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Abstract

Let G be the group of F -points of a split connected reductive F -group over

a non-Archimedean local field F of characteristic 0. Let π be an irreducible

smooth self-dual representation ofG. The spaceW of π carries a non-degenerate

G-invariant bilinear form ( , ) which is unique up to scaling. The form is easily

seen to be symmetric or skew-symmetric and we set ε(π) = ±1 accordingly. In

this thesis, we show that ε(π) = 1 when π is a generic representation of G with

non-zero vectors fixed under an Iwahori subgroup I.

vii



Chapter 1

Introduction

Let G be a group and (π, V ) be an irreducible representation of G such that

π ≃ π∨ (π∨ denotes the dual or contragredient of π). This isomorphism gives

rise to a non-degenerate G-invariant bilinear form on V which is unique up to

scalars, and consequently is either symmetric or skew-symmetric. Accordingly,

we set

ε(π) =

8>><
>>:

1 if the form is symmetric

−1 if the form is skew-symmetric

and call it the sign of π. In this thesis, we study this sign for a certain class

of representations of a reductive p-adic group G. To be more precise, we study

the sign for representations with non-zero vectors fixed under an Iwahori sub-

group in G. The structure of representations with Iwahori fixed vectors is well

understood and exhibits many of the complications that occur when studying

representations with fixed vectors under other compact open subgroups of G.

This is one of the principal reasons we restrict our analysis to this particular

class of representations.

1.1 Overview of the problem

Let G be a group and (π, V ) be an irreducible self-dual complex representation

of G. We say that the representation π is realizable over the real numbers
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if there exists a G-invariant real subspace W of V such that V ≃ C ⊗R W

as representations of G. A classical problem in representation theory was to

determine when such a W exists. This problem was settled for finite groups

by Frobenius and Schur more than a century ago. They showed that π is

realizable over the real numbers precisely when ε(π) = 1. They also gave a

formula to compute ε(π) in terms of the character χπ of the representation π.

They showed that

ε(π) =
1

|G|
X
g∈G

χπ(g
2).

The sign ε(π) has been fairly extensively studied for connected compact

Lie groups and finite groups of Lie type. In this setting, the sign is sometimes

referred to as the Frobenius-Schur indicator of π. There is a lot of literature

available on computing these signs for such groups. For connected compact Lie

groups the sign can be computed using the dominant weight attached to the

representation π (see [2] pg. 261-264). In [7], Gow showed that for q a power

of an odd prime and Fq the finite field with q elements, irreducible self-dual

complex representations of SO(n, Fq) are always realizable over R. He also

showed that the same is true for any non-faithful representation of Sp(n, Fq).

The proofs involve a detailed analysis of the conjugacy classes of these groups

and are computationally quite complicated. In [10], Prasad introduced an el-

egant idea to compute the sign for a certain class of representations of finite

groups of Lie type. These representations are called generic. He used this

idea to determine the sign for many finite groups of Lie type, avoiding tedious

conjugacy class computations. In a subsequent paper [11], he extended this

idea to representations of a reductive p-adic group G and computed the sign

for generic representations of certain classical groups in some cases. In [15],

Vinroot used Prasad’s idea along with other techniques to compute the sign
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for an irreducible self-dual representation of GL(n, F ) where F is a p-adic field.

In this thesis, we determine the sign ε(π) when π is a certain type of rep-

resentation of an arbitrary connected reductive p-adic group G. Suppose K

is the maximal compact open subgroup of G and π has non-zero vectors fixed

under K. In this situation, it is easy to see that ε(π) is always 1. A natural

question is what is ε(π) if π has non-zero Iwahori fixed vectors. There is enough

evidence that the sign is one in the Iwahori fixed case. We have not been able

to prove the result in complete generality. However, we do address a particular

case of this problem. To be more precise, we prove the following theorem.

Theorem 1.1 (Main Theorem). Let (π,W ) be an irreducible smooth self-dual

representation of G with non-zero vectors fixed under an Iwahori subgroup in

G. Suppose that π is also generic. Then ε(π) = 1.

1.2 Organization

In Chapter 2, we recall the basic definitions and theorems which we need

throughout this report. In Chapter 3, we explain how the sign is attached

to a self-dual representation π. In Chapter 4, we discuss representations of

some classical groups. We use a theorem of Waldspurger to show that many

representations of classical groups are self-dual. We have included this chapter

just to motivate the problem of studying signs. In Chapter 5, we explain the

important ideas of Rodier and Prasad which we use to study the sign. We also

mention a few results about restricting an irreducible representation to a sub-

group and recall an important characterization of representations with vectors

3



fixed under an Iwahori subgroup. In Chapter 6, we prove the main theorem.
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Chapter 2

Preliminaries

In this chapter, we recall the basic definitions and theorems which we need

throughout this report and give some examples.

2.1 Valuations and local Fields

Let F be a field. A valuation on F is a map | · | : F → R≥0 such that, for

x, y ∈ F , we have

|x| = 0 ⇔ x = 0

|xy| = |x||y|

|x+ y| ≤ |x|+ |y|.

We say | · | is non-Archimedean if it satisfies

|x+ y| ≤ max{|x|, |y| }, x, y ∈ F.

The valuation | · | defines a topology on F which has as a basis for the open

sets all sets of the form U(a, ε) = {b ∈ F | |a − b| < ε}, a ∈ F, ε ∈ R>0. We

call F a non-Archimedean local field, if it is locally compact and complete with

respect to a non-trivial non-Archimedean valuation. Let O = {a ∈ F | |a| ≤ 1}

and p = {a ∈ F | |a| < 1}. It is easy to see that O is a ring and p is a principal

ideal in O. In fact, it can be shown that p is the unique maximal ideal of O.
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We fix a generator ϖ of the ideal p. We call O the valuation ring (ring of

integers) of the field F . The field k = O/p is a finite field and we call it the

residue field of F .

2.2 Representations of locally profinite groups

Let G be a topological group. G is called locally profinite if it is a Hausdorff

topological space and every open neighbourhood of the identity element in G

contains a compact open subgroup of G. Let V be a vector space over C (not

necessarily finite dimensional) and GL(V ) be the set of all invertible linear

operators on V . A representation (π, V ) of G in V is a map π : G → GL(V )

such that π(gh) = π(g)π(h), ∀g, h ∈ G. Suppose W is a subspace of V which

is invariant under G, i.e., π(g)w ∈ W, ∀g ∈ G, w ∈ W . Then restricting the

operators π(g) toW gives a representation ofG inW . We call the invariant sub-

space W a sub-representation of V . The representation π is called irreducible

if it has no proper invariant subspaces, i.e., {0} and V are the only subspaces

of V invariant under G. π is smooth if StabG(v) = {g ∈ G | π(g)v = v} is open

for every v ∈ V and admissible if V K = {v ∈ V | π(k)v = v, ∀k ∈ K} is a finite

dimensional subspace of V for any compact open subgroup K of G. It is a well

known fact that an irreducible smooth representation of a locally profinite group

is always admissible. We will always assume this fact throughout this report.

Given two representations (π1, V1) and (π2, V2) of G, a linear map T from V1 to

V2 is called an intertwining map (intertwiner) if π2(g) ◦T = T ◦π1(g), ∀ g ∈ G.

We call (π1, V1) and (π2, V2) isomorphic (equivalent) representations if there

exists an intertwiner T which is an isomorphism. We will write HomG(π1, π2)

or HomG(V1, V2) for the collection of all intertwining maps between V1 and V2.

Given a representation (π, V ) of G, we have a natural representation of G in the
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dual space V ∗ = HomC(V,C). For λ ∈ V ∗ and v ∈ V , define π∗(g)λ ∈ V ∗ by

⟨π∗(g)λ , v⟩ = ⟨λ , π(g)−1v⟩, v ∈ V , where ⟨ , ⟩ is the canonical pairing between

V and V ∗ given by evaluation. This representation is not always smooth. Let

V ∨ = (V ∗)∞ = {v ∈ V ∗ | StabG(v) is open}. It is easy to see that V ∨ is a

sub-representation of V and we get a smooth representation (π∨, V ∨) of G in

V ∨. The representation (π∨, V ∨) is called the smooth-dual or contragredient of

(π, V ). Given a subgroupH of G the restriction of π toH gives a representation

of H in V . It is called the restriction of π denoted as π|H . It is natural to ask

whether one can construct a representation of G from a representation of the

subgroup H. This process is called smooth induction and the representation of

G so obtained is called the smoothly induced representation. We explain the

construction below.

Let (ρ,W ) be smooth a representation of H. Consider the space W of

functions f : G→ W which satisfy

(i) f(hg) = ρ(h)f(g), h ∈ H, g ∈ G.

(ii) there is a compact open subgroup K of G (depending on f) such that

f(gk) = f(g), for g ∈ G, k ∈ K.

We define a homomorphism IndG
H ρ : G→ GL(W) by

(IndG
H ρ)(g)(f)(x) = f(xg), g, x ∈ G.

The pair (IndG
H ρ,W) provides a smooth representation of G and is called the

representation of G smoothly induced by ρ.
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Theorem 2.1 (Schur’s Lemma). Let (π1, V1) and (π2, V2) be irreducible repre-

sentations of a group G and T1, T2 : V1 → V2 be non-zero intertwining maps.

Then, T1 = λT2, for some λ ∈ C×.

Proof. See chapter 1, section 2.6 in [3].

Remark 2.2. For Schur’s Lemma to be valid in this setting, we need a technical

restriction on the group G. We assume that for any compact open subgroup K,

the set G/K is countable.

Theorem 2.3 (Frobenius Reciprocity). Let H be a closed subgroup of a locally

profinite group G. For a smooth representation (ρ,W ) of H and a smooth

representation (π, V ) of G, the canonical map

HomG(π, Ind
G
H ρ) → HomH(π|H , ρ),

ϕ 7→ αρ ◦ ϕ

is an isomorphism. Here αρ : W → W is the canonical H-homomorphism

defined as f 7→ f(1).

Proof. See chapter 1, section 2.4 in [3].

2.3 Hecke algebras

Throughout this section, we let G be a locally profinite group. For simplicity,

we assume that G is unimodular and fix a Haar measure dg on G.

Let C∞
c (G) be the space of functions f : G→ C which are locally constant
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and compactly supported. For f1, f2 ∈ C∞
c (G), we define

f1 ∗ f2(g) =
Z
G
f1(x)f2(x

−1g)dg.

The pair H(G) = (C∞
c (G), ∗) is an associative C-algebra called the Hecke alge-

bra of G. Let H(G,K) = {f ∈ H(G) | f(k1gk2) = f(g), ∀g ∈ G, k1, k2 ∈ K}.

H(G,K) is a subalgebra of H(G) and is called the K-Hecke algebra.

Proposition 2.4. Let (π, V ) be an irreducible smooth representation of G and

K be a compact open subgroup. The space V K is either zero or a simple

H(G,K)-module.

Proof. See chapter 1, section 4.3, proposition 1 in [3].

2.4 Preliminaries from Algebraic groups

Throughout this section, we let K be an algebraically closed field and k be

a subfield of K. We write K[t1, . . . , tn] for the polynomial ring in n variables

t1, . . . , tn. For S ⊂ K[t1, . . . , tn] and E ⊂ Kn, we let V (S) = {x ∈ Kn | f(x) =

0 ,∀f ∈ S} and I(E) = {f ∈ K[t1, . . . , tn] | f(x) = 0 ,∀x ∈ E}.

A subset X ⊂ Kn is called an algebraic set if X = V (S) for some (finite)

subset S of An. It is easy to see that the sets V (S), S ⊂ K[t1, . . . , tn], satisfy

the axioms for closed sets in a topological space. The resulting topology on

Kn is called the Zariski topology, and the induced topology on an algebraic set

X ⊂ Kn is the Zariski topology on X. Let X ⊂ Kn be an algebraic set. The

K-algebraK[X] = K[t1, . . . , tn]/I(X) is called the affine algebra (or coordinate

ring) of X and the pair (X,K[X]) is called an affine algebraic variety. Suppose
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X is an affine algebraic variety over K. If k is a subfield of K, we say that X

is defined over k if the ideal I(X) is generated by polynomials in k[t1, . . . , tn].

In this case, the set X(k) := X ∩ kn is called the k-rational points of X. A

map f : Kn → Km is called a morphism if there exist polynomials f1, . . . , fm in

K[t1, . . . , tn] such that f(x) = (f1(x), . . . , fm(x)) for all x ∈ Kn. IfX ⊂ Kn and

Y ⊂ Km are affine algebraic varieties, a mapping ϕ : X → Y is called a mor-

phism if ϕ = f |X for some morphism f : Kn → Km. A morphism ϕ : X → Y

determines a unique K-algebra homomorphism ϕ∗ : K[Y ] → K[X] given by

ϕ∗(g) = g ◦ ϕ. Suppose X and Y are defined over k. We say that a morphism

ϕ : X → Y is defined over k (or is a k-morphism) if there is a homomorphism

ϕ∗
k : k[Y ] → k[X] such that the algebra homomorphism ϕ∗ : K[Y ] → K[X]

defined by ϕ is ϕ∗
k ⊗ idK .

Definition 2.5. An linear algebraic group is (1) an affine algebraic variety and

(2) a group, such that multiplication

µ : G×G→ G (µ(x, y) = xy)

and inversion

i : G→ G (i(x) = x−1)

are morphisms of affine algebraic varieties.

Example 2.6. We give some examples of algebraic groups.

(i) G = K, with µ(x, y) = x + y and i(x) = −x. We usually denote this

group as Ga.

10



(ii) Let n be a positive integer and let M(n,K) be the set of n × n matrices

with entries in K. G = GL(n,K) = {A ∈ M(n,K) | detA ̸= 0} In the

case when n = 1, the usual notation for GL(n,K) is Gm.

(iii) Let A =

� 1

...
1

�
be the anti-diagonal matrix and let J =

�
A

−A

�
. Let

W be a vector space of dimension 2n over a field K and ⟨v, w⟩ = v⊤Jw

be a non-degenerate skew-symmetric form on W . The symplectic group

Sp(n, F ) = {g ∈ GL(n,K) | ⟨gv, gw⟩ = ⟨v, w⟩}.

Let G and G′ be algebraic groups. A homomorphism of algebraic groups

ϕ : G → G′ is a group homomorphism which is also a morphism of varieties.

Given x ∈ GL(n,K), it is well known that there exists elements xs and xu in

GL(n,K) such that xs is semisimple, xu is unipotent, and x = xsxu = xuxs.

Furthermore, xs and xu are uniquely determined. Suppose that G is a linear

algebraic group. It can be shown that there exists a positive integer n and an

injective homomorphism φ : G → GL(n,K) of algebraic groups. If g ∈ G, the

semisimple and unipotent parts φ(g)s and φ(g)u of φ(g) lie in φ(G), and the

elements gs and gu such that φ(gs) = φ(g)s and φ(gu) = φ(g)u depend only

on g and not on the choice of φ (or n). The elements gs and gu are called the

semisimple and unipotent part of g, respectively. An element g ∈ G is semisim-

ple if g = gs (and gu = 1), and unipotent if g = gu (and gs = 1). It can be

shown that G contains a unique maximal connected normal solvable subgroup

denoted R(G). The set Ru(G) of unipotent elements in R(G) is called the

unipotent radical of G. A torus T is a linear algebraic group which is isomor-

phic to the direct product Gd
m = Gm × · · · ×Gm, where d is a positive integer.

If k is a subfield of K, we call T a k-torus if T is defined over k. We say that T
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is k-split (or splits over k) whenever T is k-isomorphic to Gm × · · · ×Gm. For

example, let T be the subgroup of GL(n,K) consisting of diagonal matrices in

GL(n,K). Then T is a k-split k-torus for any subfield k of K. Let G be a

connected reductive k-group (i.e., G is defined over k). Then it can be shown

that G has a maximal torus T which is defined over k. We say that G is k-split

(or splits over k) if T is k-split.

Remark 2.7. Let G be an algebraic group. Then the set of tori in G has maxi-

mal elements, relative to inclusion. Such maximal elements are called maximal

tori of G.

Let G be a connected algebraic group. The set of connected closed solvable

subgroups of G, ordered by inclusion, contains maximal elements. Such a

maximal element is called a Borel subgroup ofG. For example, ifG = GL(n,K)

and then the subgroup B of upper triangular matrices in G is a Borel subgroup.

2.4.1 Classification of split reductive groups

In this section, we explain the notion of a root datum and give examples of

root data for some classical groups. The main result in this section is that

the root datum determines G up to isomorphism (we state it without proof).

Throughout this section, we let G be a connected reductive k-group and T be

a k-split maximal torus in G.

Definition 2.8. A root datum R is a quadruple (X,Φ, X∨,Φ∨), where

(i) X and X∨ are free abelian groups of finite rank, in duality by a pairing

X ×X∨ → Z, denoted by ⟨ , ⟩;
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(ii) Φ and Φ∨ are finite subsets of X and X∨, and we are given a bijection

α → α∨ of Φ on to Φ∨.

For α ∈ Φ, we define endomorphisms sα and s∨α of X and X∨ by

sα(x) = x− ⟨x, α∨⟩α s∨α(y) = y − ⟨α, y⟩α∨ (x ∈ X, y ∈ X∨).

The following axioms are imposed

(1) If α ∈ Φ then ⟨α, α∨⟩ = 2.

(2) if α ∈ Φ then sα(Φ) = Φ and s∨α(Φ
∨) = Φ∨.

The root datum R is called reduced if

(3) α ∈ Φ ⇒ 2α ̸∈ Φ.

We call Φ as the set of roots and Φ∨ as the set of coroots.

Root datum attached to (G,T )

A character of a torus T is a homomorphism of algebraic groups χ : T →

Gm. The set X(T ) of characters of T is in a natural way an abelian group

((χ+ψ)(t) = χ(t)ψ(t)) and is called the character group of T . A cocharacter of

a torus T is a homomorphism of algebraic groups λ : Gm → T . The set X∨(T )

of cocharacters of T is again an abelian group ((λ+µ)(x) = λ(x)µ(x)). There is

a duality map ⟨ , ⟩ : X(T )×X∨(T ) → Z relating the character and cocharacter

groups of T . Given χ ∈ X(T ) and γ ∈ X∨(T ) we have χ ◦ γ ∈ Hom(k×, k×),

thus (χ ◦ γ)(λ) = λm for some m ∈ Z. We write ⟨χ, γ⟩ = m. It induces

isomorphisms

X(T ) ≃ HomZ(X
∨(T ),Z) X∨(T ) ≃ HomZ(X(T ),Z).

13



Let g be the Lie algebra of G and AdG : G → GL(g) be the adjoint rep-

resentation of G. Since AdG is a homomorphism of algebraic groups, AdG(T )

consists of commuting semisimple elements, hence is diagonalizable: this means

that, relative to the action of T , g decomposes as a direct sum

g =
M

α∈X(T )

gα

where for each character α ∈ X(T ),

gα = {X ∈ g | AdG(t)X = α(t)X, ∀t ∈ T}.

The non-zero α ∈ X(T ) such that gα ̸= 0 are called the roots of G relative

to T , and the set of roots is denoted by Φ(G, T ). Let α ∈ Φ(G, T ) and let

Tα = (Kerα)0, the connected component of the identity in the kernel of α;

then Tα is a subtorus of T of codimension 1. Let Gα be the centralizer of Tα in

G; it is easy to see that Gα is connected, and T is a maximal torus of Gα. The

Weyl groupW (Gα, T ) has order 2, and embeds inW (G, T ). Let sα ∈ W (Gα, T )

be the non-identity element of W (Gα, T ); then sα acts on X(T ) as follows:

sα(χ) = χ− ⟨χ, α∨⟩α

for a unique α∨ ∈ X∨(T ). The unique element α∨ ∈ X∨(T ) is called the coroot

of α, and the set of coroots is denoted by Φ∨(G, T ).

It is clear that we can associate to any linear algebraic group G and a

maximal torus T , a root datum R(G, T ) = (X(T ),Φ(G, T ), X∨(T ),Φ∨(G, T )).
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Existence and Uniqueness Theorem

Theorem 2.9 (Uniqueness). Let G1 and G2 be connected reductive linear alge-

braic groups defined and split over k with split maximal tori T1 and T2. Then G1

and G2 are isomorphic as algebraic groups if and only if R(G1, T1) ≃ R(G2, T2).

Proof. See Theorem 9.6.2 in [14].

Theorem 2.10 (Existence). Let R be a reduced root datum. Then there exists

a connected reductive linear algebraic group G defined and split over k such

that R ≃ R(G, T ).

Proof. See Theorem 10.1.1 in [14].

Examples of Root Data

Example 2.11. G = GL(n, F ), n ≥ 2. Let T =

¨
t = diag(t1, . . . , tn), ti ∈

F×
«
. It is easy to see that T is a maximal torus in G. We will now write the

root datum (X(T ),Φ(T ), X∨(T ),Φ∨(T )) corresponding to the pair (G, T ).

X(T ) =

¨
χ : T → F× | χ(t) = tk11 · · · tknn , k1, . . . , kn ∈ Z

«
.

Φ(T ) =

¨
χ ∈ X(T ) | χ(t) = tit

−1
j , 1 ≤ i ̸= j ≤ n

«
.

X∨(T ) =

¨
µ : F× → T | µ(λ) = diag(λk1 , . . . , λkn), k1, . . . , kn ∈ Z

«
.

Φ∨(T ) =

¨
µ ∈ X∨(T ) | µ(λ) = diag(1, . . . , λ|{z}

i

, . . . , λ−1|{z}
j

, . . . , 1), 1 ≤ i ̸=

j ≤ n

«
.
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Example 2.12. Let G = Sp(4, F ). Let T =

¨
t = diag(a, b, b−1, a−1), a, b ∈

F×
«
. It is again easy to see that T is a maximal torus in G. We now describe

the root datum (X(T ),Φ(T ), X∨(T ),Φ∨(T )) attached to the pair (G, T ).

X(T ) =

¨
χ(i,j) : T → F× | χ(i,j)(t) = aibj, i, j ∈ Z

«
.

Let α = χ(1,−1) and β = χ(0,2). Then we have

Φ(T ) =

¨
± α,±β,±(α+ β),±(2α + β)

«
.

X∨(T ) =

¨
µ(i,j) : F

× → T | i, j ∈ Z, µ(i,j)(λ) = diag(λi, λj, λ−j, λ−i)

«
.

Let α∨ = µ(1,−1) and β
∨ = µ(0,1). Then we have

Φ∨(T ) =

¨
± α∨,±β∨,±(α∨ + β∨),±(α∨ + 2β∨)

«
.

2.5 Iwahori subgroups, Bruhat decomposition

In this section, we let F be a non-Archimedean local field. We write O for the

ring of integers in F , p for the unique maximal ideal and k for the residue field.

We also fix a maximal F -split torus T and write T◦ for the O-points of T . We

write B for a Borel subgroup containing T and U for the unipotent radical of

B as before.

Let B be a Borel subgroup in G. The Iwahori subgroup I is defined to be

the inverse image of B(k) (k-points of B) under the canonical map (reduction

mod p) from G(O) to G(k). For example, let G = GL(n, F ). Take B to be the
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standard Borel subgroup (upper triangular matrices) and U to be the unipotent

radical (unipotent matrices) of B in G. In this case the Iwahori subgroup is

the collection of matrices of the following type.

I =

2
66666666664

O× O · · · O

p O× · · · O

...
...

. . .
...

p p · · · O×

3
77777777775

Consider the group ÝW := NG(T )/T◦. This group ÝW is called the affine

Weyl group. Given an Iwahori subgroup I in G, it can be shown that G is the

disjoint union of the double cosets IwI, as w ranges over a set of representatives

in NG(T ) of the affine Weyl group ÝW , i.e.,

G =
G

w∈ÜW IwI

The above decomposition of G is called the affine Bruhat Decomposition.

2.6 Non-degenerate characters, generic representations

In this section, we define the notion of a non-degenerate character and genereic

representation. We continue with the notation of the previous section.

A (non-trivial) character ψ of U is non-degenerate (generic) if ψ|Uα ̸= 1 for

all simple roots α. For example, if G = GL(n, F ) it can be shown that any

non-degenerate character ψ of U is a character of the form

ψ(u) = θ(α1u12 + α2u23 + · · ·+ αn−1un−1n)
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where θ is a complex valued non-trivial additive character of F , u = (uij) is

the collection of unipotent matrices and α1, . . . , αn ∈ F×.

A representation π is called generic if there exists a non-degenerate character

ψ of U such that HomU(π, ψ) ̸= 0.

2.7 Preliminaries from Group Cohomology

Let G be a group. An abelian group A on which G acts as automorphisms is

called a G-module. If A is a G-module, let AG = {a ∈ A | g.a = a ∀g ∈ G} be

the elements of A fixed by all the elements of G. Suppose G is a finite group

and A is a G-module, define C◦(G,A) = A and for n ≥ 1 define Cn(G,A) to be

the collection of all maps from Gn = G×· · ·×G (n copies) to A. The elements

of Cn(G,A) are called n-cochains (of G with values in A). For n ≥ 0, we define

the nth coboundary homomorphism from Cn(G,A) to Cn+1(G,A) by

dn(f)(g1, . . . , gn+1) = g1.f(g2, . . . , gn+1)

+
nX

i=1

(−1)if(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1)

+ (−1)n+1f(g1, . . . , gn)

where the product gigi+1 occupying the ith position of f is taken in the group

G. Let Zn(G,A) = ker dn for n ≥ 0. The elements of Zn(G,A) are called n-

cocycles. Let Bn(G,A) = Im dn−1 for n ≥ 1 and B◦(G,A) = 1. The elements

of Bn(G,A) are called n-coboundaries. For any G-module A the quotient group

Zn(G,A)/Bn(G,A) is called the nth cohomology group of G with coefficients

in A and is denoted by Hn(G,A), n ≥ 0.
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If G is a profinite group then a discrete G-module A is a G-module A with

the discrete topology such that the action of G on A is continuous, i.e., the

map (g, a) 7→ g.a : G × A → A is continuous. If G is a profinite group and

A is a discrete G-module, the cohomology groups Hn(G,A) computed using

continuous cochains (i.e., the continuous maps f ∈ Cn(G,A)) are called the

profinite or continuous cohomology groups. When G = Gal(K/F ) is the Galois

group of a field extension K/F then the Galois cohomology groups Hn(G,A)

will always mean the cohomology groups computed using continuous cochains.

Theorem 2.13 (Long Exact Sequence in Group Cohomology). Suppose

0 −→ A −→ B −→ C −→ 0

is a short exact sequence of G-modules. Then there is a long exact sequence:

0 −→ AG −→ BG −→ CG −→ H1(G,A) −→ H1(G,B) −→ H1(G,C) −→ · · ·

· · · −→ Hn(G,A) −→ Hn(G,B) −→ Hn(G,C) −→ Hn+1(G,A) −→ · · ·

of abelian groups.

Proof. See chapter 17, theorem 21 in [5].

We now recall a key result which will be essential to a later argument.

Theorem 2.14 (Hilbert’s Theorem 90). Let F be a field and let L/F be

a Galois extension (not necessarily finite) of F with Γ = Gal(L/F ). Then

H1(Γ, L×) = {1}.
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Chapter 3

Self-dual representations and signs

In this chapter, we introduce and briefly discuss the notion of signs associated

to self-dual representations.

3.1 Sign of π

Let F be a non-Archimedean local field and G be the group of F -points of

a connected reductive algebraic group. Let (π,W ) be a smooth irreducible

representation of G. We write (π∨,W∨) for the smooth dual or contragredient

of (π,W ) and ⟨ , ⟩ for the canonical non-degenerate G-invariant pairing on

W ×W∨ (given by evaluation). Let s : (π,W ) → (π∨,W∨) be an isomorphism.

The map s can be used to define a bilinear form on W as follows

(w1, w2) = ⟨w1, s(w2)⟩, ∀w1, w2 ∈ W.

It is easy to see that ( , ) is a non-degenerate G-invariant form on W , i.e., it

satisfies,

(π(g)w1, π(g)w2) = (w1, w2), ∀w1, w2 ∈ W.

Let ( , )∗ be a new bilinear form on W defined by

(w1, w2)∗ = (w2, w1)

Clearly, this form is again non-degenerate and G-invariant. It follows from
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Schur’s Lemma (Theorem 2.1) that

(w1, w2)∗ = c(w1, w2)

for some non-zero scalar c. A simple computation shows that c ∈ {±1}. Indeed,

(w1, w2) = (w2, w1)∗ = c(w2, w1) = c(w1, w2)∗ = c2(w1, w2).

We set c = ε(π). It clearly depends only on the equivalence class of π. In

sum, the form ( , ) is symmetric or skew-symmetric and the sign ε(π) records

its type.
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Chapter 4

Representations of some classical groups

We use a theorem of Waldspurger to show that many representations of classical

groups are self-dual. Throughout this chapter, we let F be a non-Archimedean

local field of characteristic ̸= 2 andW be a finite dimensional vector space over

F . We write O for the ring of integers in F , p for the unique maximal ideal of

O and k for the residue field. We let ⟨ , ⟩ to be a non-degenerate symmetric or

skew-symmetric form on W . We take

G = {g ∈ GL(W ) | ⟨gw, gw′⟩ = ⟨w,w′⟩}

For x ∈ GL(W ) such that xGx−1 = G and (π, V ) a representation of G, we

let πx denote the representation of G defined by conjugation (i.e., πx(g) =

π(xgx−1).

We recall the statement of Waldspurger’s theorem and refer the reader to

Chapter 4.II.1 in [8] for a proof.

Theorem 4.1 (Waldspurger). Let π be an irreducible admissible representation

of G and π∨ be the smooth-dual or contragredient of π. Let x ∈ GL(W ) be such

that ⟨xw, xw′⟩ = ⟨w′, w⟩, ∀w,w′ ∈ W . Then πx ≃ π∨.

Proof. See chapter 4.II.1 in [8].
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4.1 Orthogonal and special orthogonal groups

4.1.1 Orthogonal groups

Suppose the form ⟨ , ⟩ is symmetric so that G is the orthgonal group O(W ).

Let π be any irreducible admissible representation of G. Then x = 1 ∈ G

satisfies ⟨xw, xw′⟩ = ⟨w′, w⟩,∀w,w′ ∈ W . Now using Waldspurger’s Theorem,

it follows that π ≃ π∨. So in the case of orthogonal groups every irreducible

representation π is self-dual.

4.1.2 Special orthogonal groups

Suppose the dimension of W is odd. Take G = SO(W ) = O(W ) ∩ SL(W )

and π to be an irreducible admissible representation of G. Since O(W ) ≃

SO(W )×{±1W}, it follows that there exists an irreducible representation π̃ of

O(W ) such that π̃ ≃ π ⊗ χ (where χ is a character of {±1W}). Since χ = χ−1

and π̃ ≃ π̃∨ it follows that π ≃ π∨.

4.2 Symplectic groups

Suppose that G is the symplectic group Sp(W ) or Sp(n, F ) (see example 2.6).

We show that a certain class of representations of G is always self-dual. To be

more precise, we prove,

Theorem 4.2. Let (π, V ) be an irreducible admissible representation of G with

non-zero vectors fixed under an Iwahori subgroup I in G. Then π ≃ π∨.

Consider x =
�
− I 0
0 I

�
∈ GL(W ) (where I is the n × n identity matrix).

It is easy to see that ⟨xw, xw′⟩ = ⟨w′, w⟩. By Theorem 4.1, πx ≃ π∨. To

prove π ≃ π∨, it suffices to show that π ≃ πx. Observe that xIx−1 = I and
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πI = (πx)I . Since πI = (πx)I ̸= 0, they can be realized as simple modules

over H(G, I). Let f • v and f ⋆ v denote the action of H(G, I) on πI and

(πx)I respectively. It will follow that π ≃ πx if πI and (πx)I are equivalent

as H(G, I)-modules. We establish this equivalence, by showing that the map

ϕ = 1V (identity map on V ) defines an intertwining map between πI and (πx)I .

Before we continue, we fix a collection of coset representatives for the affine

Weyl group ÝW and record two lemmas we need.

Let Bi,i+1, i = 1, 2, . . . , n− 1, be the n× n matrix

Bi,i+1 =

2
6666666666666666664

1

. . .

0 1

1 0

. . .

1

3
7777777777777777775

9>=
>;

i

i+ 1

and wn and wℓ, ℓ ∈ Zn, be the following 2n× 2n matrices
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wn =

2
6666666666666666664

1

. . .

0 1

−1 0

. . .

1

3
7777777777777777775

9>=
>;

n

n+ 1
,

wℓ =

2
6666666666666666664

ϖl1

. . .

ϖln

ϖ−ln

. . .

ϖ−l1

3
7777777777777777775

, li ∈ Z.

The group

®
wℓ, wn, wi =

�
Bi,i+1 0

0 Bi,i+1

� ����� ℓ ∈ Zn, i = 1, 2, . . . , n−1

¸
contains

a collection of coset representatives for the affine Weyl group ÝW .

Lemma 4.3. For f ∈ H(G, I), let fx ∈ H(G, I) be the function fx(g) =

f(x−1gx). The following statements are true.

(i) f ⋆ v = fx • v.

(ii) For g = i1wi2 ∈ G (Bruhat Decomposition), fx(g) = f(xwx−1) and

f(g) = f(w).
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Proof. Clearly f ⋆ v = fx • v. Indeed,

f ⋆ v =
Z
G
f(g)πx(g)vdg

=
Z
G
f(g)π(xgx−1)vdg

=
Z
G
f(x−1gx)π(g)vdg

= fx • v.

For (ii),

fx(g) = f(xi1wi2x
−1)

= f(xi1x
−1xwx−1xi2x

−1)

= f(ixwx−1i′)

= f(xwx−1),

and

f(g) = f(i1wi2)

= f(w).

Lemma 4.4. For w ∈ ÝW , xwx−1 ∈ IwI.

Proof. If w ∈ ÝW , we can write w = u1u2 . . . un for uk ∈ {w◦, wi, wℓ}. In this

case we say w has length n and denote it as l(w) = n. We will use induction on

the length l(w) to show that xwx−1 ∈ IwI. Suppose that l(w) = 1. A simple

computation shows that conjugation by the element x fixes the elements wi,
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wℓ and fixes wn up to multiplication by elements in T◦ ⊂ I, i.e., xwix
−1 = wi

for i = 1, . . . , n − 1, xwℓx
−1 = wℓ for ℓ ∈ Zn and xwnx

−1 = twnt
−1 for some

t ∈ T◦ ⊂ I. Suppose l(w) = 2, i.e., w = u1u2 for u1, u2 ∈ {w0, wi, wℓ} such that

xu1x
−1 = t1u1t

−1
1 and xu2x

−1 = t2u2t
−1
2 , t1, t2 ∈ T◦. In this case, we have

xwx−1 = xu1x
−1xu2x

−1

= t1u1t
−1
1 t2u2t

−1
2

= t1u1u2 u
−1
2 t−1

1 u2| {z }
∈T◦

u−1
2 t2u2| {z }
∈T◦

t−1
2

= t1u1u2t
′
1

where t, t′ ∈ T◦.

Assume that the result is true for all words w such that l(w) ≤ n − 1.

Suppose w = u1u2 . . . un. Now

xwx−1 = xu1u2 . . . un−1x
−1xunx

−1

= tu1u2 . . . un−1t
−1xunx

−1

= twt′ (by previous case)

where t, t′ ∈ T◦.

We are now ready to prove Theorem 4.2. To prove ϕ = 1V is an intertwining

map, we need to show that f • v = f ⋆ v = fx • v. By Lemma 4.3, it suffices

to show that f(xwx−1) = f(w), for all w ∈ ÝW . By Lemma 4.4, it follows that

conjugation by the element x fixes every element in ÝW (up to multiplication
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by elements in I). The result now follows.

28



Chapter 5

Results used in the main theorem

In this chapter, we recall the important results used in the proof of the main

theorem.

5.1 Restriction of representations to subgroups

In this section, we recall some results about restricting an irreducible represen-

tation to a subgroup. These results hold when G is a locally compact totally

disconnected group and H is an open normal subgroup of G such that G/H is

finite abelian. For a more detailed account, we refer the reader to [6] (Lemma

2.1, 2.3).

Theorem 5.1 (Gelbart-Knapp). Let π be an irreducible admissible represen-

tation of G. Suppose that G/H is finite abelian. Then

(i) π|H is a finite direct sum of irreducible admissible representations of H.

(ii) When the irreducible constituents of π|H are grouped according to their

equivalence classes as

π|H =
MM
i=1

miπi

with the πi irreducible and inequivalent, the integers mi are equal.

Theorem 5.2 (Gelbart-Knapp). Let G be a locally compact totally discon-

nected group and H be an open normal subgroup of G such that G/H is finite

abelian, and let π be an irreducible admissible representation of H. Then
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(i) There exists an irreducible admissible representation π̃ of G such that π̃|H

contains π as a constituent.

(ii) Suppose π̃ and π̃′ are irreducible admissible representations of G whose

restrictions to H are multiplicity free and contain π. Then π̃|H and π̃′|H

are equivalent and π̃ is equivalent with π̃′ ⊗ χ for some character χ of G

that is trivial on H.

5.2 Unramified principal series and representations with Iwahori fixed

vectors

In this section, we define the notion of an unramified principal series represen-

tation and state an important characterization of representations with non-zero

vectors fixed under an Iwahori subgroup due to Borel and Casselman. We refer

to ([1], [4]) for a proof.

Throughout this section, we let G be the group of F -points of a connected

reductive algebraic group defined and split over F . We write T for a maximal

F -split torus in G. We also fix a Borel subgroup B defined over F such that

B ⊃ T and write U for the unipotent radical of B.

Let (ρ,W ) be a smooth representation of T . We can view ρ as a smooth rep-

resentation of B which is trivial on U , and form the smooth induced represen-

tation IndG
B ρ. This representation IndG

B ρ is called the representation parabol-

ically induced from ρ. The representations IndG
B(µ), where µ is an unramified

character of T (i.e., µ|T◦ = 1) are called the unramified principal series repre-

sentations.
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Theorem 5.3 (Borel-Casselman). Let (π,W ) be any irreducible admissible

representation of G. Then the following assertions are equivalent.

(i) There are non-zero vectors in W invariant under I.

(ii) There exists some unramified character µ of T such that π imbeds as a

sub-representation of IndG
B µ.

5.3 Prasad’s idea for computing the sign

In [11], Prasad gives a criterion to compute the sign for an irreducible self-

dual generic representation of a p-adic group G. He shows that for generic

representations the sign is determined by the value of the central character ωπ

at a special central element. We recall his result below and also sketch a proof.

Theorem 5.4 (Prasad). Let K be a compact open subgroup of G. Let s be an

element of G which normalizes K and whose square belongs to the center of G.

Let ψK : K → C× be a one dimensional representation of K which is taken

to its inverse by inner conjugation action of s on K. Let π be an irreducible

representation of G in which the character ψK of K appears with multiplicity

1. Then if π is self-dual, ε(π) is 1 if and only if the element s2 belonging to

the center of G operates by 1 on π.

Proof. Let ( , ) be a non-degenerate G-invariant form on the underlying space

W of π. Let w0 ̸= 0 be a vector in W such that π(h)w0 = ψK(h)w0 for all

h ∈ K. Since s normalizes K and takes ψK to its inverse, it follows that

π(h)π(s)w0 = ψ−1
K (h)π(s)w0.

Assume ψ−1
K ̸= ψK . In this case, it is easy to see that w0 and π(s)w0 are linearly

independent isotropic vectors which generate a two-dimensional non-degenerate
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subspace ofW . The non-degenerate bilinear form ( , ) onW is symmetric if and

only if its restriction to the two-dimensional subspace spanned by w0 and π(s)w0

is symmetric. Since w0 and π(s)w0 are isotropic vectors, (w0, π(s)w0) ̸= 0. We

have

(w0, π(s)w0) = (π(s)w0, π(s
2)w0) = ωπ(s

2)(π(s)w0, w0).

This implies that ( , ) is symmetric if and only if s2 acts by 1.

If the character ψK = ψ−1
K , then the one-dimensional subspace on which K

acts via ψK is a non-degenerate subspace of W , forcing the bilinear form ( , )

to be symmetric.

5.4 Compact approximation of Whittaker models

In this section, we describe the idea of compact approximation and state an

important result of Rodier which is used in the proof of the main theorem. We

also give an example of compact approximation in the case of GL(2, F ).

Let G be the group of F -points of a connected reductive algebraic group

defined and split over F and π be an irreducible smooth generic representa-

tion of G. Let T be a maximal F -split torus in G. We let X = X(T ) and

X∨ = X∨(T ) denote the character and cocharacter groups of T and write Φ

and Φ∨ for the set of roots and coroots of T inside X and X∨ respectively. We

also fix a minimal F -parabolic (Borel) subgroup B of G containing T . The

group B corresponds to a positive system Φ+ in Φ. We write ∆ for the unique

simple system contained in Φ+. B has a Levi Decomposition B = T nU where

U is the unipotent radical of B. We write B̄ for the opposite of B and Ū

for the unipotent radical of B̄. For each α ∈ Φ, we let Uα denote the root
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subgroup corresponding to α. We also fix an isomorphism xα : F → Uα and a

non-degenerate character ψ of U .

Let O be the ring of integers in F and θ be a non-trivial additive character

of F with Ker(θ) = O. Let ψα = ψ ◦ xα. Clearly ψα is an additive character of

F . Therefore there exists aα ∈ F× such that ψα(λ) = θ(aαλ), for λ ∈ F . Let

x′α : F → Uα be defined as

x′α(λ) = xα(a
−1
α λ).

Clearly x′α defines an isomorphism between F and Uα. Before we continue,

we explore the relation between the characters ψ and θ and set up some more

notation. For u ∈ U , we choose τα ∈ F such that u =
Y

α∈Φ+

x′α(τα). Now

ψ(u) = ψ

� Y
α∈Φ+

x′α(τα)

�
= ψ

� Y
α∈Φ+

xα(a
−1
α τα)

�
=

Y
α∈Φ+

ψ(xα(a
−1
α τα))

=
Y
α∈∆

ψα(a
−1
α τα) =

Y
α∈∆

θ(aαa
−1
α τα) = θ(

X
α∈∆

τα).

Let Gm = G(pm), Tm = T (pm), Um = U(pm), Ūm = Ū(pm). The group Gm

has an Iwahori factorization, i.e., Gm = ŪmTmUm. We also choose d ∈ T such

that α(d) = ϖ−2 for all α ∈ ∆ and define θm : Gm → C× as

θm(ūtu) = θm(u) = θ(ϖ−2m
X
α∈∆

τα), where as above u =
Y

α∈Φ+

x′α(τα).

We can show that θm is a character. We refer to [12] for the details.
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Let Km = dmGmd
−m. Clearly Km is a compact open subgroup and has an

Iwahori factorization. Indeed,

Km = dmGmd
−m

= dmŪmd
−m| {z }

K−
m

dmTmd
−m| {z }

K◦
m

dmUmd
−m| {z }

K+
m

= K−
mK

◦
mK

+
m.

Let ψm be a character of Km defined as

ψm(k) = θm(d
−mkdm).

For k = k−k◦k+ ∈ Km, It is easy to see that ψm(k) = ψ(k+). Indeed,

ψm(k) = θm(d
−mkdm)

= θm(d
−mk−dmd−mk◦dmd−mk+dm)

= θ(ϖ−2m
X
α∈∆

ϖ2mtα)

= ψ(k+), where k+ =
Y

α∈Φ+

x′α(tα).

From the above computations, it is clear that for m large enough, the pair

(Km, ψm) converges to (U, ψ). We fix an integer l large enough and call the

pair (Kl, ψl) as the compact approximation of (U, ψ) in the above sense. From

now on, to simplify notation we will write (Kl, ψl) as (K,ψK).

We now recall Rodier’s result and refer the reader to [12] for further details.

Theorem 5.5 (Rodier). Let π be an irreducible admissible representation of G.

There then exists a compact open subgroup K = Kl and a character ψK = ψKl
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of K such that dimCHomK(π, ψK) = dimC HomU(π, ψ). Therefore, if π is

generic, dimC HomK(π, ψK) = 1.

5.4.1 An Example

We work out the details of Rodier’s compact approximation in the case of

G = GL(2, F ). For G = GL(2, F ), we have

Gm =

2
6641 + pm pm

pm 1 + pm

3
775 , Um =

2
6641 pm

0 1

3
775 ,

Tm =

2
6641 + pm 0

0 1 + pm

3
775 , Ūm =

2
664 1 0

pm 1

3
775

Let α ∈ X = X(T ) be the simple root α(t) = ab−1 where t =

�
a 0

0 b

�
and

d =

�
1 0

0 ϖ2

�
. Clearly α(d) = ϖ−2 for the simple root α. We have

dmŪmd
−m =

2
664 1 0

p3m 1

3
775 , dmUmd

−m =

2
6641 p−m

0 1

3
775 ,

Km =

2
6641 + pm p−m

p3m 1 + pm

3
775

We see that as m→ ∞ the compact open subgroup Km → U . We will now

show that the character ψm of Km approximates the non-degenerate character

ψ. For k ∈ Km, we have k = k−k◦k+. Now ψm(k) = θm(d
−mk+dm). Here
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k+ ∈ dmUmd
−m ⊂ U . Suppose that

k+ =

2
6641 x

0 1

3
775 ∈ U.

Now

ψm(k
−k◦k+) = θm(d

−mk+dm))

= θm
�� 1 ϖ2mx

0 1

��
= θ(ϖ−2m(ϖ2mx))

= ψ(k+).
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Chapter 6

Main Theorem

In this chapter, we prove the main theorem. We recall the statement below.

Theorem 6.1 (Main Theorem). Let (π,W ) be an irreducible smooth self-dual

representation of G with non-zero vectors fixed under an Iwahori subgroup I in

G. Suppose that π is also generic. Then ε(π) = 1.

We first prove the result when G has connected center. In this case, we

use a result of Rodier (Theorem 5.5) to get a compact open subgroup K and a

character ψK of K which appears with multiplicity one in π|K . We show that

there exists an element s ∈ T satisfying the hypotheses of Prasad’s Theorem

(Theorem 5.4). Finally we use the fact that π has non-zero Iwahori fixed vec-

tors to show that ε(π) = 1.

When the center of G is not connected, we construct a split connected

reductive F -group G̃ with a maximal F -split torus T̃ . The group G̃ has a

connected center Z̃ and contains G as a subgroup. We show that there exists

an irreducible representation π̃ of G̃ that contains the representation π with

multiplicity one on restriction to G and has non-zero vectors fixed under an

Iwahori subgroup in G̃. The representation π̃ is not necessarily self-dual but is

self-dual up to a twist by a character χ of G̃ which is trivial on G. We can still
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attach a sign ε(π̃) to π̃. Finally, we show that ε(π̃) = ε(π) and ε(π̃) = 1.

Throughout this section, we let G be the group of F -points of a connected

reductive algebraic group defined and split over F . We write T for a maximal

F -split torus inG. We also fix a Borel subgroup B defined over F such that B ⊃

T . We write U for the unipotent radical of B (respectively Ū for the T -opposite

of U) and fix a non-degenerate character ψ of U such that HomU(π, ψ) ̸= 0 (ψ

exists since π is generic). We let X and X∨ be the character and cocharacter

groups of T . We write Φ and Φ∨ for the set of roots and coroots and ∆ for

the set of simple roots of T . Since T is F -split, we have unique subgroups

T◦ and T1 of T such that T = T◦ × T1. To be more precise, the isomorphism

F× ≃ O× × Z given by xϖn 7→ (x, n) induces the following isomorphism

T ≃ X∨ ⊗ F× ≃ X∨ ⊗O× ⊕X∨ ⊗ Z

and we take T◦ and T1 to be the subgroups of T such that T◦ ≃ X∨ ⊗ O×

(α∨ ⊗ y → α∨(y)) and T1 ≃ X∨ ⊗ Z ( α∨ ⊗ n → α∨(ϖn)). We have a similar

decomposition for T̃ (i.e., T̃ = T̃◦ × T̃1). In what follows, we let Z◦ = Z ∩ T◦

and Z1 = Z∩T1 (respectively Z̃◦ = Z̃∩ T̃◦ and Z̃1 = Z̃∩ T̃1). We let ω◦ = ωπ|Z◦

and ω1 = ωπ|Z1 .

6.1 Center of G is connected

In this section, we show the existence of an element s ∈ T satisfying the con-

ditions of Prasad’s theorem (Theorem 5.4) and use it to compute the sign ε(π)

when the center of G is connected.
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Lemma 6.2. Let s ∈ T be such that α(s) = −1 for all simple roots α ∈ ∆.

The following are true.

(i) For u ∈ U , we have ψ(sus−1) = ψ−1(u).

(ii) The element s2 belongs to the center of G.

(iii) The element s normalizes the compact open subgroups Km and inner

conjugation by s takes the characters ψm to its inverse.

Proof. Since U is generated by Uα, α ∈ Φ, it is enough to show that ψ(sus−1) =

ψ−1(u) for u ∈ Uα. For u = xα(λ) ∈ Uα we have,

ψ(sus−1) = ψ(sxα(λ)s
−1)

= ψ(xα(α(s)λ))

= ψ(xα(−λ))

= ψ−1(xα(λ))

= ψ−1(u).

For (ii), since α(s) = −1 it is clear that α(s2) = 1 for all simple roots α ∈ ∆.

Since Z(G) =
\
α∈∆

Ker(α), the result follows.

For (iii), It is easy to see that s normalizes Um, Ūm. It follows that s

normalizes Gm and henceKm. Let k = k−k◦k+ ∈ Km (sinceKm = K−
mK

◦
mK

+
m).
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We have

ψm(sks
−1) = ψm(sk

−s−1sk◦s−1sk+s−1)

= ψ(sk+s−1)

= ψ−1(k+)

= ψ−1
m (k).

Theorem 6.3. Let (π,W ) be an irreducible smooth self-dual generic repre-

sentation of G with non-zero vectors fixed under an Iwahori subgroup I in G.

Suppose there exists an element s ∈ T◦ such that α(s) = −1 for all simple roots

α. Then ε(π) = 1.

Proof. By Theorem 5.4, it is enough to show that ωπ(s
2) = 1 (ωπ is the central

character). Let v ̸= 0 ∈ πI . We have v = π(s2)v = ωπ(s
2)v. From this it

follows that ωπ(s
2) = 1.

Theorem 6.4. There exists s ∈ T◦ such that α(s) = −1 for all the simple roots

α.

Proof. We know that X∨ ⊗ F× ≃ T , via y ⊗ λ 7→ y(λ). Since F× ≃ O× o Z,

we see that T ≃ X∨ ⊗O× ⊕X∨ ⊗ Z. Now define f : T −→
Y

αi∈∆
F× by

f(y ⊗ λ) = (λ⟨α1,y⟩, . . . , λ⟨αk,y⟩).

We will show that there exists y ∈ X∨ such that ⟨αi, y⟩ is an odd integer for

every simple root αi, i = 1, . . . , k. Since Z is connected X/ZΦ is torsion free.
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Since ∆ spans Φ we see that ZΦ = Z∆. Consider the exact sequence

0 −→ Z∆ −→ X −→ X/Z∆ −→ 0. (6.1)

Since (6.1) is an exact sequence of finitely generated free abelian groups, it

is split. i.e., X = Z∆ ⊕ L, where L ≃ X/Z∆. Let g ∈ HomZ(Z∆,Z).

Clearly, g extends to an element of HomZ(X,Z) (say trivial on L). Since

HomZ(X,Z) ≃ X∨, there exists y ∈ X∨ such that g = ⟨−, y⟩. We now choose

h ∈ HomZ(Z∆,Z) such that h(αi) is odd for every αi, i = 1, 2, . . . , k. Then

h(αi) = ⟨αi, y⟩ is an odd integer. Now consider the element y⊗−1 ∈ X∨⊗O×.

Let s = y(−1). Then s ∈ T◦ clearly acts by −1 on all the simple root subgroups

Uα of U , i.e.,

sxαi
(µ)s−1 = xαi

(αi(s)µ)

= xαi
(αi(y(−1))µ)

= xαi
((−1)⟨αi,y⟩µ)

= xαi
(−µ).

6.2 Center of G is not connected

Construction of (G̃, T̃ )

Let q : X → X/ZΦ be the canonical quotient map. Choose a free abelian

group L of finite rank such that there exists a surjective map p : L → X/ZΦ.

Let p1 and p2 be the projection maps from X × L onto X and L respectively.
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Let

X̃ = {(x, l) ∈ X × L | q(x) = p(l)}.

Clearly X̃ is a free abelian group of finite rank. Let Φ̃ = {(α, 0) | α ∈ Φ}.

The map α 7→ (α, 0) induces an injection ZΦ ↪→ X̃ and we identify its image

under the map with ZΦ̃. Let X̃∨ = HomZ(X̃,Z). Given α̃ ∈ Φ̃ we want

to describe α̃∨ ∈ Φ̃∨ ⊂ X̃∨. Now α̃ = (α, 0) for some α ∈ Φ. For this α,

there exists α∨ ∈ Φ∨ ⊂ X∨ ≃ HomZ(X,Z). Let x̃ = (x, 0) ∈ X̃. Define

α̃∨(x̃) = α̃∨((x, 0)) = α∨(p1(x̃)). Clearly α̃∨ ∈ HomZ(X̃,Z). It is easy to see

that (X̃, Φ̃, X̃∨, Φ̃∨) is a root datum. By Theorem 2.10, the existence of (G̃, T̃ )

follows. Since X̃/ZΦ̃ ↪→ L, it follows that it is torsion free and the center Z̃ of

G̃ is connected.

Extension of the central character

In this section, we show that there exists a character ν of Z̃ which extends the

central character ωπ and satisfies ν2 = 1.

Lemma 6.5. There exists an unramified character µ : T → C× such that

µ|Z = ωπ.

Proof. Since π has Iwahori fixed vectors, there exists an unramified character

µ of T such that π ↪→ IndG
B µ. Let (ρ,E) be an irreducible sub-representation

of IndG
B µ that is isomorphic to π. Let x ∈ Z, f ∈ E, g ∈ G. Clearly,

(ρ(x)f)(g) = f(gx) = f(xg) = µ(x)f(g) (6.2)

On the other hand,

(ρ(x)f)(g) = ωρ(x)f(g) (6.3)
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From ( 6.2) and ( 6.3) it follows that ωρ(x) = µ(x) = ωπ(x).

Since µ is unramified it follows that µ|Z = ω1 (since µ|Z◦ = 1). If we can

extend ω1 to a self-dual character ω̃1 of Z̃1 then we get a self-dual character ν

of Z̃ extending the central character ωπ. We record the result in a lemma below.

Lemma 6.6. Suppose that ω̃1 is an extension of ω1 to Z̃1. Then there exists

ν : Z̃ → {±1} such that ν extends ωπ.

Proof. For z̃ = z̃0z̃1 ∈ Z̃, z̃0 ∈ Z̃◦, z̃1 ∈ Z̃1 define ν(z̃) = ω̃1(z̃1). Clearly ν is a

well-defined character of Z̃ and ν|Z = ω̃1|Z = ω1 = µ|Z = ωπ.

From Lemma 6.6, it follows that we can extend the central character ωπ

to a self-dual character ν of Z̃ if there exists an extension ω̃1 of ω1. Consider

the map ω′
1 : Z1/Z

2
1 → {±1} defined by ω′

1(aZ
2
1) = ω1(a). Since Z1/Z

2
1 is an

elementary abelian 2-group, ω′
1 can be thought of as a Z2-linear map. If the

natural map from Z1/Z
2
1 to Z̃1/Z̃

2
1 is an embedding, then we can extend the Z2-

linear map ω′
1 to a Z2-linear map ω̃′

1 of Z̃1/Z̃
2
1 . Now defining ω̃1(a) = ω̃′

1(aZ̃2)

gives us an extension of ω1. The natural map is an embedding precisely when

Z̃2
1 ∩ Z1 ⊂ Z2

1 . We record the result in the following lemma.

Lemma 6.7. The natural map Z1/Z
2
1 to Z̃1/Z̃

2
1 is an embedding and ω1 extends

to a character ω̃1 of Z̃1.

Proof. It is enough to show that Z̃2
1 ∩Z1 ⊂ Z2

1 . Consider z1 ∈ Z̃2
1 ∩Z1. Clearly

z1 = z̃21 for some z̃1 ∈ Z̃1. It is enough to show that z̃1 ∈ T (since z̃1 ∈ T

implies z̃1 ∈ Z̃1 ∩ T = Z1 and z̃21 ∈ Z1). Since T ↪→ T̃ there exists a sub-torus
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S such that T̃ = T̃◦ × T̃1 = T × S. Clearly, T̃1 = T1 × S1. Indeed,

T̃ = T̃◦ × T̃1

= T◦ × T1 × S◦ × S1

= T◦ × S◦ × T1 × S1.

Now z̃1 ∈ Z̃1 ⊂ T̃1 = T1 × S1. Therefore z̃1 = t1s1 for t1 ∈ T1, s1 ∈ S1.

Also z1 = z̃21 = t21s
2
1 ∈ Z1 ⊂ T1. We see that s21 = 1. Since T̃1 is torsion free it

follows that s1 = 1 and z̃1 ∈ T .

Irreducible representation π̃ of G̃

In this section, we show that there exists an irreducible representation π̃ of G̃

which contains π with multiplicity one on restriction to G.

The main idea behind the proof is Theorem 5.2. We first extend the repre-

sentation π to an irreducible representation πν of Z̃G and show that the group

G̃/Z̃G is finite abelian. Before we continue, we recall a result of Serre which

we use in proving the finiteness of G̃/Z̃G.

Theorem 6.8 (Serre). If A is a finite Γ module, Hn(Γ, A) is finite for every

n.

Proof. See Proposition 14, Sec. 5.1 in [13].

Let (π,W ) be an irreducible representation of G and ν be a self-dual charac-

ter of Z̃ extending the central character ωπ. Let πν : Z̃G→ GL(W ) be defined
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as (πν)(z̃g) = ν(z̃)π(g). Clearly, πν is a well-defined irreducible representation

of Z̃G. The irreducibility of πν is trivial. To see πν is well-defined, suppose

z1g1 = z2g2. Then

(πν)(z1g1) = (πν)(z1z
−1
2 z2g1)

= ν(z1z
−1
2 )ν(z2)π(g1)

= ωπ(z1z
−1
2 )ν(z2)π(g1) (since z1z

−1
2 ∈ Z̃ ∩G)

= ωπ(z1z
−1
2 )ν(z2)π(z

−1
1 z2g2)

= ωπ(z1z
−1
2 )ν(z2)ωπ(z

−1
1 z2)π(g2)

= (πν)(z2g2).

We now prove the finiteness of G̃/Z̃G.

Theorem 6.9. G̃/Z̃G is a finite abelian group.

Proof. Clearly, G̃ = T̃G. Now

G̃/Z̃G = T̃G/Z̃G

= (T̃ Z̃G)/Z̃G

= T̃ /(T̃ ∩ Z̃G)

= T̃ /Z̃T.

It follows that G̃/Z̃G is abelian. Let F̄ be the algebraic closure of F and

Γ = Gal(F̄ /F ). Let m : T (F̄ )×Z̃(F̄ ) → T̃ (F̄ ) be the multiplication map. This

map is surjective with Ker(m) = {(z, z−1) | z ∈ Z(F̄ )} (follows by considering

the dimensions). Considering Z(F̄ ) embedded diagonally in T (F̄ )× Z̃(F̄ ), we
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get the following exact sequence of abelian groups

1 −→ Z(F̄ ) −→ T (F̄ )× Z̃(F̄ )
m−→ T̃ (F̄ ) −→ 1.

Γ clearly acts on these groups and applying Galois cohomology, we get a long

exact sequence of cohomology groups

1 −→ Z(F̄ )Γ −→ T (F̄ )Γ × Z̃(F̄ )Γ −→ T̃ (F̄ )Γ −→ H1(Γ, Z(F̄ ))

−→ H1(Γ, T (F̄ )× Z̃(F̄ )) −→ H1(Γ, Z̃(F̄ )) −→ · · ·

We note that H1(Γ, T (F̄ ) × Z̃(F̄ )) = 1 (Theorem 2.14) and we get the

short exact sequence

1 −→ Z −→ T × Z̃
m−→ T̃

φ−→ H1(Γ, Z(F̄ )) −→ 1. (6.4)

From ( 6.4) it follows that φ is surjective, Im(m) = TZ̃ = Ker(φ), and T̃ /Z̃T ≃

H1(Γ, Z(F̄ )). It is enough to show that H1(Γ, Z(F̄ )) is finite. Let Z◦ be the

identity component of the algebraic group Z. Consider the short exact sequence

1 −→ Z◦(F̄ ) −→ Z(F̄ ) −→ Z(F̄ )/Z◦(F̄ ) −→ 1. (6.5)

Applying Galois cohomology again to (6.5), we get the sequence

1 −→ Z◦ −→ Z −→ Z/Z◦ −→ H1(Γ, Z◦(F̄ )) −→ H1(Γ, Z(F̄ ))

−→ H1(Γ, Z(F̄ )/Z◦(F̄ )) −→ · · ·

Since Z◦(F̄ ) is connected, we have H1(Γ, Z◦(F̄ )) = 1 and it follows that

H1(Γ, Z(F̄ )) ↪→ H1(Γ, Z(F̄ )/Z◦(F̄ )). Since F is a local field of char 0 and
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Z(F̄ )/Z◦(F̄ ) is a finite abelian group, H1(Γ, Z(F̄ )/Z◦(F̄ )) is finite (Theo-

rem 6.8). Hence the result follows.

By Theorem 5.1 and Theorem 5.2, we get an irreducible representation

(π̃, V ) of G̃ which breaks up as a finite direct sum of distinct irreducible repre-

sentations π1, . . . , πk each occurring with the same multiplicitym on restriction

to Z̃G and contains πν as a constituent. Without loss of generality, we assume

that π1 ≃ πν. To simplify notation, we again denote the restriction of πi’s to

G by πi so that π̃|G = mπ1 ⊕mπ2 ⊕ . . .⊕mπk and π ≃ π1. We now show that

each πi occurs with multiplicity one in π̃|G.

Lemma 6.10. The representation (π̃, V ) of G̃ is generic and each irreducible

representation πi occurs with multiplicity one.

Proof. Since (π,W ) is generic, there exists a non-degenerate character ψ of U

such that HomG(π, Ind
G
U ψ) ̸= 0. It is enough to show that HomG̃(π̃, Ind

G̃
Ũ ψ) ̸=

0. Observe that Ũ = U ⊂ G. Consider the restriction π̃|U of π̃. Since π is

generic, HomU(π|U , ψ) ̸= 0. It follows that

HomU(π̃|U , ψ) ≃ HomG̃(π̃, Ind
G̃
Ũ ψ) ̸= 0.

Indeed,

HomU(π̃|U , ψ) = HomU((π̃|G)|U , ψ)

= HomU((mπ1 ⊕mπ2 ⊕ · · · ⊕mπk)|U , ψ)

= m
kM

i=1

HomU(πi|U , ψ)

̸= 0.
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As π̃ is generic it follows that dim(HomG̃(π̃, Ind
G̃
U ψ)) = 1. Thus by Frobenius

Reciprocity, m = 1.

Choosing π̃ with non-zero Ĩ fixed vectors

In this section, we show that the representation π̃ can be modified in such a

way that it has non-zero vectors fixed under an Iwahori subgroup Ĩ in G̃.

Lemma 6.11. Suppose that τ1 is a linear character of Ĩ which is trivial on I.

Then τ1 extends to a linear character τ̃ of G̃ which is trivial on G.

Proof. Let I− = I ∩ Ū and I+ = I ∩ U . We know that I = I−T◦I
+. Since

U = Ũ we have Ĩ = I−T̃◦I
+. Now

Ĩ/I = T̃◦I/I ( T̃◦ normalizes I−, I+ )

= T̃◦/T̃◦ ∩ I

= T̃◦/T◦.

It follows that we can consider τ1 as a linear character of T̃◦ which is trivial on

T◦. We first extend τ1 to a character τ̃1 of T̃ by making it trivial on T̃1, i.e.,

τ̃1(t̃◦t̃1) = τ1(t̃◦). Now define an extension τ̃ of τ̃1 to G̃ as τ̃(t̃g) = τ̃1(t̃), t̃ ∈

T̃ , g ∈ G (this is possible since G̃ = T̃G). Using

G̃/G = T̃G/T = T̃ /T = T̃◦/T◦ × T̃1/T1

it follows that τ̃ is well-defined and a character of G̃.

Theorem 6.12. The representation (π̃τ−1, V ) of G̃ has non-zero Ĩ fixed vec-

tors.
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Proof. Let v ̸= 0 ∈ V be such that π̃(i)v = v, ∀i ∈ I (v exists since π̃|G ⊃ π and

π has non-zero vectors fixed under I). Let V0 = SpanC{π̃(k)v | k ∈ Ĩ}. Clearly,

V0 is an invariant subspace for Ĩ and thus we get a representation (ρ, V0) of Ĩ.

Suppose ρ = τ1 ⊕ · · · ⊕ τk, where each τi is an irreducible representation of Ĩ.

We know that 1I ⊂ ρ. Pick an irreducible component, say τ1, that contains 1I .

By Clifford’s theorem, I ≤ Ker(τ1). Since Ĩ/I is a compact abelian group, it

follows that τ1 is a linear character of Ĩ which is trivial on I. By Lemma 6.11,

τ1 extends to a linear character τ̃ of G̃ trivial on G. Consider the irreducible

representation π̃τ−1. Clearly it has an Ĩ fixed vector. Indeed for w in the space

of τ1 and k ∈ Ĩ, we have

(π̃τ−1)(k)w = τ−1(k)π̃(k)w

= τ−1(k)τ1(k)w

= w ( since τ |Ĩ = τ1 ).

It is easy to see that π̃τ−1|G contains the representation π with multiplicity

one, in addition to having non-zero Ĩ fixed vectors. To simplify notation, we

will denote the representation π̃τ−1 as π̃.

Sign of π̃

In this section, we attach a sign ε(π̃) to the representation π̃. We also give

a formula to compute ε(π̃) and show that ε(π̃) = ε(π). Finally we show that

ε(π̃) = 1 to complete the proof of the main theorem.

Consider the representation π̃∨. This is again an irreducible representa-
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tion of G̃ which on restriction to Z̃G and contains the representation πν with

multiplicity 1 (since ν = ν−1 and π ≃ π∨). By Theorem 5.2, there’s a linear

character χ of G̃ trivial on Z̃G such that π̃∨ ≃ π̃⊗χ. We use this isomorphism

to define a non-degenerate bilinear form [ , ] on V .

Lemma 6.13. There exists a non-degenerate form [ , ] : V ×V → C satisfying

[π̃(g)v1, π̃(g)v2] = χ−1(g)[v1, v2].

Proof. Since π̃∨ ≃ π̃ ⊗ χ, there exists a non-zero map ϕ : V → V ∨ such that

π̃∨(g)(ϕ(v)) = ϕ((π̃⊗χ)(g)v). Let ⟨ , ⟩ : V ×V ∨ → C be the canonical G̃ invari-

ant pairing. We define [ , ] : V × V → C as [v1, v2] = ⟨v1, ϕ(v2)⟩. Clearly this

form is non-degenerate and satisfies [π̃(g)v1, π̃(g)v2] = χ−1(g)[v1, v2]. Indeed,

[π̃(g)v1, π̃(g)v2] = ⟨π̃(g)v1, π̃(g)v2⟩

= ⟨π̃(g)v1, χ−1(g)π̃∨(g)(ϕ(v2))⟩

= χ−1(g)⟨π̃(g)v1, π̃∨(g)(ϕ(v2))⟩

= χ−1(g)⟨v1, ϕ(v2)⟩

= χ−1(g)[v1, v2].

The form [ , ] is unique up to scalars and is easily seen to be symmetric or

skew-symmetric as before, i.e.,

[v1, v2] = ε(π̃)[v2, v1].

where ε(π̃) ∈ {±1}. We call ε(π̃) the sign of π̃.
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Let [ , ] : V × V −→ C be the non-degenerate bilinear form on V (obtained

above). Suppose that [ , ]
���
W1×Wj

= 0,∀j = 2, 3, · · · , k, then it is easy to

see that [ , ]
���
W1×W1

is non-degenerate. We now show that [ , ]
���
W1×Wj

= 0 for

j = 2, 3, · · · , k.

Lemma 6.14. [ , ]
���
W1×Wj

= 0, ∀j = 2, 3, · · · , k.

Proof. Suppose [ , ]
���
W1×Wj

̸= 0. Let v ∈ W1 and u ∈ Wj be such that [v, u] ̸= 0.

Let ϕ(w) = ϕw be defined as ϕw(v) = [v, w]. Then clearly ϕ is a non-zero

intertwining map between π∨
1 and πj. Indeed,

(π∨
1 (g) ◦ ϕ)(wj)(w1) = π∨

1 (g)(ϕ(wj)(w1)

= ϕ(wj)(π1(g
−1)w1)

= [π1(g
−1)w1, wj]

= [w1, πj(g)wj]

= ϕ(πj(g)wj)(v1).

Since π∨
1 ≃ π1 and the representations πi are distinct (up to isomorphism), the

lemma follows.

We know that [π̃(g)v1, π̃(g)v2] = χ−1(g)[v1, v2],∀g ∈ G̃, v1, v2 ∈ V . Now

if g ∈ G then χ(g) = 1 and we have [π̃(g)v1, π̃(g)v2] = [v1, v2]. In partic-

ular if v1 ∈ W1 and vj ∈ Wj, then [π̃(g)v1, π̃(g)vj] = [v1, vj]. Since V =

W1 ⊕W2 ⊕ · · · ⊕Wk, π̃(g)v1 = π1(g)v1, π̃(g)vj = πj(g)vj.

Lemma 6.15. With notation as above, ε(π̃) = ε(π).
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Proof. Since χ(g) = 1 for g ∈ G, we have

[π̃(g)w1, π̃(g)ẇ1] = [π1(g)w1, π1(g)ẇ1]

= [w1, ẇ1].

Since π1 ≃ π, we see that [ , ]
���
W1×W1

is G-invariant. Therefore [w1, ẇ1] =

ε(π)(w1, ẇ1). But we also know that [w1, ẇ1] = ε(π̃)[ẇ1, w1].

By Lemma 6.15, it follows that the sign ε(π) is completely determined by

the sign ε(π̃). Since Z̃ is connected, applying Theorem 6.4 we get an element

s ∈ T̃◦ such that α(s) = −1 for all simple roots α of T̃ . We will show that the

sign ε(π̃) is controlled by the central character ωπ̃ and the character χ. Before

we proceed, we prove a lemma we need.

Lemma 6.16. Let W1,W2 be irreducible K-invariant subspaces of V . Let ρ1 =

π̃|W1 and ρ2 = π̃|W2. Let b : W2 →W∨
1 be the map w2 7→ [−, w2]. If b ̸= 0, then

ρ2 ≃ ρ∨1χ.

Proof. We first show that b defines an intertwining map between ρ2 and ρ∨1χ.

Indeed, for w1 ∈ W1, w2 ∈ W2 and k ∈ K, we have

b(ρ2(k)(w2))(w1) = [w1, ρ2(k)w2]

= χ(k)[ρ1(k
−1)(w1), w2]

= χ(k)b(w2)(ρ1(k
−1)w1)

= χ(k)ρ∨1 (k)(b(w2))(w1).
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Since b ̸= 0, Schur’s Lemma (Theorem 2.1) applies and the result follows.

Let V0 be the space of ψK̃ and v0 ∈ V0. Since [ , ] is non-degenerate,

b(v0)(v1) = [v1, v0] ̸= 0 for some v1 ∈ V1 where V1 is an irreducible K̃-invariant

subspace of V . We denote ρ for the restriction of π̃|V1 . By Lemma 6.16, it

follows that ρ ≃ ψ−1
K̃
χ. Since χ is smooth, we can in fact choose K̃ such that

χ is trivial on K̃. It follows that any vector v0 ∈ V0 has to pair non-trivially

with some vector in the space of ψ−1
K̃
, i.e., [π̃(s)v0, v0] ̸= 0. We will use this in

the following theorem.

Theorem 6.17. Let (π̃, V ) be the irreducible representation of G̃ obtained

above. Then ε(π̃) = ωπ̃(s
2)χ(s).

Proof. Clearly s2 ∈ Z̃. Since π̃ is generic it follows by Theorem 5.5 that there

exists a compact open subgroup K̃ and a character ψK̃ of K̃ such that ψK̃ occurs

with multiplicity one in π̃|K̃ . Let V0 be the space of ψK̃ and 0 ̸= v0 ∈ V0. Now

[π̃(s)v0, π̃(s
2)v0] = ωπ̃(s

2)[π̃(s)v0, v0] (since s2 ∈ Z̃)

= χ−1(s)[v0, π̃(s)v0] (invariance of the form)

It follows that ε(π̃) = ωπ̃(s
2)χ(s).

Using π̃ has Iwahori fixed vectors and s2 ∈ T̃◦, we see that ωπ̃(s
2) = 1. It

will follow that ε(π) = 1 once we show that χ(s) = 1. We do this by showing

that χ is an unramified character. Before we continue, we recall a result about

intertwining maps which we need in the proof.
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For K a compact open subgroup of G̃ and ρ an irreducible representation

of K, we let K̂ denote the set of equivalence classes of irreducible smooth rep-

resentations of K, Kg = g−1Kg, g ∈ G̃ and ρg the irreducible representation

of Kg defined as x→ ρ(gxg−1).

Proposition 6.18. For i = 1, 2, let Ki be a compact open subgroup of G̃ and

let ρi ∈ K̂i. Let (Π, V ) be an irreducible representation of G̃ which contains

both ρ1 and ρ2. There then exists g ∈ G̃ such that HomKg
1∩K2

(ρg1, ρ2) ̸= 0.

Proof. We refer the reader to [3] (Chapter 3, Section 11, Proposition 1) for a

proof of the above proposition. In [3], the authors prove the result for GL(2, F ).

The same proof works in the case of any connected reductive group.

Theorem 6.19. The character χ is an unramified character. In particular

χ(s) = 1.

Proof. We know that π̃∨ ≃ π̃ ⊗ χ. Since π̃ has non-trivial Ĩ fixed vectors it

follows that π̃∨ and hence π̃ ⊗ χ has non-trivial Ĩ fixed vectors. Therefore

(π̃ ⊗ χ)
���
Ĩ
⊃ 1 and (π̃ ⊗ χ)

���
Ĩ
⊃ χ. By Proposition 6.18 there exists g ∈ G̃ such

that HomĨg∩Ĩ(1
g, χ) ̸= 0. Since G̃ =

a
w∈W̃

ĨwĨ we see that HomĨw∩Ĩ(1
w, χ) ̸= 0

when g ∈ ĨwĨ. From this it follows that χ(h) = 1,∀h ∈ Ĩw∩Ĩ. Since T̃◦ ⊂ Ĩw∩Ĩ

it follows that χ is unramified.
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