 W/mK [19]. Materials with excellent thermal conductivity are called

2



thermal conductors. Copper has a κ of 400 W/mK and that of diamond is in the range

of 900 − 2320 W/mK [20]. The recently discovered carbon based materials, carbon

nanotubes (CNT) and graphene have extraordinarily high thermal conductivity. The

κ of a single wall CNT is about 3500 W/mK [21, 22] and that of graphene is in the

range of 4800− 5300 W/mK [23, 24].

The thermal conductivity due to the lattice is often described by phonons. Phonons

are the collective oscillating displacement waves in the lattice. There are two types

of phonons in crystals: acoustic phonons and optical phonons. In acoustic phonons

adjacent atoms vibrate in phase and the oscillation frequency reaches zero as the

wavelength goes to infinity. These phonons make a larger contribution to the lattice

thermal conductivity since they have a larger group velocity. In optical phonons ad-

jacent atoms vibrate out of phase and they have smaller group velocity. To describe

the low temperature thermal behavior of lattice, the quantization of the phonon en-

ergies is very important. In the quantum perspective, the quantized energy(En) of a

harmonic oscillator of angular frequency ω is given by,

En = ~ω

(
1

2
+ n

)
, (1.2)

where n is an integer and ~ is the Planck constant. The energy quantization and Debye

assumptions (i.e. linear phonon dispersion for acoustic phonons and a frequency cut

off) could accurately predict the temperature dependence of the lattice heat capacity

(C) of solids at low temperatures.

In a simple kinetic theory approach, where the solid is considered as a gas of
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phonons, thermal conductivity can be expressed as,

κ =
1

3
Cvphλl, (1.3)

where vph is the phonon velocity and the λl is the mean free path of the phonons [25].

Phonons undergo continuous collisions with the crystal boundaries, lattice imperfec-

tions, impurities, and other phonons and electrons. These collisions limit the thermal

conductivity. The mean free path is the average distance between two collision points.

The different collision processes listed above would have different mean free paths and

each would behave its own on the phonon frequency. The relative dominance of each

scattering term is a characteristic property of a material and the temperature [26].

However, such a description of the phonon mean free paths is absent in the simple

kinetic theory approach.

1.1.1 Boltzmann approach

A more detailed description of the thermal conductivity is in the semi-classical Boltz-

mann approach. Phonons are bosons. They follow the Bose-Einstein distribution:

ηo(k) =
1

exp[~ω(k)
kBT

]− 1
(1.4)

where, ηo(k) is the equilibrium phonon distribution, ω is the angular frequency, k

is the wave vector and kB is the Boltzmann constant [27]. The phonon distribution

(η(k)) is changed due to the continuous collisions stated above. The time evolution

of the steady state phonon distribution (η(k)) can be expressed by the Boltzmann
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equation[28].

∂η(k)

∂t
|scatt.= ~v(k) · ~∇T

∂η(k)

∂T
|diffu. (1.5)

where, ~v(k) is the phonon group velocity, ~r is the coordinate and t is time.

In the relaxation time approximation the scattering rate is approximated by a

constant relaxation time τ describing the exponential decay into the equilibrium dis-

tribution ηo(k) as removing the temperature gradient)in the absence of a temperature

gradient [26, 28]. In this approximation,

∂η(k)

∂t
|scatt.=

(η(k)− ηo(k))

τ(k)
(1.6)

and then the Boltzmann equation becomes,

(η(k)− ηo(k))

τ
= ~v(k) · ~∇T

∂η(k)

∂T
|diffu. (1.7)

where τ(k) is the phonon relaxation time. Then the heat flux ~JQ and the thermal

conductivity κph can be expressed as,

~JQ =
∑

k

η(k)~ω(k)v(k) (1.8)

κph = −
~JQ

∇T
=

1

3

∑

k

~ω(k)v2(k)τ(k)
∂η(k)

∂T
(1.9)

By replacing the summation with intergration and using the Debye assumptions, ( a

linear dispersion relationship ω = vk and a frequency cut off ωD (Debye frequency)),

the thermal conductivity κph becomes [26]

κph =
kB
2π2v

(
kB
~

)3

T 3

∫ xD

0

τ(x)
x4ex

(ex − 1)2
dx (1.10)
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where x = ~ω
kBT

and xD = ~ωD

kBT
.

Here τ(k) should be the phonon relaxation time for resistive processes. The major

resistive scattering processes in insulators are boundary surface scattering (B), 3-

phonon Umklapp scattering (U) and impurity point defect scattering (P).

Phonon scattering by boundary surfaces is dominant in nanostructures at low

temperatures. Diffusive scattering from rough surfaces limits the phonon mean free

path. For perfect diffusive scattering the scattering rate can be given by 1/τB = ~v/Lc

where LC is called the Casimir length (Width of the sample). In contrast, polished

surfaces show specular reflections in which the phonon mean free path is greater than

the Casmir length. The specular phonon mean free path increases with decreasing

temperature [29].

Phonon-phonon scattering has two forms: momentum conserving normal-processes

and momentum nonconserving “Umklapp” processes [25]. Only the Umklapp pro-

cesses directly contribute to the thermal resistance. In Umklapp scattering the

phonon momentum is greatly suppressed by subtracting off a reciprocal lattice vec-

tor ( ~G), so it is categorized as a resistive process. At low temperatures Umklapp

processes are negligible. As the temperature increases the average phonon energy

increases, significantly increasing Umklapp scattering. At higher temperatures the

Umklapp scattering rate is proportional to the temperature (1/τU ∝ T ) and at lower

temperatures it falls off as exp[−θD/T ] where θD is the Debye temperature [30].

The other important phonon scattering mechanism is impurity point defect scat-

tering. In impure materials this is very important. When the dominant phonon
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wavelength is larger than the size of the defect, impurity point defect scattering is a

form of Rayleigh scattering. The scattering rate is 1/τP = Aω4, where A is the point

defect concentration [4].

According to the Matthiessen’s rule the total phonon relaxation rate τ−1 can be

calculated as the sum of the individual rates [26, 4].

1

τ
=

1

τB
+

1

τU
+

1

τP
(1.11)

1.2 Thermal transport in nanostructures

In nanostructures, when the dominant phonon wavelength becomes less than the

sample dimensions (at relatively high temperatures), phonon transport can be de-

scribed by the three dimensional semiclassical Boltzmann approach described in the

previous section. The Boltzmann approach has been used to study the thermal trans-

port of GaAs nano wires of lateral dimensions greater than 100 nm [4]. However,

study of thermal conductivity of silicon nano-wires of widths smaller than 100 nm

has revealed that at low temperatures the variation of the thermal conductivity with

temperature (T ) deviates significantly from the Boltzmann approach, which gives a

variation proportional to T 3 . In nano wires about 22 nm in width, a linear tem-

perature dependence of the thermal conductivity has been observed [2]. This is a

signature of the transport due to confined phonon modes, as I will show below.
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1.2.1 Quantum thermal transport

The quantum regime is reached when the particle wavelength is larger than or of the

order of the sample dimension. Electron transport in this regime has being studied

for three decades [31, 32, 33, 34]. Electrons can be confined in two dimensional or

one dimensional systems using potential barriers. In the case of phonons, engineering

such a controllable trap is impractical. One feasible method is sandwiching the system

between materials with a relatively high elastic constants, but choosing such a high

contrast in elasticity is limited. Hence the best solution is to use freestanding or

suspended nanostructures. When the dominant phonon wavelength is larger than or

of the order of the two lateral dimensions of a dielectric nanowire, phonon transport is

effectively one dimensional because motion in the lateral directions are suppressed due

to quantum confinement. The energy of massless phonons (E) in a one dimensional

channel can be expressed as,

E2 = ~
2v2s

(
~kZ

2
+
(nπ
w

)2
+
(mπ

d

)2)
(1.12)

where,w and d are lateral dimensions, n and m are subband indices associated with

w and d, ~kz is the wave vector along the propagating direction, vs is the velocity of

sound and ~ is the Planck constant.

The existence of one dimensional phonon waveguide modes has been experimen-

tally observed by J. Seyler et al. [35]. They used Au0.60Pd0.40 nano-wires grown on

silicon substrates using e-beam lithography and room temperature thermal evapora-

tion. The width (w) of the three sets of nano-wires were 90 nm, 50 nm and 30 nm and
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the thickness (d) was approximately 20 nm. The change in the equilibrium resistance

(R − Ro)/Ro with the applied DC electric field was noted. Here Ro is the minimum

resistance obtained by varying the temperature. All three sets of wires showed a mini-

mum resistance at T = 8K. Applying an electric field heated the electrons and hence

both the electron and phonon distributions deviated from equilibrium. Some distinct

peaks of ∆R/Ro were observed with the electric field. These peaks were periodic with

the electric field. The position of the peaks was independent of the temperature and

the peaks broadened with increasing temperature.

The origin of these peaks can be explained using the phonon subband energies

provided by the equation 1.12. Increasing the electric field increases the average

electron energy. As the energy of the electrons approaches that of a phonon subband,

the electrons can relax by dumping energy into the phonon subband, hence resistance

peaks can be observed.

1.2.2 Electron transport

Transport in quantum regime can be well described using the Landauer formalism.

In the end of 1950’s Rolf Landauer developed this theory to describe the quantum

limit of the electron transport [36].

According to the Landauer’s approach, the net electrical current (I), of a one

dimensional electron channel between two phonon reservoirs in the linear response

regime can be written as follows,
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I =
2e

h

∫ ER

EL

(
f o(E,EF

L )− f o(E,EF
R)
)
ζ(E)dE (1.13)

where f o(E,EF ) is the Fermi-Dirac distribution function given by equation(10), EL
F

and ER
F are the Fermi energy of left and right reservoirs, and ζ(E) is the transmission

probability of electron through the scattering center. Transport without scattering is

called ballistic transport. This happens when the device length is smaller or equal to

the electron mean free path. For ballistic transport of electrons we can set ζ(E) =

1. At temperatures close to absolute zero, where the Fermi-Dirac function can be

approximated by the step function and for small bias, the above equation can be

simplified to give the electrical conductance G as

G =
2e2

h
ζ(EF ) (1.14)

The factor 2e2/h is well known as the quantum of electrical conductance. This was

first observed by B.J. Van Wees et al. and D.A. Wharam et al. simultaneously in

1988 [33, 37].

1.2.3 Heat transport

Similarly, we can implement the same procedure for the energy current of phonons [38].

According to the Landauer formula the heat current between two phonon reservoirs

at temperatures THot and TCold, through a one dimensional phonon channel can be

expressed as,

Q̇c =
∑

α

∫ ωmax

ωmin

dω

2π
~ωα(k) (ηhot − ηcold) Γα(ω), (1.15)
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where k is the phonon wave vector, kB is the Boltzmann constant, ωα(k) and vα(k)

are phonon frequency and the velocity of the mode α, Γα(ω) is the transmission

probability of a phonon between the heat baths and ~ is Planck’s constant. The

functions ηhot and ηcold are the Bose-Einstein distribution function of heat baths at

temperatures Thot and Tcold.

At very low temperatures the contribution of higher energy phonons to the thermal

conductivity is negligible. It is reasonable to assume that only the massless phonons

(ω = vk) dominate the transport, so we can set the lower limit of the above integration

as 0. Taking the limit ∆T → 0(∆T = Thot − Tcold) the thermal conductivity (κph) of

one dimensional channel between two reservoirs can be obtained. Here the ballistic

limit of phonons is assumed (Γ(ω) ≈ 1). (A description of ballistic transport of

phonons is given below)

κph =
k2
Bπ

2

3h
TNα (1.16)

where T is the temperature and Nα the number of polarization modes contributing

to the conductance.

We can set Nα = 1 for a one dimensional channel. The lowest possible thermal

conductance in a one dimensional channel ,
k2Bπ2

3h
T , is called the quantum of thermal

conductance. This is independent of the material properties and the geometry. Fur-

ther, unlike the quantum of electronic conductance this is proportional to the absolute

temperature.

The unit transmission of phonons can be observed for nanostructures. Most nanos-

tructures consist of defects, edge disorder, impurities and interfaces. These imperfec-
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tions cause the transmission probabilities to deviate from unity. In this context, the

exact calculation of phonon transmission probabilities between thermal reservoirs is

the fundamental problem. There are many theoretical approaches to calculate phonon

transmission probabilities such as continuum elasticity models, Green’s function ap-

proaches and transfer matrix methods. A continuum model is efficient and well suited

to study the long wave length behavior, which is sufficient to predict the thermal con-

ductivity at low temperatures. In chapter 2 of this thesis, we develop a continuum

model to incorporate the interface coupling between two dissimilar materials.

However, the continuum approach is not sufficient to predict the thermal conduc-

tivity at moderately high temperatures since the short wave length phonons and the

optical modes are not represented accurately. Thus, it is essential to calculate the

transmission probabilities including all the details of the atomic constituents of the

system to get an accurate description of the full phonon spectrum. In this regard, the

Non-equilibrium Green’s function (NEGF) approach is one of the more widely used

approaches.

The main focus of this thesis is to develop an alternative and computationally

efficient approach in calculating the phonon transmission probabilities in the atomic

scale. We adapt R-matrix theory to calculate phonon transmission across a device of

molecular to mesoscopic scale. By this technique, we can study the mode to mode

transmission of phonons, which provides a more descriptive picture of the scattering

mechanisms. The key novelty of R-matrix theory for phonon is that the only required

information about the scattering region is its normal modes, which are evaluated only
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once for a system. Normal modes are the collective oscillations of the lattice, which

are orthonormal and form a complete basis in a finite region. These are calculated by

diagonalising the dynamical matrix in the harmonic approximation of the interaction

potential. The harmonic approximation is well suited to study thermal transport

in mesoscopic scale systems and low temperature transport, which is not accessible

by classical molecular dynamic simulations. In the harmonic approximation, phonon-

phonon interactions are not included. In general such scattering is present at any non-

zero temperature, but at low temperatures they do not make a significant contribution

to the thermal conductivity. In nanostructures the most dominant scatters are the

boundary, interface and impurities. Such scattering processes can be well studied

in the harmonic approximation. R-matrix theory is an efficient and simple way in

calculating the phonon transmission through a nanoscale system. Chapters 3 and 4

are devoted to the basic theoretical development of this technique. Moreover, we give

a discussion of the results comparing to the NEGF approach. In chapter 5, we apply

R-matrix theory to graphene nanoribbons.

1.3 Molecular dynamics simulations

Molecular dynamics(MD) simulation is an another essential numerical method in

nanoscale thermal transport. The ability to include the anharmonic interactions and

the easy of implementation are the advantages of this technique. Moreover as the

development of the computer power, MD simulations can be readily extend to study

the physics of large scale complex systems, in which the analytical tools can not be
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reached. Biological systems and nanocomposites are example for this.

The heart of the classical MD simulations is the Newton’s second law. When an

atom (i) is exerted a net force “Fi”, the rate of changing the momentum (Pi) of that

atom, can be expressed as,

d~Pi

dt
= ~Fi. (1.17)

Above equation is solved numerically for velocity (ṙi(t)) and the coordinate ri(t) of

each atom in the system. The time integration is done in discrete time steps δt,

carefully chosen according to the order of accuracy in the integration algorithm and

the simulation cost. That is too large time steps will results in inaccurate results

while too small time steps would significantly increase the computational time. There

are many algorithms developed for this purpose ( For example, Verlet algorithm,

velocity Verlet algorithm, leap frog algorithm, Runge-Kutta method and Predictor-

corrector algorithm). The numerical integration is carried out until the system reaches

equilibrium or the non-equilibrium steady state. Following the ergodic theory, the

relevant physical quantities are calculated by taking the time average.

In studying the thermal conductivity, establishing a non-equilibrium steady state

is important. This is achieved by maintaining the temperature of the atoms in selected

regions (heat baths). At the steady state a constant heat flux is flowing through the

system and the thermal conductivity can be calculated according to the Fourier’s law

( eq. 1.1).

In chapter 6 of this dissertation, we use non-equilibrium molecular dynamics sim-

ulations to study the thermal transport in strain graphene nanoribbons.
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1.4 Conclusion

In this chapter, we discussed the important theoretical approaches used in nanoscale

thermal transport. In bulk materials, thermal conductivity can be described by

Fourier’s law. In this scale thermal conductivity is size independent and depends

only on the material’s intrinsic properties. On length scales of 100 nm ∼ 1 µm, the

Boltzmann approach can well describe the thermal transport. On this scale ther-

mal conductivity strongly depends of the size of the system and the nature of the

boundaries (edge roughness). When we go even smaller (< 100 nm), where modern

electronics is concerned, the Boltzmann approach loses its validity. In this scale the

Landauer-Buttiker formalism can be used to describe the thermal conductivity. In

this context, calculating the phonon transmission probability between thermal reser-

voirs is the fundamental problem. Moreover, molecular dynamics simulations are also

important in nanoscale thermal transport.
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Chapter 2

Thermal Transport in the Continuum Limit

Most of the content presented here appear in Proceedings of 41st ISTC - Wichita,

KS, Oct 19-22, 2009, SAMPE Journal.

2.1 Introduction

In this chapter, I study the inter-facial thermal transport between two acoustically

mismatched materials. The mismatch of the acoustic impedance (Eρ, where E is the

elastic constant and the ρ is the mass density) poses a significant Kapitza resistance

at the interface. The Kapitza thermal resistance is the resistance to the heat trans-

port across the boundary of two dissimilar materials [39, 40]. The effect becomes very

significant when the two materials have a huge difference in elasticity so that there

is only a weak coupling of phonon modes at the interface [41, 42]. We consider an

interface that has high contrast in the elasticity such that the ratios of elasticities

E1/E0 = 1000 and densities ρ1/ρ0 = 2. Such a contrast is present at the interface

between carbon nanotubes (CNT) and polymers. The elastic modulus of a CNT is

about 1 TPa whereas that of polymer is of the order of 1 GPa [43, 44]. Therefore the

interface of CNTs and polymer pose a considerable Kapitza thermal resistance. We

incorporate an interface transition layer which has the variable elasticity (E(x)) and

density (ρ(x)) for which we are trying to obtain an optimal variation to maximize

the inter-facial thermal transport. These interface transition layer could be analogous
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to an attached hydrocarbon chain to CNTs. Such a chemical fuctionalization could

improve the thermal transport of CNT-polymer composites. Clancy and Gates have

reported a significant reduction of the Kapitza thermal resistance of CNT-polymer

composites by grafting hydrocarbon chains to the surface of the CNT with covalent

bonds [45]. Their work is based on the molecular dynamics simulations. Moreover

they observed further reduction of the Kapitza thermal resistance with increasing

length of the hydrocarbon chains and the grafting density. Kosevish has shown the-

oretically the existence of low frequency resonant vibrational modes at the interface

transition layer between soft and rigid materials [46]. These resonant vibrational

modes can reduce the Kapitza thermal resistance at elevated temperatures. The

above approaches have difficulties in optimizing the properties of the interface tran-

sition layer or the grafted atomic chains to obtain the maximum heat flux through

the interface due to the mathematical complexity and the computational cost of the

molecular dynamics simulations. Our goal is to engineer the interface transition layer

to maximize the heat transfer through the interface between hard and soft materials

such as CNTs and polymers through a model calculation.

In section 2 below we describe the our model system used for the optimization

process and in section 3 we describe the numerical and analytical approaches of op-

timizing the interface and the results. There, we consider the propagation of lon-

gitudinal vibrational waves in one dimensional inhomogeneous constriction. These

inhomogeneities are the variation of the mass density and the elasticity from soft to

hard materials.
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2.2 The model

Our model consists of a one dimensional chain of atoms (a channel) strongly bonded

to each other, where the force constants are equivalent to that of carbon nanotubes.

This atomic chain is connected to two heat baths at temperatures Thot and Tcold

at either end. These heat baths replicate very soft media like polymers and have

comparably small force constants. The ratio of force constants between the heat bath

and the channel is kept at 1 : 1000. The coupling of the heat bath to the channel is

always through an atomic chain whose atomic mass and force constants are varying

with position.

We adopt the Landauer-Buttiker formalism to describe the thermal flux through

the channel, Q̇c. In this approach the ballistic transport of phonons between two

phonon reservoirs is given by the Landauer formula (eq. 1.15). In our model we

assume the channel is a perfect phonon conductor. This approximation is reasonable

for CNTs even at higher temperatures. It has been theoretically predicted that the

ballistic length of CNT can be larger than 100 nm at room temperature. However our

goal is to optimize the interface hence the interaction within the channel is irrelevant.

To estimate the transmission probability we use a continuum approximation in

which the model system is considered as a one dimensional rod of continuous material.

This approximation has been widely used in determining the transmission probability

of low frequency acoustic phonons [38, 47, 48, 49]. This approximation holds when

the dominant phonon wavelength is larger than the lattice spacing [50].

We are interested in the transmission probability of phonons into the channel
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Figure 2.1: Three regions of interest: Region I is the heat bath, Region II

is the inhomogenious interface and the Region III is the uniform channel.

from the heat bath. Figure 2.1 depicts the three regions of interest. Region I is

the uniform heat bath, region II is the inhomogeneous interface and region III is the

uniform channel.

2.3 Phonon transmission in the continuum limit

The method of deriving the transmission probability from one heat bath into the

channel is described below and by extending the similar procedure we can calculate

the transmission probability from one heat bath to another. The elastic modulus

and the mass density of the heat baths and the channel are denoted by Yp, Dp and

Yc, Dc. The interface region has a position dependent mass density D(z) and elastic

modulus Y (z). Before proceeding, we switch to dimensionless quantities. The elastic

modulus and the density are expressed in terms of the those channel, and the length
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is scaled by the length of the interface region (L). That is x = z/L, ǫ(x) = Y (x)/Yc,

ρ(x) = D(x)/Dc, ǫ0 = Yp/Yc and ρ0 = Dp/Dc. In this problem we enforced ǫ0 = 0.001

and ρ0 = 0.5. At the channel we have ǫ1 = 1 and ρ1 = 1. The atomic displacement

in these three regions are given by UI(R), UII(R) and UIII(R), where R refers to the

atomic discrete atomic positions. In the long wavelength limit where the individual

atomic displacements vary slowly through the neighbouring atoms, we can define

continuous displacement fields such as UI(x, t), UII(x, t) and UIII(x, t), where “x” is

the continuous variable and “t” is the time. In this continuum limit, the dynamics of

the displacement waves are governed by the scalar wave equation [51].

∂

∂x

(
ǫ(x)

∂U(x, t)

∂c

)
= ρ(x)

∂2U(x, t)

∂t2
, (2.1)

which can be written as follows in the uniform medium,

∂2U(x, t)

∂t2
= c2

∂2U(x, t)

∂x2
, (2.2)

where the “c” is the speed of sound, c =
√
ǫ/ρ. The solutions to the scalar wave

equation in the uniform regions (eq. 2.2) take the usual harmonic form given by,

UI(x, t) = A exp[i(k0x− ωt)] +B exp[−i(k0x+ ωt)], (2.3)

UIII(x, t) = C exp[i(k1x− ωt)], (2.4)

where k0 and k1 are wavevectors of the vibrational waves in the heat bath and the

channel, given by kj = ω
√
ρj/ǫj. In region II, we must solve the differential equation

2.1. It is impossible to find an exact solution to the equation 2.1 for arbitrary functions

of ǫ(x) and ρ(x).
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First, we do a numerical solution to region II. For a given functions ǫ(x) and

ρ(x), we can find two linearly independent numerical solutions ( Ua
II and U b

II) to

equation 2.1 by choosing solutions to different boundary conditions. Specially, for

Ua
II we choose UII(0) = 0 and U ′

II(0) = 1 and for U b
II we choose UII(0) = 1 and

U ′
II(0) = 0. Then we can write a general solution in the region II as follows,

UII(x, t) = CaUa
II(x, t) + CbU b

II(x, t). (2.5)

We then impose continuity on the displacements UI , UII and UIII and their derivatives

at the boundaries. The boundaries are at x = 0 and x = 1.0. This process yields 4

equations as follows,

A+B = CaUa
II(0) + CbU b

II(0)

CaUa
II(1.0) + CbU b

II(1.0) = C exp[ik1]

ik0A− ik0B = CaU ′
II(0)

a + CbU ′
II(0)

b

CaU ′
II(1.0)

a + CbU ′
II(1.0)

b = ik1C exp[ik1].

(2.6)

The above set of equations can be solved for the transmission coefficient (τ), τ = C/A.

2.4 Thermal energy flux and transmission probability,

The transmission probability of a phonon can be calculated by considering the energy

fluxes associated with the displacement waves. The total mechanical energy density

ξ(x, t) of the displacement wave U(x, t) can be expressed as the sum of the kinetic

and potential energy densities.

ξ(x, t)j =
1

2
ρj

(
∂U(x, t)

∂t

)2

+
1

2
ǫj

(
∂U(x, t)

∂x

)2

, (2.7)
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where “j” refers to the heat bath (j = 0) or the channel (j = 1). The continuity

equation,

∂ξ(x, t)

∂t
+∇ · ~J(x) = 0, (2.8)

enables us to solve for the energy flux (J(x)). There is another equation we can derive

from the wave equation 2.2. The general form of the solutions to the wave equation

take the following form f(x− ct) and g(x+ ct). Using the above form of solutions for

U(x, t), we can show the following relation.

∂U

∂x
=

−1

c

∂U

∂t
. (2.9)

For the solutions of the form U(x, t) = U(x)eiωt and using the equations 2.7, 2.8 and

2.9, the energy flux carried by the displacement wave through the medium can be

derived.

Jj(x) = iωc2jρj (U
∗(x)∇U(x)− U(x)∇U∗(x)) . (2.10)

It can be shown that the incoming energy flux in the heat bath takes the following

form,

Jin = 2ωc20ρ0k0AA
∗, (2.11)

and the transmitted energy to the channel is

Jtrans = 2ωc21ρ1k1CC∗. (2.12)

The transmission probability of a phonon of frequency ω from heat bath to the channel

is,

Γ(ǫ(x), ρ(x), ω) =
Jtrans

Jin
=

c21ρ1k1
c20ρ0k0

ττ ∗, (2.13)
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Figure 2.2: Transmission probability of phonon into the channel from the

heat bath vs. scaled frequency. The black dotted line is the transmission

probability for an abrupt change of elasticity and mass density neglecting

the interface coupling. The thick blue line is for a linear interpolation of

ǫ(x) and ρ(x). The thick black line shows the transmission probability of

the optimal variation of ǫ(x) and ρ(x). The dashed red line is the thermal

weight to the transmission probability which contributes to the Landauer

energy flux at T = 300 K and Vc is the speed of sound in the channel.

where ∗ refers to the complex conjugate. The transmission probability Γ depends on

the properties of the interface transition region. Thus, it is written as a function of

ǫ(x) and ρ(x).

2.5 Numerical optimization

The optimization was started from a linear interpolation of ǫ(x) and ρ(x). After

calculating the heat flux, the functions ǫ(x) and ρ(x) were randomly varied subject

to the constraints that they take on the correct values at the boundaries and that
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Figure 2.3: Optimal ǫ(x) and ρ(x) obtained numerically, giving the max-

imal thermal conductivity.

they are positive. Variations that increased the heat flux were accepted. The process

was iterated and the size of the variations decreased until ǫ(x) and ρ(x) converged.

Figure 2.2 shows the transmission probability of phonons into the channel from a

heat bath against the scaled frequency. The red dashed line is the thermal weight to

the transmission probability which contributed to the Landauer energy flux. This is

plotted at T = 300 K when ∆T ≪ T . The black dotted line shows the transmission

probability for an abrupt change of elasticity and mass density without considering

the coupling at the interface and the blue line is for a linear interpolation of ǫ(x),

ǫ(x) = (1 − ǫ0)x + ǫ0 and ρ(x), ρ(x) = (1 − ρ0)x + ρ0. The black line shows the

transmission probability of the optimal variation of ǫ(x) and ρ(x), which is shown in

Fig. 2.3. According to the Fig. 2.2 by increasing the length of the interface (L), over

which ǫ(x) and ρ(x) are varied the transmission function can be squeezed towards low

frequencies hence the thermal flux due to low frequencies is increased. The optimal

24



0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1.

L HnmL

Q
c 

Q 
m

ax

10K

100K

300K

Figure 2.4: Normalized energy flux through the channel vs. length of

the interface at T = 10 K, 100 K and 300 K. The channel has an op-

timized interface at either end connecting it to heat baths at different

temperatures.

mass density variation peaks at approximately six times that of the channel density

(ρ1) in the middle region of the interface and the elasticity variation is slowly varying

on the side of the soft heat bath and has a rapid rise near the channel. This kind

of elasticity variation seems physically achievable. There can be a few atomic layers

of intermediate force constants decaying rapidly at the interface of hard and soft

material. At room temperature (300 K), the abrupt change of the material without

considering the interface coupling gives only 10% of the maximum heat flux into the

channel. With the linear interpolation of the interface transition layer, we could get

about 47% of the maximum heat flux into the channel having about a 1 nm long

interface region (L). For the optimal variation 97% of the maximum flux into the

channel can be obtained.
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It is easy to extend the above techniques to calculate the transmission probability

from a soft medium, through one interface, into a stiff channel and then through

a second, identical interface and out the other side. Fig. 2.4 shows the variation

of energy flux through such a system as a function of the length of the interface

region (L) at temperatures 10K, 100K and 300K. In this calculation the energy flux

is normalized to the maximum possible energy flux of a phonon mode. As mentioned

before by increasing the length of the interface (L), over which ǫ(x) and ρ(x) are

varied the transmission function can be squeezed towards low frequencies hence the

thermal flux into the channel is increased.

2.6 Analytical approximations

At discontinuities of material properties, the ratio of the reflected(σr) and incident(σi)

stress pulses of longitudinal waves can be expressed as follows [51],

σr

σi
=

ǫ1ρ1 − ǫ0ρ0(√
ǫ1ρ1 +

√
ǫ0ρ0

)2 . (2.14)

Reflectionless transmission can be achieved whenever the numerator of the above

equation is zero. That is when ǫ1ρ1 − ǫ0ρ0 = 0. By extending the same argument

to a rod whose properties are varying continuously, the condition for reflectionless

transmission can be expressed as d(ǫ(x)ρ(x))
dx

≈ 0. This is not always possible when

there are given properties at either ends. Figure 2.5. shows the product of ǫ(x) and

ρ(x) against the position for the optimal case. The variation has small derivatives,

in agreement with the above condition. The next question raised is whether this
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Figure 2.5: Product of ǫ(x) and ρ(x) as a function of position.

optimal variation is unique. We believe that this variation is unique and a reasonable

qualitative explanation can be obtained by looking at WKB approximate solution to

the equation 2.1. The WKB solution to equation 2.1 can be written as follows,

UII(x) = (ǫ(x)ρ(x))−1/4 exp

[
iω

∫ x

0

√
ρ(s)

ǫ(s)
ds

]
. (2.15)

The approximation holds when d(ǫ(x)ρ(x))−1/4

dy
≪ 1, where y =

∫
ǫ(x)−1dx and for

ωL/c ≫ 1 [52, 53]. The transmission probability can then be calculated as described

earlier. The transmission probability obtained numerically and the WKB method

well matches beyond the first resonance peak (Fig.2.6).

Further understanding of the optimal variation can be obtained analyzing the

low frequency (ω ≪ 1) behaviour of the transmission probability. The low frequency

solution to the eq.2.1 can be obtained using the perturbation series method [54]. Here

we assume solutions of the form,

UII(x) =
∞∑

0

fn(x)ω
2n. (2.16)
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Figure 2.6: Transmission probability of phonons into the channel vs.

scaled frequency for optimal ǫ(x) and ρ(x). The dashed line is from the

numerical method. The thick black line is from the WKB approximation

and the brown line is from the perturbation series method.

Then we plugged the above solution to the equation 2.1 and obtained the expression,

ǫ′(x)
∑

0

f ′
n(x)ω

2n + ǫ(x)
∑

0

f ′′
n(x)ω

2n = −ρ(x)
∑

0

fn(x)ω
2(n+1). (2.17)

The functions fn(x) are determined by matching ω by order and with the boundary

conditions explained below. Basically we are looking for two linearly independent

solutions: Ua
II and U b

II . These two solutions are established by the boundary con-

ditions Ua
II(0) = 1, Ua

II(1) = 0 and U b
II(0) = 0, U b

II(1) = 1. Since the zeroth order

term of equation 2.16 gives the largest contribution, the boundary conditions are fully

imposed on f0(x) and all fn(0) and fn(1) for n ≥ 1 are set to zero. The displacement

UII(x) was calculated up to the fourth order of ω and the transmission probability was

calculated as previously by replacing the numerical solutions with the perturbation

series solution. The solid brown line in the Fig.2.6 shows the transmission probability
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obtained by this method.

2.7 Atomic model verification

The continuum approximation used in the above optimization is valid only in the low

frequency regime, where the phonon dispersion can be given by the linear relation

as Vc = ω
k
. When the wavelengths are close to the atomic spacing the continuum

model fails as the discrete nature of the lattice become important. In the discrete

lattice model, the phonon spectrum is finite because the wavelengths smaller than

the lattice spacing does not exist. In the continuum model this higher frequency cut

off is absent. Thus, it is useful to study how the optimal ǫ(x) and ρ(x) shown in Fig.

2.3 behave in the discrete lattice model.

We use the R-matrix theory which is described in next chapters in details to

do this comparison. We calculate the phonon transmission between soft heat baths

(ǫ0 = 0.001 and ρ0 = 0.5) through the rigid channel (ǫ1 = 1.0 and ρ1 = 1.0). The

interface between the soft heat baths and the channel is mediated by an interface

coupling region whose force constant and mass variation are given by the optimal

ǫ(x) and ρ(x). Fig. 2.7 shows the transmission probability calculated from the R-

matrix approach. There are 40 atoms in the channel. The green dashed line is without

the interface coupling region. The soft atomic chain and the channel is connected by

a single spring of force constant 0.1. The black solid line is for only the optimal

force constant variation, which is taken as ǫ(x). The blue line is for the optimal ǫ(x)

and ρ(x) shown in the Fig. 2.3 when the interface consists of 10 atoms. The red
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Figure 2.7: Transmission probability between two soft heat baths through

a regid channel. The green dashed line is without the interface coupling

region. The soft atomic chain and the channel is connected by a single

spring of force constant 0.1. The black solid line is for only the optimal

force constant variation, which is taken as the ǫ(x). The blue line is

for the optimal ǫ(x) and ρ(x) shown in the Fig. 2.3 when the interface

consists of 10 atoms. The red line is for the case where the number of

atoms in the interface is 20.
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line is for the case where the number of atoms in the interface is 20. We observe

significant improvement of the transmission probability over the 60% of the phonon

spectrum of the soft material. Moreover the transmission function could move to

the low frequencies as implied by the continuum approximation scaling. Thus, this

optimal variation is better than having a single coupling spring connecting the hard

and soft materials.

2.8 Conclusion

In this chapter, we discuss an approach to include the interface coupling in the con-

tinuum model, where we incorporate continuous functions to handle the interface.

We use this approach to optimize the interface thermal transport between hard and

soft materials. We include an interface variation of material to maximize the thermal

transport and the optimal variation of mass density and elasticity is obtained nu-

merically in the continuum limit. We also compare optimal variation with a discrete

model. we observe remarkable improvement of the transmission probability over a

60% of the phonon spectrum in the low frequency region.
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Chapter 3

R-Matrix Theory for Phonons

Some of the content presented here appear in Numerical Heat Transfer, Part B: Fun-

damentals 60(4), 2011.

3.1 Introduction

In this chapter, we develop a theoretical tool to calculate phonon scattering across

a device of molecular to mesoscopic scale. It is possible to adapt the theories that

were initially used to calculate electronic transmission probabilities to phonons. The

recent use of Green’s function approach is a good example for such a transition. We

adopt R-matrix theory (RMT) to calculate phonon scattering in the ballistic regime.

RMT was first developed in studying resonances in nuclear reactions by Wigner

and Eisenbud in 1947 [55]. The computational simplicity and the efficiency of this

technique lead to its use in various disciplines of physics to study scattering prob-

lems. In 1971, RMT was applied to electron-atom scattering in atomic and molecular

physics [56, 57]. Recently, RMT has been used in calculating electron scattering

through quantum systems [58, 59, 60, 61]. We first review the application of RMT in

electron scattering.
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Electron scattering

In the framework of the Landauer-Büttiker formalism [36, 62], the conventional device

model is a central scattering region connecting to two or more leads which take the

carriers in and out of the scattering region. In RMT, a set of soft boundaries are

defined to separate the scattering region (usually called the interior region) from

the leads. The dynamics of electrons in this system are obtained by solving the

Schrödinger equation. The key of the RMT is to solve the Schrödinger equation

independently in the leads and the interior region. We then use the R-matrix(R) to

solve for the scattering matrix (S).

The leads are assumed to be perfect conductors so there is no scattering in the

leads. They are also assumed to be nanowires so that the transverse motion of the elec-

tron is quantized. Thus the lead eigenfuctions can be given by plane waves traveling

the length direction of the leads, w(ny, nz; y, z) exp[iqxx], where the laterally quan-

tized electron subbands can be given by w(ny, nz; y, z) = sin(nyπy/wy) sin(nzπz/wz),

ny and nz are quantum numbers on transverse direction, and y and z are orthogo-

nal coordinates in the confined directions. These plane waves are used to expand a

scattering solution in the leads.

The scattering potentials (electric and magnetic) are restricted to the interior re-

gion and the Schrödinger equation is solved to obtain a complete set of eigenvectors.

However, the kinetic energy operator usually generates a non-Hermitian part due to

the uncertainty on the soft boundaries between the lead and the interior region. This

problem is handled by introducing a boundary surface Bloch operator (LB) to the
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original Hamiltonian (H). The resulting Hamiltonian is called the “Bloch Hamilto-

nian”, H̃ = H + LB, and it is Hermitian in the interior region. The eigenfunctions

of the Bloch Hamiltonian are used to expand a scattering solution in the interior

region. In practice, the Bloch Hamiltonian is diagonalized using a set of basis func-

tions. Different basis sets are used such as Wigner-Eisenbud functions, variational

basis functions, atomic orbitals, etc.

By matching scattering solutions in the above two regions one can solve for the

scattering matrix. The distinctive feature of this approach is that we need to solve

the eigenvalue problem only once for a system.

Transition to phonon

The application of this technique to phonon transport is theoretically interesting and

provides an efficient calculation tool for phonon scattering in nanoscale systems. The

major distinction of the phonon problem is that it deals with finite difference equations

instead of the Schrödinger equation, which is a differential equation. For electrons,

there are an infinite number of eigenstates of the Bloch Hamiltonian. This means that

any solution involves a high energy cut-off given by the largest eigenvalue considered in

the Bloch Hamiltonian. In the phonon case, there is no sense to oscillations that have

a wavelength shorter than the distance between atoms in a single unit cell. Therefore,

there are not more than 3N modes associated with the interior region, and such

convergence is not an issue. The electron case also suffers convergence issues related

to the choice of basis used for solutions of the Bloch Hamiltonian. Since the scattering
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solution can have any amplitude and derivative on the boundary, it is important that

the basis functions share the same feature. This motivates a variety of different

approaches in choosing a basis. In contrast, in the phonon case we merely solve for

the normal modes of the system, and there is no such ambiguity. However, we cannot

find the normal modes of the interior region dynamical matrix since it is coupled to

the leads. The solution is to define a “Bloch dynamical matrix” by removing the

coupling to the leads in analogy to the Bloch Hamiltonian. The coupling between the

interior region and the leads forms a matrix, which we also call the Bloch operator.

The free electrons in the leads always follow a quadratic dispersion such that

E = ~
2q2/2m. However, phonons have more complex behavior. There are different

polarization modes such as longitudinal, transverse, acoustic and optical, and different

phonon subbands due to the lateral confinement. Each of these modes follows a

different dispersion relation which needs to be taken into account. The details of the

lead phonon modes are calculated by solving the dynamical matrix in a lead unit cell.

This is not the issue in section 3.2, where we have only one phonon mode in the lead.

The relative motions of atoms come to effect when we have diatomic leads, which

is the motivation to section 3.3. Moreover, in chapter 3, this is handled in a more

generalized way.

Furthermore, the electron problem has the advantage of well-defined boundaries.

In the phonon case there are interactions between atoms at different locations which

involves interactions such as nearest neighbors, next nearest neighbors, etc. This

yields broad boundaries in contrast to the electrons.
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The main focus of this dissertation is to adopt traditional RMT to calculate

phonon scattering addressing the above mentioned distinctness. In section 3.2, we

give a basic development of the RMT considering a uniform mono-atomic chain. Tak-

ing a step further, we expand the formalism to a diatomic chain in section 3.3. A

generalized approach of the theory is presented in chapter 4.

3.2 Phonon model

The system consists of a finite central region connected to two semi-infinite leads

representing the thermal reservoirs. We define two boundaries on the first atom of

each leads coupled to the central region. See Fig.(3.1). The central region with

boundary atoms is called the interior region (IR), which is the main scattering center

of the problem. This region is comprised of interfaces, boundaries and impurities.

Impurities can be created by changing the mass or the force constant. There are N

atoms in the interior region including the two boundary atoms. The region outside

the boundaries is called the asymptotic region. This region comprises the semi-infinite

leads that are assumed to be periodic. We restrict all the non-uniform structure to

the IR. The entire system is indexed by j, called the common index, where j = 0 on

the left boundary atom and increases positively to the right. The leads are indexed

by jl, where l = 1(2) is the lead 1(2). The atoms at jl = 0 are the boundary atoms,

which are also j = 0 and j = N − 1 in the common index. The lead index increases

positively outward the interior region. The mass of the jth atom is mj and the force

constant between two consecutive atoms is kj,j+1. The mass and the force constant
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Figure 3.1: Schematic of the 1D system having two leads and an interior

region. The index j is the atom index of the whole space and j1 and j2 are

the lead index defined only on the leads symmetrically. The leads have

uniform masses (mjl) and force constants (kjl,jl+1) whereas the interior

region can have different masses and force constants. The index mj is

the mass of the jth atom and kj,j+1 is the force constant between two

consecutive atoms.

of leads are also denoted by the lead index as mjl and kjl,jl+1.

Our goal is to estimate the thermal conductance of the system. We keep both

leads in thermal equilibrium at different temperatures: T1 and T2. At steady state

there is a constant thermal flux flowing through the system. Since our leads are

periodic there are well defined phonons distributed according to the Bose-Einstien

distribution function, η1,2(ω) = {exp (~ω/kBT1,2)− 1}−1. Each of these phonons

contribute to the thermal flux ballistically such that a phonon of energy ~ω in lead 1
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will be transmitted in to lead 2 with its full energy with a probability of transmission

Γ(ω), which is determined by the atomic constituents in the IR. The heat current

from lead 1 to 2 (Q1,2) can be given by the Landauer Formula (Eq.3.1)[36, 38].

Q1,2 =

∫ ωmax

ωmin

dω

2π
~ω (ηL(ω)− ηR(ω)) Γ(ω), (3.1)

In the linear response regime, where ∆T ≪ T , ∆T = |T1 − T2| and T = (T1 + T2) /2,

the thermal conductance (σ) of the system can be expressed as follows,

σ =
k2
BT

h

∫ xmax

xmin

dx
Γ(x)x2ex

(ex − 1)2
, (3.2)

where x = ~ω
kBT

, ~ is the reduced Planck constant and kB is the Boltzmann constant.

3.2.1 R-matrix theory formalism.

The dynamics of the system described in the previous section follows an infinite set of

coupled equations. Equation (3.3) and (3.4) describe the leads and the interior region

respectively in the harmonic approximation and they are labeled by a common index.

In above equations, interactions are limited to the nearest neighbors and only the

longitudinal vibrations are considered. This is not a requirement, and one can readily

extend the theory to three-dimensions(3D) and consider long range interactions. This

is addressed in chapter 4 through a generalized formalism.

mjω
2uj = −kj−1,juj−1 + (kj−1j + kjj+1)uj − kjj+1uj+1 for N − 1 ≪ j ≪ 0 (3.3)
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m0ω
2u0 = −k−10u−1 + (k−10 + k01)u0 − k01u1 for j = 0

mjω
2uj = −kj−1,juj−1 + (kj−1j + kjj+1) uj − kjj+1uj+1 for N − 1 ≫ j ≫ 0

mN−1ω
2uN−1 = −kN−2N−1uN−2 + (kN−2N−1 + kN−1N1)uN−1−kN−1NuN for j = N − 1

(3.4)

The above set of equations can also be written as the matrix form,

(
ω2M−K

)
u = 0, (3.5)

where M and K are the diagonal matrix of masses and the dynamical matrix defined

the whole system. Therefore, M and K are infinite dimensional matrices and u, is

also an infinite dimensional vector whose entries are the displacement of each atom.

We rewrite the above equation(3.5) in mass normalized form as follows,

(
ω2I − K̃

)
u = 0, (3.6)

where I is the identity matrix, K̃ = M− 1
2KM− 1

2 is the mass normalized dynamical

matrix. This guarantees that if we choose any finite region of the system, the matrix

K̃ is always Hermitian. Following steps analogous to the electronic case, we can

develop IR and lead solutions individually in a mathematically consistent manner so

that they can be matched at the boundaries to calculate the scattering amplitudes

of a given phonon of energy ~ω. Below we describe the derivation of IR and leads

solutions and then the scattering amplitude of phonons.

3.2.2 Interior region solution

We can not solve the system of equations for the IR since it is coupled to the leads.

In equation (3.4), the underlined terms are the additional terms lying outside the
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interior region. These can be written in a matrix form called the “Bloch Operator”

(LB). The matrix element of the Bloch operator (LB(α, β)) can be expressed as,

LB(α, β) = −
(
k̃0,−1δα,0δβ,−1 + k̃N−1,Nδα,N−1δβ,N

)
, (3.7)

where k̃0,−1 = k0,−1/
√
m0m−1 , k̃N−1N = kN−1N/

√
mN−1mN . The term LBu gives the

coupling terms in equation (3.4).

LBu = −




k̃0−1u−1

0

...

0

k̃N−1NuN




1

2

...

...

N

(3.8)

Now LBu can be subtracted from equation (3.6) yielding,

(
ω2I + K̃ − LB

)
u = −LBu. (3.9)

Therefore, we can block out the IR from
(
K̃ − LB

)
, since there is no coupling to the

rest. We call the matrix
(
K̃ − LB

)
the “Bloch dynamical matrix” in analogy with

the “Bloch Hamiltonian” in the electronic problem. Alternatively, we can choose that

(
K̃ − LB

)
be only defined in the IR so that equation (3.9) still holds in the IR. Since

the matrix
(
K̃ − LB

)
is Hermitian, we can find eigenvalues (λ2

n) and eigenvectors

(vn) as follows.

(
K̃ − LB

)
v(n) = λ2

nv
(n). (3.10)
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The eigenvectors v(n)’s are orthonormal and also form a complete set. Hence, a

general solution in the IR can be written as,

uIR =
∑

n

Anv
(n). (3.11)

Plugging this into the left hand side of the equation(3.9) yields,

∑

n

(
λ2
n − ω2

)
Anv

(n) = LBu. (3.12)

By taking the inner product with vn,† († is the transpose conjugate),

An = −v(n)†LBu

λ2
n − ω2

. (3.13)

By plugging An into eq. 3.11, the IR solution can be expressed as,

uIR = −
∑

n

v(n)v
(n)†LBu

λ2
n − ω2

. (3.14)

3.2.3 Leads solution

Since the choice of the leads is always periodic we can establish plane wave solutions in

the leads. This can be expressed as e±iqljla, where ql is the wave vector of lead “l”. We

assume the leads are uniform so that the phonon dispersion of the lead can be given

by ω = 2
√
kL/mL sin (qla/2). A plane wave of unit amplitude coming towards the

interior region in lead l0 can scatter off into the lead l. The corresponding scattering

amplitude is written as Sll0 . The scattering solution in lead l for waves coming from

lead l0 can be written as follows.

ull0(jl) = δll0e
−iqljla + Sll0e

iqljla (3.15)
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The scattering amplitudes Sll0 form a 2 × 2 scattering matrix (S) whose diagonal

elements refer to the reflection coefficient (r) and the off diagonals are the transmission

coefficients (t).

S =




r t

t† r


 (3.16)

The transmission probability Γ(ω) = tt†.

3.2.4 Solving for the scattering matrix

The scattering solution in lead l should match the IR solution at the boundary where

j = 0 and j = N − 1 (j1 = j2 = 0 in the lead index). This yields,

δll0 + Sll0 = −
∑

n

(v(n))l
v(n)†LBu

λ2
n − ω2

, (3.17)

where (v(n))l is the value at the boundary l of the eigenvector vn. At this point we

can calculate the expression v(n)†LBu in equation (3.17). Since LB always acts on the

atoms in the lead, which are coupled to the IR, the elements in the vector u can be

given by the scattering solution of the leads (eq.3.15). Consequently, the expression

can be written as the sum of two terms,

v(n)LBu = −
∑

l′

(v(n)†)l′
k
(l′)
01

mjl′=0

(
δl′l0e

−iql′a + Sl′l0e
iql′a
)
, (3.18)

where k
(1)
01 (the superscript denotes the lead), in lead index, is equal to k0−1 in common

index. Similarly, k
(2)
01 = kN−1,N . Plugging this into equation (3.17), we obtain the

R-matrix equation,

δll0 + Sll0 =
∑

l′

Rll′
k
(l′)
01

mjl′=0

(
δl′l0e

−iql′a + Sl′l0e
iql′a
)
, (3.19)
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In which the R-Matrix(R) is defined as,

Rll′ =
∑

n

(v(n)†)l(v
(n))l′

λ2
n − ω2

. (3.20)

It must be noted that the R-matrix depends only on the boundary value of the IR

eigenvectors and the eigenvalues. The R-matrix equation produces a set of linear

equations that can be solved for the scattering matrix S. By rearranging the terms

in eq.3.19, we can write,

∑

l′

(
δll′Sl′l0 −Rll′

k
(l′)
01

mjl′=0

Sl′l0e
iql′a

)
=
∑

l′

(
Rll′

k
(l′)
01

mjl′=0

δl′l0e
−iql′a − δll′δl′l0

)
. (3.21)

This can be write in matrix form as,

S (I − T ) = − (I − T ∗) , (3.22)

where, Tll′ = Rll′
k
(l′)
01

m0
eiqla and I is a unit matrix. The scattering matrix, S can be

calculated by the equation,

S = − (I − T )−1 · (I − T ∗) , (3.23)

3.2.5 Application and results

In previous sections, we developed a mechanism to calculate phonon transmission on

the atomic level based on the RMT. It is important to show the functionality of this

formalism. First, we use RMT to investigate the effect of mass impurities on the

thermal transport in one-dimension (1D). We consider a 1D chain of atoms of masses

mj = mjl = 1.0 and kj,j+1 = 1.0 for all j. Then we define two boundaries keeping 25

atoms in the IR. The results are independent of the location of these boundaries as
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Figure 3.2: Transmission probability (Γ) as a function of dimensionless

frequency (ω/ωD). The dotted line is for the uniform chain. Dashed line

is for the inclusion of single impurity of m1
Im = 2.0 and periodic diatomic

structure of 7 unit cells with masses m1
Im and m2

Im = 0.6 is given by the

solid line. The thick dotted dashed line is for the random distribution of

14 atoms with masses m1
Im and m2

Im.

long as they are in the periodic region. A mass impurity is made by changing the mass

of an atom in the middle of the IR to m
(1)
Im = 2.0. The dashed line in Fig.(3.2) shows

the transmission probability calculated in the presence of a single mass impurity. The

dotted line is for the uniform chain. Then we incorporate another mass of m
(2)
Im = 0.6

with m
(1)
Im forming a periodic diatomic structure in the middle of the IR. The number

of unit cells included is seven. The corresponding transmission is plotted by the solid

line in fig.(3.2). We can see the forbidden region having zero transmission. Next the

above two masses are randomly distributed replacing 14 atoms in the interior region.

In this case the transmission is depicted by the dotted dashed line. Now we calculate

the thermal conductance as a function of temperature. The dimensionless thermal
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Figure 3.3: Dimensionless thermal conductance (σ̃) as a function of di-

mensionless temperature (σ̃). The dotted line is for the uniform chain.

Dashed line is for the inclusion of single impurity of m1
Im = 2.0 and peri-

odic diatomic structure of 7 unit cells with masses m1
Im and m2

Im = 0.6

is given by the solid line. The thick dotted dashed line is for the random

distribution of 14 atoms with masses m1
Im and m2

Im.

conductance (σ̃ = σ/(kBωD)) is defined as,

σ̃ =
1

2π

∫ 1

0

dω̃
Γ(ω̃)ω̃2eω̃/τ̃

τ̃ 2 (eω̃/τ̃ − 1)
2 , (3.24)

where τ̃ = (kBT/~ωD) , Debye or cut off frequency ωD = 2
√
kL/mL which is equal

to 2.0 in this problem, ω̃ = ω/ωD. The corresponding dimensionless thermal conduc-

tance for the cases described earlier is plotted in Fig.(3.3). The random distribution

of masses shows the lowest thermal conductance. The random distribution of masses

might creates localized states suppressing the phonon transport whereas the periodic

structures are preferred for traveling waves.

Next, we demonstrate how the interface coupling influences the phonon transmis-

sion. There are 12 atoms in the IR. The 2 atoms at the boundaries are of the same
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Figure 3.4: (a) Transmission probability (Γ) as a function of dimensionless

frequency (ω/ωD). The dotted line is for kIC = 0.1, Dashed line is for

kIC = 0.5 and the solid line represent the kIC = 0.75.(b) Dimensionless

thermal conductance as a function of dimensionless temperature.

type of the leads in which the mass and the force constants are same as the previous

case. The mass and the force constants of the 10 atoms in the interior region are

mj = 2.0 for 1 ≤ j ≤ 10 and kj,j+1 = 0.5 for 1 ≤ j ≤ 10. The interface coupling is

kIC . Figure 3.4a shows the transmission for 3 different values of kIC = 0.1, 0.5, 0.75

and fig.3.4b shows the corresponding thermal conductance as a function of temper-

ature. When the interface coupling increased from 0.1 to kIC = 0.5 a huge increase

in thermal conductance is observed, while further increments of kIC yield only poor

enhancement of the thermal conductance. Therefore, to maximize the interface ther-
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mal transport having the lowest coupling strength of the system for the interface is

sufficient.

3.3 R-matrix theory for a diatomic chain

In the previous section (3.2), the basic development of RMT to phonon scattering is

discussed with one dimensional uniform mono-atomic chains. Now we are going to

extend the formalism to a more complicated system. We extend the formalism to a

diatomic chain, where two phonon branches, called optical and acoustic, contribute

to the thermal transport. The important difference in this case is in the relative

vibration of the consecutive atoms with different masses.

3.3.1 Theoretical extension

Figure 3.5 shows the 1D system, where the lead has two atoms in the basis. The

masses of the two atoms in the basis are denoted by m and M . The mass m is at the

even values of jl starting from jl = 0 and mass M is at the odd values of jl. Further

these two atoms have different polarization amplitudes denoted by ǫbp, where p is the

phonon branch( either Optical (O) or Acoustic(A)) and b refers to the atom type

(mass m or M).

The matrix element of the bloch operator can be written as,

LB(α, β) = −
(
k̃0−1δα,0δβ,−1 + k̃N−1Nδα,N−1δβ,N

)
, (3.25)

where k̃0,−1 = k̃N−1,N = k/
√
mM . The IR solution can be expressed as previously

by eq.4.19. The major change is in the leads solutions. Since the leads are periodic
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Figure 3.5: Model 1D system having diatomic leads. j is the atomic index

of the IR and jj (l = 1, 2) is the lead index. The mass of the atoms at

even values of jl( including zero) is m and that of at the odd values of jl

is M .

lattices we can establish plane wave solutions. We consider an atom with jl = 2Nl,

where Nl is the atomic index. By the Newton’s law we can write,

mẌm
jl

= k
(
XM

jl+1
−Xm

jl

)
+ k

(
XM

jl−1
−Xm

jl

)

MẌM
jl+1

= k
(
Xm

jl+2
−XM

jl+1

)
+ k

(
Xm

jl
−XM

jl+1

) (3.26)

It can be defined K1 = k/m and K2 = k/M for the convenience and the eq.3.26 can

be written as,

Ẍm
jl

= −K1

(
2Xm

jl
−XM

jl−1
−XM

jl−1

)

¨XM
jl+1

= −K2

(
2XM

jl+1
−Xm

jl
−Xm

jl+2

) (3.27)

We are seeking for normal modes solutions of the form,

Xm
jl

= A exp[i(qajl − ωt)]

XM
jl+1 = B exp[i(qa(jl + 1)− ωt)],

(3.28)

where A and B are the polarization amplitudes of atoms m and M respectively. By
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plugging eq.3.28 into eq.3.27 yields two linear equations of A,B and ω2.

ω2A = K1 (2A−Be−iqa − Beiqa)

ω2B = K2 (2B −Ae−iqa − Aeiqa)

(3.29)

The above equations can be written in the matrix form,




ω2 − 2K1 2K1 cos(qa)

2K2 cos(qa) ω2 − 2K2







A

B


 = 0. (3.30)

This has nontrivial solution when the determinant of the coefficient matrix is zero.

Then we can find the phonon dispersion ω2(q) and the coefficients A and B which

are also a function of wave vector (q).

Since the interior region eigenvectors are in the mass normalized form, it is nec-

essary to write the leads solutions also in the mass normalized form. The mass

normalized lead solution can be expressed as,

xm
jl
=

ǫmp√
m
exp[i(qajl − ωt)]

xM
jl+1 =

ǫMp√
M

exp[i(qa(jl + 1)− ωt)],

(3.31)

where ǫmp = mA and ǫMp = MB.

The scattering solution in the leads can be expressed as,

ull0(jl) = δll0
ǫbp√
mb

e−iqjla + Sll0

ǫbp√
mb

eiqjla. (3.32)

The index b is introduced for the convenience in which b = 1 (m1) is atom of mass m

and b = 2(m2) is atom of mass M . The IR solution from eq.4.19 is,

uIR = −
∑

n

∑

l′

(vn)
(
vn†)

l′

λ2
n − ω2

k√
mM

(
δl′l0

ǫ2p√
M

e−iqa + Sl′l0

ǫ2p√
M

eiqa
)
. (3.33)
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Figure 3.6: Ratio of the relative polarization amplitudes( B/A). The red

line refers to the optical branch and the blue line refers to the acoustic

branch. This was calculated when the m = 1.0, M = 1.25 and k = 1.0.

By matching the IR solution and the leads solution at the boundary l′′ yields,

(
δl′′l0

ǫ1p√
m

+ Sl′′l0

ǫ1p√
m

)
= −

∑

l′

Rl′′l′
k√
mM

(
δl′l0

ǫ2p√
M

e−iqa + Sl′l0

ǫ2p√
M

eiqa
)
.

(3.34)

Eq.3.34 generates 4 equations to solve for 4 unknowns in the 2× 2 scattering matrix

S. Further, this can be reduced to the matrix form and the scattering matrix can be

expressed as previous,

S = −
(
I− T̃

)−1

·
(
I− T̃ ∗

)
(3.35)

where, T̃l′′l′ = Rl′′l′
k
m

B
A
eiqa.

3.3.2 Results for a diatomic chain

For example consider a linear atomic chain of m = 1.0, M = 1.25 and k = 1.0. Fig.3.6

shows the ratio of polarization amplitudes (B/A) as a function of wave vector(q),
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Figure 3.7: (Left) Phonon dispersion of the diatomic chain of m = 1.0,

M = 1.25 and k = 1.0. (Right) Transmission probability from R-Matrix

theory for diatomic chain of m = 1.0, M = 1.25 and k = 1.0.

which goes to +1 and −m/M for acoustic and optical branches respectively in the

long wave length limit(qa → 0). Figure 3.7 shows the phonon dispersion and the

calculated transmission probability. We get unit transmission for all of the available

frequencies of this diatomic chain. Now we replace the leads of the uniform 1D chain

with the above diatomic lead. This is a situation that can occur in an experiment

where the leads are mixed with some impurity atoms. This gives a lower transmission

of phonons than the uniform structure. The frequencies are normalized by the cut-off

frequency(ωD) of the uniform 1D chain of m = 1.0 and k = 1.0. The dimensionless

thermal conductance is plotted against the dimensionless temperature in fig.3.9. Con-

sequently, the diatomic leads give the lower thermal conductivity than the uniform.
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Figure 3.8: Plot of the transmission probability as a function of dimen-

sionless frequency (ω/ωD). ωD is the cut off frequency of uniform 1D

chain (ωD = 2.0 when m = 1.0and k = 1.0). The leads are diatomic

chain of m = 1.0, M = 1.25 and k = 1.0. Both acoustic and optical mode

s in the leads are transmitted through the acoustic mode in the interior

region.
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Figure 3.9: Dimensionless thermal conductance as a function of dimen-

sionless temperature. The dotted line is for the uniform mono atomic

chain(m = 1.0 and k = 1.0) and the solid line is for the uniform mono-

atomic chain sandwiched by two diatomic leads of m = 1.0, M = 1.25

and k = 1.0.
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3.4 Conclusion

In this chapter, we present the basic development of the RMT to phonon scattering

using 1D atomic chains. We first, develop the theory for a 1D system having only

one phonon mode in leads. Then, we move to case where we have two phonon modes

(optical and acoustic) in the leads. We observe that the important factor to the

scattering calculation is the ratio of the polarization amplitudes of the consecutive

atoms. We also present results for each of the above cases. We briefly discuss the

effect of mass impurities and the coupling constant to the thermal transport in one-

dimension.
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Chapter 4

R-matrix Theory: A General Approach

Most of the content presented here appear in Numerical Heat Transfer, Part B: Fun-

damentals 60(4), 2011.

In this chapter, the RMT developed in the previous chapter (Ch.3) to calculate

phonon scattering in the harmonic limit is generalized. In the previous chapter, we

presented the basic development of the RMT considering only the one dimensional

motion of a mono-atomic chain, where we only have one phonon mode at a given fre-

quency. In this chapter, we particularly consider a system that has multiple phonon

modes crossing at a given frequency. This is important in studying the three di-

mensional motion of mono-atomic systems as well as various nanostructures such as

graphene nanoribbons and other dielectric nanowires.

In the general picture, leads are considered to be finite width nanowires, in which

the atoms are also moving in the three dimensional space. In section 4.1, the scattering

solution in the lead is constructed. The details of the different phonon branches are

calculated solving the dynamical matrix of a unit cell of the lead. In section 4.2,

the interior region solution and the form of the R-matrix is derived. The scattering

solutions in above two regions are matched on an unit cell at the boundary to obtain a

closed-form solution to the scattering matrix (sec.4.3). Finally, results are presented

considering the three-dimensional(3D) motion of atoms of a mono atomic chain. We
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Figure 4.1: Schematic of the model system having two semi-infinite leads

connected to a device. The leads are assumed to be periodic and two

boundaries, B1 and B2, are defined in the periodic region. The region

between boundaries is the interior region and the region outside is called

the asymptotic region. The unit cells in the leads are depicted by the

boxed regions. The lead lattice points are indexed symmetrically by jl,

where l = 1(2) refers to the lead 1(2).

also discuss the interband transition of phonons, that can be present in the harmonic

limit.

4.1 The system and the scattering picture

The essence of R-matrix theory is to divide the system into an interior region(IR) and

two or more asymptotic regions. A finite size device is embeded in the IR. This device

could be any 3D structure. The asymptotic regions are the semi-infinite nanowires

(leads) connected to the IR (Fig.4.1). In the asymptotic regions, we assume the leads

are narrow enough then the phonon transport in leads is strictly along the length
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direction of the leads. In the lateral direction there are confined phonon modes

which are also called the phonon subbands. Thus, we define an extended unit cell,

depicted by the boxed regions in the fig.4.1, that has the periodicity in the length

direction. Although R-matrix theory can handle any number of leads, for simplicity

we consider the case of only two leads. It is straight forward to generalized to a

system with many leads. The IR and the leads are seperated by a set of boundaries

in the periodic region, which we denote by Bl. The unit cells in the leads are indexed

by jl, where l = 1(2) is the lead 1(2). The lattice point jl = 0 is at the boundary Bl

in to the IR and jl increases positively outward the IR. Our goal is to calculate the

transmission probability of a phonon of angular frequency ω from lead 1 to 2, which

is the quantity Γ1,2(ω).

Since our leads are periodic there are well-defined phonons in each lead. In general

the equations of motion of the system can be written as follows,

mjl,bü
α
jl,b

= −
∑

j′l ,b
′,β

φαβ
j′lb

′,jlb
uβ
j′l ,b

′ (4.1)

where the harmonic limit force constants can be calculated by,

φαβ
j′lb

′,jlb
=

(
∂2V

∂uα
jlb
∂uβ

j′lb
′

)

∀ujlb
=0

(4.2)

where jl, is the lattice index of lead l, b is the atom index in the basis. The Cartesian

degree of freedom is represented by α and β, mjl,b is the mass of the atom b within

the unit cell jl, u
α
jlb

is the displacement of the atom b in unit cell jl in the direction

α, and the symbol V refers to the many-coordinate inter-atomic potential. We seek
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solutions to equation 4.1 of the following form,

uα
jlb

=
1

√
mjl,b

ǫb,αe
−iωt+iq.Rjl,b (4.3)

By plugging this into eq.4.1, we can obtain the well known dynamical matrix equation

[63],

ω2ǫ
p
b,α =

∑

b′β

M(q)α,βbb′ ǫ
p
b′,β, (4.4)

where the dynamical matrix M is,

M(q)α,βbb′ =


∑

jl−j′l

φα,β
jlb,j

′

lb
′

e
iq.(Rj′

l
b′−Rjlb

)

√
mjl,bmj′l ,b

′


 . (4.5)

The details of the phonons in each lead can be obtained by solving the dynamical

equation over a unit cell. (All matrices are denoted by capital script letters, and

vectors represented in bold-face.) The coordinate of the atom b in the unit cell jl is

given by Rjl,b = Rjl +Rb, where Rjl is the position of the lattice point jl and Rb is

the position of the atom b within a unit cell. The q is the wave vector, and ǫ
p
b,α is the

polarization amplitude of atom b in direction α in phonon branch p. There are 3Nuc

phonon branches in each lead, where Nuc is the number of atoms in the unit cell.

We can construct a scattering solution in the leads with these phonon modes.

The scattering solution is comprised of three components: the incoming wave, the re-

flected wave and the transmitted wave. We consider an incoming phonon of frequency

ω, whose energy is ~ω, in lead l0 which belongs to branch p0. It can reflect into any

phonon branch (p) available at ω in lead l0 and transmit into any phonon branch (p)

in lead l, which is different from l0. We assume all the scattering processes are elastic

and anharmonic interactions are neglected. As we defined our leads symmetrically,
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the incoming waves are going in the direction of decreasing the lead lattice index jl

and the scattered waves (both reflected and transmitted) are going at the increasing

direction of the lattice index. Thus, the incident/scattered components of the scatter-

ing solution can be written in terms of plane waves as, χp (−qp(ω)) /χp (qp(ω)), where

χp (qp(ω)) is a vector whose entries are the values of ǫpb exp(−iωt+ iqp(ω).Rjl,b)/
√
mb

of all the atoms in a unit cell. Now the scattering solution (ul
l0,p0

(ω)) of the lead l for

above described scattering event can be written as,

ul
l0,p0

(jl) =
∑

p

(
χp(−qp(ω))δp,p0δl,l0 + χp(qp(ω))S l,p

l0,p0
(ω)
)
, (4.6)

where, the first part inside the summation represents an incoming wave in mode p0 in

lead l0 and the second part is the scattered wave. The scattering amplitude in branch

p lead l is given by S l,p
l0,p0

(ω), which is a complex number. The scattering amplitudes

form a 2Nω × 2Nω scattering matrix S(ω), where the Nω is the number of phonon

branches at frequency (ω). The matrix elements of S, when l = l0 are the reflection

coefficients and l 6= l0 are the transmission coefficients.

From the scattering amplitudes, we can calculate the transmission probabilities.

The transmission probability is the ratio of the energy fluxes carried by each vibra-

tional wave. The transmission probability from branch p0 in lead l0 to branch p in

lead l( 6= l0) can be expressed as, Γlp
l0p0

(ω) = S l,p†
l0,p0

(ω)S l,p
l0,p0

(ω)cp(ω)/cp0 (ω), where

cp(ω) is the phonon velocity of the branch p at frequency ω. The † refers to the

complex conjugate. A derivation of the energy normalization is given in section 2.4.
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Thus the transmission probability from lead l0 to l( 6= l0) is,

Γll0(ω) =
∑

pp0

Γlp
l0p0

(ω). (4.7)

4.2 R-matrix

The dynamics of the entire system can be described by an infinite set of coupled

equations, which are usually written as matrix form,

(
ω2I +K

)
u = 0, (4.8)

where I is the identity matrix, u is the displacement vector and K is the mass

normalized force constant matrix. The matrix elements of K can be calculated as,

Kα,β
j,j′ =

1
√
mjmj′

φα,β
jj′ , (4.9)

where j refer to a common index of atoms used to label all the atoms in the system.

The matrix K can be expressed more descriptively using the block matrices: KIR is

defined only in the finite IR, KLl
is defined in the lead l that is infinite, and KIR,Ll

is

the coupling between the interior region and the leads.

Ku =




KL1 KL1,IR 0

KIR,L1 KIR KIR,L2

0 KL2,IR KL2







uL1

uIR

uL2




, (4.10)

where uLl
and uIR are the displacement vectors of atoms in lead l and the IR.

It is natural to describe the IR by normal modes of vibrations. However, in our

scattering problem the IR is connected to semi-infinite leads and thus we can not
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solve for the normal modes. The solution is to solve the equations of motion for

a different, but related physical system. When solving the continuum Schrodinger

equation in a finite region, a “Bloch operator” is included to solve the problem of

non-Hermiticity of the kinetic energy operator [60, 61]. The resulting Hamiltonian is

called the “Bloch Hamiltonian”, which is explicitly Hermitian inside a finite region. In

the phonon problem we define a “Bloch operator (LB)”, which includes the couplings

between the IR and the leads as follows,

LB =




0 KL1,IR 0

KIR,L1 0 KIR,L2

0 KL2,IR 0




. (4.11)

The term LBu gives the coupling forces between the IR and the leads. It can involve

interactions of any finite range, e.g. nearest neighbor, next nearest neighbor, etc. We

subtract the term LBu from the both side of the eq.4.8 yielding,

(
ω2I +K − LB

)
u = −LBu. (4.12)

The matrix (K−LB) on the left is called the “Bloch dynamical matrix”, in which the

coupling between the two regions are removed. The eq.4.12 can be written in block

matrices as follows,

ω2




uL1

uIR

uL2



+




KL1 0 0

0 KIR 0

0 0 KL2







uL1

uIR

uL2




= −




0 KL1,IR 0

KIR,L1 0 KIR,L2

0 KL2,IR 0







uL1

uIR

uL2




.

(4.13)
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We can extract the center row of the eq.4.13, which describes the IR,

(
ω2uIR +KIRuIR

)
= −

∑

l

LB
luLl

, (4.14)

where LB
l = KIR,Ll

. In the “Bloch dynamical matrix” the IR can be solved indepen-

dently. We find eigenvalues (λn) and eigenvectors (v(n)) of KIR according to,

(
λ2
n +KIR

)
v(n) = 0. (4.15)

These eigenvectors are orthonormal and form a complete set as the mass normalized

force constant matrix is always Hermitian. A general solution in the IR can be

expanded using the above eigenvectors as follows,

uIR =
∑

n

Anv
(n). (4.16)

By plugging this in to the left hand side of the equation (4.14) yields,

∑

n

(
λ2
n − ω2

)
Anv

(n) =
∑

l

LB
luLl

. (4.17)

By taking the inner product with Vn† we find,

An =
∑

l

v(n)†LB
luLl

λ2
n − ω2

. (4.18)

Finally, the scattering solution in the IR can be expressed as,

uIR =
∑

n,l

v(n)v
(n)† (LB

luLl

)

λ2
n − ω2

. (4.19)

According to the eq.4.10 and 4.11, Bloch operator of lead l, LB
l, has infinite

number of columns and 3N rows, where N is the number of atoms in the IR. However

there are non-zero couplings only between a subset of atoms in the IR with a subset of
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atoms in the leads, in the vicinity of the boundary Bl. Since the boundary is defined

in the periodic region, we assume that the minimum size of the coupling regions to

be unit cells at either side of the boundary. This is a reasonable (but not essential)

assumption for most practical situations. Therefore we can construct a matrix of

dimensions 3Nuc × 3Nuc that contains the non-zero couplings in LB
l. This effective

part of the Bloch operator is denoted by L̃B
l
. Now we replace uLl

by ul
l0p0

(jl = 1), of

which the entries are the displacements of the atoms in the unit cell at lattice point

jl = 1. Similarly
(
v(n)

)
l
contain the normal modes amplitudes of the atoms in the

unit cell at jl = 0. Now we can replace vn† (LB
luLl

)
by
(
v(n)†)

l

(
L̃B

l
ul
l0p0

(jl = 1)
)
in

eq.4.19.

In the electron transport problem, the R-matrix relates the value of the wave

function to its normal derivative at the boundary of the scattering region and the

normal derivative at the boundary serves as the Bloch operator [60, 61]. The phonon

version of the R-matrix (R) can be defined as follows,

ul′′(jl′′ = 0) =
∑

s′′,s′,l′

ξs′′Rs′′,s′

l′′,l′ ξ
s′†L̃B

l′

ul′(jl′ = 1), (4.20)

Rs′′,s′

l′′,l′ =
∑

n

ξs′′†(v(n))l′′(v
(n))†l′ξ

s′

λ2
n − ω2

, (4.21)

where ξs’s are a set of unit vectors that are orthonormal and complete in the 3Nuc
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dimensional space. These vectors can be chosen arbitrarily and a possible choice is,

ξ(1) =




1

0

0

0

0

...




, ξ(2) =




0

1

0

0

0

...




, · · · , ξ(n) =




0

...

0

1

0

...




. (4.22)

Eq.4.20 is obtained by matching the lead solution and the interior region solution at

the unit cell at jl = 0. In the phonon problem, the R-matrix relates the displacement

vector at jl′′ = 0 to that at jl′ = 1 through the Bloch operator.

4.3 Scattering matrix

The scattering matrix (S) can be obtained by plugging the explicit form of the scat-

tering solution in the lead (ul
l0p0

) from eq.4.6 in to the R-matrix equation (4.20).

By plugging ul′′

l0p0
(jl = 0) and ul′′

l0p0
(jl = 1) from eq.4.6 to eq.4.20 and taking the

projection of both side on to ǫp
′′

, we can obtain,

∑
p′′′ ǫ

p′′χp′′′(−qp′′′ ;Rjl=0)δp′′′p0δl′′l0 + ǫp
′′

χp′′′(qp′′′ ;Rjl=0)S l′′p′′′

l0p0
=

∑
s′′s′l′p′ ǫ

p′′ξs′′Rs′′s′

l′′l′

[(
ξs′†Ll′

Bχ
p′(−qp′ ;Rjl=1)

)
δp′p0δl′l0 +

(
ξs

′†Ll′

Bχ
p′(qp′;Rjl=1)

)
S l′p′

l0p0

]

(4.23)

We define a matrix (B) for the convinent as follows,

Bl′′p′′

l′p′ =
∑

s′′s′

ǫp
′′

ξs
′′Rs′′s′

l′′l′

(
ξs

′†Ll′

Bχ
p′(qp′;Rjl=1)

)
(4.24)
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We rewrite eq.4.23 rearranging the parts and inserting B.

∑
p′′′ ǫ

p′′χp′′′(−qp′′′ ;Rjl=0)δp′′′p0δl′′l0 −
∑

l′p′ B
l′′p′′

l′p′ (−qp′)δp′p0δl′l0 =

∑
l′p′ B

l′′p′′

l′p′ (q
p′)S l′p′

l0p0
−
∑

p′′′ ǫ
p′′′χp′′(Rjl=0)S l′′p′′

l0p0
.

(4.25)

Let’s focus on the R.H.S. of the eq.4.25. It can be written as,

∑
l′p′

(
Bl′′p′′

l′p′ (q
p′)S l′p′

l0p0
− δl′′l′ǫ

p′′χp′(−qp′;Rjl=0)S l′p′

l0p0

)

= − (A(q)− B(q)) S,
(4.26)

where Al′′p′′

l′p′ = ǫp
′′

χp′(qp′ ;Rjl=0)δl′′l′ . Similarly, we can show the L.H.S. of eq.4.25 is

(A(−q)− B(−q)). Thus, we can express the scattering matrix as,

S(ω) = − [A(q)− B(q)]−1 . [A(−q)− B(−q)] , (4.27)

Equation (4.27) is our key expression for the scattering matrix. The matrices A and B

are independent of the number of atoms in the IR. It is the R-matrix that represents

the IR in the scattering calculation. In order to construct the matrices A, B and R,

we only need to calculate for the normal modes of the IR in the Bloch dynamical

matrix and the lead phonons. The appealing feature is that these details are needed

to be calculated only once for a system.

4.4 Results

For instance, we consider the 3D motion of a one dimensional chain of atoms. The

force constants are taken to be kxx = 1.0, kyy = 0.5 and kzz = 0.25. All the masses are

set to 1.0. There are three phonon branches in the leads. The phonon dispersion is

shown in fig.4.2. The three acoustic phonon modes are one longitudinal acoustic mode
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Figure 4.2: Phonon dispersion for the three dimensional motion of the

lead. The three acoustic phonon modes are one longitudinal acoustic

mode(LA) and two transverse acoustic modes (TA1 and TA2). The two

TA modes are non-degenerate because the force constants in each direc-

tion are chosen to be different.

(LA) and two transverse acoustic modes (TA1 and TA2). Their polarization can be

given as (1, 0, 0), (0, 1, 0) and (0, 0, 1). Figure 4.3 shows the transmission probability as

a function of phonon frequency. The transmission probability (Γ) counts the number

of phonon modes at each frequency, which is the desired variation of such a perfect

system.

Interband transition of phonons

There exists elastic scattering of phonons in the harmonic approximation of the force

constants. This scattering produces interband transitions of phonons according to

the conservation laws of energy and momentum. Such an effect can be observed in
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Figure 4.3: Plot of transmission probability vs. dimensionless

frequency(ω/ωD) for 3D motion of a one dimensional chain of atoms.

The force constants are taken to be kxx = 1.0, kyy = 0.5 and kzz = 0.25.

All the masses are set to 1.0. The transmission probability is greater

than the unity because there are more than one channel contribute to the

thermal transport.
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Figure 4.4: Transmission probability of phonons from LA to LA and LA

to TA1 in the presence of a on-site cross coupling term on an atom in the

interior region.

our model system by introducing a cross coupling term in the interior region. We

include an on-site cross coupling term on an atom such that kxy = kyx = 0.8. This

yields interband transitions from mode LA to TA1 and vice versa. Figure 4.4 shows

the transmission probability from mode LA to LA and LA to TA1 calculated using

the R-matrix theory. The total transmission between leads is shown in the fig4.5.

Such interband transitions are present in real systems and can be controlled by

carefully engineering the interior region. In chapter 5, we further discuss these tran-

sitions in graphene nanostructures.
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Figure 4.5: Plot of transmission probability vs. dimensionless

frequency(ω/ωD) between leads in the presence of the on-site cross cou-

pling.

4.5 A comparison with non-equilibrium Green’s function ap-

proach

In this section, a short description of the non-equilibrium green’s function (NEGF)

approach is presented. Next, we compare the results of the RMT with the conven-

tional NEGF approach. In this context, both approaches produces the same results

for the transmission probability.

The NEGF approach also first developed for calculating electron transmission in

mesoscopic devices. This technique has also been successfully used in calculating

phonon scattering [64, 65, 66, 67].

The central idea of this approach is to solve for the Green’s function of the system.

The set of governing equations of the infinite system can be written as the matrix

form as in the equation 4.8. The frequency domain Green’s function of this infinite
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dimensional system can be expressed as [64, 65, 66, 67],

[
(ω + iη)2I − K

]
G(ω) = I, (4.28)

where the Green’s function can be calculated by the matrix inversion as,

G(ω) = lim
η→0

[
(ω + iη)2I − K

]−1
. (4.29)

The G(ω) is an infinite dimensional matrix of Green’s functions. We can defined the

retarded surface green’s function of the lead l(1, 2) as,

grLl
= lim

η→0

[
(ω + iη)2 −KLl

]−1
. (4.30)

Now the equation 4.28 can be expanded using the block matrices defined in eq. 4.10.



−KL1 + (ω + iη)2 −KL1,IR 0

−KIR,L1 −KIR + (ω + iη)2 −KIR,L2

0 −KL2,IR −KL2 + (ω + iη)2







GL1,L1 GL1,IR GL1,L2

GIR,L1 GIR GIR,L2

GL2,L1 GL2,IR GL2,L2




= I.

(4.31)

The matrix product of the central row of the above equation gives the retarded Green’s

function of the isolated IR as,

Gr
IR,IR =

[
(ω + iη)2 −KIR,IR − Σr

L1
− Σr

L2

]−1
, (4.32)

where Σr
L1

= KIR,L1g
r
L1KL1,IR and Σr

L2
= KIR,L2g

r
L2
KL2,IR are the self energies due to

the coupling of the IR with the lead 1 and 2.

Once we have calculated the the above Green’s functions, the transmission proba-

bility of a phonon of energy ~ω from lead 1 to 2 can be calculated using the formula

[65],

Γ(ω) = Tr
[
Gr
IR,IRPL1

(
Gr
IR,IR

)†PL2

]
, (4.33)
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Figure 4.6: Comparison of the transmission probability through a 1D

chain of atoms of m = 1.0 and k = 1.0 with a mass impurity of mIm = 2.0

in the center of the IR. The full circles are the points calculated from the

NEGF approach and the solid line is from the R-matrix theory.

where PLn = −2ImΣr
Ln
.

We calculate the transmission probability for a 1D chain of atoms of m = 1.0 and

k = 1.0 with of mass impurity of mIm = 2.0 in the middle of the IR. Figure 4.6 shows

the transmission probability calculated from the NEGF and the R-matrix theory. We

can observe that they lay exactly on each other.

Computational cost

One major advantage of RMT over the NEGF is the reduced computational cost.

The NEGF approach involves lot of matrix inversion that needs to be done at each

frequency point. The size of the matrices that need to be inverted also increases

with increasing numbers of atoms in the interior region. Thus the computational

cost increases rapidly with number of atoms in the interior region. In RMT, we only
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Figure 4.7: Plot of computational cost (in seconds) against the number

of atoms in the interior region (IR). This is estimated using a 1D chain

of atoms.

need to calculate eigenvalues and the eigenvectors of the IR only one time. In the

scattering matrix calculation we only need to carry out a summation over the number

of eigenmodes in the IR. Thus the computational cost in RMT is considerably lower

and does not increases rapidly with the size of the IR.

Figure 4.7 shows the computational cost as a function of number of atoms in the

IR for NEGF and the RMT approaches. We used a 1D chain of atoms in comparing

the computational cost. The computational cost of NEGF increases rapidly with the

number of atoms in the IR where as that of RMT is considerably lower and shows a

slower increment with the number of atoms in the IR.
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4.6 Conclusion

We present a generalized formalism of the RMT developed in the previous chapter.

To demonstrate the validity and the applicability, we discuss the results obtained for

the three dimensional motion of atoms in a mono atomic chain. We also discuss the

interband transition of phonons in the presence of an on-site cross coupling term in

the interior region. Moreover, we breifly discuss the non-equilibrium green’s function

(NEGF) for phonon transmission and compare the results from the RMT with the

NEGF approach. We observe a nice matching of results from both approaches. We

also investigate the computational cost for both approaches and find that the RMT

is much computationally efficient. In the next chapter (Ch.4) we discuss the results

applying RMT to graphene nanoribbons.
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Chapter 5

Application to Graphene

Some of the content presented here appear in Numerical Heat Transfer, Part B: Fun-

damentals 60(4), 2011.

In this chapter we apply the RMT developed in the previous chapter to graphene.

First we give a brief introduction to graphene. In particular, we focus on the thermal

transport properties. Then we apply RMT to calculate phonon transmission though

a graphene nanoribbon. We demonstrate how RMT is used to analyze the mode-to-

mode transmission of phonons across a graphene nanoribbon. We discuss the effect

of mass impurity and geometry to the transmission of flexural vibrational modes in

graphene nanoribbons.

5.1 Graphene

Graphene is a single layer of carbon atoms arranged in a two dimensional honeycomb

lattice (See Fig.5.1). Although the theoretical studies of graphene has been carried

out for sixty years, it was only in 2004 that graphene was first mechanically exfoliated

from graphite by Novoselov and Geim [68]. The exceptional electronic, mechanical

and thermal properties of graphene have drawn tremendous attention from scientists

in various disciplines such as high energy physics, condensed matter physics, biological

physics, mechanical engineering and electrical engineering. In acknowledgement of

their exceptional discovery, Novoselov and Geim were awarded the Nobel prize in
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Figure 5.1: Skematic of the real space of graphene. The oval represent

the unit cell of two dimensional graphene (2 atoms in the basis). “a1”

and “a2” are primitive lattice vectors. The thick horizontal line is at the

armchair direction and the vertical line is at the zigzag direction.

physics 2010. In this section, we briefly discuss these extraordinary properties of

graphene.

5.1.1 Electronic properties

Graphene has semimetalic or zero-gap semiconducting characteristics where the con-

duction and the valence bands touch at the K and K ′ points in the Brillouine zone.

The theoretical studies of electronic properties of graphene traces back to the work of

Wallace in 1947 [69]. He carried out tight binding calculations to study the electronic

band structure of a single layer of graphite and revealed the extraordinary linearly

dispersive behavior (E = ±VF |k|,where E is the energy and k is the wave vector)

of the low energy excitations near the K and K ′ point. As such, not like the other

ordinary semiconductors and metals, electrons in graphene behave more like relativis-
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tic quantum particles. These particles are called massless Dirac fermions, which can

be described by the Dirac equation instead the Shrödinger equation. Thus, electrons

in graphene provide an excellent environment to probe phenomena in high energy

physics in a solid state experiment.

The other most interesting direction of graphene research is ballistic electronic

device applications. The fermi velocity(VF ) of electrons in graphene is found to be

about 1 × 106 m/s, which is 300 times smaller than the speed of light [70]. The

ballistic lengths of electrons in graphene are on the submicrometer scale even at

room temperature (300 K) and the electron mobility is as high as 15, 000 cm2 V−1s−1,

and is relatively insensitive to temperature [70]. This suggest the ability to probe

quantum effects even at room temperatures in graphene. For instance the quantum

Hall effect (QHE) has been observed at 300 K in graphene [70]. Thus graphene has

become the most exciting material in the world.

5.1.2 Mechanical properties

Not only does it have exceptional electronic properties, graphene is unique in its

mechanical properties. Graphene is one of the strongest materials in the world. The

in-plane Young’s modulus(Y) of graphene is about 1 TPa assuming the van der Waals

thickness (0.335 nm) of graphene, which is the interlayer spacing of graphite [71, 72,

73]. The Young’s modulus of a material is the slope of the linear fit to the stress vs.

strain curve.

Fx = Y Ex, (5.1)
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where stress, Fx = Fx/A, is the force applied per unit area and the strain E =

(l− l0)/l0, where l is the stretched of compressed length and the l0 is the initial length.

The intrinsic strength of graphene, which is the maximum stress that a pure defect

free material can withstand, is about 130 GPa. One fascinating property of graphene

is that it is flexible while at the same time it is strong in the 2D plane. Thus graphene

has a potential to produce flexible electronics circuitry and devices.

The height fluctuations of graphene sheets, which are commonly known as ripples,

are another interesting property. The uneven surface morphology of graphene can af-

fect its electronic properties significantly [74]. There was a doubt about the stability

of 2D membranes according to some theoretical predictions [75]. These membranes

are believed to be crumpled due to long wavelength thermal fluctuations. However

later it was explained that these fluctuations can be suppressed due to the anhar-

monic coupling between the flexing and in-plane vibrational modes [76]. Thus, 2D

membranes can be exist but with large height fluctuations. Recently, a mechanism to

control these ripples by manipulating the interactions of graphene with a substrate

has been demonstrated experimentally [77, 78]. Thus, it opens a new path to tune

the transport properties of graphene by tuning the interactions with a substrate. The

anomalously large negative thermal expansion coefficient of graphene, which is about

−7× 10−6K−1 at 300 K is also an advantage in this process [79].
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5.1.3 Thermal transport

Recent experimental measurements revealed that the thermal conductivity (κ) of

single layer graphene is in the range of 3000 to 5000 W/mK, which is larger than

that of diamond and graphite [23, 24]. The exceptionally high κ of graphene makes it

a promising material for thermal management in nanoelectronics and other thermal

applications such as realizing thermally conducting polymer composites.

Experimental measurements of the thermal conductivity of graphene is challenging

because of its small size (single atomic layer) and large contact thermal resistance. Re-

cently, a research group at University of California-Riverside [23], developed a optical

method based on Raman spectroscopy to measure thermal conductivity of suspended

single layer graphene. In graphene, the G band is a Raman active vibrational mode

of frequency 1583 cm−1, which has strong dependence on the temperature. This

sensitivity is used to estimate the temperature of the graphene sample. A tiny spot

in a suspended region of the graphene sheet is heated using a laser and by measuring

the local temperature rise as a function of laser power, they could extract the thermal

conductivity of a single layer graphene. The reported thermal conductivity by this

technique is in the range of 4800-5300 W/mK.

In another experiment a reduction of the thermal conductivity is reported when

the graphene is in contact with a substrate [80]. They use Au/Cr resistance ther-

mometers for both heating and temperature measurements. The measured thermal

conductivity of a single layer graphene supported on a SiO2 substrate is about 600

W/mK. Such a low value of the thermal conductivity is attributed to the strong sup-
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Figure 5.2: Schematic of the first brillioun zone of graphene. ΓK represent

the zigzag directions and the ΓM represent the armchair directions.

pression of the flexural modes. Flexural modes are the out of plane vibrational modes

which are available in thin membranes. Furthermore, they have also calculated the

thermal conductivity using the Boltzmann transport equation and found that the

contribution of flexural vibrational modes to the thermal conductivity of graphene is

more than 80%.

Graphene can be viewed as a triangular Bravais lattice with a two atom basis. As

shown in fig.5.1, the vectors “a1” and “a2” represent the primitive lattice vectors and

the oval region represent a unit cell. The carbon-carbon bond length (a0) in graphene

is about a0 = 1.42Å and a1 = a2 =
√
3a0. There are two important crystallographic

directions in graphene, which are armchair and the zigzag directions (fig.5.1). Since

single layer graphene has 6-fold rotational symmetry, there are six of each above

directions in graphene.

The first Brillioun zone of graphene is a hexagon as shown in the fig.5.2. In
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Figure 5.3: Phonon dispersion relation in the first brillioun zone.

momentum space, ΓK represents the zigzag directions and ΓM represent the armchair

directions. Figure 5.3 shows the phonon dispersion calculated for a two dimensional

graphene sheet. Phonon dispersion is calculated by solving the dynamical matrix

equation 4.4. We construct the dynamical matrix with the force constants calculated

from a second generation Brenner potential [81], which considers the interactions

up to next nearest neighbour atoms. There are six phonon branches in graphene

due to the fact that there are 2 carbon atoms in a unit cell and three degree of

freedom of each atom. They are three acoustic branches and corresponding 3 optical

branches. They are usually named LA-longitudinal acoustic, TA-transverse acoustic,

ZA-flexural acoustic and corresponding optical branches as LO, TO and ZO. The

exceptionally high thermal conductivity of graphene can be attributed to the large

phonon velocities and the wide range of phonon frequencies of graphene. The phonon
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velocity in the long wave length limit for LA mode is about 24, 000 m/s and TA mode

is about 18, 000 m/s. The range of the phonon frequencies (0-1500 cm−1) of graphene

is about three times wider than that of silicon (0-500 cm−1).

5.2 Thermal transport in graphene nanoribbons

Graphene nanoribbons (GNRs) are 10 ∼ 100 nm wide strips of graphene with high

aspect ratios. We apply R-matrix theory to calculate the transmission of flexural

vibrational modes of a GNR. Figure 5.4 shows a schematic of a zigzag graphene

nanoribbon (ZGNR) of six zigzag chains in width. A unit cell is depicted by the

boxed region and the lattice constant is given by a. When considering interactions

up to the next nearest neighbors, there are non-zero couplings only between the atoms

in adjacent unit cells. This supports the assumption we make in defining the effective

part of the Bloch operator in sec.4.2. First we construct the K matrix as in eq.4.9

including a few unit cells in the leads. Then we extract the KIR and Ll
B as described

in eq.4.10 and 4.11. First, we calculate the phonon dispersion of flexural modes

according to the eq.4.4. Figure 5.5a shows the phonon dispersion along the direction

of the ribbon length, where qq is the wave vector projected on to the length direction.

There are 12 phonon branches available due to the fact that the unit cell has 12 atoms.

These phonon branches represent different laterally confined phonon subbands that

are specially available in nanowires. The acoustic branch is also available in large

graphene sheets. The lowest lying optical branch, which has a twisting character

(mode 2 in fig.5.7), can only exist in nanoribbons. In larger graphene sheets twisting
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Figure 5.4: Schematic of a zigzag graphene nanoribbon (ZGNR) of six

zigzag chains in width. A unit cell is depicted by the boxed region. The

lattice constant in the leads is denoted by “a”. The horizontal arrow

shows the direction of qq.

modes are not present since they are energetically too costly. Figure 5.5b shows the

calculated transmission probability (Γ(ω)) from R-matrix theory. The transmission

probability counts the number of phonon branches available at each frequency. Similar

behavior of the transmission probability has been reported by non-equilibrium Green’s

function calculations [65, 66, 67].

We incorporate a larger mass (mass impurity of mIm = 100mC12) replacing one

carbon atom in the center of the interior region [82]. We keep about 20 unit cells

(240 atoms) in the interior region. Although this is not a realistic situation, it could
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be analogous to a strong coupling to a heavy molecule. The calculated transmission

probability for this case is shown by the dashed line in fig.5.5b. We observe that

the overall transmission of phonons is reduced due to the heavy mass. In fig.5.6 we

plot the thermal conductance (σ) as a function of the temperature. The thermal

conductance of a ZGNR with the mass impurity (dashed line) is considerably lower

than that of uniform ZGNR (solid line).

In R-matrix theory we are working on the real space displacement waves. This

allows us to easily sketch the profile of the displacement waves during the scattering.

This visualization is important to gain clear insight in to the scattering process and

tuning the mode specific transmission of phonons. In fig.5.8, we sketch the displace-

ment wave in the three regions: lead 1, interior region and lead 2, at frequency 50

cm−1 when the mass impurity is in the center of the interior region. We use the

eq.4.6 for the leads and eq.4.19 for the interior region. The displacement waves in

three regions matches nicely at the boundaries. There are two phonon subbands

available at this frequency as shown in fig.5.7. The sketch in fig.5.8a is for the waves

coming in mode 1, which is the acoustic mode. We observe that the propagation of

the acoustic mode is considerably attenuated with the presence of the mass impurity.

In the acoustic mode, all the atoms in the unit cell vibrate in-phase. Thus, the mass

impurity prevent this in-phase motion. However, we observe that the twisting mode

is not affected by the presence of the mass impurity in the middle as implied by the

fig.5.8b. This can be attributed to the asymmetric polarization profile of the twisting

mode (mode 2 in fig.5.7).
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Next, we consider four different symmetric structures, that have different geome-

tries in the middle. In fig.5.9a, two 6-ZGNRs are connected by a single aromatic

carbon ring. In fig.5.9b, the two outermost zigzag chains are removed. A few atoms

in the center of the interior region are removed while the edges are perfect in fig.5.9c.

In fig.5.9d, additional zigzag chains are included in the both side of middle part of

the interior region.

The lowest transmission function is observed for the structure “a” (green line in

fig.5.10) and it gives the lowest thermal conductance (fig.5.11). Moreover, the phonon

transmission of structure “b” is smaller than that of the structure “d”, which is more

like the inverse of the structure “b”. Structure “c” has relatively larger thermal

conductance among the structures with atoms removed.

The important aspects of R-matrix theory are the ability to analyse the mode

specific transmission and the capability of plotting the scattering wave as we explained

in the previous case. We study the mode specific transmission of the structure “a”,

which is the most promising device geometry of quantum devices. Figure 5.12a shows

the phonon dispersion of the lowest lying three phonon modes and their mode profiles

are shown in fig.5.12b. Mode P1 is at ω = 30cm−1, P2 is at ω = 60cm−1 and P3 is at

ω = 120cm−1. Moreover, the mode P1 and P3 has symmetric mode profiles, whereas

the mode P2 has an asymmetric mode profile (twisting mode).

At ω = 30 cm−1, we observe about 50% of the mode P1 transmit through the

narrow constriction. Figure 5.13a visualise the propagation of this mode, which is

the plotted displacement wave of the three regions. As a consequence of symmetries,
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we observe strong cross coupling between the mode P1 and P3 at ω = 120 cm−1.

The transmission coefficient from mode P3 to P3 is 0.05, whereas that of P3 to P1 is

0.25. There is no coupling between mode P3 and P2. Moreover, we observe complete

reflection of the mode P2 from the narrow constriction. The scattering of this mode

at ω = 60 cm−1 is depicted in fig 5.13b. This suppression of transmission of mode P2

could be attributed to the mismatch between of the symmetries associated with the

mode profile and the geometry of the structure. In further clarifying this argument,

we consider an asymmetric structure, where the connecting aromatic ring is moved

to a one side of the nanoribbon as shown in fig.5.14a. Interestingly, we observe a

significant transmission of the mode P2. The transmission coefficient form mode P2

to P2 is 0.16 and that of mode P2 to P1 is 0.28. As a result we observe an increase

in the transmission especially in the range of 40-350 cm−1, where the twisting branch

is located and also the thermal conductance (See fig.5.15).

5.3 Conclusion

In this chapter we presented results by applying the R-matrix theory to graphene

nanoribbons. In the first part we give a brief introduction of graphene and its elec-

tronic, mechanical and thermal properties. We discuss the transmission of flexural

modes across different geometries in the interior region. We demonstrate that the

transmission of certain phonon modes can be manipulated by the geometry of the

interior region. R-matrix theory is an excellent tool in analysing the mode to mode

transmission which is useful in tuning the thermal transport in nanoscale systems.
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Figure 5.5: Phonon dispersion (a) of flexural vibrational modes of the

ZGNR. The transmission probability (Γ) calculated for the perfect ZGNR

from R-matrix theory (b). The transmission probability counts the num-

ber of phonon branches available at each frequency. The dashed line refers

to the case where a larger mass in the middle of the IR. The frequency is

measured in the units of cm−1.
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Figure 5.6: Thermal conductance due to the out of plane vibrations of

the ZGNR as a function of temperature. The solid line is for the perfect

structure and the dashed line is the result due to the larger mass in the

center.
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Figure 5.7: Two lowest lying flexural phonon branches of the ZGNR.

Fig.(a) shows the phonon dispersion in the low frequency region. Figure

(b) shows the polarization profile of atoms in an unit cell calculated at 50

cm−1 of the acoustic branch (mode 1) and the twisting branch (mode 2).
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Figure 5.8: Displacement wave in three regions (lead 1, interior region and

lead 2) is sketched together when a larger mass is present in the center of

the interior region. The left boundary of the interior region (B1) starts

from the origin of the longitudinal coordinate (marked in units of Å) and

the right boundary (B2) is at 20 unit cells away from the B1 (at 40 Å).

The heavy mass is at the 10th unit cell from the B1 (at 20 Å). The sketch

at top (a) is for waves coming in mode 1 at ω = 50 cm−1. The sketch in

bottom (b) is for the waves coming in mode 2 at the same frequency.
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Figure 5.9: Different geometries of the interior region use to study the

transmission of flexural vibrational modes.
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Figure 5.10: Transmission probability for the four structures in fig.5.9.

The green line is for the structure “a”, red line is for the structure “b”,

blue line is for the structure “c” and the black line is for the structure

“d”. The dashed line is for the uniform 6-ZGNR.
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Figure 5.11: Thermal conductance( σ) for the four structures in fig.5.9

as a function of temperature. The green line is for the structure “a”, the

red line is for the structure “b”, the blue line is for the structure “c” and

the black line is for the structure “d”. The dashed line is for the uniform

6-ZGNR.
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Figure 5.12: Three lowest lying flexural phonon branches of the 6-ZGNR.

Fig.(a) shows the phonon dispersion in the low frequency region. Figure

(b) shows the polarization profile of atoms in an unit cell calculated at 30

cm−1(mode P1), 60 cm−1 (mode P2) and 120 cm−1(mode P3).
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Figure 5.13: Displacement wave in three regions (lead 1, interior region

and lead 2) is sketched together for the structure “a”. The longitudinal

coordinate is marked in units of Å. The sketch (a) is for waves coming

in mode P1 at ω = 30 cm−1. The sketch (b) is for the waves coming in

mode P2 at ω = 60 cm−1. The sketch (c) is for the waves coming in mode

P3 at ω = 120 cm−1.
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Figure 5.14: (a)Asymmetric structure. (b) Sketch of the scattering of the

displacement wave, which is coming in the mode P2 at 60 cm−1.

94



HaL

0 200 400 600 800
0.0

0.5

1.0

1.5

2.0

Ω cm-1

T
ra

ns
.P

ro
b.

0 200 400 600 800
0

1

2

3

4

T HKL

Σ
H1

0-
10

W
�K
L

Figure 5.15: (a) Transmission probability for the asymmetric structure

(solid green line) and dashed line is for structure “a” (symmetric struc-

ture). (b) the thermal conductance as a function of the temperature.
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Chapter 6

Thermal Transport in Strained Graphene

Nanoribbons

6.1 Introduction

Operation of nanoscale thermal devices mainly relies on the tunability of phonon

transport by external means. Thermal devices such as thermal rectifiers[10], thermal

transistors[11] and thermal memories[12] are a new class of devices whose operation is

driven by the temperature gradients. These devices will have useful applications not

only in thermal circuits[13] but also in nanoscale thermal management and thermo-

electric applications.

A thermal rectifier, in which the thermal current is larger in one direction than

in the opposite, is one of the most fundamental thermal devices to be realized experi-

mentally in nanoscale. Thermal rectification has been demonstrated using molecular

dynamics simulations (MD) in asymmetric systems and is discussed as resulting from

an interplay between structural asymmetry and lattice anharmonicity [10, 83, 84, 85].

Recently, this phenomenon has been observed experimentally in asymmetrically mass

loaded carbon and boron nitride nanotubes [86]. It has also been shown by MD

simulations that varying the mass across an atomic chain with the anharmonic in-

teractions can produce a system that rectifies thermal currents [83]. Moreover, ther-

mal rectification has been predicted in triangular and trapezoidal shaped graphene

nanoribbons(GNRs)[84, 85]. We introduce a method based on strain engineering as
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an experimentally feasible approach to realize thermal rectification in GNRs. The

potentially real-time tunability of the thermal rectification is a distinctive advantage

of this approach.

Graphene is a promising material for nanoscale applications due to its exceptional

electronic [70], thermal [23, 24] and mechanical [71, 72, 73] properties. It has been

shown recently that the electronic properties of graphene can be tuned significantly

by engineering strain. For instance, strain could produce a pseudo-magnetic field

[87, 88, 89] which affects the electronic properties of graphene. Furthermore, strain

could induce semiconducting properties on metallic GNRs by opening a gap in the

electronic band structure [90]. However, strain induced tuning of thermal transport

properties of graphene has been less studied. The effect of uniform uniaxial strains on

the thermal conductivity (κ) of graphene has been studied recently by MD simulations

and reported the effect is substantial in tuning κ [91, 92, 93].

We carry out MD simulations and phonon dispersion calculations to study the

effect of strain on the thermal conductivity of GNRs. We observe that the variation

of κ with moderate uniaxial strains (arrows in fig.6.1a) has a strong dependence on

the edge chirality. A similar trend has also been reported recently and is attributed to

the geometrical anisotropy of graphene [93]. To investigate the behavior, we calculate

the phonon dispersions of strained GNRs, which provide a good insight into this

anisotropic strain effect. We observe the flattening of phonon modes and the opening

of a gap in the phonon dispersion of AGNRs with increasing uniaxial strain, which

results in a dramatic reduction of κ. However, the effect on ZGNRs is mild for
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moderate tensile strains where the calculated κ shows a weak dependence. We observe

thermal rectification on an asymmetrically stressed rectangular AGNR. In our system,

asymmetric stress is achieved by exerting a transverse force (Fy) on the top and

bottom edge atoms of part (for example, the right half) of the AGNR as illustrated

in fig.6.1b. We observe that the thermal current is larger from less stressed region

to the more stressed region (left to right) than that in the opposite direction (right

to left). The real time tunability of the thermal rectification on Fy is the important

finding reported in this chapter.

6.2 Method

Figure 6.1 shows a schematic of the n-ZGNR and n-AGNR structures simulated. The

carbon-carbon bond length is 1.42Å in the absence of strain. The index n refers to

the number of carbon dimers ( a dimer is shown by the oval) across the width [94].

The first and the last columns of atoms are fixed and the adjacent three columns of

atoms of the n-ZGNR and four columns of atoms of the n-AGNR are coupled to Nosé

-Hoover thermostats [95, 96]. The equations of motions of thermostated atoms are

given by equation 6.1.

dPi
dt

= Fi − γPi;
dγ
dt

= 1
τ2

(
T (t)
T0

− 1
)

Fi = −∑k,l,j
∂Vkl

∂rij

(6.1)

where, the subscript i runs over the atoms in either left or right thermostat, Pi is

the momentum of the ith atom , Fi is the force acting on the ith atom, Vkl is the

many-body potential, rij is the distance between atom i and j, γ and τ are the
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Figure 6.1: Schematic of the 8-ZGNR (a) and 11-AGNR (b). The trian-

gles represent the thermostatted atoms in the left and right heat baths.

The full squares are the fixed atoms at both ends. The horizontal arrows

in (a) shows the direction of uniaxial tensile strain. In (b) the vertical

arrows show the applied constant force Fy on the top and bottom atoms

(14 atoms on each side) of the right half of the AGNR. The horizontal

arrows in (b) represent the stress developed in length (x) direction (σx
R

and σx
L) near the heat baths. The boxed regions refer to a unit cell of

GNRs.
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dynamic parameter and the relaxation time of the thermostat, T (t) = 2
3NkB

∑
i
P 2
i

2m
, is

the instantaneous temperature of the thermostat at time t, T0 is the set temperature

of the thermostat, N is the number of atoms in the thermostat, kB is the Boltzmann

constant and m is the mass of the carbon atom. Atoms not in the thermostats move

according to standard Newtonian mechanics.

A second generation Brenner potential [81] is employed to describe the carbon-

carbon interactions. The equations of motion are integrated using the third-order

predictor-corrector method. The time step is 0.5 fs and the total simulation time is

5 ns (107 time steps). The temperatures of the left and right heat baths (HBs) are

set to TL and TR respectively. The temperature difference (TL − TR) = 2αT , where

α determines the temperature bias and the average temperature T = (TL + TR)/2.

The net heat flux (J) was calculated by the power delivered by the heat baths [97].

The heat current injected from either the left(L) or right(R) Nosé-Hoover thermostat

(J) is given by J =
∑

i
(−γPi)Pi

m
= −3γNkBT (t). The net heat current at the steady

state is J = (JL − JR)/2. The thermal conductivity (κ) of the system is calculated

according to Fourier’s law, J = κwh (TL−TR)
l

, where l, w and h are length, width and

van der Waals thickness (h = 0.335 nm) of the GNR. The length of the GNRs used

in this work is l ≈ 6.5 nm.

The MD code used in this calculation was first developed by Brenner [98] and

further modified by Hu et al.[84]. We included some modifications to apply external

forces, to strain and to calculate average forces on atoms. Furthermore, we parallal-

ized the code using Open MP directives so that the computational time is greatly
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Figure 6.2: Plot of thermal conductivity (κ) of ZGNR (Circle) and AGNR

(Square) as a function of temperature.

reduced.

6.3 Graphene nanoribbons under uniaxial strain

First, the thermal conductivities(κ) of both AGNR and ZGNR are calculated in the

temperature range 100K -700K ( 6.2). The calculated unstrained values of κ is in

the range of experimentally reported values [23, 24]. The κ of ZGNR is larger than

that of AGNR, which is consistent with the previous theoretical findings [84, 99]. At

300K thermal conductivity of AGNR is 1600 W/mK and that of the ZGNR is 2295

W/mK. The κ of both nanoribbons increases as the average temperature increases.

Beyond 300K the rate of increase in the thermal conductivity with temperature is

dramatically reduced. This could be a result of increased rate of phonon scattering
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from the boundaries and other phonons.

Mechanical behavior

We observe that both GNRs buckle along the out of plane direction in our simulation.

The AGNR shows a peak height of 0.15 nm at 100 K. As the temperature increases

the peak height decreases and at 700 K it reaches 0.005 nm. But the ZGNR has

a peak height about 0.03 nm and decreases only weakly with temperature. The

experimentally observed peak height is higher than what we observe probably due to

the small size of our simulated GNR [76, 77]. By applying tensile/compressive strain

flattening/bending of the GNR was observed. The strain is given by (l− l0)/l0, where

l is the stretched or compressed length and l0 is the initial length of the sample. The

positive sign is for tensile strain and the minus sign is for compressive strain. Strain

was applied by slowly moving the fixed atoms on one side at a rate of ±1.0 × 10−6

nm per time step at the beginning of the simulation. At 300 K compressive strain of

0.03 show about 0.8 nm peak height for both AGNR and ZGNR.

During the simulation the time average of the forces on each atom, 〈Fj〉t for

non-thermostatted atoms and 〈Fi − γPi〉t for thermostatted atoms, is calculated by

averaging over the last 106 time steps. These time averaged forces are exponentially

small except for the atoms at the two edges that are fixed. The externally applied

force on the all fixed atoms on one side (holding them in fixed position) is always

along the length direction of the GNR. There is an equal and opposite force on the

fixed atoms acting on the center part of the nanoribbon. In fact this is the force
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developed across the nanoribbon.

Figure 6.3 shows the variation of the stress(σ), force per unit area, with the

applied strain on AGNR and ZGNR measured at 300 K. Both nanoribbons shows

linear variation of stress with strain. By doing a linear fit we obtain the Young’s

modulus of AGNR to be 662 GPa and that of ZGNR to be 682 GPa. Similar values

have been observed previously [72, 73].

Strain dependence of thermal conductivity

Figure 6.4 shows the variation of κ of ZGNRs and AGNRs of two different widths

as a function of strain ranging from −0.03 to 0.12. The horizontal arrows in fig.6.1a

show the direction of uniaxial tensile strain on both nanoribbons. The dependence

of κ of ZGNRs on tensile strain is relatively weak within the range of studied. The

variation of κ for ZGNRs in the range of strain 0 − 0.09 is less than 10% from the

unstrained values. On the other hand, κ of 11-AGNR decreases significantly when

increasing the tensile strain. The reduction of κ at a strain of 0.09 is about 45% for

11-AGNR and 55% for 19-AGNR. Thus, κ of AGNR shows excellent sensitivity to

the tensile strain making it promising for strain based thermal device applications.

In order to understand the above edge chirality dependence of κ, we calculate

the phonon dispersion of unstrained nanoribbons and at strains of 0.015, and 0.062.

This is calculated by diagonalizing the dynamical matrix of the system with the force

constants evaluated from the Brenner potential. Since the strained structures are

optimized at 300 K, the equilibrium positions of atoms are taken to be the average
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Figure 6.3: Plot of stress (in GPa) as a function of strain for

AGNR(Square) and ZGNR (Circle) at room temperature ( 300 K ). The

dashed lines are the linear fit to the data of positive strain. From this we

extract the Young’s modulus of AGNR to be 662 GPa and that of ZGNR

to be 682 GPa.
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Figure 6.4: Thermal conductivity (κ) as a function of uniaxial strain

(l − l0)/l0 along the transport direction(x) calculated at 300 K.

fluctuation positions of atoms at 300 K. Figure 6.5 shows the phonon dispersions of

12-ZGNR and 11-AGNR along the transport direction(x). These two GNRs have

almost the same number of modes in the phonon dispersion because there are almost

the same number of atoms in a unit cell (24 and 22). The unit cells of both GNRs are

depicted by the boxed region in fig.1. In GNRs of comparable widths, the AGNR has

a larger number of modes. However, we observe that the κ of ZGNRs is larger than

that of AGNRs. The major difference in the unstrained dispersion curves ( fig.6.5a

and b) is that the phonon group velocities of ZGNR are much higher than that of

AGNR. A similar behavior of the phonon dispersion has been observed in a recent

study using first principle calculations [99]. This could be the reason for the observed

larger κ in ZGNRs. When increasing the uniaxial tesile strain, we do not observe

a significant alteration of dispersion curves of the 12-ZGNR in the low frequency

region (fig.6.5 a,c,e). However, in 11-AGNR we observe considerable effects when
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Figure 6.5: Phonon dispersion of 12-ZGNR and 11-AGNR under uni-

axial tensile strains. The horizontal axis is the normalized wave vector

projected on to the transport direction(x).

increasing strain (fig.6.5 b,d,f). The modes flatten reducing their group velocities.

The unique effect is the opening of a gap in the phonon dispersion. At a strain of

0.062, we observe a gap in the frequency range: 1000 − 1200 cm−1 (fig.6.5f). Thus,

the above sensitivity of the phonons in AGNRs to the strain could be the reasons for

the dramatic reduction of κ with increasing strain.
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6.4 Thermal rectification under asymmetric strain

In many of the theoretical studies on thermal transport, the stress along the nanorib-

bon is considered to be uniform and uniaxial. There is no difference in thermal

currents when switching the sign of the temperature bias (α), since the system is

symmetric. We consider a situation that the stress at the left and right edges of

the nanoribbon are σL and σR such that σL 6= σR. In the intermediate region it is

assumed to vary smoothly. This kind of stress profile could possibly be realized exper-

imentally using the differential thermal expansion of graphene grown on structured

substrates [89, 77, 78] or through externally applied strain [100, 101]. We achieve

such an asymmetric stress profile in our simulation by transversely stressing a half of

the GNR. For example, we apply a constant force Fy on the atoms of the top and

bottom edges of the right half of the 11- AGNR as depicted in fig.6.1b. The tensile

stress developed across the y direction of the right half is denoted by σy
R. This lateral

stress produces a tensile strain along the y direction and, hence a compressive strain

along the x-direction due to the Poisson contraction. Since the atoms in the left

and right edges are fixed, this compressive strain also results in tensile stress in the

x-direction. The stress in the x-direction near the left and right HB is denoted by σx
L

and σx
R. This is calculated from the time average of the forces on the fixed atoms at

the left and right edges(excluding the corner atoms). Figure 6.6a shows the variation

of σx
L and σx

R on Fy calculated at T = 300 K. The σx
L and σx

R are tensile, and σx
L is

smaller than the σx
R while both are found to be increasing with Fy.

In fig.6.6b, the thermal current from left to right (+α) and right to left (−α) are
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plotted against the applied force Fy, when |α| = 0.3 and T = 300 K. The thermal

current from left to right (JL→R) shows very small decrement, where as the JR→L

decreases significantly when Fy is increased. Thus, the JL→R is considerably larger

than JR→L whenever Fy > 0, marking the existence of thermal rectification in this

system.

The tensile stress and strain can affect the thermal transport by distorting the

lattice to both alter the characteristic vibrational frequencies and the degree of

anharmonicity.[102] Anharmonicity is essential: no amount of geometric or parame-

ter asymmetry can produce thermal rectification. Without anharmonicity, the system

can be analyzed via normal modes, and time reversal symmetry will require that

transmission amplitudes from left to right are the same as right to left. We attribute

the observed thermal rectification to the strain induced asymmetry of the vibrational

frequencies and the lattice anharmonicity. Such an asymmetry of the vibrational

properties leads to a local variation of κ. It can be shown that the thermal conduc-

tivity must be a function of both position and temperature to rectify the thermal

current.[103]

We can invoke the framework of non-equilibrium thermodynamics to describe this

effect. The change of the entropy per unit volume of a solid due to the applied stress

(τα) can be expressed[104], ds = du
T
− 1

T

∑
α ταdηα, where du is the change of internal

energy density, ηα is the strain and α ∈ [xx, yy, xy]. From this we can deduce the

rate of production of entropy[105],

ṡ = ∂i

(
1

T

)
J
(u)
i +

1

T
∂i (τα) J

(ηα)
i (6.2)
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where J
(u)
i and J (ηα) are the i-th components of the energy and the strain currents,

and repeated indices are summed over. In general the currents are a function of the

intensive parameters (T and τ) as well as the affinities[105] (∇ 1
T
and ∇τ). Thus the

heat current, ~J (Q), can be expanded in its most general form:

J
(Q)
i = L

(Q)
i,j ∂j

1

T
+

L
(ηα)
i,j

T
∂jτα + L

(QQ)
i,j,k ∂j

1

T
∂k

1

T
+

L
(Qηα)
i,j,k

T
∂j

1

T
∂kτα +

L
(ηαηβ)
i,j,k

T 2
∂jτα∂kτβ (6.3)

In solids, barring plastic deformation, there is no heat current in steady state solely

due to ∇τi. Thus, the coefficients L(ηα) = L(ηαηβ) = 0. Moreover, in symmetric sys-

tems there is no thermal rectification, which implies L(QQ) = 0. If we further assume

only gradients in the x-direction and stress in the y-direction the above equation can

be reduced to,

J (Q)
x = L(Q)

x,x∂x
1

T
+

L
(Qηyy)
x,x,x

T
∂x

1

T
∂xτyy, (6.4)

which leads to different thermal currents when switching the sign of the stress gradient

(∇τ). For the case of Fy = 4.8 nN, the calculated kinetic coefficients are L
(Q)
x,x =

1.7× 108 WK/m and L
(Qηyy)
x,x,x = 0.34 WK2/GPa.

The distinctive property of this approach is the tunability of the thermal recti-

fication by an asymmetrically applied force, Fy. We show in fig.6.6c the thermal

rectification factor (TR) as a function of Fy calculated at T = 300 K. The TR is

defined as, TR = 2 (JL→R−JR→L)
(JL→R+JR→L)

× 100%. We observe an increment of the TR when

increasing the Fy. The increment of TR with Fy is more prominent at higher biases

(α = 0.3). As shown in the fig.6.6d, the JL→R increases almost linearly with the bias
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(α), whereas JR→L increases nonlinearly giving rise to a larger TR. This behavior

suggests the contribution of higher order terms (beyond the second order) to eq.6.3.

The nonlinear transport is an essential property in realizing thermal rectification as

in an electronic diode. In our system the nonlinear transport is prominent at larger

Fy’s (> 0.8 nN), where we observe a clear bias dependence of TR. The maximum TR

we observed is about 73% which occurred at α = 0.3 and Fy = 5.6 nN.

The right side of the AGNR is subjected to a biaxial stress whereas the left

side only has an uniaxial stress. It is evident that the asymmetry of the on axis

stresses (σx
R and σx

L) is important in determining the TR. We achieve a significant

TR whenever the ratio σx
R/σ

x
L & 2.0 (see fig.6.6e). When we move the laterally

stressed window towards the center, the TR reduced considerably in our simulation.

This is a reasonable observation, because the asymmetry of the system is reduced.

For instance, when we move the laterally stressed window eight columns towards the

center (keeping the number of atoms that Fy is applied constant) the TR decrease to

5% at α = 0.3 and Fy = 4.8 nN. In this situation, the ratio of stresses reduces to 1.5

which is close to the ratio at Fy = 0.8 nN where the observed TR is about 6%. By

increasing the length of the AGNR and hence the number of atoms that Fy is applied,

we could increase the above ratio and observe a larger TR.

Graphene commonly possesses edge disorder which significantly degrades its ther-

mal properties. In fig.6.6c the open circles shows the variation of TR in the presence

of edge disorder. Since the simulated AGNRs are very small, we introduce only about

a 4%( percentage of number of edge atoms removed) edge disorder. We observe mod-
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erate reduction of TR, down to a value ∼ 30%. The effect of edge disorder can be

reduced by increasing the width of the nanoribbon. However, the presence of vacancy

defects significantly reduces the TR. The open triangles in fig.6.6c is for 0.6% vacancy

defects distributed evenly in the nanoribbon.

Experimentally, the lateral force on the right half of the AGNR can be applied

by coupling to a substrate. Our simulation fixed the atoms to which the forces

were applied. This situation also produces larger thermal rectification(over 100%) at

higher biases and the direction of the maximum thermal current is same as before.

This effect can be understood by the simple argument in ref.[103]. Consequently

the observable net thermal rectification could be even higher due to the asymmetric

coupling between the GNR and the substrate.

Electronic transport of heat will occur in parallel to the phonon conduction, but is

not so large that it dwarfs the phonon channel considered here. In addition, AGNRs

shows semiconducting characteristics and their energy gap can be tuned with the

strain[90]. Thus, the electronic contribution to the thermal transport should not be

crucial.

Electron-phonon interactions could lead to processes that undermine the thermal

rectification. We believe that their contribution to the thermal rectification is also

minimal since the nanoribbon is semiconducting. In addition, the long electronic

coherence length in graphene indicates that electron-phonon interactions should not

be significant. In experiments, these effects can be further minimized by electronically

gating the sample.
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Finally, we discuss the stability of the C-C bonds in graphene under the lateral

forces. We do not observe any rupture of bonds within the applied range of Fy (0−5.6

nN). Using an atomic force microscope, the force required to break a C-Si bond has

been measured to be approximately 2.0 nN [106]. The covalent bonds in graphene are

believed to be much stronger. In our simulation the estimated maximum force in the

C-C bond direction is about 6.4 nN, which corresponds to a lateral stress of σy
R = 90

Gpa. In a recent experiment, it has been found that the intrinsic strength of a single

layer graphene is about 130 GPa assuming the van der Waals thickness of graphene

[71]. When the Fy is increased to 7.2 nN, we observe rupturing of some bonds near

the fixed atoms in the right side of the AGNR. At this point, the maximum force in

the C-C bond direction is about 8.0 nN. Thus, the forces required to realize thermal

rectification by our method, are realistic and in an experimentally feasible range.

6.5 Conclusion

In conclusion, we study the thermal transport properties of strained GNRs using

MD simulations. We observe that the thermal conductivity of AGNRs decreases

significantly by applying an uniform uniaxial tensile strain while that of ZGNR has a

weak dependence on moderate tensile strains. These results show a good agreement

with the calculated phonon dispersions of strained GNRs. In AGNRs, we observe

the flattening of phonon modes and the opening of a gap in the phonon dispersion

which leads to the dramatic reduction of κ with tensile strains. On the other hand,

the phonon dispersion of ZGNRs shows only small alterations which results in a weak
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dependence of κ with moderate tensile strains. Thus, AGNRs are promising for strain

induced thermal device applications. Furthermore, we demonstrate that the thermal

rectification can be realized by engineering the stress on a rectangular AGNR. We

have found that the heat transport is favorable from the less stressed region to the

more stressed region. The major advantage of this approach is that the thermal

rectification can be tuned from no rectification state to over 70% in real-time by

applying a mechanical force.
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Figure 6.6: (a) Variation of stress (σx
R and σx

L) on the 11-AGNR, (b)

thermal current from left to right and right to left at T = 300 K and

|α| = 0.3, and (c) thermal rectification factor(TR) at T = 300 K as a

function of Fy. The open circles are in the presence of edge disorder(EDO)

and the open triangles are in the presence of vacancy defects(VD). (d)

Variation of thermal current with the temperature bias (α) at Fy = 4.8

nN. (e)The ratio σx
R/σ

x
L as a function of Fy. The units of Fy is nano

Newton (nN).
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Chapter 7

Conclusions and Future Work

In this thesis, I developed two theoretical tools to study coherent thermal transport

on the nanoscale. I believe these tools will be useful in studying real world problems

as I discuss by simple examples.

In chapter 2, I discussed an approach to include the interface coupling in the con-

tinuum model, where we use continuous functions to handle the interface. We use this

approach to optimize the interface thermal transport between hard and soft materi-

als. We include an interface variation of materials to maximize the thermal transport

and the optimal variation of mass density and elasticity is obtained numerically in

the continuum limit. CNT and graphene sheets can be functionalized with molecules

that lead to significantly change the transport properties. The developed continuum

calculation can be used to study the coherent thermal transport from functionalized

molecules to the CNT or graphene sheets. In this context, it is important to identify

the possible side chains that can be attached to graphene sheets. This is still an open

question.

In chapters 3 and 4, I developed R-matrix theory to calculate phonon scattering

on the atomic scale. In this approach, we can include all the details in the atomic scale

within the harmonic approximation to calculate phonon transmission. This approach

is a computationally efficient approach as compared with the non-equilibrium green’s

function approach(NEGF). The harmonic limit calculation misses of the non-linear
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effects of the interaction potential. However, the harmonic approximation is sufficient

to study the effect of boundaries, interfaces and impurities which are the dominant

scattering mechanisms on the nanoscale. The major drawback of the R-matrix for-

malism is the inability to include non-linear interactions. In principle the non-linear

interactions and electron-phonon interactions can be included in the Green’s function

calculations. In this case the NEGF approach can be used despite of its high com-

putational cost. The R-matrix approach is a mode to mode transmission calculation

technique. In chapter 5 I demonstrated how the R-matrix approach is used to analysis

the mode specific transmission of graphene nanoribbons.

The computational efficiency of RMT has proven its potential in studying atomic

scale thermal transport. Thus, the RMT enabled studying thermal transport in

relatively larger systems than the other available techniques can reach. The RMT

can be used in calculating thermal transport in structured systems and interfaces. It

is important to study the interface thermal transport between CNT/graphene and

silicon. Theses carbon nano-materials have the potential to efficiently remove the

heat from the heating elements. An interface transition layer ( molecules that link

the CNT/graphene to silicon surface) can be incorporated to maximize the interfacial

thermal transport. It is important to identify a suitable material to treat the CNT-

silicon (or graphene-silicon) interface. Furthermore, RMT can be used to study the

thermal transport in CNT/polymer or graphene/polymer composites materials. In

this context, it is important to study the thermal transport between dispersed CNT

or graphene flakes through molecular side chains.
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In chapter 6, I used molecular dynamics simulation (MD) to study the thermal

transport in strained graphene nanoribbons. MD has the advantage of easily incor-

porating the full inter-atomic potential. Thus, MD is an essential and widely using

tool to study the thermal transport in nanoscale.

Using molecular dynamics(MD) simulations and phonon dispersion calculations, I

found that the thermal conductivity of zigzag graphene nanoribbons (GNRs) shows a

weak dependence on moderate tensile strains, while that of armchair GNRs decreases

significantly, a feature that could be promising for strain induced thermal device

applications. I observe significant thermal rectification (over 70%) in a rectangular

armchair GNR by applying a transverse force asymmetrically. The heat flux is larger

from the less stressed region to the more stressed region. Furthermore, I develop a

theoretical framework based on the non-equilibrium thermodynamics to discuss when

thermal rectification under a stress gradient can occur.

Furthermore, it is important to study the consequences of disorder and the defects

that lead to reduce the thermal rectification factor. I studied the effect of edge disorder

and the vacancy defects on thermal rectification. It is found that edge disorder

only partially reduces the thermal rectification while effect of the vacancy defects

is significant. According to the Wiedemann Franz law, the electronic contribution

to thermal transport in graphene is about 30% at room temperature in unstrained

graphene. However it is not large enough to dwarf the phonon channel considered

here. In strained systems electrons scatter due to the deformation of the lattice

and increase the resistivity considerably reducing the electronic contribution to the
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transport. This will also influence the transport of phonons. Thus, as a future work,

it is important to study the electron phonon interaction of these strained systems.
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