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ABSTRACT 

Tetrachloroethylene (PCE) and trichloroethylene (TCE) are among the most 

commonly detected groundwater contaminants in the U. S.  Microbial reductive 

dechlorination of this group of contaminants was investigated in different reaction 

systems, including isolated pure cultures, enrichment cultures and microcosms.  

Chemical, isotope and molecular analyses were performed to evaluate the feasibility of 

stable carbon isotope fractionation to quantitatively monitor microbial PCE and TCE 

reductive dechlorination and the potential factors that may lead to uncertainties of this 

monitoring technique.  

    Microbial PCE and TCE reductive dechlorination was first analyzed and the product 

distribution and stable carbon isotope fractionation were determined in two isolated pure 

cultures (Sulfurospirillum multivorans and Desulfuromonas michiganensis Strain BB1) 

and one mixed culture, Bio-Dechlor Inoculum (BDI™).  S. multivorans and D. 

michiganensis Strain BB1 produced cis-DCE when PCE or TCE was used as the parent 

substrate, while the Dehalococcoides-containing BDI was able to completely 

dechlorinate PCE and TCE to ethylene.  Different extents of isotope fractionation were 

observed among the three cultures.  Generally, weaker isotope fractionation occurred 

during PCE reductive dechlorination (εbulk = -1.33 to -7.12 ‰) than that during TCE 

transformation (εbulk = -4.07 to -15.02 ‰).  The different levels of fractionation by 

individual species/culture might be due to their diversity in the structure of functional 
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enzymes (e.g., reductive dehalogenase), cofactors or rate-limiting steps before enzymatic 

reactions. 

In order to evaluate potential impacts of environmental factors (e.g., electron donors 

and pH) and microbial diversity on isotope fractionation during microbial reductive 

dechlorination of chlorinated ethylenes, two enrichment cultures (DPF and DPH) 

stimulated from the same source but in the presence of different electron donors were 

investigated.  These two cultures showed significantly different product distribution and 

isotope fractionation.  Chemical and isotope analyses indicate that electron donors and 

pH do not directly change the product distribution and only slightly changed extents of 

isotope fractionation.  However, phylogenetic analysis of the 16S rRNA clone libraries 

of DPF and DPH suggests that electron donors might indirectly influence extents of 

isotope fractionation by leading to a shift in microbial community composition.   

At contaminated sites, microbial and abiotic reductive dechlorination may 

simultaneously occur.  To understand the relative contributions of these remediation 

processes and to evaluate the feasibility of applying isotope fractionation to monitor 

potentially parallel microbial and abiotic transformation processes, PCE and TCE 

reductive dechlorination was carried out in a series of well-defined microcosms.  

Alternative electron accepting processes, e.g., iron-, sulfate-reduction and 

methanogenesis, were developed to vary contents of biogenic iron and sulfide minerals; 

electron donors were spiked to stimulate indigenous dechlorinating bacteria.  Our results 



 

xiii

showed that microbial reductive dechlorination was dominant in 21 out of 24 PCE 

microcosms and 5 out of 8 TCE microcosms.  Isotope analysis indicated that weak 

isotope fractionation occurred in most microcosms, while some of them had very 

negative εbulk.  All of them were within the range of or comparable with the εbulk of 

microbial reductive dechlorination of PCE and TCE that have been published so far.  In 

addition, compared to the isotope fractionation during PCE and TCE abiotic reductive 

dechlorination by FeS, the extents of isotope fractionation observed in these microcosms 

was generally weaker.  Higher environmental pH was suggested to be unfavorable for 

growth of dechlorinating bacteria.  Meanwhile, the comparable levels of microbial and 

abiotic dechlorinated products were only observed in the microcosms with slow 

microbial reductive dechlorination, suggesting that abiotic dechlorination might be 

important only when microbial reductive dechlorination is slow.  Comparison of 

geochemical conditions with abiotic product recoveries suggests that high concentrations 

of Fe(II) and S(-II) solid species produced under sulfate- and iron-reducing conditions are 

likely important for abiotic reductive dechlorination to occur.   

In general, the different levels of isotope fractionation during microbial PCE and 

TCE reductive dechlorination observed in our pure culture, enrichment cultures and 

microcosm experiments, indicate to us that a number of factors need to be considered in 

applying isotope fractionation to quantitatively monitor bioremediation of this group of 

contaminants in the field.  This includes whether the appropriate conditions have been 



 

xiv

selected for development of model enrichment cultures, potential indirect impacts of 

environmental factors (e.g., pH and electron donors) and impacts of different 

transformation pathways (e.g., abiotic versus microbial) on the extents of isotope 

fractionation.   

   

Key words: tetrachloroethylene, trichloroethylene, reductive dechlorination, isotope 

fractionation, geochemical conditions, electron donors, phylogenetic analysis, alternative 

electron accepting processes 
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CHAPTER 1 

Introduction 

 

Chlorinated solvents (e.g., PCE and TCE) are a group of major contaminants 

in many environments, especially in the subsurface.  Past practices (e.g., source 

excavation, thermal methods, pump-and-treat systems, surfactant treatment etc.) are 

costly, lengthy and even ineffective (Pankow et al., 1996; Sinke and Hecho, 1999; 

USEPA, 2001a).  Monitored Natural Attenuation (MNA) has been discussed as a 

promising and cost-effective option to remove chlorinated solvents (Grandel and 

Dahmke, 2004).  Application of MNA to remediate contamination by chlorinated 

contaminants requires understanding of different transformation pathways, their 

relative contributions and effective approaches to monitor the transformation 

processes.  This dissertation is focused on microbial reductive dechlorination of PCE 

and TCE.  This chapter is provides some background and is organized into four 

sections: (1) motivation for this research; (2) reductive dechlorination of PCE and 

TCE; (3) stable carbon isotope fractionation during reductive dechlorination; and (4) 

overview of this study. 

 

1.1. Motivation for This Research 

PCE and TCE have been widely used as degreasing agents and solvents in many 

industrial and aviation applications (Häggblom and Bossert, 2003; Grandel and 

Dahmke, 2004).  Due to improper waste disposal, spills and careless handling, they 
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are among the contaminants most commonly detected at USEPA superfund sites 

(Moran et al., 2007; ATSDR, 2008).  Between 1998 and 2001, the total on- and 

off-site releases of PCE and TCE were about 4 and 33 million pounds, respectively 

(USEPA, 2001b).  The special physico-chemical properties of PCE and TCE (e.g., 

poor water solubility, high specific density and high vapor pressure) allow them to be 

transported in subsurface via several processes (e.g., dissolved in groundwater, 

volatilized in the unsaturated zones or sorbed onto soil matrix).  Since they can also 

exist as dense non-aqueous-phase-liquids (DNAPL), they can form widespread 

contaminant plumes (Häggblom and Bossert, 2003; Grandel and Dahmke, 2004).  

Considering their toxicity and recalcitrance (Mackay and Cherry, 1989; Massachusetts 

Department of Public Health, 1996), the USEPA has set Maximum Contaminant 

Levals (MCLs) for both contaminants in drinking water at 5 μg/L (USEPA, 2004).   

Monitored Natural Attenuation (MNA) is an approach that relies on physical, 

chemical and microbial processes under favorable conditions to decrease the mass, 

toxicity, mobility, volume or concentration of contaminants, and thus is promising and 

cost-effective (USEPA, 1999; Grandel and Dahmke, 2004).  Physical processes in 

MNA, including sorption, dispersion and volatilization, do not degrade the 

contaminants but alter their distribution among different phases (e.g., aqueous, solid 

and gaseous phases) (Sinke and Hecho, 1999; USEPA, 1999; Wiedemeier et al., 1999).  

However, microbial and chemical processes can transform PCE and TCE under 

proper conditions, and thus significantly contribute to remediation of dissolved 

chlorinated solvents and achieve remediation goals at a low cost within reasonable 
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periods of time (Holliger, 1995; Sinke and Hecho, 1999; USEPA, 1999; Wiedemeier 

et al., 1999; Bossert et al., 2003; Bradley, 2003; Holliger et al., 2003; Bhatt et al., 

2007).   

 

1.2. Reductive Dechlorination of Chlorinated Solvents 

1.2.1. Microbial Reductive Dechlorination of PCE and TCE 

Bacteria have evolved strategies to degrade chlorinated solvents.  Microbial 

reductive dechlorination can be carried out via dehalorespiration, during which 

bacteria use chlorinated contaminants (e.g., PCE and TCE) as the terminal electron 

acceptors coupling the reduction of the solvent to oxidation of organic compounds or 

hydrogen and allowing energy to be obtained (Bossert et al., 2003; Bradley, 2003; 

Bhatt et al., 2007).  Alternatively, other bacteria rich in reduced transition-metal 

coenzymes (e.g., Vitamin B12, cofactor F430 or hemes) are able to fortuitously 

cometabolize chlorinated ethenes in a process that does not involve energy 

conservation (Holliger et al., 2003).  Reductive dechlorination typically follows 

hydrogenolysis, during which chlorine atoms in the molecules are sequentially 

substituted with hydrogen (Gossett and Zinder, 1997).  Thus, sequentially 

dechlorinated products, such as TCE (for PCE), dichloroethylene isomers (DCEs), 

vinyl chloride (VC) and/or ethylene can be produced as the intermediates or final 

products.   

In the last decade, diverse anaerobic bacteria have been identified, isolated and 

studied for their capacity to transform PCE and TCE, including Desulfitobacterium 
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spp., Desulfuromonas spp., Enterobacter spp., Sulfurospirillum spp., Dehalococcoides 

spp., Geobacter lovleyi and Clostridium bifermentans (Chang et al., 2000; Holliger et 

al., 2003; Loeffler et al., 2003; Sung et al., 2006).  Except for Dehalococcoides spp. 

(Maymo-Gatell et al., 1997; Zinder, 2001; He et al., 2003; He et al., 2005), all 

dechlorinating species that have been isolated so far accumulate partially 

dechlorinated products (e.g., TCE and DCEs) during reductive dechlorination of PCE 

and TCE (Chang et al., 2000; Holliger et al., 2003; Loeffler et al., 2003; Sung et al., 

2006).   

Microbial reductive dechlorination via dehalorespiration is catalyzed by a group 

of functional enzymes, designated as reductive dehalogenases (Rdhs) (Fetzner and 

Lingens, 1994; Holliger et al., 2003).  This group of enzymes contains 

tetrapyrrole-cofactors, such as corrinoids, iron porphyrins or coenzyme F430 (Ni et al., 

1995; Neumann et al., 1996; Magnuson et al., 1998; Neumann et al., 1998; Louie and 

Mohn, 1999; Suyama et al., 2002b).  One widely accepted mechanism for enzyme 

catalyzed reductive dechlorination is that the reactions are initiated by transferring 

one dissociated electron from the reduced corrinoid (e.g., Co(I)-corrinoid) to the 

chlorinated compounds.  This results in formation of a chlorinated compound radical, 

which sequentially combines with a proton (H+) formed by hydrogenase after 

elimination of a chloride anion (Schumacher et al., 1997; Louie and Mohn, 1999). 

Values of standard Gibbs free energy (ΔG°’) of reductive dechlorination 

(hydrogenolysis) of PCE and TCE range from -56.0 (for PCE) to -52.1 (for TCE) 

kJ/mol per chlorine removed, corresponding to a redox potential (E’o) of +540 (for 
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TCE) to +580 (for PCE) mV (Norris and Matthews, 1993).  These redox potentials 

are literally comparable to the redox couple of NO3
-/ NO2

- (E’o= + 433 mV) and are 

substantially higher than the values for sulfate reduction (SO4
2-/HS-) and 

methanogenesis (HCO3
-/SH-) (Norris and Matthews, 1993; Bossert et al., 2003), 

which suggests that dechlorinating organisms will out-compete sulfate reduction and 

methanogenesis.  In the practical experience, competition of reductive dechlorination 

of with other terminal electron acceptor processes (e.g., nitrate-, sulfate reduction and 

methanogenesis) depends on the concentrations of alternative electron acceptors 

(other than chlorinated compounds) and availability of indigenous microbial 

communities.  Therefore, PCE and/or TCE reductive dechlorination have been 

reported to occur under methanogenic, sulfate reducing and nitrate reducing 

conditions or when the alternative electron acceptors are consumed to the 

concentrations so enough so that reductive dechlorination becomes more 

thermodynamically favorable (Bossert et al., 2003; Bradley, 2003).  In addition, 

some sulfate reducers (e.g., Desulfovibrio spp., Desulfomonile tiedjei), nitrate 

reducers (e.g., Desulfovibrio spp., Desulfuromonas spp.) and methanogenic bacteria 

(e.g., Methanosarcina spp.) (Fathepure et al., 1987; Fathepure and Boyd, 1988a, b; 

Cabirol et al., 1998; Holliger et al., 2003) can reductively transform chlorinated 

ethylenes via dehalorespiration or cometabolism.  

Diverse electron donors have also been found to be involved in microbial 

reductive dechlorination.  With a few exceptions (e.g., Desulfuromonas ethenogenes 

and Desulfuromonas michiganensis strain BB1) (Krumholz et al., 1996; Krumholz, 
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1997; Sung et al., 2003), H2 is generally regarded as a direct electron donor for 

reductive dechlorination (Loeffler et al., 2003).  In addition, many dechlorinating 

microorganisms are able to couple reductive dechlorination and fermentation of a 

variety of organic compounds, including fatty acids, alcohols, esters and yeast extract 

(Neumann et al., 1994; Utkin et al., 1994; Utkin et al., 1995; Gerritse et al., 1996; 

Sharma and McCarty, 1996b; Loeffler et al., 1997; Gerritse et al., 1999; Chang et al., 

2000; Sung et al., 2003; Milliken et al., 2004; Sung et al., 2006).  In some cases, 

dechlorinating bacteria form syntrophic association, in which one species lives off the 

products of another species.  In the syntrophic systems, fermenting bacteria produce 

low concentrations of H2 or small organic compounds used by the dechlorinating 

bacteria as electron donors (Drzyzga et al., 2001; Becker et al., 2005; Villemur et al., 

2006; He et al., 2007).   

 

1.2.2. Abiotic Reductive Dechlorination of PCE and TCE 

Abiotic reductive dechlorination is also an important pathway for 

transformation of PCE and TCE, and is generally carried out by a variety of iron- 

and/or sulfide-containing minerals (e.g., iron sulfide (FeS), pyrite (FeS2), magnetite 

(Fe3O4), various green rusts and dithionite treated soils) (Sivavec and Horney, 1996, 

1997; Sivavec et al., 1997; Butler and Hayes, 1999, 2001; Lee and Batchelor, 2002b, 

a, 2004a, b).  Reactive minerals can be formed via biogeochemical processes (Brown 

et al., 2006; Kennedy et al., 2006a; Kennedy et al., 2006b; Pasakarnis et al., 2006; 

Shen and Wilson, 2007; Dong et al., 2009) or corrosion of zero-valent-iron as the 
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packing material in permeable reactive barriers (PRBs) (Matheson and Tratnyek, 

1994).  Abiotic reductive dechlorination of PCE and TCE typically proceeds via 

reductive β-elimination (elimination of two halogens and increase in bonding order) 

and produces acetylene as the major product (Sivavec and Horney, 1996, 1997; Butler 

and Hayes, 1999, 2001; Lee and Batchelor, 2002b, a; Jeong et al., 2007).  The 

transformation rates of abiotic dechlorination are dependent on a series of 

geochemical parameters, including pH (Klausen et al., 1995; Butler and Hayes, 1998, 

2001; Pecher et al., 2002; Danielsen and Hayes, 2004), surface associated iron and 

sulfide species (Pecher et al., 2002; Elsner et al., 2004; Lee and Batchelor, 2004a, b), 

transition metals (Lee et al., 2000; Jeong and Hayes, 2003; O'Loughlin et al., 2003; 

Maithreepala and Doong, 2004a, b; Choi et al., 2009) and natural organic matter 

(NOM) (Doong and Wu, 1992; Butler and Hayes, 1998; Hanoch et al., 2006).     

 

1.3. Isotope Fractionation During Reductive Dechlorination 

The degradation of PCE and TCE has been determined by monitoring decreasing 

concentrations of contaminants over time and with distance from the source or 

appearance of dechlorinated products (Alleman and Leeson, 1997; Jang et al., 2003).  

However, as discussed above, both physical transport and chemical/biochemical 

transformation can lead to decreasing concentrations of PCE and TCE (Sinke and 

Hecho, 1999; USEPA, 1999; Wiedemeier et al., 1999), which may result in 

overestimation of the fraction of contaminants transformed.  This dilemma can be 

circumvented by monitoring isotope fractionation.  While negligible changes in 
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isotope fractionation are observed during physical processes (Slater et al., 2000a; 

Slater et al., 2001), significant fractionation have been found during 

chemical/biochemical transformation processes (Hunkeler et al., 1999; Sherwood 

Lollar et al., 1999; Bloom et al., 2000; Slater et al., 2000b; Slater et al., 2001; Slater et 

al., 2002; Song et al., 2002; Schuth et al., 2003; Slater et al., 2003; VanStone et al., 

2004; Nijenhuis et al., 2005; Cichocka et al., 2007; Liang et al., 2007; Cichocka et al., 

2008; Dong et al., 2009; Liang et al., 2009). 

In organic compounds, heavier carbon isotopes (13C) make up about 1.1 % of all 

the natural carbon (Hoefts, 1997).  The relative abundance of 13C and lighter isotope 

(12C) is expressed by their ratio R, where: 

                    
C
CR 12

13

=                                (1.1) 

Such isotope ratios can be measured by gas chromatography connected with 

isotope ratio mass spectrometry (GC-IRMS) and the δ13C reported as the difference in 

per mil with respect to an international reference standard (Clark and Fritz, 1997): 

               1000)(13 ×
−

=
ref

ref

R
RR

Cδ                       (1.2) 

Reductive dechlorination of PCE and TCE causes a shift in the isotope ratio of 

parent substrates due to the stronger molecular bonds formed by 13C than those by 12C 

(Bigeleisen and Wolfsberg, 1958).  Hence, accumulation of heavier stable isotopes in 

the residual parent substrates leads to the ratio of pseudo-first order rate constants of 

12C and 13C (12k/13k), designated as Kinetic Isotope Effect (KIE), to be more than unity 

(Elsner et al., 2005) when the molecules are transformed.  In the lab-scale studies, 
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extents of isotope fractionation can be quantitatively described as enrichment factor 

(εbulk), based on an assumption that isotope fractionation associated with degradation 

of organic pollutants follows the Rayleigh Model (Mariotti et al., 1981).   

                      
⎟
⎠

⎞
⎜
⎝

⎛

= 1000
0,

bulk

fRR pp

ε

                         (1.3) 

where Rp and Rp,0 are the isotope ratios of the parent compound at each time point and 

at time zero, respectively; f is the fraction of parent compound remaining at a given 

time (i.e. C/C0).  This equation indicates that the more negative the values of εbulk, 

the stronger the extent of isotope fractionation.    

Substantial isotope fractionation was observed during microbial degradation of 

PCE and TCE in the lab-scale studies (Bloom et al., 2000; Zwank, 2004; Elsner et al., 

2005; Nijenhuis et al., 2005; Cichocka et al., 2007; Lee et al., 2007; Liang et al., 2007; 

Cichocka et al., 2008; Dong et al., 2009) and in contaminated sites (Hunkeler et al., 

1999; Sherwood Lollar et al., 1999; Slater et al., 2000b; Song et al., 2002; Morrill et 

al., 2005; VanStone et al., 2005; Nijenhuis et al., 2007).  εbulk ranges from -0.42 to 

-16.7 ‰ for PCE and -2.5 to -20.9 ‰ TCE microbial reductive dechlorination, 

respectively; The values for abiotic PCE and TCE reductive dechlorination ranges 

from -14.7 to -30.2 ‰ and -10.1 to -33.4 ‰, respectively) (Hunkeler et al., 1999; 

Bloom et al., 2000; Slater et al., 2001; Zwank, 2004; Elsner et al., 2005; Nijenhuis et 

al., 2005; Cichocka et al., 2007; Lee et al., 2007; Liang et al., 2007; Cichocka et al., 

2008) 

Extents of isotope fractionation during enzymatic reactions can be influenced by 

biochemical pathways (e.g., anaerobic versus aerobic reactions) (Hirschorn et al., 
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2004; Hirschorn et al., 2007), structural variability of functional enzymes (Nikolausz 

et al., 2006) or molecular size of reactants (Abe et al., 2009b).  In addition, some 

rate-limiting steps prior to enzymatic reactions (e.g., transport of the substrate into the 

cells and formation of the enzyme-substrate complex) do not result in isotope 

fractionation.  However, they can limit the supply of reactants for enzymatic 

reactions (O'Leary, 1988) and thus weaken the extents of isotope fractionation 

(Nijenhuis et al., 2005).  Other mass transport processes (like dissolution of a NAPL 

to the aqueous phase) may also mask isotope fractionation if they occur more slowly 

than biodegradation (Meffre et al., 2008). 

Considering isotopes for different elements in PCE and TCE molecules, there 

are four forms of C-Cl bonds, including 12C-35Cl, 13C-37Cl, 13C-35Cl and 12C-37Cl.  

Although it is known that lighter isotopes are preferred during chemical and 

biochemical reactions, chlorine isotopes are not expected to significantly influence the 

fractionation of carbon isotopes.  It is because that δ37Cl in the natural environment 

ranges only several per mil (usually 0-3 ‰) compared to much wide extents of δ13C 

and δ2H.  This means that regardless of the potential chemical and biochemical 

reactions that happen, the ratio of chlorine isotopes are relatively constant.  

Therefore, it is not expected that weak isotope fractionation of chlorine isotopes will 

significantly influence isotope fractionation of other elements (e.g. stable carbon 

isotopes of PCE and TCE). This is also supported by the much weaker chlorine 

isotope fractionation for reductive dechlorination than carbon isotope fractionation 

(Abe et al., 2009a).   
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1.4. Objectives of This Research 

Despite the abundance of studies to date, important questions, such as the 

uncertainties of applying isotope technique to quantitatively monitor natural 

attenuation of chlorinated solvents (e.g., PCE and TCE), still exist.  This is due to the 

complexity of contaminated sites, such as various levels of isotope fractionation by 

different dechlorinating bacteria, potential impacts of environmental factors or 

microbial diversity on observed isotope fractionation and simultaneously different 

transformation processes (e.g., microbial and abiotic reductive dechlorination).  The 

general objective of this study is to evaluate the potential impacts of these factors on 

isotope fractionation during PCE and TCE reductive dechlorination.   

This research is organized as follows.  Chapter 2 presents the results of 

chemical and isotope analyses during PCE and TCE reductive dechlorination in two 

isolated pure cultures (Sulfurospirillum multivorans and Desulfuromonas 

michiganensis Strain BB1) and a mixed enrichment culture (BDI).  Their product 

distribution was determined.  εbulk values were calculated based on Rayleigh Model 

and the possible reasons resulting in different εbulk by different species/cultures were 

discussed.  Chapter 3 focuses on the potential effects of microbial diversity and 

environmental factors (e.g., electron donors and pH) on isotope fractionation.  These 

factors were evaluated on two enrichment cultures stimulated from the same source 

but that significantly differed in product distribution and isotope fractionation, or on 

Sulfurospirillum multivorans as a simplified model system.  Chapter 4 addresses 

relative contributions of microbial versus abiotic reductive dechlorination in a series 
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of well-defined microcosms in which dechlorinating bacteria and reactive minerals 

might be coexistent.  Chemical analysis identified the distinct dechlorinated products 

for either/both dechlorination pathway(s) in the microcosms and isotope fractionation 

was obtained from the reactive microcosms.  The geochemical factors that might be 

favorable for microbial or abiotic reductive dechlorination were discussed.  Finally, 

Chapter 5 summarizes the conclusions from Chapter 2 to 4.  Based on this research, 

suggestions for future work in both fundamental studies and practical projects are also 

included.   
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CHAPTER 2∗ 

Stable Carbon Isotope Fractionation of Tetrachloroethylene and 

Trichloroethylene during Reductive Dechlorination by 

Dechlorinating Bacteria 

 

2.1. Introduction 

Tetrachloroethylene (PCE) and trichloroethylene (TCE) are widespread 

groundwater contaminants in the US due to their improper disposal and storage 

(Pankow et al., 1996; Moran et al., 2007; ATSDR, 2008).  Microbial reductive 

dechlorination by anaerobic bacteria is an important alternative to remediate this 

group of contaminants in the field (Bradley, 2003; Bhatt et al., 2007).   

In addition to the conventional methods to identify and quantify the chlorinated 

parent substrates and dechlorinated products, stable carbon isotope fractionation is 

increasingly applied to monitor the fate of chlorinated solvents (e.g., PCE and TCE) 

(Hunkeler et al., 1999; Bloom et al., 2000; Slater et al., 2000b; Slater et al., 2001; 

Song et al., 2002; Hunkeler et al., 2004; Zwank, 2004; Elsner et al., 2005; Morrill et 

al., 2005; Nijenhuis et al., 2005; Cichocka et al., 2007; Liang et al., 2007; Nijenhuis et 

al., 2007; Cichocka et al., 2008).  This technique takes advantage of the fact that 

isotope ratio negligibly changes during physical transport processes (e.g., dilution, 
                                                        
∗ This chapter consists of part of the paper by Liang et al. (2007). This chapter was 
rewritten from “Environmental Science & Technology 41, Liang, X.; Dong, Y.; Kuder, 
T.; Krumholz, L.R.; Philp, R.P.; Butler, E.C. Distinguishing abiotic and biotic 
transformation of tetrachloroethylene and trichloroethylene by stable carbon isotope 
fractionation, 7094-7100, Copyright (2007) American Chemical Society”.  Y. D. was 
responsible for microbial reductive dechlorination of PCE and TCE and the 
corresponding isotope fractionation. 
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dispersion, adsorption and evaporation) (Slater et al., 2000a; Hunkeler et al., 2004), 

while significant changes occur during microbial or chemical transformation which 

result in changes of molecular structure (Clark and Fritz, 1997; Hoefts, 1997; Elsner 

et al., 2005).  Isotope fractionation results as weaker bonds formed by lighter 

isotopes (e.g., 12C) are more easily cleaved than those by heavier isotopes (e.g., 13C) 

and thus leads to accumulation of heavier isotopes in the residual parent substrate 

(Hoefts, 1997).  Extents of isotope fractionation can be expressed as enrichment 

factor (εbulk), based on an assumption that isotope fractionation associated with 

degradation of organic pollutants follows the Rayleigh Model (Mariotti et al., 1981). 

Significant isotope fractionation has been reported during microbial reductive 

dechlorination of PCE and TCE by a variety of isolated dechlorinating bacteria, 

microbial consortia and even at contaminated sites (Hunkeler et al., 1999; Sherwood 

Lollar et al., 1999; Bloom et al., 2000; Slater et al., 2000b; Slater et al., 2001; 

Nijenhuis et al., 2005; Cichocka et al., 2007; Lee et al., 2007; Liang et al., 2007; 

Cichocka et al., 2008; Dong et al., 2009).  Values of εbulk during these processes 

range from -0.42 to -16.8 ‰ for PCE and -3.3 to -20.9 ‰ for TCE, respectively 

(Hunkeler et al., 1999; Sherwood Lollar et al., 1999; Bloom et al., 2000; Slater et al., 

2001; Zwank, 2004; Elsner et al., 2005; Nijenhuis et al., 2005; Cichocka et al., 2007; 

Lee et al., 2007; Liang et al., 2007; Cichocka et al., 2008).   

In addition to identifying occurrence of reductive dechlorination, recent studies 

have proposed to apply the εbulk obtained from lab-scale studies and the isotope ratio 

measured in the field to quantitatively monitor fraction of contaminants that has been 
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degraded (Van Breukelen et al., 2005; VanStone et al., 2005).  This prediction 

requires reliable and representative fractionation data.  The objective of this study is 

to identify variability of isotope fractionation during microbial PCE and TCE 

reductive dechlorination by different dechlorinating bacteria.  Two pure cultures, 

Sulfurospirillum multivorans (Sm) and Desulfuromonas michiganensis strain BB1 

(BB1) and one mixed culture, BioDechlor INNOCULUM (BDI) were investigated in 

this study.  Chemical and isotope analyses were performed.  The potential factors 

that might influence isotope fractionation were discussed to explain different εbulk 

obtained from different cultures.   

 

2.2. Materials and Methods 

2.2.1. Chemicals 

PCE (99%), TCE (99.5%), cis-1,2-dichlorethylene (cis-DCE) were obtained 

from Sigma-Aldrich (St. Louis, MO).  Chemicals used for microbiological medium 

preparation were purchased from Fisher Scientific (Pittsburgh, PA).  Ethylene (1026 

ppm in N2) and vinyl chloride (VC) (1019 ppm in N2) were supplied by Scott 

Specialty Gases (Houston, TX). All aqueous solutions were prepared with Nanopure 

water (18.0 MΩ cm resistivity, Barnstead Ultrapure Water System, IA).  

  

2.2.2. Sample Preparation 

Two isolated pure cultures, Sm, BB1 and one mixed culture, BDI, were kindly 

provided by Dr. Frank R. Löffler at the Georgia Institute of Technology.  All the 
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cultures were prepared in 1 L PYREXTM bottles modified by a glassblower (G. 

Finkenbeiner Inc., Waltham, MA) to accommodate a 20 mm septum stopper (Bellco 

Biotechnology).  All the manipulations of culture preparation were performed under 

a stream of sterile N2/CO2 gas unless mentioned specifically.  A reduced anaerobic 

basal salts medium was prepared (Sung et al., 2003) with a vitamin solution (Dworkin 

et al., 2006) and trace metals (Hurst et al., 2002).  The medium was boiled and 

cooled under a stream of N2/CO2 (80/20, v/v) and the pH was adjusted to 7.2 by 

adding 2.52 g/L NaHCO3.  Serum bottle cultures were sealed with Teflon-lined 

rubber stoppers (West Pharmaceutical Services) and aluminum seals before 

sterilization.  L-cysteine (0.2 mM), Na2S (0.5 mM) and electron donors were added 

from sterile anaerobic solutions.  The electron donors were (all 5 mM): lactate (BDI), 

acetate (BB1) and pyruvate (Sm).  Cultures were inoculated using a 1:50 dilution 

ratio.  Initial concentrations of PCE and TCE in the microcosm experiments were 

approximately 117 μM and 108 μM, respectively.  Microcosms were prepared in 

duplicate and incubated still in the dark at room temperature.  

 

2.2.3. Analytical Methods for Quantifying Reactants and Products.  

Concentrations of PCE, TCE, cis-DCE, VC and ethylene were determined by 

headspace analysis with a Shimadzu GC-17A/flame ionization detector (GC/FID) and 

an Agilent GS-GASPRO capillary column (30 m × 0.32 mm). The injector 

temperature and detector temperature were 220 °C and 270 °C, respectively. Fifty 

microliters of headspace were withdrawn with a gas tight syringe (Hamilton Co., 
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Reno, NV) and manually injected into the GC/FID using a split ratio of 1:1. The oven 

temperature was isothermal at 35 °C for 5 min, ramped to 190 oC at 30 oC/min, and 

then isothermal at 190 oC for 5 min.  Five point external calibration curves were 

prepared daily.  Relative standard deviations for samples and standards using this 

method were typically less than 5 %.   

 

2.2.4. Isotope Measurements 

At each time point, 1 mL culture was withdrawn with a sterile 1 mL syringe and 

diluted in approximately 23 mL nanopure water acidified with a 2 N HCl solution to a 

final pH less than 3 to inhibit microbial metabolisms because dechlorinating bacteria 

can hardly grow under such acidic condition (Neumann et al., 1994; Sung et al., 2003).  

One ml of N2/CO2 was added into the culture bottle to keep pressure constant.  

Before measurements, the dilution was stored at 4 °C in 20 mL EPA vials (nominal 

volume about 24 mL) with minimal headspace.  Samples were analyzed by purge 

and trap (PT) coupled with a GC and Isotope Ratio Monitoring Spectrometer 

(GC-IRMS) for compound-specific isotope ratio analysis (CSIA) with the method 

previously described (Kuder et al., 2005).  Pure CO2 (instrument grade) was used as 

the reference gas for isotope fractionation.  CO2 was developed as the standard for 

detection calibration and the quality of CO2 was cross-calibrated with alkanes 

(C15-C20), which have been calibrated against the international standard material, 

Vienna PeeDee Belemnite (V-PDB) (Coplen et al., 2006).  The isotope ratio (δ13C) 

of the CO2 as the reference gas may vary significantly depending on suppliers and the 
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raw compounds used for CO2 production (e.g., carbonate minerals versus microbially 

formed organic compounds), the range of δ13C from -3 to -43 ‰ has been observed in 

the previously calibration.  In order to obtain maximum accuracy, CO2 working 

standard was used daily to calibrate the mass spectrometer daily.  Parallel standard 

compounds (e.g., PCE or TCE with known isotope ratio values) were used as in-house 

working standard to evaluate the potential influence of some physical processes (e.g. 

extraction, purge and trap) prior to isotope measurement.  About 20 % of the 

samples were measured in duplicate.  The standard deviation (n=2) of these 

duplicate δ13C values did not exceed 0.6 ‰, and typically did not exceed 0.3 ‰ 

(Kuder et al., 2005).  

  

2.2.5. Calculation and Definitions 

The carbon isotope ratio (R) is reported in δ-notation (‰) relative to a CO2 

standard as described in Equation 1.1 and 1.2 (Chapter 1).  The extents of isotope 

fractionation during the microbial reductive dechlorination were expressed as 

enrichment factor (εbulk in ‰) by applying the Rayleigh Model (Equation 1.3, Chapter 

1).  Apparent Kinetic Isotope Effect (AKIE) was calculated using the equation 2.1 

(Zwank et al., 2005):  

                 
))1000/((1

1
xnz

AKIE
bulk ×××+

=
ε

                   (2.1) 

where n is the number of atoms of the molecule of a selected element, x is the number 

of reactive positions, the element(s) directly connected with the reacting bond(s); z is 
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the number of positions in intramolecular competition between the equivalent sites 

(e.g., two carbons of PCE molecules).   

In order to compare the impact of rate-limiting steps (e.g., transport of substrates 

through cell membrane or binding of substrates to functional enzymes) on isotope 

fractionation, rate limitations of single steps preceding the biochemical dechlorination 

reactions are calculated as a Partitioning Factor (P), which measures the rate of the 

step that results in isotope fractionation relative to the rates of all preceding steps in 

the reaction sequence.  Assuming the preceding reaction steps are rate limiting steps 

to some extent but not associated with a significant isotope effect, P is quantified as 

follows (O'Leary and Yapp, 1978): 

1)1(

)1()(

−

−
=

α
αα kinP                          (2.2) 

where )(kinα  and )1(α  are the fractionation factors of the purely chemical reactions 

carried out by proposed cofactor (e.g. Vitamin B12) for reductive dehalogenase and 

biochemical reactions by different dechlorinating bacteria, respectively (Krasotkina et 

al., 2001; Maillard et al., 2003; Nijenhuis et al., 2005).  α is not directly measured 

but can be calculated from εbulk as follows: 

                   
1000/1

1

,ibulk
i ε

α
+

=                         (2.3) 

where iα  means )1(α  or )(kinα , which can be calculated from the the corresponding 

εbulk for Vitamin B12 and dechlorinating bacteria, respectively.  Detailed calculation 

of AKIE, P and their uncertainties is described in Appendix B.   
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2.3. Results and Discussion 

2.3.1. Isotope Fractionation in the Course of PCE and TCE Reductive 

Dechlorination 

PCE and TCE reductive dechlorination by Sm, BB1 and BDI are shown in Figure 

2.1.  As expected, Sm and BB1 dechlorinated PCE and TCE to cis-DCE (Neumann 

et al., 1994; Sharma and McCarty, 1996a; Sung et al., 2003), while ethylene was 

formed via cis-DCE and VC by BDI (Ritalahti et al., 2005).  As a mixed culture, 

BDI contains several strains of Dehalococcoides species (e.g., Dehalococcoides sp. 

BAV1 and Dehalococcoides sp. FL2) and three ethene producing, PCE-reducing 

enrichment cultures, such as H7-PCE, H5-PCE and FMC-PCE (Sung, 2006).  Thus, 

one or multiple Dehalococcoides species may be responsible for PCE and/or TCE 

reductive dechlorination in BDI.   

δ13C versus f of PCE and TCE microbial reductive dechlorination are shown in 

Figure 2.2 and the enrichment factors (εbulk) calculated with Equation 1.3 are listed in 

Table 2.1.  Isotope fractionation was measured for duplicate BDI samples at each 

time point.  The results showed that although transformation rates in the duplicate 

samples considerably varied (as shown as the big error bars in Figure 2.1 (PCE/BDI)), 

their isotope fractionation was within 95 % confidence intervals (Figure B1).  

Therefore, for the other cultures, only one microcosm of replicates was measured for 

isotope fractionation at each time point. 

The values of εbulk obtained from Sm, BB1 and BDI in this study are within the 

range of the previously published values for microbial PCE and TCE reductive 
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dechlorination (Hunkeler et al., 1999; Bloom et al., 2000; Slater et al., 2001; Zwank, 

2004; Nijenhuis et al., 2005; Cichocka et al., 2007; Lee et al., 2007; Cichocka et al., 

2008).  In this study and previously published work (Hunkeler et al., 1999; Bloom et 

al., 2000; Slater et al., 2001; Zwank, 2004; Nijenhuis et al., 2005; Cichocka et al., 

2007; Lee et al., 2007; Cichocka et al., 2008), two general trends were observed: 1) 

stronger isotope fractionation occurs during TCE reductive dechlorination than that 

for PCE by the same bacteria/enrichment cultures; 2) for the same chlorinated 

substrate, variability in isotope fractionation exists among different dechlorinating 

species.  For PCE reductive dechlorination, similar and weak isotope fractionation 

was observed by Sm and BB1, while stronger isotope fractionation was detected in 

BDI (Table 2.1 and Figure 2.2).   
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Figure 2.1. PCE and TCE reductive dechlorination by D. michiganensis Strain BB1 
(BB1), S. multivorans (Sm) and BDI.  The error bars indicate standard deviation of 
triplicate samples.  
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Figure 2.2. Isotope fractionation during PCE (a) and TCE (b) reductive 
dechlorination by Sm, BB1 and BDI.  The error bars indicate standard deviation of 
duplicate samples.   
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Table 2.1. Stable carbon isotope fractionation enrichment factor (εbulk), apparent kinetic 
isotope effect (AKIE) and partitioning factor (P) for reductive dechlorination of PCE 
and TCE by Sm, BB1 and BDI 

Compound Cultures εbulk (‰)a AKIE Pb 

BB1 -1.39 ± 0. 21 1.00278 ± 0.00043 8.5±1.8 
Sm -1.33 ± 0.13 1.00266 ± 0.00027 8.9±1.5 PCE 
BDI -7.12 ± 0.72 1.0145 ± 0.0015 0.84±0.28

     

BB1 -4.07 ± 0.48 1.0082 ± 0.0010 2.76±0.28
Sm -12.8 ± 1.6 1.0262 ± 0.0034 0.18±0.22TCE 
BDI -15.27 ± 0.79 1.0315 ± 0.0017 NAc 

a Uncertainties are 95% confidence intervals calculated from non-linear regression; b The 
partitioning factor-P was calculated versus cyanocobalamin as described in Appendix B2 
(Slater et al., 2003; Nijenhuis et al., 2005) using equation 2.2 and uncertainties are 95% 
confidence intervals; c Not reported because the extent of isotope fractionation during 
microbial TCE reductive dechlorination by BDI was slightly stronger than that by cobalamin 
(Cichocka et al., 2007), resulting in negative value of P here.  

The εbulk for Sm in this study was consistent with the previous reported values by 

the same species (Nijenhuis et al., 2005; Cichocka et al., 2007) and was close to that 

of Sulfurospirillum halorespirans (εbulk = -0.46 ‰) and Geobacter lovleyi Strain SZ 

(εbulk close to zero) (Cichocka et al., 2008).  However, it was lower than that for 

Desulfitobacterium sp. PCE-S (εbulk = -4.6 ‰) (Nijenhuis et al., 2005; Cichocka et al., 

2007).  The stronger isotope fractionation by BDI is comparable to that by 

Dehalococcoides ethenogenes Strain 195 (εbulk = -6.0 ‰) (Cichocka et al., 2008) and 

KB-1, a Dehalococcoides containing enrichment culture (εbulk = -5.5 ‰) (Slater et al., 

2001).  The strongest isotope fractionation for microbial PCE reduction that has been 

published so far was by a TCE accumulating species, Desulfitobacterium sp. Viet1 

(εbulk = -16.7 ‰) (Cichocka et al., 2008).   

In comparison, TCE reductive dechlorination led to more variable and stronger 

isotope fractionation (Figure 2.2 and Table 2.1).  Relatively weak isotope 
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fractionation by BB1 (εbulk = -4.07 ‰) was comparable to that by Dehalobacter 

restrictus strain PER-K23 (εbulk = -5.5 ‰) and KB-1 (εbulk = -2.5~-6.6 ‰) (Bloom et 

al., 2000; Lee et al., 2007; Cichocka et al., 2008); stronger isotope fractionation 

detected in Sm and BDI was close to that during TCE reductive dechlorination by 

Dehalococcoides ethenogenes Strain 195 (εbulk = -9.6 to -13.7 ‰), Dehalococcoides 

Strain BAV1 (εbulk = -16.9±1.4 ‰), Sulfurospirillum halorespirans (εbulk = -18.9 ‰), 

Desulfitobacterium sp. Strain PCE-S (εbulk = -12.2 ‰) and ANAS, an enrichment 

culture (εbulk = -16.0 ‰) (Sherwood Lollar et al., 1999; Bloom et al., 2000; Slater et al., 

2001; Zwank, 2004; Cichocka et al., 2007; Lee et al., 2007; Liang et al., 2007; 

Cichocka et al., 2008; Dong et al., 2009)..  

 

2.3.2. Potential Factors that might Influence Isotope Fractionation During 

Microbial Reductive Dechlorination 

Microbial enzyme-catalyzed reactions can be typically simplified as: 

 

where the numbers indicate: (1) transport of the substrate from outside to inside the 

cell; (2) formation of the enzyme-substrate complex; (3) bond cleavage and formation 

of enzyme-product complex; (4) dissociation of enzyme-product complex; and (5) 

transport of the product from inside to outside the cell (O'Leary and Yapp, 1978; 

Zwank, 2004; Nijenhuis et al., 2005).  Among all the steps, only Step (3) irreversibly 

changes the conformation of a chemical bond and thus leads to kinetic isotope 

fractionation (Morasch et al., 2001).  Isotope fractionation during bond cleavage and 
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formation of enzyme-product complex in Step 3 can be influenced by biochemical 

pathways/mechanisms (Hirschorn et al., 2004; Hirschorn et al., 2007), structural 

variability of functional enzymes (Nikolausz et al., 2006) or cofactors (Estep et al., 

1978; Ivlev et al., 1996; Igamberdiev et al., 2001).  On the other hand, although Step 

1 and 2 do not lead to isotope fractionation because no bond cleavage is involved 

(Morasch et al., 2001), these rate-limiting steps can suppress isotope fractionation due 

to the limits on substrate supply for enzymatic reactions (O'Leary, 1988; Nijenhuis et 

al., 2005).  The impacts of these non-fractionation steps on isotope fractionation is 

also expressed as “commitment to catalysis” (Northrop, 1977).  If commitment to 

catalysis is high for the catalytic step (Step 3), the bond changes involving an element 

are fast in comparison to the reverse steps of all the preceding processes (e.g., Step 1 

and 2) and thus lead to weak isotope fractionation.   

 

2.3.2.1 Potential impacts of biochemical pathways and rate-limiting steps on 

isotope fractionation 

The pathway of microbial reductive dechlorination may not be an important 

factor to determine extents of isotope fractionation during PCE and TCE reductive 

dechlorination because only one pathway, hydrogenolysis, is followed (Gossett and 

Zinder, 1997).  Instead, some other steps or factors may be more important to 

influence isotope fractionation during enzyme-catalyzed PCE and TCE 

transformation.     

AKIE was calculated from εbulk following the detailed protocol as described in 
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the Appendix B1 (Elsner et al., 2005).  The calculated AKIE values (Table 2.1) were 

then compared with the value of Kinetic Isotope Effects (KIE) (Huskey, 1991) to 

determine whether the rate limiting processes in the overall transformation reaction 

involved bond cleavage.  The theoretical KIE for C-Cl bond is 1.03 assuming 50 % 

bond cleavage at transition state (Elsner et al., 2005).  If bond cleavage is rate 

limiting in the enzymatic reactions, the AKIE and KIE values should be close (Elsner 

et al., 2005).  In our study, the values of AKIE for microbial PCE reductive 

dechlorination by all the three cultures were generally less than 1.03 for C-Cl bond 

cleavage (Table 2.1).  This suggests that bond cleavage and formation of 

enzyme-product complex (Step 3) is not the rate-limiting step during enzymatic PCE 

reductive dechlorination.  On the contrary, for Sm and BDI, their AKIE values are 

higher than the theoretical KIE for TCE reductive dechlorination (Table 2.1). It 

suggests that the rate of TCE dechlorination by these species is more strongly 

influenced by the rate of C-Cl bond cleavage (Step 3).   

The suppression of isotope fractionation by rate-limiting steps prior to 

enzymatic reactions is quantified as partitioning factor (P) (Table 2.1) following the 

protocol in the Appendix B2.  The non-fractionating rate-limiting steps include 

transport of substrates through membrane or binding of the chlorinated substrate to 

the catalytic center of enzyme (Nijenhuis and Zinder, 2005; Cichocka et al., 2007).  

As shown in Table 2.1, the calculated values of P was relatively higher for the three 

cultures during PCE reductive dechlorination (P = 0.84 to 8.9).  In comparison, 

negligible partitioning (P ≤ 2.76 for all the three cultures) was observed in TCE 
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reductive dechlorination, consistent to a previously published study by Cichocka et al. 

(2008).  This suggests the rate-limiting steps may “suppress” extents of isotope 

fractionation by limiting the supply of PCE as the parent substrate.  However, the 

study of TCE reductive dechlorination with whole cells, crude extracts and purified 

Rdhs showed no statistical difference in isotope fractionation among the 

dechlorinating bacteria with different integrity (Cichocka et al., 2008).  Our study 

and previously published studies provide extra evidence to support that TCE reductive 

dechlorination may be more influenced by the rate of C-Cl bond cleavage (Step 3) 

rather than the steps not related to bond cleavage (Nijenhuis et al., 2005; Cichocka et 

al., 2007).    

 

2.3.2.2 Effects of structural variability of functional enzymes on isotope 

fractionation  

The different levels of isotope fractionation observed during PCE and TCE 

transformation among Sm, BB1 and BDI may be influenced by structure of Rdhs 

involved in reductive dechlorination by the three cultures.  Changes of amino acids 

in protein sequences may drastically influence enzymatic properties if the active 

centre is modified (Nikolausz et al., 2006), and thus impact isotope fractionation.  

This may be due to the changes in the properties of active center and binding site (e.g., 

activation energy required to cleave a bond or reaction kinetics in the transition state 

before the biochemical reaction becomes irreversible) (Srinivasan et al., 1993; 

Lightstone et al., 1997; Brazeau and Lipscomb, 2001).  Unfortunately, no crystal 
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structure of Rdhs has been reported, so it is difficult to compare their structure and 

physiological property.  In addition, among the three cultures in this study, the 

information of reductive dehalogenase was only available for Sm (Neumann et al., 

1998; Neumann et al., 2002).  However, comparison and analysis of the previously 

studied Rdhs in different dechlorinating bacteria provide clues to understand the 

diversity of this group of functional enzymes in different dechlorinators.   

Alignments of protein sequences of reductive dehalogenase (e.g., PceA and 

TceA) of different dechlorinating bacteria (e.g., Sulfurospirillum spp., Geobacter 

lovleyi, Desulfitobacterium spp., Dehalococcoides spp., Dehalobacter restrictus and 

Clostridium bifermentans) are shown in Figure B2 (Miller et al., 1998; Neumann et al., 

1998; Magnuson et al., 2000; Okeke et al., 2001; Suyama et al., 2002a; Seshadri et al., 

2005b; Tsukagoshi et al., 2006; Krajmalnik-Brown et al., 2007).  It indicates that the 

Rdhs in different dechlorinating bacteria are only relatively conserved or identical in 

the order and composition of amino acids in two electron transfer mediator (e.g., 

iron-sulfide clusters) binding motifs (shown as grey boxes in Figure B2) (Holliger et 

al., 2003), while the remaining regions appear to be highly variable.  In addition, 

Rdhs for the species belonging to the same genus share higher homogeneity than 

those from different genera, such as the similar sequences among Desulfitobacterium 

spp. but significant difference between Desulfitobacterium and Sulfurospirillum spp. 

(Figure B2) (Miller et al., 1998; Neumann et al., 1998; Suyama et al., 2002b).  This 

observation coincides with the similar trend in isotope fractionation by different 

dechlorinating bacteria.  For example, Rdhs of Sm shares 91 % identity with the 
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catalytic enzyme of a close relative Sulfurospirillum halorespirans (Neumann et al., 

1998).  The enrichment factors for Sm are -0.42 to -1.33 ‰ (Nijenhuis et al., 2005; 

Cichocka et al., 2007; Liang et al., 2007) for PCE and -12.8 to -18.7 ‰ for TCE 

(Cichocka et al., 2007; Lee et al., 2007; Liang et al., 2007).  These values of εbulk by 

Sm are close to those by Sulfurospirillum halorespirans (-0.46 ‰ for PCE and -18.6 

‰ for TCE) (Cichocka et al., 2008).  In contrast, Rdhs of Sm and Desulfitobacterium 

sp. Strain PCE-S are only 27 % in identity and the εbulk for the latter species range 

from -5.18 to -5.4 ‰ for PCE (Nijenhuis et al., 2005; Cichocka et al., 2007) and -12.2 

‰ for TCE (Nijenhuis et al., 2005; Cichocka et al., 2007).  Based on this observation 

and the fact that dechlorinators studied in the three cultures in our study are not 

phylogenetically closely related, we infer that their reductive dehalogenases may 

differ in structure and/or rate limiting steps, thus result in different levels of isotope 

fractionation.    

 

2.3.2.3 Other factors that might influence isotope fractionation during microbial 

PCE and TCE reductive dechlorination  

Structure of cofactor may also limit rates of the dechlorination reaction and thus 

affects the fractionation (Nijenhuis et al., 2005).  Impacts of cofactors on isotope 

fractionation may be achieved by modifying the topology of active sites or stable 

ternary substrate-enzyme complex (Estep et al., 1978; Ivlev et al., 1996; Igamberdiev 

et al., 2001).  These changes could conceivably alter reaction rates and perhaps even 

reaction mechanisms (e.g., changes in the contribution of rate limiting steps to the 
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overall reaction rates), which result in a new kinetic isotope effect (Estep et al., 1978; 

Ivlev et al., 1996; Igamberdiev et al., 2001).  For Sm, its cobalamin cofactor of the 

PCE dehalogenase is a novel and unusual type of corrinoid, which has been identified 

to be norpseudo-B12 (Kraeutler et al., 2003).  Thus, its special cofactor may 

contribute to the distinct isotope fractionation by this species compared to the two 

other cultures in this research.   

Also, it worth mentioning that PCE and TCE reductive dechlorination is carried 

out by a single Rdhs in Sm (Neumann et al., 2002; Cichocka et al., 2007).  However, 

Dehalococcoides sp Strain 195 uses a two-component enzyme pathway for PCE and 

TCE transformation, with its PCE-reductive dehalogenase (PceA) transforming PCE 

to TCE and the TCE-reductive dehalogenase (TceA) catalyzing TCE to ethylene 

(Magnuson et al., 1998).  Although it is not known whether other Dehalococcoides 

spp. follow the same mechanism, multiple reductive dehalogenase genes detected in 

genomes of Dehalococcoides spp. (Kube et al., 2005; Seshadri et al., 2005a; Nonaka 

et al., 2006) suggest that different reductive dehalogenases might be involved in PCE 

and TCE reductive dechlorination by BDI.  This might explain the significantly 

different enrichment factor by BDI compared to Sm and BB1 during PCE reductive 

dechlorination, since Rdhs with different structure and substrate specialties may be 

involved in the enzymatic reactions.   
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2.4. Implication for the Assessment of In Situ Natural Attenuation of Chlorinated 

Solvents Using Isotope Fractionation 

In this study, we observed variable extents of isotope fractionation during 

microbial reductive dechlorination of PCE and TCE that were dependent on the 

specific microorganisms involved.  The results indicate that although the same 

pathway (hydrogenolysis) was followed for the enzymatic reactions, their stable 

isotope fractionation may differ significantly, which might be due to the structure of 

enzymes, rate limiting steps before enzymatic reactions or cofactors.  A better 

understanding of the enzymatic reactions (e.g., structure of Rdhs, cofactors or impacts 

of the pre-enzymatic reaction steps) is necessary.  Thus, when using isotope 

techniques to quantitatively monitor transformation of contaminants in the fields, 

precautions must be taken for the different extents of isotope fractionation by 

individual dechlorinating species.  For a practical point of view, selection of more 

negative enrichment factors will result in conservative estimation (e.g. an 

underestimation) about the fraction of contaminants transformed in the field.   
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CHAPTER 3 

Impacts of Microbial Community Composition and Environmental 

Factors on Isotope Fractionation during Microbial Reductive 

Dechlorination of Chlorinated Ethenes 

 

3.1. Introduction 

Improper disposal and storage have led to widespread contamination by 

chlorinated contaminants (e.g. tetrachloroethylene (PCE) and trichloroethylene (TCE)) 

in the U. S. (Moran et al., 2007; ATSDR, 2008). Due to their toxicity and suspected 

carcinogenic properties, monitoring remediation of this group of contaminants has 

gained wide public and academic interest.  A variety of anaerobic bacteria are 

capable of reductively dechlorinating PCE or TCE to less chlorinated compounds, 

such as TCE (for PCE), dichloroethylene isomers (DCEs), vinyl chloride (VC) and/or 

ethylene via dehalorespiration or cometabolism (Bradley, 2003; Bhatt et al., 2007).  

Hydrogen has been proposed to be the direct electron donor for most dechlorinating 

bacteria, while some species can also ferment a variety of organic substrates or 

coexist with fermenting bacteria, which produce low concentrations of hydrogen or 

acetate from organic substrates (Bradley, 2003; Becker et al., 2005; He et al., 2007).   

Microbial community structure has been studied and dechlorinators have been 

identified within reactive PCE and TCE dechlorinating consortia (Rosner et al., 1997; 

Flynn et al., 2000; Loeffler et al., 2000; Fennell et al., 2001; Richardson et al., 2002; 

Gu et al., 2004; Freeborn et al., 2005; Bedard et al., 2006; Rahm et al., 2006).  

Researchers have shown that microbial communities are dynamic systems, whose 

microbial composition and metabolic pathways are not only dependent on availability 
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of indigenous species (Fennell et al., 2001; Rahm et al., 2006) but also change over 

time (Avrahami et al., 2003) and in response to the presence of different electron 

acceptors (Flynn et al., 2000; Gu et al., 2004), electron donors (Flynn et al., 2000) and 

pH (Dodin et al., 2000; Inagaki et al., 2006).  Thus, studies on microbial community 

composition in the presence of different environmental factors help to understand the 

ecological and complex interactions in reactive dechlorinating microbial consortia. 

In addition to the conventional methods focusing on identification and 

quantification of parent substrates and dehalogenated products, compound specific 

isotope analysis (CSIA) has been increasingly applied to monitor transformation of 

chlorinated contaminants (Hunkeler et al., 1999; Sherwood Lollar et al., 1999; Bloom 

et al., 2000; Slater et al., 2000b; Slater et al., 2001; Nijenhuis et al., 2005; Cichocka et 

al., 2007; Lee et al., 2007; Liang et al., 2007; Cichocka et al., 2008; Dong et al., 2009).  

Fractionation of isotopes during degradation of contaminants occurs as reactions 

involving the stronger bonds formed by heavier isotopes (e.g. 13C) are slower than 

those involving lighter isotopes (e.g. 12C) and thus lead to accumulation of heavier 

isotopes in the residual parent substrate (Hoefts, 1997).  Different levels of isotope 

fractionation have been reported during microbial reductive dechlorination of PCE 

with the enrichment factors ranging from -0.42 to -16.8 ‰ (Nijenhuis et al., 2005; 

Cichocka et al., 2007; Liang et al., 2007).  The reasons for variability in enrichment 

factors by different dechlorinating bacteria has not been fully explained but have been 

suggested to be due to diverse mechanisms (e.g. aerobic vs. anaerobic reactions) 

(Hirschorn et al., 2004; Hirschorn et al., 2007), structural variability of functional 

enzymes (Nikolausz et al., 2006) or nutrient conditions (e.g. concentrations of 

cobalamin) (Mancini et al., 2006).  In addition, in our previous study (Dong et al., 

2009), two sets of microcosms prepared with the sediment from the same site but at 
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different pH values (7.2 versus 8.2) showed significantly different isotope 

fractionation during microbial PCE reductive dechlorination (-10.68 ‰ for 

L-meth-pH 7.2 versus -16.78 ‰ for L-meth-pH 8.2).  It has been found that pH may 

change the kinetic parameters of enzymatic reactions by titrating functional groups 

responsible for reactant binding, catalysis or altering the conformation of the enzymes 

(Karsten and Cook, 2006), suggesting potential impacts by environmental factors (e.g. 

pH) on isotope fractionation in our microcosms.  Recently, a number of research 

groups have proposed to use the Rayleigh Model along with isotope ratio analysis of 

in situ contaminants and enrichment factors obtained from lab-scale studies to 

quantitatively monitor the fraction of transformed contaminants at a site (Elsner et al., 

2005; Van Breukelen et al., 2005; VanStone et al., 2005; Nijenhuis et al., 2007).  

Thus, in order to avoid significant uncertainties during in situ assessment, it is 

important to choose representative enrichment factors for individual field sites and to 

understand the factors that may potentially influence this parameter.   

Most studies to date have not focused in detail on potential influence on isotope 

fractionation by heterogeneous bacterial distribution and shift in microbial 

communities due to the environmental factors (e.g. electron donors and pH) or over a 

long-term remediation scenario (Sherwood Lollar et al., 1999; Bloom et al., 2000; 

Zwank, 2004; Elsner et al., 2005; Nijenhuis et al., 2005; Cichocka et al., 2007; Lee et 

al., 2007; Liang et al., 2007; Cichocka et al., 2008; Dong et al., 2009).  The objective 

of this study is to evaluate whether microbial communities and different 

environmental factors (e.g. electron donors and pH) influence observed isotope 

fractionation during microbial reductive dechlorination.   Two enrichment cultures 

showing different product distribution and enrichment factors during PCE reductive 

dechlorination were studied.  Product distribution, isotope fractionation and 
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microbial community structures were analyzed in these two cultures inoculated from 

the same source but grown with different electron donors.      

 

3.2. Materials and Methods 

3.2.1. Sources of Chemical Reagents 

The following chemicals were obtained from Sigma-Aldrich (St. Louis, MO): 

PCE (99%), TCE (99.5%), cis-1,2-dichlorethylene (cis-DCE),  

trans-1,2-dichlorethylene (trans-DCE), 1,1-dichlorethylene (1,1-DCE) and 

2,2,4,4,6,8,8-heptamethylnonane.  Other chemicals were purchased from Fisher 

Scientific (Pittsburgh, PA).  All aqueous solutions were prepared with nanopure 

water (18.0 MΩ cm resistivity, Barnstead Ultrapure Water System, IA). 

 

3.2.2. Microbial Consortia and Subculture Enrichment Protocol 

All the enrichment cultures were derived from anaerobic sediment taken from a 

pond in Brandt Park, Norman, OK (Duck Pond or DP) in December 2004 by using the 

sampling and storage methods as described previously (Dong et al., 2009).  We are 

not aware of any contamination by chlorinated compounds in this sampling area.  

Within three days after sampling, microcosms were prepared inside an anaerobic 

glove box (Coy Laboratory Products Inc., MI) filled with a mixture of 95-97 % N2 

and up to 5 % H2.  Five milliliters of sterile, anaerobic and reduced mineral medium 

containing 3.5 g/L NaHCO3 (Dworkin et al., 2006) was seeded with approximately 2 

g of Duck Pond sediment.  One milliliter of anaerobic sludge from the Norman 

Wastewater Treatment Plant, OK, was passed through a 0.22 μm filter (Whatman Inc., 

UK) and spiked as an extra source of C, N, P, Fe and trace elements (Dionisi et al., 

2005).  Formate and H2 were used as the electron donor for Duck Pond-Formate 
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(DPF) and Duck Pond-H2 (DPH), respectively.  Formate was spiked from a sterile 

and anaerobic stock solution to yield the final concentration of 20 mM, while H2 was 

added by flushing the headspace of butyl rubber stopper sealed serum bottles with 

sterile cotton filtered H2/CO2 (80/20, v/v) pressurized to 1.3 atm for 3-5 minutes.  

The medium was reduced with Na2S·9H2O with the final concentration approximately 

0.5 mM.  In order to inhibit methanogenic microorganisms from competing for 

electron donors with dechlorinating bacteria, 2-bromo-ethanesulfonate (BESA) was 

added.  Its concentration was 1 mM to minimize the inhibition on microbial 

reductive dechlorination (Loeffler et al., 1997).  All the samples received 0.5 mL 50 

mM PCE stock solution prepared by dissolving PCE in 0.22 μm filter sterilized 

2,2,4,4,6,6,8,8-heptamethylnonane.  After that, subcultures were repeatedly 

transferred into freshly prepared basal salt medium (1:10, v/v) (Dworkin et al., 2006) 

containing the same amendments at intervals of 45 to 60 days.  After about 10 

transfers, the cultures were transferred into 120 mL (nominal volume) serum bottles 

with 100 mL medium, in which PCE was added from an aqueous stock solution to a 

final concentration about 100 μM.   

Sulfurospirillum multivorans was kindly provided by Dr. Frank R. Löffler at the 

Georgia Institute of Technology and the medium was prepared as previously 

described (Sung et al., 2003).  The medium was buffered with 2.52 g/L NaHCO3 

equilibrated with CO2/N2 (20/80, v/v) and the pH was adjusted with 1 N HCl or 1 N 

NaOH to 7.2 or 8.2 before sterilization.  Following TCE reductive dechlorination, 

pH was measured again and the changes were within ± 0.3 pH units compared to the 

initial values.   
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All microcosms and cultures were sealed with Teflon-lined butyl rubber septa 

(West Pharmaceutical Services, PA) and aluminum seals.  Incubations were static at 

room temperature and in the dark unless otherwise indicated.   

Sterile controls were prepared to assess whether microbial reductive 

dechlorination was responsible for the PCE transformation in DPF and DPH.  For 

the cultures to be used as sterile controls, they were pasteurized at 85 ± 5 °C for 15 

min after inoculation but before addition of PCE stock solution (Ballerstedt et al., 

2004).  Meanwhile, in order to test whether electron donors were directly responsible 

for the different product distribution and isotope fractionation in DPH and DPF, 

subcultures from both were prepared with switched electron donors.  Basically, 30 

mL cultures were transferred into N2/CO2 flushed FalconTM conical tubes and then 

centrifuged at 12,000 ×g for 5 minutes.  The pellets were washed with the same 

anaerobic medium twice before they were resuspended in 6 mL medium.  The DPH 

suspension was inoculated into the medium with formate as the electron donor and the 

DPF suspension was inoculated into the medium flushed with H2/N2 (80/20, v/v)).   

In order to evaluate whether different dechlorinators were involved DPH and 

DPF, dechlorination rates for PCE degradation were compared between the cultures 

with and without a “PCE-starving” pretreatment.  DPH and DPF were prepared as 

six replicate samples and the replicates were divided into two groups.  Group 1 was 

inoculated and spiked with PCE stock solution at day 0, while Group 2 was inoculated 

at day 0 but spiked with PCE at day 15.  All the samples spiked with PCE at day 15 

had additional electron donors added prior to PCE addition to eliminate the possibility 

of electron donors being limiting factors.  Here, the rate of degradation was 

quantified as the mass of dechlorinated products formed within the same period of 
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time.  After PCE was added, the dechlorinated products were identified and 

quantified after the same period of time (day 15 for Group 1 and day 30 for Group 2).  

 

3.2.3. Analytical Techniques 

Concentrations of PCE, TCE and cis-DCE were determined by manual injection 

headspace analysis with a Shimadzu GC-17A/flame ionization detector (GC/FID) and 

an Agilent GS-GASPRO capillary column (30 m × 0.32 mm) (J&W Scientific, 

Folsom, CA, USA). The injector temperature and detector temperature were 220 °C 

and 270 °C, respectively. Fifty microliters of headspace were withdrawn with a gas 

tight syringe (Hamilton Co., Reno, NV) and manually injected into the GC/FID using 

a split ratio of 1:1 (Liang et al., 2007).  The oven temperature ramped from 80 oC to 

190 oC at 30 oC/min, and then isothermal at 190 oC for 7 min.  Five point external 

calibration curves were prepared and the relative standard deviations for samples and 

standards using this method were typically less than 5 %.   

Additionally, 1 mL of culture was withdrawn and prepared for isotope analysis 

at each time point by using the method described (Dong et al., 2009).  Carbon 

isotope ratios were measured against a CO2 standard with aqueous samples using an 

O.I. Analytical - Model 4560 purge and trap system interfaced with a Varian 3410 GC 

with Finnigan MAT 252 mass spectrometer (Kuder et al., 2005).  Approximately 15 

% of samples were run in duplicate and the typical standard deviation for δ13C values 

from duplicate measurements was 0.2-0.3 ‰ or better (Kuder et al., 2005).  The 

results were then combined to calculate enrichment factors (εbulk) by using Rayleigh 

Model (Clark and Fritz, 1997).   
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3.2.4. DNA Extraction and 16S rRNA Gene Analysis 

After about 20 transfers, cultures from duplicate samples were collected for DNA 

extraction when about 70-80 % of the PCE had been transformed.  The cultures were 

centrifuged at about 13,000 ×g for 5 minutes.  The cell pellets were resuspended in 

sterile phosphate buffered saline (PBS) buffer solutions (Hurst et al., 2002) and the 

washing procedure was repeated.  Cells were then stored at -20 °C until DNA 

extraction was performed.  Total community DNA was extracted using the 

Easy-DNATM kit (Invitrogen, Co., CA) according to the manufacturer’s instruction.  

Purity and concentration of extracted genomic DNA were measured with a Thermo 

Scientific NanoDropTM 1000 spectrophotometer (Thermo Scientific Inc., U. S.).   

Bacterial 16S rRNA genes were amplified from community DNA with primers 

27F (5’-AGAGTTTGACMTGGCTCAG-3’) and 1492R 

(5’-GGYTACCTTGTTACGACTT-3’) (Lane, 1991).  PCR amplification was 

performed with the Taq DNA polymerase kit (Fermentas Inc., MD).  The reaction 

mixture (50 μl) contains 2.5 mM MgCl2, 75 mM Tris-HCl (pH 8.8), 20 mM 

(NH4)2SO4, 0.01 % (v/v) Tween 20, 0.4 mM each oligonucleotide primer, 1.25 U Taq 

polymerase and 1 μl appropriately diluted template DNA (ca. 50 ng).  Reaction 

mixtures were incubated in an iCycler thermal cycler (Bio-Rad Laboratories, France) 

and the PCR amplification was performed under the following conditions: 95°C for 5 

min, 30 cycles of denaturation at 95 °C for 30 s, annealing at 52°C for 30 s and 

extension at 72 °C for 90 s, with a final extension at 72 °C for 20 min.  PCR 

products were separated and visualized by agarose gel (0.8 %) electrophoresis.  The 

band corresponding to the product (~ 1.4 kb) was excised and purified with the 

GenCatchTM gel extraction kit (Epoch Biolabs, Inc., TX).  Prior to cloning, the 

purified PCR product was amplified for one cycle as described above with a final 
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extension at 72°C for 20 min.  Afterwards, the PCR products were cloned with a 

TOPO TA cloning kit (Invitrogen Co., CA) in accordance with the manufacturer’s 

instructions.  Selected clones were grown in 1 mL LB medium amended with 50 

μg/mL of ampicillin (Hurst et al., 2002).    

The 16S rRNA inserts from recombinant clones were reamplified with M13 

primers and then digested independently with restriction endonucleases Msp I and Alu 

I (Fermentas Inc., MD) as suggested by the manufacturer.  The digested fragments 

were separated by agarose gel electrophoresis (0.8 %) and visualized by staining with 

ethidium bromide and UV illumination.  RFLP patterns for each library were 

grouped visually.  Representative clones were selected based on unique RFLP 

patterns, purified with the GenCatchTM PCR Clean-up Kit (Epoch Biolabs, Inc.) and 

sent to Oklahoma Medical Research Foundation (OMRF) for sequencing using ABI 

3730 capillary sequencers.  In cases where there were many replicates with similar 

RFLP patterns, multiple clones were sequenced to confirm that they represent 

identical species.   

All the sequences were initially aligned with Clustal W, visually examined and 

adjusted to allow maximal alignment by referring to representative bacterial 

sequences from the Ribosomal Database Project II (RDP) database (Cole et al., 2005).  

Clones were grouped into Operational Taxonomic Units (OTUs) at a level of 

sequence similarity ≥ 97 %.  The possible chimera were checked with Bellerophon 

software (Huber et al., 2004) and Pintail (Ashelford et al., 2005) and chimera were 

excluded from the phylogenetic analysis.  Phylogenetic affiliations of the sequences 

of approximately 1.4 kb were estimated by BLAST and the classification function in 

Greengenes (DeSantis et al., 2006).  Neighbor joining trees were constructed with 

ARB (Ludwig et al., 2004). 



 42

3.2.5. GenBank accession numbers 

Sequences determined in this study have been deposited into the GenBank 

database and the accession numbers are under GQ377111 to GQ377131.   

 

3.3. Results and Discussion 

3.3.1. PCE Dechlorination and Isotope Fractionation in DPF and DPH 

During the first 15 feeding cycles, both DPF and DPH produced cis-DCE from 

PCE (Figure C1).  The ability of DPH to transform PCE to cis-DCE has not changed 

(Figure 3.1a).  However, after about 2.5 years, DPF lost its capacity to transform 

TCE to cis-DCE and thus accumulated TCE during PCE degradation (Figure 3.1 (b)).  

The stable PCE concentration in pasteurized controls indicated that dechlorination 

was due to microbial activity in both enrichment cultures rather than abiotic reductive 

dechlorination by extracellular agent (e.g., porphyrin, a metalloprotein or proteins) 

(Novak et al., 1998).   

In DPF, isotope fractionation was measured after loss in dechlorination capacity 

from TCE to cis-DCE was observed.  As shown in Figure 3.2, weak isotope 

fractionation occurred in DPH (εbulk = -1.98±0.16 ‰), close to the previously 

published enrichment factors by Sulfurospirillum multivorans, Desulfuromonas 

michiganensis Strain BB1, Sulfurospirillum halorespirans, Geobacter lovleyi Strain 

SZ and some enrichment cultures (e.g., KB-1 and TP) with the enrichment factors 

ranging from -0.42 to -2.6 (Slater et al., 2001; Nijenhuis et al., 2005; Cichocka et al., 

2007; Liang et al., 2007; Cichocka et al., 2008).  However, much stronger isotope 

fractionation with the enrichment factor -10.29±0.47 ‰ was observed in DPF.  

Similar to DPF, relatively stronger isotope fractionation during PCE microbial 

reductive dechlorination has been reported for some TCE-accumulating cultures and 
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microcosms, including Desulfitobacterium sp Viet 1 (εbulk = -16.7 ‰) and some 

microcosms in our previous experiments (e.g. L-Meth-pH 7.2, L-Meth-pH 8.2 and 

AAFB-SR-12-pH 7.2) (εbulk = -8.5 to -16.78) (Cichocka et al., 2008; Dong et al., 

2009).   
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Figure 3.1. PCE reductive dechlorination by DPH and DPF.  (a) and (b) show 
reductive dechlorination by DPH and DPF with H2 and formate as the electron donor, 
respectively.  (a’) and (b’) show PCE reductive dechlorination in (DPH+formate) 
and (DPF+H2).  The open circles and dashed lines in (a) and (b) show PCE 
concentration for up to 48 days in the controls treated by pasteurization before PCE 
was added.  The points show average values and error bars indicate standard 
deviation of triplicate samples. 
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Figure 3.2.  Isotope Fractionation of during microbial PCE reductive dechlorination 
DPH (a) and DPF (b) in the presence of different electron donors.  The solid and 
dashed curves are Rayleigh Model fit for the samples with the original and switched 
electron donors, respectively.   

   

 
3.3.2. Impacts of Electron Donors on Isotope Fractionation during Reductive 

Dechlorination 

Electron donor was the major factor that differed between DPH and DPF, so it 

was important to evaluate whether it was responsible for the significantly different 

isotope fractionation between the two cultures.  Previous studies have indicated 

impacts of electron donors and their concentrations on isotope fractionation during 

microbial metabolism (e.g. dissimilatory sulfate reduction) (Bruechert, 2004; Hoek et 

al., 2006; Hoek and Canfield, 2007).  Impacts of electron donors on isotope 

fractionation might be due to the induction of different electron donor flow pathways 

(e.g. complete or incomplete oxidation) or rates of electrons transfer along the 

electron transport chains (Bruechert, 2004).  In order to evaluate whether electron 

donors directly influenced isotope fractionation during microbial dechlorination of 

PCE, subcultures were prepared from DPF and DPH with switched electron donors.  

Reductive dechlorination in subcultures of DPF (normally using formate) flushed with 

H2 (DPF+H2) initiated without any lag time and the rate for PCE transformation was 
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slightly faster than that for DPF (Figure 3.1a’).  For the subculture from DPH 

(normally using H2) spiked with formate (DPH+formate), the rate of dechlorination 

was similar to that of DPH.  Meanwhile, the product distribution in the subcultures 

(TCE for DPF+H2 and cis-DCE for DPH+formate) was the same as that with the 

original electron donors.  This suggests that the final dechlorinated products in DPF 

and DPH may be independent of electron donors.  Isotope fractionation obtained 

from DPF+H2 and DPH+formate is shown in Figure 3.2.  Compared with DPF and 

DPH, slightly stronger isotope fractionation was observed in the subcultures with 

switched electron donors.  However, the general trend with much stronger isotope 

fractionation observed in DPF+H2 than that in DPH+formate was the same as 

observed with the original electron donors.  This observation suggests that electron 

donors may not be the direct reason for the significantly different extents of isotope 

fractionation observed between DPH and DPF.  

 

3.3.3. Impacts of pH on Isotope Fractionation During Microbial Reductive 

Dechlorination 

To specifically evaluate the effects of pH on isotope fractionation, TCE reductive 

dechlorination at two pH values (7.2 and 8.2) was tested.  To avoid the potential 

complexity due to the shift in microbial community composition, a well studied 

isolated pure culture, S. multivorans was studied (Neumann et al., 1994; Neumann et 

al., 1998; Neumann et al., 2002).  These pH values were selected because they 

represent the neutral and upper limit of typical pH values for groundwater (Kasenow, 

2000).  In addition, the relatively strong fractionation for TCE degradation 

(Cichocka et al., 2007; Lee et al., 2007; Liang et al., 2007) provides relatively wide 

space for the potential changes in isotope fractionation.  Results showed that changes 
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in pH from 7.2 to 8.2 significantly slowed either growth or rates of TCE reductive 

dechlorination (Figure C2a), which is consistent with the reported optimum pH 

around 7.2 for Sulfurospirillum multivorans (Neumann et al., 1994).  However, no 

statistically significant change (at 95 % confidence level) in isotope fractionation was 

observed.  Compared to δ13C = -12.8±1.6 ‰ at pH 7.2 (Liang et al., 2007), the 

enrichment factor was -15.1±0.9 ‰ when the pH was raised to 8.2 (Figure C2b).   

  The lack of difference in isotope fractionation for TCE reductive 

dechlorination by Sulfurospirillum multivorans at different pH might be explained by 

the stable intracellular pH regardless of the changes in environmental pH.  When 

encountering temporal or drastic fluctuations in the environmental pH, 

microorganisms maintain intracellular pH to be relatively stable by homeostatic 

regulation (Padan and Schuldiner, 1986, 1987).  Bacteria living in acidic 

environments typically use primary proton pumps, membrane channels with a reduced 

pore size that excludes protons and cytoplasmic buffering to maintain a neutral pH 

within the cells (Padan and Schuldiner, 1987; Baker-Austin and Dopson, 2007).  

Thus, in the presence of constant intracellular pH, the steps in enzymatic reactions 

that are related to isotope fractionation (e.g. bond cleavage and formation of 

enzyme-product complex) will not likely be affected and therefore isotope 

fractionation will not change as external pH is modified.  These results indicate that 

the significantly different extents of isotope fractionation observed between 

L-Meth-pH 7.2 and L-Meth-pH 8.2 are more likely due to other factors (e.g. microbial 

community composition).   

 

3.3.4. Microbial Community Analysis 

After the direct influence of electron donors and pH on isotope fractionation 
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during PCE reductive dechlorination was ruled out, the microbial community was 

analyzed to reveal the difference between DPF and DPH cultures.  DNA was 

extracted from DPF and DPH to construct clone libraries of nearly full-length 

bacterial 16S rRNA genes.  Archaeal clone libraries were not constructed because all 

known dechlorinators belong to the domain Bacteria.  In addition, treatment with 

BESA did not change the dechlorinating capacity in this study (Figure C3) with the 

relative difference at each time point typically less than 15 %, suggesting that bacteria 

were more important than methanogenic archaea (Loeffler et al., 1997).  RFLP 

analysis was performed on a total of 256 clones and subsequent sequencing of 70 16S 

rRNA genes of representative RFLP groups revealed 11 OTUs in DPF and 10 OTUs 

in DPH.  Phylogenetic classification of OTUs showed that both enrichments include 

Bacteroidetes, Firmicutes and Proteobacteria.  Spirochaetes and some unidentified 

species were only detected in DPF (Figure 3.3 and Table 3.1).  Among the 

Proteobacteria, ε-Proteobacteria accounted for a major part of the DPH clone library 

but was not detected in DPF, while δ-Proteobacteria were detected in both DPH and 

DPF.  More importantly, except for Bacteroidetes, the fractions of all the phyla 

differed significantly between DPH and DPF, suggesting a significant difference in 

the community structure.   
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Figure 3.3. Phylum level distribution of clones from DPF and DPH. The 
Proteobacteria is divided into classes of δ-proteobacteria and ε-proteobacteria to 
indicate different microbial distribution between the two enrichment cultures.  

 

 

Table 3.1 shows the phylogenetic affiliation of each OTU and their closest 

sequence matches in the GenBank database as determined by BLAST (Altschul et al., 

1990).  Figure 3.4 shows the phylogenetic relationship of 16S rRNA gene clone 

sequences of DPF, DPH and their close relatives and type strains.  The percentages 

listed in Table 3.1 may not represent the actual microbial abundance in the enrichment 

cultures because different factors (e.g. potential PCR bias, cloning bias and varied 

copy numbers of 16S rRNA genes in different bacteria) may result in the deviation 

from the actual population distribution (Becker et al., 2000; Klappenbach et al., 2001; 

Acinas et al., 2004; Kurata et al., 2004).  However, the absence of certain OTUs in 

one culture or the other indicates that electron donors affect microbial community 

composition in DPF and DPH (Table 3.1 and Figure 3.4). The only identical OTUs 

shared by DPF and DPH were members of Bacteroidetes (Table 3.1 and Figure 3.4).  

Although Bacteroidetes have been widely observed in reactive microbial communities 
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capable of reductively dechlorinating chlorinated ethylenes or PCBs (Richardson et 

al., 2002; Freeborn et al., 2005; Bedard et al., 2006), no members belonging to this 

phylum have been identified to be dechlorinators. Bacteroidetes spp. are known for 

fermentation of a variety of carbohydrates, and simple sugars to produce smaller fatty 

acids and bicarbonate (Janssen, 1991; Madigan et al., 2006; Smith et al., 2006).  

Thus, it is possible that Bacteroidetes identified act as the fermentors by degrading 

organic substrates (e.g. yeast extracts) and provide smaller organic molecules or H2 

for growth of dechlorinating bacteria.  Similar functions may also be carried out by 

Spirochaetes detected in DPF, which may ferment carbohydrates to acetate or ethanol 

and potentially support growth of dechlorinators (Canale-Perola, 1984).
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Table 3.1. Phylogenetic Summary of DPH and DPF Based on Clone Library Construction and Sequence Analysisa 

OTUDPF
b 

Fraction of 
ClonesDPF 

(%) 
OTUDPH

b 
Fraction of 
ClonesDPH 

(%) 
Phylogenetic group Closest GenBank matchc Identityd 

(%) 

DPF03 25.4  DPHC01 10.8 Bacteroidetes Porphyromonadaceae bacterium JN18, 
DQ168658.1  99 

DPF25 4.5  DPHB03 16.0  Bacteroidetes Clone E48, EU864431.1 98 
    DPHB02 0.8  Bacteroidetes Clone A25B8, EF644518.1 99 
    DPHB06 0.8  Bacteroidetes Paludibacter propionicigenes AB078842.2 95 

DPF01 1.5      Clostridia Clone PL-38B5 98 
DPF04 23.9      Clostridia Clostridium sticklandii, L04167.1 97 
DPF06 14.9      Clostridia Anaerofilum pentosovorans, X97852 98 
DPF35 1.5      Clostridia Clone 9, FJ534955.1 98 

  DPHA07 0.8  Clostridia Clone Er-LLAYS-35, EU542503-1 97 
    DPHE06 1.7  Clostridia Clostridium pascui, X96736.1 99 
    DPHB07 0.8 Clostridia Clone 49, FJ534994.1 93 

DPF18 1.5   Erysipelotrichi Clone M011_60, EU014057 98 
    DPHA05 4.2  Bacillie  Clone mle1-9, AF280848.1 98 

DPF02 17.9     δ−proteobacteria  Desulfovibrio desulfuricans Essex 6, 
AF192153.1 99 

    DPHG05 0.8  δ−proteobacteria Desulfovibrio sp, AJ133797.1 98 
   DPHA01 63.0  ε−proteobacteria Sulfurospirillum deleyianum, AB368775.1 97 

DPF05 6.0     Spirochaetes Spirochaeta sp. Buddy; AF357916 99 
DPF029 1.5      Unclassified Clone CLONG36, DQ478740.1 99  
DPF033 1.5      Unclassified Clone E1, EU864437.1 99 

a Clone libraries were constructed using bacterial primers 27F and 1492R.  b DNA was extracted from the 20th generation enrichments when about 80 % PCE 
has been transformed; Fraction of ClonesDPF and Fraction of ClonesDPH indicate the percentage of each OTUs in the clone libraries of DPF and DPH, 
respectively.  c Sequences in database with ≥ 95 % similarity to DPF or DPH clones are listed, along with the sequence unidentified by Classifier in RDP 
(http://rdp.cme.msu.edu/classifier/classifier.jsp).  d Identity in the order and composition of nucleiotides;  e This OTU was classified as Bacilli by 
Greengenes but classified as Unclassified by the Classife in RDP.  
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Figure 3.4. Phylogenetic tree of 16S rRNA gene clone sequences (indicated by 
boldface type) of DPF, DPH and their close relatives and type strains.  Calculation 
was performed by neighbor-joining methods incorporating Jukes-Cantor distance 
correction.  Dehalococcoides ethenogenes Strain 195 was used as the out-group.  
The numbers at the nodes indicate the percentages of times that nodes appeared in 
1,000 bootstrap analyses.  The scale bar indicates that 0.1 change per nucleotide 
position.  Unclass: Unclassified; Spiroch: Spirochaetes.  

 
 
 



 52

  Different OTUs belonging to Clostridia were detected in the two cultures 

(Table 3.1).  Some species belonging to this class (e.g. Desulfitobacterium spp., 

Dehalobacter spp. and Clostridium bifermentans DPH-1) have been identified to be 

dechlorinators for chlorinated ethenes or chlorinated aromatic compounds (Wild et al., 

1996; Chang et al., 2000; Holliger et al., 2003; Loeffler et al., 2003; Villemur et al., 

2006).  Although three OTUs, including DPF35, DPHA07 and DPF18, were closely 

related to chlorobenzene, polychlorinated dioxin and dichlorophenol (DCP) 

dechlorinating consortia clones (Figure 3.4), they were not closely related to any PCE 

or TCE dechlorinating bacterium.  The same is true of the other OTUs (DPF01, 

DPF04, DPF06, DHE06 and DPHB07).  

 The δ-proteobacteria include some known dechlorinators, such as 

Desulfuromonas spp., Desulfomonile tiedjei, Desulfovibrio spp., Anaeromyxobacter 

dehalogenans, Geobacter lovleyi and Trichlorobacter thiogenes (Loeffler et al., 2003).  

Analysis of species closely related to the OTUs detected in DPF and DPH (Clone 

DPF02 and DPHG05) suggested that they may contribute to the dechlorinating 

enrichments in two ways.  First, Desulfovibrio spp. (e.g. Desulfovibrio sp. strain 

SULF1, Desulfovibrio fructosivorans and Desulfovibrio desulfuricans) and 

dechlorinating bacteria can form syntrophic association, in which production of 

hydrogen by oxidation of organic compounds from yeast extract or sewage sludge 

added to the medium by Desulfovibrio species can be transferred to dechlorinating 

bacteria and thus support microbial reductive dechlorination (Drzyzga et al., 2001; 

Drzyzga and Gottschal, 2002; He et al., 2007).  In our study, the clone DPF02 but 
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not DPHG05 is about 99 % in identity with Desulfovibrio desulfuricans strain Essex 6 

(Loubinoux et al., 2000) in 16S rRNA genes.  Second, some Desulfovibrio species 

(e.g. Desulfovibrio sp. Strain TBP-1 and Strain SF3) are known to reductively 

dechlorinate halogenated contaminants, such as 2,4,6-tribromophenol and 

2-chlorophenol (Boyle et al., 1999; Sun et al., 2000).  To the best of our knowledge, 

reductive dechlorination of chlorinated ethenes by Desulfovibrio spp. has not been 

reported.  However, considering the PCE degrading capacity of some degraders of 

chlorinated aromatic compounds (e.g. Desulfomonile tiedjei and Desulfitobacterium 

sp. Strain Viet1) (Cole et al., 1995; Loeffler et al., 1997; Tront et al., 2006), we cannot 

rule out the potential importance of this genus in PCE reductive dechlorination, 

especially in DPF, although 16S rRNA of DPF02 and DPHG05 are not highly similar 

to Desulfovibrio sp. Strain TBP-1 or Strain SF3.  

DPHA01, the dominant sequence detected in DPH but not in DPF was grouped 

in the Sulfurospirillum spp. of ε-proteobacteria.  This sequence was 95 % identical 

with S. multivorans and S. halorespirans strain PCE-M2, which reductively 

dechlorinate PCE to cis-DCE via dehalorespiration (Neumann et al., 1994; 

Scholz-Muramatsu et al., 1995; Luijten et al., 2003).  It is reported that H2 and 

formate can serve as the electron donors for Sulfurospirillum spp. (e.g. S. deleyiamum, 

S. cavolei, S. multivorans and S. halorespirans strain PCE-M2) (Neumann et al., 1994; 

Scholz-Muramatsu et al., 1995; Luijten et al., 2003).  This is consistent to the 

nutrient conditions in DPH and its subculture DPH+formate.  During PCE reductive 

dechlorination, both S. multivorans and S. halorespirans weakly fractionate with the 
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enrichment factors ranging from -0.42 to -1.33 ‰ (Nijenhuis et al., 2005; Liang et al., 

2007; Cichocka et al., 2008), close to the observed isotope fractionation (-1.98 to 

-3.23 ‰) by DPH.  Although we cannot rule out the possibly that some previously 

unidentified dechlorinating bacteria are responsible for the PCE reductive 

dechlorination in DPH and DPF, the high fraction of the OTU closely related to 

Sulfurospirillum in DPH, the same product distribution and physiological properties 

compared to the previously published dechlorinating Sulfurospirillum spp., close 

enrichment factors and absence of TCE to cis-DCE transformation capacity in the 

absence of this genus in DPF suggest that Sulfurospirillum related species is most 

likely responsible for PCE reductive dechlorination in DPH.   

 

3.3.5. Response to Absence of Electron Acceptors by DPF and DPH 

Chemical, isotope and molecular analyses suggest that different dechlorinating 

bacteria might be responsible for PCE reductive dechlorination in DPF and DPH as 

discussed above.  Here, dechlorination rates of the cultures with and without 

“PCE-starving” pretreatment were compared to evaluate the metabolisms of involved 

dechlorinating species.  We hypothesized that if reductive dechlorination is the only 

terminal electron accepting process for dechlorinators and they obtain energy in the 

reaction processes (e.g. dehalorespiration), “PCE-starving” may lead to growth of 

non-dechlorinators and thus result in competition for electron donors when both PCE 

and electron donors are added afterwards.  If this occurred, we would predict lower 

PCE dechlorination rates in the samples spiked with PCE at day 15 than those added 
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PCE at day 1.  Alternatively, if other electron acceptors in the medium (e.g. yeast 

extract or organic compounds in activated sludge) can also support metabolism of 

dechlorinators, their growth may not be dependent on the availability of chlorinated 

substrates (e.g. PCE).  Thus, their dechlorination capacity can be quickly recovered 

when electron donors and PCE are added and will result in similar or even higher 

PCE dechlorination rates compared to the samples spiked with PCE at day 1.  

Dechlorination rates were quantified as the total amount of dechlorinated 

products formed within the same period of time (15 days).  As shown in Figure 3.5, 

DPF and DPH presented significantly different patterns.  For DPF, the amounts of 

dechlorinated products in the samples spiked with PCE at different time points were 

similar.  However, for DPH, the amount of dechlorinated products formed in the 

samples with preincubation without PCE was only about 25 % of that without  

pretreatment.  Based on the above hypotheses, we infer that PCE reductive 

dechlorination was the terminal electron accepting process for the dechlorinators in 

DPH, while the comparable dechlorination rates in the DPF subcultures spiked with 

PCE at day 1 and day 15 suggests that alternative electron accepters in the medium 

may also support growth of dechlorinators in DPF.  Even though accumulation of 

TCE by DPF is consistent with the product distribution in most cometabolic 

dechlorinating species (Holliger et al., 2003; Loeffler et al., 2003), indirect evidence 

suggests that DPF carries out dehalorespiration rather than cometabolism.  This 

evidence includes the fact that no species closely related to any previously published 

cometabolic PCE degraders (Bradley, 2003; Bhatt et al., 2007) have been identified in 
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this culture (see below); cometabolism typically results in orders of magnitude slower 

dechlorination rates than dehalorespiration (Holliger et al., 2003; Loeffler et al., 2003), 

however the dechlorination rate of DPF was within the same order of magnitude as 

DPH (Figure 1); dehalogenating bacteria that use H2 and formate as electron donors 

during reductive dechlorination of chlorinated ethylenes are typically identified as 

dehalorespiring bacteria (Holliger et al., 2003), but it is difficult to determine whether 

dechlorinating species in DPF use formate as the direct electron donor. 
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Figure 3.5. Dechlorinated products formed within 15 days during microbial PCE 
reduction in DPH with versus without “PCE-starving” pretreatment.  The 
dechlorination rates were quantified as the total dechlorinated products (e.g., sum of 
TCE and cis-DCE for DPH and TCE for DPF) produced within the same period of 
time (15 days).  The values of bars are average and the uncertainties indicate 
standard deviation of triplicate samples.  
 

3.4. Environmental Importance for the Assessment of In Situ Bioremediation 

The chemical, isotope and RFLP results suggest that different dechlorinating 

communities and especially dechlorinating species from the same source can vary in 
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the presence of different environmental factors (e.g., pH and electron donors) after 

being stimulated for about four years.  Hence this study may provide an explanation 

for why different extents of isotope fractionation were observed for the same 

enrichment culture (e.g., TCE dechlorination by KB-1) in different studies (Bloom et 

al., 2000; Slater et al., 2001) or were added with different electron donors (e.g., 

butyric acid versus ethanol acting as electron donors for PCE dechlorination by TP 

microbial consortia) (Slater et al., 2001).  In this study, a Sulfurospirillum relative 

was proposed to be the dechlorinators in DPH, while it is not clear which species in 

DPF is involved.  We suggest that the species affiliated to Desulfitobacterium or 

Desulfovibrio may be responsible for PCE reductive dechlorination in DPF.  

Regardless, the results indicate that multiple dechlorinating bacteria are likely present 

at different sites and preferential growth of one or some of the species and the 

resulting contributions to reductive dechlorination might be indirectly influenced by 

environmental conditions (e.g. electron donors and pH).    

To determine the potential significant uncertainties related to the selection of 

unrepresentative εbulk during in situ assessment by using isotope fractionation, we 

used the following equations (Cichocka et al., 2008; Hunkeler et al., 2008), to 

predicted the extent of biodegradation (B %) (Figure 3.6).  We chose both the 

strongest (εbulk = -13.44 ‰) and the weakest (εbulk = -1.98 ‰) isotope fractionation 

values to determine the upper and lower limits by using the equation as follows.   
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Figure 3.6. Relative influence of different values of enrichment factors (εbulk) on the 

calculated extent of PCE microbial reductive dechlorination.  The strongest and the 

weakest extents of isotope fractionation obtained in this study (εbulk = -13.44 and -1.98 

‰, respectively) were used for estimation.  

 

Assuming we measure δ13C to equal -25 ‰, about 40 % of the contaminant is 

predicted to be transformed if εbulk = -13.44 ‰, while more than 90 % of the 

contaminant is predicted to be transformed if εbulk = -1.98 ‰.  The significant 

difference in predicted B stresses the potential uncertainties due to the selection of 

unrepresentative εbulk during in situ assessment by using isotope fractionation.  

Therefore, it is recommended that microcosms be developed to directly determine the 

possible enrichment factors.  Microcosm studies should be repeated periodically in 

long-term bioremediation projects to ensure that potential changes in extents of 



 59

isotope fractionation due to the shift of microbial diversity over time can be tracked, 

especially for the remediation approaches that involve addition of electron donors. 
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CHAPTER 4∗ 

The Relative Contributions of Abiotic and Microbial Processes to the 

Transformation of Tetrachloroethylene and Trichloroethylene in 

Anaerobic Microcosms 

 

4.1. Introduction 

Ground water contamination by chlorinated aliphatic contaminants such as 

tetrachloroethylene (PCE) and trichloroethylene (TCE) is a widespread problem in the 

United States (Moran et al., 2007).  PCE and TCE can be transformed abiotically by 

reactive Fe(II) and S(-II) minerals (Sivavec and Horney, 1996, 1997; Butler and 

Hayes, 1999, 2001; Lee and Batchelor, 2002b, a) that are typically formed during 

microbial reduction of Fe(III) oxides and sulfate (Morse et al., 1987; Fredrickson et 

al., 1998).  Bacteria can also directly degrade PCE or TCE by dehalorespiration or 

cometabolism (Holliger et al., 1997; Bradley, 2003; Bhatt et al., 2007).  Abiotic 

reductive dechlorination of PCE and TCE typically takes place by reductive 

β-elimination that results in accumulation of acetylene and other completely 

dechlorinated products (Sivavec and Horney, 1996, 1997; Butler and Hayes, 1999, 

                                                        
* This chapter consists of the paper by Dong et al. (2009) from “Environmental 
Science & Technology, 43, Dong, Y., Liang, X., Krumholz, L.R., Philp, R.P., Butler, 
E.C., 2009. The Relative Contributions of Abiotic and Microbial Processes to the 
Transformation of Tetrachloroethylene and Trichloroethylene in Anaerobic 
Microcosms. Copyright (2009) American Chemical Society”. The same paper is given 
in full in Xiaoming Liang’s dissertation “Kinetic and Isotope Analysis during Abiotic 
Transformation of Chlorinated Hydrocarbons by Iron and Sulfur Minerals, 2009, 
University of Oklahoma” and we did not divide this paper as that in Chapter 2 
because any effort of division significantly weakens data interpretation.  Y. D. was 
responsible for the microcosm setup, geochemical analysis of iron species and NOM, 
sample preparation for SEM, acetylene transformation, identification and 
quantification of reductive dechlorination in all the PCE microcosms and part of TCE 
microcosms. 
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2001; Lee and Batchelor, 2002b, a), while microbial reductive dechlorination occurs 

via sequential hydrogenolysis that results in accumulation of lesser chlorinated 

ethenes along the sequence TCE, dichloroethylenes (DCEs), vinyl chloride (VC), and 

ethene (Brown et al., 2006).  The distinct reaction products for abiotic versus 

microbial PCE and TCE reductive dechlorination can help identify the predominant 

process in a given environmental system.  

Despite knowledge gained from the laboratory (Pasakarnis et al., 2006; Shen and 

Wilson, 2007) and field (Brown et al., 2006; Kennedy et al., 2006a; Kennedy et al., 

2006b), the relative contributions of abiotic and microbial processes to the natural 

transformation of PCE and TCE is currently a subject of debate.  Furthermore, while 

PCE and TCE transformation by pure mineral species has been well studied in the lab 

(see refs. in (Liang et al., 2007)), the influence of readily measurable subsurface 

geochemical parameters, such as weakly and strongly bound Fe(II), acid soluble 

sulfur, and chromium extractable sulfur (CrES), on PCE and TCE transformation 

kinetics has not yet been reported.  The objectives of this research were to: (1) assess 

the relative importance of microbial versus abiotic PCE and TCE reductive 

dechlorination under a variety of geochemical conditions and (2) identify the 

geochemical conditions for which abiotic PCE and TCE reductive dechlorination are 

most important.  Microcosm studies were conducted using aquifer solids from three 

locations that were amended to generate iron reducing, sulfate reducing, and 

methanogenic conditions.  We assessed the importance of abiotic and microbial 

reductive dechlorination in the microcosms by analysis of reaction products and 

kinetics, utilization of abiotic (killed) controls, comparison of observed half lives to 

those of laboratory studies using pure minerals, and stable carbon isotope analysis.     
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4.2. Materials and Methods 

The specifications and sources of all chemical reagents are given in the 

Supporting Information.  Solid and liquid samples were collected from three sites, 

including an anaerobic zone of an aquifer located adjacent to the closed landfill at the 

Norman Landfill Environmental Research Site (U.S. Geological Survey Toxic 

Substances Hydrology Research Program), Norman, OK (Norman Landfill or L), a 

pond in Brandt Park, Norman, OK (Duck Pond or DP), and two permeable reactive 

barriers containing mulch (“biowalls”) at Altus Air Force Base, Altus, OK (AAFB).  

There have been no reports of PCE or TCE contamination at the first two sites, while 

the sampling areas at AAFB intersect TCE plumes (Kennedy et al., 2006b; Lu et al., 

2008).  Two AAFB samples (AAFB 12 and AAFB 14) were from a biowall section 

that had been modified by addition of magnetite to promote formation of FeS upon 

microbial sulfate reduction (Parsons, May 2006).  Additional details about the 

sampling locations and procedures are given in the Supporting Information.   

 Microcosms were prepared in an anaerobic chamber (Coy Laboratory Products 

Inc., MI).  Buffered site water (100 mL containing 25 mM HEPES (pH 7.2) or TAPS 

(pH 8.2)) and 20 g wet sediment or solids were added to 160 mL serum bottles.  

Experiments were done at pH 7.2 and 8.2 to include the range of pH values found in 

natural waters.  HEPES and TAPS are generally considered suitable for biological 

systems, and we are not aware of any reports of HEPES or TAPS acting as electron 

donors for bacteria or exhibiting side effects such as toxicity to dechlorinating 

bacteria.  Strict pH control was required since pH can strongly affect the rates of 

abiotic reductive dechlorination of PCE and TCE (Hwang and Batchelor, 2000; Butler 

and Hayes, 2001; Lee and Batchelor, 2002b; Maithreepala and Doong, 2005).  

Microcosms were either “unamended” (U), which were not preincubated with 
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electron donors or acceptors before spiking with PCE or TCE and represented 

baseline geochemical conditions; “amended” (A), which were preincubated with 

electron acceptors and/or donors in order to increase microbial activity and stimulate 

reactive mineral formation before spiking with PCE or TCE; or “killed” (K), which 

were amended and preincubated as described above, then treated by boiling water 

bath and antibiotics to kill bacteria prior to addition of PCE or TCE.  Details about 

the heat/antibiotic treatment as well as the effect of heat treatment on the 

concentrations of abiotic mineral fractions are discussed in the Supporting 

Information.     

 Except for those that were unamended, microcosms were set up to stimulate iron 

reduction (IR), sulfate reduction (SR), or methanogenesis (Meth).  Electron donors 

and acceptors were added to the microcosms to increase both the concentrations of 

potentially reactive biogenic minerals and microbial activity.  Duck Pond and 

Landfill aquifer microcosms were amended with amorphous Fe(III) gel (50 mM) 

(Cornell and Schwertmann, 2003), FeSO4 (30 mM), or no electron acceptor in order to 

establish iron reducing, sulfate reducing, or methanogenic conditions, respectively.  

For AAFB microcosms, only sulfate reducing conditions were stimulated, since this 

most closely represented site conditions, where dissolved sulfate in the ground water 

is high (1.4-12.5 mM).  Acetate (20 mM), lactate (40 mM), and ethanol (15 mM) 

were added as electron donors for iron reducing, sulfate reducing, and methanogenic 

conditions, respectively.  While it is possible that the use of different electron donors 

affected the rate and/or extent of dechlorination in the microcosms, the choice of each 

electron donor was made to be certain to stimulate microorganisms known to be 

capable of iron reduction, sulfate reduction, or methanogenesis, respectively.    

In order to prevent methanogenic bacteria present in soil and sediment samples 
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from competing for electron donors and preventing the establishment of iron or 

sulfate reduction, 1 mM 2-bromo-ethanosulfonic acid was added to the sulfate and 

iron reducing microcosms before adding electron acceptors and/or donors.  This 

concentration was chosen because it was lower than concentrations reported to inhibit 

dechlorinating bacteria (2-3 mM) (Loeffler et al., 1997; Chiu and Lee, 2001), but was 

still sufficient to inhibit methane production.  After addition of these amendments, 

microcosms were preincubated until terminal electron acceptors were consumed in the 

sulfate and iron reducing microcosms or formation of methane leveled off in the 

methanogenic microcosms.  Then, the solid phase geochemistry was analyzed, 

microcosms were spiked with PCE or TCE, and monitored for abiotic and microbial 

transformation.  Experiments with PCE were done for all microcosm conditions; 

experiments with TCE were done for selected conditions (Table 4.1).  Sediments 

from one microcosm (DP-SR-pH 8.2) were imaged by scanning electron microscopy 

(SEM) to visualize the morphology and surface conditions of biogenic minerals.  

The images (Figure D1), show rod-shaped bacteria (Figure D1(a) and (b)) and nano- 

to micrometer scale crystalline precipitates (Figure D1(b)) that could be FeS, Fe3S4, 

and/or FeS2.  Additional details on microcosm setup and analytical techniques are 

given in the Supporting Information.  A summary of all experimental conditions and 

their abbreviations is given in Table D1 in the Supporting Information.  As an 

example, the abbreviation “DP-Meth-pH 8.2-TCE” is used hereafter for Duck Pond 

sediments preincubated under methanogenic conditions at pH 8.2 and spiked with 

TCE. 
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4.3. Results and Discussion 

4.3.1. Equilibrium among the Aqueous, Solid, and Gas Phases in Microcosms 

        Microcosms contained three phases: gas, aqueous, and solid.  

Concentrations discussed below and used in calculations (“total concentrations”) are 

equal to the sum of the aqueous, solid, and gas phase masses divided by the aqueous 

volume.  Kinetic parameters were calculated assuming rapid equilibrium of PCE or 

TCE among the phases relative to kinetic transformation, and kinetic transformation 

in the aqueous phase only; the approach is described in the Supporting Information.      

  

4.3.2. Relative Importance of Abiotic and Microbial Reductive Dechlorination 

    Normalized concentrations of PCE and TCE versus time have been plotted for all 

the microcosm conditions (Figure 4.1) and time courses for representative 

microcosms, which also show normalized concentrations of detected reaction 

products, were also plotted (Figure 4.2).  Normalized concentrations for 

antibiotic/heat killed microcosms along with their live counterparts prepared under the 

same conditions, as well as time courses for all live AAFB microcosms, are shown in 

the Supporting Information (Figures D2 and D3, respectively).  Evidence from these 

figures indicates that in most cases, reductive dechlorination of PCE and TCE in the 

microcosms took place primarily by microbial transformation by indigenous 

dechlorinating bacteria rather than abiotic transformation by reactive minerals.  This 

evidence includes: (1) slow rates and a small extent of PCE transformation in killed 

microcosms compared to the amended and unamended microcosms prepared under 

the same conditions (Figure D2 in Appendix); (2) a lag time followed by a rapid 

pseudo-zero-order (i.e., straight line or constant slope) disappearance of PCE or TCE 

that is characteristic of microbial transformations, rather than an initial 
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pseudo-first-order reaction characteristic of abiotic reactions (Figures 4.1, 4.2, D2, 

and D3); (3) near quantitative accumulation of PCE and TCE hydrogenolysis products, 

such as TCE (for PCE), cis 1,2-DCE, and VC, for all microcosms where there was 

significant transformation of PCE or TCE (Figure 4.2) (two possible exceptions to 

this trend, AAFB-12-SR-pH 7.2-PCE and AAFB-14-SR-pH 7.2-PCE, are discussed 

further below); and (4) the rapid transformation of PCE or TCE after the initial lag 

period, compared to the relatively slow abiotic transformation of these compounds.  

For instance, using previously reported mass-normalized rate constants for PCE and 

TCE transformation by FeS that were corrected for partitioning among the gas, 

aqueous, and solid phases (D5 in Appendix D, Table D4), we estimated that the half 

lives for PCE or TCE transformation by the FeS present in our microcosms would be 

900-5,000 days (PCE) or 500-1,000 days (TCE) at the highest FeS mass loading 

(approx. 0.9 g/L) and a median fraction organic carbon (foc) value of 0.002 (Table D2).  

(Longer half lives are for pH ≈ 7; shorter half lives are for pH ≈ 8.)  While other 

reactive minerals could have also contributed to abiotic PCE and TCE transformation 

in the microcosms, their mass loadings and reactivity are likely to be at least the same 

order of magnitude as those for FeS, so abiotic reactions alone cannot account for the 

rapid transformation of PCE and TCE following the lag period (Figures 4.1, 4.2, and 

D3).    
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Figure 4.1.  PCE reductive dechlorination in the Duck Pond (DP) (a), Landfill (L) 
(b), and Altus AFB (AAFB) (c) microcosms and TCE reductive dechlorination in 
selected DP and L microcosms (d), under iron reducing (IR), sulfate reducing (SR), 
and methanogenic (Meth) conditions.  Data points are averages of samples from 
duplicate or triplicate microcosms.   
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Figure 4.2. Normalized concentrations of PCE (a-d), TCE (e-f), and reaction products 
in representative microcosms.  Reactants and products were normalized by dividing 
the concentration at any time by the concentration of the reactant at time zero.  The 
insets show reaction products with low concentrations.  Error bars are standard 
deviations of triplicate microcosms.  To better show the data points, parts of the error 
bars were cut off in the insets for (a) and (e).  In the inset for (e), the symbols for 
1,1-DCE (closed hexagons) are partially covered with ethylene (open circles) and 
acetylene (open triangles). 
 
 

To quantify the extent of microbial and abiotic PCE and TCE transformation, we 

calculated product recoveries for both processes by dividing the summed total 

concentrations of abiotic or microbial dechlorination products at the last sampling 

time (see Table 4.1, column 2) by the initial total concentration of PCE or TCE, and 
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multiplying by 100 % (Lee and Batchelor, 2002a).  Calculation details are in the 

Supporting Information and abiotic and microbial product recoveries are reported in 

Table 4.1.  While product recoveries are not constant with time, their calculation 

allows comparison of the relative importance of abiotic versus microbial PCE and 

TCE transformation among microcosms sampled at approximately the same time.  

For some live AAFB microcosms, we were not able to distinguish whether the 

ethylene detected in the microcosms came from microbial hydrogenolysis of VC or 

from abiotic hydrogenation of acetylene (e.g., ref. (Jeong et al., 2007)); in these cases, 

product recoveries were not calculated.  Details are in the Supporting Information. 

 Table 4.1 shows that abiotic product recoveries were never significantly higher 

than 1 %.  Considering only live microcosms, there were two conditions where the 

abiotic product recovery exceeded the microbial product recovery, one for PCE 

transformation (DP-IR-pH 8.2; Figure 4.2d, Table 4.1), and one for TCE 

transformation (L-IR-pH 8.2; Figure 4.2f, Table 4.1).  For these microcosms, both 

abiotic and microbial transformation were slow (close to 100% of the PCE or TCE 

remained after approximately 100 days (Table 4.1)), but abiotic products accumulated 

to a greater extent than did microbial products, suggesting that abiotic processes could 

be more important for PCE or TCE transformation in subsurface environments under 

conditions where dechlorinating bacteria are not active.  The high pH (8.2) of these 

microcosms may have inhibited the activity of dechlorinating bacteria.  In five other 

live microcosms (DP-Meth-pH 8.2-PCE; L-IR-pH 8.2-PCE; L-SR-pH 7.2-PCE; 

L-SR-pH 8.2-TCE; and L-Meth-pH 8.2-TCE), the abiotic and microbial product 

recoveries were relatively close to each other (within a factor of 10).  Four of these 

five were incubated at pH 8.2, providing additional evidence that, at least in some 

cases, higher pH values may not be optimal for growth of dechlorinating bacteria.  In 



  
 

70

all other samples, microbial product recoveries were much higher than abiotic product 

recoveries.   

 We considered the possibilities that our low abiotic product recoveries could be 

due to microbial transformation of abiotic dechlorination products (e.g., acetylene).  

To test this possibility, we spiked acetylene into the Duck Pond and Landfill 

microcosms at a total concentration of approximately 2 µM, which was close to the 

highest concentration of acetylene observed in our microcosms.  Figure D4 shows 

that acetylene was transformed within approximately 2-4 days in the Duck Pond 

microcosms, but remained essentially constant after more than 40 days in all the 

Landfill microcosms.  We then treated the three Duck Pond microcosms showing the 

fastest acetylene transformation in a boiling water bath for 15 min and respiked them 

with acetylene.  Following this, no acetylene transformation was observed, 

indicating that acetylene transformation was microbial, not abiotic.  Microbial 

fermentation of acetylene has been reported previously (Schink, 1985).  Despite the 

loss of abiotically-generated acetylene via microbial transformation in the Duck Pond 

microcosms, however, there are still several lines of evidence (discussed above) 

indicating the greater involvement of microbial versus abiotic transformation of PCE 

and TCE in the microcosms.  Consumption of acetylene by indigenous 

microorganisms cannot account for the low abiotic product recoveries observed for 

almost every microcosm condition, including the Landfill microcosms, where 

acetylene transformation was not observed (Figure D4). 
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Table 4.1. Summary of results for the microcosm experimentsa  
Time (days) Percent remaining (%) Abiotic product recovery (%) c Microbial product recovery (%) cMicrocosm IDb 
(PCE/TCE) PCE TCE PCE TCE PCE TCE

Unamended Microcosms
DP-U-pH 7.2 107/102 2.26±0.87 94.0±3.9 0 0.1 91 5
L-U-pH 7.2 107/102 90.1±2.0 98.77±0.42 0 0 8 1
AAFB-8-U-pH 7.2 59 0 ―d NCe ― 119 ―
AAFB-9-U-pH 7.2 74 0 ― NC ― 112 ―
AAFB-10-U-pH 7.2 77 0 ― NC ― 123 ―
AAFB-12-U-pH 7.2 75 0 ― NC ― 105 ―
AAFB-14-U-pH 7.2 54 0 ― NC ― 99 ―

Amended Microcosms 
DP-IR-pH 7.2 27 0 ― 1 ― 89 ―
DP-IR-pH 8.2 98/79 104.7±5.7 0.607±0.030 1 0.5 0.5 98
DP-SR-pH 7.2 33 0 ― 0.1 ― 102 ―
DP-SR-pH 8.2 79/31 67.3±1.6 0 0.2 0.1 12 111
DP-Meth-pH 7.2 35 0.88±0.63 ― 0 ― 97 ―
DP-Meth-pH 8.2 96/83 83±12 4.72 0.2 0.5 2 106
L-IR-pH 7.2 98 86±16 ― 1 ― 17 ―
L-IR-pH 8.2 98/102 81.6±8.1 98.4±2.5 1 2 2 0.6
L-SR-pH 7.2 107 72±12 ― 1 ― 8 ―
L-SR-pH 8.2 98/102 85±35 104.8±6.5 1 1 21 1.9
L-Meth-pH 7.2 93 2.9±3.5 ― 0 ― 73 ―
L-Meth-pH 8.2 93/102 1.9±2.3 74.9±19.9 0 1 104 8
AAFB-8-SR-pH 7.2 17 0 ― NC ― 67 ―
AAFB-9-SR-pH 7.2 51 0 ― NC ― 89 ―
AAFB-10-SR-pH 7.2 54 0 ― NC ― 105 ―
AAFB-12-SR-pH 7.2 74 0 ― NC ― NC ―
AAFB-14-SR-pH 7.2 70 0 ― NC ― NC ―

Killed Microcosms 
L-K-Meth-pH 7.2 53 77.9±3.2 ― 0 ― 0 ―
L-K-Meth-pH 8.2 53 87.08±0.14 ― 0 ― 0 ―
AAFB-8-K-U-pH 7.2 154 71.1±4.3 ― 1 ― 7 ―
AAFB-9-K-U-pH 7.2 149 71.2±1.5 ― 1 ― 4 ―
AAFB-10-K-U-pH 7.2 154 64.8±3.9 ― 1 ― 3 ―
AAFB -12-K-U-pH 7.2 155 79.8±17.4 ― 0.5 ― 33 ―
AAFB -14-K-U-pH 7.2 155 77.5±5.8 ― 0.4 ― 6 ―

a Uncertainties are standard deviations of replicate microcosms; b Abbreviations: Duck Pond (DP), Norman Landfill (L), Altus AFB (AAFB), unamended (U), killed with heat-treatment and 
antibiotics (K), iron reduction (IR), sulfate reduction (SR) and methanogenesis (Meth); c See Appendix D for discussion of uncertainties;  d —, samples were not set up under these conditions; 
eNC, not calculated because it was unclear if ethylene came from abiotic or microbial dechlorination. See detailed explanation in Appendix D5.2.
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 Two possible exceptions to the trend of higher microbial versus abiotic product 

recoveries are AAFB-12-SR-pH 7.2-PCE and AAFB-14-SR-pH 7.2-PCE (Table 4.1, 

Figures D3(d) and (e)).  In neither case could we determine if the abundant ethylene 

in these microcosms came from abiotic or microbial processes, or some combination 

of both.  The existence of a lag phase before the onset of pseudo-zero-order PCE 

disappearance (Figures D3(d) and (e)) and the inhibition of PCE disappearance in 

killed controls (Figure D2), however, are consistent with a greater role for microbial 

PCE dechlorination in these microcosms.       

  

4.3.3. Isotope Fractionation during Reductive Dechlorination 

 Stable carbon isotope fractionation is another tool that may provide information 

about the predominant process for PCE or TCE transformation, i.e., abiotic or 

microbial.  Several recent articles describe in detail the principles of isotope analysis 

for environmental applications (Elsner et al., 2005).  While a range of εbulk values 

has been reported for both abiotic and microbial transformation of PCE and TCE, the 

range of reported εbulk values for abiotic PCE transformation in batch systems is 

generally more negative than that for microbial PCE transformation (Bloom et al., 

2000; Slater et al., 2001; Slater et al., 2002; Schuth et al., 2003; Slater et al., 2003; 

Zwank, 2004; Nijenhuis et al., 2005; Cichocka et al., 2007; Lee et al., 2007; Liang et 

al., 2007; Cichocka et al., 2008).  Thus, very large (in magnitude), negative εbulk 

values are suggestive of abiotic PCE transformation while very small (in magnitude), 

negative εbulk values are suggestive of microbial PCE transformation.  The limitation 

of this approach lies in the exceptions; specifically, negative εbulk values that are 

intermediate in magnitude have been reported for both abiotic and microbial PCE 

transformation.  As just one example, an εbulk value of -14.7 ‰ was reported for 
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abiotic transformation of PCE by FeS (Zwank, 2004), while a more negative value of 

-16.7 ‰ was reported for microbial transformation of PCE (Cichocka et al., 2008).  

Thus, intermediate εbulk values such as these are of less value in assessing the 

predominant reaction pathway for PCE transformation (abiotic or microbial), than are 

very large or small (in magnitude) values.  Also, interpretation of εbulk values must 

always be done with caution and in conjunction with other lines of evidence such as 

those described above (e.g., analysis of reaction order and reaction products).  

Finally, εbulk values for abiotic and microbial transformation of TCE are typically 

closer together than are those for PCE (Zwank, 2004; Liang et al., 2007), making 

isotope fractionation less useful for differentiating abiotic and microbial 

transformation of TCE versus PCE.   

 Plots of δ13C versus fraction PCE or TCE remaining (C/C0) for all microcosms 

for which significant PCE or TCE transformation took place are plotted in Figure 4.3.  

εbulk values were calculated using the Rayleigh equation (Mariotti et al., 1981).  For 

PCE, εbulk values for the Duck Pond and all but one AAFB microcosm showed weak 

isotope fractionation (these εbulk values ranged from -0.71 to -3.1 ‰), which is typical 

of microbial reductive dechlorination of PCE (Bloom et al., 2000; Slater et al., 2001; 

Nijenhuis et al., 2005; Cichocka et al., 2007; Liang et al., 2007; Cichocka et al., 2008), 

and therefore consistent with the other evidence for microbial dechlorination 

discussed above.  Significantly stronger isotope fractionation was measured in the 

remaining AAFB microcosm (AAFB-14-SR-pH 7.2-PCE; εbulk = -8.5 ‰) and the 

Landfill microcosms incubated under methanogenic conditions (εbulk = -10.68 and 

-16.78 ‰ for pH 7.2 and 8.2, respectively); thus the isotope data from these 

microcosms is less useful in distinguishing abiotic from microbial dechlorination.  

While the first two of these εbulk values are less negative than previously reported 
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ranges for abiotic PCE dechlorination, and therefore presumably due to microbial 

dechlorination, the third value (for L-Meth-pH 8.2-PCE (εbulk = -16.78 ‰) is close to 

reported values for both microbial PCE transformation (εbulk = -16.7 ‰) (Cichocka et 

al., 2008) and abiotic PCE transformation (εbulk = -14.7 ‰) (Zwank, 2004).  The 

remaining evidence (discussed above) is, however, consistent with microbial 

reductive dechlorination for these microcosms. 

For TCE, εbulk values for Duck Pond microcosms incubated with different 

terminal electron acceptors at pH 8.2 equaled -10.1, -19.4, and -20.9 ‰ for 

methanogenic, sulfate reducing, and iron reducing conditions, respectively.  The first 

of these values is within the range of previously reported values for microbial TCE 

reductive dechlorination (Hunkeler et al., 1999; Sherwood Lollar et al., 1999; Bloom 

et al., 2000; Slater et al., 2001; Zwank, 2004; Lee et al., 2007; Liang et al., 2007).  

The second two are more negative than previously reported εbulk values for microbial 

dechlorination of TCE, but they are close to the value of -18.9 ‰ recently reported by 

Cichocka et al. (Cichocka et al., 2007).  We are reluctant, therefore to interpret these 

second two εbulk values as indicative of abiotic reductive dechlorination of TCE.  In 

addition, the remaining evidence for these microcosms (low abiotic and high biotic 

product recoveries (Table 4.1) and a lag period before the start of TCE degradation 

(Figures 4.1d and 4.2e)) is consistent with microbial and not abiotic reductive 

dechlorination.   
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Figure 4.3. Isotope fractionation of PCE (a) and TCE (b) in the microcosms where 
PCE and TCE were below detection limits at the end of experiment.  The values in 
parentheses are bulk enrichment factors (εbulk values).   Data points are 
experimentally measured values, and lines represent a fit to the Rayleigh model.   
Uncertainties are 95 % confidence intervals.   
 
  

4.3.4. Influence of Geochemical Parameters on Abiotic Reductive Dechlorination.   

While microbial transformation of PCE and TCE was typically faster than 

abiotic transformation in our microcosms, it is possible that abiotic dechlorination 

may ultimately transform more PCE and TCE under certain conditions, for example 

where the activity of dechlorinating bacteria is low (e.g., Figures 4.2a, d, and f), for 

microbial communities that do not completely dechlorinate PCE or TCE, or for soils 

or sediments that are amended to generate significantly higher mass loadings of 

reactive minerals or significantly higher pH values as part of a remediation strategy.  

δ13
C

 (‰
) 

δ13
C

 (‰
) 

(-19.4±2.6 ‰) 
(-20.9±1.3 ‰)
(-10.1±4.7 ‰)

(-2.15±0.59 ‰) 
(-2.78±0.53 ‰) 
(-3.1±1.2 ‰) 
(-10.68±0.93 ‰) 
(-16.78±0.96 ‰) 
(-2.84±0.79 ‰) 
(-2.39±0.53 ‰) 
(-3.00±0.66 ‰) 
(-1.74±0.40 ‰) 
(-8.5±1.3 ‰) 
(-0.710±0.091 ‰) 
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For this reason, we analyzed our kinetic and geochemical data to see if there was a 

relationship between the concentration of one or more geochemical parameters and 

abiotic product recoveries.  Because a number of studies indicate that abiotic 

reductive dechlorination is a surface and not aqueous phase process (Erbs et al., 1999; 

Kenneke and Weber, 2003), we considered only solid-associated geochemical species 

in this analysis.  Geochemical data are reported in Table D2 and illustrated in Figure 

4.4.  The arrows in Figure 4.4 indicate those microcosms where no abiotic PCE or 

TCE reaction products were detected; this occurred under only three conditions 

(L-U-pH 7.2, DP-Meth-pH 7.2, and L-Meth-pH 7.2).  These three conditions were 

either unamended (no electron donors or acceptors added), or amended to produce 

methanogenic conditions (Figure 4.4).   

Table D2 and Figure 4.4 show that such microcosms typically had lower 

concentrations of potentially reactive Fe(II) and S(-II) mineral fractions (presumably 

due to the absence of iron and sulfate reduction that leads to formation of Fe(II) and 

S(-II) minerals) than did microcosms incubated under iron reducing or sulfate 

reducing conditions, suggesting the importance of freshly precipitated Fe(II) and S(-II) 

minerals in abiotic PCE and TCE dechlorination.  It is not possible from Table D2 

and Figure 4.4 to identify which mineral fraction is most reactive with respect to PCE 

and TCE abiotic reductive dechlorination, but Table 4.1 shows similar abiotic product 

recoveries for microcosms incubated under both iron reducing and sulfate reducing 

conditions, indicating that both non-sulfur-bearing and sulfur-bearing Fe(II) mineral 

fractions likely contribute to the slow abiotic reductive dechlorination of PCE and 

TCE observed in most microcosms. 
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Figure 4.4. Geochemical analyses of the microcosms, including FeS (a), weakly 
bound Fe(II) (b), strongly bound Fe(II) (c), chromium extractable sulfur (CrES) (d) 
and TOC (e), under unamended, iron reducing (Fe(III) Red.), sulfate reducing (SO4

2- 
Red.) or methanogenic (Meth) conditions.  Arrows indicate the microcosms where 
neither PCE nor TCE abiotic reductive dechlorination products were detected.  Error 
bars are standard deviations of triplicate samples from the same microcosm.  See the 
Supporting Information for methods used to quantify the geochemical species shown 
in this Figure. 
 

4.4. Environmental Significance 

Abiotic transformation of PCE and TCE in the microcosms was typically much 

slower than microbial reductive dechlorination due to the very slow abiotic 

transformation of PCE and TCE by reactive minerals that were present at 

concentrations typically below 1 g/L.  The microcosms in this study contained 20 g 

wet soil, 100 mL water, and 50 mL headspace.  Assuming a soil water content of 
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15% and a total volume of wet soil plus water equal to 110 mL, this equals a soil mass 

loading of 154 g soil/L.  Increasing the soil mass loading to a value typical of an 

aquifer (e.g., 2,000 g soil/L) would have the effect of both increasing the fraction of 

total PCE or TCE in the sorbed phase and, assuming that the loadings of the soil and 

its reactive mineral components increased proportionally, increasing the mass 

loadings of potentially reactive soil minerals.  These two phenomena would have 

opposite effects on apparent rate constants or half lives for abiotic transformation of 

PCE or TCE by soil minerals.  The effect of increasing soil mass loading on rate 

constants or half lives for microbial PCE or TCE transformation would depend on the 

fraction of dechlorinating bacteria associated with aquifer solids and would likely 

result in a commensurate increase in the rate constant.  Shen and Wilson (2007) 

assessed the relative contributions of abiotic and microbial transformation of TCE in a 

system with a higher mass loading, in which groundwater flowed through laboratory 

columns constructed from OU1 biowall materials (samples AAFB-8, -9, and -10 were 

obtained from the OU1 biowall, see Supporting Information) and concluded that the 

predominant TCE transformation process was abiotic.  Further testing will be needed 

to assess the relative contribution of abiotic and microbial reductive dechlorination 

under field conditions.   

 Bacteria capable of dechlorinating PCE or TCE were present under almost all 

microcosm conditions, and microbial PCE and TCE dechlorination had a typical half 

life (after the lag phase) of 10 days (Table 4.1).  Such half lives are shorter than those 

reported in most studies of abiotic transformation of PCE and TCE by minerals 

(Sivavec and Horney, 1996, 1997; Butler and Hayes, 1999, 2001; Lee and Batchelor, 

2002b, a), even for conditions where mass loadings of reactive minerals were much 

higher than those in the microcosms studied here (Table D2).  From this we conclude 
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that microbial processes have the potential for the most rapid transformation of PCE 

and TCE in the field and should be exploited for this purpose where appropriate.  

Abiotic processes also have the potential to contribute to the transformation of PCE 

and TCE in cases where significantly higher mass loadings of reactive minerals are 

generated in situ as part of a remediation technology or where the activity of 

dechlorinating bacteria is low (e.g., Figures 4.2a, 4.2d and 4.2f).  Abiotic processes 

can also play a significant role in cases where complete microbial degradation of PCE 

or TCE to ethene does not occur (e.g., Figure 4.2b), since mineral-mediated 

dechlorination of cis-DCE and VC to ethane, ethylene, and/or acetylene has been 

shown (Lee and Batchelor, 2002b, a).  Under these conditions, although slow, abiotic 

processes may still contribute to the complete transformation of PCE and TCE to 

benign products at contaminated sites. 
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CHAPTER 5 

Conclusions and Recommendations 

 

5.1. Conclusions 

In this dissertation, isotope fractionation during microbial reductive 

dechlorination of PCE and TCE was investigated in pure cultures, mixed cultures and 

microcosms.  Impacts of microbial community composition and environmental 

factors (e.g., electron donors and pH) on isotope fractionation during PCE and TCE 

reductive dechlorination were evaluated in Chapter 3.  Our major findings are 

summarized as follows: 

1. The three cultures studied, including Sulfurospirillum multivorans, 

Desulfuromonas michiganensis Strain BB1 and Bio-Dechlor INOCULUM (BDI), 

differed in the extents of isotope fractionation during microbial reductive 

dechlorination.  This might be due to their difference in structure of functional 

enzymes, rate-limiting steps before enzymatic reactions or commitment of parent 

substrates to the functional enzymes, which is expressed as ratio between the rates 

of the catalytic step to the rate of substrate-enzyme dissociation step.  In general, 

relatively weaker isotope fractionation (εbulk = -1.33 to -7.12 ‰) was observed 

during PCE transformation than that during TCE reductive dechlorination (εbulk  = 

-4.07 to -15.27 ‰).   

2. Extents of isotope fractionation during microbial reductive dechlorination are 

generally weaker than that during abiotic reductive dechlorination carried out by 

reactive minerals (e.g., iron sulfide (FeS) and green rust), which was expressed as 

less negative εbulk values.   
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3. Microbial reductive dechlorination was dominant in most of the microcosms 

developed with sediments from both uncontaminated and contaminated sites, 

suggesting wide existence of dechlorinating bacteria.  The microcosms prepared 

with the sediment from Duck Pond, Norman, OK, accumulated cis-DCE during 

PCE and TCE reductive dechlorination, while TCE was the major dechlorinated 

product in those prepared with soil from Norman Landfill, OK (Landfill); VC and 

ethylene were the dominant dechlorinated products in the microcosms prepared 

with the sediment obtained from the biowalls in the Altus Air Force Base (AAFB), 

OK.  The general dechlorination rate in the reactive microcosms was: Duck Pond 

> AAFB > Landfill, but varied depending on the pH or alternative electron 

accepting processes (e.g., iron-, sulfate-reduction and methanogenesis) developed 

in the microcosms.     

4. Abiotic reductive dechlorination of PCE and TCE was dominant in the microcosms 

only when very slow or no microbial reductive dechlorination occurred.  Four out 

of five microcosms showing comparable abiotic and biotic transformation was 

prepared under pH 8.2.  This suggests that high pH (8.2) might be unfavorable for 

growth of dechlorinating bacteria. 

5. Different environmental pH values (7.2 and 8.2) did not significantly influence 

isotope fractionation during TCE reductive dechlorination by S. multivorans. 

6. Significantly different product distribution and isotope fractionation was observed 

between two enrichment cultures (DPF and DPH) stimulated from the same source 

but in the presence of different electron donors.  The major findings based on 

analyzing the biochemical, isotopic and phylogenetic properties of the two cultures 

include: 1) environmental factors (e.g., pH and electron donors) do not directly 

influence the significantly different isotope fractionation observed in the two 
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cultures; 2) electron donors might indirectly contribute to the different isotope 

fractionation observed by leading to the changes in microbial community in DPF 

versus DPH over more than four years of incubation; 3) it is possible that different 

dechlorinating bacteria exist in the same site and can be preferentially be 

stimulated in the presence of different environmental conditions (e.g., electron 

donors).     

 

5.2. Recommendations for Practice 

1. Relatively weak isotope fractionation can be used as one line of evidence to 

identify bioremediation of chlorinated solvents (e.g., PCE and TCE) at field sites. 

Other approaches (e.g., identification and isotope analysis of dechlorinated 

products) are also needed to better monitor fate of chlorinated solvents in the field. 

2. Variable extents of isotope fractionation by different dechlorinating bacteria 

suggest that representative enrichment factors should be chosen to avoid 

uncertainties/errors when applying isotope technique to quantitatively monitor 

transformation of chlorinated contaminants at different contaminated sites.   

3. Based on isotope fractionation by dechlorinating bacteria studied so far, generally 

stronger extents of isotope fractionation occur when TCE was the final product 

during PCE reductive dechlorination compared to that when cis-DCE or even 

lower chlorinated products (e.g. VC) were the final product (As shown in Table 

5.1).  However, no such clear trend was observed during microbial TCE reductive 

dechlorination (Table 5.1).  We also observed some exception that relatively 

strong isotope fractionation was observed when ethylene was the final product of 

PCE degradation, e.g. BDI consortium (εbulk = -7.11 ± 0.72 ‰).  However, it is 

difficult to separate different microorganisms and to identify the contributions of 
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individual species during the whole degradation reaction.  Thus, further work 

should be performed to provide more conclusive evidence about the relationship 

between final product(s) and the extents of isotope fractionation, so that final 

products identified during PCE reductive dechlorination might be helpful to narrow 

the range of enrichment factors for quantitatively monitoring fraction of microbial 

reductive dechlorination of PCE in the contaminated sites.   

4. Considering that some factors may indirectly influence isotope fractionation (e.g., 

electron donors as discussed above), a series of microcosms can be developed with 

the materials (e.g., sediment and groundwater) obtained from the field and in the 

presence of different electron donors and/or other amendments (e.g., chlorinated 

compounds as electron acceptors).  These microcosm experiments will provide a 

reasonable range of enrichment factors that are representative of the field site under 

investigation.   

5. For an engineering project to treat a chlorinated solvent contaminated site, it may 

take a long time to perform complete transformation due to the slow transformation 

rates.  Considering the potential changes in microbial community composition 

and the resulting shift in isotope fractionation, it is important to monitor isotope 

fractionation in representative microcosms periodically over time. 

6. Relatively weaker extents of isotope fractionation than that of abiotic reductive 

dechlorination by reactive minerals (e.g., FeS) was observed in our culture and 

microcosm experiments in which microbial reductive dechlorination was dominant.  

In the natural environment, microbial and abiotic reductive dechlorination may be 

significant if the favorable geochemical conditions and dechlorinating bacteria are 

available.  In this case, selection of representative ranges of enrichment factors in 

the field can be achieved by detection of: 1) dechlorinated products (e.g. acetylene 



  
 

84

for abiotic reactions versus hydrogenolysis products for microbial reactions); and 2) 

geochemical conditions (e.g. pH, alternative electron accepting processes, such as 

iron reduction and sulfate reduction), which are likely be unfavorable for microbial 

reductive dechlorination.  If both processes are significant, the enrichment factor 

between the ranges of microbial and abiotic reductive dechlorination will be 

expected.  In this case, further work on microcosms prepared with the local 

sediment and groundwater will be in need to evaluate whether Rayleigh Model still 

works for multiple simultaneous transformation processes and to obtain 

representative enrichment factors if possible.  In addition, two-dimensional 

isotope fractionation can also be used to differentiate different transformation 

pathways since the ratio of enrichment factors of different elements (e.g. εbulk, Cl and 

εbulk, C) are distinct for microbial and abiotic reductive dechlorination.  
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Table 5.1. Summary of stable carbon isotope fractionation during microbial reductive dechlorination of PCE and TCEa 

Bacteria Parent 
Substrate 

Final 
Product εbulk (‰) Reference 

Desulfitobacterium Viet 1 PCE TCE -16.7  (Cichocka et al., 2008) 
Microcosm L-Meth-pH 7.2 PCE TCE -10.68 ± 0.93 (Dong et al., 2009) 
Microcosm L-Meth-pH 8.2 PCE TCE -16.78 ± 0.96 (Dong et al., 2009) 

Sulfurospirillum halorespirans PCE cis-DCE -0.50 ± 0.20 (Cichocka et al., 2007) 

Sulfurospirillum multivorans PCE cis-DCE -0.42 ± 0.08 
-1.33 ± 0.13 

(Nijenhuis et al., 2005; Liang et 
al., 2007) 

Desulfuromonas michiganensis 
Strain BB1 PCE cis-DCE nsb 

-1.39 ± 0. 21 
(Liang et al., 2007; Cichocka et 

al., 2008) 
Geobacter lovleyi Strain SZ PCE cis-DCE ns (Cichocka et al., 2008) 

Desulfitobacterium sp. Strain 
PCE-S PCE cis-DCE -5.18 ± 0.50 (Nijenhuis et al., 2005) 

Microcosm DP-SR-pH-7.2 PCE cis-DCE -2.15 ± 0.59 (Dong et al., 2009) 
Microcosm DP-IR-pH-7.2 PCE cis-DCE -2.78 ± 0.53 (Dong et al., 2009) 

Microcosm DP-Meth-pH 7.2 PCE cis-DCE -3.1 ± 1.2 (Dong et al., 2009) 
BDI consortium PCE ethylene -7.11 ± 0.72 (Liang et al., 2007) 
KB-1 consortium PCE ethylene -2.6 to -5.5 (Slater et al., 2001) 

TP (butyric acid and ethanol)
Consortia PCE ethylene -1.8 to -5.4 (Slater et al., 2001) 

Microcosm AAFB-SR-8-pH 7.2 PCE ethylene -2.84 ± 0.79 (Dong et al., 2009) 
Microcosm AAFB-SR-9-pH 7.2 PCE ethylene -2.39 ± 0.53 (Dong et al., 2009) 

Microcosm AAFB-SR-10-pH 7.2 PCE ethylene -3.00 ± 0.66 (Dong et al., 2009) 
Microcosm AAFB-SR-12-pH 7.2 PCE ethylene -1.74 ± 0.40 (Dong et al., 2009) 
Microcosm AAFB-U-14-pH 7.2 PCE ethylene -0.710 ± 0.091 (Dong et al., 2009) 

Microcosm AAFB-SR-14-pH 7.2 PCE ethylene -8.5 ± 1.3 (Dong et al., 2009) 
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Bacteria Parent 
Substrate 

Final 
Product        εbulk (‰) Reference 

-3.49 ± 0.20 Desulfuromonas michiganensis 
Strain BB1 TCE cis-DCE -4.07 ± 0.48 

(Liang et al., 2007; Cichocka 
et al., 2008) 

Geobacter lovleyi Strain SZ TCE cis-DCE -8.5 ± 0.6 (Cichocka et al., 2008) 
Desulfitobacterium sp. Strain 

PCE-S TCE cis-DCE -12.2 ± 2.2 (Cichocka et al., 2007) 

Sulfurospirillum multivorans TCE cis-DCE -16.4 ± 1.5 
-12.8 ± 1.6 

(Lee et al., 2007; Liang et al., 
2007) 

Sulfurospirillum halorespirans TCE cis-DCE -18.9 ± 0.98 (Cichocka et al., 2007) 
Microcosm DP-Meth-pH-8.2 TCE cis-DCE -10.1 ± 4.7 (Dong et al., 2009) 

Microcosm DP-SR-pH-8.2 TCE cis-DCE -19.4 ± 2.6 (Dong et al., 2009) 
Microcosm DP-IR-pH-8.2 TCE cis-DCE -20.9 ± 1.3 (Dong et al., 2009) 

Dehalococcoides ethenogenes 
Strain 195 TCE ethylene -9.6 ± 0.4 

-13.5 ± 1.8 
(Lee et al., 2007; Cichocka et 

al., 2008) 

ANAS consortium TCE ethylene -16.0 ± 0.6 (Richardson et al., 2002; Lee 
et al., 2007) 

KB-1 consortium TCE ethylene -2.5 to -6.6 
-13.9 to -15.2 

(Bloom et al., 2000; Slater et 
al., 2001) 

Pinellas enrichment TCE NA -7.1 (Sherwood Lollar et al., 
1999) 

a The εbulk listed do not include the values obtained with crude extracts and purified reductive dehalogenase; b ns: fractionation was not 
significant or the observed shift in isotopic signatures was within the instrumental error; cNA: not available.  
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5.3. Recommendations for Future Research 

1. As a highly oxidized compound, PCE is generally reduced by anaerobic bacteria.  

However, in addition to anaerobic reductive dechlorination, lower chlorinated 

ethylenes (e.g., TCE, DCEs and VC) can also be oxidized by aerobic bacteria.  

Oxidation of TCE, DCEs and VC can be carried out by a variety of aerobic 

bacteria capable of oxidizing methane, methanol, ethene, propane, propene, 

aromatic compounds, ammonium and isoprene.  Oxidation of chlorinated 

ethylenes may be catalyzed via cometabolism by non-specific oxygenases and CO2 

can be produced as the final product.  Some anaerobic bacteria can also oxidize 

these compounds when alternative electron accepting processes (e.g., iron 

reduction, sulfate reduction and methanogenesis) occur.  Since some of these 

chlorinated compounds (e.g., TCE, DCEs and VC) are more toxic than PCE and 

they are commonly accumulated during microbial degradation of PCE if 

Dehalococcoides spp. are absent, monitoring their transformation is also important 

at fringe and at the discharge point of chloroethene contaminant plumes.  So far, 

isotope fractionation for bioremediation of these substrates has only been studied 

for anaerobic bacteria.  In order to evaluate the role of oxidation of DCEs and VC, 

studies on product distribution and isotope fractionation during oxidation of lower 

chlorinated contaminants can be set up by using different isolated pure cultures 

(e.g., Mycobacterium aurum and Pseudomonas putida F1) and enrichment cultures.  

Calculated εbulk can be compared with the values obtained from anaerobic 

dechlorinating species.  Comparing these results to their anaerobic counterpart 

will better our understanding about transformation of microbially dechlorinated 

intermediates or products (e.g. DCEs and VC) in different contaminated field sites 

and provide a comprehensive enrichment factor pool for applying isotope 
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technique to monitor their transformation via different pathways (e.g., anaerobic 

and aerobic transformation).   

2. Isotope fractionation during microbial reductive dechlorination has been 

intensively studied in pure cultures, enrichment cultures and microcosms.  

Coexistence of different dechlorinating species has been detected in some 

previously published enrichment cultures.  However, isotope fractionation for the 

systems with multiple dechlorinating bacteria has never been reported.  First, it is 

not known whether competitive, collaborative or independent growth occurs in the 

systems with multiple dechlorinators.  Second, their corresponding relative 

contribution for isotope fractionation in the observed isotope fractionation during 

reductive dechlorination under each condition is unknown.  In order to understand 

the microbial reductive dechlorination and isotope fractionation in the systems with 

multiple dechlorinators, cocultures of different dechlorinating species should be 

developed.  The experiment can be started with the simplified system in which a 

weakly fractionating species (e.g., Sulfurospirillum multivorans, Desulfuromonas 

michiganensis Strain BB1, Sulfurospirillum halorespirans, Geobacter lovleyi 

Strain SZ) and a species with relatively strong fractionation (e.g., 

Desulfitobacterium sp Viet 1, Dehalococcoides ethenogenes Strain 195) are 

cocultured.  In the pure cultures with individual dechlorinators, their normalized 

transformation rates can be measured (in the unit of transformation rates per unit of 

cell).  The enrichment factors for the species are available in the previously 

published studies.  In the coculture, the abundance of either dechlorinator can be 

identified with quantitative-PCR (q-PCR) by using specific primers targeting 

highly variable16S rRNA regions of individual species.  Thus, by multiplying the 

normalized transformation rate, reaction time and abundance of either 
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dechlorinator, it is possible to quantify fraction of the parent substrate that is 

transformed by either species in the coculture.  Therefore, with the measured 

fraction of unreacted parent substrate, calculated relative contribution of each 

species and their enrichment factors, a model can be developed to predict the 

changes of isotope ratio (e.g., δ13C) at different time points.  The predicted δ13C 

can be compared with the measured values to evaluate feasibility of the model.  If 

the measured δ13C values fit those predict by the model, we can apply the model to 

predict the relative contribution of different dechlorinators in a coculture with other 

dechlorinating species.  This work will help us to understand the transformation 

patterns (e.g., competitive, collaborative or independent growth) in the system 

when more than one dechlorinating bacteria are present and their corresponding 

isotope fractionation.  If the work in coculture of two dechlorinators is successful, 

a more complicated system (e.g., cocultures with more than two dechlorinators) 

can be developed.  We hope this work can be eventually applied in more 

complicated reaction systems, such as contaminated field sites.   

3. Microbial reductive dechlorination is catalyzed by reductive dehalogenases, a 

group of functional enzymes that contains cofactors (e.g., cobalamin).  So far, the 

reductive dehalogenase genes have been identified in limited number of 

dechlorinating bacteria that transform chlorinated ethylenes.  Further studies to 

identify this group of enzymes in different dechlorinating bacteria and enzymatic 

characterization (e.g., substrate specificities, enzymatic kinetics, cofactors, 

optimum reaction conditions and isotope fractionation) should be done to help 

understanding their different physiological, biochemical and isotopic properties. 

4. In addition to pH and electron donors studied in this dissertation, other 

environmental factors (e.g., temperature, trace nutrients, bioavailability of parent 
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substrates and concentrations of electron acceptors) are also important for the 

performance of microbial metabolism and isotope fractionation.  These factors 

have been studied on dissimilatory sulfate reduction and toluene degradation.  

However, they have not been evaluated on the dechlorinators that transform 

chlorinated compounds (e.g., chlorinated ethylene, chlorinated ethane or 

polychlorinated biphenyls (PCBs)).  Thus, it will be interesting to compare the 

isotope fractionation of different dechlorinating bacteria in the presence of varied 

environmental factors.   
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APPENDIX A 

Glossary 

1,1-DCE 

AKIE 

BDI 

BESA 

1,1-Dichloroethylene 

Apparent kinetic isotope effect 

Bio-Dechlor Inoculum 

2-bromo-ethanesulfonate 

cis-DCE cis-1,2-dichloroethylene 

CI 

DCEs 

Confidence interval 

Dichloroethylene isomers 

DNAPL 

DP 

Dense non-aqueous phase liquid 

Duck Pond, Norman, OK 

GC-FID 

GC-IRMS 

HEPES 

 

KIE 

Gas chromatography-flame ionization detector 

Gas chromatography-isotope ratio mass spectrometer

N-(2-hydroxyethyl)-piperazine-N’-3-propanesulfonic 

acid 

Kinetic isotope effect 

MCLs Maximum contaminant levels 

MNA Monitored natural attenuation  

NOM Natural organic matter 

PCE Tetrachloroethylene 

PCR Polymerase chain reaction 

PRB Permeable reactive barrier 

Rdhs Reductive dehalogenases 

RFLP 

TAPS 

Restriction fragment length polymorphism 

[(2-Hydroxy-1,1-bis(hydroxymethyl)ethyl)amino]-1-

propanesulfonic acid (TAPS). 

TCE 

TOC 

Trichloroethylene 

Total organic carbon 

trans-DCE trans-1,2-dichloroethylene 
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USEPA US Environmental Protection Agency 

USGS US Geological Survey 

VC Vinyl chloride 
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APPENDIX B 

Supporting Information for Chapter 2 

This appendix is the supporting information related to chapter 2, including 

additional data analysis and figures. 

 
B1. Example Calculation of AKIE  

In order to calculate AKIE, Eq. 2.1 was used.  Hydrogenolysis is the typical 

pathway for microbial reductive dechlorination (Gossett and Zinder, 1997) and it is 

consistent to the observed sequentially dechlorinated intermediates/products in our 

study, so it is the only pathway considered.  For PCE, x=2 and z=2, since both C 

atoms are identical chemically and therefore have equal potential for bond cleavage. 

For TCE, x=1 and z=1, since the lengths and therefore strengths of the C-Cl bonds 

vary with C position (Riehl et al., 1994; Yokoyama et al., 1995), and thus the two C 

atoms have different potentials for cleavage.   

Take isotope fractionation of BB1 as an example, its εbulk for PCE and TCE 

calculated with the Eq. 1.1 to 1.3 are -1.39 ± 0.21 and -4.07 ± 0.48 ‰, respectively.  

Therefore, by using Eq. 2.1, AKIE for PCE reductive dechlorination by this species 

(AKIEPCE, BB1) is calculated as: 

00278.1
))21000/()39.1(22(1

1
))1000/((1

1
1, =

×−××+
=

×××+
=

xnz
AKIE

bulk
BBPCE ε

 

    By using the same method, AKIETCE, BB1 is equal to 1.0082 assuming x=1 and 

z=1 as discussed as above.     

The uncertainties for εbulk are expressed as 95 % confidence interval (CI).  CI 

for AKIE was calculated by using propagation of error considerations shown in the 

equation as follows: 
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                    22)
)(
)((

bulk
CIAKIECI

bulk
AKIE εε∂

∂
=                 (A2.1) 

where CIAKIE and CIεbulk are confidence intervals for AKIE and εbulk, respectively.  

Based on Eq. 2.1, the differentiation of AKIE with respect to εbulk can be expressed as: 

                       2)500(
500

)(
)(

bulkbulk

AKIE
εε +

−
=

∂
∂                 (A2.2) 

    Thus, the values of CIAKIE for PCE and TCE reductive dechlorination by BB1 are 

0.00043 and 0.0010, respectively. 

 

B2. Example Calculation of P 

Partitioning Factor (P) was calculated using Eq. 2.2.  Assuming cobalamin 

(Vitamin B12) is the cofactor of functional enzymes catalyzing microbial reductive 

dechlorination (Krasotkina et al., 2001; Neumann et al., 2002; Maillard et al., 2003), 

the fractionation factors for cobalamin can be designated as )(kinα , which is equal to 

1.0132±0.0015 (for PCE, ),( PCEkinα ) or 1.0154±0.0021 (for TCE, ),( TCEkinα ) (Cichocka 

et al., 2007).  The fractionation factors for certain dechlorinating bacteria with PCE 

or TCE as the parent substrate are designated as )1(α .   

Ninety-five percent confidence interval of P (CIP) can be calculated using the 

equation as follows: 

            22

)1(

22

)(
1

)()( αα αα
CIPCIPCI

kin
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P ∂
∂

+
∂

∂
=            (A2.3) 

where 
)( kin

CIα  and 
)1(αCI  indicate the 95 % confidence interval of )(kinα  and )1(α , 

respectively; 
)(kin

P
α∂
∂  and 

)1(α∂
∂P  are the partial derivatives of P with respect to 
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)(kinα  and )1(α , respectively.  Based on Eq. 2.2, 
)(kin

P
α∂
∂  and 

)1(α∂
∂P  can be 

expressed as: 

                  
1

1

)1()( −
=
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∂
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Substituting Eq. A2.3 with Eq. A2.4 and A2.5, the CIP can be expressed as: 
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During PCE reductive dechlorination by BB1, the εbulk is -1.39±0.21 ‰, so its 

calculated fractionation factor ( 1,BBPCEα ) is 1.00139±0.00021‰ (Eq. 2.3).  Thus, the 

value of P for BB1 during PCE reductive dechlorination (PPCE, BB1) can be calculated 

as:  

5.8
100139.1

00139.10132.1
11,
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The 95 % confidence interval for PPCE, BB1 (CIPCE, BB1) is calculated using Eq. 

A2.6.   
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Sample 1: ε bulk= - 7.09 ±0.51 
Sample 2: εbulk = - 7.14 ± 0.86 
εbulk (pooled data)= - 7. 12±0.72 

 

Figure B1.  Duplicate experiments showing isotope fractionation for the reductive 
dechlorination of PCE by BDI.  Each experiment was done with a separate 
microcosm under identical conditions.  ε (pooled data) was calculated by nonlinear 
regression using pooled data from both microcosms. 
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 ....|....|....|....| ....|....| ....|....| ....|....|  

10          20          30          40           50    
D. hafniense St TCE  
D. hafniense St Y51 
D. restrictus 
D. sp. PCE-S 
D. sp. CR1 
D. hafniense DC 
G. lovleyi SZ 
S. halorespirans 
S. multivorans 
D. sp. SNR-PCE* 
D. sp. SFR-cis-DCE* 
D. ethenogenes* 
D. ethenogenes 
D. sp. KBC1 
C. bifermentans 

-----MGEIN RRNFLKVSIL GAAAAAVASA SAVKGMVSPL VADAADIVAP  
-----MGEIN RRNFLKVSIL GAAAAAVASA SAVKGMVSPL VADAADIVAP  
-----MGEIN RRNFLKASML GAAAAAVASA SAVKGMVSPL VADAADIVAP  
-----MGEIN RRNFLKASML GAAAAAVASA SVVKGVVSPL VADAADIVAP  
-----MGEIN RRNFLKASML GAAAAAVAPA PAVKGTVSPL VAEAADIVAP  
----MKMNLD RRSFLKASLV SVAAVAAASA AAAKETFAPL TAEAAEIIAP  
--------MD RRDFFRMAAL TSVVAGAAVI SSPQKSSARL VLS-------  
MEKKKKPELS RRDFGKLIIG AGAAATIAPF GVPGANAAEK EKNAAEIRQQ  
MEKKKKPELS RRDFGKLIIG GGAAATIAPF GVPGANAAEK EKNAAEIRQQ  
MSEKYHSTVT RRDFMKR--L GLAGAGAGAL GAAVLAENNL PHEFKDVDDL  
MSEKYHSTVT RRDFMKR--L GLAGAGAGAL GAAVLAENNL PHEFKDVDDL  
MSEKYHSTVT RRDFMKR--L GLAGAGAGAL GAAVLAENNL PHEFKDVDDL  
-MLNFHSTLT RKDFLKG--- ------IGMA GAGLGAASAV APMFHDLDEL  
MDREKENTLD QKEEKRSVGI SRRNFFKASG IAAGVAALGL VTKSQPVYAG  
---------- ---------- ---------- -------MNR KVLALVIPAL 
 

  
....|....|....|....| ....|....| ....|....| ....|....|  

60          70          80          90          100    
D. hafniense St TCE  
D. hafniense St Y51 
D. restrictus 
D. sp. PCE-S 
D. sp. CR1 
D. hafniense DC 
G. lovleyi SZ 
S. halorespirans 
S. multivorans 
D. sp. SNR-PCE* 
D. sp. SFR-cis-DCE* 
D. ethenogenes* 
D. ethenogenes 
D. sp. KBC1 
C. bifermentans 

ITETSEFPYK VDAKYQRYNS LKNFFEKTFD PEANKTPIKF HYDDVSKITG  
ITETSEFPYK VDAKYQRYNS LKNFFEKTFD PEANKTPIKF HYDDVSKITG  
ITETSEFPYK VDAKYQRYNS LKNFFEKTFD PEANKTPIKF HYDDVSKITG  
ITETSEFPYK VDAKYQRYNS LKNFFEKTFD PEENKTPIKF HYDDVSKITG  
ITETSEFPYK VDAKYQRYNC LNNFFEKACD PEANKTPIKF HYDDVSKITG  
IRETAEFPYQ VDPKYQRLPA EKLAYLRMFD PEENKGPIKF HFDDVSKITG  
-KEQDEFPYE ISSDFKGMPQ TNCIFCRVFS ---------- ----------  
FAMTAGSPII VNDKLERYAQ VRTAFTHPTS ---------- ----------  
FAMTAGSPII VNDKLERYAE VRTAFTHPTS ---------- ----------  
LSAGKALEGD HANK-VNNHP WWVTTRDHED PTCNIDWSLI KRYSGWNNQG  
LSAGKALEGD HANK-VNNHP WWVTTRDHED PTCNIDWSLI KRYSGWNNQG  
LSAGKALEGD HANK-VNNHP WWVTTRDHED PTCNIDWSLI KRYSGWNNQG  
VASTP----- ----STRNLP WFVKEREHGD PTTPIDWDMI QRR-------  
QESESAIVNF AVQEVDQSPY NLPPFANAEN ---------- ----------  
LAAGAAHAAE VYNKDGNKLD LYG------- ---------- ---------- 
 
  

 ....|....|....|....| ....|....| ....|....| ....|....|  
110         120          130         140         150    

D. hafniense St TCE  
D. hafniense St Y51 
D. restrictus 
D. sp. PCE-S 
D. sp. CR1 
D. hafniense DC 
G. lovleyi SZ 
S. halorespirans 
S. multivorans 
D. sp. SNR-PCE* 
D. sp. SFR-cis-DCE* 
D. ethenogenes* 
D. ethenogenes 
D. sp. KBC1 
C. bifermentans 

KKDTGKDLPT LNAERLGIKG RPATHTETSI LFHTQHLGAM LTQRHNETGW  
KKDTGKDLPT LNAERLGIKG RPATHTETSI LFHTQHLGAM LTQRHNETGW  
KKDTGKDLPT LNAERLGIKG RPATHTETSI LFQTQHLGAM LTQRHNETGW  
KKDTGKDLPM LNAERLGIKG RPATHTETSI LFHTQHLGAM LTQRHNETGW  
KKDTGKDLPT LNAERLGIKG RPATHAETGV LFYTQHIGAM LTQRHNETGW  
KKDTGKDLPL LNAESLGIKG RPATLSETGA IFFSHHDGSV LPLREKEMGW  
------DKDA VVDEYVQKTY GLTKIDQMGA MLASSKDGFV HPEQHGEPGF  
---------- --------MF KPNYKGEVKH WFLSSCDEKV RQIENGENGP  
---------- --------FF KPNYKGEVKP WFLSAYDEKV RQIENGENGP  
AYFLPEDYLS PTYTGRRHTI VDSKLEIELQ GKKYRDSAFI KSGIDWMKEN  
AYFLPEDYLS PTYTGRRHTI VDSKLEIELQ GKKYRDSAFI KSGIDWMKEN  
AYFLPEDYLS PTYTGRRHTI VDSKLEIELQ GKKYRDSAFI KSGIDWMKEN  
----PYTWVR MDPTLPVYDN LKSIGAPVSR WLDWEDKKAE DEILYAKARE  
-----LKRYE LGKNAFYSKE LSMDKFGGNP WHIEAEKYIV KFIKEGVPGY  
---------- --KVDGLHYF SDDANSDGDQ TYMRMGFKGE TQVNDMITGY 
 
 

 
 

....|....|....|....| ....|....| ....|....| ....|....|  
160         170         180         190          200    

D. hafniense St TCE  
D. hafniense St Y51 
D. restrictus 
D. sp. PCE-S 
D. sp. CR1 
D. hafniense DC 
G. lovleyi SZ 
S. halorespirans 
S. multivorans 
D. sp. SNR-PCE* 
D. sp. SFR-cis-DCE* 
D. ethenogenes* 
D. ethenogenes 
D. sp. KBC1 
C. bifermentans 

TGLDEALNAG AWAVEFDYSG FNATGGGPGS VIPLYPINPM TNEIAN-EPV  
TGLDEALNAG AWAVEFDYSG FNATGGGPGS VIPLYPINPM TNEIAN-EPV  
TGLDEALNAG AWAVEFDYSG FNAAGGGPGS VIPLYPINPM TNEIAN-EPV  
TGLDEALNAG AWAVEFDYSG FNAAGGGPGS AIPLYPINPM TNEIAN-EPV  
TGLDEALNAG AWAVEFDYSG FNAAGGGPGS VITPYPINPM TNEIAN-EPV  
RALDMALVVA SWSVEYHYNG FTAPGSGPGG VIAHYPFNPM TNETGT-EPV  
TAVDKALELA GWATNDEFSP YAEFGRR-NS LIGTHIVNPV TGKIAKDKPV  
KMKAKNVGEA RAGRALEAAG WTLDXNFGGS FGSYYPN--- -------RFS  
KMKAKNVGEA RAGRALEAAG WTLDINYG-- --NIYPN--- -------RFF  
IDPDYDPGEL GYGDRREDAL IYAATNGSHN CWENPLYGRY EGSRPYLSMR  
IDPDYDPGEL GYGDRREDAL IYAATNGSHN CWENPLYGRY EGSRPYLSMR  
IDPDYDPGEL GYGDRREDAL IYAATNGSHN CWENPLYGRY EGSRPYLSMR  
DFPGWEPGLD GFGDIRTTAL THASEMFSFG NFPTRMNLGG NMVDLVAAVR  
SLMDNAFYDA AWASYKGTPL FSWEPLG--- ---------- ----------  
GQWEYQVQAN GTEGDKGDSW TRLAFAG--- ---------- ---------- 
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 ....|....|....|....| ....|....| ....|....| ....|....|  
210        220          230          240         250    

D. hafniense St TCE  
D. hafniense St Y51 
D. restrictus 
D. sp. PCE-S 
D. sp. CR1 
D. hafniense DC 
G. lovleyi SZ 
S. halorespirans 
S. multivorans 
D. sp. SNR-PCE* 
D. sp. SFR-cis-DCE* 
D. ethenogenes* 
D. ethenogenes 
D. sp. KBC1 
C. bifermentans 

MVPGLYNWDN IDVESVRQQG Q-QWKFE--- -SKEEASKIV KKATRLLGAD  
MVPGLYNWDN IDVESVRQQG Q-QWKFE--- -SKEEASKIV KKATRLLGAD  
MVPGLYNWDN IDVESVRQQG Q-QWKFE--- -SKEEASKMV KKATRLLGAD  
MVPGLYNWDN IDVESVRQQG Q-QWKFE--- -SKEEASKIL KKATRLLGAD  
MVPGLYNWDN SDVEGVRQQG Q-QWKFK--- -SKEEASKMV KKAACFLGAD  
FLAGMYSWDN TKARERREQG R-QWKFE--- -SVEEASRIV KKAARFLGAD  
FVPGLHTWDN SRAEYEIKRG DGRYQFK--- -DKQEATDRI KRACRYLGAD  
MLWSGETMLN TQMWATVGLD RRPPDTT--- -DPVELTNYV KFAARMAGAD  
MLWSGETMTN TQLWAPVGLD RRPPDTT--- -DPVELTNYV KFAARMAGAD  
TMNGINGLHE FGHADIKTTN YPKWEG---- -TPEENLLIM RTAARYFGAS  
TMNGINGLHE FGHADIKTTN YPKWEG---- -TPEENLLIM RTAARYFGAS  
TMNGINGLHE FGHADIKTTN YPKWEG---- -TPEENLLIM RTAARYFGAS  
AAGGYLGSTD SYAGPKMVHT PEEMGGTKYQ GTPEDNLRTL KAGIRYFGGE  
---------- -VSNIKRAET VGKWEAT--- --PEQNNRYI KKVANEYGSG  
-KVGDYGSFD YGRNYGVMYD VEGWTDM--- -LPEFGGDSY TKADNFMTGR 
 
 

 ....|....|....|....| ....|....| ....|....| ....|....|  
260        270          280         290          300   

D. hafniense St TCE  
D. hafniense St Y51 
D. restrictus 
D. sp. PCE-S 
D. sp. CR1 
D. hafniense DC 
G. lovleyi SZ 
S. halorespirans 
S. multivorans 
D. sp. SNR-PCE* 
D. sp. SFR-cis-DCE* 
D. ethenogenes* 
D. ethenogenes 
D. sp. KBC1 
C. bifermentans 

LVGIAPYD-- ERWTYSTWGR KIYKPCKMP- ---------- NGRTKYLPWD  
LVGIAPYD-- ERWTYSTWGR KIYKPCKMP- ---------- NGRTKYLPWD  
LVGIAPYD-- ERWTYSTWGR KILKPCKMP- ---------- NGRTKYLPWD  
LVGIAPYD-- ERWTYSTWGR KIQKPCKMP- ---------- NGRTKYLPWD  
XAGIAPYD-- ERWTYSTWGR KIQKPFKMP- ---------- NGRTKLMPWD  
MAGIAPYD-- DRWTFSTWCR PNLKPFKLP- ---------- NGRTEYFPTD  
LVGVTSFERA QKWVYTNWLD RHPMKNTVP- ---------- DGTVKMMTYD  
LVGVARLN-- RNWVYS---- -----GAVT- ---------- IPD----EQS  
LVGVARLN-- RNWVYS---- -----EAVT- ---------- IPADVPYEQS  
SVGAIKITDN VKKIFYAKAQ PFCLGPWYT- ITNMAEYIEY PVPVDNYAIP  
SVGAIKITDN VKKIFYAKAQ PFCLGPWYT- ITNMAEYIEY PVPVDNYAIP  
SVGAIKITDN VKKIFYAKVQ PFCLGPWYT- ITNMAEYIEY PVPVDNYAIP  
DVGALELDDK LKKLIFTVDQ YGKALEFGD- ---------- ----------  
DTGVAVLNEQ WFLSQDEKGK PYVFSTEHS- ---------- ----------  
ANGVATYRNT DFFGLVDGLN VALQYQGAN- ---------- ---------- 
 
 

  
....|....|....|....| ....|....| ....|....| ....|....|  

310        320          330         340          350    
D. hafniense St TCE  
D. hafniense St Y51 
D. restrictus 
D. sp. PCE-S 
D. sp. CR1 
D. hafniense DC 
G. lovleyi SZ 
S. halorespirans 
S. multivorans 
D. sp. SNR-PCE* 
D. sp. SFR-cis-DCE* 
D. ethenogenes* 
D. ethenogenes 
D. sp. KBC1 
C. bifermentans 

LPKMLSGGGV EVFGHAKFEP DWEKYAGFKP KSVIVFVLEE DYEAIRTSPS  
LPKMLSGGGV EVFGHAKFEP DWEKYAGFKP KSVIVFVLEE DYEAIRTSPS  
LPKMLSGGGV EVFGHAKFEP DWEKYAGFKP KSVIVFVLEE DYEAIRTSPS  
LPKMLSGGGV EVFGHAKFEP DWEKYAGFKP KSVIVFVLEE DYEAIRTSPS  
LPKILSGGGV EVFGHAKFEP DWEKYAGFKP KSVIVFVLKE DYEAIRTSPS  
PFKLMKG-EV EVYGSTSVEA DWEKYAGFTP KSVIAMTFEM DYEAYRTAPS  
AMEAQKGNCI SAG-YGVSPP DFRAESGFEP KSVITLAWAM DYDAMKTAPS  
WHKEIEKPIV FKDVPLPIET DDELIIPNTC DNVIVSGIAM NREMLQTAPT  
LHKEIEKPIV FKDVPLPIET DDELIIPNTC ENVIVAGIAM NREMMQTAPN  
IVFEDIPADQ GHYSYKRFGG DDKIAVPNAL DNIFTYTIML PEKRFKYAHS  
IVFEDIPADQ GHYSYKRFGG DDKIAVPNAL DNIFTYTIML PEKRFKYAHS  
IVFEDIPADQ GHYSYKRFGG DDKIAVPNAL DNIFTYTIML PEKRFKYAHS  
---------- ---VEECIET PKQVTIPNKC KYIFLWTMRQ PYEWTRRQSG  
---------- -----KPTIT EEAYYIPKTM NRVIVMLAPM NPNMLKYAPT  
---------- ---------- ENQSPEQEGT NNGGDDRNMK NSNGDGFGIS 
  
 

 ....|....|....|....| ....|....| ....|....| ....|....|  
360        370          380         390          400    

D. hafniense St TCE  
D. hafniense St Y51 
D. restrictus 
D. sp. PCE-S 
D. sp. CR1 
D. hafniense DC 
G. lovleyi SZ 
S. halorespirans 
S. multivorans 
D. sp. SNR-PCE* 
D. sp. SFR-cis-DCE* 
D. ethenogenes* 
D. ethenogenes 
D. sp. KBC1 
C. bifermentans 

VISSATVGKS YSNMAEVAYK IAVFLRKLGY YAAPC-GNDT GISVPMAVQA  
VISSATVGKS YSNMAEVAYK IAVFLRKLGY YAAPC-GNDT GISVPMAVQA  
VISSATVGKS YSNMAEVAYK IAVFLRKLGY YAAPC-GNDT GLSVPMAVQA  
VISSATVGKS YSNMAEVAYK IAVFLRKLGY YAAPC-GNDT GISVPMAVQA  
VISGAATGKS YSNLAEVAYK IAVFLRKLGY YAAAC-GNDT GLNVPMAVQA  
VLQGAAPGKS YSNMGEVAYK VASFLREIGY NAVPS-GNDT GMSVPIAVQA  
LVAGAAAGEG YSRLAEISYK VSTFLRRLGI KCAPC-GNDT AASIPIAIES  
SMACATVAFC YSRMGVFDMW LCQFIRYMGY YAIPC-CNTV GQSVALAVEA  
SMACATTAFC YSRMCMFDMW LCQFIRYMGY YAIPS-CNGV GQSVAFAVEA  
IPMDPCSCIA YPLFTEVEAR IQQFIAGLGY NSMGGGVEAW GPGSAFGNLS  
IPMDPCSCIA YPLFTEVEAR IQQFIAGLGY NSMGGGVEAW GPGSAFGNLS  
IPMDPCSCIA YPLFTEVEAR IQQFIAGLGY NSMGGGVEAW GPGSAFGNLS  
RFEGAATETS YERAYNTKAH FQDFVRGLGY QMISAGNNSL SPAGAWAVLG  
TLSEATVGTE YSQMAESAGK MAEFIRGLGY NAIPMGNDAS -LSVPIAIDA  
STYDLGMGVS FGAAYTSSDR TNEQVNDS-- TAGGDKADAW TVGLKYDANN 
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 ....|....|....|....| ....|....| ....|....| ....|....|  
410        420          430         440          450    

D. hafniense St TCE  
D. hafniense St Y51 
D. restrictus 
D. sp. PCE-S 
D. sp. CR1 
D. hafniense DC 
G. lovleyi SZ 
S. halorespirans 
S. multivorans 
D. sp. SNR-PCE* 
D. sp. SFR-cis-DCE* 
D. ethenogenes* 
D. ethenogenes 
D. sp. KBC1 
C. bifermentans 

GLGEAGRNGL LITQKFGPRH R-IAKVYTDL ELAPDKPR-K FGVREFCRLC  
GLGEAGRNGL LITQKFGPRH R-IAKVYTDL ELAPDKPR-K FGVREFCRLC  
GLGEAGRNGL LITQKFGPRH R-IAKVYTDL ELAPDKPR-K FGVREFCRLC  
GLGEAGRNGL LITQKFGPRH R-IAKVYTDL ELAPDKPR-K FGVREFCRLC  
GLGEAGRNGL LITQKFGPRH R-IAKVYTDL ELAPDKPR-K FGVREFCRLC  
GLGEAGRSGQ LITQKYGPRV R-IAKVYTDL ELVPDKPI-N IGAREFCRLC  
GMGEGSRMGM LITEKYGPRV R-LAKIFTDI ELVPDKPR-T FGVKDFCKNC  
GLGQASRMGA CITPEFGPNV R-LTKVFTNM PLVPDKPI-D FGVTEFCETC  
GLGQASRMGA CITPEFGPNV R-LTKVFTNM PLVPDKPI-D FGVTEFCETC  
GLGEQSRVSS TIEPRYGSNT KGSLRMLTDL PLAPTKPI-D AGIREFCKTC  
GLGEQSRVSS TIEPRYGSNT KGSLRMLTDL PLAPTKPI-D AGIREFCKTC  
GLGEQSRVSS IIEPRYGSNT KGSLRMLTDL PLAPTKPI-D AGIREFCKTC  
GLGELSRASY VNHPLYGITV RVTWGFLTDM PLPPSRPI-D FGARKFCETC  
GLGELGRHGL LVHPEYGSSV R-ISKVLTDL PIAPDKPI-S FGAAEFCRTC  
IYLATMYSET RNMTPYGGSN G------SDN TIANKTQN-F EVTAQYQFDF 
 
 

 ....|....|....|....| ....|....| ....|....| ....|....|  
460        470          480         490          500    

D. hafniense St TCE  
D. hafniense St Y51 
D. restrictus 
D. sp. PCE-S 
D. sp. CR1 
D. hafniense DC 
G. lovleyi SZ 
S. halorespirans 
S. multivorans 
D. sp. SNR-PCE* 
D. sp. SFR-cis-DCE* 
D. ethenogenes* 
D. ethenogenes 
D. sp. KBC1 
C. bifermentans 

KKCADACPAQ AISHEKDPKV LQ---PEDCE V-----AENP YTEKWHLDSN  
KKCADACPAQ AISHEKDPKV LQ---PEDCE V-----AENP YTEKWHLDSN  
KKCADACPAQ AISHEKDPKV LQ---PEDCE V-----AENP YTEKWHLDSN  
KKCADACPAQ AISHEKDPKV LQ---PEDCE A-----SENP YTEKWHVDSE  
KKCADACPAQ AISHEKDPKV LQ---PEDCE V-----AENP YTEKWHLDSN  
LKCADVCPAQ AISHVKDPWV LQ---PEDCT P-----SENP YTEKWQFDSQ  
MKCADACPAK AISKDPAQVY KV---GQETS VGKINKSHLA GVEHYYVNAE  
KKCARECPSK AITEGPRTFE GR---SIHNQ S--------- GKLQWQNDHS  
KKCARECPSK AITEGPRTFE GR---SIHNQ S--------- GKLQWQNDYN  
GICAEHCPTQ AISHEGPRYD SP---HWDCV S--------- GYEGWHLDYH  
GICAEHCPTQ AISHEGPRYD SP---HWDCV S--------- GYEGWHLDYH  
GICAEHCPTQ AISHEGPRYD SP---HWDCV S--------- GYEGWHLDYH  
GICAENCPFG AINPGEPTWK DDNAFGNP-- ---------- GFLGWRCDYT  
MKCAEACPSE SISKDKDPSD KVACASNNP- ---------- GMKKWYVNTW  
GLRPEVSFLM SKGKDLGVNG SD-------- ---------- ---------- 
 
 

 ....|....|....|....| ....|....| ....|....| ....|....|  
510        520          530         540          550    

D. hafniense St TCE  
D. hafniense St Y51 
D. restrictus 
D. sp. PCE-S 
D. sp. CR1 
D. hafniense DC 
G. lovleyi SZ 
S. halorespirans 
S. multivorans 
D. sp. SNR-PCE* 
D. sp. SFR-cis-DCE* 
D. ethenogenes* 
D. ethenogenes 
D. sp. KBC1 
C. bifermentans 

RCGSFWAYNG SPCSNCVAVC SWN--KVETW NHD-VARIAT QIPLLQDAAR  
RCGSFWAYNG SPCSNCVAVC SWN--KVETW NHD-VARVAT QIPLLQDAAR  
RCGSFWAYNG SPCANCVAVC SWN--KVETW NHD-VARIAT QIPLLQDAAR  
RCGSFWAYNG SPCSNCVAVC SWN--KVETW NHD-VARVAT QIPLLQDAAR  
RCGSFWAYNG GPCNNCVAVC SYN--KVETW NHD-VARVAT QIPLLQDAAR  
RCLSFFAYNG GDCGSCIAVC SWN--KIDAW QHD-VARIAT QIPLVQDAAR  
RCFGYWVATG TTCGTCVAVC PYN--KIDEW HHD-LTKIAT LTPFKP-LLR  
KCLDYWPESG GNCGTCFAVC PFT--KGNIW IHDGVEWLID NTRFLDPLML  
KCLGYWPESG GYCGVCVAVC PFT--KGNIW IHDGVEWLID NTRFLDPLML  
KCTN------ --CTICEAVC PFFTMSNNSW VHNLVKSTVA TTPVFNGFFK  
KCTN------ --CTICEAVC PFFTMSNNSW VHNLVKSTVA TTPVFNGFFK  
KCIN------ --CTICEAVC PFFTMSNNSW VHNLVKSTVA TTPVFNGFFK  
KCPH------ --CPICQGTC PFN-SHPGSF IHDVVKGTVS TTPIFNSFFK  
TCLNQWVENG GGCNICLSAC PYN--KPKTW IHDVVKGVSA KTTVFNSTFA  
---------- ---------- ---------- -GDQDLVKYA SVGATYYFNK 
 
 

 ....|....|....|....| ....|....| ....|....| ....|....|  
560        570          580         590          600    

D. hafniense St TCE  
D. hafniense St Y51 
D. restrictus 
D. sp. PCE-S 
D. sp. CR1 
D. hafniense DC 
G. lovleyi SZ 
S. halorespirans 
S. multivorans 
D. sp. SNR-PCE* 
D. sp. SFR-cis-DCE* 
D. ethenogenes* 
D. ethenogenes 
D. sp. KBC1 
C. bifermentans 

KFDEWFGYNG PVNPDERLES GYVQN-MVKD FWNNPESIKQ ------ 
KFDEWFGYNG PVNPDERLES GYVQN-MVKD FWNNPESIKQ ------ 
KFDEWFGYNG PVNPDERLES GYVQN-MVKD FWNNPESIKQ ------ 
KFDEWFGYSG PVNPDERLES GYVQN-MVKD FWNNPESIKQ ------ 
KFDEWFGYNG PVNPEERLES GYVQN-MVTD FWNNPESIKQ ------ 
KFDEWFGYNG PVNPEERIES GYIAN-MVKD FWKDTEPTK- ------ 
HLDELFGYGG PLD-KTRSKS KWFKD-AVAD FWNKA----- ------ 
GMDDALGYGA KRNITEIWDG KINTYGLDAD HFRDTVSFRK DRVKKS 
GMDDALGYGA KRNITEVWDG KINTYGLDAD HFRDTVSFRK DRVKKS 
NMEEAFGYGP RYSPSRDEWW ASENPIRGAS VDIF------ ------ 
NMEEAFGYGP RYSPSRDEWW ASENPIRGAS VDIF------ ------ 
NMEGAFGYGP RYSPSRDEWW ASENPIRGAS VDIF------ ------ 
NMEKTFKYGR KNPATWWDEV DDYPYGVDTS Y--------- ------ 
TLDDALGYGT HDKNPKEFWD SDKNVPKWW- ---------- ------ 
NFSTYVDYKI NLLDEDKNFY SQKRHLYR-- ---------- ------ 
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Figure B2. Alignment of amino acid sequences of different PCE and TCE reductive 
dehalogenases.  This figure is modified from that created by Holliger (Holliger et al., 
2003).  The TCE reductive dehalogenases (TceA) are marked with * on the name of 
the species in which they are identified.  The black boxes indicate conserved amino 
acids involved in all the consensus sequence; grey boxes amino acid conserved in 
consensus sequence motifs, including iron-sulfur cluster binding motifs.  Alignment 
was performed with Clustal W. (Thompson et al., 1997).  D. hafniense St TCE: 
Desulfitobacterium hafniense TCE1 (CAD28792); D. hafniense St Y51: 
Desulfitobacterium hafniense Y51 (BAC00915) (Suyama et al., 2002a); D. restrictus: 
Dehalobacter restrictus (CAD28790); D sp. PCE-S: Desulfitobacterium sp. PCE-S 
(AAO60102) (Miller et al., 1998); D. sp. CR1: Desulfitobacterium sp. CR1 
(BAF57046 ); D. sp. DCB: Desulfitobacterium hafniense DCB-2 (YP_002457196); G. 
lovleyi SZ: Geobacter lovleyi SZ (YP_001953103); S. halorespirans: Sulfurospirillum 
halorespirans (AAG46194); S. multivorans: Sulfurospirillum multivorans 
(AAC60788) (Neumann et al., 1998); D. sp. SNR-PCE: Dehalococcoides sp. 
SNR-PCE (ABB89707) (Krajmalnik-Brown et al., 2007); D. sp. SFR-cis-DCE: 
Dehalococcoides sp. SFR-cis-DCE (ABB89705) (Krajmalnik-Brown et al., 2007); D. 
ethenogenes: Dehalococcoides ethenogenes 195 (YP_180831, NC_002936) 
(Magnuson et al., 2000; Seshadri et al., 2005b); D. sp. KBC1: Desulfitobacterium sp. 
KBC1 (BAE45338) (Tsukagoshi et al., 2006); C. bifermentans: Clostridium 
bifermentans (CAC37919) (Okeke et al., 2001).  Here, the codes in parentheses are 
accession numbers of genes in GenBank database.   
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APPENDIX C 

Supporting Information for Chapter 3 

This appendix is the supporting information related to chapter 3, including 

additional figures. 
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Figure C1. PCE reductive dechlorination by DPF and DPH before DPF lost its 
capacity to transform TCE to cis-DCE.  PCE was dissolved in heptamethylnonane 
before spiked into the cultures (7 mL culture in 25 mL serum bottles) and the final 
concentration of PCE was about 25 μmoles/bottle.  Error bars indicate standard 
deviation of triplicate samples. 
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Figure C2. TCE degradation (a) and isotope fractionation (b) by Sulfurospirillum 
multivorans at pH 7.2 versus 8.2. The error bars indicated standard deviation of 
triplicate microcosms.  The uncertainties for enrichment factors indicate 95 % 
confidence intervals calculated from non-linear regression.  The solid line and dash 
line in (b) indicate Rayleigh Model fit for isotope fractionation of TCE reductive 
dechlorination at pH 7.2 and 8.2, respectively.  The initial concentrations of TCE 
range from 74.3 to 109.4 μM.  
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Figure C3. PCE reductive dechlorination by DPH in the presence (open symbols) and 
in the absence (closed symbols) of BESA.  The error bars are standard deviation of 
duplicate samples.  In this experiment, PCE was added as from concentrated stock 
solution prepared in heptamethylnonane and the initial concentration of PCE ranges 
from 19.4 to 20.1 μmoles/bottle.   
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APPENDIX D 

Supporting Information for Chapter 4 

This appendix is the supporting information related to chapter 4, including 

experimental setup, analytical methods, and additional data. 

 

D1.  Sources of Chemical Reagents 

The following chemicals were obtained from Sigma-Aldrich (St. Louis, MO): 

PCE (99%), TCE (99.5%), cis-1,2-dichlorethylene (cis-DCE),  

trans-1,2-dichlorethylene (trans-DCE), 1,1-dichlorethylene (1,1-DCE),  

N-(2-hydroxyethyl)-piperazine-N’-3-propanesulfonic acid (HEPES), and 

[(2-Hydroxy-1,1-bis(hydroxymethyl)ethyl)amino]-1-propanesulfonic acid (TAPS).  

Ethylene (1026 ppm in N2), acetylene (1001 ppm in N2), and vinyl chloride (VC) 

(1019 ppm in N2) were obtained from Scott Specialty Gases (Houston, TX).  Other 

chemicals were purchased from Fisher Scientific (Pittsburgh, PA).  All aqueous 

solutions were prepared with nanopure water (18.0 MΩ cm resistivity, Barnstead 

Ultrapure Water System, IA). 

 

D2.  Sampling Locations 

Norman Landfill (L) soil samples were obtained from approximately 2 m 

below the ground surface near the No. 35 multilevel well (Cozzarelli et al., 2000) 

using a Geoprobe® (Geoprobe Systems, KS) and ground water was obtained 

approximately 3.5 m below the ground surface from the same well using a peristaltic 

pump.  Duck Pond (DP) sediments were taken from the top 3-8 cm of the near shore 

sediment with a sterile spatula.  Duck Pond water was collected in autoclaved 2L 

Pyrex® medium bottles at the sediment sampling site.  Altus AFB (AAFB) biowall 
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samples were obtained using a Simco earthprobe® (Simco Drilling Equipment Inc. IA) 

from 3.5-6.2 m deep and approximately 1.5 m south of Well MP 1 (microcosms 

AAFB-8, AAFB-9 and AAFB-10) inside the biowall in the OU1 area (see map in (Lu 

et al., 2008)) and from 2.7-5.0 m deep and about 0.9 m east of Well BB04 inside the 

biowall downgradient of Building 506 in the SS-17 area (microcosms AAFB-12 and 

AAFB-14) (see map of the area around building 506 in ref. (Kennedy et al., 2006b)).  

In order to prevent oxidation and loss of fine particles during the sampling process, 

biowall samples were frozen in-situ with liquid nitrogen injected into the ground via a 

steel tube, extracted from the ground frozen, and then stored on dry ice in a cooler 

until transport to the laboratory.  Ground water at AAFB was pumped from 4.6 m 

below the ground surface from Wells MP1 and BB05W.  All solid and liquid 

samples were flushed with sterile N2/CO2 and stored in the dark at 4 °C before use.   

 

D3.  Microcosm Setup 

After preparation, microcosms were sealed with sterilized thick butyl rubber 

stoppers and aluminum crimp seals, removed from the anaerobic chamber and flushed 

with sterile cotton filtered N2.  Microcosms (except unamended ones) were 

preincubated until the desired terminal electron accepting process was established.  

We determined this by monitoring Fe(II) (aq), sulfate, and methane, for iron reducing 

(IR), sulfate reducing (SR), and methanogenic (Meth) conditions, respectively.  

During preincubation, microcosms were stored upside down at room temperature in 

the dark.  A summary of the microcosm conditions set up and the abbreviations used 

to describe them is given in Table D1. 

After preincubation, some microcosms were killed by placement in a boiling 

water bath for 15 minutes a total of three times at three day intervals.  Then, 100 
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μg/mL of the wide spectrum antibiotics kanamycin and chloramphenicol were added 

to completely inhibit microbial metabolism (Wu et al., 2000).  Both sulfate reduction 

and methane production were inhibited in the killed microcosms for up to 155 days.   

After preincubation, and, in some cases, heat/antibiotic treatment, butyl rubber 

septa were replaced with autoclaved Teflon-lined butyl rubber septa (West 

Pharmaceutical Services, Kearney, NE) inside the anaerobic chamber.  Ten milliliters 

of saturated PCE or TCE stock solution were then spiked into the microcosms to yield 

total concentration (mass in the aqueous plus gas phases divided by aqueous volume) 

of 24-103 μM (PCE) or 92-130 μM (TCE) in standards containing no solid phase.  

At the same time, an additional 5 mM of electron donor was spiked into the 

microcosms to support microbial reductive dechlorination.  After preincubation with 

electron donors and acceptors (or without preincubation for unamended microcosms), 

one microcosm for each condition was sacrificed for geochemical analysis using 

techniques summarized below, and the results are summarized in Table D2.  Each 

geochemical parameter was measured in duplicate.  Dissolved Fe(II), sulfate, and 

methane were also measured to determine whether the desired redox conditions had 

been established.   

All amended microcosms were prepared in triplicate, and unamended and 

killed microcosms were prepared in duplicate.  Except if noted otherwise, reported 

concentrations, percent remaining values, and product recoveries are means of values 

measured in replicate microcosms; uncertainties are standard deviations of the mean.   

  

D4. Analytical Techniques 

Concentrations of PCE, TCE, cis-DCE, trans 1,2-dichloroethylene 

(trans-DCE), 1,1-dichloroethylene (1,1-DCE), VC, ethylene, acetylene, and methane 
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in the microcosms were quantified by gas chromatography (GC) with headspace 

analysis using methods given in Liang et al. (Liang et al., 2007).  No ethane was 

detected in the microcosms.  Carbon isotope ratios were measured against a CO2 

standard with aqueous samples using an O.I. Analytical - Model 4560 purge and trap 

system interfaced with a Varian 3410 GC with Finnigan MAT 252 mass spectrometer. 

Approximately 15 % of samples were run in duplicate and the typical standard 

deviation for δ13C values from duplicate measurements was 0.2-0.3 ‰ or better 

(Liang et al., 2007).  Isotope analysis was also performed for two samples among 

duplicate or triplicate microcosms.  The results were then combined to calculate εbulk 

values. εbulk values did not differ significantly between replicate microcosms. 

Sulfate was quantified using a Dionex ion chromatograph (IC) with an Ion Pac 

AG 11 guard column (4 × 50 mm) and an Ion Pac AS 11 anion analytical column (4 × 

250 mm), coupled with an ED 50 conductivity detector.  Solid phase S(-II) was 

measured using a method adapted from Ulrich et al. (Ulrich et al., 1997) and 

described in Shao and Butler (Shao and Butler, 2007).  FeS was assumed to be equal 

to the molar concentration of solid phase S(-II), measured as cited above.  After S(-II) 

measurement, the remaining solid was reduced by 1 M Cr(II)-HCl solution for 72 hrs 

to quantify Cr(II) reducible or Cr(II) extractable sulfur (CrES), which includes S(0), 

polysulfides, and pyrite (Canfield et al., 1986; Huerta-Diaz et al., 1993).   

Ferrous iron species were measured by ferrozine assay as described in Lovely 

and Phillips (Lovley and Phillips, 1987).  For soluble Fe(II), the supernatant of the 

centrifuged solid/water slurry was acidified with anaerobic 0.5 N HCl at a 1:1 volume 

ratio prior to Fe(II) measurement.  Sequential extractions were then performed to 

quantify different Fe(II) species in the solid phase (Heron et al., 1994).  Five 

milliliters of solid/water slurry was collected and extracted with 1 M MgCl2 for 5 
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hours to quantify weakly bound Fe(II) (Gibbs, 1973; Tessier et al., 1979). Extraction 

with 0.5 N HCl was used to quantify total solid phase Fe(II), including FeS and 

non-sulfur Fe(II) (Lovley and Phillips, 1987).  Non-sulfur solid phase Fe(II) species 

are referred to as “surface associated Fe(II)”.  Strongly bound  Fe(II) was calculated 

by subtracting weakly bound Fe(II) from surface associated Fe(II) (Shao and Butler, 

2007).  Total organic carbon (TOC) in the solid phase was measured with a 

TOC-5000 analyzer (Shimadzu Corp.) with a solid-sample module (SSM-5050) 

following the protocols provided by the manufacturer.   

To assess the effect of heat treatment on abiotic mineral species that could 

potentially react with PCE and TCE, the solid phase mineral fractions described above 

were analyzed for two microcosm conditions (DP-IR-pH 8.2 and AAFB-8-SR-pH 7.2) 

before and after heat treatment by boiling water bath for 20 minutes.  While heat 

treatment did not significantly affect the concentration of FeS, strongly bound Fe(II), 

or CrES (as evidenced by overlapping 95% confidence intervals for the concentration 

of these species before and after heat treatment), it did significantly lower the 

concentration of weakly bound Fe(II) in the one microcosm (DP-IR-pH 8.2) for which 

this species was above detection limits (Table D3).  Specifically, for DP-IR-pH 8.2, 

weakly bound Fe(II) decreased by 37% upon heat treatment.  While we considered 

the possibility that this decrease in weakly bound Fe(II) in the killed microcosms 

could cause us to underestimate the abiotic contribution to PCE or TCE reductive 

dechlorination, our conclusions about the relative importance of abiotic and microbial 

reductive dechlorination are in fact based on several lines of evidence—mainly 

analysis of reaction kinetics and product recoveries in live microcosms.  Thus, the 

37% decrease in weakly bound Fe(II) upon heat treatment in one representative 

microcosm (Table D3) does not change our overall conclusions. 
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For certain microcosms, we identified the more abundant minerals in the solid 

phase after preincubation by X-ray diffraction (XRD) using a Rigaku DMAX® X-ray 

Diffractometer (Table D2).  Solid/liquid samples were centrifuged at an RCF of 1260 

× g for 10 min and the solid was then freeze-dried under vacuum.  Transfer to and 

from the freeze dryer was done in a glass tube with a custom vacuum valve to prevent 

exposure to the air.  Freeze dried samples were then placed in the XRD sample 

holder inside the anaerobic chamber and mixed with petroleum jelly to retard the 

diffusion of oxygen to the sample.  Quartz was the major mineral identified by XRD 

in the Landfill and Duck Pond solids and the two solid samples from AAFB that were 

analyzed (AAFB-12-SR-pH 7.2 and AAFB-14-SR-pH 7.2).  We used the Hanawalt 

search/match method (Jenkins and Snyder 1996) to identify minor mineral species by 

XRD.  First, the peaks associated with quartz were eliminated from the sample 

pattern. Then the d-spacing value of the strongest peak in the remaining pattern was 

compared to the d-spacing values of the strongest peaks for iron minerals likely to be 

present in the natural environment.  If a match was found, the sample pattern was 

searched for the other representative peaks for that mineral (i.e., the second or third 

strongest peaks). If these additional peaks were matched, then we concluded that that 

mineral was present in our sample.  The whole XRD pattern associated with that 

mineral was then eliminated and the process restarted with the strongest peak in the 

remaining XRD pattern.  If, however, no match was found for the original strongest 

peak not associated with quartz, that peak was ignored and the process restarted with 

the next strongest peak in the sample pattern.  All minor mineral species identified in 

the microcosms using this approach are given in Table D2.  In general, only 

unreactive Fe(III) oxides were identified, with the exception of one microcosm 

(L-SR-pH 8.2), where mackinawite was identified and two microcosms 
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(AAFB-SR-12-pH 7.2 and AAFB-SR-14-pH 7.2) where magnetite was identified.  

As stated in the manuscript, magnetite was added to the biowall area from which the 

solids used to construct these microcosms were obtained.  Other potentially reactive 

minerals were below XRD detection limits.   

 One microcosm (DP-SR-pH 8.2) was analyzed using scanning electron 

microscopy (SEM) with a JEOL JSM-880 High Resolution instrument.  This 

microcosm was chosen because of the high concentration of FeS formed under sulfate 

reducing reactions (Table D2).  The SEM sample was prepared using the method by 

Herbert and coworkers (Herbert et al., 1998) except that ethanol and not acetone was 

used for sample dehydration.   

 

D5. Equilibrium Partitioning among the Gas, Aqueous, and Solid Phases 

D5.1. Calculation of Total Concentrations 

Aqueous concentrations of PCE, TCE, and their dechlorination products (Ci,aq) 

were calculated from measured gas concentrations (Ci,g) using Henry’s Law: 

            
i

gi
aqi H

C
C ,

, =                   (D4.1) 

where Hi is the dimensionless Henry’s Law constant for species i.  Henry’s Law 

constants used in these calculations are given in Table D4.  Total concentrations 

(Ci,T), defined here as the sum of the masses of species i in the gas, aqueous, and solid 

phases, divided by the volume of the aqueous phase, were calculated using the 

approach in (Hwang and Batchelor, 2000):  

   iaqi
aq

g
isiaqiTi FC
V
V

HKCC ,,,, 1 =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++=          (D4.2) 



 141 
 

where Ki,s is the solid-liquid partition coefficient, Vg and Vaq are volumes of the gas 

and aqueous phases (50 and 110 mL, respectively), and the partitioning factor (Fi) is 

defined as ( ))/(1 , aqgisi VVHK ++ .  Ki,s was calculated as follows (Hwang and 

Batchelor, 2000):  

            
aq

s
disi V

mKK ,, =             (D4.3) 

where Ki,d is the solid/water distribution coefficient and ms is the mass of the solid 

phase in the microcosm (20 g).  Ki,d was estimated from the empirical 

relationship ococidi fKK ,, = (Karickhoff et al., 1979), where Ki,oc is the solid phase 

organic matter/water distribution coefficient, and  foc is the weight fraction of organic 

matter in the solid (i.e., TOC, Table D2).  Ki,oc was estimated using two empirical 

equations: (1) for chlorinated aliphatics: 66.057.0 ,, += owioci LogKLogK  

(Schwarzenbach et al., 2003),  where Ki,ow is the published octanol/water partition 

coefficients (Howard and Meylan, 1997; Mackay et al., 2006); (2) for ethylene and 

acetylene: 24.458.0, +−= ioci LogSLogK  (Doucette, 2000), where Si is the aqueous 

solubility in µM, obtained from Howard and Meylan (Howard and Meylan, 1997) and 

Yalkowsky and He (Yalkowsky and He, 2003) (Table D4).  Estimated Ki,oc values 

are given in Table D4.  The Koc value for TCE in Table D4 is significantly higher 

than values measured for AAFB biowall solids (14-21 L/kg) (Shen and Wilson, 2007), 

meaning that we may have overestimated TCE sorption in the AAFB microcosms.  

We used the Koc values in Table D4, however, so that we could do all calculations 

with a self consistent set of Koc values.       
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D5.2. Calculation of Observed Product Recoveries 

Observed abiotic and biotic product recoveries (R) (Table 4.1) were calculated 

by dividing the total concentrations of biotic products (i.e., TCE (for PCE), DCE 

isomers, VC and ethylene) or abiotic products (acetylene, and, except for AAFB 

microcosms, ethylene) by the total concentration of the reactant (PCE or TCE) at time 

zero (Cr,T,0):   

   %100%100(%)
0,,

,

0,,

, ×=×= ∑∑
Tr

paqp

Tr

Tp

C
FC

C
C

R        (D4.4) 

For the live AAFB microcosms, the kinetic data (Figure D3) indicate that, with the 

possible exceptions of AAFB-12-SR-pH 7.2-PCE and AAFB-14-SR-pH 7.2-PCE 

(Figures D3d, and e), the majority of ethylene was produced microbially, as 

evidenced by no co-detection of acetylene, and co-detection with VC.  Therefore, we 

included ethylene in the biotic product recoveries (Table 4.1) for all live AAFB 

microcosms, except AAFB-12-SR-pH 7.2-PCE and AAFB-14-SR-pH 7.2-PCE.  

Because it was unclear if ethylene came from abiotic or microbial dechlorination in 

AAFB-12-SR-pH 7.2-PCE and AAFB-14-SR-pH 7.2-PCE, we calculated neither 

abiotic nor microbial product recoveries for these microcosms (Table 4.1).  

 For AAFB killed microcosms, low concentrations of ethylene were observed 

even when VC was not detected.  Thus, ethylene (and, when detected, acetylene) 

was included in the abiotic product recoveries for killed AAFB microcosms (Table 

4.1).   
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D5.3. Correction of Rate Constants for Partitioning among the Gas, Aqueous, 

and Solid Phases   

Mass normalized rate constants (i.e., rate constants divided by mass loading) 

for PCE or TCE transformation by FeS, adjusted to or measured in a zero-headspace 

system (km), were taken from the literature (Butler and Hayes, 1999, 2001; Zwank, 

2004; Liang et al., 2007).  The mass loadings of FeS in Zwank (Zwank, 2004) were 

estimated from the reported concentrations of reagents used to synthesize the FeS.  

Rate constants for similar pH values were averaged, yielding the following km values 

(Lg-1d-1): PCE at pH 7-7.3: 2.41×10-4; PCE at pH 8-8.3: 1.22×10-3; TCE at pH 7.3: 

7.28×10-4; and TCE at pH 8-8.3: 1.95×10-3.  Then, we used the approach in Hwang 

and Batchelor (Hwang and Batchelor, 2000) to correct rate constants to account for 

partitioning of PCE or TCE among the gas, aqueous, and solid phases (km,corr): 

            
i

m
corrm F

kk =,          (D4.5) 

where Fi is defined after equation C2, and the subscript “i” corresponds to the reactant 

(PCE or TCE).  While Vg and Vaq were the same in all our microcosms, Ki,s was not, 

since foc varied among the microcosms.  Values of km,corr for the case where foc=0, 

and therefore Ki,s is zero are reported in Table D4.  We then multiplied the values in 

Table D4 by the term iaqgi FVVH /))/(1( +  to yield km,corr values appropriate for the 

foc values of each microcosm.  These values of km,corr were used to estimate half lives 

for abiotic PCE and TCE transformation based on FeS mass loadings in the 

microcosms.  These values are discussed in the chapter 3.   
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(a) 

 
(b) 

Figure D1. SEM photomicrographs of sediment from Sample DP-SR-pH 8.2.  Cells 
attached to the surface of the minerals are indicated by arrows.  Crystalline mineral 
precipitates are visible on the right side of panel (b). 
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Figure D2.  PCE reductive dechlorination in the microcosms with (gray symbols) 
and without (black symbols) antibiotic and heat treatments.   
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Figure D3. Normalized concentrations of PCE and reaction products in live AAFB 
microcosms. Reactants and products were normalized by dividing the concentration at 
any time by the concentration of the reactant at time zero.     
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Figure D4. Acetylene transformation in the microcosms.  Error bars are standard 
deviations of the means for duplicate measurements from the same microcosm.   
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Table D1. Summary of microcosm conditions and abbreviations 
Duck Pond Norman Landfill AAFB 8-14a 

Treatment 
Geochemical 
Conditions b 

pH 
PCE TCE PCE TCE PCE 

Unamended — c 7.2 DP-U-pH 7.2-PCE DP-U-pH 7.2-TCE L-U-pH 7.2-PCE L-U-pH 7.2-TCE AAFB-i-U-pH 7.2-PCEd 

7.2 DP-IR-pH 7.2-PCE — L-IR-pH 7.2-PCE — — Iron 
reduction 8.2 DP-IR-pH 8.2-PCE DP-IR-pH 8.2-TCE L-IR-pH 8.2-PCE L-IR-pH 8.2-TCE — 

7.2 DP-SR-pH 7.2-PCE — L-SR-pH 7.2-PCE — AAFB-i-SR-pH 7.2-PCESulfate 
reduction 8.2 DP-SR-pH 8.2-PCE DP-SR-pH 8.2-TCE L-SR-pH 8.2-PCE L-SR-pH 8.2-TCE — 

7.2 DP-Meth-pH 7.2-PCE — L-Meth-pH 7.2-PCE — — 

Amended 

Methano- 
genesis 8.2 DP-Meth-pH 8.2-PCE DP-Meth-pH 8.2-TCE L-Meth-pH 8.2-PCE L-Meth-pH 8.2-TCE — 

7.2 — — — — — Iron 
reduction 8.2 — — — — — 

7.2 — — — — AAFB-i-K-U-pH 7.2-PCESulfate 
reduction 8.2 — — — — — 

7.2 — — L-K-Meth-pH — — 

 
 
 

Killed 

Methano 
-genesis 8.2 — — L-K-Meth-pH — — 

a The values “8-14” in “AAFB 8-14” refer to the five sampling locations at Altus AFB (AAFB), which were AAFB 8, 9, 10, 12, and 14.  b 
acetate, lactate and ethanol were used as the electron donors for iron reducting, sulfate reducing and methanogenic microcosms, respectively.   
c — means that the microcosm was unamended or that no microcosms was prepared for this condition.  d i means 8, 9, 10, 12 or 14, which 
corresponds to AAFB sampling locations 8, 9, 10, 12, or 14.  
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   Table D2. Geochemical properties of microcosms a 
FeS Weakly bound Fe(II) Strongly bound CrES TOCMicrocosm ID 

(g FeS/L) (g Fe/L) (g Fe/L) (g S/L) (g/g solid) 
Iron Minerals 

Detected by XRDb

Unamended Microcosms
DP-U-pH 7.2 (5.10±0.68)×10-2 (2.76±0.23)×10-3 (1.28±0.11)×10-1 (1.23±0.17)×10-1 (9.6±1.7)×10-4 —c 

L-U-pH 7.2 (5.23±0.40)×10-3 (3.3±4.0)×10-4 (1.25±0.10)×10-1 (6.40±0.72)×10-3 (2.6±1.8)×10-4 —
AAFB-8-U-pH 7.2 (1.45±0.15)×10-1 (2.04±0.57)×10-3 (1.49±0.46)×10-1 (8.4±1.1)×10-2 (2.27±0.52)×10-2 —
AAFB-9-U-pH 7.2 (4.66±0.87)×10-2 (4.2±1.9)×10-4 (8.8±5.0)×10-2 (7.5±1.6)×10-2 (2.30±0.68)×10-2 —
AAFB-10-U-pH 7.2 (6.9±3.8)×10-2 (2.42±0.54)×10-3 (1.08±0.66)×10-1 (8.7±2.5)×10-2 (1.9±1.1)×10-2 —
AAFB-12-U-pH 7.2 (2.9±1.5)×10-2 (1.43±0.28)×10-2 (2.3±1.4)×10-1 (1.24±0.27)×10-2 (1.54±0.41)×10-2 —
AAFB-14-U-pH 7.2 (5.95±0.69)×10-2 (1.48±0.34)×10-2 (9.2±3.4)×10-2 (1.27±0.31)×10-2 (1.51±0.15)×10-2 —

Amended Microcosms
DP-SR-pH 7.2 0.385±0.049 (1.325±0.074)×10-3 0.349±0.084 (9.8±1.6)×10-2 (2.58±0.67)×10-3 Ge, Lep, Fer
DP-SR-pH 8.2 0.44±0.14 (5.1±1.8)×10-5 1.31±0.70 1.291±0.065 (1.11±0.28)×10-3 Ge,  Lep
DP-IR-pH 7.2 (1.15±0.19)×10-2 (3.898±0.071)×10-2 0.214±0.038 (3.18±0.49)×10-2 (1.85±0.34)×10-3 Ge
DP-IR-pH 8.2 (7.5±1.1)×10-3 (5.21±0.71)×10-2 0.203±0.042 (3.70±0.30)×10-2 (2.86±0.53)×10-3 Ge, Lep
DP-Meth-pH 7.2 (6.9±2.1)×10-2 (8.2±5.9)×10-4 (8.9±7.2)×10-2 (5.06±0.70)×10-2 (1.8±1.5)×10-3 Ge, Lep, Fer
DP-Meth-pH 8.2 (5.45±0.77)×10-2 (4.7±1.3)×10-4 (6.8±2.3)×10-2 (3.81±0.64 )×10-2 (1.76±0.35)×10-3 Ge
L-SR-pH 7.2 0.223±0.022 (5.68±0.47)×10-3 0.71±0.10 0.431±0.024 (5.8±1.1)×10-4 Ge
L-SR-pH 8.2 0.885±0.028 (1.3355±0.0012)×10-3 1.085±0.036 (7.2±1.6)×10-2 (8.6±2.2)×10-4 Ge, Lep, Fer, Mgh, 
L-IR-pH 7.2 (3.328±0.095)×10-3 (9.5±1.7)×10-3 0.375±0.071 (6.2±2.6)×10-3 (1.32±0.74)×10-4 Lep
L-IR-pH 8.2 (2.63±0.26)×10-3 (3.46±0.12)×10-2 0.158±0.018 (6.22±0.19)×10-3 (3.2±2.2)×10-4 Ge, Lep, Fer
L-Meth-pH 7.2 (1.85±0.13)×10-2 (3.7±2.3)×10-3 (7.9±4.8)×10-2 (1.06±0.31)×10-2 BDLd Ge, Lep
L-Meth-pH 8.2 (1.85±0.14)×10-2 (2.64±0.11)×10-3 (8.94±0.81)×10-2 (9.3±2.3)×10-3 (1.20±0.25)×10-4 Ge, Lep
AAFB-8-SR-pH 7.2 0.170±0.093 BDL 0.132±0.082 (4.65±0.57)×10-2 (5.5±2.2)×10-2 —
AAFB-9-SR-pH 7.2 0.115±0.023 BDL (4.0±1.2)×10-2 (8.22±0.78)×10-2 (3.6±2.2)×10-2 —
AAFB-10-SR-pH 7.2 0.111±0.037 BDL (7.4±2.8)×10-2 (1.08±0.13)×10-1 (2.95±0.41)×10-2 —
AAFB-12-SR-pH 7.2 0.141±0.099 BDL 0.20±0.15 (4.4±1.4)×10-2 (2.3±1.2)×10-2 Mag, Mgh, Aka
AAFB-14-SR-pH 7.2 0.159±0.013 BDL (2.41±0.35)×10-2 (2.07±0.31)×10-2 (1.57±0.40)×10-2 Mag, Mgh, Aka
aAll measurements, except for weakly bound Fe(II), were carried out with freeze dried solids and the results were corrected by water content to yield values 
correct for wet solids.  b Aka: akaganeite, Fer: ferrihydrite, Ge: goethite, Lep: lepidocrocite, Mag: Magnetite, Mgh: maghemite, Mk: mackinawite (Siivola 
and Schmid, 2007); c—, XRD analysis was not performed for this condition.   d BDL, below detection limits of approx. 8×10-6 g/L. Uncertainties are 
standard deviations of triplicate samples from the same microcosm.   
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Table D3. Results of geochemical analyses before and after heat treatment 

DP-IR-pH 8.2 (g/L) AAFB-8-SR-pH 7.2 (g/L)
 Beforea Aftera Beforea Aftera

FeS 0.112±0.014 0.1230±0.0046 0.292±0.046 0.357±0.087
Weakly bound Fe(II) 0.0199±0.0047 0.01253±0.00084 BDLb BDL
Strongly bound Fe(II) 1.72±0.27 1.84±0.16 0.056±0.054 0.076±0.018

CrES 0.114±0.042 0.122±0.014 0.0247±0.0098 0.033±0.012
a Uncertainties are 95% confidence intervals of the mean of triplicate samples from the same microcosm.   
b BDL means below detection limits.  
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Table D4. Physical-chemical and kinetic properties of reactants and products 

 
Hi 

(Dimensionless)a

,b

Ki,ow
a,b Solubility  

(Si, μM) a, c 
Ki,oc (25ºC, L/Kg) 

km,corr (pH~7)
(Lg-1day-1)d 

km,corr (pH~8) 
(Lg-1day-1)d 

PCE 0.75 2.99  231.37 (1.8±1.2) 
4

(9.1±1.6)×10-4 
TCE 0.39 2.67  153.90 (6.2±5.7)×10-4 (1.7±1.9)×10-3 
cis-DCE 0.34 1.86  52.33   
trans-DCE 0.40 2.08  69.62   
1,1-DCE 1.62 2.13  74.83   
VC 5.95 1.53  33.87   
Acetylene 0.93  1.86×107 4.35   
Ethylene 8.93  1.62×106 1.05   

a Howard and Meylan, 1997; b Mackay et al., 2006; c Yalkowsky and He, 2003; d Calculated for the condition where foc=0 
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