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ABSTRACT

The oil and gas industry has long recognized the importance of understanding the
behaviors and trends of pressure and fluid flow dynamics for damaged and stimulated
horizontal wells. It has also been recognized that the existing theories to predict these
behaviors and trends have not been effective due to the geologic factors, as well as
drilling, completion, and production processes. Previous researches and studies over the
last two decades have shown different types of factors such as the presence of multi-
damaged zones, multi-segmented fractures, branching, asymmetry, and deviation from
either the vertical direction or the horizontal direction of the wellbores as a result of in-
situ stress distribution.

The main purpose of this study is to find new applications for the well test analysis
rather than the classic applications that are focusing basically on the characterization of
formation and determination of the permeability and skin factor. The new applications
for the well test analysis are evaluating performance of the zonal isolations and
hydraulic fractures and determining the locations of the isolations and fractures that do
not perform as designed. Another objective is to investigate pressure behavior and flow
regimes of a horizontal well containing either zonal isolations or hydraulic fractures.

The objectives in this study are achieved by using different analytical models.
These models have been derived to simulate the pressure responses and flow regimes in
the vicinity of the wellbore and the outer boundaries of the formations. Based on the
new derived models, different analytical solutions and type-curve matching sets have

been developed to characterize formations.
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The first part of this study focuses on the impact of the zonal isolations on pressure
behaviors and flow regimes of horizontal wells. Horizontal wells with multiple zonal
isolations have become a common completion technique in the oil and gas industry.
Sand and asphalt production problems, damaged zones and water cresting or gas coning
are the main reasons for using isolators to sustain or improve oil and gas recovery.
However, the use of such isolators introduces negative effects on the pressure behavior
of horizontal wells.

This research introduces new analytical models for studying the effect of this
completion technique on pressure behavior of wells with multiple isolated zones. These
models have been derived based on the assumption that reservoirs can be divided into
multi-subsequent segments of producing and non-producing intervals. Based on the
pressure and pressure derivative, the models can be used to estimate the impact of
isolators on the pressure behavior. The effects of the number and length of isolators
have been investigated for wells having different lengths.

A set of type-curves of dimensionless pressure and pressure derivative versus
dimensionless time have been generated for two cases. The first case is for wells in an
infinite reservoir having short dimensionless wellbore length and multiple-isolated
zones, while the second case concentration on very long wells in an infinite reservoir.
These plots can be used to verify the number and length of zonal isolations originally
installed, as well as to determine the number and locations of malfunctioning isolators.
These plots can also be used to locate segments where sand is produced and intervals of

water cresting or gas coning are present.
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The main finding is that the pressure of these wells behaves similarly for all cases.
The dominant effect of the isolators can be noticed only during the early time flow
regimes, i.e. during the early radial or early linear. The behavior of the late time flow
regimes, i.e. pseudo radial is not affected by the presence of isolators.

The second part of this study focuses on the pressure behavior and flow regimes that
are developed for horizontal wells intersected by multiple-inclined hydraulic fractures.
The fractures either fully or partially penetrate the formations. Horizontal wells with
multiple hydraulic fractures have become a common occurrence in the oil and gas
industry, especially in tight formations. Recent studies have shown that fractures are
asymmetric, inclined with respect to the vertical direction and the axis of the wellbore,
and partially penetrate the formation in many cases.

This study introduces new analytical models for interpreting the pressure behavior of
horizontal wells with multiple hydraulic fractures. The hydraulic fractures in this model
could be longitudinal or transverse, vertical or inclined, symmetrical or asymmetrical.
The fractures propagate in isotropic or anisotropic formations. In addition, they have
different dimensions and different spacing. These models can be solved to calculate
various reservoir parameters, including directional permeability, fracture length, skin
factors, angle of inclination and penetration ratio.

Type-curve matching technique has been applied using the plots of the pressure and
pressure derivative curves. A set of type curves have been generated for the inclined
transverse and longitudinal hydraulic fractures associated with horizontal wells having

different inclination angles from the vertical and different penetration ratios.
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Tiab’s Direct Synthesis (TDS) technique has been applied also using the plots of the
pressure and pressure derivative curves. Several unique features of the pressure and
pressure derivative plots of both longitudinal and transverse fractures models were
identified including the points of intersection of straight lines for different flow regimes.
These points can be used to verify the results or to calculate unknown parameters.
Equations associated with these features were derived and their usefulness was

demonstrated in this study.
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1- INTRODUCTION AND LITERATURE REVIEW

1-1- ZONAL ISOLATIONS

The use of horizontal wells for producing oil and gas from low-permeability and
unconventional reservoirs is now well established within the petroleum industry. The
great increase of the surface area of the wellbore that allows fluids to flow freely from
the reservoir to the wellbore is the main advantage of the horizontal well. Reducing the
effects of the damaged zones and increasing the well deliverability are the direct results
of this type of wells. Therefore, over the last two decades the number of horizontal
wells that have been drilled worldwide has increased significantly due to the significant
improvement in well productivity and ultimate oil and gas recovery. Low-permeability
and unconventional reservoirs are not the only common applications for horizontal well
technology. It has been used successfully in: (1) Fractured reservoirs to intersect natural
fractures and effectively drain the reservoir, (2) Water and gas driven reservoirs to
minimize water cresting and gas coning, (3) Both low and high permeability gas
reservoirs to reduce the number of producing wells, and (4) Tertiary recovery
applications to enhance the contact between the well and the reservoir. In addition, this
technique has been applied in offshore reservoirs as well as in environmentally sensitive
areas to reduce the cost of drilling and production facilities.

The completion of horizontal wells is of great importance due to its impact on current
well deliverability and future reservoir management regarding the effective control of
fluid movements from the reservoir drainage area toward the wellbore. An open-hole

horizontal well completion may cost less than other types of completion. As a result, it



has been used, especially in the shale gas reservoirs where it has also led to higher
production rates (Alison et al, 2009). However, this type of completion leaves the
operators with little or no opportunity to perform future diagnostic or remedial work
(Rentano and Muhammed, 1999). Many horizontal wells which were completed as open
holes have had considerable decline in production in spite of producing for the first few
years without significant problems.

Three common types of completion techniques have been used in recent years for
horizontal wells instead of open hole: slotted linear, linear with external casing packers,
and cemented and perforated casing. Different considerations should be taken into
account when deciding what completion type should to be used. The competence of the
rock is the first consideration while borehole instability and formation sensitivity is the
second. Expected problems such as sand production should also be taken into
consideration in addition to the damaged zones that might be produced either from the
drilling and completion of the horizontal well itself or from the hydraulic fracturing
processes. Water cresting and gas breakthrough are possible problems that may occur
later in the life of the well that can lead to decreased productivity.

As a consequence of these potential problems, zonal isolation is perceived as an ideal
solution. This approach not only helps the operators in controlling well deliverability
and eliminates the negative effects of the damaged zones, sand production intervals, and
water and gas coning sectors, but also compartmentalizes the horizontal section and
optimizes the fracture treatment. There are several ways to establish the zonal isolations
including traditional cement, open-hole hydraulic set packers, and inflatable packers.

However, each technique adds complexity whether by adding extra operations process



to complete the installation or by introducing additional mechanical components, which
increases the risks associated with the use of the isolators. Even though zonal isolations
provide reasonable solutions to many production problems, they also have undesirable
effects such as increasing the skin factor by reducing the horizontal section. At the same
time they have a significant effect on the pressure response of horizontal wells and the
type of flow regimes in the drainage area close to the wellbore.

Unfortunately, there are very few studies concerning the effects either positive or
negative that result from the use of the zonal isolations. Robison et al 1993 explained
that the use of zonal isolations in highly deviated or horizontal wells is likely to be the
preferred solution for the problem of water and gas coning. Frick et al 1995 were the
first to study the well testing in horizontal wells with isolated segments. They explained
that segmented testing can provide information about the local skin factor. A high local
skin factor provides an indication of damaged sections and is a necessary variable for
the optimization of the stimulation process. Rentano and Muhammed 1999 suggested
that in many cases the open length of the well can be reduced without a substantial
decrease in the productivity index over a fully open well by using zonal isolations. East
et al 2000 investigated the use of sealants before the primary cementing operation to
improve zonal isolations performance for production and injection wells.

Henriksen et al 2005 stated that the integration of open-hole zonal isolation
technology contributes to improving reserve recovery. They experimentally investigated
the horizontal completions with formation segmentation by installing packers at
strategically chosen locations along the wellbore. Kelbie and Garfield 2006 explained

that the intermediate zonal isolation for the upper zone can be performed in several



ways. One way is setting a bridge plug below the target interval or deploying an
inflatable straddle acidizing packer; thus shutting off gas zones. For the lower zone,
different zonal isolation configuration should be used in which the packer is positioned
below the perforations that require the isolations. Maddox et al 2008 provided field
examples for the use of the zonal isolations in horizontal wells’ completion for the
hydraulic fracturing process. In these examples five inflatable packer isolation systems
were used to create five separate hydraulically fractured zones along the wellbore.
Brooks and Steven 2009 also have introduced field examples for well testing procedures
for multi-zones open hole completion wells where the hydraulic isolation between
zones is achieved by using casing annulus packers rather than cement. They found that
the pressure transient test generally showed low mechanical skin and minimal formation
damage in all intervals.

Del Rio et al 2011, explained how the using of the temporary zonal isolations
minimizes reservoir damage during workover operations in Ecuador. They stated that
cross linked polymer system can be spotted across the low pressure and/or highly
permeable reservoirs to temporarily isolate and protect them from fluids invasion during
the workover operations. This technique has led to increased production in more than
fifteen wells. Gomez et al 2011, expressed that the long term zonal isolation is required
to correctly exploit the Brazilian ultra deep water well of Santos basin to effectively
perform stimulation operations and control water and/or unwanted gas production. They
described the methods used to design a salt and CO, cement slurry and the laboratory
testing performed to meet the cement requirement and the field implementation of the

designed zonal isolation for a well in ultra deep waters.



1-2- HYDRAULIC FRACTURES
During the last two decades, horizontal wells have become a common applied

completion technology in the petroleum industry. With a large reservoir contact area,

horizontal wells can greatly improve well productivity and effectively handle problems
with water cresting and gas coning. It is most advantageous to drill horizontal wells in
thin and tight reservoirs with vertical fractures. However, there are certain situations,
where fracturing a horizontal well is an economically attractive completion option. This
is especially true in the case of tight formations. Wells in low to moderate permeability
reservoirs that are not naturally fractured may be candidates for hydraulic fracturing.

Fracturing a horizontal well may take place under several scenarios, some of which
are listed below:

(1) In low-permeability formations to enhance the drainage volume.

(2) Restricted flow in the vertical direction caused by low vertical permeability or the
presence of shale slabs in order to create vertical fractures resulting in enhanced
vertical permeability and thus enhanced well productivity.

(3) In a layered reservoir to create vertical fractures along the well length so that
different producing layers can be connected at different elevations.

(4) Drilling and completion considerations in cemented horizontal wells may require
cementing the wells. Therefore, by creating several fractures along the length of the
wellbores, it is possible to achieve at least the same productivity as an open hole
horizontal well.

(5) The existence of natural fractures in a direction different from the direction of

induced fractures. Therefore, induced fractures will intercept the natural fractures.



Based on the above, hydraulic fracturing is an important stimulation technique that
has been widely used in conventional and unconventional oil and gas reservoirs all over
the world. The technique involves creation of fracture or fracture system in porous
medium to overcome wellbore damage, to improve oil and gas productivity in low
permeability reservoirs or to increase production in secondary recovery operations.
Depending on the stresses’ orientation relative to the wellbore, the fractures may be
transverse or longitudinal, vertical or inclined.

For hydraulically fractured horizontal wells, transient well testing is commonly used
to determine reservoir parameters and to estimate well productivity. One of the big
challenges is the three dimensions’ nature of flow geometry in the formations. The
radial flow symmetry no longer exists. Instead, several flow regimes may occur in and
around the fractures. These flow regimes generally can’t be defined very well based on
the test data. Moreover, many factors, such as vertical permeability or the vertical
anisotropy, inclination angle from the vertical direction, the spacing between fractures,
and the penetration ratio (the ratio of the fracture’s height to the formation’s height) can
affect the transient pressure behavior.

Most of the pressure transient analysis techniques of fractured wells are derived
based on many assumptions such as;

(1) Homogeneous reservoirs with constant thickness.

(2) Darcy’s law is applicable.

(3) Gravitational and fractional effects are negligible.

(4) 1sothermal flow.

(5) Single phase flow.



(6) Constant porosity, viscosity and compressibility.

Howard and fast 1970, defined hydraulic fracturing as a process of establishing a
fracture or fracture system in a formation by injecting a fracturing fluid (usually water
and sand) under high pressure in order to overcome local stresses and to cause breaking
the porous medium. In general, for an isotropic medium, the over-all plane of a
hydraulic fracture is parallel, inclined, or perpendicular to the axis of the borehole from
which it is extending. Accordingly, these fractures will be called axial, inclined or
normal respectively (often termed vertical, inclined or horizontal in the petroleum
industry) (Daneshy, 1973).

Since 1972, several attempts have been done to model the pressure transient
behavior for either horizontal or vertical wells, with or without hydraulic fractures. All
these attempts were developed based on the using of the source solution and Green’s
function to solve unsteady-state flow problems in the reservoir which was presented by
Gringarten and Ramey (1973). They used the source function and Newman product
method for solving transient flow problems. Although this approach is extremely
powerful in solving two and three dimensions’ problem, it has some limitations such as
incorporating the influence of storage and skin effects. The transient flow solutions
have been extended to predict the behavior of the infinite conductivity vertical fracture
in homogenous formations or in dual-porosity media. Cinco-Ley et al (1974, 1975)
solved the problem for uniform flux and infinite conductivity inclined fracture in
infinite slab reservoirs. They developed analytical models for the pressure behavior at
the wellbore for a slanted hole and an inclined fracture associated with vertical wells.

Cinco-Ley and Samaniego-V (1981) presented a method for the determination of the



orientation of a fully penetrating vertical fracture by means of analysis of transient
pressure data recorded at one active well and two observation wells due to production or
injection at the active fractured well.

Barker et al (1978) used a finite element model to study pressure behavior of a well
intersecting a vertical fracture at the center of closed square reservoirs. Rodriguez and
Cinco-Ley (1984) developed semi-analytical solution for the transient flow behavior of
a reservoir with a well intersecting a partially-penetrating vertical fracture of finite
conductivity. The results of this study explained that the flow behavior of partially
penetrating fractures during the early time period is equivalent to that of totally
penetrating fractures. Wong and Harrington (1985) analyzed the data using type curve
matching and pressure and pressure derivative for cases of vertical fractured wells with
no skin and no wellbore storage and cases with both skin and wellbore storage during
the bi-linear flow period. Cinco-Ley and Meng (1988) studied the results obtained from
the transient behavior of a well intersected by a vertical fracture in a double porosity
reservoir. They introduced two models; the first one was a general semi-analytical and
the second one was a simplified fully analytical model. Ozkan (1988) presented a
complete set of different solutions for diffusivity equation in terms of the Laplace
transform variable. He considered a wide variety of wellbore configurations, different
bounded systems, and homogeneous or double-porosity reservoirs.

Early techniques for interpreting pressure transient tests included conventional
semi-log and log-log type curve methods. In these techniques, flow regimes of
reservoir’s fluid must be observed in the pressure and pressure derivative curves over a

sufficient period of time. If they not present, type curve matching will not be



sufficiently used. In multiple hydraulically fractured horizontal wells, different flow
regimes are possible, but almost never observed from the pressure data. Therefore, it is
important to use an alternative method known as “TDS-Tiab’s Direct Synthesis
Technique” introduced by Tiab in (1988) for hydraulically fractured wells with multiple
fractures.

Olarewaju and Lee (1989) presented an analytical solution for pressure transient
tests from layered reservoirs with or without cross flow. They noticed that the pressure
behavior of a well in a two-layer reservoir with unsteady state interlayers' cross flow is
identical to that of a commingled system. Rodriguez et al (1992) introduced a graphical
technique to evaluate the asymmetry of hydraulically fractured wells. The technique
was derived from an analytical solution for the pressure response of the wells during the
pseudolinear flow period and the known bilinear flow solution.

Tiab (1993) applied the direct synthesis technique (TDS) to uniform flux, infinite
conductivity and finite conductivity vertically fractured wells. This study extends the
method to hydraulically fractured horizontal wells. The cases of uniform flux, infinite

conductivity and finite conductivity models are considered.

Poe and Elbel (1994) suggested an analytical solution for the pressure transient
behavior of a well intersected by a vertical fracture in infinite acting reservoirs or in
cylindrical or rectangular bounded finite reservoirs. This solution included the practical
effects of reservoir permeability, anisotropy and dual porosity behavior. Leif and Hegre
(1994) provided a comprehensive investigation of the pressure transient behavior of
horizontal wells with single or multiple vertical fractures, either longitudinal or

transverse. Four flow regimes have been observed in their study; fracture radial, radial-



linear, formation linear, and pseudo-radial flow. Kuchuk and Habusky (1994) examined
the pressure response of horizontal wells with single and multiple fractures in
homogenous systems. They showed that the effect of the wellbore can’t be neglected in
the modeling unless the fracture conductivity is high.

Wright and Conant (1995) provided field examples where the hydraulic fractures
reoriented due to production. Inclined fractures reorientation led to new inclination
angles after refracturing. They introduced examples from Chevron Lost Hills field
where the inclination angle has changed from 82 degrees to 45 degrees. This was the
result of the production depletion between two fracturing treatments. This is clear
evidence that production activities can affect the in-situ stress state and thus change the
direction of principle stresses. Valko and Economides (1996) developed rigorous semi-
analytical procedures for the purpose of modeling a horizontal well with a longitudinal
vertical fracture. Raghavan (1997) developed a mathematical model to discern the
characteristic response of multiply-fractured horizontal wells. Three significant flow
periods have been observed based on their model; the early time period in which the
system behaved like the one with n-layers, the intermediate time period in which the
system reflected the interference between fractures and the late time period in which the
system behaved as a single fractured horizontal well with length equal the distance
between the outermost fractures.

Wright et al (1998) provided a number of case studies where surface tiltmeter
arrays were used for fracture mapping. The results obtained from data of over (2000)
fracture treatments using tiltmeters revealed that fractures are almost never perfectly

vertical. Quite often they dip 5 to 15 degrees from the vertical and very few fractures
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dip less than two degrees off vertical. In their study, they showed that “horizontal”
fractures dipping less than 35 degrees with respect to the horizontal plane are not as rare
as commonly known. Another conclusion from the study is fracture azimuth and dip
may be very different locally across a field as the local stress field may be changed by
location on the structure or with respect to local faults. Hydrocarbon production, steam
and water injection and infill drilling in mature primary and secondary recovery
reservoirs may alter the local stress field and thus affect the fracture orientation.

Wan and Aziz (1999) developed a general solution for horizontal wells with
multiple fractures. They showed that four flow regimes can be observed; the early
linear, transient, late linear, and late time radial flow. Zerzar and Bettam (2003)
combined the boundary element method and Laplace transformation to present a
comprehensive solution for horizontal wells with multiple vertical fractures. Seven flow
regimes have been noticed; bilinear, first linear, elliptical, radial, pseudo-radial, second
linear, and pseudo-steady state. Al-Kobaisi and Ozkan (2004) presented a hybrid
numerical-analytical model for the pressure transient response of horizontal wells
intercepted by a vertical fracture.

Dinh and Tiab (2009a,b) solved the analytical model presented by Cinco-Ley (1974)
for the pressure transient behavior caused by an inclined fracture associated with
vertical wellbore. The model used the uniform flux and infinite conductivity fracture
solution for different inclination angles from the vertical direction. Both type curve and
TDS technique have been used to estimate the formation parameters such as
permeability, skin factor, and fracture length. Brown et al (2009) suggested an

analytical trilinear flow solution to simulate the pressure transient and production
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behavior of fractured horizontal wells in unconventional reservoirs. This model can be
used to estimate petrophysical characteristics such as intrinsic properties of the matrix
and the fracture.

All the definitions of symbols are given in the nomenclatures at the end of the

dissertation text body.
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2- MATHEMATICAL MODELS FOR HORIZONTAL WELLS WITH ZONAL

ISOLATIONS

The primary goal of this chapter is to introduce various analytical models for the

pressure behaviors and flow regimes of horizontal wells containing multiple zonal

isolations. Four analytical models will be introduced in this chapter, two for short

horizontal wells having dimensionless wellbore length -the ratio of the wellbore length

and formation height- (Lp<20) and two for long horizontal wells having dimensionless

wellbore length (Lp>20). Two different configurations for the two above cases of

horizontal wells will be investigated. The first one is for horizontal wells headed by a

zonal isolation while the second is for wells headed by a perforated zone. The following

assumptions are important for the derivation of the models:

1-

[EN
1

The reservoir is homogenous, having constant and uniform thickness with two
impermeable layers at the top and bottom of the formation.
There is constant porosity and permeability in each direction, but the formation is
anisotropic.
Gravitational and frictional effects are negligible.
The well is extending in the midpoint of the formation height (symmetrical).
Single phase fluid of small and constant compressibility, constant viscosity, and
formation volume factor, flows from the reservoir to the wellbore.

For general purpose, the following facts are important to be mentioned:

Reservoir pressure is initially constant.

Pli_g =R (2-1)

13



2- The pressure at the outer boundaries of the reservoir is assumed to be constant
and equal to the initial reservoir pressure.
Pe =R (2-2)

3- The pressure at the upper and lower impermeable boundaries is assumed to be

constant so that:

P o

Zly_ (2-3)
oP

= =0

z|,_p (2-4)

Fortunately, the effects of the zonal isolations on the pressure behavior of the
horizontal wells can be investigated using the solution of the diffusivity equation. In this
case the well can be considered as multiple-horizontal segments of production intervals
separated by zonal isolations. In addition, the pressure drop at a certain point in the
reservoir is considered resulting from the production from each production point.
Therefore, the pressure drop at this point is equal to the sum of the pressure drop
resulting from the production from each production interval.

Based on the above, the solution for the diffusivity equation can be used for this
purpose using one of the techniques that are applicable for the transient flow of fluid in
porous media. Gringarten and Ramey (1973) initially introduced the use of the source
and Green’s function in solving unsteady state flow problems in a reservoir. They stated
that the infinite line source can be visualized as the intersection of two perpendicular
infinite plane sources normal to two of the three principal axes of permeability while the

point source can be visualized as the intersection of three perpendicular infinite plane
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sources normal to the principal axes of permeability. Ozkan (1988) introduced new
source solutions to the diffusivity equation using the Laplace space to overcome the
difficulties that might result when the Gringarten and Ramey’s source solution is
applied in complex geometrical configurations such as dual porosity and dual
permeability porous media.

2-1- Short horizontal well headed by a zonal isolation:

“Short horizontal well” in this study refers to a horizontal well having a ratio of
wellbore length to the height of formation (Lp<20). Consider a horizontal well, such as
in Fig. (2-1), producing slightly compressible petroleum fluids from an infinite-acting
reservoir at a constant rate. The horizontal well consists of two altered sections; one is

the producing interval and the other is the zone isolator.

[ y Perforated zone Isolated zone

L. Lo h

Lw >

A

Figure 2-1: Horizontal well headed by zonal isolation.

The mathematical model that can be used to simulate the effects of the zonal

isolations on the pressure behavior is created based on an assumption of constant

production rate. The horizontal well is assumed having a known Iength(LW), multiple-

perforation intervals of equal length (L,)separated by multiple-zonal isolations of
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equal length(L,), and extending in the midpoint of an infinite formation having a
known height (h). The model can be derived as follow:

Assume equal and constant flow rate from the perforation intervals:

9= (2-5)
where n is the number of the producing intervals.

The pressure drop at any point in the reservoir is:
AR, =) AR (2-6)

Using the instantaneous source functions for the pressure distribution in porous

media which results from production process, the pressure behavior can be found as:

d 2
q q 1 74;(':
AP, = S(x,t)xS(y,t)xS(z,t)dt = ( e " )x
' ¢Ct I ¢Ct I 2\/7”7Xt 9.7
1 1 - “0
(———e ") x(—=——e “")dt
2,/7nt 2,/7nt
where:

d, ,d,,d, = Distances between the source point and the monitoring point in the X, Y

and Z direction.

(x,y,2)

z

I Yy (XW7 yW’ ZW) (X:IIJ y’ Z)

A

Lw

v

Figure 2-2: The monitoring point and the sources of production for a horizontal well.
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It is clear that the pressure drop, represented in Eq. (2-7), consists of three
instantaneous source functions which are S(x, t), S(y, t), and S(z, t). S(x, t) represents
the infinite slab source in an infinite reservoir and S(y, t) represents the infinite plane
source in an infinite reservoir while S(z, t) represents the infinite plane source in an
infinite slab reservoir.

Applying Eq. (2-7) to the case of the horizontal well shown in Fig. (2-2):

BECESSNE) +(z—z;)2}
A7, t 4yt 4n,t

e L +

BECEY SNV SN =Y 5
AP (X, y,2,t) = i e At Ayt wrat +
t v Yo & - - -
8¢ct (7Zt)3/21/77x77y772 7(X—X‘3)2 (y_y.3)2 (Z—Zé)z (2 8)

N Ayt 47t 4r,t :|

e L

Since the horizontal well is extending along the (x) direction and both (y) and (z) are

the same for all points along the wellbore of the well, Eq. (2-8) can be written as:

_[(y—y')Z(Z—Z')Z} (xytle+ly)  (x=x

t
o] 1 4t 4n,t 4nt '
AR (X, Y,2,t) = J e j e odx
8gcr ()% 2 \[manynz 5 12 (Xy+Ls)
(xw+2Lg+2L,)  (x=x; (xp+3L+3L,) (x—x, P
+ I e Mt dxs + J e M7 dxg idt (2-9)
(xw+2Ls+L,) (xw+3Ls+2L,)
Assume:
X — X, -
u= L = dx, = -2/t (2-10)
2.\t
X — X, :
V= 2 = dx, = —24/n,t (2-11)

2t
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w=2"28 o =2t (2-12)

2t

Eq. (2-9) can be written as:

X=(xy +Ls+Lp) x=(x, +2L +2L,)

t _Py-y')a(z—z-q T YT
AP, Y, 2,1) = 3/qu J‘31/2 o LAt dmt || J‘ e du+ eV v
8gct (7)™ Jnxinyn; Ot x—(xg, +Lg) x—(xw+2LS+Lp)

2yt T

xf(xw+3L5+3Lp)
2nyt
e dwdt (2-13)

x—(xW +3L, +2Lp)
2nyt

Integrating for u, v, and w using the error function features, Eq. (2-13) becomes:

[ ot ] (o S
di 1 anyt 4n,t <
AP, (X,y,Z,t)z— Zle y .\ 2-14
t 8¢cy \[nyn; z[t ; y M ( )
2yt

To reflect the effect of the top and bottom impermeable layers on the pressure

behavior of the horizontal well, superposition theory should be applied:

-7, -2 742 _ 7-7,+2Nh 7-7,~2Nh _ 7+2,+2Nh 2+2,,-2Nh

. 2 Y 2 y 2 Ne. Y 2 2 Ne 2 2

e Mtoe Mmoo ML Nle M ge Ui Nle M ge M (2-15)
N=1 1

Eqg. (2-15) can be rearranged in the following form:

(2-16)

e gt _ Z 4n,t +e 4n,t

N=—00

-af  noo [ (-zu+2nn) (z-2, ~2Nh)?
e

Substitute Eq. (2-16) on Eq. (2-14):
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4n,t } n=co B 3 o
ARGy, 2,) = — 3 .[e y {Zen{(x Xy )—NLs — (n 1)ij_

8¢Ctﬂ'\/77y772 0 el Zm

2yt N

» X—XW—n(LS-l-Lp) N —co (z—z4, +2Nh)? (z—z, —2Nh)?
e X z e 4n,t +e 4t dt (2-17)

Applying Poisson’s summation formula, Eq. (2-17) can be written as:

4yt } = . (x=xy)—nLs = (n-D)L,
er -
2\nyt

t _{(y—yw)2
g e

agey 7t 2n [, ) Jr

AR (X, y,2,1) =

x—xW—n(LS+Lp) =% 7N2’;z"” p zZ,
erf . x 1+221e coS NHF coS Nﬂ'T dr (2-18)

nxt N=

In dimensionless form, Eq. (2-18) becomes:

2
Yb
tD - Nn=o0
J Hp Xp —nkgp —(n—-1)L Xp —N(Lgp +L
Po(X0,¥0:2010) = 5 — | ° ert @20 1090, g X0 71lLsp *Lp), |,
2nLpp 5 VD oy 2Jtp 2{tp

N =0
2_2,2
{1+2 e(‘N 7 LD’D)cos(szzwD)cos(Nﬂ(zE, +zwD))]er

N=1
(2-19)
Where the dimensionless parameters in the above model are defined as follow:
X— X
Xp = - -
b L, (2-20)
Y=Y [k _ M [Ke ]
Yp = L Vk, Lulk (2-21)
75 = Lu K 2-22
°TL VK (2-22)
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Zwp =" (2-23)
Zp = : _hzw =Zplp (2-24)
Lo =2 = (2-25)
L, = 'L‘—W (2-26)
Lop = t—z (2-27)
tp = ¢ukéttL5V _ Zivt where: 7, = q;c (2-28)
Po(Xp,Yp: Zp:tp) = 2oy R (6.2 (2-29)

q, 4
To solve the model given by Eq. (2-19), two approximations should be done for the
three functions based on the fluid flow dynamic and flow regimes in the early and late
time.
2-1-1- Early time approximation
This approximation is very important since the major effects of the zonal isolations
are expected to happen at the flow regimes which are developed in the areas nearby the
wellbore. These flow regimes usually are the early radial and to some extent the early
linear flow when the top and bottom impermeable layers are reached. Therefore the
short-time approximation can be obtained by considering the first term in Eq. (2-7)

using dimensionless form as:
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e =5 (2-30)

The proper time limit for the above equation to be applied as determined by

Gringarten and Ramey (1973) is:

[XD —anD —(n—l)LpD]z
th < 20
0 [XD—n(|-sD+|-pD)]2
20

(2-31)

The second term of Eq. (2-7), the instantaneous function S(y, t), remains as it is.

Therefore its formula for the short time approximation using the dimensionless units is:

(Y=yw) Yh
1 - 4r 77 4t
S(yp,ty)=——+—¢ m= +Xg %o (2-32)
T2 fm 21/ oL V72,

And the proper time for this approximation to be applicable is:

2

Yo
=D 2-33
0 =5 (2-33)
The third term in Eqg. (2-7) which represents the effect of the upper and lower
boundaries also remains unchanged and the early time approximation of this term using

dimensionless units is:

(z-2y)?
l 4 4’[
S(zp,tp) =———€ ' = Xe " 2-34
(25,15) 2 2\/—wa/ (2-34)

The proper time for this approximation to be applicable is:

o5 + 22,0 )1, ]

20

25 + 2200 - 2) Lo

20

tp < min

(2-35)

Based on the above approximations, Eg. (2-19) can be written as:
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tD _ y2D+ZZD 2 22
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PD(XDryDvZDrtD):; ie 47 dz-D:_ : i _yD D
4anDLD 0 D 4anDLD 4tD

(2-36)

2 2
+27
1 In ZtD 5 |+0.80907 whenEi BRI E PV
4anDLD Y +2p 4tD

2-1-2- Late time approximation

At late time, the pressure behaviors and flow regimes begin to be affected by the
conditions at the outer boundary. Therefore, the long time approximation of Eq. (2-7)
takes this fact into consideration. The first instantaneous function that represents the
infinite slab source in an infinite reservoir is approximated as follows:

_x)?

1 e gt _ LPD

S ! = el -

and the starting time is:

%[ D—nLsD — (n—-1)LpD J?
tp = 2-38
%[ D—n(LsD + LpD)? (2-38)
The approximation for the second term and the time limit are:
_(y-y)? ”
1 4n,t 1 X
S(Yp.tp)= v —x -
t, = 25y,° (2-40)
The approximation and the time limit for the third term are:
(27’
1 1
Sp.t) = e et = (2-41)
z
5
tp = 71 (2-42)
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Therefore the late time approximation of Eq. (2-19) can be written as follow:

tog _(x=x)? _-y)? (z-z)?

Ot
Po(Xp,Yp.Zp,tp) =

D\AD YD 4D:'D an¢lu 1tol
2 [ Lo (2-43)

1 t
=Pp (XD|VD12D1D1)+E|H(—D )
tp1
Where:

_§[XD —-nLsp —(”—1)LpD]2_

2—;[XD —n(Lsp + LpD)]2

tp1 = Max
T syl (2-44)

-2
2,2
K4 LD

2-2- Long horizontal wells headed by a zonal isolation

“Long horizontal well” in this study refers to horizontal wells having a ratio of
wellbore length to the height of formation (Lp>20) [Lp >50 (Spivak 1988), Lp >10
(Joshi 1991)]. The only difference between short and long horizontal wells is the early
time flow regime that is expected to develop. Spivak (1988) explained that the long
horizontal well behaves similarly to the vertical hydraulic fractures where the first flow
regime that is expected to develop is the early linear flow while the first flow regime for
short horizontal well is the early radial flow. Therefore the early time approximation for
long horizontal wells will not be the same as for short horizontal wells.

For long horizontal wells, pressure behaviors and flow regimes of horizontal wells

become exactly the same behavior as vertical hydraulic fracture. This fact is related to
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the function of the infinite plane source in an infinite slab reservoir which is converging

to:
_(z—z')2
4n,t 1
S(zp,tp)=———=— _
0D = h (2-45)

Therefore the model for long horizontal wells can be modified from Eq. (2-7) as

follows:
(x=xF =yF
. 47t 4nyt
AR, = 13/2 e7d2/477t _ i j € < e ><|:i:|dt (2‘46)
8gc; ()32 i et 2yt 2.[nynt h

Following the same steps for the instantaneous function of an infinite slab source in
an infinite reservoir S(x, t) and the instantaneous function of an infinite plane source in
an infinite slab reservoir S(z, t) for short horizontal wells. The dimensionless model for

pressure distribution of long horizontal wells extending in porous media can be written

as:
tD 4
Jr e tD 1 nLsp—(n-1)Lyp 1-n(Lsp +Lpp)
Po(Xp.YD.ZD.ZwD: LD tD) = )+erf( ) d7p (2-47)
D 0 NUD 2 4>)

2-2-1- Early time approximation
The short-time approximation for the instantaneous function S(x, t) can be obtained
by considering:
(x=x)?

S(0tp) = ; —e Mt -2 (2-48)
X

The proper time limit for the above equation to be applied as determined by

Gringarten and Ramey (1973) is:
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[XD —anD —(n—l)LpD]z
tn < 20
° [XD —n(LsD+LpD)]2
20

(2-49)

The second term, the instantaneous function S(y, t), remains as it is. Therefore, its
formula for the short time approximation as follows:

(Y-Yw) ¥

_ g 4o (2-50)

mt o _

S(y t)—;e ; _Ix
P 2‘\Im7yt 2V7ZtDL\N 77)’

The proper time for this approximation to be applicable is:

2

Yo
th) = 2-51
o= (2-5)

The approximation and the time limit for the third instantaneous function S(z, t) are:

(z-2)?

1 4n.t 1
S(Zp.tp) =———e ¥t _= ]
2o.t0) =, e % (2:52)
5
t.=—" 2- 53
D 7z_2Lé ( )

Therefore, the short time approximation for Eq. (2-47) can be written as:

b
I:>D (XDl yD’ ZD1 ZwDi LD1tD) = V mDe o — 72)2/D erfc(zi//I;_D] (2-54)

Assuming that ¥, = 0 and solving for the pressure at the wellbore:

oy

= aiop (2-55)

PwD

It can be seen from Eq. (2-55) that early time approximation for long horizontal
wells yields linear flow regimes similar to the early time approximation of vertical

hydraulic fracture. For this time period the pressure behavior is linearly proportional
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with time on log-log plots of dimensionless wellbore pressure and dimensionless time.
The slope of the line is (0.5).
2-2-2- Late time approximation

Late time approximation does not change with the change of the wellbore length.
The late time approximation for long horizontal wells is the same for short ones.
Therefore, Egs. (2-37) through (2-44) are applicable for long horizontal wells.
2-3- Short horizontal well headed by a perforated zone

The same concepts that have been used to derive the mathematical model for the
pressure distribution of horizontal wells headed by zonal isolation can be used to derive
the pressure distribution model for wells headed by perforated zone such as in Fig. (2-
3). The only difference is the instantaneous function of infinite slab source in an infinite
reservoir S(x, t). The limits of integration for this function should be changed based on
the locations of the perforated zones. Therefore, the mathematical model for short

horizontal wells headed by perforated zone is:

Yo
tb — N=o0
4tp xp —(N=1)(Lyp + L Xp —NLyp —(N—1)L
T Jr J‘e Z erf ( p-("-D(Lpp SD))+erf( D pD—(nN-1) sD) «
2nLpp 5 V7D ! YNED) 2{J7p

N =00

2_2,2
1+2 e<_N 7 LDTD)COS(NﬂzwD)cos(Nﬂ(zE)+zwD))]er
N=1

(2-56)
Early and late time approximations will be the same as the horizontal wells headed

by zonal isolation except that Eqs (2-31), (2-38), and (2-44) should be written as follow:
[XD - anD - (n _1) I-sD]Z
20 (2-57)

o= [Xo — (N =D(Lyp + Lyo)f
20
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%?hD—anD—(n—anDF (2-58)

%[ D —(n—1)(LsD + LpD)F

. i}
?[XD —hLpp—(n _1)LSD]2
25 2
2o - (-D(Lsp + Lpp))]
tDl > Max| 3 (2-59)

25y3
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”ZL%

I y  Perforated zone Isolated zone

Figure 2-3: Horizontal well headed by perforated zone.

2-4- Long horizontal well headed by a perforated zone

Pressure distribution for long horizontal wells headed by perforated zone can be

modified from Eq. (2-47):

ty =2
4p 1-(n-Y(Lyp+L 1-nLyp-(n-1L,
Po(Xp.YD.ZD:ZwD: LD tp) = Jx Ie erf( 000 SD))+erf( L )SD)de (2-60)
2nLpp ? E 2Jmp 2Jmp

Early and late approximations will be the same as long horizontal wells headed by

zonal isolation except that Eq. (2-49) should be modified to:

[XD —anD—(n—l)LsD]z

20 ! (2-61)
[x. —(-1D(Lsp + Lpp)]

20

tp <
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3- PRESSURE TRANSIENT ANALYSIS FOR HORIZONTAL WELLS WITH

ZONAL ISOLATIONS

Since the mid 1980’s, horizontal well technology has provided the solution for oil
and gas production process where the conventional vertical technique either had failed
or produced less than the desired rate. The increase in the application of this technology
during this period rapidly led to a need for the development of analytical models that
are capable of evaluating the performance of these horizontal wells. Giger, F. (1985)
and Joshi, S. D. (1986) presented the applicability of horizontal wells in heterogeneous
reservoirs and the impact of the well productivity using slanted or horizontal wells
respectively. Spivak, D. (1988) explained that the advantages of horizontal wells, such
as productivity increase and better sweep efficiency, while reduction of water and gas
coning have been reported by many researchers. At the same time, many attempts have
been made by researchers to develop practical models to study the performance and
productivity of horizontal wells.

Over time, pressure transient analysis techniques have been favorably applied for the
evaluation of horizontal well performance and reservoir characterization. A few
solutions for infinite limited isotropic reservoirs as well as for isotropic reservoirs with
constant pressure at the outer boundaries, using the Newman product method have been
introduced since 1970’s. At the same time, the earliest analytical models for horizontal
well test analysis, based on the line source approximation of the partially penetrating
vertical fracture solution, have been developed. Ozkan et al (1989) have shown the

effect of the production length of horizontal wells on the pressure derivative and
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introduced a mathematical model for pressure evaluation in infinite conductivity
horizontal wells. Odeh, A.S. and Babu, D.K. (1990) studied the transient flow behavior
for horizontal wells, either for the pressure drawdown test or pressure build-up test.

Due to the increased complexity in the geometrical configuration of the wellbore, as
a result of different horizontal well completion techniques, many concerns and
questions regarding the pressure behavior in the vicinity of the wellbore and outer no-
flow boundaries have remained unanswered. These concerns are based on the fact that
the ideal behavior is seldom seen in real production tests. This is due to differing
pressure derivative trends depending on the geometrical configuration of the whole
system, the petrophysical properties of the formation, and zonal damage. Therefore, the
validity of horizontal well models and the well test concepts adopted from vertical
fracture analogue have been extensively investigated and new trends of horizontal well
solutions were developed beginning in the 1990’s. These solutions have been
established under more realistic conditions to provide answers for previous concerns
and questions.

Automatic type curve matching for horizontal wells was introduced and used for
pressure transient interpretation several decades ago. Many researchers investigated the
transient dual-porosity pressure response of two horizontal wells and introduced
numerical models to reproduce the reservoir internal geometry and simulate the
pressure trend monitored at the wells. Khelifa and Taib (2002) proposed a technique for
analyzing the variable rate tests in horizontal wells, either a continuously changing flow
rate test or a series of constant rate tests. It is important to note that Escobar et al (2004)

used the TDS technique to analyze the pressure behavior of a horizontal well inside
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channel systems. The last ten years has seen a focus on using the convolution and
deconvolution technique in well test analysis. Gringarten et al (2003) proposed the use
of downhole pressure gauges to diagnose production problems in North Sea horizontal
wells. Whittle et al (2009) introduced a technique for well production forecasting by
extrapolation of the deconvolution of pressure transient data and explained the practical
use of the well test convolution and the various usages of deconvolution in tests of short
and long durations.

Even though great attention has been focused on horizontal well technology, either in
the drilling and completion aspect or in the production and reservoir characterization
aspect, more study is required to overcome the concerns and limitations of the models
that are used to evaluate the performance of wells or to predict the pressure behavior
around and in the wellbore. This fact is supported by the idea of the great complexity of
the horizontal well systems and the difficulties that are involved in recognition of the
flow dynamics and types of flow regimes, especially in the area near the well where the
geometrical configuration of flow becomes of great importance. In this chapter, the
impact of the existence of the zonal isolations on pressure behavior of horizontal wells
will be studied.

3-1- Pressure behavior of horizontal wells without zonal isolations:

The pressure response of horizontal wells without zonal isolations acting in infinite
reservoirs can be shown in Fig. (3-1) while Fig. (3-2) shows the pressure behavior of
horizontal wells acting in finite reservoirs.

Normally three flow regimes are easily identified for horizontal wells acting in

infinite reservoirs: the early radial, early linear and pseudo-radial flow. Five flow
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regimes can be developed for horizontal wells acting in finite reservoirs: early radial,

linear, channel, pseudo-radial and pseudo-steady state flow.

Finite reservoir, LD=1, xeD=0.1

Horizontal well 10E+02 —
L0E+00 o
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Figure 3-1: Pressure behavior for horizontal wells in Figure 3-2: Pressure behavior for horizontal wells
infinite reservoirs. in finite reservoirs.

3-1-1- Early radial flow:

For horizontal wells with dimensionless length L, <20, early vertical radial flow is
expected to develop at early time as the fluid flows from all directions into the wellbore
in the normal plane to the horizontal wellbore as shown in Fig. (3-3). However, for
horizontal wells with Lp =20 | early radial flow regime can not be observed. This flow
regime is characterized by a slope equal to (1/4L,) on the pressure curve or having the

following value on the pressure derivative curve:

]

AN

!

T
L/

i

N

Figure 3-3: Early radial flow for horizontal wells.
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0.5

(tp x Pls)ER = Z (3-1)

therefore:

(tx AP') g = 70.6q.B )
zky Lw

or:

(4P) g = 2 log() +C

kzky Ly (3-3)

where:

ky
C= In(¢/.lcr2)_7'43+ 2S, (3-4)
and:

Ly [k,

A semi-log plot of (AP) vs.(t) yields a straight line during the early data. The slope

of this line can be used to calculate:

_ 162.56q.B
[,k =—=222 (3-6)

MER L
3-1-2- Early linear flow:
After both upper and lower boundaries are reached, the early linear flow is developed
as shown in Fig. (3-4). This flow is characterized by a slope of (0.5) on the pressure

derivative curve. The governing equation for early linear flow (Goode 1987) is:

81288 [
(AP)eL = Lyh ‘/ky¢ct e (3-7)
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where:

A A A A

S

Figure 3-4: Early linear flow for horizontal wells.

oo 128 o o
wy KzKy
and:
Ly fkoK ky
Sq=—VZV Lol N g5 Y |18
141.2qub M kZ (3-9)
AP=0

Eq. (3-7) indicates that the plot of AP vs. t*? yields a straight line. The slope of this

line m, can be used to estimatek .

—_ 81288
y = L hmEL ¢C (3'10)

3-1-3- Pseudo radial flow:
This type of flow is developed at late time when the pressure pulse reaches a remote
distance from the wellbore in an infinite reservoir as shown in Fig. (3-5). This flow

regime is characterized by a horizontal line on pressure derivative curve:
(to X Py)er =05 (3-11)
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_ 70.6q.B

tx AP")p, = 3-12
(tx )er kxkyh ( )
(AP), = 2020UB |y 4 C (3-13)
k,h
c 162008l K |5 009, 141208 o (3-14)
Jkk,h ducl,, Lok K,
L [ap k
s, =1.151 [Ke S| AR oo Ke y 4 76 3-15
; ﬁ h {mpR Tt } -

Figure 3-5: Pseudo-radial flow regime for horizontal wells.

A semi-log plot of (AP)vs. (t)yields straight line during the pseudo-radial flow

period. The slope of this line can be used to calculate:

= 3-16
= (3-16)
3-1-4 - Channel Flow:

This flow starts when the pressure behavior is affected by the closest outer

boundaries of the bounded reservoirs as shown in Fig. (3-6). It is characterized by a
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slope of (0.5) on the pressure derivative curve. The governing equation for this flow is

(Goode 1987):

> —
> —
> —

— e st == —
> —
—_ —
> —

Figure 3-6: Channel flow for horizontal wells acting in finite reservoirs.

8.128qB [
AP)., = C 3-17
8P == g * (317)

_ 141.2quB

c St ]
Ly /—kzky (3-18)
= —-Sp —In(—)-0.25In(—) +1.
St 2, | 412070 ‘AP_O Sp n(rw) 0 5n(kz)+ 838 (3-19)

where S, represents the partial penetration skin factor.
The plot of AP vs. t"'? yields a straight line. The slope of this line m_. can be used

to estimate the distance to the closest boundary (X, ) as follows:

- 8:128B [ 4 (3-20)
2thF kyﬁt

3-1-5- Pseudo-Steady State Flow:

For long producing times in closed reservoir, pseudo-steady state flow regime

appears as a result of the pressure being influenced by all four closed boundaries at the
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same time. It is characterized by the unit-slope line on the pressure derivative curve.
The equation of this straight line is:

(tD B I:)D ')pss = 2ﬂtDA (3-21)

This flow can be used to estimate drainage area of the reservoir as follows:

A 0233808 [k, ( tss ] (3.22)
ge.h K, (t x AP )PSS

3-2- Pressure behavior of horizontal wells with zonal isolations:

Because of the existence of zonal isolations, pressure responses and flow regimes of
horizontal wells are expected to be changed. The primary impact will be on the early
time flow regimes taking place in the vicinity of the wellbore. This impact depends on
the effective length of the wellbore and the length and number of the zonal isolations.
The following pressure behaviors and flow regimes can be classified based on the
length of the horizontal well and the length and number of zonal isolations.

3-2-1- Short horizontal wellbore (Lp=1 for example):

Because of the extreme short length of the wellbore, the impact of the zonal
isolations on pressure behavior will be easy to identify. This impact increases
significantly as the total length of the isolated sections increases. The following cases
can be identified:

1- Normal case with early radial, linear and pseudo radial flow regime if there is no

zonal isolation as shown in Fig. (3-1).

2- If the wellbore contains a single zonal isolation having different lengths, early

radial, transition or linear, pseudo-spherical, and pseudo radial flow will be

observed for short isolators. For long isolators, early radial, pseudo-spherical, and
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pseudo-radial flow will result as shown in Fig. (3-7). Pseudo-spherical flow is
observed for the cases where the horizontal well is extremely short and the length
of the zonal isolation represents (90%) of the total length of the wellbore.
Physically this is understandable as the perforated section of horizontal well

tends to be like single point in the formation.
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Figure 3-7: Pressure behavior for short horizontal Figure 3-8: Pressure behavior for short horizontal
well with single zone isolation. well with multiple zonal isolations.
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Figure 3-9: Pressure behavior for short horizontal Figure 3-10: Pressure behavior for short horizontal
well with multi zonal isolations. well with multi zonal isolations

3- Early radial flow disappears gradually when the wellbore contains large numbers
of zonal isolations. Pseudo-spherical flow is expected to develop for small

numbers of zonal isolations. New flow regime is observed after early radial flow
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in the case of a great numbers of zonal isolations. This flow regime is radial flow
also (System radial flow) and develops in the normal plane to the horizontal
wellbore (isolated zones and perforated zones) as shown in Figs. (3-8), (3-9), and

(3-10).

3-2-2-Horizontal wellbore with moderate length (Lp=10):

The following cases may develop for moderate length horizontal wells in which

early radial, linear, and pseudo-radial are the dominant flow regimes. However, there is

a possibility to develop another new radial flow regime that is an intermediate radial

flow between the early radial and the pseudo-radial flow regimes. Intermediate radial

flow represents the flow of reservoir fluid toward the wellbore in the horizontal plane

parallel to the wellbore.

1-

Normal case with early radial flow, linear flow, and pseudo-radial flow regimes if
the wellbore does not contain isolated zones as shown in Fig. (3-1).

For wellbores containing single zonal isolation, having different lengths, early
radial, linear flow, and pseudo radial flow are expected to occur for both short
and long isolated zones as shown in Fig. (3-11).

Linear flow will be affected more than early radial flow if the wellbore contains
multi zonal isolations. The time interval for early radial flow will be reduced
gradually as shown in Fig. (3-12).

In the existence of multi long zonal isolations, intermediate radial flow will
develop as shown in Fig. (3-13) and the possibility for the system radial flow to

occur will increase as shown in Fig. (3-14).
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Figure 3-11: Pressure behavior for moderate length
horizontal well without zonal isolation.

Figure 3-12: Pressure behavior for moderate length
horizontal well with multiple zonal isolations.

L5710, Ls=04 L5710, L5708
10E+00 . 10E+00
. Ll LD:E Pseudo-radial flow Pseudo-radial flow
o L " "
L L Intermediate radial flow
"
Linear flow
Early radial flow

¥ ¥ A .
[ [ Linear flow
3 LOE0L 3 LOE0L N

Early radial flow Transition ﬂ@ \

A \,
Number of zonal isolations A Number of zonal isolations
—_—00 =—1 =2 =—4 —_—00 =—1 =2 =—4
L Lk Lok
—f§ —15 —3 Dohyk L, —8§ —1 —3
X
1002 ; I 10E-02 } ;
10E05  10E04  10E03  10E02  10E01  10E+00  10E+0l  L1OE+02 10E05  10E04  10E03  10E02  10E01  10E400  10E+01  10E+02
fo fo

Fig. 3-13: Pressure behavior of moderate length
horizontal well with multiple zonal isolations.

Fig. 3-14: Pressure behavior of moderate length
horizontal well with multiple zonal isolations.

3-2-3- Long horizontal wellbore with moderate length (Lp=50):

In general, early radial flow will not be observed for long horizontal wells where

pressure behavior tends to be similar to

the pressure behavior of vertical hydraulic

fractures. Linear flow and pseudo-radial flow are the dominant types of flow regimes.

1- Normal case with early radial, linear and pseudo-radial flow regimes if the

wellbore does not contain isolated zones as shown in Fig. (3-1).

2- Pressure behavior of a horizontal wellbore having a single zonal isolation having

different lengths up to (Lsp=90%),

will be similar to the normal horizontal well



with only two flow regimes; linear and pseudo-radial as shown in Fig. (3-15).

3- Pressure behavior of a horizontal wellbore will not be affected if multiple short
isolated zones exist as shown in Fig. (3-16).

4- Pressure behavior of a long horizontal wellbore containing multiple long zonal
isolations (Lsp=40% for example) is expected to have early linear, transition,
second linear and pseudo-radial flow as shown in Fig. (3-17). The second linear
flow represents the flow to the whole system (isolated zones and perforated
Zones).

5- If the wellbore contains large numbers of long zonal isolations (Lsp=80% for
example), early linear and intermediate radial flow will appear followed by

second linear and pseudo-radial flow regimes as shown in Fig. (3-18).
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Figure 3-15: Pressure behavior for long horizontal Figure 3-16: Pressure behavior for long horizontal
well without zonal isolation. well with multiple zonal isolations.

3-3- Flow regimes of horizontal wells with zonal isolations
3-3-1- Near-Wellbore early radial flow:

For short horizontal wells having dimensionless length (Lp<20) with or without
zonal isolations, near-wellbore early radial flow is expected to develop at early time as

the fluid flows from all directions into the wellbore as shown in Fig. (3-19). This flow
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regime is characterized by a slope equal to (1/4nL L, ) On the pressure curve or having

the following value on the pressure derivative curve:
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Figure 3-17: Pressure behavior for long horizontal Figure 3-18: Pressure behavior for long horizontal
well with multiple zonal isolations. well with multiple zonal isolations.
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Figure 3-19: Near-Wellbore Early radial flow for horizontal well with zonal isolations.

0.5 323)

(ty %Py ) = ——
D D /ERF 2anDLD

In field units Eq. 3-23 becomes:

35.30.B (3-24)

tx AP’ =
( )ERF \/Tkyan

This equation can be used to calculate ( /k,k,) knowing (n)and(L,):
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\/@ _ 35.3quB (3-25)
(txAP")gee L,

3-3-2- System early radial flow:

This flow regime is expected to occur when the horizontal wells have an infinite
number of zonal isolations in which pressure behavior can be considered similar to the
normal horizontal wells shown in Fig. (3-20). Therefore, the governing equation for this

type of flow is:

0.5 (3-26)

(tD x PI:.))SRF = Z

Figure 3-20: System early radial flow for horizontal well with zonal isolations.

In field units Eq. 3-26 becomes:

35.3q.B
e e (3-27)

(t<AP")gpe = \/ml—w

This equation can be used to calculate ( /k,k,) knowing (Lw) :

\/?ky _ 35.3Iq,uB (3-28)
(t<AP")gre Ly,

3-3-3 - Intermediate radial Flow:

This flow regime develops for the case of long horizontal wells having multiple

long zonal isolations. It represents radial flow around each isolated zone as shown in
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Fig. (3-21). This flow regime can be an indictor that the well has serious production
problems. Basically the intermediate radial flow is developed in the horizontal plane
parallel to the wellbore when there is a long closed section in the perforated zone. This
closed section comes from different production problems such as sand production or

asphaltic problems. The governing equation for this flow is:

, 0.5
(to x P ) ige = T (3-29)

In field units, EqQ. (3-29) becomes:

, 70.6q.B
tx AP = -
( ) iR 0 /—kxky n (3-30)

This equation can be used to calculate horizontal permeability (,/kxky) knowing the

number of closed zones:

\/W _ 70.6q,uB
" n(txAPY) e h (3-31)

N
[« = - = - = -
N %

Figure 3-21: Intermediate radial flow for horizontal well with zonal isolations.

3-3-4 - Pseudo-spherical Flow:
This flow regime develops when the length of the perforated zones is extremely

short as compared to the height of the formation. Pseudo-spherical flow is expected to
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occur at early time as shown in Fig. (3-22). This flow regime is governed by the

following equation (Slimani and Tiab 2006):

1
(to X Py ") psp = -
D~ "D /pPsF 4/, (3-32)

1226.75q.BL C
(tXAPI)PSF = auBL, |fucC, (3-33)

ht ko VK

where tpsr and (t X AP') psg are the coordinates of any point on the straight line.

Figure 3-22: Pseudo- spherical flow for horizontal well with zonal isolations.

3-3-5 - Near-Wellbore Early linear flow:

Near-wellbore Early linear flow regime is the dominant flow at early time for long
horizontal wellbores (Lp>20) when early radial flow is barely observable. This type of
flow develops when both upper and lower boundaries are reached and the flow of fluid
becomes normal to the plane of the wellbore as shown in Fig. (3-23). This flow is
characterized by a slope of (0.5) on the pressure derivative curve. The governing
equation for early linear flow is:

Jty

o, @34

PD

(to xAP, ) g r =

and in field units:
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: 2.032qB / M ¢
tx AP = 3-35
(tx JeLr n Lp h ky¢ct ( )

This equation can be used to calculate (\/kT) knowing (n)and(L,), by inserting the

coordinates (ter) and (tx AP')g . at any point on the straight line of early linear flow.

W P
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Figure 3-23: Near-Wellbore early linear flow for horizontal well with zonal isolations.

3-3-6- System Early linear flow:

System early linear flow regime occurs for long horizontal wellbores (Lp>20)
containing large numbers of zonal isolations. Similar to the early linear flow, this flow
is characterized by a slope of (0.5) on the pressure derivative curve. It represents linear
flow toward the whole wellbore (isolated zones and perforated zones) as shown in Fig.

(3-25). The governing equation for early linear flow is:

A/
(tD x APD )SLF =0

3-36
2nkg, (3-36)

S
SIS S S

Figure 3-24: System early linear flow for horizontal well with zonal isolations.
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and in field units:

. 2.0329B [ u

t < AP’ = 3-37
(tx )SLFlhr hl’]LS ky¢ct ( )

where (t X AP')SLFW is the pressure derivative value at t=1 hr.
3-3-7- Elliptical flow
This flow regime develops before the pseudo-radial flow as shown in Fig. (3-25).

Tiab 1994 described this flow regime as a straight line of slope 0.36 on the log-log plot
of (tp*Pp’)vs.(tp). He used multivariate linear regression analysis to derive the

relationship between (tp*Pp')and (tp). The governing equation for elliptical flow is

derived based on multi-regression analysis as shown in Fig. (3-26):

' 0.42 036
(to xPp)eF = x(tp)™
Lo (3-38)
p
In field units:
0.36
0.28
(t % API) _ 3q1LlBLW kXtEF
EF — (3-39)
nL . /kk,h{ guc
p Xy
06
y=08589¢ " y=06203:f
05 1 R=09816 2 ooohs
y=0.6901x%%
04 |R=09652
- 03 /
¢ — LpD=204
o] —LpD=2"035
—LpD=2"0.3
o1 — Power (LpD=204) ||
’ —— Power (LpD=2+0.35)
— Power (LpD=2%0.3)
0 ; ; ; : ;
0 02 04 06 08 1 12
o
Figure (3-25): Elliptical flow regime for horizontal Figure 3-26: Multi-regression analysis for elliptical.
well with zonal isolations. flow for horizontal well with zonal isolations.
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3-3-8 - Pseudo radial flow:
Pseudo-radial flow appears at late time when the fluid flows from a remote drainage
area toward the wellbore as shown in Fig. (3-27). This type of flow is characterized by a

horizontal line on the pressure derivative curve with:

(to X Py)ere =0.5 (3-40)

In field units, Eq. (3-40) becomes:

, 70.60.8B
(1% AP )y = 2 (3-41)
V&P

which can be used to calculate:

ok, =008 (3-42)
(tXAP")pee h

Figure 3-27: Pseudo- radial flow for horizontal well with zonal isolations.

3-4- Intersection Points:

The points of intersection between different lines of flow regimes are very important
in the well test interpretation. They can be used to check the results.

3-4-1- The intersection of near-wellbore early linear flow line and pseudo-radial flow line is:
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n2L2 gy

X

tpreL =1207 (3-43)

3-4-2- The point of intersection of system early linear flow line and pseudo-radial flow line is:

2,2
N“Ls@Lci
tPRsL =1207lf—¢ (3-44)
X

3-4-3-The intersection of near-wellbore early linear flow line and intermediate radial flow line is:

L2
tireL =1207 —Pk¢!ct (3'45)
X

3-4-4-The point of intersection of system early linear flow line and intermediate radial flow line is:

tIRSL

2
_ 1207% (3-46)

X

3-4-5-The intersection of near-wellbore early linear flow line and near-wellbore early radial flow

line is:

h®gcy
tereL =302— — (3-47)

z

3-4-6-The intersection of system early linear flow line and near-wellbore early radial flow line is:

h2L2 g ey

tersL =302
2
kaz

(3-48)

3-4-7-The intersection of near-wellbore early radial flow line and pseudo-spherical flow line is:

22,2
n“LB LYy K, oLc
terps =1207 —F 2L (3-49)
h“ky
3-4-8- The point of intersection of pseudo-radial flow line and pseudo-spherical flow line is:
L et
tprps =302 ——— (3-50)

Kx

3-4-9- The point of intersection of pseudo-radial flow line and elliptical flow line is:
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Y

tprep = 6155 108 (3-51)
X=w

3-4-10- The point of intersection of intermediate radial flow line and elliptical flow line is:

(nL, F°aucc,
nk, 07

3-4-11- The point of intersection of near-wellbore early radial flow line and elliptical flow line is:

tee = 6155 (3-52)

2.8
P Lt Kx
tereg =897.5 h |—= -
98k, | V ke (3-53)
3-4-12- The point of intersection of near-wellbore early linear flow line and elliptical flow line is:

L2
teELEE 218.3% (3'54)
X

3-4-13- The point of intersection of system early linear flow line and elliptical flow line is:

G (15 Y
X W

3-5- Relationships between flow regimes
Many mathematical relationships between various flow regimes’ analytical models

can be used in pressure transient interpretation to estimate reservoir parameters.

3-5-1- Pseudo-radial and intermediate radial flow regime:

(tD x Py l)IRF _ (t X AP')IRF 1

Jre Jiee _ = (3-56)
(tD x Py )PRF (t x AP )PRF n
3-5-2-Pseudo-radial and near-wellbore early radial flow regime:

(tD x Py :)ERF _ 1 (3-57)
(tD x Py )PRF 2nLyp Ly

tx AP’ h k

( )ERF _ Ry (3-58)
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3-5-3-Intermediate radial and near-wellbore early radial flow regime:

(t x P l)ERF _ 1
( XP )IRF _2LPDLD (3-59)

(tx API)ERF _ h &
(t XAP')IRF - 2LP kz (3:60)

3-5-4-Near-wellbore early radial and system early radial flow regime:

(tD )ERF _ 1

= 3-61
(tD x P )SRF NLep ( )
(t x AP’ )ERF _ h
( tx AP’ )SRF nLP (3-62)
3-5-5-Pseudo-radial and system early radial flow regime:
x P, 1
( )SRF _ (3_63)
(t X P )PRF 2|—D
(t X AF)I)SRF — Lw X (3'64)
(t X API)PRF 2 LP kz
3-5-6-Intermediate radial and system early radial flow regime:
( x Py )SRF n
= 3-65
(t x P, )IRF 2L, (3-69)

(t AP'I)SRF _nL, [k (3:66)
(t X AP )IRF 2 LP kz
3-5-7-Near-wellbore early linear and system early linear flow regime:

EtD )SLF _ Leo (3-67)

ty x Py ')ELF Lsp

EXAP)s e Ly
e
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3-6- Skin factor

Pressure behavior of horizontal wells is affected significantly by skin factor.
Formation damage due to drilling and completion process, partially penetrating wells,
reservoir heterogeneity and anisotropy, as well as the choke effect of fluid flow, may all
be involved within the term of skin factor. Skin factor in horizontal wells has different
classifications depending on the type of flow regime that can be developed in the
vicinity of the wellbore. Generally, most horizontal wells have non-uniform distribution
of skin along their lengths and this creates a challenging problem in the interpretation of
the pressure transient response. In this study, uniform distribution for the skin factor
will be assumed. Figures (3-28), (3-29), and (3-30) show the effect of skin factor on
pressure behavior of horizontal wells. It is important to note that the skin factor affects
the pressure distribution only and does not affect pressure derivative curves.
3-6-1- Mechanical skin factor

At early time, early radial flow regime may be observed. Therefore, mechanical skin
factor (Sm) or average skin factor (Al-Otaibi et al 2005) probably has the dominant
effect on pressure behavior at this time period. Therefore, mechanical skin factor can be

calculated based on early time approximation model.

AR = APproductiont APskin (3-69)
1 y+2 1 t (Sm) 3
P (%0 Yor Zoto) = - Eil -2 %0 | sm= In| —-2— [+0.80907 |+ Ve (3-70)
4nLpDL, at, anLply Yo + 25 nL,slp

Since zp =0, EQq.(3-70) can be written as:

PD(XDI Yo1Zp ,tD) = 4I’]L1L(In£:/2j+0.80907+4(8m)m’: \J (3-71)
pD =D D

In field units, mechanical skin factor can be written as:
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_ (AP)ERF _ kytERF -
(SM ) e _0.25[ o In e +7.43 (3-72)

am
3-6-2- Total skin factor

Total skin factor can be defined as the summation of the mechanical skin factor and
the composite skin factor resulting from the partial penetration in the vertical direction,
the partial penetration in the horizontal direction, and the effect of the chock flow. Total
skin factor can be calculated based on the type of flow regime as follow:
3-6-2-1- From pseudo-radial flow regime

Basically, total skin factor can be calculated from pseudo radial flow which is

expected to be dominant at late time using late time approximation given in Eq. (2-44).

1 .t
Po(Xp.YD:2D:tp) = Po (XD, Y. 2D tp) += IN() + §¢ (3-73)

Eqg. (3-73) can be approximated to the following formula:

St 1

{'"(tD) e } (3-74)

1
Po (XD, YD, 2D tp) == In(tp )+

In field units, total skin factor can be written as;

05L, [k,| (AP) k,t
S _ P [Pz PRE_ | X PRF 4.659 _
(Sdoee == C [(tx AP n( o2 j+ } (3-75)

t—w

3-6-2-2- From near-wellbore early linear flow regime
In addition, early linear flow regime can be used to calculate total skin factor with
some small percentage error due to the approximation of the linear flow model given by

Eq. (3-34):

0.0288 [k, | (AP),
S — X lhr _2
( t)ELF Lp Puc, {(tXAP)LFlhr

(3-76)
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Figure 3-28: Effect of skin factor on pressure behavior Figure 3-29: Effect of skin factor on pressure behavior
of horizontal well without zonal isolations. of horizontal well with zonal isolations.

3-7- The effect of number and length of zonal isolation on pseudo-skin factor

The dimensionless pressure drop at any point and at any time in a reservoir is created
by the production process from a horizontal well consists of two terms. The first is the
line source solution and the second is the pseudo-skin function. The pseudo-skin
function can be approximated by a constant for large values of dimensionless time,
which corresponds to the starting time of pseudo-radial flow, tp;. Therefore

when (t, >t,,), pseudo-skin factor can be calculated using (Spivak 1988). Malekzadeh

and Abdelgawad 1999 considered that pseudo-skin factor is a part of total skin factor if
the combined effect of the formation damage and the presence of impermeable barriers
and low permeability regions in the vicinity of some sections of the horizontal well are
represented by mechanical skin damage. They stated that the total skin factor obtained
from the well tests is the summation of mechanical skin factor and pseudo-skin factor.

Mathematically, Cinco-Ley (1974) and Spivak (1988) defined pseudo-skin factor as:

S(xD,yD,zD,tD)=PD(xD,yD,zD,tD1)+o.5|n[tLJ—o.5 In{ —2—- |+ 0.80907 (3-77)
tp1 Xp + YD

When Xp =0, Eq. (3-77) can be written as:
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$(0,Yp.2p.tp) = P (0, YD, 2p,tp1) — 0.5 [In(tpy )+0.80907]+ In(yp ) (3-78)
Since the three terms in Eq. (3-78) are constants, the pseudo-skin factor has constant
value.

Despite the fact that the zonal-isolation technique seems to be an ideal solution for
many serious production problems such as water and gas coning, sand production, and
damaged zone separation, it is also a cause of significant increase in the skin factor.
This increment depends on the length and number of the zonal isolation. As the length
of the zonal isolation increases, the skin factor also increases due to the extra resistance
to flow resulting from the existence of the zonal isolations. This skin increment for
short horizontal wells is much greater than that for long ones. Figure (3-31) shows the
effect of the number and length of zonal isolations on the skin factor of horizontal wells.
It can be seen from this figure that the single zonal isolation has a skin factor greater
than the skin factor of double or triple zonal isolations for the same length. Skin factor
increases slightly with the increase of the number of zonal isolations for long horizontal

wells while the skin factor increases significantly for the short horizontal wells.

Double perforation zone & double zone isolatorts Pseudo-skin fcator for LD=1,2,4,8
LD=16, LsD=0.8
100 T T
L0E+01 Lok L [Number of zonal isolations | //
Ly [k Ls w (% - [ S —
Lo T =S LD:ffiLsD_ii n=10 n=20
D% ky sD Ly 80 hYky Ly 00 e—n=40
80 em—rcif L=l
— 60 D
— —
mm———
/% 40 /
1.0E+00 .
s
— LT
¢ — : 3 /
S,D / Pseudo- radial flow S 00 /
o 8 Lp=2
Early radial flow [_/ o A
o Intermediate radial flow 220 /
_~
Linear flow 40 | L=4
—st=00 T l— D~
—St=20
—=St40 6.0 =
—St=60 L,=8
—St=80
Loz —S=10.0 8.0 + |
VlOE-DS 1.0E-04 10E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 00 01 02 03 04 05 08 07 08
t Length of zone isolation, LsD
Figure 3-30: Effect of skin factor on pressure behavior Figure 3-31: Effect of number and length of zonal
of horizontal well with zonal isolations. isolations on pseudo-skin factor.
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3-8-Application of Type Curve Matching

As shown on the plots in Appendix A, the pressure and pressure derivatives have

different shapes for each combination of length and number of zonal isolation for

different wellbore lengths. Different flow regimes are observed for different numbers

and lengths of zonal isolations. It is important to note that:

1-

6-

Pseudo-spherical flow develops for short perforation section when the length
of horizontal wellbore is extremely short and the zonal isolation is extremely
long.

Intermediate radial flow develops for short perforated sections and long
isolated zones in the wellbore.

System radial flow develops when the horizontal wellbore contains an
infinite number of zonal isolations and an infinite number of perforated
sections.

Second linear flow develops when the horizontal wellbore contains an
infinite number of zonal isolations and an infinite number of perforated
sections.

Early radial flow develops at early time for short horizontal wells and early
linear flow is developed at early time for long horizontal wells.

Pseudo-radial flow is dominant at late time.

The following information is associated with each type curve: dimensionless length

of horizontal well (Lp), number of zonal isolations (n), Length of zonal isolations (Lsp),

wellbore radius (yp). Thus, the following information can be obtained from the type

curve matching process: (Po)m, (AP)m, (to)m, (Awm, ( Lo)m, (Mwm, (Lso)m, (YD)m. The
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following steps illustrate how type curve matching is used to determine reservoir
characteristics such as: permeability in the three directions and the number and length
of zonal isolations.

Step-1 Plot (AP vs. t) and (t x AP'vs. t ) on log-log paper.

Step-2 Obtain the best match of the data with one of the type curves.

Step-3 Read from any match point: ty, APy, tpp - Pom» Lom s Lepm s Lsom M, Ypwm.

Step-4 Calculate ky :

_ Wct LﬁvtDM (3-79)
X 0.0002637t,,

Step-5 Calculate Ky :

2
1 [141.2q,8P
k, = —| == ou 3-80
" { hAP, } (3-80)

X

Step-6 Calculate K :

_ LBk,
z LWZ

The number and length of the zonal isolations are normally well known prior to

k (3-81)

running a pressure test. However, this technique can be used to check whether the zonal
isolations are performing their functions as expected. This can be done by estimating
the number and length of zonal isolations from this technique directly and comparing
them with the actual number and length of the existing zonal isolations.

Step-7 Length of perforation zone:
Step-8 Length of zonal isolations
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Ls = Lo < L (3-89
3-9-Application of TDS technique

This section presents an analytical technique referred to as the Tiab’s Direct
Synthesis (TDS) technique for interpreting log-log plots of pressure and pressure
derivatives of a well with zonal isolations. TDS is a powerful technique for the
computation of reservoir parameters directly from log-log plots of pressure and pressure
derivative data. A well designed pressure transient test in a horizontal well with zonal
isolations in an infinite reservoir should yield all the necessary straight lines to calculate
the number and length of zonal isolation, permeabilities in all directions. The great
advantage of this technique is that it only requires graphing of pressure and pressure
derivative on a single log-log plot for direct analysis.

The following step-by-step procedure is for the ideal case where all the necessary
straight lines are well defined.
Step 1 - Plot pressure change (AP) and pressure derivative (txAP") values versus test
time on a log-log graph.
Step 2 - Read the value of (txAP")prr corresponding to the infinite acting pseudo-radial
flow line.

Step 3 - Calculate (kp) .

70.6q.8B
k, = Jkk, =| —= 3-84
" ’ (h(tXAPI)PRF j (389
Step 4 — If the intermediate radial flow develops, read (tXAP")rr.

Step 5 — Calculate the number of zonal isolations (n) either from Eq. (3-31) or:
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X AI:)')PRF

n=
XAP%W

(3-85)

— | -+

Step 6 - Obtain the value of (txAP") at time t = 1 hr from the near-wellbore early linear

flow line (extrapolated if necessary), (tXAP")|Finr.

Step 7 - Calculate (Lp\/q) .

2.03150B /y
L .k, = = 3-86
PN [mKtXAP?uqmj ¢, ( )

Step 8 - Read the value of (txAP")s rinr COrresponding to the system early linear flow

line at t=1 hr.

Step 9 - Calculate (Ls x\/@) using Eq. (3-37).

2.032qB 4
L.k = )
Wk (hn<tmp->m}\/¢ct @87

Step-10- Use the following correlation to calculate the length of isolated and perforated

section together:

L
Lp+Ls =TW (3-88)

Step-11- Substitute Eq.(3-88) in Eq. (3-87) and (3-86), find the length of L, and L.
Step 12 - Calculate (Ky) using the result of either Step (7) or (9).

Step 13 - Calculate (Kx) using the result of Step (3).

Step 14 — Calculate total length of perforated sections (Lpt)

Lpt =nlp (3-89)

Step 15 — Calculate total length of isolated sections (Lst) :
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Lst = Lw — Lpt (3-90)
Step 16 - Read the value of (txAP")err corresponding to the near-wellbore early-radial

flow line.

Step 17 - Calculate (k,) .

2
(- 1 ( 35.3q,u||3 J (3.01)
K, | NLp (X AP") e

Step 18 — Calculate mechanical skin factor (Sm) :

k.t
Sm= —0'25h & (AP)ERF —In| -2 ERF2 +7.43 (3-92)
nLp |k, (t X AP')ERF duc,r,

Step 19 — Calculate total skin factor (St) from Eq. (3-75) based on pseudo-radial flow

line data:
s, - 0-5h|—p %[% - In(—kxt"R’:2 j+ 7.43} (3-93)
x| X )PRF guc,L,

Step 20 — Check the value of total skin factor (St) using Eq. (3-76) if applicable:
Step 21 — Calculate the intersection times using Eq. (3-43) through Eg. (3-55) and
compare them with those in the plot.
Example-3-1 (short horizontal well):
A pressure drawdown test data of a horizontal well is given in Table (Example 3-1)

in Appendix D. Other known reservoir and well data are:

q=4000STB/D  ¢=0.1 n=1cp ¢t = 2x10° psi™ h =125 ft
L., = 4000 ft rw=0.566 ft  p; = 5000 psi B =1.125 bbl/STB
Determine:
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1- Formation permeabilities in all directions.

2- Number and length of zonal isolations.

Using type-curve matching and TDS technique.
Solution using type-curve matching
Step-1 Plot (AP vs. t) and (t x AP'vs. t ) on log-log paper as shown in Fig. (3-32).
Step-2 Obtain the best match of the data with one of the type curves as shown in Fig.
(3-33).

Step-3 Read from any match point:t,,, AR, to,,, Pow» Lows Leom s N+ Yo

tpm =100, ARy =100, tDM =0.066, Pppy =0.11, Lppm =16, Lppy =0.2,
LSDl\/l =0.8, N =2, YDM =0.0001

Step-4 Calculate ky from Eq. (3-79):

_ 0.1x1x0.000002  4000% x 0.066 _

I(X
0.0002637 x 100

Step-5 Calculate Ky from Eq. (3-80):

- 3[141.2>< 4000 x1x1.125x o.11}2 39
¥ 8 125x100 '

Step-6 Calculate Kz from Eq. (3-81):

162 x1252 x 8
kp =—=——= =2
4000

The number and length of the zonal isolations are normally well known prior to
running a pressure test. However, this technique can be used to check whether the zonal
isolations are performing their functions as expected. This can be done by estimating

the number and length of zonal isolations from this technique directly and comparing
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them with the actual number and length. From the matching point, the number of zonal

isolations is two.

11.0E+04 Double perforation zone & Double zon isolator
infinite reservoir Ly=16
QOM’
b o
R ot

105403 M

~ . R i

H

% — B ..‘- LLL )

< a5

< = .J Ha

E ..’_ e 1;

° ] d&

11.0E4+02 +——————

— T
[1.0E+01 1‘.E-001]17504 1.E+amén3 1LE+QDE02 1E+02e01 1.E+Q3e100 1E+Q4f+0;
1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 time (hours)
t,hrs tp
Figure 3-32: Pressure and pressure derivative plot for Figure 3-33: Type-curve matching technique for
Example 3-1. Example 3-1.

Step-7 Length of perforation zone from Eq. (3-82):

L =0.2x 4000 =800 ft

Step-8 Length of zonal isolations from Eq. (3-83):
L, =0.8x4000 = 3200 ft
Solution using TDS

Step 1 - A plot of well pressure change (AP) and pressure derivative (tXAP') values

versus test time is shown in Fig. (3-34).

Step 2 - Read the value of (txAP")pr corresponding to the infinite acting pseudo-radial

flow line.

(t X AP')pR = 449.3

Step 3 - Calculate horizontal permeability (kn) using Eq. (3-84):

70.6x4000x1x1.125
kp = [koky = — 5657 md
h =V Ty 125x 449.3
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Step 4 - Read the value of (txAP")r corresponding to the intermediate radial flow line.
(txAP") e =224.6
Step 5 - Calculate (n) the number of the zonal isolations using Eq. (3-30), (3-56), or (3-

85):

o _ 70.6x4000x1x1125
224.6x125x5.657

Step 6 - Read the value of (txXAP")sirine corresponding to the system early linear flow

line at t=1 hr.

(X AP") s ppn, =25.5

1.0E+04
o *t
corm Wi
(txdPwf')pg=449.3 M \Ad
1.0E+03 1 P
* /
;g_ < S — - S
| |
5 %Etxd ow').R=224.ej //
]
o
©
1.0E+02
Ei(txd PWha 1, =102 |
(txdPwf')gz=70.2
(txd PWf)SLlhr:25-5j|
1.0E+01 t !
1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04
t, hrs

Figure 3-34: TDS technique for example 3-1.

Step 7 - Calculate (Ls x\/g) using Eq. (3-87).
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L ><\/k> _ 2.032x4000x1.125 f 1 3206
125x2x25.5 0.1x0.000002

Step 8 - Read the value of (txAP")g r1n COrresponding to the near-wellbore early linear

flow line at t=1 hr.

(txAP") gy =102

Step 9 - Calculate (Lp X\/E) using Eq. (3-86).

2032x4000x1.125) [ 1
Lp x /k = =801
PoNTY [ 125% 2x102 J 0.1x 0.000002

Step 10 - Solve for (Ls) and (Lp) from the results of Step-7 and Step-9 taking into

accounts that:

Lo oLy w4000
n

=200
Lg =1600 ft = total Lg =2x1600 = 3200 ft

Lp =400 ft = total Lp =2x400=800 ft

Step 11 - Calculate (ky)using the result of either Step (7) or (9).
2
ky = (%] =4 md
400
Step 12 - Calculate (kx) using the result of Step (3).

2
k[@} _amd

Ja

Step-13- Read the value of (txAP")ere corresponding to the intermediate radial flow

line.

(tx AP")ee =70.2
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Step-14- Calculate (kz) from Eqg. (3-91):

2

kzz

1 35.3x4000x1x1.125
4 2x400x70.2

Step-15- Read from near-wellbore early radial flow at a certain time the value of

pressure and pressure derivative.
(t)ee =0.1  (AP)ge =675 (txAP')e =70.2

Step-16- Calculate mechanical skin factor from Eq. (3-92).

j + 8.24} =0.55

(Sm)ey = 0.25[ 675 |n( 4x0.1

702 (0.1x1x0.000002x0.566

Step-17- Read from pseudo-radial flow at a certain time the value of pressure and

pressure derivative.
(t)one =1618  (AP)e =3662.5 (tx AP')o =449.3

Step-18- Calculate total skin factor from Eq. (3-93).

s,) _ 05x400 |2 3662.5_”{ 8x1618
t/PRE 125 8| 449.3 0.1x1x 0.000002 x 40002

j + 4.659} =3.6

Step-19- Read from linear flow line:
(t)LFlhr =1 (AP)LFlhr =856, (t XAP)LFlhr =102

Step-20- calculate total skin factor from eq. (3-76)

0.0288 8 856
(St )ELF = \/ |: 2:| =291

400 V0.1x1x0.000002| 102
Step -21 - Determine the intersection points:

tPRSL =300 hr, tPREL =19 hr, tIRSL =73 hr, thEL =428 hr, tEREL =0.5, tERSL =75
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Step -22 — Calculate the intersection points using Eqgs. (3-43), (3-44), (3-45), (3-46), (3-

47), and (3-48):

2 2
tpreL =1207 2° %400 xO.;xlx 0.000002 _19.3hr

2 2
tprsL —1207 2 x1600“ x 0.1x1x0.000002 309 hr
8

2
typeL =1207 400 ><O.l><81>< 0.000002 _a8hr

2
tirsL = 1207 1600“ x 0.1x1x 0.000002 77 hr
8

2 2
tergL = 302 125° x1600“ x 0.1x1x 0.000002 —777hr

4002 x 2

2
tereL = 302 125 xO.lx;Lx 0.000002 047 hr

Table (3-1) shows summary of the calculated parameters for Example 3-1 and the

input values.
Table (3-1) Summary of results Example 3-1.
Parameter In-put value Calculated value by Calculated value by
Type-curve matching TDS technique
K, 8 8 8
ky 4 3.9 4
k, 2 2 2
N 2 2 2
Lp 400 400 400
L 1600 1600 1600
(Sm)ERF 05 05
(St)PRF 35 36
(St)LF 35 2.91
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Example -3-2 (Long horizontal well):
Pressure drawdown test data of a horizontal well is given in Table (Example 3-2) in

Appendix F. Other known reservoir and well data are:

q=1000STB/D  ¢=0.1 n=1cp ¢ = 2x107° psi™ h =53 ft
w = 6000 ft rw = 0.7 ft pi = 5000 psi B = 1.25 bbl/STB k=10

md

Sm=0.0

Determine:

3- Formation permeabilities in all directions.
4- Number and length of zonal isolations.
Using type-curve matching and TDS technique.
Solution using type-curve matching
Step-1 Plot (AP vs. t) and (t x AP'vs. t ) on log-log paper as shown in Fig. (3-35).
Step-2 Obtain the best match of the data with one of the type curves as shown in Fig.
(3-36).
Step-3 Read from any match point: ty, APy, tpy» Pom > Lrom » v, Yow.
tm =10, ARy =10, tp), =0.0073, Ppy =0.052, Lppy =0.3, Lypym =0.7,ny =4,
ypm = 0.0001
Step-4 Calculate ky from Eq. (3-79):

_ 0.1x1x0.000002 x 6000% x 0.0073
" 0.0002637 x10

k 20 md

Step-5 Calculate Ky from Eg. (3-80):
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2
1|141.2x1000%x1x1.25%0.052
y == =15md
20 53x10
11.0E+03
Four perforation zones & four zonal isolation
infinite reservoir, L;>20
PR ol -
o
»
v “d
1.0E+02 -
N R L&
o :
< L . 2
E ’0‘ = " n st =
11.0E+01 . =.#
*
o .Pdh"
' . [l
L

11.0E+00

1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04

t,hrs
Figure 3-35: Pressure and pressure derivative plot for Figure 3-36: Type-curve matching technique for
Example 3-2 Example 3-2

The number and length of the zonal isolations normally are well known prior to
running a pressure test. From the matching point, the number of zonal isolations is 4.

Step-7 Length of perforation zone from Eq. (3-82):

Lp =0.3x6000=1800 ft

Step-8 Length of zonal isolations from Eq. (3-83):
L, =0.7x6000 = 4200 ft
Solution using TDS

Step 1 - A plot of well pressure change (AP) and pressure derivative (tXAP') values

versus test time is shown in Fig. (3-37).

Step 2 - Read the value of (txAP")pre corresponding to the infinite acting pseudo-radial

flow line.

(txAP") e =96
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Step 3 - Calculate horizontal permeability (ky) using Eq. (3-84):

kp = M _ 70.6><];;0>?;<61><1.25 _1732md

Step 4 - Read the value of (txAP")re corresponding to the intermediate radial flow line.
(txAP") e =24

Step 5 - Calculate (n) the number of the zonal isolations using Eq. (3-30), (3-56), or (3-
85):

_ 70.6x1000x1x1.25 4
24 x53*17.32

Step 6 - Read the value of (txAP")s rinr coOrresponding to the system early linear flow

line at t=1 hr.

(txAP)g pyn, =6.5

Step 7 - Calculate (Ls X\/W) using Eqg. (3-87).

2,032 x1000x1.25 1
Lg x.[ky = / - 4118
STV ( 53x4x6.5 j 0.1x 0.000002

Step 8 - Read the value of (txXAP")eLr1nr COrresponding to near-wellbore early linear flow

line at t=1 hr.

(txAP")g pyr =153

Step 9 - Calculate (Lp X\/W) using Eq. (3-86).

pr\/k>= 2.032x1000x1.25 , 1 _1751
53x4x15.3 0.1x0.000002

Step 10 - Solve for (L) and (L) from the results of Step-7 and Step-9 taking into

account that:
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L 6000

Ls +Lp =—X¥ = —— =1500
S P n 4

Lg =1050 ft = total Lg =4x1050 = 4200 ft

Lp =450 ft = total Lp =4x450=1800 ft

1.0E+03
AR il
0“
* L
(txdPwf')pr=96 /
N,
1.0E+02 2 ‘/ r.—.-I'I'-
mE
s
o
©
£,
H
= ¢
10E+01 W — 7 ipug 1153 B
(thPWf)SLlhrZG.S
1.0E+00
1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04
t, hrs

Figure 3-37: TDS technique for example 3-2.

Step 11 - Calculate (ky)using the result of either Step (7) or (9).

2
o =[5 15 me
450

Step 12 - Calculate (kx) using the result of step (3).

2
" [ﬂ} _20md

J15
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Step-13- Read from pseudo-radial flow at a certain time the value of pressure and

pressure derivative.
(t)oge =10921  (AP)r =558 (txAP').o =496

Step-14- Calculate total skin factor from Eq. (3-92).

(S )ome _0:5x450 /10 5_58_|n( 2010921 2j+4.659 ~05
53 20| 96 0.1x1x0.000002 x 6000

Step-15- Read from linear flow line:
(t)LFl =1, (AP)LFl =30, (t x AP)LFl =15

Step-16- Calculate total skin factor from eq. (3-76):

(s, - 20288 \/ 20 { 31 _2} 002
450 V0.1x1x0.000002| 15.3

Step-17 - Determine the intersection points:
tPRSL =220 hr, tPREL =40 hl", tIRSL =14 hr, thEL =24hr
Step 16 — Calculate the intersection points using Eqgs. (3-43), (3-44), (3-45), and (3-46):

2 2
tpreL =1207 4 x 450“ x O;I.Oxlx 0.000002 —39 hr

2 2
tprsL —1207 47 x1050” x 0.1x1x 0.000002 213 nr

20

2
tpeL =1207 450 x0.1><2]c.)>< 0.000002 _oaanr

2
tirsL = 1207 1050“ x 0.1x1x 0.000002 _133hr
20

Table (3-2) shows summary of the calculated parameters for Example 3-2 and the

input values.
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Table (3-2): Summary of results of Example 3-2.

Parameter In-put value Calculated value by Calculated value by
Type-curve matching TDS technique
y 20 20 20
15 15 15

N ' 4 4 4
Lp 450 450 450
L 1050 1050 1050
(Sm ) ERF 0.0 0.0
(St)PRF 0-5 05
(S).s 05 0.02

3-10- Malfunctioning of zonal isolations

One of the important new applications for well test analysis in this study is the
ability to evaluate the performance of the zonal isolations to determine if the they are
performing as designed. In addition, well test analysis can be used to detect the
locations of unsuccessful zonal isolations. It is well known that the zonal isolations are
challenged by harsh environments such high temperature, high pressure, and corrosive
fluids as well as stresses caused by production operation and/or unstable formations.
Therefore, to maintain effective zonal isolations for the well life by maximizing the
asset value and minimizing the risk, they should be designed for all conditions of harsh
environments. However, many zonal isolations may not meet the necessary
requirements especially when several harsh conditions are found in a single section of
the formation that may lead to zonal isolation failure.

Evaluating the performance of the zonal isolation can be considered as the new and
important application for the well test analysis. Type-curve matching technique can be

used successfully to evaluate the zonal isolators’ function and to detect locations of the
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failed isolators. Figures (3-38) through (3-44) are a set of type-curve matching plots for

single, double, triple, and fourth zonal isolations for Lp=16 with different cases and

numbers of failed isolators.

Single perforation zone &single zon isolator

infinite reservoir L=16, LsD=0.5
108401

——0n=02D=000, LpD=10

——n=1, L2D=0.50, LpD=0.5

Bl 2ee

10800

Pp & to*Pp’

A

10801

ol
LA

L, [k LS L
[y == = p
D sD D
h Yy LW p LW
10802 ! ;
10604 10803 10602 10601 1000 1060

Double perforation zones & double zone isolators

LD=16, LsD=0.5
10E+01
——n=2, LpD=05, LsD=0.5|
—n=1, First
—n=1, Second %
- il /
4 // /
[
2
s ///
o
[ / /
10801 /

Ly, [k Ls L
Ln=W 22 L = Lop= p
D sD
h |k, L, PP Ly
1.0E-02 v +
1.0E-04 10803 1.0E-02 10E01 1.0E+00 10EH0L

o

Figure 3-38: Pressure and pressure derivative plot for
single failed zonal isolation

Figure 3-39: Pressure and pressure derivative plot for
single failed zonal isolation

Triple perforation zones & triple zone isolators
LD=16, LsD=0.5
LOE+OL

= n=3, LpD=3*0.166, LsD=3*0.166
== n=2, First

= n=2, Second

= n=2, Third

=

10E+00

Po & tp*P°"

A\

10E01

=
—

Ly [k L L
[ - Wz LsD:*s LpD:i
h Yk Ly Ly
1.0E-02
1.0E04 10803 1.0E-02 10601 1.0E+00 10E+01

o

Double perforation zones & double zone isolators
LD=16, LsD=0.5
LOE+01

= n=3, LpD=3+0.166, LsD=3'0.166
==n=1, First and second
——n=1, Second and third

==n=1, first and third

/%
/
A

Sahim
_%/

10E04

LOE+00
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1001

L, [k LS L
LW f2 oSS __P
S [ 0 Ly e Ly

Il

I
LOE+00

10E03 10802 LOE0L 10E401
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Figure 3-40: Pressure and pressure derivative plot for
single failed zonal isolation

Figure 3-41: Pressure and pressure derivative plot for
double failed zonal isolations
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Four perforation zones & four zone isolators Four perforation zones & four zone isolators
LD=16, LsD=0.5 LD=16,LsD=05
10E+01 10E+01

= n=4, LpD=4*0.125, LsD=4*0.125 =4, LpD=4%0.125, LsD=4*0.125
=== n=3, First =—=n=2, first and second
= n=3, Second ===n=2, first and third
=== n=3, Third ===n=2, first and fourth
——n=3, Fourth =—n=2, second and third
= n=2, second and fourth
= n=2, third and fourth
10E+00 /, 10E+00
& & | ]
10E01 / 10E01 /,
/ Lok LS Lp _/ - Ly [k _ LS Lp
el ) o8 P b=~ [- ko= Lpp=—
° hJ; D I-w o Lw ¥ LW P L
10802 L L 10E02 + +
1004 L0E03 10E02 10E01 LOE+00 10E+01 10804 10503 10802 10501 108400 LOB0L
to to
Figure 3-42: Pressure and pressure derivative plot for Figure 3-43: Pressure and pressure derivative plot for
single failed zonal isolation double failed zonal isolations
Four perforation zones & four zone isolators
LD=16, LsD=0.5
1.0E+01
== n=4, LpD=4*0.125, LsD=4*0.125
===n=1, first, second, third
= n=1, first, second, fourth
===n=1, first, third, fourth
——n=1, second, third, fourth /
1.0E+00 /
H — /
:: //
B? /
10801
k Ls L
lp=Y |t | p=— | =P
D sD D
h {k Ly p LW
10E02 !
1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 10E+01
to
Figure 3-44: Pressure and pressure derivative plot for
triple failed zonal isolations.
Example-3-3

A pressure drawdown test of a horizontal well was run to check the performance of
zonal isolations. Four zonal isolators have been installed at equal distance starting from
the heel of the well. The recorded data is given in Table (Example 3-3) in Appendix F.

Other known reservoir and well data are:

q=1000STB/D  ¢=0.1 n=1cp ce = 2x107° psi™ h=79ft
L. = 4000 ft rw=0.462 ft  p; = 5000 psi B = 1.25 bbl/STB
Solution
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Step-1 Plot (AP vs. t) and (t x AP'vs. t ) on log-log paper as shown in Fig. (3-45).
Step-2 Obtain the best match of the data with one of the type curves as shown in Fig.
(3-46).

Step-3 Read from any match point: ty, APy, tpp - Pom +» Lebm s v, Yo

tpm =100, ARy =10, tDM =0.165, Pppm =0.077, Lpppm =0.5, Lspm =0.5ny =3,
ypm =0.0001, Lppy =16

11.0E+03 Four perforation zones & four zone isolators
LD=16, LsD=0.5
< L5 = n=4, LpD=4*0.125, LsD=40.125
. M 1E[03 :
,/ —
*
1.0E+02 /‘-l
~ b R
H M .’ . A 10E+00
g I | 1E+p2
5 - dosnament ./ 5
E 0 5| % T =
° u < @ T et
| oevoL .._4’ H P
" e e
(txdPwf)g=3.22 P
i j/ /l;) Match point
P ~ poin
10802
1.0E+00 1.E086: TUEGE TUET TUET TUEUL — TUS00T — TUERT
1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1E-02 1E-01 LE+00 1.E+01 1E+02 1.E+03 LEAC
t,hrs tigne (hours)
Figure 3-45: Pressure and pressure derivative plot for Figure 3-46: Type-curve matching for
Example 3-3 Example 3-3

From type curve matching, it can be seen that the well has lost the third zonal
isolation. Therefore, there are only three working zonal isolations. The location of the
failed one is at (3000 ft) from the heel of the well. Other reservoir parameters can be

determined as follows:

Step-4 Calculate ky from Eq. (3-79):

_ 0.1x1x0.000002 x 40002 x 0.165
0.0002637 x100

=20md

Kx

Step-5 Calculate Ky from Eq. (3-80):
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2
y =i 79 141.2x1000x1x1.25x 0.077 _15md
20 53x10

Step-6 Calculate Kz from Eq. (3-81):

162 x 792 x 20
kZ :—2=
4000

2md
To check the result obtained from the type-curve matching, the following steps can
be done:
Step-7- Read the value of (txAP")gr corresponding to the early radial flow line from Fig.
(3-45).
(tx AP')eg =3.22

Step-8- calculate the value of (txAP")er corresponding to the early radial flow line for

the horizontal well with four zonal isolations using Eq. (3-24).

(tx AP g = 35.3x1000x1x1.25 _4
J2x15 x 4% 500

Step-9- The ratio of the calculated value of (txAP")gr from step-8 and the one obtained
from the plot in step-7, which is (1.25), indicates the perforated sections have been
increased by one (from four to five) and similarly the isolated sections have been
decreased by one (from four to three).

Table (3-3) shows summary of the calculated parameters for Example 3-1 and the

input values.
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Table (3-3) Summary of results of Example 3-3.

Parameter In-put value Calculated value by
Type-curve matching

K, 20 20

ky 25 25

K, 2 2

n (working) 4 4

n (not working)

1 (The third)

1 (The third)

Location of non-working zonal isolation

3000 ft from the heel

3000 ft from the heel
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4- MATHEMATICAL MODELS FOR MULTIPLE INCLINED HYDRAULIC
FRACTURES

The hydraulic fracturing process can be defined as the process of generating a
fracture or fracture system in a formation by injecting fracturing fluid under pressure
higher than the tensile strength of the formation through a wellbore in order to
overcome in-situ stresses and to cause rock’s failure in the porous medium.

The hydraulic fractures are propagated approximately perpendicular to the axis of
the minimum horizontal principal stress. Therefore, horizontal hydraulic fractures are
expected to occur at shallow depth where the vertical (overburden pressure) is the least
principal stress as shown in Fig. (4-1), while vertical hydraulic fractures usually occur
where the depth is great and the least stress is one of the horizontal stress components as

shown in Fig. (4-2).

Oy Oy

——t—
X
Oh Oh
7/
OH OH
Figure 4-1: Horizontal fracture for Figure 4-2: Vertical fracture for
oy <Oh <OH Oh <Oy <Oy

Hubbert et al. (1957) stated that for tectonically relaxed layers characterized by
normal fault, the least principal stress should be horizontal, thus the fractures should

propagate in the vertical direction with the injection pressure less than the overburden
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pressure. In the areas of active tectonic compression such as thrust fault, the least
principal stress should be vertical and equal to the pressure of the overburden. The
fractures in this case should propagate in the horizontal direction with injection pressure
equal to or greater than the overburden. However, experiments conducted by Hubbert et
al., that simulated tectonic movements, only considered the case where the movements
are uniform vertically and horizontally and thus, there were no shear stresses involved.
This is not always the case in actual field situations where reservoirs may contain

complex stress fields due to geological structure, pore pressure and tectonic movements.

4-1-State of in-situ stress

Economides et al 1989, explained that the in-situ stress underground is affected by

the following components:

Overburden pressure: Represents the amount of pressure from the overlying

rock layers.

- Tectonic Stresses: Formed by large crustal movements and introduced
additional directional components which can be added to the stress components
already described.

- Topographical Effects: The computed overburden stress will not, in general,
be the same as the true vertical stress where there is a significant topography.
Some times, vertical stress increases with depth at a rate greater than the
overburden due to extra loading by the surrounding topography.

- Other Stresses: Other factors affecting the in-situ stress include rock types,

thermal effect, change of layers’ volume due to chemical processes, and

presence of faulting.
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- Induced Stresses: Drilling of a borehole and injection of fluid such as water in

water flooding process, can also alter the in-situ stress.

4-2- Inclined Hydraulic Fractures

Several researches and studies have indicated that hydraulic fractures are not
necessary to propagate truly vertical or horizontal due to the effect of the in-situ stress
distribution. In realty, it is difficult to control the orientation of the hydraulic fractures
as a result of the difficulty of controlling the parameters that affect the propagation
direction. Some of these parameters relate to the formation rock properties while others
relate to the stresses. Daneshy (1970) showed through a series of experiments on
different rock types that the appearance of a vertical fracture at the wellbore is not
sufficient evidence to ensure a vertical fracture. He asserted that the fracture can change
direction once it gets sufficiently away from the wellbore according to the least
principal stress. He also investigated theoretically and experimentally inclined fractures.
In this study, he confirmed that inclined fractures often intersect the borehole along two
diametrically opposite axial lines, thus giving it the appearance of a vertical fracture.
The fractures then changed their orientation as they extend away from the wellbore until
they become perpendicular to the least compressive in-situ principal stress.

Wright et al 1995, explained that the production process may lead to fractures
reorientation due to the change in the in-situ stress distribution. They stated that the
inclination angle of a vertical fracture from the vertical axis increases with the
continuous production as shown in Fig. (4-3). Therefore a dip angle of more than (35)

degree is not rare as it was thought before.
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Figure 4-3: Effect of depletion production on hydraulic fracture orientation (Wright et al 1995).

4-3-  Models Derivation

In this chapter, several analytical models for the pressure behavior of a horizontal
well intersected by multiple-inclined hydraulic fractures will be introduced. Both
longitudinal and transverse fractures will be considered for both the deviation from the
vertical axis and the deviation from the horizontal axis where the horizontal well is
assumed to extend. The following facts would be important to be noticed:

e The flow from the reservoir to the wellbore sections between fractures is
negligible as compared with the flow from the reservoir to the fracture plane.

e Fluid flows from the reservoir to the well through planar and totally penetrating
vertical fractures.

e A first approximation of the behavior of the system is the uniform flux fracture
case. It is assumed that fluid enters the fractures at a uniform rate per unit area
of the fracture face.

¢ In the analysis, flow through the fractures is considered and the flow through the

matrix is ignored. This is a reasonable assumption since multiple fractures are
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typically created in very low permeability formations and the wells are very

often cased and perforated. Moreover, fractures are initiated at the perforations.

The following assumptions are important for the derivation of the model:

1-

The reservoir is homogenous, having constant and uniform thickness with two

impermeable layers at the top and bottom of the formation.

2- Constant porosity and permeability in each direction, but the formation is
anisotropic.

3- Gravitational and frictional effects are negligible.

4- The well is extending in the midpoint of the formation height (symmetrical).

5- Single phase fluid of small and constant compressibility, constant viscosity, and
formation volume factor, flows from the reservoir to the fractures.

6- Reservoir pressure is initially constant.

Pli_o =P (4-1)

7- The pressure at the outer boundaries of the reservoir is assumed to be constant
and equal to the initial reservoir pressure.

Pe =R (4-2)

8- The pressure at the upper and lower impermeable boundaries is assumed to be
constant so that:

oP

il =0 )

|, (4-3)

P o

), (4-4)
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9- Considering the problem of production from an infinite reservoir. Diffusivity

equation can be written as:

52AP  5%AP . 32AP  SAP

7x +1 +77; 4-5
5XD2 y SyDZ SZD2 dtp ( )

Many techniques have been used to solve the diffusivity equation for different
applications in the petroleum industry such as the study of the pressure transient
behavior in porous media. Two commonly used solutions for this equation can be found
in the literature. An early solution, treated by Carslaw and Jaeger, was derived based on
the use of Lord Kelvin’s point source solution for solving heat conduction problem. The
second one was introduced by Gringarten and Ramey in 1973 based on the use of the
Green’s function method. Many instantaneous source solutions for different
configurations (point source, line source, plane source, slab source) have been
developed based on the two solutions.
4-3-1-Transverse fractures

Consider a horizontal well with multiple-inclined transverse hydraulic fractures in
an infinite, homogenous, isotropic or anisotropic(k =k, = ,/kyz) formation, horizontal
slab reservoir as shown in fig. (4-4). Each fracture is considered as a single plane of

length (2x,), width (W), height (h,), and an angle of inclination from the vertical

direction (6y). The spacing between fractures is (D). If we assume that all fluid

withdrawal will be through the fractures, and further, that the fractures are fully

penetrating the formation, the fractures can be simulated as inclined plane sources. The

unsteady state pressure drop created by these planes at any point (X, Y, Z,,) iS:
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Upper impermeable layer
h
h¢

= = o — -

Figure 4-4: Horizontal well intersected by multiple-inclined transverse hydraulic fractures.

t
P(X., Yinr 2,1, 6,2, 0, X, D) =%ISM(XWym,zm,t—r,¢9,zf he, X, h)dr (4-6)
0

Where (S,,) is the instantaneous source function for an inclined plane source in an

Xyz
infinite slab reservoir. ¢ is the fluid withdrawal per unit fracture surface area per unit

time.

___Q
9= 2an hf (4-7)

The source function (S,,) can be obtained using Newman product method. This

method proposed that the instantaneous uniform flux source function for a three
dimensional flow problem can be obtained as the product of instantaneous source
function for a one dimensional flow problem. Therefore:

Sxyz (Xm: Ym: Zm L& 25 . Ne X5, h) =Sy (Ym, Zm 6 &, 2. hg D) * Sy (Xm, . X ) (4-8)

S,, is the instantaneous source function for an inclined plane source in an infinite

slab reservoir. S, is the instantaneous source function for an infinite slab source in an
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infinite reservoir in the direction of X-axis as shown in Fig. (4-5). Sx can be estimated

based on half fracture length as follows:

Z X oM (va Ym Zm)

P1(Xp, Vo1, Zp) P2(Xp, Vo2, Zp) P3(Xp, Yo Z5)

v
<

hy

Figure 4-5: The monitoring point and the source points for multiple- inclined

transverse hydraulic fractures.

Xm — X+ X§
(X =) X (xx,) erf(mz—t}
B T am 7
Sx = L e M = ! Ie at pr =1
2\ mt 2yt 2 X — X — X (4-9)
Xt erfl ———
24nt
S,, can be derived as follows:
d2
1 .t
Syz (ym. vat’whyhf)=4n—me 7 (4-10)

Where d is the distance, in the (YZ) plane normal to the hydraulic fractures
propagation, between the monitoring point (M) and the production points (P1, P2, P3)

as shown in Fig. (4-6).
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(4-11)

o M(an Yms Zm)

z P1 P2 P3

v

Figure 4-6: Schematic diagram for horizontal well intersected by multiple- inclined

transverse hydraulic fractures.

The distance between the monitoring point and each production point can be

calculated as shown in Fig. (4-7) as follows:

(PIM )2 = (ym -y- D- prtan(ev))z +<Zm _(Z + Zp))2 (4-12)
Similarly:
(PMY =(y, —y—2D-zpxtan(d,))’ + (zm —(z+ zp))2 (4-13)
(PM) =(y, —y-3D—zpxtan(d,)f + (zm —(z+ zp))z (4-14)
M(Xm’ ym’ Zm)
P.M
A ) , Zm —2p
‘ X vz Y — Yo —S —zpxtan(d,)
”f
o, p

v

' D '

Figure 4-7: The distance between the monitoring point and production points.
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The distances between the monitoring point and the images as shown in Fig. (4-8)

are:

[ J M(va Yms Zm)

P3

dz

(RM = (v, —y-D+zpxtan(s,)f +(z, - (2, - 2)

Similarly:

(PZ'M)2 =(y, —y—2D+zpxtan(g,)y +(zm —(z, - z))2

(M = (v, —y=3D+zpxtan(@,)f +(z, - (z, - 2)f

and;

dz
dh = P
© cos(8,)

EQ. (4-11) can be written as follows:

[ [ym—{y+D+z, tan(6,)) P+ [z —(242,) F

Figure 4-8: Superposition principles for multiple-inclined fractures.

a-ly-0-2, (e a0

4t

[ [ym{y+2D+2, tan(6,))F+lzn-(z+2,)F

4Ant

[ym _(y+2 D_Zp tan(gv ))]z+[zm _(ZP_Z)]Z ]

4nt

[ym—(y+3D+zp tan(8, ))]z+[zm —(z+zp)]z

4nt

[Ym_(y+3D_Zp tan(gv ))]2+[Zm_(zp_z)]z i

4nt

4t

v

P3’

(4-15)

(4-16)

(4-17)

(4-18)

&z, (4-19)
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For (n) number of fractures, Eq. (4-19) can be written as:

[Ym _(y+nD+zp tan(é’v ))]2 +[Zm _(Z+ZP )]2
4nt

+

[ym (y+nD z, tan )] +[z —(z —z)]2
4nt

Applying superposition theory:

[yn—(y+nD+2, tan(8, )P+ [z, +2NN—(2+2,) P
4nt

hy

n=ow N=w

7005(6%)
> |
=L N=—o h,

— cos(4,)

c 1
" Anntcos(6,) £

)] +[z +2Nh- (z —z)]2
ant

[ym (y+nD z, tan(6,
€

[y (y+nD+z tan(8, )] +[z +2Nh- (z+zp)]
ant

e —sin(, \y,, — y —nD)-cos(6, )(z,, —z+2Nh)}

The two exponential terms in Eg. (4-21) can be solved as follows:
p
cos(6, )

+ [cos (8, )(y,, -

_| %
| cos(6,

)

+[cos(8,)(y,, - y-nD)+sin(8, )(z,, +z+2Nh)[’

y —nD) —sin(é, )(z,, — z + 2Nh) |’

o, ))]2 +[zm +2Nh—(zn+z)]2
4nt

[ym —(y+nD—zp tan(
e

2
+sin(@, Xy, —y-nD)-cos(d,)(z, +2+ 2Nh)}

therefore Eq. (4-21) can be written as:

[c0s(8, )(Ym —y—ND)-sin(@, N2y —2+2Nh]

4nt

e

z -
%’cos(@v) [W&)—Sln(@v ) Ym—Yy—nD)—cos(6, Xz,

4z, (4-20)

+

0z, (401

(4-22)

(4-23)

2
—z+2Nh)}

J- e 4nt

hy
_—TCOS(HV)
[c0s(8, )(Ym —y—ND)+sin(0, Nz +2+2Nh) ]2
4nt

e

h%cos(av) [r(g)*'s'n(e )Y —y—nD)—cos(8, )z,

dz

2
+z+2Nh)}

J‘ e 4nt

hy
—7cos(0\,)

(4-24)
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Integrating for (z,), Eq.(4-24) becomes:

1 n=0 N=o0 ZM
S, = - -
At ;N;w [0S0, )X Y —y—ND)+sin(@, )(z+2+2Nh) P
e 4nt
h; /2+sin(6,)(y,, — Yy —nD) —cos(b,)(z,, + z+ 2Nh)
erf
2\t
—h; /2+sin(6,)(y, —y—nD)—cos(6,)(z,, +z+ 2Nh)
—erf
2\t

[ [coS(6,)(Ym—y-nD)-sin(8,)(zm—z+2Nh]
e 4nt

rf (h, /2 —-sin(8,)(y,, —y —nD)—cos(8,)(z,, — 2 + 2Nh)]

2/t

_en{—hf 12—sin(6,)(Y

—y—nD)—cos(4,)(z,, — 2+ 2Nh)j

(4-25)

Substitute Egs. (4-7), (4-9), and (4-25) in Eq. (4-6), the pressure drop can be found

|

as follows:
q e 1 Xy — X+ X; X — X — X,
P= —|erf| ——— |—erf| ———
T, g !ﬁ[ (oo ﬂ
[ [cos(8,)(ym—y—nD)—sin(8, X(zm—2+2Nh]2
e 4nt
h, /2—-sin(8,)(y,, — y —nD) —cos(6,)(z,, — z+ 2Nh)
erf
2\t
—h; /2—-sin(8,)(y,, — Yy —nD)—cos(8,)(z,, —z+ 2Nh)
—erf
n=0 N=cw ZM
P NZOO [ [cos(@,)(ypm—y—nS)+sin(@, Xz, +z+2Nh) P
e 4nt
h, /2+sin(8,)(y,, — y—nD)—cos(6,)(z,, + z+ 2Nh)
erf
2yt
—h; /2+5sin(6,)(y,, — y —nD) —cos(6,)(z,, + 2+ 2Nh)
—erf
2\t

dt

(4-26)

In dimensionless form, the final model for pressure response of horizontal wells

intersected by multiple-inclined fully penetrating transverse hydraulic fractures is:



tp
P - 7 cos(8,) i 1 [erf[XD +1j_er
0

8n

Tl v

[cos(@, )(yo—nDp )-sin(@, X zp—z 1 +2Nhy P

47

f[xD -1
NE3

2Jr

J

e
erf(th /2—Siﬂ(9v)(yD B nDD) —COS(@V)(ZD —Zpt 2NhD)
—erf

2\t

n=o0o N=o0
= [cos(8, )y —nDp )+sin(@, N zp +2 1 +2Nhp ) F
e 47

erf(th /2+5sin(8,)(Yp —NDy) —c0s(8,)(zp + 215 +2Nhp)

2Vt

(_ hep /2—sin(6,)(yp, —nNDy) —cos(6,)(z, — 2 + ZNhD)J

J

where:
Xm — X
XD= m
Xf
Ym—Y
Yp = .
Xf
z
Z,=—"
Xf
h,
th:_
Xf
Z
Zip =—
fD X7
h
hy, =—
Xf

2Jr

orf (— h /2+5sin(8,)(y, —NDy) —cos(8,)(Zp + Z ¢ + 2NhD)j

(4-27)

(4-28)

(4-29)

(4-30)

(4-31)

(4-32)

(4-33)
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D, =2 (4-34)

Xy
t, = 0.00026327 kt (4-35)
P L CX}
P, — 27KhAP (4-36)
qu
k=k, = kyZ (4-37)
k,, =Kk, (4-38)

To solve the above model given in Eq. (4-27), two long time approximations should
be done based on the fluid flow dynamics and flow regimes in late time. The first one is

the approximation for the instantaneous source function for an infinite slab source in an
infinite reservoir S, given by Eq. (4-9). The second one is the approximation for the
instantaneous source function for an inclined plane source in an infinite slab reservoir
S,, givenin Eq. (4-25).

Eq. (4-27) can be redefined as follows:

t

P :%IX(xD,r)xYZ(yD,zD,r,ev.sz,th,thr (4-39)
0
where:
X(xp 7p) = V| erf] X041 | er| 0t (4-40)
2.to 2./to 2./to
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e

[cos(@, X(yo -NDy )—sin(@, )(zp ~2 +2Nhg P
47

'erf[hmlz—sinwvxyD ~nDy) - c08(6,)(zo ~ 2 +2NhD>j

2t

]

—erf[_hm /2 -sin(8,)(Yp —NDy) —¢0s(8,)(25 - 2o +2NhD)]
tp n=w N=w 2\/?
vz =256, j e J: dr
2n N, [cos(8, )( Yo —nDy )+sin(6, X(zp+2 +2Nhg )
e 47
'erf he /2+sin(6,)(Y, —NDy) —008(8,)(2, + 2 + 2Nhy)
2Jr
erf| ~ hy /24sin(6,)(y, —nDy) —cos(6,)(zp + 24 +2Nhy)
| 2z ]
(4-41)
The error functions in Eq. (4-40) can be approximated as follows:
2n+1
[XD+1]

XD+1 =£n:w(—1)n o _ XD+l _ (xp +1°  (xp+1P _ . Xp+l -
eﬁ[zﬁ] e @+l iy 1232 Tz T e “
42)

Since:

Xp +1 _ 100(xp +1)°

o 1232 (4-43)
therefore:

25
tp > ?(xD+1) (4-44)
Similarly:
( XDll J2n+1
erf( Xp _lJ — 3":“’ (_1)n 2\/g _ Xp11 _ (XD _1)3 + (XD _1)5 _ ~ Xp -1 (4-45)
T

24/t o n

and

(2n +1) \/g 12tg/2 160t|53/2 ........ +o = \/g
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25

tp > (xD-1) (4-46)
Substitute Egs. (4-43) and (4-45) in Eq. (4-40):
\/; XD +1 XD-1 1
X(xp,tp) = erf —erf| /= ||=— )
D’D/= 2.Jto 2Jto ]| o (4-47)
while:
[ [cos(8,)(yo-nDy)-sin(8, )(zp -2 5 +2Nhy P ]
e 47
th 12-sin(6,)(yp —nDp)—cos(6,)(zp — 2, +2Nhy)
i
th 12-sin(8,)(yp, —NDy)—cos(8,)(zp — 25 +2NhD)j
cos(8,) iz N=x 2t |
YZ = ¢ - - dr=1
2n E[nl N;w [cos 0,)(¥o—NDp )+sin(@, )(zp +2 +2Nhp ) P 4
e 47
hey /12+sin(6,)(y, —nDy)—cos(8,)(zp + 2 +2Nhy)
erf
2t
e[~ hyp /2+sin(6,)(y, —nDy)—cos(8,)(zp + 25 +2Nhy)
_ 2 _
(4-48)
t, > % h%—sin(av)(yo D) - cos(8,)(zg — 2, + 2h0)} (4-49)
t, > % - h% —sin(8,)(yo — Dy ) — 08(6,)(2o — 25 + 2N, )} (4-50)
t, > % h%Hin(@)(yD —nDy) - c0s(8,)(zy + 2 + 2hD)} (4-51)
t, > 2;[“; +5in(8,)(yy — DY) —cos(8,)(zp + 25 + 2hD)} (4-52)
> 25[c0s(0,)(y — D) —sin(8,)(z5 — 25 +205) (4-53)
t,, > 25[cos(6,)(y, —NDp) +€08(8,)(Zo + 2o + 2N (4-54)
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The long time approximation can be written based on Eq. (4-39) as:

tD1 tD

q 1J‘ 1

Ph=— | X(Xp,t YZ .Zp.tp, &y, 2, hip, hp)+= | —d
D 2nxfhf9yj (Xp:tp)X¥Z(Yp, 2p,tp, d, Ztp: D, hp) 2 )0 D

0

toy

1 t
=Pp(Xp, YD+ 2D, ZwD: Lp.tp1) + = In(=2)
2 D1

and the proper time for this approximation is:

[ 25
—(xD +1
S (0 +1)
25
—(xD -1
S (0 -1)

25[hp . ’
? 7 _Sln(ev)(yD - nDD) - COS(H\/)(ZD —Zp+ 2hD)

25

ho 2
t,>| 3 —%—sm(ﬁv)(yD —nDy) —c0s(8,)(zp — 2 + 2hD)}

25 hp . ?
3 7+5|n(¢9v)(yD —nDy)—cos(6,)(zp + 24 +2hy)

25[hp ’
3 7+sm(6’v)(yD —nDy)—cos(6,)(zp + 24 +2hp)

25[;05(49v)(yD —nDy) —sin(8,)(zp — 25 + 2h,)
| 25[cos(6,)(y —NDy) +€08(6,)(Zp + 2y + 2NNy)

4-3-2- Longitudinal fractures

(4-55)

(4-56)

Consider a horizontal well with multiple-inclined longitudinal hydraulic fractures in

an infinite, homogenous, isotropic or anisotropic(k =k, =k, ) horizontal slab reservoir

as shown in fig. (4-9). Each fracture is considered as a single plane of length (2x,),

width (W), height (h, ), and an angle of inclination from the vertical direction (&) .

The spacing between fractures is (D). If we assume that all fluid withdrawal will be

through the fractures, and that the fractures are fully penetrating the formation, the

fractures can be simulated as inclined plane sources. The unsteady state pressure drop
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created by these planes at any point can be found using same procedures of transverse

fractures:

Figure 4-9: Horizontal well intersected by multiple-inclined longitudinal hydraulic fractures.

The source function (S,,,) in this case is;
Sxyz Xm» Ym: Zm: &, 26, 0e X5, 0) = Sy (Y Zm 8 &, 25, e, D) * Sy (X, 1, X ) (4-57)
Where ( Sy ) is the instantaneous source function for an inclined plane source in an

infinite slab reservoir. Sy is the instantaneous source function for an infinite slab source

in an infinite reservoir in the direction of Y-axis as shown in Fig. (4-10). Sy can be

estimated based on half fracture length as follows:

oM (va Yms Zm)

PL1(Xp, Yp1, Zp)

[
»

A

Xf

Figure 4-10: The monitoring point and the source point for multiple- inclined
longitudinal hydraulic fractures.
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1 7(Ym—Y')2 1 |:y+2xf 7(Ym_yp) y+4x¢+D 7(ym_yp)

= e Y dy + e “ody +.. }
2 \Y 7Z'I7t J; i y+2;|(.f+D P (4'58)

18 Yo —Y— (=)D -2(n-1)x; B Y, —Y—(n—=1)D —2nx,
_zg{erf( 2/ ] erf( 2T H

sz(ym1 Zm’t1¢v1h’hf):4—e (4-59)

Where d s the distance, in the (XZ) plane normal to the hydraulic fractures
propagation, between the monitoring point (M) and the production points (P1, P2,
P3,...). The distance in this case will be the same for all fractures and can be determined
as follows:
d2 =(x, -X-1, «tan(@, ) +(z, —(z+zp))2 (4-60)

The distance between the monitoring point and the images is:

d? = (x, —x+zpxtan(@, ) +(z, ~(z, ~2)f (4-61)
therefore:

[xmf(XJrzptan(¢9\,)]2+[zm7(z+zp)]2

1 e At +

Sy = dz 4-62
4777ztcos(6?) hy j [xm—(x=2 tan (@, ) F +[zm —(2,-2) F P (4-62)

———cso(6,) e 4nt

h¢
7005(9\,)

Applying superposition theory:

h¢ [xm—(x+zptan(e\,)]2+[zm+2Nh—(z+zp)]2
—cos(4,)

i | y o
z
2 477721: COS N h [X—(x=2, tan(8,) [ +[zy +2NN—(z, -2) P (4-63)
2f cso(6,) e 4nt
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The two exponential terms in Eqg. (4-63) can be solved and integrated for(zp).

Therefore, Eq. (4-63) becomes:

[c0s(6, )(Xgm —X)—SiN(6, )(Zm —2+2Nh]?
e ha

orf (hf /2—sin(8,)(x,, —x) —cos(8,)(z,, — 2 + 2Nh)J

2./t *
(— h, /2—sin(8,)(x,, — X) —cos(8,)(z,, — 2 + 2Nh)]
—erf
. 1l 2\t | | @-69)
@ 4.7t N [ [cos(8, )(Xm—x)+5in(8, (2 +2+2NR) ]2 ]

Ant
e 7

orf h¢ /2+sin(6,)(X,, — X) —cos(8,)(z,, + z + 2Nh)
2t
—erfL_ h, 12:+5in(6,)(X, ) —~C0S(0,)(2 + 2+ 2Nh)]

2/t

In dimensionless form, the final model for pressure response of horizontal wells

intersected by multi-inclined fully penetrating longitudinal hydraulic fractures is:

J_cos(e)J { [ D—(n—l)DD—2(n—1)j_erf[yD—(n—1)DD—2nj
8n ), & e N

[xD cos(@,)-sin(@, N(zp -2 p +2NhD]
4t

Py =

e
th/2 X, Sin(6,) —cos(6,)(z, — 24 +2Nhy)
2t J *
th/2 X, Sin(6,) —cos(6,)(zp — 24 + 2Nhp)
N J
- odr

=z =
|‘| M I
3 8

[chos(o9 )+sin(@, )( zD+zD+2NhD)]

e At
orf hep /24 X5 8IN(6,) —cos(8,)(z, + 2 + 2Nhy)
2Jr
orf (— hio 12+ X5 5in(6,) — c0s(6, )(zp — 21 + 2NhD)J

: 2V | (4-65)
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To solve the model given in Eq. (4-65), the two long time approximations should be
done based on the fluid flow dynamics and flow regimes in late time. Eq. (4-65) can be

redefined as follows:

tD
1
Po =§J.Y(yD,T)XXZ(XD,ZD,f.é’v,ZfDﬁfD,hD)df (4-66)
0

where:

Y (Yo, 7o) = 2\\757 {erf [ Yo —(n _;)\l/atg_ 2(n _1)j—erf ( Yo — (nz—\%DD - ZHH (4-67)

[XD cos(&,)—sin(ﬂv)(zD—z,DJrZNhD]2 ]
e 4r

'erf h /2 —Xg sin(8,) —cos(8,)(zp — 2, + 2Nh,)
NE3
_erf[—hm/2—xDsin(6?v)—cos(<9v)(zD -Z +2NhD)j

cos(6,) 7 L 2Jr i
xz = 25(2) DI - tdz
2n T\ [ cos(@,)+sin(8,)(zp+2p+2Nho) P

e 47z

_erf(th 12+ x5 8in(6,) —c0s(8,)(zp + 21 + 2NhD)]

2Jr
orf —hp /2+x,5sin(6,) —cos(6,)(z, — 2 +2Nhy)
I 2z

(4-68)
Similar to what it has been done for transverse hydraulic fractures starting from Eq.

(4-42) through (4-48), the late time approximation model can be written as follows:

tp1 tp
q lJ' 1
Ph=——— | X(Xp,t XZ . Zn,tp, éy, Z2#p, hip, hp)+= | —d
D 2anhf9/,lJ. (Xp,tp)*xYZ(Yp, zp,tp, 4y, 2>, hip, hp) 2140 ™D
0

for (4-69)
1 tp
=Pp(Xp.¥YD:2D:ZwD LD tD1) +Eln(—)
tp1

and the proper time for this approximation is:
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[ 25 25
5 o =(1-1)D;, ~2(n1-) 5 o = (1-1)D; —2n)
25[h * 5[ h i
3{; — X, 8in(8,) —cos(8,)(zp — 25 + 2hD)} 3[—; —Xp 8iN(8,) —cos(8,)(zp — 2 + 2hD)}
to, >
25[h * 25[h i
3{; + X 8in(8,) —cos(8,)(zp + 2 + 2hD)} 3{; + X, 8in(8,) —cos(8,)(zp + 2 + 2hD)}
25[x, c0s(8,) - sin(0,)(zo — 2,5 + 2N f 25[x, c0s(6,) + €0s(8,)(Zp + 2 + 20y )

(4-70)
4-3-2- Deviation from horizontal wellbore (Semi-transverse fractures)

Consider a horizontal well with multiple-inclined hydraulic fractures in an infinite,

homogenous, isotropic or anisotropic (k =k, = ,/k,, ) formation, horizontal slab reservoir
as shown in fig. (4-9). Each fracture is considered as a single plane of length (2x;),

widt , elgt , ana an angie or Inc Ination from the vertical direction (6,) an
idth (W), height (h, ), and le of inclination from the vertical direction (&) and

an angle of deviation from the horizontal wellbore axis (6,) as shown in Fig. (4-11).

The spacing between fractures is (D). If we assume that all fluid withdrawal will be

through the fractures, and that the fractures are fully penetrating the formation, the

fractures can be simulated as inclined plane sources. The source function (S,,) in this

caseis; % o M(Xm, Yiny Zm)

P1(X, Y1, 2) P2(x, Y2, 2) P3(X, Y3, 2)

\4
<

h¢

Figure 4-11: Horizontal well intersected by deviated hydraulic fractures.
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Sxyz (Xm' Ym'zm’t’ev’ Zf 1hf 'Xf 'h) = Syz(ym’ Zm’t’gv’ Zf 'hf ,h)XSX(Xm,t,Xf) (4'71)
Where ( Sy ) is the instantaneous source function for an inclined plane source in an
infinite slab reservoir. Sy is the instantaneous source function for an infinite slab source

in an infinite reservoir in the direction parallel to the hydraulic fractures. Sx can be

estimated based on half fracture length as follow:

| - sin(@,)) |
erf(Xm X;\)/(f_t' ( h)]_
Ief o dxp:% 7

1
2mpt 5, erf(x"‘ —X—X, sin(Hh)J

X¢ (xm—x—xp )

(4-72)

2,1t

S,, can be derived as follows:

1 eosl0) [ (muy (P,M Y (PsM )
S .z, t,6,,hh )]=— e Y 4e " 4e Y dh, (4-73
yz(ym m v f) 4777Zt hf_[( ) f ( )
cos(8,

T2
The distance between the monitoring point and each production point (PM) can be

calculated as shown in Fig. (4-12) as follows:

M(Xm, Yons Zm)
P,M
A Im—12
z P, Yp1, 2 ) moop
X .
n Y — Yo — S —zpxtan(, )sin(6,)
0\, p
gh
«— . —> oY

Figure 4-12: The distance between the monitoring point and production points for
deviated hydraulic fractures.

(PM) =(y, —y—S—zpxtan(8,)sin(8,)) + (zm —(z+ zp))2 (4-74)
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(P,MY =(y, —y—2S —zpxtan(g,)sin(8,) )’ + (zrn —(z+ zp))Z (4-75)
(MY =(y, —y—3S—zpxtan(d,)sin(4,)) + (zm —(z+ zp))2 (4-76)

The distances between the monitoring point and the images are:

(Pl'M )2 =(y,, —y—S+zpxtan(d,)sin(4,)) + (zm —(z, - z))2 (4-77)
(PZ'M )Z =(y,, — y—2S + zpx tan(d, )sin(8,)f* + (zm —(z, - z))2 (4-78)
(PMF =(y, —y—35 +zpxtan(g, )sin(6,)) + (2, (z, ~2) (4-79)

Assume that:
tan(6) = tan(6,)sin(6,) (4-80)
EqQ. (4-73) can be written for (n) numbers of fractures as follows:

[ym —(y+nD+zp tan(49))]2+[zm—(z+zp )]2

h—fcos(H )
1 n=co 2 v e ant +
S, =———— dz -
yz dnnt COS(@V ) ; A .[ [ym—(y+nD-z, tan(0))P +[z—(z,~2) p (4-81)
—%cos(&v) e 4nt
Applying superposition theory:
hy [ym—(y+nD+zptan(&))]z+[zm+2Nh—(z+zp)]2
o —-cos(6, ) -
1 n=w N=w 2 e U + d
S = — — Z -
yz 477721: COS(@V) wr NZOO A J. [ym —(y+nD—zptan(a))]2+[zm+2Nh—(zp_z)]2 p (4 82)
- cos(6,) e ant

Solving the two exponential terms in Eq. (4-82) and integrating for (zp), Eq. (4-82)

becomes:

100



[cos(0)(ym—y-nD)-sin(@)(zm—2z+2NhP ]
4nt
f cos(8,) —sin(@)(y,, — y —nD) —cos(@)(z,, — z+ 2Nh)
2cos(0)
erf
2,/nt
+
cos(8,) —sin(@)(y,, — y —nD) —cos(0)(z,, — z+ 2Nh)
2cos(6’)
—erf
2,\/nt
1 n=x N=w
S, = - 4
vz 4 | eyt ;NZDO [cos(@) ym—y—nS)+sin(@)(zym+2z+2Nh) P
e 4nt
f -
cos(6,) +sin(@ —y—nD) —cos(8)(z z+ 2Nh
3 c08(5) TOS() +SIN(O) (Y =y —ND) —cos(O)(z, + 2+ 2Nh)
erf
2\/nt
cos(6,) +sin(@)(y,, — y —nD) —cos(8)(z,, + z+ 2Nh)
2003(9)
—erf
24/nt
(4-83)

Substitute Egs. (4-7), (4-72), and (4-83) in EQ. (4-6), the pressure drop in

dimensionless form can be found as follows:

7 cos(0,) 't 1 [ (XD+sin(6’h)j_ [xDsin(eh)ﬂ
P, = —".\/Z erf — i erf W

[cos@)(yo —nDp)—sin@)(zp —2 p +2Nhp P _
e ar
h,cso(é, . _
NoesoR) _ Gin(0)(ye — NDy) — cos(@) (2o — 240 + 2Nhy)
2cos(9)
erf
2z
4
h,ycso(6,) .
T Dcos(oy M@ (Yo —NnDp) —c0s(9)(zp — 21 + 2Nho)
—erf
2/t
n=oo N=oo
Z a - dz
= N, [cos@)(yo —nDp )+sin@)zp +2 o +2Nhp) I
e a4z
h. cos(@ _
hip cos(@) +sin(@)(yp —NDy) —cos(@)(zy + 24 + 2Nhy)
2cos(9)
erf
2Jz
ho cos(s,) | _.
— 2 ———= +sin(@)(Yp —NSp) —cos(#)(Zp + Zp + 2Nhy)
2 cos(g®)
—erf
2Jzr
(4-84)
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The long time approximation for this model can be written as:

tD1 1tD 1
q
—— | X(Xp,tp)xXYZ . Zp.tp, v, 2y, hip, hp)+= | —dr
Zanhfgﬂj (Xp:tp)X¥Z(Yp, 2p,tp, d, Ztp: D, hp) ZIrD D
0 tog

1 t
=Pp(Xp, YD+ 2D, ZwD: Lp.tp1) + = In(=2)
2 D1

and the proper time for this approximation is:

_% (xD +sin(8,))

%(XD —sin(é,))

% :hfZD;OSS((;;V) —sin(g)(yp —nDy) —cos()(zp — 2 + 2hD)}2
?:—w—sin(@(yo —nD,) —cos(0)(zp —Z1p + 2hp)
?:m+sin(¢)(% NDyy) —cos(0)(zg + 20 + ZhD)T
f:mmn(m% —NDy) — cos(0)(Zp + Zyp + 2hD)T

25[cos(0)(yp — Dy ) —sin(0)(zp — 2o + 2hp) f

_25[cos(0)(yD —NnDp) +cos(0)(zp + Zp + 2NN, ) F

4-4-Model for anisotropic formation (k, = kyz)

2

(4-85)

(4-86)

The same models, given in Egs. (4-27), (4-65), and (4-84), can be used for

anisotropic formation with the following definitions:

4-4-1- Transverse and semi-transverse fractures (ky S kxz):

(4-87)

(4-88)

(4-89)
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Zo =3 k— (4-90)
f yz
h |k
hD = )(_ k—x (4-91)
f yz
D [k
D -2 | 4-92
o=k (+-92)

yz

. _ 0.0002637k,t

4-93
T pucx @9
b 27\ kK, hAP
D — (4-94)
qu
K, = /KK, (4-95)
4-4-2- Longitudinal fractures (kX # kyz):
yo = dm =Y K (4-96)
X; K,
z, [k
7, =-m |Zx 4-97
o= i (4-97)
h [k
hp =— =% 4-98
e (4-98)
z |k
7o =i (4-99)
h [k
hy =— | -* 4-100
o=k (4-100)
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D [k

D, =— | 4-101
> =5 VK, ( )
= 0.00026327 k,t (4-102)
P pCx;

27 [k Kk, hAP

P, = (4-103)
qu

K =Jk,k (4-104)

Xz X'z

4-5- Models validation

Two previous models have been considered to check the validity of the suggested
model in this study for multiple-inclined hydraulic fractures. The first case is for
multiple-vertical hydraulic fractures where the suggested model can be developed to
represent this case as:

$~=0.0, ¢ =90, ¢=0.0

Therefore Eq. (4-84) can be written as:

P, = gtj; {erf ( XZD\/;lJ —erf [ X;ﬁlﬂ

D

e 4r
i th th
| 2 " WomMPo) (o ~ 20 +2NRG) | =T~ (Yo ~ Do) (25 ~ 20 + 2NMo) ||+
er er
N olz
n=w N=o0o
3 dr
n=1 NZ_:OC [(yo-nDp)+(zp+2p+2Nhp)
e 4r
i th th
. 7+ (yp —nDp) —(zp + z 5 +2Nhy) . —7+ (Yp —nSp) —(zp + 2,5 +2Nhy)
er er
2\/; 2\/;

(4-105)
The solution for Eq. (4-105) is identical to the solution obtained from the model

introduced by Ozkan (1988) as shown in Fig. (4-13).
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Three vertical fractures, Dp=1

hD=1, Thetav=60

== The mode presented in the studyl 1.0E+01

—+— Ozkan model == The model presented in the study
—+—Cinco-Ley model

/ L0E+00
— | £ i

/ 10E-01 7
7z

1.0E-03 1.0E-02 1.0E-01 1.0E+00 10E+01 1.0E+02

Po & (to*Pp')

10800 L0801 10802

Figure 4-13: The result of three vertical fractures using

Figure 4-14: The result of single inclined fractures using
the new model and Ozkan’s model.

the new model and Cinco-Ley’s model.

The second case is for the solution of a single inclined fracture where (n=1) and:
#, =90, ¢=4¢,
therefore Eq. (4-84) can be written as:

_\/;COS(Q\,)tD 1 Xp +1Y Xp —1
Py = an _([\/Z[erf[ 2\/?) erf[ 2\/?)}

[yD cos(6,)—sin(@,)(zp—zp +2Nhp ]2
4z

. _

;D — yp sin(8,) —cos(8,)(zp — 25 + 2Nhg)
erf

PN
+
h

——® _y,sin(8,) —cos(8,)(z, — 2 + 2Nhg)

—erf 2

N
Z Z - Tz dr

=1 N——oo [yo cos(@,)+sin(@, )(zo+2p +2Nhp) P
ar

he + Yp sin(8,) —cos(8,)(zp + 2,5 + 2Nhy)
erf| —2 NS
2 (4-106)
_ i + Yp sin(g,) —cos(4, )(zp + 245 + 2Nhy)
—erf 2

N

The model represented by Eq. (4-106) is identical to the model introduced by Cinco-

Ley (1974) as shown in Fig. (4-13).
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5- PRESSURE TRANSIENT ANALYSIS FOR HORIZONTAL WELLS WITH

MULTIPLE-INCLINED HYDRAULIC FRACTURES

The pressure behaviors and flow regimes are expected to be changeable depending
on different parameters such as number of fractures, inclination angle, and the spacing
between them for the same reservoir properties.

5-1- Pressure behavior

Two responses can be identified based on the spacing or the distance between
fractures.

5-1-1- Short spacing (Dp<5)

Because of the short spacing between fractures, the interference between them is
expected to occur shortly after the linear flow period. The following cases can be
identified:

1- For a small number of hydraulic fractures (less than five) and small inclination
angle (6, <45), linear, elliptical and pseudo-radial flow regimes are observed as
shown in Fig. (5-1)

2- For a small number of hydraulic fractures (less than five) and high inclination
angle (6, > 45), linear, transition and pseudo radial flow regimes are observed as
shown in Fig. (5-1).

3- For a large number of hydraulic fractures (more than five) and small inclination

angle (6, <45), linear, elliptical, transition and pseudo-radial flow regimes are

observed such as in Fig. (5-2).
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4- For a large number of hydraulic fractures (more than five) and high inclination
angle (6, > 45), linear, transition and pseudo radial flow regimes are observed as

shown in Fig. (5-2). The transition flow in this case is lasting longer than the

transition flow for short spacing.

Two farctures, hp=1.0 , D=2 Ten fractures, hp=1.0 , Dp=2

= Theta=45.0|
= Theta=60.0|
i j — Theta= Pseudo-radial flow
Elliptical flow @d\a\ flow eta=75.0|

nnnnn Elliptical flow} Transition flow j

Transition flow /j
o
/ Linear flow/
10802 +—— '7,

w b o D[k
inear fl ®xVk, Xk
Linear flow « V Ky 1 VK
10602 | |
e L0E0 10E01 1 ToEw2 10603 L0

Figure 5-1: Pressure behavior of two inclined Figure 5-2: Pressure behavior of ten inclined
transverse hydraulic fractures. transverse hydraulic fractures.

tp*Py’

et || 1op0s

h [k D |k
ho=— [ D =— |-x
i ol

Loewo Lm0l 1oEw2 L0803 OB04

5-1-2- Long spacing (Dp>5)

Because of the long spacing between fractures, the interference between them
requires long time period to occur after the linear flow. Therefore, intermediate radial
flow, which represents radial flow around each fracture, is expected to develop. The
following cases can be identified:

1- For a small number of hydraulic fractures (less than five) and small inclination

angle (6, <45), linear, early radial, transition and pseudo-radial flow regimes are

observed as shown in Fig. (5-3)

2- For a small number of hydraulic fractures (less than five) and high inclination

angle (6, > 45), linear, transition, early radial, transition and pseudo radial flow

regimes are observed as shown in Fig. (5-3).
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3- For a large number of hydraulic fractures (more than five) and small inclination
angle (6, <45), linear, early radial, transition and pseudo-radial flow regimes are
observed such as in Fig. (5-4).

4- For a large number of hydraulic fractures (more than five) and high inclination
angle (6, > 45), linear, transition, early radial, transition and pseudo radial flow
regimes are observed as shown in Fig. (5-4). the transition flow in this case is

lasting longer than the transition flow for short spacing.

Two fractures, hp=1.0 , Dp=10 Ten fractures, hp=1.0 , Dp=10
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| — Theta=60.0| L LTI —"T11| — Theta=60.0| doradial i
—— Theta= Early radial flow - — Theta=75.0 Pseudo-radial flow
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Transition flow A
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Transition flow
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Transition flow
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Log00
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Figure 5-3: Pressure behavior of two inclined Figure 5-4: Pressure behavior of ten inclined
transverse hydraulic fractures. transverse hydraulic fractures.

For longitudinal hydraulic fractures, the response is similar to the transverse
hydraulic fractures. The differences between the longitudinal and transverse fractures

occur in the anisotropic formations when there is a difference between the permeability
in the X-direction (k, )and Y-direction k, ).
1- For small spacing (Dp=1), Linear, transition, and pseudo-radial flow are

developed for both small and large inclination angle as shown in Fig. (5-5).
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2- For moderate spacing (Dp=5), Linear, transition, elliptical and pseudo-radial flow
are developed for both small and large inclination angle such as shown in Fig.(5-

6).

Five fractures, hD=1.0, D=1 Five fractures, hD=1.0, D=5
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Figure 5-5: Pressure behavior of five inclined Figure 5-6: Pressure behavior of five inclined
longitudinal hydraulic fractures. longitudinal hydraulic fractures.

For semi-transverse fractures, the deviation from the horizontal wellbores has two

different impacts: the first for (Hh < 45) in which the pressure drop increases slightly as
the deviation angle increases. The second for (¢9h 245) in which the pressure drop

decreases slightly with the increasing of the deviation angle. The following cases for
five hydraulic fractures can be identified based on spacing, vertical inclination angle

and the deviation from the horizontal wellbore.
1- Short spacing (Dp=1) and five vertical fractures (HV = 0) : Linear, transition and
pseudo-radial flow regimes are developed for both small and large deviation
angle as shown in Fig. (5-7).
2- Short spacing (Dp=1) and five inclined fractures (6, = 60): Linear, transition and

pseudo-radial flow regimes are developed for both small and large deviation

angle from the wellbore as shown in Fig. (5-8).
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w
1

Long spacing (Dp=5) and five vertical fractures (¢V :O) . Linear, transition,

early radial, transition and pseudo-radial flow regimes are developed for both

small and large deviation angle from the wellbore such as in Fig. (5-9).

o
1

Long spacing (Dp=5) and five inclined fractures (HV = 60): Linear, transition and

pseudo-radial flow regimes are developed for both small and large deviation

angle from the wellbore such as in Fig. (5-10).
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Figure 5-7: Pressure behavior of five semi-transverse
inclined hydraulic fractures.
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Figure 5-8: Pressure behavior of five semi-transverse

inclined hydraulic fractures.

111111

\\\\

Five farctures, h;=1.0 , Dy=5, Thetav=0.0

N\

T
/ Pseudo-radial Flow

AN

Transition Flow

J

Early radial Flow

Linear FIow—l

uuuuuuuuuuuu

uuuuuuuuuuuuuuuuuu

Figure 5-9: Pressure behavior of five semi-transverse
inclined hydraulic fractures.
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Figure 5-10: Pressure behavior of five semi-transverse

inclined hydraulic fractures.
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5-2- Flow regimes
5-2-1-Linear flow regime

At early time, reservoir fluid flows linearly and directly from the formations to the
individual fractures as shown in Fig. (5-11). Each fracture behaves independently from
the others. The flow regime is recognized by straight line with slope of (0.5) in the log-
log plots for both dimensionless pressure and pressure derivative with dimensionless
time.

5-2-1-1-For isotropic and anisotropic formation (k =k, = kxy)

- The governing equations for transverse and longitudinal hydraulic fractures are:

P - {5 cos(é,) 5-1)
n
4.063gBcos(6,) | ut
AP), . = v 5-2
( )ELF nth k@[ ( )
or;
, 7ty cos(6,)
(tD x Py )ELF = DT (5-3)
2.032gB cos(6, t
(t X AP)ELF = d @) | 4 (5-4)

nhx; ke,

The governing equations for semi-transverse hydraulic fractures are:

- \/nt_D cos(6,) (5-5)
nsin(4,)
( AP)ELF _ 4.0630Bcos(6,) | (5-6)

nhx, sin(6,) | kec,

or;
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(tD x PDI)ELF = M (5-7)
2nsin(6,)

2.032qBcos(6,) | ut
tx APy, = d 5-8
(1 AP)e nhx, sin(g,) | kec, -8)

5-2-1-2-For anisotropic formation (kx # kyz):

-The governing equation for transverse and longitudinal hydraulic fractures is:

4.063gBcos(0,) |
AP), . = : 5-9
(AP R Y (5-9)
or;
(tx AP)ELF _ 2.032qBcos(6,) | (5-10)

nhx kyz¢ct

The governing equation for semi-transverse hydraulic fractures is:

2.032gBcos(6,) |
AP = v 5-11
(AP)err nhx, sin(g,) | K,¢c, (5-11)
or;
1.160B cos(8
(t AP)ELFz : (6,) |_s (5-12)

Figure 5-11: Linear flow regime of multiple-inclined hydraulic fractures.
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Generally, in all cases (transverse, semi-transverse, and longitudinal fractures), the
following correlation is applicable:
P, =2x(t, xP,") (5-13)
5-2-2-Pseudo-radial flow

Pseudo-radial flow regime is the dominant flow for all cases at late time when
reservoir fluids flow in the XY plane radially toward the fractures such as shown in Fig.
(5-12). This flow is characterized by constant value (0.5) for the dimensionless pressure
derivative curves on log-log plot of dimensionless pressure and dimensionless time. The

governing equation for this flow is:

A> LS

rl
V]

Figure 5-12: Pseudo- radial flow regime for Figure 5-13: Early radial flow regime for multiple-inclined
multiple inclined hydraulic fracture. hydraulic fractures.
(tD x Py )PRF =0.5 (5-14)
70.69B
(t X AP)PRF = khq (5-15)

And for anisotropic formation (kX = kxy):

70.60B
k k._h

X Nyz

(t X AP)PRF = (5-16)
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5-2-3-Early radial flow

Early radial flow regime represents the radial flow around each fracture. Typically,
this flow is expected to be observed when the spacing between fractures is long enough.
In this flow, reservoir fluids flow radially in XY plane toward each individual fractures
such as shown in Fig. (5-13). The governing equations for this flow are:

0.5

(tD X PDI)ERF ~Tn (5-17)
70.60B
(t X AP)ERF = Tg (5-18)
And for anisotropic formation (kx = kxy):
(t X AP)ERF = 10698 (5-19)

n K.k, h

5-2-4- Elliptical flow regime

Elliptical flow regime indicates elliptical flow toward the fracture such as shown in
Fig. (5-14). This flow regime was described initially by Tiab (1994). It often occurs in
the case of infinite conductivity fractures. However, it can be seen in a few cases of
uniform flux fractures. This type of flow depends on the number of fractures and
spacing between them as shown in Fig. (5-15). Neither the inclination angle from the

vertical axis (,) nor the deviation angle from the horizontal wellbore (6,) have an

v
impact on this flow as shown in Fig. (5-16). Multivariate linear regression analysis is

used to derive the governing equation for this flow regime:

0.366
t

(tD x Py I)EF = ﬁ (5-20)
D
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0.36
t

7quB
(txAP), = (5-21)
EF nD0.6hkO.64X(f).12 ¢/JCt

And for anisotropic formation (kX # kxy):

0.36

7quB t
txAP), = 5-22
( )EF nDo.th(f).lzk)((J.M /kyz duc, ( )

Figure 5-14: Elliptical flow regime for multiple-inclined hydraulic farctures.
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Figure 5-15: Multivariate regression analysis for elliptical Figure 5-16: Multivariate regression analysis for elliptical
flow regime (transverse and longitudinal fractures). flow regime (semi-transverse fractures).

5-3- Intersection Points:
The points of intersection between different lines of flow regimes are very important

in the well test interpretation. They can be used to check the results.
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5-3-1- The point of intersection of linear flow line and pseudo-radial flow line is:

-For transverse and longitudinal fractures acting in isotropic and anisotropic
formation (k =k, = kyz):

N*x2guc,

t =1207 ———
PREC k cos?(6,)

(5-23)

-For  semi-transverse  fractures acting in  isotropic and  anisotropic

formation (k =k, = kyz):

n*x?duc, sin®(6,)
k cos?(6,)

tone, =1207 (5-24)

-For transverse, longitudinal fractures, and semi-transverse fractures acting in an
anisotropic formation (kX # kyz), k, should be used instead of k in Egs. (5-23) and (5-
24).

5-3-2- The point of intersection of linear flow line and early radial flow line is:

-For transverse and longitudinal fractures acting in isotropic and anisotropic
formation (k =k, = kyz):

2
X PuC,

t =1207 —
ERE k cos?(6,)

(5-25)

-For  semi-transverse  fractures acting in  isotropic and  anisotropic
formation (k =k, = kyz):

X5 guc, sin?(6,)

t =1207
EREL k cos?(6,)

(5-26)
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-For transverse, longitudinal fractures and semi-transverse fractures acting in an
anisotropic formation (kX # kyz), k, should be used instead of k in Egs. (5-25) and (5-
26).

5-3-3-The point of intersection of elliptical flow line and pseudo-radial flow line is:

-For transverse and longitudinal fractures acting in isotropic and anisotropic

formation (k =k, = kyz):

0.6 k

f

nDO-6 1/0.36 @L{C X2
tomer = 570.7[—] [—‘f] (5-27)
X
-For transverse and longitudinal fractures acting in an anisotropic formation (kX # kyz):

nDO-6 1/0.36 WC X2
f

X

5-3-4-The point of intersection of elliptical flow line and early radial flow line is:

-For transverse and longitudinal fractures acting in isotropic and anisotropic

formation (k =k, = kyz):

0.6 k

f

0.6 1/0.36 >
terer — 570.7[ D j (M] (5-29)
X

-For transverse and longitudinal fractures acting in an anisotropic formation (kX # kyz):

0.6 k

f X

0.6 1/0.36 c X2
toger = 570_7[5()_j [MJ (5-30)
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5-4-Pseudo-skin factor
Pseudo-skin factor was defined by Cinco-Ley et al 1975 as the difference in the

wellbore dimensionless pressure for a fully penetrating inclined hydraulic fracture

Py (5.6, ) and a vertical fracture Py, (t,, ). Mathematically, it is:
S=Pp (tD 6o )_ Po (tD) (5-31)

Gringarten et al 1974 introduced the equation for dimensionless pressure of a well

intercepting a uniform flux vertical fracture at its center as:
1
Pty )= > [In(t, )+ 2.80907] (5-32)

Therefore, late time pseudo-skin factor can be found as:
5= %TY(yD,T) <7 (Xe,20,7,0,, zWD,hWD,hD)dr—%[In(tDl)+ 2.80907] (5-33)
0
In general, the pseudo-skin factor decreases with the inclination angle from the
vertical axis and the deviation from the wellbore. For the same number of longitudinal
and transverse fractures, the pseudo-skin factor decreases when the spacing between

fractures increases and when the inclination angle (¢V) increases as shown in Fig. (5-

17). For the same number of semi-transverse fractures, the pseudo-skin factor increases
as the deviation from the wellbore increases and the spacing between fractures increases
as shown in Fig. (5-18). Appendix-D shows the tables of pseudo-skin factor.

Even though skin factor has not been included in all above models, the equivalent
skin factor can be determined based on the single fracture solution using the early radial
flow line when it is well developed. The equivalent skin factor model for transverse

fractures is:
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s=05 OPlw kxtEsz +7.43 (5-34)
(t X AF)')ERF Wct r-W

and for longitudinal fractures is:

k,t
5=05 (AP)eee In| ——=|+7.43 (5-35)
(t X AP')ERF qucr,
Transverse fractures Semi-Transverse Fractures

= Five farctures, DD=1, Thetav=0.0
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Figure 5-17: Pseudo-skin factor for transverse Figure 5-18: Pseudo-skin factor for semi-transverse
hydraulic fractures hydraulic fractures

while total skin factor can be determined from pseudo-radial flow as:

s—08 OPlee o Kl |, 7.43 (5-36)
(t x AlDI)F’RF Wct rW

5-5-Appliction of Type Curve Matching

As shown on the plots in Appendix (B), the pressure and pressure derivative have
different shapes for each combination of number of fractures, spacing between
fractures, inclination angle from the vertical axis, and deviation from the wellbore.
Type-curve matching can provide a quick estimation for reservoir and fractures

parameters.
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The following information is associated with each type curve: dimensionless
spacing between fractures (Dp), number of fractures (n), and inclination angle (4,).
Thus, the following information can be obtained from the type curve matching process:
(Po)m, (AP, (to)m, (At)wm, (4,)m, ("o)m, (D)m, (S)m, (N)m . The following steps illustrate

how type curve matching is used to determine reservoir characteristics such as:
permeability, inclination angle, spacing, pseudo-skin factor, fracture half length, and

number of fractures.
Step-1 Plot (AP vs. t) and (t x AP'vs. t ) on log-log paper.

Step-2 Obtain the best match of the data with one of the type curves.

Step-3 Read from any match point:ty,, AR, to5y,» Pom » Nom s Do s @i s M s S -
Step-4 Calculate half fracture length (x;).
X; =hxhy, (5-37)

Step-5 Calculate K, :

__uCXitoy (5-38)
*0.0002637t,,
Step-6 Calculate (k,,) :
Je - 141.2quBPy,, (5.39)
- Jkhar,
Step-7 Calculate (ky).
k2
k, = k_y (5-40)

z

Step-8 Number of fractures can be determined directly as:
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n=n, (5-41)
Step-9 Inclination angle can be determined directly as:

W = (5-42)
Step-10 Spacing between fractures can be calculated as:

D =x, xD, (5-43)

Step-11 Pseudo-skin factor can be determined directly as:

S =Sy (5-44)
5-6-Application of TDS technique

TDS is a powerful technique for computation of reservoir parameters directly from
log-log plots of pressure and pressure derivative data. A well designed pressure
transient test in multiple-inclined hydraulically fractured horizontal wells should yield
all the necessary straight lines to calculate number of fractures, the inclination angle,
spacing between fractures, and permeability. The great advantage of this technique is
that it only requires graphing of pressure and pressure derivative on a single log-log plot
for direct analysis.

The following step-by-step procedure is for the ideal case where all the necessary
straight lines are well defined.
Step 1 - Plot pressure change (AP) and pressure derivative (txAP") values versus test
time on a log-log graph.
Step 2 - Read the value of (txAP")prr corresponding to the infinite acting pseudo-radial

flow line.
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Step 3 - Calculate (kx) for isotropic or anisotropic formation (k =k, = kyz) or ( kxkyz)

for anisotropic formation (kX # kyz):

70.6q.B
K=k =k =|_'20U4B _
" é (h(tXAP')PRFj (5-45)

70.60B

L 5-46
o AP (6:49)

Step 4- Calculate K, :

Step 5 — If the early radial flow is developed, read (txXAP")gr.
Step 6 — Calculate number of fractures (n) :

— (t X API)PRF
" (t X API)ERF (649

Step 7 - Obtain the value of (txAP") at time t = 1 hr from the elliptical flow line
(extrapolated if necessary), (tXAP")er1nr-

Step 8 - Calculate (D).

-For transverse and longitudinal fractures acting in isotropic and anisotropic

formation (k =k, = kyz):

20 1 0.3671/06

qu

D= 5-49
{nx?ﬂhkom(t x AP)EFlhr (Wct ] } ( )

-For transverse and longitudinal fractures acting in anisotropic formation (kX = kyz):

122



0.36 1/0.6
7quB (
D= (5-50)
nhx(f)'lzkg'uxl kyz (t x API)EFlhr PuC, ]
Step 9 - Obtain the value of (txAP') at time t = 1 hr from the linear flow line

(extrapolated if necessary), (tXAP")eLrinr.

Step 10 - Calculate (4,) .
-For transverse and longitudinal fractures acting in isotropic and anisotropic

formation (k =k, = kyz):

H:

\Y

cos nhX; (t < AP e ¢ 40 kgc, (5-51)
2.032gB 7

-For  semi-transverse  fractures  acting in  isotropic and  anisotropic

formation (k =k, = kyz):

0. =sin™ 2.0329B H (5-52)
nhx; (tx AP")g e, COS(6,) | ke,

-For transverse and longitudinal fractures acting in anisotropic formation (kX # kyz):

0 = COS_l nth (t X AP)ELFlhr kyz¢ct (5_53)
v 2.0329B u

-For semi-transverse fractures acting in anisotropic formation (kx - kyz):

g, =sin™ 295298 “ (5-54)
nhxf (t x AP )ELFlhr COS(@V) kyzﬁjt

Step 11 — From early radial flow line, read the value of (txAP'),and (AP)., at a

certain time (tg ).

Step-12- Calculate the equivalent skin factor (S) from Eq. (5-34):
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Step 13 — From pseudo radial flow line, read the value of (tx AP').- and (AP ). at a

certain time (g, )-

Step-14- Calculate the total skin factor (S) from Eq. (5-36):
Step 15 — Calculate the intersection times using Eq. (5-23) through Eg. (5-32) and
compare them with those in the plot.
Example -5-1

Pressure drawdown test data of a hydraulically fractured horizontal well is given in
Table (Example 5-1) of Appendix (F). Other known reservoir and well data are:
q=200STB/D ¢ =0.07 1w=0.75cp ¢t = 1.5x10°° psi™® h =80 ft
xg = 80 ft rw= 0.5 ft pi = 6000 psi B =1.15Dbbl/STB k,=0.1 md
Determine:

1

Formation permeability.

2- Number of fractures.

3

Spacing between fractures.

4

Inclination angle.

1- Solution using type-curve matching:

Step-1 Plot (AP vs. t) and (t x AP'vs. t ) on log-log paper as shown in Fig. (5-19).
Step-2 Obtain the best match of the data with one of the type curves as shown in Fig.
(5-20).

Step-3 Read from any match point:

t, =10, AR, =10, t,,, =1.3, P,,, =0.0082,hy,, =1, Dy, =8, iy, =451, =7,5,, =—3.612

Step-4 Calculate half fracture length (x,) from Eq. (5-37).
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X, =80x1=80 ft
Step-5 Calculate K, from Eq. (5-38):

~ 0.07x0.75x0.0000015 x 80° x1.3

K, =0.25md
0.0002637 <10

Step-6 Calculate (k,,) from Eq. (5-39):

\/sz _ 141.2x200x0.75%x1.15x0.0082 _05

J0.25 x80x10

Step-7 Calculate (ky) from Eq. (5-40).

2 2
ky, 05
k,=-2=-"-=25md
Kk, 1
1.0E+04 Five fractures, hp=1.0 , Dp=8
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Figure 5-19: Pressure and pressure derivative plot Figure 5-20: Type-curve matching plot for
Example 5-1. Example 5-1.

Step-8 Number of fractures from Eq. (5-41):
n=>5 fractures

Step-9 Inclination angle from Eq. (5-42):

¢v =45

Step-10 Spacing between fractures from Eq. (5-43):
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D=x, xD,, =80x8=0640 ft
Step-11 Pseudo-skin factor directly as in Eq. (5-44):
s=-3.612

2- Solution using TDS:

Step 1 - Plot pressure change (AP) and pressure derivative (txAP') values versus test

time on a log-log graph as shown in Fig. (5-21).

1.0E+04
o’
o*?
*
t*dP")pr=609 e
1.0E+03 ( )pR s M >
= 2 e
I R~ /{f{ w—
a * *
5 PN
;g_ (tdP")er=120 ..0 /
k=]
¢ _..#—
10E+02 F———— o 1 -
’../ /
*
. /
-
1.0E+01
1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05
t, hrs

Figure 5-21: TDS technique for example 5-1.

Step 2 - Read the value of (txAP")pre corresponding to the infinite acting pseudo-radial

flow line.

(tx AP")oee = 609.

Step 3 - Calculate (kx) from Eq. (5-45).

C—k :kﬂ:( 70.6q.B J:70.6x200><o.75x1.15:O_ZSmd

' h(tx AP") oor 80x 609
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Step-4- Calculate K, from Eq. (5-47):

k :%:2.5 md
0.1

y

Step 4 — If the early radial flow is developed, read (tXAP")ggre.

(tx AP')oe =120

Step 5 — Calculate number of fractures (") from Eq. (5-48):

n= @ =5 farctures
120

Step 6 - Obtain the value of (txAP") at time t = 1 hr from the elliptical flow line
(extrapolated if necessary), (tXAP")er1nr-
(t X API)EFlhr =32

Step 7 - Calculate (D) from Eq. (5-49).

1/0.6
| 7x200%0.75x1.15 ( 1 j"'“ 650 ft
5x80%2 x 80 x 0.25°% x 32| 0.07 x 0.75 x 0.0000015

Step 8 - Obtain the value of (txAP") at time t = 1 hr from linear flow line (extrapolated if
necessary), (tXAP")eLr1nr-

(t x API)ELFlhr =55

Step 9 - Calculate (¢, ) from Eq. (5-51).

\

4 5x80x80x55 [0.25x0.07x0.0000015
6, = cos =45
2.032x200x1.15 0.75

Step 10 — Calculate the intersection times using Eq. (5-23) through Eg. (5-32) and

compare them with those in the plot.
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-From the plot, t.., =120 hrs, tey =4.6 hrs, toer =4000 hrs, tor =4.3hrs

-The calculated values:

1- The intersection point between linear flow and pseudo-radial flow from Eqg. (5-23)

5% x80° x0.07 x 0.75x 0.0000015

=121 hrs

tore, =1207

2- The intersection point between linear flow and early radial flow from Eq. (5-25)

X5 guc,
k cos(6,)

v

tep, =1207

=120

0.25x cos?(45)

80% x0.07 x0.75x 0.0000015

7

=49hrs

0.25x cos*(45)

3- The intersection point between elliptical flow and pseudo-radial flow from Eq. (5-

27).

0.6 1/0.36 2
_5707 5x 640 0.07x0.75x0.0000015x 80
tPREF - 5 ' 800'6

0.25

=3220 hrs

4- The intersection point between elliptical flow and pseudo-radial flow from Eg. (5-

29).

t =570.7| ——
EREF ( 8

00.6

Table (5-1) summarizes the input data and the resulted value for Example 5-1.

6400'6 jl/O.

*® 0.07 x 0.75 % 0.0000015 x 802

0.25

=37 hrs

Table 5-1: Summary of results of Example 5-1.

Parameter In-put value | Calculated value by Calculated value by
Type-curve matching TDS technique

kx’ md 0.25 0.25 0.25

ky . md 2.5 25 2.5

n 5 5 5

X, ft 80 80

D, ft 640 640 650

0, 45 45 45
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Example -5-2
Pressure drawdown test data of a hydraulically fractured horizontal well is given in

Table (Example 5-2) in Appendix (F). No indication for vertical deviation. Other

known reservoir and well data are:

q=500STB/D  ¢=0.05 uw=0.5cp ¢t = 1.0x10°® psi™? h =100 ft
X =100 ft rw= 0.5 ft pi = 10000 psi B =1.15Dbbl/STB k,=0.4 md
Determine:

5- Formation permeability.

6- Number of fractures.

7

Spacing between fractures.

8

Deviation angle from the wellbore.
1- Solution using type-curve matching:
Step-1 Plot (AP vs. t) and (t x AP'vs. t ) on log-log paper as shown in Fig. (5-22).

Step-2 Obtain the best match of the data with one of the type curves as shown in Fig.

1.0E+04 Five fractures, hp=1.0 , Dp=1
oo
- oo™
* "‘ 106400
11.0E+03
$2
B -
a of el WrET <
g D A Rkt I =
E ", [ ] % 3 ”
¢ .
$ ot _.f T
10E402 ,‘ n” / o7
S e f ;@( =
Ll S -
y f r Match p(ﬂ
7 " -/% \—I—
L]
‘f Locos || LE00 T
106de L1E-0310603 1E-02 0602 1E-0L 0601 1E+0Q o600 1E+0%0ei01 1E+030e02 1t
11.0E+01 N time (hours)
1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 10E+03 1.0E+04 °
t,hrs
Figure 5-22: Pressure and pressure derivative plot Figure 5-22: Type-curve matching plot for
Example 5-2. Example 5-2.
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Step-3 Read from any match point:

t, =1 AP, =10,t,,, =0.53, P,,, =0.0123 h,,, =1, D, =1, 6,, =15, 4,, =0,n,, =5,
s, =—1.255

Step-4 Calculate half fracture length (x,) from Eq. (5-37).
X, =100x1=100 ft
Step-5 Calculate K, from Eq. (5-38):

~ 0.05x0.5x0.000001x100% x 0.53

K, =0.5md
0.0002637 x1

Step-6 Calculate (k,,) from Eq. (5-39):

\/kTZ _ 141.2x500x0.5x1.15%x0.0123 —0.706

4/0.5x100x%x10

Step-7 Calculate (ky) from Eq. (5-40).

k;, 0.706

, =1.24md
k, 04

Step-8 Number of fractures from Eq. (5-41):

n=5 fractures
Step-9 Inclination angle from Eq. (5-42):

Ov=0

Step-10 Deviation angle from wellbore:
6, =15
Step-11 Spacing between fractures from Eq. (5-43):

D =X; x Dp,, =100x1=100 ft

Step-12 Pseudo-skin factor from Eq. (5-44):
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s=-1.255

2- Solution using TDS:

Step 1 - Plot pressure change (AP) and pressure derivative (txAP") values versus test
time on a log-log graph as shown in Fig. (5-24).

Step 2 - Read the value of (txAP")prr corresponding to the infinite acting pseudo-radial

flow line.

(tx AP').ee = 406.

Step 3 - Calculate (kx) from Eq. (5-45).

70.60.B 70.6x500%x0.5%1.15
k=k, =k, = UE | DX EOXLD _0.5md
h(t x AP")pee 100 x 406
1.0E+04
oo
. el

1.0E+03 ’.’

_ (t*dP")pr=406 **

- [T B

% (L L ]

s

5 (t*dP")r=80

1.0E+02

1.0E+01 + T

1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03
t, hrs

Figure 5-24: TDS technique for example 5-2.

Step-4- Calculate K, from Eq. (5-47):

k, = 05 =1.25md
0.4

y
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Step 4 — If the early radial flow is developed, read (tXAP")gr.

(tx AP')s, =80

Step 5 — Calculate number of fractures (") from Eq. (5-48):

n= % =5 farctures

Step 6 - Obtain the value of (txAP") at time t = 1 hr from the elliptical flow line of slope
(0.36) (extrapolated if necessary), (tXAP")er1nr-

(tx AP')gep,, =130

Step 7 - Calculate (D) from Eq. (5-49).

1/0.6

=05 ft

_ 7x500x0.5x1.15 [ 1 )0.36
5x100%% x100 x 0.5%%* x130\ 0.05x 0.5 x 0.000001

Step 8 - Obtain the value of (txAP") at time t = 1 hr from linear flow line (extrapolated if
necessary), (txAP")eLrinr

(t x API)ELFlhr =400

Step 9 - Calculate (6,,) from Eq. (5-52).

" =sin-1[ 2.032x500x1.15 0.5 Jz
5x100x100x 400 x cos(0) V 0.5x0.05x0.000001

Step 10 — Calculate the intersection times using Eq. (5-23) through Eg. (5-32) and

compare them with those in the plot.

-From the plot, t..;, =0.95hrs, te, =0.038hrs, toer =20 hrs, toer =0.2 hrs

-The calculated values:

1- The intersection point between linear flow and pseudo-radial flow from Eq. (5-24).
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tore, =1207

100% x5? x 0.05x 0.5x 0.000001 sin?(15)

lhr

0.5

cos?(0)

2- The intersection point between linear flow and early radial flow lines from Eq. (5-

26).

tope, =1207

100? x 0.05x 0.5x 0.000001 sin?(14) 0.04 hrs

0.5

cos?(0)

3- The intersection point between elliptical flow and pseudo-radial flow lines from Eq.

(5-27).

tomer = 570.7[

1000.6

0.6 1/0.36 2
5x 95 J (0.05x0.5x0.000001><100

0.5

]:22 hrs

4- The intersection point between elliptical flow and pseudo-radial flow from Eq. (5-

29).

tener = 570.7[

Table (5-2) summarizes the input data and the resulted value for Example 5-2.

950.6

100°°

0.5

1/0.36
J (0.05 x 0.5 x 0.000001 x 1002

J =0.26 hrs

Table 5-2: Summary of results of Example 5-2.

Parameter In-put value | Calculated value by Calculated value by
Type-curve matching TDS technique

k,, md 05 05 05

K, , md 1.25 1.24 1.25

n 5 5 5

X, ft 100 100

D, ft 100 100 95

0, 15 15 15

5-7- Hydraulic fractures malfunction

The hydraulic fracturing process is an excellent stimulation process for both

unconventional and conventional hydrocarbon resources. This process always requires

133



great attention in order to assert the objectives such as creating multiple-hydraulic
fractures and maintaining that they remain open. The successful fracturing treatment
requires expensive completion process where the zonal isolations are required and the
well may cased and cemented. However, there are several parameters may increase the
risk of an unsuccessful fracturing process. These parameters can be classified under
three general categories. The first category is the fracturing process itself (type of
fracturing fluid and the additives). The second category is the type of formation and the
degree of complexity. The third category is the completion process. Therefore, it is
necessary to evaluate the performance of the hydraulic fractures.

This study introduces new and important application for the well test analysis. Well
test analysis can be used as an excellent tool for the purpose of evaluating the
performance of hydraulic fractures and determining locations of the fractures that do not
perform as designed. Type-curve matching is the recommended technique for the
interpretation process of the well test data of hydraulically fractured well. By using this
technique, it is possible to know if one or more hydraulic fractures are not working
properly (closed). Using the same technique, it is also possible to determine the
locations of the malfunction hydraulic fractures.

Figures (5-25), (5-26), (5-27), (5-28), (5-29), (5-30), (5-31) and (5-32) represent
pressure behavior of three, four, five, six, seven, eight, nine and ten vertical hydraulic

fractures respectively when one fracture is not working properly (closed).
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Three vertical fractures, hp=1.0 , Dp=2
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Four vertical fractures, hp=1.0 , Dp=2
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Figure 5-25: Pressure behavior of three vertical fractures
with one malfunction fracture.

Figure 5-26: Pressure behavior of four vertical fractures
with one malfunction fracture.

Five vertical fractures, hp=1.0 , Dp=2
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Figure 5-27: Pressure behavior of five vertical fractures
with one malfunction fracture.

Figure 5-28: Pressure behavior of six vertical fractures
with one malfunction fracture.

Seven vertical fractures, hp=1.0 , Dp=2
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Eight vertical fractures, hp=1.0 , Dp=2
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Figure 5-29: Pressure behavior of seven vertical fractures
with one malfunction fracture.

Figure 5-30: Pressure behavior of eight vertical fractures
with one malfunction fracture.
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Nine vertical fractures, hp=1.0 , Dp=2 Ten vertical fractures, hp=1.0 , Dp=2
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Figure 5-31: Pressure behavior of nine vertical fractures Figure 5-32: Pressure behavior of ten vertical fractures
with one malfunction fracture. with one malfunction fracture.

For short spacing hydraulic fractures, the interference between fractures is expected
to occur after short production time. Therefore, there will not be enough time for the
intermediate radial flow to develop. Based on this fact, the development of this flow can
be used as an indication of the existence of long spacing between fractures in addition
to the existence of malfunctioning fractures. Fig.(5-33) shows the development of the
intermediate radial flow when a system of eight vertical fractures looses two or more
fractures.

For large spacing between fractures, the interference between fractures is expected
to occur after a long period of time. Therefore, there will be enough time for the
intermediate radial to be observed as a result of the radial flow toward each individual
fracture. The impact of losing one or more hydraulic fractures can be represented by
developing clear intermediate radial flow that lasts for a long period of time as shown in
Fig. (5-34). In this case, it is difficult to decide whether the intermediate radial flow is
developed by the originally designed long spacing fractures or because of the long
spacing of malfunctioning fractures. However, the situation can be figured out by

knowing the number of fractures that have been originally fractured and the ratio
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between the pseudo-radial and intermediate radial flow. The number of existing
hydraulic fractures can be found from this ratio and compared to the real member of

fractures.
Example -5-3

Pressure drawdown test data has been done to evaluate the performance of a
horizontal well intersected by six vertical hydraulic fractures. The test data is given in

Table (Example 5-3) in Appendix (F). Other known reservoir and well data are:

q=100STB/D  ¢=0. n=15cp = 2.5x10° psi? h =50 ft
x¢ = 50 ft re=05ft  p;=8000 psi B=1.25bbl/STB  k=0.5md
D=100 ft
y = — |k .
< ? g / Z

> &

woh e D[k
° X kyz’ ° X kyz

Lo o
to to

h [k D [k
hp=—t | py== [
DX'\/; DX’\/;

4 LoEws

qqqqq

0E03)

Figure 5-33: Eight vertical hydraulic fractures system with ~ Figure 5-34: Eight vertical hydraulic fractures system with
malfunctioning fractures malfunctioning fractures

Solution using type-curve matching:

Step-1 Plot (AP vs. t) and (t x AP'vs. t ) on log-log paper as shown in Fig. (5-35).
Step-2 Obtain the best match of the data with one of the type curves as shown in Fig.

(5-36).
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From type-curve matching, it can be seen that only one hydraulic fracture is not

working properly (closed) which is the third ones. Based on the spacing between

fractures, the location of the malfunction fractures is (200 ft) from the heel of the

horizontal well.
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Figure 5-35: Pressure and pressure derivative plot Figure 5-36: Type-curve matching plot for
Example 5-3. Example 5-3.
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6- MATHEMATICAL MODELS FOR PARTIALLY PENETRATING
MULTIPLE HYDRAULIC FRACTURES

Even though hydraulic fracturing process has been a common application in the
petroleum industry during the last two decades, the final output of this process is
significantly affected by several factors. The successful process has to produce
maximum actual production from the total reserve in the formation. Fracture
dimensions (half fracture length, fracture width, and fracture height) are of great
importance in the performance as are the orientation of the fractures as well as the rock
and fluid properties. Typically, it is preferred that the fracture height be equal to the
formation height, where fully-penetrating fractures can be produced. Unfortunately, the
fractures can not always penetrate totally the formation where partially penetrating
fractures may be produced. Partially penetrating hydraulic fractures are undesirable
stimulation process due to the possibility of reducing the expected production rate of the
fractured formation. However, fully penetrating fractures in a reservoir with water and
oil in contact may lead to an early or immediate water production. Therefore, partially
penetrating fractures may be the only way to prevent the production of unwanted water.
6-1- Models Derivation

In this chapter, an analytical model for the pressure behavior of a horizontal well
intersecting with partially penetrating multiple hydraulic fractures will be introduced.
The same facts and assumptions that have been mentioned in item (4-3) for the
derivation of the multiple-inclined hydraulic fractures model are necessary to be

followed for the derivation of the partially penetrating hydraulic fractures models also.
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Consider a horizontal well with partially penetrating vertical transverse hydraulic
fractures in an infinite, homogenous, isotropic or anisotropic, horizontal slab reservoir

as shown in fig. (6-1). Each fracture is considered as a single plane of length (2x;),

width (W), height (h,). The spacing between fractures is (D). If we assume that all
fluid withdrawal will be through the fractures, the fractures are partially penetrating the
formation, the fractures can be simulated as inclined plane sources. The unsteady state

pressure drop created by these planes at any point (X, ¥,,, Z,,) iS:
t

P(Xmi ym’zm1t’ Zf 'hf 1Xf 1h) :%J-Sxyz (Xm' ym’ Zm't_T’ Zf 'hf 1Xf ’h)dT (6'1)
0

S,., is the instantaneous source function for an inclined plane source in an infinite

Xyz
slab reservoir and (q ) is the fluid withdrawal per unit fracture surface area per unit
time.

___Q
4= 2anhf

(6-2)

Upper impermeable layer

A
/ |
h¢

2X¢

Lower impermeable layer

Figure 6-1: Horizontal well intersected by partially penetrating multiple hydraulic fractures.
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The source function (S,,,) can be obtained using the Newman product method. This

method proposed that the instantaneous uniform flux source function for a three
dimensional flow problem is the product of the instantaneous source function for a one
dimensional flow problem. Therefore;

Sz (X Vs Zo £, 2 0 X ) =S, (X, 1) xS (y, ) x S, (z,t) (6-3)

S. is the instantaneous source function for an infinite slab source in an infinite

X

reservoir in the direction of X-axis. S, is the instantaneous source function for an
inclined plane source in an infinite slab reservoir in the Y-direction. S, is the
instantaneous source function for an inclined plane source in an infinite slab reservoir in
the vertical direction as shown in Fig. (6-2). S, can be estimated based on half fracture

length as follow:

Z X ® (Xm, Ym, Zm)

A

(X. V2. 2) o (X va2)

\/
<

h¢

Figure 6-2: The monitoring point and the source point of partially penetrating
multiple transverse hydraulic fractures.

f[ X =X+ X
1 bem 1 Leoox) T 2 )
S,=—r——e ' =—— je frtdx, ==
2 7277)(1: 2‘\/m7xt —X¢ 2 erf Xy — X — X; (6'4)
2\/nt

(sl
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Sy can be derived as follow:

m=y)’ oo _(ym—y-nD)* b-nDp)’
. 1 Ay 4my) 1 y! 4th n, /77y (y 4:[) (6-5)
y = e - e e
2, /7t 2\t A 2\ mty W2

S, represents the instantaneous source function that is affected by the height of the

formation and the height of fractures as shown in Fig. (6-3). Gringarten and Ramey

1973 presented the solution for this source function as:

h N=oo 7N nqt h
S, [1 +3n Z Le sm(Nﬂ’jcos(anfjcos(sz)] (6-6)
2h h h

le

Substitute Egs. (6-4), (6-5), and (6-6) in Eq. (6-3) first and then substitute Egs. (6-3)

and (6-2) in Eq. (6-1) gives:

_ gh, j-i erf(xm—x+xf]_erf(xm—x—xf]
8nxfhf¢Ch\/m7y o\/E 2\n,t 2\n,t

N=oo _M N =0 _szrzl]zt h 7
x>e x{lJr:h—hZ%e h* sin(Nﬂﬁjcos(N —fjcos[Nﬁ%ﬂdt

(6-7)

h

Fracture h
h¢

Figure 6-3: Schematic diagram of partial penetrating hydraulic fracture.

In dimensionless form, the final model for pressure response of horizontal wells

intersecting by multiple partially penetrating vertical hydraulic fractures is:
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Jz e 1 {x +1J { J S
P, = erf| =2 erf 2 foox
>~ an ! T, 2ty 2\t Z (6-8)
N =o0 2 2 h
[1+ 7zh4th N_lﬁeN 7o to sm[Nﬂ hZfD JCOS(N”Z D )COS(N”thD)}dt
where
Xm — X
o= (6-9)
ym - y kX
_ 6-10
Yo X, K, o0
Z;
o 6-11
fD h ( )
X: |k
i x [k, 6-12
xfD h kx ( )
Lz (6-13)
hfD h
h
hth = Ff (6-14)
oD [ (6-15)
X; ky
(, = 00002637kt (¢-10
¢ 110X
2 kxky hAP
o _ (6-17)

qu
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To solve the above model given in Eq. (6-8), three long time approximations should
be done based on the fluid flow dynamics and flow regimes in late time. The first

approximation is for instantaneous source function S, given by Eq. (6-4).

2n+1
XD+1
erf| XDl =£n:w(—1)n X'o _Xpa _ (xp +1 Lo +1f . Xptl (6-
2fip | 74 (n+) Jo o 12¥? gead2 T " Jo
18)
and:

2n+1
( Xp11 J
erf[XD _1J = En:m (_1)n \/g _ Xou _ (XD _1)3 (XD _1)5 - + ~ *p -1 (6'19)
T

2.t S (2n+0) _K 12 + T _f
therefore:
o 2_35(XD+1) (6-20)
and:
o 2_:(XD_1) (6-21)

The second approximation is for the instantaneous source function S, given in Eq.

(6-5).
s — nx/77y n:weiw — \/W 1— (yD — nDD)2 + (YD — nDD)4 _ (6-22)
N 2.7, 4t 32t2

The exponential expansion can be approximated by its first term:

100(y, —nDy )* _ 1 (6-23)
4, -

therefore:

t >25(y, —nD, )’ (6-24)
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The third approximation for the instantaneous source function S, is given in Eq. (6-

h N =co ,&;’71'{ h yA
S, =—|1+ ah S¥L Sin[Nﬂ'—fJCOS(Nﬂ'—fJCOS(Nﬂ'Ej =
h 7, &4 N 2h h h (6-25)

_ NZIIZ?]Zt

S h z
D AN o sin Nz |eos| Nz 2 COS(Nﬂ'Ej
h 7¢IN 2h h h

Aot <001 (6-26)
T

therefore:

5
tp =2 ——5— 6-27
D ﬂthfD ( )

The long time approximation can be written as:

tpy o
q 1J' 1
Ph=— | X(xp,t XYZ .Zp.tp, &y, Zp, hip, hp)+= | —d
D 2anhf0ﬂ_'. (Xp.tp)XYZ(yp. zp.,tp. A, Ztp. hp. hp) 2 10 ™D
0 tos (6-28)
1 tp
:PD(XD:YDyzDvZWDnLD’tDl)JfEln(—)
tp;1
and the proper time for this approximation is:
- _
—(xD +1
> (xD+1)
B (p-1) (6-29)
th, 2 3
25(y, —nDg )*
5
_7z2hx2fD |

6-2-Partially penetrating multiple inclined transverse hydraulic fractures
For partially penetrating multiple inclined fractures as shown in Fig. (6-4), the model

for pressure behavior can be derived using the same method as for the partially
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penetrating multiple vertical fractures, except the instantaneous source function in the

vertical direction should be as:

h, cos(8 N=2 Nzt h, cos(8
S, =— 0}, 4h zie S L C P Y cos[N;rZ) (6-30)
h zh, cos(8,) i N 2h h h

Therefore the pressure model becomes:

_(ym—y-nD)

gh; P Xy — X+ X Xy — X — X n= ant
P= —|erf| ————|—erf| ————||x > e y
8nx, h,gech, /7, ! Jt [ ( 2\ /n,t J ( 2 /n,t H (6-31)

Nepq o NiEmt h, cos(é, z
w12 SVL W sin Nﬂ'fi(\l) cos| Nz — COS[NFZ) dt
7h, cos(6,) vo N 2h h h

8

AN

Upper impermeable layer

Figure 6-4: Horizontal well intersected by partially penetrating multiple
inclined hydraulic fractures.

In dimensionless form, the model becomes:

t - (yo—nDp )?
¢ 1 Xp +1 Xp—1|| & -
Po=—— [——/|erf| 2= |—erf| 22 = |IxDe " x
D 4n '(')-W/tD |: [Zw/tp j (2 to le n=1 (6'32)

N =00 2 2,2 h cos 9
1+; ie‘N Moo gin Nﬂ'th—(V) COS(NﬂZfD )COS(NﬂthD) dt
Ay c0s(8,) =N 2
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7- PRESSURE TRANSIENT ANALYSIS FOR HORIZONTAL WELLS
INTERSECTED BY PARTIALLY PENETRATING MULTIPLE INCLINED

HYDRAULIC FRACTURES

The penetration ratio (the ratio of the fracture’s height to the formation’s height) has
significant influences on the pressure behaviors and flow regimes. Several analytical
models will be introduced in this chapter for six flow regimes. A set of type-curve
matching plots have been presented to reflect the compound effects of the penetration
ratio, the number of fractures, the spacing between fractures as well as fracture
dimensions and inclination angle from the vertical axis. Three new flow regimes can be
observed for the partially penetrating fractures. These are in addition to the early linear
(First linear) flow, intermediate radial (early radial for fully penetrating fractures),
elliptical flow, and pseudo-radial flow. The first of these three new regimes is the
second linear flow. This regime represents the flow toward the fractures plane in the XZ
plane after the pressure behavior is affected by the upper and lower boundary. The
second regime is the early radial that represents the radial flow in the YZ plane toward
the fracture before the boundaries are reached. The third regime is the third linear flow
that represents the linear flow toward the fractures in the YZ plane.

7-1- Pressure behavior

The following responses are easy to identify based on different penetration ratios.
7-1-1- Large penetration ratio (hpip>0.5)

Because of the penetration ratio, the pressure behavior in this case tends to be

similar to the fully penetrating fractures where other factors such as the number of
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fractures, spacing between them, fracture dimensions, and inclination angle have the
main influences.
7-1-1-1- Short half fracture length (hyp<10)

1- For a small number of hydraulic fractures (less than five) and short spacing, first
linear, transition, second linear, transition and pseudo-radial flow are observed as
shown in Figs. (7-1) and (7-2).

2- For a small number of hydraulic fractures (less than five) and long spacing, first
linear, transition, second linear, intermediate radial, transition and pseudo radial
flow are observed as shown in Figs. (7-3) and (7-4).

3- For a large number of hydraulic fractures (more than five) and small spacing, first
linear, transition, second linear, third linear, transition and pseudo-radial flow
regimes are observed such as in Figs. (7-5) and (7-6).

4- For a large number of hydraulic fractures (more than five) and long spacing, first
linear, transition, second linear, intermediate radial, elliptical, transition and

pseudo radial flow regimes are observed as shown in Figs. (7-7) and (7-8).

Two vertical transverse hydraulic fractures, hp=2, Dp=1 Two vertical transverse hydraulic fractures, h,;,=8, Dp=1
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Figure 7-1: Pressure behavior of two partially penetrating Figure 7-2: Pressure behavior of two partially penetrating
vertical hydraulic fractures. vertical hydraulic fractures.
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Two vertical transverse hydraulic fractures, hyp=2, Dp=8
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Figure 7-3: Pressure behavior of two partially penetrating
vertical hydraulic fractures.

Figure 7-4: Pressure behavior of two partially penetrating
vertical hydraulic fractures.
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Figure 7-7: Pressure behavior of sixteen partially
penetrating vertical hydraulic fractures.

Figure 7-8: Pressure behavior of sixteen partially
penetrating vertical hydraulic fractures.
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7-1-1-2- Long half fracture length (hxp>10)

1- For a small number of hydraulic fractures (less than five) and short spacing, first

linear, transition, second linear, transition and pseudo-radial flow regimes are

observed as shown in Figs. (7-9) and (7-10).

2- For a small number of hydraulic fractures (less than five) and long spacing, first

linear, transition, second linear, intermediate radial, transition and pseudo radial

flow regimes are observed as shown in Figs. (7-11) and (7-12).
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Figure 7-9: Pressure behavior of two partially penetrating
vertical hydraulic fractures.

Figure 7-10: Pressure behavior of two partially penetrating
vertical hydraulic fractures.
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Figure 7-11: Pressure behavior of two partially penetrating
vertical hydraulic fractures.

Figure 7-12: Pressure behavior of two partially penetrating
vertical hydraulic fractures.
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3- For a large number of hydraulic fractures (more than five) and small spacing, first

linear flow is not observed. Therefore, second linear, third linear, transition and

pseudo-radial flow regimes are the only flow regimes that are observed such as in

Figs. (7-13) and (7-14).

4- For a large number of hydraulic fractures (more than five) and long spacing, first

linear flow also is not observed. Second linear, intermediate radial, elliptical,

transition and pseudo radial flow regimes are observed as shown in Figs. (7-15)

and (7-16).

Sixteen vertical transverse hydraulic fractures, h,p=16, Dp=1

10800
—hhD=L0] [ ]
P: -radial flow
D=0 ’seudo-radial flo

——hhiD=0.8| L

— hhfD=0.7] /
ﬁ/\ﬂ

— hhD=0.6|
—— hhD=0.5|

LThlld linear ilow'_J

to*Po’

Second linear flow
h X
/ hyp=—\ Ngp=—v ﬁy DD:B ke

10603 /

Sixteen vertical transverse hydraulic fractures, h,p=32, Dp=1

10EH00
| ——hhiD=1
) Pseudo-radial flow
——hhiD=09|

— hhi=0| |
= hhiD=0.7
T /r/\
= hhfD=0.5
Transition flow

[ ]
vt

10601
; /
s
Second linear flow /
o P

Po’

DDDDD /

10804 108

h; X [k D |k
hio=-—"1 hp=—" |, Dy=— ==
'hfD h XD h kx D X, ky

‘ o ‘

10602 10801 L0840 108002 108403

to

Figure 7-13: Pressure behavior of sixteen partially
penetrating vertical hydraulic fractures.

Figure 7-14: Pressure behavior of sixteen partially
penetrating vertical hydraulic fractures.
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Figure 7-15: Pressure behavior of sixteen partially
penetrating vertical hydraulic fractures.

Figure 7-16: Pressure behavior of sixteen partially
penetrating vertical hydraulic fractures
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7-1-2- Small penetration ratio (hnp<0.5)

Because of the small penetration ratio, the pressure behavior at early time tends to

develop a new early radial flow regime where the flow of fluid takes place in the YZ

plane.

7-1-2-1- Short half fracture length (hyp<10)

1

For a small number of hydraulic fractures (less than five) and short spacing, first
linear, transition, early radial, second linear for hy;p>5 or transition for hys<5
and pseudo-radial flow regimes are observed as shown in Figs. (7-17) and (7-
18).

For a small number of hydraulic fractures (less than five) and long spacing, first
linear, early radial, second linear, transition, intermediate radial, transition and
pseudo radial flow regimes are observed as shown in Figs. (7-19) and (7-20).
For a large number of hydraulic fractures (more than five) and small spacing,
first linear, early radial, second linear, third linear, transition and pseudo-radial
flow regimes are observed for hyp<5 such as in Fig. (7-21). While for hyp>5,
first linear flow can’t be observed such as in Figs. (7-22).

For a large number of hydraulic fractures (more than five) and long spacing, first
radial, early radial, second linear, intermediate radial, elliptical, transition and
pseudo radial flow regimes are observed foe hypp<5 as shown in Fig. (7-23).

While for hysp>35, first linear flow can’t be observed as shown in Fig. (7-24).
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Two vertical transverse hydraulic fractures, hyp=2, Dp=1
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Figure 7-17: Pressure behavior of two partially penetrating
vertical hydraulic fractures.

Figure 7-18: Pressure behavior of two partially penetrating
vertical hydraulic fractures.
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Two vertical transverse hydraulic fractures, hyp=8, Dp=8
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Figure 7-19: Pressure behavior of two partially penetrating
vertical hydraulic fractures.

Figure 7-20: Pressure behavior of two partially penetrating
vertical hydraulic fractures.
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Figure 7-21: Pressure behavior of sixteen partially
penetrating vertical hydraulic fractures.

Figure 7-22: Pressure behavior of sixteen partially
penetrating vertical hydraulic fractures.
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Sixteen vertical transverse hydraulic fractures, hyp=2, Dp=8 Sixteen vertical transverse hydraulic fractures, hy=8, Dp=8
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Figure 7-23: Pressure behavior of sixteen partially Figure 7-24: Pressure behavior of sixteen partially
penetrating vertical hydraulic fractures. penetrating vertical hydraulic fractures.

7-1-1-2- Long half fracture length (hxp>10)

1- For a small number of hydraulic fractures (less than five) and short spacing, first
linear flow can not be observed. Early radial, second linear, transition and pseudo-
radial flow regimes are observed as shown in Figs. (7-25) and (7-26). The
behavior in these two cases is similar to the horizontal wells with short to
moderate wellbore length.

2- For a small number of hydraulic fractures (less than five) and long spacing, first
linear flow can not be observed. Early radial, second linear, transition,
intermediate radial, transition and pseudo radial flow regimes are observed as
shown in Figs. (7-27) and (7-28).

3- For a large number of hydraulic fractures (more than five) and small spacing,
neither first linear flow nor early radial flow can be observed. Second linear, third
linear, transition and pseudo-radial flow are the only flow regimes that are
observed such as in Figs. (7-29) and (7-30). The behavior in these two cases is

similar to a single vertical hydraulic fracture.
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Two vertical transverse hydraulic fractures, hy;p=16, Dp=1
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Figure 7-25: Pressure behavior of two partially penetrating Figure 7-26: Pressure behavior of two partially penetrating
vertical hydraulic fractures. vertical hydraulic fractures.
Two vertical transverse hydraulic fractures, hy;p=16, Dp=8 Two vertical transverse hydraulic fractures, h,;p=32, Dp=8
=T Pseudo-radwa\&] == Pseudo-radm&]
= hhfD=0.3| = hhfD=0.3|
—hhiD=0.2 B — hhiD=0.2| Lo
—hhiD=0.1 Intermediate radial flow / — hhip=0.1] Intermediate radial flow /
A N AN
/ Transition flow / Transition flow
£ £
Early radial flow / (Secnnd linear flow
10802 / 10802\ Early radial flow @£ Second linear flow
h X
X |k D [k Ny r
h =2 p == | Mo =" Mo =
hio h \/; "% J; L o~ Do = X,
Loeas | | | 100 | |
tp to
Figure 7-27: Pressure behavior of two partially penetrating Figure 7-28: Pressure behavior of two partially penetrating
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Figure 7-29: Pressure behavior of sixteen partially

penetrating vertical hydraulic fractures.

Figure 7-30: Pressure behavior of sixteen partially
penetrating vertical hydraulic fractures.

155



4- For a large number of hydraulic fractures (more than five) and long spacing,
neither first linear flow nor early radial flow can be observed also. Second linear,
intermediate radial, elliptical, transition and pseudo radial flow regimes are
observed as shown in Figs. (7-31) and (7-32). The behavior in these two cases is

similar to multiple hydraulic fractures.

Sixteen vertical transverse hydraulic fractures, h,p=16, Dp=8 Sixteen vertical transverse hydraulic fractures, h,p=32, Dp=8
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Figure 7-31: Pressure behavior of sixteen partially Figure 7-32: Pressure behavior of sixteen partially
penetrating vertical hydraulic fractures. penetrating vertical hydraulic fractures

7-2- Effect of inclination angle

The inclination angle from the vertical axis (6,) has a similar effect on pressure

behavior of partially penetrating hydraulic fractures as the penetration ratio. It can be
explained by the reduction in the fracture height which leads to a reduction in the
penetration ratio, when the fractures are inclined from the vertical direction. As
fractures propagate in inclined directions rather than the vertical one, the probability for
partially penetrating fractures to occur is high. Figures (7-33) and (7-34) represent
pressure behaviors for two partially penetrating inclined hydraulic fractures for different
inclination angles. While Figures (7-35) and (7-36) represent pressure behaviors of ten

partially penetrating inclined hydraulic fractures for different inclination angles. For all
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cases, the early radial flow develops when the inclination angle from the vertical

direction increases.

Two inclined transverse hydraulic fractures, hyp=0.5, hyp=10, Dp=8
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Figure 7-33: Pressure behavior of two partially
penetrating inclined hydraulic fractures.

Figure 7-34: Pressure behavior of two partially
penetrating inclined hydraulic fractures.

Ten inclined transverse hydraulic fractures, hpp=0.5, hp=10, Dp=1
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Figure 7-35: Pressure behavior of ten partially
penetrating inclined hydraulic fractures.

7-3- Flow regimes

7-3-1- First linear flow regime

Figure 7-36: Pressure behavior of ten partially
penetrating inclined hydraulic fractures.

At early time, reservoir fluid flows linearly and directly from the formation to the

individual fractures in the XZ plane as shown in Fig. (7-37). Each fracture behaves

independently from the others. The flow regime is represented by straight line with a

slope of (0.5) in the log-log plots for both dimensionless pressure and pressure
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derivative with dimensionless time. The governing equations for linear flow regime in

the case of transverse hydraulic fractures are:

Upper impermeable layer

Lower impermeable layer

Figure 7-37: First linear flow regime for partially penetrating multiple hydraulic fractures.

(PD )FLF = L (7-1)

" nh,,cos(6,)
4063qB [ s
AP = 7‘2
(AP )oe nh, X, cos(6,) | k,4c, (7-2)
or;

At 73

(tD x Py ')FLF =

2nh, , cos(6,)
(t y AP)FLF _ 2.032gB t (7-4)
nh, X cos(8,) || k,¢c,
where;
(PD )FLF =2x (tD X PDI)FLF (7-5)

7-3-2- Early radial flow regime
Early radial flow regime represents the radial flow around each fracture in the YZ

plane. Typically, this flow is observed when the penetratation ratio is small (hyp<0.5)
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and the spacing between fractures is long (Dp>5). In this flow, reservoir fluids flow
radially in YZ plane toward each individual fractures such as shown in Fig. (7-38). The

governing equations for this flow are:

, 0.5
(tD x Py )ERF = 2nhfo (7-6)
35.3q:B
(t x AP)ERF = A (7-7)
nX; /K K,

Lower impermeable layer

Figure 7-38: Early radial flow regime for partially penetrating multiple hydraulic fractures.

7-3-3- Second linear flow regime

When the pressure pulse reaches the upper and lower boundary, reservoir fluid
continues flowing linearly and directly from the formation to the fractures in the XZ
plane as shown in Fig. (7-39). The flow regime is represented by straight line with a
slope of (0.5) in the log-log plots for pressure derivative with dimensionless time. The
governing equations for a second linear flow regime in case of transverse hydraulic

fractures are:

s

2n

2.0320B | ut
txAP)g ¢ = 7-9
™ ‘/ky X (7-9)
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(tD x Py ')SLF = (7-8)




It is important to notice that:

(PD )SLF # 2% (tD x Py I)su: (7-10)

Upper impermeable layer

> [
—
—
—
—  e4— ——
-— —>
T —
-— —

Lower impermeable layer

Figure 7-39: Second linear flow regime for partially penetrating multiple hydraulic fractures .

7-3-4- Third linear flow regime

A Third linear flow regime develops for short spacing, large number of hydraulic
fractures and large half fracture length. In this case, pressure behavior can be considered
similar to the pressure behavior of long horizontal wells. The flow takes place in the
YZ plane toward the fractures as shown in Fig. (7-40). This flow is represented by a
straight line of a slope (0.5) in the log-log plot of dimensionless pressure derivative with

dimensionless time. The governing equations for a third linear flow regime is:

1.2/t
(PD )TLF = > (7'11)
nD,
In field units:
4.880B |
AP - = 7-12
(AP == W/kxm (7-12)
and:
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L2,

(to xPy") = 20D, (7-13)
In field units:
2.4409B [ 1t
tx AP = 7-14
(AP == 0 K dc, (7-14)
where:
P, =2x(t, xP,") (7-15)

Upper impermeable layer

S WS '

A\

SN N AN

Lower impermeable layer

Figure 7-40: Third linear flow regime for partially penetrating multiple hydraulic fractures.

7-3-5-Intermediate radial flow regime

Intermediate radial flow regimes develope for long spacing between fractures when
there is sufficient time for reservoir fluid to flow radially in the XY plan to each
individual fracture as shown in Fig. (7-41). The governing equation for this flow regime
IS:

, 0.5
(tD x Py )IRF = ? (7-16)

In dimensionless units:
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70.60B

(tx AP) e = (7-17)
nJk.k, h
‘/ / /
Figure 7-41: Intermediate radial flow regime for partially Figure 7-42: Pseudo-radial flow regime for partially
pentrating multiple hydraulic fractures. penetrating multiple hydraulic fractures.

7-3-6-Pseudo-radial flow

Pseudo-radial flow regime is the dominant flow for all cases at late time when
reservoir fluids flow in the XY plane radially toward the fractures such as shown in Fig.
(7-42). This flow is characterized by constant value (0.5) for the dimensionless pressure
derivative curves on log-log plot of dimensionless pressure and dimensionless time. The

governing equation for this flow are:

(tD X PDI)PRF =0.5 (7-18)
70.60B

tx AP = 7-19

(£ AP g kb (7-19)

7-3-7- Elliptical flow regime
An elliptical flow regime indicates elliptical flow toward the fractures such as
shown in Fig. (5-43). Multivariate linear regression analysis is used to derive the

governing equation for this flow regime:
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Figure 7-43: Elliptical flow regime for partially penetrating multiple hydraulic fractures.

( ) 2t|g.366
txP.). = (7-20)
D D JEF nDD
By 028 0.36
(txAP), —13.835 2% [ K& (7-21)
nDhk, \ duc,

7-4- Intersection Points:
The points of intersection between different lines of flow regimes are very important
in the well test interpretation. They can be used to check the results.

7-4-1- The point of intersection of first linear flow line and pseudo-radial flow line is:

21242 2
n“hf x; guc, cos<(6,)
tore. =1207 — tz . (7-22)
k,h

7-4-2- The point of intersection of first linear flow line and intermediate radial flow line is:

h?x? guc, cos®(6,)
tipe =1207 Y (7-23)

k,h

7-4-3- The point of intersection of first linear flow line and early radial flow line is:

h?guc, cos®(6,)
tepe, =302 tk . (7-24)

z

7-4-4- The point of intersection of second linear flow line and pseudo-radial flow line is:
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n*x2 guc,

X

tons, =1207 (7-25)

7-4-5- The point of intersection of second linear flow line and intermediate radial flow line is:

2
X @uc
tee, =1207 4 (7-26)
X
7-4-6- The point of intersection of second linear flow line and early radial flow line is:
h®duc
ters =302 2 : (7-27)
kZ
7-4-7- The point of intersection of third linear flow line and pseudo-radial flow line is:
22
n“D-guc
t.., —83g 7 D HC (7-28)
ky
7-4-8- The point of intersection of third linear flow line and intermediate radial flow line is:
D?guc,
to, =838.7— 1t (7-29)
ky
7-4-9- The point of intersection of third linear flow line and early radial flow line is:
D?h?k, guc
tepst = 209.7 — <P, (7-30)
Xik,K,

7-5- Relationships between flow regimes
Many mathematical relationships between flow regimes’ analytical models can be

used in pressure transient interpretation to estimate reservoir and fractures parameters.

5-5-1- Pseudo-radial and intermediate radial flow regime:

(tD x Py |)IRF _ (t x AI:)l)IRF — E (7-31)
(tD x Py ')PRF (t x AP')PRF n

7-5-2-Pseudo-radial and early radial flow regime:
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(tD x Py ')ERF _ 1
(tD x Py

1
)PRF

txAP')ERF _h K,

( __h Ik
(

txXAP)oee 20X, | K

z

7-5-3-Intermediate radial and early radial flow regime:

(tD X PD ')ERF _ 1

(tD x Py l)IRF 2hp

(t><AP')ERF _h |k
(txAP)e 2%, | K

z

7-5-4-Second linear and first linear flow regime:

(tD X PDI)SLF
= 2 5LF —h
(tD x Py I)FLF o C0S(82)

x AP"), . hcos(6,)

x API)FLF h

==

7-5-5-Third linear and first linear flow regime:

(to X Py e _ 120
(tD x Py I)FLF Do

(txAP), . 12hx [k,

(txAP),.  hD \k

X

3-5-6-Seond linear and third linear flow regime:

(tD x Py I)SLF _Dbp

(tD x Py I)TLF 12

(txAP)y: D [k,

(txAPYe  L1.2x, \K,

(7-32)

(7-33)

(7-34)

(7-35)

(7-36)

(7-37)

(7-38)

(7-39)

(7-40)

(7-41)

Fig. (7-42) shows a few of the above important relationships between flow regimes.

165



Eight vertical transverse hydraulic fractures, h=8, DD=0.5
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Figure 7-44: Relationships between flow regimes for partially penetrating multiple hydraulic fractures.

7-6-Pseudo-skin factor
In general, pseudo-skin factor increases as the penetration ratio increases. For the
same number of longitudinal and transverse fractures, the pseudo-skin factor decreases

when the spacing between fractures increases and when the ratio of the half fracture
length to the fracture height (thD) increases. Similar to the fully penetrating multiple
hydraulic fractures, pseudo skin factor for partially penetrating fractures decreases
significantly with the increase of the number of fractures for the same penetration ratio,
same spacing and same (thD). Appendix-E shows the tables of pseudo-skin factor for
partially penetrating hydraulic fractures.

7-7-Appliction of Type Curve Matching

As shown on the plots in Appendix (C), the pressure and pressure derivative have

different shapes for each combination of penetration rate, half fracture length, number
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of fractures, spacing between fractures, and inclination angle from the vertical axis.
Type-curve matching can provide a quick estimation for reservoir and fractures
parameters.

The following information is associated with each type curve: penetration rate
(hnip), half fracture length to fracture height ratio (hysp), dimensionless spacing between
fractures (Dp), number of fractures (n), and inclination angle (¢,). Thus, the following
information can be obtained from the type curve matching process: (Pp)m, (AP)wm, (to)m,
(At)m, (&, )m, (hxip)m, (DIm, (hnio)m, (N)m . The following steps illustrate how type curve

matching is used to determine reservoir characteristics such as: permeability, inclination
angle, spacing, pseudo-skin factor, fracture half length, and number of fractures.
Step-1 Plot (AP vs. t) and (t x AP'vs. t ) on log-log paper.

Step-2 Obtain the best match of the data with one of the type curves.

Step-3 Read from any match point:ty,, AR, toy, s Powm s Piiom s Dom s @t » M s howm -

Step-4 Calculate K, :

C Xt
) — W t*f “DM (7_42)
0.0002637t,,
Step-5 Calculate (k, ) :
2
K, = 1]141.2quBPR,, (7-43)
K, hAR,
Step-6 Determine penetration ratio:
: . h
Penetration ratio = e o (7-44)

Step-7 Calculate the height of fractures:
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hy =hypu xh (7-49)
Step-8 Calculate the half fracture length:

X; = hgpy xhx % (7-46)

z

Step-9 Calculate the spacing between fractures:

k
D = Dgy, X X; k—y (7-47)

Step-10 Number of fractures can be determined directly as:
n=n,, (7-48)
Step-11 Inclination angle can be determined directly as:
W = (7-49)
7-8-Application of TDS technique

TDS is a powerful technique for computation of reservoir parameters directly from
log-log plots of pressure and pressure derivative data. A well-designed pressure
transient test in a horizontal well with partially penetrating hydraulic fractures should
yield all the necessary straight lines to calculate penetrating ratio, number of fractures,
the inclination angle, spacing between fractures, and permeability.

The following procedure is for the ideal case where all the necessary straight lines
are well defined.
Step 1 - Plot pressure change (AP) and pressure derivative (tXAP') values versus test
time on a log-log graph.
Step 2 - Read the value of (txAP")prr corresponding to the infinite acting pseudo-radial

flow line.
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Step 3 - Calculate (kxky) ;

2
70.6q.B
ok =k =] —0dHE -
Sy = (h(txAP')PRFj (7-50)

Step 4 — If the intermediate radial flow is developed, read (txAP")rr.

Step 5 — Calculate number of fractures (n) :

n= (t X API)PRF 7-51
B (t X API)IRF ( ) )

Step 6 - Obtain the value (txAP")gr at time tge from the elliptical flow line .

0.64

Step 7 - Calculate () if the spacing between fractures is known.

X¢
0.64 0.36
K 13835 W ter (7-52)
X¢ nDh(t x AP") . | guc,

Step 8 - Obtain the value (tXAP")s, ¢ at time ts.r from the second linear flow line.

Step 9 - Calculate (x, [k, ):

X, \/k>y _ 2.0329B Mg, (7-53)
nh(t x API)SLF g,

Step 10- Solve Egs. (7-50), (7-52), and (7-53) to calculate (k,), (K, ), (X;):

Step 11 - Read the value (txAP")ere corresponding to the early radial flow line.

Step 12- Calculate (k,):

2
K, = | 3238 (7-54)
K, | NX; (tx AP")qr
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Step 13 - Read the value of (txAP")g ¢ corresponding to a certain time tg ¢ from the first
linear flow line.

Step 14- Calculate (hf) if the inclination angle is known:

h, = 2-0:?2‘]5 M ¢ (7-55)
nX; (tx AP")e, ¢ c0s(8,) | K, c,

y

Step 15 — Calculate the penetration ratio:
: Ny
Penetration ratio = r (7-56)

Step 16 — Calculate the intersection times using Eq. (7-22) through Eg. (7-30) and
compare them with those in the plot.
Example -7-1

Pressure drawdown test data of a hydraulically fractured horizontal well, extending
in homogenous isotropic reservoir, is given in Table (Example 7-1) of Appendix (F).
Other known reservoir and well data are:
q=500STB/D  ¢$=004  pu=0.5cp c = 1.0x10° psi? h = 40 ft
rw = 0.5 ft pi = 5000 psi B =1.1bbl/STB
Determine:

1-Formation permeability.

2-Number of fractures.

3-Fracture half length.

4-Fracture height and penetration ratio.

5-Spacing between fractures.

6-Inclination angle.

170



1- Solution using type-curve matching:
Step-1 Plot (AP vs. t) and (tx AP'vs. t ) on log-log paper as shown in Fig. (7-45).

Step-2 Obtain the best match of the data with one of the type curves as shown in Fig.
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Figure 7-45: Pressure and pressure derivative plot Figure 7-46: Type-curve matching plot for
Example 7-1. Example 7-1.

Step-3 Read from any match point:

ty =10, AR, =1t;,, =1.7, P,,, =0.002,h,,, = 0.5, Dy, =4, ¢,, =45,n,, =10,s,, =—3.46
hyou =10

Step-4 Calculate half fracture length (x,) from Eq. (7-46).

X, =10x40 = 400 ft

Step-5 Calculate K from Eq. (7-42):

_ 0.04x0.5%0.000001x 400% x1.7
0.0002637 x10

k 2md

Step-6 Number of fractures:
n=n,, =10 fractures

Step-7 Penetration ratio:
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h
Ff =h,p =05

Step-8 Calculate fracture height from eq. (7-45):

h, =0.5x40 =20 ft.

Step-9 Inclination angle:

Pv =45

Step-10 Spacing between fractures from Eq. (7-47):

D =X, x Dy, =400x 4 =1600 ft

Step-11 Pseudo-skin factor:

s=-3.46

2- Solution using TDS:

Step 1 - Plot pressure change (AP) and pressure derivative (txAP") values versus test
time on a log-log graph as shown in Fig. (7-47).

Step 2 - Read the value of (txAP")prr corresponding to the infinite acting pseudo-radial
flow line.

(tx AP")oee =242

Step 3 - Calculate (k) from Eq. (7-50).

K= 70.6x500x0.5x1.1
40x 242

2md

Step 4 — At a certain time, read (tXAP")y_¢ from third linear flow line and (tXAP")s ¢
from second linear flow line.

t=1 (txAP'),. =60, (txAP'), . =28

Step 5 — Calculate number of fractures (n) from Eq. (7-51):
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Figure 7-47: Pressure and pressure derivative plot for example 7-1.

Step 6 - Obtain the value of (txAP")s, ¢ at time ts, ¢ from the second linear flow line.

(txAP'), . =6.0744 at ty . =0.12135

Step 7 - Calculate (x,) from Eq. (7-53).

0 ft

o _ 2032x500x1.1 \/ 0.5x0.012135
" 10x40x6.0744 | 2x0.04x 0.000001

Step 8 - Obtain the value (txAP")er at time ter from the elliptical flow line .
(txAP") =35 at t, =30

Step 8 - Calculate (D) from Eq. (7-52).

D =13.835

500><o.5><1.1><4oo°-28{ 30

0.36
=1760 ft
10x 40 x 35x 2°% 0.04><O.5><0.000001}
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Step 9 - Read the value (txAP")g ¢ corresponding to a certain time tg r from the first
linear flow line.

(txAP"), . =0.3636 at t,. =0.0000546

Step 10- Calculate (hf cos(ev)) from Eq. (7-55):

h, cos(6,) =

2.032x500x1.1 \/ 0.5x0.0000546
10x 400x 0.3636 \| 2x 0.04 x 0.000001

Step 11 — To calculate (6, ), determine the three intersection points of the first linear
flow with the pseudo-radial, intermediate radial and early radial from the plot.
tome =18, tgpe =0.18,  ty =0.00045

Step 12- Calculate t..., from Egs. (7-22):

10? x 4007 x 0.04 x 0.5 x 0.000001x14.4> B

t =1207
PRFL 2 % 402

25

Step 13- Calculate (6,):

0, =cos™ (E) =44
25
Step 14- Calculate (hf ):

h = 144 0o
cos(44)

Step 15- Calculate penetration ratio:

h
—f=@=0.5
h 40

Step 16- Check the calculated values of (Qv)and (hf) using the intersection points of

the first linear flow line and the intermediate and early radial flow lines from Egs. (7-
23) and (7-24):
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2 2
tpp, =1207 400° x0.04x0.5x0.000001x14.4 _ 025

2 x 40°

0, =cos™ (%) =44
0.25

0.04 x 0.5x 0.000001x14.4%?

tepe =302 5 —0.000626
0 cos (20045 )
0.000626

Table (7-1) summarizes the input data and the resulted value for Example 7-1.

Table 7-1: Summary of results of Example 7-1.

Parameter In-put value Calculated value by Type- | Calculated value by TDS
curve matching technique

k, md 2 2 2

X, ft 400 400 400

n 10 10 10

Penetrating ratio | 0.5 0.5 0.5

h,, ft 20 20 20

6, 45 45 44

D, ft 1600 1600 1760

Example -7-2

Pressure drawdown test data of a hydraulically fractured horizontal well is given in
Table (Example 7-2) in Appendix (F). Sixteen vertical hydraulic fractures have been
designed with a half fracture length (310 ft). Other known reservoir and well data are:
q=100STB/D  ¢$=0.04  p=0.8¢cp ¢ = 1.0x10° psi? h =10 ft
rw=0.5 ft pi = 10000 psi B =1.1bbl/STB
Determine:

1-Formation permeabilities.

2-Fracture height and penetration ratio.
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3-Spacing between fractures.
1- Solution using type-curve matching:
Step-1 Plot (AP vs. t) and (t x AP'vs. t ) on log-log paper as shown in Fig. (7-48).
Step-2 Obtain the best match of the data with one of the type curves as shown in Fig.
(7-49).
Step-3 Read from any match point:
t, =1 AP, =1 t,,, =0.13, P,,, =0.0007,h 4, =0.3, Dy, =05,n,, =16,s,, =—2.09
hou =8

Step-4 Calculate K, from Eq. (7-42):

_ 0.04x0.8x0.000001x 310° x0.13

Kk
* 0.0002637 x1

=1.5md

Step-5 Calculate (k,) from Eq. (7-46).

2
K =810} 15-01md
310

Step-6 Calculate (k,) from Eq. (7-43).

2

=0.5md

" _i[141.2><100><0.8><1.1><0.0007}
' 15 10x1

Step-7 Number of fractures:
n=n,, =16 fractures

Step-8 Penetration ratio:
hf
h =hp=03

Step-9 Calculate fracture height from eq. (7-45):

h, =0.3x10=3 ft.
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Figure 7-48: Pressure and pressure derivative plot Figure 7-49: Type-curve matching plot for
Example 7-2. Example 7-2.

Step-10 Spacing between fractures from Eq. (7-47):

D =310x0.5x ‘/E =89.5 ft
1.5

Step-11 Pseudo-skin factor:

s=-3.46

2- Solution using TDS:

Step 1 - Plot pressure change (AP) and pressure derivative (txAP") values versus test
time on a log-log graph as shown in Fig. (7-50).

Step 2 - Read the value of (txAP")prr corresponding to the infinite acting pseudo-radial
flow line.

(tx AP")pee =717.4

Step 3 - Calculate (kxky)from Eq. (7-52).

2
k, =k,k, = 70.6x100x0.8x1.1 075
10x717.4
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Figure 7-50: Pressure and pressure derivative plot for example 7-2.

Step 4- Read (txAP')q - at a certain time ty - from the second linear flow line.

t . =0.054 (txAP"). =6.56

Step 5- Calculate K, from Eg. (7-53):

md

y

_( 2.032x100x1.1 JZ 0.8x0.054
310x16x10x6.56 ) 0.04x0.000001

Step-6 Calculate K, from the result of Step-3:

k=27 _1.5md
0.5

Step 7- If the early radial flow is developed, read (tXAP")grr.

(tx AP')ee =2.8

Step 8- Calculate number of fractures (kz) from Eq. (7-54):

1 [35.3><100><0.8><1.1

2
, == =0.1md
0.5 16x310x2.8
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Step 9- Obtain the value of (tXAP")r ¢ at a certain time tg  from first linear flow line.
(txAP") . =0.7, t. . =0.000054

Step 10- Calculate the height of fractures from eq. (7-55):

h — 2.032x100x0.8x1.1 0.8 < 0.000054

=3 ft
! 16x310x0.7 \/0.5><0.04><0.000001

Step 11- Obtain the value (txAP")rr at time ty_e from first linear flow line.
(txAP'), . =237.5, t, . =155

Step 12 - Calculate (D) from Eq. (7-13).

101 ft

B 2.44><100><1.1\/ 0.8x15.5 3
16 x10x 237.5 V1.5 0.04 x 0.000001

Step 13 — Determine the intersection point time of different flow regimes from the plot:

tor, =57 hIS, toeg =635hrs, t  =140hrs, tey =0.00087 hrs, teg =0.0097 hrs, tee =0.0021hrs

Step 14 — Calculate the intersection times using Eq. (7-22) through Eqg. (7-30) and
compare them with those determined from the plot in Step-14.

tege. =57 hrs, topg =633 hrs, tP,;, =140 hrs, t, =0.00087 hrs, t. =0.0097 hrs, t; =0.0021hrs

Table (7-2) summarizes the input data and the resulted value for Example 7-2.

Table 7-2: Summary of results of Example 7-2.

Parameter In-put value Calculated value by Type- | Calculated value by TDS
curve matching technique

k., md 15 15 15

ky , md 0.5 0.5 0.5

k, ,md 0.1 0.1 0.1

Penetrating ratio | 0.3 0.3 0.3

h,, ft 3 3 3

n 16 16

D, ft 89.5 89.5 101
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SUMMURY AND CONCLUSIONS
Open-Hole Horizontal Well:

The completion of the horizontal wells is of great importance in terms of fluids
deliverability and production management. Low cost and simplicity is the two factors
recognize the open hole completion. However, the difficulties in the maintenance and
control are the other two parameters control this type of completion. Pressure transient
analysis for the open hole horizontal wells is governing by:

1- Early radial flow regime develops at early time in the case of short and
moderate length horizontal wells. However, this flow regime cannot be
observed for long horizontal wells.

2- Linear flow and pseudo-radial radial flow can be observed for both short and
long horizontal wells.

3- The pressure behavior of a long horizontal well is similar to the pressure
behavior of vertical hydraulic fracture.

Zonal Isolation:

Horizontal wells with multiple zonal isolations have become a common completion
technique in the oil and gas industry. Sand problems, damaged zones, and water or gas
coning are the main reasons for using isolators to maintain or improve oil and gas
recovery. However, the use of isolators affects pressure behavior of the horizontal wells
and changes the flow regimes that may develop in the vicinity of the wellbore. In
addition, zonal isolations technique leads to an increase of the skin factor significantly.

Pressure transient analysis is used to investigate the effects of the isolators on both

pressure behavior and flow regimes of horizontal wells. Several analytical solutions
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have been developed in this study. These models were used for different applications

such as: reservoir characterization and for the evaluation of the isolators performance.

1-

Zonal isolation can be a practical solution for different formation problems
such as water cresting, gas coning and sand or asphaltic production, however,
it has great impact on the skin factor.

The main influence of zonal isolation is observed on early flow regimes of
the horizontal wellbore, such as early radial and early linear flow regimes.
Well test analysis is the most effective tool to evaluate the performance of the
zonal isolations.

The development of intermediate radial flow can be used as an indication of
serious problems, such as damaged perforated sections, that may lead to the
complete loss of the well, depending of the nature of the problem.

System radial flow and system linear flow can only be developed for the

cases where the horizontal well contains multiple zonal isolators.

Hydraulic fractures:

Hydraulic fracturing is an important stimulation technique that has been widely used

in conventional and unconventional oil and gas reservoirs all over the world. The

technique involves the creation of multiple hydraulic fractures to overcome wellbore

damage, and to improve oil and gas productivity in low permeability reservoirs.

Depending on the stresses orientation relative to the wellbore, the fractures may be

transverse or longitudinal, vertical or inclined, fully penetrating or partially penetrating

the formations.

For hydraulically fractured horizontal wells, well test analysis is commonly used to
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determine reservoir parameters and to estimate well productivity. Many factors, such as

vertical permeability or the vertical anisotropy, inclination angle from the vertical

direction, the spacing between fractures, and the penetration ratio (the ratio of the

fractures height to the formation height) can be estimated from pressure transient data.

The performance of the hydraulic fractures can be evaluated and the location of the

damaged fractures can be determined by the well test.

1-

Both the inclination from the vertical direction and the deviation from the
horizontal wellbore have a significant effect on pressure behavior of the
hydraulically fractured horizontal well.

Both transverse and longitudinal hydraulic fractures have the same pressure
response and flow regimes if the formation is isotropic. Different behaviors are
expected for anisotropic formations.

Early radial flow can be used as an indication of long spacing between fractures
or as an indication of non-functioning hydraulic fractures.

An early radial flow regime is expected to be observed for the case of the
partially penetrating hydraulic fractures where the fluid flows radially in the
normal plane to the wellbore.

A third linear flow regime is developed for short spacing partially penetrating
hydraulic fractures where the fluid flows linearly in a parallel plane to the
wellbore.

For small penetrating ratio and large number of hydraulic fractures, the pressure

behavior is similar to the behavior of long horizontal wells.
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RECOMMENDATIONS

The wellbore storage and skin factors should be included for the models of
horizontal wells with either zonal isolations or hydraulic fractures.

The infinite conductivity solution should be investigated and compared to
the uniform flux solution.

Zonal isolation models have been derived for no-flow isolated sections. It is
more realistic to assume different flow rates from these sections toward the
wellbore.

Finite conductivity solution can be studied for both fully and partially

penetrating fractures.
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NOMENCLATURES

B Oil formation volume factor, RB/STB
D Spacing between fractures, ft

D,  Dimensionless spacing

h Formation height, ft

hf Fracture height, ft

C, Total compressibility, psi*

kx Permeability in the X-direction, md
ky Permeability in the Y-direction, md
kz Permeability in the Z-direction, md
L, Dimensionless wellbore length

Lp Length of perforated section, ft

|-S Length of isolated section, ft

Wellbore length, ft

S 4

Number of perforated section or hydraulic fractures

AP[ Total pressure drop, psi

APi Pressure drop of single perforated interval or single hydraulic fracture, psi
PD Dimensionless pressure

q[ Total flow rate, STB/D

qi Flow rate from single perforated section or single hydraulic facture, STB/D
r, Wellbore radius, ft

t Time, hr

tD Dimensionless time

(to x P5") Dimensionless pressure derivative

Xf Half fracture length, ft

X X-Cartesian coordinates of the production point

Yw Y-Cartesian coordinates of the production point
Z Z-Cartesian coordinates of the production point
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!

X The position in the X-direction of any single production interval
y’ The position in the Y-direction of any single production interval
z' The position in the X-direction of any single production interval
GREEK SYMBOLS

¢ Porosity

H Viscosity, cp

n Diffusivity coefficient, ft?/sec

ny Diffusivity coefficient in the X-direction, ft¥/sec

77y Diffusivity coefficient in the Y-direction, ft*/sec

1, Diffusivity coefficient in the Z-direction, ft¥/sec

T Dummy variable of time

0\, Inclination angle from vertical direction

Qh Deviation from horizontal direction

SUBSCRIPTS

ERF early radial flow

IRF intermediate radial flow

SRF system radial flow

PRF pseudo radial flow

ELF early linear flow

EF elliptical flow

FLF first linear flow

SLF second linear flow

TLF third linear flow

PSF pseudo-spherical flow

185



REFERNCES

Al-Kobaisi M., Ozkan E. and Kazemi, H.”A hybrid numerical analytical model of finite conductivity
vertical fractures intercepted by a horizontal well.”, SPE 92040-MS Paper presented at the SPE
International Petroleum Conference, Puebla, Mexico, 8-9 November, 2004.

Allison, D., Folds, D., Harless, D., Howell, M., and Vargus, G.: “Optimization Open Hole Completion
Techniques for Horizontal Foam drilled Wells.” SPE 125642-MS paper presented at the 2009 SPE
Eastern Regional Meeting, West Virginia, 23-25 September, 2009.

Al-Otabi, A.M. and Ozkan, E.: “Interpretation of Skin Effect from Pressure Transient Tests in Horizontal
Wells.” SPE 93296-MS Paper presented at the 14™ SPE Middle East Oil and Gas Show and
Conference, Bahrain, 12-15 March, 2005.

Barker, B. J., Ramey, H. and Henery, J.: “Transient flow to finite conductivity fractures.” SPE 7489 —MS
Paper presented at 53 SPE Annual Technical Conference and Exhibition, Dallas, TX, 1-3 October,
1978.

Brooks, R. T. and Steven S.: “Improvement in Completing and Testing Multi-Zone Open-hole Carbonate
Formations” SPE 119426-MS Paper presented at the 2009 SPE Middle East Oil and Gas Show and
Conference, Bahrain, 15-18 March 2009.

Brown, M., Ozkan, E., Raghavan, R. and Kazemi, H.: “Practical Solution for Pressure Transient
Response of fractured Horizontal Wells in Unconventional Reservoirs” SPE 125043-MS Paper
presented at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 4-7
October, 20009.

Cinco-Ley, H.: “Unsteady-State Pressure Distribution Created by a Slanted Well or a Well with an
Inclined Fracture,” PhD dissertation, Stanford University (1974).

Cinco-Ley, H. and Meng H.Z.: “Pressure transient analysis of wells with finite conductivity vertical
fractures in double porosity reservoirs.” SPE 18172-MS Paper presented at the SPE 63 Annual
Technical Conferences and Exhibition, Houston, TX, 2-5 October, 1988.

Cinco-Ley, H., Ramey, H. and Miller, F. G.: “Unsteady-State Pressure Distribution Created by a Well
with an Inclined Fracture.” SPE 5591-MS Paper presented at the 50" SPE Annual Fall Meeting,

Dallas, TX, 28 September-1 October, 1975.

186



Cinco-Ley, H. and Samaniego-V, F. “Transient Pressure Analysis: finite conductivity fracture case versus
damaged fracture case.” SPE 10179-MS Paper presented at the SPE 56" Annual Technical
Conference and Exhibition, San Antonio, TX, 5-7 October, 1981.

Clonts, M.D., and Ramey, H.: “Pressure Transient Analysis for Wells with Horizontal drainholes.” SPE
15116-MS Paper presented at the SPE 56" California Regional Meeting, Oakland, California, 2-4
April, 1986.

Daneshy, A. A.: “A Study of Inclined Hydraulic Fractures.” SPE 4062-MS Paper presented at the SPE
47" Annual Fall Meeting, San Antonio, TX, 8-11 October, 1972.

Daneshy, A. A.: “True and Apparent Direction of Hydraulic Fractures.” SPE 3226-MS Paper presented at
the Fifth Conference on Drilling and Rock Mechanics, Austin, TX, 5-6 January, 1970.

Daviau, F., Mouronval, G., Bourdarot, G., and Curutchet, P.: “Pressure Analysis for Horizontal Wells.”
SPE Formation Evaluation Journal, December 1988, pp 716-724.

Del Rio, C., Boucher, A., Salazar, F., Milne, A., and Robles, M.: “Temporary Zonal Isolation Minimizes
Reservoir damage During Workover Operation in Ecuador.” SPE 143771-MS Paper presented at the
SPE European Formation Damage Conference, Noordwijk, Netherlands, 7-10 June 2011.

Dinh, A. V. and Tiab, D., “ Transient pressure analysis of a well with an inclined hydraulic fracture using
Tiab’s direct synthesis technique.” SPE 120545-MS Paper presented at the SPE Production and
Operation Symposium, Oklahoma City, 4-8 April, 2009.

Dinh, A. V. and Tiab, D., “ Transient pressure analysis of a well with an inclined hydraulic fracture using
type curve matching.” SPE 120540-MS Paper presented at the SPE Production and Operation
Symposium, Oklahoma City, 4-8 April, 2009.

East, L. E., Kenneth, W. M., Tucker J., Covington R. and Duell A.: “Improved Zonal Isolation Through
the use of Sealants before Primary cementing Operation.” TADC/SPE 59131 Paper presented at the
2000 IADC/SPE Drilling Conference, New Orleans, 23-25 February, 2000.

Economides, M.: “Horizontal Wells: Completion & Evaluation,” PE307 Petroleum Engineering manual.

Economides, M. J. and Nolte, K. G.: “Reservoir Stimulation”, 2" Ed., Prentice Hall, Eaglewood Cliffs,

New Jersey, 1989.

187



Frick, T.P., Brand, C.W. and Schlager, B.: “Horizontal Well Testing of Isolated Segments.” SPE 29959-
PA Paper presented at the Annual SPE International Meeting on Petroleum Engineering, Beijing,
China, 14-17 November, 1995.

Giger, F. M.: “Horizontal Wells Production Techniques in Heterogeneous Reservoirs.” SPE 13710-MS
Paper presented at the Middle East Qil Technical Conference, Bahrain, 11-14 March, 1985.

Gomez J., Passos A. and Melo, A.: “Cement Zonal isolation to Control Salt and CO2 in Brazilian Ultra
Deep Water Presalt Well of Santos Basin.” SPE 143772-MS Paper presented at the Brazil Offshore
Conference and Exhibition, Macae, Brazil, 14-17 June 2011.

Goode, P.A., and Kuchuk, F.J.: “Inflow Performance of Horizontal Wells.” SPE Reservoir Engineering
Journal, August, 1991, pp 319-323.

Goode, P. A. and Thambynaygam, R.K.M.: “Pressure Drawdown and buildup Analysis of Horizontal
Wells in Anisotropic Media,” SPE Formation evaluation, December, 1987.

Gringarten, A. C. and Ramey, H. : “The Use of Source and Green’s Function in Solving Unsteady-Flow
Problem in Reservoir.” SPE Journal, October 1973, pp. 285-295.

Guo, G., and Evans, R.D.: “An Economic Model for Assessing the Feasibilty of exploiting Naturally
Fractured Reservoirs by Horizontal Well technology.” SPE 26676-MS Paper presented at the 68th
Annual Technical Conference, Houston, TX, 3-6 October, 1993.

Hashemi, A., Nicolas L. M., and Gringarten, A.C.: “Well test Analysis of Horizontal Wells in Gas-
condensate reservoirs.” SPE 89905-PA Paper presented at the SPE Annual Technical Conference,
Houston, TX, 26-29 September, 2004.

Henriksen, K.H., Augustine, J. and Wood, E.: “Integration of New Open Hole Zonal Isolation
Technology Contributes to Improved Reserve Recovery and Revision in Industry Best Practice.”
SPE 97614-MS Paper presented at the 2005 SPE International Improved Oil Recovery Conference,
Kuala Lumpur, Malaysia, 5-6 December, 2005.

Howard, G. C. and Fast, C. R.: “Hydraulic Fracturing” Monograph Vol. 2 of the Henry L. Doherty series,
SPE of AIME, Dallas, TX, 1970.

Hubbert, M. K. and Willis, G. D.: “Mechanics of Hydraulic Fracturing.” Trans, AIME (1957) Vol. 210,

153-168.

188



Joshi, S.D.: “Augmentation of Well Productivity Using Slant and Horizontal Wells,” SPE 15375-MS
Paper presented at the 61st Annual Technical Conference, New Orleans, LA, 5-80ctober, 1986.
Kelbie G. M. and Garfield G. L.: “Isolating Water Production at the Source Utilizing Through-Tubing
Inflatable Technology.” SPE 102759-MS Paper presented at the 2006 SPE International Oil and Gas

Conference, Beijing, China, 5-7 December, 2006.

Kuchuk F. and Habusky T.: “Pressure behavior of horizontal wells with multiple fractures.” SPE 27971-
MS Paper presented at the Tulsa University Centennial Petroleum Engineering Symposium, Tulsa,
OK, 29-31 August. 1994.

Kuchuk, F., Goode, P.A., Wilkinson, D.J. and Thambynayagam, R.K.: “Pressure-Transient behavior of
Horizontal wells with and without gas Cap or aquifer.” SPE Formation Evaluation Journal, March
1991, pp 86-94.

Lee, J., Rollings, J. B., and Spivey, J. P.: “Pressure Transient Testing”, SPE Textbook Series, vol. 9.
Society of Petroleum Engineers, Richardson, Texas, USA. 2003.

Leif L., Hegre T.M.: “Pressure transient analysis of multifractured horizontal wells.” SPE 28389-MS
Paper presented at the SPE 69" Annual Technical Conference and Exhibition, New Orleans, LA, 25-
28 September, 1994.

Malekzadeh, D., and Abdelgawad, A.: “Analytical and statistical Analysis of Pseudo-Skin factors for
Horizontal Wells.” JCPT, October 1999, Vol. 38, No. 10.

Maddox, B., Wharton, M., Hinkie, R., Farabee, M. and Ely, J.: “Cementless Multi-Zone Horizontal
Completion Yields Three-Fold Increase.” IADC/SPE 112774-MS Paper presented at the 2008
IADC/SPE Drilling conference in Orlando, 4-6 March 2008.

Odeh, A.S., and Babu, D.K.: “Transient Flow Behavior of Horizontal wells: Pressure Drawdown and
Buildup analysis.” SPE Formation Evaluation Journal, March, 1990, pp 7-15.

Olarewaju J., Lee, W.J.: “Pressure behavior of layered and dual porosity reservoirs in the presence of
wellbore effects.” SPE Formation Evaluation Journal, September 1989, pp 397-405.

Ozkan E.: “Performance of horizontal wells” Ph.D. dissertation, University of Tulsa, 1988.

189



Poe B. D. and Elbel J.L.: “Pressure transient behavior of a finite conductivity fracture in infinite acting
and bounded reservoirs.” SPE 28392-MS Paper presented at the SPE 69" Annual Technical
Conference and Exhibition, New Orleans, LA, 25-28 September, 1994.

Raghavan, R.: “An analysis of horizontal wells intercepted by multiple fractures.” SPE Journal, Vol. 2,
Sepember 1997: pp 235-245.

Rentano, A. and Muhammed, Y.: “Impact of Completion Technique on Horizontal Well Productivity.”
SPE 54302-MS Paper presented at the 1999 SPE Asia and Pacific Qil and Gas conference, Jakarta,
20-22 April 1999.

Robison, C.E., Mashaw, H.R. and Welch, W.R.: “Zone Isolation of Horizontal Wells by Coiled-Tubing-
Actuated Tools.” OTC 7354-MS Paper presented at the 25" annual offshore technical conference in
Houston, TX, 3-5 May 1993.

Rodriguez, F., Cinco-Ley, H. and Samaniego-V, F.. “Evaluation of fracture asymmetry of finite-
Conductivity fractured Wells.” SPE Production Evaluation Journal, May 1992, PP 233-239.

Rodriguez, F., and Cinco-Ley, H: “Partially penetrating fracture: Pressure Transient analysis of an infinite
Conductivity Fractures.” SPE 12743-MS Paper presented at SPE California Regional Meeting, 11-13
April, 1984.

Rosa, A.J and Carvalho, R.S.: “A Mathematical Model for Pressure Evaluation in an infinite-
Conductivity Horizontal well.” SPE Formation Evaluation Journal, December, 1989, pp 559-566.
Slimani, K. and Tiab, D.: “Pressure transient Analysis of Partially Penetrating Wells in a Naturally
Fractured Reservoir” SPE 104059-MS Paper presented at the first international oil conference and

exhibition, Mexico, 31 Aug.-2 Sep. 2006.

Spivak, D.: “Pressure Analysis for Horizontal Wells,” Ph.D. Dissertation, Louisiana Tech University,
May 1988.

Tiab, D.: “Analysis of Pressure Derivative Data of Hydraulic Fractured Wells by the Tiab’s Direct
Synthesis Technique.” Journal of Petroleum Science and Engineering, 49 (2005).

Tiab, D.: “Analysis of Pressure Derivative without Type-Curve Matching: Vertically Fractured Wells in

Closed Systems.” Journal of Petroleum Science and Engineering, 11 (1994) 323-333. This paper

190



was originally presented as SPE 26138 at the 1993 SPE Western Regional Meeting, May 26-28,
Anchorage, Alaska.

Tiab, D. and Puthigai, S.K.: “Pressure Derivative Type-Curves for a Vertically Fractured Well”. SPE
Formation Evaluation journal, March 1988, pp 156-158.

Thompson, L.G., and Temeng, K.O.: “Automatic Type-Curve matching for Horizontal wells” SPE
25507-MS Paper presented at the production operation symposium, Oklahoma City, March 21-23,
1993.

Valko P. and Economides M.J.: “Performance of a longitudinally fractured horizontal well”, SPE Journal,
March1996, pp 11-19.

Wan, J. and Aziz, K.: “Multiple hydraulic fractures in horizontal wells.” SPE 54627-MS Paper presented
at the SPE Western Regional Meeting, Anchorage, Alake, 26-28 December, 1999.

Wong D. and Harrington A.: “application of the pressure derivative function in the pressure transient
testing of fractured wells.” SPE Formation Evaluation Journal, October 1986, pp 470-480.

Wright, C. A. and Conant, R. A.: “Hydraulic Fracture Reorientation in Primary and Secondary Recovery
from Low Permeability Reservoirs.” SPE 30484-MS Paper presented at the SPE Annual Technical
Conference, Dallas, TX, 22-25 October, 1995.

Wright, C. A., Davis, Minner, W. A_E. J., Ward, J. F., and Weijers, L.: “Surface Tiltmeter Fracture
Mapping Reaches New Depths — 10000 Feet, and Beyond.” SPE 39919-MS Paper presented at the
SPE Rocky Mountain Regional/Low-Permeability Reservoir Symposium and Exhibition, Denver,
Colorado, 5-8 April 1998.

Zerzar, A. and Bettam, Y., “Interpretation of multiple hydraulically fractured horizontal wells in closed
systems.”, SPE 84888-MS, Paper presented at the SPE International Improved Oil Recovery

Conference in Asia Pacific, Kuala Lumpur, Malaysia, 20-21 October, 2003.

191



APPENDIXES

APPENDIX-A: Plots for horizontal wells with zonal isolations.
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Figure A-1: Pressure and pressure derivative plot. Figure A-2: Pressure and pressure derivative plot.
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Figure A-3: Pressure and pressure derivative plot. Figure A-4: Pressure and pressure derivative plot.
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Figure A-5: Pressure and pressure derivative plot.

Figure A-6: Pressure and pressure derivative plot.
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Figure A-7: Pressure and pressure derivative plot. Figure A-8: Pressure and pressure derivative plot.
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Figure A-9: Pressure and pressure derivative plot. Figure A-10: Pressure and pressure derivative plot.
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Figure A-11: Pressure and pressure derivative plot.

Figure A-12: Pressure and pressure derivative plot.
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Figure A-13: Pressure and pressure derivative plot. Figure A-14: Pressure and pressure derivative plot.
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Figure A-15: Pressure and pressure derivative plot. Figure A-16: Pressure and pressure derivative plot.
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Figure A-17: Pressure and pressure derivative plot.

Figure A-18: Pressure and pressure derivative plot.
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Figure A-19: Pressure and pressure derivative plot. Figure A-20: Pressure and pressure derivative plot.
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Figure A-21: Pressure and pressure derivative plot. Figure A-22: Pressure and pressure derivative plot.
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Figure A-23: Pressure and pressure derivative plot. Figure A-24: Pressure and pressure derivative plot.
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Figure A-25: Pressure and pressure derivative plot. Figure A-26: Pressure and pressure derivative plot.
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Figure A-27: Pressure and pressure derivative plot. Figure A-28: Pressure and pressure derivative plot.
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Figure A-29: Pressure and pressure derivative plot.

Figure A-30: Pressure and pressure derivative plot.
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Figure A-31: Pressure and pressure derivative plot. Figure A-32: Pressure and pressure derivative plot.
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Figure A-33: Pressure and pressure derivative plot.

Figure A-34: Pressure and pressure derivative plot.
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Figure A-35: Pressure and pressure derivative plot.

Figure A-36: Pressure and pressure derivative plot.
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Figure A-37: Pressure and pressure derivative plot. Figure A-38: Pressure and pressure derivative plot.
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Figure A-39: Pressure and pressure derivative plot. Figure A-40: Pressure and pressure derivative plot.
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Figure A-41: Pressure and pressure derivative plot.

Figure A-42: Pressure and pressure derivative plot.
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APPENDIX-B: Plots for multiple inclined hydraulic fractures.
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Figure B-1: Pressure and pressure derivative plot. Figure B-2: Pressure and pressure derivative plot.
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Figure B-3: Pressure and pressure derivative plot. Figure B-4: Pressure and pressure derivative plot.
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Figure B-5: Pressure and pressure derivative plot.

Figure B-6: Pressure and pressure derivative plot.
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Figure B-7: Pressure and pressure derivative plot. Figure B-8: Pressure and pressure derivative plot.
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Figure B-9: Pressure and pressure derivative plot. Figure B-10: Pressure and pressure derivative plot.
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Figure B-11: Pressure and pressure derivative plot.

Figure B-12: Pressure and pressure derivative plot.
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Five transverse fractures, hy=1.0 , Dy=2
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Figure B-13: Pressure and pressure derivative plot.

Figure B-14: Pressure and pressure derivative plot.
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Figure B-15: Pressure and pressure derivative plot.

Figure B-16: Pressure and pressure derivative plot.

Nine transverse fractures, h;=1.0 , Dy=2
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Figure B-17: Pressure and pressure derivative plot.

Figure B-18: Pressure and pressure derivative plot.

201



Two transverse fractures, hy=1.0 , Dy=4 Three transverse fractures, hy=1.0, 55=4
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Figure B-19: Pressure and pressure derivative plot. Figure B-20: Pressure and pressure derivative plot.
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Figure B-21: Pressure and pressure derivative plot. Figure B-22: Pressure and pressure derivative plot.
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Figure B-23: Pressure and pressure derivative plot. Figure B-24: Pressure and pressure derivative plot.
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Eight transverse fractures, hy=1.0 , Dy=4

Nine transverse fractures, h;=1.0 , Dy=4
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Figure B-25: Pressure and pressure derivative plot.

Figure B-26: Pressure and pressure derivative plot.
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Figure B-27: Pressure and pressure derivative plot. Figure

B-28: Pressure and pressure derivative plot.
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Figure B-29: Pressure and pressure derivative plot.

Figure B-30: Pressure and pressure derivative plot.

203



Four transverse fractures, hy=1.0 , D=8

Five transverse fractures, hy=1.0 , Dy=8
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Figure B-31: Pressure and pressure derivative plot.

Figure B-32: Pressure and pressure derivative plot.
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Figure B-33: Pressure and pressure derivative plot.

Figure

B-34: Pressure and pressure derivative plot.
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Figure B-35: Pressure and pressure derivative plot.

Figure B-36: Pressure and pressure derivative plot.
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Ten transverse fractures, h,=1.0 , Dy=8

Two transverse fractures, hy=1.0 , D;=10
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Figure B-37: Pressure and pressure derivative plot. Figure B-38: Pressure and pressure derivative plot.
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Figure B-39: Pressure and pressure derivative plot. Figure B-40: Pressure and pressure derivative plot.
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Figure B-41: Pressure and pressure derivative plot.

Figure B-42: Pressure and pressure derivative plot.
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Seven transverse fractures, hy=1.0, D;=10
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Figure B-43: Pressure and pressure derivative plot.

Figure B-44: Pressure and pressure derivative plot.
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Figure B-45: Pressure and pressure derivative plot.

Figure B-46: Pressure and pressure derivative plot.
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Figure B-47: Pressure and pressure derivative plot.

Figure B-48: Pressure and pressure derivative plot.
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APPENDIX-C: Plots for partially penetrating multiple inclined hydraulic fractures.
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Figure C-1: Pressure and pressure derivative plot. Figure C-2: Pressure and pressure derivative plot.
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Figure C-3: Pressure and pressure derivative plot. Figure C-4: Pressure and pressure derivative plot.
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Figure C-5: Pressure and pressure derivative plot.

Figure C-6: Pressure and pressure derivative plot.
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Two vertical transverse hydraulic fractures, hyp=1, Dp=1
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Figure C-7: Pressure and pressure derivative plot.

Figure C-8: Pressure and pressure derivative plot.
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Two vertical transverse hydraulic fractures, hyp=8, Dp=1
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Figure C-9: Pressure and pressure derivative plot. Figure C-10: Pressure and pressure derivative plot.
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Figure C-11: Pressure and pressure derivative plot.

Figure C-12: Pressure and pressure derivative plot.

208



Two vertical transverse hydraulic fractures, hyp=1, Dp=4

Two vertical transverse hydraulic fractures, hyp=2, Dp=4
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Figure C-13: Pressure and pressure derivative plot. Figure C-14: Pressure and pressure derivative plot.
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Figure C-15: Pressure and pressure derivative plot. Figure C-16: Pressure and pressure derivative plot.
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Figure C-17: Pressure and pressure derivative plot.

Figure C-18: Pressure and pressure derivative plot.
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Two vertical transverse hydraulic fractures, hyp=1, Dp=8

Two vertical transverse hydraulic fractures, hyp=2, Dp=8
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Figure C-19: Pressure and pressure derivative plot. Figure C-20: Pressure and pressure derivative plot.
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Figure C-21: Pressure and pressure derivative plot. Figure C-22: Pressure and pressure derivative plot.
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Figure C-23: Pressure and pressure derivative plot.

Figure C-24: Pressure and pressure derivative plot.
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Four vertical transverse hydraulic fractures, hyp=1, Dp=1

Four vertical transverse hydraulic fractures, h,p=2, Dp=1
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Figure C-25: Pressure and pressure derivative plot. Figure C-26: Pressure and pressure derivative plot.
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Figure C-27: Pressure and pressure derivative plot. Figure C-28: Pressure and pressure derivative plot.
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Figure C-29: Pressure and pressure derivative plot.

Figure C-30: Pressure and pressure derivative plot.
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Four vertical transverse hydraulic fractures, hyp=1, Dp=4

Four vertical transverse hydraulic fractures, h,p=2, Dp=4
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Figure C-31: Pressure and pressure derivative plot. Figure C-32: Pressure and pressure derivative plot.
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Figure C-33: Pressure and pressure derivative plot. Figure C-34: Pressure and pressure derivative plot.
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Figure C-35: Pressure and pressure derivative plot.

Figure C-36: Pressure and pressure derivative plot.
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Four vertical transverse hydraulic fractures, h,p=1, Dp=8 Four vertical transverse hydraulic fractures, hyp=2, Dp=8
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Figure C-37: Pressure and pressure derivative plot. Figure C-38: Pressure and pressure derivative plot.
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Figure C-39: Pressure and pressure derivative plot. Figure C-40: Pressure and pressure derivative plot.
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Figure C-41: Pressure and pressure derivative plot.

Figure C-42: Pressure and pressure derivative plot.
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Eight vertical transverse hydraulic fractures, hypp=1, Dp=1

Eight vertical transverse hydraulic fractures, hyp=2, Dp=1
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Figure C-43: Pressure and pressure derivative plot. Figure C-44: Pressure and pressure derivative plot.
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Figure C-45: Pressure and pressure derivative plot. Figure C-46: Pressure and pressure derivative plot.
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Figure C-47: Pressure and pressure derivative plot.

Figure C-48: Pressure and pressure derivative plot.
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Eight vertical transverse hydraulic fractures, hypp=1, Dp=4

Eight vertical transverse hydraulic fractures, hyp=2, Dp=4
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Figure C-49: Pressure and pressure derivative plot. Figure C-50: Pressure and pressure derivative plot.
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Figure C-51: Pressure and pressure derivative plot. Figure C-52: Pressure and pressure derivative plot.
Eight vertical transverse hydraulic fractures, hyp=16, Dp=4 Eight vertical transverse hydraulic fractures, h,p=32, Dp=4
10800 10800
=hhfD=1.0 === hhfD=09| =—hhfD=1.0 == hhiD=0.9|
==hhiD=0.8 === hhiD=0.7| ==hhiD=0.8 === hhfD=0.7|
=hhiD=0.6 == hhiD=0.5| =——hhiD=0.6 —— hhD=0.5|
— =04 — =03 / — =04 — =03 /
~hiD=02 ——hhiD=0.1 ——hhiD=0.2 =——hhiD=0.1]
10801 // 10801 /
o o
> £
S 8
10802 10802
h ,h, h Mk Dk , h,‘ h Nk i
7 ho =77 o = v D= =" e = '
/ h h \k, X\, h h \k, k,
10E03 + 4 + + 10E03 A + + + 4
10605 10804 10603 10B02  10B0L 1080 10801 10802 10603 1004 10605 10804 10603 1B L0EOL  L0B0 10801 10802 L0BG3 1084
to to

Figure C-53: Pressure and pressure derivative plot.

Figure C-54: Pressure and pressure derivative plot.
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Eight vertical transverse hydraulic fractures, hypp=1, Dp=8

Eight vertical transverse hydraulic fractures, hyp=2, Dp=8
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Figure C-55: Pressure and pressure derivative plot. Figure C-56: Pressure and pressure derivative plot.
Eight vertical transverse hydraulic fractures, hyp=4, Dp=8 Eight vertical transverse hydraulic fractures, hyp=8, Dp=8
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Figure C-57: Pressure and pressure derivative plot. Figure C-58: Pressure and pressure derivative plot.
Eight vertical transverse hydraulic fractures, hyp=16, Dp=8 Eight vertical transverse hydraulic fractures, h,p=32, Dp=8
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Figure C-59: Pressure and pressure derivative plot.

Figure C-60: Pressure and pressure derivative plot.
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APPENDIX-D: Pseudo skin factor for multiple inclined hydraulic fractures.

Two Transverse Fractures
Dp=1 Dp=2 Dp=5 Dp=8 Dp=10
6,=00 |-062 -0.971 -1.489 -1.556 -1.774
0, =15 -0.629 -0.976 -1.492 -1.566 -1.778
0, =30 |-0655 -0.994 -1.501 -1.597 -1.793
0, =45 |-0.706 -1.035 -1.526 -1.658 -1.828
6,=60 |-07% -1.126 -1.589 -1.767 -1.912
0,=75 |-105 -1.291 -1.789 -2.000 -2.134
Four Transverse Fractures
Dp=1 Dp=2 Dp=5 Dp=8 Dp=10
6, =00 |-1.309 -1.876 -2.520 -2.764 -2.994
0, =15 -1.312 -1.877 -2.521 -2.768 -2.995
6,=30 |-1324 -1.881 -2.526 -2.783 -3.000
0, =45 |-1346 -1.889 -2.538 -2.812 -3.012
6, =60 |-1.381 -1.912 -2.569 -2.866 -3.044
0,=75 |-1464 -1.971 -2.666 -2.979 -3.146
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Six Transverse Fractures

Dp=1 Dp=2 Dp=5 Dp=8 Dp=10
—-0.0 |-1.700 -2.312 -3.029 -3.368 -3.608
-15 -1.702 -2.313 -3.030 -3.371 -3.608
=30 |-1.709 -2.315 -3.033 -3.381 -3.610
—45 |-1.723 -2.320 -3.041 -3.399 -3.614
—60 |-1.745 -2.335 -2.061 -3.433 -3.627
-75 |-1.793 -2.373 -3.125 -3.507 -3.679

Eight Transverse Fractures

Dp=1 Dp=2 Dp=5 Dp=8 Dp=10
=00 |-1.980 -2.617 -3.360 -3.768 -4.095
-15 -1.982 -2.620 -3.361 -3.770 -4.095
—-30 |-1.987 -2.622 -3.363 -3.776 -4.095
—45 | -1.997 -2.626 -3.369 -3.790 -4.096
—60 |-2.013 -2.637 -2.384 -3.815 -3.099
—75 |-2.046 -2.664 -3.432 -3.868 -4.114
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Ten Transverse Fractures

Dp=1 Dp=2 Dp=5 Dp=8 Dp=10
6,=00 |-2195 -2.881 -3.733 -4.048 -4.394
0, =15 -2.196 -2.881 -3.733 -4.049 -4.394
6, =30 | -2:200 -2.882 -3.733 -4.054 -4.394
0, =45 | -2.209 -2.883 -3.734 -4.064 -4.395
0, =60 |-2221 -2.887 -3.737 -4.085 -4.396
0,=75 |-2246 -2.903 -3.750 -4.127 -4.405
Five Semi-Transverse Fractures, Dp=1
6, =00 0, =30 6, = 60
6, =15 -1.255 -1.390 -1.432
6, =30 -1.343 -1.424 -1.463
6, =45 -1.411 -1.464 -1.500
6, =60 -1.456 -1.498 -1.531
6, =175 -1.471 -1.519 -1.551
6, =90 -1.490 -1.527 -1.558

219




Five Semi-Transverse Fractures, Dp=5

6,=0.0 6, =30 6, =60

6, =15 -2.794 -2.798 -2.820
6, =30 -2.802 -2.805 -2.827
6, =45 -2.811 -2.814 -2.836
6, =60 -2.820 -2.823 -2.844
6, =75 -2.827 -2.830 -2.850
6, =90 -2.829 -2.832 -2.852

Five Longitudinal Fractures

Dp=1 Dp=5
0, =0.0 -2.507 -2.870
6, =15 -2.508 -2.897
6, =30 -2.511 -2.905
6, =45 -2.551 -2.948
0, =60 -2.587 -3.048
0 =75 -2.664 -3.142
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APPENDIX-E Pseudo skin factor for partially penetrating hydraulic fractures.

Single vertical fractures

Hhio hup=1 hyo=2 hyo=4 hxo=8 h«o=16 hxp=32

0.0 -0.01804 -0.01804 -0.01804 -0.01804 -0.01804 -0.01804
0.1 0.017739 -0.00137 -0.01044 -0.01734 -0.01804 -0.01804
0.2 0.060897 0.018669 -0.00156 -0.01655 -0.01804 -0.01804
0.3 0.112727 0.042644 0.008382 -0.01569 -0.01804 -0.01804
0.4 0.175179 0.071546 0.019082 -0.01482 -0.01804 -0.01804
0.5 0.251176 0.106756 0.030047 -0.01398 -0.01804 -0.01804
0.6 0.345206 0.149289 0.040626 -0.01321 -0.01804 -0.01804
0.7 0.466256 0.1978 0.050048 -0.01256 -0.01804 -0.01804
0.8 0.632365 0.246128 0.057515 -0.01207 -0.01804 -0.01804
0.9 0.83231 0.283126 0.062322 -0.01177 -0.01804 -0.01804

Two vertical fractures, Lp=1

Hnio hyp=1 hyp=2 hyio=4 hyip=8 hyp=16 hyp=32

0.0 -0.58441 -0.63443 -0.63443 -0.63443 -0.63443 -0.63443
0.1 -0.56756 -0.6344 -0.6344 -0.6344 -0.6344 -0.6344

0.2 -0.54732 -0.63437 -0.63437 -0.63437 -0.63437 -0.63437
0.3 -0.52314 -0.63434 -0.63434 -0.63434 -0.63434 -0.63434
0.4 -0.49407 -0.6343 -0.6343 -0.6343 -0.6343 -0.6343

0.5 -0.4586 -0.63427 -0.63427 -0.63427 -0.63427 -0.63427
0.6 -0.41527 -0.63424 -0.63424 -0.63424 -0.63424 -0.63424
0.7 -0.36473 -0.63421 -0.63421 -0.63421 -0.63421 -0.63421
0.8 -0.313 -0.6342 -0.6342 -0.6342 -0.6342 -0.6342

0.9 -0.27247 -0.63418 -0.63418 -0.63418 -0.63418 -0.63418
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Two vertical fractures, Lp=8

Hhio hup=1 hyp=2 hup=4 hxo=8 h«o=16 h«p=32

0.0 -1.59554 -1.59554 -1.59554 -1.59554 -1.59554 -1.59554
0.1 -1.58661 -1.59551 -1.59551 -1.59551 -1.59551 -1.59551
0.2 -1.57643 -1.59548 -1.59548 -1.59548 -1.59548 -1.59548
0.3 -1.56546 -1.59545 -1.59545 -1.59545 -1.59545 -1.59545
0.4 -1.55425 -1.59542 -1.59542 -1.59542 -1.59542 -1.59542
0.5 -1.5434 -1.59538 -1.59538 -1.59538 -1.59538 -1.59538
0.6 -1.53349 -1.59535 -1.59535 -1.59535 -1.59535 -1.59535
0.7 -1.52511 -1.59533 -1.59533 -1.59533 -1.59533 -1.59533
0.8 -1.51873 -1.59531 -1.59531 -1.59531 -1.59531 -1.59531
0.9 -1.51474 -1.5953 -1.5953 -1.5953 -1.5953 -1.5953

Four vertical fractures, Lp=1

Hhio hxp=1 =2 =4 hym=8 hyp=16 hym=32

0.0 -1.27819 -1.27819 -1.27819 -1.27819 -1.27819 -1.27819
0.1 -1.27372 -1.27818 -1.27819 -1.27819 -1.27819 -1.27819
0.2 -1.26862 -1.27816 -1.27819 -1.27819 -1.27819 -1.27819
0.3 -1.26313 -1.27814 -1.27819 -1.27819 -1.27819 -1.27819
0.4 -1.25752 -1.27813 -1.27819 -1.27819 -1.27819 -1.27819
0.5 -1.25209 -1.27811 -1.27819 -1.27819 -1.27819 -1.27819
0.6 -1.24713 -1.27811 -1.27819 -1.27819 -1.27819 -1.27819
0.7 -1.24293 -1.27808 -1.27819 -1.27819 -1.27819 -1.27819
0.8 -1.23974 -1.27807 -1.27819 -1.27819 -1.27819 -1.27819
0.9 -1.23775 -1.27807 -1.27819 -1.27819 -1.27819 -1.27819
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Four vertical fractures, Lp=8

Hhfo hyip=1 hyp=2 hyio=4 hypo=8 hypo=16 hyp=32

0.0 -2.70685 -2.70685 -2.70685 -2.70685 -2.70685 -2.70685
0.1 -2.70238 -2.70683 -2.70685 -2.70685 -2.70685 -2.70685
0.2 -2.69729 -2.70682 -2.70685 -2.70685 -2.70685 -2.70685
0.3 -2.69181 -2.7068 -2.70685 -2.70685 -2.70685 -2.70685
0.4 -2.6862 -2.70678 -2.70685 -2.70685 -2.70685 -2.70685
0.5 -2.68077 -2.70677 -2.70685 -2.70685 -2.70685 -2.70685
0.6 -2.67582 -2.70675 -2.70685 -2.70685 -2.70685 -2.70685
0.7 -2.67163 -2.70674 -2.70685 -2.70685 -2.70685 -2.70685
0.8 -2.66844 -2.70673 -2.70685 -2.70685 -2.70685 -2.70685
0.9 -2.66645 -2.70673 -2.70685 -2.70685 -2.70685 -2.70685

Eight vertical fractures, Lp=1

Hho hyip=1 hyip=2 hyio=4 hxp=8 hxo=16 hyp=32

0.0 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185
0.1 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185
0.2 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185
0.3 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185
0.4 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185
0.5 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185
0.6 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185
0.7 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185
0.8 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185
0.9 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185
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Eight vertical fractures, Lp=8

Hhio hymn=1 hyn=2 hyn=4 hun=8 huin=16 hyp=32
00 3.81424 -3.81424 -3.81424 3.81424 3.81424 3.81424
01 3.81424 3.81424 -3.81424 3.81424 3.81424 3.81424
02 3.81424 3.81424 -3.81424 3.81424 3.81424 3.81424
03 3.81424 3.81424 3.81424 3.81424 3.81424 3.81424
04 3.81424 3.81424 3.81424 -3.81424 -3.81424 -3.81424
05 3.81424 3.81424 3.81424 -3.81424 -3.81424 -3.81424
06 3.81424 3.81424 3.81424 -3.81424 -3.81424 -3.81424
07 3.81424 3.81424 3.81424 -3.81424 -3.81424 -3.81424
08 3.81424 3.81424 3.81424 -3.81424 -3.81424 -3.81424
09 3.81424 3.81424 3.81424 3.81424 3.81424 3.81424
Two inclined fractures, Lp=1 Two inclined fractures, Lp=8
thD:11 thD:].O, thD::I-01 thD:11 thD:107 thD:]-Ov
Nhip=1 hhip=1 hhip=0.5 Phip=1 Phip=1 Nhip=0.5
6,=0.0 | 9605 -0.605 -0.605 -1.542 -1.618 -1.618
0, =15 | -0.600 -0.605 -0.605 -1.537 -1.618 -1.618
0, =30 | o583 -0.605 -0.605 -1.520 -1.618 -1.618
0, =45 | 550 -0.605 -0.605 -1.487 -1.618 -1.618
6, =60 | 498 -0.605 -0.605 -1.436 -1.618 -1.618
0, =175 | 9439 -0.605 -0.605 -1.376 -1.618 -1.618
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APPENDIX-F: Synthetic data for Examples.

t,hrs

0.0000
0.0017
0.0034
0.0051
0.0068
0.0085
0.0102
0.0119
0.0137
0.0154
0.0171
0.0341
0.0512
0.0683
0.0853
0.1024
0.1195
0.1365
0.1536
0.1706

0.3413

Pwf, psi
5000.00
4965.95
4962.89
4961.10
4959.83
4958.85
4958.04
4957.36
4956.77
4956.25
4955.79
4952.73
4950.94
4949.67
4948.69
4947.88
4947.20
4946.61
4946.08
4945.60

4942.12

t,hrs
0.512
0.683
0.853
1.024
1.195
1.365
1.536
1.706
3.413
5.119
6.826
8.532
10.239
11.945
13.652
15.358
17.065
34.130
51.195
68.259

85.324

Example 3-1
Pwf, psi t,hrs
4939.59 102.39
4937.47 119.45
4935.60 136.52
4933.92 153.58
4932.36 170.65
4930.92 341.30
4929.57 511.95
4928.29 682.59
4918.13 853.24
4910.70 1023.89
4904.71 1194.54
4899.61 1365.19
4895.13 1535.84
4891.08 1706.48
4887.38 3412.97
4883.95 5119.45
4880.75 6825.94
4856.39 8532.42
4839.57 10238.91
4826.64 11945.39
4816.12 13651.88

Pwf, psi
4807.26
4799.61
4792.86
4786.84
4781.39
4744.54
4721.64
4705.39
4692.78
4682.49
4673.78
4666.24
4659.59
4653.63
4614.49
4591.59
4575.34
4562.73
4552.44
4543.73

4536.19

t,hrs

15358.36
17064.85
34129.69
51194.54
68259.39

85324.23

Pwf, psi
4529.54
4523.58
4484.44
4461.54
4445.29

4432.68
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t,hrs

0.0000
0.0014
0.0027
0.0041
0.0055
0.0068
0.0082
0.0096
0.0109
0.0123
0.0137
0.0273
0.0410
0.0546
0.0683
0.0819
0.0956
0.1092
0.1229

0.1365

Pwf, psi
5000.00
4998.96
4998.49
4998.13
4997.83
4997.56
4997.32
4997.10
4996.89
4996.69
4996.51
4995.02
4993.88
4992.92
4992.07
4991.31
4990.60
4989.95
4989.33

4988.75

t,hrs
0.273
0.410
0.546
0.683
0.819
0.956
1.092
1.229
1.365
2.730
4.096
5.461
6.826
8.191
9.556
10.922
12.287
13.652
27.304

40.956

Pwf, psi
4984.05
4980.45
4977.42
4974.77
4972.41
4970.26
4968.30
4966.49
4964.80
4952.38
4944.23
4938.13
4933.22
4929.07
4925.45
4922.22
4919.28
4916.57
4896.34

4882.03

Example 3-2

t,hrs
54.61
68.26
81.91
95.56
109.22
122.87
136.52
273.04
409.56
546.08
682.59
819.11
955.63
1092.15
1228.67
1365.19
2730.38
4095.56
5460.75

6825.94

Pwf, psi
4870.45
4860.52
4851.74
4843.82
4836.57
4829.88
4823.65
4777.17
4746.07
4722.59
4703.70
4687.88
4674.27
4662.31
4651.64
4642.00
4576.38
4535.92
4508.28

4486.84

t,hrs
8191.13
9556.31
10921.50
12286.69
13651.88
27303.75
40955.63
54607.51
68259.39
81911.26
95563.14

109215.02

Pwf, psi
4469.33
4454.52
4441.69
4430.37
4420.25
4353.66
4314.70
4287.06
4265.63
4248.11
4233.30

4220.47
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t,hrs
0.0000
0.0006
0.0009
0.0012
0.0015
0.0018
0.0021
0.0024
0.0027
0.0030
0.0033
0.0036
0.0039
0.0042
0.0046
0.0049
0.0052
0.0055
0.0058
0.0061
0.0091
0.0121
0.0152
0.0182
0.0212
0.024
0.027
0.030
0.033

0.036

Pwf,

psi
5000.00
4982.55
4981.25
4980.32
4979.60
4979.01
4978.52
4978.09
4977.71
4977.37
4977.06
4976.78
4976.52
4976.28
4976.06
4975.85
4975.66
4975.47
4975.30
4975.13
4973.83
4972.90
4972.18
4971.59
4971.10
4970.67
4970.29
4969.95
4969.64

4969.36

t,hrs
0.039
0.042
0.046
0.049
0.052
0.055
0.058
0.061
0.091
0.121
0.152
0.182
0.212
0.243
0.273
0.303
0.334
0.364
0.394
0.425
0.46
0.49
0.52
0.55
0.58
0.61
0.91
1.21
1.52

1.82

Pwf, psi
4969.10
4968.86
4968.64
4968.43
4968.24
4968.05
4967.88
4967.71
4966.41
4965.47
4964.65
4963.99
4963.43
4962.92
4962.46
4962.03
4961.62
4961.24
4960.87
4960.52
4960.18
4959.85
4959.53
4959.22
4958.93
4958.63
4956.07
4953.96
4952.15

4950.56

t,hrs
212
243
2.73
3.03
3.34
3.64
3.94
4.25
4.55
4.85
5.16
5.46
5.76
6.07
9.10
12.14
15.17
18.20
21.24
24.27
27.30
30.34
33.37
36.41
39.44
42.47
45.51
48.54
51.57

54.61

Example 3-3

Pwf, psi
4949.15
4947.87
4946.70
4945.63
4944.63
4943.69
4942.81
4941.98
4941.19
4940.43
4939.70
4939.01
4938.33
4937.68
4932.05
4927.36
4923.21
4919.43
4915.92
4912.64
4909.54
4906.60
4903.81
4901.14
4898.58
4896.13
4893.77
4891.49
4889.30

4887.18

t,hrs
57.64
60.68
91.01
121.35
151.69
182.03
212.36
242.70
273.04
303.38
333.71
364.05
394.39
424.73
455.06
485.40
515.74
546.08
576.41
606.75
910.13
1213.50
1516.88
1820.25
2123.63
2427.00
2730.38
3033.75
3337.13

3640.50

Pwf, psi
4885.13
4883.14
4866.05
4852.56
4841.39
4831.86
4823.55
4816.17
4809.55
4803.53
4798.01
4792.92
4788.19
4783.77
4779.63
4775.73
4772.04
4768.55
4765.22
4762.05
4736.47
4717.74
4704.69
4692.94
4683.00
4674.40
4666.81
4660.02
4653.87

4648.27

t,hrs
3943.88
4247.25
4550.63
4854.00
5157.38
5460.75
5764.13
6067.50
9101.25
12135.00
15168.75
18202.50
21236.25
24270.00
27303.75
30337.50
33371.26
36405.01
39438.76
42472.51
45506.26
48540.01
51573.76
54607.51
57641.26
60675.01

91012.51

Pwf, psi
4643.11
4638.33
4633.88
4629.73
4625.82
4622.13
4618.65
4615.34
4589.21
4570.67
4556.29
454454
4534.60
4526.00
4518.41
4511.62
4505.47
4499.87
4494.71
4489.93
4485.49
4481.33
4477.42
4473.74
4470.25
4466.95

4440.81
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t,hrs

0.0000
0.0008
0.0015
0.0023
0.0031
0.0038
0.0046
0.0054
0.0061
0.0069
0.0076
0.0153
0.0229
0.0306

0.0382

Pwf, psi
6000.00
5996.97
5995.71
5994.75
5993.93
5993.22
5992.57
5991.98
5991.42
5990.90
5990.41
5986.44
5983.39
5980.82

5978.55

t,hrs

0.046
0.054
0.061
0.069
0.076
0.153
0.229
0.306
0.382
0.459
0.535
0.612
0.688
0.765

1.529

Pwf, psi
5976.51
5974.62
5972.87
5971.23
5969.67
5957.10
5947.41
5939.11
5931.65
5924.74
5918.25
5912.09
5906.23
5900.62

5854.86

t,hrs
2.29
3.06
3.82
4.59
5.35
6.12
6.88
7.65
15.29
22.94
30.58
38.23
45.87
53.52

61.16

Example 5-1

Pwf, psi
5821.30
5794.93
5773.24
5754.85
5738.87
5724.76
5712.13
5700.70
5623.06
5576.24
5542.38
5515.50
5492.92
5473.22

5455.61

t,hrs
68.81
76.45
152.90
229.35
305.80
382.25
458.70
535.15
611.60
688.05
764.51
1529.01
2293.52
3058.02

3822.53

Pwf, psi
5439.59
5424.82
5315.11
5238.44
5176.95
5124.56
5078.42
5036.93
4999.03
4964.02
4931.38
4662.66
4486.38
4350.61

4240.07

t,hrs
4587.03
5351.54
6116.04
6880.55
7645.05
15290.10
22935.15
30580.20
38225.26
45870.31
53515.36
61160.41
68805.46

76450.51

Pwf, psi
4146.90
4066.44
3995.66
3932.50
3883.79
3461.72
3214.82
3039.64
2903.76
2792.74
2698.88
2617.57
2545.85

2481.69
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t,hrs

0.0000
0.0002
0.0004
0.0006
0.0008
0.0009
0.0011
0.0013
0.0015
0.0017
0.0019
0.0038
0.0057
0.0076

0.0095

Pwf, psi
10000.00
9988.95
9984.38
9980.86
9977.90
9975.29
9972.94
9970.77
9968.75
9966.85
9965.06
9950.59
9939.49
9930.15

9921.95

t,hrs

0.0114
0.0133
0.0152
0.0171
0.0190
0.0379
0.0569
0.0758
0.0948
0.1138
0.1327
0.1517
0.1706
0.1896

0.3792

Pwf, psi
9914.60
9907.90
9901.74
9896.03
9890.70
9850.93
9824.44
9804.54
9788.56
9775.14
9763.52
9753.20
9743.88
9735.34

9672.57

Example 5-2

t,hrs
0.57
0.76
0.95
1.14
1.33
1.52
1.71
1.90
3.79
5.69
7.58
9.48
11.38
13.27

15.17

Pwf, psi
9628.89
9593.99
9564.35
9538.27
9514.78
9493.31
9473.43
9454.86
9312.07
9210.44
9130.30
9063.94
9007.27
8957.83

8913.95

t,hrs
17.06
18.96
37.92
56.88
75.84
94.80
113.77
132.73
151.69
170.65
189.61
379.22
568.83
758.44

948.05

Pwf, psi
8874.51
8838.68
8592.78
8444.23
8338.78
8257.49
8191.51
8136.07
8088.34
8046.53
8009.40
7728.02
7563.42
7446.63

7356.05

t,hrs
1137.66
1327.27
1516.88
1706.48
1896.09
3792.19
5688.28
7584.38
9480.47
11376.56
13272.66
15168.75
17064.85
18960.94

37921.88

Pwf, psi
7282.04
7219.46
7165.25
7117.44
7074.67
6793.28
6628.68
6511.90
6421.31
6347.30
6284.72
6230.52
6182.70
6139.93

5858.55
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t, hrs

0.0000
0.0007
0.0014
0.0021
0.0028
0.0036
0.0043
0.0050
0.0057
0.0064
0.0071
0.0142
0.0213
0.0284
0.0356
0.0427
0.0498
0.0569
0.0640
0.0711

0.1422

Pwf, psi
8000.00
7996.27
7994.73
7993.54
7992.54
7991.66
7990.86
7990.13
7989.45
7988.81
7988.21
7983.32
7979.57
7976.41
7973.63
7971.11
7968.79
7966.64
7964.62
7962.70

7947.25

t, hrs
0.2133
0.2844
0.3555
0.4266
0.4977
0.5688
0.6399
0.7110
1.4221
2.1331
2.8441
3.5552
4.2662
4.9772
5.6883
6.3993
7.1104
14.2207
21.3311
28.4414

35.5518

Example 5-3

Pwf, psi
7935.40
7925.40
7916.61
7908.67
7901.39
7894.64
7888.34
7882.42
7836.72
7804.50
7778.83
7757.00
7737.73
7720.34
7704.42
7689.71
7676.01
7573.50
7503.99
7450.02

7404.98

t, hrs
42.662
49.772
56.883
63.993
71.104
142.207
213.311
284.414
355.518
426.621
497.725
568.828
639.932
711.035
1422.071
2133.106
2844.141
3555.176
4266.212
4977.247

5688.282

Pwf, psi
7365.71
7330.51
7298.37
7268.64
7240.89
7028.27
6879.55
6764.33
6670.19
6590.59
6521.67
6460.91
6406.60
6357.50
6003.16
5799.60
5653.70
5539.97
5462.97
5381.35

5310.64

t, hrs
6399.32
7110.35
14220.71
21331.06
28441.41
35551.76
42662.12
49772.47
56882.82
63993.17
71103.53
142207.05
213310.58
284414.11
355517.63
426621.16
497724.69
568828.21

639931.74

Pwf, psi
5248.28
5192.49
4825.47
4610.77
4458.45
4340.29
4243.75
4162.13
4091.42
4029.06
3973.27
3606.25
3391.55
3239.23
3121.07
3024.53
2942.91
2872.20

2809.84
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Example 7-1

t,hrs Pwf, psi t,hrs Pwf, psi t,hrs Pwf, psi t,hrs Pwf, psi

0.000000 5000.00 0.0030 4995.98 0.61 4971.01 364.05 4739.89
0.000006 4999.76 0.0036 4995.76 121 4960.61 424.73 4724.94
0.000012 4999.66 0.0042 4995.57 1.82 4953.41 485.4 4711.16
0.000018 4999.58 0.0049 4995.41 2.43 4947.9 546.08 4698.32
0.000024 4999.52 0.0055 4995.25 3.03 4943.44 606.75 4686.27
0.000030 4999.46 0.0061 4995.11 3.64 4939.7 1213.5 4592.89
0.000036 4999.41 0.0121 4993.99 4.25 4936.48 1820.25 4526.84
0.000043 4999.36 0.0182 4993.13 4.85 4933.64 2427 4475.29
0.000049 4999.32 0.0243 4992.41 5.46 4931.1 3033.75 4432.96
0.000055 4999.27 0.0303 4991.78 6.07 4928.79 3640.5 4397.07
0.000061 4999.23 0.0364 4991.2 12.14 4912.48 4247.25 4365.94
0.000121 4998.92 0.0425 4990.68 18.20 4901.52 4854 4338.49
0.000182 4998.68 0.0485 4990.19 24.27 4892.83 5460.75 4313.95
0.000243 4998.48 0.0546 4989.73 30.34 4885.44 6067.5 4291.78
0.000303 4998.31 0.0607 4989.29 36.41 4878.92 12135 4142.55
0.000364 4998.16 0.1214 4985.77 42.47 4873.04 18202.5 4053.79
0.000425 4998.03 0.1820 4983.07 48.54 4867.66 24270 3983.97
0.000485 4997.91 0.2427 4980.8 54.61 4862.67 30337.5 3929.82
0.000546 4997.80 0.3034 4978.79 60.68 4858.02  36405.01 3885.57
0.000607 4997.70 0.3641 4976.98 121.35 4822.17 4247251 3848.16
0.001214 4997.00 0.4247 4975.33 182.03 4796.11 48540.01 3815.76

0.00182 4996.56 0.4854 4973.79 242.7 A774.77 54607.51 3787.17

0.00243 4996.23 0.5461 4972.36 303.38 4756.33  60675.01 3761.6
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t,hrs

0
7.77E-06
1.55E-05
2.33E-05
3.11E-05
3.88E-05
4.66E-05
5.44E-05
6.21E-05
6.99E-05
7.77E-05
0.000155
0.000233
0.000311
0.000388
0.000466
0.000544
0.000621

0.000699

Pwf, psi
10000

9999.47
9999.25
9999.09
9998.94
9998.82
9998.71
9998.6

9998.51
9998.42
9998.33
9997.64
9997.12
9996.68
9996.3

9995.98
9995.68
9995.41

9995.17

t,hrs
0.000777
0.0016
0.0023
0.0031
0.0039
0.0047
0.0054
0.0062
0.007
0.0078
0.0155
0.0233
0.0311
0.0388
0.0466
0.0544
0.0621
0.0699

0.0777

Pwf, psi
9994.95
9993.35
9992.35
9991.61
9991.03
9990.55
9990.14
9989.77
9989.45
9989.16
9986.99
9985.41
9984.09
9982.92
9981.86
9980.89
9979.98
9979.13

9978.33

Example 7-2

t,hrs
0.1553
0.233
0.311
0.388
0.466
0.544
0.621
0.699
0.777
1.553
2.33
3.107
3.883
4.66
5.436
6.213
6.99
7.766

15.533

Pwf, psi
9971.73
9966.34
9961.44
9956.8
9952.35
9948.04
9943.86
9939.78
9935.8
9900.11
9869.83
9843.21
9819.25
9797.32
9777
9757.99
9740.07
9723.09

9585.47

t,hrs
23.299
31.066
38.832
46.6
54.36
62.13
69.9
77.66
155.33
232.99
310.66
388.32
465.98
543.65
621.31
698.98
776.64
1553.28

2329.92

Pwf, psi
9479.96
9391.53
9314.31
9245.3

9182.67
9125.24
9072.15
9022.76
8657.22
8416.47
8236.67
8093.13
7973.71
7871.5

7782.17
7702.85
7631.51
7154.65

6871.03

t,hrs
3106.56
3883.2
4659.84
5436.48
6213.12
6989.76

7766.4

Pwf, psi
6668.39
6510.57
6381.28
6271.79
6176.88
6093.16

6018.29
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