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ABSTRACT 

 

 

Weight and service life are often the two most important considerations in the design of 

structural components. This research incorporates a novel crack propagation analysis 

technique into shape optimization framework to support design of 2-D structural 

components under mixed-mode fracture for: (i) maximum service life subject to an upper 

limit on weight, and (ii) minimum weight subject to specified minimum service life. In 

both cases, structural performance measures are selected as constraints and CAD 

dimensions are employed as shape design variables. Fracture parameters, such as crack 

growth rate and crack growth direction are computed using extended finite element 

method (XFEM) and level set method (LSM). 

XFEM is a computational technique in which special enrichment functions are 

used to incorporate the discontinuity of structural responses caused by crack surfaces and 

crack tip fields into finite element approximation. The LSM employs level set functions 

to track the crack during the crack propagation analysis. As a result, this method does not 

require highly refined mesh around the crack tip nor re-mesh to conform to the geometric 

shape of the crack when it propagates, which makes the method extremely attractive for 

crack propagation analysis. 

However, shape sensitivity analysis for crack propagation involves calculating 

derivatives of enrichment functions employed in XFEM that are discontinuous or 

unsmooth. The proposed sensitivity analysis method in this study overcomes these issues 
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and calculates accurate derivatives of both crack growth rate and direction with respect to 

design variables. The proposed method employs (i) semi-analytical method for the 

derivatives of stresses and displacements, and (ii) material derivatives for the SIFs 

obtained from the domain form of the interaction integral, and therefore, the crack growth 

rate and direction. The method enables computation of sensitivity coefficients of fracture 

parameters for a growing crack and is up to 40% faster than the commonly used finite-

difference method. 

Two different optimization approaches—a batch-mode, gradient-based, nonlinear 

optimization and an interactive what-if analysis—are used for optimization. An engine 

connecting rod example is used to demonstrate the feasibility and accuracy of the 

proposed method. The design optimization process can successfully handle arbitrary 2-D 

geometries and can solve general design problems that are most commonly encountered, 

such as design for maximum life and design for minimum weight. 
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Chapter 1  

INTRODUCTION 

 

 

1.1 Background and motivation 

Failure of components due to fatigue and fracture is a major issue that spans across 

several engineering disciplines and costs hundreds of billions of dollars (NBS, 1983). 

Structural components commonly observed in aerospace and mechanical industries are 

obvious examples where crack growth could lead to downtime or failure and may even 

result in substantial damage and loss of life. The Liberty ships (Bannerman & Young, 

1946), Comet Aircraft incident (Wells, 1955), Aloha Airlines accident (NTSB, 1989), 

and the Sioux City DC-10 crash (NTSB, 1990) are some of the well-known incident of 

catastrophic failure due to fracture. 

The mere presence of crack does not condemn a structure to be unsafe. In fact, the 

damage tolerant design and analysis approach takes into account the presence of flaws 

and predicts useful remaining service life (residual life) of components. It is a common 

practice to subject critical structural components to periodic inspections to identify 

presence of cracks and then monitor crack growth at certain intervals. Knowing the 

geometric shape of structure, flaw shape and size, material, and loading, in many cases it 

is possible to predict the period of sub-critical crack growth using crack propagation 
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analysis techniques. An example where cracks observed during periodic inspection in the 

nose landing gear strut resulted in grounding of an aircraft is shown in Figure 1.1. 

 

Figure 1.1  Cracks found in an airplane landing gear strut 

 

A vast pool of empirical data and commercial software tools, such as AFGROW 

(Harter, 2008), MSC.Fatigue (MSC.Software, 2005), and NASGRO (SwRI, 2005), are 

available for crack propagation analysis for many commonly used geometric shapes, such 

as plates, pipes, and shafts. However, when it comes to crack propagation simulation for 

arbitrary 2-D geometries, currently available commercial software tools require 

significant manual efforts for mesh rearrangement and are computationally expensive. 

For crack propagation analysis of complex 3-D parts, such as the landing gear strut 

shown above, currently available commercial software tools are simply not adequate. The 

reasons behind this deficiency are elaborated in Section 1.4. An accurate and efficient 

software tool for crack propagation analysis is therefore necessary. 

As mentioned earlier, geometric shape of the component, flaw size and shape, 

material, and loading (including environmental effects) are the four factors that influence 
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residual life of the components. Out of these, flaw shape and size are beyond designer’s 

control and loading is determined by application for the most part.  Hence geometry and 

material are the two parameters that designer can control to increase residual life. 

Material selection is usually dictated by cost, application, environment, availability and 

manufacturing processes. Hence, in addition to developing reliable and efficient crack 

propagation analysis capability, effect of geometric shape on crack propagation must be 

studied during the design stage in order to optimize shape of structural components for 

maximum service life. Such study will be useful in two ways: (i) for parts with pre-

existing flaws, shape of the part can be optimized subject to given loads and initial flaw 

size, and material could be removed from or added to the part, if feasible, and (ii) by 

conducting crack initiation analysis during the design phase, most likely location and 

type of flaw can be estimated, and this information can be used for optimizing residual 

service life of the component. 

One can argue that changing shape of a component will change stress pattern, and 

hence for the optimum design, the crack may not initiate at the same location as the initial 

design. While this may be true in many cases, there is an important class of structural 

components, such as connecting rod, turbine blades, gear teeth, aircraft wing panels, etc., 

for which the overall geometric shape is dictated primarily by functional requirements 

and interfacing components. For such components, there is only limited flexibility for 

changing shape of some local geometric features, and hence even with changes in shape 

of local features, the overall stress pattern remains similar to original design. This 

research will be instrumental in design of such components. For other cases, it will be 

helpful in identifying effect of shape changes on crack propagation. 
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This research aims at incorporating an accurate and efficient crack propagation 

simulation technique into structural shape optimization framework to facilitate design of 

structural components for maximum service life. This chapter presents an overview of the 

current state of the art related to these topics and briefly describes the proposed design 

process that effectively addresses aforementioned issues. 

1.2 Shape optimization of cracked structures 

The problem of crack propagation analysis in structural components has enjoyed great 

deal of popularity in the mechanics community; however, the issue of designing 

components for maximum service life has not received much attention. Some noteworthy 

attempts to include service life into shape optimization problem were made earlier. This 

section summarizes some such attempts made previously and distinguishes between those 

and the current work. 

Han and Lim (2002) used the growth-strain method to optimize shape of 

components for prolonged service life. The growth-strain method is independent of 

boundary parameterization or sensitivity analysis. It optimizes shape of a structure by 

volume deformation occurring in the process of making a parametric variable (such as 

von Mises stress) uniform. The process was demonstrated using a compact tension (CT) 

specimen and a cantilever beam. The use of growth-strain method limited its application 

to simple geometries. Jones et al. (2002) presented a simple shape optimization algorithm 

with residual (fracture) strength as constraint; however, the objective was not to 

maximize service life. They indicated that in several cases, fracture based design 

optimization may yield a lighter structure than stress-based optimization, and emphasized 
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the need for a detailed study of this subject. Banichuk et al. (2005) presented a technique 

for solving the problem of axisymmetric shell optimization under fracture mechanics and 

geometric constraints. The objective was to minimize weight of brittle and quasi-brittle 

bodies subject to constraints on the cyclic loading for fatigue cracks using genetic 

algorithms. Miegroet et al. (2005) developed a generalized shape optimization method 

based on level set method and XFEM. Although their work dealt with shape 

optimization, it focused on shape and topology optimization of structures with voids—

shape optimization for structures with cracks was not addressed. This method was found 

very promising for topology optimization where voids with simple geometric shape 

(circle, ellipse, rectangle, etc.) in the structure were represented using level sets. The 

main limitations were (i) use of finite difference method for sensitivity calculation, and 

(ii) its applicability to only the basic geometric shapes. 

1.3 Shape sensitivity analysis of cracked structures 

Design sensitivity analysis can be used by itself to reveal relationship between shape 

design variables and fracture parameters or it can be used to provide sensitivity 

coefficients to optimization algorithm for determining direction towards optimum design. 

In either case, it is a powerful technique to analyze effect of changes in shape design 

variables on fracture parameters. Several attempts to compute sensitivity of fracture 

parameters with respect to either shape design variables or crack geometry parameters 

were made. Some of the salient works are briefly discussed next. 

Chang et al. (1997) solved a shape optimization problem in which the crack-

initiation life was imposed as design constraint. Continuum-based material derivative 



6 

technique was used for computing sensitivity coefficients of structural parameters; 

whereas finite difference method was used to compute gradients of fatigue life. The 

method was demonstrated using a 3-D structural part. Saurin (2000) presented an adjoint 

variable method for computing sensitivity coefficients of fracture parameters. They 

computed fracture parameters using domain form of the well-known ܬ-integral. Design 

sensitivity coefficients for plates under in-plane loading were computed for several 

different boundary variations. Taroco (2000) developed a continuum-based material 

derivative approach for shape sensitivity analysis of 2-D cracked bodies. He simulated 

crack propagation as a shape change of the cracked body and computed sensitivity 

coefficients of potential energy release rate with respect to unit crack advance. 

Along similar lines, Chen et al. (2001) successfully demonstrated a continuum-

based material derivative approach for calculating sensitivity coefficients of fracture 

parameters. This approach is useful in first and second order reliability methods (FORM 

and SORM) that are commonly used in probabilistic fracture mechanics. However, in 

their research only sensitivity analysis of SIFs for a given crack configuration was 

performed; crack growth rate and propagation direction were not considered. Thus, 

sensitivity computation for an evolving crack could not be performed. Also, the 

sensitivity coefficients of SIF’s were computed with respect to crack length and no shape 

design variables were considered. 

It was observed that although all of these techniques included fracture parameters 

in the shape optimization problem, none of them dealt with maximizing service life of 

structural components. The scope of their research was restricted to simple and standard 

shaped geometries. On the other hand, although some successful attempts for shape 
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sensitivity analysis of cracked structures were made, these were based on finite element 

method and suffer from the limitations described in section 1.4. Further, a majority of 

these computed sensitivity coefficients with respect to crack size, and not shape design 

variables. The principal problem behind this is suspected to be the tedious and 

computationally expensive re-meshing procedure required by then-existing numerical 

crack propagation analysis techniques. Hence the work for present research commenced 

with a review of computational fracture mechanics in order to find a suitable method that 

would overcome aforementioned limitations. 

1.4 A brief review of computational fracture mechanics 

Numerical methods are indispensible for analyzing mechanics of fracture as it is possible 

to derive closed-form solutions for fracture problems only for some simple geometric 

shapes. Over the span of past five decades, the field of computational fracture mechanics 

has steadily evolved. A comprehensive overview of the state of the art in crack 

propagation analysis can be found in (Mohammadi, 2008; Timbrel, Chandwani, & Cook, 

2004). There are only a handful of methods, such as boundary integral method, boundary 

element method (Aliabadi, 1997), finite element method, and meshless methods, 

available for crack propagation study. Among them, the finite element method (FEM) is 

the most versatile and widely accepted. Numerous finite-element based techniques for 

solving crack propagation analysis problems exist, and an excellent review of those was 

presented by Bordas (2003) and Mohammadi (2008). Here, only a few finite element–

based techniques are briefly mentioned to give the reader an idea about current 

capabilities. 
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1.4.1 Discrete inter-element crack 

This approach models discontinuity by simply defining crack along element edges 

(Ngo & Scordelis, 1967; Nilson, 1968). However, the crack-tip singularity cannot be 

accounted for unless special singular finite elements are included in the model. 

1.4.2 Discrete cracked element 

This technique overcomes some limitations of the discrete inter-element crack 

method by allowing crack to be defined inside an element (Grootenboer, 1979; Saouma 

& Ingraffea, 1981). New mesh is created by splitting the cracked element and dividing 

adjacent elements to satisfy compatibility. State variables of the new elements are 

computed using state variables of the parent element. 

1.4.3 Smeared crack model 

In this technique, the crack is modeled implicitly by simulating the mechanical 

effects of crack in terms of strength or stiffness reduction of the model (Rots, Nauta, 

Kursters, & Blaauwendraad, 1985). The model is essentially treated as a continuum. 

Initially crack propagation path is determined, and appropriate changes in the model’s 

compliance are made. Hence, it does not require re-meshing and is much more efficient 

than methods described earlier. However, its major drawbacks are that it cannot model 

crack surfaces. Also, representation of the cracked model as a continuum induces locked-

in stresses in the elements close to the localization zone and hence there could be an 

artificial increase in the structural stiffness (Rots J. G., 1988). 
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1.4.4 Singular elements 

Singular elements model the crack-tip singularity by collapsing the nearby 

midside node to the quarter points (Barosum, 1974; Benzley, 1974; Henshell & Shaw, 

1975; Barosum, 1977). This is a very powerful technique and has been widely used since 

its inception for modeling crack-tip singularity using finite element method. 

All of these methods have their advantages and disadvantages and no single 

method is capable of solving all types of problems. However, all of them are based on 

FEM, and FEM in its classic form, suffers from following disadvantages that make it 

cumbersome and unattractive to model crack-growth behavior. 

• The mesh must conform to the discontinuity. This implies that every time the 

crack grows, the structure must be re-meshed. 

• Highly refined mesh near crack-tip is required to accurately capture the high 

stress and displacement gradients observed in that region. 

• Since the structure is being re-meshed during each crack-growth cycle, it becomes 

difficult to track local structural performance measures, such as displacements, 

during shape design optimization. 

• It is nearly impossible or impractical to model crack growth for geometrically 

complex 3-D components due to the limitation of mesh-generators. 

• The need for highly refined mesh and re-meshing greatly increases computational 

burden. 

Development of a new class of methods called as generalized or enriched finite 

elements (Melenk, 1995) has proved to be a major breakthrough in solving problems 

involving discontinuity in the structure. These methods exploit the partition of unity 
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(Melenk & Babuska, 1996; Babuska & Melenk, 1997) property of the finite elements to 

enrich the approximation space so that the feature of interest (crack, bi-material interface, 

singularity, etc.) is naturally reproduced. It was shown by Melenk and Babuska (1996) 

that the use of such enrichment functions significantly improves convergence rate and 

accuracy of the solution. In the short period since their inception, these methods have 

gained a wide following in the computational mechanics community. 

1.5 The eXtended Finite Element Method 

In this research, one of the methods based on the partition of unity principle, the XFEM 

(Belytschko & Black, 1999), is employed for crack propagation analysis. In the XFEM, 

nodes surrounding the crack-tip region are enriched using four functions that span the 

near-tip asymptotic fields derived from linear elastic fracture mechanics (LEFM) theory. 

This facilitates representation of the crack independent of the finite element mesh and 

helps capture crack-tip fields accurately with minimal mesh refinement. Heaviside 

function is used to enrich the nodes whose support is cut by the crack. This helps 

incorporate the discontinuity across the crack surface. 

The XFEM has been used to solve a variety of problems including crack growth 

analysis. Belytschko and Black (1999) first demonstrated application of the XFEM for 

modeling static fracture mechanics problems. Since then, the XFEM has been 

successfully used to model quasi-static crack propagation (Huang, Sukumar, & Prevost, 

2003), dynamic crack propagation (Belytschko & Chen, 2004), cracks in Mindlin-

Reissner plates (Dolbow, Moes, & Belytschko, 2000), cohesive crack growth (Moes & 

Belytschko, 2002), arbitrary branched and intersecting cracks (Daux, Moes, Dolbow, 
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Sukumar, & Belytschko, 2000), non-planar 3-D crack growth (Moes, Gravouil, & 

Belytschko, 2002; Gravouil, Moes, & Belytschko, 2002), and several other crack 

propagation problems. A more in-depth review of various developments and applications 

of XFEM can be found in (Dolbow, 1999; Chessa, 2002; Bordas, 2003). It was shown 

that combination of the XFEM with the level set method (LSM) provides an elegant 

scheme for modeling crack propagation (Stolarska, Chopp, Moes, & Belytschko, 2001). 

1.6 Level set method 

The LSM was introduced by Osher and Sethian (1988) to model moving interfaces. In 

this method, an interface of interest is represented as a zero-level set of a function that is 

of one higher dimension than the interface itself. The interface is modeled using implicit 

level-set functions and updating the position of the interface simply requires updating 

values of these functions. When implemented within the finite element framework, the 

level-set functions are stored at nodes, and are updated as the interface evolves. This 

computation takes place over a fixed mesh, meaning that the need to re-mesh the 

structure is completely obviated. Originally, the LSM was introduced for modeling 

closed interfaces (voids or inclusions in the structure, bi-material interfaces, etc.) and as 

such, were not suitable for modeling cracks, which can be described as open curves. 

Stolarska et al. (2001) modified the LSM to overcome this limitation. They employed 

one level set function to represent the crack surface and another to represent the crack 

front. The intersection of zero level sets of these two functions was used to represent the 

crack-tip. 
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To summarize, the XFEM necessitates minimal mesh refinement and the LSM 

eliminates the need for re-meshing. Thus, the combination of these two methods 

effectively addresses all of the FEM limitations discussed earlier, and is the method of 

choice for this research. 

1.7 Design problem definition 

With the sound analysis method in place, it is desirable to further extend the method to 

support design of structural components by optimizing geometric shape for maximum 

service life. It is assumed that initial crack size, shape, and location are specified and 

constant amplitude cyclic loading is applied. Two types of design problems are 

considered in this research. In the first design problem, the goal is to maximize service 

life of components subject to constraints on volume (which is analogous to weight) and 

structural performance measures. The design problem is defined as: 

Maximize: ܰሺ܊ሻ     

  Subject to:  ॽሺ܊ሻ < ॽ௠௔௫, ߰୧ሺ܊ሻ ൑  ߰௜
௨  

            ௝ܾ
ℓ ൑ ௝ܾ ൑ ௝ܾ

௨  

(1.1) 

where ܰ is the service life in number of load cycles; ௝ܾ are the shape design variables 

with lower and upper limits ௝ܾ
௟ and ௝ܾ

௨, respectively; ॽ is the volume with the upper limit 

of ॽ௠௔௫; and ߰௜ are the constraints on structural performance measures, such as stresses. 

The second design problem, which focuses on minimizing material subject to 

constraints on service life and structural performance measures, is defined as: 
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Minimize: ॽሺ܊ሻ     

  Subject to: ܰሺ܊ሻ > ܰ௠௜௡,  ߰୧ሺ܊ሻ ൑  ߰௜
௨ 

        ௝ܾ
ℓ ൑ ௝ܾ ൑ ௝ܾ

௨ 

(1.2) 

where ܰ௠௜௡ is the minimum required service life. 

An overview of the design process is shown in Figure 1.2. For both design 

problems, the geometry of the structure is represented in CAD environment. The design 

variables employed for shape DSA are essentially the dimension parameters defined in 

CAD. A combination of XFEM and LSM is used for computing fracture parameters and 

for crack propagation analysis. A semi-analytical shape design sensitivity analysis (DSA) 

method developed in this research is used to calculate gradients of crack propagation rate 

and propagation direction with respect to geometric parameters that govern the shape of 

the structural components. The gradients are then supplied to an optimization algorithm 

that determines shape changes. Depending on problem type, the objective could be either 

maximum service life or minimum weight. The design is then updated and the process is 

repeated until optimum design is found. Since the geometry is defined in CAD 

environment, downstream processes, such as rapid prototyping, dimension verification, 

virtual manufacturing, and finally, physical prototyping using CNC can be readily carried 

out. 

 



14 

 

Figure 1.2  Proposed shape optimization process for maximizing service life of structural 

components 

 

 

The remainder of the dissertation is organized as follows. Chapter 2 briefly 

discusses the fracture mechanics concepts used in this study. The fracture mechanics 

theory used for this research is discussed and the crack growth laws are reviewed. 

Computation of SIFs that determine the crack growth parameters using interaction energy 

integral technique is also presented. 

XFEM and LSM theories are discussed in more detail in Chapter 3. Incorporation 

of these methods into the finite element framework is described. The enrichment 

functions used are explained briefly. Special considerations required for the 

implementation of these methods for crack propagation analysis is explained in detail. 
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The computational code available for XFEM-LSM methods was only capable of 

performing static analysis. This code was extended to model crack propagation. The 

accuracy of this code is demonstrated using an example and the comparison of results 

against reference solution is also shown. A detailed study was conducted to determine 

correct level of mesh refinement and crack growth increment size. Results for this study 

are presented at the end of this chapter. 

Chapter 4 is devoted to the discussion on design sensitivity analysis. First, design 

velocity field, which is used for updating finite element mesh during design optimization 

process, is briefly explained. Different methods considered for evaluation of sensitivity 

coefficients of fracture parameters are presented. The semi-analytical method developed 

in this research for DSA is explained in detail. DSA results for two numerical examples 

are shown to demonstrate accuracy and efficiency of the semi-analytical method. 

Chapter 5 explains the optimization process in detail. The feasibility and scope of 

the proposed design process is demonstrated using an engine connecting-rod example. 

Results for the two design problems discussed earlier using two different optimization 

methods—batch-mode optimization and interactive what-if study—are presented. 

Finally, Chapter 6 concludes this research and identifies enhancements and scope 

for further extension of this design process for 3-D problems. 
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Chapter 2   

LINEAR ELASTIC FRACTURE MECHANICS 

 

 

The problem of modeling crack propagation has been of considerable interest to the 

mechanics community. In earlier stages of fracture mechanics, the techniques developed 

for estimating fracture parameters heavily relied on empirical knowledge. Since it is not 

possible to extensively test each and every component, certain standard specimens were 

tested and the data required for computation of fracture parameters was made available. 

However, since then, structural components have become increasingly complex in terms 

of geometry—partly due to advances in manufacturing processes, and partly due to 

advanced modeling tools and simulation-based design techniques. Although the empirical 

knowledge based techniques were (and still are) applicable for many commonly used 

components, the increasing geometric complexity and the need to reduce cost call for 

more advanced crack propagation analysis techniques. It also reiterates the need to 

understand of effect of geometric shape on crack propagation. 

2.1 Scope of linear elastic fracture mechanics 

A detailed and authoritative discussion on LEFM theory can be found in (Anderson, 

1985). Limitations of LEFM are discussed here to define scope of this research. LEFM is 

a branch of fracture mechanics that deals with problems in which the size of the plastic 
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zone around the crack tip is very small in comparison to the domain size. LEFM holds 

well for the brittle mode of fracture, which governs the fracture until the SIFs are less 

than the material fracture toughness. Fracture in metals after this point is usually 

accompanied by significant plastic yielding and since LEFM is unable to analyze crack 

growth in such cases, it yields conservative estimate of life. However, for a majority of 

common structural applications, fracture toughness is still considered as the failure 

criteria. Due to this fact, and due to its simplicity, LEFM is widely used and is also 

adopted in this study. 

2.2 Crack-tip opening modes 

The three independent movements of the upper and lower crack surfaces with respect to 

each other (corresponding to three independent cases of loading) define the three crack 

opening modes as shown in Figure 2.1. 

 

a) Mode I: Crack opening    b)  Mode II: Crack Shearing c)  Mode III: Crack Tearing 

Figure 2.1  Modes of crack tip opening 

 

The strength of stress singularity near the crack-tip region in each mode is 

characterized by the stress intensity factor (SIF) for that mode. The SIFs for the three 

modes are denoted by ୍ܭ, ,୍୍ܭ and ୍୍୍ܭ. In a general case, more than one mode of loading 

may be present, and the crack tip fields can be modeled by an appropriate linear 
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combination of those corresponding to these three modes. Such problems are called 

mixed-mode problems. In this research, only planar components are considered and 

hence further discussion would be limited to the first two modes. 

2.3 Mixed-mode crack-tip fields 

According to LEFM theory, the crack-tip fields are given by Eq. (2.2) through Eq. (2.5) 

(Anderson, 1985). In these expressions, ሺݎ,  ሻ are used to define location of a point inߠ

local crack-tip coordinate system (shown in Figure 2.2), ߤ is the shear modulus, ߥ is 

Poisson’s ratio, and ߢ is the Kolosov coefficient, whose value is given by 

ߢ  ൌ 3 െ for plane strain;           and  ߥ4 ߢ      ൌ ଷିఔ
ଵାఔ

for plane stress (2.1)

 

 

Figure 2.2  Crack-tip coordinate system 

 

Stress fields for a crack under pure mode I loading are given by 

 ൝
௫௫ߪ
௬௬ߪ
߬௫௬

ൡ ൌ ௄౅

√ଶగ௥
ݏ݋ܿ  ఏ

ଶ

ە
ۖ
۔

ۖ
ۓ 1 െ ݊݅ݏ ఏ

ଶ
݊݅ݏ ଷఏ

ଶ

1 ൅ ݊݅ݏ ఏ
ଶ

݊݅ݏ ଷఏ
ଶ

݊݅ݏ ఏ
ଶ

ݏ݋ܿ ఏ
ଶ

ݏ݋ܿ ଷఏ
ଶ ۙ

ۖ
ۘ

ۖ
ۗ

 (2.2)

 ௬௬ߪ

߬௫௬ 
ܲሺݎ,  ሻߠ

 ߠ
ߠሺݔ ൌ 0ሻ 

 ݕ
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And the associated compatible displacement fields are as follows: 

 ቄ
௫ݑ
௬ݑ

ቅ ൌ ௄಺
ଶఓ ට ௥

ଶగ
ቐ

ݏ݋ܿ ఏ
ଶ

ቂߢ െ 1 ൅ ଶ݊݅ݏ2 ఏ
ଶ
ቃ

݊݅ݏ ఏ
ଶ

ቂߢ ൅ 1 െ ଶݏ݋2ܿ ఏ
ଶ
ቃ
ቑ (2.3)

Stress fields for a crack under pure mode II loading are given by 

 ൝
௫௫ߪ
௬௬ߪ
߬௫௬

ൡ ൌ ௄಺಺

√ଶగ௥
 

ە
ۖ
۔

ۖ
݊݅ݏെۓ ఏ

ଶ
ቂ2 ൅ ݏ݋ܿ ఏ

ଶ
ݏ݋ܿ ଷఏ

ଶ
ቃ

݊݅ݏ ఏ
ଶ

ݏ݋ܿ ఏ
ଶ

ݏ݋ܿ ଷఏ
ଶ

ݏ݋ܿ ఏ
ଶ

ቂ1 െ ݊݅ݏ ఏ
ଶ

݊݅ݏ ଷఏ
ଶ

ቃ ۙ
ۖ
ۘ

ۖ
ۗ

 (2.4)

And the associated compatible displacement fields are as follows: 

 ቄ
௫ݑ
௬ݑ

ቅ ൌ ௄಺಺
ଶఓ ට ௥

ଶగ
ቐ

݊݅ݏ ఏ
ଶ

ቂߢ ൅ 1 ൅ ଶݏ݋2ܿ ఏ
ଶ
ቃ

ݏ݋ܿ ఏ
ଶ

ቂߢ െ 1 െ ଶ݊݅ݏ2 ఏ
ଶ
ቃ
ቑ (2.5)

It can be observed from these equations that the near-tip stresses and 

displacements are completely determined by the stress intensity factors. Numerical 

computation of SIFs is discussed in section 2.5. 

2.4 Quasi-static fatigue crack growth 

2.4.1 Crack growth rate regions 

Fatigue crack growth here refers to the crack growth under constant-amplitude 

cyclic loading conditions. A plot of crack growth rate per cycle ݀ܽ ݀ܰ⁄  against stress 

intensity factor range ∆ܭ is shown in Figure 2.3. The curve can be divided into three 

regions (Zahavi & Torbilo, 1996). 
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• Crack initiation region: In the first region, crack initiation occurs when the ∆ܭ 

exceeds threshold value, ∆ܭ௧௛. At this point, the slope of the curve becomes 

constant. 

• Linear Crack Propagation: This region exhibits linear relationship between ∆ܭ 

and  logሺ݀ܽ ݀ܰ⁄ ሻ, and the crack growth takes place according to the Paris law 

(Paris, Gomez, & Anderson, 1961). This region corresponds to the useful service 

life for most structural components, and is the focus of this research. The Paris 

law remains valid until ∆ܭ ൏  ௖ is the fracture toughness of theܭ∆ ௖, whereܭ∆

material. 

• Overload Failure: In the last region, accelerated crack growth rate is observed, 

and even a small increment in ∆ܭ may result in a rapid crack growth, and 

eventually, failure. The plastic zone ahead of the crack tip is significant in size, 

and must be taken into account while predicting crack growth in this region. 

 

 

Figure 2.3  Three regions of crack growth rate 
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2.4.2 Paris law for fatigue crack growth 

Paris et al. (1961) presented an empirical law that relates fatigue crack growth to 

LEFM. For a given fatigue loading, assume that ∆ܭ ൌ ௠௔௫ܭ െ  .௠௜௡ is the SIF rangeܭ

Suppose that the crack grows by amount ∆ܽ in ∆ܰ cycles. Crack growth rate is related to 

 :as follows ܭ∆

∆௔
∆ே

ൎ ௗ௔
ௗே

ൌ ሻ௠ܭ∆ሺܥ (2.6)

where ܥ and ݉ are material constants. For general mixed-mode loading, ∆ܭ is replaced 

by an equivalent SIF range, ∆ܭ௘௤, given by 

௘௤ܭ∆ ൌ ඥ∆୍ܭ
ଶ ൅ ୍୍ܭ∆

ଶ (2.7)

Usually, the crack growth per cycle ∆ܽ is very small—almost of the order of 10ି଼ 

in (Anderson, 1985). Hence, instead of computing crack growth in each cycle, it is a 

common practice to predetermine the value of ∆ܽ. As a thumb rule, ∆ܽ ൌ ܽ/10, where ܽ 

is the initial crack length. It is assumed that other fracture parameters would remain 

constant while crack propagates through this increment. If the crack has small curvature, 

smaller values of ∆ܽ can be selected. Once ∆ܽ is fixed, the only unknown is the 

corresponding number of cycles, which is computed using the following equation. 

∆ܰ ൌ ∆௔
஼ሺ∆௄೐೜ሻ೘ (2.8)

Note that in some cases, an initial analysis may be required to determine the crack 

trajectory and an adjustment in  ∆ܽ value may be required. 
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2.4.3 Crack growth direction 

Along with crack growth rate, crack propagation angle (ߠ௖) is the other necessary 

parameter in modeling crack propagation. Some of the commonly used criteria for 

determining crack growth angle are: 

• The maximum energy release rate criterion (Nuismer, 1975); 

• The maximum circumferential (hoop) stress criterion or the maximum principal 

stress criterion (Erdogen & Sih, 1963); and 

• The minimum strain energy density criterion (Sih, 1973). 

The maximum hoop stress criterion, which states that the crack will propagate in a 

direction where the hoop stress (ߪఏఏ) is maximum, is used in this study. The expression 

for ߠ௖, obtained by setting the shear stress from Eq. (2.2) and Eq. (2.4) to zero, is given 

as: 

௖ߠ ൌ ݊ܽݐܿݎܽ 2 ቀଵ
ସ

ሺܭூ ⁄ூூܭ േ ඥሺܭூ ூூሻଶܭ ൅ 8⁄ ቁ (2.9)

It can be seen from Eq. (2.8) and Eq. (2.9) that ∆ܰ and ߠ௖ are functions of ୍ܭ and ୍୍ܭ, 

whose calculation is discussed next. 

2.5 Calculation of stress intensity factors 

The stress intensity factors depend on component geometry, loading, and the initial crack 

geometry. For commonly observed simple geometries (plates, shafts, pipes, etc.) SIFs can 

be determined using the vast pool of empirical data. However, accuracy of these 

empirical relations fades away as geometric complexity of the components increases and 

for the components such as the landing gear shown in Figure 1.1, different techniques 



23 

must be devised. The advancements in numerical techniques, such as the FEM, the 

boundary element method, and meshless methods, have been a great boon for developing 

such techniques. A slew of numerical techniques have been developed to estimate SIFs. 

Some of the commonly employed techniques are: Virtual crack extension (VCE) 

(deLorenzi, 1982; 1985); Virtual crack closure integral (VCCI) (Buchholz, Grebner, 

Dreyer, & Krome, 1988; Chow & Atluri, 1995); Quarter point element stress (QPES) 

(Buchholz, Chergui, & Dhondt, 1999); and ܬ-integral (Rice, 1968) converted into domain 

form (Stern, Becker, & Dunham, 1976; Shih, Moran, & Nakamura, 1986; Moran & Shih, 

1987; Moran & Shih, 1987; Shih & Asaro, 1988; Nishikov & Atluri, 1987). 

 integral method is especially popular for evaluation of mixed-mode SIFs and is-ܬ

adopted in this study for the following reasons: 

• It involves evaluation of a path-independent contour integral, and thus, it yields 

good results for widely different meshes (Dhondt, 2001). 

• The required data for evaluation of the integral is readily available from numerical 

solution of the boundary value problem, and thus can be easily incorporated into 

any finite element code. In fact, this method was recently incorporated into the 

commercial finite element code, ABAQUS (Courtin, Gardin, Bezine, & Ben Hadj 

Hamouda, 2005). 

• Unlike VCE, VCCI, and QPES, this method does not require any adjustment or 

rearrangement of the mesh near crack-tip. 

 integral-ࡶ 2.5.1

 integral is basically a path independent contour integral around the crack tip. Its-ܬ

use as a fracture parameter was put forth by Rice (1968). ܬ-integral is given by 
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ܬ ൌ ׬ ቂܹߜଵ௝ െ ௜௝ߪ
డ௭೔
డ௫భ

ቃ ௝݊݀߁௰ (2.10)

where ܹ is the strain energy density; ߪ௜௝ is the Cauchy stress tensor; and ௝݊ is the 

outward normal to an arbitrary contour ߁ around the crack tip as shown in Figure 2.4. 

 

 

Figure 2.4  Path independent closed contour around the crack tip 

 

Physically, ܬ-integral may be interpreted as the energy flowing through the contour Γ per 

unit crack advance. Under elastic conditions, the ܬ-integral is equivalent to Griffith’s 

energy release rate (Anderson, 1985), and its relation to the stress intensity factors for 2-

D cases is given by 

ܩ ൌ ܬ ൌ ׬ ቂܹߜଵ௝ െ ௜௝ߪ
డ௭೔
డ௫భ

ቃ ௝݊݀߁௰ ൌ ଵ
ாכ ሺܭூ

ଶ ൅ ூூܭ
ଶሻ  (2.11)

As seen above, ܬ-integral evaluation directly yields energy release rate and cannot 

distinguish between contributions due to crack opening and crack shearing modes. To 

overcome this difficulty, a conservation integral for two kinematically admissible states 

(actual and auxiliary), is computed (Yau, Wang, & Corten, 1980). Further, it is more 
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convenient to perform integration over an area than a contour from finite element 

standpoint. Hence, ܬ-integral is converted to a domain form by applying divergence 

theorem. 

2.5.2 Domain form of ࡶ-integral 

Consider Eq. (2.10) written on a closed contour with a weight function ݍ 

introducd in the integrand 

ᇱܬ ൌ ׬ ቂܹߜଵ௝ െ ௜௝ߪ
డ௭೔
డ௫భ

ቃ ௝݉߁݀ݍ௰ (2.12)

where ௝݉ is the outward normal to the closed contour ߁. The weight function ݍ is defined 

as 

ݍ ൌ ൝
1                  on ߁ଵ       
0                  on ߁ଶ      

arbitrary     otherwise
(2.13)

Since ݍ ൌ 0 on  ߁ଶ and the integrand vanishes on ܥା and ିܥ, the closed contour integral 

in Eq. (2.12) reduces to a contour integral on  ߁ଵ. Applying divergence theorem to Eq. 

(2.12) yields the following domain (area) integral. 

ᇱܬ ൌ ׬ ൜ డ
డ௫ೕ

ቂܹߜଵ௝ െ ௜௝ߪ
డ௭೔
డ௫భ

ቃ ݍ ൅ ቂܹߜଵ௝ െ ௜௝ߪ
డ௭೔
డ௫భ

ቃ డ௤
డ௫ೕ

ൠ஺ (2.14)  ܣ݀

The first term vanishes for linear elastostatics. Comparing Eq. (2.12) and Eq. (2.14) and 

reversing normal ௝݉ in Eq. (2.12) to be the outward normal  ݊௰ଵ leads to 

׬ ቂܹߜଵ௝ െ ௜௝ߪ
డ௭೔
డ௫భ

ቃ ௝݉߁݀ݍ௰ ൌ ׬ ቂߪ௜௝
డ௭೔
డ௫భ

െ ଵ௝ቃߜܹ డ௤
డ௫ೕ஺ (2.15)  ܣ݀

Thus, the domain form of ܬ-integral is  
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ܬ ൌ ׬ ቂߪ௜௝
డ௭೔
డ௫భ

െ ଵ௝ቃߜܹ డ௤
డ௫ೕ஺ ܣ݀ (2.16)

2.5.3 Interaction energy integral 

As pointed out earlier, the evaluation of ܬ-integral does not give separate values of 

mode I and mode II SIFs. Yau et al. (1980) proposed an interaction integral technique, in 

which two kinematically admissible states of a body are superimposed to extract the 

mixed-mode SIFs. 

Consider two independent equilibrium states of a cracked body. State 1 is defined 

as the actual state for the given boundary conditions, while state 2 is an auxiliary state 

which will be explained later. The ܬ-integral for the two superposed states is 

ሺଵାଶሻܬ ൌ ׬ ቈܹሺଵାଶሻߜଵ௝ െ ቀߪ௜௝
ሺଵሻ ൅ ௜௝ߪ

ሺଶሻቁ
డቀ௭೔

ሺభሻା௭೔
ሺమሻቁ

డ௫భ
቉௰ ௝݊݀(2.17)  ߁

where the total strain energy is 

ܹሺଵାଶሻ ൌ ଵ
ଶ

ቀߪ௜௝
ሺଵሻ ൅ ௜௝ߪ

ሺଶሻቁቀߝ௜௝
ሺଵሻ ൅ ௜௝ߝ

ሺଶሻቁ (2.18)

Eq. (2.17) can be expanded and rearranged as 

ሺଵାଶሻܬ ൌ ׬ ൤ܹሺଵሻߜଵ௝ െ ௜௝ߪ
ሺଵሻ డ௭೔

ሺభሻ

డ௫భ
൨ ௝݊݀߁௰ ൅ ׬ ൤ܹሺଶሻߜଵ௝ െ ௜௝ߪ

ሺଶሻ డ௭೔
ሺమሻ

డ௫భ
൨ ௝݊݀߁௰ ൅

׬ ൤ܹሺଵ,ଶሻߜଵ௝ െ ௜௝ߪ
ሺଵሻ డ௭೔

ሺమሻ

డ௫భ
െ ௜௝ߪ

ሺଶሻ డ௭೔
ሺభሻ

డ௫భ
൨ ௝݊݀߁௰   

׵ ሺଵାଶሻܬ ൌ ሺଵሻܬ ൅ ሺଶሻܬ ൅ ሺଵ,ଶሻܯ

(2.19)

Here ܬሺଵሻand ܬሺଶሻ are the ܬ-integrals for actual state and auxiliary state, respectively, and 

 .ሺଵ,ଶሻ is the interaction integral for the two equilibrium statesܯ
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ሺଵ,ଶሻܯ ൌ ׬ ൤ܹሺଵ,ଶሻߜଵ௝ െ ௜௝ߪ
ሺଵሻ డ௭೔

ሺమሻ

డ௫భ
െ ௜௝ߪ

ሺଶሻ డ௭೔
ሺభሻ

డ௫భ
൨ ௝݊݀߁௰   (2.20)

ܹሺଵ,ଶሻ is the interaction strain energy 

ܹሺଵ,ଶሻ ൌ ଵ
ଶ

ቀߪ௜௝
ሺଵሻߝ௜௝

ሺଶሻ ൅ ௜௝ߪ
ሺଶሻߝ௜௝

ሺଵሻቁ ൌ ௜௝ߪ
ሺଵሻߝ௜௝

ሺଶሻ ൌ ௜௝ߪ
ሺଶሻߝ௜௝

ሺଵሻ  (2.21)

Just like ܬ-integral, the interaction integral is converted into domain form. 

ሺଵ,ଶሻܯ ൌ ׬ ൤ߪ௜௝
ሺଵሻ డ௭೔

ሺమሻ

డ௫భ
൅ ௜௝ߪ

ሺଶሻ డ௭೔
ሺభሻ

డ௫భ
െ ܹሺଵ,ଶሻߜଵ௝൨ డ௤

డ௫ೕ
஺ܣ݀   (2.22)

Expanding individual terms yields: 

ሺଵ,ଶሻܯ ൌ ׬ ൤ߪଵଵ
ሺଵሻ డ௭భ

ሺమሻ

డ௫భ

డ௤
డ௫భ

൅ ଵଶߪ
ሺଵሻ డ௭భ

ሺమሻ

డ௫భ

డ௤
డ௫మ

൅ ଶଵߪ
ሺଵሻ డ௭మ

ሺమሻ

డ௫భ

డ௤
డ௫భ

൅ ଶଶߪ
ሺଵሻ డ௭మ

ሺమሻ

డ௫భ

డ௤
డ௫మ

൨ ஺ܣ݀        

 ൅ ׬ ൤ߪଵଶ
ሺଶሻ డ௭భ

ሺభሻ

డ௫భ

డ௤
డ௫మ

൅ ଶଶߪ
ሺଶሻ డ௭మ

ሺభሻ

డ௫భ

డ௤
డ௫మ

െ ଵଶߪ
ሺଶሻ డ௭భ

ሺభሻ

డ௫మ

డ௤
డ௫భ

െ ଶଶߪ
ሺଶሻ డ௭మ

ሺభሻ

డ௫మ

డ௤
డ௫భ

൨ ஺ܣ݀   

(2.23)

Rewriting Eq. (2.23) as follows, 

ሺଵ,ଶሻܯ ൌ ׬ ஺ܣ݄݀
(2.24)

where  ݄ ൌ ݄ଵ ൅ ݄ଶ ൅ ݄ଷ ൅ ݄ସ ൅ ݄ହ ൅ ݄଺ െ ݄଻ െ ଼݄ and  ݄௜, ݅ ൌ 1 to 8 are given as: 

݄ଵ ൌ ଵܧ ൤ߥଵ
డ௭భ

ሺభሻ

డ௫భ
൅ ଶߥ

డ௭మ
ሺభሻ

డ௫మ
൨ డ௭భ

ሺమሻ

డ௫భ

డ௤
డ௫భ

   ݄ଶ ൌ ଶܧ ൤డ௭భ
ሺభሻ

డ௫మ
൅ డ௭మ

ሺభሻ

డ௫భ
൨ డ௭భ

ሺమሻ

డ௫భ

డ௤
డ௫మ

  

(2.25)
݄ଷ ൌ ଶܧ ൤డ௭భ

ሺభሻ

డ௫మ
൅ డ௭మ

ሺభሻ

డ௫భ
൨ డ௭మ

ሺమሻ

డ௫భ

డ௤
డ௫భ

  ݄ସ ൌ ଵܧ ൤ߥଶ
డ௭భ

ሺభሻ

డ௫భ
൅ ଵߥ

డ௭మ
ሺభሻ

డ௫మ
൨ డ௭మ

ሺమሻ

డ௫భ

డ௤
డ௫మ

  

݄ହ ൌ ଵଶߪ
ሺଶሻ డ௭భ

ሺభሻ

డ௫భ

డ௤
డ௫మ

  ݄଺ ൌ ଶଶߪ
ሺଶሻ డ௭మ

ሺభሻ

డ௫భ

డ௤
డ௫మ

  

݄଻ ൌ ଵଶߪ
ሺଶሻ డ௭భ

ሺభሻ

డ௫మ

డ௤
డ௫భ

   ଼݄ ൌ ଶଶߪ
ሺଶሻ డ௭మ

ሺభሻ

డ௫మ

డ௤
డ௫భ
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Factors ܧଵ, ܧଶ, ߥଵ, and ߥଶ depend on stress state. For plane stress, ܧଵ ൌ ܧ ሺ1 െ νଶሻ⁄ , 

ଶܧ ൌ ܧ 2ሺ1 ൅ ⁄ሻߥ ଵߥ , ൌ 1, and ߥଶ ൌ ଵܧ ,For plane strain .ߥ ൌ ܧ ሺ1 ൅ ሻሺ1ߥ െ ⁄ሻߥ2 , 

ଶܧ ൌ ܧ 2ሺ1 ൅ ⁄ሻߥ ଵߥ , ൌ ሺ1 െ ଶߥ ሻ, andߥ ൌ  .ߥ

Eq. (2.11) for the superposed state can be written as 

ሺଵାଶሻܬ ൌ
2

כܧ ൬ቀܭூ
ሺଵሻቁ

ଶ
൅ ቀܭூூ

ሺଵሻቁ
ଶ

൰ ൅ ൬ቀܭூ
ሺଶሻቁ

ଶ
൅ ቀܭூூ

ሺଶሻቁ
ଶ

൰ 

൅ቀܭூ
ሺଵሻܭூ

ሺଶሻ ൅ ூூܭ
ሺଵሻܭூூ

ሺଶሻቁ  

׵ ሺଵାଶሻܬ ൌ ሺଵሻܬ ൅ ሺଶሻܬ ൅ ଶ
ாכ ቀܭூ

ሺଵሻܭூ
ሺଶሻ ൅ ூூܭ

ሺଵሻܭூூ
ሺଶሻቁ

(2.26)

Comparing Eq. (2.19)  to Eq. (2.26), following relationship is obtained 

׵ ሺଵ,ଶሻܯ ൌ ଶ
ாכ ቀܭூ

ሺଵሻܭூ
ሺଶሻ ൅ ூூܭ

ሺଵሻܭூூ
ሺଶሻቁ (2.27)

where ܯሺଵ,ଶሻ is computed using Eq.(2.22). 

2.5.4 Stress intensity factors computation 

Now that we have a relation between interaction integral and SIFs, obtaining 

individual SIFs involves making appropriate choice of the auxiliary state. To obtain mode 

I SIF, the auxiliary state is chosen to be the pure mode I asymptotic condition from Eq. 

(2.2) with ୍ܭ
ሺଶሻ ൌ 1 and ୍୍ܭ

ሺଶሻ ൌ 0. Substituting this in Eq. (2.27) gives 

ሺଵ,ଶሻܯ ൌ ଶ
ாכ ூܭ

ሺଵሻ (2.28)

 ሺଵ,ଶሻ can be calculated from Eq. (2.22). Hence mode I SIF is given byܯ

ூܭ
ሺଵሻ ൌ ாכ

ଶ
ሺଵ,ெ௢ௗ௘ܯ ூሻ (2.29)
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Similarly, mode II stress intensity factors is obtained by selecting the auxiliary state to be 

the mode II asymptotic solution from Eq. (2.4) with  ୍ܭ
ሺଶሻ ൌ 1 and ୍୍ܭ

ሺଶሻ ൌ 0. 

ூூܭ
ሺଵሻ ൌ ாכ

ଶ
ሺଵ,ெ௢ௗ௘ܯ ூூሻ (2.30)

Note that the asymptotic fields used for the auxiliary state are valid for LEFM only, and 

hence the interaction integral method presented here is also applicable only for LEFM. 
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Chapter 3  

XFEM AND LSM FOR CRACK PROPAGATION 

 

 

3.1 The Level Sets Method 

3.1.1 Introduction to the LSM 

Excellent description for LSM can be found in (Stolarska, Chopp, Moes, & 

Belytschko, 2001; Osher & Sethian, 1988). The discussion here closely follows these 

sources, but pertains to the scope of this research. Consider a closed, non-intersecting, 

moving interface ߁ modeled as a zero level set of a function ߰ሺ࢞ሺݐሻ,  .ሻݐ

ሻݔሺ߁ ൌ ሼ࢞ א Թଶ ׷ ߰ሺ࢞, ሻݐ ൌ 0ሽ (3.1)

Notice that the level set function ߰ሺ࢞,  .ሻ is one higher dimension than the interface itselfݐ

The evolution equation of ߁ can then be expressed as the evolution equation of ߰ by 

taking time derivative of ߰ሺ࢞ሺݐሻ, ሻݐ ൌ 0. The resulting equation of motion of the 

interface is 

߰௧ ൅ ԡ߰ߘԡࡲ ൌ 0             ሺAssuming ߰ሺ࢞, ݐ ൌ 0ሻ is givenሻ (3.2)

Here ࡲ is the speed of the front at ࢞ א  ሻ in the direction normal to the interface, andݐሺ߁ 

ԡ߰׏ԡ ؠ  1 by construction. A signed distance function defined below is used as a level 

set function in this research. 
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߰ሺ࢞, ሻݐ ൌ  ݀ሺ࢞ሻ ൌ േ ݉݅݊ ԡ࢞ െ ࢞௰ԡ , ࢞௰ א ሻݐሺ߁ (3.3)

The sign of the distance function depends on which side of the interface point ࢞ is 

located. Since the LSM is implemented here within the finite element framework, signed 

distance functions for the crack are calculated with respect to finite element nodes. 

3.1.2 Representation of crack using LSM 

For this research, the crack ߁௖ is considered as a one dimensional curve evolving 

in a two-dimensional domain ߗ as shown in Figure 3.1. Since the crack is an open curve, 

two orthogonal level-set functions are required to represent it. The first level set function, 

߰ሺ࢞,  ሻ, is normal to the crack and zero level set of this function represents the crackݐ

surface. The other level set function, ߶ሺ࢞,  .ሻ, is tangent to the crack at the crack tipݐ

Although the crack tip lies inside the domain, the level set function that represents crack 

front must initially be constructed up to the structure boundary. Hence, for calculating the 

level set, the crack is tangentially extended up to the boundary. The crack is represented 

by a set of points 

௖߁ ൌ ሼ࢞ א Թଶ | ߰ሺ࢞, ሻݐ ൌ 0 ܽ݊݀ ߶ሺ࢞, ሻݐ ൑ 0ሽ  (3.4)

For a crack that lies completely inside a structure, two tangential level-sets, 

߶ଵሺ࢞, ,ሻ and ߶ଶሺ࢞ݐ  ሻ, are used. The crack tip(s) is (are) located at the intersection of zeroݐ

level sets of these two orthogonal signed distance functions. The values of the level-sets 

are stored at nodes and are interpolated using the regular FEM displacement shape 

functions, ௝ܰ. 

߰ሺ࢞, ሻݐ ൌ  ∑ ߰௝ሺ࢞, ሻݐ ௝ܰሺ࢞ሻ௝ఢ௃ ; ߶௜ሺ࢞, ሻݐ ൌ ∑ ߶௜௝ሺ࢞, ሻݐ ௝ܰሺ࢞ሻ௝ఢ௃   (3.5)



32 

 

Figure 3.1  Level sets illustration 

 

3.1.3 Level sets update 

It is assumed that once a part of crack forms, it will not change its position or 

geometry. Since we are only concerned with crack propagation, it is sufficient to update 

level set values in a narrow region surrounding the crack. The narrow region for level sets 

update is built by surrounding the crack by a predetermined layer of elements. It must be 

ensured that the layer of elements is larger than the predefined crack increment (∆ܽ) to 

ensure that all elements affected by crack are included in level set computation. 

The two parameters that characterize crack growth are the direction ߠ௖ and the 

crack tip displacement given by a vector ࡲ ൌ ሺܨ௫, ԡࡲ௬ሻ, where by construction, ԡܨ ؠ ∆ܽ. 

Assume that the current location of the crack tip is ࢞௜ ൌ ሺݔ௜,  ௜ሻ. Let the current values ofݕ

the level sets be ߶௡ ൌ ߶ሺ࢞௜, ݐ ൌ ݊ሻ and ߰௡ ൌ ߰ሺ࢞௜, ݐ ൌ ݊ሻ. The following procedure is 

performed to update the level sets: 

߶ ൌ 0 ߶ ൏ 0 ߶ ൐ 0 

 ௖߁

߰ ൏ 0 

߰ ൌ 0 

߰ ൐ 0 
iso െ ߶

iso െ ߰
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Recall that in Eq. (3.2), ࡲ is always normal to the crack front. However, the new 

crack tip increment ࡲ may not be normal to the zero level set of ߶௡. Hence, ߶௡ must be 

first rotated so that it becomes orthogonal to ࡲ. The rotated level set is given by 

߶෠௡ ൌ ሺݔ െ ௜ሻݔ ிೣ
ԡࡲԡ ൅ ሺݕ െ ௜ሻݕ ி೤

ԡࡲԡ (3.6)

The crack is extended by computing new values of ߰௡ାଵ in the region where ߶෠௡ ൐ 0, 

which is the Ω୳୮ୢୟ୲ୣ region. The region where ߶෠௡ ൏ 0 is Ω୬୭ ୳୮ୢୟ୲ୣ region (see Figure 

3.2). 

߰௡ାଵ ൌ ߰௡ାଵ ݅݊ ௡௢ߗ ௨௣ௗ௔௧௘

(3.7)

߰௡ାଵ ൌ േ ቚሺݔ െ ௜ሻݔ ி೤
ԡࡲԡ ൅ ሺݕ െ ௜ሻݕ ிೣ

ԡࡲԡቚ in   ୳୮ୢୟ୲ୣߗ

߶௡ାଵ is then computed using Eq. (3.2) so that it correctly represents the updated crack tip 

location. The location the new crack tip can be determined by taking intersection of the 

updated level sets ߶௡ାଵ and ߰௡ାଵ. 

 

 

Figure 3.2  Updating level set functions 
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3.2 The extended finite element method 

XFEM is a partition of unity finite element method (PUFEM). For more details on the 

PUFEM, the reader is referred to Melenk and Babuska (Melenk & Babuska, 1996; 

Babuska & Melenk, 1997). Detailed discussion about the XFEM theory can be found in 

(Bordas, 2003; Belytschko & Black, 1999; Moes, Gravouil, & Belytschko, 2002; 

Gravouil, Moes, & Belytschko, 2002; Dolbow, 1999). Here only the basic theory and 

implementation of XFEM as applied to LEFM-based crack growth analysis is presented. 

3.2.1 Introduction to XFEM 

Analyzing crack propagation involves computation of the 1/√ݎ stress singularity 

observed in the crack-tip region. Due to this singularity, very high stress and 

displacement gradients are observed near the crack tip. Standard FEM requires a very 

refined mesh to adequately capture these gradients. The XFEM on the other hand, takes 

advantage of PUFEM, incorporates these singularities in the local approximation, and 

thus naturally reproduces effect of these singularities in the solution. Crack propagation 

analysis also involves treating the jump in displacement fields caused by the discontinuity 

across the crack surface. Again, this is observed in the local region surrounding the crack 

surface. While FEM requires the mesh to be aligned to the crack surfaces, XFEM 

enriches the nodes whose support is cut by the crack using Heaviside function and thus, 

accurately models the discontinuity. Since the discontinuity is modeled implicitly in the 

XFEM using Heaviside function, the mesh need not conform to the discontinuity. 
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3.2.2 XFEM displacement formulation 

The X-FEM displacement approximation for a vector valued function ݑሺݔሻ: Թଶ ՜

Թଶ is given as 

,௛ሺ࢞ݑ ሻݐ ൌ ∑ ூאሻ௜ݐ௜ሺݑ ௜ܰሺ࢞ሻ ൅ ∑ ௝ܾሺݐሻ௝א௃ ௝ܰሺ࢞ሻܪ൫߰ሺ࢞,   ሻ൯ݐ

    ൅ ∑ ௝ܰሺ࢞ሻ௞א௄ ൫∑ ܽ௞
௟ ሺݐሻܤℓሺݎ, ሻସߠ

ℓୀଵ ൯
(3.8)

where ௜ܰሺ࢞ሻ is the shape function associated with the node ݅ and ݐ is a monotonically 

increasing time parameter. ܬ is the set of all nodes whose support is bisected by the crack 

(shown by circled nodes in Figure 3.3). The set ܭ contains all nodes of the elements 

containing the crack tip (shown by squared nodes in Figure 3.3). In Eq. (3.8), the first 

term is the regular finite element approximation; the second term represents the 

Heaviside step function (ܪ) employed to model the discontinuity due to crack; and the 

last term incorporates the near-tip asymptotic displacement fields using the so called 

Branch functions. 

 

 

 

 

  

 

Figure 3.3  Enrichment in XFEM 
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3.2.3 Enrichment functions 

The Heaviside function is defined as follows: 

ሻݕሺܪ ൌ ൜1, for y ൐ 0
െ1, for y ൏ 0 (3.9)

The branch functions are defined as: 

,ݎ௟ሺܤ ሻߠ ൌ ቄ√݊݅ݏ ݎ ఏ
ଶ

, ݎ√ ݏ݋ܿ ఏ
ଶ

, ݎ√ ݊݅ݏ ఏ
ଶ

,ߠ݊݅ݏ ݎ√ ݏ݋ܿ ఏ
ଶ

ቅ  (3.10)ߠ݊݅ݏ

where ( ݎ,  = 0 is tangent ߠ are defined in a polar coordinate system at the crack tip and ( ߠ

to the crack. Plots of branch functions are shown in Figure 3.4. 

 

si ݎ√ nሺߠ 2⁄ ሻ 

 

ݎ√ co sሺߠ 2⁄ ሻ 

 

si ݎ√ nሺߠ 2⁄ ሻ sin ߠ

 

ݎ√ co sሺߠ 2⁄ ሻ sin ߠ  

Figure 3.4  Branch functions 

 θ ݎ√θ ݎ√

θ ݎ√ θ ݎ√
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These functions span the near-tip asymptotic fields from Eq. (2.2) to Eq. (2.5), 

and the first branch function accounts for the discontinuity due to the crack (Belytschko, 

Moes, Usui, & Parimi, 2001). For each node enriched with Heaviside function, one 

fictitious node is added and for each node enriched with branch functions, four fictitious 

nodes are added. Thus, the total degrees of freedom for the enriched formulation are 

݋݀݊ ௧݂௢௧௔௟ ൌ ሺ݊௥ ൅ ݊௛ ൅ 4݊௕ሻ כ 2 (3.11)

where ݊௥ is the number of regular nodes; ݊௦ is the number of nodes with Heaviside 

function; and ݊௕ is the number of nodes enriched with branch functions. 

3.2.4 XFEM stiffness matrix construction 

This section briefly discusses formulation of XFEM stiffness matrix. The XFEM 

formulation is very similar to the regular FEM formulation, except for the local 

enrichment. First, the shape function vectors are expanded to account for the enrichment 

functions. 

ࡺ ൌ ሾࡺிாெ, ாேோூ஼ுா஽ሿࡺ ฺ ࡺ ൌ ሾሾ ଵܰ … ସܰሿ, ሾ߰ଵ ଵܰ … ߰ସ ସܰሿሿ (3.12)

where ߰୧ are enrichment functions (either Heaviside or Branch functions). The ‘B’ 

matrix, which consists of shape function derivatives, is constructed as follows: 

࡮ ൌ ሾ࡮ிாெ, ாேோூ஼ுா஽ሿ࡮

࡮ ൌ ቎࡮ிாெ   
ሺ߰ଵ ଵܰሻ,௫ 0 … 0

0 ሺ߰ଵ ଵܰሻ,௬ … ሺ߰ସ ସܰሻ,௬
ሺ߰ଵ ଵܰሻ,௬ ሺ߰ଵ ଵܰሻ,௫ … ሺ߰ସ ସܰሻ,௫

቏  
(3.13)

Derivatives of the Heaviside function is the well-known Dirac-Delta function (ߜ). 

However, if the crack surfaces are assumed to be traction free, then derivatives of 
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Heaviside function can be omitted (Rabczuk & Wall, 2006-2007). Therefore the 

derivative of the Heaviside function is: 

డሺுே೔ሻ
డ௫

ൌ డே೔
డ௫

· ܪ (3.14)

Since the branch functions are expressed in crack-tip coordinate system, their derivatives 

are calculated using chain rule as follows: 

డ஻௥೔
డ௫

ൌ డ஻௥೔
డ௥

· డ௥
డ௫

൅ డ஻௥೔
డఏ

· డఏ
డ௫

;     and      డ஻௥೔
డ௬

ൌ డ஻௥೔
డ௥

· డ௥
డ௬

൅ డ஻௥೔
డఏ

· డఏ
డ௬

 (3.15)

The enriched global stiffness matrix is constructed using the following relation 

ࡷ ൌ ׬ ఆ࡮࡯்࡮ ߗ݀ (3.16)

where ࡯ is the constitutive matrix. The integration is carried out using Gauss Quadrature 

method, more details on which follow. The equilibrium equation in discretized form is, 

൥
࢛࢛ࡷ ࢇ࢛ࡷ ࢈࢛ࡷ
ࢇ࢛ࡷ ࢇࢇࡷ ࢈ࢇࡷ
࢈࢛ࡷ ࢈ࢇࡷ ࢈࢈ࡷ

൩ ቊ
࢛
ࢇ
࢈

ቋ ൌ ቐ
࢛ࢌ
ࢇࢌ
࢈ࢌ

ቑ (3.17)

where ࢇࢇࡷ , ࢛࢛ࡷ , and ࢈࢈ࡷ are contributions from regular nodes, nodes enriched with 

Heaviside functions, and nodes enriched with branch functions, respectively; ࢛, ࢇ, and ࢈ 

are nodal displacements corresponding to the regular and extra degrees of freedom, 

respectively; and ࢌ is the external force vector. 

3.2.5 Discontinuous Gauss Quadrature 

Regular Gauss integration does not permit discontinuity in displacement and 

stress fields that are observed across the crack faces. To circumvent this problem, the 

discontinuous elements are divided into sub-triangles such that the triangle edges are 
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coincident with the crack geometry. This allows the fields to be continuous over each 

sub-region and the integration can be carried out. To capture the high gradients in the 

near-tip elements, higher order gauss integration is used. Figure 3.5 shows the 

subdivision of discontinuous elements into triangles. It must be emphasized that this is 

not re-meshing; merely a way to handle integration in discontinuous elements. A 

thorough discussion on this was presented by Sukumar & Prevost (2003). 

 

 

Figure 3.5  Division of elements into sub-triangles for Gauss integration 

 

Note that there are three types of elements: crack-tip elements, elements 

completely cut by crack, and regular elements. Different quadrature order is used for each 

kind of element (see Figure 3.6). Gauss integration order of 7 was used for each sub-

triangle of the crack-tip element, an order of 3 was used for the elements cut by crack, 

and for regular elements, an order of 2 was used. A report published by David Noel 

(2007-2008) presents a lucid explanation of the effect of selecting a particular order of 
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integration for particular type of element, and the reader is referred to the same for more 

details. 

3.2.6 Interaction energy integral evaluation 

Remember that the domain form of the interaction integral approach lends itself 

particularly well for implementation using finite element methods. Elements surrounding 

the crack tip form the domain for interaction integral evaluation. Even though the 

interaction integral is theoretically path independent, for numerical evaluation, the 

domain must be carefully selected. If the radius is too small, the crack-tip element would 

contribute towards evaluation of field variables, and the computational accuracy will 

suffer. On the other hand, if the radius is too large, the effect of crack-tip singularities 

may not be captured. Nguyen (2005) performed a study of effect of domain radius on 

accuracy of stress intensity factors. As suggested by Nguyen, all elements intersected by 

a circle of radius equal to 3 to 5 times the area of the crack-tip element should be selected 

for evaluation of interaction energy integral. 

 

 

Figure 3.6  Domain for interaction integral evaluation and Gauss integration points in the 

corresponding elements 

Domain for 
interaction 
integral 
evaluation  
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3.3 Combination of XFEM and LSM 

XFEM and LSM work together naturally for crack growth modeling. Level sets contain 

all the necessary information for modeling crack, and allow crack propagation over a 

fixed mesh. Further, they facilitate selection of nodes for enrichment. To determine 

whether a node lies above or below the crack, one simply needs to retrieve sign of ߰ at 

that point. If the crack cuts through an element, then ߶ ൑ 0 and ߰௠௜௡߰௠௔௫ ൑ 0, where 

߰௠௜௡ and ߰௠௔௫ are the minimum and maximum values of ߰ at the nodes of this element. 

Nodes of this element are enriched with Heaviside function. If crack tip lies inside an 

element, then ߶௠௜௡߶௠௔௫ ൑ 0 and ߰௠௜௡߰௠௔௫ ൑ 0, and nodes of that element are enriched 

with branch functions shown in Eq. (3.10). 

Also note that the level sets ߶ and ߰ are orthogonal to each other form a natural 

coordinate system whose origin lies at the crack tip. The direction of the local X-axis can 

be obtained by computing ׏߶. Local Y-axis is determined by computing ݁̂௭ ൈ  where ,߶׏

݁̂௭ ൌ ሺ0,0,1ሻ. Parameters required for computing the branch functions are defined in local 

crack-tip coordinate system, and can be directly computed using level set functions as 

follows: 

ݎ ൌ ඥ߰ଶሺ࢞, ሻݐ ൅ ߶ଶሺ࢞, ሻݐ ; and ߠ ൌ ଵି݊ܽݐ ቀటሺ࢞,௧ሻ
థሺ࢞,௧ሻቁ  (3.18)

XFEM computes the required information for crack growth (ߠ௖, ∆ܽሻ, which is then used 

to update level sets, and hence, crack-tip position. 

The algorithm shown in Figure 3.7 delineates the procedure for crack propagation 

analysis using XFEM and LSM. First, level sets are computed for the initial crack and the 

nodes to be enriched are determined. The equilibrium equation with extra degrees of 
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freedom is solved according to Eq. (3.17) and nodal displacements are obtained. From 

this information, SIFs and ߠ௖ are obtained using Eq. (2.29), (2.30) and Eq. (2.9), 

respectively. The level sets are updated using this information and new crack segment is 

added. The process is repeated until specified termination criterion is reached. 

 

 

Figure 3.7  Algorithm for crack propagation using XFEM and LSM 
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3.4 Example 1: Rectangular plate under shear load 

Consider a rectangular plate of width ݓ ൌ 7 ݅݊ and height of ݄ ൌ 16 ݅݊ and an edge 

crack of ܽ ൌ 3.5 ݅݊ as shown in Figure 3.8. The bottom face of the plate is fixed and a 

shear load of ߬ஶ ൌ ܧ acts on the top. The Young’s modulus is ݅ݏ݌ 1 ൌ 30 ൈ 10଺ ݅ݏ݌ and 

Poisson’s ratio is ߥ ൌ 0.25. Fracture toughness for this material is 45.80 ݇݅ݏ√݅݊. A 

27 ൈ 55 mesh is used that constitutes about 3700 degrees of freedom, including the extra 

degrees of freedom incurred due to enriched nodes. Crack growth simulation is 

performed for this problem using the XFEM-LSM code, in which an initial crack and a 

pre-determined crack growth increment (∆ܽ) are prescribed. Fracture toughness is 

specified as termination criterion. The guidelines for selecting a value for  ∆ܽ are 

discussed by Fleming (1997). 

 

  

(a) A rectangular plate under shear load  (b) XFEM mesh with enriched nodes 

Figure 3.8  Crack propagation analysis example: A rectangular plate under shear 

߬ஶ 

݄ 

 ݓ

ܽ 
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 Figure 3.9 shows Y-stress plot for the plate after three crack propagation cycles. 

The high-stress region near crack tip can be observed. A closer view of crack propagation 

path is shown in Figure 3.10 and the crack growth analysis results are summarized in 

Table 3.1. The first row in Table 3.1 corresponds to the initial crack. The correlation 

between crack inclination angle and the SIFs is evident from the results. The crack starts 

growing at an inclined angle since both mode I and mode II SIFs are significant. When 

mode II SIF decreases rapidly, the crack keeps growing in a straight direction (relative to 

the previous crack segment). It is observed that mode I SIF increases steadily, but mode 

II SIF remains close to zero. The analysis stopped after 3 crack growth cycles when the 

equivalent SIF exceeded fracture toughness of the material. 

 

 

  

Figure 3.9  Y-stress plot at failure Figure 3.10  Crack propagation path 
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Table 3.1  Crack propagation analysis results for the rectangular plate under shear load 

Cycles ܭூ 
ሺ݇݅ݏ√݅݊ሻ 

 ூூܭ
ሺ݇݅ݏ√݅݊ሻ 

 ௖ (Deg) Crack Tip Coordinatesߠ

0 33.293 4.506 -14.89 (3.50,8.00) 

1 37.994 -0.003 0.01 (3.74,7.94) 

2 43.608 0.009 -0.25 (3.98,7.87) 

3 49.338 -0.037 0.09 (4.22,7.81) 

 

The SIF results for the initial crack configuration are compared to the results 

obtained by Chen et al. (2001). Note that even though the mesh near crack-tip region is 

not very refined, the SIF values for initial design compare very well with those obtained 

by Chen et al. as shown in Table 3.2. Hence, it can be deduced that the XFEM-LSM code 

is capable of handling 2-D crack propagation analysis. 

 

Table 3.2  Comparison of SIF results against test cases 

 Reference Proposed method % Difference 

 ሻ 34.13 33.29 2.46݊݅√݅ݏ݌ூ ሺܭ

 ሻ 4.54 4.51 0.66݊݅√݅ݏ݌ூ ሺܭ

 

3.5 Example 2: Engine connecting rod 

Consider an engine connecting rod (Hwang, Choi, & Chang, 1997) shown in Figure 3.11. 

Material properties for the rod are as follows: Young’s modulus ܧ ൌ  and ܽܲܩ 210

Poisson’s ratio is ߥ ൌ 0.30. The Paris constants are: ܥ ൌ 5.6 ൈ 10ିଵଶ ݉݉/݈ܿ݁ܿݕ and 

݉ ൌ 3.5, and fracture toughness is ܭ௖ ൌ  . ݉݉√ܽܲܯ 100
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Figure 3.11  Engine Connecting Rod 

 

The design boundary, shown by thick red lines, consists of two cubic Bezier 

curves at each end and a horizontal line in the middle. Upper and lower design 

boundaries are symmetric with respect to the centerline. Vertices of the control polygons 

of these Bezier curves are selected as design variables. Parametric equations of the design 

boundary are developed. There are total five design variables. Note that the control points 

corresponding to ܾଵ and ܾହ are constrained to move at an angle of 45° to maintain 

tangency with the adjacent segments. Design variable ܾଷ controls movement of four 

control points as shown in order to keep the edge straight and horizontal. The shaded area 

represents the domain affected by design variables. The initial design variable values and 

their upper and lower bounds are summarized in Table 3.3. 
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Table 3.3  Design variables for the engine connecting rod 

Variable Lower bound Initial value Upper bound 

ܾଵ (mm) 15.00 25.00 30.00 

ܾଶ (mm) 40.00 55.00 65.00 

ܾଷ (mm) 7.00 18.00 21.00 

ܾସ (mm) 90.00 100.00 115.00 

ܾହ (mm) 12.00 18.50 19.50 

 

The load acting on the connecting rod in terms of the rotation angle ߠ is given by  

T୊ ൌ

ە
ۖ
۔

ۖ
43.794θଶۓ ൅ 30.19 at left inner circle ቀିସ଴

ଵ଼଴
π ൑ θ ൑ ସ଴

ଵ଼଴
πቁ

9.54θଶ െ 42.97    at right inner circle ቀଵସ଴
ଵ଼଴

π ൑ θ ൑ ଶଶ଴
ଵ଼଴

πቁ
  (3.19)

Initially, a mesh with about 6000 DOFs was created using ANSYS. Figure 3.12 

shows the finite element model of the connecting rod. Average element length (ℓe) in the 

crack region for this mesh is 1.9 mm. This, of course, varies from element to element and 

is only given here to give a rough idea about mesh size as compared to the crack growth 

increment. Boundary conditions were applied as suggested by Hwang et al. (1997).  

The maximum principal stress distribution in the connecting rod is shown in 

Figure 3.13. Although the maximum stress appears to be at the fixed node on the left 

side, it is merely an artificial stress concentration due to displacement constraints. The 

real maximum stress of ߪ௠௔௫ ൌ 124 MPa occurs on the left semicircular edge of the slot. 

An initial crack of ܽ ൌ 7 ݉݉ (an arbitrary choice) is introduced in this location and 

crack propagation analysis is conducted with ∆ܽ ൌ 1.5 ݉݉. Figure 3.14 shows the crack 

propagation path until failure, i.e. until ܭ௘௤ exceeds the fracture toughness of the 

material. 
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Figure 3.12  Finite element model of the connecting rod 

 

Figure 3.13  Maximum principal stress distribution for connecting rod 

 

 

Figure 3.14  Crack propagation path 
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For mixed-mode cases, generally the crack propagation path is curvilinear. In this 

case however, the path appears to be zigzag due to alternating positive and negative sign 

of ߠ௖. Large crack growth increment ∆ܽ is suspected to be the main reason behind these 

oscillations. Based on initial crack size, the algorithm predicts certain crack growth 

direction, but due to fixed ∆ܽ, crack overshoots in that direction. The algorithm tries to 

compensate for this error by changing angle in the next cycle, but it again overshoots due 

to the fixed value of ∆ܽ. Thus, the crack growth increment must be reduced to minimize 

these oscillations. 

From analysis standpoint, XFEM-LSM does allow crack to propagate within an 

element. However if ∆ܽ is quite small as compared to average element size, the same set 

of elements will be used for computation of interaction integral for multiple successive 

crack growth cycles, and computation of fracture parameters may not be reliable. Thus, 

∆ܽ and mesh size are related and do have an impact on accuracy of analysis results. This 

relationship also plays an important role in downstream design studies. If large value of 

∆ܽ is selected, it may not accurately predict crack path and service life, leading to 

erroneous optimum design. On the other hand, very small value of ∆ܽ will require very 

fine mesh, thereby greatly increasing computational burden. Hence a detailed study was 

undertaken to examine effect of mesh refinement and crack growth increments on SIFs 

and crack propagation path. Based on this study, appropriate level of mesh refinement 

and crack growth increment were determined for design sensitivity analysis and 

optimization studies. 
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3.6 Effect of mesh refinement and crack growth increment 

The crack growth analysis for the initial mesh (henceforth called Mesh 1) revealed the 

crack propagation path. Taking advantage of this, only elements in this region were 

refined to create two additional finite element models. Mesh 2 (shown in Figure 3.15) is 

the intermediate mesh with 8,554 DOFs and Mesh 3 (see Figure 3.16) is the finest mesh 

with 25,186 DOFs. Average element length (ℓe) near crack region for Mesh 2 is 

0.65 ݉݉ and that for Mesh 3 is 0.22 ݉݉. 

For each of these meshes, twelve different ∆ܽ values ranging from 0.1 ݉݉ to 

1.2 ݉݉ were used and crack growth simulations were carried out. Note that the 

algorithm is set-up not to allow multiple crack growth increments within an element to 

avoid erroneous calculation of SIFs. Hence, for coarse mesh (Mesh 1), ∆ܽ values smaller 

than 0.9 ݉݉ could not be used. Similarly, for intermediate mesh (Mesh 2), values of ∆ܽ 

smaller than 0.3 ݉݉ could not be used. These values roughly correspond to  0.5ሺℓୣሻ. 

 

 

Figure 3.15  Finite element model of the connecting rod (Mesh 2: Intermediate mesh) 
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Figure 3.16  Finite element model of the connecting rod (Mesh 3: Fine mesh) 

 

 study results for Mesh 1 ࢇ∆ 3.6.1

Figure 3.17 shows crack propagation path for different values of ∆ܽ for the coarse 

mesh. The scale on both axes is selected to be different to illustrate the path more clearly. 

Table 3.4 shows equivalent stress intensity factor ሺܭ௘௤ሻ, and Table 3.5 lists crack 

propagation angle ሺߠ௖ሻ and service life ሺܰሻ results for this study. As seen from Figure 

3.17, the crack path is zigzag for all values of ∆ܽ. Explanation for this can be found in 

Table 3.5, which shows that the sign for ߠ௖ switches from cycle to cycle. Thus, for Mesh 

1, reducing ∆ܽ from 1.5 ݉݉ to 0.9 ݉݉ does not markedly affect the zigzag nature of the 

path. From Table 3.4, it can be observed that for certain consecutive crack growth cycles 

(for example, cycle 2 and 3 for ∆ܽ ൌ 0.9 ݉݉ሻ, the SIF value is quite close. This occurs 

when a crack segment lies completely within an element. 
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Figure 3.17  Crack propagation path for different values of ∆ܽ for Mesh 1 

 

 

Table 3.4  Equivalent stress intensity factor results for Mesh 1 

Cycle Equivalent stress intensity factor ܭ௘௤ ሺܽܲܯ√݉݉ሻ 

No. ∆ܽ ൌ 0.9 ݉݉ ∆ܽ ൌ 1.0 ݉݉ ∆ܽ ൌ 1.1 ݉݉ ∆ܽ ൌ 1.2 ݉݉ 

1 81.10 81.10 81.10 81.10 

2 83.37 83.57 83.77 83.99 

3 83.03 87.41 87.63 88.00 

4 89.81 89.64 89.94 90.39 

5 90.68 90.65 96.06 96.94 

6 96.44 97.15 95.94 99.24 

7 97.13 100.42 99.39 103.25 

8 100.71   103.28   
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Table 3.5  Crack propagation angle and service life results for Mesh 1 

Cycle Crack propagation angle ߠ௖ (Degrees) Service Life ܰ (cycles) 

 ∆ܽ ∆ܽ 

No. 0.9 ݉݉ 1.0 ݉݉ 1.1 ݉݉ 1.2 ݉݉ 0.9 ݉݉ 1.0 ݉݉ 1.1 ݉݉ 1.2 ݉݉ 

1 28.64 28.64 28.64 28.64 33460 37177 40895 44613 

2 -29.59 -29.84 -30.11 -30.41 30377 33473 36506 39461 

3 27.14 29.47 30.09 30.58 30807 28594 31182 33519 

4 -25.38 -30.01 -31.63 -31.31 23414 26188 28474 30521 

5 24.55 27.81 30.52 29.49 22633 25176 22614 23893 

6 -24.41 -27.25 -30.32 -30.53 18248 19760 22712 22011 

7 23.46 26.44 28.59 28.78 17798 17598 20065  

8 -26.89  -29.55  15678    

 Total service life: 192415 187967 202448 194018 

 

While the total service life for ∆ܽ ൌ 0.9 ݉݉ and 1.0 ݉݉ is quite close, that for 

other two cases is about 10% higher. This increase in life is due to the following factors: 

(i) the crack overshoots during the last cycle, and (ii) larger ∆ܽ naturally corresponds to 

increased service life. 

 

 study results for Mesh 2 ࢇ∆ 3.6.2

Figure 3.18 shows crack propagation path for different values of ∆ܽ for the 

intermediate mesh. Table 3.6, Table 3.7, and Table 3.8 show results for ܭ௘௤, ߠ௖, and ܰ, 

respectively. It can be observed that with decreasing values of ∆ܽ, the oscillations 

decrease and for values of ∆ܽ smaller than 0.6 ݉݉, the crack path is quite smooth for the 

last few cycles. It should also be noticed that crack paths corresponding to  ∆ܽ values are 

spaced quite closely. For example, for a fixed value of X, the position of crack tip for 

different values of  ∆ܽ differs only by about 0.1 ݉݉. 
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Figure 3.18  Crack propagation path for different values of ∆ܽ for Mesh 2 

 

The service life results shown in Table 3.8 differ by about 8% depending upon 

∆ܽ. As seen from Table 3.6, for ∆ܽ ൌ 0.3 ݉݉, the difference between SIF values for 

some consecutive cycles (for example, cycles 3 and 4, 6 and 7, 8 and 9) is very small. In 

these cycles, the crack propagates within the same element. This corroborates earlier 

claim that from numerical implementation perspective, it is not desirable to choose ∆ܽ 

value that is much smaller than ℓe. Also, for same value of ∆ܽ, ߠ௖ decreases in magnitude 

as crack length increases. This is to be expected since the compressive load in X-

direction is analogous to applying tensile load in Y-direction (due to Poisson effect as 

well as due to Hoop stress effect). This, in effect, is similar to Mode I loading and hence, 

the crack eventually becomes straight. 
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Table 3.6  Equivalent stress intensity factor results for Mesh 2 

Cycle Equivalent stress intensity factor ܭ௘௤ ൫ܽܲܯ√݉݉൯ 

No. ∆ܽ ൌ 0.3 ݉݉ 0.4 ݉݉ 0.5 ݉݉ 0.6 ݉݉ 0.7 ݉݉ 0.8 ݉݉ 0.9 ݉݉ 1.0 ݉݉ 1.1 ݉݉ 1.2 ݉݉ 

1 81.52 81.52 81.52 81.52 81.52 81.52 81.52 81.52 81.52 81.52 

2 81.35 82.44 82.77 83.38 83.69 84.01 84.97 85.30 85.54 86.34 

3 84.67 85.99 86.44 87.58 88.40 89.03 89.84 90.45 91.10 92.07 

4 84.95 86.81 88.35 89.57 90.49 91.54 92.81 93.82 94.83 96.15 

5 87.49 89.29 90.98 91.85 93.52 94.96 96.34 97.57 98.82 100.20 

6 88.40 90.67 92.45 94.08 95.91 97.47 99.25 100.77 102.25  

7 88.91 90.94 94.29 96.22 98.34 100.15 102.06    

8 91.15 93.48 96.14 98.36 100.51      

9 91.35 95.15 97.77 100.24       

10 93.35 95.20 99.41        

11 93.40 97.77 100.99        

12 95.44 99.05         

13 95.42 100.31         

14 97.47          

15 98.41          

16 98.43          

17 100.33          
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Table 3.7  Crack propagation angle results for Mesh 2 

Cycle Crack propagation angle ߠ௖ (Degrees) 

No. ∆ܽ ൌ 0.3 ݉݉ 0.4 ݉݉ 0.5 ݉݉ 0.6 ݉݉ 0.7 ݉݉ 0.8 ݉݉ 0.9 ݉݉ 1.0 ݉݉ 1.1 ݉݉ 1.2 ݉݉ 

1 28.62 28.62 28.62 28.62 28.62 28.62 28.62 28.62 28.62 28.62 

2 -23.01 -21.92 -22.06 -19.92 -20.27 -20.23 -18.71 -19.33 -19.81 -17.29 

3 21.03 19.00 18.65 15.39 15.36 14.62 10.86 11.19 11.45 5.79 

4 -17.41 -13.86 -12.92 -12.37 -12.38 -12.25 -9.28 -9.50 -9.68 -5.84 

5 15.15 9.59 7.45 6.98 6.60 6.53 3.68 3.70 3.74 1.18 

6 -11.71 -8.51 -6.25 -6.64 -6.80 -6.65 -4.06 -4.24 -4.30  

7 8.42 6.39 2.48 3.37 3.54 3.20 1.39    

8 -7.10 -6.61 -2.65 -3.80 -3.75      

9 4.79 3.51 0.35 1.60       

10 -4.94 -2.26 -1.13        

11 3.18 -0.59 -0.07        

12 -3.87 -0.39         

13 2.40 -0.52         

14 -2.89          

15 1.29          

16 -0.90          

17 -0.59          
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Table 3.8  Service life results for Mesh 2 

Cycle Service life ܰ (Cyclesሻ 

No. ∆ܽ ൌ 0.3 ݉݉ 0.4 ݉݉ 0.5 ݉݉ 0.6 ݉݉ 0.7 ݉݉ 0.8 ݉݉ 0.9 ݉݉ 1.0 ݉݉ 1.1 ݉݉ 1.2 ݉݉ 

1 10951 14601 18252 21902 25553 29203 32853 36504 40154 43804 

2 11035 14041 17306 20239 23313 26291 28417 31146 33937 35827 

3 9593 12117 14869 17044 19245 21455 23383 25372 27218 28618 

4 9483 11719 13774 15755 17732 19464 20869 22324 23657 24585 

5 8553 10617 12430 14425 15806 17123 18309 19463     

6 8249 10065 11750 13267 14468 15626         

7 8083 9959 10970 12260 13257           

8 7411 9044 10246 11353             

9 7352 8500 9663               

10 6815 8485 9114               

11 6804 7729                 

12 6309 7385                 

13 6313                   

14 5861                   

15 5666                   

16 5661                   

Total: 124137 124262 128375 126245 129373 129161 123831 134809 124966 132834 
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Table 3.9  Equivalent stress intensity factor results for Mesh 3 

Cycle Equivalent stress intensity factor ݍ݁ܭ ൫ܽܲܯ√݉݉൯ 

No. ∆ܽ ൌ 0.1 ݉݉  0.2 ݉݉ 0.3 ݉݉ 0.4 ݉݉ 0.5 ݉݉ 0.6 ݉݉ 0.7 ݉݉ 0.8 ݉݉ 0.9 ݉݉ 1.0 ݉݉ 1.1 ݉݉ 1.2 ݉݉
1 81.69 25 92.55  81.69 81.69 81.69 81.69 81.69 81.69 81.69 81.65 81.69 81.69 81.69 
2 81.40 26 92.56  83.41 84.29 85.15 85.88 86.07 86.26 86.38 86.48 86.65 86.84 87.07 
3 84.36 27 93.24  85.99 86.71 87.28 87.83 88.42 89.01 89.63 90.24 90.92 91.62 92.23 
4 84.27 28 93.24  86.70 87.56 88.44 89.40 90.35 91.27 92.26 93.28 94.27 95.34 96.25 
5 85.96 29 93.84  87.43 88.52 89.75 91.02 92.36 93.71 95.03 96.38 97.73 99.03 100.31 
6 86.25 30 94.16  87.97 89.43 91.05 92.74 94.49 96.10 97.75 99.37 101.00 102.44  
7 86.89 31 94.51  88.54 90.42 92.42 94.44 96.51 98.46 100.38 102.18    
8 87.14 32 94.85  89.17 91.46 93.85 96.16 98.48 100.66      
9 87.47 33 95.22  89.80 92.46 95.12 97.86 100.41       

10 87.71 34 95.57  90.46 93.53 96.58 99.54        
11 88.01 35 95.93  91.12 94.47 97.89 100.97        
12 88.27 36 96.21  91.79 95.53 99.17         
13 88.59 37 96.59  92.53 96.60 100.50         
14 88.89 38 96.88  93.21 97.56          
15 89.21 39 97.25  93.84 98.53          
16 89.21 40 97.62  94.48 99.51          
17 89.84 41 97.95  95.18 100.52          
18 89.83 42 98.26  95.91           
19 90.52 43 98.56  96.57           
20 90.52 44 98.94  97.21           
21 91.19 45 99.21  97.96           
22 91.19 46 99.54  98.54           
23 91.87 47 99.54  99.20           
24 91.87 48 100.14  100.53           
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Table 3.10  Crack propagation angle results for Mesh 3 

Cycle Crack propagation angle ߠ௖ (Degrees) 

No. ∆ܽ ൌ 0.1 ݉݉  0.2 ݉݉ 0.3 ݉݉ 0.4 ݉݉ 0.5 ݉݉ 0.6 ݉݉ 0.7 ݉݉ 0.8 ݉݉ 0.9 ݉݉ 1.0 ݉݉ 1.1 ݉݉ 1.2 ݉݉
1 28.598 25 -0.748  28.60 28.60 28.60 28.60 28.60 28.60 28.60 28.63 28.60 28.60 28.60 
2 -18.344 26 0.250  -14.03 -12.11 -11.08 -9.60 -10.25 -11.04 -11.94 -12.77 -13.53 -14.25 -14.98 
3 15.359 27 -0.608  10.16 6.41 3.35 -0.21 -0.49 -0.42 -0.06 0.25 0.65 0.99 1.46 
4 -9.106 28 0.218  -5.02 -4.69 -3.31 -2.07 -2.04 -2.08 -2.22 -2.38 -2.67 -2.77 -3.00 
5 7.211 29 -0.557  1.07 0.67 -0.52 -0.99 -0.99 -1.02 -0.94 -0.80 -0.52 -0.44 -0.32 
6 -4.001 30 0.008  -1.52 -1.74 -1.16 -0.90 -0.98 -0.94 -0.95 -0.97 -1.10 -1.11  
7 2.354 31 -0.195  -0.60 -0.45 -0.72 -0.87 -0.72 -0.63 -0.67 -0.62    
8 -1.409 32 -0.276  -0.81 -0.82 -0.69 -0.70 -0.61 -0.64      
9 0.055 33 0.049  -0.50 -0.60 -0.58 -0.50 -0.57       

10 -0.669 34 -0.393  -0.65 -0.52 -0.54 -0.45        
11 -0.305 35 0.083  -0.44 -0.49 -0.47 -0.46        
12 -0.459 36 -0.233  -0.43 -0.51 -0.34         
13 -0.392 37 -0.146  -0.37 -0.31 -0.40         
14 -0.371 38 -0.025  -0.36 -0.29          
15 -0.308 39 -0.267  -0.32 -0.34          
16 0.077 40 0.039  -0.37 -0.31          
17 -0.962 41 -0.203  -0.27 -0.32          
18 0.361 42 -0.081  -0.30           
19 -0.884 43 -0.066  -0.27           
20 0.367 44 -0.193  -0.27           
21 -0.859 45 -0.015  -0.19           
22 0.379 46 -0.156  -0.14           
23 -0.899 47 0.056  -0.28           
24 0.364 48 -0.335  -0.15           

 

60 



61 

Table 3.11  Service life results for Mesh 3 

Cycle Service life ܰ (Cyclesሻ 

No. ∆ܽ ൌ 0.1 ݉݉  0.2 ݉݉ 0.3 ݉݉ 0.4 ݉݉ 0.5 ݉݉ 0.6 ݉݉ 0.7 ݉݉ 0.8 ݉݉ 0.9 ݉݉ 1.0 ݉݉ 1.1 ݉݉ 1.2 ݉݉
1 3624 25 2341  7247 10871 14495 18118 21742 25366 28989 32671 36237 39860 43484 
2 3670 26 2341  6739 9743 12537 15209 18111 20973 23846 26718 29481 32184 34793 
3 3239 27 2282  6056 8824 11501 14062 16486 18791 20953 23025 24920 26684 28437 
4 3251 28 2282  5885 8528 10979 13216 15285 17207 18942 20502 21954 23213 24492 
5 3032 29 2231  5716 8208 10431 12412 14152 15691 17076 18284    
6 2997 30 2204  5594 7920 9919 11623 13067 14365 15471     
7 2920 31 2176  5469 7622 9411 10908 12133 13196      
8 2892 32 2149  5335 7321 8920 10241 11305       
9 2853 33 2119  5205 7048 8511 9630        

10 2826 34 2093  5072 6770 8069 9073        
11 2793 35 2065  4944 6538 7696         
12 2763 36 2044  4820 6288 7354         
13 2729 37 2017  4686 6046          
14 2697 38 1995  4568 5840          
15 2663 39 1969  4461 5642          
16 2663 40 1943  4356 5449          
17 2599 41 1920  4245           
18 2599 42 1899  4133           
19 2530 43 1879  4036           
20 2530 44 1854  3943           
21 2466 45 1836  3839           
22 2466 46 1815  3760           
23 2403 47 1815  3674           
24 2403 48 1777  3590           

Total service life: 116650  117372 118658 119822 124492 122280 125589 125277 121201 112591 121941 131206
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3.6.4 Cross-mesh comparison of results 

To clearly illustrate the effect of mesh refinement, plots of the crack path for same  

∆ܽ value for different meshes are shown in Figure 3.20. Results for ∆ܽ ൌ 0.9 െ 1.2 ݉݉ 

are shown here as only those are available for all meshes. Oscillations reduce 

significantly with first level of refinement (Mesh 1 to Mesh 2). Crack paths for Mesh 2 

and Mesh 3 are quite close. It should also be noted that crack path for Mesh 3 does not 

show any oscillations. Results for ∆ܽ ൌ 0.3 െ 0.8 ݉݉ for Mesh 2 and Mesh 3 exhibit 

similar trends. 

 

Figure 3.20  Cross-mesh comparison of crack propagation path 
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3.6.5 Determination of mesh size and ∆ࢇ for design studies 

The objective for this study was to determine appropriate level of mesh 

refinement and ∆ܽ value for further design studies. Notice from Table 3.4, Table 3.6, and 

Table 3.9 that even with different meshes, ܭ௘௤ and ܰ values are quite close. However, 

significant differences can be observed in case of ߠ௖, which impacts crack growth 

trajectory. This happens because for same ∆ܽ, mode I and mode II SIF values differ from 

mesh to mesh, however, the difference in equivalent SIF is not significant. Thus, even 

though the coarse mesh predicts fracture parameters with sufficient accuracy, it is 

deemed inadequate for accurate prediction of crack growth trajectory. 

Since no analytical solution is available for this problem, the most refined case— 

∆ܽ ൌ 0.1 ݉݉ for Mesh 3— is taken as the basis for comparison. For this case, the crack 

terminates at (43.27, 0.73), which was deemed as the true point of failure. For all other 

∆ܽ cases, crack segments exceeding this termination point were excluded. The crack 

trajectory was then approximated as a 2nd order curve and 2nd order polynomials were 

fitted through the crack-tip coordinates for different values of ∆ܽ for Mesh 2 and Mesh 3 

as shown in Figure 3.21 and Figure 3.22, respectively. Since the correlation coefficient 

(ܴଶ value) for all curves is almost 1, 2nd order polynomial is a good approximation. It can 

be observed that although the polynomial coefficients corresponding to different ∆ܽ 

values are different, the curves themselves are quite close to each other. Out of all mesh 

and ∆ܽ combinations, the curve for Mesh 2 and ∆ܽ ൌ 0.8 ݉݉ case matches most closely 

with the best case shown in Figure 3.23. It can be observed that these two are very close 

to each other. Although this combination does exhibit some oscillations, this combination 

was selected in the interest of saving computational burden. 
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Figure 3.21  Crack propagation path curve fitting for Mesh 2 
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Figure 3.22  Crack propagation path curve fitting for Mesh 3
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Figure 3.23  Comparison of crack propagation path for reference and selected cases 
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Figure 3.24  Crack propagation path for Mesh 2 

 

 

Figure 3.25  ߪ௬௬ (MPa) distribution for the connecting rod 
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Chapter 4  

DESIGN  SENSITIVITY  ANALYSIS 

 

 

During optimization process, it is necessary to compute sensitivity coefficients of the 

objective function and performance measures with respect to design variables. These 

coefficients help optimization algorithm in determining search direction towards 

optimum design. In shape DSA, the parameters that define shape are considered as design 

variables. In the context of CAD modeling, the dimensions of different features in the 

CAD model serve as design variables. In this chapter, different methods considered for 

computing design sensitivity coefficients are discussed. The concept of design velocity 

field, which facilitates finite element mesh update, is also introduced. 

4.1 Design velocity field computation 

Structural performance is measured at some specific points in the finite element model. 

As the design domain changes during the shape optimization process, it is necessary to 

update location of these points accordingly. The finite element model, being non-

parametric, cannot be updated simply by updating the design variables. The design 

velocity field characterizes material point movements due to changes in the shape design 

variables and, hence, can be used to update the FEA mesh and the positions of the local 

structural performance measurement points. 
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Consider a general continuum structure undergoing the change from Ω to Ωத as 

shown in Figure 4.1. Let τ be a monotonically increasing parameter that plays the role of 

design time. Assume that there exists a homeomorphic mapping  ܶ, such that 

ܶ: ݔ ՜ ,ሻݔఛሺݔ ݔ א ߗ (4.1)

with this mapping function, one can determine shape parameters at time τ as follows: 

 

 

Figure 4.1 Deformation of a continuum structure 

 

ఛݔ ؠ ܶሺݔ, ߬ሻ,

ఛߗ ؠ ܶሺߗ, ߬ሻ,  and 

ఛ߁ ൌ ܶሺ߁, ߬ሻ

(4.2)

Suppose that a material point ݔ א Ω in the initial domain at ߬ ൌ 0 moves to a new 

location ݔఛ א Ωத in the perturbed domain. Then a design velocity field can be defined as 

ܸሺݔఛ, ߬ሻ ؠ ௗ௫ഓ
ௗఛ

ൌ ௗ்ሺ௫,ఛሻ
ௗఛ

ൌ డ்ሺ௫,ఛሻ
డఛ

(4.3)

In the neighborhood of initial time ߬ ൌ 0, assuming a regularity hypothesis and ignoring 

higher-order terms, ܶ can be approximated by 
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ܶሺݔ, ߬ሻ ൌ ܶሺݔ, 0ሻ ൅ డ்ሺ௫,଴ሻ
డఛ

൅ ܱሺ߬ଶሻ

 ൎ ݔ ൅ ܸ߬ሺݔ, 0ሻ
(4.4)

where ݔ ؠ  ܶሺݔ, 0ሻ and ܸሺݔሻ ؠ ܸሺݔ, 0ሻ. 

For the current research, a hybrid design velocity computation method proposed 

by Choi & Chang (1994) is employed. In this method, design velocity is calculated in two 

steps. An isoparametric mapping method is first used to calculate the design velocity of 

the boundary points, called the boundary velocity field (BVF). Then, the boundary 

displacement method is used to determine the movement of interior points, called the 

domain velocity field. These two are then combined to obtain the overall design velocity 

field. A detailed account of design velocity field computation can be found in (Choi & 

Chang, 1994). The overall design velocity field is used to update the finite element mesh 

according to the following equation: 

࢈൫ݔ ൅ ߜ ௝ܾ൯ ൌ ሻ࢈ሺݔ ൅ డ௫
డ௕ೕ

ߜ ௝ܾ ൌ ሻ࢈ሺݔ ൅ ௝ܸ ߜ ௝ܾ (4.5)

Note that, in Equation (4.5), ߜ ௝ܾ may assume different values depending upon the 

design iteration, but ௝ܸ , once calculated, can be used throughout the design optimization 

process. 

4.2 Overall finite difference method 

Overall finite difference (FD) method is simple to implement, and hence is used as an 

initial step in this research. In overall FD method, structural performance measures are 

first evaluated for the current design. Then a design variable is perturbed by a small 

amount. A perturbed finite element mesh is created using the design velocity field. 
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Analysis is carried out to evaluate the structural responses for the perturbed design. The 

differences between the current and perturbed responses are computed and divided by the 

amount of the design perturbation to obtain the first order design sensitivity coefficients 

for the particular design variable. An expression for the same is given by 

డట೔ሺ࢈ሻ
డ௕ೕ

؆ ∆ట೔ሺ࢈ሻ
∆௕ೕ

ൌ ట೔൫࢈ା∆௕ೕ൯ିట೔ሺ࢈ሻ
∆௕ೕ

(4.6)

where ߰௜ is a performance measure that depends on design variables vector ࢈ and  ∆ ௝ܾ is 

the perturbation in ݆௧௛ design variable. The performance measure in this case could be 

stresses, the stress intensity factors, crack propagation angle, or service life. 

Although this method is attractive due to its simplicity, it imposes considerable 

computational burden as it requires evaluation of structural response for two different 

designs (current design and perturbed design) for every design variable perturbation in 

each design iteration. Furthermore, this method is sensitive to the perturbation in design 

variable. If the perturbation is too large relative to the mesh size, the approximation can 

be inaccurate; on the other hand, if the perturbation is too small, numerical truncation 

errors may become significant. Hence other methods were also investigated for the 

current research. 

4.3 Continuum-based shape DSA 

Continuum based material derivative technique for design sensitivity analysis was 

introduced by Haug et al. (1986). The most attractive feature of this approach is that the 

governing equilibrium equations of the problem are differentiated prior to discretization. 
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Hence this method is independent of the discretization method used. The elimination of 

approximation errors also makes this method more accurate. 

The variational governing equation for a structural domain ߗ can be written as 

ܽఆሺࢠ, തሻࢠ ൌ ℓఆሺࢠതሻ ׊ തࢠ א ࢆ (4.7)

where ࢠ and ࢠത are the actual displacements and virtual displacement fields of the 

structure, respectively, ࢆ is the space of kinematically admissible virtual displacements, 

and ܽΩሺࢠ,  .തሻ are energy bilinear and load linear forms, respectivelyࢠതሻ and ℓΩሺࢠ

Neglecting the body forces, Eq. (4.7) can be written as 

ܽఆሺࢠ, തሻࢠ ؠ ׬ ሻఆࢠ௜௝ሺߪ ߗതሻ݀ࢠ௜௝ሺߝ ൌ ℓఆሺࢠതሻ ؠ ׬ ௜ܶݖҧ௜௰ (4.8)   ߁݀

where ߪ௜௝ሺࢠሻ and ߝ௜௝ሺࢠതሻ are the stress and strain tensors of the displacement ࢠ and virtual 

displacement ࢠത, respectively; ௜ܶ is the ith component of the surface traction; and ݖҧ௜ is the 

ith component of ࢠത. The values of ࢠ are obtained by solving Eq. (4.7) using finite element 

method. After taking material derivative of both sides of Eq. (4.7), the following equation 

is obtained. 

ܽఆሺࢠሶ , തሻࢠ ൌ ℓ௏
ᇱ ሺࢠതሻ െ ܽ௏

ᇱ ሺࢠ, തሻࢠ ׊ തࢠ א ࢆ  (4.9)

This equation, again, is solved for ࢠሶ  using finite element method. Since the same 

set of matrix equations needs to be solved with a different fictitious load, solution of ࢠሶ  is 

computationally efficient. The terms ℓ୚
ᇱ ሺࢠതሻ and ܽ୚

ᇱ ሺࢠ,  :തሻ are further derived as followsࢠ

ℓ௏
ᇱ ሺࢠതሻ ൌ ׬ ሼ ௜ܶ൫ݖ௜,௝ ௝ܸ൯ ൅௰ ሾሺ ௜ܶݖҧ௜ሻ,௝ ௝݊ ൅ ௰ሺߢ ௜ܶݖҧ௜ሻሿሺ ௜ܸ݊௜ሻሽ݀(4.10)    ߁

ܽ௏
ᇱ ሺࢠ, തሻࢠ ൌ െ ׬ ሾߪ௜௝ሺࢠሻ൫ݖҧ௜,௞ ௞ܸ,௝൯ ൅ఆ ௜,௞ݖതሻ൫ࢠ௜௝ሺߪ ௞ܸ,௝൯ െ (4.11)  ߗሿܸ݀ݒതሻ݀݅ࢠ௜௝ሺߝሻࢠ௜௝ሺߪ
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where ௝ܸ is jth component of V, ௝݊ is jth component of unit normal vector n, and ߢ୻ is 

curvature of the boundary. 

Let ߰ଵ be a domain functional, defined as an integral over Ωத 

߰ଵ ൌ ׬ ఛ݂ሺ࢞ఛሻ݀ߗఛఆഓ
(4.12)

where த݂ is a regular function defined on Ωத. If Ω is ܥ௞ regular, then the material 

derivative of ߰ଵ at Ω is 

߰ଵሶ ൌ ׬ ݂ᇱሺ࢞ሻ ൅ ఆߗ൫݂ሺ࢞ሻܸሺ࢞ሻ൯݀ݒ݅݀
(4.13)

Using Eq. (4.13), sensitivity coefficients of parameters can be computed. 

Although this method is theoretically sound, it works on the assumption that  

ሶݖ ൌ ᇱݖ ൅  is valid. The presence of strong discontinuity violates this condition, and ்ܸݖ׏

hence application of this technique using its standard formulation is not possible. Hence 

this method was not implemented in this research. 

4.4 Semi-analytical method 

The semi-analytical method starts with FD for calculation of stiffness matrix derivatives, 

but computes sensitivities of rest of the parameters using analytical method. It takes 

advantage of the simplicity of the FD method while differentiating stiffness matrix with 

respect to design variables, but does not require two complete finite element solutions in 

design iteration unlike the FD method. It also takes advantage of the computational 

efficiency and accuracy that comes due to analytical computation of derivatives in the 

continuum method. Thus, it can be thought to be a golden mean between the two methods 

described earlier. 



74 

4.4.1 Sensitivity coefficients of fracture parameters 

The focus of this research is on computing sensitivity coefficients of fracture 

parameters ߠ௖, and ∆ܰ. Taking derivative of ߠ௖ (Eq. (2.9) with respect to the design 

variables yields: 

 డఏ೎
డ௕

ൌ
ଶቈቆଵାටଵା൫଼௄಺಺

మ ௄಺
మൗ ൯ቇሺ௄಺಺ డ௄಺ డ௕⁄ ି ௄಺ డ௄಺಺ డ௕⁄ ሻ቉

௄಺
మቆଵାටଵା൫଼௄಺಺

మ ௄಺
మൗ ൯ቇା௄಺಺

మ ቆ଼ା଺ ටଵା൫଼௄಺಺
మ ௄಺

మൗ ൯ቇ
 (4.14)

Similarly, taking derivative of ∆ܰ with respect to shape design variables yields: 

డ∆ே
డ࢈

ൌ ି௠·∆௔
஼ሺ∆௄಺೐೜ሻ೘శభ

డ∆௄಺೐೜

డ࢈
  (4.15)

As seen from Eq. (4.14) and Eq. (4.15), sensitivity coefficients of ߠ௖ and ∆ܰ depend on 

sensitivity coefficients of ܭூ and ܭூூ. However, the SIFs are obtained from interaction 

energy integral using Eq. (2.26) and Eq. (2.27). Hence, the interaction energy integral 

from Eq. (2.23) is differentiated with respect to design variable. Then the sensitivity 

coefficients of the SIFs can be easily obtained as follows: 

డ௄಺
డ௕೔

ൌ ாᇲ

ଶ
డெሺభ,಺ሻ

డ௕೔
; and  డ௄಺಺

డ௕೔
ൌ ாᇲ

ଶ
డெሺభ,಺಺ሻ

డ௕೔
  (4.16)

These can then be used to find sensitivity coefficients of ߠ௖ and ݀ܽ ݀ܰ⁄ . A flowchart 

explaining the computation of sensitivity coefficients is shown in Figure 4.2. 

4.4.2 Interaction energy integral sensitivity 

Consider interaction energy integral as a domain functional  ߰ଵ defined as shown 

in Eq. (4.12), then the material derivative of ߰ଵ at Ω is 
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߰ଵ
ᇱ ൌ ׬ ቂడ௙ሺ࢞ሻ

డ௕
൅ ݂ሺ࢞ሻܸ݀݅ݒሺ࢞ሻቃ ఆߗ݀ (4.17)

where ܸሺ࢞ሻ is the design velocity field that characterizes material point movements due 

to changes in the shape design variables and  ܸ݀݅ݒሺ࢞ሻ ൌ డ௏భ
డ௫భ

൅ డ௏మ
డ௫మ

. 

 

 

(a) Finite Difference method   (b) Semi-analytical method 

Figure 4.2  Procedure for computing sensitivity coefficients of fracture parameters 
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Applying material derivative to the interaction energy integral of Eq. (2.24) 

involves calculation of ∂݄௜ ∂ܾ⁄  terms. In this section, only derivative of terms ݄ଵ and ݄ହ 

are derived to explain calculation of various terms involved. Derivatives of the remaining 

terms in interaction integral can be found in Appendix A. Based on Eq.(2.25), derivatives 

of ݄ଵ and ݄ହ, respectively, with respect to design variable ܾ are: 
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(4.18)

These terms involve first order derivatives of the actual and auxiliary state 

displacements ൬డ௭೔
ሺభሻ

డ௫ೕ
 and డ௭೔

ሺమሻ

డ௫ೕ
൰, mixed second order derivatives of actual and auxiliary 

state displacements with respect to design variables and the spatial coordinates ൬డమ௭೔
ሺభሻ

డ௕డ௫ೕ
 

and డమ௭೔
ሺమሻ

డ௕డ௫ೕ
൰, derivatives of auxiliary state stresses with respect to design variable ቆ

డఙ೔ೕ
ሺమሻ

డ௕
ቇ, 

and first and mixed second order derivatives of ݍ ൬ డ௤
డ௫ೕ

 and డమ௤
డ௕డ௫ೕ

൰. 

Computation of the first order derivatives with respect to spatial coordinates డ௭೔
ሺభሻ

డ௫ೕ
,  

డ௤
డ௫೔

, and డ௭೔
ሺమሻ

డ௫ೕ
 is straightforward. The first two can be obtained by multiplying ݖ௜

ሺଵሻ 

(obtained from XFEM displacement solution) and ݍ with shape function derivatives, 

respectively. Auxiliary displacements ݖ௜
ሺଶሻ are obtained from Eq. (2.3) and (2.5) after 
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setting ܭூ and ܭூூ to either 1 or 0, and their derivatives డ௭೔
ሺమሻ

డ௫ೕ
 can be obtained analytically 

by using chain rule of differentiation as follows: 

డ௭೔
ሺమሻ

డ௫ೕ
ൌ డ௭೔

ሺమሻ

డ௥
డ௥

డ௫ೕ
൅ డ௭೔

ሺమሻ

డఏ
డఏ
డ௫ೕ

(4.19)

Computation of derivatives involving design variable ܾ employs the semi-

analytical method, which requires perturbing the design variable by a small amount ܾߜ 

and updating the finite element mesh for the perturbed design using design velocity field 

ܸ, i.e., 

࢞ሺܾ ൅ ሻܾߜ ൌ ࢞ሺܾሻ ൅ ܾߜܸ (4.20)

 The design velocity field is computed as discussed in section 4.1. The second 

order derivatives డమ௭೔
ሺభሻ

డ௕డ௫ೕ
 are computed using semi-analytical method as follows. Consider 

the discretized static equilibrium equation ݖܭ ൌ  is ܭ in the finite element form, where ܨ

the reduced stiffness matrix. Taking derivative with respect to design variable ܾ, and 

rearranging yields: 

డ௭೔
ሺభሻ

డ௕
ൌ ଵିܭ ቀడி

డ௕
െ డ௄

డ௕
௜ቁݖ (4.21)

௜ݖ߲
ሺଵሻ ߲ܾ⁄  can be easily obtained by solving Eq. (4.21). To obtain ߲ܭ ߲ܾ⁄  and ߲ܨ ߲ܾ⁄ , the 

design is perturbed by a small amount ܾߜ, stiffness matrix and force vector for this 

perturbed design are calculated, and the derivative is obtained using finite difference as 

follows: 

డ௄
డ௕

ൎ ∆௄
ఋ௕

ൌ ௄ሺ௕ାఋ௕ሻି௄ሺ௕ሻ
ఋ௕

(4.22)
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 డ
మ௭೔

ሺభሻ

డ௕డ௫೔
 is then obtained by multiplying డ௭೔

ሺభሻ

డ௕
 with shape function derivatives. డ௤

డ௫೔
, డ௭భ

ሺమሻ

డ௫೔
, 

௜௝ߪ
ሺଶሻare computed at the perturbed design analytically, and డమ௤

డ௕డ௫೔
, డమ௭೔

ሺమሻ

డ௕డ௫೔
, and 

பఙ೔ೕ
ሺమሻ

பୠ
 are then 

computed using finite difference method. Note that the finite element calculations are 

efficient since analytical expressions of these terms are available. The design perturbation 

 .must be chosen carefully to minimize errors due to numerical truncation ܾߜ

Also note that the level set functions (and thus, the enriched nodes and associated 

enrichment functions) for original and perturbed design remain unchanged. This ensures 

that the stiffness matrices for the original and perturbed design have same dimensions. 

This assumption is valid for small design perturbations, such as those used in this 

research. 

4.4.3 Advantages of the proposed sensitivity analysis method 

The proposed method calculates sensitivity coefficients of fracture parameters 

with respect to shape design variables. Since no re-meshing is required due to XFEM and 

LSM, sensitivity coefficients of fracture parameters can be calculated throughout crack 

propagation cycle. This is the significant advantage of this method over other sensitivity 

analysis techniques developed earlier. It must be emphasized that in Eq.(4.22), inverse of 

stiffness matrix for only the original design is required; it is not necessary to compute 

inverse of stiffness matrix for the perturbed design. Further, auxiliary stresses and 

auxiliary displacement derivatives for current and perturbed designs are computed 

analytically. This saves considerable computational burden and makes this method very 

efficient. 
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4.5 Shape DSA results for rectangular plate under shear load 

As a first step, DSA was carried out for the 2-D plate example shown in Figure 3.8. 

Semi-analytical method was used to compute sensitivity coefficients of fracture 

parameters for the four crack growth cycles. The results obtained by semi-analytical 

method were compared with finite difference method. The sensitivity coefficients with 

respect to the design variable (plate width, ݓ) are summarized in Table 4.1. The results 

from these two methods agree very well with each other. 

 

Table 4.1  Sensitivity analysis results for edge crack under shear load 

Cycle (1) (2) (3) =  (2)-(1) (4) (5)=(4)*100/(3)
No. ܭூሺwሻ ሺ݅ݏܭ√݅݊ሻ ܭூሺw ൅ ሻ݊݅√݅ݏܭሻሺݓ∆ Finite Diff. ሺ߲ܭூ ߲w⁄ ሻ ∆w % Agreement 
1 3.329319E+01 3.328599E+01 -7.195563E-03 -7.193584E-03 99.97 
2 3.799443E+01 3.798866E+01 -5.769076E-03 -5.765511E-03 99.94 
3 4.360749E+01 4.359748E+01 -1.001854E-02 -1.001542E-02 99.97 
4 4.933830E+01 4.932854E+01 -9.766005E-03 -9.763089E-03 99.97 
      
ூூሺwܭ ሻ݊݅√݅ݏܭூூሺwሻ ሺܭ  ൅ ሻ݊݅√݅ݏܭሻሺݓ∆ (3) =  (2)-(1) ሺ߲ܭூூ ߲w⁄ ሻ ∆w (5)=(4)*100/(3)
1 4.507298E+00 4.506767E+00 -5.304489E-04 -5.304833E-04 100.01 
2 -3.303423E-03 -2.883941E-03 4.194812E-04 4.217090E-04 100.53 
3 9.783003E-02 9.800447E-02 1.744468E-04 1.743026E-04 99.92 
4 -3.783166E-02 -3.788122E-02 -4.956017E-05 -5.202629E-05 104.98 
      
 ∆ܰሺwሻ ∆ܰሺw ൅ ܰ∆ሻ (3) =  (2)-(1) ሺ߲ݓ∆ ߲w⁄ ሻ ∆w (5)=(4)*100/(3)
1 2.030975E+05 2.032500E+05 1.524461E+02 1.523313E+02 99.92 
2 1.320481E+05 1.321183E+05 7.020004E+01 7.013272E+01 99.90 
3 8.152376E+04 8.158934E+04 6.558444E+01 6.553014E+01 99.92 
4 5.291841E+04 5.295509E+04 3.667745E+01 3.665016E+01 99.93 
      
௖ሺwߠ ௖ሺwሻߠ  ൅ ௖ߠሻ (3) =  (2)-(1) ሺ߲ݓ∆ ߲w⁄ ሻ ∆w (5)=(4)*100/(3)
1 -2.600307E-01 -2.600543E-01 -2.364130E-05 -2.362035E-05 99.91 
2 1.738898E-04 1.518317E-04 -2.205814E-05 -2.217207E-05 100.52 
3 -4.486792E-03 -4.495825E-03 -9.033351E-06 -9.024342E-06 99.90 
4 1.533559E-03 1.535872E-03 2.312995E-06 2.412414E-06 104.30 
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The first two columns in Table 4.1 show fracture parameters for the current and 

perturbed design (with a perturbation of ∆ݓ ൌ 0.001 ݅݊), respectively. Note that 

perturbed design requires calculation of inverse of the stiffness matrix for determining 

fracture parameters. The third column shows the finite difference and the fourth column 

shows sensitivity coefficient obtained by the proposed method. Last column shows the 

accuracy of the proposed method as compared with the overall finite difference method. 

It can be observed that the proposed method is very accurate. Negative sensitivity 

coefficients for ܭூ indicate that as plate width increases, ܭூ decreases. Further, with each 

crack growth increment, ܭூ increases and the service life decreases. The service life is 

highly sensitive to design variable, whereas the sensitivity of crack growth direction is 

quite low. 

4.6 Engine connecting rod 

Table 4.2 through Table 4.6 show sensitivity coefficients of fracture parameters for the 

initial crack with respect to design variable ܾଵ through ܾହ, respectively. Sensitivity 

coefficients computed by finite difference and semi-analytical methods exhibit excellent 

agreement. It can be observed that sensitivity of service life decreases as the crack length 

increases. This behavior is expected since the service life sensitivity has an inverse 

exponential relation with the SIFs, and SIFs increase with increase in crack length. 

It was observed that for the connecting rod example, DSA with respect to one 

design variable using the proposed semi-analytical method and overall finite difference 

method required 63.2 seconds and 107 seconds, respectively. Thus, the proposed 

sensitivity analysis method is about 41% faster than the overall finite difference method.
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Table 4.2  Sensitivity analysis results for engine connecting rod (∆ܾଵ ൌ 0.005 ݉݉) 

Cycle (1) (2) (3) =  (2)-(1) (4) (5)=(4)*100/(3)

No. ܭூሺ࢈ሻ ሺܽܲܯ√݉݉ሻ ܭூሺ࢈ ൅ ∆ܾଵሻሺܽܲܯ√݉݉ሻ Finite Diff. ሺ߲ܭூ ߲ܾଵ⁄ ሻ ∆ܾଵ % Agreement

1 7.823970E+01 7.823980E+01 9.587144E-05 9.583712E-05 99.96 
2 8.132033E+01 8.132041E+01 7.427470E-05 7.423155E-05 99.94 
3 8.688739E+01 8.688747E+01 7.950723E-05 7.946694E-05 99.95 
4 8.988034E+01 8.988039E+01 5.432642E-05 5.427360E-05 99.90 
5 9.407758E+01 9.407763E+01 5.546475E-05 5.541738E-05 99.91 
6 9.663262E+01 9.663266E+01 4.475336E-05 4.469494E-05 99.87 
7 9.972024E+01 9.972027E+01 2.961500E-05 2.956222E-05 99.82 
      

࢈ூூሺܭ ሻ݉݉√ܽܲܯሻ ሺ࢈ூூሺܭ  ൅ ∆ܾଵሻሺܽܲܯ√݉݉ሻ (3) =  (2)-(1) ሺ߲ܭூூ ߲ܾଵ⁄ ሻ ∆ܾଵ (5)=(4)*100/(3)

1 -2.297324E+01 -2.297323E+01 9.837125E-06 9.854779E-06 100.18 
2 1.900624E+01 1.900628E+01 3.732554E-05 3.732119E-05 99.99 
3 -1.700019E+01 -1.700019E+01 5.926134E-06 5.941946E-06 100.27 
4 1.490597E+01 1.490601E+01 3.631136E-05 3.631076E-05 100.00 
5 -1.093157E+01 -1.093156E+01 1.681629E-05 1.683090E-05 100.09 
6 1.062819E+01 1.062822E+01 2.973638E-05 2.974180E-05 100.02 
7 -7.768668E+00 -7.768663E+00 5.249270E-06 5.264189E-06 100.28 
      

 ∆ܰሺ࢈ሻ ∆ܰሺ࢈ ൅ ∆ܾଵሻ (3) =  (2)-(1) ሺ߲∆ܰ ߲ܾଵ⁄ ሻ ∆ܾଵ (5)=(4)*100/(3)

1 2.917784E+04 2.917773E+04 -1.117327E-01 -1.116854E-01 99.96 
2 2.684004E+04 2.683995E+04 -9.091234E-02 -9.086416E-02 99.95 
3 2.187770E+04 2.187763E+04 -6.650024E-02 -6.646354E-02 99.94 
4 1.979040E+04 1.979035E+04 -4.526261E-02 -4.522298E-02 99.91 
5 1.727856E+04 1.727853E+04 -3.393949E-02 -3.390842E-02 99.91 
6 1.576995E+04 1.576992E+04 -2.710253E-02 -2.706992E-02 99.88 
7 1.427453E+04 1.427451E+04 -1.454425E-02 -1.451739E-02 99.82 
      

࢈௖ሺߠ ሻ (Deg)࢈௖ሺߠ  ൅ ∆ܾଵሻ (Deg) (3) =  (2)-(1) ሺ߲ߠ௖ ߲ܾଵ⁄ ሻ ∆ܾଵ (5)=(4)*100/(3)

1 4.999941E-01 4.999935E-01 -6.098540E-07 -6.099759E-07 100.02 
2 -4.189508E-01 -4.189512E-01 -3.564912E-07 -3.565940E-07 100.03 
3 3.612377E-01 3.612373E-01 -3.907686E-07 -3.909131E-07 100.04 
4 -3.126359E-01 -3.126364E-01 -5.100175E-07 -5.101705E-07 100.03 
5 2.254768E-01 2.254764E-01 -4.519510E-07 -4.521281E-07 100.04 
6 -2.140708E-01 -2.140713E-01 -4.736055E-07 -4.738317E-07 100.05 
7 1.536595E-01 1.536594E-01 -1.453861E-07 -1.455941E-07 100.14 
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Table 4.3  Sensitivity analysis results for engine connecting rod (∆ܾଶ ൌ 0.005 mm) 

Cycle (1) (2) (3) =  (2)-(1) (4) (5)=(4)*100/(3)

No. ܭூሺ࢈ሻ ሺܽܲܯ√݉݉ሻ ܭூሺ࢈ ൅ ∆ܾଵሻሺܽܲܯ√݉݉ሻ Finite Diff. ሺ߲ܭூ ߲ܾଵ⁄ ሻ ∆ܾଵ % Agreement 

1 7.823970E+01 7.823982E+01 1.172926E-04 2.345986E-01 100.01 
2 8.132033E+01 8.132042E+01 9.066349E-05 1.813238E-01 100.00 
3 8.688739E+01 8.688747E+01 8.613315E-05 1.722986E-01 100.02 
4 8.988034E+01 8.988041E+01 7.118167E-05 1.423599E-01 100.00 
5 9.407758E+01 9.407764E+01 6.469995E-05 1.296082E-01 100.16 
6 9.663262E+01 9.663267E+01 5.738838E-05 1.148136E-01 100.03 
7 9.972024E+01 9.972025E+01 8.088620E-06 1.636065E-02 101.13 
      

࢈ூூሺܭ ሻ݉݉√ܽܲܯሻ ሺ࢈ூூሺܭ  ൅ ∆ܾଵሻሺܽܲܯ√݉݉ሻ (3) =  (2)-(1) ሺ߲ܭூூ ߲ܾଵ⁄ ሻ ∆ܾଵ (5)=(4)*100/(3)

1 -2.297324E+01 -2.297323E+01 1.647527E-05 3.297707E-02 100.08 
2 1.900624E+01 1.900627E+01 2.546720E-05 5.095538E-02 100.04 
3 -1.700019E+01 -1.700019E+01 7.159124E-06 1.433586E-02 100.12 
4 1.490597E+01 1.490602E+01 4.268133E-05 8.538933E-02 100.03 
5 -1.093157E+01 -1.093155E+01 2.674615E-05 5.354249E-02 100.09 
6 1.062819E+01 1.062820E+01 1.382506E-05 2.768442E-02 100.12 
7 -7.768668E+00 -7.768696E+00 -2.839503E-05 -5.680449E-02 100.03 
      

 ∆ܰሺ࢈ሻ ∆ܰሺ࢈ ൅ ∆ܾଵሻ (3) =  (2)-(1) ሺ߲∆ܰ ߲ܾଵ⁄ ሻ ∆ܾଵ (5)=(4)*100/(3)

1 2.917784E+04 2.917770E+04 -1.351310E-01 -2.702696E+02 100.00 
2 2.684004E+04 2.683993E+04 -1.058280E-01 -2.116584E+02 100.00 
3 2.187770E+04 2.187762E+04 -7.191943E-02 -1.438636E+02 100.02 
4 1.979040E+04 1.979034E+04 -5.869672E-02 -1.173944E+02 100.00 
5 1.727856E+04 1.727852E+04 -3.906515E-02 -7.825885E+01 100.16 
6 1.576995E+04 1.576992E+04 -3.324552E-02 -6.651403E+01 100.03 
7 1.427453E+04 1.427452E+04 -5.129634E-03 -1.035116E+01 100.90 
      

࢈௖ሺߠ ሻ (Deg)࢈௖ሺߠ  ൅ ∆ܾଵሻ (Deg) (3) =  (2)-(1) ሺ߲ߠ௖ ߲ܾଵ⁄ ሻ ∆ܾଵ (5)=(4)*100/(3)

1 2.864755E+01 2.864750E+01 -4.683358E-05 -4.684762E-05 100.03 
2 -2.400412E+01 -2.400412E+01 -4.375690E-06 -4.386806E-06 100.25 
3 2.069740E+01 2.069737E+01 -2.502559E-05 -2.503808E-05 100.05 
4 -1.791272E+01 -1.791275E+01 -3.304791E-05 -3.306252E-05 100.04 
5 1.291887E+01 1.291883E+01 -3.814366E-05 -3.818508E-05 100.11 
6 -1.226535E+01 -1.226536E+01 -8.216047E-06 -8.232591E-06 100.20 
7 8.804041E+00 8.804072E+00 3.060735E-05 3.060744E-05 100.00 
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Table 4.4  Sensitivity analysis results for engine connecting rod (∆ܾଷ ൌ 0.005 mm) 

Cycle (1) (2) (3) =  (2)-(1) (4) (5)=(4)*100/(3)

No. ܭூሺ࢈ሻ ሺܽܲܯ√݉݉ሻ ܭூሺ࢈ ൅ ∆ܾଷሻሺܽܲܯ√݉݉ሻ Finite Diff. ሺ߲ܭூ ߲ܾଷ⁄ ሻ ∆ܾଷ % Agreement 

1 7.823970E+01 7.824007E+01 3.645711E-04 7.292984E-01 100.02 
2 8.132033E+01 8.132063E+01 2.938824E-04 5.879180E-01 100.03 
3 8.688739E+01 8.688746E+01 6.977681E-05 1.399190E-01 100.26 
4 8.988034E+01 8.988034E+01 3.828353E-06 7.793049E-03 101.78 
5 9.407758E+01 9.407736E+01 -2.176853E-04 -4.334141E-01 99.55 
6 9.663262E+01 9.663232E+01 -2.947196E-04 -5.889891E-01 99.92 
7 9.972024E+01 9.971961E+01 -6.290011E-04 -1.256365E+00 99.87 
      

࢈ூூሺܭ ሻ݉݉√ܽܲܯሻ ሺ࢈ூூሺܭ  ൅ ∆ܾଷሻሺܽܲܯ√݉݉ሻ (3) =  (2)-(1) ሺ߲ܭூூ ߲ܾଷ⁄ ሻ ∆ܾଷ (5)=(4)*100/(3)

1 -2.297324E+01 -2.297327E+01 -3.009677E-05 -6.027828E-02 100.14 
2 1.900624E+01 1.900618E+01 -6.588977E-05 -1.317584E-01 99.98 
3 -1.700019E+01 -1.700028E+01 -8.800563E-05 -1.761527E-01 100.08 
4 1.490597E+01 1.490593E+01 -4.954363E-05 -9.908470E-02 100.00 
5 -1.093157E+01 -1.093162E+01 -4.574744E-05 -9.134288E-02 99.83 
6 1.062819E+01 1.062803E+01 -1.555014E-04 -3.109831E-01 99.99 
7 -7.768668E+00 -7.768890E+00 -2.217991E-04 -4.440156E-01 100.09 
      

 ∆ܰሺ࢈ሻ ∆ܰሺ࢈ ൅ ∆ܾଷሻ (3) =  (2)-(1) ሺ߲∆ܰ ߲ܾଷ⁄ ሻ ∆ܾଷ (5)=(4)*100/(3)

1 2.917784E+04 2.917739E+04 -4.487013E-01 -8.976290E+02 100.03 
2 2.684004E+04 2.683973E+04 -3.050344E-01 -6.102463E+02 100.03 
3 2.187770E+04 2.187762E+04 -7.384057E-02 -1.480151E+02 100.23 
4 1.979040E+04 1.979040E+04 3.291153E-03 6.479747E+00 98.44 
5 1.727856E+04 1.727870E+04 1.346974E-01 2.681638E+02 99.54 
6 1.576995E+04 1.577012E+04 1.759799E-01 3.517020E+02 99.93 
7 1.427453E+04 1.427483E+04 3.046340E-01 6.084284E+02 99.86 
      

࢈௖ሺߠ ሻ (Deg)࢈௖ሺߠ  ൅ ∆ܾଷሻ (Deg) (3) =  (2)-(1) ሺ߲ߠ௖ ߲ܾଷ⁄ ሻ ∆ܾଷ (5)=(4)*100/(3)

1 2.864755E+01 2.864748E+01 -7.078160E-05 -7.076395E-05 99.98 
2 -2.400412E+01 -2.400398E+01 1.376728E-04 1.376806E-04 100.01 
3 2.069740E+01 2.069747E+01 7.749260E-05 7.752916E-05 100.05 
4 -1.791272E+01 -1.791266E+01 5.370764E-05 5.371835E-05 100.02 
5 1.291887E+01 1.291895E+01 7.908579E-05 7.887450E-05 99.73 
6 -1.226535E+01 -1.226522E+01 1.346022E-04 1.346180E-04 100.01 
7 8.804041E+00 8.804340E+00 2.985263E-04 2.986846E-04 100.05 
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Table 4.5  Sensitivity analysis results for engine connecting rod (∆ܾସ ൌ 0.005 mm) 

Cycle (1) (2) (3) =  (2)-(1) (4) (5)=(4)*100/(3)

No. ܭூሺ࢈ሻ ሺܽܲܯ√݉݉ሻ ܭூሺ࢈ ൅ ∆ܾଵሻሺܽܲܯ√݉݉ሻ Finite Diff. ሺ߲ܭூ ߲ܾଵ⁄ ሻ ∆ܾଵ % Agreement 

1 7.823970E+01 7.823971E+01 9.616628E-06 9.607671E-06 99.91 
2 8.132033E+01 8.132034E+01 9.391287E-06 9.390272E-06 99.99 
3 8.688739E+01 8.688740E+01 1.012141E-05 1.011293E-05 99.92 
4 8.988034E+01 8.988035E+01 1.005440E-05 1.005364E-05 99.99 
5 9.407758E+01 9.407759E+01 1.071246E-05 1.070482E-05 99.93 
6 9.663262E+01 9.663263E+01 1.080333E-05 1.080095E-05 99.98 
7 9.972024E+01 9.972025E+01 1.122919E-05 1.122171E-05 99.93 
      

࢈ூூሺܭ ሻ݉݉√ܽܲܯሻ ሺ࢈ூூሺܭ  ൅ ∆ܾଵሻሺܽܲܯ√݉݉ሻ (3) =  (2)-(1) ሺ߲ܭூூ ߲ܾଵ⁄ ሻ ∆ܾଵ (5)=(4)*100/(3)

1 -2.297324E+01 -2.297324E+01 -1.084583E-07 -1.128104E-07 104.01 
2 1.900624E+01 1.900625E+01 1.546427E-06 1.537308E-06 99.41 
3 -1.700019E+01 -1.700019E+01 5.923496E-08 5.673535E-08 95.78 
4 1.490597E+01 1.490598E+01 1.345310E-06 1.332812E-06 99.07 
5 -1.093157E+01 -1.093157E+01 1.861633E-07 1.809842E-07 97.22 
6 1.062819E+01 1.062819E+01 1.027594E-06 1.011839E-06 98.47 
7 -7.768668E+00 -7.768668E+00 5.747615E-08 5.554737E-08 96.64 
      

 ∆ܰሺ࢈ሻ ∆ܰሺ࢈ ൅ ∆ܾଵሻ (3) =  (2)-(1) ሺ߲∆ܰ ߲ܾଵ⁄ ሻ ∆ܾଵ (5)=(4)*100/(3)

1 2.917784E+04 2.917783E+04 -1.159125E-02 -1.158485E-02 99.94 
2 2.684004E+04 2.684003E+04 -1.068266E-02 -1.067922E-02 99.97 
3 2.187770E+04 2.187769E+04 -8.579234E-03 -8.574278E-03 99.94 
4 1.979040E+04 1.979039E+04 -7.708364E-03 -7.706243E-03 99.97 
5 1.727856E+04 1.727855E+04 -6.779991E-03 -6.776266E-03 99.95 
6 1.576995E+04 1.576994E+04 -6.160696E-03 -6.158376E-03 99.96 
7 1.427453E+04 1.427452E+04 -5.589186E-03 -5.586118E-03 99.95 
      

࢈௖ሺߠ ሻ (Deg)࢈௖ሺߠ  ൅ ∆ܾଵሻ (Deg) (3) =  (2)-(1) ሺ߲ߠ௖ ߲ܾଵ⁄ ሻ ∆ܾଵ (5)=(4)*100/(3)

1 2.864755E+01 2.864755E+01 -2.504917E-06 -2.491137E-06 99.45 
2 -2.400412E+01 -2.400411E+01 6.634345E-07 6.725211E-07 101.37 
3 2.069740E+01 2.069740E+01 -2.137150E-06 -2.121351E-06 99.26 
4 -1.791272E+01 -1.791272E+01 3.447917E-07 3.580340E-07 103.84 
5 1.291887E+01 1.291887E+01 -1.604073E-06 -1.586187E-06 98.88 
6 -1.226535E+01 -1.226535E+01 1.871014E-07 1.925842E-07 102.93 
7 8.804041E+00 8.804040E+00 -1.044261E-06 -1.024957E-06 98.15 
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Table 4.6  Sensitivity analysis results for engine connecting rod (∆ܾହ ൌ 0.005 mm) 

Cycle (1) (2) (3) =  (2)-(1) (4) (5)=(4)*100/(3)

No. ܭூሺ࢈ሻሺܽܲܯ√݉݉ሻ ܭூሺ࢈ ൅ ∆ܾଵሻሺܽܲܯ√݉݉ሻ Finite Diff. ሺ߲ܭூ ߲ܾଵ⁄ ሻ ∆ܾଵ % Agreement 

1 7.823970E+01 7.823961E+01 -9.348287E-05 -9.349502E-05 100.01 
2 8.132033E+01 8.132024E+01 -9.162985E-05 -9.162479E-05 99.99 
3 8.688739E+01 8.688729E+01 -9.893953E-05 -9.894995E-05 100.01 
4 8.988034E+01 8.988024E+01 -9.837242E-05 -9.836624E-05 99.99 
5 9.407758E+01 9.407747E+01 -1.049050E-04 -1.049129E-04 100.01 
6 9.663262E+01 9.663251E+01 -1.058594E-04 -1.058558E-04 100.00 
7 9.972024E+01 9.972013E+01 -1.109210E-04 -1.109279E-04 100.01 
      

࢈ூூሺܭ ሻ݉݉√ܽܲܯሻ ሺ࢈ூூሺܭ  ൅ ∆ܾଵሻሺܽܲܯ√݉݉ሻ (3) =  (2)-(1) ሺ߲ܭூூ ߲ܾଵ⁄ ሻ ∆ܾଵ (5)=(4)*100/(3)

1 -2.297324E+01 -2.297324E+01 1.328437E-06 1.301272E-06 97.96 
2 1.900624E+01 1.900623E+01 -1.490746E-05 -1.492608E-05 100.12 
3 -1.700019E+01 -1.700019E+01 -5.778510E-07 -6.069653E-07 105.04 
4 1.490597E+01 1.490596E+01 -1.236541E-05 -1.239122E-05 100.21 
5 -1.093157E+01 -1.093157E+01 -1.307619E-06 -1.340132E-06 102.49 
6 1.062819E+01 1.062818E+01 -9.778944E-06 -9.811849E-06 100.34 
7 -7.768668E+00 -7.768669E+00 -1.167303E-06 -1.203458E-06 103.10 
      

 ∆ܰሺ࢈ሻ ∆ܰሺ࢈ ൅ ∆ܾଵሻ (3) =  (2)-(1) ሺ߲∆ܰ ߲ܾଵ⁄ ሻ ∆ܾଵ (5)=(4)*100/(3)

1 2.917784E+04 2.917795E+04 1.128026E-01 1.128073E-01 100.00 
2 2.684004E+04 2.684014E+04 1.041836E-01 1.041826E-01 100.00 
3 2.187770E+04 2.187778E+04 8.388260E-02 8.388641E-02 100.00 
4 1.979040E+04 1.979048E+04 7.531983E-02 7.531822E-02 100.00 
5 1.727856E+04 1.727863E+04 6.644046E-02 6.644291E-02 100.00 
6 1.576995E+04 1.577001E+04 6.034942E-02 6.034930E-02 100.00 
7 1.427453E+04 1.427458E+04 5.519214E-02 5.519402E-02 100.00 
      

࢈௖ሺߠ ሻ (Deg)࢈௖ሺߠ  ൅ ∆ܾଵሻ (Deg) (3) =  (2)-(1) ሺ߲ߠ௖ ߲ܾଵ⁄ ሻ ∆ܾଵ (5)=(4)*100/(3)

1 4.999941E-01 4.999945E-01 4.193424E-07 4.198355E-07 100.12 
2 -4.189508E-01 -4.189510E-01 -1.162059E-07 -1.158522E-07 99.70 
3 3.612377E-01 3.612381E-01 3.626434E-07 3.632098E-07 100.16 
4 -3.126359E-01 -3.126360E-01 -7.376892E-08 -7.326757E-08 99.32 
5 2.254768E-01 2.254771E-01 2.622454E-07 2.628947E-07 100.25 
6 -2.140708E-01 -2.140708E-01 -3.557757E-08 -3.494203E-08 98.21 
7 1.536595E-01 1.536597E-01 1.887179E-07 1.894236E-07 100.37 
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Chapter 5  

STRUCTURAL SHAPE OPTIMIZATION 

 

 

5.1 Introduction to structural shape optimization 

Numerical optimization techniques (also known as mathematical programming 

techniques) have been used to tackle structural optimization problems in the last few 

decades (Haftka & Gürdal, 1991). In structural shape optimization, shape parameters are 

selected as design variables for the optimization problem. A majority of optimization 

algorithms require that an initial set of design variables with their upper and lower 

bounds be specified. The design is then updated iteratively from this point. The iterative 

process is commonly expressed as follows: 

௡࢈ ൌ ௡ିଵ࢈ ൅ ௡ (5.1)ࢊߙ

where ݊ is the iteration number; ࢊ is the vector of the search direction in the design space 

defined by the design variables vector ࢈; and α is the step size along direction ࢊ. The 

method of determining ࢊ and ߙ may vary depending upon the optimization algorithm. 

Usually, the algorithm determines ࢊ such that a small move in this direction will reduce 

the objective function without violating any constraints. Gradients calculated by the DSA 

module are used to determine the search direction ࢊ. A numerical interpolation scheme is 

applied to determine the step-size ߙ. Once ࢈௡ is obtained, a new search direction and step 
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size are calculated using Eq. (5.2), and the process is repeated until a specified 

convergence criterion is satisfied. The convergence criterion depends on the design 

problem. 

5.2 Proposed design optimization process 

As mentioned in section 1.7, two types of design problems are considered in this 

research. In the first design problem, the goal is to maximize service life of components 

subject to constraints on volume (which is analogous to weight) and structural 

performance measures. The design problem is defined as: 

Maximize: ܰሺ࢈ሻ     

Subject to: ॽሺ࢈ሻ < ॽ௠௔௫, ߰୧ሺ࢈ሻ ൑  ߰௜
௨ 

   ௝ܾ
ℓ ൑ ௝ܾ ൑ ௝ܾ

௨   

(5.2) 

where ܰ is the service life in number of load cycles; ௝ܾ are the shape design variables 

with lower and upper limits ௝ܾ
௟ and ௝ܾ

௨, respectively; ॽ is the volume with the upper limit 

of ॽ௠௔௫; and ߰௜ are the constraints on structural performance measures, such as stresses. 

The second design problem, which focuses on minimizing material subject to constraints 

on service life and structural performance measures, is defined as: 

Minimize: ॽሺ࢈ሻ     

Subject to: ܰሺ࢈ሻ > ܰ௠௜௡,  ߰୧ሺ࢈ሻ ൑  ߰௜
௨ 

     ௝ܾ
ℓ ൑ ௝ܾ ൑ ௝ܾ

௨   

(5.3) 

where ܰ௠௜௡ is the minimum required service life. 
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The shape optimization process is depicted in Figure 5.1. Note that there is a 

crack growth analysis loop within each design iteration. In other words, for each design 

iteration, a complete crack growth analysis is conducted until the failure criterion is met 

௘௤ܭ) ൏  ௘௤ is the equivalentܭ ௖) and the corresponding service life is evaluated. Hereܭ

mode I SIF and ܭ௖ is the fracture toughness of the material. 

 

 

Figure 5.1  Shape optimization process 

 

The process starts with an initial design and a given crack size and location. It is 

assumed that design velocity field is already computed. Structural response 
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(displacements and stresses) is evaluated for the initial design. Using this information, 

interaction energy integral and SIFs are computed. If the SIFs do not exceed the failure 

criteria (ܭ௘௤ ൏  ௖), then the crack growth direction is calculated and a crack segment isܭ

added to the initial crack. Service life corresponding to this crack segment is computed 

and added to the total service life for this design configuration. The crack growth analysis 

is conducted until the failure criterion is reached. Once the failure criterion is reached, 

sensitivity coefficients of objective function (either service life or volume), and 

constraints (structural performance measures) are computed using semi-analytical 

method. Two methods for shape optimization are demonstrated using the connecting rod 

example. 

It is entirely possible that with changes during shape during optimization, the 

crack-tip element (any enriched element, for that matter) for the same crack growth cycle 

may differ from one design iteration to the next. This will result in an inconsistent set of 

elements for computation of fracture parameters during design optimization process, 

which is undesirable. While interaction energy integral is theoretically path independent, 

very marginal path dependence is observed during numerical implementation. To avoid 

this inconsistency, a set of elements sufficiently away from crack tip is selected for 

computation of interaction integral for each crack growth cycle. The same set of elements 

is then used for corresponding crack growth cycles during subsequent design iterations. 

5.2.1 Interactive what-if analysis 

First, an interactive what-if analysis method is used to optimize connecting rod 

shape for maximum service life. In what-if analysis, a first-order estimate of change in 

objective function due to change in design variables is determined (Chang, 2009). 
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Different design changes can be efficiently tried as change in objective function can be 

estimated based on the sensitivity coefficients—no crack propagation analysis is 

required. The design is updated and crack propagation analysis is conducted to validate 

new design. This procedure is performed iteratively until the design satisfies convergence 

criterion. Although this process requires manual intervention at every iteration, it is very 

useful as it offers insight into problem behavior. Further, if the problem is not very 

complex, this method may yield results very quickly. This method is demonstrated for 

shape optimization of the connecting rod for maximum service life. 

5.2.2 Batch mode optimization using DOT 

In this method, a commercial optimization algorithm, Design Optimization Tools 

(DOT), developed by Vanderplaats Research and Development is used. DOT is a 

general-purpose gradient-based optimization software library that can be used for solving 

a wide variety of design optimization problems. DOT is very flexible in terms of 

importing and exporting data and can be easily interfaced with C/C++ or MATLAB 

programs. Using an advanced option in DOT, in addition to objective and constraint 

function values, user can also supply gradients to DOT (VR&D, 2001). Using this 

information, DOT determines design changes and outputs a vector of changes in design 

variables. 

Taking advantage of this capability, a ‘C’ program is written to interface DOT 

with the MATLAB program for crack propagation analysis and DSA. Batch files are 

written to automate data backup and to execute programs that update CAD and finite 

element mesh update according to design changes determined by DOT. Once an initial 

problem is defined as shown in Eq. (5.2) or (5.3), and parameters for optimization 
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algorithm are specified, the optimization process runs without any user intervention until 

convergence criterion is satisfied. Thus, this is a completely automated process and hence 

very suitable for solving complex design optimization problems that involve several 

design variables. This method is demonstrated for solving both design optimization 

problems described earlier. 

5.3 Design for maximum life using what-if analysis 

In this study, all five design variables for the connecting rod are considered. Constraints 

are imposed on minimum principal stress evaluated at certain nodes. The design problem 

is defined as follows: 

Maximize:  ܰሺ࢈ሻ         

Subject to:  ॽሺ࢈ሻ < 2400 ݉݉ଷ, |߰௜ሺ࢈ሻ| ൑ ݅   , ܽܲܯ 70  ൌ  28 ݋ݐ 1

 ௝ܾ
ℓ  ൑  ௝ܾ ൑ ௝ܾ

௨ , ݆ ൌ 1 to 5   

(5.4) 

First, crack-propagation analysis and design sensitivity analysis is performed for 

the initial design. The new design variables vector כ࢈ is determined as follows: 

כ࢈ ൌ ࢈ ൅ ࢈ߜ ൌ ࢈ ൅  ௝ (5.5)ࢊߙ

where ࢊ௝, the search direction for new design, is determined by normalizing vector of 

design sensitivity coefficients of the objective function. 

௝ࢊ ൌ  ൬ డே
డ௕ೕ

൰ ቀడே
డ௕
തതതቁൗ , where డே

డ௕
തതത ൌ ඨ∑ ൬ డே

డ௕ೕ
൰

ଶ
ହ
௝ୀଵ  (5.6) 

Change in objective function for the new design can be obtained from the first-

order estimate based on sensitivity coefficients as follows: 
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כܰ ൌ  ܰ ൅ ∑ ൬ డே
డ௕ೕ

ߜ ௝ܾ൰ହ
௝ୀଵ , where ߜ ௝ܾ ൌ  ௝ (5.7)ࢊߙ

The step-size ߙ is determined so that ܰכ varies about 10-15% from ܰ. The new 

design is verified by conducting crack propagation analysis. If the predicted value for 

objective function agrees with calculated value, next design change is determined. 

Otherwise, the step-size is reduced and the design is verified. This procedure is continued 

for a number of design iterations until convergence criterion is reached. The optimization 

results for this study are summarized in Table 5.1 and shown in Figure 5.2. Figure 5.3 

shows geometric shape for the original and optimized design. Figure 5.4 shows the crack 

propagation path for original and optimized design. The stress intensity factors and crack 

tip coordinates for the original and optimized design are summarized in Table 5.2. 

Convergence was observed at the end of 10 design iterations. The study required 

about 16 clock hours to complete using a 3.3 GHz Intel Xeon processor. It was observed 

that the first four design variables reached their lower bound whereas the fifth design 

variable reached its upper limit. There is an increase of 64% in service life and a decrease 

of 12% in weight for the optimized connecting rod. From Table 5.2, it can be observed 

that the increase in service life largely comes from the additional crack increments and 

reduction in stresses. For example, for the final design, the equivalent SIF for the initial 

crack reduces by about 14%. Effect of decrease in SIF is amplified due to the exponent in 

the Paris equation (Eq. (2.6)). For this problem, ݉ ൌ 3.5. It was also observed that for 

this example, stress generally decreases with reduction in area. This can be seen from 

Table 5.3, which shows average component stresses for the elements used for interaction 

integral calculation for three designs—initial design, midway design, and design at lower 

bound. This explains increase in service life with reduction in area.  
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Table 5.1  What-if analysis results for the connecting rod example 

Iter ܾଵ ܾଶ ܾଷ ܾସ ܾହ Volume Service Life 

No. (mm) (mm) (mm) (mm) (mm) (mm3) (Cycles) 

1 25.000 55.000 18.000 100.000 18.500 2713.57 145,009 

2 24.303 54.197 17.623 99.898 19.498 2664.58 148,419 

3 22.586 51.981 15.584 99.412 19.498 2414.03 161,315 

4 21.991 50.860 12.881 99.132 19.498 2132.24 196,258 

5 20.041 44.299 13.926 98.098 19.498 2170.04 228,820 

6 19.212 40.005 14.529 97.340 19.498 2218.35 253,008 

7 18.183 40.005 14.811 90.008 19.498 2267.68 258,224 

8 15.003 40.005 14.840 90.008 19.498 2245.94 250,198 

9 15.003 40.005 15.740 90.008 19.498 2387.13 239,875 

10 15.003 40.005 15.990 90.008 19.498 2397.33 238,253 

 

 

Table 5.2  What-if analysis: Crack propagation analysis results for the connecting rod 

 Original Design Optimized Design 

Cyc
les 

 ௖ߠ ௘௤ܭ ூூܭ ூܭ
(Deg) 

Crack Tip 
Coordinates 

 ௖ߠ ௘௤ܭ ூூܭ ூܭ
(Deg) 

Crack Tip 
Coordinates ሺܽܲܯ√݉݉ሻ ܽܲܯ√݉݉ 

0     (48.00,1.50)     (48.00,1.50) 

1 78.24 -22.97 81.54 28.65 (47.26,1.21) 67.23 -23.78 71.31 32.66 (47.28,1.16) 

2 81.32 19.01 83.51 -24.00 (46.46,1.24) 70.04 21.11 73.15 -29.20 (46.48,1.21) 

3 86.89 -17.00 88.53 20.70 (45.70,0.99) 76.93 -19.15 79.28 25.25 (45.74,0.91) 

4 89.88 14.91 91.11 -17.91 (44.90,0.99) 80.38 17.92 82.36 -23.10 (44.94,0.93) 

5 94.08 -10.93 94.71 12.92 (44.12,0.80) 86.10 -13.71 87.19 17.27 (44.17,0.72) 

6 96.63 10.63 97.22 -12.27 (43.32,0.79) 89.69 13.73 90.73 -16.67 (43.37,0.73) 

7 99.72 -7.77 100.2  8.80 (42.53,0.65) 94.31 -10.36 94.88 12.25 (42.58,0.57) 

8      98.08 10.90 98.68 -12.38 (41.78,0.59) 

9      102.15 -8.59 102.51 9.49 (40.99,0.47) 
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Table 5.3  Average stresses for elements used for interaction integral calculation 

Elem ߪ௫௫ (MPa) ߪ௬௬ (MPa)  ߬௫௬ (MPa) 
No. Design 1 Design 2 Design 3 Design 1 Design 2 Design 3  Design 1 Design 2 Design 3
1 -1.51 -1.57 -1.01 3.71 3.84 2.00  -1.08 -0.78 -1.23 
2 -1.73 -0.74 -1.62 0.05 1.57 3.71  -0.41 -1.45 -0.45 
3 -1.91 -1.55 -0.85 5.59 0.18 1.75  0.17 -0.52 -1.46 
4 -3.12 -1.73 -1.46 3.68 5.11 0.25  2.04 0.48 -0.56 
5 0.60 -3.64 -3.49 4.67 0.45 0.36  -0.08 0.13 0.12 
6 -1.37 -2.92 -3.56 6.14 4.38 6.48  -1.76 2.18 -0.49 
7 -0.77 -3.81 -1.08 2.18 6.84 2.85  -1.67 -0.13 -1.56 
8 -1.08 0.08 -1.41 3.15 4.13 3.64  -1.56 0.02 -1.07 
9 -0.95 -1.10 -1.18 2.19 5.30 2.64  -1.30 -1.51 -1.07 

10 -1.26 -0.88 -1.43  2.91 2.55 3.11  -1.13 -1.67 -0.69 
11 -1.00 -1.23 -0.85  0.38 3.51 0.59  -0.77 -1.38 -0.96 
12 -0.71 -1.03 -0.70  0.83 2.47 1.15  -1.13 -1.23 -1.32 
13 -1.85 -1.33 -4.15  4.80 3.11 -0.04  -0.85 -0.94 -0.33 
14 -1.98 -0.88 -2.37  5.42 0.50 0.06  -0.37 -0.90 -0.29 
15 -2.93 -0.65 -1.19  2.16 1.02 4.92  1.64 -1.26 0.74 
16 -3.22 -2.63 -1.43  1.04 -0.04 5.23  0.89 -0.30 0.40 
17 -0.45 -1.17 -1.83  0.99 5.72 4.44  -1.46 0.64 -0.09 
18 -0.51 -1.83 -1.82  1.63 4.77 4.62  -1.71 -0.44 0.32 
19 -4.13 -1.86 -3.02  0.21 5.14 2.99  -0.29 0.05 1.86 
20 -3.10 -2.58 -2.68  0.56 2.52 1.15  0.50 1.87 1.12 
21 -4.48 -2.84 -3.01  -0.04 1.10 1.58  -0.41 1.00 1.29 
22 -2.27 -0.54 -4.04  0.12 2.11 -0.08  -0.42 -1.84 -0.14 
23 0.35 -3.94 -0.32  5.38 0.09 4.66  0.79 -0.22 0.79 
24 0.08 -3.98 -1.05  4.57 0.01 4.47  0.53 -0.42 0.85 
25 -0.68 0.06 -3.68  5.21 5.51 6.81  0.91 0.89 0.27 
26 -0.96 -0.03 -3.53  6.01 4.64 6.40  0.80 0.69 1.28 
27 -1.72 -0.89 -3.86  5.50 5.21 5.70  0.62 0.88 1.29 
28 -4.03 -3.82 -3.41  6.26 6.82 4.52  1.18 0.75 1.85 
29 -3.59 -3.49 -0.12  5.18 6.00 4.73  1.85 1.68 -0.95 
30 -3.63 -0.30 0.18  7.19 4.81 4.33  1.14 -1.17 -0.35 
31 -0.21 0.13 0.47  5.60 4.38 4.79  -1.56 -0.59 0.47 
32 0.55 0.64 0.00  5.01 4.77 4.12  -0.90 0.23 0.23 
33 -3.71 -3.18 -2.83  7.42 7.37 6.74  0.05 -0.56 -0.92 
34 -3.56 -2.98 -1.83  7.05 6.64 5.73  -0.76 -1.12 -1.41 
35 -2.47 -2.03 -1.78  6.37 6.67 6.76  -1.57 -1.50 -1.37 
36 -2.67 -0.81 -0.87  7.44 6.29 5.31  -1.29 -1.65 -1.36 
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Figure 5.2  What-if analysis results: Design for maximum life of the connecting rod 

 

 

Figure 5.3  What-if analysis results: Original and optimized design 
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(a) Original design 

 

 

(b) Optimized design 

Figure 5.4  What-if analysis: Crack propagation path for original and optimized design 

 

5.4 Design for maximum life using batch-mode optimization 

In this study, only the first three design variables are considered and stress constraints are 

imposed at 8 nodes. A constraint of 2400 ݉݉ଷ, which corresponds to about 10% 

reduction in initial design, is imposed on volume. The design problem is defined as: 

Maximize:  ܰሺ࢈ሻ         

Subject to:   ॽሺ࢈ሻ < 2400 ݉݉ଷ, |߰௜ሺ࢈ሻ| ൑ ݅   ,ܽܲܯ 70  ൌ  8 ݋ݐ 1

௝ܾ
ℓ  ൑  ௝ܾ  ൑ ௝ܾ

௨ , ݆ ൌ 1 to 3   

(5.8) 
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Sequential Quadratic Programming (Haftka & Gürdal, 1991) algorithm in DOT is 

used for optimization. The optimization results are presented in Figure 5.5 and Table 5.4. 

The algorithm converged in 7 SQP iterations, which required 18 crack propagation 

analyses and 6 sensitivity analyses. The optimization process required about 24 clock 

hours to complete. It was observed that ܾଵ and ܾଶ, converge to their lower limit, whereas 

ܾଷ decreases initially, but later increases to satisfy violated stress constraints. Although 

values differ slightly, this trend is consistent with the results from what-if analysis. There 

is an increase of 56% in service life and a decrease of 16% in weight for the optimized 

connecting rod. The shape for optimal design is shown in Figure 5.6. The crack 

propagation path for original and optimized design is shown in Figure 5.7 and the SIFs, 

crack propagation angle, and crack tip coordinates for original and optimized design are 

summarized in Table 5.5. The optimized design allows eight crack growth increments 

(against 7 for the original design) while satisfying all structural performance constraints, 

and hence corresponding increase in life is observed. 

 

Table 5.4  Design for maximum service life: Batch-mode optimization results 

Iter ܾଵ ܾଶ ܾଷ Volume Service Life 

No. (mm) (mm) (mm) (mm3) (Cycles) 

1 25.000 55.000 18.000 2713.57 145,010 

2 23.063 45.314 16.455 2467.84 179,911 

3 15.021 40.010 14.724 2236.93 233,848 

4 15.049 40.006 14.923 2258.40 227,014 

5 15.052 40.006 14.923 2258.41 229,666 

6 15.384 40.001 15.112 2278.61 226,332 

7 15.794 40.000 15.071 2274.04 226,016 
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Table 5.5  Design for maximum service life: Crack propagation analysis results 

 Original Design Optimized Design 

Cyc
les 

 ௖ߠ ௘௤ܭ ூூܭ ூܭ
(Deg) 

Crack Tip 
Coordinates 

 ௖ߠ ௘௤ܭ ூூܭ ூܭ
(Deg) 

Crack Tip 
Coordinates ሺMPa√mmሻ ሺMPa√mmሻ 

     (48.00,1.5)     (48.00,1.5) 

1 78.24 -22.97 81.54 28.65 (47.26,1.21) 66.37 -23.76 65.03 32.92 (47.28,1.15) 

2 81.32 19.01 83.51 -24.00 (46.46,1.24) 69.81 20.04 66.91 -28.17 (46.48,1.18) 

3 86.89 -17.00 88.53 20.70 (45.70,0.99) 77.11 -17.25 74.12 23.17 (45.73,0.90) 

4 89.88 14.91 91.11 -17.91 (44.90,0.99) 80.95 15.99 78.40 -20.87 (44.93,0.90) 

5 94.08 -10.93 94.71 12.92 (44.12,0.80) 86.74 -11.01 84.36 14.03 (44.16,0.71) 

6 96.63 10.63 97.22 -12.27 (43.32,0.79) 90.68 10.54 89.34 -12.93 (43.36,0.69) 

7 99.72 -7.77 100.2 8.80 (42.53,0.65) 95.76 -6.20 95.43 7.35 (42.56,0.58) 

8      100.12 6.39 101.20 -7.25 (41.76,0.56) 

 

 

 

Figure 5.5  Design for maximum service life: Batch-mode optimization results  
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Figure 5.6  Optimization for maximum service life: Original and optimized design. 

 

 

 

(a) Original design 

 

 

(b) Optimized design 

Figure 5.7  Design for maximum service life: Crack propagation path 

  

Reduction in volume 
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5.5 Design for minimum weight using batch-mode optimization 

In this study, only the first three design variables are considered. A lower limit of 

200,000 cycles, which corresponds to 30% increase in service life, is imposed as a 

constraint. Stress constraints are imposed at 8 nodes located in the known high stress 

region. Sequential Quadratic Programming (SQP) algorithm in DOT is used for 

optimization. The optimization results are shown in Table 5.6 and Figure 5.8. The 

optimized shape of the connecting rod is shown in Figure 5.9 and the crack propagation 

path can be observed from Figure 5.10. The crack propagation results for original and 

optimized design are summarized in Table 5.7. 

Minimize:  ॽሺ࢈ሻ         

Subject to:  ܰሺ࢈ሻ > 2 ൈ 10ହ cycles, |߰௜ሺ࢈ሻ| ൑ ݅   , ܽܲܯ 70  ൌ  8 ݋ݐ 1

 ௝ܾ
ℓ  ൑  ௝ܾ ൑ ௝ܾ

௨ , ݆ ൌ 1 to 3   

(5.9) 

 

Table 5.6  Design for minimum weight: Batch-mode optimization results 

Iter ܾଵ ܾଶ ܾଷ Volume Service Life 

No. (mm) (mm) (mm) (mm3) (Cycles) 

1 25.00 55.00 18.00 2713.57 145,009 

2 18.65 45.47 13.82 2178.46 214,803 

3 17.50 43.75 14.13 2198.06 229,126 

4 16.13 41.69 14.54 2227.76 229,364 

5 15.43 40.65 14.89 2259.06 227,494 

6 15.07 40.08 15.15 2283.26 225,641 

7 15.00 40.00 15.13 2281.06 226,110 
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Table 5.7  Design for minimum weight: Crack propagation analysis results 

 Original Design Optimized Design 

Cyc
les 

 ௘௤ θୡܭ ூூܭ ூܭ
(Deg) 

Crack Tip 
Coordinates 

 ௘௤ θୡܭ ூூܭ ூܭ
(Deg) 

Crack Tip 
Coordinates 

 ሺMPa√mሻ ሺMPa√mሻ 

0     (48.00,1.50)     (48.00,1.50) 

1 78.24 -22.97 81.54 28.65 (47.26,1.21) 66.44 -23.78 70.56 32.92 (47.28,1.15) 

2 81.32 19.01 83.51 -24.00 (46.46,1.24) 69.79 20.15 72.64 -28.30 (46.48,1.19) 

3 86.89 -17.00 88.53 20.70 (45.70,0.99) 77.06 -17.42 79.00 23.36 (45.73,0.90) 

4 89.88 14.91 91.11 -17.91 (44.90,0.99) 80.89 16.11 82.48 -21.01 (44.93,0.90) 

5 94.08 -10.93 94.71 12.92 (44.12,0.80) 86.68 -11.16 87.39 14.23 (44.16,0.71) 

6 96.63 10.63 97.22 -12.27 (43.32,0.79) 90.59 10.60 91.21 -13.00 (43.36,0.69) 

7 99.72 -7.77 100.2 8.80 (42.53,0.65) 95.68 -6.13 95.87 7.27 (42.57,0.58) 

8      100.02 6.19 100.22 -7.03 (41.77,0.56) 

 

      

 

Figure 5.8  Design for minimum weight: Batch-mode optimization results 
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Figure 5.9  Design for minimum weight: Original and optimized design 

 

 

 

(a) Original design 

 

(b) Optimized design 

Figure 5.10  Design for minimum weight: Crack propagation path for original and 

optimized design 

 

Reduction in volume 
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The algorithm converged in 7 SQP iterations, which required 18 crack 

propagation analyses and 6 sensitivity analyses. The optimization required about 24 clock 

hours to complete. ܾଵ and ܾଶ converge to their lower limit, whereas ܾଷ decreases initially, 

but later increases to satisfy violated stress constraints. Although values differ slightly, 

results for this case are almost identical to the previous one. There is a decrease of 16% in 

weight and an increase of 56% in service life for the optimized connecting rod. 

Optimization results obtained from both interactive and batch-mode approaches 

indicate similar trends. The results reveal that the design corresponding to maximum 

service life also corresponds to the minimum weight design in this case. Note that this 

may not hold true for other examples. It was observed that even with more design 

variables (which translate into more design sensitivity analyses), the what-if analysis was 

faster than the batch-mode optimization, and accurately reflected problem behavior. This 

is because the what-if analysis requires only first-order estimate in determining step size 

along the search direction; whereas, SQP is a more sophisticated technique and conducts 

line search by solving a quadratic equation that requires evaluation of design at three 

different points in the design space. Thus, both optimization methods have their own 

place and choice should be made depending upon the design problem at hand. 
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Chapter 6  

CONCLUSIONS AND FUTURE WORK 

 

 

6.1 Conclusions 

While crack propagation analysis and shape optimization have both enjoyed great 

attention by the research community, incorporation of crack propagation analysis into 

shape optimization framework has not received much attention. This research presents a 

design process that supports shape optimization of structural components under 2-D 

mixed-mode fracture for maximum service life. The main contributions of this research 

are: 

• Incorporation of crack propagation analysis into shape optimization framework to 

solve two commonly used design problems: (i) Design for maximum service life 

and (ii) Design for minimum weight subject to a specified service life. 

• Development of a reliable, accurate, and efficient semi-analytical method for 

computation of sensitivity coefficients of fracture parameters with respect to 

shape design variables for a growing crack. 

• Incorporation of XFEM-LSM for crack propagation facilitates crack propagation 

modeling without the need for highly refined mesh or the need for re-meshing, 

and thus, makes this method very efficient. 
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In regular FEA the crack needs to align with crack faces and highly refined mesh 

is required to accurately capture the steep stress gradients near crack tip region. Despite 

several advancements in automatic mesh generation algorithms, mesh generation for 

complex 3-D components is still challenging. Therefore, the need for re-meshing at every 

step in the crack growth process adversely affects the feasibility of FEM for modeling 

such problems. Also, during shape optimization, crack propagation analysis needs to be 

performed several times. Integration of XFEM-LSM provides a more elegant and 

efficient way to solve crack propagation problems by effectively overcoming these 

limitations. Hence, incorporation of XFEM-LSM into shape optimization framework is 

an important and unique contribution of this research. 

Considering that during design optimization process, there are several design 

iterations and during each iteration, DSA is performed with respect to each design 

variable, even a small improvement in efficiency of the DSA method is important. The 

novel semi-analytical DSA technique developed in this research overcomes the challenge 

of computing derivatives of discontinuous or unsmooth enrichment functions in XFEM 

and is capable of computing sensitivity coefficients of fracture parameters for a growing 

crack with respect to shape design variables. Both, finite difference and semi-analytical 

methods were implemented in this research and it was shown that the semi-analytical 

DSA method is up to 40% faster than the finite difference method. 

The proposed design process has its roots in the damage tolerant design approach 

commonly used in fracture mechanics. It assumes that a crack exists in the structure and 

then determines its optimum geometric configuration for maximum residual service life. 

For designing new structural components, first crack initiation analysis should be 
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performed to find out most likely location and size of the crack. This design process can 

then be incorporated early into the design phase of these components to optimize their 

geometric shape for maximum service life. For components with existing parts, material 

can be added or removed (if feasible) to prolong their residual service life. Also, in 

general, this method is useful for determining effect of shape changes on the residual 

service life. 

The design optimization process can successfully handle arbitrary 2-D geometries 

and can solve general design problems that are most commonly encountered, such as 

design for maximum life and design for minimum weight. Two different optimization 

approaches are also presented. Batch-mode optimization approach requires minimal user-

intervention and is suitable for more complex design problems. On the other hand, what-

if analysis is an extremely useful technique for gaining insight into the problem behavior 

and should be the preferred approach for relatively simple optimization problems. 

The optimization process was completely automated using C/C++ and MATLAB 

codes and Windows batch files. The program can accept finite element mesh from 

external codes, such as ANSYS, and therefore is capable of handling any general 2-D 

geometry. The programs developed can be used for any 2-D example. Thus, another 

important contribution of this research is the development of software architecture for 

this optimization process. 

The design process delineated here provides basic framework for solving more 

complex problems. The scope for further enhancements is identified next. 
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6.2 Future work 

This research takes a definitive step towards developing a reliable technique for design of 

structural components for durability, but several improvements can be made to increase 

its scope. One notable limitation of this method is its ability to deal with only LEFM 

problems. An ability to incorporate effects of crack-tip plasticity (elastic-plastic fracture 

mechanics) would significantly increase scope of this work. 

Although XFEM–LSM technique has been successfully demonstrated for 3-D 

applications, commercial codes for 3-D (or even 2-D) crack propagation using XFEM 

have started surfacing only recently. Notably, the latest release of ABAQUS (version 6.9) 

facilitates XFEM implementation through user defined libraries. Use of such commercial 

codes will provide a more standardized and easy way to apply this method to a wide 

range of problems. In future, this design process can be extended for 3-D applications. 

Also modification of current XFEM-LSM algorithm for parallel computing would 

significantly increase its capability to handle much more complex problems, such as 

those involving multiple cracks.  

Continuum based material derivative technique differentiates governing 

equilibrium equations prior to discretization. Hence, development of a continuum based 

design sensitivity analysis technique would further increase accuracy, efficiency, and 

reliability of this process. 

  



108 

BIBLIOGRAPHY 

Aliabadi, M. H. (1997). A new generation of boundary element methods in fracture 

mechanics. International Journal of Fracture , 86, 91-125. 

Anderson, T. L. (1985). Fracture Mechanics: Fundamentals and Applications (2 ed.). 

Boca Raton, Florida, USA: CRC Press Inc. 

ANSYS Commands Reference 11.1. (2008). ANSYS, Inc., Canonsburg, PA, USA. 

Babuska, I., & Melenk, J. M. (1997). The partition of unity method. International 

Journal for Numerical Methods in Engineering , 40, 727-758. 

Banichuk, N. V., Ivanova, S. Y., Makeev, E. V., & Sinitsin, A. V. (2005). Optimal Shape 

Design of Axisymmetric Shells for Crack Initiation and Propagation Under Cyclic 

Loading. Mechanics Based Design of Structures and Machines , 33 (2), 253-269. 

Bannerman, D. B., & Young, R. T. (1946). Some Improvements Resulting from Studies 

of Welded Ship Failures. Welding Journal , 25. 

Barosum, R. S. (1974). Application of quadratic isoparametric finite elements in linear 

fracture mechanics. International Journal of Fracture , 10 (4), 603-605. 

Barosum, R. S. (1977). Triangular quarter-point elements as elastic and perfectly-plastic 

crack tip elements. International Journal for Numerical Methods in Engineering , 

11, 85-98. 

Belytschko, T., & Black, T. (1999). Elastic crack growth in finite elements with minimal 

remeshing. International Journal for Numerical Methods in Engineering , 45 (5), 

601-620. 



109 

Belytschko, T., & Chen, H. (2004). Singular Enrichment Finite Element Method for 

Elastodynamic Crack Propagation. International Journal of Computational 

Methods , 1 (1), 1-15. 

Belytschko, T., Moes, N., Usui, S., & Parimi, C. (2001). Arbitrary discontinuities in finite 

elements. International Journal for Numerical Methods in Engineering , 50 (4), 

993-1013. 

Benzley, S. E. (1974). Representation of singularities with isoparametric finite elements. 

International Journal for Numerical Methods in Engineering , 8, 537-545. 

Bordas, S. A. (2003). Extended Finite Element and Level Set Methods with Applications 

to Growth of Cracks and Biofilms. Ph.D. Thesis, Northwestern University, 

Evanston, IL, USA. 

Buchholz, F. G., Chergui, A., & Dhondt, G. (1999). A comparison of SIF and SERR 

results with reference solutions regarding 3D and mode coupling effects for 

different specimens. Proc. of the First International Conference on Fracture and 

Damage Mechanics , 201-212. 

Buchholz, F. G., Grebner, H., Dreyer, K. H., & Krome, H. (1988). 2D- and 3D-

applications of the improved and generalized modified crack closure integral 

method. Computational Mechanics , 1, 1-14. 

Chang, K. H. (2009). Shape sensitivity analysis and design studies for CAD flume 

sections. Structural and Multidisciplinary Optimization , 37 (1), 91-106. 

Chang, K. H., Yu, X., & Choi, K. K. (1997). Shape design sensitivity analysis and 

optimization for structural durability. International Journal for Numerical 

Methods in Engineering , 40, 1719-1743. 



110 

Chen, G., Rahman, S., & Park, Y. H. (2001). Shape sensitivity analysis in mixed-mode 

fracture mechanics. Computational Mechanics , 27 (4), 282-291. 

Chessa, J. (2002). The Extended Finite Element Method for Free Surface and Two Phase 

Flow Problems. Ph. D. thesis, Northwestern University, Evanston, IL, USA. 

Choi, K. K., & Chang, K. H. (1994). A Study on Velocity Field Computation for Shape 

Design Optimization. Journal of Finite Elements in Analysis and Design , 15, 

317-341. 

Chow, W. T., & Atluri, S. N. (1995). Finite element calculation of stress intensity factors 

for interface cracks using the virtual crack closure integral. Computational 

Mechanics , 16, 1-9. 

Courtin, S., Gardin, C., Bezine, G., & Ben Hadj Hamouda, H. (2005). Advantages of the 

J-integral approach for calculating stress intensity factors when using the 

commercial finite element software ABAQUS. Engineering Fracture Mechanics , 

72, 2174–2185. 

Daux, C., Moes, N., Dolbow, J., Sukumar, N., & Belytschko, T. (2000). Arbitrary cracks 

and holes with the extended finite element method. International Journal for 

Numerical Methods in Engineering , 48 (12), 1741-1760. 

deLorenzi, H. G. (1985). Energy release rate calculations by the finite element method. 

Engineering Fracture Mechanics , 21, 129-143. 

deLorenzi, H. G. (1982). On the energy release rate and the J-integral for 3-D crack 

configurations. International Journal of Fracture , 19, 183-193. 



111 

Dhondt, G. (2001). 3-D mixed-mode K-calculations with the interaction integral method 

and the quarter point element stress method. Comunications in Numerical 

Methods in Engineering , 17, 303-307. 

Dolbow, J. (1999). An Extended Finite Element Method with Discontinuous Enrichment 

for Applied Mechanics. Ph.D. thesis, Northwestern University, Evanston, IL, 

USA. 

Dolbow, J., Moes, N., & Belytschko, T. (2000). Modeling fracture in Mindlin-Reissner 

plates with the eXtended finite element method. International Journal of Solids & 

Structures , 37, 7161-7183. 

Erdogen, F., & Sih, G. C. (1963). On the crack extension in plates under plane loading 

and transverse shear. Journal of Basic Engineering , 85, 519-527. 

Fleming, M. (1997). The Element-Free Galerkin Method for Fatigue and Quasi-static 

Fracture. Ph.D. thesis, Northwestern University, Evanston, IL, USA. 

Gravouil, A., Moes, N., & Belytschko, T. (2002). Non-planar 3D crack growth by the 

extended finite element and the level sets--Part II: level set update. International 

Journal for Numerical Methods in Engineering , 53 (11), 2569-2586. 

Grootenboer, H. J. (1979). Finite element analysis of two-dimensional reinforced 

concrete, taking account of nonlinear physical behaviour and the development of 

discrete cracks. Ph.D. Thesis, Delft University of Technology, Delft, Netherlands. 

Haftka, R. T., & Gürdal, Z. (1991). Elements of Structural Optimization (3 ed.). Norwell, 

MA, USA: Kluwer Academic Publishers. 

Han, S. Y., & Lim, J. K. (2002). Shape optimization for prolonging fatigue life. JSME 

International Journal Series , 45 (2), 298-304. 



112 

Harter, J. A. (2008). AFGROW User's Guide and Technical Manual: AFGROW for 

Windows XP/VISTA, Version 4.0012.15. WPAFB, OH: Air Force Research Lab. 

Haug, J. E., Choi, K. K., & Komkov, V. (1986). Design Sensitivity Analysis of Structural 

Systems, Mathematics in Science and Engineering (Vol. 177). Orlando, Florida, 

USA: Academic Press Inc. 

Henshell, R. D., & Shaw, K. G. (1975). Crack tip elements are unnecessary. International 

Journal of Numerical Methods in Engineering , 9 (3), 495-509. 

Huang, R., Sukumar, N., & Prevost, J. H. (2003). Modeling quasi-static crack growth 

with the extended finite element method. Part II: Numerical Applications. 

International Journal of Solids and Structures , 40, 7539-7552. 

Hwang, H. Y., Choi, K. K., & Chang, K. H. (1997). Shape Design Sensitivity and 

Optimization Using p-Version Design Modeling and Finite Element Analysis. 

Mechanics Based Design of Structures and Machines , 25 (1), 103-137. 

Jones, R., Chaperon, P., & Heller, M. (2002). Structural optimisation with fracture 

strength constraints. Engineering Fracture Mechanics , 69, 1403-1423. 

Joo, S. H., & Chang, K. H. (2001). Design for Safety of recreational water slides. 

Mechanics Based Design of Structures and Machines , 29 (2), 261-294. 

Matlab 2007 User's Guide. (2007). The Mathworks Inc., Natick, MA, USA. 

Melenk, J. M. (1995). On generalized finite element methods. Ph.D. thesis, University of 

Maryland, College Park, MD, USA. 

Melenk, J. M., & Babuska, I. (1996). The partition of unity finite element method: Basic 

theory and applications. Seminar fur Angewandte Mathematik, Eidgenossiche 

Technische Hochschule, Zurich, Switzerland. 



113 

Miegroet, L. V., Moes, N., Fleury, C., & Duysinx, P. (2005). Generalized Shape 

Optimization based on the Level Set Method. Proc. 6th World Congress of 

Structural and Multidisciplinary Optimization, (pp. 1-10). Rio De Janeiro, Brazil. 

Moes, N., & Belytschko, T. (2002). Extended finite element method for cohesive crack 

growth. Engineering Fracture Mechanics , 69, 813-834. 

Moes, N., Gravouil, A., & Belytschko, T. (2002). Non-planar 3D crack growth by the 

extended finite element and level sets. Part I: mechanical model. International 

Journal for Numerical Methods in Engineering , 53 (11), 2549-2568. 

Mohammadi, S. (2008). Extended Finite Element Method For Fracture Analysis of 

Structures. Hoboken, NJ, USA: John Wiley and Sons Inc. 

Moran, B., & Shih, C. F. (1987). A general treatment of crack tip contour integrals. 

International Journal of Fracture , 35, 295-310. 

Moran, B., & Shih, C. F. (1987). Crack tip and associated domain integrals from 

momentum and energy balance. Engineering Fracture Mechanics , 27 (6), 615-

642. 

MSC.Software, C. (2005). MSC.Fatigue User's Guide. Santa Ana, CA, USA. 

NBS. (1983). The Economic Effects of Fracture in the United States. Gaitherdburg, MD: 

National Bureau of Standards, U.S. Department of Commerce. 

Ngo, D., & Scordelis, A. C. (1967). Finite element analysis of reinforced concrete beams. 

Journal of American Concrete Institute , 64, 152-163. 

Nguyen, V. P. (2005). An object-oriented approach to the eXtended Finite Element 

Method with Application to Fracture Mechanics. Ph.D. Thesis, Hochiminh City 

University of Technology, Vietnam. 



114 

Nilson, A. H. (1968). Non-linear analysis of concrete by the finite element method. 

Journal of American Concrete Institute (65), 757-766. 

Nishikov, G. P., & Atluri, S. N. (1987). Calculation of fracture mechanics parameters for 

an arbitrary three-dimensional crack by the equivalent domain integral method. 

International Journal for Numerical Methods in Engineering , 24, 1801-1821. 

Noel, D. (2007-2008). Crack Simulation with extended Finite Element Methods. 

Internship Report, University of Glasgow, UK, Department of Civil Engineering. 

NTSB. (1989). Aircraft Accident Report - Aloha Airlines, flight243, Boeing 737-200, -

N73711 near Maui, Hawaii- 28 April 1988. National Transportation Safety 

Board. 

NTSB. (1990). United Airlines Flight 232 McDonnell Douglas DC-10-10 Sioux Gateway 

Airport, Sioux City, Iowa. National Transport Safety Bureau. 

Nuismer, R. (1975). An energy release rate criterion for mixed mode fracture. 

International Journal of Fracture , 11, 245-250. 

Osher, S., & Sethian, J. (1988). Fronts propagating with curvature dependent speed: 

Algorithms based on Hamilton-Jacobi formulations. Journal of Computational 

Physics , 79 (1), 12-49. 

Paris, P. C., Gomez, M. P., & Anderson, W. P. (1961). A rational analytic theory of 

fatigue. The Trend in Engineering , 13, 9-14. 

Rabczuk, T., & Wall, W. A. (2006-2007). A course on Extended Finite Element and 

Meshfree Methods. Technical University of Munich. Munich, Germany. 

Rice, J. R. (1968). A path independent integral and the approximate analysis of strain 

concentration by notches and cracks. Journal of Applied Mechanics , 35, 379-386. 



115 

Rots, J. G. (1988). Computational Modeling of Concrete Fracture. Ph.D. Dissertation, 

Delft University, Netherlands. 

Rots, J., Nauta, P., Kursters, G., & Blaauwendraad, J. (1985). Smeared crack approach 

and fracture localization in concrete. Heron (30), 1-48. 

Saouma, V. E., & Ingraffea, A. R. (1981). Fracture mechanics analysis of discrete 

cracking. IABSE Colloq. Adv. Mech. , 413-436. 

Saurin, V. V. (2000). Shape design sensitivity analysis for fracture conditions. Computers 

and Structures , 76, 399-405. 

Shih, C. F., & Asaro, R. J. (1988). Elastic-plastic analysis of cracks on bimaterial 

interfaces : part I-small scale yielding. Journal of Applied Mechanics , 55, 299-

316. 

Shih, C. F., Moran, B., & Nakamura, T. (1986). Energy release rate along a three-

dimensional crack front in a thermally stressed body. International Journal of 

Fracture , 30, 79-102. 

Sih, G. C. (1973). Energy-density concept in fracture mechanics. Engineering Fracture 

Mechanics , 5, 1037-1040. 

Stern, M., Becker, E. B., & Dunham, R. S. (1976). A contour integral computation of 

mixed-mode stress intensity factors. International Journal of Fracture , 12 (3), 

359-368. 

Stolarska, M., Chopp, D. L., Moes, N., & Belytschko, T. (2001). Modeling crack growth 

by level sets and the extended finite element method. International Journal for 

Numerical Methods in Engineering , 51 (8), 943-960. 



116 

Sukumar, N., & Prevost, J. H. (2003). Modeling quasi-static crack growth with the 

extended finite element method. Part I: Computer implementation. International 

Journal of Solids and Structures , 40, 7513-7537. 

SwRI. (2005). NASGRO 5.2 User's Guide. San Antonio, TX, USA. 

Taroco, E. (2000). Shape sensitivity analysis in linear elastic fracture mechanics. 

Computer Methods in Applied Mechanics and Engineering , 188, 697-712. 

Timbrel, C., Chandwani, R., & Cook, G. (2004). State Of The Art In Crack Propagation. 

Journee Scientifique , 1-35. 

Vanderplaats, G. (1999). Numerical Optimization Techniques for Engineering Design (3 

ed.). Colorado Springs, Colorado, USA: Vanderplaats R&D, Inc. 

VR&D. (2001). Vanderplaats Research and Development, Design Optimization Tools 

User's Manual," Version 5.x. Vanderplaats Research and Development, Inc., 

Colorado Spring, CO, USA. 

Wells, A. A. (1955). The condition of fast fracture in aluminum alloys with particular 

reference to comet failures. British Welding Research Association Report. 

Yau, J. F., Wang, S. S., & Corten, H. T. (1980). A mixed-mode crack analysis of 

isotropic solids using conservation laws of elasticity. Journal of Applied 

Mechanics , 47, 335-341. 

Zahavi, E., & Torbilo, V. (1996). Fatigue Design: Life expectancy of Machine Parts. 

Boca Raton, Florida, USA: CRC Press Inc. 

 



117 

Appendix A 

SENSITIVITY OF INTERACTION INTEGRAL 

 

It was mentioned earlier that calculation of sensitivity coefficients of stress intensity 

factors involves differentiation of the interaction integral with respect to design variables. 

This section builds upon the material presented in section 2.5.3, and shows a detailed 

derivation for computation of sensitivity coefficients of interaction integral using semi-

analytical method. The interaction energy integral is given by 
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Expanding individual terms, 
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Combining Eq. A.1 to Eq. A.4, 
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Rewriting Eq. A.5 as follows, 
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and  ݄௜, ݅ ൌ   .depend upon the stress state 8 ݋ݐ 1

݄ଵ ൌ ଵܧ ൤ߥଵ
డ௭భ

ሺభሻ

డ௫భ
൅ ଶߥ

డ௭మ
ሺభሻ

డ௫మ
൨ డ௭భ

ሺమሻ

డ௫భ

డ௤
డ௫భ (A.7a) 

݄ଶ ൌ ଶܧ ൤డ௭భ
ሺభሻ

డ௫మ
൅ డ௭మ

ሺభሻ

డ௫భ
൨ డ௭భ

ሺమሻ

డ௫భ

డ௤
డ௫మ (A.7b)

݄ଷ ൌ ଶܧ ൤డ௭భ
ሺభሻ

డ௫మ
൅ డ௭మ

ሺభሻ

డ௫భ
൨ డ௭మ

ሺమሻ

డ௫భ

డ௤
డ௫భ (A.7c)

݄ସ ൌ ଵܧ ൤ߥଶ
డ௭భ

ሺభሻ

డ௫భ
൅ ଵߥ

డ௭మ
ሺభሻ

డ௫మ
൨ డ௭మ

ሺమሻ

డ௫భ

డ௤
డ௫మ

  (A.7d)

݄ହ ൌ ଵଶߪ
ሺଶሻ డ௭భ

ሺభሻ

డ௫భ

డ௤
డ௫మ (A.7e)

݄଺ ൌ ଶଶߪ
ሺଶሻ డ௭మ

ሺభሻ

డ௫భ

డ௤
డ௫మ

  (A.7f)

݄଻ ൌ ଵଶߪ
ሺଶሻ డ௭భ

ሺభሻ

డ௫మ

డ௤
డ௫భ (A.7g)

଼݄ ൌ ଶଶߪ
ሺଶሻ డ௭మ

ሺభሻ

డ௫మ

డ௤
డ௫భ

 (A.7h)

 

Factors ܧଵ, ܧଶ, ߥଵ, and ߥଶ depend on stress state and are given as follows: 
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Plane Strain Plane Stress 
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Differentiating ݄௜ with respect to design variable yields (for plane strain state): 
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ൠ  (A.9f)

ப௛ళ
ப௕

ൌ ൜பఙభమ
ሺమሻ

ப௕
డ௭భ

ሺభሻ

డ௫మ

డ௤
డ௫భ

൅ ଵଶߪ
ሺଶሻ డమ௭భ

ሺభሻ

డ௕డ௫మ

డ௤
డ௫భ

൅ ଵଶߪ
ሺଶሻ డ௭భ

ሺభሻ

డ௫మ

డమ௤
డ௕డ௫భ

ൠ  (A.9g)

ப௛ఴ
ப௕

ൌ ൜பఙమమ
ሺమሻ

ப௕
డ௭మ

ሺభሻ

డ௫మ

డ௤
డ௫భ

൅ ଶଶߪ
ሺଶሻ డమ௭మ

ሺభሻ

డ௕డ௫మ

డ௤
డ௫భ

൅ ଶଶߪ
ሺଶሻ డ௭మ

ሺభሻ

డ௫మ

డమ௤
డ௕డ௫భ

ൠ   (A.9h)

 


