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ABSTRACT

Ecosystem models are a useful tool to explore ecological processesiand the
responses to climate change. The basic structures of current ecosysiela @odels
are similar and robust, but their uncertainties are high, especially wheredavith
water and nutrient cycles and disturbance effects. In this dissertattadjdd three
issues in ecosystem C cycle modeling: interactions between water@mondgsses,
information contribution of theoretical basis (model structure) vs. observationy (data
and ecosystem C storage capacity at disequilibrium state due ts effeicsturbances.
These three issues represent the basic theoretical problems in the dewnelapdn
application of ecosystem models: 1) how the representations of interactions among
ecological processes affect the simulation of ecosystem C cycla®@)aOnodel is built
up, how much information can be brought in by model calibration? 3) For large spatial C
cycle modeling, how will the paradigm of ecosystem states affect oyrl€ modeling?

In the first study, we evaluated the effects of soil hydrological priegest the
interactions of water and carbon dynamics of a grassland ecosystemoinse$o altered
precipitation amount and frequency, increased temperature, elevated atmcdSgher
with changes in soil available water capacity (AWC). A process-basedttel
ecosystem (TECO) model was used to simulate responses of soil moisture, emgporat

transpiration, runoff, net primary production (NPP), ecosystem respiratipra(il net

Xii



ecosystem production (NEP) to changes in precipitation amounts and intensity,
temperature, and G@oncentration along a soil texture gradient. Simulation results
showed that soil AWC altered partitioning of precipitation among runoff, evaporation,
and transpiration, and consequently regulated ecosystem responses to global
environmental changes. Fractions of precipitation that were used for evaponation a
transpiration increased with soil AWC but decreased for runoff. High AWC coultlygrea
buffer water stress during long drought periods, particularly after e ftangfall event.
NPP, R, and NEP usually increased with AWC under ambient and 50% increased
precipitation scenarios but increased from 7% to 7.5% of AWC followed by declines
under the halved precipitation amount. Warming and €ft@cts on soil moisture,
evapotranspiration, and runoff were magnified by soil AWC,; Effect on NPP, R and
NEP increased with soil AWC. Our results indicate that variations in stiireemay be
one of the major causes underlying variable responses of ecosystenisataiganges
observed from different experiments. These results also imply that ¢nadinbdns
between C and water processes can be some soil texture.

In the second study, | evaluated the information contribution of model and
observations to model predictions by a data assimilation approach. Eight satyedrte
data (foliage, woody, and fine root biomass, litter fall, forest floor carbon (Cio ot
C, soil C, and soil respiration) collected from Duke Forest were assimitdted
Terrestrial ECOsystem model (TECO) using a Monte Carlo Markov Cpaimoach. The

relative information contribution was measured by the Shannon information index

Xiii



calculated from probability density functions (PDF) of carbon pool sizes. Qulisres
showed that the information contribution of the model to constrain carbon dynamics
increased with time whereas the data contribution declined. The eight @data se
contributed more than the model to constrain C dynamics in foliage and fine root pools
over the 100-year forecasts. The model, however, contributed more than the data sets
constrain the litter, fast soil organic matter (SOM), and passive SOM poolsieFRora
major C pools, woody biomass and slow SOM, the model contributed less information in
the first few decades and then more in the following decades than the data. The
knowledge on relative information contributions of model vs. data is useful for model
development, uncertainty analysis, future data collection, and evaluation ofieablog
forecasting.

In the third study, | integrated the temporal patterns of C storage and spatial
patterns of ecosystem states to develope a model to analytically deskailmaships
between ecosystem carbon storage and NPP, C residence time, and disturbaats inter
and severity. The model represents a disequilibrium perspective for examisioage
dynamics in light of the impacts of disturbances and improves our predictive
understanding of regional C dynamics. The carbon cycle at the scateanfasystem is
almost always in dynamic disequilibrium with most ecosystems accungutarbon at
various stages of recovery with intermittent disturbances that rééggseamounts of

carbon. This disequilibrium perspective is critical for scaling of siteHlebservations to

Xiv



estimate regional and global carbon sinks, for modeling studies on carboreclimat
feedbacks, and for design of field experiments and observation networks.

These studies showed that current ecosystem C modeling protocols, i.e., a
Farquhar model based canopy model simulating C input to the system and a
compartmentalized C pool model simulating C allocation, transfer, and decomposition,
work well in simulating the short-term patterns of ecosystem C dynamnickatse high
uncertainties in simulating the interactions of multiple processes andrgrgewsitive to
some parameters and boundary conditions. Data assimilation is an effedtioel hoe
combine information from models and data and improve model parameterization and
accuracy of predictions and reduce model uncertainties. However, once a mmdetestr
is given, optimizing parameters by data assimilation approaches cannahbufithe best
agreement with observations within the space defined by the given model. Thadhkoret
understanding of ecosystem dynamics is central to ecosystem moddiiileg.s&s
illustrated by our disturbance model (the third study), new theories andgrasackn

fundamentally change the way in which ecosystems are represented is.model

Keywords: global change, terrestrial ecosystems, carbon cycle, TECO modelpkevaila

water capacity, soil moisture, data assimilation, information theory, biistoe, dynamic

disequilibrium, Duke Forest FACE
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CHAPTER 1 Ecosystem carbon cycle modeling: introdugon



1.1 Introduction

Terrestrial ecosystems are key the components of the Earth systeestriadrr
plants, as the fundamental component of terrestrial ecosystems, started to rande to |
385 million years ago (Stein et al. 2007), and gradually dominated the landscapg. Duri
the long history of evolution, they evolved trunks to better compete for light with their
neighbors and huge root systems to absorb nutrients and water from the soil. Irodoing s
they stored a large amount of carbon (C) in their bodies. After plants die, rthos egas
partly decomposed by microbes and partly turned into soil organic C, forminggdbstla
organic C pool on land. In doing so, they lowered the @dcentration of the
atmosphere and stored the C in terrestrial ecosystems.

Terrestrial ecosystems have around 550 Pg C in vegetation, and two to three times
this amount (1500-2300 Pg C) in soil, while the atmosphere stores around 800 Pg C with
an increase rate of 3.2 Pg C yr-1. Photosynthesis assimilates 120 P&@ryr
atmosphere while autotrophic and heterotrophic respirations release 117 Pg C yr
(Houghton 2007). Thus, terrestrial ecosystems are a sink of atmospheriByCO
changing their physiological and physical activities, ecosystemsegatate the
atmospheric C@concentration by their biological processes, such as photosynthesis and
decomposition, therefore affecting greenhouse gas concentration and land surface
temperature (Fig. 1). Terrestrial ecosystems also control the tnberbetween the land

surface and the atmosphere with their reflectance of solar radiatiodqglbad



properties of evapotranspiration (e.g. Bowen ratio) (Bonan et al. 2008). Envirohmenta
factors, such as temperature, precipitation, solar radiation, and soil propantegféect

terrestrial ecosystems, leading to complicated positive and negativedkedbéhe

Earth system (Field et al. 2007).
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Figure 1.1 The roles of terrestrial ecosyster{from Bonan et al. 2008)

A: Energy budget; B: water balance; C: Carbon cycle; D: vegetation dysiamiand

use change; F: Urbanization
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Human activities have profoundly changed the Earth system by alteringohaerd ¢
types, atmospheric chemical components, and hydrological cycles (Vitdusek@97).
In the past century, the concentration of atmospherigch@® increased from 270 ppm to
380 ppm. 50% of land cover was changed from natural vegetations to human use (Foley

et al. 2005). Dams and irrigation changed the patterns of river runoff and

evapotranspiration (Vitousek et al. 1997). As a result of the increases in atmospheric



[CO,], global surface temperature increased 0.74 + 0.18 °C during the 20th century,
which consequently induced changes in hydrologic cycles, leading to mamext
precipitation events (IPCC, 2007). These changes feedback to terressimtems, and
then result in more complicated negative and positive feedbacks betweeniaérres
ecosystems and climate, which may lead to environmental problems afteativaon
welfare.

Ecosystem models play a fundamental role in synthesizing these feedbacks and
explore the possibilities of ecosystems’ responses and feedbacks to those.changes
Ecosystem models put the pieces of knowledge together and provide peopleveredicti
understanding on ecosystems or explore the possibilities of ecosystem ghanges
responses to climate change. An ecosystem model is a highly simplifiesergpateon of
the complex real world, and usually designed for specific questions. Many models for
exploring C cycle have been developed in past twenty years, e.g., CENTERdN(Bt
al. 1987), TEM (McGuire et al. 1992), IBIS (Foley et al. 1996), LPJ (Sitch et al. 2003).
And most of them share similar model structure. Photosynthetically farbdm, for
example, is allocated to multiple plant and soil pools (VEMAP 1995, Kucharik et al.
2000, Sitch et al. 2003). Photosynthesis is usually simulated using the Farquhar model
(Farquhar et al. 1980) as regulated by light, €C@nhcentration, temperature, and nutrients
(e.g., nitrogen). Allocation of carbohydrates from photosynthesis to plant digans
leaves, stems, and roots) is often determined by fixed fractions or reguldtetttignal

balance among multiple resources (Luo et al. 1994, Friedlingstein et al. 1999).iSoi



usually compartmented into a couple of C pools, such as litter pools, soil fast and slow C
pools (Fig. 2). Carbon transfers among pools are generally governed by pool size and
specific transfer coefficients as affected by environmental vasigbie et al. 2001).

Model intercomparison and data-model comparison studies show tremendous
variation among models for either short-term forecasts or long-term fiooeeven if
models are calibrated against historical and/or contemporary conditions (e.g.,
Friedlingstein et al. 2006, Sitch et al. 2008), although most biogeochemical models share
a similar structure. High uncertainties of model projections geneeslyjtrfrom
differences in less understood processes, initial values, model paranietesjznd
response functions that link those key carbon processes to environmental and biological
variables. For example, using the observed soil carbon content as model initial values
could lead to a higher carbon accumulation rate than the assumption of equilibrium state
over 100-year simulations in a beech forest (Wutzler and Reichstein 2007). Knorr and
Heimann (2001) illustrated that the uncertainties of key parameters wereg@dolia
reliable predictions of global net primary production (NPP). Burke et al. (2608¥the
response functions that represent the sensitivities of litter decompositiompersture
differed dramatically after comparing eight widely used biogeochemmodkls. Water
limitations to C processes, the coupling of nitrogen and C cycles, and effects of
disturbances on ecosystems are represented in recently published models. But, our
understanding of these processes is not well developed and incorporation of these

processes based on arbitrary algorithms can lead high uncertainties in models.



In this chapter, | review the basic structure and processes of currentesosys
models of the C cycle, and how they deal with the interactions of C processesateith w
and nutrient cycles. | also discuss model parameterization, validation, and new
approaches of data assimilation that currently are being used to improve amatlels

evaluating uncertainties of parameters and model structure.

1.2 Major processes of C cycle in ecosystem models

An ecosystem is usually compartmentalized into a couple of plant, litter, ar@ soil
pools in C cycle modeling (Fig. 2). C cycle is initiated at the assimilatiotmafspheric
CO; by plant leaves by photosynthesis. The assimilated C is then allocated G plant
pools, such as leaves, steps, and roots, with around 50% of C respired by plants. Dead
leaves, stems, and roots enter into litter pools. With decomposition of litter, part®f the
in litter pools is respired by microbes, the rest becomes soil orgarter raatl compose
soil C pools, which has long residence times and contain most C of terrestnastecss
Soil organic matter is decomposed slowly, releasing ©6@tmosphere as heterotrophic
respiration. These processes can be represented by a first-ordentiiffeguation (Luo
et al. 2003):

%X(t)=§ACX(n+ B
X(t=0)= X,

(1.1)

whereU(t) is the photosynthetically fixed carbon and usually estimated by canopy

photosynthetic model8 is a vector of partitioning coefficients of the photosynthetically



fixed carbon to non-woody biomass and woody biomé@js a vector of carbon pool
sizes X is a vector of initial values of the carbon podlsndC are carbon transfer
coefficients between plant, litter, and soil podiss an environmental scalar representing
effects of temperature and moisture on the carbon transfer among pools.

For a carbon cycle model as depicted in Fig. 1.2, the vector of allocation
coefficients can be expanded®e-(b, b, b, 0 0 0 0 0)", whereby, by, andbs
are partitioning coefficients of photosynthetically fixed C into foliageody, and fine
root pools, respectively X (t) = (x,(t), %,(t), ... x8(t))T is a &1 vector describing C

pool sizesA and C are 83 matrices describing transfer coefficients and given by:

-1 0 0 0 0 0 0 0
0O -1 0 0 0 0 0 O
0 0 -1 0 0 0 0 O
alfa fo fu -1 0 0 0 0
f, f, fio O -1 0 0 O

0O 0 0 0 fy fy -1
C =diag(9

wherefj is the transfer coefficients from pgdo pooli, diag(c) denotes the diagonal

matrix with diagonal components given by elements of vecter(c,,c,,...,.C;)" , and

c;,(] =12,..8) represents transfer coefficients (i.e., exit rates of carbon) from thie eig

carbon pools X;,(j=12,..8). The initial value vector can be expanded

0X,= (0, %0, ... %0)"

1.2.1 Photosynthesis models



Photosynthesis at leaf level fog @lants is usually simulated using Farquar model
(Farquar 1980). The major processes of photosynthesis include the light reaction,
carboxylation, and photosynthetic carbon reduction (Calvin cycle). Stomata aperture
controls the rates of Gnd water exchange between leaf and bulk air, and therefore
photosynthesis rate. The complexity of a photosynthesis model depends on the aims of
the study and available data. At regional or global scales, light usierstly (LUE) is
used to simulate photosynthesis (GPP), such as in CASA model, when remote sensing
data is available. Photosynthesis is controlled by photosynthetically actiagana,
temperature, water availability, VPD, and nitrogen in leaves.

The Farquhar model calculates gross leaf @imilation rateA, pmol CQ m?

s?) as:

A=min(J_,J.)-R, (1.2)
wherelJ; is the rate of carboxylation with G@mitation,J, is the rate of light electron
transport, andRy is dark respiration. The leaf-level photosynthesis is determined by the
one with the lowee rate of the two processes. The rate of carboxylatioouktzd by

the following equation.

v G&-r L
Ci+KC(1+O%<) ( . )

And, the light electron transport process)(is:

J

] = a,-1-J, C -TL.
. JZ+a21? 4(C+2r) (14)



whereC; is the leaf internal C£&concentration (Lmol COnol™), o, is oxygen
concentration in the air (0.21 mop®ol™), V,_is the maximum carboxylation rate (nmol
CO, m?sh), I, is CQ, compensation poininol CO, mol), K andK , are
Michaelis-Menten constants for carboxylation and oxygenation, respec(elgl CO,
mol?), | is absorbed photosynthetically active radiation (PAR, punfodth «,is

quantum efficiency of photon capture (mol fphoton), 4 is the maximum electron

transport rate (Lmol CAn? s?). The leaf internal COconcentrationC;, is regulated by

stomatal conductan¢g_) and related to leaf photosynthesis by:

A =G,-(C,-C) (1.5)
and
Gs = gl : A
(C, —R).(1+ SJ (1.6)

whereC, is ambient C@concentrationg, and D, (kPa) are empirical coefficients and
D is vapor pressure deficit (kPa). The paramet¥s, I, K ,K,, Jn, andRy, are
sensitive to temperature. The temperature sensitivities of thesegbarsuzan be

expressed by Arrhenius equation (Farquhar et al. 1980) (Egn 1.7).

5_p ox E, (T, —299 17
B R-T,-298 '

whereP is any one of the temperature sensitive paramdigrs,the activation energy (J

molY), R is universal gas constant (8.314 3rkol™), T.is canopy temperature in Kelvin

(K), P2sis the rate at 25 °C.
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When leaf photosynthesis is scaled up to the canopy level, the gradients of solar
radiation, water vapor pressure, and nitrogen distribution within a canopy are ocethsider
The penetration of solar radiation through canopies can be described by Beer’s law
(Monsi and Saeki 1953) as:
| =1,expEkL) (1.8)
wherel is the radiation at leaf area indexly is the solar radiation at the top of candpy,
is light extinction coefficient. Water vapor pressure is different for theekewithin a
canopy. Canopies can slow down wind speed and decrease boundary layer conductance,
leading to changes in the microclimate of leaves in canopies. The photogyntheti
capability as related to nitrogen concentration of leaves differs withpbsitions in a
canopy. Usually, nitrogen is distributed in proportion to the distribution of absorbed
irradiance in canopy when there are no other limitations (Ryan et al. 2006).

Many models have been developed to scale up photosynthesis from the leaf to the
canopy level based on canopy structure and gradients of environmental factors. These
models can be categorized into big-leaf (single layer) models, two-teddlg) and
multi-layer models according to how canopy structure is represented and the
environmental gradients are treated. The single-layer models take theecahopy as
one “big leaf”, by assuming all the leaves in a canopy are the same and hsam¢he
water conditions (i.e., the humidity of air in the canopy are the same). The ficiegfa
leaf photosynthesis only considers the gradient of solar radiation (Sxledrs1992). The

photosynthesis rate (carbon assimilation rate) at canopy level is thulatsddy

11



1-expEkL)
k

A=A (1.9)

whereA. is canopy photosynthesis rafg,is net photosynthesis rate at leaf level.
Multi-layer models consider the different properties of leaves and tHesgts of

solar radiation and microclimatic conditions in canopies by separatingpaycanto

many layers and calculating water and carbon fluxes at each layer agdords

physiological properties and climatic conditions (Leuning et al. 1995). Thédigin of

nitrogen in canopies is optimized for maximizing photosynthesis according to the

gradient of solar radiation. The “two-leaf” models simplify the mialyier models by

separating leaves into two classes, sunlit and shaded, thereby integnatogypthesis

in these two classes of leaves individually (De Pury and Farquhar 1997). For tlsereave

a canopy, the shaded leaves have a linear response to radiation, while the gaslédrea

often light saturated, and independent of irradiance, which allows averaging of solar

radiation in sunlit and shaded leaves separately and therefore many numerical

integrations can be solved analytically. The separation of sunlit and shadeitcbhased

on the structure of canopy and the angles of solar radiation (de Pury and Farquhar 1997)
The single-layer models overestimate photosynthesis rate and transpiratea. T

biases are usually corrected by adding curvature factors or tuninggtarsm

Single-layer models are appropriate when the details of canopy structute and i

microclimate can be ignored, such as when vegetation is taken as a lower bourtuary of t

atmosphere in GCMs or when the system has a much larger scale than theowegetat

itself. Multi-layer models have the flexibility to incorporate the dstailcanopy

12



environmental physiological variables, but their complexity and demands of tialesila
limit their application at large scales. “Two-leaf” models can be asrate as multi-layer
models, are are much simpler. They are widely used in current ecosysteartand e
system models.

1.2.2 Allocation of photosynthate to plant C pools

The carbon assimilated through photosynthesis is allocated into leaves, wood, and
roots. Allocation coefficients are usually fixed as vector B in Eqn (1.1) bedzergeare
not enough data for modeling the factors controlling allocation in biogeochenmocls
(Hirsch et al., 2004). The relative C ratios are calibrated to be reasonabterigythe
parameters of allocation ratios and turnover rates of the plant C pools.

In dynamic global vegetation models (DGVMs), a couple of rules are endploye
define the physiognomy of plant functional types (PFTs) and constrain C ialfocat
among the three plant C pools. As in LPJ-DGVM (Sitch et al. 2003), four rules are used.
The pipe model (Shinozaki et al. 1964) is used to determine the relative areas of plant
leaves to sapwood cross sectional area.

LA=k, ., SA (1.10)
The C investment to leaves and fine roots is regulated by the availability wiasei and
nutrients. Water or nutrient- limited environments require more C to be alloodiad t

root. This relationship is controlled by the following equation.

Cleaf = Ir.maxf (a)’ N )Croot (111)
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The height of a tree and its stem diameter is represented by

H =k D" (1.12)

The relationship between crown area and stem diameter is representedibgrigien of
Reinecke’s rule (Zeide, 1993).

CA= k D¢ (1.13)

where LA is the average individual leaf areg)(r8A (nf) is the sapwood cross area, and
kia:salS @ constantCiea andCioor are C content of leaves and fine roots, respectiirgly
is the maximum leaf/root ratif(w,N) is a scalar, which is a function of soil moistug, (
and nitrogen availabilityly). ki, ko, ks, andk, are experimental parameters.
1.2.3 Litter and soil carbon decomposition

Litter pools contain withered leaves, dead woods and roots. Litter production is a
process transferring carbon from plant tissues to soil carbon. It is sichbiabetrinsic
turnover rate of live plant carbon pools (e.g., foliage, woody, and fine roots), and
regulated by environmental variables, such as temperature and soil moisteres L
accumulated and decomposed, and then transferred to soil as organic matter.

The decomposition of litter and soil C releases C back to atmosphere asCO
transfers C among litter and soil C pools. A first order differential exquet used to
model litter and soil C decomposition (Reichstein et al. 2000; Knorr et al. 2005; Giardina

and Ryan 2000).

do(t) / dt = —k(T) - c(t) (1.14)
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wherec(t) is the carbon content at timek(T) is the turnover rate at temperattre

The temperature sensitivity of soil organic matter (SOM) is importanubeda
determine the feedbacks between terrestrial C cycling and climatgechEhere is no
consensus whether the temperature sensitivity differs between labilecalutnmant C
(e.g. Giardina and Ryan 2000; Davidson et al. 2000; Knorr et al. 2005; Fang et al. 2005).
Soil incubation is a usual way to examine the dynamics of soil carbon decompaaitions
different temperatures. The temperature sensitivity of decompod{iby) ¢an be
estimated in many ways. Usually it is represente@4ywhich is the factor by which
the decomposition rate increases with a 10 °K warming Qihequation is as following

(Reichstein et al. 2000, Fang et al. 2005, Fierer et al. 2005, Holland et al. 2000)

T _Tref

K(T) = ke Qo (1.15)
where, T is temperature.
The temperature sensitivit){(o) is usually calculated by the following equation

(Reichstein et al. 2000; Fissore et al. 2009):

= (1.16)
Qo =(R,/R) ™"

where,R, andR; are respiration rates at a warmer temperailyfeand colder onerg),
respectively. In this equation, it is assumed taabon content and quality of the
incubated samples at the two temperature leveltharsame over time.

The respiration rates measured from the incubatepkes at different temperature

levels are also fitted to an exponential model ¢Fainal. 2005; Fierer et al. 2005):



R(T) =R, € (1.17)
Then, Qg is calculated as:
Q, =€ (1.18)

The kinetic equation (Palmer et al. 1996; KnoraleR0O05; Fissore et al. 2009) is

more realistic in representing the temperatureigeitys of decomposition.
- E
k(T) = A-expt—) (1.19)
RT
where,E is the activation energRR the universal gas constaiiitis temperature, andlis

the theoretical decay rateEt0. According to this equatioQg is
E 1 1 1.20
QlO = eXF(_ : (_ - )j ( )

Thus, the value d;o in the kinetic equation is dependent on the qualitsoil

organic matter (SOM) (represented by its activatinargyE) and temperaturélj. SOM
with low quality has a higk;o because of its high and the value ;o is also
inversely related to the temperature at which iheasured.

Soil carbon is classified according to its turnotiere: fast, slow , and passive C
pools. Three or four carbon pools are usually diagsdepending on data and the
guestions addressed. The CENTRURY model has tbie€ gools (Parton et al., 1986),
while the Roth-C model has four (Jenkinson, 19803.well established that SOM
should be classified into at least two pools, klbihd recalcitrant carbon pools (Kéatterer

et al. 1998; Davidson and Janssens 2006). Usingpieutarbon pools can avoid the
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assumption that the soil carbon content and qualitlifferent temperature levels are the

same at measurement time

Table 1.1 Governing functions in ecosystem models

Name Equation Ecosystem processes

Resource limited rates J=Min(J,, J,, 3.0 Resource limited ecological
processes, e.g.,
photosynthesis, plant
growth, evapotranspiration,
etc.

Flrst-grder differential do(t) / dt = —k(T) - c(t) Decomposition of soil C

equation pools

Piecewise function J = min(1033W) Responses to limited
resources

Michaelis-Menten kinetics C Photosynthesis

Vc :chax—l
C +K,,

Arrhenius equation Temperature sensitivity of
enzymatic responses
Plant growth or ecosystem
recovery

Metabolic rates, functional

rates and biomass

K(T) = A-exp(-0)

Richards equation W= Al— be''" )¢

Power equation
a F—aM"

Overall, current ecosystem models have quite sirmiadel structures because
they are simulating the same system. A handfubob#ons are repeatedly used in
simulating ecosystem processes (Table 1.1). Fonpka J = Min(J,,J,,J, ,...) is used
to simulate multi-resource limited processes sucphetosynthesis, rates of
multi-element biogeochemical cycles. The Micha®isaten kinetics equation is used to

represent enzymatic reactions, which can be satlitat substrates. The Arrhenius
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eqguation is used to simulate biological responsésrhperature. Richards and logistic
equations are used to represent temporal develdprhénstorage and fluxes. These
eqguations represent the basic principles of eccédgind biological responses to

environmental factors.

1.3 Key issues in ecosystem C cycle modeling

Though the basic principles have been well estadgtisand accepted in ecosystem C
cycle modeling, there are still many problems irdeding ecosystem C processes when
considering the coupling with other element cyctaedel calibration and validation, and
disturbance effects modeling. We chose one prolilem each one of these three issues

to explore how they happen and the possible saisitio

1.3.1 Interactions between carbon and water dynamics at different soil cortains

Water conditions have profound effects on ecosysterycle by affecting
photosynthesis, allocation of assimilated C, ptaattality, and plant community
structure. Most models use vapor pressure de¥/¢t)) or soil moisture index to limit
the rate of photosynthesis and thus indirectlycf€& processes following
photosynthesis. Plant-water interactions are nditrepresented in current ecosystem
models since ecosystem responses to water areseigad there are no general equations

to describe those relationships (Katul et al. 2007)
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Solil stores precipitation water for plant use auae and regulates partitioning of
precipitation between alternative outflows suchuseff, evaporation, and transpiration
(Rodriguez-lturbe and Porporato, 2004). The capglaf soil to store water is mainly
determined by soil texture and quantified by a swisture release curve. Two points of
the soil moisture release curve are particularlyantant: field capacity and permanent
wilting point. The difference between field capg@and wilting point defines available
water capacity (AWC), the amount of water thatvailable for plants.

Soil hydrological properties likely regulate ecdsys responses to global change.
General circulation models forecast a higher fregyef extreme rainfall events, a lower
frequency of rainfall days, and longer intervendng periods (Easterling et al., 2000).
Global warming and elevation of atmospheric [C&so alter ecosystem water
availability. Warming usually induces drought bgrneasing evapotranspiration (Wan et
al., 2002), leading to higher possibility of drotiglress to ecosystems (Harte et al.,
1995). Elevated C&reduces leaf stomatal conductance, increasemsature, and
decreases water stress for plant growth (Knapp,et@3; Owensby et al., 1999;
Morgan et al., 2004; Moore and Field, 2006). Howetlee role of soil hydrological
properties in regulating ecosystem responsesuatd warming and elevated €@a

soil water dynamics has not been carefully examined
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1.3.2 Data assimilation approach to verify information contribution of ecosystem

models

To improve models for accurate projections andasgmtations of ecosystem
processes, data assimilation approaches have Isebesh developed in ecology to
inform initial conditions, constrain parametersakenate alternative response functions,
and assess model uncertainties (Raupach et al, M0&ams et al. 2009). Most data
assimilation studies focused on estimation of fasponse parameters, i.e.,
photosynthesis, respiration and evapotranspiratitim short-term data sets (e.g., Knorr
and Kattge 2005, Wang et al. 2007, Wu et al. 2@6€,Braswell et al. 2005) A few data
assimilation studies have been conducted to condtnag-term processes and
parameters with simplified carbon cycle models.(d.go et al. 2003, Xu et al. 2006,
Williams et al. 2005, and Fox et al. 2009). Howewsance biogeochemical models are
often used to evaluate ecosystem responses totelshanges at decadal and century
time scales (e.g., Fung et al. 2005, Friedlingsteial. 2006, Jones et al. 2006), one key
guestion that has not been addressed is how mymiowement data assimilation can

make for short- vs. long-term forecasts of ecosystarbon sequestration.

1.3.3 Disturbance effects on C cycles

Human activities have exerted strong influences@systems by starting or
suppressing natural fire, changing land use, ordsting. These activities have changed

the land surface deeply, altered ecosystem statebraught many environmental
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problems, which affected human welfare and liviogditions. For evaluating the effects
of human activities on ecosystems, and developatigbmanagement approaches, many
studies have been conducted to reveal the procasdasechanisms of ecosystem
responses to anthropogenic disturbances and maeageviodels provide a platform to
synthesize known ecological mechanisms and availddila and models also work well

in extrapolating our understanding of ecosystenasdasturbances at longer time scales
and broader spatial extents. Simulation modelseisdle us to evaluate complicated
interactions among the processes of ecosystemg&g®uial. 2003).

Modeling approaches have been widely used to amaherhanisms of ecological
responses to disturbances, evaluate effects ofgeamant on disturbances, and estimate
current ecosystem states by multiple datasets. Mfund Reichstein (2007) simulated
soil carbon dynamics and carbon accumulation whénssapart from equilibrium by
Yasso model (Liski et al., 2005). They showed tisabon storage capacity of disturbed
forest soils was potentially much higher if curreail carbon was not assumed to be in
equilibrium state. This study showed the importapic@forming terrestrial ecosystem
initial states in evaluating the capacity of ectsyscarbon storage. Balshi et al. (2007)
used the TEM model to explore the roles of histdrire in carbon dynamics in the
pan-boreal region. Their analysis indicated that ilayed an important role in
interannual and decadal scale variation of sourderslationships of northern terrestrial
ecosystems and also suggested that it was impaataonsider changes in climate and

fire disturbance in studying effects of atmosph&@. They pointed out that there are
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substantial uncertainties in the effects of firecarbon storage in simulations. The
Biome-BGC model was used to produce a carbon budgéie forested region of
Oregon, and to determine the relative influencditéérences in climate and disturbance
among the ecoregions on carbon stocks and fluxas @t al., 2004). An ecosystem
demography model was used to quantify the coniohatof disturbance history, GO
fertilization and climate variability to the pastjrrent, and future terrestrial carbon fluxes
in the Eastern United States (Albani, et al., 20@6yas found that tropical and
temperate forests are carbon sink. However, ibiclear that if it is due to increases in
atmospheric C@concentration or the recovery from historic dibances.

These modeling efforts to link specific disturbaewents with ecosystem processes
to characterize and project ecosystem C dynamios been conducted to reveal the
mechanisms by which disturbances affect C processdpossible changes in C
dynamics in the future. Models are used to coussdleffects and/or extrapolate them to
a large spatial or temporal scale. Prescribecefrents and effects on ecosystems are
needed. We still lack a macroscopic equation terias effects of disturbances on

ecosystem C processes.

1.4 Studies conducted in this dissertation

Three studies were conducted in this dissertat@xplore the problems of
representation of ecological processes, how infoonaf observed data and model

reasoning were synthesized in a data assimilappnoach, and how disturbance affect
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ecosystem C storage at large spatial scales. firshstudy (Chapter 2), | used a
comprehensive ecosystem model of C and water pesds explore the roles of soil
water dynamics in ecosystem response to warmingkwvated C@with different soil
conditions. In the second study (Chapter 3), | wsbdyhly simplified C-pool model
(eight C pools) to quantify model uncertainty anfbrmation contribution to model
predictions by model and data with a data assiiilapproach. In the third study
(Chapter 4), | developed a stochastic method teesemt disturbance effects on
ecosystems and their C storage, which can imprave@rdictive understanding of C
dynamics with changes in disturbance regime. Thisies improve our insights on the
interactions of ecosystem processes and modelatiaig and highlight the importance

of new theories in ecosystem modeling.
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CHAPTER 2 Soil hydrological properties regulate grasland ecosystem

responses to multifactor global change: a modelingnalysis

This part has been published in Journal of Geophy/&esearch — Biogeosciences doi:10.1029/2007 3900
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Abstract:

We conducted a modeling study to evaluate howtsaitological properties
regulate grassland ecosystem water and carbon dgmanresponse to altered
precipitation amount and frequency, increased teatpe, elevated atmospheric [€O
with changes in soil available water capacity (AWIB)this study, we used a
process-based terrestrial ecosystem (TECO) modhethwwvas calibrated against data
from two experiments with warming and clipping @uthled precipitation in Great
Plains. The model was used to simulate resporissslanoisture, evaporation,
transpiration, runoff, net primary production (NP&yosystem respiration {Rand net
ecosystem production (NEP) to changes in precipitatmounts and intensity,
temperature, and G@oncentration along a soil texture gradient (saaddy loam,
loam, silt loam, and clay loam). Simulation ressh®wed that soil AWC altered
partitioning of precipitation among runoff, evapmoa, and transpiration, and
consequently regulated ecosystem responses tol gioieonmental changes. Fractions
of precipitation that were used for evaporation adspiration increased with soil AWC
but decreased for runoff. High AWC could greatlyfeuwater stress during long
drought periods, particularly after a large raingalent. NPP, R and NEP usually
increased with AWC under ambient and 50% incregsedpitation scenarios but
increased from 7% to 7.5% of AWC followed by deeBrunder the halved precipitation

amount. Warming and C(&ffects on soil moisture, evapotranspiration, amsbff were



magnified by soil AWC. Regulatory patterns of AV8@ responses of NPP,,Rnd
NEP to warming were complex. In general, {&ffect on NPP, R and NEP increased
with soil AWC. Our results indicate that variatianssoil texture may be one of the
major causes underlying variable responses of stasy to global changes observed

from different experiments.

Keywords: global change, grassland ecosystems, availabkr wapacity, soil moisture,

TECO model

2.1 Introduction:

Increased atmospheric concentration of carbon deoCQ)]) has resulted in
increase in global surface temperature and al{@redpitation regimes (IPCC, 2001).
Many experimental and modeling studies have shtwanterrestrial ecosystems have
diverse responses to climate change. Experimemtahing in a range of 0.3~6.0°C, for
example, significantly increased soil respiratiates by 20% and plant productivity by
19% with considerable variation among individuési(Rustad et al., 2001).
Meta-analyses of data published in the literatin@ua ecosystems responses to elevated
[CO,] reveals a wide range of responses to increasasnaspheric [Cg) (Jastrow et al.,
2005; Luo et al. 2006), from no biomass responsedpine grasslands (Kner et al.,

1997) and in the sub-humid tall grass prairie fet years (Owensby et al., 1999), to
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consistent and substantial production responsssnm-arid shortgrass steppe (Morgan et
al., 2004). How to explain the variations in obsehterrestrial ecosystem responses to
climate change has been a great challenge in seamech community.

Various ecosystem responses to global change mpgrhially caused by soil
hydrological properties for at least two reasomstFsoil water availability strongly
regulates plant growth and primary productivity moost terrestrial ecosystems,
particularly in arid and semi-arid regions (Schutteal., 1987). Second, all global change
factors, such as climate warming, rising atmosgh@f, concentration, and altered
precipitation intensity and frequency, induce clemig soil water availability (Niklaus et
al., 1998; Wan et al., 2002) and, therefore, irddiyeaffect plant and ecosystem
processes (Saleska et al., 1999; Shaver et aD; R0frgan et al., 2004; Luo, 2007).
However, how soil hydrological properties regulatesystem responses to global
change factors, to the best of our knowledge, badeen well examined.

Solil stores precipitation water for plant use auee and regulates partitioning of
precipitation between alternative outflows suchuseff, evaporation, and transpiration
(Rodriguez-lturbe and Porporato, 2004). The capglaf soil to store water is mainly
determined by soil texture and quantified by sadisture release curve. Two points of
the soil moisture release curve are particularlyantant: field capacity and permanent
wilting point. The difference between field capg@nd wilting point defines available
water capacity (AWC), the amount of water thatvailble for plantsSoil texture varies

greatly over spatial scales (Miller and White, 1998 the Northern Territory, Australia,
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for example, along the precipitation gradient froanth to south, predominant soils in the
wetter end of a precipitation gradient are loant sands, and clay soils are more
extensive in the drier sectors of the gradient j&fiis et al., 1996). At a local scale, soil
texture varies dramatically with landform (Rosemntoet al., 2001). Variation in soll
texture creates diverse soil moisture environmiengs area even with the same amount
of precipitation. In dry regions, for example, s®ilaporation is lower in sandy soils than
that in loamy soils (Buckman and Brady, 1960).

This diversity in soil hydrologic properties andteraenvironments results in
considerably diverse plant production and ecosys$tection (McAuliffe, 2003). Among
the most noticeable hypotheses is the inversesexiypothesis (ITH) by Noy-Meir
(1973) that production is greater on coarse-texgoiks than that on fine-texture soils in
dry regions because the water availability willHagh at coarse soil in dry regions. The
hypothesis has been supported by many studiesSalay. 1988; Lane et al., 1998;
Epstein et al., 1997). In the central grasslaneregf the United States, sandy soil with
low AWC is more productive than loamy soil with higWC when annual precipitation
is less than 370 mm. However, sandy soil is lesdyxtive than loamy soil when
precipitation is more than 370 mm according todhservations of central grassland
region of the United States (Sala et al., 1988).

Soil hydrological properties also likely regulatmsystem responses to global
change. General circulation models forecast admnifflequency of extreme rainfall

events, a lower frequency of rainfall days, andyrintervening dry periods (Easterling
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et al., 2000). It is well known that changes ingypéation directly alter soil water content
and dynamics. An experimental study has demondtthtd increased temporal
variability in precipitation and soil moisture ie@ased plant water stress and reduced
plant productivity (Knapp et al., 2002). It is redéar whether this experimental
conclusion from the Konza prairie reserve is gdneggardless of variations in soll
hydrological properties and climate scenarios.

Global warming and elevation of atmospheric fLC&so alter ecosystem water
availability. Warming usually induces drought bgrneasing evapotranspiration (Wan et
al., 2002), leading to higher possibility of drotiglress to ecosystems (Harte et al.,
1995). Elevated C&reduces leaf stomatal conductance, increasemsature, and
decreases water stress for plant growth (Knapp,et@3; Owensby et al., 1999;
Morgan et al., 2004; Moore and Field, 2006). Howetlee role of soil hydrological
properties in regulating ecosystem responsesuatd warming and elevated [g®as
not been carefully examined. To understand howrsaifological properties regulate
ecosystem responses to climate change, we havanaree inputs, storages and losses of
water (Lauenroth and Bradford, 2006).

Grassland ecosystems are one of the most widespegadation types worldwide,
covering nearly 1/5 of the world’s land surface vehgoil and climatic conditions are
diverse (Parton et al., 1995). Many experiment®lsnown rapid and diverse responses
of grasslands to changes in temperature, wateratmnaspheric [Cg) (Zavaleta et al.,

2003; Luo, 2007). It is necessary to use widetsatures and multiple combinations of
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climatic scenarios to explore the possible the iptsssnechanisms of ecosystem
responses. In this paper, we conducted a modeiliicly $0 evaluate how soil texture
regulates ecosystem water and carbon dynamicsjonse to altered precipitation
amount and frequency, climate warming, elevatedajpheric [CQ] with its

hydrological properties. We used a process-basesystem model to explore soil water
dynamics and carbon processes in five soil texyyes. Our modeling study mainly
addressed the following two questions. First, h@esdsoil texture regulate partitioning
of precipitation among runoff, evaporation, anchggiration? Second, how does soil
texture regulate ecosystem responses to changesdipitation frequency and amount,

warming, and elevated atmospheric [O

2.2 Material and method:

2.2.1 The Terrestrial ECOsystem (TECO) model

The TECO model has evolved from its precursor model TCS(and Reynolds,
1999). It is a process-based ecosystem model agngel to examine critical processes
in regulating interactive responses of plants aia$gstems to elevated gQvarming,
altered precipitation. The detailed descriptiothaf TECO model was provided in the

appendix. Here is its brief description.
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Figure 2.1 Schematic presentation of TECO model. A. Canopglehd. Soil water
dynamics model; C. Plant growth model; D. Carbangfer model. Rectangles represent
the carbon pools. Solil is stratified into threegliesyR,: autotrophic respiratiorRy:

heterotrophic respiration, NSC: non-structure chyooate.

TECO has four major components: canopy photosyistised-model, soil water
dynamic sub-model, plant growth (allocation andnutegy) sub-model, soil carbon
transfer sub-model (Fig. 2.1). Canopy photosynthgsb-model and soil water dynamic

sub-model run at the hourly step. The plant grawtidel and soil carbon model run at

daily step.
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The canopy sub-model is a multi-layer process-basedel which mainly evolved
from the model developed by Wang and Leuning (1988)mulates radiation
transmission in the canopy based on Beer’s lawebkoh layer, foliage is divided into
sunlit and shaded leaves. Leaf photosynthesidima&®d based on the Farquhar
photosynthesis model (Farquhar et al., 1980) armhductance model proposed by Ball
et al. (1987). The soil water dynamic sub-modeiltgtes soil into ten layers. The
thickness of the first layer is 10 cm. And, theest layers are 20 cm.  Soil water
content of these layers is determined by mass balbetween water influx and efflux.
The water influx is precipitation for the surfaegér and percolation for deeper layers.
The water efflux includes evaporation, transpimatiand runoff. Evaporation rate is
mainly controlled by the water content of the fgsil layer and evaporative demand of
atmosphere. Transpiration changes the water cootéhé layers where roots reach.

Plant growth sub-model simulates carbon allocaaioth phenology following
ALPHAPHA model (Luo et al., 1995; Denison and Loenti989) and CTEM (Arora and
Boer, 2005), respectively. Allocation of assimithtarbon among the leaves, stems, and
roots depends on their growth rates, and varids phienology. Phenology is represented
by annual variation of leaf area index (LAIl). Leafset is initiated by growing degree
days (GDD). Leaf fall is induced by low temperataral soil drought. When LAl is
below a certain level (LAI<0.1), the end of growisgason comes. Rooting depth and
root vertical distribution define the soil volumer which plants could potentially

extract water. Most of the grass roots distribatéhe soil layers less than 70 cm depth
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and the distribution of roots vary little with sééixture and soil moisture profiles
(Jackson et al., 1996; Nippert and Knapp, 2007gi5et al., 1998). Based on patterns
illustrated by the experimental data, maximum rugptiepth was assumed to be 70 cm,
consequently, the maximum rooting depth to thetfosoil layer (50~70 cm). Root
vertical distribution was dynamical, which variediwoot growth and death in every
soil layer. The initial ratios of roots in the foswil layers were set as 40% (0~10 cm),
40% (10~30 cm), 15% (30~50 cm), and 5% (50~70 @Gimg. variations were limited
below 20% of the initial ratios.

Carbon transfer sub-model considers the transfearifon from roots and litters to
soil and decomposition rates in soil and litterlpduo and Reynolds, 1999; Barrett,
2002). In this sub-model, a soil profile is dividetb three layers with carbon movement
from upper to lower layers. Carbon inputs to thiéfsom plant residues are partitioned

into these three layers.

2.2.3 Model calibration

The TECO model was calibrated against the measlatedfrom the field site of the
Kessler Farm Field Laboratory of University of Oktena, which is located at the Great
Plains Apiaries in McClain County, Oklahoma (8%’ N, 97°31’ W), approximately 40
km southwest of the Norman campus of the Univet®klahoma, USA. Itis an
upland tallgrass prairie dominated mainly by foyrgéasses. A silt loam soil in the

grassland includes 35.3% sand, 55.0% silt, and @l@%6 The soil belongs to part of the
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Nsh-Lucien complex with high water holding capac¢ayound 37%) and a deep,
moderately penetrable root zone (Zhou et al., 2007/@ measured data included soil
respiration, soil moisture, above ground and bejosund biomass during 2000~2005.
The model was driven by the meteorological datenftbe nearest meteorological station,
the MESONET station of Washington, Oklahoma. Thktesture was assigned a field
capacity of 37% and a wilting point of 10%. Thuse tvailable water capacity is 27%.
The model was run for 1200 years to reach equilibrstate. And then, the simulated
daily soil moisture, soil respiration, and aboveg biomass from 01/01/2000 to
12/31/2005 were output and used to calibrate agdirsobserved data.

Model predictions and observations were contrasidtda number of statistical
approaches following Hanson et al. (2004). Linegression slopes, intercepts, &id
outputs were provided as a common initial comparlsetween observations and
predictions. Relative bias (RB) and mean absolize (ABS) were used to measure the
magnitude of bias and the deviation from the olegtmalues, respectively, which were

calculated by the following equations.

re= 2% 100 2.1)

DY

ABS= w 2.2)

where, V. is simulated value and;; is measured value.
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2.2.4 Scenarios
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Figure 2.2 Scenarios of precipitation intensity and frequeracyambient precipitation

(1.0 P); b. precipitation with high intensity (theighboring 6 times precipitation events
were merged into one precipitation) (1.0 P); cvedlprecipitation with ambient
frequency (0.5P); d. halved precipitation with higtensity (0.5 P); e. one and one half
precipitation with ambient intensity (1.5 P); f.eoand one half precipitation with high

intensity (1.5 P)

The climatic scenarios were set according to ctmesteorological data, which
included the records of temperature, precipitatsmar radiation, soil temperature, and

relative humidity. According to the data, the meanual precipitation was 804 mm



during 2000~2005. The mean number of the days pvéthipitation in a year was 95. The
precipitation from April to October was 582 mm, 72¥the annual precipitation. The
highest daily precipitation was 76.7 mm, occurraddog. 30th, 2003. Most of the
precipitation events were below 10 mm (413 of 56&jpitation events in the six years).
The daily precipitation that was above 50 mm ordguwred 8 times in the six years. The
mean temperature was 16 °C. The highest meantéailgerature was 32 °C, and the
lowest mean daily temperature was -9.9 °C in tléegears.

The meteorological data of 2002 were used as theemtnclimatic data. In this year,
the total precipitation was 854.5 mm and there v@&reainfall days, which were treated
as 89 rainfall events. The mean precipitation paifall event of ambient intensity was
9.6mm. The mean length of intervals between rdiefants was 5 days. The
precipitation regime in 2002 was denoted as pr&tipn with ambient intensity. The
scenario of precipitation with high intensity waheeved by merging the neighboring 6
times rainfall events into one. By doing so, the&8fall events were merged to 15
rainfall events. Mean precipitation intensity wa&%mm and mean length of intervals
between rainfall events increased to 24 days. Basdlde frequency of precipitation, we
set another 2 precipitation amount levels by tinliriyand 1.5 for every rainfall events.
Thus, we obtained 3 precipitation amount levelsbiamt (854.5mnyr ™, denoted as
1.0P), halved (427 mmyr™, 0.5 P), and one and a half (1283 m, 1.5 P) at ambient
frequency and high intensity respectively (Fig.2.2Jhe mean temperature of 2002 was

15.4 °C. The temperature scenario was achieved by addingd8@ily temperatures.
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The ambient atmospheric G@oncentration ([Cg)) was assumed to be 360 ppm

according published literatures (IPCC, 2001). Thins,doubled [Cg) was 720 ppm.

Table 2.1 Field capacities, wilting points, andikalde water capacities of five soil

texture types.

Soil texture Sand Sandy Loam Silt Loam Clay Loam
Loam

Field Capacity (%) 10 15 25 35 45

Wilting Point (%) 5 7.5 10 12 15

Available water capacity 5 7.5 15 23 30

(%)

Grasslands have diverse soil texture types. Inr@e@rassland region of the U.S.,
the soil texture ranged from sand, sandy loamijJttibam and silt clay loam and soil
water holding capacity ranged from 0.062 to 0.3@ager/g soil (Lane et al., 1998). We
assigned five soil texture types to cover the whaflegye in nature. These soil texture
types were sand, sandy loam, loam, silt loam, ¢angdloam with field capacities ranging
from10%to 45% (volumetric water content) and witipoint from 5% to 15%. So, the
available water capacities (AWC) for the five deikture types were 5% (sand), 7.5%
(sandy loam), 15% (silt loam), 23% (loam), and 3@%y loam) (Table 1). Thereafter,
AWC would be used as an aggregate variable fotextilire. Usually, soil texture varied

slightly with depth (Dodd and Lauenroth, 1997)stenario designation, for the sake of
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simplicity of interpretation of modeling resultdl, @ the soil layers were assumed have
the same field capacity and wilting point. Thus,at¢ained 120 scenarios in total (Table
2). The model was run 1200 years to reach equilibstate firstly. And then, the

scenarios were used to drive model runs.

Table 2.2 Treatment levels of five variables exadim this study. We used full factorial
combinations of all the treatment levels of thefixariables to define 120 scenarios to

drive model simulations

Variables Treatments
Precipitation amount Ambient (1.0P), halved (0.5 and one half(1.5P),
Precipitation intensity Ambient intensity, highentsity
Temperature Ambient, +2°C increased
CO, concentration Ambient concentration (360 ppm),ded

concentration (720 ppm)

Available water capacity 5%, 7.5%, 15%, 25%, 35%

An index of drought-stressed days was used to $&esis of drought stress for
plants in a year. It is defined as the number gbdeith normalized soil moisture below
0.3 in a year. Normalized soil moistur@  was defined by equation 3.

VVsoil — VVnin (23)

a)—

- Wmax - Wmin
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where,Whaxwas soil water holding capacitymin was wilting pointWsei was soil
moisture. In TECO model, iflw was below 0.3, photosynthesis and plant grow#h rat

would be stressed.

2.3 Results

2.3.1 Data — model comparison

At equilibrium state, the simulated soil carbon tem was around 8500 gn
which agreed with the measured soil carbon coritet% well (Luo et al., 2001). The
simulated litter was 370 g:mwhich was very close to the measured valuet38#

g-m?. The soil moisture dynamics, soil respiration, abdveground biomass are
generally consistent well with measurements tog.(Zi3). Simulated soil moisture was
correlated with the observed values lyy=0.72x+ 6.6, R = 0.5(x is observation ang

is simulation) with a mean absolute bias (ABS) @fhd a relative bias (RB) -2.5%.
Simulated soil moisture was slightly higher thaa theasured values when soil is very
dry. Simulated and observed soil respirations hasjgession

equationy = 0.83x+ 0.77,R = 0.5, and ABS was 0.82 and the RB was 17.6%. In
winter, the simulated soil respiration was slightigher than the measured values. The
ABS between simulated and observed abovegrounddssmvas 0.57 and RB is -3.4 %

(y=0.43x+ 140.36,R = 0.5).

3¢



50

g a simulated
o i o measured
N gm P o
B i e O\ Vi B | ke U
1 'ii.i N " oag:" ',ia & Q I S &\ 9
E 30 .:u i % ‘ 0 @ |. - o5 N O “u b s o
g 9| 4 e | Y R l ..‘el‘:.'
o 20 A g2 g § ! 1 | 2
15 $ % V )
Q 1y
£ 10- 93 x \
= %
0
b
~ 61 )|
—,'%‘ !“I § ; y | 'J.J.:
© il i o N 1
O 44 A ) il ) 1
= : e H “.!01\ 3l B, N (Ll W o
= o8 - 3 e ‘| i ¥ 4 I "
x 1 2l 4 J ’ -
2 A g o H' 2o 4 “ i
ﬁ a f o s 4 ® 3 o j
X © O\l { .“o. & i QO b Q
0 U S o .:‘! O O O
c
400 - %
= 300 A
2
o 200 -
Q
<
100 -
o J
2000 2001 2002 2003 2004 2005 2006
Year
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Figure 2.4The soil available water (the difference betwedhvgater content and wilting
point), drought stressed index, and drought-stredags with available water capacity
(the difference between field capacity and wiltpwnt) at three precipitation amount
levels and two precipitation frequencies. Fillegtles with solid lines represent ambient
precipitation frequency. Open circles with dashedd represent high precipitation
intensity. Panels a, b, and ¢ show the mean vdltlteedhree layers. Panels d, e, and f
show soil available water of the surface layer @eth). Panels g, h, and i show saill

available water of the third layer (30~50 cm). Rapek, and I' show normalized soil

moisture @ = (0 —0.,,)[(0,.x — 0.nin) » Where g is soil moisturegmaxandmin are field

capacity and wilting point, respectively). Panelstnand o show the drought-stressed

days.
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2.3.2 Ecosystem responses to changes of precipitation regime with soil tegtur

The annual mean soil available water (the diffeedpetween soil moisture and
wilting point, %) increased with soil AWC (differea of field capacity and wilting point,
%) under three precipitation scenarios (Fig. 2-d).d he soil available water in deep
layers increased with AWC more than that in théagar layer (Fig. 2.4: d-i). In the
surface layer, soil available water increased fB3nto 12% with soil AWC, whereas it
increased from 5% to 18% in the third layer atah#ient precipitation amount (1.0P)
(Fig. 2.4 d and g). The same pattern occurred vphecipitation increased by 50% (1.5P)
(Fig. 2.4 f and i) or decreased 50% (0.5 P) (Fig.€and h). At 1.5 P, the annual mean
soil available water at AWC of 23% and 30% was arghan that at 0.5 P or 1.0 P.

The normalized soil moisture showed different patevith AWC at the three
precipitation levels. At 1.0 P, it nearly kept anstant around 0.73 along soil AWC. It
decreased from 0.70 to 0.56 at 0.5 P and increfased0.71 to 0.81 at 1.5 P (Fig. 2.4:
j~1). As a consequence, the drought-stressed deoysexd identical pattern. At 1.0P there
were not obvious changes with soil AWC (Fig. 2.4 At)0.5 P, drought-stressed days
increased from 60 days to 135 days with AWC indrepBom 5% to 30% (Fig.4: n). At
1.5P, drought-stressed days decreased from 82a&ysdays (Fig. 2.4: 0).

Precipitation intensity influenced soil moisturerad) the gradient of soil AWC.

With 1.0 P, the annual mean soil available wates lwaver at ambient than high

precipitation intensity when AWC was 30% (Fig. 2a3. At 0.5 P, high precipitation
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intensity led to higher annual mean soil moisthantthat of ambient intensity (Fig.
2.4b). The opposite occurred at 1.5 P. With akéhprecipitation amount, high
precipitation intensity resulted in lower water tamt in the surface layer than the
ambient intensity. While at the same time, higrcpiéation intensity led to higher soil
water content in the deep layer than the ambigansgity at 1.0 P and 0.5 P. At 1.5 P,

precipitation intensity showed little effects onl sooisture (Fig. 2.4: i).
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Figure 2.5Fractions of water loss via Evaporation, Transmraind Runofffg:
Evaporation/Precipitatiorf;: Transpiration/Precipitatiorii: Runoff/Precipitation; E/ET:

the ratio of evaporation to evapotranspiration
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Figure 2.6 The water contributions to transpiration alond depth by the five soll
texture types. (a) The water recharged to soilrkageery year, which is equal to the

water used by evapotranspiration in these layeegaitibrium state. (b) The ratios of the

water transpired through plants in every layer.

The fractions of precipitation used for evaporatonl transpiration increased
generally with AWC but decreased for runoff (Figh)2 Fractions of precipitation used
for evaporation increased continuously with AWCy(RL.5 a, b, and c). Transpiration
increased with soil AWC at its low range and graiguaveled off at the high range of
AWC at the 1.0 P and 1.5 P precipitation amounig. 5 d and f). At 0.5 P,
transpiration increased firstly, and then decrehseply at the AWC of 23% and 30%
(Fig. 2.5e). Runoff decreased with soil AWC continsly (Fig. 2.5 g~i). At 0.5 P, runoff
approached to 0 at the 23% of AWC. In general, pigitipitation intensity led to higher

runoff, lower evaporation and transpiration tham dimbient precipitation intensity with

44



the three precipitation amounts. The vertical thstion of the water recharged to soil
could explain the changes in partitioning betweandpiration and evaporation with
AWC. With increase of soil AWC, more water was r@gjed to the surface layer (Fig.

2.6a), and the ratio of the water in these laysesiiby transpiration decreased with AWC

(Fig. 2.6b).
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Figure 2.7 Soil texture effects on NPPyRand NEP at three precipitation amount levels

and two frequencies.

NPP, R, and NEP usually increased along the gradienvibtexture (Fig. 2.7). At

1.0 P, NPP, R and NEP were the highest at soil AWC of 23% aek at either low or



high AWC (Fig. 2.7a, d, and g). At 0.5 P, NPR, &d NEP reached their peak points at
AWC of 7.5% and then decreased with AWC (Fig. 2.&é,land h). At 1.5 P, NPP;,R

and NEP increased along the whole range of soil AWIG. 2.7 c, f, and i). High
precipitation intensity generally led to lower NA®, and NEP than the ambient

intensity at 1.0P and 1.5P. At 0.5 P, NPP and Riskghtly higher at high range of soil
AWC than them at ambient intensity (Fig. 2.7: b,&jferences in NPP, )Rand NEP
between ambient and high precipitation intensittese larger at coarse than fine textured

soil (Fig. 2.7).

2.3.3 Responses of ecosystem to warming with different soil texture types

Simulated warming decreased soil moisture at aheffive soil texture types (Fig.
2.8 a~c). The relative decrease in soil moist@eame larger at 1.0 P along the
gradient of soil AWC (Fig. 2.8 a). At 0.5 P, thegast relative decrease occurred at
AWC equal to 15% (Fig. 2.8b). At 1.0 P and 0.5\W®p®ration decreased under
warming, especially at high soil AWC (Fig. 2.8 dda#). At 1.5 P, warming resulted in a
decrease in evaporation at low AWC but an increasegh AWC (Fig. 2.8 f).
Transpiration under warming increased by 10~25% wiée three precipitation amounts
(Fig. 2.8 g~i). Warming resulted in decreases mofti(Fig. 2.8 j~I). The relative
decrease of runoff was smaller at low AWC than AYWC with all of the three
precipitation levels. High precipitation intensitgually led to less warming effects on

ecohydrological processes than the ambient inte(iSigy. 2.8a~I).

46



10P 05P 15P

AE %
R
o

ATt %
n
o

ARunoff %

=
» O N
S o o

ANPP (%)
N
o

N
o o

N
o

ANEP (g C m?yr') ARh (%)
[e]le]

0 5 10 15 20 25 30 0 5 10 15 20 25 30 O 5 10 15 20 25 30 35
Soil texture (Available water capacity, %)

—®&— Ambient precipitation intensity
—O— High precipitation intensity

Figure 2.8Effects of soil texture on the grassland respots@garming (2°C increased).
Show the relative changes in soil water conterdgpevation, transpiration, runoff, NPP,
Rh, and NET with available water capacityf 6% : percentage change of soil water

content at warming treatmenits §%=(02-c—0amb)/ 0amr<100).4 E%: percentage change
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of evaporation at warming treatmente0o=(E-c—Eamb)/ Eamp<100).4Tr% : percentage
change of transpiration at warming treatmed®&r¢=(Tr2.c—Tramp)/ Trampx100).4
Runoff% : percentage change of runoff at warming treatments
(4Runoff%=(Runoff-c—Runoff,mp)/ Runoftxx100).4 NPP%: percentage change of
NPP at warming treatmentdNPP%=(NPR:c—NPPnp)/ NPRympx 100).

4 Rh%: percentage change of Rh at warming treatmetRe%=(Rh-c—RHamp)/ Rhamp
x 100).

4 NEP%: percentage change of NEP at warming treatmeints (

NEP%=(NER:c—NEPymp)/ NEP;mpx 100).

Warming usually resulted in increases in NPP aptdWR decreases in NEP (Fig. 2.8
m~u). Warming-induced relative increases in NPRegaly were higher at high
precipitation amount. The increase of NPP variath WWC (Fig. 2.8 m, n, and 0).,.R
under warming increased by about 20% at all ofitreesoil texture types with the three
precipitation amounts (Fig. 2.8 p, g, and r). Reéatlecreases in NEP under warming
were least at AWC of 7.5-15% at 1.0 P (Fig. 2.88k high precipitation intensity led to
higher relative increases in NPP angddt less relative decreases in NEP in most cases

than ambient intensity along the soil texture geatl(Fig. 2.8m~u).
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Figure 2.9Effects of soil texture on the grassland respotsetevated [CO2]. Show the
relative changes in soil water content, evaporati@amspiration, runoff, NPP, Rh, and
NET with available water capacity.0%: percentage change of soil water content at

elevated [CO2]46%=(02coz0amb)/ 0amp<100).4 E% : percentage change of evaporation



at elevated [CO2A E%=(EcorEamb)/ Eampx100).4 Tr% : percentage change of
transpiration at elevated [COQTr%=(Tr.cozrTramp)/ Trampx100).4 Runoff% :
percentage change of runoff at elevated [CARuUnhoff%=(Runoffco—Runoffmp)/

Runoft,npx100).

2.3.4 Responses of ecosystem to doubled atmospheric O

At 1.0 P and 1.5 P, doubled [GJQusually resulted in increases in soil moisture,
evaporation, and runoff but decreases in transpira comparison to that under
ambient [CO2] (Fig. 2.9 a~l). The relative incremsr decreases in ecophydrological
processes at doubled [giecame larger at high AWC. At 0.5 P, changesraperation
and transpiration showed no apparent trend with AWKle soil moisture decreased
slightly (Fig. 2.9b) and runoff generally increasewler elevated [CPwith AWC (Fig.
2.9k). High precipitation intensity led to less ngas in soil moisture, evaporation,
transpiration, and runoff under elevated pLCtBan ambient intensity at 1.0 P and 1.5 P.

CO--induced relative increases in NPR, Brd NEP were generally lower at low
than high soil AWC at 1.0 P and 1.5 P (Fig. 2.9 mBwubled [CQ] usually increased
NPP by 10-25% andfby 2-8%, leading to substantial increases in NEB»-induced
changes in NPP,JRand NEP at 0.5 P were less than at 1.0 P and. X3gnerally, C®
effects on NPP, Rand NEP were higher with high than ambient piigipn intensity

at high AWC, and lower at low soil AWC.
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2.4 Discussion

2.4.1 Water partitioning among runoff, evaporation, and transpiration

Soil texture regulates runoff and evaporation bgngfing soil water storage and the
vertical distribution of soil water (Noy-Meir, 19Y.30ur results showed that runoff
decreased and evaporation increased with AWC 2. Transpiration increased with
AWC quickly in the low range and leveled off in thigh range of AWC (Fig. 2.5). The
results indicated that the partitioning of pre@pin water among runoff, evaporation,
and transpiration could be regulated by soil text@oil hydrological properties control
water infiltration and the depth to which waterqudates, and consequently affect water
partitioning between evaporation and transpirafMoAuliffe, 2003).

Water partitioning between evaporation and trasipin has been an important issue
in ecohydrological studies (Lauenroth and Bradf@@)6). Model results suggested that
transpiration is the dominant component (53%) efdglobal terrestrial water vapor flux
from the continents and may reach a maximum of #béensely vegetated regions
(Choudhury et al., 1998). However, only a few emepirstudies have quantified
partitioning of ET in semiarid shrublands over liedl time periods (Ferretti et al., 2003;
Scott et al., 2006). Reynolds et al. (2000) four® T/ET ranges from 7% to 80% at a
warm desert site in a modeling study. Many factavslve in water partitioning between
evaporation and transpiration, e.g. vegetation iyveot systems, precipitation regimes,

et al.. Our simulation showed that changes intsatlure can alter T/ET substantially.
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When soil is fine textured, a large portion of wasekept in upper layers, leading to
more water is available for evaporation. Howevecoarse textured soil, rapid
dehydration of the surface soil layer results wmirsgwater in deep layers (Wythers et al.,
1999) and available for plants. As shown by Fig.tBa fine textured soils can hold more
water, and keep most of the water in the surfager]avhich results in higher
evaporation. Thus, the percentage of the watercdrabe used by transpiration decreased
(Fig. 2.6 b).

In water-controlled ecosystems, high water avditgtdeads to high productivity.
At 0.5 P, as shown in our results, normalized smisture decreased with AWC and
drought-stressed days increased with AWC. As aemprence, NEP and NPP decreased
with AWC at halved precipitation amount. Whereds)igh precipitation amounts (eg.
1.5 P), normalized soil moisture increased andgtstressed days decreased with
AWC. And then, NPP increased with AWC. These ressiipported the inverse texture
hypothesis, which states that ecosystems on coexteed soils have higher net primary
productivity than the ecosystems on fine-textur@its @t low precipitation; the reverse is
predicted to occur in humid regions (Noy-Meir, 1R/ 3eld data measured in the central
grassland region of the United States showed gipdterns (Sala, et al., 1988; Epstein
et al., 1997; Lane et al., 1998).
2.4.2 Soil texture and effects of precipitation intensity on ecosystem

An increase in precipitation intensity with decre@$requency has been projected

as a possible scenario of climate change (Eaggestial., 2000). Field experiments
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showed that more extreme rainfall patterns, witloaurtcurrent changes in total rainfall
guantity, increase temporal variability in soil sioire (Fay et al., 2003; Knapp et al.,
2002). Carbon cycling processes such as soil agmir(Christopher et al., 2005),
photosynthesis, and above ground net primary ptodiyc(ANPP) (Fay et al., 2003;
Knapp et al., 2002) are also reduced because bfdail moisture variability caused by
increased rainfall variability. Consistent with tresults from field experiments, our
modeling results showed that high precipitatioenmsity led to more drought-stressed
days than the ambient intensity in most cases @-m~o).

Our modeling study also enriches experimental testdm Knapp et al. (2002) by
circumscribing conditions under which increasedtimiéation intensity with reduced
frequency leads to either decreases or increasaBystem production. If precipitation
amount is low (0.5P), for example, the high preeijion intensity led to higher soil
moisture and less drought-stressed days than theeahintensity when AWC was 15%
or higher. At 1.0 P, the high precipitation intépsilso decreased drought-stressed days
when AWC was 30%, (Fig. 2.4). The reason is thaffitte textured soils can store rain
water from large precipitation events with highdieapacity. Additionally, more water
can be stored in deep layers at high precipitatitensity than that at the ambient
intensity, which reduces the water used by evamorathus, runoff and evaporation
decreased, and water that was available to plaateased. Changes in soil moisture and
drought-stressed days resulted in changes in NBBhéwn by our simulations, when

precipitation amount was low (0.5P) and soil AWGsvisigh, NPP at high precipitation
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intensity was higher than that at ambient predijiteintensity. However, with increase
of precipitation amounts (e.g., 1.5 P), high priatpn intensity led to lower NPP than
that at ambient intensity. Therefore, soil textcae strongly regulate effects of
precipitation intensity on soil moisture contentl@tosystem carbon processes.
2.4.3 Soil texture and ecosystem responses to warming and elevated {CO
Warming and elevated G®oth can alter plant production through their clire
effects on plant physiology and indirect effectdiated by changes in soil water content
(Parton et al. 2007; Shaver et al. 2000; Morgaal.e2004). Experimental studies have
shown that the indirect effects induced by chamgesil moisture play a critical role in
regulating ecosystem responses to warming andtel@y@G] (Morgan et al., 2004;
Nowak et al., 2004; Volk et al. 2000; Wullschlegearl., 2002). As a result, the factors
that affect soil water dynamics (e.g., soil AWCih cagulate ecosystem responses to
warming and elevated GOWarming-induced decreases in soil moisture uguall
aggravate drought stress on ecosystems (Harte @08b; Saleska et al., 1999; Wan et
al., 2002). Although warming directly stimulatdamt growth productivity in most
field studies (Rustad et al., 2001), warming treatbmay reduce NPP when negative
effects of warming-induced soil drought overridermvang stimulation of plant growth
(Saleska, et al., 1999). Experimental results Is&svn that warming improved plant
growth in spring and fall but limited plant growthsummer because of drought stress
induced by warming treatment (Wan et al., 2005}l t8gture can tip the balance

between the negative and the positive effects omivay by regulating water partitioning
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among runoff, evaporation, and transpiration. @sults showed that the percentage of
warming-induced increases in NPP diminished with@When temperature increased
by 2 °C degrees (Fig. 2.8: m-0), especially at®).&, shows a steady increase of around
20% regardless of changes in precipitation amontansity, and soil texture (Fig. 2.8 p,
g, and r). The Rstrongly depends on the soil carbon content. Atlibgium state, the
model developed a high soil carbon pool (about &@tF), which did not change
immediately when scenarios applied. ThugirRreased when soil temperature
increased, leading to negative values of NEP caresty.

In contrast to warming effects, elevated atmospH&0,] usually results in
increases in soil moisture content by decreasimgatal conductance of many plant
species (Morgan et al. 2004). As shown by our satmhs, percent increases in soil
moisture content under double [CO2] increased 8ligioil AWC at 1.0 P and 1.5 P (Fig.
2.9 a and c) and so did NPR,, Bnd NEP. However, elevated [COZ2] did not led to
increases in soil moisture at 0.5 P. Similar reswire obtained from field experiments
conducted in dry areas (e.g., Nowak et al., 20@¢pbse increased water consumption
from increased primary productivity under elevd€@] offset the decreased water
consumption from reduced stomatal conductance andehsoil water was not saved
under elevated [CO2]. Indeed, g€8&imulation of NPP at 0.5 P was highest at AWC of
10% and declined with soil AWC due to reductiorsail moisture.

Along the soil AWC gradient from 5% to 30%, stintida of NPP by warming

ranged from 5% to 30% (Fig. 2.8: m~0) and from 10%0% by doubled [CO2] (Fig.
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2.9: m~0). The results indicate that soil textuaa substantially regulate ecosystem
responses to warming and elevated [CO2]. The witese warming and/or GO
experiments were conducted have variable soil texdnd different available water
capacities (Morgan et al., 2004; Rustad et al.1208nalysis of this paper suggests that
variation in soil texture with changes in soil dahility can result in diverse responses of
ecosystem production to experimental warming aadatéd atmospheric [GD
2.4.4 Uncertainties in vegetation dynamics and unrealistic scenarios

Vegetation dynamics and phenology can affect wadeitioning among
evaporation, transpiration, and runoff by alterirajspiration and water uptake through
roots. Zavaleta et al. (2003) showed that earbaescence induce by warming treatment
in a Mediterranean grassland can lead to increfasailanoisture by decreasing
transpiration. Scott et al. (2006) found that estey evapotranspiration increased with
increasing woody-plant dominance. A modeling st(Rigynolds et al., 2000) showed
that annual evapotranspiration (ET) is highly clated with precipitation. However, the
percent of water lost as transpiration (T/ET) i$edent among plant functional types. In
the TECO model, a fully dynamical plant growth miogtas used to simulate LAI and
root dynamics, which could strongly affect soil stare dynamics. A test run using a set
of prescribed LAI showed the same patterns of cbaingsoil moisture, transpiration,
and NPP with those from the simulated dynamicsciwimdicated that the main
conclusions about the effects of soil texture crsgstem responses to changes in

temperature, precipitation, and [gJ@vere robust regardless of uncertainties in
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vegetation dynamics. In the model, the transpiratias controlled by LAl and water
uptake through roots. LAIs were always consistdittt goil water availability by growth
and senescence. Rooting depth was a constant (f@chroot vertical distribution was
regulated by every layer’s water availability ahdit intrinsic vertical distribution ratios.
Thus, a prescribed LAI couldn’t strongly influenmer main conclusions.

Some of the climatic scenarios we explored in shisly may have little chance to
happen in the future, such as altering precipitapiatterns without changes in solar
radiation and elevated atmospheric [C®ithout an increase of air temperature. Our
modeling study was intended to explore differerdguailities under 120 scenarios of
climate change (Table 2) using a full factorialigasThe factorial design is a commonly
used method in experimental research and has loegtea by the modeling community
as well. Many modeling studies at scales from estesys to regions and the globe often
explore various scenarios with different combinasgiof factors (e.g. Cramer et al., 2001;
Parton et al., 2007; VEMAP, 1995). Such an appraeeh intended to explore
possibilities and may not say anything about atued a given scenario. Scenario-based
modeling analysis has been done in all IPCC assagsrpartly because we have great
uncertainties project future climatic conditionsh&¥we can learn from our
scenario-based analysis in this study is to exgiore soil hydrological properties affect
ecosystem responses to changes in global changesfathese full factorial scenarios
are useful to separate effects of individual fextmm ecosystems and results are relatively

easy to interpret.
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2.5 Conclusions

The modeling results indicate that soil hydrologmaperties can regulate
ecosystem responses to changes in precipitatiamiwg, and elevated atmospheric
[CO,] by altering partitioning of rain water among rdfp@vaporation, and transpiration.
Water partitioning patterns along soil texture aR&/C for plants and then regulate
ecosystem responses to altered precipitation anamchintensity, climate warming, and
elevated [CQ indirectly. Considering high variations in sagxture at field sites where
experiments are conducted, soil texture may beobiiee major causes underlying
variable responses of ecosystems to changes iippation, temperature, and
atmospheric [Cg) observed from field experiments. Thus, it is imtpat to know how
soil texture regulates soil water dynamics in otdegvaluate ecosystem responses to
climate change.

Our modeling analysis showed that NPR, &d NEP usually increased with soil
AWC. Such increases were amplified by precipitaamunts. Warming stimulation of
NPP decreased with soil AWC, whereas warming effentR, did not vary much in
different soil texture types. Stimulation of NPR, Bnd NEP by elevated [GDwas
usually lower at coarse than fine textured soilese results indicate that the water
properties of soil can be a key factor regulatiragsgland responses to warming, changes

in precipitation, and elevated atmospheric JC®@hus, it is highly desirable to examine
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soil hydrological properties in regulating ecosystesponses to global change in future

experimental research.
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Appendix I: Description of the Terrestrial ECOlogical model (TECO)

Terrestrial ECOlogical model (TECO) evolves frorteaestrial carbon
sequestration (TCS) model (Luo and Reynolds, 1888)is designed to examine
ecosystem responses to perturbations in globalehfattors. A canopy model is
incorporated into the model to simulate photosysithat hourly time scale. A soil water
dynamic model also has been coupled for simulatiatgr dynamics at hourly time scale.
The model contains four major components: a capbyayosynthesis sub-model, a soill
water dynamic sub-model, a plant growth sub-maalad, a soil carbon transfer
sub-model. The photosynthesis and soil moistur@uhyos are simulated at hourly time
step while the plant growth and the carbon trarsfersimulated at daily step.

1 Canopy sub-model

Canopy sub-model is from a two-leaf photosynthesslel simulating canopy
conductance, photosynthesis, transpiration, ancygrpartitioning (Wang and Leuning,
1998). It consists of two parts: 1) a radiationmaobel which calculates photosynthesis
active radiation (PAR), near infrared radiationR)land thermal radiation absorbed by
sunlit and shaded leaves and 2) a coupled mod#bofatal conductance, photosynthesis
and patrtitioning of absorbed net radiation intossigle and latent heat.
The coupled model of stomata-photosynthesis-transpiration

The coupled model of stomatal conductance, photbegis and transpiration for

the big sunlit leafi€1) or big shaded leaf«2) is given by the following equations.
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Energy balance

Qi =4E,+ H;; (A2.1)

Transpiration

E..=G,,D,;=G,(D,+sAT) (A2.2)

Sensible heat

H. =G, CAT (A2.3)

h,i~p

Photosynthesis-gas diffusion
At,i = bschi( Csi_ C|) = (3;|( Ca_ Q (A24)

Stomatal conductance:

f _
G, =Gy, +—alnShscA (A2.5)
' ’ (Cs,i _r)(1+ Ds,i / DO)
Photosynthesis-biochemistry
Ai=V.i— Ry (A2.6)

Where, Qi is net available energi. ; is transpirationH. ; is sensible heat,is latent

heat of vaporization for wateD, andDs jare saturated deficit of water vapor pressure
(VPD) in the ambient air and at the leaf surfaespectivelyGs;is stomatal conductance
of a leaf or big leaf for kD, Gy is stomatal conductance of a leaf or big leatHgD

when net leaf photosynthesis is zégg.; andG, ;are total conductance from the
intercellular space of the leaves to the referdmght above the canopy for® and

CO,, respectivelyGy is the total conductance for the heat transfer ftloenleaf surface

to the reference height above the canapys the specific heat of the aitT; is the
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temperature difference between the surface of ilpéehf and that of the air at the
reference heighgis the slope of the function relating saturatedewsaapor mol fraction
to temperature and bsc is the ratio of diffusiafyCO, and HO through the stomatéy

is the net photosynthesis ra¥g, is the net carboxylation raty; is the day respiration
rate.C,, Csj, andC; are CQ mol fractions in the air, at the leaf surface, artdrcellular
spaces, respectively.is CQ, compensation point of leaf photosyntheBigjs a
parameter for stomatal sensitivity to VPd.is an experience constant, which is related
to the intercellular C@concentration b{Zi/Cs; = 1-1k;. i stands for sun or shaded
leavesf,, is soil moisture scaling factor, afSgl.is scaling factor derived by the size of
non-structural pool. Equation (6) is a biochemioaldel of photosynthesis which is used
to calculate biochemical processes limited photthsgis rate. More details are in
Farquhar et al. (1980) and Wang and Leuning (1998).

Radiation absorption

The net energy available to the big leaf wave-bang, Q,;, is calculated as:

Q.-YQ,  (A27)

j=1
Leaf temperature should be known for calculatingpoabed long-wave radiation

(Q ;). However, it can be skipped by using the isotlanmet radiation Q:’i ).

in = Qn,i + CpGP,iA T (A2-8)
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Loss of thermal radiation of the big leaf to thewader non-isothermal conditions
is calculated b5, (= 4¢, 6T, /c,). Wheregt is the leaf emissivityg is the Steffan
Boltzman constant anf, is air temperaturek().

2 Soil water dynamics sub-model

Soil water is represented in 10 layers (the thiskr@ the first layer is 10 cm, all
others are 20 cm). Infiltration adds water to &jers in a cascading fashion according
to soil AWC. When the ten layers of soil is filleekcessive water runs off. Evaporation
is calculated by the evaporation equation in tiB23Eellers et al., 1996). Its allocation
in the ten layers follows the ALFALFA model (Denmsand Loomis, 1989). The water
transpired from the soil is partitioned among tbié layers according the fractions of
roots. The soil water content is calculated adtidget between input (precipitation) and
output (runoff, evaporation, and transpiration).

Infiltration Water flows to the next layer when the upper lagdilled. Water in
precipitation penetrates to a soil depth that dépem precipitation amount, field
capacity, and the current soil water content. Tloe@hiterates the water content of each
soil layer after calculating evaporation, and tparaion.

Transpiration The amount of water transpired from soil (transjan) is
calculated in the canopy model by stomatal condeetand the relative humidity
difference between the inside and outside of ledvéspartitioned among the soil layers

according to the fractions of roots in these sujkrs.
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Evaporation Soil surface evaporation is calculated by theofeihg equation
(Sellers et al., 1996):

E :e*(Tsoil)_ea pcpl
® i +1y 7 A

SOi

(A2.9)

whereEs is soil evaporation, e*Tg.) is the saturation vapor pressure at the temperatu
of the soil, ea is the atmospheric vapor pressuwigis a soil resistance termyis the
aerodynamic resistance between the ground andatiogpy air space, is the density of
air, ¢, is the specific heat of aiy,is the psychrometric constatis the latent heat of
sublimation (Sellers et al., 1996).

Runoff If soil water content is greater than soil wateldimg capacity, then runoff

Ooccurs

Runoff= Vyoil - VMax
then’ Wsoil = VVnax

(A2.10)
Where Whax is soil water holding capacity.
Soil water contentSoil water content is updated hourly accordingheliudget
between precipitation and evpotranspiration.
W, =W, + P- ET (A2.11)
Where,ET is evapotranspiration.

Soil moisture scalarA soil moisture scalar is computed here, whichnisnaportant

scalar in regulating photosynthesis, plant growatie,rand soil carbon turnover time.

f, = min[l.O,B.SS(MB (A2.12)
Wmax_Wmin
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where,Whin is wilting point.
3 Plant growth sub-model

The plant growth sub-model simulates the proceskearbon allocation to leaves,
stems, and roots (i.e. plant growth), and the prodn of litter fall. The model has six
carbon pools, which are one non-structural carlwm (NSC), one leaf carbon pod)|(),
one stem carbon podQ{(y), and three root carbon poof3x{, Qre, Qrs). The carbon fixed
by photosynthesis enters into NSC firstly. And thite carbon in NSC is used by
autotrophic respiration and allocated to planugssvia plant growth. The carbon
allocation from NSC to the other five C-pools igetmined by plant growth rates. In the
processes of leaf growth and fall, phenology is@néed at the same time.
Autotrophic respiration

Autotrophic respiration is calculated daily based@mperature (either air or soil
temperatures, for above and below ground tissespectively), tissue biomass, and
phenology by Arrhenius equation (Ryan, 1991; Llayd Taylor, 1994).

R=R, € (A2.13)

Where R, = b- BM, T is temperature of air or sod,andb are constant8M is biomass.
Growth

The idea is mainly from the ALFALFA model (Denisand Loomis, 1989; Luo et
al., 1995). The growth rate of plant is controllsdroot/shoot ratio, scalar of NSC, and

scalar of leaf area index.



G =G, 'BM; S, - S.c Sia (A2.14)
Where,i= leaf, stem, or rooG; is the growth rateGmay is the maximum relative growth
rate,BM; is biomass of leaves, stems or ro8ig, S.scandS 4 are the scaling factors
derived from root/shoot ratio, the size of NSC, &t area index, respectively.
Litter production
Leaf fall and root turnover is induced by soil dgbtiand low air temperature in the
autumn following the approach of Arora and BoerO&0 Stem fall is only controlled by

turnover time.

YT = miaX(l_ﬂT)br

(A2.15)
Yw = Y, A=W)
Where, y; and y,  are maximum rates of leaf fall induced by low temgture and

drought respectively.s, andW are scaling factors controlling the rate of |esF. f

Then, leaf fall D), stem fall Dg) and root turnover¥g) are:

D, =a.(r +7w)
Ds=qy/7y (A2.16)

Dr=0:(7++7w)

Where,q.,qw andgr are the C-pool sizes of leaves ,stems, and roegpectivelyzy
is turnover time of carbon in stem C-pool.
Phenology
Phenology is represented by periodical variatidieaf area index (LAI) and two
plant states, dormancy and growth. In winter, gggg$emain in a dormant state until the

arrival of the favorable weather conditions in BgriThe growth state is initiated by a
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certain growing degree days above 5 °C (GDDuring the first several days of growing
season, leaf growth consumes the carbon store®@ I8st growing season, until the
stored carbon is used up. And then, leaf growirlgased on carbon from photosynthesis.
LAl is controlled by the budget of leaf growth asehescence. If leaf growth overrides
leaf senescence, LAl increases, and vice verdalljmwhen LAI meets a minimum value
(<0.1), the dormant state comes.
4. Carbon transfer sub-model

The carbon transfer model is evolved from TCS (hod Reynolds, 1999) and
VAST (Barret et al., 2002). The soil carbon moagelised to simulate the carbon flow
from plant tissues to litters and soils, and treeatmosphere. There are five carbon pools
in the soil carbon model, which are fine litte@), coarse littersQc), and three soill
carbon pools defined by three soil laye@s Qsz Qsg (Fig.1). The carbon allocated to
leaves Qr), stems Qy), and rootsQr1, Qr2, Qra) flows through these C-pools, and then
returns to atmosphere as £0

The turnover time of carbon in leaf C-poal)(is determined by the growth and falll
of leaves. The turnover times of carbon in stemoGhry) and root C-pool, tre, Trs)
are assumed to be constants. The turnover timegrbdn in fine litter ), coarse litter
(zc), and soil carbon poolsd, 7, 7s3) are given by the following equation:

r.=1.1S.-S, (A2.17)
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Where, 7, is the moisture and temperature independent temawe,Sr andS, are
scalars of the moisture and temperature, which fyoésidence times of the carbon
pools.
The dynamics okth C-pool, dq, / dt (gC ni*d™), is calculated by eqn.18.

dq /dt=1I,-q/7, (A2.18)
Where, | is the input flux of carbon from upstream C-pogjsis the size okth C-pool,
7 IS the turnover time (days) of carbon in ke C-pool, q, /7, is the daily carbon out
flux of thekth pool.

The daily carbon influx of thkth pool (i) is given by:

le = Leay + 1 Weay

le =Wey (1-77¢)

lss=0r/Tr+Ade/ 70+ 079 (A2.19)
ls; =Or/Tr+0a/7 £ 5

lss =0re/ Tret U/ T F g

Where,qk is the size of thi&th C-pool,sc is the fragmentation coefficient of wood going
to fine litter, 7« is the turnover time of the carbon in #ik C-pool, and is the
partitioning parameter of C-pools.
Heterotrophic respiration from litter and soil canlpools is given by the following
equation:

Ri=2.a/7 f (A2.20)
Where,f'« is the fraction of carbon out flux which enters ttmosphere from theh

pool, which is given by:
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(A2.21)
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CHAPTER 3 Relative Information Contributions of Mod el vs. Data to Short-

and Long-Term Forecasts of Forest Carbon Dynamiés

2 This part has been accepted by Ecological Apjitinatand published online.
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Abstract

Biogeochemical models have been used to evaluatetéyrm ecosystem responses to
global change on decadal and century time scaksemRly, data assimilation has been applied to
improve these models for ecological forecastings ttot clear what the relative information
contributions of model (structure and parametessiiata are to constraints of short- and
long-term forecasting. In this study, we assimdaggght sets of ten-year data (foliage, woody,
and fine root biomass, litter fall, forest floorlan (C), microbial C, soil C, and soil respiradion
collected from Duke Forest into a Terrestrial EC&syn model (TECO). The relative
information contribution was measured by Shanndéorimation index calculated from
probability density functions (PDF) of carbon ps@es. Theaull knowledge without a model or
data was defined by the uniform PDF withipréor range. The relative model contribution was
information content in the PDF of modeled carboalponinus that in the uniform PDF while
the relative data contribution was the informawomtent in the PDF of modeled carbon pools
after data was assimilated minus that before degsnalation. Our results showed that the
information contribution of the model to constraerbon dynamics increased with time whereas
the data contribution declined. The eight data setsributed more than the model to constrain
C dynamics in foliage and fine root pools over 100-year forecasts. The model, however,
contributed more than the data sets to constraitittee fast soil organic matter (SOM), and
passive SOM pools. For the two major C pools, wdadynass and slow SOM, the model

contributed less information in the first few deea@nd then more in the following decades than
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the data. The knowledge on relative informationtgbuations of model vs. data is useful for
model development, uncertainty analysis, futura datlection, and evaluation of ecological
forecasting.

Key words: data assimilation, information theory, carbon eychodel uncertainty, Duke Forest

FACE, ecological forecasting.

3.1 Introduction

Biogeochemical models have been widely used teptdpng-term ecosystem responses to
climate change and evaluate feedback between eiarat the carbon cycle on century and
millennium time scales (e.g. Cramer et al. 1999CGMice et al. 2001, Friedlingstein et al. 2006,
Carpenter et al. 2009). These models have beemuségbto explore interactions of multiple
global change factors (Luo et al. 2008), forest ag@ment (Schmid et al. 2006, Pretzsch et al.
2008), and ecosystem services (Schroter et al.)2f)i08ecadal or shorter time scales. Most
biogeochemical models share a similar model stragtuwhich photosynthetically fixed carbon
is allocated to multiple plant and soil pools (VEMA995, Kucharik et al. 2000, Sitch et al.
2003). Photosynthesis is usually simulated usiegrdwrquhar model (Farquhar et al. 1980) as
regulated by light, C@concentration, temperature, and nutrients. Alliocabf carbohydrates
from photosynthesis is often determined by fixestfions or regulated by functional balance
among multiple resources (Luo et al. 1994, Friggitain et al. 1999). Carbon transfers among

pools are generally governed by pool size and 8pé@nsfer coefficients as affected by
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environmental variables (Luo et al. 2001a). Althougost biogeochemical models share a
similar structure, model intercomparison and datakeh comparison studies show tremendous
variations among models for either short-term fastg or long-term projections even if models
are calibrated against historical and/or contenmyaranditions (e.g., Friedlingstein et al. 2006,
Sitch et al. 2008).

High uncertainties of model projections generafiguit from differences in initial values,
parameterizations, and response functions thattioge key carbon processes to environmental
and biological variables. For example, using theeobed soil carbon content as model initial
values could lead to a higher carbon accumulaats than the assumption of equilibrium state
over 100-year simulations at a beech forest (Wutalel Reichstein 2007). Knorr and Heimann
(2001) illustrated that the uncertainties of keyapaeters were too large for reliable predictions
of global net primary production (NPP). Burke et(2D003) found the response functions that
represent the sensitivities of litter decompositotemperature differed dramatically after
comparing eight popular biogeochemical models.

To improve models for accurate projections, dasinaitation approaches have recently
been developed in ecology to inform initial conalis, constrain parameters, evaluate alternative
response functions, and assess model uncertajR@egpach et al. 2005, Williams et al. 2009,
Luo et al. in review). Most data assimilation sesdiocused on estimation of fast-response
parameters, i.e., photosynthesis, respiration aagaranspiration with short-term data sets. For
example, Knorr and Kattge (2005) estimated 29 patara governing photosynthesis,

respiration, stomata activity, and energy balancadsimilating eddy covariance data of seven
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days into the BETHY model. Wang et al. (2007) exsdithree key parameters related to
photosynthesis and respiration (maximum photosyiatisarboxylation rate, potential
photosynthetic electron transport rate, and bashkiespiration rate) in the CBM model using a
nonlinear estimation technique to assimilate eduyadance data. Wu et al. (2009) estimated 16
parameters of a flux-based ecosystem model by dasing one-year eddy covariance data using
a conditional inversion method. Braswell et al.q2Passimilated eddy covariance observations
with a Markov Chain Monte Carlo approach to estedd®5 parameters in the SIPNET model, of
which only one is related to long-term process (@yocarbon turnover rate) but not constrained.
A few data assimilation studies have been conductednstrain long-term processes and
parameters with simplified carbon cycle models. etal. (2003) assessed ecosystem carbon
sequestration rates by assimilating biometric ddatathe TECO with 7 target parameters (i.e.,
residence times of the seven carbon pools). Xl €@06) developed a probabilistic data
assimilation to quantify uncertainties of the esiied parameters and forecasted carbon pools
using the same data sets and model as in Luo @0&13). Williams et al. (2005) assimilated
both eddy-flux data and carbon stock data intargokiied carbon pool model and evaluated the
rates of carbon sink. Fox et al. (2009) comparadiaa assimilation approaches based on the
DALEC model and found that the parameters relaiddgt processes (e.g., photosynthesis,
ecosystem respiration) were constrained well bagelrelated to the allocation to and turnover
of fine roots and woody biomass pools were constchpoorly. Over all, these studies
demonstrated that assimilation of biomass andcspilon data can improve the constraints of

some parameters related to long-term processes.
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Since biogeochemical models are often used to ateakrosystem responses to climate
changes at decadal and century time scales (eung, & al. 2005, Friedlingstein et al. 2006,
Jones et al. 2006), one key question that hasewt hddressed is how much improvement data
assimilation can make for short- vs. long-term ¢assts of ecosystem carbon sequestration. To
address this issue, we have to first quantify havelmnformation a given model contributes to
short- and long-term forecasts because data caotdrdxlditional information to forecasts
conditioned on therior knowledge contained in the model structure andmpater ranges.

To measure relative model and data contributiorierecasts of carbon dynamics, this
study used the TECO model (Luo et al. 2003, XU.e2@06) to assimilate eight sets of ten-year
data (foliage, wood, and fine root biomass, lifedk, forest floor carbon (C), microbial C, soil C,
and soil respiration) collected from the Duke FoFage-Air CQ Enrichment (FACE)
experimental site. The relative contributions & TECO model and the eight data sets were
measured by the Shannon information index (Shad®d8, Jaynes 1957, Kolmogorov 1968),
which quantifies the uncertainty associated withredom variable as represented by probability
density functions (PDFs). We first defined thdl knowledge without either a model or data by
a uniform PDF within gorior range. The model’s contribution was quantified lig information
content in the PDF of modeled C pools by the TEG@ehwithout data assimilation minus that
in the uniform PDF. The contribution of the eightal sets was the information content in the
PDF of forecasted C pools after the eight setsatd drere assimilated minus that before the data
assimilation. We applied this approach to quarttigyrelative information contributions of

assimilated data to constraints of forecasted fa@®on storage in the carbon pools of TECO
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model. We also evaluated various types of paras@tezontrolling short- and long-term
forecasting of forest carbon dynamics. Based orewgaluation of data vs. model contributions to
short- and long-term forecasting, we provided rec@mdations on model improvement and

future data collection to enhance long-term foreogsf carbon sequestration.

3.2 Methods

3.2.1 The ecosystem carbon pool model

The Terestrial ECOsystem (TECO) model is a vamdthe CENTURY model (Parton et
al. 1987) and is designed to simulate carbon ifrpat photosynthesis, carbon transfer among
plant and soil pools, and respiratory carbon releas the atmosphere. The model has been
applied to several studies of carbon sequestratiocess in Duke Forest in response to elevated
CO; (Luo et al. 2003, Xu et al. 2006, White and Lu®&) It has a similar carbon pool structure
and parameters to most current biogeochemical model

In this study, we slightly modified the TECO modtlgl separating a fine root pool from the
foliage pool. Thus, it has eight C pools (Fig. 3Ifh)this model, the processes of carbon transfer

and decomposition were represented by the folloirsgorder ordinary differential equation:

dX(9 _
G - SOACX()+BU(Y (3.1)
X(0)= X,

where,(t) is an environmental scalar, depending on tempexdf) and soil moisture«f)

(&)= f(T,w)). There are a few parameters describing the emviemtal scalar as functions of

temperature and moisture (Luo et al. 2003, €evjronmental response parameters
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Canopy photosynthesis
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Figure 3.1 The schematic diagram of carbon allocation andsteas among the 8 pools of
TECO model. The carbon allocation and transfergewlescribed by equation (1) with 8x8

matricesA andC, and 8x1 vectorB andX. SOM stands for soil organic matter.

X (1) =( X, () X,(0) X,(D) ... xs(t))T is an 8 x 1 vector representing the carbon comtkttte

eight carbon pools as depicted by Fig. ¥dlis an 8 x 1 vector of the initial valuesX(t). A is a
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Matrix A defines C transfers among the C pools as illledrby arrows in Fig. 3.1.The
non-zero elements; () in matrixA represent the fractions of the carbon enteiffhgow) pool
from j™ (column) pool , termedarbon transfer coefficients. The zero elements in matux
mean no direct carbon flows between these two pBelsausé, ;+f5 =1, f, »+f5 =1, and
f4 atf5 =1, there are only 11 free parameters in makri is an 8 x 8 diagonal
matrix,C = diag( ¢) with elementsc=(q ¢, ¢ ... %)T, representing the amounts of carbon per
unit mass leaving each of the pools per day, tercaduabn exit rates. B = (h_ b, b000O ()T
is a vector ofllocation coefficients of assimilated carbon by photosynthesis (grosagmy
production, GPP) partitioned to the three planoGle.U(t) is the C input (GPP) at tinte

This study estimated a total of 30 parametersitivalues of carbon pool¥{(i)), 8 exit
rates ¢;), 3 allocation coefficients), and 11 transfer coefficient;§. We set the prior ranges
of these 30 parameters (Table 1) according to tha&sorements at Duke Forest FACE project
and/or published papers from literature. The ihitedues of the eight C pools were estimated
mainly from the observations at Duke Forest (Licleteal. 2005, Finzi et al. 2006). The ranges
of exit rates were estimated from the residencediof different C pools at Duke Forest (Lichter

et al. 2005), or the similar temperate forests fiar et al. 1986, Gaudinski et al. 2000).
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Table 3.1The free parameters of TECO model and their panges.

Parameters Description Units LL UL

Xo(1) Initial value of foliage pool gC-ih 100 400
Xo(2) Initial value of woody pool gC-th 3000 6000
Xo(3) Initial value of fine roots pool gCn 100 400
Xo(4) Initial value of metabolic pool gCh 40 120
Xo(5) Initial value of structural pool gCh 400 700
Xo(6) Initial value of fast SOM pool gC 80 240
Xo(7) Initial value of slow SOM pool gCh 1200 2400
Xo(8) Initial value of passive SOM pool gCm 200 400

1 Exit rate of C from foliage pool gC-gai* 6.85x10" 5.48x10°
C Exit rate of C from wood pool gC-gai’ 3.42x10 2.74x1¢*
Cs Exit rate of C from fine root pool gC-gai' 1.37x10° 9.13x1C°
Cs Exit rate of C from metabolic litter pool gC-4@* 5.48x10° 2.74x10°
Cs Exit rate of C from structural litter pool gCga’ 1.37x10" 2.74x10°
Co Exit rate of C from fast SOM gC-ga@i’ 5.48x10° 5.48x1(F
c Exit rate of C from slow SOM gC-gad? 5.48x10P 5.48x10'
Ce Exit rate of C from passive SOM gC4a@* 1.37x10° 5.48x10°
by Allocation of GPP to leaves - 0.05 0.25
b, Allocation of GPP to woody biomass - 0.10 0.40
bs Allocation of GPP to fine roots - 0.05 0.25
f41 Fraction of C in foliage pool transferring to metabolic litter - 0.3 1.0

f42 Fraction of C in woody pool transferring to metabolic litter - 0.0 0.2

fa3 Fraction of C in fine roots transferring to metabolic litter - 0.3 1.0
fo.a Fraction of C in metabolic litter transferring to fast SOM - 0.3 0.7
fo5 Fraction of C in structural litter transferring to fast SOM - 0.1 0.4
frs Fraction of C in structural litter transferring to slow SOM - 0.1 0.4
fr6 Fraction of C in fast SOM transferring to slow SOM - 0.3 0.7
fa e Fraction of C in fast SOM transferring to slow SOM - 0.0 0.008
fo7 Fraction of C in slow SOM transferring to fast SOM - 0.1 0.6
fg7 Fraction of C in slow SOM transferring to passive SOM - 0.0 0.02
fo 8 Fraction of C in passive SOM transferring to fast SOM - 0.3 0.7

LL = lower limit and UL = upper limit. SOM= soil ganic matterXy(1) - Xo(8): initial

values of the eight carbon poots;- Cg: exit ratesp; - bs: allocation coefficientsf;;: carbon

transfer coefficients.
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Allocation coefficients were from the estimated\N#HP of leaves, woody biomass, and fine
roots during the experiment period (Palmroth e2@06, McCarthy et al. 2006). Transfer
coefficients were estimated according to the cadmnponents of each pool and expert
knowledge (Luo et al. 2003). It was assumed thaptirameters distributed uniformly in their
prior ranges. Since this research was to explore thehnatinsic properties not its responses to
changes in climatic variables, fixed values werdu®r the environmental response parameters
as described in Luo et al. (2001a, 2003).

3.2.2 Data from Duke forest FACE site

The data used in this analysis were obtained fifwHACE experiment at the Blackwood
Division, Duke Forest, Orange County, North Caral{85°58’N, 79°5'W). The FACE site was a
loblolly pine forest planted in 1983 after harvegtthe similar vegetation and was not managed
since planting (Hendrey et al. 2000). We used tta dt the ambient atmospheric £LO
concentration only. The ten years air temperapnegipitation, soil moisture, and GPP data
(1996~2005) were used as input to drive the TEC@ehd\ir temperature and precipitation
were from the observations at Duke Forest FACElyDalues of GPP were derived from the
simulations of MAESTRA model (1996 and 1997) (Lu@k 2001a) or gap-filled eddy flux data
(1998~2005). A non-rectangular hyperbolic methoBiN was used to derive GPP from eddy
flux data (Stoy et al. 2006). Gap-filling might addcertainty to the data. A comprehensive
comparison on the methods differentiating GPP @odystem respiration (RE) showed that the
gaps added an additional 6—7% variability, butrtdtiresult in additional bias and the estimates

of both GPP and RE differed by less than 10% antie@gnethods (Desai et al. 2008).
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Table 3.2The biometric data that were assimilated

Data type Frequency  Number of Mean standardMean Reference
observations deviatiort coefficient of
(g C'm? variance (CV)
Foliage Yearly 9 62.04 15.3% Pippen et al.
biomass unpublished
Woody Yearly 9 1066.88 16.1% Finzi et al. 2006
biomass
Fine roots Yearly 9 21.56 7.0% Pritchard et al.
2008
Litter fall Yearly 10 65.61 19.5% Finzi et al. 2006
Forest floor Three years 4 216.19 24.6% Lichter et al. 2008
carbon
Microbial Five times in 5 20.67 21.5% Allen et al. 2000
carbon total
(1997~98)
Soil total Three years 4 163.72 7.3% Lichter et al. 2008
carbon
Soil Monthly 89 0.59 65.7% Bernhard et al.
respiration 2006
Jackson et al.
2009

The standard deviation (SD) for each data pointegésulated based on the data collected in

the three ambient rings.

2 On the website http://face.envi.duke.edu.

*The unitis g Cm%yr™.

“The unitis g Gn%d™.

The 8 sets of biometric data that were assimilatexthe TECO model for parameter

estimation were foliage biomass, woody biomasszfféhal. 2006), fine root biomass (Pritchard

et al. 2008), microbial C (Allen et al. 2000),éittfall, forest floor C, soil C (Lichter et al. 280

2008), and soil respiration (Bernhard et al. 2Q@@&kson et al. 2009) (Table 2). The data were
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collected in the years of 1996 through 2005. Tiizga sets have been extensively described in
the aforementioned papers in terms of instrumeses for data collection, measurement
methods, times and frequencies and are not repkated
3.2.3 Data assimilation

We used the probabilistic inversion approach dexedddoy Xu et al. (2006) to assimilate

the eight data sets into the TECO model. The pridibab inversion is based on Bayes’ theorem:

P(Z|0) P(9)

P(0|Z)= (D)

(3.2)

where, the posterior probability distribution oétharameterdj, P(6|2), is obtained fronprior
knowledge represented bydor probability distributionP(#) and information in the eight data
sets represented by a likelihood functi(Z|0). p(2) is the probability distribution function of
observations. Thprior probability distribution function of the estimatpdrameterg(d) were
specified as the uniform distributions over a s$edpecific intervals. The likelihood function
p(Z|p) was calculated with the assumption that each oot is Gaussian and independently

distributed according to the following equation.

8 [z (1) -0 XOT
P(Z|H)ocexp{zz[ l(t)zgfl(t)(t)] } (3.3)

where,Z(t) is data obtained from measurement aK(t) is simulationg is the mapping vector
that maps the simulated state variables (the cazbotent of the eight pools) and fluxes to
observational variables (i.e., plant biomass,rliiadf, soil carbon, and soil respiratiofsee
Appendix B for details)s is the observed standard deviation of measuremgoatsrding to

Bayes’ theorem, the posterior distribution of pagtens was given by

82



P(6]2) < P(Z|0) R6) (3.4)

The probabilistic inversion was carried on usingetropolis-Hastings algorithm (M-H
algorithm, thereafter) to construct posterior piaolity density functions of parameters. The
detailed description of M-H algorithm was providadXu et al. (2006) with a brief summary
here. M-H algorithm samples random variables ifdgnensional probability density functions
in the parameter space via a sampling proceduetlias Markov chain Monte Carlo (MCMC)
theorems (Metropolis et al. 1953, Hastings, 197#lfgad and Smith 1990). In brief, the M-H
algorithm was run by repeating two steps: a prompstep and a moving step. In each proposing
step, the algorithm generated a new p@ifit for a parameter vectérbased on the previously
accepted point®® with a proposal distributioR(6""6°%) (Equation 5).

0 =0 +1 (00— O pin) (3.5)
where,fmax andfmin are the maximum and minimum values in pinier range of the given
parameterr is a random variable between -0.5 and 0.5 withieoum distribution. In each
moving step, poing"*" was tested against the Metropolis criterion (XaleR006) to examine if
it should be accepted or rejected. The acceptehpers were then used to simulate carbon
contents of the 8 pools in the 100 years after 1896g the same driving data of 1996~2005.
The M-H algorithm then repeated the proposing anding steps until approximately 300,000
sets of parameter values were accepted.

All the accepted parameter values were used tarcmhgposterior PDFs. Meanwhile, the
same number of sets was obtained for simulatednarbntent in the eight pools during the

100-year forwarding runs of the model (namely tlozled forecasts after data assimilation). The

83



PDFs of the eight C pool obtained from data asaimih ((PDFs)g) contained the information
from both the model and the assimilated data. Teigge another set of PDFs for the state
variables (i.e., pool sizes) without the data asated, we ran the model for another 300,000
times by randomly sampling parameter values froar lniform distributions within theprior
ranges. The generated PDFs of the eight C podBHER) contained the information from the
model only (including prior parameter ranges). iStias describing relative information
contributions of the model vs. the data was derivesh these two sets of PDFs.
3.2.4 Relative information contribution of model and data

We used the Shannon information index (Shannon,\84&e et al. 2006) to measure the
relative information contribution of model vs. débeconstrain forecasts of short- and long-term
carbon dynamics. According to information theorgyfles 1957, Kolmogorov 1968), the
entropyH of a discrete random variab¥ein {x, ... , X} is

H(X) == p(x)log, F(x) 40

wherep(X) is probability of evenx;. For the basb equal to 2, the unit is bit. For a uniform
distribution, the entropy Isg, n.

Thenull knowledge on carbon dynamics of a pool (1&0) without either a model or data
was defined by a uniform distributiorfx) of the pool size within a range (Table 3). The
minimum and maximum values of the range were asgdumbe the same as those minimum and
maximum carbon pool sizes of the (PD§E)able 1).Thus, the entropy of null knowledgild)

is:
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H,=log,n (3.7)

Model structure and prior parameter uncertaintystiurte the prior knowledge” on a
system (model information). To estimate the retatiformation of the model.f), we obtained
the entropy of (PDFg) H(Xm), as:

H(X ) == P(tny) 10, PXs,) (3.8)

i=1

whereXy is state variables obtained by the model-onlydasés x, ; is a value oK. nis the
number of bins with equal width in the range betwie minimum and maximum values of the
(PDFs),. The relative information contribution of the modacluding model structure and prior
parameter ranged)y, is:
I =Ho—H(X,) (3.9)

Similarly, to estimate the relative information tioution of data assimilatiord), we first
obtained the entropy of the (PDFs¥lerived from model forecasts after the data were

assimilatedH(Xmng), as:

H (X ) = =3 Py )10, PXe) (3.10)

whereXqqis state variables obtained by data assimilatibh the modelxyqis a value oXmg.
Thus, the additional information contributed by #ssimilated datdy, is:

I =H(X,)—H(X ) (3.11)

The calculations dif, andl4 are summarized in Table B0,H(Xy), andH(Xqq) are dependent on

the values oh butl, andl4 change little witm if n is large enough (e.g., Stoy et al. 2006). A
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value of 2400 was used in this study after a seitgitest from 60 to 4800 bins. We calculated

I andl, for each of the eight C pools and total ecosysieover 100 years of simulations.

Table 3.3Definitions of relative information contribution

Symbol  Description Contributor Calculation

lo The information without either a model or Null knowledge  lo=Ho-Ho=0
data

m The relative information contributed by  Model Im =Ho-Hm

model structure and parameter prior ranges
lq The relative information contributed by theData ld =Hm-Hmd
assimilated data sets conditioned on the

model structure and paramepgior ranges

Ho is the entropy of the uniform distribution defingsi null knowledgeH,, is the entropy of
(PDFs), obtained by running the model using parameteresatandomly sampled from their
prior distributionsHnq is the entropy of (PDFg) derived from model forecasts after the data

sets were assimilated.

The indexly only measures the decrease in the entropy of atedicarbon pools induced
by data assimilation (i.e., the changes in shapB®&s). Assimilation of data may change both
positions and shapes of the distributions of C §0bb measure the changes in pool size
distributions caused by data assimilation, we ustximation gain (Kullback-Leibler

divergence, D,, (p(X.4) |l d(X.,))(Kullback and Leibler 1951, Rényi 1961) to meagtiee

86



differences in the distributions of C pools betwdsnmodel-only forecasts and the model + data
forecasts (Equation 12).

x P(Xna i)
D X X )= I Bl '
ke (PCX) 1alX)) ;:1 A X4 ) 10g, ax,) (3.12)

We also evaluated effects of measurement errexs gtandard deviations of the eight data
sets), angbrior ranges of exit rates and transfer coefficientsedative information contributions
of the model and data and the Kullback-Leibler dye@ce induced by assimilation of data. In
the analysis, we doubled the standard deviationalifthe eight data sets and broadened ranges
of the exit rates by doubling their upper limitgldralving their lower limits. We used the full
possible ranges (i.e., 0—1) for the transfer cokeiffits in comparison with those in Table 1.
3.2.5 Sensitivity of short- and long-term forecasts to parameters

The coefficients of determinari®) between the forecasted sizes of the pools and the
parameters were used as a measure of the segfitite pools to the parameters. It
represented the portion of variance of forecasted gizes induced by an individual parameter
when all of the 30 parameters were varied randovily.analyzed the sensitivity of each
modeled C pool at the end of 2005 to each of theaB@meters. The sensitivities of total
ecosystem C content to the 30 parameters withdsteny years from 4 to 128 years were also

calculated this way.
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3.3 Results

3.3.1 Posterior distributions of parameters

Assimilation of the eight data sets constrainedyrgrthe 30 target parameters, five
initial values for the foliage biomas¥y((1)), woody biomassX (2)), fine root biomass
(X0 (3)), slow Kq(7)) and passive((8)) soil organic matter (SOM) pools; six exit iate
from three biomass pools;( ¢, andcs), structural litter ¢s), fast €s) and slow SOM
pools €7); and two allocation coefficients for wood andefiroot poolstf, andbs). None
of the transfer coefficients; () were well constrained (Fig. 3.2). Thus, the et sets

contained information for less than a half of tRet&get parameters.

3.3.2 Modeled carbon contents with and without data assimilation

Distributions of the simulated eight C pools at &imel of 2005 without (Model only)
and with data assimilation (Model + Data) are shawfig. 3.3. The model without
assimilation of the eight data sets generated RiDEarbon pool sizes (i.e., state
variables) that were somewhat bell-shaped for kemgr pools of woody biomasX),
structural litter Xs), slow SOM K5), and passive SONK§) but skewed to their low
carbon content ends for short-term pools of foliagenass X), fine roots Xs),
metabolic litter X,;) and fast SOMXe). The PDFs of carbon pools suggest that the model
structure, together with th@ior ranges of parameters, contains information on

ecosystem carbon dynamics, particularly in the @mm pools. With assimilation of the
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eight data sets, the simulated carbon contentiggi® (X;), woody ), fine roots Xj),

structural litter Xs), fast SOM Ks), slow SOM K7), and passive SONK§) pools were all

well constrained. The metabolic litter po#l was still not constrained. Improved

modeling of carbon contents indicated that thetedgita sets provided a substantial

amount of additional information on carbon processe

Pool size (kg C m'z)

(X))

Woody Foliage
(Xe) (Xs) (X (Xq) (X2)

X9)

(Xe)

Passive SOM Slow SOM Fast SOM Struct. litter Metab. litter Fine roots

Model only

Model+Data

vyYyrYvY

5

10 15 20 25 30 O 5

Frequency (x10%)

10 15 20 25 30

0.6

0.5

0.4

10

0.36

0.32
0.3
0.2
0.1

0.0
2.0
15
1.0
0.5

0.15
0.10

0.05
25

2.0
15
0.4
0.3

0.2

Figure 3.3Simulated carbon contents at the end of 2005 patmeters sampled in

prior distributions (Model only) and posterior distrilmuts (Model + Data), respectively.
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Figure 3.4The projected carbon content (left and middle colsyrand the relative
information contributed by model and data (righiuocan) over 100-year forecasts after
1996. Box plots show visual summaries of carbortezardistributions in the 5% (bottom
bar), 25% (bottom hinge of the box), 50% (the liaedoss the box), 75% (upper hinge of
the box), and 95% (upper bar) intervals. Closeclesrwith solid lines are the relative
information contribution of the model; open circlggh dotted lines are the relative

information contribution of data.

91



3.3.3 Long-term forecasts of C contents and information contributions of model an
data

Either with or without assimilation of data, carbamtents were quickly stabilized
in the fast turnover pools, such as foliage bionf&gs fine roots Ks), and metabolic
litter (X4), but substantially increased in slow turnoverlppsuch as woody biomass
(X2), slow and passive SOM pools;(@andXg), over the 100 years of forecasting (left and
middle columns of Fig. 3.4). Corresponding varianagprobability density distributions
were also stabilized for the fast turnover podls X3, andX,) in the second decade but
kept growing for the slow turnover pools (eXg, X7, andXg). Assimilation of the eight
data sets substantially reduced variations of szl C contents, especially in those fast
turnover pools (Model + Data), in comparison whibge without data assimilation
(Model only) (Fig. 3.4). This indicates that datayade substantial information to
constrain forecasts of carbon dynamics. Data akgion also considerably altered the
maximum likelihood estimates of carbon content wstrof the eight pools.

The relative information contribution by the mogdiekluding model structure and
parameter prior ranges) steadily increased wheheadata contribution decreased for the
slow turnover pools and ecosystem total C durieglidO-year forecasting (right column
of Fig. 3.4). For the two major C pools, woody basa K,) and slow SOMX5), the
model contributed less information in the first fdecades and more in the last decades
than the assimilated data in the course of theyEa®-forecasting. For foliage biomass

(X1) and fine rootsXz) pools, the eight data sets contributed more imé&tion than the
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model during the entire period of forecasting. T@del contributed more information

than the data in the litter pool&,(andXs), fastXs) and passiveXs) SOM pools.

* YOOYTTY IOV O TY TV T T T | .- Foliage (Xg)
-0 Woody (X2)
g 37 —~  Fine roots (X3)
E —-- Metabolic litter (X4)
5 2 . —= . Structural litter (Xs)
.§ —o-  Fast SOM (Xg)
£ +~ Slow SOM (X7)
g 11 — Passive SOM (Xg)
- . 4. TotalC
0 - N LA— D b A— A — A
0 20 40 60 80 100
Time (year)

Figure 3.5The changes in the distributions of the carboneaf the eight carbon
pools and total ecosystem carbon at the assimilafialata into the model, measured by
the information gains derived from the distribusasf carbon content simulated by

model only and those simulated by model plus data.

The information gain of data assimilation was tighast for the foliage biomass
(X1), fast SOM Ke), and fine rootsXs), and the lowest for the passive SOX§)((Fig.
3.5). The information gain increased first and tleanreased gradually for the woody
biomass X;) and total C. The information gain declined withé for the fast and slow
SOM pools Ks andX;), and metabolic litteXs). The information gain for the structural

litter (Xs) and fast SOMXe) pools was also substantial although data asgiomlanly
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slightly reduced their uncertainties toward the efithe 100-year forecasting (Fig. 3.5

vs. Fig. 3.4).
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Figure 3.6 The sensitivity of the eight carbon pools at tearg’ simulation (A) and the
sensitivity of ecosystem total carbon in long-tesimulations (B) to the 30 parameters.
X1 - Xg are the eight carbon pools as shown in Fig.)&(IL) - Xo(8) are initial values of
the eight carbon pools; - cg are exit rates of the eight carbon pobls: b; are the
allocation coefficients of GPP to leaves, woodyniss, and fine roots, respectivdlys
are the carbon transfer coefficients from gaol pooli. The area of circle represents the

value of the coefficient of determinant.
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3.3.4 Parameters that determine short- vs. long-term forecasting

The simulated carbon content of the eight poote@aend of 2005 had different
sensitivities to the 30 parameters (Fig. 3.6: Aje Toliage biomassx{) and fine root
pools K3) were highly sensitive to their respective exiesat; andcs) and modest to
allocation coefficients to themselveds ndbs). The woody biomass<§) was sensitive
to its exit ratgcy), allocation coefficient to itselbg), and its initial valueXo (2)). The
metabolic litter X4) was highly sensitive to its exit rate;), and modest to allocation
coefficientsb; andbs. The structural litterXs) was highly sensitive tos and modest to
C2. The fast SOMXs) was sensitive tgs only. The slow SOMX7) was sensitive toy,
f7 6 andfs 4. The passive SOMXg) was sensitive tXy(8) only. In general, the modeled C
pools were most sensitive to the parameters thatrged the carbon input into or output
out of themselves or their neighbor pools thatdliyeaffected them. Plant carbon pools
(X1, X2 andX3) were not sensitive to any of the transfer cogfits €;;'s), which only
regulate carbon dynamics in the downstream podis.fast turnover poolX(, Xz, X4,
andXg) were not sensitive to their initial value&(i), i = 1, 3, 4, or 6). The downstream
pools were sensitive to more parameters than tegagm pools (e.gX7 vs. Xp) because
the C dynamics in the downstream pools were infltadrby behaviors of the upstream
pools. The opposite did not occur.

The sensitivity of forecasted total ecosystem Qaairto parameters varied with
time (Fig. 3.6: B). For example, the highest se&resparameter for the total ecosystem C

content was the initial value of woody biomaXg(2)) for the 4-year forecast. For the
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128-year forecast, the highest sensitive parameisithe exit rate of C from the woody
biomass poold;), which gradually became more important over timdetermining
ecosystem C dynamics. The order of the six mosithes parameters for the forecasted
total ecosystem C content wW&s2), by, bs, by, Xo(7), andc; at the 4' year but it was,,
by, C7, Cs, f76, andfs 4 at the 128 year.
3.3.5 Effects ofprior ranges and measurement errors on information contribution
The data contributed more information to constfarecasts of forest carbon
dynamics when thprior ranges of parameters were enlarged (Fig. 3.7 ByShe
enlarged parameter ranges also resulted in shghtases in the relative information
contribution of the model since thell information was lowered due to changes in the
minima and maxima of simulated carbon contentscivhiere used to define theill
information. The relative information contributiofdata increased at low model priors
(Fig. 3.7: B vs. A). The information contributioy the data substantially decreased but
did not change for the model component at doubledsurement errors (Fig. 3.7 C vs.
A). However, the temporal patterns of informati@mizibution did not change. The
information gain was high at enlarged parametegearflow modeprior) (Fig. 3.7: E),

and it was low at doubled measurement errors @&ig.F).
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Figure 3.7 Information contribution of model vs. data andimhation gain with different
parameter priors and measurement errors. Pan@sakd C show relative information
contributions with original parameter ranges andioal measurement errors (A), full
ranges of transfer coefficients and broadened saofjexit rates (doubled upper limits,
halved lower limits) with original measurement esr¢B), and doubled measurement
errors with original parameter ranges (C), respebti Closed circles with solid lines are
relative information contributions of the TECO mbdmen circles with dotted lines are
the relative information contributions of the dd®anels D, E, and F are the information
gains with the same order of the combinations cdupater ranges and measurement

errors as panels A, B, and C.

3.4 Discussion

In this study, we evaluated relative informatiomtcdoutions of the TECO model
and the eight data sets to the constraints of Eadfprecasts of carbon dynamics in

Duke Forest. The sensitivities of short and lorrgatéorecasts to model parameters were
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analyzed to explain how the information contribns®f the model and the data varied
over time. The temporal changes in information gbations and parameter sensitivities
have strong implications for the development aralweation of current terrestrial
biogeochemical models for regional and global aseest, and data collections in the
future.
3.4.1 Short- vs. long-term forecasts of forest carbon dynamics

Parameters that influence uncertainty of carboradyos forecasts varied with time
scale. Our analysis shows that the initial valuerobdy biomassXp(2)) and allocation
coefficient to woody biomaséy) were the two most important parameters in inftureg
short-term forecasts of total ecosystem C dynafiics 3.7). The initial values of C
pools define their positions on a trajectory ohsiant recovery, and therefore determine
the rate of carbon accumulation and C storage pat€Garvalhais et al. 200&ough et
al. 2008). The changes in C content of the eighbdls are different because their initial
values are apart from their equilibrium statesedéhtly. The fast turnover pools, e.g.,
foliage and fine root C pools, are almost equiliédaat the initial states, while the slow
turnover pools, e.g., woody biomass, slow SOM, gassive SOM, are far lower than
their equilibrium states. So, woody biomass, sI&@V5 and passive SOM have high
carbon accumulate rates. The Duke forest was gaitly stage of secondary succession
after plantation in 1983 (Hendrey et al. 1999).l@arin many pools, especially in the

slow turnover pools, was accumulating. Thxi2) andb,, which determine the
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trajectory of transient C dynamics in one of thegiderm pools, are the two key
parameters affecting short-term forecasts of e¢esy€ dynamics.

The results indicate that long-term forecasts oég$bcarbon dynamics were strongly
influenced by the growth rate of woody biomasseés$ (determined by exit ratg,and
the allocation coefficienty,, in the model), and the decomposition rate of Sk (C;)
(Fig. 3.7). Theoretically, the long-term C storag@n ecosystem is determined by C
influx and residence time (Luo et al. 2001a). lis gtudy, the C influx was input from
simulation results of another photosynthesis mbdséd on the eddy covariance data
(Luo et al. 2003, Stoy et al. 2006), while the paeters that determine C influx were not
evaluated. The ecosystem carbon residence tinetasndined by carbon residence times
in individual pools, carbon allocation of GPP tamt pools, and transfer coefficients
among soil C pools (Zhou and Luo 2008). Thus, wanip@valuated the ecosystem
residence time in influencing the long-term C ggeran this study. The inverses®fand
c; are the residence times of the woody biomass lamdsoil C pools, respectively.
Parameteb, controls the amount of photosynthetically fixedoe allocated to the
wood pool and subsequently influences C transfettier long-term pools, such as
structural litter, slow and passive SOM pools. Efenre, these three parameters are most
important in determining the long-term carbon dyrenof forest ecosystems. Parameter
b, is important for both short- and long- term forgsaof forest C dynamics partially
because it controls C allocation to the largesigiterm C pool in this particular forest,

therefore, influences the C dynamics of the doveastr pools.
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Terrestrial biogeochemical models are usually teatginst short-term data (e.g.,
Stockli et al. 2008, Randerson et al. 2009) ancttaduations of parameterization are
mainly on the parameters controlling short-terncpsses (e.g., Knorr and Heimann
2001, Zaehle et al. 2005). Whereas, these modelsidely used in long-term
predictions (e.g., Fung et al., 2005, Friedlingstgial. 2006, Sitch et al. 2008). Rastetter
(1996) had proposed that long-term processes neusisbed against long-term data after
examining the performance of a photosynthesis maidelultiple temporal scales.
Parameter sensitivity analysis in this study shthas the long-term process related
parameters are still important for short-term fass (e.g., initial valuexg(2)) and
allocation coefficientlf,) of woody biomass, and exit rate of soil slowcg)((Fig. 3.7).
Therefore, the emphasis of parameterization faogdmchemical model used to predict
C storage should be on the long-term related paemmespecially on initial values for

short-term forecasts and residence times for leng-forecasts.

3.4.2 Relative information contribution of model and data

Our analysis shows that the relative informationtdabuted by the data declined
over time but that contributed by the model incegbslightly for the slow C pools (i.e.,
woody biomass, slow and passive SOM pools) antl@otsystem C (right column of
Fig. 3.4). This means the model with fheor knowledge it represented plays an
important role in forecasting long-term carbon dwies. The processes (e.g, the

compartmentalized pools and donor pool controlkth@n transfers for the TECO
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model) defined the behavior of a model, therefoeedpaces of its projections. This may
probably be true for all process-based biogeochremiodels. Statistical models can
sometimes generate better results than the prbessst models by deriving the
relationships between climate variables and cadymamics. Artificial neural networks,
for example, can fit the observations better thaphssticated process-based models after
training by data (Abramowitz 2005). An experiencedal with the relationships between
NPP and climate variables can reproduce the patfegtobal NPP (Del Grosso et al.
2008). A well calibrated climate-vegetation relasbip model can capture the vegetation
distribution pattern globally or regionally (e.8IOME model, Prentice et al. 1992,
Weng and Zhou 2006). But the statistical relatigmsimay be different with changes in
climate, since ecosystems may not always be onileguin states because of lag effects
(Sherry et al. 2008), vegetation shifts (Bachelet.€2001, Harrison and Prentice 2003),
acclimation (Luo et al. 2001b), or ecosystem degwelent (Chadwick et al. 1999). The
process-based biogeochemical models can représsat nechanisms by incorporating
simple or complex processes. Thus, the analysiseafelationships between climate
variables and carbon dynamics should be confindélderiramework defined by theior
knowledge on ecological mechanisms.

The eight data sets provided high information foper stream pools (i.e., foliage,
woody, and fine root pools) but low for down strepools (litters and soil carbon pools)
generally (right column of Fig. 3.4). This may beeault of the consistency between data

types and model carbon pools. Three data setagfmliwoody, and fine root biomass) are
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directly accordant with the three plant C poolst Bone of the litter and soil C data is
accordant with the two litter pools and the slow gassive SOM pools. Fox et al. (2009)
explored the constraints of parameters in a TER®#iodel, DALEC model, with
assimilation of net ecosystem exchange (NEE) aaithieea index (LAI) data. The
difference between these two models is that the B@&Imodel has one litter pool and
one soil C pool, while the TECO has two and threspectively. They found that the
parameters related to photosynthesis and ecosysspination processes were
constrained well. But the parameters related ttsrand woody C pools (turnover rates
and allocation coefficients) were constrained poorherefore, their predictions on C
stock diverged broadly in the third year. Thesealtesndicate collecting biometric data
(e.g., woody biomass and soil carbon) is importanboth short- and long-term forecasts
on ecosystem C content and it is necessary foaresers to constrain long term pools
and fluxes using short term observations.
3.4.3 Factors influencing information contributions

Thenull knowledge of pool sizes, modaior, and data uncertainties can affect
relative information contributions of the model atata. Uniform distribution is usually
used to represenull knowledge and the ranges are consequently the w@gmthe
corresponding PDFs. The way that uses the rangamafated carbon contents of the
eight pools by the model with prior parameters ganvide a wide enough space that all
simulated results lie. And, the changes in the sb&p the PDFs induced by the model

with prior or with posterior parameters can be @ffeely measured by relative
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information indiceslg, or Int+lg). By doing so, the information contribution of tiredel
(Im) is independent on the number of bink (

Model prior, including model structure and quantitative estesaf parameter
uncertainties, is a quantitative measure on whatave known about the system. In this
study, the model structure is well established. fdm@meter ranges are also well
recognized from qualitative aspect, e.g., woodynass’s residence time is much longer
than the leaf’s; the carbon flowing to passive StSivhuch lower than that to slow SOM.
However, they are still varied among researchemnwutting each of the parameters
into a numerical range. We thoroughly reviewedliteeature and proposed a set of
parameter ranges that are believed to cover thévaues. Uniform distributions are
used to represent parameter uncertainties, sinaBdargot want to put our judgment that
some values were likely or unlikely to be the righes. The sensitivity test on parameter
ranges showed that the enlarged ranges led ®dhtnges in the relative information
contributions of the model. However, the data abaoted more information at wider
prior parameter ranges (Fig. 3.7: B). These indicateetroaly results are not sensitive
to parameter ranges if these ranges are reasonable.

Measurement errors determine the weighting betwéservations and simulated
results and the weighting of each observation.gkdigh evaluation of measurement
errors is necessary for assimilation of multiplarsed data sets. In this study, the
standard deviations (SD) of assimilated data waleutated for each observation based

on the data collected in the three ambient ringe. doefficient of variation (CV) is the
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highest for the soil respiration data (66%) anddsifor the fine root data (7%). The
number of data points of each data set is alsotarfaffecting its weight in cost function.
Among the eight data sets, soil respiration hasitjeest points, 89, while the forest
floor C and soil total C are the lowest, 4 onlyl§lea2). Thus, it is desirable to explore
the weight of each data set for multiple sourced dasimilation. We tested the effects of
magnitudes of measurement errors on informatioritantion. Less information
contributed by data at doubled measurement ettvatghe pattern that model’s
contribution increases while data’s decreases re{&ig. 3.7: C and F).

In this study, GPP is derived from another modetauy-flux data and used as an
input to the model. The given GPP may influencecthrestraints of modeled carbon pool
sizes and total ecosystem C content. In most bigaoical models, GPP is modeled by
an independent photosynthesis model with influenééise dynamic of the foliage pool,
and is usually stabilized within one or a coupleletades. Thus, the uncertainties in
simulated GPP do not affect the relative informatontributions of model and data in
the framework of a carbon pool model.

The processes that are not considered in the maalehlso affect long-term
forecasts of ecosystem states. For example, thentwrersion of TECO model does not
have the processes representing disturbances grwheaaitrogen interactions. These two
processes are considered to affect forest ecosystatorage at long temporal scales
(Luo et al. 2003, Gough et al. 2007). Since thedydmwomass related parametersdnd

b,) have high sensitivity to disturbances and nitrogeailability, the uncertainties in
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long-term forecasts may be higher than simulatbéérdfore, the effects of disturbances
and nitrogen on the long-term forecast sensitivarpaters, i.e gy, by, andc;) should be

evaluated carefully in long-term forecasting. Oliethe accuracy of 100-year forecasts
is essentially un-testable. But, the assimilatibdata did reduce the uncertainties in the

model and its forecasts based on the processeglemtsin the model.

3.5 Conclusions

Our results showed the information contributioritef model generally increased
with time whereas the data’s contribution declinBuoke eight data sets contributed more
than the model to constrain C dynamics in foliage #ne root pools over the 100-year
forecasts. The model, however, contributed more tha data sets to constrain litter, fast
SOM, and passive SOM pools. For the two major Agpawody biomass and slow
SOM, the model contributed less information infil& several decades and then more
in the last decades than the data. Parameteriggpnsihalysis showed that the initial
value of woody carbon poaX§(2)) and allocation coefficient to woody biomabsg) (
were the two most important parameters for shon+-ferecasts of ecosystem total C,
while the key parameters for the long-term forecagtre the exit rate;) and allocation
coefficient p,) of woody biomass, and exit rate of slow SQay).(

These results indicate data assimilation is veejulsn constraining short and
long-term forecasts of forest carbon dynamics, evaijood forward model is still

fundamental to long-term forecasts. The test agah®t-term data cannot guarantee
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improving the parameters governing long-term preegsince the important parameters
for short-term forecasts may be different from ths long-term forecasts.
Incorporating the processes affecting long-ternmsgstem carbon dynamics into
biogeochemical models, such as disturbances abdreaitrogen interaction processes,
and collecting more long-term data related to cmibon dynamics are required for

reducing the uncertainties in the forecasts of fmg ecosystem carbon dynamics.
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CHAPTER 4 Carbon Storage Capacity under Varying Disurbance

Regimes

% This part is from a manuscript coauthored by Yigd, Nikola Petrov, Weile Wang, Han Wang, DanigHayes, A.
David McGuire, Alan Hastings, and David S. Schimel
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Abstract:

Disturbance has been recognized as a key factxtel terrestrial carbon storage
and dynamics. Most observational studies have &tos quantifying impacts of
individual disturbance events on ecosystem carloocegses. Modeling studies mostly
link specific disturbance events with ecosystentesses to characterize carbon sink
dynamics. However, the quantitative relationshifwieen carbon storage capacity and
disturbance regimes has not yet been explored. Medeveloped a mathematical model
to quantify carbon storage capacity of ecosysteittswarying disturbance regimes. The
latter is defined in this study by the mean distmde interval (MDI}, an index of
disturbance frequency) and the mean disturbanagise(E[s]). Thus, expected carbon

storage capacitye{ X]) under the disturbance regime can be described

byE[X] =U-z. -#, whereU is ecosystem carbon influxs is ecosystem
A+ E[d7,

carbon residence time, amgdis the residence time of live biomass pool. Oudeto

shows that carbon storage capacity decreases isitirlthnce severity but increases with
mean disturbance intervals, carbon influx and essid time. This model, for the first
time to our knowledge, analytically integrates l@oghemical processes (carbon input
and residence time) with disturbance regimes (Mi2l severity) to reveal general

patterns of terrestrial carbon sink dynamics umagying disturbance regimes.
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Key words: Ecosystem carbon storage,disturbance, carbon, dysl@mic

disequilibrium

4.1 Introduction

Disturbances can profoundly affect ecosystem ca(@istorage and dynamics by
generating spatial heterogeneous landscapesngl&cosystem species compositions,
reducing ecosystem production, depleting one oerpools, and relocating C
distribution among the C pools (Goetz et al. 200 ner et al. 2010) and leave legacies
strongly influencing future carbon sources or si(itsughton et al. 1983, Balshi et al.
2007). Climate warming can cause increases in énegjas, severities, and the spatial
coverage of disturbance events, such as fires (Bowehal. 2009, Turetsky et al. 2011),
storms (Webster et al. 2005, Emanuel 2005), arettrmutbreaks (Kurz et al. 2008), and
therefore increase the vulnerability of C storafyjgeeestrial ecosystems (Balshi et al.
2009). Better understanding of ecosystem C staegponses to disturbances in the
context of climate change is required for accuyagstimating the feedbacks between C
cycle and climate change.

Impacts of individual disturbance events on ec@systarbon processes have been
extensively studied. For example, the effectsref din landscape heterogeneity (Turner et
al. 1994), ecosystem recovery patterns (Kashiah €005, Kashian et al. 2006), and C
and nitrogen dynamics (Kashian et al. 2006, Smitkwt al. 2009) have been

systematically investigated following the 1988 ‘%elktone Fires. Insect outbreaks can
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substantially reduce ecosystem C gross primaryymtazh, transforming Canadian
boreal forests from C sinks to sources (Kurz e2@08). Many modeling studies that link
specific disturbance events with ecosystem prosdsseharacterize and project
ecosystem C dynamics have been conducted to neesdianisms of disturbances
affecting C processes and possible changes of @nadigs in the future. Bond-Lamberty
et al. (2007) found that disturbance events wezalttminant driver of central Canadian
boreal forest carbon balance by modeling analygts Bitome-BGC model. Balshi et al.
(2007, 2009) analyzed the effects of historicadion current C dynamics of the high
latitude regions of North America and proposed finas could substantially increase the
vulnerability of the C storage in the boreal fosesith in the 21 century.

However, terrestrial ecosystems can rapidly recéeen individual disturbance
events, even like the great fires of Yellowston88.0Turner et al. 2010), making them
carbon neutral from a long-term view (Kashian eR80D6). The structure and functions
of main terrestrial ecosystems, and therefore thetorage, are strongly shaped by
disturbance regimes, which is the summary of teguencies, severities, and the spatial
coverage of disturbance events (Turner et al. 19894%te and Jentsch 2001). Disturbance
regimes vary among the major terrestrial ecosys$ypmes of the world. Tropical rain
forests have a low frequency and severity of fiRmvman et al. 2009) but a high
frequency of storms (Zeng et al. 2009). Fires obémgquently with low severity in
Savanna but of intermediate frequency and highraggwe boreal forests (Bowman et al.

2009, Chuvieco et al. 2008). Climate change isialiehe disturbance regimes of these

110



ecosystems (Turetsky et al. 2010) and triggerirggstem state shifts (Johnstone et al.
2010), and inducing a large amount of C releasdgrtmsphere (Beck et al. 2011). But,
we still lack theoretical understanding of ecosyste storage as a function of
disturbance regimes and ecosystem internal progebbkas, it is necessary to generalize
the quantitative patterns of ecosystem C dynamicssponse to changes in disturbance
regimes and the rates of C input and output foravipg our predictive understanding of
ecosystem responses to changing climate.

In this study, we derived a general quantitativecdetion of ecosystem C storage
changing with disturbance regimes based on expléstriptions of spatial and temporal
patterns of C dynamics of ecosystems induced lyrd@nces generalized from
event-based studies. At temporal scales, ecosySteomtent usually decreases sharply at
the occurrence of disturbance events and then gligdacovers, as documented from
chronosequence studies and long-term observatiomest of the terrestrial biomes
across the world (Hughes et al. 1999, Law et &32%argas et al. 2008). The recovery
patterns encompass the fluxes of ecosystem C {nputnet primary production, NPP)
and output (e.g., decompositions of litter and saglanic matters), controlled by internal
ecosystem processes that equilibrate ecosysteor&yst(Luo and Weng 2011). While
at large spatial scales, ecosystems are usudliffertent recovery stages due to random
disturbances, leading to mosaics of C contentiamge region. The mean C storage
therefore is always lower than the equilibriumes@fined by ecosystem internal

processes (Luo and Weng 2011). We integrated @iteéabpnd temporal patterns of
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ecosystem C dynamics with a few key assumptionatahe probability density
distribution of disturbance occurrence and thegpatbf ecosystem C recovery and thus
developed a theoretical model to quantify ecosysiestorage capacity as affected by
disturbance regimes at large spatial scales. Thdehwas then tested against the
simulations of TEM model in the high latitude area®lorth America. The model can
improve our predictive understanding of C storagl shanges in disturbance regime

and ecosystem internal properties.

4.2 Materials and Methods

4.2.1 Ecosystem Model

A three-pool model was used in numerical simulaiand mathematical reasoning.
The model has biomass, litter, and soil organiadeng6OM) carbon pools (Fig. 4.1). For

an ecosystem developed from bare ground, it caegresented by Eqn 4.1.

dX(t)
. = AT X (t) + BU(t) 4.1)
X©0)=(0 0 0)

where, X(t) is ecosystem carbon content at tim& is a 3 x 3 matrix representing carbon

-1 0 O
transfer among the three poolgy.=| 1 -1 0| andy is carbon transfer coefficient
0O nn -1

from the litter pool to the SOM podl.is an 3 x 3 diagonal matrik,= diag(z). The

diagonal elements are=T(r17273) . 71, 72, andrs are the residence times of the carbon in
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biomass, litter, and SOM, respectiveByis the allocation coefficients of carbon influx

(i.e., NPP) to the three poofs, 0 0) . U(t) is the carbon influx at time

U Cco,

l 4

Biomass
(X1)

»

y
Litter L
(X2)

n
\ 4

Soil Carbon
(X3)

Figure 4.1 Ecosystem model Structur& is the ecosystem carbon input from
photosynthesis (net primary production). The mdadeal three carbon pools: Biomass
(X1), Litter (X2), and Soil Organic Matter (SOMX{). # is the ratio of carbon transferred
to the SOM pool from the litter pool. In simulatitests, we let; =20 yrs,7,=5 yrs,73=60

yrs, andy=0.25. Thus, the ecosystem carbon residencettimetrotrs n=40 yrs.

Two characters of disturbance regime, the meanrthishce interval (MDI) and the
disturbance severity, were considered. The dishadavents were assumed as Poisson
events. The ecosystem carbon dynamics with eftdalssturbance was represented by

the following equation:

dX(t)

. ATX(t) + BU(t) +1 -s-EX(t) (4.2)
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wherer is a discrete random variable taking the valueeei® or 1. P(r=1)=1/1 s the
probability that disturbance happens in a yeariaisdhe MDI. MatrixE represents
carbon losses and transfer among the three caxdms induced by a disturbance event.

It was assumed that the disturbance events colyd@move biomass with a fraction of

-1 00
sand had no effects on the litter and the SOM pd&ts == 0 0 0|. The NPP was
0 00O

1.2 Kg C n? -yr, 71 20 yrs,z, 5 yrs,z3 60 yrs, andy was 0.25 for numerical simulations.

Thus, the ecosystem carbon residence ttmeyas 40 yrswe=r,+1+137=40).
4.2.2 Sensitivity tests

Probability density functions of disturbance interval Both Weibull distribution
and exponential distribution are widely used tocdbg disturbance intervals (Katz et al.
2005, Johnson and Gutsell 1994). Weibull distritnuis usually used in the disturbances
that depend on the conditions of ecosystems fe). for its flexibility to represent the
changes of the disturbance occurrence probabigy tme by varying its shape factor

(Clark 1990, Grissino-Mayer 1999).

K(T - —(T/A)¥
(ai- {55 €0

0 T< C

(4.3)

wherek is shape factor. Exponential distribution is acsglecase of Weibull distribution
with k=1, and is usually used to describe the intervialeedisturbance events that are

Poissonian (the probability of disturbance occuweeis constant over time). It is
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applicable to many disturbances, e.g., storm amdslade with their occurrence being
independent on the state of ecosystems. We sinduatesystem C content by the
ecosystem model with disturbance severity equalaad intervals were sampled from a
Weibull distribution with the shape factor varyifigm 1.0 (exponential distribution) to
2.0. The mean simulated carbon content was geudogteunning the model at 65000
grids.

Dynamics of NPP after disturbanced-orest NPP usually decreases sharply at
disturbances and then increases with age. Afteioapping the highest level, it decreases
slightly and is stable at a certain level with tievelopment of a stand (Gower et al.

1996, Ryan et al. 1997), although it is still irbd&e for natural forests (Wirth 2009). We
conducted a simulation test to illustrate the tsasfeecosystem carbon storage resulted
from the assumption of constant NPP. The reali¢éB® pattern was simulated by the
following equations:

GPP() = GPP,,-(1- ¢*'t3)

(4.4)
U(t) = (A-b)-GPP()— - X (9

where,GPPnayis the maximum GPP, 2.4 Kg Cmyr™. L is an experience value
controlling the recovery rate of NP®is a small number for determining the initial NPP
when biomassX,) is zero. We used 2.4 Kg Cnand 0.2 folL anda, respectivelyb is

0.3 andfis 0.02. A NPP recovery curve was generated wiRIP Micreasing in the first 10

years and then decreasing slightly.
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4.2.3 Comparison with the simulations of TEM model

The yearly vegetation C content, net primary proidacgNPP), litter fall,
fire-induced carbon loss, and harvest in the hagituide regions (Latitudes>45°) of North
America from 1900 to 2006 were from the simulatiohthe TEM model (Balshi et al.
2007, McGuire et al. 2010). The simulations congdehanges in climatic variables,
atmospheric C@concentration, fire regimes, and harvests sin&®1®%he whole area
was divided into 24 regions according to the statdke United States and provinces in
Canada. Region averaged NRB, (litter fall (L), heterotrophic respiration (RH),
vegetation and soil C conter@l£g Csoi), fire-induced C 10SS (feveg Ciire soil), and
harvest (Groduction Were calculated by averaging the values at eddifa@ the recent 30
years (1977~2006). Vegetation C residence timg) (vas calculated by current
vegetation C content divided by annual litter {@le4L). Potential vegetation C content
is calculated byJxz.q Disturbance regimes) was calculated by (fe+Cproduction/Creg
which was equivalent to)s/Soil C residence times;) was calculated by current soil C
content divided by annual heterotrophic respirafoRi/RH). The potential soil C
content Csoil,potentia) Was calculated byxzsy. The soil C content with impacts of

disturbances was calculated by the following equmati

1 1

soil © ’
1+ Oveg " Tveg l+o 7

C =U-.r

soil,cal

(4.5)

soil
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4.3 Results
4.3.1 The derived model

We begin by looking at the simplest descriptiomlisturbance frequency and
assume that it is independent of the state of¢tbsystem, with a constant probability
through time of a disturbance. We treat this exptineor Poisson regime in depth with
our mathematical approach and examine sensitiwighainges in the description through
simulation (e.g. a Weibull description which hasiesed to describe fire frequency
(Katz et al. 2005, Clark 1990)). We used the exptiakdistribution to describe intervals

between disturbances:

.
et

v

120 (4.6)
T

< (

f(T;4) =

O Nk

whereT is the interval of two consecutive disturbancenty@ndl is the mean
disturbance interval (MDI).

A three-pool model with biomass, litter, and saitlwon pools (Fig. 4.1) was used to
represent the carbon dynamics of ecosystems. Wathdsumption that carbon influx and
residence are not affected by disturbances, tteveeg pattern of biomass pool can be
described by:

X, =X, €'+ Ur,(1- €'7) (4.7)
whereX; is carbon content of the biomass pogb is the legacy carbon of the biomass

pool right after a disturbance evettjs carbon influxz; is carbon residence time of the
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biomass pool, antis the time since last disturbance event. Equai@nthe solution to
the differential equation describing carbon accwatioh at a constant input rdteand

decay at rate (14 ). The first term of the right sidex(, - € =) shows the decay of
legacy carbon and the second tetor[(1-e"'™)] represents the accumulation of new
carbon.

Integration of the exponential distribution of didiance intervals with the
ecosystem carbon recovery curve (Eqgn 4.7) at angiisturbance severityg, yields the

expected biomasg] Xi] (see mathematical derivations in Supplementaeras B for

details) as:

A

+ 87,

E[X] = U7~ (4.8)

The disturbance severity, ranging from 0 to 1, represents the fractioniofass
removed by a disturbance event. Here the distugbaecerity is assumed to be
independent of the current biomass. Incorporatidhe@biomass dynamics into the

three-pool model produces the expectation of etesysotal carbonX):

A
A+sr,

E[X]=U-7- (4.9)

where,z¢ is ecosystem carbon residence time. If the diatwb severityd) is a random

variable, the expectation of total ecosystem cafdis:

A

118



<
=
<
=
c
Q
3
c
Q
)
c
o
Q
=
]
®]

Carbon content (%)

Figure 4.2 Ecosystem carbon contents with a) changes in misturlgance interval and

severity, and b) changes in residence time andrb&nhce indexs=s/A) based on the Egn
4.8.

where,E(s) is the expectation of disturbance severity. Hujgation contains two parts,

the potential C storag&J¢) and the disturbance eﬁee}l—%). The former is
+ ‘T

determined by ecosystem internal processes arldtteeis determined by disturbance

severity, mean disturbance intervals, and the eesiel time of biomass pool. If we define
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1
1+o1,

a disturbance index, as E§)/4, the equation can be written & X] =U -7 -

Equation (5) shows that expected carbon storageases with carbon influx, residence
time, MDI but decreases with disturbance severity.(#.2: a). The sensitivity of
ecosystem C storage to disturbance is determindkeoesidence time of biomass C

pool that is directly affected by disturbances (Big: b).

4.3.2 Sensitivity analysis to the assumptions

The sensitivity analysis showed the biases incungethe assumptions used to
derive these equations were low (Fig. 4.3). Sinealacosystem C storage was not
sensitive when the shape fackasf Weibull distribution changes from 1 (i.e., the
exponential distribution) to 2 (a usual value foes$, Grissino-Mayer 1999) (Fig. 4.3: a).
The assumption of constant carbon influx resultgeiry small biases in comparison with

the variable carbon influx even if disturbancesundoequently (Fig. 4.3: b and c).

4.3.3 Validation and application

Based on the framework defined by these equatiegsy 4.8~4.10), we analyzed
the simulated vegetation and soil C dynamics ohiga latitude regions (>45°N) of
North America by the Terrestrial Ecosystem ModellEEonsidering the impacts of
fires and harvests (Balshi et al. 2007, McGuird.e2@10). The whole region was

separated into 24 sub-regions according to theipeces in Canada and states in the US.
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Figure 4.3 Sensitivity tests to the assumptions of constar® l[dRd exponential
distribution of disturbance intervals. Paaellustrates the differences of simulated C
content induced by the different distributions (el distribution with different shape
factor) with the mean disturbance intervals rangiogh 10 to 160 years. Pareshows
the pattern of realistic NPP simulated by the Edn Banet shows the simulated carbon
content at variable NPP to those at constant NRPmean disturbance interval ranging

from 5 to 120 years (dashed line with open triasigle
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The ratios of vegetation (Fig. 4.4: a, b) and €odtorage (Fig. 4.4: c, d) to their
corresponding potential values calculated by thisagion fit the simulated ones well.

The correlations between the ratios of actual Gesdrtio the potential and disturbance

regimes ¢/4) of the 24 districts follow the disturbance efféattor (Fig. 4.4:

l+o-7;
b and d). For the regions with low disturbanceg.(€anada), the simulated C content in
vegetation and soil C pools is very close to itepbal level Uz). While, in the regions
with frequent and severe disturbances, such astéites of United States, the C content is
much lower than the potential.

The pattern represented by Eqgn 4.10 is also sugghbst many lines of
experimental evidence. Forests in dry lands cae héh net primary production (NPP)
(Rotenberg and Yakir 2010) but low carbon storagey due to frequent fire (Peterson
and Reich 2001). Suppression of fires leads taeas®s in carbon stock in forests
(Tilman et al. 2000), while increases in disturl@afrequencies reduced Canadian forest
biomass during 1980s (Kurz et al. 1999). The biawdsa Savanna ecosystem decreases
with fire severity and increases with fire retuntervals nonlinearly based on observation

and modeling results from a 50-year fire experin{®yan and Williams 2010).
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Figure 4.4 Calculated and simulated C storage in the higtuti regions of North

America. The black bars of pareeare the ratios of calculated vegetation C corttettie

potential C storage defined by NPP and vegetatioesiZlence time in the 24 regions.

The gray bars are the TEM simulated. The blue brarthe@ indices of disturbance to

vegetation §=s/A) in the 24 regions. Pankelshows the relationship between the ratios of

calculated and simulated C content to the potewnéigétation C storage. Panelandd

are for soil C. Black bars are the calculated leygquation and Grey bars are simulated

by the TEM model. The blue bars are the indicessititbance to ecosystem (vegetation

and soil) C.
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Figure 4.5Simulated changes of the vegetation C storageeithtieal area (>45°N) of
North America in response to changes in disturbaegene.Panel a is the current
disturbance regime from Balshi et al. 2007 (thetfoa of vegetation C that is removed
by fires and harvests per year), b is the predidistlirbance regime in the last decade of
21% century (5.7 times of current disturbance indepfving Balshi et al. 2009). ¢ is the
current vegetation C storage, d is vegetation @gtin the last decade of*2dentury

with changes in disturbance only calculated by #ga#, and e is the C loss of

vegetation alone induced by changes in disturbesgienes.

We applied this model to analyze the possible \a&get C storage changes in the
high latitudes of North America by this model ir tlast decade of 2Tentury due to
changes in disturbance regime (Fig.4.5: a, b) basdtie simulated NPP and C residence
times by the TEM (McGuire et al. 2010). Around 1@®would be released at the 5.7
times of current disturbance index given NPP asdience time were constant (Fig. 4.5

c, d, and e), which was comparable with the sinedlgiredictions (Balshi et al. 2009).
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Figure 4.6 Ensemble analyses of changes in vegetation catiboage in the high
latitude regions of North America. Panel a shoves@hstock changes with disturbance
intensity at ambient NPP and residence time (dwledwith closed circles), increased
NPP (dotted line with open circles), decreasedleggie time (dashed line with open
triangles), or both (long-dashed line with closeangles). Panels b-d show the isometric
lines of vegetation C stock changes (Pg C) witmglea in NPP and disturbance intensity

at ambient (b), 10% reduced (c), and 20% reduckece&idence times.
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Considering the simultaneous changes in NPP aideres time, we explored
more possibilities of vegetation C storage chamgésis area with combined changes in
NPP and residence time. A 25% increase in NPP amutthbensate the C loss induced by
10 times increases in disturbance. A 25% incraa®iP with a 20% decrease in
residence time didn’t change the potential (equiliin) vegetation C storage, but the C
loss induced by disturbance was decreased, siedevler residence time reduced the
sensitivity of C storage to disturbance. Loweresddence time with constant NPP led to
more carbon loss (Fig. 4.6: a). This model enabketb analytically analyze C storage
changes with NPP, residence time, and disturbagiene. For the high latitude areas of
North America, each fold of current disturbancemnsity increase required 2% of
increase in NPP to keep C storage at current lexesidence times didn’t change (Fig.
4.6: b). Thus, 6 times of increases in disturbargeired 12% increase in NPP (Fig. 4.5:
b), which could happen with increases in tempeeatund fertilization of elevated GO
While if residence time decreased 10%, that aleqggired 12.5% increase in NPP for
maintaining current vegetation C stock. And, 6 sméincrease in disturbance required
additional 10% increase in NPP (Fig. 4.6: c). A 2886rease in residence time required
25% increase of NPP to keep vegetation C stoclragist level and any increases in
disturbance would induce decreases in C stock &-gd). Future climate change will
induce increases in mortality, decomposition rdiess, and more drought stress. So, the
chance of vegetation C pool to be a sustainingh€ isivery narrow when the three

factors change simultaneously.
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4.4 Discussion

This model is an integration of the temporal pattesf ecosystem C recovery and
the spatial heterogeneity of landscapes induceatidiyrbances, representing a
guantitative description of the dynamic equilibrigtates of ecosystem C dynamics at
large spatial scales with effects of disturbante® @nd Weng, 2011). It quantifies the
nonlinear relationships of ecosystem C storage ggthsystem internal properties and
disturbance regime, which are usually explored logehsimulations. The derivatives of
this model illustrate the different properties o$tGrage of an ecosystem in such dynamic
disequilibrium states with those at equilibriumtesaand thus provided an overarching
mathematical framework to quantitatively analyze plossibilities of ecosystem carbon
storage responses to changes in NPP, decompasitidality rates, and disturbance

regimes induced by changes in climate and distwdanthe future.

4.4.1 Model properties and derivatives

In this model, as shown by Eqn 5, NPP, decompasitaites, and disturbance
regimes define a multiple (3 or 4) dimensional gp@cdetermine ecosystem carbon
storage. For the vegetation C pool, it is a thieeedsional space. Changes of ecosystem
carbon depend on the relative changes of the traeables. Increases of disturbance can
be compensated linearly by increases in NPP. Deesda residence time and increases

in disturbance result in more C loss than any drieemm, but the effects are not additive
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since lowered residence time alleviated the effettisturbances. The carbon gain from
increased NPP can be offset by decreasing residenee
Egn 4.10 also indicates that the sensitivity ofsgstem C storage capacity to

disturbances is determined by the residence tirh#gedC pools affected by disturbances.
Disturbances have higher impacts on forests thagrasslands, since trees have longer
residence time and need more time to recover tprelisturbance states than grasses.
The recovery rate of carbon influx (i.e., NPP) affects the impact of disturbances on
carbon storage capacity. If disturbance occurs frequently (short MDI) so that carbon
influx does not have enough time to fully recovke actual carbon storage will be lower

than that estimated by this model (Fig. 4.2: c).

When the Eqn 4.10 is written a§[ X] = U -7 - , the disturbance regime

l+o-17,
can be represented by only one parameterhis parameter has multiple meanings. It
can be the fraction of C that is removed by disdades per time unit (e.g., year) in a
region and can also be the area that is burnedroested with the assumption that
disturbance severity is 1. The inversera$ the MDI of the equivalent disturbances with
severity 15X is the C efflux induced by disturbances that cetatts part of NPP or
increases C outflow (litter fall for biomass or érettrophic respiration for soil organic

matters). The decreases in C residence time irysiayss or net primary production

induced by disturbances can be quantified by tbfa

. The parameter can
+o-7,
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simplify and standardize the description of divedsturbances when evaluating their

effects on ecosystem C dynamics.
4.4.2 Applications

This model provides a unigue angle to the analylsiee data collected from
observational studies based on paradigm of dyndmeégjuilibrium, which is more close
to reality than that of equilibrium. Eqn 5 suggebtst ecosystem C storage capacity can
approach the potential leval ¢.) only when there are no disturbances (i.es as
approaches zero arapproaches infinite), which is unlikely in mosgi@ns of the Earth.

Therefore, there will be a mean growth rate of vaigen C pool (or net ecosystem

production) U 94
1+

(o=s/l\) when the whole region is actually carbon neutather
. ’Z'l

than zero in the paradigm of static equilibriumr Egample, the ecosystem C storage
will keep constant at large spatial scales whigertiean observed biomass growth rate is
100 g C it yr* for a forest with 600 g C thyr*of NPP, 20 yrs of biomass C residence
time, and a disturbance indez§ of 0.01, since the large amount of C removed by

occasionally happened disturbances counteractetbtiteiuous C accumulation with a

Lo : 0.01: 20 .
rate of 100 g C Ayrt (U -2 —600.——= =~ — 100(gCr? vyt ). This propert
gCrmyr( lto-1, 1+ 0.0t 20 (gCm yr ) property

demands an integrated assessment of carbon siaknigs at large spatial or temporal
scales with consideration of disturbance regimesesis at individual sites slowly

accumulate carbon most time while lose large ansoohit quickly when a disturbance
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event happens. Thus, the probability of observarpan uptake is high. Old growth
forests have been shown to be carbon sinks (Lustsstaal. 2008, Lewis et al. 2009)
likely because most forests take up carbon contislydetween disturbance events.

It also can improve the representation of ecosystates and processes for
modeling studies. Most global modeling analysesei@mple, are initialized with the
carbon pools equilibrated to historical climatead@@chimel et al. 1997, McGuire et al.
2001, Sitch et al. 2008). This may overestimatdrihi@l terrestrial C storage, leading to
misunderstanding on the mechanisms of terrestidlon sink. For example, C storage
will be overestimated by approximately 20% if disi@nce occurs, on average, once
every 40 years with a severity of 0.5 accordintht®e model. Lack of representation of
disturbances in models also results in overestonaif terrestrial carbon sequestration in
response to climate change, since the increaglisturbances can incur a large amount
of carbon lose (Schimel et al. 1997). Egn 4.10 jplesra way to reevaluate these model

predictions with information on disturbance regimes

4.4.3 Uncertainties

Our derivation is based on a few simplifying asstioms about disturbance
regimes and ecosystem processes to succinctlyildestynamics of C storage capacity
as affected by ecosystem carbon processes (flex and residence time) and
disturbance regimes (represented by frequency eretisy). These assumptions include

(1) no effects of disturbance on NPP and residénees, (2) independence of the
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fraction of carbon removed by a disturbance evemfcurrent carbon content of
biomass, and (3) representation of disturbanceviale by exponential distribution.
These assumptions define a dynamic equilibriumesygiTurner et al. 1993, Perry et al.
2002) at a large spatial scale, where ecosystermcatsub-grid can eventually recover
to their original states after disturbances. Theyazceptable if we only explore the
rough picture of C storage at large spatial or temalscales. For example, even for
stand-replacing disturbances (fires or harvedis)récovery period of NPP is only five to
ten years (Hicke et al. 2003, Hughes et al. 1999y &t al. 2003), which is very short
compared to the recovery of carbon stocks. The aggeement with simulations of TEM
also indicates current mainstream biogeochemicaeisaare employing the philosophy
of dynamic equilibrium.

Many studies have shown the assumptions of dynamuiititerium of a landscape
may not be true especially when disturbance isugatand ecosystems are undergoing
climate change (Turner et al. 1993, Johnstone @040). With the trends of climate
change, for example, ecosystem state shifts camggered by fires that initiate a
recovery process leading to the changes foresstijmnstone et al. 2010). Disturbances
of terrestrial ecosystems are diverse and thereaanplicated interactions among them
(Miao et al. 2009). Their impacts on ecosystemdgarmore complex than the
assumptions of this study. Our study provides aherark for disturbance modeling
with clear assumptions and tractable processethédtustudy should be conducted to

understand and model these complex facets.
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4.5 Conclusions

In conclusion, the model developed in this studyvates an analytical
description on the relationships between ecosystation storage and NPP, C residence
time, and disturbance intervals and severity. Thdehrepresents a disequilibrium
perspective for examining C storage dynamics intlaf impacts of disturbances and
improves our predictive understanding on regiondly@amics (Luo and Weng 2011). C
cycling at the scale of ecosystem is almost alvilaglynamic disequilibrium with most
ecosystems accumulating carbon at various stagesofery with intermittent
disturbances to release large amounts of carboa.régional or landscape scale at which
disturbances occur, carbon cycle is in dynamicléaiuim and carbon storage capacity
does not change over time when disturbance regiragégion does not vary over time.
Carbon cycle is in dynamic disequilibrium when th&urbance regime in the region
varies in response to global change. This disdauiln perspective is critical for scaling
of site-level observations to estimate regional gliethal carbon sink, for modeling
studies on carbon-climate feedbacks, and for dexfifjeld experiments and observation

networks.

4.6 Acknowledgements

This research was financially supported by thedefbif Science, Department of Energy,

Grants No.: DE-FG02-006ER64319 and through the Matlera Regional Center of the

132



National Institute for Climatic Change ResearcMathigan Technological University,
under Award Number DE-FC02-06ER64158, and by Nati@tience Foundation under

DBI 0850290, DEB 0840964, DEB 0743778 &S 0919466

133



Supplemental Materials

Table Al: Notations

Symbol Meaning Symbol Meaning
A Carbon transfer matrix X(t) Vector for carbon pools at tinte
B  Allocation vector of net primary n  The ratio of carbon transferred to
production (NPP) SOM from litter pool
r  Arandom variable representingthe 1  The mean disturbance interval (MDI)
occurrence of large-disturbances (1
for the occurrence, 0 for null)
s  The fraction of biomass removed by =  Disturbance carbon transfer matrix
a large-disturbance event (0~1)
Uo Reference NPP r1  Carbon residence time of biomass
U(t) NPP attimet 7o Carbon residence time of litter
X1 Biomass carbon pool 73 Carbon residence time of SOM
X,  Litter carbon pool e Ecosystem carbon residence time
X3 Soil organic matter (SOM) carbon T  Diagonal matrix for carbon residence

pool

times
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B: Mathematical Derivations

The carbon cycle model is described by the follgequation:

% = AT™X(t) + BU(1) (B1)

where X(t) is ecosystem carbon content at tim&is a 3 x 3 matrix representing carbon

-1 0 O
transfer among the three pool&y=| 1 -1 0 | andy is the ratio of carbon
0O n -1

transferred to the SOM pool from the litter pobis an 3 x 3 diagonal

matrix,T = diag(r). The diagonal elements afgr,, andzrs, which are the residence
times of the carbon in biomass, litter, and SOMpeetively.B is the allocation ratios of
carbon input to the three poolé], 0 O)' . U(t) is the carbon input (net primary
production, NPP) at time We assumed it was a constant in model simulatos

mathematical derivations.

Carbon storage capacity at the disturbances with severity is 1.0 (all biomass was
removed):

According to the Equation B1, the carbon conteriiomass with an initial value
of zero follows the following equation:
X,=Ur,(1-e"?) (B2)
where t is time.

Fore each disturbance cycle, the mean C contentaodisturbance intervdl can

be taken as the height of a rectangle with thetlelhi@nd the same area with that
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enclosed by the recovery cure (Supplemental Fi§drea). Thus, the mean carbon

content of biomassX avg in a disturbance cycle with intervél

. t
Ur,(1-e *)dt
_ D“ 1 _ oo (83)
Xl,avg_ T —U'l'l' 1—?'(1—8 )
Note, the interval is in distribution:
L o7 150
f(T;4)=12 o (B4)
0 T< (

The mean carbon content in an infinite time sesigls numerous disturbance events and
any kinds of interval can be calculated as the total area enclosedexgtiovery curves
divided by the sum of’s. Taking the probability density function of im@l T into

account, the mean carbon content is:

T — |1
j T-Ur,-|1-2L-(1-e™)|-=-e* dT
0 T A

E[ xl] = 1
0 1 T
jOT-;-eﬁ dT (B5)

A
A+t

Yr,

For the pools of litter and SOM, the changes atg their inputs. For a long period, the

whole ecosystem carbon content can be represented b
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E[X] =B X+ E) + E 4
gp A XD HX)

+ T

A+1, 7, ? T, T
:Url. +UZ'1-L-i-‘é}+UT1-L-E-T2-—1-U-T3

A+1; A+t 1) A+t 74 T, (B6)
=U @ +r,+75-7)

b +7,+75 77)14_2_1

=Ur, A

A+t

Carbon storage capacity at the disturbances with severity is less than 1.0 (paf
biomass was removed):

For each disturbance cycle, the carbon can beeativitto two parts: the legacy
carbon from the last rotation, the new carbon aedated from zero since the
disturbance event (see Supplemental Figure SZha)legacy carbon decomposes
exponentially X, ;4 = X - e''" wherexy ois the initial value of legacy carbon just after
a disturbance event); the new carbon accumulaliesving the equation

X,y = Uz, (1—€"7), the total carbon of biomass at titngince last disturbance is:

1,new
Xy = X0 e + Ur,(1- e'") (B7)
The mean carbon content of biomass in a disturbantagon i a9 with givenx; pand
disturbance intervar:

T - T
Xiavg = {J'O Ur,(1-e™)dt+ jo X, €7 d}/ T
] T ] T (B8)
=U .z—l.|:1_?l. (]__e n %|+ )&0.?1. (1_ en
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Sincexy o is determined by the previous disturbance everg,imdependent on the
interval of the next disturbance (here, the intelivassumed to bE). Thus, considering

all kinds ofT, the expectation of this rotation conditionedxggis:

T T

T 1o bgeen)| Le T [T g k@ @)t @
J’O Uz |1-2t.(1-e ).Z.e +J'0 .50.?.(_ ).;.

T
E[xll X.,o]: B 1 1
[T-2.e’dT (B9
)
A T
t)r = 1 )
f /1+2'1+X1'0 A+t
Then, the expectation o is:
E[X]=HE X| xdl
A T
=E . + . 1
bz A+1, Mo /1+rl] (B10)
T.
=U +E 1
O 7 %] A+7,

For solving the mean of o, we need to know the mean of the carbon contait ju
before disturbance happenX ;) (X;, = X o €"* + Ur,(1- €"™), wherex, o is the

initial value of that disturbance cycle) (see Seppéntal Figure S3: ¢ for the definition of

X1, X 1o, andxy o). Lett be the time that the disturbance happens sincashene. The

distribution oft is an exponential distribution.
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E[X,] = E[X, €]+ E[Ur,1-e"'™)]

i [T e tdte Lur, [ e di- Lug [ et et
= [XLO]ZLOE ‘e +I rlj'tzoe 7 rlLOe e

-E o _%t 1 t= _%t 1 =t ‘%‘

= [XLO]ELO et .e dt+ZUT1J-t=oe dt_IUQLoe e 4 dt

E[XLo] (B11)

—( :

_Elx,e]l Uz, ar
7 A1) aee

11 1
Uz, e oo o
—%)J-:O e’ n dt+%Ur1J-:0 e * dt

It indicates thaE[ X, ] = E[ X, ]

For eachX |, there is ax,, = 1-)- X ,. Thus,

- - 7, A
Xo=(1-9H X J=1-$ xo./7,+z'l+ ul./7,+z'j
1 (B12)

:>_ :1—S.U —_—
X = (=9 U, 1+sc, /2

Therefore, the expectation oX, (plant biomass) in disturbances with sevesignd

mean interval is:

A T
E[ X,] = Uz, - + —1
(%] ! A+1, E{)i’(] A+,
T
=Ur, - +(@-5s)-Ur, - 1
YA+, (1=9)-Un, A+sr, A+t

=U‘L'1-|: A Q-9 1 }

A+t A+sr, A+71

:Uz-l. 1 . 1+M.Tl
A+sr;

=Ur - 1 .{(/14_‘[1)./1}

A+sr,

(B13)
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And, for the expectation of ecosystem total car@n

E[X]I=HX]+EX + EX
Y, 4 +E[xl]-rz+ H X ‘net

'l+rl 7, T,
:Url. +UT1.L.i.rz+UT1.L._1.TZ._1.T7.T3
A+sr; A+s, 1, A+ 3, 17, T, (B14)
=U e +r,+75-17)
b +7,+75 77)1—1—82'1
=Ur,. A
A+sr;

According to the equation (B14), ecosystem carliorage capacity can be
estimated by its intrinsic propertidd ndz) and disturbance regimg énds). We also
simulated carbon storage capacities with seveligesnging from 0 to 1. The calculated
values agree with the simulated well (Fig. S4.@nd b). The mean of carbon content just
after disturbances events calculated by the equdi@ agree with the simulations well

(Fig. S4.2: c).

Disturbance severity is a random variable:

If severity €) is a random variable, say uniformly distributed@,1], then the mean
carbon content can be calculated as following.
As we have known, the expectationafandX,, is

7

E() = B X] = U+ B %]

+7, A+,

And, for eachX,, there is ax,, = (L-5)- X,,, where sis a RV. Thus,
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- T A
Elxo=HA-39] E XJ=(- E]}c‘»-{ %~ —+ U
+17, A+t
. (B15)
- E = 1— . Uz' S
(X == B9 U e
Therefore, the expectation ¥f is:
1
E[X]=Ur, ———
1] =Ur, 1+ E[9-7,/ 4
(B16)
A
=Ur, - ————
A+E[] 7
And, the expectation of total ecosystem carbon is:
E[X] = Uz #
= A+E[d7, (B17)

This equation indicates for disturbances with randatervals and random severity,
we should first calculate the expectations of disance intervalA) and severityE[9]),

and then calculate mean carbon content. The cartnatents calculated by this equation

(B17) agree with the simulations well (Fig. S4.2: d
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Figure S4.1 Diagrams for mathematical derivation
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Figure S4.2Comparison between the simulated and calculatdzbnastorage capacities

at disturbances
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0.25. Thus, the ecosystem carbon residence timedgtr,+73:1=40 years.
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CHAPTER 5 Conclusions and Perspectives

5.1 Conclusions

These studies showed that current ecosystem C mgdehemes, i.e., a
Farquhar model based canopy model simulating Ct itgpthe system and
compartmentalized C pool model simulating C allmegttransfer, and decomposition,
works well in simulating the short-term patternsobsystem C dynamics, but with high
uncertainties and sensitivities to some paramateisboundary conditions. Our study
(Chapter 2) showed that soil hydrologic propertiesld substantially change the effects
of water dynamics on C processes and their respdosgarming and elevated GO
How to correctly represent the sensitivities osthecological processes to such
conditions and parameters is an issue in modellolevent and can affect our
confidence on simulated results.

Data assimilation is an effective method to comlheinformation from model
and data and therefore improve model parametesizatnd accuracy of predictions.
However, once a model structure is given, optingparameters can only find out the
best agreement with observations within the spafeetl by the given model. As shown
by our data assimilation study (Chapter 3), the ehadth optimized parameters by data
assimilation approach can give a subset of sinmulatof the given model structure. Due

to the limitation of data, only short-term prediets can be improved while long-term
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predictions are still dependent on the model stimectwhich represents our prior
knowledge on ecosystem C dynamics.

These two studies indicate that improving our usi@erding of ecosystem
dynamics is central to ecosystem modeling stues.theoretical analysis on the C
storage capacity with effects of disturbances (@ra) illustrates that new theories and
paradigms for modeling ecosystems can fundamerthinge the way that ecosystems
are represented in models. This study is basebekrtowledge of temporal patterns of
biogeochemical cycles with ecosystem developmethidgnamic spatial patterns of
ecosystem structure of landscape ecology. It pegpas analytical model to represent
the relationships between ecosystem carbon staragdy®PP, C residence time, and
disturbance intervals and severity. The model sgts a disequilibrium perspective for
examining C storage dynamics in light of impactslisturbances and improves our
predictive understanding on regional C dynamico(aod Weng 2011). This
disequilibrium perspective is critical for scaliofjsite-level observations to estimate
regional and global carbon sink, for modeling stsdin carbon-climate feedbacks, and

for design of field experiments and observatiorwoeks.

5.2 Perspectives

Ecosystem C cycle modeling is still in its infatage. Current C cycle models are
based on the highly simplified representation gfr@cesses. Only biophysical and

biogeochemical processes are well representedo&mihesis controls C input;
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Allocation schemes determine where the C goes amddng time they will stay in the
system; decomposition processes release C batktsphere. Water, nutrients, and
environmental conditions affect ecosystems viadl@grocesses.

However, the overarching aim of organisms in ecesys is to survive, rather than
store C. Terrestrial plants use all available resesj such as water, carbon, light, and
nutrients, to build themselves and choose thediesegies for them to survive and
compete with their neighbors. They can respondtarenmental changes by biological,
ecological, and evolutionary processes (Parmes@)20 addition to biophysical and
biogeochemical processes. These behaviors canetiamgrocesses of the C cycle of
ecosystems when climate changes or disturbanceghagow to integrate these
biogeochemical and biophysical processes withirfrdmaework of ecological processes
and how to represent the interactions of plantseatommunity level in models are key

steps to improving ecosystem models.
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