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ABSTRACT

The concepts of convex and concave functions are of critical importance in opti-
mization theory. These concepts arise for both functions of real (that is, continuous)
variables and functions of integer variables (that is, discrete) variables, and have been
studied extensively by many researchers. In particular, in both real and integer con-
vexity theory many results on the separation of convex sets and necessary conditions
for an extremum (so-called Fenchel duality results) have been obtained. However, to
the best of our knowledge little or no attention has been given to the study of con-
vexity (and concavity) notions for functions that depend simultaneously on both real
and integer variables, a class of functions that we will call “mixed convex/concave
functions.” In this dissertation we introduce a variety of notions of mixed convexity
(and mixed concavity) for both functions and sets. After introducing these various
notions, we derive some of their elementary properties and then prove separation

and Fenchel duality results for each type of mixed convexity that is introduced.
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CHAPTER 1

INTRODUCTION

1.1 CONVEXITY THEORY

In this section, basic information about three types of convexity, discrete, real and
mixed convexity, is provided along with a discussion of the organization of the dis-

sertation.

1.1.1 REAL (CONTINUOUS) CONVEX ANALYSIS

In real convex analysis, separation theorems for convex-concave functions and convex
sets are well known (see Rockafellar (1970), Stoer-Witzgall (1970), Rockafellar
(1974), Rockafellar-Wets (1998), Borwein and Lewis (2000), and Hiriart-Urruty and
Lemaréchal (2000)). The Legendre-Fenchel duality theorem is another well known
result in real convex analysis (see Stoer-Witzgall (1970) for Fenchel-type duality
theorem and related examples). Separation and Legendre-Fenchel duality theorems
have important applications for optimization problems with real variables. In this
work, we will have a brief review of the separation and Legendre-Fenchel duality
theorems in real convex analysis.

In certain optimization problems the independent variable (or certain coordi-
nates of it) may naturally be restricted to integer values. This has inspired many
researchers to define new notions of discrete and mixed convex-concave functions.
Some of the well known results from real convex analysis, such as the separation and

Legendre-Fenchel duality theorems for real convex-concave functions and convex
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sets, have counterparts in discrete convex analysis for various definitions of discrete

convex functions.

1.1.2 DISCRETE CONVEX ANALYSIS

The theory of the convexity of real valued functions of an integer variable is initi-
ated from real convexity theory, but also relies heavily on combinatorial arguments.
Along with the functions which are real extensible, several definitions of discrete
convex function have been introduced. The classical definition states that a discrete
function of a single variable is convex if its first forward difference is increasing or at
least non-decreasing, as defined by Denardo (1982), Fox (1966) and many others in
the literature. Some of the discrete convex function definitions and their introducers
are; "discretely convex functions" by Miller (1971), "integrally-convex functions" by
Favati and Tardella (1990), "M"-convex functions" by Murota and Shioura (1999),
"Lh-convex functions" by Fujishige and Murota (2000), "L-convex functions" and
"M-convex functions" by Fujishige and Murota (2000), "strongly discrete convex
functions" by Yiiceer (2002), and " D-convex and semistrictly quasi D-convex func-
tions" by Ui (2006). One comprehensive discrete convex function definition, the
notion of D-convex function, was introduced by Ui (2006) , which has a unified form
that includes discretely convex, integrally convex, M convex, M" convex, L convex
and L} convex functions in local settings. An important application of discrete con-
vexity is to solve optimization problems in applied mathematics such as network flow
optimization problems. The three discrete convexity concepts, discrete condense con-
vexity, discrete L-convexity and discrete M-convexity, will play the primary role for
the results of this work. Some of the results in discrete convex analysis, such as
separation and Fenchel-type duality theorems for condense discrete, discrete L and
discrete M convex-concave functions, will be used to derive the main results of this

work.



The separation and Fenchel-type duality theorems for discrete convex functions
were stated and proven in the early 1980’s. These include the discrete separation
theorem by Frank (1982), the Fenchel-type duality theorem for discrete convex func-
tions by Fujishige (1984) , and the separation and Fenchel-type duality theorems for
L/M-convex functions by Murota (1996) .

1.1.3 MIXED CONVEX ANALYSIS

The optimization of discrete and real convex functions’ is an important part of
applied mathematics. The mixed convexity of a mixed function « : Z™ x R™ — R,
a function that is real extensible with integer and real variables was introduced by
Tokgdz, Maalouf and Kumin (2009). Tokgoz et al. also introduced a mixed Hessian
matrix of a mixed convex function with similar préperties to the Hessian matrix of a
C? real convex function. In the literature, there are well known problems that include
both real and integer variables, such as a two parameter design problem associated
with the M/E; /1 Queueing system suggested by Kumin (1973) and a two parameter
design problem associated with the M /M /s Queueing system. Tokgsz, Maalouf and
Kumin (2009) proposed a solution to the convexity and optimization problem of the
two parameter design problem suggested by Kumin (1973) after introducing a mixed
Hessian matrix and showing how it could be used to obtain optimization results.
Tokgoz (2009) defined T, T*, E and E* convex-concave functions by using the
definitions of L, L, M and M" convex (concave) functions, respectively. In addi-
tion, the mixed Hessian matrices corresponding to T, T*, E and E* convex-concave

functions and optimization results are given.



1.2 ORGANIZATION OF THE DISSERTATION

In this work, we examine closely the definition of a real convex-concave function
and important results for real variable functions such as separation and Fenchel-
type duality theorems. The definitions of condense discrete, discrete L and discrete
M convex-concave functions are given along with versions of the separation and
Fenchel-type duality theorems. Tokgoz, Maalouf and Kumin (2009) defined mixed
convexity of a mixed function, introduced a mixed Hessian matrix and proved opti-
mization results regarding to the mixed convex functions specific to each definition.
The results of Tokgéz, Maalouf and Kumin (2009) are related to the convexity and
optimization of mixed functions, and do not include separation or Fenchel duality
results. Considering the condense mixed convex (resp. concave), T, T*, E, and E*
| (resp. concave) functions, the separation and Fenchel-type duality theorems have not
been proposed by any researcher. Therefore, in this work, Fenchel-type duality and
separation theorems are stated and proven by considering the mixed condense, T, T*,
E and E* convex-concave functions. In addition, Ty, T3, £y and E} convex-concave
functions are defined and related Fenchel-type duality and separation theorems are

stated and proven.



CHAPTER 2

REAL CONVEX-CONCAVE FUNCTIONS

In this section we recall the definitions relevant to the separation and Fenchel-type
duality theorems in real convex analysis. The separation and Fenchel-type duality

theorems are stated but not proven.

2.1 REAL CONVEX-CONCAVE FUNCTIONS

The convexity-concavity of real variable functions have been studied extensively by
many researchers. Sufficient conditions for optimality of a real variable function are
strengthened in the presence of convexity-concavity conditions of the function, which
is important in both pure and applied mathematics. In particular, two important
types of results in convexity-concavity of functions with real variables are separation
and Fenchel type duality theorems. In this section we will review the definitions of
real convex and real concave functions and their properties (see Murota (2003) or
Rockafellar (1970) for details).

A set D C R™ is called convex if it satisfies the condition
z,y€D,0<a<l=az+(1—a)y€D.

Definition 2.1 (Convex function): A function f: R®™ — RU{oco} is called a
convex function on a convex set D C R* if and only if for Vz,y € Dand 0 < a <1,
the inequality |

flaz + (1 —a)y) < af(z) + (1 - a)f(y) (2.1)
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holds. f is called strictly convex if the inequality in (2.1) is a strict inequality when
O0<a<l.

Definition 2.2 (Concave function): A function g : R® — R is called a
concave function (resp., strictly concave) if and only if —g is convex (resp., strictly
convex).

If f:R™ — R is a C? function, its Hessian matrix

2

m=[5l...
which is the matrix of second partial derivatives of the C? function f, can determine
the convexity-concavity conditions of f. It is well known in the convexity of real
variable functions that a C? function is convex (resp. concave) if and only if its
corresponding Hessian matrix is positive (resp. negative) semidefinite. Furthermore
[ is strictly convex (resp. concave) if and only if its Hessian matrix is strictly positive
(resp. negative) definite.

Definition 2.3 (Convex and concave conjugate): For a (not necessarily
convex) function f : R* — R U {oo} its convex conjugate f® : R® — RU {co} is
defined by

FR(y) = sup {{y,z) - f(x)}

z€R™

where y € R™ and the inner product {-,-) is the usual Euclidean inner product.

Similarly the concave conjugate of a function g : R® —» RU {~o0} is defined by

9-(y) = inf {(y,2) - g()}.

Note that convex conjugate function is also known as the conver Legendre-Fenchel
transform of the given function, and the transformation ¢ : f +— f™ is called the
convez Legendre-Fenchel transformation.

Throughout this work f™® = (/™) " will mean the convex conjugate of the convex

conjugate of f, which will be called convez biconjugate of f. Similarly ™= = (g':')‘:I
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will mean the concave conjugate of the concave conjugate of g, which will be called
concave biconjugate of g
Definition 2.4 (Effective domain): For an extended real-valued function f :

R™ — RU {00}, the effective domain of f is defined by
Dom (f) ={z € R": ~o0 < f(z) < 00}.

Definition 2.5 (Proper convex function): A convex function is said to be a
proper convex function if it has non-empty effective domain.

Definition 2.6 (Epigraph): The epigraph of a convex function f : R* —
RU {oo}, denoted by EP(f), is the set of points in R” x R lying above the graph
of Y = f(z). That is,

EP(f)={(z,Y) e R"™ :Y > f(z)}.

Remark 2.1: A well known result in real convex analysis is that a function is
convex if and only if its epigraph is a convex set.

Definition 2.7 (Closed convex function-CCF): A function f is called closed
convex if EP(f) is a closed convex set in R™1.

Definition 2.8 (Closed proper convex function): A function f is called
closed proper convex if EP(f) is a closed convex set in R™*! and f has non-empty
effective domain.

Let V C R™ be a non-empty set. Then we set
B/ (z)={y €R": [ly—z|| <e} N AH (V),

where € > 0 and AH(V) is the affine hull of a set V, which is the smallest affine
set (a translation of a linear space) that contains V.
Definition 2.9 (Relative interior): The relative interior of a set V, denoted
by RI (V), is the set
RIV)={zeV:B!l(z)CV}

7



for some € > O.i.e. That is, RI (V) is the set of interior points of V with respect to
the topology induced from AH (V).

Definition 2.10 (Cone, Convex cone): A set S is a cone if it satisfies
z€S, a>0=>azr €S

A set S is a convex cone if it is a cone that is convex. i.e. S is a convex cone if

and only if it satisfies the condition
z,y€ S, a,b>0=ax+by € S.

Definition 2.11 (Convex polyhedron): A convex polyhedron is a convex set
S that can be described by a finite number of linear inequalities as

S = {x eR™: ZCijx(j) <d; fori= 1,...,m}

=1
wherec;; eR,d; €R,(1<i<mand1<j<n)andz = (z(1),...,2(n)).Ifd; =0
for all ¢, then S is a convex cone.

Definition 2.12 (Polyhedral convex function): If the epigraph of a function
f:R® - RU {oo} is a convex polyhedron in R™"*! then f is called a polyhedral
convex function.

Following Murota (2003) , we define the subdifferential as follows:

Definition 2.13 (Subdifferential): The subdifferential of a function f : R* —

R U {oo} at a point z € dom f is defined to be the set
rf(z)={peR": f(y)— f(z) = (p,y—z) Yy € R"},
and the set of minimizers of f, denoted by
argmin f = {z € R : f(y) > f () Vy € R"}.

Note that argmin f is a convex set for a convex function f. Also for a given convex

function f and z in the relative interior of domain of f we have Orf (z) # 0.
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For a function f and a vector p, we denote by f[—p] the function defined by
fl-pl(z)=f(z) - (p,z), (z€R)

2.1.1 SEPARATION AND FENCHEL-TYPE DUALITY THEOREMS
FOR REAL VARIABLE FUNCTIONS

In the real variable convex function case, the known conjugacy theorem is as follows
(Murota (2003), theorem 3.2, pg. 82):

Theorem 2.1 (Convex conjugacy of real variable functions): If f is a
closed proper convex function then f® is also a closed proper convex function and
/™" = f. That is, in the class of all closed proper convex functions, the Legendre—
Fenchel transformation ¢ : f — f® gives a symmetric one-to-one correspondence.

As a consequence of theorem 2.1 and the definition of subdifferential of a function

f, the relationship

p € Orf(z) e z € argmin f[—p]
& ) =(pz) - f(2)
& p € argmin f® [—p)

& z€0Rf"(p)

can be obtained for a closed proper convex function f and vectors z, p € R™.

The following separation theorem for disjoint real convex sets is due to Rockafellar
(1970) (see theorem 11.3 pg. 97).

Theorem 2.2 (Separation for convex sets): If A; and A, are disjoint convex

sets in R™ then there exists a nonzero vector p* such that

inf {(p*,2)} > sup {(p*,7)}.

T€EA] z€A



The following separation theorem for real variable functions is due to Stoer-
Witzgall (1970) (see corollary 5.1.6, pg. 180) where epigraphs of functions are con-
sidered.

Theorem 2.3 (Separation of real variable functions): Let f : R* — RU
{oo} be a proper convex function and g : R* — R U {—o00} be a proper concave

function such that one of the following regularity conditions hold.

RI(Dom(f)) N RI(Dom(g)) # 0. (A-1)

f and g are polyhedral, and Dom (f) N Dom (g) # 0. (A-2)

If f(z) > g(z) for Vx € R™ then 3 /; € R and I, € R” such that the following
inequality holds
F@) > L+ (lo,z) > g(z), VzeR™. (2.2)

Example 2.1: A simple example of a separating hyperplane is h(z,y) = £4+-%—1

for f(z,y) = (z— 1)’ +1y? +1and g(z,9) = — (z — 1)> =42 — 1 as it can be seen

in figure 2.1.

27,
&, -~
BTz rrrarr s 77
CEAAL T T A I PP L IFA
AL LS XX FA IS
R TS

Figuré 2.1. The separating plane in example 2.1

Fenchel duality is the infimum-supremum relationship between a convex function
f and a concave function g and their conjugate functions f® and g, respectively. A
standard version of the Fenchel Duality theorem is presented in Murota (2003) (see

theorem 3.6 pg. 85) and goes as follows:
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Theorem 2.4 (Fenchel-type duality of real variable functions): Let f :
R™ — R U {oo} be a proper convex function and g : R® — R U {—o00} be a proper
concave function such that either (A — 1), (A — 2) or one of the following regularity

conditions hold.

fand — g are CCF, and RI (Dom (f™)) N RI (Dom (¢7)) # 0. (A-3)

f and g are polyhedral, and Dom (f®) N Dom (g7) # 6. (A-4)
Then

Jnf {7(@) —9@)} = sup {g°(w) ~ /()] (2.3)
holds. Moreover, if the obtained common value is finite then the supremum is
attained for some y € Dom (f™) N Dom (¢”) under the assumption of (A —1)
or (A —2) and the infimum is attained by some z € Dom (f) N Dom (g) under the
assumption of (A —3) or (A—4).

Example 2.2: An example of duality is when f(z) = e” for z € R,
(@) = sup{zz, -},
z€R
zylog(z1) — 21 if ;>0
= f%(z1) = 0 if 2, =0
+00 if ;<0

and

™™ (z) = sup {:L'ml -/ (a:l)}

z1ER

= sup {zz; — 1 log (z1) + 71|21 > 0}
1 €ER

= sup {zz; — 712 + €*|z; > 0}
z1€R

= €°.

The Fenchel duality theorem is useful for confirming a minimum or a maximum

that is already given for the difference of the concave and convex functions as above.
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The existence of a dual vector that corresponds to the optimal point in the dual

space can be obtained from the Fenchel duality theorem.
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CHAPTER 3

CONDENSE DISCRETE CONVEX-CONCAVE FUNCTIONS

In this chapter we introduce the concept of a discrete condense convex-concave func-
tion and then state the séparation and Fenchel-type duality theorems for condense
discrete functions defined on Z", which are induced from the well known separation
and Fenchel-type duality theorems in real convex analysis. A subclass of condense
mixed convex-concave function class is introduced following the mixed convexity

definitions of Tokgéz, Maalouf and Kumin (2009).

3.1 CONDENSE DISCRETE CONVEX-CONCAVE FUNCTIONS

Similar to the convexity of the real variable real valued functions, real valued
functions with integer variables have important applications in applied mathe-
matics. Real valued integer variable function optimization results can be obtained
by knowing the corresponding function convexity properties. The classical definition
states that a discrete function of a single variable is discrete convex if its first forward
differences are increasing or at least non-decreasing, as defined by Fox (1966) and
Denardo (1982). The discrete convexity definition introduced by Denardo (1982)
and Fox (1966) is used by many others in the literature such as Favati and Tardella
(1990), Dyer and Proll (1976) , and Weber (1980). The condense discrete convexity
introduced in this section is similar to the discrete convexity defined by Denardo
(1982) and Fox (1966). The definition of condense discrete convex (resp. concave)

function v, : Z" — R U {+oo} requires the assumption of the existence of a real
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convex (resp. concave) function 77 : R® — R U {+oo} which coincides with +, on
the integer lattice.

Definition 3.1 (Condense discrete convex (CDCxz) set): A condense dis-
crete convex (CDCz) set B in Z™ if there exists a convex set B C R™ such that
B=BnZ"

Definition 3.2 (Condense discrete convex (CDCxz) function): A function
v, : Z" — RU{+400} is a (strict) condense discrete convex (C DCxz) function if there
exists a (strict) real convex function 77 : R* — R U {+co} where 7, coincides with
77 on the integer lattice.

Definition 3.3 (Condense discrete concave function (CDCc)): A function
vy 1 Z" — R U {—oo} is condense discrete concave (CDCc) if —v, is a CDCx
function.

Definition 3.4 (Discrete effective domain): The discrete effective domain

of a function v : Z* — R U {£o0} is defined by
Domgn (7) = {z € Z" : —00 < y(z) < +o0}.
Definition 3.5 (Proper CDCx function): A CDCz function v, : Z" —
R U {+o00} is said to be proper if it has non-empty discrete effective domain.
Definition 3.6 (Discrete epigraph): The discrete epigraph of a CDCxz func-
tion 7y, : Z* — RU {400}, denoted by EPy(v,), is the set of points in Z™ x R lying

above the graph of Y = ,(z). That is,
EPym) = {(2,Y) €Z" xR : Y > 7,(2)}.

Note that a CDCz function v, is closed CDC'x since its epigraph EPz(7v,) is a
closed convex set in Z™ x R.

Definition 3.7 (Closed proper CDCz function): A CDCxz function v, is
said to be closed proper CDCx if its convex extension 77 : R* — R U {00} is closed
and proper.

14



Let AHz(V') denote the discrete affine hull of a set V' C Z™, which is the smallest
discrete affine set (a translation of a discrete linear space) that contains V. For z € Z"

set

Ulx)={yeZ:|y-=z|,<1}.

Definition 3.8 (Relative interior of a discrete set): The relative interior of
a discrete set V, RI (co(V)), is the relative interior of the convex hull of V.

Definition 3.9 (Discrete cone): A CDCxz set S C Z™ is a discrete cone if it
satisfies

T€S, a€Z = az €S

Definition 3.10 (CDCx cone): A CDCz set S C Z" is a CDCz cone if and

only if it satisfies the condition
z,y€ S, a,beZt =>ax+by e S.

Definition 3.11 (CDCx polyhedron): A CDCz polyhedron is a CDCx set

S described by a finite number of linear inequalities as
S = {x ez Zcz-jx(j) <d; fori=1, ,n}
=1

where ¢;; € R and d; € R. If d; = 0 for all 4, then S is a CDCx cone.

Definition 3.12 (Polyhedral CDCx function): If the discrete epigraph of a
CDCz function vy, : Z™ — RU {oo} is a discrete convex polyhedron in Z" x R then
it is called polyhedral C DCz function.

The inner product defined on Z" is the inner product induced from R™ for integer

vectors:
(k ko) = ik,
=1
For CDCxz function v, : Z* — R U {400} and CDCe¢c function v, : Z" —

R U {—o0}, the condense discrete versions of the Legendre-Fenchel transformations

15



are defined by

1 (p1) = Ifélzg{(pl,k)—vl(k)} (p1 € RY),

72 (p2) = iof {(p2,k) =7, (k)} (p2€R").

kezr

We denote the discrete convex conjugate of the discrete convex conjugate of a
CDCr function v, by (77)® = 71*. The integer subdifferential of v, at k € domg~,
is defined by

Oz71 (k) = Oy, (k) N zv

The following result for discrete variable real valued functions characterizes the
conjugacy conditions of CDCz functions (see for example Murota (2003) , proposi-
tion 8.11).

Theorem 3.1: For a CDCz function v, and a point kK € Domy, we have
71° (k) = 7, (k) if Oz, (k) # 0.

Proof: For k € Domy, and p € 9zv, (k) we have v} (p) = (p,k) — v, (k).

Therefore
71 (k) = sup {{g.k) = (@} = (k) =71 (p) =7, (k).

On the other hand v}* (k) < «; (k) for any 7, and k.

The relationship between the discrete C DCz and C DC'c Legendre-Fenchel trans-
formations is v (p1) = — (—7v;)" (—p1) , which follows from the corresponding result
for the real variable Legendre-Fenchel transformations.

Next we introduce the separation and Fenchel type duality theorems for condense
discrete convex-concave functions, as well as the separation theorem for condense

discrete convex sets.
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3.1.1 SEPARATION AND FENCHEL - TYPE DUALITY THEOREMS
FOR CONDENSE DISCRETE FUNCTIONS

The following results follow from separation and Fenchel-type duality theorems in
real convex analysis (see Rockafellar (1970)). They will be used to state and prove the
separation and Fenchel-type duality theorems for condense mixed convex functions
in the next section.

Let D1, Dy C Z™ be two non-empty CDCz sets in R™. A real hyperplane H is
said to separate D, and D, in Z™ if D; is contained in one of the discrete half-spaces
associated with H and D, lies in the opposite discrete half-space. A hyperplane H
is said to be a regular separation of D; and D, in Z" if at most one of D; and D,
has non-empty intersection with H. H is a strong separating hyperplane of D; and
D, in Z™ if both D, and D, are disjoint from H.

The following result is due to Rockafellar (1970) (see-corollary 11.4.2 and theorem
11.3) when we restrict R™ into Z".

Corollary 3.1: Let D; and D; be non-empty disjoint CDCz sets in Z". If at
least one set is bounded and RI (co (D;)) N RI (co(Dy)) = @ holds, then there exists
a hyperplane H that separates D, and D, regularly.

The following result is due to Rockafellar (1970) (see corollary 11.4.2 and theorem
11.1) when we restrict R” into Z".

Corollary 3.2: Let D; and D, be two non-empty CDCxzx sets such that at least
one set is bounded in Z". If there exists a hyperplane H separating D; and D,

regularly then there exists a vector d € R™ and a ¢ > 0 such that

inf {{(z1,d)} — sup {{zq,d)} >¢

z1€D1 z2€Ds
holds.
Proof: Assume there exists a hyperplane H separating D; and D, regularly

where at least one of the sets is bounded. Without loss of generality assume DiNH =
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# where D, is bounded. We can choose 8 € R and ¢ > 0 such that

(z1,d) > B+e¢,Vz; € Dy,

(:L'g,d) < 5,V$2 €D2.

Therefore

inf {(z1,d)} > B+ec,

r1€D)

sup (z2,d) < B,
z2€D2

which indicates that

inf {(z1,d)} — sup (z5,d) >¢

z1€D z2€D>

holds for some ¢ > 0.
Under stronger assumptions for the hyperplane considered in corollary 3.2, we
can specify c for a certain class of CDCz sets.
An integer hyperplane is a hyperplane in Z™ of the following form for some fixed
d€eZ"”and B € Z,
H={zeZ": (z,d) = 3}.

An integer hyperplane H is said to separate D; and D, if D, is contained in one
of the discrete half-spaces associated with H and D, lies in the opposite discrete
half space. An integer hyperplane H is said to be a regular separation of D; and
D, if at most one of D; and D, has non-empty intersection with H. H is a strong
separating integer hyperplane of D; and D, if both D; and D, are disjoint from H.

Corollary 3.3: Let D; and D; be two non-empty CDCx sets in Z™ that have
a regular separating integer hyperplane H. Then there exists a vector d € Z™ such
that

inf {(o,d)} = sup {{z,d)} > 1. (3.1)

zoE€D9
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Proof: Let D; and D, be non-empty CDCz sets in Z™ that are separated by an
integer hyperplane H and associated discrete half spaces containing D; and D, can

be expressed by

H = {seZ': (z,d =},

D, c {z1:(x1,d) > B},
and

Dy C {z3 : (z2,d) < B}

for some d # 0 and S. Since H is a regular separating hyperplane, D; and D, are
not both contained in H. Therefore, (z,,d) > § for every z; € Dy, and (z3,d) < 8
for every x, € Dy with strict inequality for either every z; € D; or every z, € Ds.
Suppose without loss of generality the strict inequality holds for all z; € D;. Note

that
[(z1,d) — B[ > 1

since (z1,d) — [ is a positive integer. Therefore we have

inf {(z1,d)} > B+1,

r1€D,
sup {(z2,d)} < B,
x9€Doy
inf {(z1,d)} — sup {(z2,d)} > 1,
r1€Dy 29€Ds

which completes the proof.

The following separation theorem follow from corollary 3.2 and the corresponding
theorems in real convex analysis (Rockafellar (1970)) where discrete epigraphs are
considered in the proof.

Theorem 3.2 (Separation of condense discreteé functions): Let v, : Z" —
R U {400} be a proper CDCz function, and v, : Z™ — R U {~co} be a proper

CDClc function such that one of the regularity conditions holds:

RI (co (Domgn (7,))) N RI (co (Domgn (vy,))) # 0. (3.2)
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v, and — v, are polyhedral CDCz, and Domngz~ (7,) N Domzs (v5) # 0.  (3.3)

If 7 (k) > 7, (k) for all k € R™ then 3 ; € R and n, € R™ such that the following

inequality holds for Vk € Z™:

Y1(k) > my + (2, k) > Y2 (k) (3.4)

The following Fenchel-type duality holds under the conditions of theorem 3.2 for
CDCz and CDCec functions:

Theorem 3.3 (Fenchel-type duality for condense discrete functions):
Let v; : Z" — RU {oo} be a proper CDCz function and v, : Z™ — RU{—c0} be a

proper C' DCc function such that one of the regularity conditions (3.2), (3.3),

v, and —, are closed CDCz, and RI (co (Domgn (7})))NRI (co (Domz~ (v3))) # 0,
(3.5)

or
v, and — ¥y are polyhedral CDCz, and Domg~ (7]) N Domgn (v5) 0 (3.6)

holds. Then
inf {y,(k) —72(k)} = sup {73(p1) — vi(p1)}- (3.7)

kezn prER®
3.2 CONDENSE MIXED CONVEX SETS

In this section, we apply condense discrete convex and real convex set definitions to
define condense mixed convex sets.

We use the notation z = (k,u), p = (p1,p2), Po = (05, P8), P* = (v},13),
P = (p1*,p5%) , 20 = (ko, thg) , 21 = (k1, 141), Sv = R™ x R™, Sz4g = Z™ x R™ and
Sz = Z™ x Z™ throughout this section.

A mixed condense set A = B x C C Szxr is a set where B is a CDCxzx set in Z™

and C is a real convex set in R™.
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The mixed inner product is an inner product of the form

(z(),z>3:z><R = <(k0,/1'0)7(k’/")>82xk

= <k07 k)Zn + (1“‘07.“’)]1{"'

Zkoiki + Z,Ulojluj.
i=1 j=1

where the inner product on the mixed space Szxr is induced from the inner product

of (n + m)-dimensional Euclidean space.
Definition 3.14 (Mixed effective domain): The mixed effective domain of a

function I' : Szxg — R U {Zoo} is defined by
Domg,,, () = {z € Szxr : —0 < I'(2) < +00}.

Let 'y : Szxr — RU{o0} . Associated to I';, we define I’} to be IT'¥ (k) = Ty (k, p)
for each fixed real vector u € R™ and I'¥ to be T'¥ (1) = Ty (k, u) for each fixed integer
vector k € Z".

Definition 3.15 (Mixed epigraph): The mixed epigraph of a C M Cx function

I'; : Szxr — RU {+00}, denoted by EPz«r(T'1), is the set of points
EPZX]R(FI) = {(Z,Y) Y Z F]_(Z)} Q gZXR x R.

Note that for z = (k, u) € Szxr we have (k,Y) € EP;(T%) and (u,Y) € EPR(T%).
Definition 3.16 (Mixed relative interior): The mixed relative interior of
V =V; x Vo, RI(V), is the set of points z = (k,u) € V such that k lies in the
discrete relative interior of the convex hull of V4 and u € RI (V).
Definition 3.17 (Mixed cone, Mixed convex cone): A set S = 5; x Sa C

Szxr 1 a mixed cone if it satisfies

z=(k,n) € Sand oy € Z", 03 € R = (a1k, opu) € S.
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Let z; = (k1,11) and 2o = (ko, ). A set S C Szxr is a mixed convex cone if and

only if it satisfies the condition
21,22 € S and a,b, € Z+a2,b2 eERT = (a1k1 + a2k2,b1/~‘1 -+ b2/.1,2) € S.

Definition 3.18 (Mixed convex polyhedron): A mixed convex polyhedron
is a mixed convex set § = S x S; described by a finite number of linear inequalities
as

S = {z € Szxr : ch-)k(j) < d§1) and ch,)p(j) < d§2) for1<t<n,1<:< m}
j=1 j=1
t7 ) “ij U Rat'!

where ¢{?, ¢ € R and dgl),dgz) eR If (dgl) d(2)> = (0,0) for all ¢, then S is a

mixed convex cone.

3.2.1 SEPARATION OF CONDENSE MIXED CONVEX SETS

Let By and B; be CDCxzx sets in Z™, and C; and C, be real convex sets in R™.
Two mixed convex sets A; = B; x C; and Ay = By x Cy are called ~ disjoint,
i.e. AjNAy = 0, if both By, B; and C;, C; have no elements in common; that is,
AiNAy # () if both B;, B; and Ci, C, have elements in common. The conditions

where

B]_ﬂBz=®and010027é@,
and

BlﬁBg#(Z)andClﬂCb:@

are ruled out when we consider ~ intersection of C M Cz sets. The following theorem
characterizes the separation property for CMCz sets.
Theorem 3.4 (Separation of condense mixed convex sets-1): Let A; =

By, x C; and A; = By x Cs be two mixed convex sets with either B; or B, bounded
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sets in Z" such that RI (4;) NRI (Az) = 0. Then there exists a p* € Sy andac > 0

such that

inf {(p",2)} — sup {{",2)} > . (3.8)

ZeAl z€A 2
Proof: Applying corollary 3.1 and 3.3 to the disjoint CDCx sets B, and B,

there exists a p; € R™ such that

Jnf {(p,k)} ~ sup {{pi,k)} > c (3.9)

holds where ¢ > 0. Applying the real convex set separation theorem to the disjoint

sets C1 and Cj, there exists a p; € R™ such that

lnf {(pz,#)} 2 sup {(P2, )} (310)

nels

By adding (3.9) and (3.10), we have

nf {(p1, k)} + inf {(p2, )} 2 c+ Sup {(pl,k)}+52pz{(pz, Ml
keBipfec {{p1, k) + (P2, 1)} > C+k€§;15602{(}71, k) + (p2, ) }
(kn)lgA {{(p1,p2), (ks )} 2 c+(k§;;£A2{((p1,pz),(k,u)>},
nf {{p,2)} 2 c+zs§I:{(P ,2)},
nf {{p,2 >}—zs§r;{<p z)} > e (3.11)

which completes the proof.

Under the assumptions of corollary 3.3 where we considered integer hyperplanes
for separation of CDCxz sets, we have the following separation theorem.

Theorem 3.5 (Separation of condense mixed convex sets-2): Let A; =
By x C; and Ay = B, x C, be two mixed convex sets such that RI (A;) ARI (A3) = 0
where B; and B, are separated by an integer hyperplane. Then there exists a p* € Sy

such that

inf {(p*,2)} — sup {(p%,2)} > 1. (3.12)

zEAL 2EA,
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Proof: Applying corollary 3.3 to the disjoint CDCxz sets B; and B,, there exists

a p; € R™ such that
inf {(p1,k)} — sup {(p1,k)} > 1 (3.13)
keB; keBs

holds. Applying the real convex set separation theorem to the disjoint sets C; and

Cy, there exists a p, € R™ such that

inf {(ps, )} 2 sup {(ps, )} (3.14)
rEC] neCe

By adding (3.13) and (3.14), we have

Inf {(pr, k)} + 1nf {(p2, 1)} 2 L+ sup {(pl,k)}+§élg {{p2, )},
keBilr,lEeCI {<p17k> + <p2uu')} 2 1 +kel§u£)€0 {(pljk> + <p2uu'>}a
(k,}‘r)lgm{((pl,pz),(k,u)>} > 1+(k~°:)1§A {{(p1,p2), (k, )},
inf {(p,2)} = 1+sup {(p,2)},
z€A1 z€A2
Jnf {{p,2)} — sup {p2)} =21 (3.15)

which completes the proof.

3.3 CONVEX ENVELOPE AND MIXED SEPARATION THEOREMS

Independent from the mixed convexity discussion above, assume that we are given
the mixed functions h; : Szxr — R U {oo} and hs : Szxg — RU {—c0}. We define
the convex envelope of a function h by following Witsenhausen (1968) .

Let z = (k, 1) and z = (k, ) .

Definition 3.19: The convex envelope of a mixed function h; : Szxr — RU{o0}

with Domh, # 0 is the function Ay : Sy — RU {0} defined by

1 (2) = sup {a+ (&E) + (n,B) : o+ (&, k) + (n, 1) < hi (2) for Vz € Szur} s

£eR™ neR™
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Definition 3.20: The concave envelope of a mixed function hs : Szxg — R U

{—co} is the function Ay : Sy — R U {—oco} defined by

hy (2) = inf  {a+ (k) + B at (§k) + (1) > ha(2) for V2 € Szxr} -
£ER™ neR™

The correspondence between the mixed function hyperplane separation and the
mixed convex/concave envelope function hyperplane separation is stated in the fol-
lowing theorem.

Theorem 3.6: Let h; : Szxg — RU {o0} and hy : Szxg — RU {—00} be two
mixed functions with the corresponding envelopes ﬁl and Ry satisfying the following

conditions:

Domhy N Domhy #

Domh; N Domhy # 0
Then there exist 2y € Szxr and 7 € R such that
hy (k,p) >0+ (20,2) > ha(k, 1), Vz € Szxr
if and only if there exist 2y € Szxr and 1 € R such that
P (k,pu) 21+ (20,2) > e (k, ), Vz € Szxgr.
Proof: Suppose

Domh; N Domhy # 0

Domh; N Domhy # 0
hold, and let 2y € Szxr, 7 € R be such that
hy (k,pu) >0+ (20,2) > hy (k, 1), Vz € Szxr
By definition of the convex envelope

ha (k1) 2 T (ky 1) > 1+ (20,2)
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and by the definition of the concave envelope
n + <207z> > /};2 (k7:u‘) > h2 (knu’)

Therefore

TLI (k; ,U,) Z n + (ZO’ Z) 2 ﬁ2 (k:a.u')

For the reverse implication let zy € Szxr, 7 € R be such that
h (k, 1) >n+ (z0,2) > s (k,u), Vz € Szxr.
Clearly by the inequalities above we also have
ha (ky ) 2 by (k, 1) = 0+ (20,2) 2 Ba (K, 1) 2 ha (k, )
which indicates

h1 (k7 /L) 2N+ (ZO,Z> = hy (k:/l')

and completes the proof.

Corollary 3.4: Let h; : Szxr — R U {00} be a mixed function with the corre-
sponding convex envelope ’ﬁl and hy : Szxr — RU{—00} be a mixed function with
the corresponding concave envelope hs. Then hi and hs have a mixed separating
hyperplane if 1 and hy satisfy the conditions of theorem 2.3. |

Proof: By theorem 3.8 we have
by (k',,LL) > n+ (Zo,Z) > ho (k,/l‘) ) Vz € SZXR

if and only if
hy(k, 1) =1+ (20, 2) > o (k, 1), Yz € Szxz.

Therefore if the convex envelope ’ﬁl and the concave envelope Ez satisfy the conditions

of theorem 2.3 then proof follows from theorem 3.8.
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CHAPTER 4

DISCRETE M/M!', MIXED E/E*, AND MIXED E,/E}
CONVEX-CONCAVE FUNCTIONS

In this chapter, we first review some basic facts about discrete M/M" convexity
concepts and related results, after which mixed E/E* and mixed E;/FE} convexity

concepts and related results are stated and proven.

4.1 DISCRETE M AND M" CONVEX-CONCAVE FUNCTIONS

The concept of discrete M-convex functions was introduced by Murota (1996) and
that of discrete M" convex functions by Murota-Shioura (1999). Researchers such
as Murota ((1996), (1998), (1999) and (2000)) and Shioura ((1999) and (2000))
worked on the theory of discrete variable M and M" convex functions. Important
examples of discrete M-convex functions arise in network flow problems (Murota
(2003)). In this section, following Murota (2003) , we start with the basic definitions
and state the necessary results to prove the separation and Fenchel-type duality
theorems for discrete variable M/M" functions.

Fix a positive integer n and let V = {1,2,...,n}. When we deal with M and L
convexity, we will use the notations Z" and Z" interchangeably.

Definition 4.1 (Effective domain): The effective domains of f : Z¥ — RU

{£oc} and h: RV — RU {£oo} are defined by
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domgf = {x€Z':-oc0< f(z) <00},

domgh = {z€R":—co<h(z)< oo},

respectively.
Definition 4.2 (Positive and negative supports): The positive and negative

supports of a vector z = (z (v) |[v € V) € ZV are defined by
suppt (z) = {v € V|z (v) > 0}, supp™ (z) = {v € V|z (v) < 0},

respectively.
Definition 4.3 (Characteristic vector): The characteristic vector of a subset

X CV is defined by

1 if veX
xx (v) =
0 if veV\X

The motivation of the M-convex function comes from the inequality
0:1(z)+61(y) 201(z—alz—y)+61(y+alr-y) (4.1)

which follows from the definition of the real convex function ©; : R* — RU {0} for
every o with 0 < o < 1. This inequality follows from adding the inequalities (2.1)
with ¢ = ¢ and (2.1) witha =1 - .

The inequality (4.1) shows that the sum of the two function values evaluated at
z and y does not increase if the two points approach each other by the same distance
on the line segment connecting them. For a function defined on discrete points of Z",
this property is simulated by moving two points along the coordinate axes rather
than on the connecting line segment.

Definition 4.4 (M-convex (-concave) function): A function ©; : ZV —

R U {+oo} is called M-convex if for z,y € domz®; and u € supp® {z — y}, there
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exists v € supp™ {z — y} such that

A function 6, : ZV - R U {—o0} is called M-concave if —O, is M-convex.
Let 0 denote a new element not in V and let V = V U {0}.
Definition 4.5 (M"-convex (-concave) function): A function ©; : ZV —

R U {+0c0} is called M! convex if the function ©, : Z¥ — R U {+00} defined by

- O1(z) if zo=—-2z(V), ie.2(0) =~z (v)
S (:vg,:z:) = veEV

00 otherwise
is an M-convex function where zg € Z and z € ZV. A function ©, : ZV — RU {—o0}
is called M" concave if —©, is M! convex.
Definition 4.6 (Integer interval, restriction of a function): For two integer

vectors a, b € (ZU {£co})", the integer interval [a,b] = [a,b], is defined by
[0,0] = [a,b];, ={z €Z":a(t) <z(3) <b(i), i=1,..,n}.

The restriction of a function © : Z"* — RU {400} to an interval is defined to be

the function O, : Z" — R U {+o0} given by

Oruy (¢) = O©(z) if z€la,b] .
+oo if z ¢ [a,bd]

Note that the following convex closure definition is similar to the convex envelope
notion introduced in chapter 3 but the use of the term convex closure is customary
in M/L convex functions.

Definition 4.7 (Convex closure, convex extensible function): Let © :
Z" — RU {oo} be a function defined on the integer lattice with non-empty effective

domain domzO. The convex closure of © is defined to be a function © : R* —

R U {£o0} given by

O(z) = sup IR{(p,:v)—l—a| P,y)+a<O(y) forVy e Z"},(z € R?).

pER™,ac
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In the case where © coincides with © on integer points, i.e., if
O(z)=0(x),Vr ez

then we say © is convex extensible and call © the convex extension of ©.
Definition 4.8 (Integral neighborhood): The integral neighborhood of z €
R™ is defined by

N(@) = {yeZ':(z(@)] <y@) <[z(@)], 1<i<n},(z€R")

= {yeZ: |z -y, <1forvz e R"}

where [a] is the ceiling of a, |b] is the floor of b, and we used the lo, norm |z|_ =
max |z (2)| for all z € R™.
1<i<n

Definition 4.9 (Local convex extension): Considering the local integral

neighborhood N(z), we define the local convex extension of © by

O()= sup {(p,z)+a| (p,y) +a<O(y) for Vy e N (z)}.

pER™, acR
Note that
©(z) > O(z), R,
O(z) = O(z), z €™
Letting 1 =(1,1,,...,1), the local convex extension © of © is convex on every

unit interval
2,2+ 1lg={zeR":2() <z(@) <z(@@)+1foralil<i<n}

with an integral point z € Z™, but is not necessarily convex in the entire space R”.
Definition 4.10 (Integrally convex (-concave) function): If © is convex on

R™, the function © is said to be integrally convex. Alternatively, we can define

O is integrally convex <= © (z) = © (z), = € R™
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A function ©, : ZV — RU{—cc} is integrally concave if —O, is integrally convex.

In particular, an integrally convex function is convex extensible.

Recall that a function defined on R” is said to be polyhedral convex if its epigraph
is a convex polyhedron in R**!. A polyhedral convex function © : RV — RU {+oo}
with domg© # 0 is said to be M-convex if it satisfies the following exchange property:

(EXH —1) For z,y € domg® and u € supp’(z—y), there exists v €

supp™ (x — y) and a number oy € R* such that

O(z)+0(y) 20 (z—alx,— X)) + O ¥+ a(x, — Xu))

holds for all a € [0, ay] .

The following result is due to Murota-Shioura (2000).

Theorem 4.1: The convex extension of © of an M-convex function © : ZV —
R U {400} on the integer lattice is a polyhedral M —convex function provided that
© is polyhedral.

The following result is due to Murota (2003) .

Proposition 4.1: For a function © : Z* — RU {400},
© is integrally convex <= O, is integrally convex for any a,b € Z".

The well known directional derivative of a function © at a point z € domg® in

a direction d € R” is defined by

O (:d) = 1, ©.(z +dt) — O ()
t10 t

when the limit exists, where ¢t | 0 means ¢ tends to 0 from the positive side. For
convex O, the limit exists for all d, and ©’ (z;d) is a convex function in d. For

polyhedral M-convex O, 3 € > 0, independent from z € domg® such that
O (z;d) = O (z+d) — O (z),(lld], <€)
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where ||df|; = > |d (¢)| represents the l; — norm of the vector d € RV and © (z;)
eV

is the directional derivative of ©; at z. Therefore, the directional derivative of a

polyhedral convex function ©; is defined as follows: For each z € domg®;, there

exists € > 0 such that
Q) (z;d) = O, (z +d) — O©1 (z), |d||, <e

Definition 4.11 (Convex subdifferential, subgradient): Given a function

0, :ZY — RU {400} and a point x € domz®,, we define
O1(z) = {peR” : 01 (y) — 61 () = (p,y —z) for Vy € Z"}

and call it the subdifferential of the function ©; at z. An element of Og©; is called
a subgradient of ©, at z.

Note that, being the intersection of infinitely many half spaces indexed by y,
OrO; (z) is convex (possibly empty) for any ©; and any z. The set dr©; (z) is
non-empty for ©; convex and z in the relative interior of dom®;.

If ©; is convex extensible then we have
OrO; (z) = 6rO; (z) , VI € domzO, (4.2)

where ©; is the convex extension of ©; (Murota (2003), pg. 166).
Definition 4.12 (Concave subdifferential): The concave subdifferential g
of a concave function @, : RV — RU{—oo0} is defined by 830, (z) = —0g (—05) (z) .
Definition 4.13 (Integer subdifferential): The set of integer valued subgra-
dients
0201 (z) = 0rO; () N ZY (4.3)
is called the integer subdifferential of ©; at x € domz©;. The notation 0y 0, stands

for the subdifferential of a concave function ©, at x.
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The directional derivatives and subdifferential of M-convex functions are char-
acterized by theorem 6.61 (Murota (2003)).

Definition 4.14 (Integer concave subdifferential): The integer concave sub-
differential 87 of ©, : ZV — R U {—oo} is defined by 84,0, (z) = —0z (—0,) (z).

Definition 4.15 (M-convex set): Given a non-empty set B C Z", we say that
B is M-convex if for z,y € B and u € supp™ (x — y) , there exists v € supp™ (z — 7)
sﬁchthatx—xu+xv € Band y+x, — X, € B.

Due to Murota and Shioura (1999) (see theorem 6.3, Murota (2003)), an M-
convex function is also an M!-convex function. Conversely, an M!-convex function
is M-convex if and only if the effective domain is contained in {z € Z : z (V) =r}
for some r € Z.

The following result is due to Murota (1998) .

Theorem 4.2 (Separation of M-convex sets): Let B; (CZY) and B,
(CZY) be M-convex sets. If they are disjoint (B; N By = @), there exists p* €

0,1}V U {0,-1}" such that
inf {(p*,z) : z € B1} —sup {{p*,z) :z € By} > 1. (4.4)

The following result follows from Murota (1996) (see theorem 6.42, pg.159).

Theorem 4.3: An M'-convex function is integrally convex. In particular, an
M?"-convex function is convex extensible.

The following result follows from Murota (1996) (see proposition 8.14, pg. 217).

Proposition 4.2: If ©;, -0, : ZV — R U {+co} are M’-convex functions then
0, (z) > 6, (z) for Vz € ZV = ©; (z) > B, (z) for Vx € RV.
For M-convex ©; : ZV — RU{+oc0} and M-concave O, : ZV — RU{—o0c}, discrete

versions of the Legendre-Fenchel transformations are defined by
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01 (p) = sup{(p,a)—O:1(a):z€ 2"} (peRY),

03 (p) = inf{(p,z) —O:(x):z€Z"} (peR").

By using the results and definitions stated in this section we are ready to state
and prove the separation and Fenchel-type duality theorems for M and M" convex-
concave functions.

Definition 4.16 (Global minimizer, set of minimizers): A global minimizer
of ©; : R* - RU {400} is a point z such that ©; (z) < ©; (y) for all y. The set of

the minimizers of ©;, denoted by
argmin ©; = {z € R"|0; (z) < 0, (y) for Vy € R"}
is a convex set for a convex function ©;.
For a given function ©, : R* — RU {400} and a vector p, we denote by ©; [—p]
the function
@1 [_p] (27) = @1 (ZJ) - <p> $> y TE R"

which is a convex function for convex ©;.
Definition 4.17 (Integral polyhedral M-convex function): A polyhedral

convex function ©; : R* — R U {400} is integral polyhedral convex if
argmin ©; [—p| is an integral polyhedron for every z € domg©;.

Polyhedral M-convex functions with the integrality condition stated above are

called integrally polyhedral M-convex functions.

4.1.1 SEPARATION AND FENCHEL TYPE DUALITY THEOREMS FOR DISCRETE

M FUNCTIONS

Some of the M-convex function properties can be extended to real convex function

properties: The local minimization yields global minimization, and moreover Fenchel
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type duality and separation theorems hold. The separation theorem for discrete
M functions was proved by Murota (1996) (see also (1998) and (1999)) and has
important applications. In this section we state and review Murota’s proofs for the
separation and Fenchel type duality theorems for discrete M functions.

Let S denote the convex hull of the set S.

Theorem 4.4 (Separation of discrete M functions): Let ©; : Z¥ — RU
{+00} be an M'-convex function and ©, : ZV — R U {—co} be an M-concave
function such that either

domz@l N domz@2 % (Z), (45)

or

domg®] N domg©3 # @ (4.6)

holds. If ©; (z) > O, (z) (Vz € Z") , then there exist &* € R and p* € R such that
01(z) > a* + (", ) > Os(2) (47)

for all z € ZY. Moreover, if ©; and O, are integer valued then there exist o* € Z
and p* € ZY such that (4.7) holds.

Proof: Assume that ©; and —0, are two Mi-convex functions.

Case 1: Suppose domz®; N domz©O, # (. For the convex closure ©; of ©; and
concave closure O, of ©,, we have ©; (z) > O, (z) for V2 € RV by proposition
4.2. Since domg©; N domg©O, # @ holds, there exist a* € R and p* € RY such that
for every z € RY, ©,(z) > o + (p*,z) > ©,(x) holds by the separation theorem
for real variable convex functions (theorem 2.3). This implies for every z € ZV,
01(z) = a* + (p*,z) > O(z) holds since 8, (z) = ©; (z) and B, (z) = O, (z) for
all z € ZV by theorem 4.3.

The integrality assertion is proved from the facts that the integer subdif-

ferential of an integer valued M-convex function is an L-convex set and that
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L-convex sets have the property of convexity in intersection. We may assume that
inf {©; (z) — ©2 (z) |z € ZV} = 0. Then there exists zp € ZV with O (zo) —
O3 (z9) = 0 by the integrality of the function value. By (4.2) and a theorem of
Murota ((2003) , theorem 6.61 — (2) , pg. 166-167) we have

k01 (20) N O3 (z0) = IrO1 (20) N 8O3 (za) = 8261 (o) N 802 (mo)

which is not empty since p* € 9g©; (20) N0gO: (z0) . 620 () and 04,0, (xq) are L-
convex sets. A result of Murota (see Murota (2003) , theorem 5.7) indicates convexity

in intersection of L-convex sets, i.e.

8201 (%) N 5,02 (o) # 0 = 8201 (o) N 840, (o) # 0

which guarantees the existence of an integer vector p** € 0201 (zg) N 8402 (zo) .
With this p** and o™ = 0, (zo) — (p**, o) € R the inequality (4.7) is satisfied.
Case 2: Next we suppose that domz©1NdomzO, = 0 and domg©;NdomgO3 # 0.

For a fixed py € domg©?} N domg©3, and for any p € RY, we have

o1 (p) = Iejxel{@—po,x)+[@o,w)—91(1’)]},
< LS {p — po, z) + O1 (po) ,

©:p) =  of {p—p0,2)+[po,2) — s (2)l},
> Jnf 0= m5) + 6500 |

from which follows

©;(p)—-61(p) 2 _inf (p—po,z)— sup (p—po,z)+0O5(po)—0] (po). (4.8)

z€domzO2 z€domgz©1

Since domz©,; and domz0©, are disjoint M-convex sets, the separation theorem
for M-convex sets, theorem 4.2, gives p* € RY such that the right hand side_of

(4.8) with p = p* is non-negative. Therefore we have domg©} N domg©3 # @ and
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O3 (p) > ©1(p), hence by the separation theorem for real variable functions there

exist a € R and py € RY such that

0; () = a+(po,z) 2 0O1(p),

pedlf o 1pL2) = ©2(2)} 2 a+(po,2) 2 L Sup {{p1,z) — ©1(2)},
it o {p1,2) —02(2)} 2 ot (po,2) 2 S {{p1,z) — 1 ()}

Using this inequality and noting that

(p1,2) = O (2) > inf {(p,z) — Oy (x)} =03 (p), Vz € Z",

r€domyzOa

O1(p) = sup {{p,z) —©1(2)} > (;,2) — 61 (z), Vo € Z7,

zE€domgO,

we have

(p1,2) = O2(z) > a+ (po,z) > (p1,z) — O (z),
—02(z) > a+ (po—p,2z) > -6 (),

O:(z) < —a+(p™,z) <O:(2).

With this p** = py — p; and o* = —a € R the inequality (4.7) is satisfied.

For integer valued ©; and —©,, we have ©} and — 63 to be integral polyhedral L-
convex functions, and hence domr©} and domg©j are integral L-convex polyhedra.
We may assume p, € ZY by the convexity in intersection of L-convex sets and
p* € ZV by theorem 4.2. Then ©3 (p*) and O3 (p*) are integers therefore we can take
an integer o* € ZV.

The following Fenchel-type duality theorem for discrete variable M-convex func-
tions is also due to Murota (1996) (see also Murota (1998)).

Theorem 4.5 (Fenchel type duality of discrete M functions): Let ©; :
ZV — R U {+o0o} be an M!-convex function and @, : Z¥ — R U {—oo} be an

M*_concave function such that either

domz©1 NdomzOs # 0, (4.9)
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or

domg®] N domgO3 # ( (4.10)
holds. Then we have
inf {O1(z) — ©2(z)} = sup {©5(p) — O1(p)} - (4.11)
z€Z peRY

If this common value is finite, the supremum is attained by some p € domg®3 N
domm@g.
Proof: Suppose that domzO; N domzO,; # 0. By the definitions of discrete

versions of the Legendre-Fenchel transformations,

Jnf {61(2) ~€z(2)} 2 inf {O1(c) -6, (2)} > (4.12)
sup, {63(p)—01(p)} 2 sup {©3(0) — 61 (n)} (4.13)

hold. By using inequalities (4.12) and (4.13) , we can assume that
= inf -0
e= inf {6,(0) - 0, (2))

is finite. By the separation theorem for discrete M functions, for (©; — €,0;), there

exist a* € R and p* € RY such that
O1(z) —e2a" + (p*,z) > O (z) (4.14)

for all z € ZV which implies 03 (p*) — 03 (p*) > €. (4.12) and (4.13) combined with
(4.14) gives (4.11) with the supremuﬁl at p*.

Next we suppose that domzO; N domzO, = @ and domg©O} N domg©®; # 0.
The separation theorem for M-convex sets applied to domz©; and domzO, gives
p* € {0,£1}" such that (4.4) holds. Plugging in p = po + cp* in the proof of (4.8)
and letting ¢ — oo, we obtain

sup {65(p) — ©1(p)} = +oo,
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whereas
erlzfv {61(z) — O2(z)} = +o0
by domz©; N domz®, = 0.
The statements and proofs of the separation and Fenchel-type duality theorems
for M convex-concave functions will play an important role in the statements and
~ proofs of the separation and Fenchel-type duality theorems for mixed E convex-

concave functions.

4.2 MIXED E AND E* CONVEX-CONCAVE FUNCTIONS

In this section we define mixed F and E* convex-concave functions by using the
definitions of M, M" and proper real convex (concave) functions. In addition, the
necessary definitions are stated and related results are proven to state and prove the
separation and Fenchel-type duality theorems of mixed E convex-concave functions.

Let Vi = {1,2,...,n} and V2 = {1, 2, ...,m} be finite sets. We will use the notation
2= (z,y), p = (p1,p2), po = (P5, %), P* = (P1, %), P™* = (Bi*,13*), 20 = (0, %) ,
Sy =R% x R, Sz,p = Z% x R%, Sz = Z% x Z%, Sy, = Z% and Sy, = RY (for
i = 1, 2) throughout this work.

Let ©1 : Szxr — RU {£o00}. Associated to ©; we have two classes of functions;
@lgz‘, the set of integer variable functions for each fixed real vector in Sg,, and @?M,

the set of real variable functions for each fixed integer vector in 3z, . i.e.

01" = {67: 9z - RU (oo} ly € Sk, & 6 (z) = 61 (2,9), ¥(2,1) € Szxx}

O™ = {6 : Sk, > RU {200} [z € Sz, & 67 (1) = 01 (¢,9), ¥(,4) € Szxa)
Definition 4.18 (Mixed convex extension): A function ©; : Szxg — RU

{+00} is said to be mixed convex extensible if there exists ©; : Sy — RU {40}, a

proper real convex function, such that ©; (z,y) = ©; (z,y) where the real extension

of the integer variables is done by using definition 4.7 for V (z,y) € Szxr-

39



Definition 4.19 (Mixed E convex-concave function): A mixed function ©; :
Szxr — R is called mixed E convex (concave) if it is mixed convex extensible, M-
convex (-concave) with respect to its integer variables and proper convex (concave)
with respect to its real variables.

Definition 4.20 (Mixed E*-convex (¢oncave) function): A mixed function
O : Szxr — R is called mixed E* convex (concave) if it is mixed convex exten-
sible, M" convex (concave) with respect to its integer variables and proper convex
(concave) with respect to its real variables.

Definition 4.21 (E-convex set): A set C; = A; x B; C Syzyg is called a mixed
E-convex set if A; is an M-convex set and B; is a real convex set. |

Definition 4.22 (domgzm@l): The domain of a mixed E-convex function ©;
(z’.e. dongxR@]_) is the set of points in Szxgr where ©; is finite. Henceforth we

assume domain is a mixed E-convex set of the form
domg, ,©1 = domg, ©1 X domgy,, ©1

That is, the domain is a product set in Szxg.
Definition 4.23 (RI (domnsg;,,,©1)): The relative interior of the mixed E-convex

set domag,,,©1 (i.e. RI (domg,,.©1)) is the set
RI (domg,,,©1) = RI (domg, ©;) x RI (doms,_ ©1).

Note that RI (domgzl@_l) is the set of integer points in the relative interior of the
domain of ©;.

The integer convex conjugate of a mixed E-function ©; has the form

6; (pl’y) = sup {(pl,x} -6 (.’E,y)},

ZGQ‘ZI

and the real convex conjugate of ©; has the form

" (z,p2) = sup {(p,1) — O1 (z,)} .

yeng
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Definition 4.24 (Conjugate of a mixed E-convex function): The convex
conjugate of a mixed E function ©; : Szxgr — R U {400} with domg, ,0; # 0 is

the function

0t (p) := sup {(p,2) — O, (2)}.

2€QzxR
The following two lemmas characterize the correspondence between the conjugate
of a mixed F function and the real and discrete conjugates of a mixed E function.
_Lemrna 4.1: The convex conjugate of a mixed F function ©; : Szxg — R U
{+00} with domg, ,©; # 0 satisfies O = (—0})" = (-OW)". If 6, (2) = ¢, (z) +
¢ (y) in particular then ©% = ¢} (z) + ™ ().
Proof: By definition 4.24, '

et (p) = sup {{p,z) - O1(2)}

z€8zxRr

= sup sup {(p1,z) + (p2,¥) — ©;1 (2)}
z€97, YESR,,

= sup {(pl,x)-{- sup {(p2,) — ©1 (z)}}
z€Qz, y€SR,

= zsggz) {(pl,a?) + @1. (:L‘,p2)}

= xselép {(p1,$> - (_@1.) (m,pz)}

= (_@1.). (p1,p2)

= (-o%) (), Vp € Sv.

Therefore 8¢ = (—OF)°. Similarly 6 = (—~03)" follows.

Suppose in particular ©; (z) = ¢; (z) + ¢; (y) then

ot (p) = sup {(p,2) - ©1(2)}

2€9zxR

= zesgpk {(p, z) — ¢y (z) — ¢y (y)}

= sup sup {(p1,z) + (p2,¥) — &1 (z) — 1 (¥)}
yESR, €97,
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= sup {(p,z) — ¢, (w)}+ysé1é£ {(p2,y) — 1 (¥)}

a:e%zl

= ¢} (z)+F (v).

Definition 4.25 (Conjugate of a mixed E-concave function): The concave
conjugate of a mixed E function ©; : Szxg — R U {—o0} with domg, ,©2 # 0 is

the function

09 (p) == inf {(p,2) — ©2()}.

z€QzxR

The integer concave conjugate of a mixed E-function ©, has the form

@g (p1,y) = :cé%‘gl {<plix> -0, (3773/)}7

and the real convex conjugate of ©, has the form

oF (@,p) = inf {(ms,) ~ €2 (z,9)}-

Lemma 4.2: The concave conjugate of a mixed E-concave function 05 : Szxg —
R U {—oo} with domag,, O, # 0 satisfies O = (-63)7 = (—05)°. If ©;(2) =
¢o () + ¢, (y) in particular then O = ¢3 (z) + 5 (v).

Proof: By definition 4.25,

0 () = inf {(n,2) 62 (2)}
T B, (oD e~ )

=t {n + 5l () - 201
= inf {(pz,y) - (—ziegle{(Pl,m)_@ (z)}>}

YESR,
= zé%le {(p2,9) — (-63) (p1,v)}

= (-6 (p), Vp € Sv.

Therefore 05 = (—63)7 . Similarly 6 = (—6F)° follows.
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Suppose in particular ©2 (z) = @, (z) + ¢, (y) then

Of(p) = _inf {(p,2) ~©:2(2)}
= zei\(\rng)<R {(p,2) — ¢q (z) — 5 (¥)}
I N

= inf ,T) — + inf Y) —
5 (o) = s @)+ it {(pa) — 2 (1)}
= $3(z)+ 3 ().
The following lemma characterizes the conjugate correspondence between the

mixed E-convex and mixed E-concave functions.

Lemma 4.3: 6% (p) = — (—6,)* (—p) for p € Sv..

Proof:
N = (00
= —zesgfm {(—p, Z) - (_@1 (z))}

= —(=01)" (-p), Vp € Sv.

Definition 4.26 (Convex (Concave) extension of a set): Given a mixed
function ©; : Szxr — R U {Zoo} the convex (concave) extension of the family
of functions @1811 introduced just prior to definition 4.18 is the family of extended
functions

0, = {@—’{:]R"—»]RU{:l:oo}lyeRm}.

where the extension of © from Z™ to R" is found by definition 4.7. If all elements of
@lgzl are real convex (concave) extensible (in definition 4.7 sense) then the set @_1321
is said to be the convex (concave) extension of @lgzl.

Next, we state and prove the separation and Fenchel-type duality theorems for
mixed E convex-concave functions and the separation theorem for mixed E convex

sets.
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4.2.1 SEPARATION AND FENCHEL-TYPE DUALITY THEOREMS
FOR MIXED E FUNCTIONS

For mixed E convex sets C1 = A; X B; C Szxr and Cy = Ay x By C Sz.g, the
notion C1AC, = @ means A; N Ay = ¢ and B; N By = 0. C1AC> #  means that
A1 N Ay # 0 and By N By # 0.

Definition 4.27 (Polyhedral real extensible mixed E/E*-convex func-
tion): A mixed E (resp. E*) convex function ©; : Szxg — RU {+00} is polyhedral
real extensible if its extension ©; is a polyhedral real convex function.

Theorem 4.6 (Separation theorem for mixed E-convex sets): Let C; =
A1 X By CSzur and Cy = Ay x By Q%ZX]R be mixed E convex sets. If C; and C, are
N disjoint (A; N A2 = @ and B; N B, = 0) then there exists p? € {0,1}"* u{0, —1}"*
and a nonzero vector pj € Sg, giving p* = (p}, p3) such that

inf {(p",2)} — sup {(",2)} > 1
zel1 2€C

holds.
Proof: By the separation theorem for disjoint M-convex sets A; and A, there

exists a p} € {0,1}"* U {0,—1}"* such that

inf {(p},2)} > 1 + sup {(rl,2)}. (4.15)

€A

Note that B; and B, are two disjoint convex sets. Therefore, by the separation

theorem for real convex functions, there exists pj € Sg, such that

inf {(p3,y)} > Sup {20} (4.16)

yEByL

By adding (4.15) and (4.16), we have

Inf {(p1,2)} + inf {(p3,9)} 2 1+ sup {(p},2)} + sup {(p3,9)}

TEA2
inf {(p{,2z) + W3, 9)} = 1+ sup {(p7,2)+ (P}, ¥)}
z€A,,yEB1 TEA2,yEBy
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inf {{(®1,p3),(=,9))} > 1+ sup {{(p},p}),(z,¥))}

(zy)€Ct (z,9)€Co
inf {(p,2z)} > 1+ sup {(p,2)}
z€Ch z€Co
inf {(p,2)} —sup {(p,2)} > 1 (4.17)
z2€Cy 2€Cs

which completes the proof.

By {©7 (y)} we denote the family of functions with respect to y indexed by z for
each x € Z™ when i = 1, 2.

Theorem 4.7 (Separation for mixed E functions): Let ©; : Szyg — RU
{+00} be a mixed E*-convex function and ©; : Szxg — R U {—o00} be a mixed

E*-concave function such that one of the following holds:

©; and — ©; are polyhedral real extensible and domg,, ,©1 N domg, ,O2 # @

(4.18)
RI (domg, ©1) N RI (domg,, ©,) # ¢ (4.19)
domg,, ,©1Ndoms, O = B and domg, O N domg, OF # 0 (4.20)

for all z € Szxr. If ©1(2) > O, (2) for Vz € Szxr, then there exists a* € R and
p* € Sy such that

©1(2) > o + (p*,2) > 0, (2) (4.21)

for all z € Szxr-

Proof: Suppose ©; and —©, are mixed E*-convex functions such that ©; (z) >
O, (z) for Vz € Szxr-

Case 1: Let ©; and —O, be polyhedral real extensible convex functions.
Therefore the convex extensions ©;(z) and ©,(z) are polyhedral and satisfy
©;(z) = 6:(2) and ©;(2) = ©5(z) for all 2 € Szxg. By the assumption we
have doms,,,©1Mdoms;,,,©2 # 0. Hence we have domg, ©; N domg, ©; # ¢ and

domgg, ©1 N domay, O2 # 0.
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By the definition of a mixed E*-convex function, €Y (z) and —©} (z) are M!-
convex functions for all y € Sg, which are real extensible. Hence the convex extension
©," (z) of ©Y(z) and the concave extension ©,’ (z) of ©Y (z) satisfy ©;’ (z) >
©,’ (z) for Vy € Sg, by proposition 4.2. This indicates that ©; (z,y) > O (z,y) for
V(z,y) € Svy.

In addition, noting that ©; (z,y) and O (z,y) are polyhedral real convex func-
tions, the separation theorem for real variable convex functions indicates the exis-

tence of a* € R and p* € Sy such that the inequality

0, (2) > a* + {p*,2) > 0,(2), Vz € Sy
holds. Therefore, by restriction to Szyxr we have

O1(z) > a* + (p*,2) > O3 (2), Vz € Szxr

since ©; (z) = ©; (2) and O (2) = O, (2) for all z € %leg.

Case 2: Suppose (4.18) does not hold and (4.19) holds. This indicates that
RI (domgzl(_%—l) N RI (domgzle_g) #

and

RI (domg, ©1) N RI (domg, ©2) # 0

The convex extension ©;° () of ©Y () and the concave extension 85’ () of 6% (z)
satisfy ©,° (z) > ©; (z) for Vy € Sg, by proposition 4.2. This indicates that
O (z,y) > 6y (z,y) for ¥ (z,y) € Szxr. By the separation theorem for real convex

functions there exist a* € R and p* € Sy such that
01(2) > a*+ (p*,2) > 05 (2), Vz € Sy
which implies by restriction to Szxr

61(2:) Z a* + (p*,z) 2 @2 (Z), Vz € SZXR

46



Case 3: Next suppose (4.18) and (4.19) do not hold and (4.20) holds. Therefore
we have domg, ©% N domgv ©2 # 0. For a fixed py € domg, ©% N domg, OF, and for

any p € Sy, we have

et (p) = sup  {(p — po, ) + [(po, 2) — ©1(2)]}
zGdo'm,g.zXnel
< sup [(p — Po, Z>] + sup [(p07 Z) - @1 (Z)]
zGdongxkel zEdongxkel
= sup  [(p — po, 2)] + O} (po)
zédomngJR@l
and
) = _ inf _ {(p—po2)+(lmn,2) - 022}
ZCaA0MS 7 (g 2

> inf o [{p — po, 2)] + inf [(po, 2) — O3 (2)]

;.reclongx]R zGdongxR 2
= inf o (p — Do, Z) + @g (po)

zEdomg,zXlR

from which follows

0 (-0t (p)>  inf (p—po,2)— sup  (p—po,2)+6S (po) - O (o)
z€domg,  n©2 z€domg,, o ©1

(4.22)

Noting that domg,,,©; and domg, ,©, are disjoint mixed E-convex sets, by the

separation theorem for mixed E-convex sets (theorem 4.6) there exists p* € Sy such

that with p = p* the right hand side of (4.22) is non-negative;
83 (p*) — 6t (p) = 1+ 6§ (po) ~ ¢ (po) > 0

Hence we have 6§ (p*) > 6? (p*) and by the assumption domg, O Ndomg, 05 # 0,
we can apply the real separation theorem to the real variable functions ©§ and ©¢

to obtain a* € R and p** € Sy such that for all p

05 (p) > o+ (p™,2) > 6! (p)
o {(p2) -6 (2)} 2 o+ (7,2 2 Sup {(p,2) — 61 ()}
zeiélzka {(.p: z) - @2 (z)} > a'+ (p**,z) 2 zesgp {<p7 z) - @1 (Z)}
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Using this inequality and noting that

(p,2) =©2(2) = inf {(p,2) —©2(2)}
2E€8zxR
sup {(p,2) = ©1(2)} = (p,2) - ©1(2)
2€8zxR
we have
(p,2) =©2(2) =2 o +(p™,2) 2 (p,2) — O1(2)
-02(2) 2 o'+ (p" —p,2) > -0, (2)
O2(2) < o™ +(pi",2) < O1(2)
Vz € Szxr, Where o = —a* and p;* = p — p**. This completes the proof.

The following Fenchel type duality theorem for mixed F functions follows the
conditions of the separation theorem for mixed E convex-concave functions.

Theorem 4.8 (Fenchel type duality for E-functions): Let ©; : Sz.g —
R U {+oc0} be a mixed E*-convex function and Oy : Szxr — R U {~o0} be a
mixed E*-concave function such that one of the following conditions holds for every

z € Szxr
©; and — O, are polyhedral real extensible, domg, ,©1 Ndomg, O2 # 0 (4.23)

RI (domg, ©1) N RI (domg, ©,) # 0 (4.24)
dome,, ,©1Ndomag, O = 0 and domg, 0¥ N domg, OF # 0 (4.25)

Then we have

inf {O1(2) — ©:(2)} = sup {65 (p) — 61 (p)} (4.26)

zZE€SSZ xR pESY
If this common value is finite, the supremum is attained by some p € domg, 0! N
domg, 65.

Proof: Suppose ©; and —©;, are mixed EF*-convex functions.
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Case 1: Suppose that domg, ,©1Ndomg, O2 # § holds. By the definitions of

discrete and real versions of the Legendre-Fenchel transformations, the inequalities

{00 -0,() > mf (Br()-B(}z 4
sup {65 (p) -0t ()} = sup {65 () —0e!(®} (4.28)

hold. By using the inequalities (4.27) and (4.28), we can assume that

e= inf {O©;(2) —0.(2)}

2E€BZ xR

is finite. By the separation theorem for mixed E-functions, for (©; — ¢, ;) , there

exist o* € R and p* € Sy such that
O1(2) —e>a" + (p*,2) > 02(2), Vz € Szxr (4.29)

which implies

01(2) — 0z (2) > e
—(72) +01(2) +(p,2) = 02(2) = ¢
zeingm {—={2)+01(2)} + zeingm {(p,2) —©2(2)} > €
-5 {(p2) —O1@}+ It {(p,2) —©:(:)} 2 e
03 (p) -1 (p) > ¢ (4.30)

and taking the supremum of both sides of (4.30) with respect to p € Sy we have

sup {€F (p) -~ OF (p)} > . (4.31)

PESY

(4.27) and (4.28) combined with (4.31) give (4.26) with the supremum attained at

t 3

p*.
Case 2: Suppose (4.23) does not hold and (4.24) holds. This indicates that

RI (domg, ©1) N RI (domg,, ©3) # @
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By the Fenchel-type duality for real variable convex functions

inf {©1(z,y) —©2(z,y)} = sup @(pl,pz)—é?(pl,pz)} (4.32)

(zy)€SV (p1,p2)ESYV

holds. Since Szyr € Sy and @,]gv = O; we have

inf {O1(z,9)-G:2(2,9)} < inf {O1(z,9) -6 (z,y)}

(z,y) €SV (z.y)eSzxr
< sup {O:i(z,y) —Oa(z,y)}

(z,y)€SzXR
< sup {©:(z,y) — Oz (z,v)}

(I:y)egv

But (4.32) then implies that the inequalities in the previous expression are actually
equalities and we then obtain the desired formula.

Case 3: Next we suppose that (4.23) and (4.24) does not hold but (4.25)
holds. The separation theorem for mixed E-convex sets applied to domg, ,©1 and
domg,, . ©2 gives a p* such that (4.22) holds. Plugging in p = po + ¢p* in (4.22) and

letting ¢ — oo, we obtain
sup {©9(p) —©%(p) : p € Sv} = +o0

whereas
inf {©1(2) — ©2(2) : z € Szxr} = +0
which completes the proof.
Next, we introduce mixed F; and Ef convex-concave function concepts. Sepa-
ration and Fenchel-type duality theorems for mixed F; convex-concave functions
will be stated and proven in addition to the statement and proof of the separation

theorem for mixed F; convex sets.

4.3 MIXED E; AND Ef CONVEX-CONCAVE FUNCTIONS

In the previous section we introduced real extensible mixed functions called E-

functions where real convexity and discrete M-convexity definitions and results are
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used. In this section we introduce mixed F; and E} convex-concave functions, whose
definitions originate from the definitions of discrete M/M" convex-concave func-
tions and convex-concave envelopes. Note that an E-convex function is real convex
extensible function whereas an F;-convex function has its restriction function an M-
convex function. Recall we let Sy = R* x R™, Szyr = Z™ X R™ and Sy = Z"* x Z™.

Definition 4.28 (Restriction function): A restriction function of a mixed
function 6, : Szxr — R is the discrete variable function .0, : Sz — R which
satisfies 01 (2) = .0, (z) for all z € .

Definition 4.29 (Discretized set): A set ,S5 C Sy is the discrete set of S C
Szxr if «S NS = .8 holds.

Definition 4.30 (Mixed E;-convex (concave) function): A mixed function
61 : Szxr — RU{+00} is called E;-mixed convex if 67 : R™ — RU{oo} is the convex
envelope of .67 : Z™ — R U {oo}, its restriction function ,6; is discrete M —convex
and it is M —convex with respect to its integer variables. 85 : Szxgr — RU {—00} is
Ey-concave if —0, is E;j-convex.

Definition 4.31 (Mixed Ej-convex (concave) function): A mixed function
03 : Szxr — RU{+00} is called mixed E} convex if 65 : R™ — RU{oo} is the convex
envelope of .03 : Z* — R U {oo}, its restriction function .63 is discrete M?!-convex
and it is MY-convex with respect to its integer variables. 0, : Szxg — RU {—o0} is
mixed Ej-concave if —84 is mixed Ej-convex.

Note that a mixed F;-convex set is the mixed set X = H x W C Sgzy«r where
discretized set K of K is an M-convex set in Sz, H is an M-convex set in §z, and

W is a real convex set in Sg,.
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4.3.1 SEPARATION AND FENCHEL-TYPE DUALITY THEOREMS
FOR MIXED E;, FUNCTIONS

We first state and prove the separation theorem for mixed E;-convex sets. Second,
by using the definitions of mixed E; and E} convex-concave functions, we will state
and prove the separation and Fenchel-type duality theorems for mixed E; convex-
concave functions.

Theorem 4.9 (Separation theorem of mixed E;-convex sets): Let K; =
H, x W; and K, = Hy x W, be two N disjoint mixed E;-convex sets in Szxg. There

exists a pt € {0,1}'* U {0,—-1}"* and p} € Sg, with p* = (p},p}) such that

inf {{p"2)} = sup {(p",2)} 2 1

ZGK zeK. 9

holds.

Proof: Suppose that K; and K, are N disjoint mixed FE;-convex sets. Therefore,
H,NHy; =0 and W;NW, = 0. The separation theorem for M-convex sets applied to
the pair of convex sets H; and H, indicates the existence of p* € {0,1}"*U{0, -1}"1
such that

inf {(ph,0)} 2 1+ sup {(5},0)) (4.33)

xz€H>

hold. Applying the separation theorem for real convex sets to the disjoint convex

sets W and Wy, there exists a pj € Sg, such that

inf {(p3,y)} = sup {(p3,)} (4.34)

yEW ye )

holds. By adding (4.34) and (4.33) we obtain

Jnf {(h,2)} + inf {(Ph,0)} > 1+ sup {{p},2)}+ sup {(r},0)}

zlenjg {{p",2)} = 1+zseulg{<10’z>}
inf {(p, Z)}—Sup {2} =2 1

2€K
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which completes the proof.
By {67 (y)} we denote the family of functions with respect to y indexed by z for
each z € Z" when i = 1, 2. Let 6; and —0, be two mixed E} convex functions.
Theorem 4.10 (Separation of mixed E; functions): Let 6; : Szyr —
R U {+oo} be a mixed Ef-convex function and 6, : Szxg — RU {—0c0} be a mixed

Ef-concave function such that either
01 and — (,8,) are polyhedral real extensible, domg,, ,61Ndoms;, .02 # 0 (4.35)

or

domg,, (61)* N domsg,, (8,)° 0 (4.36)

holds Vz € Szxr. If 6, (2) > 02 (2) for Vz € Qzyg, then there exists a* € R and

p* € Sy such that
01 (2) > o + (p*,2) > 05(2), Vz € Szxr (4.37)

for all z € Szxr.

Proof: Assume that §; and —6, are two mixed E}-convex functions.

Case 1: Suppose (4.35) holds. This indicates that domgzlﬂl N domsg, 0, # 0
and domey, 61 N domgy, 62 # 0. For the convex extension 5?21 of Q?ZI and concave
extension 837 of 652, we have Ele (2) S0, (2) for Vy € R by proposition 4.2.
Since domey, 0, Ndomey 8, # 0 and domey 01Ndomey, 0y # 0, domg,, 01 Ndomg,, 8, #
0. By definition, ,#; and .8, are M!-convex functions. This and theorem 4.3 shows
that §; and —6, are integrally convex functions. By definitions 3.19 and 4.7, the
convex envelope structure 51 of 6, with respect to its real variables in R™ coincides
with the convex extension 6; of the M# discrete convex function ,8; with respect
to its variables in R™; therefore, 8, (z,y) = 8, (z,y) for all y € R™ when z € Z" is

fixed where

9, (2= sup {(p,2)+al (p,z1) +a<0;(z) for Vz; € Szxr}, (2 € Sy).
pEQy,a€R
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In addition, 6, (z) > 6, (z) for every z € Szxr by the assumption and 8, (2) > 5 (2)
by proposition 4.2 for every z € $y. Since ,0; and — (,6;) are polyhedral real
extensible convex functions, by theorem 4.1 it follows that 8; and 6, are polyhedral
M-convex functions. The separation theorem for the real variable functions (theorem

2.3) indicates the existence of a* € R and p* € Sy such that
0, (2) > a" + (p*,2) > 05 (2),Vz € Sy.
In addition,

6, (2)= sup {(p,2) +a| (p,21) +a <0, (z) forall z € Szxr}
R

pESY,aE€
and
52 (Z) = inf {(p, 2!) + Cll (p, Zl) +a >0, (2’1) for all z; € SZXR}
PESY,a€R
Therefore,
sup  {(p,2) +a} =01 (2) 2 a" + (p",2) 2 02(2) = _inf __{(p,2) +a},
PpESY,a€R PESy,a€R

and noting that (p, z1) + o < 01 (21) and (p, z1) + & > 05 (z1) for every z; € Szxr
we have

01(z1) =2 sup {{p,2)+a| (p,z1) +a < 0;(2) for all z; € Szxr}
pESv,a€R

a* + (p*’z1>

inf {(p,z) +a|(p,z1) + @ > 05 () for all z; € Szxr}
pESY,a€R

02 (2’1)

v IV

v

which completes the proof.
Case 2: Next we suppose that domg, ,60:0domg, 02 = @ and domg, 8% N

dome, 65 # 0. That is domg, 61 N doms, 02 = @, domey 01 N dome, 6y = § and
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domg,, 0% Ndomsg,, 05 # 0. For a fixed py € domg, 6* Ndomg, 85, and for any p € Sy,

we have
0t (p) = sup  {{p — po, 2) + [(po, 2) — 61 (2)]}
zGdO’m.ngnel
< sup  (p—po,2)+ sup  [(po,2) — 61 (2)]
zEdO’IngZXR91 zedongXkel
= sup  (p— po,z) + 6% (po)
zGdomg-z)<R91
65 (p) = s inf . {{p = po, 2) + [(po, 2) — 02 ()]}
ZCaomeg wr Y2
> ) B ) B
2 it o P02 F 0l (o 2) — 62(2)]
_ . _ 0
= it g, P P0,2) 405 (po)

from which it follows that

03 (p)— 6 (p)>  inf (p—po,z)= sup (p—po,2)+63 (po) — 6% (po)
zEdongxR02 zEdangxRﬁ

(4.38)

Since domg;,, z01 and domsg,, ;02 are disjoint mixed E;-convex sets, by the sepa-
ration theorem for mixed Fj-convex sets there exists a p* € Sy such that the right
hand side of (4.38) with p = p* is non-negative. Hence we have 63 (p*) > 6¢ (p*) and
by the assumption domg,, 8 Ndomag, 6 # 0, therefore there exist o* € R in addition
to p** € Sy by the separation theorem applied to the real variable functions 6§ and

6} such that

05()) = o +(p™,2) 20} (v)
L A2 =6 ()} 2 o+ e 2 sw {(p2) -6 ())
L AUp2) =0 ()} 2 o+ (p72) 2 sup {(p2) — 01 ()}

Using this inequality and noting that

(p,2) —02(2) 2 inf {(p,2) —02(2)}

ZESZ xR

sup {(p,2) =01 (2)} 2 (p,2) —01(2)

2E€SZ xR



we have

v

a’ + (p™*, z) > (p,z) — 61 (2)

o+ (p™ —p,2) 2 —01(2)

(p’ Z) - 02 (Z)
=03 (2)

02(2) < o™+ (pl",2) < 6:(2)

v

holding Vz € Qzxgr, where a** = —a* and p;* = p — p**. This completes the proof.

Note : Theorem 4.10 holds good in the case where the assumption ",6; and
— (40;) are polyhedral real extensible" stated in (4.35) is replaced with "8, and —8,
are polyhedral real extensible."

Next, we state and prove the Fenchel-type duality theorem for mixed E; convex-
concave functions.

Theorem 4.11 (Fenchel type duality for mixed E;-functions): Let 6; :
Jzxr = R U {400} be a mixed Ef-convex function and 6, : Szxg — RU {—o0} be

a mixed Ej-concave function such that either

.01 and — (.0,) are polyhedral real extensible, domg, ,6:1Ndoms;, .02 # 0 (4.39)

or
domg,, 0% N domg, 65 # 0 (4.40)
holds. Then we have
inf {61(z) — 62(z)} = sup {65(p) — 6! (p)} (4.41)
:DES‘ZXR pegv

If this common value is finite, the supremum is attained by some p € domgvef N
domg, 65.
Proof: Suppose that (4.39) holds. By the definitions of the discrete and real

versions of the Legendre-Fenchel transformations,

i 0@ -0E) > i (fE)-RE) (L.4)
sup {63 (p) - 6! ()} = sup {63 (p) — 6F ()} (4.43)
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hold. By using inequalities (4.42) and (4.43), we can assume that

e= inf {0;(z)—6;(z)}

€Sz xR

is finite. Applying the separation theorem of mixed F;-functions to §; — € and 65,

there exist a* € R and p* € Sy such that
01 (z) —e>a* + (p*,z) > 02 (2) (4.44)

for all z € Szxr. By (4.44)
01(z) —05(2) > ¢

and taking the infimum of both sides with respect to z € Sy,

inf {61(2) —02(2)} > ¢ (4.45)

zE€Qy

Applying the Fenchel-type duality theorem for real variable convex functions to the
left side of the inequality (4.45) we have

sup {63 (") -0 (")} > € (4.46)
(4.42) and (4.43) combined with (4.46) give (4.41) where the supremum is attained
at. p*.

Next suppose that domg,, ,610doms;,, 02 = 0 and domg, 6% Ndomg, 03 # 0. The

separation theorem for mixed F;-convex sets applied to domsg,, .61 and domg,, .02
.gives a p* such that (4.38) holds. Plugging in p = py + ¢p* in inequality (4.38) and
letting ¢ — o0, we obtain

sup {63(p) — 0} (p)} = +o0

whereas

'sr}lf {6:1(z) — 05(z)} = +o0

TEYZXR
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CHAPTER 5

DISCRETE L/Lf, MIXED T/T*, AND MIXED T;/T¢
CONVEX-CONCAVE FUNCTIONS

In this chapter, after providing brief information about L/L! convexity concepts
and related results, mixed 7/T* and mixed T;/T} separation and Fenchel duality

theorems will be stated and proven.

5.1 DISCRETE L AND L!* CONVEX-CONCAVE FUNCTIONS

The motivation behind the L-convex function concept introduced by Murota (1998)
arose from the generalization of the Lovdsz extension of submodular set functions.
L} convex functions are defined by Fujishige and Murota (2000). In this section,
submodular set functions, their Lovész extension and L/L* convex-concave functions
will be introduced. In addition, separation and Fenchel-type duality theorems for L

and LY convex-concave functions will be stated and proven.

5.1.1 SuBMODULAR FUNCTIONS

The concept of submodular functions underlies the notion of L-convex function idea;
therefore, we will have an introductory look at the basic definitions and results
related to submodular set functions following Murota (2003) . Let 2V denote the
power set of U.

Definition 5.1 (Submodular-Supermodular functions): A set function ¥ :

2V - R U {+oo}, which assigns a real number (or +o0) to each subset of a given
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finite set, is said to be submodular if for V X, ¥ C U the submodularity inequality,
PX) +9(Y) 2 P(XUY) +9(X NY),

holds, where the inequality holds by convention when % (X) or ¥ (Y) is equal to +oo.
It will be assumed that (@) = 0 and (U) < +o0. A function p: 2V - RU {—c0}
is supermodular when —g is submodular.

The relationship between the submodularity and convexity can be formulated
in terms of the Lovész extension which is also called Choquet integral or the linear
ertension.

If U = {w;},, is a finite set then for each ¢ € RY, we index the elements of U =
{u;}.—; in a non-increasing order in the components of U; i.e., U = {u1,uy, ..., un}
and

q(u1) = q(uz) > ... > q(un)

where |U| = n. Let ¢; = q(w;), U; = {u1,ug,...,u;} for i = 1,2, ...,n. We have

n—1

g= ) (%~ G+1)Xy, + GXy,

i=1
which is an expression of ¢ as a linear combination of the characteristic vectors of
the subsets U;.
The linear interpolation of 1 according to this expression yields to the definition
of the Lovész extension as follows:
Definition 5.2 (Lovdsz extension): For any set function ¢ : 2V — RU{%c0},

the Lovész extension zz : RY — RU {£00} of 1 is defined by

n—1

(@) = 3 (6 — a0 (U5) + 6 (U).

i=1
Note that here we consider 0 x {+oco} = 0 in the definition of Lovész extension %
of 1. The Lovész extension ajb\ is indeed an extension of ¥ in that J(X x) = ¥(X) for
X CU. The following theorem is due to Lovédsz (1983).
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Theorem 5.1 (Lovdsz): A set function 1 is submodular if and only if its Lovész
extension function @ is convex.

Duality of a pair of submodular-supermodular functions is formulated in the
following discrete separation theorem where we use the notation

z(X)=) z(u)
ueX
for a vector z = {z (u) |u € U} € RY and a subset X C U.

The following separation theorem for submodular set functions is due to Frank
(1982).

Theorem 5.2 (Frank’s discrete separation): Let 9 : Zb — RU {400} be a
submodular function such that (@) = 0 and ¥(U) < +o00 and p: 2V —» RU {~o0}
be a supermodular function such that x(0) = 0 and u(U) > —oo. If (X)) > u(X)
for V X C U then 3 z* € RY such that

P(X) > z*(X) > u(X), VX CU.

Moreover, if ¢ and p are integer valued, the vector z* can be chosen to be integer

valued.

Now we are ready to introduce L and L! convex-concave function concepts.

5.1.2 DISCRETE L AND L! CONVEX-CONCAVE FUNCTIONS

Let 9 : 2V — RU{+0o0} be a submodular set function and 1’; be its Lovasz extension,
which is indeed an extension of ¢ in the sense that 9 (xx) = ¥ (X) for X C U.
Definition 5.3 (Componentwise maxima-minima): The vectors of compo-

nentwise maxima and minima of p,q € RY are defined by
pVg=max(p(u),q(u)) and pAg=min(p(u),q(v)) (ueU),

respectively.
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The submodularity of ¢ on 2Y, or that @ on {0,1}Y, extends to the entire space.

In fact, it can be shown that w = @ satisfies

wp)+w(g 2wpVve+wlppAg), Vp,geRY. (5.1)

Note that the submodularity inequality for 1 is a special case of (5.1) with p = x

and g = xy because of the identities
Xxuy = Xx V Xy and xxny = Xx A Xy-
The definition of Lovédsz extension immediately indicates that
wp+al)=w(p)+ar, (Vpe RY Va € R) (5.2)

for r = ¢ (U), where 1 = (1,1,...,1) € RY. This shows the linearity of w with
respect to the translation of p in the direction of 1.

The properties (5.1) and (5.2) of the Lovész extension of a submodular set func-
tion are discretized to the following definition of L-convex functions.

Definition 5.4 (Discrete L-Convex function): A function w : ZY — RU

{400} with domzw # 0 is discrete L-convex if it satisfies

w(p)+w(g = wVe+wlpAq), Vp,qeZY,

and 3r € Rsuchthatw(p+1)=w(p)+r, Vpe ZV. (5.3)

Let 0 denote a new element not in U and put U = U U {0} .
Definition 5.5 (Discrete Li-Convex function): A function w : ZV — R U

{+o0} is called discrete L convex if & : ZU — R U {+oo} defined by

@ (po,p) =w(p—pol) (po € Z,p € ZY)

is an L-convex function.
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Definition 5.6 (L-Convex set): A non-empty set of integer points D C ZY is

said to be an L-convex set if it satisfies the following two conditions:

pq € D=pVgq pAgeD,

p € D=pt+tl1eD.

Recall that a polyhedral convex function f; : R — R U {+oco} is integral poly-

hedral convex if
argmin fi [—p| is an integral polyhedron for every z € domgf;.

Polyhedral L-convex functions with the integrality condition stated above are
called integrally polyhedral L-convex functions.

An example of an L. — convex function: Moriguchi and Murota (2005) intro-
duced a Hessian matrix that characterizes the Li-convexity of functions and showed
that the function w : Z% — R defined by Miller (1971)

0 n n
w(z) = Z (1 — H’yj (z; + k)) + /\chxj
k=0 =1 =1
is an L%-convex function where A > 0, ¢; > 0, and 7v;(-) is a cumulative distribution

function of a discrete nonnegative Poisson random variable represented as

k
AT :
’Yj (k) = Ze_)‘ﬂﬁ, k7m € Z+

m=0

with 1 < j < n.
For L-convex w; : ZY — RU{+o0} and L-concave wy : ZY — RU{—0c0}, discrete

versions of the Legendre-Fenchel transformations are defined by

wi(p) = sup {(p,z) —~wi(2)} (pERY),

zeZV

() = nf {p2)-w @)} PeRY).

The following results will be important when we prove the separation and Fenchel

type duality theorems for both L and T" convex-concave functions.
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The real extension of discrete L convex functions is defined in the same manner as
for the real convex extension of discrete M convex functions. Therefore we continue
to use definition 4.7 for real extension w; of a given L convex function wj.

The following proposition is due to Murota (2003).

Proposition 5.1: If w; , —wq : ZY — RU {+o0} are L~ convex functions then
wy (z) > wa (z) for Vz € ZY = w1 (z) > ws (z) for Vz € RY.

Theorem 5.3 is due to Murota (1998).

Theorem 5.3: An L! convex function is integrally convex. In particular, an
Lb-convex function is convex extensible.

The following theorem is due to Murota-Shioura (2000).

Theorem 5.4: The convex extension wi of an L-convex function w; : ZY —
R U {400} on the integer lattice is a polyhedral L-convex function provided that @y

is polyhedral.

5.1.3 SEPARATION AND FENCHEL TYPE DUALITY FOR L CONVEX-CONCAVE

FuncTIONS

Some of the L-convex function properties can be extended to the real convex function
properties: For example local minimization yields global minimization, and Fenchel-
type duality and separation theorems hold. In this section we state and prove the
separation and Fenchel-type duality theorems for discrete variable L-convex/concave
functions, as well as the separation theorem for L convex sets. The following two
theorems are due to Murota (1998) .

Theorem 5.5 (Separation of L-convex sets): Let D; (C ZU) and Dy (Q ZU)
be L-convex sets. If they are disjoint (D; N Dy = () then there exists z* € {—1,0,1}Y
such that

inf {(p,z*)} — sup {(p,z*)} > 1. (5.4)

p€D1 p€D2
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Theorem 5.6 (Separation theorem for discrete L functions): Let w; :
ZV — R U {+oo} be an L-convex function and wy : ZV — R U {—oc} be an

Li-concave function such that
domgw, N domgws # 0, (5.5)

or

domg (w?) N domg (wg) # 0. (5.6)

If wy (p) > we (p) for Vp € ZY then there exist 5* € R and z* € RV such that

w1 (p) 2 8"+ (p,z*) = wa(p) (5.7)

for all p € ZY. Moreover, if w; and w, are integer valued, there exist 3* € Z and
z* € ZY such that (5.7) holds.

Proof: We may assume that w; and —w, are two L-convex functions.

Case 1: Suppose domzw; N domgzwy # B. For the convex closure Wy of w; and
concave closure Wy of wy, we have w; (p) > w3 (p) for Vp € RY by proposition 5.1.
Since domgwi N domgiz # § holds, there exist B* € R and z* € RY such that for
every p € RY, wi(p) > B* + (p,2*) > wz(p) holds by the separation theorem for
real variable convex functions (theorem 2.3). This implies that for every p € ZY,
wi(p) = B* + (p,x*) > wa(p) holds since @7 (p) = w; (p) and w3 (p) = ws (p) for all
p € ZY by theorem 5.3.

The integrality assertion is proved from the facts that the integer subdiffer-
ential of an integer valued L-convex function is an M-convex set and that M-
convex sets have the property of convexity in intersection. We may assume that
inf {w; (p) — w2 (p) |[p € ZV} = 0. Then there exists py € ZV with w; (pg) — w2 (po) =
0 by the integrality of the function value. By w; being convex extensible and a

theorem of Murota ( (2003), theorem 7.43 — (2), pg. 196) we have

Or@7 (po) N Bz (o) = Orwi (o) N Gpws (Po) = dzw1 (po) N Ogws (o)

64



which is not empty since p* € Or@7 (po) N Oz (po) . Since dzws (po) and Byws (po)
are M-convex sets, the separation theorem for M-convex sets indicates the convexity

in intersection of M-convex sets, i.e.

Ozw1 () N Ogws (o) # 0 = Ozw: (zo) N Fpws (o) # B

which guarantees the existence of an integer vector 2** € dzw1 (po) NOpws (po) . With
this 2** and " = ws (po) — (P, z**) € R the inequality (5.7) is satisfied.
Case 2: Next suppose that domzw;, N domgws = @ and domgw? N domgws # 0.

For a fixed z¢ € domgw? N domgw$ and for any z € RY, we have
1 2 y )

wi(z) = suwp {{p,&—=z0) +[(p,20) —w1 ()]},

pEdomgw

< sup (p,z — Zo) + wj] (@),
pEdomgwi

wy(e) = _inf {{p,x—mzo)+[(p,20) — w2 (p)I},

pEdomgws

> inf (p,z — zo) + w} (z0),

pEdomgwa

from which follows

~

wy(z)—wi(z) 2 _inf (p,z—zo)— sup (p,z— zo)+wj(zo)—w] (o). (5.8)

pEdomzws pedomgws

Since domzw; and domgw, are disjoint L-convex sets, the separation theorem for
L-convex sets, theorem 5.5, gives z* € RY such that the right hand side of (5.8) with
z = z* is non-negative. With this z* and 8* € R such that w} (z*) < -8 < w§ (z*),
the inequality (5.7) is satisfied.

For integer valued w; and —w,, we have w} and —w§ to be integral polyhedral M-
convex functions, and hence domgw} and domgw$ are integral L-convex polyhedra.
We may assume zo € ZU by the convexity in intersection of M-convex sets and
z* € ZU by the separation theorem for L convex sets. Then w} (z*) and w$ (z*) are
integers therefore we can take an integer 5* € Z.

The following Fenchel-type duality result is due to Murota (2001).
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Theorem 5.7 (Fenchel-type duality for discrete L functions): Let w; :
ZV — R U {+oo} be an Li-convex function and wy : ZV — R U {—o0} be an

L!-concave function such that

domgw; N domzwsy # 0, (5.9
or
domgwi N domgwgy # 0. (5.10)
holds. Then
inf, (1) — wa)} = sup w3(o) — wi(@)). (5.11)

If this common value is finite, the supremum is attained by some z € domgw} N
domgws.
Proof: Suppose that domzw; N domgzws # 0. By the definitions of discrete ver-

sions of the Legendre-Fenchel transformations, we have the inequalities

inf {on () —wa (@)} 2 int (@5 () - TP} > (512
sup {15 (0) ~wi (@) 2 sup (15 (o) - i (@)} (513)

By using inequalities (5.12) and (5.13), we can assume that

6= inf {w(p) ~w2(p)}

is finite. By the separation theorem for L-functions applied to the pair (w; — §,ws),

there exist a* € R and z* € RY such that
w1 (p) — 6 > o + (p,z") > wsy (p) (5.14)

for all p € ZY which implies w$ (p*) — w} (p*) > 4. (5.12) and (5.13) combined with
(5.14) give (5.11) with the supremum at z*.
Next we suppose that domgw; N domzw, = @ and domgw} N domgws # 0. The

separation theorem for L-convex sets applied to domzw; and domgws gives p* €
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{0,£1}" such that (5.4) holds. Plugging in z = zo + cz* in inequality (5.8) and
letting ¢ — oo, we obtain

sup {w3(z) - wi(a)} = +oo,

zeZl
whereas

Jnf {wi(p) —wa(p)} = +oo.
by domzwi N domgws = 0.

The statements and proofs of the separation and Fenchel-type duality theorems

for L convex-concave functions will play an important role in that of the separation
and Fenchel-type duality theorems for mixed T' convex-concave functions. These

results are presented in the next section.

5.2 MIXED T AND T* CONVEX-CONCAVE FUNCTIONS

In this sectiqn we define mixed T" and T* convex-concave functions by using the
definitions of L, L! and proper real convex (concave) functions. In addition, the nec-
essary definitions are stated and related results are formulated to state and prove the
separation and Fenchel-type duality theorems of mixed T' convex-concave functions.

Let n,m € Z* such that U7 = {1,2,...,n} and U, = {1,2,...,m}. We will use
the notation s = (k,h), ¢ = (q1,%), % = (%,9%), ¢" = (4, 4), ¢ = (&, 6",
so = (ko, ho), Sv = R x R%2, Szup = ZUt x RY2, Oy = ZY1 x ZU2, Sy, = ZY and
Sg, = RY: (for i = 1,2) throughout this work.

Let ©; : Szxr — RU {00} . Associated to ©; we have two classes of functions;
ngzl, the set of integer variable functions for each fixed vector in Sg, and Q?Rz, the

set of real variable functions for each fixed integer vector in Sz, . i.e.
Q" = {QF: Sz — RU{£oo}|h € Sw, & Q (k) = Q4 (b, k), V(h, k) € Szxr},

07 = {QF: S, - RU {+oo} |k € Sz, & QF (h) = U (k, k), V(k, h) € Szxr)} .
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Definition 5.7 (Mixed convex extension): A function ©; : Szyg — R U
{+o00} is said to be mixed convex extensible if there exists Q; : Sy — R U {+o0},
a proper real convex function, such that Q; (k,h) = 4 (k,h) for ¥ (k,h) € Szxr
where the real extension of the integer variables is done by using definition 4.7 for
V(k,h) € Szxr-

Definition 5.8 (Mixed T convex (concave) function): A mixed function
1 : Szxr — R is called mixed T convex (concave) if it is mixed convex extensible,
L convex (concave) with respect to its integer variables and proper convex (concave)
with respect to its real variables.

Definition 5.9 (Mixed T* convex (concave) function): A mixed function
s : Szxr — R is called mixed T* convex (concave) if it is mixed convex extensible,
LY convex (concave) with respect to its integer variables and proper convex (concave)
with respect to its real variables.

Definition 5.10 (Mixed T-convex set): A set D = D; X Dy C Szxg is a
mixed T-convex set if D, is an L-convex set and D, is a real convex set.

Definition 5.11 (domsg,, ,$4): The domain of a mixed T-convex function
(z'.e. domgzmﬂl) is the set of points in Szxg where ; is finite. Henceforth we

assume the domain is a mixed T-convex set of the form
domg, x4 = domg, (4 X domgg, 1.

That is, the domain is a product set in Szyg.
Definition 5.12 (RI (domsg,, ;1) ): The relative interior of the mixed T-convex

set domg,, .l (i.e. RI (domngkﬂl)) is the set
RI (domg,, 1) = RI (domgzl M) x RI (domgmzﬂl) .

Note that RI (domgzl Q_l) is the set of integer points in the relative interior of the
domain of ;.
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The integer convex conjugate of a mixed T-function 2; has the form

Q1 (q1,9) = sup {{q1,z) — QU (z,9)},

Ees‘zl

and the real convex conjugate of ; has the form

91. (k,q2) = yselég {{@2, ) —u (k,y)}.

Definition 5.13 (Conjugate of a mixed T convex function): The convex
conjugate of a mixed T function ; : Szxg — RU {+00} with domg, 1 # 0 is

the function

Ot (q) = sup {{g,8) —Qu(s)}.

Ss€EVZxR

The following two lemmas characterize the correspondence between the conjugate
of a mixed T function and the real and discrete conjugates of a mixed T function.

Lemma 5.1: The convex conjugate of a mixed T function Q; : Szug — R U
{+oc0} with doma,, 1 # 0 satisfies @ = (=)™ = (=), £ Q, () = £ (k) +
g1 (h) in particular then Q¥ = fr (k) + g™ (h).

Proof: By definition 5.13,

(g = sup {(g,8) = (s)}
= sup sup {{(q1,k) + (g2, h) — Q1 (s)}
keSz, heSg,
= sup {(ql,k) + sup {{gz2,h) —u (3)}}
keSz, heSg,

= kséléfp {((h,k) +af (k’q2)}
= sup {{q, k) = (-97) (k,q2) }

= (—Qr). (Q1,Q2)

= (-0’ (q), Vg € Su.

Therefore Q¢ = (—QF)°. Similarly Q¢ = (—Q3)" follows.
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Suppose in particular €, (s) = f1 (k) + g1 (h) then

Q@) = suwp {(g,5) - N (s)}

€Tz xR

= sup {{(g,s) — fi(k)— g1 (h)}

SEQZ xR

= sup sup {{(qi,k) + (g2, h) — f1 (k) — g1 (h)}

heSr, k€S2,

= sup {(q1,k) — fi (k)} + sup {{g2,h) — g1 (R)}
f heSg

Zy 2
= fi(k)+gt (h).
Definition 5.14 (Conjugate of a mixed T concave function): The concave
conjugate of a mixed T' function Q3 : Szxr — RU {—o0} with domng, Qs # 0 is

the function

0 (q):= inf {(g,5) — % (s)}.

SESzZxR

The integer concave conjugate of a mixed T-function 2, has the form
Q; (q17h’) = inf {(ql’k) - (kvh)} )
ke%zl
and the real convex conjugate of 2, has the form
QE (k’q2) = hieg‘fz2 {<Q2a h’> — (k’ h)} :

Lemma 5.2: The concave conjugate of a mixed T-concave function Q, : Szxr —
R U {—oo} with domag, Q2 # 0 satisfies Qf = (—-03)7 = (=0F)°. If Qy (s) =
fa (k) + g2 (h) in particular then Qf = f5 (k) + ¢F (h).

Proof: By definition 5.14,

2B (q) = Jnf {{g,s) = Q2 (s)},
- hie%i2ki€%£1 {<q17 k) + (CI2; h’) - Q2 (8)} ’
i R G R CE RO
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it {@n - (- (@b -me))},
it (e, )~ (=05) (a1, )},

keS‘zl
(—95)" (q), Yq € Su.

Therefore O = (—03)° . Similarly Qf = (—0F)° follows.

Suppose in particular Q3 (s) = fo (k) + g2 (h) then

02 (q)

= inf {{g,s) - (s)},

sESzxR _
= of {{g,s) = fa (k) — 2 ()},
— hie%£2ki€%‘£1 {{q1, k) + (g2, h) — f2 (k) — g2 (R)},

= af (@ k)~ R W)+ il (k) ~a (),

= £ +oF (). |

The following lemma characterizes the conjugate correspondence between the

mixed T-convex and mixed T-concave functions.

Lemma 5.3: If Q; : Szxr — R U {400} is a mixed T-convex function then

& (9) = - (-0)* (~q) for every ¢ € Sy.

Proof:
Qf (@) = (k,h%lelg‘zxg {{(q1,92), (k, 1)) — Qu (k, B)},
= seiél‘zka {{g,s) — Q1 (s)},
— _sesgzpR {(—q, S) - (_Ql (8))} )

= —(-2)*(-9), ¥g € Sp.

Definition 5.15 (Convex (Concave) extension of a set): Given a mixed

function Q; : Szxg — R U {zoo} the convex (concave) extension of the family

of functions Q?Zl introduced just prior to definition 5.7 is the family of extended

functions

oon = {Q—’f :R® > RU {£oo} |h € Rm}
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where the extension of Qf from Z" to R is found by definition 5.7. If all elements of
ngzl are real convex (concave) extensible (in definition 5.7 sense) then the set O
is said to be the convex (concave) extension of Q?Zl.

Next, we state and prove the separation and Fenchel-type duality theorems for
mixed T convex-concave functions and the separation theorem for mixed T convex

sets.

5.2.1 SEPARATION anD FENCHEL - TYPE DUALITY THEOREMS FoR
MIXED T FUNCTIONS

For mixed T convex sets D = D; x Dy C Szxg and G = G; X G C Syzyr, the
notation DNG = @ means that D; N Gy = 0 and Dy N Gy = 0. The notation
DAG # 0, A means that Dy NGy # 0 and Dy N Gy # 0.

Definition 5.16 (Polyhedral real extensible mixed 7'/T*-convex func-
tion): A mixed T (resp. T*) convex function Q; : Szxr — R U {400} is polyhedral
real extensible if its extension Q; is a polyhedral real convex function.

Theorem 5.8 (Separation theorem for mixed T-convex sets): Let D =
D1 x Dy C Szxr and G = Gy X Go C Qzxr be mixed T convex sets. If D and G are
N disjoint (D; N Gy = @ and Dy N Gy = () then there exists ¢t € {—1,0,1}"* and a

nonzero vector ¢ € S, giving ¢* = (¢}, ¢3) such that
inf {<q*) S>} — Sup {(q*) S)} 21
seD seG

holds.

Proof: By the separation theorem for disjoint L-convex sets D; and G; there

exists a ¢¢ € {~1,0,1}"* such that

kinf {<qI$k>} >1+ sup {(qu)} g (515)
€Dy keGy
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Note that D, and Gs are two disjoint convex sets. Therefore, by the separation

theorem for real convex functions, there exists ¢5 € Sg, such that

inf {(g5, 1)} > sup {(g3, )} (5.16)
€Dr heGy

By adding (5.15) and (5.16), we have

dnf {{g7,k)} + inf {(g},h)} > 1+ sup {(¢],k)}+ sup {(q5,h)},
€D heDs keGy heGz
: * * > * *
reifep, UG K) (g, )} > 1+ S i k) + (a2, b
inf 1,0),(k,h > 1+ su 5a),(k,h))},
(k,h)eD{((ql %), (k, h))} (k,h)I;G{((ql %), (k,h))}
inf {(¢",5)} = 1+sup{{(¢",s)},
s€D seG
inf {{¢*, )} —sup {{¢*,8)} > 1, (5.17)
s€D s€G

which completes the proof.

By {Qf (h)} we denote the family of functions with respect to h indexed by &
for each k € Z™ when i =1, 2.

Theorem 5.9 (Separation for mixed T functions): Let Q; : Szyg — RU
{#00} be a mixed T*-convex function and Qs : Szxg — R U {—oc0} be a mixed

T*-concave function such that one of the following holds:

1 and — Qy are polyhedral real extensible, and domg,, Q1 N domg,, 2 # 0,

(5.18)
RI (doms, Q1) N RI (domg, Q2) # 0, (5.19)
domg“RQlﬁdongxRQg =0 and domgUQf n domqué> # (. (5.20)

If ; (s) > Qg (s) for Vs € Szxr, then there exists f° € R and ¢* € Sy such that
Q(s) 2B +(¢",s) = Qa2 (s) (5.21)
for all s € Szxr.
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Proof: Suppose §2; and —{2y are mixed T™*-convex functions such that ; (s) >
Qs (s) for Vs € Szxr.

Case 1: Let 2; and —Q; be polyhedral real extensible convex functions. There-
fore the convex extensions Q, and ) are polyhedral and satisfy Q1 (s) = Q1 (s)
and Q; (s) = Q(s) for all s € Szxg. By the assumption we have domg,, xh N
domg, S22 # 0. So it follows that domg, Q; N domg,, Qy # 0.

By the definition of a mixed T*-convex function, QF (k) and —Q% (k) are Li-
convex functions for all h € S, which are real extensible. Hence the convex extension
Q1" (k) of Q" (k) and the concave extension (" (k) of Q (k) satisfy 03, (k) > " (k)
for Vh € Sg, by proposition 5.1. This indicates that Q; (k,h) > Qp (k,h) for
V (k, k) € Szxr. '

In addition, noting that Q; (k,h) and Qg (k, k) are polyhedral real convex func-
tions whose domains have nonempty intersection, the separation theorem for real
variable convex functions indicate the existence of a* € R and ¢* € Sy such that
the inequality

Q1 (s) > a* +{g*,s) > Qs (s), Vs € Sy

holds. Therefore, by restriction to Szyg we have
Q(s) = a* +(q",s) > N (s), Vs € Szxr

since O, (s) = Q (s) and Q, (s) = Qy (s) for all s € Szxg.

Case 2: Suppose (5.18) does not hold and (5.19) holds. This indicates that
RI (domgzlﬂ_l) N RI (domgz1 Q—g) # 0,
and
RI (domgy, ) N RI (domey ) # 0.

The convex extension (3" (k) of Q7 (k) and the concave extension (3" (k) of Q% (k)

satisfy ;" (k) > " (k) for Vh € Sg, by proposition 5.1. This indicates that
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Qi (k,h) > Qg (k, h) for V (k, h) € Szxr. By the separation theorem for real convex

functions there exist a* € R and ¢* € Sy such that
Q1(s) > o* +{g*,s) > Qs (5), Vs € Sy,
which implies by restriction the existence of a* € R and ¢* € Sy such that
Q(s) > a" + (g%, s) > N (s), Vs € Szxr.

Case 3: Next suppose (5.18) and (5.19) do not hold and (5.20) holds. Therefore
we have domey, Q N domg,, QS # 0. For a fixed gy € domg, Q2 N domg, 03, and for

any q € Sy, we have

Q) = sup {{g—q0,8) +[{q,8) — ()]},
SEdomgzxnﬂl
< sup  {{g—qo,8)}+ sup  [{qo,s) — Qi (s)],
sEdongxRﬂl sEdongxRﬂl
= sup (g—q0,8)+ % (),
sEdo’rn.gZXth
and
(g = st (g — a0, 8) +[(0,8) = 0 (3)]}
ZXR
> inf —~ inf o)
2 i g e ds)+  inf [0 8) = R (s)],
- inf — Q8
sEdon]:LI;Zxkﬂz ((q 40, S>) + 2 (qO) 3

from which follows

B (@- (@) > inf (g—q,s)— sup {(g—qo,s)+Q (q0) — 2 ().
sEdom32xR92 SGdOWLQZXRQl
(5.22)

Noting that domg,, .1 and domg, . ) are disjoint mixed T-convex sets, by the
separation theorem for mixed T-convex sets (theorem 5.8) there exists ¢* € Sy such

that with ¢ = ¢* the right hand side of (5.22) is non-negative;

9% (¢) — 2 (¢') 2 1+ 9% () — 2 (90) > 0
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Hence we have QO (g*) > Q? (¢*) and by the assumption domg, Q¢ N domg, 05 0,
we can apply the separation theorem to the real variable functions QY and Q! to

obtain o* € R, ¢** € &y such that Vg

R (@) > o +{g™s) > (),

inf {{g,5) = (s)} 2 o +(¢",s) > sup {{g,8) - (s)},

3€ESVZ xR €Sz 4R
inf {{g,8) —Q2(s)} = o +(¢",s) > sup {{g,5) — QA (s)},
SESzZxR SESZ xR

Using this inequality and noting that

(g,s) = (s) > inf {{g,8) -~ (s)},

SESz xR
sup {{g,s) —Qu(s)} = (g,5) —u(s),
S€QZxR
we have
<qa 3) - Q2 (S) > a” -+ (q**, 3> 2> <q1 S) - Q1 (S) )
—92 (S) > o+ (q** - q, 5) 2 _Ql (S) »
MQ(s) < ™+ (" s) <Ms),
Vs € Szxr, where a** = —a* and ¢f* = g — ¢**. This completes the proof.

The following Fenchel type duality theorem for mixed T functions follows the
conditions of the separation theorem for mixed T convex-concave functions.

Theorem 5.10 (Fenchel type duality for mixed T-functions): Let Q; :
Szxr — RU {400} be a mixed T*-convex function and Qs : Szxr — RU {—00} be

a mixed T™-concave function such that one of the following conditions holds:
2, and — Q, are polyhedral real extensible, domg, 0 Ndomg, Qs # 0. (5.23)

RI (domg, Q1) N RI (domg, Q) # 0, (5.24)
domg,, ,iNdomg, Qs = 0 and domg, Q¥ N domg, QS # 0. (5.25)
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Then we have

5t {(9) = 0a(s)} = swp {02(0) - (@)} (5.26)

If this common value is finite, the supremum is attained by some ¢ € domg, Q¥ N
domg, Q5.

Proof: Suppose ; and —); are mixed T*-convex functions.

Case 1: Suppose that domag,, ,Q1Ndomg, Q2 # 0 holds. By the definitions of

discrete and real versions of the Legendre-Fenchel transformations, the inequalities

im0 -0} 2 it (W) - (9) > (5.27)
sup {R@-209} > Sup {9 (0 -t (@)} (5.28)

hold. By using the inequalities (5.27) and (5.28), we can assume that

§= inf {0 (s)—(s)}

SEVZxR
is finite. By the separation theorem for mixed T-functions applied to the pair

(Q1 — 4,8s), there exist 8* € R and ¢* € Sy such that
Q(s)—6>6"+{g",s) >N (s), Vs € Szxr (5.29)

which implies

Q(s)—Qa(s) > ¢

—(8) + () (a,8) = D () 2 0

o (= (@9 + Q)+ it {49 -0} 2 0

— sup {(g,s) —(s)}+ inf {(g,8) —(s)} = ¢

€Sz xR LIS/
R@-( =9 (5.30)
Taking the supremum of both sides of (4.30) with respect to ¢ € Sy we have

sup {QF (9) -3 (9)} > 6. (5.31)

q€Sy
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(5.27) and (5.28) combined with (5.31) give (5.26) with the supremum attained at

*

q*.
Case 2: Suppose (5.23) does not hold and (5.24) holds. This indicates that

RI (domgvﬁl—) NRI (domguﬁg) # 10
By the Fenchel-type duality for real variable convex functions

inf  {Q; (k,h) — O (k, )} = Q -0t (¢, 5.32
ot {0 h) — T (k, )} (pl,ill)‘és,,{ 2ane) - (@ae)} (532

holds. Since Szxr € Sy and Q;lg, = Q; we have

inf {5 (k,h) - (k,R)} < inf  {Q (k,h) = D (k,h)}

(k,h)eg‘u (k,h)GQ‘ZX‘;
< sSup {Ql (k: h’) - QZ (k1 h)}
(kvh)eslxlk
< sup {ﬁl_(k,h) —Q_g(k,h)}
(k,h)GS‘U

But (5.32) then implies that the inequalities in the previous expression are actually
equalities and we then obtain the desired formula.

Case 3: Next we suppose that (5.23) and (5.24) do not hold, but (5.25) holds. The
separation theorem for mixed T-convex sets applied to domg, 1 and domg,
gives a ¢* such that (5.22) holds. Plugging in ¢ = g + ¢¢* in (5.22) and letting

¢ — 00, we obtain
sup {Q5 (k) — Q¥ (k) : k € Sy} = +oo,

whereas

inf {Ql(kt) - Qz(k) ke C\}ZXR} = +00.

5.3 MIXED T; AND T} CONVEX-CONCAVE FUNCTIONS

In this section we introduce mixed 77 and 77 convex-concave functions, whose defi-

nitions originate from the definitions of discrete L and L* convex-concave functions.
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Separation and Fenchel-type duality theorems for mixed T convex-concave functions
will be stated and proven in addition to the statement and proof of the separation
theorem for mixed 77 convex sets.

Definition 5.17 (Restriction function): A restriction function of a mixed
function ¢; : Szxr — R is the discrete variable function .¢; : Sz — R which
satisfies ¢, (s) =. ¢, (s) for all s € 7.

Definition 5.18 (Discretized set): A set .S C Sz is the discrete set of § C
Szxpr if S NS =, S holds.

Definition 5.19 (Mixed T; convex (concave) function): A mixed function
¢, : Szxr — RU{+o00} is called mixed T} convex if ¢f : R™ — RU{oo} is the convex
envelope of .¢7 : Z™ — R U {oo}, its restriction function ,¢; is discrete L—convex
and it is L—convex with respect to its integer variables. ¢y : Szxr — R U {—oc0} is
mixed Tj-concave if —¢, is mixed 7}-convex.

Definition 5.20 (Mixed T} convex (concave) function): A mixed function
b5 : Szxr — RU{+o0} is called mixed T} convex if ¢ : R™ — RU{oo} is the convex
envelope of ,¢5 : Z™ — R U {oo}, its restriction function ,¢; is discrete Li-convex
and it is Li-convex with respect to its integer variables. &y Szxr — RU{—o0} is
mixed T7-concave if —¢, is mixed T}-convex.

Note that a mixed Tj-convex set is the mixed set K = H x W C $z«r where
discretized set .K of K is an L-convex set in Sz, H is an L-convex set in Sz, and

W is a real convex set in Sy,.

5.3.1 SEPARATION anD FENCHEL -TYPE DUALITY THEOREMS FoORr
MIXED T3 FUNCTIONS

We first state and prove the separation theorem for mixed 77-convex sets. Second, by

using the definitions of mixed 77 and T} convex-concave functions, we will state and
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prove the separation and Fenchel-type duality theorems for mixed 7 convex-concave
functions.

Theorem 5.11 (Separation theorem for mixed T';-convex sets): Let K; =
H; x Wi and K, = Hy x W, be two N disjoint mixed Ti-convex sets in Szxg. Then

there exists a ¢f € {—1,0, l}U1 and ¢ € Sg, with ¢* = (g}, ¢}) such that

inf {(q*73>} — sup {(q*>3>} 21
s€K; s€Ko

holds.
Proof: Suppose K; and K are N disjoint mixed T}-convex sets. Therefore, H; N
H,; = 0 and W; N W, = 0. The separation theorem for L-convex sets applied to the

pair of convex sets H; and H, indicates the existence of gt € {—1,0,1}"* such that

inf {(gh,k)} 2 1+ sup {(at,k)} (5:33
€M k€Hq

hold. Applying the separation theorem for real convex sets to the disjoint convex

sets W1 and W,, there exists a g5 € Sg, such that
inf {(g3,m)} > sup {(g5, )} (534)
eWwy heWs .

holds. By adding (5.34) and (5.33)

v

klenfgl {{q7,k)} + hlenuf/l {{a3, )}

inf {{(¢*,s)} > 1+ sup {(q",s)},
8€K1 seK2

1+ sup {(q},k)} + sup {(g5,h)},
keH, heWs

which completes the proof. ‘
By {qﬁf (h)} we denote the family of functions with respect to h indexed by k
for each k € Z" when ¢ = 1,2. Let ¢, and —¢, be two mixed 77 convex functions.
Theorem 5.12 (Separation of mixed T; functions): Let ¢; : Szxr —
R U {+00} be a mixed T}-convex function and ¢, : Szxr — RU {—00} be a mixed

T7-concave function such that either

«$, and —(.¢,) are polyhedral real extensible, domg,, ¢ Ndomey,, z¢o # 0, (5.35)
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or

domg, ¢ N domg, ¢S # 0 (5.36)

holds. If ¢, (s) > ¢, (s) for Vs € Szxg, then there exists 8* € R and ¢* € Sy such
that
b1(5) 2 8" +(q,5) = ¢4 (5), Vs € Szun. (5.3)

Proof: Assume that ¢; and —¢, are two mixed T7-convex functions.

Case 1: Suppose (5.35) holds. This indicates that doms, ¢; Ndomsg, ¢, # @ and
domney, ¢ Ndomgg, ¢, # 0. For the convex extension 5?11 of ¢(le and concave exten-
sion 5? “of qﬁg 1 we have 5?11 (s) 25;321 (s) for Vh € RY by proposition 5.1. Since
domgy, ¢ N alomgml$2 # 0 and domg,_ ¢; Ndome, ¢, # 0, domg, ¢, Ndomg, ¢, # 0.
By definition, .¢; and ,¢, are Li-convex functions. This and theorem 5.4 show that
¢, and —¢, are integrally convex functions. By definitions 3.19 and 4.7, the convex
envelope structure 31 of ¢, with respect to its real variables in R™ coincides with
the convex extension ¢; of the L# discrete convex function ,¢, with respect to its
variables in R™; therefore, ¢, (k,h) = 81 (k,h) for all h € R™ when k € Z™ is fixed

where

$(s)= sup {(g,8)+B| (g,51) +B < ¢y (s1) for Vs, € Szxr}, (s € Sv).
qESY,BER

In addition, ¢; (s) > @, (s) for every s € Szxr by the assumption and ¢; (s) > é, (s)
by proposition 4.2 for every s € Sy. Since .¢, and — (.¢,) are polyhedral real
extensible convex functions, by theorem 5.4 it follows that ¢, and ¢, are polyhedral
L-convex functions. The separation theorem for the real variable functions (theorem

2.3) indicates the existence of * € R and ¢* € Sy such that
61 (8) = B+ (¢, s) > ¢, (s),Vs € Sy.

In addition,

¢1(s) = QSUI; R{<q, s)+ B (g,81)+B < ¢ (s1) forall s; € Szxr}
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and

52 (s) =

Therefore,

. > (\.
qu}‘I}geR{(q, s) + Bl (g, 81) + B > ¢; (s1) for all s; € Szxr}

sup {{g,s) + B} =y (s) 2 B" +(q",5) 2 6o (s) = _inf {(g,5) +5},

q€Sv,B€R

g€y ,BeR

and noting that (g, s1) + 8 < ¢; (s1) and (g, s1) + 8 > ¢, (s1) for every s; € Szxr

v

¢1 (s1)

v Vv

v

sup  {(g,s) +B| {g,51) + B8 < ¢, (s1) for all 51 € Szxr}
q€Sv,BeR

IB* + (q*731>

inf {{q,s) + B|(g,51) + B = ¢ (s1) for all s; € Szxr}

q€Sv ,BER

¢5 (s1)

which completes the proof.

Case 2: Next we suppose that domsg, ,¢;Ndoms, ¢, = @ and domg,¢? N

doms, 49 # 0. That is dome, ¢; N doma, ¢, = 0, domey ¢; N domaey ¢, = § and

domg, ¢ Ndomg, ¢ # 0. For a fixed ¢ € domg, ¢ Ndomg, ¢$, and for any ¢ € Sy,

we have

(@

3 (q)

from which follows

3 (9) — ¢t (a) >

sup {{g — a0, 5) + [(q0,5) — &1 ()]},

sedomsszRqSl
sup  (g—qo,8) + sup  [(go,s) — 41 (3)],
sEMgZXR¢1 sedongXkdzl

sup  {qg—qo,8) + ¢? (o),

3€d°m82xk¢1
{<q = 40, S) + [(qO) S) - ¢2 (S)]} 3

sedo'anZXRqS2

inf (g — qo,8) + . inf . [{q0,8) — &2 (s)],

sedomngR b2 edongXR 2

inf (g —qo,8) + ¢g (%),

sGdongxR¢2

inf  {(g—qo,8)— sup  {g—dqo,S) + b5 (q0) — ¢t (q0)-

s€domag g b2 s€domg, p®1

(5.38)
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Since domg,, ¢, and domg,, , P, are disjoint mixed T;-convex sets, by the separation
theorem for mixed Tj-convex sets there exists a ¢* € Sy such that the right hand
side of (5.38) with ¢ = ¢* is non-negative.

Hence we have 63 (¢*) > ¢? (¢*) and by the assumption domg,, ¢¢ Ndomg, ¢3 # 0.
Therefore by the separation theorem applied to the real variable functions ¢$ and

¢? there exist 8* € R and ¢** € Sy such that

#3(q) = B +(g™,s) > ¢! (q)

seigfxn{@,s)—% (9} = B+ (g™, s) > sup {{g,s) — ¢, (s)}

SEQVZXR
,Juf {(@,8) —da(8)} = B +(¢™,8) > sup {{g,8) — 1 ()}

Using this inequality and noting that

<q7 S> - ¢2 (3) > seiﬁ{lzka {<qa 3) - ¢2 (8)}
sup {(q) S) - ¢1 (8)} Z (q’ 3) - ¢1 (3)

SESzZxR

we have

(,8) —da(s) = B +(q™,s) 2(q,8) — ¢:1(s)
—¢3(8) = B +{q" —q,8) 2 ~¢1 (s)
$2(s) < B+ (q"5) < ¢ ()

holding Vs € Szyg, where 8** = —3* and ¢i* = ¢ — ¢**. This completes the proof.

Note: Theorem 5.12 holds good in the case where the assumption ".¢, and
— («¢,) are polyhedral real extensible" stated in (5.35) is replaced with "¢, and —¢,
are polyhedral real extensible."

Next, we state and prove the Fenchel-type duality theorem for mixed 77 convex-
concave functions.

Theorem 5.13 (Fenchel type duality for mixed T;-functions): Let ¢, :

- Qzxr — RU {400} be a mixed T}-convex function and ¢, : Szxg — RU {—0c0} be
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a mixed T7-concave function such that either

«¢; and —(.¢,) are polyhedral real extensible, domg, ,¢;Ndoms, . be 7# 8, (5.39)

or
domg, ¢¥ N domg, ¢S # 0 (5.40)
holds. Then we have
inf {41(s) = da(s)} = sup {62(a) — 4t (@)} (5.41)
SEIZXR qESY

If this common value is finite, the supremum is attained by some q € domguqﬁf N
domg, ¢5.
Proof: Suppose that (5.39) holds. By the definitions of the discrete and real

versions of the Legendre-Fenchel transformations, the inequalities

B (9=} 2 nf (B ()T ()} 2 (5.42)
sup {83 (0) -8t ()} = Sup {43 (2) — ¢! ()} (5.43)

hold. By using inequalities (5.42) and (5.43), we can assume that

6= inf {¢,(s)— ¢y (s)}

IETZ xR

is finite. Applying the separation theorem of mixed Tj-functions to ¢; — § and ¢,,

there exist 5* € R and ¢* € Sy such that
$1(s) =6 20"+ (qa"s) = ¢, (s) (5.44)

for all s € Szxr- By (5.44)
¢1(s) — b2 (s) 26,

and taking the infimum of both sides with respect to s € Sy, we obtain

inf {¢; (s) — ¢y (s)} 2 4. (5.45)

sESyY
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Applying the Fenchel-type duality theorem for real variable convex functions to the

left side of the inequality (5.45) we have

sup {¢4 (¢) - ¢} (¢")} > 6. (5.46)

s€Sy
(5.42) and (5.43) combined with (5.46) give (5.41) where the supremum is attained
at g*.
Next suppose that doms,_,$;Ndomg, ¢, = @ and domg, ¢ Ndome, 63 # 0. The
separation theorem for mixed Ti-convex sets applied to domg,, ¢, and domg,, ¢,
gives a ¢* such that (5.38) holds. Plugging in qv= qo + c¢* in inequality (5.38) and

letting ¢ — oo, we obtain
sup {¢3(q) — ¢t (q)} = +oo,
q€Sy

whereas

Lt {91(5) = 65(s)} = +oo.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 CONCLUSION

For (continuous) Euclidean space R™ there is a single, universally agreed upon notion
of convex set and single, universally agreed upon notions convex/concave functions.
These notions lead to various forms of separation and Fenchel duality theorems that
have significant importance in optimization theory. On the other hand, for functions
defined on (or for subsets of) the (discrete) integer space Z", there are multiple
notions of convexity that are useful in applications, each of which has its corre-
sponding set of separation and Fenchel duality results, which are also of importance
in discrete optimization problems. The principle goal of this work has been to intro-
duce various notions of "mixed convexity" (that is, problems with both discrete and
continuous variables) for convex sets and functions, with the goal of achieving a
synthesis of the continuous and discrete separation and Fenchel duality results. This
goal is motivated by the fact that many mixed problems (that is, involving both
discrete and continuous variables) arise quite naturally in applications. One such
example is the two parameter design problem associated with the M/E;/1 Queueing
system stated by Kumin in 1973. Considering mixed convex and concave functions,
separation and Fenchel-type duality theorems have not been proposed previously.
In this work, by using the similarities in the statements and proofs of separation

and Fenchel-type duality theorems of discrete and real convex-concave functions, we

86



have stated and proven the separation and Fenchel-type duality theorems for certain

classes of mixed convex-concave functions.

6.2 FUTURE WORK

Convexity definitions are stated in the introduction, and we used some of those
discrete convexity definitions to obtain the main results of this work. Improvement
in the mixed convexity theory can be achieved by using similar results from both
real and integer convexity theories. If separation and Fenchel-type duality theorems
exist for other classes of discrete functions, separation and Fenchel-type duality
theorems might also be shown for other classes of mixed functions. By using the
mixed convexity definition, the convexity of mixed functions that exist in queueing
theory might also be shown.

Another future goal is to find refinements of the results presented in this work

with weaker and more easily verifiable assumptions.
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