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ABSTRACT 

Ecosystem models are a useful tool to explore ecological processes and their 

responses to climate change. The basic structures of current ecosystem C cycle models 

are similar and robust, but their uncertainties are high, especially when coupled with 

water and nutrient cycles and disturbance effects. In this dissertation, I studied three 

issues in ecosystem C cycle modeling: interactions between water and C processes, 

information contribution of theoretical basis (model structure) vs. observations (data), 

and ecosystem C storage capacity at disequilibrium state due to effects of disturbances. 

These three issues represent the basic theoretical problems in the development and 

application of ecosystem models: 1) how the representations of interactions among 

ecological processes affect the simulation of ecosystem C cycle? 2) Once a model is built 

up, how much information can be brought in by model calibration? 3) For large spatial C 

cycle modeling, how will the paradigm of ecosystem states affect our C cycle modeling? 

In the first study, we evaluated the effects of soil hydrological properties on the 

interactions of water and carbon dynamics of a grassland ecosystem in response to altered 

precipitation amount and frequency, increased temperature, elevated atmospheric CO2 

with changes in soil available water capacity (AWC). A process-based terrestrial 

ecosystem (TECO) model was used to simulate responses of soil moisture, evaporation, 

transpiration, runoff, net primary production (NPP), ecosystem respiration (Rh), and net 
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ecosystem production (NEP) to changes in precipitation amounts and intensity, 

temperature, and CO2 concentration along a soil texture gradient. Simulation results 

showed that soil AWC altered partitioning of precipitation among runoff, evaporation, 

and transpiration, and consequently regulated ecosystem responses to global 

environmental changes. Fractions of precipitation that were used for evaporation and 

transpiration increased with soil AWC but decreased for runoff. High AWC could greatly 

buffer water stress during long drought periods, particularly after a large rainfall event. 

NPP, Rh, and NEP usually increased with AWC under ambient and 50% increased 

precipitation scenarios but increased from 7% to 7.5% of AWC followed by declines 

under the halved precipitation amount. Warming and CO2 effects on soil moisture, 

evapotranspiration, and runoff were magnified by soil AWC. CO2 effect on NPP, Rh, and 

NEP increased with soil AWC. Our results indicate that variations in soil texture may be 

one of the major causes underlying variable responses of ecosystems to global changes 

observed from different experiments. These results also imply that the interactions 

between C and water processes can be some soil texture.  

In the second study, I evaluated the information contribution of model and 

observations to model predictions by a data assimilation approach. Eight sets of ten-year 

data (foliage, woody, and fine root biomass, litter fall, forest floor carbon (C), microbial 

C, soil C, and soil respiration) collected from Duke Forest were assimilated into a 

Terrestrial ECOsystem model (TECO) using a Monte Carlo Markov Chain approach. The 

relative information contribution was measured by the Shannon information index 
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calculated from probability density functions (PDF) of carbon pool sizes. Our results 

showed that the information contribution of the model to constrain carbon dynamics 

increased with time whereas the data contribution declined. The eight data sets 

contributed more than the model to constrain C dynamics in foliage and fine root pools 

over the 100-year forecasts. The model, however, contributed more than the data sets to 

constrain the litter, fast soil organic matter (SOM), and passive SOM pools. For the two 

major C pools, woody biomass and slow SOM, the model contributed less information in 

the first few decades and then more in the following decades than the data. The 

knowledge on relative information contributions of model vs. data is useful for model 

development, uncertainty analysis, future data collection, and evaluation of ecological 

forecasting. 

In the third study, I integrated the temporal patterns of C storage and spatial 

patterns of ecosystem states to develope a model to analytically describe relationships 

between ecosystem carbon storage and NPP, C residence time, and disturbance intervals 

and severity. The model represents a disequilibrium perspective for examining C storage 

dynamics in light of the impacts of disturbances and improves our predictive 

understanding of regional C dynamics. The carbon cycle at the scale of the ecosystem is 

almost always in dynamic disequilibrium with most ecosystems accumulating carbon at 

various stages of recovery with intermittent disturbances that release large amounts of 

carbon. This disequilibrium perspective is critical for scaling of site-level observations to 
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estimate regional and global carbon sinks, for modeling studies on carbon-climate 

feedbacks, and for design of field experiments and observation networks.  

These studies showed that current ecosystem C modeling protocols, i.e., a 

Farquhar model based canopy model simulating C input to the system and a 

compartmentalized C pool model simulating C allocation, transfer, and decomposition, 

work well in simulating the short-term patterns of ecosystem C dynamics, but have high 

uncertainties in simulating the interactions of multiple processes and are very sensitive to 

some parameters and boundary conditions. Data assimilation is an effective method to 

combine information from models and data and improve model parameterization and 

accuracy of predictions and reduce model uncertainties. However, once a model structure 

is given, optimizing parameters by data assimilation approaches can only find out the best 

agreement with observations within the space defined by the given model. The theoretical 

understanding of ecosystem dynamics is central to ecosystem modeling studies. As 

illustrated by our disturbance model (the third study), new theories and paradigms can 

fundamentally change the way in which ecosystems are represented in models. 

 

Keywords: global change, terrestrial ecosystems, carbon cycle, TECO model, available 

water capacity, soil moisture, data assimilation, information theory, disturbance, dynamic 

disequilibrium, Duke Forest FACE 

 



 1

CHAPTER 1 Ecosystem carbon cycle modeling: introduction 
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1.1 Introduction 

Terrestrial ecosystems are key the components of the Earth system. Terrestrial 

plants, as the fundamental component of terrestrial ecosystems, started to move to land 

385 million years ago (Stein et al. 2007), and gradually dominated the landscape. During 

the long history of evolution, they evolved trunks to better compete for light with their 

neighbors and huge root systems to absorb nutrients and water from the soil. In doing so, 

they stored a large amount of carbon (C) in their bodies. After plants die, this carbon was 

partly decomposed by microbes and partly turned into soil organic C, forming the largest 

organic C pool on land. In doing so, they lowered the CO2 concentration of the 

atmosphere and stored the C in terrestrial ecosystems. 

Terrestrial ecosystems have around 550 Pg C in vegetation, and two to three times 

this amount (1500-2300 Pg C) in soil, while the atmosphere stores around 800 Pg C with 

an increase rate of 3.2 Pg C yr-1. Photosynthesis assimilates 120 Pg C yr-1 from 

atmosphere while autotrophic and heterotrophic respirations release 117 Pg C yr-1 

(Houghton 2007). Thus, terrestrial ecosystems are a sink of atmospheric CO2. By 

changing their physiological and physical activities, ecosystems can regulate the 

atmospheric CO2 concentration by their biological processes, such as photosynthesis and 

decomposition, therefore affecting greenhouse gas concentration and land surface 

temperature (Fig. 1). Terrestrial ecosystems also control the interaction between the land 

surface and the atmosphere with their reflectance of solar radiation (albedo), and 
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properties of evapotranspiration (e.g. Bowen ratio) (Bonan et al. 2008). Environmental 

factors, such as temperature, precipitation, solar radiation, and soil properties can affect 

terrestrial ecosystems, leading to complicated positive and negative feedbacks in the 

Earth system (Field et al. 2007). 

 

 

Figure 1.1 The roles of terrestrial ecosystem (from Bonan et al. 2008) 

A: Energy budget; B: water balance; C: Carbon cycle; D: vegetation dynamics; E: land 

use change; F: Urbanization 
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Figure 1.2 Basic structure of an ecosystem model. A: photosynthesis model; B: soil 

water dynamics; C: plant growth model: D: soil C model 

 

Human activities have profoundly changed the Earth system by altering land cover 

types, atmospheric chemical components, and hydrological cycles (Vitousek et al. 1997). 

In the past century, the concentration of atmospheric CO2 has increased from 270 ppm to 

380 ppm. 50% of land cover was changed from natural vegetations to human use (Foley 

et al. 2005). Dams and irrigation changed the patterns of river runoff and 

evapotranspiration (Vitousek et al. 1997). As a result of the increases in atmospheric 
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[CO2], global surface temperature increased 0.74 ± 0.18 °C during the 20th century, 

which consequently induced changes in hydrologic cycles, leading to more extreme 

precipitation events (IPCC, 2007). These changes feedback to terrestrial ecosystems, and 

then result in more complicated negative and positive feedbacks between terrestrial 

ecosystems and climate, which may lead to environmental problems affecting human 

welfare. 

Ecosystem models play a fundamental role in synthesizing these feedbacks and 

explore the possibilities of ecosystems’ responses and feedbacks to those changes. 

Ecosystem models put the pieces of knowledge together and provide people predictive 

understanding on ecosystems or explore the possibilities of ecosystem changes in 

responses to climate change. An ecosystem model is a highly simplified representation of 

the complex real world, and usually designed for specific questions. Many models for 

exploring C cycle have been developed in past twenty years, e.g., CENTURY (Parton et 

al. 1987), TEM (McGuire et al. 1992), IBIS (Foley et al. 1996), LPJ (Sitch et al. 2003). 

And most of them share similar model structure. Photosynthetically fixed carbon, for 

example, is allocated to multiple plant and soil pools (VEMAP 1995, Kucharik et al. 

2000, Sitch et al. 2003). Photosynthesis is usually simulated using the Farquhar model 

(Farquhar et al. 1980) as regulated by light, CO2 concentration, temperature, and nutrients 

(e.g., nitrogen). Allocation of carbohydrates from photosynthesis to plant organs (i.e., 

leaves, stems, and roots) is often determined by fixed fractions or regulated by functional 

balance among multiple resources (Luo et al. 1994, Friedlingstein et al. 1999). Soil C is 
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usually compartmented into a couple of C pools, such as litter pools, soil fast and slow C 

pools (Fig. 2). Carbon transfers among pools are generally governed by pool size and 

specific transfer coefficients as affected by environmental variables (Luo et al. 2001).  

Model intercomparison and data-model comparison studies show tremendous 

variation among models for either short-term forecasts or long-term projections even if 

models are calibrated against historical and/or contemporary conditions (e.g., 

Friedlingstein et al. 2006, Sitch et al. 2008), although most biogeochemical models share 

a similar structure. High uncertainties of model projections generally result from 

differences in less understood processes, initial values, model parameterizations, and 

response functions that link those key carbon processes to environmental and biological 

variables. For example, using the observed soil carbon content as model initial values 

could lead to a higher carbon accumulation rate than the assumption of equilibrium state 

over 100-year simulations in a beech forest (Wutzler and Reichstein 2007). Knorr and 

Heimann (2001) illustrated that the uncertainties of key parameters were too large for 

reliable predictions of global net primary production (NPP). Burke et al. (2003) found the 

response functions that represent the sensitivities of litter decomposition to temperature 

differed dramatically after comparing eight widely used biogeochemical models. Water 

limitations to C processes, the coupling of nitrogen and C cycles, and effects of 

disturbances on ecosystems are represented in recently published models. But, our 

understanding of these processes is not well developed and incorporation of these 

processes based on arbitrary algorithms can lead high uncertainties in models. 
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In this chapter, I review the basic structure and processes of current ecosystem 

models of the C cycle, and how they deal with the interactions of C processes with water 

and nutrient cycles. I also discuss model parameterization, validation, and new 

approaches of data assimilation that currently are being used to improve models and 

evaluating uncertainties of parameters and model structure. 

1.2 Major processes of C cycle in ecosystem models 

An ecosystem is usually compartmentalized into a couple of plant, litter, and soil C 

pools in C cycle modeling (Fig. 2). C cycle is initiated at the assimilation of atmospheric 

CO2 by plant leaves by photosynthesis. The assimilated C is then allocated to plant C 

pools, such as leaves, steps, and roots, with around 50% of C respired by plants. Dead 

leaves, stems, and roots enter into litter pools. With decomposition of litter, part of the C 

in litter pools is respired by microbes, the rest becomes soil organic matter and compose 

soil C pools, which has long residence times and contain most C of terrestrial ecosystems. 

Soil organic matter is decomposed slowly, releasing CO2 to atmosphere as heterotrophic 

respiration. These processes can be represented by a first-order differential equation (Luo 

et al. 2003): 

 

0

( ) ( ) ( )

( 0)

d
X t ACX t BU t

dt
X t X

ξ = +

 = =

 (1.1) 

where U(t) is the photosynthetically fixed carbon and usually estimated by canopy 

photosynthetic models, B is a vector of partitioning coefficients of the photosynthetically 
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fixed carbon to non-woody biomass and woody biomass, X(t) is a vector of carbon pool 

sizes, X0 is a vector of initial values of the carbon pools, A and C are carbon transfer 

coefficients between plant, litter, and soil pools. ξ is an environmental scalar representing 

effects of temperature and moisture on the carbon transfer among pools.  

For a carbon cycle model as depicted in Fig. 1.2, the vector of allocation 

coefficients can be expanded to TbbbB )00000( 321= , where b1, b2, and b3 

are partitioning coefficients of photosynthetically fixed C into foliage, woody, and fine 

root pools, respectively. ( )TtxtxtxtX )(....),(),()( 821= is a 8×1 vector describing C 

pool sizes, A and C are 8×8 matrices describing transfer coefficients and given by: 

41 42 43

51 52 53

64 65 67 68

75 76

86 87

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 1

0 0 0 0 1 0

0 0 0 0 0 1

( )

f f f
A

f f f

f f f f

f f

f f

C diag c

− 
 − 
 −
 

− =  −
 

− 
 −
  − 

=

    

where fij is the transfer coefficients from pool j to pool i, diag(c) denotes the diagonal 

matrix with diagonal components given by elements of vector Tcccc ),...,,( 821= , and 

)8,...2,1(, =jc j represents transfer coefficients (i.e., exit rates of carbon) from the eight 

carbon pools )8,...2,1(, =jX j . The initial value vector can be expanded 

to ( )TxxxX )0(....),0(),0( 8210 = . 

1.2.1 Photosynthesis models 
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Photosynthesis at leaf level for C3 plants is usually simulated using Farquar model 

(Farquar 1980). The major processes of photosynthesis include the light reaction, 

carboxylation, and photosynthetic carbon reduction (Calvin cycle). Stomata aperture 

controls the rates of CO2 and water exchange between leaf and bulk air, and therefore 

photosynthesis rate. The complexity of a photosynthesis model depends on the aims of 

the study and available data. At regional or global scales, light use efficiency (LUE) is 

used to simulate photosynthesis (GPP), such as in CASA model, when remote sensing 

data is available. Photosynthesis is controlled by photosynthetically active radiation, 

temperature, water availability, VPD, and nitrogen in leaves.  

The Farquhar model calculates gross leaf CO2 assimilation rate (A, µmol CO2 m
-2 

s-1) as: 

dec RJJA −= ),min(  (1.2) 

where Jc is the rate of carboxylation with CO2 limitation, eJ  is the rate of light electron 

transport, and Rd is dark respiration. The leaf-level photosynthesis is determined by the 

one with the lowee rate of the two processes. The rate of carboxylation is calculated by 

the following equation. 






 ++

Γ−
=

o

x
Ci

i
mc

K
OKC

C
VJ

1

*  
(1.3) 

And, the light electron transport process (eJ ) is: 

( )*

*

222 24 Γ+⋅

Γ−
⋅

⋅+

⋅⋅
=

i

i

qm

mq
e C

C

IJ

JI
J

α

α
 (1.4) 
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where Ci is the leaf internal CO2 concentration (µmol CO2 mol-1), 
xO is oxygen 

concentration in the air (0.21 mol O2 mol-1), mV is the maximum carboxylation rate (µmol 

CO2 m
-2 s-1), *Γ  is CO2 compensation point (µmol CO2 mol-1), cK and oK are 

Michaelis-Menten constants for carboxylation and oxygenation, respectively, (µmol CO2 

mol-1), I is absorbed photosynthetically active radiation (PAR, µmol m-2 s-1), qα is 

quantum efficiency of photon capture (mol mol-1 photon), Jm is the maximum electron 

transport rate (µmol CO2 m
-2 s-1). The leaf internal CO2 concentration, Ci, is regulated by 

stomatal conductance( )sG  and related to leaf photosynthesis by: 

( )iasn CCGA −⋅=  (1.5) 

and 

( ) 







+⋅Γ−

⋅=

0
* 1

D

D
C

A
gG

i

ls
 

(1.6) 

where Ca is ambient CO2 concentration, lg  and 0D  (kPa) are empirical coefficients and 

D is vapor pressure deficit (kPa). The parameters, mV , *Γ , cK , oK , Jm, and Rd, are 

sensitive to temperature. The temperature sensitivities of these parameters can be 

expressed by Arrhenius equation (Farquhar et al. 1980) (Eqn 1.7).  

( )









⋅⋅

−⋅
⋅=

298

298
exp25

k

kp

TR

TE
PP  1.7 

where P is any one of the temperature sensitive parameters,
 
EP is the activation energy (J 

mol-1), R is universal gas constant (8.314 J K-1 mol-1), kT is canopy temperature in Kelvin 

(K), P25 is the rate at 25 °C.  
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When leaf photosynthesis is scaled up to the canopy level, the gradients of solar 

radiation, water vapor pressure, and nitrogen distribution within a canopy are considered. 

The penetration of solar radiation through canopies can be described by Beer’s law 

(Monsi and Saeki 1953) as: 

)exp(0 kLII −=  (1.8) 

where I is the radiation at leaf area index L, I0 is the solar radiation at the top of canopy, k 

is light extinction coefficient. Water vapor pressure is different for the leaves within a 

canopy. Canopies can slow down wind speed and decrease boundary layer conductance, 

leading to changes in the microclimate of leaves in canopies. The photosynthetic 

capability as related to nitrogen concentration of leaves differs with their positions in a 

canopy. Usually, nitrogen is distributed in proportion to the distribution of absorbed 

irradiance in canopy when there are no other limitations (Ryan et al. 2006). 

Many models have been developed to scale up photosynthesis from the leaf to the 

canopy level based on canopy structure and gradients of environmental factors. These 

models can be categorized into big-leaf (single layer) models, two-leaf models, and 

multi-layer models according to how canopy structure is represented and the 

environmental gradients are treated. The single-layer models take the whole canopy as 

one “big leaf”, by assuming all the leaves in a canopy are the same and have the same 

water conditions (i.e., the humidity of air in the canopy are the same). The integration of 

leaf photosynthesis only considers the gradient of solar radiation (Sellers et al. 1992). The 

photosynthesis rate (carbon assimilation rate) at canopy level is thus calculated by
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1 exp( )
c n

kL
A A

k

− −
=  (1.9) 

where Ac is canopy photosynthesis rate, An is net photosynthesis rate at leaf level.  

Multi-layer models consider the different properties of leaves and the gradients of 

solar radiation and microclimatic conditions in canopies by separating a canopy into 

many layers and calculating water and carbon fluxes at each layer according to its 

physiological properties and climatic conditions (Leuning et al. 1995). The distribution of 

nitrogen in canopies is optimized for maximizing photosynthesis according to the 

gradient of solar radiation. The “two-leaf” models simplify the multi-layer models by 

separating leaves into two classes, sunlit and shaded, thereby integrating photosynthesis 

in these two classes of leaves individually (De Pury and Farquhar 1997). For the leaves in 

a canopy, the shaded leaves have a linear response to radiation, while the sunlit leaves are 

often light saturated, and independent of irradiance, which allows averaging of solar 

radiation in sunlit and shaded leaves separately and therefore many numerical 

integrations can be solved analytically. The separation of sunlit and shade leaves is based 

on the structure of canopy and the angles of solar radiation (de Pury and Farquhar 1997).  

The single-layer models overestimate photosynthesis rate and transpiration. These 

biases are usually corrected by adding curvature factors or tuning parameters. 

Single-layer models are appropriate when the details of canopy structure and its 

microclimate can be ignored, such as when vegetation is taken as a lower boundary of the 

atmosphere in GCMs or when the system has a much larger scale than the vegetation 

itself. Multi-layer models have the flexibility to incorporate the details of canopy 
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environmental physiological variables, but their complexity and demands of calculations 

limit their application at large scales. “Two-leaf” models can be as accurate as multi-layer 

models, are are much simpler. They are widely used in current ecosystem and earth 

system models. 

1.2.2 Allocation of photosynthate to plant C pools 

The carbon assimilated through photosynthesis is allocated into leaves, wood, and 

roots. Allocation coefficients are usually fixed as vector B in Eqn (1.1) because there are 

not enough data for modeling the factors controlling allocation in biogeochemical models 

(Hirsch et al., 2004). The relative C ratios are calibrated to be reasonable by tuning the 

parameters of allocation ratios and turnover rates of the plant C pools.  

In dynamic global vegetation models (DGVMs), a couple of rules are employed to 

define the physiognomy of plant functional types (PFTs) and constrain C allocation 

among the three plant C pools. As in LPJ-DGVM (Sitch et al. 2003), four rules are used.  

The pipe model (Shinozaki et al. 1964) is used to determine the relative areas of plant 

leaves to sapwood cross sectional area.  

:la saLA k SA=  (1.10) 

The C investment to leaves and fine roots is regulated by the availability of soil water and 

nutrients. Water or nutrient- limited environments require more C to be allocated to fine 

root. This relationship is controlled by the following equation. 

max ( , )leaf rootC lr f N Cω=  (1.11) 
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The height of a tree and its stem diameter is represented by 

2
1

kH k D=  (1.12) 

The relationship between crown area and stem diameter is represented by the inversion of 

Reinecke’s rule (Zeide, 1993). 

4
3

kCA k D=  (1.13) 

where LA is the average individual leaf area (m2), SA (m2) is the sapwood cross area, and 

kla:sa is a constant. Cleaf and Croot are C content of leaves and fine roots, respectively. lrmax 

is the maximum leaf/root ratio. f(ω,N) is a scalar, which is a function of soil moisture (ω), 

and nitrogen availability (N). k1, k2, k3, and k4 are experimental parameters. 

1.2.3 Litter and soil carbon decomposition 

Litter pools contain withered leaves, dead woods and roots. Litter production is a 

process transferring carbon from plant tissues to soil carbon. It is simulated by intrinsic 

turnover rate of live plant carbon pools (e.g., foliage, woody, and fine roots), and 

regulated by environmental variables, such as temperature and soil moisture. Litter is 

accumulated and decomposed, and then transferred to soil as organic matter.  

The decomposition of litter and soil C releases C back to atmosphere as CO2 and 

transfers C among litter and soil C pools. A first order differential equation is used to 

model litter and soil C decomposition (Reichstein et al. 2000; Knorr et al. 2005; Giardina 

and Ryan 2000). 

)()(/)( tcTkdttdc ⋅−=  (1.14) 
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where c(t) is the carbon content at time t. k(T) is the turnover rate at temperature T.  

The temperature sensitivity of soil organic matter (SOM) is important because it 

determine the feedbacks between terrestrial C cycling and climate change. There is no 

consensus whether the temperature sensitivity differs between labile and recalcitrant C 

(e.g. Giardina and Ryan 2000; Davidson et al. 2000; Knorr et al. 2005; Fang et al. 2005). 

Soil incubation is a usual way to examine the dynamics of soil carbon decompositions at 

different temperatures. The temperature sensitivity of decomposition (k(T)) can be 

estimated in many ways. Usually it is represented by Q10, which is the factor by which 

the decomposition rate increases with a 10 °K warming. The Q10 equation is as following 

(Reichstein et al. 2000, Fang et al. 2005, Fierer et al. 2005, Holland et al. 2000) 

10
10( )

refT T

refk T k Q
−

=  (1.15) 

where, T is temperature. 

The temperature sensitivity (Q10) is usually calculated by the following equation 

(Reichstein et al. 2000; Fissore et al. 2009): 










−= cw TT
cw RRQ

10

10 )/(  
(1.16) 

where, Rw and Rc are respiration rates at a warmer temperature (Tw) and colder one (Tc), 

respectively. In this equation, it is assumed that carbon content and quality of the 

incubated samples at the two temperature levels are the same over time. 

The respiration rates measured from the incubated samples at different temperature 

levels are also fitted to an exponential model (Fang et al. 2005; Fierer et al. 2005): 
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kT
ref eRTR ⋅=)(  (1.17) 

Then, Q10 is calculated as: 

keQ 10
10 =  (1.18) 

The kinetic equation (Palmer et al. 1996; Knorr et al. 2005; Fissore et al. 2009) is 

more realistic in representing the temperature sensitivity of decomposition. 

)exp()(
RT

E
ATk

−
⋅=  (1.19) 

where, E is the activation energy, R the universal gas constant, T is temperature, and A is 

the theoretical decay rate at E=0. According to this equation, Q10 is 









+

−⋅= )
10

11
(exp10 TTR

E
Q  (1.20) 

Thus, the value of Q10 in the kinetic equation is dependent on the quality of soil 

organic matter (SOM) (represented by its activation energy E) and temperature (T). SOM 

with low quality has a high Q10 because of its high E and the value of Q10 is also 

inversely related to the temperature at which it is measured. 

Soil carbon is classified according to its turnover time: fast, slow , and passive C 

pools. Three or four carbon pools are usually classified depending on data and the 

questions addressed. The CENTRURY model has three soil C pools (Parton et al., 1986), 

while the Roth-C model has four (Jenkinson, 1990). It is well established that SOM 

should be classified into at least two pools, labile and recalcitrant carbon pools (Kätterer 

et al. 1998; Davidson and Janssens 2006). Using multiple carbon pools can avoid the 
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assumption that the soil carbon content and quality at different temperature levels are the 

same at measurement time t.  

 

Table 1.1 Governing functions in ecosystem models 

Name Equation Ecosystem processes 
Resource limited rates ,...),,( 321 JJJMinJ =  Resource limited ecological 

processes, e.g., 
photosynthesis, plant 
growth, evapotranspiration, 
etc.  

First-order differential 
equation 

)()(/)( tcTkdttdc ⋅−=  Decomposition of soil C 
pools 

Piecewise function )33.0,1min( WJ =  Responses to limited 
resources 

Michaelis-Menten kinetics 

mi

i
cc KC

C
VV

+
= max  

Photosynthesis 

Arrhenius equation 
)exp()(

RT

E
ATk

−
⋅=  

Temperature sensitivity of 
enzymatic responses 

Richards equation 
1/(1 )t kW A be τ−= −  

Plant growth or ecosystem 
recovery 

Power equation bF aM=  
Metabolic rates, functional 
rates and biomass 

 

Overall, current ecosystem models have quite similar model structures because 

they are simulating the same system. A handful of equations are repeatedly used in 

simulating ecosystem processes (Table 1.1). For example, ,...),,( 321 JJJMinJ =  is used 

to simulate multi-resource limited processes such as photosynthesis, rates of 

multi-element biogeochemical cycles. The Michaelis-Menten kinetics equation is used to 

represent enzymatic reactions, which can be saturated by substrates. The Arrhenius 
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equation is used to simulate biological responses to temperature. Richards and logistic 

equations are used to represent temporal development of C storage and fluxes. These 

equations represent the basic principles of ecological and biological responses to 

environmental factors. 

1.3 Key issues in ecosystem C cycle modeling 

Though the basic principles have been well established and accepted in ecosystem C 

cycle modeling, there are still many problems in modeling ecosystem C processes when 

considering the coupling with other element cycles, model calibration and validation, and 

disturbance effects modeling. We chose one problem from each one of these three issues 

to explore how they happen and the possible solutions. 

1.3.1 Interactions between carbon and water dynamics at different soil conditions 

Water conditions have profound effects on ecosystem C cycle by affecting 

photosynthesis, allocation of assimilated C, plant mortality, and plant community 

structure. Most models use vapor pressure deficit (VPD) or soil moisture index to limit 

the rate of photosynthesis and thus indirectly affect C processes following 

photosynthesis. Plant-water interactions are not well represented in current ecosystem 

models since ecosystem responses to water are diverse and there are no general equations 

to describe those relationships (Katul et al. 2007).  
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Soil stores precipitation water for plant use over time and regulates partitioning of 

precipitation between alternative outflows such as runoff, evaporation, and transpiration 

(Rodriguez-Iturbe and Porporato, 2004). The capability of soil to store water is mainly 

determined by soil texture and quantified by a soil moisture release curve. Two points of 

the soil moisture release curve are particularly important: field capacity and permanent 

wilting point. The difference between field capacity and wilting point defines available 

water capacity (AWC), the amount of water that is available for plants.  

Soil hydrological properties likely regulate ecosystem responses to global change.  

General circulation models forecast a higher frequency of extreme rainfall events, a lower 

frequency of rainfall days, and longer intervening dry periods (Easterling et al., 2000). 

Global warming and elevation of atmospheric [CO2] also alter ecosystem water 

availability. Warming usually induces drought by increasing evapotranspiration (Wan et 

al., 2002), leading to higher possibility of drought stress to ecosystems (Harte et al., 

1995). Elevated CO2 reduces leaf stomatal conductance, increases soil moisture, and 

decreases water stress for plant growth (Knapp et al., 1993; Owensby et al., 1999; 

Morgan et al., 2004; Moore and Field, 2006). However, the role of soil hydrological 

properties in regulating ecosystem responses to climate warming and elevated CO2 via 

soil water dynamics has not been carefully examined.  
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1.3.2 Data assimilation approach to verify information contribution of ecosystem 

models 

To improve models for accurate projections and representations of ecosystem 

processes, data assimilation approaches have recently been developed in ecology to 

inform initial conditions, constrain parameters, evaluate alternative response functions, 

and assess model uncertainties (Raupach et al. 2005, Williams et al. 2009). Most data 

assimilation studies focused on estimation of fast-response parameters, i.e., 

photosynthesis, respiration and evapotranspiration with short-term data sets (e.g., Knorr 

and Kattge 2005, Wang et al. 2007, Wu et al. 2009, and Braswell et al. 2005) A few data 

assimilation studies have been conducted to constrain long-term processes and 

parameters with simplified carbon cycle models (e.g., Luo et al. 2003, Xu et al. 2006, 

Williams et al. 2005, and Fox et al. 2009). However, since biogeochemical models are 

often used to evaluate ecosystem responses to climate changes at decadal and century 

time scales (e.g., Fung et al. 2005, Friedlingstein et al. 2006, Jones et al. 2006), one key 

question that has not been addressed is how much improvement data assimilation can 

make for short- vs. long-term forecasts of ecosystem carbon sequestration. 

1.3.3 Disturbance effects on C cycles 

Human activities have exerted strong influences on ecosystems by starting or 

suppressing natural fire, changing land use, or harvesting. These activities have changed 

the land surface deeply, altered ecosystem states and brought many environmental 
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problems, which affected human welfare and living conditions. For evaluating the effects 

of human activities on ecosystems, and developing better management approaches, many 

studies have been conducted to reveal the processes and mechanisms of ecosystem 

responses to anthropogenic disturbances and management. Models provide a platform to 

synthesize known ecological mechanisms and available data and models also work well 

in extrapolating our understanding of ecosystems and disturbances at longer time scales 

and broader spatial extents. Simulation models also enable us to evaluate complicated 

interactions among the processes of ecosystems (Burke et al. 2003).  

Modeling approaches have been widely used to analyze mechanisms of ecological 

responses to disturbances, evaluate effects of management on disturbances, and estimate 

current ecosystem states by multiple datasets. Wutzler and Reichstein (2007) simulated 

soil carbon dynamics and carbon accumulation when soil is apart from equilibrium by 

Yasso model (Liski et al., 2005). They showed that carbon storage capacity of disturbed 

forest soils was potentially much higher if current soil carbon was not assumed to be in 

equilibrium state. This study showed the importance of informing terrestrial ecosystem 

initial states in evaluating the capacity of ecosystem carbon storage. Balshi et al. (2007) 

used the TEM model to explore the roles of historical fire in carbon dynamics in the 

pan-boreal region. Their analysis indicated that fire played an important role in 

interannual and decadal scale variation of source/sink relationships of northern terrestrial 

ecosystems and also suggested that it was important to consider changes in climate and 

fire disturbance in studying effects of atmospheric CO2. They pointed out that there are 
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substantial uncertainties in the effects of fire on carbon storage in simulations. The 

Biome-BGC model was used to produce a carbon budget for the forested region of 

Oregon, and to determine the relative influence of differences in climate and disturbance 

among the ecoregions on carbon stocks and fluxes (Law et al., 2004). An ecosystem 

demography model was used to quantify the contributions of disturbance history, CO2 

fertilization and climate variability to the past, current, and future terrestrial carbon fluxes 

in the Eastern United States (Albani, et al., 2006). It was found that tropical and 

temperate forests are carbon sink. However, it is not clear that if it is due to increases in 

atmospheric CO2 concentration or the recovery from historic disturbances.  

These modeling efforts to link specific disturbance events with ecosystem processes 

to characterize and project ecosystem C dynamics have been conducted to reveal the 

mechanisms by which disturbances affect C processes and possible changes in C 

dynamics in the future. Models are used to count these effects and/or extrapolate them to 

a large spatial or temporal scale. Prescribed fire events and effects on ecosystems are 

needed. We still lack a macroscopic equation to describe effects of disturbances on 

ecosystem C processes. 

1.4 Studies conducted in this dissertation 

Three studies were conducted in this dissertation to explore the problems of 

representation of ecological processes, how information of observed data and model 

reasoning were synthesized in a data assimilation approach, and how disturbance affect 
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ecosystem C storage at large spatial scales. In the first study (Chapter 2), I used a 

comprehensive ecosystem model of C and water processes to explore the roles of soil 

water dynamics in ecosystem response to warming and elevated CO2 with different soil 

conditions. In the second study (Chapter 3), I used a highly simplified C-pool model 

(eight C pools) to quantify model uncertainty and information contribution to model 

predictions by model and data with a data assimilation approach. In the third study 

(Chapter 4), I developed a stochastic method to represent disturbance effects on 

ecosystems and their C storage, which can improve our predictive understanding of C 

dynamics with changes in disturbance regime. These studies improve our insights on the 

interactions of ecosystem processes and model validation, and highlight the importance 

of new theories in ecosystem modeling.  
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CHAPTER 2 Soil hydrological properties regulate grassland ecosystem 

responses to multifactor global change: a modeling analysis1 

 

                                                           
1This part has been published in Journal of Geophysical Research – Biogeosciences doi:10.1029/2007JG000539 
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Abstract:  

We conducted a modeling study to evaluate how soil hydrological properties 

regulate grassland ecosystem water and carbon dynamics in response to altered 

precipitation amount and frequency, increased temperature, elevated atmospheric [CO2] 

with changes in soil available water capacity (AWC). In this study, we used a 

process-based terrestrial ecosystem (TECO) model, which was calibrated against data 

from two experiments with warming and clipping or doubled precipitation in Great 

Plains.  The model was used to simulate responses of soil moisture, evaporation, 

transpiration, runoff, net primary production (NPP), ecosystem respiration (Rh), and net 

ecosystem production (NEP) to changes in precipitation amounts and intensity, 

temperature, and CO2 concentration along a soil texture gradient (sand, sandy loam, 

loam, silt loam, and clay loam). Simulation results showed that soil AWC altered 

partitioning of precipitation among runoff, evaporation, and transpiration, and 

consequently regulated ecosystem responses to global environmental changes. Fractions 

of precipitation that were used for evaporation and transpiration increased with soil AWC 

but decreased for runoff. High AWC could greatly buffer water stress during long 

drought periods, particularly after a large rainfall event. NPP, Rh, and NEP usually 

increased with AWC under ambient and 50% increased precipitation scenarios but 

increased from 7% to 7.5% of AWC followed by declines under the halved precipitation 

amount. Warming and CO2 effects on soil moisture, evapotranspiration, and runoff were 
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magnified by soil AWC.  Regulatory patterns of AWC on responses of NPP, Rh, and 

NEP to warming were complex. In general, CO2 effect on NPP, Rh, and NEP increased 

with soil AWC. Our results indicate that variations in soil texture may be one of the 

major causes underlying variable responses of ecosystems to global changes observed 

from different experiments.  

 

Keywords: global change, grassland ecosystems, available water capacity, soil moisture, 

TECO model 

 

2.1 Introduction: 

Increased atmospheric concentration of carbon dioxide ([CO2]) has resulted in 

increase in global surface temperature and altered precipitation regimes (IPCC, 2001). 

Many experimental and modeling studies have shown that terrestrial ecosystems have 

diverse responses to climate change. Experimental warming in a range of 0.3~6.0°C, for 

example, significantly increased soil respiration rates by 20% and plant productivity by 

19% with considerable variation among individual sites (Rustad et al., 2001). 

Meta-analyses of data published in the literature about ecosystems responses to elevated 

[CO2] reveals a wide range of responses to increases in atmospheric [CO2] (Jastrow et al., 

2005; Luo et al. 2006), from no biomass responses in alpine grasslands (Körner et al., 

1997) and in the sub-humid tall grass prairie for wet years (Owensby et al., 1999), to 
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consistent and substantial production responses in semi-arid shortgrass steppe (Morgan et 

al., 2004). How to explain the variations in observed terrestrial ecosystem responses to 

climate change has been a great challenge in the research community.  

Various ecosystem responses to global change may be partially caused by soil 

hydrological properties for at least two reasons. First, soil water availability strongly 

regulates plant growth and primary productivity for most terrestrial ecosystems, 

particularly in arid and semi-arid regions (Schulze et al., 1987). Second, all global change 

factors, such as climate warming, rising atmospheric CO2 concentration, and altered 

precipitation intensity and frequency, induce changes in soil water availability (Niklaus et 

al., 1998; Wan et al., 2002) and, therefore, indirectly affect plant and ecosystem 

processes (Saleska et al., 1999; Shaver et al., 2000; Morgan et al., 2004; Luo, 2007). 

However, how soil hydrological properties regulate ecosystem responses to global 

change factors, to the best of our knowledge, has not been well examined.   

Soil stores precipitation water for plant use over time and regulates partitioning of 

precipitation between alternative outflows such as runoff, evaporation, and transpiration 

(Rodriguez-Iturbe and Porporato, 2004). The capability of soil to store water is mainly 

determined by soil texture and quantified by soil moisture release curve. Two points of 

the soil moisture release curve are particularly important: field capacity and permanent 

wilting point. The difference between field capacity and wilting point defines available 

water capacity (AWC), the amount of water that is available for plants. Soil texture varies 

greatly over spatial scales (Miller and White, 1998). In the Northern Territory, Australia, 
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for example, along the precipitation gradient from north to south, predominant soils in the 

wetter end of a precipitation gradient are loams and sands, and clay soils are more 

extensive in the drier sectors of the gradient (Williams et al., 1996). At a local scale, soil 

texture varies dramatically with landform (Rosenbloom et al., 2001). Variation in soil 

texture creates diverse soil moisture environments in an area even with the same amount 

of precipitation. In dry regions, for example, soil evaporation is lower in sandy soils than 

that in loamy soils (Buckman and Brady, 1960).  

This diversity in soil hydrologic properties and water environments results in 

considerably diverse plant production and ecosystem function (McAuliffe, 2003). Among 

the most noticeable hypotheses is the inverse-texture hypothesis (ITH) by Noy-Meir 

(1973) that production is greater on coarse-texture soils than that on fine-texture soils in 

dry regions because the water availability will be high at coarse soil in dry regions. The 

hypothesis has been supported by many studies (e.g. Sala, 1988; Lane et al., 1998; 

Epstein et al., 1997). In the central grassland region of the United States, sandy soil with 

low AWC is more productive than loamy soil with high AWC when annual precipitation 

is less than 370 mm.  However, sandy soil is less productive than loamy soil when 

precipitation is more than 370 mm according to the observations of central grassland 

region of the United States (Sala et al., 1988).  

Soil hydrological properties also likely regulate ecosystem responses to global 

change.  General circulation models forecast a higher frequency of extreme rainfall 

events, a lower frequency of rainfall days, and longer intervening dry periods (Easterling 
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et al., 2000). It is well known that changes in precipitation directly alter soil water content 

and dynamics. An experimental study has demonstrated that increased temporal 

variability in precipitation and soil moisture increased plant water stress and reduced 

plant productivity (Knapp et al., 2002).  It is not clear whether this experimental 

conclusion from the Konza prairie reserve is general, regardless of variations in soil 

hydrological properties and climate scenarios.   

Global warming and elevation of atmospheric [CO2] also alter ecosystem water 

availability. Warming usually induces drought by increasing evapotranspiration (Wan et 

al., 2002), leading to higher possibility of drought stress to ecosystems (Harte et al., 

1995). Elevated CO2 reduces leaf stomatal conductance, increases soil moisture, and 

decreases water stress for plant growth (Knapp et al., 1993; Owensby et al., 1999; 

Morgan et al., 2004; Moore and Field, 2006). However, the role of soil hydrological 

properties in regulating ecosystem responses to climate warming and elevated [CO2] has 

not been carefully examined. To understand how soil hydrological properties regulate 

ecosystem responses to climate change, we have to examine inputs, storages and losses of 

water (Lauenroth and Bradford, 2006). 

Grassland ecosystems are one of the most widespread vegetation types worldwide, 

covering nearly 1/5 of the world’s land surface where soil and climatic conditions are 

diverse (Parton et al., 1995). Many experiments have shown rapid and diverse responses 

of grasslands to changes in temperature, water, and atmospheric [CO2] (Zavaleta et al., 

2003; Luo, 2007). It is necessary to use wide soil textures and multiple combinations of 
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climatic scenarios to explore the possible the possible mechanisms of ecosystem 

responses. In this paper, we conducted a modeling study to evaluate how soil texture 

regulates ecosystem water and carbon dynamics in response to altered precipitation 

amount and frequency, climate warming, elevated atmospheric [CO2] with its 

hydrological properties. We used a process-based ecosystem model to explore soil water 

dynamics and carbon processes in five soil texture types. Our modeling study mainly 

addressed the following two questions. First, how does soil texture regulate partitioning 

of precipitation among runoff, evaporation, and transpiration? Second, how does soil 

texture regulate ecosystem responses to changes in precipitation frequency and amount, 

warming, and elevated atmospheric [CO2]?  

 

2.2 Material and method: 

2.2.1 The Terrestrial ECOsystem (TECO) model 

The TECO model has evolved from its precursor model TCS (Luo and Reynolds, 

1999). It is a process-based ecosystem model and designed to examine critical processes 

in regulating interactive responses of plants and ecosystems to elevated CO2, warming, 

altered precipitation. The detailed description of the TECO model was provided in the 

appendix. Here is its brief description.  
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Figure 2.1 Schematic presentation of TECO model. A. Canopy model; B. Soil water 

dynamics model; C. Plant growth model; D. Carbon transfer model. Rectangles represent 

the carbon pools. Soil is stratified into three layers. Ra: autotrophic respiration. Rh: 

heterotrophic respiration, NSC: non-structure carbohydrate.  

 

TECO has four major components: canopy photosynthesis sub-model, soil water 

dynamic sub-model, plant growth (allocation and phenology) sub-model, soil carbon 

transfer sub-model (Fig. 2.1). Canopy photosynthesis sub-model and soil water dynamic 

sub-model run at the hourly step. The plant growth model and soil carbon model run at 

daily step. 
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The canopy sub-model is a multi-layer process-based model which mainly evolved 

from the model developed by Wang and Leuning (1998). It simulates radiation 

transmission in the canopy based on Beer’s law. For each layer, foliage is divided into 

sunlit and shaded leaves. Leaf photosynthesis is estimated based on the Farquhar 

photosynthesis model (Farquhar et al., 1980) and a conductance model proposed by Ball 

et al. (1987). The soil water dynamic sub-model stratifies soil into ten layers. The 

thickness of the first layer is 10 cm. And, the other 9 layers are 20 cm.  Soil water 

content of these layers is determined by mass balance between water influx and efflux.  

The water influx is precipitation for the surface layer and percolation for deeper layers.  

The water efflux includes evaporation, transpiration, and runoff. Evaporation rate is 

mainly controlled by the water content of the first soil layer and evaporative demand of 

atmosphere. Transpiration changes the water content of the layers where roots reach. 

 Plant growth sub-model simulates carbon allocation and phenology following 

ALPHAPHA model (Luo et al., 1995; Denison and Loomis, 1989) and CTEM (Arora and 

Boer, 2005), respectively. Allocation of assimilated carbon among the leaves, stems, and 

roots depends on their growth rates, and varies with phenology. Phenology is represented 

by annual variation of leaf area index (LAI). Leaf onset is initiated by growing degree 

days (GDD). Leaf fall is induced by low temperature and soil drought. When LAI is 

below a certain level (LAI<0.1), the end of growing season comes. Rooting depth and 

root vertical distribution define the soil volume from which plants could potentially 

extract water. Most of the grass roots distribute in the soil layers less than 70 cm depth 
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and the distribution of roots vary little with soil texture and soil moisture profiles 

(Jackson et al., 1996; Nippert and Knapp, 2007; Singh et al., 1998). Based on patterns 

illustrated by the experimental data, maximum rooting depth was assumed to be 70 cm, 

consequently, the maximum rooting depth to the fourth soil layer (50~70 cm). Root 

vertical distribution was dynamical, which varied with root growth and death in every 

soil layer. The initial ratios of roots in the four soil layers were set as 40% (0~10 cm), 

40% (10~30 cm), 15% (30~50 cm), and 5% (50~70 cm). The variations were limited 

below 20% of the initial ratios. 

Carbon transfer sub-model considers the transfer of carbon from roots and litters to 

soil and decomposition rates in soil and litter pools (Luo and Reynolds, 1999; Barrett, 

2002). In this sub-model, a soil profile is divided into three layers with carbon movement 

from upper to lower layers. Carbon inputs to the soil from plant residues are partitioned 

into these three layers.  

2.2.3 Model calibration 

The TECO model was calibrated against the measured data from the field site of the 

Kessler Farm Field Laboratory of University of Oklahoma, which is located at the Great 

Plains Apiaries in McClain County, Oklahoma (34o59’ N, 97o31’ W), approximately 40 

km southwest of the Norman campus of the University of Oklahoma, USA.  It is an 

upland tallgrass prairie dominated mainly by four C4 grasses.  A silt loam soil in the 

grassland includes 35.3% sand, 55.0% silt, and 9.7% clay. The soil belongs to part of the 
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Nsh-Lucien complex with high water holding capacity (around 37%) and a deep, 

moderately penetrable root zone (Zhou et al., 2007). The measured data included soil 

respiration, soil moisture, above ground and below ground biomass during 2000~2005.  

The model was driven by the meteorological data from the nearest meteorological station, 

the MESONET station of Washington, Oklahoma. The soil texture was assigned a field 

capacity of 37% and a wilting point of 10%. Thus, the available water capacity is 27%. 

The model was run for 1200 years to reach equilibrium state. And then, the simulated 

daily soil moisture, soil respiration, and aboveground biomass from 01/01/2000 to 

12/31/2005 were output and used to calibrate against the observed data. 

Model predictions and observations were contrasted with a number of statistical 

approaches following Hanson et al. (2004). Linear regression slopes, intercepts, and R2 

outputs were provided as a common initial comparison between observations and 

predictions. Relative bias (RB) and mean absolute bias (ABS) were used to measure the 

magnitude of bias and the deviation from the observed values, respectively, which were 

calculated by the following equations. 

ˆ( )
100i i

i

y y
RB

y

−
= ×∑

∑
  (2.1) 

ˆi iy y
ABS

n

−
= ∑      (2.2) 

where, ˆiy  is simulated value and iy  is measured value. 
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2.2.4 Scenarios 
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Figure 2.2 Scenarios of precipitation intensity and frequency. a. ambient precipitation 

(1.0 P); b. precipitation with high intensity (the neighboring 6 times precipitation events 

were merged into one precipitation) (1.0 P); c. halved precipitation with ambient 

frequency (0.5P); d. halved precipitation with high intensity (0.5 P); e. one and one half 

precipitation with ambient intensity (1.5 P); f. one and one half precipitation with high 

intensity (1.5 P) 

 

The climatic scenarios were set according to current meteorological data, which 

included the records of temperature, precipitation, solar radiation, soil temperature, and 

relative humidity. According to the data, the mean annual precipitation was 804 mm 



 36

during 2000~2005. The mean number of the days with precipitation in a year was 95. The 

precipitation from April to October was 582 mm, 72% of the annual precipitation. The 

highest daily precipitation was 76.7 mm, occurred on Aug. 30th, 2003. Most of the 

precipitation events were below 10 mm (413 of 568 precipitation events in the six years). 

The daily precipitation that was above 50 mm only occurred 8 times in the six years. The 

mean temperature was 16 °C. The highest mean daily temperature was 32 °C, and the 

lowest mean daily temperature was -9.9 °C in these 6 years.  

The meteorological data of 2002 were used as the ambient climatic data. In this year, 

the total precipitation was 854.5 mm and there were 89 rainfall days, which were treated 

as 89 rainfall events. The mean precipitation per rainfall event of ambient intensity was 

9.6mm. The mean length of intervals between rainfall events was 5 days. The 

precipitation regime in 2002 was denoted as precipitation with ambient intensity. The 

scenario of precipitation with high intensity was achieved by merging the neighboring 6 

times rainfall events into one. By doing so, the 89 rainfall events were merged to 15 

rainfall events. Mean precipitation intensity was 56.9 mm and mean length of intervals 

between rainfall events increased to 24 days. Based on the frequency of precipitation, we 

set another 2 precipitation amount levels by timing 0.5 and 1.5 for every rainfall events. 

Thus, we obtained 3 precipitation amount levels: ambient (854.5mm·yr-1, denoted as 

1.0P), halved (427 mm·yr-1, 0.5 P), and one and a half (1283 mm·yr-1, 1.5 P) at ambient 

frequency and high intensity respectively (Fig.2.2).  The mean temperature of 2002 was 

15.4 °C.  The temperature scenario was achieved by adding 2°C to daily temperatures. 
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The ambient atmospheric CO2 concentration ([CO2]) was assumed to be 360 ppm 

according published literatures (IPCC, 2001). Thus, the doubled [CO2] was 720 ppm. 

 

Table 2.1 Field capacities, wilting points, and available water capacities of five soil 

texture types.  

Soil texture Sand Sandy 

Loam 

Loam Silt Loam Clay Loam 

Field Capacity (%) 10 15 25 35 45 

Wilting Point (%) 5 7.5 10 12 15 

Available water capacity 

(%) 

5 7.5 15 23 30 

 

Grasslands have diverse soil texture types. In Central Grassland region of the U.S., 

the soil texture ranged from sand, sandy loam, to silt loam and silt clay loam and soil 

water holding capacity ranged from 0.062 to 0.33 g water/g soil (Lane et al., 1998). We 

assigned five soil texture types to cover the whole range in nature. These soil texture 

types were sand, sandy loam, loam, silt loam, and clay loam with field capacities ranging 

from10%to 45% (volumetric water content) and wilting point from 5% to 15%. So, the 

available water capacities (AWC) for the five soil texture types were 5% (sand), 7.5% 

(sandy loam), 15% (silt loam), 23% (loam), and 30% (clay loam) (Table 1). Thereafter, 

AWC would be used as an aggregate variable for soil texture. Usually, soil texture varied 

slightly with depth (Dodd and Lauenroth, 1997). In scenario designation, for the sake of 
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simplicity of interpretation of modeling results, all of the soil layers were assumed have 

the same field capacity and wilting point. Thus, we obtained 120 scenarios in total (Table 

2). The model was run 1200 years to reach equilibrium state firstly. And then, the 

scenarios were used to drive model runs. 

 

Table 2.2 Treatment levels of five variables examined in this study. We used full factorial 

combinations of all the treatment levels of the five variables to define 120 scenarios to 

drive model simulations 

Variables Treatments 

Precipitation amount Ambient (1.0P), halved (0.5P), one and one half(1.5P), 

Precipitation intensity Ambient intensity, high intensity 

Temperature Ambient, +2°C increased 

CO2 concentration Ambient concentration (360 ppm), doubled 

concentration (720 ppm) 

Available water capacity 5%, 7.5%, 15%, 25%, 35% 

 

An index of drought-stressed days was used to show levels of drought stress for 

plants in a year. It is defined as the number of days with normalized soil moisture below 

0.3 in a year. Normalized soil moisture (ω ) was defined by equation 3. 

min

max min

soilW W

W W
ω

−
=

−
  (2.3) 
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where, Wmax was soil water holding capacity, Wmin was wilting point, Wsoil was soil 

moisture. In TECO model, if ω  was below 0.3, photosynthesis and plant growth rate 

would be stressed. 

2.3 Results 

2.3.1 Data – model comparison 

At equilibrium state, the simulated soil carbon content was around 8500 g·m-2, 

which agreed with the measured soil carbon content 1.42% well (Luo et al., 2001). The 

simulated litter was 370 g·m-2, which was very close to the measured value 384±21 

g·m-2. The soil moisture dynamics, soil respiration, and aboveground biomass are 

generally consistent well with measurements too (Fig. 2.3). Simulated soil moisture was 

correlated with the observed values by 20.72 6.6,  0.50y x R= + = (x is observation and y 

is simulation) with a mean absolute bias (ABS) 5.11 and a relative bias (RB) -2.5%. 

Simulated soil moisture was slightly higher than the measured values when soil is very 

dry. Simulated and observed soil respirations had a regression 

equation 20.83 0.77,  0.57y x R= + = , and ABS was 0.82 and the RB was 17.6%. In 

winter, the simulated soil respiration was slightly higher than the measured values.  The 

ABS between simulated and observed aboveground biomass was 0.57 and RB is -3.4 % 

( 20.43 140.36,  0.57y x R= + = ).  
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Figure 2.3 Model validations. a. soil moisture; b. soil respiration; c. above-ground 

biomass. Rh stands for heterotrophic respiration (g C m-2·day-1); AGB stands for above 

ground biomass (g·m-2). The solid lines show simulated results. The open dots show the 

measured values. 
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Figure 2.4 The soil available water (the difference between soil water content and wilting 

point), drought stressed index, and drought-stressed days with available water capacity 

(the difference between field capacity and wilting point) at three precipitation amount 

levels and two precipitation frequencies. Filled circles with solid lines represent ambient 

precipitation frequency. Open circles with dashed lines represent high precipitation 

intensity. Panels a, b, and c show the mean value of the three layers. Panels d, e, and f 

show soil available water of the surface layer (0~10 cm). Panels g, h, and i show soil 

available water of the third layer (30~50 cm). Panels j, k, and l’ show normalized soil 

moisture ( min max min( ) /( )ω θ θ θ θ= − − , where, θ is soil moisture, θmax and θmin are field 

capacity and wilting point, respectively). Panels m, n, and o show the drought-stressed 

days. 
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2.3.2 Ecosystem responses to changes of precipitation regime with soil texture 

The annual mean soil available water (the difference between soil moisture and 

wilting point, %) increased with soil AWC (difference of field capacity and wilting point, 

%) under three precipitation scenarios (Fig. 2.4: a-c). The soil available water in deep 

layers increased with AWC more than that in the surface layer (Fig. 2.4: d-i). In the 

surface layer, soil available water increased from 3% to 12% with soil AWC, whereas it 

increased from 5% to 18% in the third layer at the ambient precipitation amount (1.0P) 

(Fig. 2.4 d and g). The same pattern occurred when precipitation increased by 50% (1.5P) 

(Fig. 2.4 f and i) or decreased 50% (0.5 P) (Fig. 2.4 e and h). At 1.5 P, the annual mean 

soil available water at AWC of 23% and 30% was higher than that at 0.5 P or 1.0 P. 

The normalized soil moisture showed different patterns with AWC at the three 

precipitation levels. At 1.0 P, it nearly kept a constant around 0.73 along soil AWC. It 

decreased from 0.70 to 0.56 at 0.5 P and increased from 0.71 to 0.81 at 1.5 P (Fig. 2.4: 

j~l). As a consequence, the drought-stressed days showed identical pattern. At 1.0P there 

were not obvious changes with soil AWC (Fig. 2.4 m). At 0.5 P, drought-stressed days 

increased from 60 days to 135 days with AWC increasing from 5% to 30% (Fig.4: n). At 

1.5P, drought-stressed days decreased from 82 days to 37 days (Fig. 2.4: o).   

Precipitation intensity influenced soil moisture along the gradient of soil AWC.  

With 1.0 P, the annual mean soil available water was lower at ambient than high 

precipitation intensity when AWC was 30% (Fig. 2.4: a). At 0.5 P, high precipitation 
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intensity led to higher annual mean soil moisture than that of ambient intensity (Fig. 

2.4b). The opposite occurred at 1.5 P. With all three precipitation amount, high 

precipitation intensity resulted in lower water content in the surface layer than the 

ambient intensity. While at the same time, high precipitation intensity led to higher soil 

water content in the deep layer than the ambient intensity at 1.0 P and 0.5 P. At 1.5 P, 

precipitation intensity showed little effects on soil moisture (Fig. 2.4: i). 
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Figure 2.5 Fractions of water loss via Evaporation, Transpiration and Runoff. fE: 

Evaporation/Precipitation; fT: Transpiration/Precipitation; fR: Runoff/Precipitation; E/ET: 

the ratio of evaporation to evapotranspiration 
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Figure 2.6 The water contributions to transpiration along soil depth by the five soil 

texture types. (a) The water recharged to soil layers every year, which is equal to the 

water used by evapotranspiration in these layers at equilibrium state. (b) The ratios of the 

water transpired through plants in every layer. 

 

The fractions of precipitation used for evaporation and transpiration increased 

generally with AWC but decreased for runoff (Fig. 2.5). Fractions of precipitation used 

for evaporation increased continuously with AWC (Fig. 2.5 a, b, and c). Transpiration 

increased with soil AWC at its low range and gradually leveled off at the high range of 

AWC at the 1.0 P and 1.5 P precipitation amounts (Fig. 2.5 d and f). At 0.5 P, 

transpiration increased firstly, and then decrease sharply at the AWC of 23% and 30% 

(Fig. 2.5e). Runoff decreased with soil AWC continuously (Fig. 2.5 g~i). At 0.5 P, runoff 

approached to 0 at the 23% of AWC. In general, high precipitation intensity led to higher 

runoff, lower evaporation and transpiration than the ambient precipitation intensity with 
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the three precipitation amounts. The vertical distribution of the water recharged to soil 

could explain the changes in partitioning between transpiration and evaporation with 

AWC. With increase of soil AWC, more water was recharged to the surface layer (Fig. 

2.6a), and the ratio of the water in these layers used by transpiration decreased with AWC 

(Fig. 2.6b). 
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Figure 2.7 Soil texture effects on NPP, Rh, and NEP at three precipitation amount levels 

and two frequencies. 

 

NPP, Rh, and NEP usually increased along the gradient of soil texture (Fig. 2.7). At 

1.0 P, NPP, Rh, and NEP were the highest at soil AWC of 23% and lower at either low or 
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high AWC (Fig. 2.7a, d, and g). At 0.5 P, NPP, Rh, and NEP reached their peak points at 

AWC of 7.5% and then decreased with AWC (Fig. 2.7 b, e, and h). At 1.5 P, NPP, Rh, 

and NEP increased along the whole range of soil AWC (Fig. 2.7 c, f, and i). High 

precipitation intensity generally led to lower NPP, Rh, and NEP than the ambient 

intensity at 1.0P and 1.5P. At 0.5 P, NPP and Rh are slightly higher at high range of soil 

AWC than them at ambient intensity (Fig. 2.7: b, e). Differences in NPP, Rh, and NEP 

between ambient and high precipitation intensities were larger at coarse than fine textured 

soil (Fig. 2.7). 

2.3.3 Responses of ecosystem to warming with different soil texture types 

Simulated warming decreased soil moisture at all of the five soil texture types (Fig. 

2.8 a~c).  The relative decrease in soil moisture became larger at 1.0 P along the 

gradient of soil AWC (Fig. 2.8 a). At 0.5 P, the largest relative decrease occurred at 

AWC equal to 15% (Fig. 2.8b). At 1.0 P and 0.5 P, evaporation decreased under 

warming, especially at high soil AWC (Fig. 2.8 d and e). At 1.5 P, warming resulted in a 

decrease in evaporation at low AWC but an increase at high AWC (Fig. 2.8 f). 

Transpiration under warming increased by 10~25% with the three precipitation amounts 

(Fig. 2.8 g~i). Warming resulted in decreases in runoff (Fig. 2.8 j~l). The relative 

decrease of runoff was smaller at low AWC than high AWC with all of the three 

precipitation levels. High precipitation intensity usually led to less warming effects on 

ecohydrological processes than the ambient intensity (Fig. 2.8a~l). 
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Figure 2.8 Effects of soil texture on the grassland responses to warming (2°C increased). 

Show the relative changes in soil water content, evaporation, transpiration, runoff, NPP, 

Rh, and NET with available water capacity.  ∆ θ% : percentage change of soil water 

content at warming treatments (∆ θ%=(θ2°C−θamb.)/ θamb×100). ∆ E% : percentage change 
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of evaporation at warming treatments (∆E%=(E2°C−Eamb.)/ Eamb×100). ∆Tr% : percentage 

change of transpiration at warming treatments (∆Tr%=(Tr2°C−Tramb.)/ Tramb×100). ∆ 

Runoff% : percentage change of runoff at warming treatments 

(∆Runoff%=(Runoff2°C−Runoffamb.)/ Runoffamb×100). ∆ NPP%: percentage change of 

NPP at warming treatments (∆NPP%=(NPP2°C−NPPamb.)/ NPPamb × 100).  

∆ Rh% : percentage change of Rh at warming treatments (∆Rh%=(Rh2°C−RHamb.)/ Rhamb 

× 100). 

∆ NEP%: percentage change of NEP at warming treatments (∆ 

NEP%=(NEP2°C−NEPamb.)/ NEPamb × 100). 

 

Warming usually resulted in increases in NPP and Rh but decreases in NEP (Fig. 2.8 

m~u). Warming-induced relative increases in NPP generally were higher at high 

precipitation amount. The increase of NPP varied with AWC (Fig. 2.8 m, n, and o). Rh 

under warming increased by about 20% at all of the five soil texture types with the three 

precipitation amounts (Fig. 2.8 p, q, and r). Relative decreases in NEP under warming 

were least at AWC of 7.5-15% at 1.0 P (Fig. 2.8s). The high precipitation intensity led to 

higher relative increases in NPP and Rh but less relative decreases in NEP in most cases 

than ambient intensity along the soil texture gradient (Fig. 2.8m~u). 
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Figure 2.9 Effects of soil texture on the grassland responses to elevated [CO2]. Show the 

relative changes in soil water content, evaporation, transpiration, runoff, NPP, Rh, and 

NET with available water capacity. ∆ θ% : percentage change of soil water content at 

elevated [CO2] (∆θ%=(θ2CO2−θamb.)/ θamb×100). ∆ E% : percentage change of evaporation 
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at elevated [CO2] (∆ E%=(E2CO2−Eamb.)/ Eamb×100). ∆ Tr% : percentage change of 

transpiration at elevated [CO2] (∆Tr%=(Tr2CO2−Tramb.)/ Tramb×100). ∆ Runoff% : 

percentage change of runoff at elevated [CO2] (∆Runoff%=(Runoff2CO2−Runoffamb.)/ 

Runoffamb×100). 

 

2.3.4 Responses of ecosystem to doubled atmospheric [CO2] 

At 1.0 P and 1.5 P, doubled [CO2] usually resulted in increases in soil moisture, 

evaporation, and runoff but decreases in transpiration in comparison to that under 

ambient [CO2] (Fig. 2.9 a~l).  The relative increases or decreases in ecophydrological 

processes at doubled [CO2] became larger at high AWC. At 0.5 P, changes in evaporation 

and transpiration showed no apparent trend with AWC, while soil moisture decreased 

slightly (Fig. 2.9b) and runoff generally increased under elevated [CO2] with AWC (Fig. 

2.9k). High precipitation intensity led to less changes in soil moisture, evaporation, 

transpiration, and runoff under elevated [CO2] than ambient intensity at 1.0 P and 1.5 P.  

CO2-induced relative increases in NPP, Rh, and NEP were generally lower at low 

than high soil AWC at 1.0 P and 1.5 P (Fig. 2.9 m~u). Doubled [CO2] usually increased 

NPP by 10-25% and Rh by 2-8%, leading to substantial increases in NEP. CO2-induced 

changes in NPP, Rh, and NEP at 0.5 P were less than at 1.0 P and 1.5 P. Generally, CO2 

effects on NPP, Rh, and NEP were higher with high than ambient precipitation intensity 

at high AWC, and lower at low soil AWC. 
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2.4 Discussion 

2.4.1 Water partitioning among runoff, evaporation, and transpiration 

Soil texture regulates runoff and evaporation by changing soil water storage and the 

vertical distribution of soil water (Noy-Meir, 1973). Our results showed that runoff 

decreased and evaporation increased with AWC (Fig. 2.5). Transpiration increased with 

AWC quickly in the low range and leveled off in the high range of AWC (Fig. 2.5). The 

results indicated that the partitioning of precipitation water among runoff, evaporation, 

and transpiration could be regulated by soil texture. Soil hydrological properties control 

water infiltration and the depth to which water percolates, and consequently affect water 

partitioning between evaporation and transpiration (McAuliffe, 2003).  

Water partitioning between evaporation and transpiration has been an important issue 

in ecohydrological studies (Lauenroth and Bradford, 2006). Model results suggested that 

transpiration is the dominant component (53%) of the global terrestrial water vapor flux 

from the continents and may reach a maximum of 75% in densely vegetated regions 

(Choudhury et al., 1998). However, only a few empirical studies have quantified 

partitioning of ET in semiarid shrublands over limited time periods (Ferretti et al., 2003; 

Scott et al., 2006). Reynolds et al. (2000) found the T/ET ranges from 7% to 80% at a 

warm desert site in a modeling study. Many factors involve in water partitioning between 

evaporation and transpiration, e.g. vegetation covers, root systems, precipitation regimes, 

et al.. Our simulation showed that changes in soil texture can alter T/ET substantially. 
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When soil is fine textured, a large portion of water is kept in upper layers, leading to 

more water is available for evaporation. However, at coarse textured soil, rapid 

dehydration of the surface soil layer results in saving water in deep layers (Wythers et al., 

1999) and available for plants. As shown by Fig. 6a, the fine textured soils can hold more 

water, and keep most of the water in the surface layer, which results in higher 

evaporation. Thus, the percentage of the water that can be used by transpiration decreased 

(Fig. 2.6 b). 

In water-controlled ecosystems, high water availability leads to high productivity. 

At 0.5 P, as shown in our results, normalized soil moisture decreased with AWC and 

drought-stressed days increased with AWC. As a consequence, NEP and NPP decreased 

with AWC at halved precipitation amount. Whereas, at high precipitation amounts (eg. 

1.5 P), normalized soil moisture increased and drought-stressed days decreased with 

AWC. And then, NPP increased with AWC. These results supported the inverse texture 

hypothesis, which states that ecosystems on coarse-textured soils have higher net primary 

productivity than the ecosystems on fine-textured soils at low precipitation; the reverse is 

predicted to occur in humid regions (Noy-Meir, 1973). Field data measured in the central 

grassland region of the United States showed similar patterns (Sala, et al., 1988; Epstein 

et al., 1997; Lane et al., 1998). 

2.4.2 Soil texture and effects of precipitation intensity on ecosystem 

An increase in precipitation intensity with decreased frequency has been projected 

as a possible scenario of climate change (Easterling et al., 2000). Field experiments 
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showed that more extreme rainfall patterns, without concurrent changes in total rainfall 

quantity, increase temporal variability in soil moisture (Fay et al., 2003; Knapp et al., 

2002). Carbon cycling processes such as soil respiration (Christopher et al., 2005), 

photosynthesis, and above ground net primary productivity (ANPP) (Fay et al., 2003; 

Knapp et al., 2002) are also reduced because of high soil moisture variability caused by 

increased rainfall variability. Consistent with the results from field experiments, our 

modeling results showed that high precipitation intensity led to more drought-stressed 

days than the ambient intensity in most cases (Fig. 2.4m~o).  

Our modeling study also enriches experimental results from Knapp et al. (2002) by 

circumscribing conditions under which increased precipitation intensity with reduced 

frequency leads to either decreases or increases in ecosystem production. If precipitation 

amount is low (0.5P), for example, the high precipitation intensity led to higher soil 

moisture and less drought-stressed days than the ambient intensity when AWC was 15% 

or higher. At 1.0 P, the high precipitation intensity also decreased drought-stressed days 

when AWC was 30%, (Fig. 2.4). The reason is that the fine textured soils can store rain 

water from large precipitation events with high field capacity. Additionally, more water 

can be stored in deep layers at high precipitation intensity than that at the ambient 

intensity, which reduces the water used by evaporation. Thus, runoff and evaporation 

decreased, and water that was available to plants increased. Changes in soil moisture and 

drought-stressed days resulted in changes in NPP. As shown by our simulations, when 

precipitation amount was low (0.5P) and soil AWC was high, NPP at high precipitation 



 54

intensity was higher than that at ambient precipitation intensity. However, with increase 

of precipitation amounts (e.g., 1.5 P), high precipitation intensity led to lower NPP than 

that at ambient intensity. Therefore, soil texture can strongly regulate effects of 

precipitation intensity on soil moisture content and ecosystem carbon processes. 

2.4.3 Soil texture and ecosystem responses to warming and elevated [CO2] 

Warming and elevated CO2 both can alter plant production through their direct 

effects on plant physiology and indirect effects mediated by changes in soil water content 

(Parton et al. 2007; Shaver et al. 2000; Morgan et al. 2004). Experimental studies have 

shown that the indirect effects induced by changes in soil moisture play a critical role in 

regulating ecosystem responses to warming and elevated [CO2] (Morgan et al., 2004; 

Nowak et al., 2004; Volk et al. 2000; Wullschleger et al., 2002). As a result, the factors 

that affect soil water dynamics (e.g., soil AWC) can regulate ecosystem responses to 

warming and elevated CO2. Warming-induced decreases in soil moisture usually 

aggravate drought stress on ecosystems (Harte et al., 1995; Saleska et al., 1999; Wan et 

al., 2002).  Although warming directly stimulates plant growth productivity in most  

field studies (Rustad et al., 2001), warming treatment may reduce NPP when negative 

effects of warming-induced soil drought override warming stimulation of plant growth 

(Saleska, et al., 1999). Experimental results have shown that warming improved plant 

growth in spring and fall but limited plant growth in summer because of drought stress 

induced by warming treatment (Wan et al., 2005). Soil texture can tip the balance 

between the negative and the positive effects of warming by regulating water partitioning 
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among runoff, evaporation, and transpiration. Our results showed that the percentage of 

warming-induced increases in NPP diminished with AWC when temperature increased 

by 2 °C degrees (Fig. 2.8: m-o), especially at 0.5 P. Rh shows a steady increase of around 

20% regardless of changes in precipitation amount, intensity, and soil texture (Fig. 2.8 p, 

q, and r). The Rh strongly depends on the soil carbon content. At equilibrium state, the 

model developed a high soil carbon pool (about 8500 g·m-2), which did not change 

immediately when scenarios applied. Thus, Rh increased when soil temperature 

increased, leading to negative values of NEP consequently. 

In contrast to warming effects, elevated atmospheric [CO2] usually results in 

increases in soil moisture content by decreasing stomatal conductance of many plant 

species (Morgan et al. 2004). As shown by our simulations, percent increases in soil 

moisture content under double [CO2] increased slightly soil AWC at 1.0 P and 1.5 P (Fig. 

2.9 a and c) and so did NPP, Rh, and NEP. However, elevated [CO2] did not led to 

increases in soil moisture at 0.5 P. Similar results were obtained from field experiments 

conducted in dry areas (e.g., Nowak et al., 2004) because increased water consumption 

from increased primary productivity under elevated [CO2] offset the decreased water 

consumption from reduced stomatal conductance and hence soil water was not saved 

under elevated [CO2]. Indeed, CO2 stimulation of NPP at 0.5 P was highest at AWC of 

10% and declined with soil AWC due to reduction in soil moisture. 

Along the soil AWC gradient from 5% to 30%, stimulation of NPP by warming 

ranged from 5% to 30% (Fig. 2.8: m~o) and from 10% to 30% by doubled [CO2] (Fig. 
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2.9: m~o). The results indicate that soil texture can substantially regulate ecosystem 

responses to warming and elevated [CO2]. The sites where warming and/or CO2 

experiments were conducted have variable soil texture and different available water 

capacities (Morgan et al., 2004; Rustad et al., 2001). Analysis of this paper suggests that 

variation in soil texture with changes in soil availability can result in diverse responses of 

ecosystem production to experimental warming and elevated atmospheric [CO2]. 

2.4.4 Uncertainties in vegetation dynamics and unrealistic scenarios 

Vegetation dynamics and phenology can affect water partitioning among 

evaporation, transpiration, and runoff by altering transpiration and water uptake through 

roots. Zavaleta et al. (2003) showed that earlier senescence induce by warming treatment 

in a Mediterranean grassland can lead to increase of soil moisture by decreasing 

transpiration. Scott et al. (2006) found that ecosystem evapotranspiration increased with 

increasing woody-plant dominance. A modeling study (Reynolds et al., 2000) showed 

that annual evapotranspiration (ET) is highly correlated with precipitation. However, the 

percent of water lost as transpiration (T/ET) is different among plant functional types. In 

the TECO model, a fully dynamical plant growth model was used to simulate LAI and 

root dynamics, which could strongly affect soil moisture dynamics. A test run using a set 

of prescribed LAI showed the same patterns of changes in soil moisture, transpiration, 

and NPP with those from the simulated dynamics, which indicated that the main 

conclusions about the effects of soil texture on ecosystem responses to changes in 

temperature, precipitation, and [CO2] were robust regardless of uncertainties in 
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vegetation dynamics. In the model, the transpiration was controlled by LAI and water 

uptake through roots. LAIs were always consistent with soil water availability by growth 

and senescence. Rooting depth was a constant (70 cm) and root vertical distribution was 

regulated by every layer’s water availability and their intrinsic vertical distribution ratios. 

Thus, a prescribed LAI couldn’t strongly influence our main conclusions.  

Some of the climatic scenarios we explored in this study may have little chance to 

happen in the future, such as altering precipitation patterns without changes in solar 

radiation and elevated atmospheric [CO2] without an increase of air temperature. Our 

modeling study was intended to explore different possibilities under 120 scenarios of 

climate change (Table 2) using a full factorial design. The factorial design is a commonly 

used method in experimental research and has been adopted by the modeling community 

as well. Many modeling studies at scales from ecosystems to regions and the globe often 

explore various scenarios with different combinations of factors (e.g. Cramer et al., 2001; 

Parton et al., 2007; VEMAP, 1995). Such an approach was intended to explore 

possibilities and may not say anything about actuality in a given scenario. Scenario-based 

modeling analysis has been done in all IPCC assessments partly because we have great 

uncertainties project future climatic conditions. What we can learn from our 

scenario-based analysis in this study is to explore how soil hydrological properties affect 

ecosystem responses to changes in global change factors. These full factorial scenarios 

are useful to separate effects of individual factors on ecosystems and results are relatively 

easy to interpret. 
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2.5 Conclusions 

The modeling results indicate that soil hydrological properties can regulate 

ecosystem responses to changes in precipitation, warming, and elevated atmospheric 

[CO2] by altering partitioning of rain water among runoff, evaporation, and transpiration. 

Water partitioning patterns along soil texture alter AWC for plants and then regulate 

ecosystem responses to altered precipitation amount and intensity, climate warming, and 

elevated [CO2] indirectly. Considering high variations in soil texture at field sites where 

experiments are conducted, soil texture may be one of the major causes underlying 

variable responses of ecosystems to changes in precipitation, temperature, and 

atmospheric [CO2] observed from field experiments. Thus, it is important to know how 

soil texture regulates soil water dynamics in order to evaluate ecosystem responses to 

climate change.  

Our modeling analysis showed that NPP, Rh, and NEP usually increased with soil 

AWC. Such increases were amplified by precipitation amounts. Warming stimulation of 

NPP decreased with soil AWC, whereas warming effects on Rh did not vary much in 

different soil texture types. Stimulation of NPP, Rh, and NEP by elevated [CO2] was 

usually lower at coarse than fine textured soils. These results indicate that the water 

properties of soil can be a key factor regulating grassland responses to warming, changes 

in precipitation, and elevated atmospheric [CO2]. Thus, it is highly desirable to examine 



 59

soil hydrological properties in regulating ecosystem responses to global change in future 

experimental research. 
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Appendix I: Description of the Terrestrial ECOlogical model (TECO) 

Terrestrial ECOlogical model (TECO) evolves from a terrestrial carbon 

sequestration (TCS) model (Luo and Reynolds, 1999) and is designed to examine 

ecosystem responses to perturbations in global change factors. A canopy model is 

incorporated into the model to simulate photosynthesis at hourly time scale. A soil water 

dynamic model also has been coupled for simulating water dynamics at hourly time scale. 

The model contains four major components: a canopy photosynthesis sub-model, a soil 

water dynamic sub-model, a plant growth sub-model, and a soil carbon transfer 

sub-model. The photosynthesis and soil moisture dynamics are simulated at hourly time 

step while the plant growth and the carbon transfer are simulated at daily step. 

1 Canopy sub-model 

Canopy sub-model is from a two-leaf photosynthesis model simulating canopy 

conductance, photosynthesis, transpiration, and energy partitioning (Wang and Leuning, 

1998). It consists of two parts: 1) a radiation submodel which calculates photosynthesis 

active radiation (PAR), near infrared radiation (NIR), and thermal radiation absorbed by 

sunlit and shaded leaves and 2) a coupled model of stomatal conductance, photosynthesis 

and partitioning of absorbed net radiation into sensible and latent heat. 

The coupled model of stomata-photosynthesis-transpiration 

The coupled model of stomatal conductance, photosynthesis and transpiration for 

the big sunlit leaf (i=1) or big shaded leaf (i=2) is given by the following equations. 
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Energy balance 

, , ,n i c i c iQ E Hλ= +                   (A2.1) 

Transpiration 

, , , , ( )c i s i s i w i a iE G D G D s T= = + ∆          (A2.2) 

Sensible heat 

, ,c i h i p iH G c T= ∆                    (A2.3) 

Photosynthesis-gas diffusion 

, , , ,( ) ( )c i sc s i s i i c i a iA b G C C G C C= − = −   (A2.4) 

Stomatal conductance: 
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, 0,

, , 0( )(1 / )
w NSC c i

s i i
s i s i

a f S A
G G

C D D
= +

− Γ +
       (A2.5) 

Photosynthesis-biochemistry 

, , ,c i n i d iA V R= −                       (A2.6) 

Where, Qn,i is net available energy, Ec,i is transpiration, Hc,i is sensible heat, λ is latent 

heat of vaporization for water. Da and Ds,i are saturated deficit of water vapor pressure 

(VPD) in the ambient air and at the leaf surface, respectively. Gs,i is stomatal conductance 

of a leaf or big leaf for H2O, G0,i is stomatal conductance of a leaf or big leaf for H2O 

when net leaf photosynthesis is zero. Gw,i and Gc, i are total conductance from the 

intercellular space of the leaves to the reference height above the canopy for H2O and 

CO2, respectively. Gh,i is the total conductance for the heat transfer from the leaf surface 

to the reference height above the canopy, cp is the specific heat of the air, ∆Ti is the 
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temperature difference between the surface of the big leaf and that of the air at the 

reference height, s is the slope of the function relating saturated water vapor mol fraction 

to temperature and bsc is the ratio of diffusivity of CO2 and H2O through the stomata. Ac,i 

is the net photosynthesis rate, Vn,i is the net carboxylation rate, Rd,i is the day respiration 

rate. Ca, Cs,i, and Ci are CO2 mol fractions in the air, at the leaf surface, and intercellular 

spaces, respectively. Г is CO2 compensation point of leaf photosynthesis, D0 is a 

parameter for stomatal sensitivity to VPD. a1 is an experience constant, which is related 

to the intercellular CO2 concentration by Ci/Cs,i = 1-1/a1. i stands for sun or shaded 

leaves; fw is soil moisture scaling factor, and Snsc is scaling factor derived by the size of 

non-structural pool. Equation (6) is a biochemical model of photosynthesis which is used 

to calculate biochemical processes limited photosynthesis rate. More details are in 

Farquhar et al. (1980) and Wang and Leuning (1998). 

Radiation absorption 

The net energy available to the big leaf i in wave-band j, ,n iQ , is calculated as: 

3

, ,
1

n i i j
j

Q Q
=

= ∑   (A2.7) 

Leaf temperature should be known for calculating absorbed long-wave radiation 

( ,3iQ ). However, it can be skipped by using the isothermal net radiation ( *
,n iQ ). 

*
, , ,n i n i p r i iQ Q c G T= + ∆   (A2.8) 
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Loss of thermal radiation of the big leaf to the air under non-isothermal conditions 

is calculated by Gr,i  (
34 /f a pT cε δ= ). Where, εf is the leaf emissivity, σ is the Steffan 

Boltzman constant and Ta is air temperature (K). 

2 Soil water dynamics sub-model 

Soil water is represented in 10 layers (the thickness of the first layer is 10 cm, all 

others are 20 cm). Infiltration adds water to soil layers in a cascading fashion according 

to soil AWC. When the ten layers of soil is filled, excessive water runs off. Evaporation 

is calculated by the evaporation equation in the SiB2 (Sellers et al., 1996). Its allocation 

in the ten layers follows the ALFALFA model (Denison and Loomis, 1989). The water 

transpired from the soil is partitioned among the soil layers according the fractions of 

roots. The soil water content is calculated as the budget between input (precipitation) and 

output (runoff, evaporation, and transpiration).  

Infiltration Water flows to the next layer when the upper layer is filled. Water in 

precipitation penetrates to a soil depth that depends on precipitation amount, field 

capacity, and the current soil water content. The model iterates the water content of each 

soil layer after calculating evaporation, and transpiration. 

Transpiration  The amount of water transpired from soil (transpiration) is 

calculated in the canopy model by stomatal conductance and the relative humidity 

difference between the inside and outside of leaves. It is partitioned among the soil layers 

according to the fractions of roots in these soil layers. 
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Evaporation Soil surface evaporation is calculated by the following equation 

(Sellers et al., 1996): 

λγ

ρ 1)(*
p

dsoil

asoil
s

c

rr

eTe
E

+

−
=    (A2.9) 

where ES is soil evaporation, e* (Tsoil) is the saturation vapor pressure at the temperature 

of the soil, ea is the atmospheric vapor pressure, rsoil is a soil resistance term, rd is the 

aerodynamic resistance between the ground and the canopy air space, ρ is the density of 

air, cp is the specific heat of air, γ is the psychrometric constant; λ is the latent heat of 

sublimation (Sellers et al., 1996). 

Runoff If soil water content is greater than soil water holding capacity, then runoff 

occurs 

max

maxthen,    
soil

soil

Runoff W W

W W

= −

=
           (A2.10) 

Where, Wmax is soil water holding capacity. 

Soil water content Soil water content is updated hourly according to the budget 

between precipitation and evpotranspiration. 

0soil soilW W P ET= + −           (A2.11) 

Where, ET is evapotranspiration. 

Soil moisture scalar A soil moisture scalar is computed here, which is an important 

scalar in regulating photosynthesis, plant growth rate, and soil carbon turnover time. 

min

max min

min 1.0,3.33 soil
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W W
f

W W

  −
= ⋅   −  

  (A2.12) 
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where, Wmin is wilting point. 

3 Plant growth sub-model  

The plant growth sub-model simulates the processes of carbon allocation to leaves, 

stems, and roots (i.e. plant growth), and the production of litter fall. The model has six 

carbon pools, which are one non-structural carbon pool (NSC), one leaf carbon pool (QL), 

one stem carbon pool (QW), and three root carbon pools (QR1, QR2, QR3). The carbon fixed 

by photosynthesis enters into NSC firstly. And then, the carbon in NSC is used by 

autotrophic respiration and allocated to plant tissues via plant growth. The carbon 

allocation from NSC to the other five C-pools is determined by plant growth rates. In the 

processes of leaf growth and fall, phenology is presented at the same time. 

Autotrophic respiration  

Autotrophic respiration is calculated daily based on temperature (either air or soil 

temperatures, for above and below ground tissues, respectively), tissue biomass, and 

phenology by Arrhenius equation (Ryan, 1991; Lloyd and Taylor, 1994).  

0
a T

i iR R e⋅= ⋅                           (A2.13) 

Where, 0iR b BM= ⋅ , T is temperature of air or soil, a and b are constants, BM is biomass. 

Growth 

The idea is mainly from the ALFALFA model (Denison and Loomis, 1989; Luo et 

al., 1995). The growth rate of plant is controlled by root/shoot ratio, scalar of NSC, and 

scalar of leaf area index. 
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LAInscsriii SSSBMGG ⋅⋅⋅⋅= /max                       (A2.14) 

Where, i= leaf, stem, or root. Gi is the growth rate, Gmaxi is the maximum relative growth 

rate, BMi is biomass of leaves, stems or roots. Sr/s, Snsc and SLAI are the scaling factors 

derived from root/shoot ratio, the size of NSC, and leaf area index, respectively. 

Litter production 

Leaf fall and root turnover is induced by soil drought and low air temperature in the 

autumn following the approach of Arora and Boer (2005). Stem fall is only controlled by 

turnover time. 

max

max
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W W W
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γ γ

= −

= −
                             (A2.15) 

Where, 
maxTγ  and 

maxWγ  are maximum rates of leaf fall induced by low temperature and 

drought respectively. Tβ  and W are scaling factors controlling the rate of leaf fall. 

Then, leaf fall (DL), stem fall (DS) and root turnover (DR) are: 
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=

= +

  (A2.16) 

Where, qL , qW  and qR are the C-pool sizes of leaves ,stems, and roots, respectively. τW 

is turnover time of carbon in stem C-pool. 

Phenology  

Phenology is represented by periodical variations of leaf area index (LAI) and two 

plant states, dormancy and growth. In winter, grasses remain in a dormant state until the 

arrival of the favorable weather conditions in spring. The growth state is initiated by a 
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certain growing degree days above 5 °C (GDD5). During the first several days of growing 

season, leaf growth consumes the carbon stored in NSC last growing season, until the 

stored carbon is used up. And then, leaf growing is based on carbon from photosynthesis. 

LAI is controlled by the budget of leaf growth and senescence. If leaf growth overrides 

leaf senescence, LAI increases, and vice versa. In fall, when LAI meets a minimum value 

(<0.1), the dormant state comes. 

4. Carbon transfer sub-model 

The carbon transfer model is evolved from TCS (Luo and Reynolds, 1999) and 

VAST (Barret et al., 2002). The soil carbon model is used to simulate the carbon flow 

from plant tissues to litters and soils, and then to atmosphere. There are five carbon pools 

in the soil carbon model, which are fine litters (QF), coarse litters (QC), and three soil 

carbon pools defined by three soil layers (QS1, QS2, QS3) (Fig.1). The carbon allocated to 

leaves (QF), stems (QW), and roots (QR1, QR2, QR3) flows through these C-pools, and then 

returns to atmosphere as CO2. 

The turnover time of carbon in leaf C-pool (τL) is determined by the growth and fall 

of leaves. The turnover times of carbon in stem C-pool (τW) and root C-pool (τR1, τR2, τR3) 

are assumed to be constants. The turnover times of carbon in fine litter (τF), coarse litter 

(τC), and soil carbon pools (τS1, τS2, τS3) are given by the following equation: 

* /k k TS Sωτ τ= ⋅   (A2.17) 
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Where, *
kτ  is the moisture and temperature independent turnover time, ST and Sω are 

scalars of the moisture and temperature, which modify residence times of the carbon 

pools. 

The dynamics of kth C-pool, /kdq dt (gC m-2
·d-1), is calculated by eqn.18. 

/ /k k k kdq dt I q τ= −    (A2.18) 

Where, Ik is the input flux of carbon from upstream C-pools, qk is the size of kth C-pool, 

τk is the turnover time (days) of carbon in the kth C-pool, /k kq τ  is the daily carbon out 

flux of the kth pool. 

The daily carbon influx of the kth pool (Ik) is given by:  
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   (A2.19) 

Where, qk is the size of the kth C-pool, ηC is the fragmentation coefficient of wood going 

to fine litter, τk is the turnover time of the carbon in the kth C-pool, and θk is the 

partitioning parameter of C-pools. 

Heterotrophic respiration from litter and soil carbon pools is given by the following 

equation: 

'/hk k k kR q fτ= ⋅∑                       (A2.20) 

Where, f’ k is the fraction of carbon out flux which enters the atmosphere from the kth 

pool, which is given by: 
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CHAPTER 3 Relative Information Contributions of Mod el vs. Data to Short- 

and Long-Term Forecasts of Forest Carbon Dynamics2 

 

                                                           
2 This part has been accepted by Ecological Applications and published online. 
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Abstract 

Biogeochemical models have been used to evaluate long-term ecosystem responses to 

global change on decadal and century time scales. Recently, data assimilation has been applied to 

improve these models for ecological forecasting. It is not clear what the relative information 

contributions of model (structure and parameters) vs. data are to constraints of short- and 

long-term forecasting. In this study, we assimilated eight sets of ten-year data (foliage, woody, 

and fine root biomass, litter fall, forest floor carbon (C), microbial C, soil C, and soil respiration) 

collected from Duke Forest into a Terrestrial ECOsystem model (TECO). The relative 

information contribution was measured by Shannon information index calculated from 

probability density functions (PDF) of carbon pool sizes. The null knowledge without a model or 

data was defined by the uniform PDF within a prior range. The relative model contribution was 

information content in the PDF of modeled carbon pools minus that in the uniform PDF while 

the relative data contribution was the information content in the PDF of modeled carbon pools 

after data was assimilated minus that before data assimilation. Our results showed that the 

information contribution of the model to constrain carbon dynamics increased with time whereas 

the data contribution declined. The eight data sets contributed more than the model to constrain 

C dynamics in foliage and fine root pools over the 100-year forecasts. The model, however, 

contributed more than the data sets to constrain the litter, fast soil organic matter (SOM), and 

passive SOM pools. For the two major C pools, woody biomass and slow SOM, the model 

contributed less information in the first few decades and then more in the following decades than 
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the data. The knowledge on relative information contributions of model vs. data is useful for 

model development, uncertainty analysis, future data collection, and evaluation of ecological 

forecasting. 

Key words: data assimilation, information theory, carbon cycle, model uncertainty, Duke Forest 

FACE, ecological forecasting. 

 

3.1 Introduction 

Biogeochemical models have been widely used to project long-term ecosystem responses to 

climate change and evaluate feedback between climate and the carbon cycle on century and 

millennium time scales (e.g. Cramer et al. 1999, McGuire et al. 2001, Friedlingstein et al. 2006, 

Carpenter et al. 2009). These models have been also used to explore interactions of multiple 

global change factors (Luo et al. 2008), forest management (Schmid et al. 2006, Pretzsch et al. 

2008), and ecosystem services (Schröter et al. 2005) on decadal or shorter time scales. Most 

biogeochemical models share a similar model structure in which photosynthetically fixed carbon 

is allocated to multiple plant and soil pools (VEMAP 1995, Kucharik et al. 2000, Sitch et al. 

2003). Photosynthesis is usually simulated using the Farquhar model (Farquhar et al. 1980) as 

regulated by light, CO2 concentration, temperature, and nutrients. Allocation of carbohydrates 

from photosynthesis is often determined by fixed fractions or regulated by functional balance 

among multiple resources (Luo et al. 1994, Friedlingstein et al. 1999). Carbon transfers among 

pools are generally governed by pool size and specific transfer coefficients as affected by 
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environmental variables (Luo et al. 2001a). Although most biogeochemical models share a 

similar structure, model intercomparison and data-model comparison studies show tremendous 

variations among models for either short-term forecasts or long-term projections even if models 

are calibrated against historical and/or contemporary conditions (e.g., Friedlingstein et al. 2006, 

Sitch et al. 2008).  

High uncertainties of model projections generally result from differences in initial values, 

parameterizations, and response functions that link those key carbon processes to environmental 

and biological variables. For example, using the observed soil carbon content as model initial 

values could lead to a higher carbon accumulation rate than the assumption of equilibrium state 

over 100-year simulations at a beech forest (Wutzler and Reichstein 2007). Knorr and Heimann 

(2001) illustrated that the uncertainties of key parameters were too large for reliable predictions 

of global net primary production (NPP). Burke et al. (2003) found the response functions that 

represent the sensitivities of litter decomposition to temperature differed dramatically after 

comparing eight popular biogeochemical models.  

To improve models for accurate projections, data assimilation approaches have recently 

been developed in ecology to inform initial conditions, constrain parameters, evaluate alternative 

response functions, and assess model uncertainties (Raupach et al. 2005, Williams et al. 2009, 

Luo et al. in review). Most data assimilation studies focused on estimation of fast-response 

parameters, i.e., photosynthesis, respiration and evapotranspiration with short-term data sets. For 

example, Knorr and Kattge (2005) estimated 29 parameters governing photosynthesis, 

respiration, stomata activity, and energy balance by assimilating eddy covariance data of seven 



 74

days into the BETHY model. Wang et al. (2007) examined three key parameters related to 

photosynthesis and respiration (maximum photosynthetic carboxylation rate, potential 

photosynthetic electron transport rate, and basal soil respiration rate) in the CBM model using a 

nonlinear estimation technique to assimilate eddy covariance data. Wu et al. (2009) estimated 16 

parameters of a flux-based ecosystem model by assimilating one-year eddy covariance data using 

a conditional inversion method. Braswell et al. (2005) assimilated eddy covariance observations 

with a Markov Chain Monte Carlo approach to estimated 25 parameters in the SIPNET model, of 

which only one is related to long-term process (woody carbon turnover rate) but not constrained.  

A few data assimilation studies have been conducted to constrain long-term processes and 

parameters with simplified carbon cycle models. Luo et al. (2003) assessed ecosystem carbon 

sequestration rates by assimilating biometric data into the TECO with 7 target parameters (i.e., 

residence times of the seven carbon pools). Xu et al. (2006) developed a probabilistic data 

assimilation to quantify uncertainties of the estimated parameters and forecasted carbon pools 

using the same data sets and model as in Luo et al. (2003). Williams et al. (2005) assimilated 

both eddy-flux data and carbon stock data into a simplified carbon pool model and evaluated the 

rates of carbon sink. Fox et al. (2009) compared ten data assimilation approaches based on the 

DALEC model and found that the parameters related to fast processes (e.g., photosynthesis, 

ecosystem respiration) were constrained well but those related to the allocation to and turnover 

of fine roots and woody biomass pools were constrained poorly. Over all, these studies 

demonstrated that assimilation of biomass and soil carbon data can improve the constraints of 

some parameters related to long-term processes.  
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Since biogeochemical models are often used to evaluate ecosystem responses to climate 

changes at decadal and century time scales (e.g., Fung et al. 2005, Friedlingstein et al. 2006, 

Jones et al. 2006), one key question that has not been addressed is how much improvement data 

assimilation can make for short- vs. long-term forecasts of ecosystem carbon sequestration. To 

address this issue, we have to first quantify how much information a given model contributes to 

short- and long-term forecasts because data contribute additional information to forecasts 

conditioned on the prior knowledge contained in the model structure and parameter ranges.  

To measure relative model and data contributions to forecasts of carbon dynamics, this 

study used the TECO model (Luo et al. 2003, Xu et al. 2006) to assimilate eight sets of ten-year 

data (foliage, wood, and fine root biomass, litter fall, forest floor carbon (C), microbial C, soil C, 

and soil respiration) collected from the Duke Forest Free-Air CO2 Enrichment (FACE) 

experimental site. The relative contributions of the TECO model and the eight data sets were 

measured by the Shannon information index (Shannon 1948, Jaynes 1957, Kolmogorov 1968), 

which quantifies the uncertainty associated with a random variable as represented by probability 

density functions (PDFs). We first defined the null knowledge without either a model or data by 

a uniform PDF within a prior range. The model’s contribution was quantified by the information 

content in the PDF of modeled C pools by the TECO model without data assimilation minus that 

in the uniform PDF. The contribution of the eight data sets was the information content in the 

PDF of forecasted C pools after the eight sets of data were assimilated minus that before the data 

assimilation. We applied this approach to quantify the relative information contributions of 

assimilated data to constraints of forecasted forest carbon storage in the carbon pools of TECO 
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model. We also evaluated various types of parameters in controlling short- and long-term 

forecasting of forest carbon dynamics. Based on our evaluation of data vs. model contributions to 

short- and long-term forecasting, we provided recommendations on model improvement and 

future data collection to enhance long-term forecasting of carbon sequestration.  

3.2 Methods 

3.2.1 The ecosystem carbon pool model 

The Terestrial ECOsystem (TECO) model is a variant of the CENTURY model (Parton et 

al. 1987) and is designed to simulate carbon input from photosynthesis, carbon transfer among 

plant and soil pools, and respiratory carbon releases to the atmosphere. The model has been 

applied to several studies of carbon sequestration process in Duke Forest in response to elevated 

CO2 (Luo et al. 2003, Xu et al. 2006, White and Luo 2008). It has a similar carbon pool structure 

and parameters to most current biogeochemical models.  

In this study, we slightly modified the TECO model by separating a fine root pool from the 

foliage pool. Thus, it has eight C pools (Fig. 3.1). In this model, the processes of carbon transfer 

and decomposition were represented by the following first-order ordinary differential equation: 

0

( )
( ) ( ) ( )

(0)

dX t
t ACX t BU t

dt
X X

ξ= +

=
 (3.1) 

where, ξ(t) is an environmental scalar, depending on temperature (T) and soil moisture (ω) 

( ( ) ( , )t f Tξ ω= ). There are a few parameters describing the environmental scalar as functions of 

temperature and moisture (Luo et al. 2003, i.e., environmental response parameters). 
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Figure 3.1 The schematic diagram of carbon allocation and transfers among the 8 pools of 

TECO model. The carbon allocation and transfers were described by equation (1) with 8×8 

matrices A and C, and 8×1 vectors B and X. SOM stands for soil organic matter. 

 

( )T

1 2 3 8( ) ( ) ( ) ( ) ... ( )X t X t X t X t X t= is an 8 × 1 vector representing the carbon content of the 

eight carbon pools as depicted by Fig. 3.1. X0 is an 8 × 1 vector of the initial values of X(t). A is a 

matrix given by 
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Matrix A defines C transfers among the C pools as illustrated by arrows in Fig. 3.1.The 

non-zero elements (fi,j) in matrix A represent the fractions of the carbon entering i th (row) pool 

from j th (column) pool , termed carbon transfer coefficients. The zero elements in matrix A 

mean no direct carbon flows between these two pools. Because f4,1+f5,1=1, f4,2+f5,2=1, and 

f4,3+f5,3=1, there are only 11 free parameters in matrix A. C is an 8 × 8 diagonal 

matrix, ( )C diag c=  with elements ( )T

1 2 3 8   ... c c c c c= , representing the amounts of carbon per 

unit mass leaving each of the pools per day, termed carbon exit rates. ( )T

1 2 3   0 0 0 0 0B b b b=  

is a vector of allocation coefficients of assimilated carbon by photosynthesis (gross primary 

production, GPP) partitioned to the three plant C pools. U(t) is the C input (GPP) at time t.  

This study estimated a total of 30 parameters: 8 initial values of carbon pools (X0(i)), 8 exit 

rates (ci), 3 allocation coefficients (bi), and 11 transfer coefficients (fj,i). We set the prior ranges 

of these 30 parameters (Table 1) according to the measurements at Duke Forest FACE project 

and/or published papers from literature. The initial values of the eight C pools were estimated 

mainly from the observations at Duke Forest (Lichter et al. 2005, Finzi et al. 2006). The ranges 

of exit rates were estimated from the residence times of different C pools at Duke Forest (Lichter 

et al. 2005), or the similar temperate forests (Harmon et al. 1986, Gaudinski et al. 2000). 
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Table 3.1 The free parameters of TECO model and their prior ranges.  

Parameters Description Units LL UL 

X0(1) Initial value of foliage pool gC·m-2 100 400 

X0(2) Initial value of woody pool gC·m-2 3000 6000 

X0(3) Initial value of fine roots pool gC·m-2 100 400 

X0(4) Initial value of metabolic pool gC·m-2 40 120 

X0(5) Initial value of structural pool gC·m-2 400 700 

X0(6) Initial value of fast SOM pool gC·m-2 80 240 

X0(7) Initial value of slow SOM pool gC·m-2 1200 2400 

X0(8) Initial value of passive SOM pool gC·m-2 200 400 

c1 Exit rate of C from foliage pool gC·gC-1·d-1 6.85×10-4 5.48×10-3 

c2 Exit rate of C from wood pool gC·gC-1·d-1 3.42×10-6 2.74×10-4 

c3 Exit rate of C from fine root pool gC·gC-1·d-1 1.37×10-3 9.13×10-3 

c4 Exit rate of C from metabolic litter pool gC·gC-1·d-1 5.48×10-3 2.74×10-2 

c5 Exit rate of C from structural litter pool gC·gC-1·d-1 1.37×10-4 2.74×10-3 

c6 Exit rate of C from fast SOM gC·gC-1·d-1 5.48×10-3 5.48×10-2 

c7 Exit rate of C from slow SOM gC·gC-1·d-1 5.48×10-6 5.48×10-4 

c8 Exit rate of C from passive SOM gC·gC-1·d-1 1.37×10-6 5.48×10-6 

b1 Allocation of GPP to leaves - 0.05 0.25 

b2 Allocation of GPP to woody biomass - 0.10 0.40 

b3 Allocation of GPP to fine roots - 0.05 0.25 

f4,1 Fraction of C in foliage pool transferring to metabolic litter - 0.3 1.0 

f4,2 Fraction of C in woody pool transferring to metabolic litter - 0.0 0.2 

f4,3 Fraction of C in fine roots transferring to metabolic litter - 0.3 1.0 

f6,4 Fraction of C in metabolic litter transferring to fast SOM - 0.3 0.7 

f6,5 Fraction of C in structural litter transferring to fast SOM - 0.1 0.4 

f7,5 Fraction of C in structural litter transferring to slow SOM - 0.1 0.4 

f7,6 Fraction of C in fast SOM transferring to slow SOM - 0.3 0.7 

f8,6 Fraction of C in fast SOM transferring to slow SOM - 0.0 0.008 

f6,7 Fraction of C in slow SOM transferring to fast SOM - 0.1 0.6 

f8,7 Fraction of C in slow SOM transferring to passive SOM - 0.0 0.02 

f6,8 Fraction of C in passive SOM transferring to fast SOM - 0.3 0.7 

LL = lower limit and UL = upper limit. SOM= soil organic matter. X0(1) - X0(8): initial 

values of the eight carbon pools; c1 - c8: exit rates; b1 - b3: allocation coefficients; fi,j: carbon 

transfer coefficients. 
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Allocation coefficients were from the estimates of NPP of leaves, woody biomass, and fine 

roots during the experiment period (Palmroth et al. 2006, McCarthy et al. 2006). Transfer 

coefficients were estimated according to the carbon components of each pool and expert 

knowledge (Luo et al. 2003). It was assumed that the parameters distributed uniformly in their 

prior ranges. Since this research was to explore the model intrinsic properties not its responses to 

changes in climatic variables, fixed values were used for the environmental response parameters 

as described in Luo et al. (2001a, 2003).  

3.2.2 Data from Duke forest FACE site 

The data used in this analysis were obtained from the FACE experiment at the Blackwood 

Division, Duke Forest, Orange County, North Carolina (35˚58’N, 79˚5’W). The FACE site was a 

loblolly pine forest planted in 1983 after harvesting the similar vegetation and was not managed 

since planting (Hendrey et al. 2000). We used the data at the ambient atmospheric CO2 

concentration only. The ten years air temperature, precipitation, soil moisture, and GPP data 

(1996~2005) were used as input to drive the TECO model. Air temperature and precipitation 

were from the observations at Duke Forest FACE. Daily values of GPP were derived from the 

simulations of MAESTRA model (1996 and 1997) (Luo et al. 2001a) or gap-filled eddy flux data 

(1998~2005). A non-rectangular hyperbolic method (NRH) was used to derive GPP from eddy 

flux data (Stoy et al. 2006). Gap-filling might add uncertainty to the data. A comprehensive 

comparison on the methods differentiating GPP and ecosystem respiration (RE) showed that the 

gaps added an additional 6–7% variability, but did not result in additional bias and the estimates 

of both GPP and RE differed by less than 10% among the methods (Desai et al. 2008). 
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Table 3.2 The biometric data that were assimilated 

Data type Frequency Number of 
observations 

Mean standard 
deviation1 

(g C ·m-2) 

Mean 
coefficient of 
variance (CV) 

Reference 

Foliage 
biomass 

Yearly 9 62.04 15.3% Pippen et al. 
unpublished2 

Woody 
biomass 

Yearly 9 1066.88 16.1% Finzi et al. 2006 

Fine roots Yearly 9 21.56 7.0% Pritchard et al. 
2008 

Litter fall Yearly 10 65.613 19.5% Finzi et al. 2006 
Forest floor 
carbon 

Three years 4 216.19 24.6% Lichter et al. 2008 

Microbial 
carbon  

Five times in 
total 
(1997~98) 

5 20.67 21.5% Allen et al. 2000 

Soil total 
carbon  

Three years 4 163.72 7.3% Lichter et al. 2008 

Soil 
respiration 

Monthly 89 0.594 65.7% Bernhard et al. 
2006 
Jackson et al. 
2009 

1The standard deviation (SD) for each data point was calculated based on the data collected in 

the three ambient rings. 

2 On the website http://face.envi.duke.edu. 

3The unit is g C ·m-2
·yr-1. 

4The unit is g C·m-2
·d-1. 

 

The 8 sets of biometric data that were assimilated into the TECO model for parameter 

estimation were foliage biomass, woody biomass (Finzi et al. 2006), fine root biomass (Pritchard 

et al. 2008), microbial C (Allen et al. 2000), litter fall, forest floor C, soil C (Lichter et al. 2005, 

2008), and soil respiration (Bernhard et al. 2006, Jackson et al. 2009) (Table 2). The data were 
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collected in the years of 1996 through 2005. These data sets have been extensively described in 

the aforementioned papers in terms of instruments used for data collection, measurement 

methods, times and frequencies and are not repeated here. 

3.2.3 Data assimilation  

We used the probabilistic inversion approach developed by Xu et al. (2006) to assimilate 

the eight data sets into the TECO model. The probabilistic inversion is based on Bayes’ theorem: 

( ) ( )
( )

( )

P Z P
P Z

P Z

θ θ
θ =  (3.2) 

where, the posterior probability distribution of the parameters (θ), P(θ|Z), is obtained from prior 

knowledge represented by a prior probability distribution P(θ) and information in the eight data 

sets represented by a likelihood function P(Z|θ). p(Z) is the probability distribution function of 

observations. The prior probability distribution function of the estimated parameters p(θ) were 

specified as the uniform distributions over a set of specific intervals. The likelihood function 

p(Z|θ) was calculated with the assumption that each component is Gaussian and independently 

distributed according to the following equation. 

[ ]28

2
1

( ) ( )
( ) exp

2 ( )
i

i i

i t Z i

Z t X t
P Z

t

ϕ
θ

σ= ∈

 − 
∝ − 

  
∑∑  (3.3) 

where, Z(t) is data obtained from measurement and φX(t) is simulation, φ is the mapping vector 

that maps the simulated state variables (the carbon content of the eight pools) and fluxes to 

observational variables (i.e., plant biomass, litter fall, soil carbon, and soil respiration) (see 

Appendix B for details). σ is the observed standard deviation of measurements. According to 

Bayes’ theorem, the posterior distribution of parameters was given by 
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( ) ( ) ( )P Z P Z Pθ θ θ∝  (3.4) 

The probabilistic inversion was carried on using a Metropolis-Hastings algorithm (M-H 

algorithm, thereafter) to construct posterior probability density functions of parameters. The 

detailed description of M-H algorithm was provided by Xu et al. (2006) with a brief summary 

here. M-H algorithm samples random variables in high-dimensional probability density functions 

in the parameter space via a sampling procedure based on Markov chain Monte Carlo (MCMC) 

theorems (Metropolis et al. 1953, Hastings, 1970, Gelfand and Smith 1990). In brief, the M-H 

algorithm was run by repeating two steps: a proposing step and a moving step. In each proposing 

step, the algorithm generated a new point θ
new for a parameter vector θ based on the previously 

accepted point θold with a proposal distribution P(θnew|θold) (Equation 5).  

m ax m in( )new old rθ θ θ θ= + −  (3.5) 

where, θmax and θmin are the maximum and minimum values in the prior range of the given 

parameter. r is a random variable between -0.5 and 0.5 with a uniform distribution. In each 

moving step, point θnew was tested against the Metropolis criterion (Xu et al. 2006) to examine if 

it should be accepted or rejected. The accepted parameters were then used to simulate carbon 

contents of the 8 pools in the 100 years after 1996 using the same driving data of 1996~2005. 

The M-H algorithm then repeated the proposing and moving steps until approximately 300,000 

sets of parameter values were accepted. 

All the accepted parameter values were used to construct posterior PDFs. Meanwhile, the 

same number of sets was obtained for simulated carbon content in the eight pools during the 

100-year forwarding runs of the model (namely the model forecasts after data assimilation). The 
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PDFs of the eight C pool obtained from data assimilation ((PDFs)md) contained the information 

from both the model and the assimilated data. To generate another set of PDFs for the state 

variables (i.e., pool sizes) without the data assimilated, we ran the model for another 300,000 

times by randomly sampling parameter values from their uniform distributions within their prior 

ranges. The generated PDFs of the eight C pools ((PDFs)m) contained the information from the 

model only (including prior parameter ranges). Statistics describing relative information 

contributions of the model vs. the data was derived from these two sets of PDFs. 

3.2.4 Relative information contribution of model and data 

We used the Shannon information index (Shannon 1948, White et al. 2006) to measure the 

relative information contribution of model vs. data to constrain forecasts of short- and long-term 

carbon dynamics. According to information theory (Jaynes 1957, Kolmogorov 1968), the 

entropy H of a discrete random variable X in {x1, … , xn} is  

1

( ) ( ) log ( )
n

i b i
i

H X p x p x
=

= −∑  (3.6) 

where p(xi) is probability of event xi. For the base b equal to 2, the unit is bit. For a uniform 

distribution, the entropy islogb n .  

The null knowledge on carbon dynamics of a pool (i.e., I0=0) without either a model or data 

was defined by a uniform distribution π(x) of the pool size within a range (Table 3). The 

minimum and maximum values of the range were assumed to be the same as those minimum and 

maximum carbon pool sizes of the (PDFs)m (Table 1). Thus, the entropy of null knowledge (H0) 

is: 
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0 2logH n=  (3.7) 

Model structure and prior parameter uncertainty constitute the “prior knowledge” on a 

system (model information). To estimate the relative information of the model (Im), we obtained 

the entropy of (PDFs)m, H(Xm), as: 

)(log)()( ,2
1

, im

n

i
imm xpxpXH ∑

=

−=  (3.8) 

where Xm is state variables obtained by the model-only forecasts, xm,i is a value of Xm. n is the 

number of bins with equal width in the range between the minimum and maximum values of the 

(PDFs)m. The relative information contribution of the model (including model structure and prior 

parameter ranges), Im, is: 

)(0 mm XHHI −=  (3.9) 

Similarly, to estimate the relative information contribution of data assimilation (Id), we first 

obtained the entropy of the (PDFs)md derived from model forecasts after the data were 

assimilated, H(Xmd), as: 

)(log)()( ,2
1

, imd

n

i
imdmd xpxpXH ∑

=

−=  (3.10) 

where Xmd is state variables obtained by data assimilation with the model, xmd,i is a value of Xmd. 

Thus, the additional information contributed by the assimilated data, Id, is: 

)()( mdmd XHXHI −=  (3.11) 

The calculations of Im and Id are summarized in Table 3. H0, H(Xm), and H(Xmd) are dependent on 

the values of n but Im and Id change little with n if n is large enough (e.g., Stoy et al. 2006). A 
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value of 2400 was used in this study after a sensitivity test from 60 to 4800 bins. We calculated 

Id and Im for each of the eight C pools and total ecosystem C over 100 years of simulations. 

 

Table 3.3 Definitions of relative information contribution 

Symbol Description Contributor Calculation 

I0 The information without either a model or 

data 

Null knowledge I0=H0-H0=0 

Im The relative information contributed by 

model structure and parameter prior ranges 

Model Im =H0-Hm 

Id The relative information contributed by the 

assimilated data sets conditioned on the 

model structure and parameter prior ranges 

Data Id =Hm-Hmd 

H0 is the entropy of the uniform distribution defined as null knowledge. Hm is the entropy of 

(PDFs)m obtained by running the model using parameter values randomly sampled from their 

prior distributions. Hmd is the entropy of (PDFs)md derived from model forecasts after the data 

sets were assimilated. 

 

The index Id only measures the decrease in the entropy of simulated carbon pools induced 

by data assimilation (i.e., the changes in shapes of PDFs). Assimilation of data may change both 

positions and shapes of the distributions of C pools. To measure the changes in pool size 

distributions caused by data assimilation, we used information gain (Kullback-Leibler 

divergence, ( ( ) || ( ))KL md mD p X q X (Kullback and Leibler 1951, Rényi 1961) to measure the 
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differences in the distributions of C pools between the model-only forecasts and the model + data 

forecasts (Equation 12). 

,
, 2

1 ,

( )
( ( ) || ( )) ( ) log

( )

n
md i

KL md m md i
i m i

p x
D p X q X p x

q x=

= ∑  (3.12) 

We also evaluated effects of measurement errors (i.e., standard deviations of the eight data 

sets), and prior ranges of exit rates and transfer coefficients on relative information contributions 

of the model and data and the Kullback-Leibler divergence induced by assimilation of data. In 

the analysis, we doubled the standard deviations for all the eight data sets and broadened ranges 

of the exit rates by doubling their upper limits and halving their lower limits. We used the full 

possible ranges (i.e., 0–1) for the transfer coefficients in comparison with those in Table 1. 

3.2.5 Sensitivity of short- and long-term forecasts to parameters  

 The coefficients of determinant (R2) between the forecasted sizes of the pools and the 

parameters were used as a measure of the sensitivity of the pools to the parameters. It 

represented the portion of variance of forecasted pool sizes induced by an individual parameter 

when all of the 30 parameters were varied randomly. We analyzed the sensitivity of each 

modeled C pool at the end of 2005 to each of the 30 parameters. The sensitivities of total 

ecosystem C content to the 30 parameters with forecasting years from 4 to 128 years were also 

calculated this way. 
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3.3 Results 

3.3.1 Posterior distributions of parameters 

Assimilation of the eight data sets constrained, among the 30 target parameters, five 

initial values for the foliage biomass (X0 (1)), woody biomass (X0 (2)), fine root biomass 

(X0 (3)), slow (X0(7)) and passive(X0(8)) soil organic matter (SOM) pools; six exit rates 

from three biomass pools (c1, c2, and c3), structural litter (c5), fast (c6) and slow SOM 

pools (c7); and two allocation coefficients for wood and fine root pools (b2 and b3). None 

of the transfer coefficients (fi,j) were well constrained (Fig. 3.2). Thus, the eight data sets 

contained information for less than a half of the 30 target parameters.  

 

3.3.2 Modeled carbon contents with and without data assimilation 

Distributions of the simulated eight C pools at the end of 2005 without (Model only) 

and with data assimilation (Model + Data) are shown in Fig. 3.3. The model without 

assimilation of the eight data sets generated PDFs of carbon pool sizes (i.e., state 

variables) that were somewhat bell-shaped for long-term pools of woody biomass (X2), 

structural litter (X5), slow SOM (X7), and passive SOM (X8) but skewed to their low 

carbon content ends for short-term pools of foliage biomass (X1), fine roots (X3), 

metabolic litter (X4) and fast SOM (X6). The PDFs of carbon pools suggest that the model 

structure, together with the prior ranges of parameters, contains information on 

ecosystem carbon dynamics, particularly in the long-term pools. With assimilation of the 
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eight data sets, the simulated carbon content in foliage (X1), woody (X2), fine roots (X3), 

structural litter (X5), fast SOM (X6), slow SOM (X7), and passive SOM (X8) pools were all 

well constrained. The metabolic litter pool (X4) was still not constrained. Improved 

modeling of carbon contents indicated that the eight data sets provided a substantial 

amount of additional information on carbon processes. 
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Figure 3.3 Simulated carbon contents at the end of 2005 with parameters sampled in 

prior distributions (Model only) and posterior distributions (Model + Data), respectively.  
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Figure 3.4 The projected carbon content (left and middle columns) and the relative 

information contributed by model and data (right column) over 100-year forecasts after 

1996. Box plots show visual summaries of carbon content distributions in the 5% (bottom 

bar), 25% (bottom hinge of the box), 50% (the lined across the box), 75% (upper hinge of 

the box), and 95% (upper bar) intervals. Closed circles with solid lines are the relative 

information contribution of the model; open circles with dotted lines are the relative 

information contribution of data. 
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3.3.3 Long-term forecasts of C contents and information contributions of model and 

data 

Either with or without assimilation of data, carbon contents were quickly stabilized 

in the fast turnover pools, such as foliage biomass (X1), fine roots (X3), and metabolic 

litter (X4), but substantially increased in slow turnover pools, such as woody biomass 

(X2), slow and passive SOM pools (X7 and X8), over the 100 years of forecasting (left and 

middle columns of Fig. 3.4). Corresponding variances of probability density distributions 

were also stabilized for the fast turnover pools (X1, X3, and X4) in the second decade but 

kept growing for the slow turnover pools (e.g., X2, X7, and X8). Assimilation of the eight 

data sets substantially reduced variations of forecasted C contents, especially in those fast 

turnover pools (Model + Data), in comparison with those without data assimilation 

(Model only) (Fig. 3.4). This indicates that data provide substantial information to 

constrain forecasts of carbon dynamics. Data assimilation also considerably altered the 

maximum likelihood estimates of carbon content in most of the eight pools.  

The relative information contribution by the model (including model structure and 

parameter prior ranges) steadily increased whereas the data contribution decreased for the 

slow turnover pools and ecosystem total C during the 100-year forecasting (right column 

of Fig. 3.4). For the two major C pools, woody biomass (X2) and slow SOM (X7), the 

model contributed less information in the first few decades and more in the last decades 

than the assimilated data in the course of the 100-year forecasting. For foliage biomass 

(X1) and fine roots (X3) pools, the eight data sets contributed more information than the 
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model during the entire period of forecasting. The model contributed more information 

than the data in the litter pools (X4 and X5), fast(X6) and passive (X8) SOM pools. 
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Figure 3.5 The changes in the distributions of the carbon content of the eight carbon 

pools and total ecosystem carbon at the assimilation of data into the model, measured by 

the information gains derived from the distributions of carbon content simulated by 

model only and those simulated by model plus data.  

 

The information gain of data assimilation was the highest for the foliage biomass 

(X1), fast SOM (X6), and fine roots (X3), and the lowest for the passive SOM (X8) (Fig. 

3.5). The information gain increased first and then decreased gradually for the woody 

biomass (X2) and total C. The information gain declined with time for the fast and slow 

SOM pools (X6 and X7), and metabolic litter(X4). The information gain for the structural 

litter (X5) and fast SOM (X6) pools was also substantial although data assimilation only 
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slightly reduced their uncertainties toward the end of the 100-year forecasting (Fig. 3.5 

vs. Fig. 3.4). 
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Figure 3.6 The sensitivity of the eight carbon pools at ten years’ simulation (A) and the 

sensitivity of ecosystem total carbon in long-term simulations (B) to the 30 parameters. 

X1 - X8 are the eight carbon pools as shown in Fig. 3.1. X0(1) - X0(8) are initial values of 

the eight carbon pools. c1 - c8 are exit rates of the eight carbon pools. b1 - b3 are the 

allocation coefficients of GPP to leaves, woody biomass, and fine roots, respectively. fi,j’s 

are the carbon transfer coefficients from pool j to pool i. The area of circle represents the 

value of the coefficient of determinant. 
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3.3.4 Parameters that determine short- vs. long-term forecasting 

The simulated carbon content of the eight pools at the end of 2005 had different 

sensitivities to the 30 parameters (Fig. 3.6: A). The foliage biomass (X1) and fine root 

pools (X3) were highly sensitive to their respective exit rates (c1 and c3) and modest to 

allocation coefficients to themselves (b1 and b3). The woody biomass (X2) was sensitive 

to its exit rate (c2), allocation coefficient to itself (b2), and its initial value (X0 (2)). The 

metabolic litter (X4) was highly sensitive to its exit rate (c4), and modest to allocation 

coefficients b1 and b3. The structural litter (X5) was highly sensitive to c5 and modest to 

c2. The fast SOM (X6) was sensitive to c6 only. The slow SOM (X7) was sensitive to c7, 

f7,6, and f6,4. The passive SOM (X8) was sensitive to X0(8) only. In general, the modeled C 

pools were most sensitive to the parameters that governed the carbon input into or output 

out of themselves or their neighbor pools that directly affected them. Plant carbon pools 

(X1, X2 and X3) were not sensitive to any of the transfer coefficients (fi,j’s), which only 

regulate carbon dynamics in the downstream pools. The fast turnover pools (X1, X3, X4, 

and X6) were not sensitive to their initial values (X0(i), i = 1, 3, 4, or 6). The downstream 

pools were sensitive to more parameters than the upstream pools (e.g., X7 vs. X2) because 

the C dynamics in the downstream pools were influenced by behaviors of the upstream 

pools. The opposite did not occur. 

The sensitivity of forecasted total ecosystem C content to parameters varied with 

time (Fig. 3.6: B). For example, the highest sensitive parameter for the total ecosystem C 

content was the initial value of woody biomass (X0(2)) for the 4-year forecast. For the 
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128-year forecast, the highest sensitive parameter was the exit rate of C from the woody 

biomass pool (c2), which gradually became more important over time in determining 

ecosystem C dynamics. The order of the six most sensitive parameters for the forecasted 

total ecosystem C content was X0(2), b2, b3, b1, X0(7), and c3 at the 4th year but it was c2, 

b2, c7, c5, f7,6, and f6,4 at the 128th year.  

3.3.5 Effects of prior ranges and measurement errors on information contribution 

The data contributed more information to constrain forecasts of forest carbon 

dynamics when the prior ranges of parameters were enlarged (Fig. 3.7 B vs. A). The 

enlarged parameter ranges also resulted in slight increases in the relative information 

contribution of the model since the null information was lowered due to changes in the 

minima and maxima of simulated carbon contents, which were used to define the null 

information. The relative information contribution of data increased at low model priors 

(Fig. 3.7: B vs. A). The information contribution by the data substantially decreased but 

did not change for the model component at doubled measurement errors (Fig. 3.7 C vs. 

A). However, the temporal patterns of information contribution did not change. The 

information gain was high at enlarged parameter ranges (low model prior) (Fig. 3.7: E), 

and it was low at doubled measurement errors (Fig. 3.7: F).  
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Figure 3.7 Information contribution of model vs. data and information gain with different 

parameter priors and measurement errors. Panels A, B, and C show relative information 

contributions with original parameter ranges and original measurement errors (A), full 

ranges of transfer coefficients and broadened ranges of exit rates (doubled upper limits, 

halved lower limits) with original measurement errors (B), and doubled measurement 

errors with original parameter ranges (C), respectively. Closed circles with solid lines are 

relative information contributions of the TECO model; open circles with dotted lines are 

the relative information contributions of the data. Panels D, E, and F are the information 

gains with the same order of the combinations of parameter ranges and measurement 

errors as panels A, B, and C. 

 

3.4 Discussion 

In this study, we evaluated relative information contributions of the TECO model 

and the eight data sets to the constraints of 100-year forecasts of carbon dynamics in 

Duke Forest. The sensitivities of short and long-term forecasts to model parameters were 
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analyzed to explain how the information contributions of the model and the data varied 

over time. The temporal changes in information contributions and parameter sensitivities 

have strong implications for the development and evaluation of current terrestrial 

biogeochemical models for regional and global assessment, and data collections in the 

future. 

3.4.1 Short- vs. long-term forecasts of forest carbon dynamics 

Parameters that influence uncertainty of carbon dynamics forecasts varied with time 

scale. Our analysis shows that the initial value of woody biomass (X0(2)) and allocation 

coefficient to woody biomass (b2) were the two most important parameters in influencing 

short-term forecasts of total ecosystem C dynamics (Fig. 3.7). The initial values of C 

pools define their positions on a trajectory of transient recovery, and therefore determine 

the rate of carbon accumulation and C storage potential (Carvalhais et al. 2008, Gough et 

al. 2008). The changes in C content of the eight C pools are different because their initial 

values are apart from their equilibrium states differently. The fast turnover pools, e.g., 

foliage and fine root C pools, are almost equilibrated at the initial states, while the slow 

turnover pools, e.g., woody biomass, slow SOM, and passive SOM, are far lower than 

their equilibrium states. So, woody biomass, slow SOM, and passive SOM have high 

carbon accumulate rates. The Duke forest was in its early stage of secondary succession 

after plantation in 1983 (Hendrey et al. 1999). Carbon in many pools, especially in the 

slow turnover pools, was accumulating. Thus, X0(2) and b2, which determine the 
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trajectory of transient C dynamics in one of the long-term pools, are the two key 

parameters affecting short-term forecasts of ecosystem C dynamics. 

The results indicate that long-term forecasts of forest carbon dynamics were strongly 

influenced by the growth rate of woody biomass of trees (determined by exit rate, c2 and 

the allocation coefficient, b2, in the model), and the decomposition rate of slow SOM (c7) 

(Fig. 3.7). Theoretically, the long-term C storage in an ecosystem is determined by C 

influx and residence time (Luo et al. 2001a). In this study, the C influx was input from 

simulation results of another photosynthesis model based on the eddy covariance data 

(Luo et al. 2003, Stoy et al. 2006), while the parameters that determine C influx were not 

evaluated. The ecosystem carbon residence time is determined by carbon residence times 

in individual pools, carbon allocation of GPP to plant pools, and transfer coefficients 

among soil C pools (Zhou and Luo 2008). Thus, we mainly evaluated the ecosystem 

residence time in influencing the long-term C storage in this study. The inverses of c2 and 

c7 are the residence times of the woody biomass and slow soil C pools, respectively. 

Parameter b2 controls the amount of photosynthetically fixed C to be allocated to the 

wood pool and subsequently influences C transfer to other long-term pools, such as 

structural litter, slow and passive SOM pools. Therefore, these three parameters are most 

important in determining the long-term carbon dynamics of forest ecosystems. Parameter 

b2 is important for both short- and long- term forecasts of forest C dynamics partially 

because it controls C allocation to the largest, long-term C pool in this particular forest, 

therefore, influences the C dynamics of the downstream pools. 
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Terrestrial biogeochemical models are usually tested against short-term data (e.g., 

Stöckli et al. 2008, Randerson et al. 2009) and the evaluations of parameterization are 

mainly on the parameters controlling short-term processes (e.g., Knorr and Heimann 

2001, Zaehle et al. 2005). Whereas, these models are widely used in long-term 

predictions (e.g., Fung et al., 2005, Friedlingstein et al. 2006, Sitch et al. 2008). Rastetter 

(1996) had proposed that long-term processes must be tested against long-term data after 

examining the performance of a photosynthesis model at multiple temporal scales. 

Parameter sensitivity analysis in this study shows that the long-term process related 

parameters are still important for short-term forecasts (e.g., initial value (X0(2)) and 

allocation coefficient (b2) of woody biomass, and exit rate of soil slow C (c7)) (Fig. 3.7). 

Therefore, the emphasis of parameterization for a biogeochemical model used to predict 

C storage should be on the long-term related parameters, especially on initial values for 

short-term forecasts and residence times for long-term forecasts. 

 

3.4.2 Relative information contribution of model and data 

Our analysis shows that the relative information contributed by the data declined 

over time but that contributed by the model increased slightly for the slow C pools (i.e., 

woody biomass, slow and passive SOM pools) and total ecosystem C (right column of 

Fig. 3.4). This means the model with the prior knowledge it represented plays an 

important role in forecasting long-term carbon dynamics. The processes (e.g, the 

compartmentalized pools and donor pool controlled carbon transfers for the TECO 
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model) defined the behavior of a model, therefore the spaces of its projections. This may 

probably be true for all process-based biogeochemical models. Statistical models can 

sometimes generate better results than the process-based models by deriving the 

relationships between climate variables and carbon dynamics. Artificial neural networks, 

for example, can fit the observations better than sophisticated process-based models after 

training by data (Abramowitz 2005). An experience model with the relationships between 

NPP and climate variables can reproduce the pattern of global NPP (Del Grosso et al. 

2008). A well calibrated climate-vegetation relationship model can capture the vegetation 

distribution pattern globally or regionally (e.g., BIOME model, Prentice et al. 1992, 

Weng and Zhou 2006). But the statistical relationships may be different with changes in 

climate, since ecosystems may not always be on equilibrium states because of lag effects 

(Sherry et al. 2008), vegetation shifts (Bachelet et al. 2001, Harrison and Prentice 2003), 

acclimation (Luo et al. 2001b), or ecosystem development (Chadwick et al. 1999). The 

process-based biogeochemical models can represent these mechanisms by incorporating 

simple or complex processes. Thus, the analysis of the relationships between climate 

variables and carbon dynamics should be confined in the framework defined by the prior 

knowledge on ecological mechanisms.  

The eight data sets provided high information for upper stream pools (i.e., foliage, 

woody, and fine root pools) but low for down stream pools (litters and soil carbon pools) 

generally (right column of Fig. 3.4). This may be a result of the consistency between data 

types and model carbon pools. Three data sets (foliage, woody, and fine root biomass) are 
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directly accordant with the three plant C pools. But none of the litter and soil C data is 

accordant with the two litter pools and the slow and passive SOM pools. Fox et al. (2009) 

explored the constraints of parameters in a TECO-like model, DALEC model, with 

assimilation of net ecosystem exchange (NEE) and leaf area index (LAI) data. The 

difference between these two models is that the DALEC model has one litter pool and 

one soil C pool, while the TECO has two and three, respectively. They found that the 

parameters related to photosynthesis and ecosystem respiration processes were 

constrained well. But the parameters related to roots and woody C pools (turnover rates 

and allocation coefficients) were constrained poorly. Therefore, their predictions on C 

stock diverged broadly in the third year. These results indicate collecting biometric data 

(e.g., woody biomass and soil carbon) is important for both short- and long-term forecasts 

on ecosystem C content and it is necessary for researchers to constrain long term pools 

and fluxes using short term observations. 

3.4.3 Factors influencing information contributions 

The null knowledge of pool sizes, model prior, and data uncertainties can affect 

relative information contributions of the model and data. Uniform distribution is usually 

used to represent null knowledge and the ranges are consequently the same with the 

corresponding PDFs. The way that uses the ranges of simulated carbon contents of the 

eight pools by the model with prior parameters can provide a wide enough space that all 

simulated results lie. And, the changes in the shapes of the PDFs induced by the model 

with prior or with posterior parameters can be effectively measured by relative 
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information indices (Im or Im+Id). By doing so, the information contribution of the model 

(Im) is independent on the number of bins (n). 

Model prior, including model structure and quantitative estimates of parameter 

uncertainties, is a quantitative measure on what we have known about the system. In this 

study, the model structure is well established. The parameter ranges are also well 

recognized from qualitative aspect, e.g., woody biomass’s residence time is much longer 

than the leaf’s; the carbon flowing to passive SOM is much lower than that to slow SOM. 

However, they are still varied among researchers when putting each of the parameters 

into a numerical range. We thoroughly reviewed the literature and proposed a set of 

parameter ranges that are believed to cover the right values. Uniform distributions are 

used to represent parameter uncertainties, since we did not want to put our judgment that 

some values were likely or unlikely to be the right ones. The sensitivity test on parameter 

ranges showed that the enlarged ranges led to little changes in the relative information 

contributions of the model. However, the data contributed more information at wider 

prior parameter ranges (Fig. 3.7: B). These indicate model-only results are not sensitive 

to parameter ranges if these ranges are reasonable.  

Measurement errors determine the weighting between observations and simulated 

results and the weighting of each observation. A thorough evaluation of measurement 

errors is necessary for assimilation of multiple sourced data sets. In this study, the 

standard deviations (SD) of assimilated data were calculated for each observation based 

on the data collected in the three ambient rings. The coefficient of variation (CV) is the 
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highest for the soil respiration data (66%) and lowest for the fine root data (7%). The 

number of data points of each data set is also a factor affecting its weight in cost function. 

Among the eight data sets, soil respiration has the highest points, 89, while the forest 

floor C and soil total C are the lowest, 4 only (Table 2). Thus, it is desirable to explore 

the weight of each data set for multiple sourced data assimilation. We tested the effects of 

magnitudes of measurement errors on information contribution. Less information 

contributed by data at doubled measurement errors, but the pattern that model’s 

contribution increases while data’s decreases remains (Fig. 3.7: C and F). 

In this study, GPP is derived from another model or eddy-flux data and used as an 

input to the model. The given GPP may influence the constraints of modeled carbon pool 

sizes and total ecosystem C content. In most biogeochemical models, GPP is modeled by 

an independent photosynthesis model with influences of the dynamic of the foliage pool, 

and is usually stabilized within one or a couple of decades. Thus, the uncertainties in 

simulated GPP do not affect the relative information contributions of model and data in 

the framework of a carbon pool model. 

The processes that are not considered in the model may also affect long-term 

forecasts of ecosystem states. For example, the current version of TECO model does not 

have the processes representing disturbances and carbon-nitrogen interactions. These two 

processes are considered to affect forest ecosystem C storage at long temporal scales 

(Luo et al. 2003, Gough et al. 2007). Since the woody biomass related parameters (c2 and 

b2) have high sensitivity to disturbances and nitrogen availability, the uncertainties in 
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long-term forecasts may be higher than simulated. Therefore, the effects of disturbances 

and nitrogen on the long-term forecast sensitive parameters, i.e., c2, b2, and c7) should be 

evaluated carefully in long-term forecasting. Overall, the accuracy of 100-year forecasts 

is essentially un-testable. But, the assimilation of data did reduce the uncertainties in the 

model and its forecasts based on the processes considered in the model. 

3.5 Conclusions 

Our results showed the information contribution of the model generally increased 

with time whereas the data’s contribution declined. The eight data sets contributed more 

than the model to constrain C dynamics in foliage and fine root pools over the 100-year 

forecasts. The model, however, contributed more than the data sets to constrain litter, fast 

SOM, and passive SOM pools. For the two major C pools, woody biomass and slow 

SOM, the model contributed less information in the first several decades and then more 

in the last decades than the data. Parameter sensitivity analysis showed that the initial 

value of woody carbon pool (X0(2)) and allocation coefficient to woody biomass (b2) 

were the two most important parameters for short-term forecasts of ecosystem total C, 

while the key parameters for the long-term forecasts were the exit rate (c2) and allocation 

coefficient (b2) of woody biomass, and exit rate of slow SOM (c7).  

These results indicate data assimilation is very useful in constraining short and 

long-term forecasts of forest carbon dynamics, while a good forward model is still 

fundamental to long-term forecasts. The test against short-term data cannot guarantee 
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improving the parameters governing long-term processes since the important parameters 

for short-term forecasts may be different from those for long-term forecasts. 

Incorporating the processes affecting long-term ecosystem carbon dynamics into 

biogeochemical models, such as disturbances and carbon-nitrogen interaction processes, 

and collecting more long-term data related to soil carbon dynamics are required for 

reducing the uncertainties in the forecasts of long-term ecosystem carbon dynamics. 
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CHAPTER 4 Carbon Storage Capacity under Varying Disturbance 

Regimes3 

 

                                                           
3 This part is from a manuscript coauthored by Yiqi Luo, Nikola Petrov, Weile Wang, Han Wang, Daniel J. Hayes, A. 
David McGuire, Alan Hastings, and David S. Schimel 
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Abstract: 

Disturbance has been recognized as a key factor affecting terrestrial carbon storage 

and dynamics. Most observational studies have focused on quantifying impacts of 

individual disturbance events on ecosystem carbon processes. Modeling studies mostly 

link specific disturbance events with ecosystem processes to characterize carbon sink 

dynamics. However, the quantitative relationship between carbon storage capacity and 

disturbance regimes has not yet been explored. Here we developed a mathematical model 

to quantify carbon storage capacity of ecosystems with varying disturbance regimes. The 

latter is defined in this study by the mean disturbance interval (MDI, λ, an index of 

disturbance frequency) and the mean disturbance severity (E[s]). Thus, expected carbon 

storage capacity (E[X]) under the disturbance regime can be described 

by
1

[ ]
[ ]EE X U

E s

λ
τ

λ τ
= ⋅ ⋅

+
, where U is ecosystem carbon influx, τE is ecosystem 

carbon residence time, and τ1 is the residence time of live biomass pool. Our model 

shows that carbon storage capacity decreases with disturbance severity but increases with 

mean disturbance intervals, carbon influx and residence time. This model, for the first 

time to our knowledge, analytically integrates biogeochemical processes (carbon input 

and residence time) with disturbance regimes (MDI and severity) to reveal general 

patterns of terrestrial carbon sink dynamics under varying disturbance regimes. 
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Key words: Ecosystem carbon storage,disturbance, carbon cycle, dynamic 

disequilibrium 

4.1 Introduction 

Disturbances can profoundly affect ecosystem carbon (C) storage and dynamics by 

generating spatial heterogeneous landscapes, altering ecosystem species compositions, 

reducing ecosystem production, depleting one or more C pools, and relocating C 

distribution among the C pools (Goetz et al. 2007, Turner et al. 2010) and leave legacies 

strongly influencing future carbon sources or sinks (Houghton et al. 1983, Balshi et al. 

2007). Climate warming can cause increases in frequencies, severities, and the spatial 

coverage of disturbance events, such as fires (Bowman et al. 2009, Turetsky et al. 2011), 

storms (Webster et al. 2005, Emanuel 2005), and insect outbreaks (Kurz et al. 2008), and 

therefore increase the vulnerability of C storage of terrestrial ecosystems (Balshi et al. 

2009). Better understanding of ecosystem C storage responses to disturbances in the 

context of climate change is required for accurately estimating the feedbacks between C 

cycle and climate change. 

Impacts of individual disturbance events on ecosystem carbon processes have been 

extensively studied. For example, the effects of fire on landscape heterogeneity (Turner et 

al. 1994), ecosystem recovery patterns (Kashian et al. 2005, Kashian et al. 2006), and C 

and nitrogen dynamics (Kashian et al. 2006, Smithwick et al. 2009) have been 

systematically investigated following the 1988 Yellowstone Fires. Insect outbreaks can 
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substantially reduce ecosystem C gross primary production, transforming Canadian 

boreal forests from C sinks to sources (Kurz et al. 2008). Many modeling studies that link 

specific disturbance events with ecosystem processes to characterize and project 

ecosystem C dynamics have been conducted to reveal mechanisms of disturbances 

affecting C processes and possible changes of C dynamics in the future. Bond-Lamberty 

et al. (2007) found that disturbance events were the dominant driver of central Canadian 

boreal forest carbon balance by modeling analysis with Biome-BGC model. Balshi et al. 

(2007, 2009) analyzed the effects of historical fires on current C dynamics of the high 

latitude regions of North America and proposed that fires could substantially increase the 

vulnerability of the C storage in the boreal forests with in the 21st century.  

However, terrestrial ecosystems can rapidly recover from individual disturbance 

events, even like the great fires of Yellowstone 1988 (Turner et al. 2010), making them 

carbon neutral from a long-term view (Kashian et al. 2006). The structure and functions 

of main terrestrial ecosystems, and therefore their C storage, are strongly shaped by 

disturbance regimes, which is the summary of the frequencies, severities, and the spatial 

coverage of disturbance events (Turner et al. 1994, White and Jentsch 2001). Disturbance 

regimes vary among the major terrestrial ecosystem types of the world. Tropical rain 

forests have a low frequency and severity of fires (Bowman et al. 2009) but a high 

frequency of storms (Zeng et al. 2009). Fires occur frequently with low severity in 

Savanna but of intermediate frequency and high severity in boreal forests (Bowman et al. 

2009, Chuvieco et al. 2008). Climate change is altering the disturbance regimes of these 
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ecosystems (Turetsky et al. 2010) and triggering ecosystem state shifts (Johnstone et al. 

2010), and inducing a large amount of C release to atmosphere (Beck et al. 2011). But, 

we still lack theoretical understanding of ecosystem C storage as a function of 

disturbance regimes and ecosystem internal processes. Thus, it is necessary to generalize 

the quantitative patterns of ecosystem C dynamics in response to changes in disturbance 

regimes and the rates of C input and output for improving our predictive understanding of 

ecosystem responses to changing climate. 

In this study, we derived a general quantitative description of ecosystem C storage 

changing with disturbance regimes based on explicit descriptions of spatial and temporal 

patterns of C dynamics of ecosystems induced by disturbances generalized from 

event-based studies. At temporal scales, ecosystem C content usually decreases sharply at 

the occurrence of disturbance events and then gradually recovers, as documented from 

chronosequence studies and long-term observations in most of the terrestrial biomes 

across the world (Hughes et al. 1999, Law et al. 2003, Vargas et al. 2008). The recovery 

patterns encompass the fluxes of ecosystem C input (i.e., net primary production, NPP) 

and output (e.g., decompositions of litter and soil organic matters), controlled by internal 

ecosystem processes that equilibrate ecosystem C storage (Luo and Weng 2011). While 

at large spatial scales, ecosystems are usually at different recovery stages due to random 

disturbances, leading to mosaics of C content in a large region. The mean C storage 

therefore is always lower than the equilibrium state defined by ecosystem internal 

processes (Luo and Weng 2011). We integrated the spatial and temporal patterns of 
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ecosystem C dynamics with a few key assumptions about the probability density 

distribution of disturbance occurrence and the pattern of ecosystem C recovery and thus 

developed a theoretical model to quantify ecosystem C storage capacity as affected by 

disturbance regimes at large spatial scales. This model was then tested against the 

simulations of TEM model in the high latitude areas of North America. The model can 

improve our predictive understanding of C storage with changes in disturbance regime 

and ecosystem internal properties. 

4.2 Materials and Methods  

4.2.1 Ecosystem Model 

A three-pool model was used in numerical simulations and mathematical reasoning. 

The model has biomass, litter, and soil organic matter (SOM) carbon pools (Fig. 4.1). For 

an ecosystem developed from bare ground, it can be represented by Eqn 4.1. 

( )'000)0(

)()(
)( 1

=

+= −

X

tBUtXAT
dt

tdX
 (4.1) 

where, X(t) is ecosystem carbon content at time t; A is a 3 × 3 matrix representing carbon 

transfer among the three pools, 

1 0 0

1 1 0

0 1

A

η

− 
 = − 
 − 

 and η is carbon transfer coefficient 

from the litter pool to the SOM pool. T is an 3 × 3 diagonal matrix, ( )diag τΤ = . The 

diagonal elements are T = (τ1 τ2 τ3)
’. τ1, τ2, and τ3 are the residence times of the carbon in 
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biomass, litter, and SOM, respectively. B is the allocation coefficients of carbon influx 

(i.e., NPP) to the three pools,( )'001 . U(t) is the carbon influx at time t.  

 

 

Figure 4.1 Ecosystem model Structure U is the ecosystem carbon input from 

photosynthesis (net primary production). The model has three carbon pools: Biomass 

(X1), Litter (X2), and Soil Organic Matter (SOM) (X3). η is the ratio of carbon transferred 

to the SOM pool from the litter pool. In simulation tests, we let τ1 =20 yrs, τ2=5 yrs, τ3=60 

yrs, and η=0.25. Thus, the ecosystem carbon residence time τE=τ1+τ2+τ3·η=40 yrs. 

 

Two characters of disturbance regime, the mean disturbance interval (MDI) and the 

disturbance severity, were considered. The disturbance events were assumed as Poisson 

events. The ecosystem carbon dynamics with effects of disturbance was represented by 

the following equation: 

)()()(
)( 1 tXsrtBUtXAT

dt

tdX
Ξ⋅⋅++= −  (4.2) 

η 

1-η 

Biomass 
(X1) 

Litter 
(X2) 

Soil Carbon 
(X3) 

U CO2 
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where r is a discrete random variable taking the value either 0 or 1. ( 1) 1/P r λ= =  is the 

probability that disturbance happens in a year and λ is the MDI. Matrix Ξ represents 

carbon losses and transfer among the three carbon pools induced by a disturbance event. 

It was assumed that the disturbance events could only remove biomass with a fraction of 

s and had no effects on the litter and the SOM pools. So, 














−

=Ξ

000

000

001

. The NPP was 

1.2 Kg C m-2 ·yr-1, τ1 20 yrs, τ2 5 yrs, τ3 60 yrs, and η was 0.25 for numerical simulations. 

Thus, the ecosystem carbon residence time, τE, was 40 yrs (τE=τ1+τ2+τ3·η=40). 

4.2.2 Sensitivity tests 

Probability density functions of disturbance interval Both Weibull distribution 

and exponential distribution are widely used to describe disturbance intervals (Katz et al. 

2005, Johnson and Gutsell 1994). Weibull distribution is usually used in the disturbances 

that depend on the conditions of ecosystems (e.g., fire) for its flexibility to represent the 

changes of the disturbance occurrence probability over time by varying its shape factor 

(Clark 1990, Grissino-Mayer 1999).  

1
( / ) ( 0)

( ; , )

0                        ( 0)

k
k

Tk T
e T

f T k

T

λ

λ λ λ

−
−

   ≥  =   
 <

 (4.3) 

where k is shape factor. Exponential distribution is a special case of Weibull distribution 

with k=1, and is usually used to describe the intervals of the disturbance events that are 

Poissonian (the probability of disturbance occurrence is constant over time). It is 
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applicable to many disturbances, e.g., storm and landslide with their occurrence being 

independent on the state of ecosystems. We simulated ecosystem C content by the 

ecosystem model with disturbance severity equal to 1 and intervals were sampled from a 

Weibull distribution with the shape factor varying from 1.0 (exponential distribution) to 

2.0. The mean simulated carbon content was generated by running the model at 65000 

grids.  

Dynamics of NPP after disturbances Forest NPP usually decreases sharply at 

disturbances and then increases with age. After approaching the highest level, it decreases 

slightly and is stable at a certain level with the development of a stand (Gower et al. 

1996, Ryan et al. 1997), although it is still in debate for natural forests (Wirth 2009). We 

conducted a simulation test to illustrate the biases of ecosystem carbon storage resulted 

from the assumption of constant NPP. The realistic NPP pattern was simulated by the 

following equations: 

( )1[ ( ) / ]
max

1

( ) 1

( ) (1 ) ( ) ( )

X t L aGPP t GPP e

U t b GPP t f X t

− += ⋅ −

= − ⋅ − ⋅
 (4.4) 

where, GPPmax is the maximum GPP, 2.4 Kg C m-2 ·yr-1. L is an experience value 

controlling the recovery rate of NPP. a is a small number for determining the initial NPP 

when biomass (X1) is zero. We used 2.4 Kg C m-2 and 0.2 for L and a, respectively. b is 

0.3 and f is 0.02. A NPP recovery curve was generated with NPP increasing in the first 10 

years and then decreasing slightly.  
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4.2.3 Comparison with the simulations of TEM model  

The yearly vegetation C content, net primary production (NPP), litter fall, 

fire-induced carbon loss, and harvest in the high latitude regions (Latitudes>45°) of North 

America from 1900 to 2006 were from the simulations of the TEM model (Balshi et al. 

2007, McGuire et al. 2010). The simulations considered changes in climatic variables, 

atmospheric CO2 concentration, fire regimes, and harvests since 1959. The whole area 

was divided into 24 regions according to the states in the United States and provinces in 

Canada. Region averaged NPP (U), litter fall (L), heterotrophic respiration (RH), 

vegetation and soil C content (Cveg, Csoil), fire-induced C loss (Cfire,veg, Cfire,soil), and 

harvest (Cproduction) were calculated by averaging the values at each grid for the recent 30 

years (1977~2006). Vegetation C residence time (τveg) was calculated by current 

vegetation C content divided by annual litter fall (Cveg/L). Potential vegetation C content 

is calculated by U×τveg. Disturbance regime (σ) was calculated by (Cfire+Cproduction)/Cveg, 

which was equivalent to s/λ. Soil C residence time (τsoil) was calculated by current soil C 

content divided by annual heterotrophic respiration (Csoil/RH). The potential soil C 

content (Csoil,potential) was calculated by U×τsoil. The soil C content with impacts of 

disturbances was calculated by the following equation: 

,

1 1

1 1soil cal soil
veg veg soil soil

C U τ
σ τ σ τ

= ⋅ ⋅ ⋅
+ ⋅ + ⋅

 (4.5) 
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4.3 Results 

4.3.1 The derived model 

We begin by looking at the simplest description of disturbance frequency and 

assume that it is independent of the state of the ecosystem, with a constant probability 

through time of a disturbance. We treat this exponential or Poisson regime in depth with 

our mathematical approach and examine sensitivity to changes in the description through 

simulation (e.g. a Weibull description which has been used to describe fire frequency 

(Katz et al. 2005, Clark 1990)). We used the exponential distribution to describe intervals 

between disturbances:  

11
, 0

( ; )

0          , 0

T
e T

f T

T

λ

λ λ

−
⋅ ≥

= 
 <

 (4.6) 

where T is the interval of two consecutive disturbance events and λ is the mean 

disturbance interval (MDI).  

A three-pool model with biomass, litter, and soil carbon pools (Fig. 4.1) was used to 

represent the carbon dynamics of ecosystems. With the assumption that carbon influx and 

residence are not affected by disturbances, the recovery pattern of biomass pool can be 

described by: 

1 1/ /
1 1,0 1(1 )t tX x e U eτ ττ− −= ⋅ + −  (4.7) 

where X1 is carbon content of the biomass pool, x1,0 is the legacy carbon of the biomass 

pool right after a disturbance event, U is carbon influx, τ1 is carbon residence time of the 
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biomass pool, and t is the time since last disturbance event. Equation 2 is the solution to 

the differential equation describing carbon accumulation at a constant input rate U and 

decay at rate (1/ τ1 ). The first term of the right side ( 1/
1,0

tx e τ−⋅ ) shows the decay of 

legacy carbon and the second term [ 1/
1(1 )tU e ττ −− ] represents the accumulation of new 

carbon.  

Integration of the exponential distribution of disturbance intervals with the 

ecosystem carbon recovery curve (Eqn 4.7) at a given disturbance severity, s, yields the 

expected biomass, E[X1] (see mathematical derivations in Supplemental materials B for 

details) as:  

1 1
1

[ ]E X U
s

λ
τ

λ τ
= ⋅ ⋅

+
 (4.8) 

The disturbance severity, s, ranging from 0 to 1, represents the fraction of biomass 

removed by a disturbance event. Here the disturbance severity is assumed to be 

independent of the current biomass. Incorporation of the biomass dynamics into the 

three-pool model produces the expectation of ecosystem total carbon (X): 

1

[ ] EE X U
s

λ
τ

λ τ
= ⋅ ⋅

+
 (4.9) 

where, τE is ecosystem carbon residence time. If the disturbance severity (s) is a random 

variable, the expectation of total ecosystem carbon (X) is: 

1

[ ]
[ ]EE X U

E s

λ
τ

λ τ
= ⋅ ⋅

+ ⋅
 (4.10) 
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Figure 4.2 Ecosystem carbon contents with a) changes in mean disturbance interval and 

severity, and b) changes in residence time and disturbance index (σ=s/λ) based on the Eqn 

4.8. 

 

where, E(s) is the expectation of disturbance severity. This equation contains two parts, 

the potential C storage (Uτ) and the disturbance effect (
1[ ]E s

λ
λ τ+ ⋅

). The former is 

determined by ecosystem internal processes and the latter is determined by disturbance 

severity, mean disturbance intervals, and the residence time of biomass pool. If we define 
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a disturbance index, σ, as E(s)/λ, the equation can be written as 
1

1
[ ]

1EE X U τ
στ

= ⋅ ⋅
+

. 

Equation (5) shows that expected carbon storage increases with carbon influx, residence 

time, MDI but decreases with disturbance severity (Fig. 4.2: a). The sensitivity of 

ecosystem C storage to disturbance is determined by the residence time of biomass C 

pool that is directly affected by disturbances (Fig. 4.2: b).  

4.3.2 Sensitivity analysis to the assumptions 

The sensitivity analysis showed the biases incurred by the assumptions used to 

derive these equations were low (Fig. 4.3). Simulated ecosystem C storage was not 

sensitive when the shape factor k of Weibull distribution changes from 1 (i.e., the 

exponential distribution) to 2 (a usual value for fires, Grissino-Mayer 1999) (Fig. 4.3: a). 

The assumption of constant carbon influx results in very small biases in comparison with 

the variable carbon influx even if disturbances occur frequently (Fig. 4.3: b and c). 

4.3.3 Validation and application 

Based on the framework defined by these equations (Eqns 4.8~4.10), we analyzed 

the simulated vegetation and soil C dynamics of the high latitude regions (>45°N) of 

North America by the Terrestrial Ecosystem Model (TEM) considering the impacts of 

fires and harvests (Balshi et al. 2007, McGuire et al. 2010). The whole region was 

separated into 24 sub-regions according to the provinces in Canada and states in the US. 



 121

Mean disturbance interval (year)
0 20 40 60 80 100 120 140 160

E
co

sy
st

em
 C

 c
on

te
nt

(K
g 

C
 m

-2
)

0

10

20

30

40

50

Calculated
k=1.0
k=1.2
k=1.5
k=2.0

Time (year)
0 20 40 60 80 100 120

N
P

P
(K

g 
C

 m
-2

 y
r-1

)

0.0

0.5

1.0

1.5

Constant NPP
Variable NPP

Mean distrubance interval (year)

0 20 40 60 80 100 120

E
co

sy
st

em
 C

 c
on

te
nt

(K
g 

C
 m

-2
)

35

40

45

50

55

60

a

b

c

 

Figure 4.3 Sensitivity tests to the assumptions of constant NPP and exponential 

distribution of disturbance intervals. Panel a illustrates the differences of simulated C 

content induced by the different distributions (Weibull distribution with different shape 

factor) with the mean disturbance intervals ranging from 10 to 160 years. Panel b shows 

the pattern of realistic NPP simulated by the Eqn 4.4. Panel c shows the simulated carbon 

content at variable NPP to those at constant NPP with mean disturbance interval ranging 

from 5 to 120 years (dashed line with open triangles). 
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The ratios of vegetation (Fig. 4.4: a, b) and soil C storage (Fig. 4.4: c, d) to their 

corresponding potential values calculated by this equation fit the simulated ones well. 

The correlations between the ratios of actual C content to the potential and disturbance 

regimes (s/λ) of the 24 districts follow the disturbance effect factor 
1

1

1 σ τ+ ⋅
  (Fig. 4.4: 

b and d). For the regions with low disturbances (e.g., Canada), the simulated C content in 

vegetation and soil C pools is very close to its potential level (Uτ). While, in the regions 

with frequent and severe disturbances, such as the states of United States, the C content is 

much lower than the potential.  

The pattern represented by Eqn 4.10 is also supported by many lines of 

experimental evidence. Forests in dry lands can have high net primary production (NPP) 

(Rotenberg and Yakir 2010) but low carbon storage likely due to frequent fire (Peterson 

and Reich 2001). Suppression of fires leads to increases in carbon stock in forests 

(Tilman et al. 2000), while increases in disturbance frequencies reduced Canadian forest 

biomass during 1980s (Kurz et al. 1999). The biomass of a Savanna ecosystem decreases 

with fire severity and increases with fire return intervals nonlinearly based on observation 

and modeling results from a 50-year fire experiment (Ryan and Williams 2010). 
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Figure 4.4 Calculated and simulated C storage in the high latitude regions of North 

America. The black bars of panel a are the ratios of calculated vegetation C content to the 

potential C storage defined by NPP and vegetation C residence time in the 24 regions. 

The gray bars are the TEM simulated. The blue bars are the indices of disturbance to 

vegetation (σ=s/λ) in the 24 regions. Panel b shows the relationship between the ratios of 

calculated and simulated C content to the potential vegetation C storage. Panels c and d 

are for soil C. Black bars are the calculated by the equation and Grey bars are simulated 

by the TEM model. The blue bars are the indices of disturbance to ecosystem (vegetation 

and soil) C. 
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Figure 4.5 Simulated changes of the vegetation C storage in the boreal area (>45°N) of 

North America in response to changes in disturbance regime. Panel a is the current 

disturbance regime from Balshi et al. 2007 (the fraction of vegetation C that is removed 

by fires and harvests per year), b is the predicted disturbance regime in the last decade of 

21st century (5.7 times of current disturbance index, following Balshi et al. 2009). c is the 

current vegetation C storage, d is vegetation C storage in the last decade of 21st century 

with changes in disturbance only calculated by equation 5, and e is the C loss of 

vegetation alone induced by changes in disturbance regimes. 

 

We applied this model to analyze the possible vegetation C storage changes in the 

high latitudes of North America by this model in the last decade of 21st century due to 

changes in disturbance regime (Fig.4.5: a, b) based on the simulated NPP and C residence 

times by the TEM (McGuire et al. 2010). Around 1.8 Pg C would be released at the 5.7 

times of current disturbance index given NPP and residence time were constant (Fig. 4.5 

c, d, and e), which was comparable with the simulated predictions (Balshi et al. 2009).  
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Figure 4.6 Ensemble analyses of changes in vegetation carbon storage in the high 

latitude regions of North America. Panel a shows the C stock changes with disturbance 

intensity at ambient NPP and residence time (solid line with closed circles), increased 

NPP (dotted line with open circles), decreased residence time (dashed line with open 

triangles), or both (long-dashed line with closed triangles). Panels b-d show the isometric 

lines of vegetation C stock changes (Pg C) with changes in NPP and disturbance intensity 

at ambient (b), 10% reduced (c), and 20% reduced (d) residence times. 
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Considering the simultaneous changes in NPP and residence time, we explored 

more possibilities of vegetation C storage changes in this area with combined changes in 

NPP and residence time. A 25% increase in NPP could compensate the C loss induced by 

10 times increases in disturbance. A 25% increase in NPP with a 20% decrease in 

residence time didn’t change the potential (equilibrium) vegetation C storage, but the C 

loss induced by disturbance was decreased, since the lower residence time reduced the 

sensitivity of C storage to disturbance. Lowered residence time with constant NPP led to 

more carbon loss (Fig. 4.6: a). This model enabled us to analytically analyze C storage 

changes with NPP, residence time, and disturbance regime. For the high latitude areas of 

North America, each fold of current disturbance intensity increase required 2% of 

increase in NPP to keep C storage at current level if residence times didn’t change (Fig. 

4.6: b). Thus, 6 times of increases in disturbance required 12% increase in NPP (Fig. 4.5: 

b), which could happen with increases in temperature and fertilization of elevated CO2. 

While if residence time decreased 10%, that along required 12.5% increase in NPP for 

maintaining current vegetation C stock. And, 6 times of increase in disturbance required 

additional 10% increase in NPP (Fig. 4.6: c). A 20% decrease in residence time required 

25% increase of NPP to keep vegetation C stock at current level and any increases in 

disturbance would induce decreases in C stock (Fig. 4.6:d). Future climate change will 

induce increases in mortality, decomposition rates, fires, and more drought stress. So, the 

chance of vegetation C pool to be a sustaining C sink is very narrow when the three 

factors change simultaneously. 
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4.4 Discussion 

This model is an integration of the temporal patterns of ecosystem C recovery and 

the spatial heterogeneity of landscapes induced by disturbances, representing a 

quantitative description of the dynamic equilibrium states of ecosystem C dynamics at 

large spatial scales with effects of disturbances (Luo and Weng, 2011). It quantifies the 

nonlinear relationships of ecosystem C storage with ecosystem internal properties and 

disturbance regime, which are usually explored by model simulations. The derivatives of 

this model illustrate the different properties of C storage of an ecosystem in such dynamic 

disequilibrium states with those at equilibrium states and thus provided an overarching 

mathematical framework to quantitatively analyze the possibilities of ecosystem carbon 

storage responses to changes in NPP, decomposition/mortality rates, and disturbance 

regimes induced by changes in climate and disturbance in the future.  

4.4.1 Model properties and derivatives 

In this model, as shown by Eqn 5, NPP, decomposition rates, and disturbance 

regimes define a multiple (3 or 4) dimensional space to determine ecosystem carbon 

storage. For the vegetation C pool, it is a three dimensional space. Changes of ecosystem 

carbon depend on the relative changes of the three variables. Increases of disturbance can 

be compensated linearly by increases in NPP. Decreases in residence time and increases 

in disturbance result in more C loss than any one of them, but the effects are not additive 
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since lowered residence time alleviated the effects of disturbances. The carbon gain from 

increased NPP can be offset by decreasing residence time.  

Eqn 4.10 also indicates that the sensitivity of ecosystem C storage capacity to 

disturbances is determined by the residence times of the C pools affected by disturbances. 

Disturbances have higher impacts on forests than on grasslands, since trees have longer 

residence time and need more time to recover to the pre-disturbance states than grasses. 

The recovery rate of carbon influx (i.e., NPP) also affects the impact of disturbances on 

carbon storage capacity. If disturbance occurs very frequently (short MDI) so that carbon 

influx does not have enough time to fully recover, the actual carbon storage will be lower 

than that estimated by this model (Fig. 4.2: c).  

When the Eqn 4.10 is written as 
1

1
[ ]

1EE X U τ
σ τ

= ⋅ ⋅
+ ⋅

, the disturbance regime 

can be represented by only one parameter, σ. This parameter has multiple meanings. It 

can be the fraction of C that is removed by disturbances per time unit (e.g., year) in a 

region and can also be the area that is burned or harvested with the assumption that 

disturbance severity is 1. The inverse of σ is the MDI of the equivalent disturbances with 

severity 1. σX is the C efflux induced by disturbances that counteracts part of NPP or 

increases C outflow (litter fall for biomass or heterotrophic respiration for soil organic 

matters). The decreases in C residence time in ecosystems or net primary production 

induced by disturbances can be quantified by the factor 
1

1

1 σ τ+ ⋅
. The parameter σ can 
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simplify and standardize the description of diverse disturbances when evaluating their 

effects on ecosystem C dynamics.  

4.4.2 Applications 

This model provides a unique angle to the analysis of the data collected from 

observational studies based on paradigm of dynamic disequilibrium, which is more close 

to reality than that of equilibrium. Eqn 5 suggests that ecosystem C storage capacity can 

approach the potential level ( EUτ ) only when there are no disturbances (i.e., as s 

approaches zero or λ approaches infinite), which is unlikely in most regions of the Earth. 

Therefore, there will be a mean growth rate of vegetation C pool (or net ecosystem 

production) 1

11
U

σ τ
σ τ
⋅

+ ⋅
 (σ=s/λ) when the whole region is actually carbon neutral, rather 

than zero in the paradigm of static equilibrium. For example, the ecosystem C storage 

will keep constant at large spatial scales while the mean observed biomass growth rate is 

100 g C m-2 yr-1 for a forest with 600 g C m-2 yr-1 of NPP, 20 yrs of biomass C residence 

time, and a disturbance index (s/τ) of 0.01, since the large amount of C removed by 

occasionally happened disturbances counteracted the continuous C accumulation with a 

rate of 100 g C m-2 yr-1 ( -2 -11

1

0.01 20
600 100(gCm yr )

1 1 0.01 20
U

σ τ
σ τ
⋅ ⋅

= ⋅ =
+ ⋅ + ⋅

). This property 

demands an integrated assessment of carbon sink dynamics at large spatial or temporal 

scales with consideration of disturbance regimes. Forests at individual sites slowly 

accumulate carbon most time while lose large amounts of it quickly when a disturbance 
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event happens. Thus, the probability of observing carbon uptake is high. Old growth 

forests have been shown to be carbon sinks (Luyssaert et al. 2008, Lewis et al. 2009) 

likely because most forests take up carbon continuously between disturbance events. 

It also can improve the representation of ecosystem states and processes for 

modeling studies. Most global modeling analyses, for example, are initialized with the 

carbon pools equilibrated to historical climate data (Schimel et al. 1997, McGuire et al. 

2001, Sitch et al. 2008). This may overestimate the initial terrestrial C storage, leading to 

misunderstanding on the mechanisms of terrestrial carbon sink. For example, C storage 

will be overestimated by approximately 20% if disturbance occurs, on average, once 

every 40 years with a severity of 0.5 according to this model. Lack of representation of 

disturbances in models also results in overestimation of terrestrial carbon sequestration in 

response to climate change, since the increases in disturbances can incur a large amount 

of carbon lose (Schimel et al. 1997). Eqn 4.10 provides a way to reevaluate these model 

predictions with information on disturbance regimes. 

4.4.3 Uncertainties 

Our derivation is based on a few simplifying assumptions about disturbance 

regimes and ecosystem processes to succinctly describe dynamics of C storage capacity 

as affected by ecosystem carbon processes (i.e., influx and residence time) and 

disturbance regimes (represented by frequency and severity). These assumptions include 

(1) no effects of disturbance on NPP and residence times, (2) independence of the 
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fraction of carbon removed by a disturbance event from current carbon content of 

biomass, and (3) representation of disturbance intervals by exponential distribution. 

These assumptions define a dynamic equilibrium system (Turner et al. 1993, Perry et al. 

2002) at a large spatial scale, where ecosystems at each sub-grid can eventually recover 

to their original states after disturbances. They are acceptable if we only explore the 

rough picture of C storage at large spatial or temporal scales. For example, even for 

stand-replacing disturbances (fires or harvests), the recovery period of NPP is only five to 

ten years (Hicke et al. 2003, Hughes et al. 1999, Law et al. 2003), which is very short 

compared to the recovery of carbon stocks. The high agreement with simulations of TEM 

also indicates current mainstream biogeochemical models are employing the philosophy 

of dynamic equilibrium. 

Many studies have shown the assumptions of dynamic equilibrium of a landscape 

may not be true especially when disturbance is frequent and ecosystems are undergoing 

climate change (Turner et al. 1993, Johnstone et al. 2010). With the trends of climate 

change, for example, ecosystem state shifts can be triggered by fires that initiate a 

recovery process leading to the changes forest types (Johnstone et al. 2010). Disturbances 

of terrestrial ecosystems are diverse and there are complicated interactions among them 

(Miao et al. 2009). Their impacts on ecosystems are far more complex than the 

assumptions of this study. Our study provides a benchmark for disturbance modeling 

with clear assumptions and tractable processes. Further study should be conducted to 

understand and model these complex facets.  
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4.5 Conclusions 

In conclusion, the model developed in this study provides an analytical 

description on the relationships between ecosystem carbon storage and NPP, C residence 

time, and disturbance intervals and severity. The model represents a disequilibrium 

perspective for examining C storage dynamics in light of impacts of disturbances and 

improves our predictive understanding on regional C dynamics (Luo and Weng 2011). C 

cycling at the scale of ecosystem is almost always in dynamic disequilibrium with most 

ecosystems accumulating carbon at various stages of recovery with intermittent 

disturbances to release large amounts of carbon. At a regional or landscape scale at which 

disturbances occur, carbon cycle is in dynamic equilibrium and carbon storage capacity 

does not change over time when disturbance regime in a region does not vary over time. 

Carbon cycle is in dynamic disequilibrium when the disturbance regime in the region 

varies in response to global change. This disequilibrium perspective is critical for scaling 

of site-level observations to estimate regional and global carbon sink, for modeling 

studies on carbon-climate feedbacks, and for design of field experiments and observation 

networks.  
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Supplemental Materials 

Table A1: Notations 

 

Symbol Meaning Symbol Meaning 

A Carbon transfer matrix X(t) Vector for carbon pools at time t 

B Allocation vector of net primary 

production (NPP) 

η The ratio of carbon transferred to 

SOM from litter pool 

r A random variable representing the 

occurrence of large-disturbances (1 

for the occurrence, 0 for null) 

λ The mean disturbance interval (MDI) 

s The fraction of biomass removed by 

a large-disturbance event (0~1) 

Ξ Disturbance carbon transfer matrix  

U0 Reference NPP τ1 Carbon residence time of biomass 

U(t) NPP at time t τ2 Carbon residence time of litter 

X1 Biomass carbon pool τ3 Carbon residence time of SOM 

X2 Litter carbon pool τE Ecosystem carbon residence time 

X3 Soil organic matter (SOM) carbon 

pool 

T Diagonal matrix for carbon residence 

times  
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 B: Mathematical Derivations 

The carbon cycle model is described by the following equation: 

)()(
)( 1 tBUtXAT

dt

tdX
+= −  (B1)

where, X(t) is ecosystem carbon content at time t, A is a 3 × 3 matrix representing carbon 

transfer among the three pools, 

1 0 0

1 1 0

0 1

A

η

− 
 = − 
 − 

 and η is the ratio of carbon 

transferred to the SOM pool from the litter pool. T is an 3 × 3 diagonal 

matrix, ( )diag τΤ = . The diagonal elements are τ1, τ2, and τ3, which are the residence 

times of the carbon in biomass, litter, and SOM, respectively. B is the allocation ratios of 

carbon input to the three pools, ( )'001 . U(t) is the carbon input (net primary 

production, NPP) at time t. We assumed it was a constant in model simulations and 

mathematical derivations. 

 

Carbon storage capacity at the disturbances with severity is 1.0 (all biomass was 

removed): 

According to the Equation B1, the carbon content of biomass with an initial value 

of zero follows the following equation: 

1/
1 1(1 )tX U e ττ −= −  (B2)

where, t is time. 

Fore each disturbance cycle, the mean C content over a disturbance interval T can 

be taken as the height of a rectangle with the length T and the same area with that 
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enclosed by the recovery cure (Supplemental Figure S4: a). Thus, the mean carbon 

content of biomass (X1,avg) in a disturbance cycle with interval T: 

1

1
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1, 1

(1 )

1 (1 )
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 
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(B3)

Note, the interval T is in distribution: 
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 (B4)

The mean carbon content in an infinite time series with numerous disturbance events and 

any kinds of interval T can be calculated as the total area enclosed by the recovery curves 

divided by the sum of T’s. Taking the probability density function of interval T into 

account, the mean carbon content is: 

1

1
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1
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1
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+

∫

∫  (B5)

For the pools of litter and SOM, the changes are only their inputs. For a long period, the 

whole ecosystem carbon content can be represented by: 
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(B6)

 

Carbon storage capacity at the disturbances with severity is less than 1.0 (part of 

biomass was removed): 

For each disturbance cycle, the carbon can be divided into two parts: the legacy 

carbon from the last rotation, the new carbon accumulated from zero since the 

disturbance event (see Supplemental Figure S4: b). The legacy carbon decomposes 

exponentially ( 1/
1, 1,0

t
oldX x e τ−= ⋅ , where, x1,0 is the initial value of legacy carbon just after 

a disturbance event); the new carbon accumulates following the equation 

1/
1, 1(1 )t

newX U e ττ −= − , the total carbon of biomass at time t since last disturbance is:  

1 1/ /
1 1,0 1(1 )t tX x e U eτ ττ− −= ⋅ + −  (B7)

The mean carbon content of biomass in a disturbance rotation (X1,avg) with given x1,0 and 

disturbance interval T: 

1 1

1 1

/
1, 1 1,00 0

1 1
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Since x1,0 is determined by the previous disturbance event, it is independent on the 

interval of the next disturbance (here, the interval is assumed to be T). Thus, considering 

all kinds of T, the expectation of this rotation conditioned on x1,0 is: 

1 1

1 1
1 1

1 1,00 0

1 1,0 1

0
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) 

Then, the expectation of X1 is: 
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(B10)

For solving the mean of x1,0, we need to know the mean of the carbon content just 

before disturbance happens (−0,1X ) ( 1 1/ /
1,0 1,0 1(1 )t tX x e U eτ ττ− −− = ⋅ + − , where x1,0 is the 

initial value of that disturbance cycle) (see Supplemental Figure S3: c for the definition of 

X1,
−
0,1X , and x1,0). Let t be the time that the disturbance happens since the last one. The 

distribution of t is an exponential distribution. 
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It indicates that ][][ 10,1 XEXE =− . 

For each −
0,1X , there is an −⋅−= 0,10,1 )1( Xsx . Thus, 
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Therefore, the expectation of 1X (plant biomass) in disturbances with severity s and 

mean interval λ is: 
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And, for the expectation of ecosystem total carbon (X): 
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(B14)

According to the equation (B14), ecosystem carbon storage capacity can be 

estimated by its intrinsic properties (U and τ) and disturbance regime (λ and s). We also 

simulated carbon storage capacities with severities (s) ranging from 0 to 1. The calculated 

values agree with the simulated well (Fig. S4.2: a and b). The mean of carbon content just 

after disturbances events calculated by the equation B12 agree with the simulations well 

(Fig. S4.2: c). 

 

Disturbance severity is a random variable: 

If severity (s) is a random variable, say uniformly distributed in [0,1], then the mean 

carbon content can be calculated as following. 

As we have known, the expectation of X1 and −
0,1X  is 

1
1 1 1 1,0

1 1

( ) [ ] [ ]E X E X U E x
τλ

τ
λ τ λ τ

−= = ⋅ + ⋅
+ +

. 

And, for each −
0,1X , there is an −⋅−= 0,10,1 )1( Xsx , where s is a RV. Thus, 
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Therefore, the expectation of X1 is: 
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And, the expectation of total ecosystem carbon is: 

1

[ ]
[ ]EE X U

E s

λ
τ

λ τ
= ⋅

+ ⋅
 (B17)

This equation indicates for disturbances with random intervals and random severity, 

we should first calculate the expectations of disturbance interval (λ) and severity (E[s]), 

and then calculate mean carbon content. The carbon contents calculated by this equation 

(B17) agree with the simulations well (Fig. S4.2: d). 
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Figure S4.1 Diagrams for mathematical derivation 

a 

 

b 

 

c 

 

a. The height of the rectangle is the mean C content over disturbance interval T; b A 

recovery curve that can be decomposed into two curves: the accumulation of new carbon, 

and the decay of legacy carbon; c. The definitions of X1,
−
0,1X , and x1,0. 
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Figure S4.2 Comparison between the simulated and calculated carbon storage capacities 

at disturbances  
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Carbon storage capacities at large disturbances with (a) changes in mean disturbance 

interval (MDI) while the severity is 1.0; (b) changes in severity while the MDI is 5 yrs. 

(c). Mean carbon content of the live biomass pool just after a disturbance event (x1,0) with 

severity ranging from 0 to 1 and a MDI of 20 yrs. (d) Carbon storage capacity at large 

disturbances with severity uniformly distributed in [0,1] with MDI ranging from 5 to 120 

years.The NPP is 1.2 Kg C m-2·yr-1. τ1, τ2, and τ3 are 20, 5, and 60 years, respectively. η is 

0.25. Thus, the ecosystem carbon residence time is τE=τ1+τ2+τ3·η=40 years. 
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CHAPTER 5 Conclusions and Perspectives 

5.1 Conclusions 

These studies showed that current ecosystem C modeling schemes, i.e., a 

Farquhar model based canopy model simulating C input to the system and 

compartmentalized C pool model simulating C allocation, transfer, and decomposition, 

works well in simulating the short-term patterns of ecosystem C dynamics, but with high 

uncertainties and sensitivities to some parameters and boundary conditions. Our study 

(Chapter 2) showed that soil hydrologic properties could substantially change the effects 

of water dynamics on C processes and their responses to warming and elevated CO2. 

How to correctly represent the sensitivities of these ecological processes to such 

conditions and parameters is an issue in model development and can affect our 

confidence on simulated results. 

Data assimilation is an effective method to combine the information from model 

and data and therefore improve model parameterization and accuracy of predictions. 

However, once a model structure is given, optimizing parameters can only find out the 

best agreement with observations within the space defined by the given model. As shown 

by our data assimilation study (Chapter 3), the model with optimized parameters by data 

assimilation approach can give a subset of simulations of the given model structure. Due 

to the limitation of data, only short-term predictions can be improved while long-term 
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predictions are still dependent on the model structure, which represents our prior 

knowledge on ecosystem C dynamics. 

These two studies indicate that improving our understanding of ecosystem 

dynamics is central to ecosystem modeling studies. Our theoretical analysis on the C 

storage capacity with effects of disturbances (Chapter 4) illustrates that new theories and 

paradigms for modeling ecosystems can fundamentally change the way that ecosystems 

are represented in models. This study is based on the knowledge of temporal patterns of 

biogeochemical cycles with ecosystem development and dynamic spatial patterns of 

ecosystem structure of landscape ecology. It proposes an analytical model to represent 

the relationships between ecosystem carbon storage and NPP, C residence time, and 

disturbance intervals and severity. The model represents a disequilibrium perspective for 

examining C storage dynamics in light of impacts of disturbances and improves our 

predictive understanding on regional C dynamics (Luo and Weng 2011). This 

disequilibrium perspective is critical for scaling of site-level observations to estimate 

regional and global carbon sink, for modeling studies on carbon-climate feedbacks, and 

for design of field experiments and observation networks.  

5.2 Perspectives 

Ecosystem C cycle modeling is still in its infant stage. Current C cycle models are 

based on the highly simplified representation of C processes. Only biophysical and 

biogeochemical processes are well represented. Photosynthesis controls C input; 
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Allocation schemes determine where the C goes and how long time they will stay in the 

system; decomposition processes release C back to atmosphere. Water, nutrients, and 

environmental conditions affect ecosystems via these C processes. 

However, the overarching aim of organisms in ecosystems is to survive, rather than 

store C. Terrestrial plants use all available resources, such as water, carbon, light, and 

nutrients, to build themselves and choose the best strategies for them to survive and 

compete with their neighbors. They can respond to environmental changes by biological, 

ecological, and evolutionary processes (Parmesan 2006) in addition to biophysical and 

biogeochemical processes. These behaviors can change the processes of the C cycle of 

ecosystems when climate changes or disturbances happen. How to integrate these 

biogeochemical and biophysical processes within the framework of ecological processes 

and how to represent the interactions of plants at the community level in models are key 

steps to improving ecosystem models. 
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