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ABSTRACT 

The oil and gas industry has long recognized the importance of understanding the 

behaviors and trends of pressure and fluid flow dynamics for damaged and stimulated 

horizontal wells. It has also been recognized that the existing theories to predict these 

behaviors and trends have not been effective due to the geologic factors, as well as 

drilling, completion, and production processes. Previous researches and studies over the 

last two decades have shown different types of factors such as the presence of multi-

damaged zones, multi-segmented fractures, branching, asymmetry, and deviation from 

either the vertical direction or the horizontal direction of the wellbores as a result of in-

situ stress distribution.  

The main purpose of this study is to find new applications for the well test analysis 

rather than the classic applications that are focusing basically on the characterization of 

formation and determination of the permeability and skin factor. The new applications 

for the well test analysis are evaluating performance of the zonal isolations and 

hydraulic fractures and determining the locations of the isolations and fractures that do 

not perform as designed.  Another objective is to investigate pressure behavior and flow 

regimes of a horizontal well containing either zonal isolations or hydraulic fractures. 

 The objectives in this study are achieved by using different analytical models. 

These models have been derived to simulate the pressure responses and flow regimes in 

the vicinity of the wellbore and the outer boundaries of the formations. Based on the 

new derived models, different analytical solutions and type-curve matching sets have 

been developed to characterize formations. 



xiv 

 

The first part of this study focuses on the impact of the zonal isolations on pressure 

behaviors and flow regimes of horizontal wells. Horizontal wells with multiple zonal 

isolations have become a common completion technique in the oil and gas industry. 

Sand and asphalt production problems, damaged zones and water cresting or gas coning 

are the main reasons for using isolators to sustain or improve oil and gas recovery. 

However, the use of such isolators introduces negative effects on the pressure behavior 

of horizontal wells.  

This research introduces new analytical models for studying the effect of this 

completion technique on pressure behavior of wells with multiple isolated zones. These 

models have been derived based on the assumption that reservoirs can be divided into 

multi-subsequent segments of producing and non-producing intervals. Based on the 

pressure and pressure derivative, the models can be used to estimate the impact of 

isolators on the pressure behavior. The effects of the number and length of isolators 

have been investigated for wells having different lengths.  

A set of type-curves of dimensionless pressure and pressure derivative versus 

dimensionless time have been generated for two cases. The first case is for wells in an 

infinite reservoir having short dimensionless wellbore length and multiple-isolated 

zones, while the second case concentration on very long wells in an infinite reservoir. 

These plots can be used to verify the number and length of zonal isolations originally 

installed, as well as to determine the number and locations of malfunctioning isolators. 

These plots can also be used to locate segments where sand is produced and intervals of 

water cresting or gas coning are present.  
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The main finding is that the pressure of these wells behaves similarly for all cases. 

The dominant effect of the isolators can be noticed only during the early time flow 

regimes, i.e. during the early radial or early linear. The behavior of the late time flow 

regimes, i.e. pseudo radial is not affected by the presence of isolators.  

The second part of this study focuses on the pressure behavior and flow regimes that 

are developed for horizontal wells intersected by multiple-inclined hydraulic fractures. 

The fractures either fully or partially penetrate the formations. Horizontal wells with 

multiple hydraulic fractures have become a common occurrence in the oil and gas 

industry, especially in tight formations. Recent studies have shown that fractures are 

asymmetric, inclined with respect to the vertical direction and the axis of the wellbore, 

and partially penetrate the formation in many cases.  

This study introduces new analytical models for interpreting the pressure behavior of 

horizontal wells with multiple hydraulic fractures. The hydraulic fractures in this model 

could be longitudinal or transverse, vertical or inclined, symmetrical or asymmetrical. 

The fractures propagate in isotropic or anisotropic formations. In addition, they have 

different dimensions and different spacing. These models can be solved to calculate 

various reservoir parameters, including directional permeability, fracture length, skin 

factors, angle of inclination and penetration ratio.  

Type-curve matching technique has been applied using the plots of the pressure and 

pressure derivative curves. A set of type curves have been generated for the inclined 

transverse and longitudinal hydraulic fractures associated with horizontal wells having 

different inclination angles from the vertical and different penetration ratios.  
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Tiab’s Direct Synthesis (TDS) technique has been applied also using the plots of the 

pressure and pressure derivative curves. Several unique features of the pressure and 

pressure derivative plots of both longitudinal and transverse fractures models were 

identified including the points of intersection of straight lines for different flow regimes. 

These points can be used to verify the results or to calculate unknown parameters.  

Equations associated with these features were derived and their usefulness was 

demonstrated in this study.  
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1- INTRODUCTION AND LITERATURE REVIEW 

 

1-1- ZONAL ISOLATIONS 

The use of horizontal wells for producing oil and gas from low-permeability and 

unconventional reservoirs is now well established within the petroleum industry. The 

great increase of the surface area of the wellbore that allows fluids to flow freely from 

the reservoir to the wellbore is the main advantage of the horizontal well. Reducing the 

effects of the damaged zones and increasing the well deliverability are the direct results 

of this type of wells. Therefore, over the last two decades the number of horizontal 

wells that have been drilled worldwide has increased significantly due to the significant 

improvement in well productivity and ultimate oil and gas recovery. Low-permeability 

and unconventional reservoirs are not the only common applications for horizontal well 

technology. It has been used successfully in: (1) Fractured reservoirs to intersect natural 

fractures and effectively drain the reservoir, (2) Water and gas driven reservoirs to 

minimize water cresting and gas coning, (3) Both low and high permeability gas 

reservoirs to reduce the number of producing wells, and (4) Tertiary recovery 

applications to enhance the contact between the well and the reservoir. In addition, this 

technique has been applied in offshore reservoirs as well as in environmentally sensitive 

areas to reduce the cost of drilling and production facilities. 

The completion of horizontal wells is of great importance due to its impact on current 

well deliverability and future reservoir management regarding the effective control of 

fluid movements from the reservoir drainage area toward the wellbore. An open-hole 

horizontal well completion may cost less than other types of completion. As a result, it 
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has been used, especially in the shale gas reservoirs where it has also led to higher 

production rates (Alison et al, 2009). However, this type of completion leaves the 

operators with little or no opportunity to perform future diagnostic or remedial work 

(Rentano and Muhammed, 1999). Many horizontal wells which were completed as open 

holes have had considerable decline in production in spite of producing for the first few 

years without significant problems. 

Three common types of completion techniques have been used in recent years for 

horizontal wells instead of open hole: slotted linear, linear with external casing packers, 

and cemented and perforated casing. Different considerations should be taken into 

account when deciding what completion type should to be used. The competence of the 

rock is the first consideration while borehole instability and formation sensitivity is the 

second. Expected problems such as sand production should also be taken into 

consideration in addition to the damaged zones that might be produced either from the 

drilling and completion of the horizontal well itself or from the hydraulic fracturing 

processes. Water cresting and gas breakthrough are possible problems that may occur 

later in the life of the well that can lead to decreased productivity. 

As a consequence of these potential problems, zonal isolation is perceived as an ideal 

solution. This approach not only helps the operators in controlling well deliverability 

and eliminates the negative effects of the damaged zones, sand production intervals, and 

water and gas coning sectors, but also compartmentalizes the horizontal section and 

optimizes the fracture treatment. There are several ways to establish the zonal isolations 

including traditional cement, open-hole hydraulic set packers, and inflatable packers. 

However, each technique adds complexity whether by adding extra operations process 
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to complete the installation or by introducing additional mechanical components, which 

increases the risks associated with the use of the isolators. Even though zonal isolations 

provide reasonable solutions to many production problems, they also have undesirable 

effects such as increasing the skin factor by reducing the horizontal section. At the same 

time they have a significant effect on the pressure response of horizontal wells and the 

type of flow regimes in the drainage area close to the wellbore.  

Unfortunately, there are very few studies concerning the effects either positive or 

negative that result from the use of the zonal isolations. Robison et al 1993 explained 

that the use of zonal isolations in highly deviated or horizontal wells is likely to be the 

preferred solution for the problem of water and gas coning. Frick et al 1995 were the 

first to study the well testing in horizontal wells with isolated segments. They explained 

that segmented testing can provide information about the local skin factor. A high local 

skin factor provides an indication of damaged sections and is a necessary variable for 

the optimization of the stimulation process. Rentano and Muhammed 1999 suggested 

that in many cases the open length of the well can be reduced without a substantial 

decrease in the productivity index over a fully open well by using zonal isolations. East 

et al 2000 investigated the use of sealants before the primary cementing operation to 

improve zonal isolations performance for production and injection wells.  

Henriksen et al 2005 stated that the integration of open-hole zonal isolation 

technology contributes to improving reserve recovery. They experimentally investigated 

the horizontal completions with formation segmentation by installing packers at 

strategically chosen locations along the wellbore. Kelbie and Garfield 2006 explained 

that the intermediate zonal isolation for the upper zone can be performed in several 
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ways. One way is setting a bridge plug below the target interval or deploying an 

inflatable straddle acidizing packer; thus shutting off gas zones. For the lower zone, 

different zonal isolation configuration should be used in which the packer is positioned 

below the perforations that require the isolations. Maddox et al 2008 provided field 

examples for the use of the zonal isolations in horizontal wells’ completion for the 

hydraulic fracturing process. In these examples five inflatable packer isolation systems 

were used to create five separate hydraulically fractured zones along the wellbore. 

Brooks and Steven 2009 also have introduced field examples for well testing procedures 

for multi-zones open hole completion wells where the hydraulic isolation between 

zones is achieved by using casing annulus packers rather than cement. They found that 

the pressure transient test generally showed low mechanical skin and minimal formation 

damage in all intervals.  

Del Rio et al 2011, explained how the using of the temporary zonal isolations 

minimizes reservoir damage during workover operations in Ecuador. They stated that 

cross linked polymer system can be spotted across the low pressure and/or highly 

permeable reservoirs to temporarily isolate and protect them from fluids invasion during 

the workover operations. This technique has led to increased production in more than 

fifteen wells. Gomez et al 2011, expressed that the long term zonal isolation is required 

to correctly exploit the Brazilian ultra deep water well of Santos basin to effectively 

perform stimulation operations and control water and/or unwanted gas production. They 

described the methods used to design a salt and CO2 cement slurry and the laboratory 

testing performed to meet the cement requirement and the field implementation of the 

designed zonal isolation for a well in ultra deep waters. 



5 

 

1-2- HYDRAULIC FRACTURES 

During the last two decades, horizontal wells have become a common applied 

completion technology in the petroleum industry. With a large reservoir contact area, 

horizontal wells can greatly improve well productivity and effectively handle problems 

with water cresting and gas coning. It is most advantageous to drill horizontal wells in 

thin and tight reservoirs with vertical fractures. However, there are certain situations, 

where fracturing a horizontal well is an economically attractive completion option. This 

is especially true in the case of tight formations. Wells in low to moderate permeability 

reservoirs that are not naturally fractured may be candidates for hydraulic fracturing. 

Fracturing a horizontal well may take place under several scenarios, some of which 

are listed below: 

(1) In low-permeability formations to enhance the drainage volume. 

(2) Restricted flow in the vertical direction caused by low vertical permeability or the 

presence of shale slabs in order to create vertical fractures resulting in enhanced 

vertical permeability and thus enhanced well productivity. 

(3) In a layered reservoir to create vertical fractures along the well length so that 

different producing layers can be connected at different elevations. 

(4) Drilling and completion considerations in cemented horizontal wells may require 

cementing the wells. Therefore, by creating several fractures along the length of the 

wellbores, it is possible to achieve at least the same productivity as an open hole 

horizontal well. 

(5) The existence of natural fractures in a direction different from the direction of 

induced fractures. Therefore, induced fractures will intercept the natural fractures. 
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Based on the above, hydraulic fracturing is an important stimulation technique that 

has been widely used in conventional and unconventional oil and gas reservoirs all over 

the world.  The technique involves creation of fracture or fracture system in porous 

medium to overcome wellbore damage, to improve oil and gas productivity in low 

permeability reservoirs or to increase production in secondary recovery operations.  

Depending on the stresses’ orientation relative to the wellbore, the fractures may be 

transverse or longitudinal, vertical or inclined.  

For hydraulically fractured horizontal wells, transient well testing is commonly used 

to determine reservoir parameters and to estimate well productivity. One of the big 

challenges is the three dimensions’ nature of flow geometry in the formations. The 

radial flow symmetry no longer exists. Instead, several flow regimes may occur in and 

around the fractures. These flow regimes generally can’t be defined very well based on 

the test data. Moreover, many factors, such as vertical permeability or the vertical 

anisotropy, inclination angle from the vertical direction, the spacing between fractures, 

and the penetration ratio (the ratio of the fracture’s height to the formation’s height) can 

affect the transient pressure behavior.  

Most of the pressure transient analysis techniques of fractured wells are derived 

based on many assumptions such as;  

(1) Homogeneous reservoirs with constant thickness. 

(2) Darcy’s law is applicable. 

(3) Gravitational and fractional effects are negligible. 

(4) Isothermal flow. 

(5) Single phase flow. 
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(6) Constant porosity, viscosity and compressibility. 

Howard and fast 1970, defined hydraulic fracturing as a process of establishing a 

fracture or fracture system in a formation by injecting a fracturing fluid (usually water 

and sand) under high pressure in order to overcome local stresses and to cause breaking 

the porous medium. In general, for an isotropic medium, the over-all plane of a 

hydraulic fracture is parallel, inclined, or perpendicular to the axis of the borehole from 

which it is extending. Accordingly, these fractures will be called axial, inclined or 

normal respectively (often termed vertical, inclined or horizontal in the petroleum 

industry) (Daneshy, 1973).  

Since 1972, several attempts have been done to model the pressure transient 

behavior for either horizontal or vertical wells, with or without hydraulic fractures. All 

these attempts were developed based on the using of the source solution and Green’s 

function to solve unsteady-state flow problems in the reservoir which was presented by 

Gringarten and Ramey (1973). They used the source function and Newman product 

method for solving transient flow problems. Although this approach is extremely 

powerful in solving two and three dimensions’ problem, it has some limitations such as 

incorporating the influence of storage and skin effects. The transient flow solutions 

have been extended to predict the behavior of the infinite conductivity vertical fracture 

in homogenous formations or in dual-porosity media. Cinco-Ley et al (1974, 1975) 

solved the problem for uniform flux and infinite conductivity inclined fracture in 

infinite slab reservoirs.  They developed analytical models for the pressure behavior at 

the wellbore for a slanted hole and an inclined fracture associated with vertical wells. 

Cinco-Ley and Samaniego-V (1981) presented a method for the determination of the 
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orientation of a fully penetrating vertical fracture by means of analysis of transient 

pressure data recorded at one active well and two observation wells due to production or 

injection at the active fractured well. 

Barker et al (1978) used a finite element model to study pressure behavior of a well 

intersecting a vertical fracture at the center of closed square reservoirs. Rodriguez and 

Cinco-Ley (1984) developed semi-analytical solution for the transient flow behavior of 

a reservoir with a well intersecting a partially-penetrating vertical fracture of finite 

conductivity. The results of this study explained that the flow behavior of partially 

penetrating fractures during the early time period is equivalent to that of totally 

penetrating fractures. Wong and Harrington (1985) analyzed the data using type curve 

matching and pressure and pressure derivative for cases of vertical fractured wells with 

no skin and no wellbore storage and cases with both skin and wellbore storage during 

the bi-linear flow period. Cinco-Ley and Meng (1988) studied the results obtained from 

the transient behavior of a well intersected by a vertical fracture in a double porosity 

reservoir. They introduced two models; the first one was a general semi-analytical and 

the second one was a simplified fully analytical model. Ozkan (1988) presented a 

complete set of different solutions for diffusivity equation in terms of the Laplace 

transform variable. He considered a wide variety of wellbore configurations, different 

bounded systems, and homogeneous or double-porosity reservoirs. 

Early techniques for interpreting pressure transient tests included conventional 

semi-log and log-log type curve methods. In these techniques, flow regimes of 

reservoir’s fluid must be observed in the pressure and pressure derivative curves over a 

sufficient period of time. If they not present, type curve matching will not be 
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sufficiently used. In multiple hydraulically fractured horizontal wells, different flow 

regimes are possible, but almost never observed from the pressure data. Therefore, it is 

important to use an alternative method known as “TDS-Tiab’s Direct Synthesis 

Technique” introduced by Tiab in (1988) for hydraulically fractured wells with multiple 

fractures. 

Olarewaju and Lee (1989) presented an analytical solution for pressure transient 

tests from layered reservoirs with or without cross flow. They noticed that the pressure 

behavior of a well in a two-layer reservoir with unsteady state interlayers' cross flow is 

identical to that of a commingled system. Rodriguez et al (1992) introduced a graphical 

technique to evaluate the asymmetry of hydraulically fractured wells. The technique 

was derived from an analytical solution for the pressure response of the wells during the 

pseudolinear flow period and the known bilinear flow solution.  

Tiab (1993) applied the direct synthesis technique (TDS) to uniform flux, infinite 

conductivity and finite conductivity vertically fractured wells. This study extends the 

method to hydraulically fractured horizontal wells. The cases of uniform flux, infinite 

conductivity and finite conductivity models are considered.   

 Poe and Elbel (1994) suggested an analytical solution for the pressure transient 

behavior of a well intersected by a vertical fracture in infinite acting reservoirs or in 

cylindrical or rectangular bounded finite reservoirs. This solution included the practical 

effects of reservoir permeability, anisotropy and dual porosity behavior. Leif and Hegre 

(1994) provided a comprehensive investigation of the pressure transient behavior of 

horizontal wells with single or multiple vertical fractures, either longitudinal or 

transverse. Four flow regimes have been observed in their study; fracture radial, radial-
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linear, formation linear, and pseudo-radial flow. Kuchuk and Habusky (1994) examined 

the pressure response of horizontal wells with single and multiple fractures in 

homogenous systems. They showed that the effect of the wellbore can’t be neglected in 

the modeling unless the fracture conductivity is high.   

Wright and Conant (1995) provided field examples where the hydraulic fractures 

reoriented due to production. Inclined fractures reorientation led to new inclination 

angles after refracturing. They introduced examples from Chevron Lost Hills field 

where the inclination angle has changed from 82 degrees to 45 degrees. This was the 

result of the production depletion between two fracturing treatments. This is clear 

evidence that production activities can affect the in-situ stress state and thus change the 

direction of principle stresses. Valko and Economides (1996) developed rigorous semi-

analytical procedures for the purpose of modeling a horizontal well with a longitudinal 

vertical fracture. Raghavan (1997) developed a mathematical model to discern the 

characteristic response of multiply-fractured horizontal wells. Three significant flow 

periods have been observed based on their model; the early time period in which the 

system behaved like the one with n-layers, the intermediate time period in which the 

system reflected the interference between fractures and the late time period in which the 

system behaved as a single fractured horizontal well with length equal the distance 

between the outermost fractures.  

 Wright et al (1998) provided a number of case studies where surface tiltmeter 

arrays were used for fracture mapping. The results obtained from data of over (2000) 

fracture treatments using tiltmeters revealed that fractures are almost never perfectly 

vertical.  Quite often they dip 5 to 15 degrees from the vertical and very few fractures 



11 

 

dip less than two degrees off vertical. In their study, they showed that “horizontal” 

fractures dipping less than 35 degrees with respect to the horizontal plane are not as rare 

as commonly known. Another conclusion from the study is fracture azimuth and dip 

may be very different locally across a field as the local stress field may be changed by 

location on the structure or with respect to local faults. Hydrocarbon production, steam 

and water injection and infill drilling in mature primary and secondary recovery 

reservoirs may alter the local stress field and thus affect the fracture orientation. 

Wan and Aziz (1999) developed a general solution for horizontal wells with 

multiple fractures. They showed that four flow regimes can be observed; the early 

linear, transient, late linear, and late time radial flow. Zerzar and Bettam (2003) 

combined the boundary element method and Laplace transformation to present a 

comprehensive solution for horizontal wells with multiple vertical fractures. Seven flow 

regimes have been noticed; bilinear, first linear, elliptical, radial, pseudo-radial, second 

linear, and pseudo-steady state. Al-Kobaisi and Ozkan (2004) presented a hybrid 

numerical-analytical model for the pressure transient response of horizontal wells 

intercepted by a vertical fracture.  

Dinh and Tiab (2009a,b) solved the analytical model presented by Cinco-Ley (1974) 

for the pressure transient behavior caused by an inclined fracture associated with 

vertical wellbore. The model used the uniform flux and infinite conductivity fracture 

solution for different inclination angles from the vertical direction. Both type curve and 

TDS technique have been used to estimate the formation parameters such as 

permeability, skin factor, and fracture length. Brown et al (2009) suggested an 

analytical trilinear flow solution to simulate the pressure transient and production 
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behavior of fractured horizontal wells in unconventional reservoirs. This model can be 

used to estimate petrophysical characteristics such as intrinsic properties of the matrix 

and the fracture.   

All the definitions of symbols are given in the nomenclatures at the end of the 

dissertation text body. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 

 

2- MATHEMATICAL MODELS FOR HORIZONTAL WELLS WITH ZONAL 

ISOLATIONS 

 

The primary goal of this chapter is to introduce various analytical models for the 

pressure behaviors and flow regimes of horizontal wells containing multiple zonal 

isolations. Four analytical models will be introduced in this chapter, two for short 

horizontal wells having dimensionless wellbore length -the ratio of the wellbore length 

and formation height- (LD<20) and two for long horizontal wells having dimensionless 

wellbore length (LD>20). Two different configurations for the two above cases of 

horizontal wells will be investigated. The first one is for horizontal wells headed by a 

zonal isolation while the second is for wells headed by a perforated zone. The following 

assumptions are important for the derivation of the models: 

1- The reservoir is homogenous, having constant and uniform thickness with two 

impermeable layers at the top and bottom of the formation.  

2- There is constant porosity and permeability in each direction, but the formation is 

anisotropic. 

3- Gravitational and frictional effects are negligible. 

4- The well is extending in the midpoint of the formation height (symmetrical). 

5- Single phase fluid of small and constant compressibility, constant viscosity, and 

formation volume factor, flows from the reservoir to the wellbore. 

For general purpose, the following facts are important to be mentioned: 

1- Reservoir pressure is initially constant. 

it
PP 

0                                                                                                                (2-1) 
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2- The pressure at the outer boundaries of the reservoir is assumed to be constant 

and equal to the initial reservoir pressure. 

ie PP                                                                                                                 (2-2) 

3- The pressure at the upper and lower impermeable boundaries is assumed to be 

constant so that: 

0

0






ZZ

P
                                                                                                           (2-3) 

0




hZZ

P
                                                                                                           (2-4) 

Fortunately, the effects of the zonal isolations on the pressure behavior of the 

horizontal wells can be investigated using the solution of the diffusivity equation. In this 

case the well can be considered as multiple-horizontal segments of production intervals 

separated by zonal isolations. In addition, the pressure drop at a certain point in the 

reservoir is considered resulting from the production from each production point. 

Therefore, the pressure drop at this point is equal to the sum of the pressure drop 

resulting from the production from each production interval.  

Based on the above, the solution for the diffusivity equation can be used for this 

purpose using one of the techniques that are applicable for the transient flow of fluid in 

porous media. Gringarten and Ramey (1973) initially introduced the use of the source 

and Green’s function in solving unsteady state flow problems in a reservoir. They stated 

that the infinite line source can be visualized as the intersection of two perpendicular 

infinite plane sources normal to two of the three principal axes of permeability while the 

point source can be visualized as the intersection of three perpendicular infinite plane 
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sources normal to the principal axes of permeability. Ozkan (1988) introduced new 

source solutions to the diffusivity equation using the Laplace space to overcome the 

difficulties that might result when the Gringarten and Ramey’s source solution is 

applied in complex geometrical configurations such as dual porosity and dual 

permeability porous media.  

2-1- Short horizontal well headed by a zonal isolation: 

“Short horizontal well” in this study refers to a horizontal well having a ratio of 

wellbore length to the height of formation (LD<20). Consider a horizontal well, such as 

in Fig. (2-1), producing slightly compressible petroleum fluids from an infinite-acting 

reservoir at a constant rate. The horizontal well consists of two altered sections; one is 

the producing interval and the other is the zone isolator.  

 

 

 

 

 

 

 

 

Figure 2-1: Horizontal well headed by zonal isolation. 
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equal length )( sL , and extending in the midpoint of an infinite formation having a 

known height  h . The model can be derived as follow: 

Assume equal and constant flow rate from the perforation intervals: 

P

t
i

nL

q
q                                                                                                                        (2-5)    

where n   is the number of the producing intervals.                                                                                                                               

The pressure drop at any point in the reservoir is: 

 it PP                                                                                                                 (2-6)                                                                                                                                                                         

Using the instantaneous source functions for the pressure distribution in porous 

media which results from production process, the pressure behavior can be found as: 
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where: 

zyx ddd ,,  Distances between the source point and the monitoring point in the X, Y 

and Z direction.                     

 

 

 

 

 

 

 

Figure 2-2: The monitoring point and the sources of production for a horizontal well. 
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It is clear that the pressure drop, represented in Eq. (2-7), consists of three 

instantaneous source functions which are S(x, t), S(y, t), and S(z, t). S(x, t) represents 

the infinite slab source in an infinite reservoir and S(y, t) represents the infinite plane 

source in an infinite reservoir while S(z, t) represents the infinite plane source in an 

infinite slab reservoir. 

Applying Eq. (2-7) to the case of the horizontal well shown in Fig. (2-2): 
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Since the horizontal well is extending along the (x) direction and both (y) and (z) are 

the same for all points along the wellbore of the well, Eq. (2-8) can be written as:              
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Eq. (2-9) can be written as: 

 

   

 

 

 

 

  


























































 



t t

LLxx

t

Lxx

t

LLxx

t

LLxx

vut

zz

t

yy

zyxt

i
t

x

psw

x

sw

x

psw

x

psw

zy
dveduee

tc

q
tzyxP

0

2

2

2

22

2

2

4

'

4

'

2/32/3

22

22

1

)(8
),,,(












 

                                                                                       
 

 

dtdwe

t

LLxx

t

LLxx

w

x

psw

x

psw



























2

33

2

23

2

                 (2-13)                                                   

Integrating for u, v, and w using the error function features, Eq. (2-13) becomes: 
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To reflect the effect of the top and bottom impermeable layers on the pressure 

behavior of the horizontal well, superposition theory should be applied: 
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Eq. (2-15) can be rearranged in the following form: 
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Substitute Eq. (2-16) on Eq. (2-14): 
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Applying Poisson’s summation formula, Eq. (2-17) can be written as: 
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In dimensionless form, Eq. (2-18) becomes: 
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Where the dimensionless parameters in the above model are defined as follow: 
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To solve the model given by Eq. (2-19), two approximations should be done for the 

three functions based on the fluid flow dynamic and flow regimes in the early and late 

time. 

2-1-1- Early time approximation 

This approximation is very important since the major effects of the zonal isolations 

are expected to happen at the flow regimes which are developed in the areas nearby the 

wellbore. These flow regimes usually are the early radial and to some extent the early 

linear flow when the top and bottom impermeable layers are reached. Therefore the 

short-time approximation can be obtained by considering the first term in Eq. (2-7) 

using dimensionless form as:  
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The proper time limit for the above equation to be applied as determined by 

Gringarten and Ramey (1973) is: 
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The second term of Eq. (2-7), the instantaneous function S(y, t), remains as it is. 

Therefore its formula for the short time approximation using the dimensionless units is: 

D

D

y

w

t

y

y

x

wD

t

yy

y

DD e
Lt

e
t

tyS
44

)( 2

2

1

2

1
),(














                                                    (2-32)                                                                        

And the proper time for this approximation to be applicable is: 
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The third term in Eq. (2-7) which represents the effect of the upper and lower 

boundaries also remains unchanged and the early time approximation of this term using 

dimensionless units is:  
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The proper time for this approximation to be applicable is: 
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Based on the above approximations, Eq. (2-19) can be written as: 
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2-1-2- Late time approximation 

At late time, the pressure behaviors and flow regimes begin to be affected by the 

conditions at the outer boundary. Therefore, the long time approximation of Eq. (2-7) 

takes this fact into consideration.  The first instantaneous function that represents the 

infinite slab source in an infinite reservoir is approximated as follows: 
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and the starting time is: 
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The approximation for the second term and the time limit are: 
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The approximation and the time limit for the third term are: 
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Therefore the late time approximation of Eq. (2-19) can be written as follow: 
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2-2- Long horizontal wells headed by a zonal isolation  

“Long horizontal well” in this study refers to horizontal wells having a ratio of 

wellbore length to the height of formation (LD>20) [LD >50 (Spivak 1988), LD >10 

(Joshi 1991)]. The only difference between short and long horizontal wells is the early 

time flow regime that is expected to develop. Spivak (1988) explained that the long 

horizontal well behaves similarly to the vertical hydraulic fractures where the first flow 

regime that is expected to develop is the early linear flow while the first flow regime for 

short horizontal well is the early radial flow. Therefore the early time approximation for 

long horizontal wells will not be the same as for short horizontal wells. 

For long horizontal wells, pressure behaviors and flow regimes of horizontal wells 

become exactly the same behavior as vertical hydraulic fracture. This fact is related to 
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the function of the infinite plane source in an infinite slab reservoir which is converging 

to: 
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Therefore the model for long horizontal wells can be modified from Eq. (2-7) as 

follows: 
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Following the same steps for the instantaneous function of an infinite slab source in 

an infinite reservoir S(x, t) and the instantaneous function of an infinite plane source in 

an infinite slab reservoir S(z, t) for short horizontal wells. The dimensionless model for 

pressure distribution of long horizontal wells extending in porous media can be written 

as: 
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2-2-1- Early time approximation    

The short-time approximation for the instantaneous function S(x, t) can be obtained 

by considering:  

 
2

1

2

1
,

4

)( 2'






t

xx

x
DD

xe
t

txS



                                                                          (2-48)                                                                                                                                                     

The proper time limit for the above equation to be applied as determined by 

Gringarten and Ramey (1973) is: 
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The second term, the instantaneous function S(y, t), remains as it is. Therefore, its 

formula for the short time approximation as follows: 
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The proper time for this approximation to be applicable is: 
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The approximation and the time limit for the third instantaneous function S(z, t) are: 
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Therefore, the short time approximation for Eq. (2-47) can be written as: 
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Assuming that 0
D

y   and solving for the pressure at the wellbore:                                                                         
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It can be seen from Eq. (2-55) that early time approximation for long horizontal 

wells yields linear flow regimes similar to the early time approximation of vertical 

hydraulic fracture. For this time period the pressure behavior is linearly proportional 
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with time on log-log plots of dimensionless wellbore pressure and dimensionless time. 

The slope of the line is (0.5).                                                                                

 2-2-2- Late time approximation    

Late time approximation does not change with the change of the wellbore length. 

The late time approximation for long horizontal wells is the same for short ones. 

Therefore, Eqs. (2-37) through (2-44) are applicable for long horizontal wells. 

2-3- Short horizontal well headed by a perforated zone 

The same concepts that have been used to derive the mathematical model for the 

pressure distribution of horizontal wells headed by zonal isolation can be used to derive 

the pressure distribution model for wells headed by perforated zone such as in Fig. (2-

3). The only difference is the instantaneous function of infinite slab source in an infinite 

reservoir S(x, t). The limits of integration for this function should be changed based on 

the locations of the perforated zones. Therefore, the mathematical model for short 

horizontal wells headed by perforated zone is: 
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Early and late time approximations will be the same as the horizontal wells headed 

by zonal isolation except that Eqs (2-31), (2-38), and (2-44) should be written as follow: 
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Figure 2-3: Horizontal well headed by perforated zone. 

 

2-4- Long horizontal well headed by a perforated zone 

Pressure distribution for long horizontal wells headed by perforated zone can be 

modified from Eq. (2-47): 
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Early and late approximations will be the same as long horizontal wells headed by 

zonal isolation except that Eq. (2-49) should be modified to: 
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3- PRESSURE TRANSIENT ANALYSIS FOR HORIZONTAL WELLS WITH 

ZONAL ISOLATIONS 

 

Since the mid 1980’s, horizontal well technology has provided the solution for oil 

and gas production process where the conventional vertical technique either had failed 

or produced less than the desired rate. The increase in the application of this technology 

during this period rapidly led to a need for the development of analytical models that 

are capable of evaluating the performance of these horizontal wells. Giger, F. (1985) 

and Joshi, S. D. (1986) presented the applicability of horizontal wells in heterogeneous 

reservoirs and the impact of the well productivity using slanted or horizontal wells 

respectively. Spivak, D. (1988) explained that the advantages of horizontal wells, such 

as productivity increase and better sweep efficiency, while reduction of water and gas 

coning have been reported by many researchers. At the same time, many attempts have 

been made by researchers to develop practical models to study the performance and 

productivity of horizontal wells. 

Over time, pressure transient analysis techniques have been favorably applied for the 

evaluation of horizontal well performance and reservoir characterization. A few 

solutions for infinite limited isotropic reservoirs as well as for isotropic reservoirs with 

constant pressure at the outer boundaries, using the Newman product method have been 

introduced since 1970’s. At the same time, the earliest analytical models for horizontal 

well test analysis, based on the line source approximation of the partially penetrating 

vertical fracture solution, have been developed. Ozkan et al (1989) have shown the 

effect of the production length of horizontal wells on the pressure derivative and 
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introduced a mathematical   model for pressure evaluation in infinite conductivity 

horizontal wells. Odeh, A.S. and Babu, D.K. (1990) studied the transient flow behavior 

for horizontal wells, either for the pressure drawdown test or pressure build-up test. 

 Due to the increased complexity in the geometrical configuration of the wellbore, as 

a result of different horizontal well completion techniques, many concerns and 

questions regarding the pressure behavior in the vicinity of the wellbore and outer no-

flow boundaries have remained unanswered. These concerns are based on the fact that 

the ideal behavior is seldom seen in real production tests. This is due to differing 

pressure derivative trends depending on the geometrical configuration of the whole 

system, the petrophysical properties of the formation, and zonal damage. Therefore, the 

validity of horizontal well models and the well test concepts adopted from vertical 

fracture analogue have been extensively investigated and new trends of horizontal well 

solutions were developed beginning in the 1990’s. These solutions have been 

established under more realistic conditions to provide answers for previous concerns 

and questions.  

Automatic type curve matching for horizontal wells was introduced and used for 

pressure transient interpretation several decades ago. Many researchers investigated the 

transient dual-porosity pressure response of two horizontal wells and introduced 

numerical models to reproduce the reservoir internal geometry and simulate the 

pressure trend monitored at the wells. Khelifa and Taib (2002) proposed a technique for 

analyzing the variable rate tests in horizontal wells, either a continuously changing flow 

rate test or a series of constant rate tests. It is important to note that Escobar et al (2004) 

used the TDS technique to analyze the pressure behavior of a horizontal well inside 
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channel systems.  The last ten years has seen a focus on using the convolution and 

deconvolution technique in well test analysis. Gringarten et al (2003) proposed the use 

of downhole pressure gauges to diagnose production problems in North Sea horizontal 

wells. Whittle et al (2009) introduced a technique for well production forecasting by 

extrapolation of the deconvolution of pressure transient data and explained the practical 

use of the well test convolution and the various usages of deconvolution in tests of short 

and long durations.  

Even though great attention has been focused on horizontal well technology, either in 

the drilling and completion aspect or in the production and reservoir characterization 

aspect, more study is required to overcome the concerns and limitations of the models 

that are used to evaluate the performance of wells or to predict the pressure behavior 

around and in the wellbore. This fact is supported by the idea of the great complexity of 

the horizontal well systems and the difficulties that are involved in recognition of the 

flow dynamics and types of flow regimes, especially in the area near the well where the 

geometrical configuration of flow becomes of great importance. In this chapter, the 

impact of the existence of the zonal isolations on pressure behavior of horizontal wells 

will be studied.  

3-1- Pressure behavior of horizontal wells without zonal isolations:   

The pressure response of horizontal wells without zonal isolations acting in infinite 

reservoirs can be shown in Fig. (3-1) while Fig. (3-2) shows the pressure behavior of 

horizontal wells acting in finite reservoirs.  

Normally three flow regimes are easily identified for horizontal wells acting in 

infinite reservoirs: the early radial, early linear and pseudo-radial flow. Five flow 
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regimes can be developed for horizontal wells acting in finite reservoirs: early radial, 

linear, channel, pseudo-radial and pseudo-steady state flow. 
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   Figure 3-1: Pressure behavior for horizontal wells in                   Figure 3-2: Pressure behavior for horizontal wells 

                           infinite reservoirs.                                                                       in finite reservoirs. 

 

3-1-1- Early radial flow: 

For horizontal wells with dimensionless length 20DL , early vertical radial flow is 

expected to develop at early time as the fluid flows from all directions into the wellbore 

in the normal plane to the horizontal wellbore as shown in Fig. (3-3). However, for 

horizontal wells with 20DL , early radial flow regime can not be observed. This flow 

regime is characterized by a slope equal to  DL4/1  on the pressure curve or having the 

following value on the pressure derivative curve: 

                                                                                                                                                                           

 

 

 

 

 

 

Figure 3-3: Early radial flow for horizontal wells. 



32 

 

D

ERDD
L

Pt
2

5.0
)( '                                                                                                                              (3-1)                                                                                                                                                      

therefore: 

wyz
ER

Lkk

Bq
Pt

6.70
)'( 

                                                                                                             (3-2)                                                                                                                                                 

or: 

Ct
Lkk

Bq
P

wyz
ER  )log(

6.162
)(



                                                                                                 (3-3)                                                                                                                                       

where: 

d

w

y
S

cr

k
C 243.7)ln(

2



                                                                                                           (3-4)    

and:                                                                                                                                    
















y

zw
d

k

k

h

L
SS

                                                                                                                            (3-5)                                                                                                                             

A semi-log plot of )( P  vs. )(t  yields a straight line during the early data. The slope 

of this line can be used to calculate: 
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3-1-2- Early linear flow: 

After both upper and lower boundaries are reached, the early linear flow is developed 

as shown in Fig. (3-4). This flow is characterized by a slope of (0.5) on the pressure 

derivative curve. The governing equation for early linear flow (Goode 1987) is:  
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where: 

                                                                                                                                                                           

 

 

 

 

 

 

 

Figure 3-4: Early linear flow for horizontal wells. 
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Eq. (3-7) indicates that the plot of P  vs. 2/1t  yields a straight line. The slope of this 

line 
ELm can be used to estimate yk . 
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3-1-3- Pseudo radial flow: 

This type of flow is developed at late time when the pressure pulse reaches a remote 

distance from the wellbore in an infinite reservoir as shown in Fig. (3-5). This flow 

regime is characterized by a horizontal line on pressure derivative curve:  
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Figure 3-5: Pseudo-radial flow regime for horizontal wells. 

 

A semi-log plot of )( P vs. )(t yields straight line during the pseudo-radial flow 

period. The slope of this line can be used to calculate: 
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3-1-4 - Channel Flow: 

This flow starts when the pressure behavior is affected by the closest outer 

boundaries of the bounded reservoirs as shown in Fig. (3-6). It is characterized by a 
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slope of (0.5) on the pressure derivative curve. The governing equation for this flow is 

(Goode 1987): 

                        

 

 
 

                                Figure 3-6: Channel flow for horizontal wells acting in finite reservoirs. 
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where 
PS represents the partial penetration skin factor. 

The plot of P  vs. 2/1t  yields a straight line. The slope of this line CFm can be used 

to estimate the distance to the closest boundary ( ex ) as follows: 
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3-1-5- Pseudo-Steady State Flow: 

For long producing times in closed reservoir, pseudo-steady state flow regime 

appears as a result of the pressure being influenced by all four closed boundaries at the 
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same time. It is characterized by the unit-slope line on the pressure derivative curve. 

The equation of this straight line is: 
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This flow can be used to estimate drainage area of the reservoir as follows:   
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3-2- Pressure behavior of horizontal wells with zonal isolations:  

Because of the existence of zonal isolations, pressure responses and flow regimes of 

horizontal wells are expected to be changed. The primary impact will be on the early 

time flow regimes taking place in the vicinity of the wellbore. This impact depends on 

the effective length of the wellbore and the length and number of the zonal isolations. 

The following pressure behaviors and flow regimes can be classified based on the 

length of the horizontal well and the length and number of zonal isolations. 

3-2-1- Short horizontal wellbore (LD=1 for example): 

Because of the extreme short length of the wellbore, the impact of the zonal 

isolations on pressure behavior will be easy to identify. This impact increases 

significantly as the total length of the isolated sections increases. The following cases 

can be identified: 

1- Normal case with early radial, linear and pseudo radial flow regime if there is no 

zonal isolation as shown in Fig. (3-1). 

2- If the wellbore contains a single zonal isolation having different lengths, early 

radial, transition or linear, pseudo-spherical, and pseudo radial flow will be 

observed for short isolators. For long isolators, early radial, pseudo-spherical, and 
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pseudo-radial flow will result as shown in Fig. (3-7). Pseudo-spherical flow is 

observed for the cases where the horizontal well is extremely short and the length 

of the zonal isolation represents (90%) of the total length of the wellbore. 

Physically this is understandable as the perforated section of horizontal well 

tends to be like single point in the formation. 
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    Figure 3-7: Pressure behavior for short horizontal           Figure 3-8: Pressure behavior for short horizontal                  
                        well with single zone isolation.                                         well with multiple zonal isolations.  
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      Figure 3-9: Pressure behavior for short horizontal       Figure 3-10: Pressure behavior for short horizontal  

            well with multi zonal isolations.                               well with multi zonal isolations 
 

3- Early radial flow disappears gradually when the wellbore contains large numbers 

of zonal isolations. Pseudo-spherical flow is expected to develop for small 

numbers of zonal isolations. New flow regime is observed after early radial flow 
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in the case of a great numbers of zonal isolations. This flow regime is radial flow 

also (System radial flow) and develops in the normal plane to the horizontal 

wellbore (isolated zones and perforated zones) as shown in Figs. (3-8), (3-9), and 

(3-10).  

3-2-2-Horizontal wellbore with moderate length (LD=10): 

The following cases may develop for moderate length horizontal wells in which 

early radial, linear, and pseudo-radial are the dominant flow regimes. However, there is 

a possibility to develop another new radial flow regime that is an intermediate radial 

flow between the early radial and the pseudo-radial flow regimes. Intermediate radial 

flow represents the flow of reservoir fluid toward the wellbore in the horizontal plane 

parallel to the wellbore. 

1- Normal case with early radial flow, linear flow, and pseudo-radial flow regimes if 

the wellbore does not contain isolated zones as shown in Fig. (3-1).  

2- For wellbores containing single zonal isolation, having different lengths, early 

radial, linear flow, and pseudo radial flow are expected to occur  for both short 

and long isolated zones as shown in Fig. (3-11).  

3- Linear flow will be affected more than early radial flow if the wellbore contains 

multi zonal isolations. The time interval for early radial flow will be reduced 

gradually as shown in Fig. (3-12).   

4- In the existence of multi long zonal isolations, intermediate radial flow will 

develop as shown in Fig. (3-13) and the possibility for the system radial flow to 

occur will increase as shown in Fig. (3-14). 
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  Figure 3-11: Pressure behavior for moderate length         Figure 3-12: Pressure behavior for moderate length  

      horizontal well without zonal isolation.                           horizontal well with multiple zonal isolations.  
                                                      

 

 LD=10, LsD=0.4
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     Fig. 3-13: Pressure behavior of moderate length                 Fig. 3-14: Pressure behavior of moderate length  
       horizontal well with multiple zonal isolations.                          horizontal well with multiple zonal isolations. 
 

3-2-3- Long horizontal wellbore with moderate length (LD=50): 

 In general, early radial flow will not be observed for long horizontal wells where 

pressure behavior tends to be similar to the pressure behavior of vertical hydraulic 

fractures. Linear flow and pseudo-radial flow are the dominant types of flow regimes. 

1- Normal case with early radial, linear and pseudo-radial flow regimes if the 

wellbore does not contain isolated zones as shown in Fig. (3-1).  

2- Pressure behavior of a horizontal wellbore having a single zonal isolation having 

different lengths up to (LsD=90%), will be similar to the normal horizontal well 
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with only two flow regimes; linear and pseudo-radial as shown in Fig. (3-15).   

3- Pressure behavior of a horizontal wellbore will not be affected if multiple short 

isolated zones exist as shown in Fig. (3-16).  

4- Pressure behavior of a long horizontal wellbore containing multiple long zonal 

isolations (LsD=40% for example) is expected to have early linear, transition, 

second linear and pseudo-radial flow as shown in Fig. (3-17). The second linear 

flow represents the flow to the whole system (isolated zones and perforated 

zones).  

5- If the wellbore contains large numbers of long zonal isolations (LsD=80% for 

example), early linear and intermediate radial flow will appear followed by 

second linear and pseudo-radial flow regimes as shown in Fig. (3-18).   
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    Figure 3-15: Pressure behavior for long horizontal        Figure 3-16: Pressure behavior for long horizontal  

                 well without zonal isolation.                             well with multiple zonal isolations. 
 

3-3- Flow regimes of horizontal wells with zonal isolations 

3-3-1- Near-Wellbore early radial flow: 

For short horizontal wells having dimensionless length (LD<20) with or without 

zonal isolations, near-wellbore early radial flow is expected to develop at early time as 

the fluid flows from all directions into the wellbore as shown in Fig. (3-19). This flow 
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regime is characterized by a slope equal to  DpDLnL4/1  on the pressure curve or having 

the following value on the pressure derivative curve: 

 LD=50, LsD=0.4
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    Figure 3-17: Pressure behavior for long horizontal     Figure 3-18: Pressure behavior for long horizontal  

         well with multiple zonal isolations.                      well with multiple zonal isolations. 
 

 

 

 

 

 

 

 

Figure 3-19: Near-Wellbore Early radial flow for horizontal well with zonal isolations.                                             
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In field units Eq. 3-23 becomes: 
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This equation can be used to calculate )( yzkk  knowing )(n and )( pL : 
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3-3-2- System early radial flow:   

      This flow regime is expected to occur when the horizontal wells have an infinite 

number of zonal isolations in which pressure behavior can be considered similar to the 

normal horizontal wells shown in Fig. (3-20). Therefore, the governing equation for this 

type of flow is:      
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Figure 3-20: System early radial flow for horizontal well with zonal isolations. 

 

In field units Eq. 3-26 becomes: 
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This equation can be used to calculate )( yzkk  knowing )( wL : 
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3-3-3 - Intermediate radial Flow: 

This flow regime develops for the case of long horizontal wells having multiple 

long zonal isolations. It represents radial flow around each isolated zone as shown in 
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Fig. (3-21). This flow regime can be an indictor that the well has serious production 

problems. Basically the intermediate radial flow is developed in the horizontal plane 

parallel to the wellbore when there is a long closed section in the perforated zone. This 

closed section comes from different production problems such as sand production or 

asphaltic problems. The governing equation for this flow is: 

n
Pt IRFDD

5.0
)'(                                                                                                                       (3-29)                                                                                                                                                           

In field units, Eq. (3-29) becomes: 
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This equation can be used to calculate horizontal permeability  yxkk  knowing the 

number of closed zones: 
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Figure 3-21: Intermediate radial flow for horizontal well with zonal isolations. 

3-3-4 - Pseudo-spherical Flow: 

      This flow regime develops when the length of the perforated zones is extremely 

short as compared to the height of the formation. Pseudo-spherical flow is expected to 
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occur at early time as shown in Fig. (3-22). This flow regime is governed by the 

following equation (Slimani and Tiab 2006): 
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where tPSF and PSFPt )'(   are the coordinates of any point on the straight line. 

 

 

 

 

 

Figure 3-22: Pseudo- spherical flow for horizontal well with zonal isolations. 

3-3-5 - Near-Wellbore Early linear flow: 

Near-wellbore Early linear flow regime is the dominant flow at early time for long 

horizontal wellbores (LD>20) when early radial flow is barely observable. This type of 

flow develops when both upper and lower boundaries are reached and the flow of fluid 

becomes normal to the plane of the wellbore as shown in Fig. (3-23). This flow is 

characterized by a slope of (0.5) on the pressure derivative curve. The governing 

equation for early linear flow is:  
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and in field units: 
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This equation can be used to calculate )( yk  knowing )(n and )( pL , by inserting the 

coordinates (tELF) and 
ELFPt )'(   at any point on the straight line of early linear flow. 

 

 

 

 

 

 

Figure 3-23: Near-Wellbore early linear flow for horizontal well with zonal isolations. 

3-3-6- System Early linear flow: 

System early linear flow regime occurs for long horizontal wellbores (LD>20) 

containing large numbers of zonal isolations. Similar to the early linear flow, this flow 

is characterized by a slope of (0.5) on the pressure derivative curve. It represents linear 

flow toward the whole wellbore (isolated zones and perforated zones) as shown in Fig. 

(3-25). The governing equation for early linear flow is:  
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Figure 3-24: System early linear flow for horizontal well with zonal isolations. 
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and in field units: 
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where hrSLFPt 1)'(  is the pressure derivative value at t=1 hr. 

3-3-7- Elliptical flow 

This flow regime develops before the pseudo-radial flow as shown in Fig. (3-25). 

Tiab 1994 described this flow regime as a straight line of slope 0.36 on the log-log plot 

of )'*( DD Pt vs. )( Dt . He used multivariate linear regression analysis to derive the 

relationship between )'*( DD Pt and )( Dt . The governing equation for elliptical flow is 

derived based on multi-regression analysis as shown in Fig. (3-26): 
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Figure (3-25): Elliptical flow regime for horizontal                               Figure 3-26: Multi-regression analysis for elliptical. 

                       well with zonal isolations.                                                         flow for horizontal well with zonal isolations.   
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3-3-8 - Pseudo radial flow: 

Pseudo-radial flow appears at late time when the fluid flows from a remote drainage 

area toward the wellbore as shown in Fig. (3-27). This type of flow is characterized by a 

horizontal line on the pressure derivative curve with:  

5.0)( '  PRFDD Pt                                                                                                                    (3-40) 

In field units, Eq. (3-40) becomes: 
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which can be used to calculate: 
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Figure 3-27: Pseudo- radial flow for horizontal well with zonal isolations. 

3-4- Intersection Points: 

The points of intersection between different lines of flow regimes are very important 

in the well test interpretation. They can be used to check the results.  

3-4-1- The intersection of near-wellbore early linear flow line and pseudo-radial flow line is: 
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3-4-2- The point of intersection of system early linear flow line and pseudo-radial flow line is: 
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3-4-3-The intersection of near-wellbore early linear flow line and intermediate radial flow line is: 
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3-4-4-The point of intersection of system early linear flow line and intermediate radial flow line is: 
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3-4-5-The intersection of near-wellbore early linear flow line and near-wellbore early radial flow 

line is: 
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3-4-6-The intersection of system early linear flow line and near-wellbore early radial flow line is: 
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3-4-7-The intersection of near-wellbore early radial flow line and pseudo-spherical flow line is: 
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3-4-8- The point of intersection of pseudo-radial flow line and pseudo-spherical flow line is: 
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3-4-9- The point of intersection of pseudo-radial flow line and elliptical flow line is: 
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3-4-10- The point of intersection of intermediate radial flow line and elliptical flow line is: 
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3-4-11- The point of intersection of near-wellbore early radial flow line and elliptical flow line is: 
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3-4-12- The point of intersection of near-wellbore early linear flow line and elliptical flow line is: 
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3-4-13- The point of intersection of system early linear flow line and elliptical flow line is: 
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3-5- Relationships between flow regimes 

Many mathematical relationships between various flow regimes’ analytical models 

can be used in pressure transient interpretation to estimate reservoir parameters. 

3-5-1- Pseudo-radial and intermediate radial flow regime: 
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3-5-2-Pseudo-radial and near-wellbore early radial flow regime: 
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3-5-3-Intermediate radial and near-wellbore early radial flow regime: 
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3-5-4-Near-wellbore early radial and system early radial flow regime: 
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3-5-5-Pseudo-radial and system early radial flow regime: 
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3-5-6-Intermediate radial and system early radial flow regime: 
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3-5-7-Near-wellbore early linear and system early linear flow regime: 

 
  SD

PD

ELFDD

SLFDD

L

L

Pt

Pt






'

'
                                                                                                                   (3-67) 

 
  S

P

ELF

SLF

L

L

Pt

Pt






'

'
                                                                                                                         (3-68) 



51 

 

3-6- Skin factor 

Pressure behavior of horizontal wells is affected significantly by skin factor. 

Formation damage due to drilling and completion process, partially penetrating wells, 

reservoir heterogeneity and anisotropy, as well as the choke effect of fluid flow, may all 

be involved within the term of skin factor. Skin factor in horizontal wells has different 

classifications depending on the type of flow regime that can be developed in the 

vicinity of the wellbore. Generally, most horizontal wells have non-uniform distribution 

of skin along their lengths and this creates a challenging problem in the interpretation of 

the pressure transient response. In this study, uniform distribution for the skin factor 

will be assumed. Figures (3-28), (3-29), and (3-30) show the effect of skin factor on 

pressure behavior of horizontal wells. It is important to note that the skin factor affects 

the pressure distribution only and does not affect pressure derivative curves.  

3-6-1- Mechanical skin factor 

At early time, early radial flow regime may be observed. Therefore, mechanical skin 

factor (Sm) or average skin factor (Al-Otaibi et al 2005) probably has the dominant 

effect on pressure behavior at this time period. Therefore, mechanical skin factor can be 

calculated based on early time approximation model. 

skinproductiont PPP                                                                                       (3-69) 
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Since 0Dz , Eq.(3-70) can be written as: 
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In field units, mechanical skin factor can be written as: 
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3-6-2- Total skin factor  

Total skin factor can be defined as the summation of the mechanical skin factor and 

the composite skin factor resulting from the partial penetration in the vertical direction, 

the partial penetration in the horizontal direction, and the effect of the chock flow. Total 

skin factor can be calculated based on the type of flow regime as follow: 

3-6-2-1- From pseudo-radial flow regime 

Basically, total skin factor can be calculated from pseudo radial flow which is 

expected to be dominant at late time using late time approximation given in Eq. (2-44). 
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DDDDDDDDDD S

t

t
tzyxPtzyxP  )ln(

2

1
),,,(),,,(

1
1                                                            (3-73) 

Eq. (3-73) can be approximated to the following formula: 
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In field units, total skin factor can be written as; 
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3-6-2-2- From near-wellbore early linear flow regime 

In addition, early linear flow regime can be used to calculate total skin factor with 

some small percentage error due to the approximation of the linear flow model given by 

Eq. (3-34): 
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Figure 3-28: Effect of skin factor on pressure behavior              Figure 3-29: Effect of skin factor on pressure behavior 

               of horizontal well without zonal isolations.                                         of horizontal well with zonal isolations. 

 

3-7- The effect of number and length of zonal isolation on pseudo-skin factor 

The dimensionless pressure drop at any point and at any time in a reservoir is created 

by the production process from a horizontal well consists of two terms. The first is the 

line source solution and the second is the pseudo-skin function. The pseudo-skin 

function can be approximated by a constant for large values of dimensionless time, 

which corresponds to the starting time of pseudo-radial flow, tD1. Therefore 

when )( 1DD tt  , pseudo-skin factor can be calculated using (Spivak 1988). Malekzadeh 

and Abdelgawad 1999 considered that pseudo-skin factor is a part of total skin factor if 

the combined effect of the formation damage and the presence of impermeable barriers 

and low permeability regions in the vicinity of some sections of the horizontal well are 

represented by mechanical skin damage. They stated that the total skin factor obtained 

from the well tests is the summation of mechanical skin factor and pseudo-skin factor. 

Mathematically, Cinco-Ley (1974) and Spivak (1988) defined pseudo-skin factor as: 
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When  0Dx , Eq. (3-77) can be written as: 
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    DDDDDDDDD yttzyPtzyS ln80907.0ln5.0),,,0(),,,0( 11                              (3-78) 

Since the three terms in Eq. (3-78) are constants, the pseudo-skin factor has constant 

value.  

Despite the fact that the zonal-isolation technique seems to be an ideal solution for 

many serious production problems such as water and gas coning, sand production, and 

damaged zone separation, it is also a cause of significant increase in the skin factor. 

This increment depends on the length and number of the zonal isolation. As the length 

of the zonal isolation increases, the skin factor also increases due to the extra resistance 

to flow resulting from the existence of the zonal isolations.  This skin increment for 

short horizontal wells is much greater than that for long ones. Figure (3-31) shows the 

effect of the number and length of zonal isolations on the skin factor of horizontal wells. 

It can be seen from this figure that the single zonal isolation has a skin factor greater 

than the skin factor of double or triple zonal isolations for the same length. Skin factor 

increases slightly with the increase of the number of zonal isolations for long horizontal 

wells while the skin factor increases significantly for the short horizontal wells.  
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     Figure 3-30: Effect of skin factor on pressure behavior                    Figure 3-31: Effect of number and length of zonal  

               of horizontal well with zonal isolations.                                                    isolations on pseudo-skin factor.     
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3-8-Application of Type Curve Matching 

As shown on the plots in Appendix A, the pressure and pressure derivatives have 

different shapes for each combination of length and number of zonal isolation for 

different wellbore lengths. Different flow regimes are observed for different numbers 

and lengths of zonal isolations. It is important to note that: 

1- Pseudo-spherical flow develops for short perforation section when the length 

of horizontal wellbore is extremely short and the zonal isolation is extremely 

long.  

2- Intermediate radial flow develops for short perforated sections and long 

isolated zones in the wellbore. 

3- System radial flow develops when the horizontal wellbore contains an 

infinite number of zonal isolations and an infinite number of perforated 

sections. 

4- Second linear flow develops when the horizontal wellbore contains an 

infinite number of zonal isolations and an infinite number of perforated 

sections. 

5- Early radial flow develops at early time for short horizontal wells and early 

linear flow is developed at early time for long horizontal wells. 

6- Pseudo-radial flow is dominant at late time. 

The following information is associated with each type curve: dimensionless length 

of horizontal well (LD), number of zonal isolations (n), Length of zonal isolations (LsD), 

wellbore radius (yD). Thus, the following information can be obtained from the type 

curve matching process: (PD)M, (ΔP)M, (tD)M, (Δt)M, ( LD)M, (n)M, (LsD)M, (yD)M. The 
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following steps illustrate how type curve matching is used to determine reservoir 

characteristics such as: permeability in the three directions and the number and length 

of zonal isolations.  

Step-1 Plot ( P vs. t ) and ( 'Pt  vs. t  ) on log-log paper. 

Step-2 Obtain the best match of the data with one of the type curves. 

Step-3 Read from any match point: MsDMPDMDMDMMDMM nLLLPtPt ,,,,,,,  , yDM. 

Step-4 Calculate xk : 

M

DMwt
x

t

tLc
k

0002637.0

2
                                                                                                                          (3-79)    

Step-5 Calculate ky :                                                   

2
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x

y
Ph

BPq

k
k
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                                                                                                            (3-80) 

Step-6 Calculate zk :                                                                                         

2

22

w

xDM
z

L

khL
k                                                                                                                                    (3-81)                                                                                                                                                               

The number and length of the zonal isolations are normally well known prior to 

running a pressure test. However, this technique can be used to check whether the zonal 

isolations are performing their functions as expected. This can be done by estimating 

the number and length of zonal isolations from this technique directly and comparing 

them with the actual number and length of the existing zonal isolations.   

Step-7 Length of perforation zone: 

wPDMp LLL                                                                                                                           (3-82)    

Step-8 Length of zonal isolations                                                                                                                                                       
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wSDMS LLL                                                                                                                            (3-83)                                                                                                                                                    

3-9-Application of TDS technique 

This section presents an analytical technique referred to as the Tiab’s Direct 

Synthesis (TDS) technique for interpreting log-log plots of pressure and pressure 

derivatives of a well with zonal isolations. TDS is a powerful technique for the 

computation of reservoir parameters directly from log-log plots of pressure and pressure 

derivative data. A well designed pressure transient test in a horizontal well with zonal 

isolations in an infinite reservoir should yield all the necessary straight lines to calculate 

the number and length of zonal isolation, permeabilities in all directions. The great 

advantage of this technique is that it only requires graphing of pressure and pressure 

derivative on a single log-log plot for direct analysis.   

The following step-by-step procedure is for the ideal case where all the necessary 

straight lines are well defined. 

Step 1 - Plot pressure change (P) and pressure derivative (t×P') values versus test 

time on a log-log graph.  

Step 2 - Read the value of (t×P')PRF corresponding to the infinite acting pseudo-radial 

flow line. 

Step 3 - Calculate )( hk . 













PRF

yxh
Pth

Bq
kkk

)'(

6.70 
                                                                               (3-84) 

Step 4 – If the intermediate radial flow develops, read (t×P')IRF. 

Step 5 – Calculate the number of zonal isolations )(n either from Eq. (3-31) or: 
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                                                                                                        (3-85) 

Step 6 - Obtain the value of (t×P') at time t = 1 hr from the near-wellbore early linear 

flow line (extrapolated if necessary), (t×P')LF1hr.   

Step 7 - Calculate )( yp kL . 

thrLF
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cPtnh
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0315.2
                                                                                          (3-86)       

Step 8 - Read the value of (t×P')SLF1hr corresponding to the system early linear flow 

line at t=1 hr. 

Step 9 - Calculate )( yS kL  using Eq. (3-37).  

  thrSLF
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cPthn
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



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1'

032.2
                                                                                  (3-87) 

Step-10- Use the following correlation to calculate the length of isolated and perforated 

section together: 

n

L
LL w

sp                                                                                                                (3-88) 

Step-11- Substitute Eq.(3-88) in Eq. (3-87) and (3-86), find the length of Lp and Ls. 

Step 12 - Calculate )( yk using the result of either Step (7) or (9). 

Step 13 - Calculate )( xk using the result of Step (3). 

Step 14 – Calculate total length of perforated sections )( ptL : 

ppt nLL                                                                                                                  (3-89) 

Step 15 – Calculate total length of isolated sections )( stL : 
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ptwst LLL                                                                                                           (3-90)                                                                                                                        

Step 16 - Read the value of (t×P')ERF corresponding to the near-wellbore early-radial 

flow line. 

Step 17 - Calculate )( zk . 
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Step 18 – Calculate mechanical skin factor )(Sm : 
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Step 19 – Calculate total skin factor )( tS from Eq. (3-75) based on pseudo-radial flow 

line data: 
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Step 20 – Check the value of total skin factor )( tS using Eq. (3-76) if applicable: 

Step 21 – Calculate the intersection times using Eq. (3-43) through Eq. (3-55) and 

compare them with those in the plot.  

Example-3-1 (short horizontal well): 

A pressure drawdown test data of a horizontal well is given in Table (Example 3-1) 

in  Appendix D.  Other known reservoir and well data are: 

q = 4000 STB/D         = 0.1       = 1 cp              ct = 2x10
-6

 psi
-1                   

h = 125 ft        

Lw = 4000 ft              rw = 0.566 ft       pi = 5000 psi         B = 1.125 bbl/STB     

Determine: 
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1- Formation permeabilities in all directions. 

2- Number and length of zonal isolations. 

Using type-curve matching and TDS technique. 

Solution using type-curve matching 

Step-1 Plot ( P vs. t ) and ( 'Pt  vs. t  ) on log-log paper as shown in Fig. (3-32). 

Step-2 Obtain the best match of the data with one of the type curves as shown in Fig. 

(3-33). 

Step-3 Read from any match point: MPDMDMDMMDMM nLLPtPt ,,,,,,  , yDM. 

0001.0,2,8.0

,2.0,16,11.0,066.0,100,100





DMMsDM

PDMDMDMMDMM

ynL

LLPtPt

 

Step-4 Calculate xk from Eq. (3-79): 

8
1000002637.0

066.04000000002.011.0 2





xk                                                                                                                              

Step-5 Calculate ky  from Eq. (3-80):                                                   

9.3
100125

11.0125.1140002.141

8

1
2













yk                                                                                                                 

Step-6 Calculate zk from Eq. (3-81):                                                                                          

2
4000

812516

2

22




zk     

 The number and length of the zonal isolations are normally well known prior to 

running a pressure test. However, this technique can be used to check whether the zonal 

isolations are performing their functions as expected. This can be done by estimating 

the number and length of zonal isolations from this technique directly and comparing 
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them with the actual number and length.  From the matching point, the number of zonal 

isolations is two.                                                                                                                           
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     Figure 3-32: Pressure and pressure derivative plot for                    Figure 3-33: Type-curve matching technique for 

                                   Example 3-1.                                                                                        Example 3-1. 

 

Step-7 Length of perforation zone from Eq. (3-82): 

ftLp 80040002.0                                                                                                                                      

 Step-8 Length of zonal isolations from Eq. (3-83):                                                                                                                                                      

ftLz 320040008.0                                                                                                                                       

Solution using TDS 

Step 1 - A plot of well pressure change (P) and pressure derivative (t×P') values 

versus test time is shown in Fig. (3-34).  

Step 2 - Read the value of (t×P')PR corresponding to the infinite acting pseudo-radial 

flow line. 

3.449)'(  PRPt  

Step 3 - Calculate horizontal permeability )( hk using Eq. (3-84): 

mdkkk yxh 657.5
3.449125

125.1140006.70





  
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Step 4 - Read the value of (t×P')IR corresponding to the intermediate radial flow line. 

6.224)'(  IRFPt  

Step 5 - Calculate )(n the number of the zonal isolations using Eq. (3-30), (3-56), or (3-

85): 

2
657.51256.224

125.1140006.70





n  

Step 6 - Read the value of (t×P')SLF1hr corresponding to the system early linear flow 

line at t=1 hr. 

5.25)'( 1  hrSLFPt  
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d
P

w
f,

 (
t*

d
P

w
f'

)

(txdPwf')PR=449.3

(txdPwf')IR=224.6

(txdPwf)SL1hr=25.5

(txdPwf)EL1hr=102

(txdPwf')ER=70.2

 

Figure 3-34: TDS technique for example 3-1. 

Step 7 - Calculate )( yS kL  using Eq. (3-87). 
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3206
000002.01.0

1

5.252125

125.14000032.2















 yS kL   

Step 8 - Read the value of (t×P')ELF1hr corresponding to the near-wellbore early linear 

flow line at t=1 hr. 

102)'( 1  hrELFPt  

Step 9 - Calculate )( yP kL  using Eq. (3-86). 

801
000002.01.0

1

1022125

125.14000032.2















 yP kL   

Step 10 - Solve for (Ls) and (Lp) from the results of Step-7 and Step-9 taking into 

accounts that: 

200
2

4000


n

L
LL w

PS  

ftLtotalftL SS 3200160021600   

ftLtotalftL PP 8004002400   

Step 11 - Calculate )( yk using the result of either Step (7) or (9). 

mdky 4
400

801
2









  

Step 12 - Calculate )( xk using the result of Step (3). 

mdkx 8
4

657.5
2















  

Step-13- Read the value of (t×P')ERF corresponding to the intermediate radial flow 

line. 

  2.70'  ERFPt  
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Step-14- Calculate  zk  from Eq. (3-91): 

2
2.704002

125.1140003.35

4

1
2













zk  

Step-15- Read from near-wellbore early radial flow at a certain time the value of 

pressure and pressure derivative. 

      2.70'6751.0  ERFERFERF PtPt  

Step-16- Calculate mechanical skin factor from Eq. (3-92). 

  55.024.8
566.0000002.011.0

1.04
ln

2.70

675
25.0

2





















ERFSm  

Step-17- Read from pseudo-radial flow at a certain time the value of pressure and 

pressure derivative. 

      3.449'5.36621618  PRFPRFPRF PtPt  

Step-18- Calculate total skin factor from Eq. (3-93). 

  6.3659.4
4000000002.011.0

16188
ln

3.449

5.3662

8

2

125

4005.0
2



























PRFtS  

Step-19- Read from linear flow line: 

      102,856,1 111  hrLFhrLFhrLF PtPt  

Step-20- calculate total skin factor from eq. (3-76) 

  91.22
102

856

000002.011.0

8

400

0288.0














ELFtS  

Step -21 - Determine the intersection points: 

5.7,5.0,8.4,73,19,300  ERSLERELIRELIRSLPRELPRSL tthrthrthrthrt  
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Step -22 – Calculate the intersection points using Eqs. (3-43), (3-44), (3-45), (3-46), (3-

47), and (3-48):    

hrtPREL 3.19
8

000002.011.04002
1207

22




  

hrtPRSL 309
8

000002.011.016002
1207

22




  

hrtIREL 8.4
8

000002.011.0400
1207

2




  

hrtIRSL 77
8

000002.011.01600
1207

2




  

hrtERSL 77.7
2400

000002.011.01600125
302

2

22





   

hrtEREL 47.0
2

000002.011.0125
302

2




  

Table (3-1) shows summary of the calculated parameters for Example 3-1 and the 

input values. 

Table (3-1) Summary of results Example 3-1. 

Parameter In-put value Calculated value by  

Type-curve matching 

Calculated value by 

TDS technique 

xk  8 8 8 

yk  4 3.9 4 

zk  2 2 2 

N 2 2 2 

LP 400 400 400 

Ls 1600 1600 1600 

ERFmS )(  0.5  0.5 

PRFtS )(  3.5  3.6 

LFtS )(  3.5  2.91 
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Example -3-2 (Long horizontal well): 

Pressure drawdown test data of a horizontal well is given in Table (Example 3-2) in 

Appendix F.  Other known reservoir and well data are: 

q = 1000 STB/D         = 0.1       = 1 cp              ct = 2x10
-6

 psi
-1                      

h = 53 ft        

Lw = 6000 ft              rw = 0.7 ft         pi = 5000 psi         B = 1.25 bbl/STB           kz=10 

md 

Sm=0.0 

Determine: 

3- Formation permeabilities in all directions. 

4- Number and length of zonal isolations. 

Using type-curve matching and TDS technique. 

Solution using type-curve matching 

Step-1 Plot ( P vs. t ) and ( 'Pt  vs. t  ) on log-log paper as shown in Fig. (3-35). 

Step-2 Obtain the best match of the data with one of the type curves as shown in Fig. 

(3-36). 

Step-3 Read from any match point: MPDMDMMDMM nLPtPt ,,,,,,  , yDM. 

0001.0

,4,7.0,3.0,052.0,0073.0,10,10





DM

MsDMPDMDMMDMM

y

nLLPtPt

  

Step-4 Calculate xk from Eq. (3-79): 

mdkx 20
100002637.0

0073.06000000002.011.0 2





                                                                                                                              

Step-5 Calculate ky  from Eq. (3-80):                                                   
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mdk y 15
1053

052.025.1110002.141

20

1
2













                                                                                                                 

1.0E+00

1.0E+01

1.0E+02
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1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04

t, hrs

d
P

w
f,

 (
t*

d
P

w
f'

)

Four perforation zones & four zonal isolation

infinite reservoir, LD>20

1.0E-02

1.0E-01

1.0E+00

1.0E+01
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tD

P
D
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 t
D
*P

D
'

LzD=0.00 LzD=1.0

LzD=0.20 LzD=0.30

LzD=0.40 LzD=0.50

LzD=0.60 LzD=0.70

LzD=0.80 LzD=0.90

1.E+00

1.E+01

1.E+02

1.E+03

1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

time (hours)

P
w

f 
&

 P
'w

f*
t

Match point

 

     Figure 3-35: Pressure and pressure derivative plot for                    Figure 3-36: Type-curve matching technique for 

                                          Example 3-2                                                                                         Example 3-2 

 

The number and length of the zonal isolations normally are well known prior to 

running a pressure test. From the matching point, the number of zonal isolations is 4. 

Step-7 Length of perforation zone from Eq. (3-82): 

ftLp 180060003.0                                                                                                                                       

 Step-8 Length of zonal isolations from Eq. (3-83):                                                                                                                                                      

ftLz 420060007.0                                                                                                                                    

Solution using TDS 

Step 1 - A plot of well pressure change (P) and pressure derivative (t×P') values 

versus test time is shown in Fig. (3-37).  

Step 2 - Read the value of (t×P')PRF corresponding to the infinite acting pseudo-radial 

flow line. 

96)'(  PRFPt  
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Step 3 - Calculate horizontal permeability )( hk using Eq. (3-84): 

mdkkk yxh 32.17
9653

25.1110006.70





  

Step 4 - Read the value of (t×P')IRF corresponding to the intermediate radial flow line. 

24)'(  IRFPt  

Step 5 - Calculate )(n the number of the zonal isolations using Eq. (3-30), (3-56), or (3-

85): 

4
32.17*5324

25.1110006.70





n  

Step 6 - Read the value of (t×P')SLF1hr corresponding to the system early  linear flow 

line at t=1 hr. 

5.6)'( 1  hrSLFPt  

Step 7 - Calculate )( yS kL  using Eq. (3-87). 

4118
000002.01.0

1

5.6453

25.11000032.2















 yS kL  

Step 8 - Read the value of (t×P')ELF1hr corresponding to near-wellbore early linear flow 

line at t=1 hr. 

3.15)'( 1  hrELFPt  

Step 9 - Calculate )( yP kL  using Eq. (3-86). 

1751
000002.01.0

1

3.15453

25.11000032.2















 yP kL  

Step 10 - Solve for (Ls) and (Lp) from the results of Step-7 and Step-9 taking into 

account that: 
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1500
4

6000


n

L
LL w

PS  

ftLtotalftL SS 4200105041050   

ftLtotalftL PP 18004504450   

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04

t, hrs

d
P

w
f,

 (
t*

d
P

w
f'

)

(txdPwf')PR=96

(txdPwf')IR=24

(txdPwf)SL1hr=6.5

(txdPwf)EL1hr=15.3

 

Figure 3-37: TDS technique for example 3-2.  

Step 11 - Calculate )( yk using the result of either Step (7) or (9). 

mdky 15
450

1751
2









  

Step 12 - Calculate )( xk using the result of step (3). 

mdkx 20
15

32.17
2















  
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Step-13- Read from pseudo-radial flow at a certain time the value of pressure and 

pressure derivative. 

      496'55810921  PRFPRFPRF PtPt  

Step-14- Calculate total skin factor from Eq. (3-92). 

  5.0659.4
6000000002.011.0

1092120
ln

96

558

20

10

53

4505.0
2



























PRFtS  

Step-15- Read from linear flow line: 

      15,30,1 111  LFLFLF PtPt  

Step-16- Calculate total skin factor from eq. (3-76): 

  02.02
3.15

31

000002.011.0

20

450

0288.0














ELFtS  

Step-17 - Determine the intersection points: 

hrthrthrthrt IRELIRSLPRELPRSL 4.2,14,40,220   

Step 16 – Calculate the intersection points using Eqs. (3-43), (3-44), (3-45), and (3-46):    

hrtPREL 39
20

000002.011.04504
1207

22




  

hrtPRSL 213
20

000002.011.010504
1207

22




  

hrtIREL 44.2
20

000002.011.0450
1207

2




  

hrtIRSL 3.13
20

000002.011.01050
1207

2




  

Table (3-2) shows summary of the calculated parameters for Example 3-2 and the 

input values. 
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Table (3-2): Summary of results of Example 3-2. 

Parameter In-put value Calculated value by  

Type-curve matching 

Calculated value by 

TDS technique 

xk  20 20 20 

yk  15 15 15 

N 4 4 4 

LP 450 450 450 

Ls 1050 1050 1050 

ERFmS )(  0.0  0.0 

PRFtS )(  0.5  0.5 

LFtS )(  0.5  0.02 

 

3-10- Malfunctioning of zonal isolations   

One of the important new applications for well test analysis in this study is the 

ability to evaluate the performance of the zonal isolations to determine if the they are 

performing as designed. In addition, well test analysis can be used to detect the 

locations of unsuccessful zonal isolations. It is well known that the zonal isolations are 

challenged by harsh environments such high temperature, high pressure, and corrosive 

fluids as well as stresses caused by production operation and/or unstable formations. 

Therefore, to maintain effective zonal isolations for the well life by maximizing the 

asset value and minimizing the risk, they should be designed for all conditions of harsh 

environments. However, many zonal isolations may not meet the necessary 

requirements especially when several harsh conditions are found in a single section of 

the formation that may lead to zonal isolation failure.    

Evaluating the performance of the zonal isolation can be considered as the new and 

important application for the well test analysis. Type-curve matching technique can be 

used successfully to evaluate the zonal isolators’ function and to detect locations of the  
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failed isolators. Figures (3-38) through (3-44) are a set of type-curve matching plots for 

single, double, triple, and fourth zonal isolations for LD=16 with different cases and 

numbers of failed isolators.      

Single perforation zone &single zon isolator

 infinite reservoir LD=16, LsD=0.5
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Figure 3-38: Pressure and pressure derivative plot for                  Figure 3-39: Pressure and pressure derivative plot for                     
                                   single failed zonal isolation                                                        single failed zonal isolation 

 

Triple perforation zones & triple zone isolators

LD=16, LsD=0.5
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     Figure 3-40: Pressure and pressure derivative plot for             Figure 3-41: Pressure and pressure derivative plot for                     

                               single failed zonal isolation                                                          double failed zonal isolations  
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Four perforation zones & four zone isolators

LD=16, LsD=0.5
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     Figure 3-42: Pressure and pressure derivative plot for                 Figure 3-43: Pressure and pressure derivative plot for                     

                              single failed zonal isolation                                                             double failed zonal isolations 

 

Four perforation zones & four zone isolators

LD=16, LsD=0.5
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Figure 3-44: Pressure and pressure derivative plot for 

         triple failed zonal isolations. 

Example-3-3 

A pressure drawdown test of a horizontal well was run to check the performance of 

zonal isolations. Four zonal isolators have been installed at equal distance starting from 

the heel of the well. The recorded data is given in Table (Example 3-3) in Appendix F.  

Other known reservoir and well data are: 

q = 1000 STB/D         = 0.1       = 1 cp              ct = 2x10
-6

 psi
-1                      

h = 79 ft        

Lw = 4000 ft              rw = 0.462 ft       pi = 5000 psi         B = 1.25 bbl/STB       

Solution 
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Step-1 Plot ( P vs. t ) and ( 'Pt  vs. t  ) on log-log paper as shown in Fig. (3-45). 

Step-2 Obtain the best match of the data with one of the type curves as shown in Fig. 

(3-46). 

Step-3 Read from any match point: MPDMDMMDMM nLPtPt ,,,,,,  , yDM. 

16,0001.0

,3,5.0,5.0,077.0,165.0,10,100





DMDM

MsDMPDMDMMDMM

Ly

nLLPtPt
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     Figure 3-45: Pressure and pressure derivative plot for                               Figure 3-46: Type-curve matching for                     

                                   Example 3-3                                                                                             Example 3-3 

 

From type curve matching, it can be seen that the well has lost the third zonal 

isolation. Therefore, there are only three working zonal isolations. The location of the 

failed one is at (3000 ft) from the heel of the well. Other reservoir parameters can be 

determined as follows: 

Step-4 Calculate xk from Eq. (3-79): 

mdkx 20
1000002637.0

165.04000000002.011.0 2





                                                                                                                              

Step-5 Calculate ky  from Eq. (3-80):          
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mdky 15
1053

077.025.1110002.141
79

20

1
2













                                                                                                                 

Step-6 Calculate zk from Eq. (3-81):                                                                                          

mdkz 2
4000

207916

2

22




                                                                                                                               

To check the result obtained from the type-curve matching, the following steps can 

be done: 

Step-7- Read the value of (t×P')ER corresponding to the early radial flow line from Fig. 

(3-45). 

         22.3'  ERPt  

Step-8- calculate the value of (t×P')ER corresponding to the early radial flow line for 

the horizontal well with four zonal isolations using Eq. (3-24). 

4
5004152

25.1110003.35
)'( 




 ERPt  

Step-9- The ratio of the calculated value of (t×P')ER from step-8 and the one obtained 

from the plot in step-7, which is (1.25), indicates the perforated sections have been 

increased by one (from four to five) and similarly the isolated sections have been 

decreased by one (from four to three).  

Table (3-3) shows summary of the calculated parameters for Example 3-1 and the 

input values. 

 

 

 

 



76 

 

Table (3-3) Summary of results of Example 3-3. 

Parameter In-put value Calculated value by  

Type-curve matching 

xk  20 20 

yk  25 25 

zk  2 2 

n (working) 4 4 

n (not working) 1 (The third) 1 (The third) 

Location of non-working zonal isolation 

 

 working 

 

3000 ft from the heel 3000 ft from the heel 
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4- MATHEMATICAL MODELS FOR MULTIPLE INCLINED HYDRAULIC 

FRACTURES 

The hydraulic fracturing process can be defined as the process of generating a 

fracture or fracture system in a formation by injecting fracturing fluid under pressure 

higher than the tensile strength of the formation through a wellbore in order to 

overcome in-situ stresses and to cause rock’s failure in the porous medium.  

The hydraulic fractures are propagated approximately perpendicular to the axis of 

the minimum horizontal principal stress. Therefore, horizontal hydraulic fractures are 

expected to occur at shallow depth where the vertical (overburden pressure) is the least 

principal stress as shown in Fig. (4-1), while vertical hydraulic fractures usually occur 

where the depth is great and the least stress is one of the horizontal stress components as 

shown in Fig. (4-2). 

 

 

 

 

 

 

 

Figure 4-1: Horizontal fracture for                                                               Figure 4-2: Vertical fracture for 

         Hhv                                                                                                           vHh    

Hubbert et al. (1957) stated that for tectonically relaxed layers characterized by 

normal fault, the least principal stress should be horizontal, thus the fractures should 

propagate in the vertical direction with the injection pressure less than the overburden 
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pressure.  In the areas of active tectonic compression such as thrust fault, the least 

principal stress should be vertical and equal to the pressure of the overburden. The 

fractures in this case should propagate in the horizontal direction with injection pressure 

equal to or greater than the overburden. However, experiments conducted by Hubbert et 

al., that simulated tectonic movements, only considered the case where the movements 

are uniform vertically and horizontally and thus, there were no shear stresses involved.  

This is not always the case in actual field situations where reservoirs may contain 

complex stress fields due to geological structure, pore pressure and tectonic movements.   

4-1-State of in-situ stress 

Economides et al 1989, explained that the in-situ stress underground is affected by 

the following components: 

- Overburden pressure: Represents the amount of pressure from the overlying 

rock layers.  

- Tectonic Stresses:  Formed by large crustal movements and introduced 

additional directional components which can be added to the stress components 

already described.   

- Topographical Effects:  The computed overburden stress will not, in general, 

be the same as the true vertical stress where there is a significant topography. 

Some times, vertical stress increases with depth at a rate greater than the 

overburden due to extra loading by the surrounding topography. 

- Other Stresses: Other factors affecting the in-situ stress include rock types, 

thermal effect, change of layers’ volume due to chemical processes, and 

presence of faulting. 
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- Induced Stresses: Drilling of a borehole and injection of fluid such as water in 

water flooding process, can also alter the in-situ stress. 

4-2- Inclined Hydraulic Fractures 

Several researches and studies have indicated that hydraulic fractures are not 

necessary to propagate truly vertical or horizontal due to the effect of the in-situ stress 

distribution. In realty, it is difficult to control the orientation of the hydraulic fractures 

as a result of the difficulty of controlling the parameters that affect the propagation 

direction. Some of these parameters relate to the formation rock properties while others 

relate to the stresses. Daneshy (1970) showed through a series of experiments on 

different rock types that the appearance of a vertical fracture at the wellbore is not 

sufficient evidence to ensure a vertical fracture. He asserted that the fracture can change 

direction once it gets sufficiently away from the wellbore according to the least 

principal stress. He also investigated theoretically and experimentally inclined fractures.  

In this study, he confirmed that inclined fractures often intersect the borehole along two 

diametrically opposite axial lines, thus giving it the appearance of a vertical fracture.  

The fractures then changed their orientation as they extend away from the wellbore until 

they become perpendicular to the least compressive in-situ principal stress. 

Wright et al 1995, explained that the production process may lead to fractures 

reorientation due to the change in the in-situ stress distribution. They stated that the 

inclination angle of a vertical fracture from the vertical axis increases with the 

continuous production as shown in Fig. (4-3). Therefore a dip angle of more than (35) 

degree is not rare as it was thought before. 
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Figure 4-3: Effect of depletion production on hydraulic fracture orientation (Wright et al 1995). 

 

4-3- Models Derivation 

In this chapter, several analytical models for the pressure behavior of a horizontal 

well intersected by multiple-inclined hydraulic fractures will be introduced. Both 

longitudinal and transverse fractures will be considered for both the deviation from the 

vertical axis and the deviation from the horizontal axis where the horizontal well is 

assumed to extend. The following facts would be important to be noticed: 

 The flow from the reservoir to the wellbore sections between fractures is 

negligible as compared with the flow from the reservoir to the fracture plane. 

 Fluid flows from the reservoir to the well through planar and totally penetrating 

vertical fractures. 

 A first approximation of the behavior of the system is the uniform flux fracture 

case. It is assumed that fluid enters the fractures at a uniform rate per unit area 

of the fracture face. 

 In the analysis, flow through the fractures is considered and the flow through the 

matrix is ignored. This is a reasonable assumption since multiple fractures are 
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typically created in very low permeability formations and the wells are very 

often cased and perforated. Moreover, fractures are initiated at the perforations. 

The following assumptions are important for the derivation of the model: 

1- The reservoir is homogenous, having constant and uniform thickness with two 

impermeable layers at the top and bottom of the formation.  

2- Constant porosity and permeability in each direction, but the formation is 

anisotropic. 

3- Gravitational and frictional effects are negligible. 

4- The well is extending in the midpoint of the formation height (symmetrical). 

5- Single phase fluid of small and constant compressibility, constant viscosity, and 

formation volume factor, flows from the reservoir to the fractures. 

6- Reservoir pressure is initially constant. 

it
PP 

0                                                                                                                (4-1) 

7- The pressure at the outer boundaries of the reservoir is assumed to be constant 

and equal to the initial reservoir pressure. 

ie PP                                                                                                                (4-2) 

8- The pressure at the upper and lower impermeable boundaries is assumed to be 

constant so that: 

0

0






ZZ

P
                                                                                                           (4-3) 

0




hZZ

P
                                                                                                           (4-4) 
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    9- Considering the problem of production from an infinite reservoir. Diffusivity 

equation can be written as:   

D
2

D

2

2
D

2

2
D

2

δt

δΔP

δz

ΔPδ

δy

ΔP

δx

ΔPδ
 zyx 


                                                                              (4-5) 

Many techniques have been used to solve the diffusivity equation for different 

applications in the petroleum industry such as the study of the pressure transient 

behavior in porous media. Two commonly used solutions for this equation can be found 

in the literature. An early solution, treated by Carslaw and Jaeger, was derived based on 

the use of Lord Kelvin’s point source solution for solving heat conduction problem. The 

second one was introduced by Gringarten and Ramey in 1973 based on the use of the 

Green’s function method. Many instantaneous source solutions for different 

configurations (point source, line source, plane source, slab source) have been 

developed based on the two solutions. 

4-3-1-Transverse fractures 

Consider a horizontal well with multiple-inclined transverse hydraulic fractures in 

an infinite, homogenous, isotropic or anisotropic  yzx kkk   formation, horizontal 

slab reservoir as shown in fig. (4-4). Each fracture is considered as a single plane of 

length ( fx2 ), width ( w ), height ( fh ), and an angle of inclination from the vertical 

direction ( )v . The spacing between fractures is (D). If we assume that all fluid 

withdrawal will be through the fractures, and further, that the fractures are fully 

penetrating the formation, the fractures can be simulated as inclined plane sources. The 

unsteady state pressure drop created by these planes at any point ( ),, mmm zyx  is: 
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Figure 4-4: Horizontal well intersected by multiple-inclined transverse hydraulic fractures. 

 

t

fffmmmxyzfffmmm dhxhztzyxS
c

q
hxhztzyxP

0

),,,,,,,,(),,,,,,,,( 


               (4-6)                         

Where ( xyzS ) is the instantaneous source function for an inclined plane source in an 

infinite slab reservoir. q  is the fluid withdrawal per unit fracture surface area per unit 

time. 

ff hnx

Q
q

2
                                                                                                                   (4-7) 

The source function )( xyzS  can be obtained using Newman product method. This 

method proposed that the instantaneous uniform flux source function for a three 

dimensional flow problem can be obtained as the product of instantaneous source 

function for a one dimensional flow problem. Therefore: 

),,(*),,,,,,(),,,,,,,,( fmxffvmmyzfffvmmmxyz xtxShhztzyShxhztzyxS                     (4-8)                         

      yzS  is the instantaneous source function for an inclined plane source in an infinite 

slab reservoir. xS  is the instantaneous source function for an infinite slab source in an 

  

Upper impermeable layer 
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2xf 
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infinite reservoir in the direction of X-axis as shown in Fig. (4-5). xS  can be estimated 

based on half fracture length as follows: 

 

 

 

 

 

 

 

 

Figure 4-5: The monitoring point and the source points for multiple- inclined  

transverse hydraulic fractures. 
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            (4-9) 

yzS  can be derived as follows: 

  t

d

fvmmyz e
t

hhtzyS 


 4

2

4

1
,,,,,



                                                                             (4-10) 

Where d is the distance, in the (YZ) plane normal to the hydraulic fractures 

propagation, between the monitoring point (M) and the production points (P1, P2, P3) 

as shown in Fig. (4-6). 

  X Z 

Y 

P1(xp, yp1, zp) P2(xp, yp2, zp) 

M (xm, ym, zm) 

hf 

xf P3(xp, yp3, zp) 
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Figure 4-6: Schematic diagram for horizontal well intersected by multiple- inclined  

transverse hydraulic fractures. 

 

The distance between the monitoring point and each production point can be 

calculated as shown in Fig. (4-7) as follows: 

      222

1 )(tan pmvm zzzzpDyyMP                                                                    (4-12) 

Similarly: 

      222

2 )(tan2 pmvm zzzzpDyyMP                                                         (4-13) 

      222

3 )(tan3 pmvm zzzzpDyyMP                                                         (4-14) 

 

 

 

 

 

Figure 4-7: The distance between the monitoring point and production points. 
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The distances between the monitoring point and the images as shown in Fig. (4-8) 

are: 

 

 

 

 

 

 

 

Figure 4-8: Superposition principles for multiple-inclined fractures. 

      222'

1 )(tan zzzzpDyyMP pmvm                                                                 (4-15) 

Similarly: 

      222'

2 )(tan2 zzzzpDyyMP pmvm                                                                (4-16) 

      222'

3 )(tan3 zzzzpDyyMP pmvm                                                                (4-17) 

and; 

 v

pdz
dh

f cos
                                                                                                             (4-18) 

Eq. (4-11) can be written as follows: 

 

           

           

           

 

 











































































































v
f

v
f

pmvpmpmvpm

pmvpmpmvpm

pmvpmpmvpm

h

h

p

t

zzzzDyy

t

zzzzDyy

t

zzzzDyy

t

zzzzDyy

t

zzzzDyy

t

zzzzDyy

v

yz dz

ee

ee

ee

t
S































cos
2

cos
2

4

)(tan3

4

)(tan3

4

)(tan2

4

)(tan2

4

)(tan

4

)(tan

2222

2222

2222

cos4

1 (4-19)                                                                                                                                       

  

v  v  v  pdz  

D  

1P  2P  3P  

Y  

X  

Z  

fdh

 

M(xm, ym, zm) 

'1P

 

'2P

 

'3P

 



87 

 

For (n) number of fractures, Eq. (4-19) can be written as: 
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Applying superposition theory: 
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The two exponential terms in Eq. (4-21) can be solved as follows: 
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therefore Eq. (4-21) can be written as:  
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Integrating for  pz , Eq.(4-24) becomes: 
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Substitute Eqs. (4-7), (4-9), and (4-25) in Eq. (4-6), the pressure drop can be found 

as follows: 
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(4-26) 

In dimensionless form, the final model for pressure response of horizontal wells 

intersected by multiple-inclined fully penetrating transverse hydraulic fractures is: 
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To solve the above model given in Eq. (4-27), two long time approximations should 

be done based on the fluid flow dynamics and flow regimes in late time. The first one is 

the approximation for the instantaneous source function for an infinite slab source in an 

infinite reservoir xS  given by Eq. (4-9). The second one is the approximation for the 

instantaneous source function for an inclined plane source in an infinite slab reservoir 

yzS  given in Eq. (4-25). 

Eq. (4-27) can be redefined as follows: 
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The error functions in Eq. (4-40) can be approximated as follows: 

 
 

   

D

D

D

D

D

D

D

D
n

n

n

D

D

n

D

D

t

x

t

x

t

x

t

x

n

t

x

nt

x
erf

1
................

160

1

12

1

12

2

!

12

2 2/5

5

2/3

3
1

0

12

1

1 


















































                  (4-

42) 

Since: 

 
2/3

3

12

11001

D

D

D

D

t

x

t

x 



                                                                                                  (4-43) 
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Substitute Eqs. (4-43) and (4-45) in Eq. (4-40): 
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The long time approximation can be written based on Eq. (4-39) as: 
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and the proper time for this approximation is: 
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4-3-2- Longitudinal fractures 

Consider a horizontal well with multiple-inclined longitudinal hydraulic fractures in 

an infinite, homogenous, isotropic or anisotropic  xzy kkk  , horizontal slab reservoir 

as shown in fig. (4-9). Each fracture is considered as a single plane of length ( fx2 ), 

width ( w ), height ( fh ), and an angle of inclination from the vertical direction ( )v . 

The spacing between fractures is (D). If we assume that all fluid withdrawal will be 

through the fractures, and that the fractures are fully penetrating the formation, the 

fractures can be simulated as inclined plane sources. The unsteady state pressure drop 
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created by these planes at any point can be found using same procedures of transverse 

fractures: 

 

 

 

 

 

Figure 4-9: Horizontal well intersected by multiple-inclined longitudinal hydraulic fractures. 

 

The source function )( xyzS  in this case is; 

),,(*),,,,,,(),,,,,,,,( fmyffvmmxzfffvmmmxyz xtxShhztzyShxhztzyxS                   (4-57)                         

Where ( xzS ) is the instantaneous source function for an inclined plane source in an 

infinite slab reservoir. yS  is the instantaneous source function for an infinite slab source 

in an infinite reservoir in the direction of Y-axis as shown in Fig. (4-10). yS  can be 

estimated based on half fracture length as follows: 

 

 

 

 

 

 

Figure 4-10: The monitoring point and the source point for multiple- inclined  

longitudinal hydraulic fractures. 
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xzS  can be derived as follows: 
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Where d  is the distance, in the (XZ) plane normal to the hydraulic fractures 

propagation, between the monitoring point (M) and the production points (P1, P2, 

P3,…). The distance in this case will be the same for all fractures and can be determined 

as follows: 

    222 )(tan pmvpm zzzzxxd                                                                        (4-60) 

The distance between the monitoring point and the images is:  
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Applying superposition theory: 
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The two exponential terms in Eq. (4-63) can be solved and integrated for  pz . 

Therefore, Eq. (4-63) becomes: 
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(4-64)                                                                                                                                    

In dimensionless form, the final model for pressure response of horizontal wells 

intersected by multi-inclined fully penetrating longitudinal hydraulic fractures is: 
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To solve the model given in Eq. (4-65), the two long time approximations should be 

done based on the fluid flow dynamics and flow regimes in late time. Eq. (4-65) can be 

redefined as follows: 
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Similar to what it has been done for transverse hydraulic fractures starting from Eq. 

(4-42) through (4-48), the late time approximation model can be written as follows:  
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and the proper time for this approximation is: 
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4-3-2- Deviation from horizontal wellbore (Semi-transverse fractures) 

Consider a horizontal well with multiple-inclined hydraulic fractures in an infinite, 

homogenous, isotropic or anisotropic )( yzx kkk  formation, horizontal slab reservoir 

as shown in fig. (4-9). Each fracture is considered as a single plane of length ( fx2 ), 

width ( w ), height ( fh ), and an angle of inclination from the vertical direction )( v and 

an angle of deviation from the horizontal wellbore axis  h  as shown in Fig. (4-11). 

The spacing between fractures is (D). If we assume that all fluid withdrawal will be 

through the fractures, and that the fractures are fully penetrating the formation, the 

fractures can be simulated as inclined plane sources. The source function )( xyzS  in this 

case is; 

 

 

 

 

 

 

Figure 4-11: Horizontal well intersected by deviated hydraulic fractures. 
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),,(),,,,,,(),,,,,,,,( fmxffvmmyzfffvmmmxyz xtxShhztzyShxhztzyxS                    (4-71)                         

Where ( yzS ) is the instantaneous source function for an inclined plane source in an 

infinite slab reservoir. xS  is the instantaneous source function for an infinite slab source 

in an infinite reservoir in the direction parallel to the hydraulic fractures. xS  can be 

estimated based on half fracture length as follow: 
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yzS  can be derived as follows: 
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The distance between the monitoring point and each production point )(PM can be 

calculated as shown in Fig. (4-12) as follows: 

 

 

 

 

 

 

Figure 4-12: The distance between the monitoring point and production points for  

deviated hydraulic fractures. 
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      222

2 )()sin(tan2 pmhvm zzzzpSyyMP                                                (4-75) 

      222

3 )()sin(tan3 pmhvm zzzzpSyyMP                                               (4-76) 

The distances between the monitoring point and the images are: 
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Assume that: 

)sin()tan()tan( hv                                                                                         (4-80) 

Eq. (4-73) can be written for (n) numbers of fractures as follows: 
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Applying superposition theory: 
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Solving the two exponential terms in Eq. (4-82) and integrating for  pz , Eq. (4-82) 

becomes: 

 



101 

 

 

 
 














































































































































































































































































































n

n

N

N

mmv

f

mmv

f

t

NhzznSyy

mmv

f

mmv

f

t

NhzznDyy

yz

t

NhzznDyy
h

erf

t

NhzznDyy
h

erf

e

t

NhzznDyy
h

erf

t

NhzznDyy
h

erf

e

t
S

mm

mm

1
4

)2)(sin())(cos(

4

2)(sin())(cos(

2

)2)(cos())(sin()cos(
)cos(2

2

)2)(cos())(sin()cos(
)cos(2

2

)2)(cos())(sin()cos(
)cos(2

2

)2)(cos())(sin()cos(
)cos(2

4

1
2

2






























                                                                                                                                   (4-83) 

Substitute Eqs. (4-7), (4-72), and (4-83) in Eq. (4-6), the pressure drop in 

dimensionless form can be found as follows: 
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The long time approximation for this model can be written as: 
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and the proper time for this approximation is: 
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4-4-Model for anisotropic formation  yzx kk                                                     

The same models, given in Eqs. (4-27), (4-65), and (4-84), can be used for 

anisotropic formation with the following definitions: 

4-4-1- Transverse and semi-transverse fractures  xzy kk  : 
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4-4-2- Longitudinal fractures  yzx kk  : 
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4-5- Models validation 

Two previous models have been considered to check the validity of the suggested 

model in this study for multiple-inclined hydraulic fractures. The first case is for 

multiple-vertical hydraulic fractures where the suggested model can be developed to 

represent this case as: 
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Therefore Eq. (4-84) can be written as: 
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The solution for Eq. (4-105) is identical to the solution obtained from the model 

introduced by Ozkan (1988) as shown in Fig. (4-13). 
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Figure 4-13: The result of three vertical fractures using                  Figure 4-14: The result of single inclined fractures using 

            the new model and Ozkan’s model.                                                   the new model and Cinco-Ley’s model. 

 

The second case is for the solution of a single inclined fracture where  1n  and: 
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therefore Eq. (4-84) can be written as: 
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               (4-106) 

The model represented by Eq. (4-106) is identical to the model introduced by Cinco-

Ley (1974) as shown in Fig. (4-13). 
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5- PRESSURE TRANSIENT ANALYSIS FOR HORIZONTAL WELLS WITH 

MULTIPLE-INCLINED HYDRAULIC FRACTURES 

 

The pressure behaviors and flow regimes are expected to be changeable depending 

on different parameters such as number of fractures, inclination angle, and the spacing 

between them for the same reservoir properties.  

5-1- Pressure behavior 

Two responses can be identified based on the spacing or the distance between 

fractures. 

5-1-1- Short spacing (DD<5) 

Because of the short spacing between fractures, the interference between them is 

expected to occur shortly after the linear flow period. The following cases can be 

identified: 

1- For a small number of hydraulic fractures (less than five) and small inclination 

angle )45( v , linear, elliptical and pseudo-radial flow regimes are observed as 

shown in Fig. (5-1) 

2- For a small number of hydraulic fractures (less than five) and high inclination 

angle )45( v , linear, transition and pseudo radial flow regimes are observed as 

shown in Fig. (5-1). 

3- For a large number of hydraulic fractures (more than five) and small inclination 

angle )45( v , linear, elliptical, transition and pseudo-radial flow regimes are 

observed such as in Fig. (5-2). 
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4- For a large number of hydraulic fractures (more than five) and high inclination 

angle )45( v , linear, transition and pseudo radial flow regimes are observed as 

shown in Fig. (5-2). The transition flow in this case is lasting longer than the 

transition flow for short spacing.  
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     Figure 5-1: Pressure behavior of two inclined                            Figure 5-2: Pressure behavior of ten inclined 

                transverse hydraulic fractures.                                                          transverse hydraulic fractures. 

  

5-1-2- Long spacing (DD>5) 

Because of the long spacing between fractures, the interference between them 

requires long time period to occur after the linear flow. Therefore, intermediate radial 

flow, which represents radial flow around each fracture, is expected to develop. The 

following cases can be identified: 

1- For a small number of hydraulic fractures (less than five) and small inclination 

angle )45( v , linear, early radial, transition and pseudo-radial flow regimes are 

observed as shown in Fig. (5-3) 

2- For a small number of hydraulic fractures (less than five) and high inclination 

angle )45( v , linear, transition, early radial, transition and pseudo radial flow 

regimes are observed as shown in Fig. (5-3). 
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3- For a large number of hydraulic fractures (more than five) and small inclination 

angle )45( v , linear, early radial, transition and pseudo-radial flow regimes are 

observed such as in Fig. (5-4). 

4- For a large number of hydraulic fractures (more than five) and high inclination 

angle )45( v , linear, transition, early radial, transition and pseudo radial flow 

regimes are observed as shown in Fig. (5-4). the transition flow in this case is 

lasting longer than the transition flow for short spacing. 

Two fractures, hD=1.0 , DD=10

1.0E-02

1.0E-01

1.0E+00

1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04

tD

t D
*P

D
'

Theta=0.00

Theta=15.0

Theta=30.0

Theta=45.0

Theta=60.0

Theta=75.0
Pseudo-radial flow

Transition flow

Early radial flow

Linear flow

Transition flow

yz

x

f

D

yz

x

f

D
k

k

x

D
D

k

k

x

h
h  ,

Ten fractures, hD=1.0 , DD=10

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05

tD

t D
*P

D
'

Theta=0.00

Theta=15.0

Theta=30.0

Theta=45.0

Theta=60.0

Theta=75.0 Pseudo-radial flow

Eraly radial flow

Linear flow

Transition flow

Transition flow

yz

x

f

D

yz

x

f

D
k

k

x

D
D

k

k

x

h
h  ,

 
    Figure 5-3: Pressure behavior of two inclined                                Figure 5-4: Pressure behavior of ten inclined 

                  transverse hydraulic fractures.                                                          transverse hydraulic fractures. 

 

For longitudinal hydraulic fractures, the response is similar to the transverse 

hydraulic fractures. The differences between the longitudinal and transverse fractures 

occur in the anisotropic formations when there is a difference between the permeability 

in the X-direction  xk and Y-direction  yk .  

1- For small spacing (DD=1), Linear, transition, and pseudo-radial flow are 

developed for both small and large inclination angle as shown in Fig. (5-5). 
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2- For moderate spacing (DD=5), Linear, transition, elliptical and pseudo-radial flow 

are developed for both small and large inclination angle such as shown in Fig.(5-

6).  
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Figure 5-5: Pressure behavior of five inclined                                Figure 5-6: Pressure behavior of five inclined 

          longitudinal hydraulic fractures.                                                       longitudinal hydraulic fractures. 

 

For semi-transverse fractures, the deviation from the horizontal wellbores has two 

different impacts: the first for  45h  in which the pressure drop increases slightly as 

the deviation angle increases. The second for  45h  in which the pressure drop 

decreases slightly with the increasing of the deviation angle. The following cases for 

five hydraulic fractures can be identified based on spacing, vertical inclination angle 

and the deviation from the horizontal wellbore. 

1- Short spacing (DD=1) and five vertical fractures  0v  : Linear, transition and 

pseudo-radial flow regimes are developed for both small and large deviation 

angle as shown in Fig. (5-7). 

2- Short spacing (DD=1) and five inclined fractures  60v : Linear, transition and 

pseudo-radial flow regimes are developed for both small and large deviation 

angle from the wellbore as shown in Fig. (5-8).  
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3- Long spacing (DD=5) and five vertical fractures  0v  : Linear, transition, 

early radial, transition and pseudo-radial flow regimes are developed for both 

small and large deviation angle from the wellbore such as in Fig. (5-9).  

4- Long spacing (DD=5) and five inclined fractures  60v : Linear, transition and 

pseudo-radial flow regimes are developed for both small and large deviation 

angle from the wellbore such as in Fig. (5-10).  
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    Figure 5-7: Pressure behavior of five semi-transverse                 Figure 5-8: Pressure behavior of five semi-transverse  

               inclined hydraulic fractures.                                                                 inclined hydraulic fractures. 
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   Figure 5-9: Pressure behavior of five semi-transverse               Figure 5-10: Pressure behavior of five semi-transverse  

                    inclined hydraulic fractures.                                                              inclined hydraulic fractures. 
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5-2- Flow regimes 

5-2-1-Linear flow regime 

At early time, reservoir fluid flows linearly and directly from the formations to the 

individual fractures as shown in Fig. (5-11). Each fracture behaves independently from 

the others. The flow regime is recognized by straight line with slope of (0.5) in the log-

log plots for both dimensionless pressure and pressure derivative with dimensionless 

time.  

5-2-1-1-For isotropic and anisotropic formation  xyx kkk   

- The governing equations for transverse and longitudinal hydraulic fractures are: 
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5-2-1-2-For anisotropic formation  yzx kk  : 
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The governing equation for semi-transverse hydraulic fractures is: 
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or; 
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)cos(16.1
                                                                         (5-12) 

 

 

 

 

 

 

Figure 5-11: Linear flow regime of multiple-inclined hydraulic fractures. 
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Generally, in all cases (transverse, semi-transverse, and longitudinal fractures), the 

following correlation is applicable: 

 '2 DDD PtP                                                                                                        (5-13) 

5-2-2-Pseudo-radial flow 

Pseudo-radial flow regime is the dominant flow for all cases at late time when 

reservoir fluids flow in the XY plane radially toward the fractures such as shown in Fig. 

(5-12). This flow is characterized by constant value (0.5) for the dimensionless pressure 

derivative curves on log-log plot of dimensionless pressure and dimensionless time. The 

governing equation for this flow is: 

 

 

 

 

 

 

 

 

 

       

Figure 5-12: Pseudo- radial flow regime for                            Figure 5-13: Early radial flow regime for multiple-inclined  

   multiple inclined hydraulic fracture.                                                                            hydraulic fractures. 

 

  5.0' 
PRFDD Pt                                                                                                       (5-14) 

 
kh

qB
Pt PRF

6.70
                                                                                                 (5-15) 

And for anisotropic formation  xyx kk  : 

 
hkk

qB
Pt

yzx

PRF

6.70
                                                                                                (5-16) 
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5-2-3-Early radial flow 

Early radial flow regime represents the radial flow around each fracture. Typically, 

this flow is expected to be observed when the spacing between fractures is long enough. 

In this flow, reservoir fluids flow radially in XY plane toward each individual fractures 

such as shown in Fig. (5-13). The governing equations for this flow are: 

 
n

Pt
ERFDD

5.0
'                                                                                                       (5-17) 

 
nkh

qB
Pt ERF

6.70
                                                                                                 (5-18) 

And for anisotropic formation  xyx kk  : 

 
hkkn

qB
Pt

yzx

ERF

6.70
                                                                                              (5-19) 

5-2-4- Elliptical flow regime 

Elliptical flow regime indicates elliptical flow toward the fracture such as shown in 

Fig. (5-14). This flow regime was described initially by Tiab (1994). It often occurs in 

the case of infinite conductivity fractures. However, it can be seen in a few cases of 

uniform flux fractures. This type of flow depends on the number of fractures and 

spacing between them as shown in Fig. (5-15). Neither the inclination angle from the 

vertical axis  v  nor the deviation angle from the horizontal wellbore  h  have an 

impact on this flow as shown in Fig. (5-16). Multivariate linear regression analysis is 

used to derive the governing equation for this flow regime:   

 
6.0

366.0

'
D

D

EFDD
nD

t
Pt                                                                                                                                                       (5-20) 
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And for anisotropic formation  xyx kk  : 
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Figure 5-14: Elliptical flow regime for multiple-inclined hydraulic farctures. 
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Figure 5-15: Multivariate regression analysis for elliptical            Figure 5-16: Multivariate regression analysis for elliptical  

     flow regime (transverse and longitudinal fractures).                              flow regime (semi-transverse fractures). 

 

5-3- Intersection Points: 

The points of intersection between different lines of flow regimes are very important 

in the well test interpretation. They can be used to check the results.  
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5-3-1- The point of intersection of linear flow line and pseudo-radial flow line is: 

-For transverse and longitudinal fractures acting in isotropic and anisotropic 

formation  yzx kkk  : 

)(cos
1207

2

22

v

tf

PREL
k

cxn
t




                                                                                                      (5-23) 

-For semi-transverse fractures acting in isotropic and anisotropic 

formation  yzx kkk  : 

 
)(cos
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1207

2

222

v

htf

PREL
k

cxn
t




                                                                         (5-24) 

-For transverse, longitudinal fractures, and semi-transverse fractures acting in an 

anisotropic formation  yzx kk  , xk  should be used instead of k  in Eqs. (5-23) and (5-

24). 

5-3-2- The point of intersection of linear flow line and early radial flow line is: 

-For transverse and longitudinal fractures acting in isotropic and anisotropic 

formation  yzx kkk  : 

)(cos
1207

2

2

v

tf

EREL
k
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


                                                                                                     (5-25) 

-For semi-transverse fractures acting in isotropic and anisotropic 

formation  yzx kkk  : 

 
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2

22
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EREL
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t




                                                                                       (5-26) 
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-For transverse, longitudinal fractures and semi-transverse fractures acting in an 

anisotropic formation  yzx kk  , xk  should be used instead of k  in Eqs. (5-25) and (5-

26). 

5-3-3-The point of intersection of elliptical flow line and pseudo-radial flow line is: 

-For transverse and longitudinal fractures acting in isotropic and anisotropic 

formation  yzx kkk  : 
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-For transverse and longitudinal fractures acting in an anisotropic formation  yzx kk  : 
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5-3-4-The point of intersection of elliptical flow line and early radial flow line is: 

-For transverse and longitudinal fractures acting in isotropic and anisotropic 

formation  yzx kkk  : 
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-For transverse and longitudinal fractures acting in an anisotropic formation  yzx kk  : 
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5-4-Pseudo-skin factor 

Pseudo-skin factor was defined by Cinco-Ley et al 1975 as the difference in the 

wellbore dimensionless pressure for a fully penetrating inclined hydraulic fracture 

 DwDfD htP ,,  and a vertical fracture  DfD tP . Mathematically, it is: 

   DfDDwDfD tPhtPS  ,,                                                                                      (5-31) 

Gringarten et al 1974 introduced the equation for dimensionless pressure of a well 

intercepting a uniform flux vertical fracture at its center as: 

    80907.2ln
2

1
 DDfD ttP                                                                                    (5-32) 

Therefore, late time pseudo-skin factor can be found as: 

  80907.2ln
2

1
),,,,,,(),(

2

1
1

0

1

  DDwDwDwDD

t

D tdhhzzxZyYS
D

                   (5-33) 

In general, the pseudo-skin factor decreases with the inclination angle from the 

vertical axis and the deviation from the wellbore. For the same number of longitudinal 

and transverse fractures, the pseudo-skin factor decreases when the spacing between 

fractures increases and when the inclination angle  v  increases as shown in Fig. (5-

17). For the same number of semi-transverse fractures, the pseudo-skin factor increases 

as the deviation from the wellbore increases and the spacing between fractures increases 

as shown in Fig. (5-18). Appendix-D shows the tables of pseudo-skin factor.  

Even though skin factor has not been included in all above models, the equivalent 

skin factor can be determined based on the single fracture solution using the early radial 

flow line when it is well developed. The equivalent skin factor model for transverse 

fractures is:  
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and for longitudinal fractures is: 
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Figure 5-17: Pseudo-skin factor for transverse                                  Figure 5-18: Pseudo-skin factor for semi-transverse  

                   hydraulic fractures                                                                                            hydraulic fractures 

 

while total skin factor can be determined from pseudo-radial flow as: 
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5-5-Appliction of Type Curve Matching 

As shown on the plots in Appendix (B), the pressure and pressure derivative have 

different shapes for each combination of number of fractures, spacing between 

fractures, inclination angle from the vertical axis, and deviation from the wellbore. 

Type-curve matching can provide a quick estimation for reservoir and fractures 

parameters.  
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The following information is associated with each type curve: dimensionless 

spacing between fractures (DD), number of fractures (n), and inclination angle ( v ). 

Thus, the following information can be obtained from the type curve matching process: 

(PD)M, (ΔP)M, (tD)M, (Δt)M, ( v )M, (hD)M, (D)M, (s)M, (n)M . The following steps illustrate 

how type curve matching is used to determine reservoir characteristics such as: 

permeability, inclination angle, spacing, pseudo-skin factor, fracture half length, and 

number of fractures.  

Step-1 Plot ( P vs. t ) and ( 'Pt  vs. t  ) on log-log paper. 

Step-2 Obtain the best match of the data with one of the type curves. 

Step-3 Read from any match point: MMvMDMDMDMMDMM snDhPtPt ,,,,,,,,  . 

Step-4 Calculate half fracture length )( fx . 

Df hhx                                                                                                                   (5-37) 

Step-5 Calculate xk : 

M

DMft

x
t

txc
k

0002637.0

2
                                                                                                                          (5-38)    

Step-6 Calculate )( yzk : 

Mx

DM
yz

Phk

quBP
k




2.141
                                                                                                (5-39) 

Step-7 Calculate  yk . 

z

yz

y
k

k
k

2

                                                                                                                      (5-40) 

Step-8 Number of fractures can be determined directly as:                                                   
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Mnn                                                                                                                                                 (5-41) 

Step-9 Inclination angle can be determined directly as: 

vM                                                                                                                                             (5-42)                                                                                                                                                               

Step-10 Spacing between fractures can be calculated as: 

Mf DxD                                                                                                                                      (5-43) 

Step-11 Pseudo-skin factor can be determined directly as: 

Mss                                                                                                                       (5-44) 

5-6-Application of TDS technique 

TDS is a powerful technique for computation of reservoir parameters directly from 

log-log plots of pressure and pressure derivative data. A well designed pressure 

transient test in multiple-inclined hydraulically fractured horizontal wells should yield 

all the necessary straight lines to calculate number of fractures, the inclination angle, 

spacing between fractures, and permeability. The great advantage of this technique is 

that it only requires graphing of pressure and pressure derivative on a single log-log plot 

for direct analysis.   

The following step-by-step procedure is for the ideal case where all the necessary 

straight lines are well defined. 

Step 1 - Plot pressure change (P) and pressure derivative (t×P') values versus test 

time on a log-log graph.  

Step 2 - Read the value of (t×P')PRF corresponding to the infinite acting pseudo-radial 

flow line. 
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Step 3 - Calculate )( xk for isotropic or anisotropic formation  yzx kkk   or  yzxkk  

for anisotropic formation  yzx kk  : 
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Step 4- Calculate yk : 

z

x

z

yz

y
k

k

k

k
k                                                                                                              (5-47) 

Step 5 – If the early radial flow is developed, read (t×P')ER. 

Step 6 – Calculate number of fractures )(n : 

 
 ERF

PRF

Pt

Pt
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
                                                                                                         (5-48) 

Step 7 - Obtain the value of (t×P') at time t = 1 hr from the elliptical flow line 

(extrapolated if necessary), (t×P')EF1hr.   

Step 8 - Calculate )(D . 

-For transverse and longitudinal fractures acting in isotropic and anisotropic 

formation  yzx kkk  : 

 

6.01
36.0

1

64.012.0

17



























thrEFf cPthknx

Bq
D




                                                                          (5-49) 

-For transverse and longitudinal fractures acting in anisotropic formation  yzx kk  : 
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Step 9 - Obtain the value of (t×P') at time t = 1 hr from the linear flow line 

(extrapolated if necessary), (t×P')ELF1hr.   

Step 10 - Calculate )( v . 

-For transverse and longitudinal fractures acting in isotropic and anisotropic 

formation  yzx kkk  : 
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-For semi-transverse fractures acting in isotropic and anisotropic 

formation  yzx kkk  : 
















 

tvhrELFf

h
ckPtnhx

qB








)cos()'(

032.2
sin

1

1                                                                       (5-52) 

-For transverse and longitudinal fractures acting in anisotropic formation  yzx kk  : 
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-For semi-transverse fractures acting in anisotropic formation  yzx kk  : 
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Step 11 – From early radial flow line, read the value of  ERPt ' and  ERP  at a 

certain time  ERt .   

Step-12- Calculate the equivalent skin factor )(s  from Eq. (5-34): 
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Step 13 – From pseudo radial flow line, read the value of  PRFPt ' and  PRFP  at a 

certain time  PRFt .   

Step-14- Calculate the total skin factor )(s  from Eq. (5-36): 

Step 15 – Calculate the intersection times using Eq. (5-23) through Eq. (5-32) and 

compare them with those in the plot.  

Example -5-1  

Pressure drawdown test data of a hydraulically fractured horizontal well is given in 

Table (Example 5-1) of Appendix (F).  Other known reservoir and well data are: 

q = 200 STB/D         = 0.07          = 0.75 cp           ct = 1.5x10
-6

 psi
-1                 

h = 80 ft        

xf = 80 ft                rw = 0.5 ft         pi = 6000 psi         B = 1.15 bbl/STB           kz=0.1 md 

Determine: 

1- Formation permeability. 

2- Number of fractures. 

3- Spacing between fractures. 

4- Inclination angle. 

1- Solution using type-curve matching: 

Step-1 Plot ( P vs. t ) and ( 'Pt  vs. t  ) on log-log paper as shown in Fig. (5-19). 

Step-2 Obtain the best match of the data with one of the type curves as shown in Fig. 

(5-20). 

Step-3 Read from any match point: 

612.3,7,45,8,1,0082.0,3.1,10,10  MMvMDMDMDMMDMM snDhPtPt   

Step-4 Calculate half fracture length )( fx  from Eq. (5-37). 
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ftx f 80180                                                                                                                      

Step-5 Calculate xk from Eq. (5-38): 

mdkx 25.0
100002637.0

3.1800000015.075.007.0 2





                                                                                                                               

Step-6 Calculate )( yzk from Eq. (5-39): 

5.0
108025.0

0082.015.175.02002.141





yzk    

Step-7 Calculate  yk  from Eq. (5-40). 

md
k

k
k

z

yz

y 5.2
1.0

5.0 22

                                                                                                                         
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     Figure 5-19: Pressure and pressure derivative plot                                 Figure 5-20: Type-curve matching plot for 

                               Example  5-1.                                                                                                Example 5-1. 

                                                                                                

Step-8 Number of fractures from Eq. (5-41):                                                   

fracturesn 5                                                                                                                                                    

Step-9 Inclination angle from Eq. (5-42): 

45                                                                                                                                                

Step-10 Spacing between fractures from Eq. (5-43): 
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ftDxD Mf 640880                                                                                                                                          

Step-11 Pseudo-skin factor directly as in Eq. (5-44): 

612.3s                                                                                                                             

2- Solution using TDS: 

Step 1 - Plot pressure change (P) and pressure derivative (t×P') values versus test 

time on a log-log graph as shown in Fig. (5-21).  
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Figure 5-21: TDS technique for example 5-1. 

Step 2 - Read the value of (t×P')PRF corresponding to the infinite acting pseudo-radial 

flow line. 

  .609'  PRFPt  

Step 3 - Calculate )( xk from Eq. (5-45). 

md
Pth

Bq
kkk

PRF

yzx 25.0
60980

15.175.02006.70

)'(

6.70




















       
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Step-4- Calculate yk from Eq. (5-47):    

mdky 5.2
1.0

25.0
                                                                                             

Step 4 – If the early radial flow is developed, read (t×P')ERF. 

  120'  ERFPt  

Step 5 – Calculate number of fractures )(n from Eq. (5-48): 

farcturesn 5
120

609
                                                                                                              

Step 6 - Obtain the value of (t×P') at time t = 1 hr from the elliptical flow line 

(extrapolated if necessary), (t×P')EF1hr.   

  32' 1  hrEFPt  

Step 7 - Calculate )(D  from Eq. (5-49). 

ftD 650
0000015.075.007.0

1

3225.080805

15.175.02007
6.0/1

36.0

64.012.0

























                                                                               

Step 8 - Obtain the value of (t×P') at time t = 1 hr from linear flow line (extrapolated if 

necessary), (t×P')ELF1hr.   

  55' 1  hrELFPt  

Step 9 - Calculate )( v from Eq. (5-51). 

45
75.0

0000015.007.025.0

15.1200032.2

5580805
cos 1 













 




 

v                                                                                                             

Step 10 – Calculate the intersection times using Eq. (5-23) through Eq. (5-32) and 

compare them with those in the plot.  
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-From the plot, hrsthrsthrsthrst EREFPREFERELPREL 3.4,4000,6.4,120   

-The calculated values: 

1- The intersection point between linear flow and pseudo-radial flow from Eq. (5-23) 

hrstPREL 121
)45(cos25.0

0000015.075.007.0805
1207

2

22





  

2- The intersection point between linear flow and early radial flow from Eq. (5-25) 

hrs
k

cx
t

v

tf

EREL 9.4
)45(cos25.0

0000015.075.007.080
1207

)cos(
1207

2

22










 

3- The intersection point between elliptical flow and pseudo-radial flow from Eq. (5-

27). 

hrstPREF 3220
25.0

800000015.075.007.0

80

6405
7.570

2
36.0/1

6.0

6.0











 
  

4- The intersection point between elliptical flow and pseudo-radial flow from Eq. (5-

29). 

hrstEREF 37
25.0

800000015.075.007.0

80

640
7.570

2
36.0/1

6.0

6.0












  

Table (5-1) summarizes the input data and the resulted value for Example 5-1. 

Table 5-1: Summary of results of Example 5-1. 

Parameter In-put value Calculated value by  

Type-curve matching 

Calculated value by  

TDS technique 

xk , md 0.25 0.25 0.25 

yk , md 2.5 2.5 2.5 

n  5 5 5 

fx , ft 80 80  

D , ft 640 640 650 

v  45 45 45 
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Example -5-2  

Pressure drawdown test data of a hydraulically fractured horizontal well is given in 

Table (Example 5-2) in Appendix (F).  No indication for vertical deviation. Other 

known reservoir and well data are: 

q = 500 STB/D         = 0.05          = 0.5 cp           ct = 1.0x10
-6

 psi
-1                 

h = 100 ft        

xf = 100 ft              rw = 0.5 ft         pi = 10000 psi         B = 1.15 bbl/STB         kz=0.4 md 

Determine: 

5- Formation permeability. 

6- Number of fractures. 

7- Spacing between fractures. 

8- Deviation angle from the wellbore. 

1- Solution using type-curve matching: 

Step-1 Plot ( P vs. t ) and ( 'Pt  vs. t  ) on log-log paper as shown in Fig. (5-22). 

Step-2 Obtain the best match of the data with one of the type curves as shown in Fig. 

(5-23). 
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     Figure 5-22: Pressure and pressure derivative plot                                 Figure 5-22: Type-curve matching plot for 

                               Example  5-2.                                                                                                Example 5-2. 
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Step-3 Read from any match point: 

255.1

,5,0,15,1,1,0123.0,53.0,10,1





M

MvMhMDMDMDMMDMM

s

nDhPtPt 
 

Step-4 Calculate half fracture length )( fx  from Eq. (5-37). 

ftx f 1001100                                                                                                                      

Step-5 Calculate xk from Eq. (5-38): 

mdkx 5.0
10002637.0

53.0100000001.05.005.0 2





                                                                                                                               

Step-6 Calculate )( yzk from Eq. (5-39): 

706.0
101005.0

0123.015.15.05002.141





yzk                                                                                                   

Step-7 Calculate  yk  from Eq. (5-40). 

md
k

k
k

z

yz

y 24.1
4.0

706.0 22

                                                                                                                         

Step-8 Number of fractures from Eq. (5-41):                                                   

fracturesn 5                                                                                                                                                    

Step-9 Inclination angle from Eq. (5-42): 

0                                                                                                                                                

Step-10 Deviation angle from wellbore: 

15h                                                                                                                                                

Step-11 Spacing between fractures from Eq. (5-43): 

ftDxD
MDf 1001100                                                                                                                                          

Step-12 Pseudo-skin factor from Eq. (5-44): 
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255.1s                                                                                                                             

2- Solution using TDS: 

Step 1 - Plot pressure change (P) and pressure derivative (t×P') values versus test 

time on a log-log graph as shown in Fig. (5-24).  

Step 2 - Read the value of (t×P')PRF corresponding to the infinite acting pseudo-radial 

flow line. 

  .406'  PRFPt  

Step 3 - Calculate )( xk from Eq. (5-45). 

md
Pth

Bq
kkk

PRF

yzx 5.0
406100

15.15.05006.70

)'(

6.70








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
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


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


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Figure 5-24: TDS technique for example 5-2. 

 

 

Step-4- Calculate yk from Eq. (5-47):    

mdky 25.1
4.0

5.0
                                                                                             
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Step 4 – If the early radial flow is developed, read (t×P')ER. 

  80'  ERPt  

Step 5 – Calculate number of fractures )(n from Eq. (5-48): 

farcturesn 5
8

406
                                                                                                              

Step 6 - Obtain the value of (t×P') at time t = 1 hr from the elliptical flow line of slope 

(0.36)  (extrapolated if necessary), (t×P')EF1hr.   

  130' 1  hrEFPt  

Step 7 - Calculate )(D  from Eq. (5-49). 

ftD 95
000001.05.005.0

1

1305.01001005

15.15.05007
6.0/1

36.0

64.012.0

























                                                                               

Step 8 - Obtain the value of (t×P') at time t = 1 hr from linear flow line (extrapolated if 

necessary), (t×P')ELF1hr.   

  400' 1  hrELFPt  

Step 9 - Calculate )( h from Eq. (5-52). 

 15
000001.005.05.0

5.0

)0cos(4001001005

15.1500032.2
sin 1 


















 

h                                                                                                           

Step 10 – Calculate the intersection times using Eq. (5-23) through Eq. (5-32) and 

compare them with those in the plot.  

-From the plot, hrsthrsthrsthrst EREFPREFERELPREL 2.0,20,038.0,95.0   

-The calculated values: 

1- The intersection point between linear flow and pseudo-radial flow from Eq. (5-24). 
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 
hrtPREL 1

)0(cos

15sin

5.0

000001.05.005.05100
1207

2

222




  

2- The intersection point between linear flow and early radial flow lines from Eq. (5-

26). 

 
hrstPREL 04.0

)0(cos

14sin

5.0

000001.05.005.0100
1207

2

22




  

3- The intersection point between elliptical flow and pseudo-radial flow lines from Eq. 

(5-27). 

hrstPREF 22
5.0

100000001.05.005.0

100

955
7.570

2
36.0/1

6.0

6.0








 







 
  

4- The intersection point between elliptical flow and pseudo-radial flow from Eq. (5-

29). 

hrstEREF 26.0
5.0

100000001.05.005.0

100

95
7.570

2
36.0/1

6.0

6.0








 








  

Table (5-2) summarizes the input data and the resulted value for Example 5-2. 

Table 5-2: Summary of results of Example 5-2. 

Parameter In-put value Calculated value by  

Type-curve matching 

Calculated value by  

TDS technique 

xk , md 0.5 0.5 0.5 

yk , md 1.25 1.24 1.25 

n  5 5 5 

fx , ft 100 100  

D , ft 100 100 95 

h  15 15 15 

  

5-7- Hydraulic fractures malfunction 

The hydraulic fracturing process is an excellent stimulation process for both 

unconventional and conventional hydrocarbon resources. This process always requires 
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great attention in order to assert the objectives such as creating multiple-hydraulic 

fractures and maintaining that they remain open. The successful fracturing treatment 

requires expensive completion process where the zonal isolations are required and the 

well may cased and cemented. However, there are several parameters may increase the 

risk of an unsuccessful fracturing process. These parameters can be classified under 

three general categories. The first category is the fracturing process itself (type of 

fracturing fluid and the additives). The second category is the type of formation and the 

degree of complexity. The third category is the completion process. Therefore, it is 

necessary to evaluate the performance of the hydraulic fractures.  

This study introduces new and important application for the well test analysis. Well 

test analysis can be used as an excellent tool for the purpose of evaluating the 

performance of hydraulic fractures and determining locations of the fractures that do not 

perform as designed. Type-curve matching is the recommended technique for the 

interpretation process of the well test data of hydraulically fractured well. By using this 

technique, it is possible to know if one or more hydraulic fractures are not working 

properly (closed). Using the same technique, it is also possible to determine the 

locations of the malfunction hydraulic fractures.  

Figures (5-25), (5-26), (5-27), (5-28), (5-29), (5-30), (5-31) and (5-32) represent 

pressure behavior of three, four, five, six, seven, eight, nine and ten vertical hydraulic 

fractures respectively when one fracture is not working properly (closed). 
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Three vertical fractures, hD=1.0 , DD=2
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Four vertical fractures, hD=1.0 , DD=2
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Figure 5-25: Pressure behavior of three vertical fractures         Figure 5-26: Pressure behavior of four vertical fractures  

with one malfunction fracture.                                                            with one malfunction fracture.  

 

Five vertical fractures, hD=1.0 , DD=2
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Sixth fractures, hD=1.0 , DD=2
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Figure 5-27: Pressure behavior of five vertical fractures               Figure 5-28: Pressure behavior of six vertical fractures  

with one malfunction fracture.                                                            with one malfunction fracture.  

 

Seven vertical fractures, hD=1.0 , DD=2
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Eight vertical fractures, hD=1.0 , DD=2
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Figure 5-29: Pressure behavior of seven vertical fractures               Figure 5-30: Pressure behavior of eight vertical fractures  
                        with one malfunction fracture.                                                            with one malfunction fracture. 
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Nine vertical fractures, hD=1.0 , DD=2
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Ten vertical fractures, hD=1.0 , DD=2
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Figure 5-31: Pressure behavior of nine vertical fractures               Figure 5-32: Pressure behavior of ten vertical fractures  
                        with one malfunction fracture.                                                            with one malfunction fracture. 

 

For short spacing hydraulic fractures, the interference between fractures is expected 

to occur after short production time. Therefore, there will not be enough time for the 

intermediate radial flow to develop. Based on this fact, the development of this flow can 

be used as an indication of the existence of long spacing between fractures in addition 

to the existence of malfunctioning fractures. Fig.(5-33) shows the development of the 

intermediate radial flow when a system of eight vertical fractures looses two or more 

fractures.  

For large spacing between fractures, the interference between fractures is expected 

to occur after a long period of time. Therefore, there will be enough time for the 

intermediate radial to be observed as a result of the radial flow toward each individual 

fracture. The impact of losing one or more hydraulic fractures can be represented by 

developing clear intermediate radial flow that lasts for a long period of time as shown in 

Fig. (5-34). In this case, it is difficult to decide whether the intermediate radial flow is 

developed by the originally designed long spacing fractures or because of the long 

spacing of malfunctioning fractures. However, the situation can be figured out by 

knowing the number of fractures that have been originally fractured and the ratio 
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between the pseudo-radial and intermediate radial flow. The number of existing 

hydraulic fractures can be found from this ratio and compared to the real member of 

fractures. 

Example -5-3  

Pressure drawdown test data has been done to evaluate the performance of a 

horizontal well intersected by six vertical hydraulic fractures. The test data is given in 

Table (Example 5-3) in Appendix (F).  Other known reservoir and well data are: 

q = 100 STB/D         = 0.1          = 1.5 cp           ct = 2.5x10
-5

 psi
-1                    
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Figure 5-33: Eight vertical hydraulic fractures system with       Figure 5-34: Eight vertical hydraulic fractures system with 

malfunctioning fractures                                                                                         malfunctioning fractures 

 

Solution using type-curve matching: 

Step-1 Plot ( P vs. t ) and ( 'Pt  vs. t  ) on log-log paper as shown in Fig. (5-35). 

Step-2 Obtain the best match of the data with one of the type curves as shown in Fig. 

(5-36). 
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From type-curve matching, it can be seen that only one hydraulic fracture is not 

working properly (closed) which is the third ones. Based on the spacing between 

fractures, the location of the malfunction fractures is (200 ft) from the heel of the 

horizontal well. 
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Figure 5-35: Pressure and pressure derivative plot                                         Figure 5-36: Type-curve matching plot for 

                               Example  5-3.                                                                                                   Example 5-3. 
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6- MATHEMATICAL MODELS FOR PARTIALLY PENETRATING 

MULTIPLE HYDRAULIC FRACTURES 

Even though hydraulic fracturing process has been a common application in the 

petroleum industry during the last two decades, the final output of this process is 

significantly affected by several factors. The successful process has to produce 

maximum actual production from the total reserve in the formation. Fracture 

dimensions (half fracture length, fracture width, and fracture height) are of great 

importance in the performance as are the orientation of the fractures as well as the rock 

and fluid properties. Typically, it is preferred that the fracture height be equal to the 

formation height, where fully-penetrating fractures can be produced. Unfortunately, the 

fractures can not always penetrate totally the formation where partially penetrating 

fractures may be produced. Partially penetrating hydraulic fractures are undesirable 

stimulation process due to the possibility of reducing the expected production rate of the 

fractured formation. However, fully penetrating fractures in a reservoir with water and 

oil in contact may lead to an early or immediate water production. Therefore, partially 

penetrating fractures may be the only way to prevent the production of unwanted water.    

6-1- Models Derivation 

In this chapter, an analytical model for the pressure behavior of a horizontal well 

intersecting with partially penetrating multiple hydraulic fractures will be introduced. 

The same facts and assumptions that have been mentioned in item (4-3) for the 

derivation of the multiple-inclined hydraulic fractures model are necessary to be 

followed for the derivation of the partially penetrating hydraulic fractures models also. 
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Consider a horizontal well with partially penetrating vertical transverse hydraulic 

fractures in an infinite, homogenous, isotropic or anisotropic, horizontal slab reservoir 

as shown in fig. (6-1). Each fracture is considered as a single plane of length ( fx2 ), 

width ( w ), height ( fh ). The spacing between fractures is (D). If we assume that all 

fluid withdrawal will be through the fractures, the fractures are partially penetrating the 

formation, the fractures can be simulated as inclined plane sources. The unsteady state 

pressure drop created by these planes at any point ( ),, mmm zyx  is: 

 

t

fffmmmxyzfffmmm dhxhztzyxS
c

q
hxhztzyxP

0

),,,,,,,(),,,,,,,( 


                      (6-1)                         

xyzS  is the instantaneous source function for an inclined plane source in an infinite 

slab reservoir and ( q  ) is the fluid withdrawal per unit fracture surface area per unit 

time. 

ff hnx

Q
q

2
                                                                                                                  (6-2) 

 

 

 

 

 

 

 

Figure 6-1: Horizontal well intersected by partially penetrating multiple hydraulic fractures. 
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The source function )( xyzS  can be obtained using the Newman product method. This 

method proposed that the instantaneous uniform flux source function for a three 

dimensional flow problem is the product of the instantaneous source function for a one 

dimensional flow problem. Therefore; 

 tzStyStxShxhztzyxS zyxfffmmmxyz ,),(),(),,,,,,,(                                                   (6-3)                         

      xS  is the instantaneous source function for an infinite slab source in an infinite 

reservoir in the direction of X-axis. yS  is the instantaneous source function for an 

inclined plane source in an infinite slab reservoir in the Y-direction. 
zS  is the 

instantaneous source function for an inclined plane source in an infinite slab reservoir in 

the vertical direction as shown in Fig. (6-2). xS  can be estimated based on half fracture 

length as follow: 

 

 

 

 

 

 

Figure 6-2: The monitoring point and the source point of partially penetrating 

 multiple transverse hydraulic fractures. 
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yS  can be derived as follow: 
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zS  represents the instantaneous source function that is affected by the height of the 

formation and the height of fractures as shown in Fig. (6-3). Gringarten and Ramey 

1973 presented the solution for this source function as: 
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Substitute Eqs. (6-4), (6-5), and (6-6) in Eq. (6-3) first and then substitute Eqs. (6-3) 

and (6-2) in Eq. (6-1) gives: 
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Figure 6-3: Schematic diagram of partial penetrating hydraulic fracture. 

In dimensionless form, the final model for pressure response of horizontal wells 

intersecting by multiple partially penetrating vertical hydraulic fractures is: 
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To solve the above model given in Eq. (6-8), three long time approximations should 

be done based on the fluid flow dynamics and flow regimes in late time. The first 

approximation is for instantaneous source function xS  given by Eq. (6-4).  
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therefore: 
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The second approximation is for the instantaneous source function yS  given in Eq. 

(6-5). 
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The exponential expansion can be approximated by its first term: 
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The third approximation for the instantaneous source function 
zS  is given in Eq. (6-

6). 
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The long time approximation can be written as: 
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and the proper time for this approximation is: 
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6-2-Partially penetrating multiple inclined transverse hydraulic fractures 

For partially penetrating multiple inclined fractures as shown in Fig. (6-4), the model 

for pressure behavior can be derived using the same method as for the partially 
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penetrating multiple vertical fractures, except the instantaneous source function in the 

vertical direction should be as: 
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Therefore the pressure model becomes: 
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Figure 6-4: Horizontal well intersected by partially penetrating multiple 

 inclined hydraulic fractures. 

 

In dimensionless form, the model becomes: 
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7- PRESSURE TRANSIENT ANALYSIS FOR HORIZONTAL WELLS 

INTERSECTED BY PARTIALLY PENETRATING MULTIPLE INCLINED 

HYDRAULIC FRACTURES 

 

The penetration ratio (the ratio of the fracture’s height to the formation’s height) has 

significant influences on the pressure behaviors and flow regimes. Several analytical 

models will be introduced in this chapter for six flow regimes. A set of type-curve 

matching plots have been presented to reflect the compound effects of the penetration 

ratio, the number of fractures, the spacing between fractures as well as fracture 

dimensions and inclination angle from the vertical axis. Three new flow regimes can be 

observed for the partially penetrating fractures. These are in addition to the early linear 

(First linear) flow, intermediate radial (early radial for fully penetrating fractures), 

elliptical flow, and pseudo-radial flow. The first of these three new regimes is the 

second linear flow. This regime represents the flow toward the fractures plane in the XZ 

plane after the pressure behavior is affected by the upper and lower boundary. The 

second regime is the early radial that represents the radial flow in the YZ plane toward 

the fracture before the boundaries are reached. The third regime is the third linear flow 

that represents the linear flow toward the fractures in the YZ plane. 

7-1- Pressure behavior 

The following responses are easy to identify based on different penetration ratios. 

7-1-1- Large penetration ratio (hhfD>0.5) 

Because of the penetration ratio, the pressure behavior in this case tends to be 

similar to the fully penetrating fractures where other factors such as the number of 
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fractures, spacing between them, fracture dimensions, and inclination angle have the 

main influences.  

7-1-1-1- Short half fracture length (hxfD<10) 

1- For a small number of hydraulic fractures (less than five) and short spacing, first 

linear, transition, second linear, transition and pseudo-radial flow are observed as 

shown in Figs. (7-1) and (7-2). 

2- For a small number of hydraulic fractures (less than five) and long spacing, first 

linear, transition, second linear, intermediate radial, transition and pseudo radial 

flow are observed as shown in Figs. (7-3) and (7-4). 

3- For a large number of hydraulic fractures (more than five) and small spacing, first 

linear, transition, second linear, third linear, transition and pseudo-radial flow 

regimes are observed such as in Figs. (7-5) and (7-6). 

4- For a large number of hydraulic fractures (more than five) and long spacing, first 

linear, transition, second linear, intermediate radial, elliptical, transition and 

pseudo radial flow regimes are observed as shown in Figs. (7-7) and (7-8).  

Two vertical transverse hydraulic fractures, hxfD=2, DD=1

1.0E-02

1.0E-01

1.0E+00

1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02

tD

t D
*P

D
'

hhfD=1.0

hhfD=0.9

hhfD=0.8

hhfD=0.7

hhfD=0.6

hhfD=0.5

y

x

f

D

x

zf

xfD

f

hfD
k

k

x

D
D

k

k

h

x
h

h

h
h  ,,

First linear flow

Second linear flow

Transition flow

Transition flow

Pseudo-radial flow flow

 

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02

t D
*P

D
'

tD

Two vertical transverse hydraulic fractures, hxfD=8, DD=1

hhfD=1.0

hhfD=0.9

hhfD=0.8

hhfD=0.7

hhfD=0.6

hhfD=0.5

First linear flow

Second linear flow

Transition flow

Pseudo-radial flow

y

x

f

D

x

zf

xfD

f

hfD
k

k

x

D
D

k

k

h

x
h

h

h
h  ,,

 
Figure 7-1: Pressure behavior of two partially penetrating           Figure 7-2: Pressure behavior of two partially penetrating  

               vertical hydraulic fractures.                                                                     vertical hydraulic fractures. 
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Two vertical transverse hydraulic fractures, hxfD=2, DD=8
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Two vertical transverse hydraulic fractures, hxfD=8, DD=8
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Figure 7-3: Pressure behavior of two partially penetrating           Figure 7-4: Pressure behavior of two partially penetrating  

                  vertical hydraulic fractures.                                                                 vertical hydraulic fractures. 

 

Sixteen vertical transverse hydraulic fractures, hxfD=2, DD=1
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Sixteen vertical transverse hydraulic fractures, hxfD=8, DD=1
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Figure 7-5: Pressure behavior of sixteen partially                            Figure 7-6: Pressure behavior of sixteen partially  

   penetrating vertical hydraulic fractures.                                      penetrating vertical hydraulic fractures. 

 

Sixteen vertical transverse hydraulic fractures, hxfD=2, DD=8
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Sixteen vertical transverse hydraulic fractures, hxfD=8, DD=8
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Figure 7-7: Pressure behavior of sixteen partially                                   Figure 7-8: Pressure behavior of sixteen partially  

 penetrating vertical hydraulic fractures.                                      penetrating vertical hydraulic fractures. 
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7-1-1-2- Long half fracture length (hxfD>10) 

1- For a small number of hydraulic fractures (less than five) and short spacing, first 

linear, transition, second linear, transition and pseudo-radial flow regimes are 

observed as shown in Figs. (7-9) and (7-10). 

2- For a small number of hydraulic fractures (less than five) and long spacing, first 

linear, transition, second linear, intermediate radial, transition and pseudo radial 

flow regimes are observed as shown in Figs. (7-11) and (7-12). 
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Two vertical transverse hydraulic fractures, hxfD=32, DD=1

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02

tD

t D
*P

D
'

hhfD=1.0

hhfD=0.9

hhfD=0.8

hhfD=0.7

hhfD=0.6

hhfD=0.5

First linear flow

Second linear flow

Transition flow

Transition flow

Pseudo-radial flow 

y

x

f

D

x

zf

xfD

f

hfD
k

k

x

D
D

k

k

h

x
h

h

h
h  ,,

 
Figure 7-9: Pressure behavior of two partially penetrating           Figure 7-10: Pressure behavior of two partially penetrating  

                vertical hydraulic fractures.                                                vertical hydraulic fractures. 

 

Two vertical transverse hydraulic fractures, hxfD=16, DD=8
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Two vertical transverse hydraulic fractures, hxfD=32, DD=8
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Figure 7-11: Pressure behavior of two partially penetrating          Figure 7-12: Pressure behavior of two partially penetrating  

               vertical hydraulic fractures.                                                          vertical hydraulic fractures. 
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3- For a large number of hydraulic fractures (more than five) and small spacing, first 

linear flow is not observed. Therefore, second linear, third linear, transition and 

pseudo-radial flow regimes are the only flow regimes that are observed such as in 

Figs. (7-13) and (7-14). 

4- For a large number of hydraulic fractures (more than five) and long spacing, first 

linear flow also is not observed. Second linear, intermediate radial, elliptical, 

transition and pseudo radial flow regimes are observed as shown in Figs. (7-15) 

and (7-16).  

 Sixteen vertical transverse hydraulic fractures, hxfD=16, DD=1
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Sixteen vertical transverse hydraulic fractures, hxfD=32, DD=1
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Figure 7-13: Pressure behavior of sixteen partially                              Figure 7-14: Pressure behavior of sixteen partially  
      penetrating vertical hydraulic fractures.                                             penetrating vertical hydraulic fractures. 

 

  

Sixteen vertical transverse hydraulic fractures, hxfD=16, DD=8
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Sixteen vertical transverse hydraulic fractures, hxfD=32, DD=8
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Figure 7-15: Pressure behavior of sixteen partially                           Figure 7-16: Pressure behavior of sixteen partially  
            penetrating vertical hydraulic fractures.                                  penetrating vertical hydraulic fractures  
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7-1-2- Small penetration ratio (hhfD<0.5) 

Because of the small penetration ratio, the pressure behavior at early time tends to 

develop a new early radial flow regime where the flow of fluid takes place in the YZ 

plane.  

7-1-2-1- Short half fracture length (hxfD<10) 

1- For a small number of hydraulic fractures (less than five) and short spacing, first 

linear, transition, early radial, second linear for hxfD>5 or transition for hxfd<5 

and pseudo-radial flow regimes are observed as shown in Figs. (7-17) and (7-

18). 

2- For a small number of hydraulic fractures (less than five) and long spacing, first 

linear, early radial, second linear, transition, intermediate radial, transition and 

pseudo radial flow regimes are observed as shown in Figs. (7-19) and (7-20). 

3- For a large number of hydraulic fractures (more than five) and small spacing, 

first linear, early radial, second linear, third linear, transition and pseudo-radial 

flow regimes are observed for hxfD<5 such as in Fig. (7-21). While for hxfD>5, 

first linear flow can’t be observed such as in Figs. (7-22). 

4- For a large number of hydraulic fractures (more than five) and long spacing, first 

radial, early radial, second linear, intermediate radial, elliptical, transition and 

pseudo radial flow regimes are observed foe hxfD<5 as shown in Fig. (7-23). 

While for hxfD>5, first linear flow can’t be observed as shown in Fig. (7-24).  
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Two vertical transverse hydraulic fractures, hxfD=2, DD=1
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Two vertical transverse hydraulic fractures, hhfD=8, DD=1
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Figure 7-17: Pressure behavior of two partially penetrating          Figure 7-18: Pressure behavior of two partially penetrating  

                     vertical hydraulic fractures.                                                                    vertical hydraulic fractures. 

 

Two vertical transverse hydraulic fractures, hxfD=2, DD=8
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Two vertical transverse hydraulic fractures, hxfD=8, DD=8
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Figure 7-19: Pressure behavior of two partially penetrating        Figure 7-20: Pressure behavior of two partially penetrating  

                     vertical hydraulic fractures.                                                                vertical hydraulic fractures. 

 

Sixteen vertical transverse hydraulic fractures, hxfD=2, DD=1
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Sixteen vertical transverse hydraulic fractures, hxfD=8, DD=1
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Figure 7-21: Pressure behavior of sixteen partially                               Figure 7-22: Pressure behavior of sixteen partially  

 penetrating vertical hydraulic fractures.                                              penetrating vertical hydraulic fractures. 
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Sixteen vertical transverse hydraulic fractures, hxfD=2, DD=8
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Sixteen vertical transverse hydraulic fractures, hxfD=8, DD=8
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Figure 7-23: Pressure behavior of sixteen partially                              Figure 7-24: Pressure behavior of sixteen partially  

       penetrating vertical hydraulic fractures.                                          penetrating vertical hydraulic fractures. 

 

7-1-1-2- Long half fracture length (hxfD>10) 

1- For a small number of hydraulic fractures (less than five) and short spacing, first 

linear flow can not be observed. Early radial, second linear, transition and pseudo-

radial flow regimes are observed as shown in Figs. (7-25) and (7-26). The 

behavior in these two cases is similar to the horizontal wells with short to 

moderate wellbore length. 

2- For a small number of hydraulic fractures (less than five) and long spacing, first 

linear flow can not be observed. Early radial, second linear, transition, 

intermediate radial, transition and pseudo radial flow regimes are observed as 

shown in Figs. (7-27) and (7-28). 

3- For a large number of hydraulic fractures (more than five) and small spacing, 

neither first linear flow nor early radial flow can be observed. Second linear, third 

linear, transition and pseudo-radial flow are the only flow regimes that are 

observed such as in Figs. (7-29) and (7-30). The behavior in these two cases is 

similar to a single vertical hydraulic fracture. 
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Two vertical transverse hydraulic fractures, hxfD=16, DD=1
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Two vertical transverse hydraulic fractures, hxfD=32, DD=1
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Figure 7-25: Pressure behavior of two partially penetrating          Figure 7-26: Pressure behavior of two partially penetrating  

               vertical hydraulic fractures.                                                                          vertical hydraulic fractures. 

 

  

Two vertical transverse hydraulic fractures, hxfD=16, DD=8
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Two vertical transverse hydraulic fractures, hxfD=32, DD=8
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Figure 7-27: Pressure behavior of two partially penetrating          Figure 7-28: Pressure behavior of two partially penetrating  

                     vertical hydraulic fractures.                                                                           vertical hydraulic fractures. 

 

 Sixteen vertical transverse hydraulic fractures, hxfD=16, DD=1
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Sixteen vertical transverse hydraulic fractures, hxfD=32, DD=1
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Figure 7-29: Pressure behavior of sixteen partially                                 Figure 7-30: Pressure behavior of sixteen partially  

    penetrating vertical hydraulic fractures.                                                penetrating vertical hydraulic fractures. 
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4- For a large number of hydraulic fractures (more than five) and long spacing, 

neither first linear flow nor early radial flow can be observed also. Second linear, 

intermediate radial, elliptical, transition and pseudo radial flow regimes are 

observed as shown in Figs. (7-31) and (7-32). The behavior in these two cases is 

similar to multiple hydraulic fractures. 

Sixteen vertical transverse hydraulic fractures, hxfD=16, DD=8
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Sixteen vertical transverse hydraulic fractures, hxfD=32, DD=8

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05

tD

t D
*P

D
'

hhfD=0.4

hhfD=0.3

hhfD=0.2

hhfD=0.1

Second linear flow

Pseudo-radial flow

Intermediate  radial flow

Elliptical flow

Transition flow

y

x

f

D

x

zf

xfD

f

hfD
k

k

x

D
D

k

k

h

x
h

h

h
h  ,,

  
Figure 7-31: Pressure behavior of sixteen partially                                Figure 7-32: Pressure behavior of sixteen partially  
          penetrating vertical hydraulic fractures.                                                 penetrating vertical hydraulic fractures 

 

7-2- Effect of inclination angle 

The inclination angle from the vertical axis  v  has a similar effect on pressure 

behavior of partially penetrating hydraulic fractures as the penetration ratio. It can be 

explained by the reduction in the fracture height which leads to a reduction in the 

penetration ratio, when the fractures are inclined from the vertical direction. As 

fractures propagate in inclined directions rather than the vertical one, the probability for 

partially penetrating fractures to occur is high. Figures (7-33) and (7-34) represent 

pressure behaviors for two partially penetrating inclined hydraulic fractures for different 

inclination angles. While Figures (7-35) and (7-36) represent pressure behaviors of ten 

partially penetrating inclined hydraulic fractures for different inclination angles. For all 
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cases, the early radial flow develops when the inclination angle from the vertical 

direction increases. 

Two inclined transverse hydraulic fractures, hhfD=0.5, hxfD=10, DD=8
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Two inclined transverse hydraulic fractures, hhfD=0.5, hxfD=10, DD=1
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Figure 7-33: Pressure behavior of two partially                                      Figure 7-34: Pressure behavior of two partially  
       penetrating inclined hydraulic fractures.                                                   penetrating inclined hydraulic fractures. 

 

Ten inclined transverse hydraulic fractures, hhfD=0.5, hxfD=10, DD=1
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Ten inclined transverse hydraulic fractures, hhfD=0.5, hxfD=10, DD=8
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Figure 7-35: Pressure behavior of ten partially                                             Figure 7-36: Pressure behavior of ten partially  
       penetrating inclined hydraulic fractures.                                                      penetrating inclined hydraulic fractures. 

 

7-3- Flow regimes 

7-3-1- First linear flow regime 

At early time, reservoir fluid flows linearly and directly from the formation to the 

individual fractures in the XZ plane as shown in Fig. (7-37). Each fracture behaves 

independently from the others. The flow regime is represented by straight line with a 

slope of (0.5) in the log-log plots for both dimensionless pressure and pressure 
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derivative with dimensionless time. The governing equations for linear flow regime in 

the case of transverse hydraulic fractures are: 

 

 

 

 

 

 

Figure 7-37: First linear flow regime for partially penetrating multiple hydraulic fractures. 
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7-3-2- Early radial flow regime 

Early radial flow regime represents the radial flow around each fracture in the YZ 

plane. Typically, this flow is observed when the penetratation ratio is small (hhfD<0.5) 
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and the spacing between fractures is long (DD>5). In this flow, reservoir fluids flow 

radially in YZ plane toward each individual fractures such as shown in Fig. (7-38). The 

governing equations for this flow are: 
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Figure 7-38: Early radial flow regime for partially penetrating multiple hydraulic fractures. 

7-3-3- Second linear flow regime 

When the pressure pulse reaches the upper and lower boundary, reservoir fluid 

continues flowing linearly and directly from the formation to the fractures in the XZ 

plane as shown in Fig. (7-39). The flow regime is represented by straight line with a 

slope of (0.5) in the log-log plots for pressure derivative with dimensionless time. The 

governing equations for a second linear flow regime in case of transverse hydraulic 

fractures are: 
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It is important to notice that: 
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Figure 7-39: Second linear flow regime for partially penetrating multiple hydraulic fractures . 

 

7-3-4- Third linear flow regime 

A Third linear flow regime develops for short spacing, large number of hydraulic 

fractures and large half fracture length. In this case, pressure behavior can be considered 

similar to the pressure behavior of long horizontal wells.  The flow takes place in the 

YZ plane toward the fractures as shown in Fig. (7-40). This flow is represented by a 

straight line of a slope (0.5) in the log-log plot of dimensionless pressure derivative with 

dimensionless time. The governing equations for a third linear flow regime is: 
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Figure 7-40: Third linear flow regime for partially penetrating multiple hydraulic fractures. 

 

7-3-5-Intermediate radial flow regime 

Intermediate radial flow regimes develope for long spacing between fractures when 

there is sufficient time for reservoir fluid to flow radially in the XY plan to each 

individual fracture as shown in Fig. (7-41). The governing equation for this flow regime 

is: 
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Figure 7-41: Intermediate radial flow regime for partially                      Figure 7-42: Pseudo-radial flow regime for partially           

pentrating multiple hydraulic fractures.                                                                   penetrating multiple hydraulic fractures. 

 

 

7-3-6-Pseudo-radial flow 

Pseudo-radial flow regime is the dominant flow for all cases at late time when 

reservoir fluids flow in the XY plane radially toward the fractures such as shown in Fig. 

(7-42). This flow is characterized by constant value (0.5) for the dimensionless pressure 

derivative curves on log-log plot of dimensionless pressure and dimensionless time. The 

governing equation for this flow are: 
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7-3-7- Elliptical flow regime 

An elliptical flow regime indicates elliptical flow toward the fractures such as 

shown in Fig. (5-43). Multivariate linear regression analysis is used to derive the 

governing equation for this flow regime:   

  

 



163 

 

 

 

 

 

 

 

Figure 7-43: Elliptical flow regime for partially penetrating multiple hydraulic fractures. 
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7-4- Intersection Points: 

The points of intersection between different lines of flow regimes are very important 

in the well test interpretation. They can be used to check the results.  

7-4-1- The point of intersection of first linear flow line and pseudo-radial flow line is: 
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7-4-2- The point of intersection of first linear flow line and intermediate radial flow line is: 
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7-4-3- The point of intersection of first linear flow line and early radial flow line is: 
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7-4-4- The point of intersection of second linear flow line and pseudo-radial flow line is: 
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7-4-5- The point of intersection of second linear flow line and intermediate radial flow line is: 
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7-4-6- The point of intersection of second linear flow line and early radial flow line is: 
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7-4-7- The point of intersection of third linear flow line and pseudo-radial flow line is: 

y

t
PRTL

k

cDn
t

22

7.838                                                                                                      (7-28) 

7-4-8- The point of intersection of third linear flow line and intermediate radial flow line is: 

y

t
IRTL

k

cD
t

2

7.838                                                                                                            (7-29) 

7-4-9- The point of intersection of third linear flow line and early radial flow line is: 

zyf

tx
ERSL

kkx

ckhD
t

2

22

7.209


                                                                                                (7-30) 

7-5- Relationships between flow regimes 

Many mathematical relationships between flow regimes’ analytical models can be 

used in pressure transient interpretation to estimate reservoir and fractures parameters. 

5-5-1- Pseudo-radial and intermediate radial flow regime: 

 
 

 
  nPt

Pt

Pt

Pt

PRF

IRF

PRFDD

IRFDD 1

'

'

'

'










                                                                                          (7-31) 

7-5-2-Pseudo-radial and early radial flow regime: 
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 
  xfDPRFDD

ERFDD

nhPt

Pt

2

1

'

'





                                                                                                             (7-32) 

 
  z

x

fPRF

ERF

k

k

nx

h

Pt

Pt

2'

'





                                                                                                          (7-33) 

7-5-3-Intermediate radial and early radial flow regime: 

 
  xfDIRFDD

ERFDD

hPt

Pt

2

1

'

'





                                                                                                                (7-34) 

 
  z

x

fIRF

ERF

k

k

x

h

Pt

Pt

2'

'





                                                                                                            (7-35) 

7-5-4-Second linear and first linear flow regime: 

 
 

)cos(
'

'
vhfD

FLFDD

SLFDD h
Pt

Pt





                                                                                                    (7-36) 

 
  h

h

Pt

Pt vf

FLF

SLF
)cos(

'

' 





                                                                                                          (7-37) 

7-5-5-Third linear and first linear flow regime: 

 
  D

hfD

FLFDD

TLFDD

D

h

Pt

Pt 2.1

'

'





                                                                                                               (7-38) 

 
  x
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FLF

TLF

k
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hD

xh

Pt

Pt 2.1

'

'

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
                                                                                                             (7-39) 

3-5-6-Seond linear and third linear flow regime: 

 
  2.1'

'
D

TLFDD

SLFDD D

Pt

Pt





                                                                                                                      (7-40) 

 
  y

x

fTLF

SLF

k

k

x

D

Pt

Pt

2.1'

'





                                                                                                                 (7-41) 

Fig. (7-42) shows a few of the above important relationships between flow regimes. 
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Eight vertical transverse hydraulic fractures, h fD=8, DD=0.5
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Figure 7-44: Relationships between flow regimes for partially penetrating multiple hydraulic fractures. 

7-6-Pseudo-skin factor 

In general, pseudo-skin factor increases as the penetration ratio increases. For the 

same number of longitudinal and transverse fractures, the pseudo-skin factor decreases 

when the spacing between fractures increases and when the ratio of the half fracture 

length to the fracture height  xfDh  increases. Similar to the fully penetrating multiple 

hydraulic fractures, pseudo skin factor for partially penetrating fractures decreases 

significantly with the increase of the number of fractures for the same penetration ratio, 

same spacing and same  xfDh . Appendix-E shows the tables of pseudo-skin factor for 

partially penetrating hydraulic fractures.  

7-7-Appliction of Type Curve Matching 

As shown on the plots in Appendix (C), the pressure and pressure derivative have 

different shapes for each combination of penetration rate, half fracture length, number 
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of fractures, spacing between fractures, and inclination angle from the vertical axis. 

Type-curve matching can provide a quick estimation for reservoir and fractures 

parameters.  

The following information is associated with each type curve: penetration rate 

(hhfD), half fracture length to fracture height ratio (hxfD), dimensionless spacing between 

fractures (DD), number of fractures (n), and inclination angle ( v ). Thus, the following 

information can be obtained from the type curve matching process: (PD)M, (ΔP)M, (tD)M, 

(Δt)M, ( v )M, (hxfD)M, (D)M, (hhfD)M, (n)M . The following steps illustrate how type curve 

matching is used to determine reservoir characteristics such as: permeability, inclination 

angle, spacing, pseudo-skin factor, fracture half length, and number of fractures.  

Step-1 Plot ( P vs. t ) and ( 'Pt  vs. t  ) on log-log paper. 

Step-2 Obtain the best match of the data with one of the type curves. 

Step-3 Read from any match point: hfDMMvMDMhxfDMDMMDMM hnDhPtPt ,,,,,,,,  . 

Step-4 Calculate xk : 

M

DMft

x
t

txc
k

0002637.0

2
                                                                                                                          (7-42)    

Step-5 Calculate )( yk : 

2

2.1411












M

DM

x

y
Ph

quBP

k
k                                                                                            (7-43) 

Step-6 Determine penetration ratio: 

hfDM

f
h

h

h
rationPenetratio                                                                                    (7-44) 

Step-7 Calculate the height of fractures: 
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hhh hfDMf                                                                                                              (7-45) 

Step-8 Calculate the half fracture length: 

z

x
xfDMf

k

k
hhx                                                                                                    (7-46) 

Step-9 Calculate the spacing between fractures: 

x

y

fDM
k

k
xDD                                                                                                      (7-47) 

Step-10 Number of fractures can be determined directly as:                                                   

Mnn                                                                                                                                                 (7-48) 

Step-11 Inclination angle can be determined directly as: 

vM                                                                                                                                             (7-49)                                                                                                                                                              

7-8-Application of TDS technique 

TDS is a powerful technique for computation of reservoir parameters directly from 

log-log plots of pressure and pressure derivative data. A well-designed pressure 

transient test in a horizontal well with partially penetrating hydraulic fractures should 

yield all the necessary straight lines to calculate penetrating ratio, number of fractures, 

the inclination angle, spacing between fractures, and permeability.  

The following procedure is for the ideal case where all the necessary straight lines 

are well defined. 

Step 1 - Plot pressure change (P) and pressure derivative (t×P') values versus test 

time on a log-log graph.  

Step 2 - Read the value of (t×P')PRF corresponding to the infinite acting pseudo-radial 

flow line. 
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Step 3 - Calculate )( yxkk : 

2

)'(

6.70














PRF

hyx
Pth

Bq
kkk


                                                                                  (7-50) 

Step 4 – If the intermediate radial flow is developed, read (t×P')IRF. 

Step 5 – Calculate number of fractures )(n : 

 
 IRF

PRF

Pt

Pt
n

'

'




                                                                                                         (7-51) 

Step 6 - Obtain the value (t×P')EF at time tEF from the elliptical flow line . 

Step 7 - Calculate )(
28.0

64.0

f

x

x

k
 if the spacing between fractures is known. 

36.0

28.0

64.0

)'(
835.13 












t

EF

EFf

x

c

t

PtnDh

Bq

x

k




                                                                                 (7-52) 

Step 8 - Obtain the value (t×P')SLF at time tSLF from the second linear flow line.   

Step 9 - Calculate )( yf kx : 

  t

SLF

SLF

yf
c

t

Ptnh

qB
kx





'

032.2


                                                                                                  (7-53) 

Step 10- Solve Eqs. (7-50), (7-52), and (7-53) to calculate  xk , )(),( fy xk : 

Step 11 - Read the value (t×P')ERF corresponding to the early radial flow line. 

Step 12- Calculate  zk : 

 

2

'

3.351
















ERFfy

z
Ptnx

Bq

k
k


                                                                                         (7-54) 
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Step 13 - Read the value of (t×P')FLF corresponding to a certain time tFLF from the first 

linear flow line. 

Step 14- Calculate  fh  if the inclination angle is known: 

  ty

FLF

vFLFf

f
ck

t

Ptnx

qB
h





 )cos('

032.2


                                                                          (7-55) 

Step 15 – Calculate the penetration ratio: 

h

h
rationPenetratio

f
                                                                                              (7-56) 

Step 16 – Calculate the intersection times using Eq. (7-22) through Eq. (7-30) and 

compare them with those in the plot.  

Example -7-1  

 Pressure drawdown test data of a hydraulically fractured horizontal well, extending 

in homogenous isotropic reservoir, is given in Table (Example 7-1) of Appendix (F).  

Other known reservoir and well data are: 

q = 500 STB/D         = 0.04          = 0. 5 cp           ct = 1.0x10
-6

 psi
-1                 

h = 40 ft        

rw = 0.5 ft         pi = 5000 psi         B = 1.1 bbl/STB            

Determine: 

1-Formation permeability. 

2-Number of fractures. 

3-Fracture half length. 

4-Fracture height and penetration ratio. 

5-Spacing between fractures. 

6-Inclination angle. 
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1- Solution using type-curve matching: 

Step-1 Plot ( P vs. t ) and ( 'Pt  vs. t  ) on log-log paper as shown in Fig. (7-45). 

Step-2 Obtain the best match of the data with one of the type curves as shown in Fig. 

(7-46). 
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Ten inclined transverse hydraulic fractures, hhfD=0.5, hxfD=10, DD=4
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Figure 7-45: Pressure and pressure derivative plot                                 Figure 7-46: Type-curve matching plot for 

                               Example  7-1.                                                                                                Example 7-1. 

 

Step-3 Read from any match point: 

10

46.3,10,45,4,5.0,002.0,7.1,1,10





xfDM

MMvMDMhfDMDMMDMM

h

snDhPtPt 

 

Step-4 Calculate half fracture length )( fx  from Eq. (7-46). 

ftx f 4004010                                                                                                                      

Step-5 Calculate k from Eq. (7-42): 

mdk 2
100002637.0

7.1400000001.05.004.0 2





                                                                                                                            

Step-6 Number of fractures:                                                   

fracturesnn M 10                    

Step-7 Penetration ratio:  
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5.0 hfD

f
h

h

h
                     

Step-8 Calculate fracture height from eq. (7-45): 

 .20405.0 fthf                                                                                                          

Step-9 Inclination angle: 

45                                                                                                                                                

Step-10 Spacing between fractures from Eq. (7-47): 

ftDxD DMf 16004400                                                                                                                                          

Step-11 Pseudo-skin factor: 

46.3s                                                                                                                            

2- Solution using TDS: 

Step 1 - Plot pressure change (P) and pressure derivative (t×P') values versus test 

time on a log-log graph as shown in Fig. (7-47).  

Step 2 - Read the value of (t×P')PRF corresponding to the infinite acting pseudo-radial 

flow line. 

  242'  PRFPt  

Step 3 - Calculate )(k from Eq. (7-50). 

mdk 2
24240

1.15.05006.70





       

Step 4 – At a certain time, read (t×P')TLF from third linear flow line and  (t×P')SLF 

from second linear flow line. 

  28)'(,60',1  SLFTLF PtPtt  

Step 5 – Calculate number of fractures )(n from Eq. (7-51): 
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farcturesn 10
24

242
                                                                                                              
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Figure 7-47: Pressure and pressure derivative plot for example 7-1. 

 

Step 6 - Obtain the value of (t×P')SLF at time tSLF from the second linear flow line.   

  12135.00744.6'  SLFSLF tatPt  

Step 7 - Calculate )( fx  from Eq. (7-53). 

ftx f 400
000001.004.02

012135.05.0

0744.64010

1.1500032.2









           

 Step 8 - Obtain the value (t×P')EF at time tEF from the elliptical flow line . 

3035)'(  EFEF tatPt  

Step 8 - Calculate )(D  from Eq. (7-52). 

ftD 1760
000001.05.004.0

30

2354010

4001.15.0500
835.13

36.0

64.0

28.0













                                                                                      
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Step 9 - Read the value (t×P')FLF corresponding to a certain time tFLF from the first 

linear flow line. 

  0000546.03636.0'  FLFFLF tatPt  

Step 10- Calculate  )cos( vfh   from Eq. (7-55): 

4.14
000001.004.02

0000546.05.0

3636.040010

1.1500032.2
)cos( 








vfh                                                                               

Step 11 – To calculate  v , determine the three intersection points of the first linear 

flow with the pseudo-radial, intermediate radial and early radial from the plot.  

 00045.0,18.0,18  ERFLIRFLPRFL ttt  

Step 12- Calculate 
PRFLt  from Eqs. (7-22): 

25
402

4.14000001.05.004.040010
1207

2

222





PRFLt   

Step 13- Calculate  v : 

44)
25

18
(cos 1  

v  

Step 14- Calculate  fh : 

fth f 20
)44cos(

4.14
  

Step 15- Calculate penetration ratio: 

5.0
40

20


h

h f
  

Step 16- Check the calculated values of    fv hand  using the intersection points of 

the first linear flow line and the intermediate and early radial flow lines from Eqs. (7-

23) and (7-24): 
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25.0
402

4.14000001.05.004.0400
1207

2

22





IRFLt       

 44)
25.0

18.0
(cos 1  

v                                                                                

000626.0
2

4.14000001.05.004.0
302

2




ERFLt     

   44)
000626.0

00045.0
(cos 1  

v                                                                                         

Table (7-1) summarizes the input data and the resulted value for Example 7-1. 

Table 7-1: Summary of results of Example 7-1. 

Parameter In-put value Calculated value by Type-

curve matching 

Calculated value by TDS 

technique 

k, md 2 2 2 

fx , ft 400 400 400 

n 10 10 10 

Penetrating ratio 0.5 0.5 0.5 

fh , ft 20 20 20 

v  45 45 44 

D, ft 1600 1600 1760 

 

Example -7-2  

Pressure drawdown test data of a hydraulically fractured horizontal well is given in 

Table (Example 7-2) in Appendix (F).  Sixteen vertical hydraulic fractures have been 

designed with a half fracture length (310 ft). Other known reservoir and well data are: 

q = 100 STB/D         = 0.04          = 0.8 cp           ct = 1.0x10
-6

 psi
-1                 

h = 10 ft        

rw = 0.5 ft         pi = 10000 psi         B = 1.1 bbl/STB          

Determine: 

1-Formation permeabilities. 

2-Fracture height and penetration ratio. 
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3-Spacing between fractures. 

1- Solution using type-curve matching: 

Step-1 Plot ( P vs. t ) and ( 'Pt  vs. t  ) on log-log paper as shown in Fig. (7-48). 

Step-2 Obtain the best match of the data with one of the type curves as shown in Fig. 

(7-49). 

Step-3 Read from any match point: 

8

09.2,16,5.0,3.0,0007.0,13.0,1,1





xfDM

MMDMhfDMDMMDMM

h

snDhPtPt
 

Step-4 Calculate xk from Eq. (7-42): 

mdkx 5.1
10002637.0

13.0310000001.08.004.0 2





          

Step-5 Calculate )( zk  from Eq. (7-46). 

mdkz 1.05.1
310

108
2








 
      

Step-6 Calculate )( yk  from Eq. (7-43).     

 mdky 5.0
110

0007.01.18.01002.141

5.1

1
2













          

  Step-7 Number of fractures:                                                   

fracturesnn M 16                    

Step-8 Penetration ratio:  

3.0 hfD

f
h

h

h
     

 Step-9 Calculate fracture height from eq. (7-45): 

 .3103.0 fthf                                                                                                                                                                                                                                                                                                                                      
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Sixteen vertical transverse hydraulic fractures, hxfD=8, DD=0.5
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Figure 7-48: Pressure and pressure derivative plot                                 Figure 7-49: Type-curve matching plot for 

                               Example  7-2.                                                                                                Example 7-2. 

 

Step-10 Spacing between fractures from Eq. (7-47): 

ftD 5.89
5.1

5.0
5.0310                                                                                                                                          

Step-11 Pseudo-skin factor: 

46.3s                                                                                                                             

2- Solution using TDS: 

Step 1 - Plot pressure change (P) and pressure derivative (t×P') values versus test 

time on a log-log graph as shown in Fig. (7-50).  

Step 2 - Read the value of (t×P')PRF corresponding to the infinite acting pseudo-radial 

flow line. 

  4.717'  PRFPt  

Step 3 - Calculate )( yxkk from Eq. (7-52). 

75.0
4.71710

1.18.01006.70
2













 yxh kkk       
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Figure 7-50: Pressure and pressure derivative plot for example 7-2. 

 

Step 4- Read SLFPt )'(   at a certain time SLFt  from the second linear flow line. 

56.6)'(054.0  SLFSLF Ptt  

Step 5- Calculate yk from Eq. (7-53):    

mdky 5.0
000001.004.0

054.08.0

56.61016310

1.1100032.2
2

















  

Step-6 Calculate xk from the result of Step-3:    

mdkx 5.1
5.0

75.0
                                                                                             

Step 7- If the early radial flow is developed, read (t×P')ERF. 

  8.2'  ERFPt  

Step 8- Calculate number of fractures )( zk from Eq. (7-54): 

mdkz 1.0
8.231016

1.18.01003.35

5.0

1
2













                                                                                                              
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Step 9- Obtain the value of (t×P')FLF at a certain time tFLF from first linear flow line.   

  000054.0,7.0'  FLFFLF tPt  

Step 10- Calculate the height of fractures from eq. (7-55): 

fthf 3
000001.004.05.0

000054.08.0

7.031016

1.18.0100032.2









  

Step 11- Obtain the value (t×P')TLF at time tTLF from first linear flow line.   

  5.15,5.237'  FLFTLF tPt  

Step 12 - Calculate )(D  from Eq. (7-13). 

ftD 101
000001.004.05.1

5.158.0

5.2371016

1.110044.2









         

Step 13 – Determine the intersection point time of different flow regimes from the plot: 

hrsthrsthrsthrsthrsthrst ERTLERSLERFLPRSLPRFL
PRTLP

0021.0,0097.0,00087.0,140,635,57 

 

Step 14 – Calculate the intersection times using Eq. (7-22) through Eq. (7-30) and 

compare them with those determined from the plot in Step-14. 

hrsthrsthrsthrstPhrsthrst ERTLERSLERFLPRTLPRSLPRFL 0021.0,0097.0,00087.0,140,633,57 

                                                                 

Table (7-2) summarizes the input data and the resulted value for Example 7-2. 

Table 7-2: Summary of results of Example 7-2. 

Parameter In-put value Calculated value by Type-

curve matching 

Calculated value by TDS 

technique 

xk , md 1.5 1.5 1.5 

yk , md 0.5 0.5 0.5 

zk  , md 0.1 0.1 0.1 

Penetrating ratio 0.3 0.3 0.3 

fh , ft 3 3 3 

n  16 16  

D, ft 89.5 89.5 101 
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SUMMURY AND CONCLUSIONS 

Open-Hole Horizontal Well: 

The completion of the horizontal wells is of great importance in terms of fluids 

deliverability and production management. Low cost and simplicity is the two factors 

recognize the open hole completion. However, the difficulties in the maintenance and 

control are the other two parameters control this type of completion. Pressure transient 

analysis for the open hole horizontal wells is governing by: 

1- Early radial flow regime develops at early time in the case of short and 

moderate length horizontal wells. However, this flow regime cannot be 

observed for long horizontal wells. 

2- Linear flow and pseudo-radial radial flow can be observed for both short and 

long horizontal wells. 

3- The pressure behavior of a long horizontal well is similar to the pressure 

behavior of vertical hydraulic fracture. 

Zonal Isolation: 

Horizontal wells with multiple zonal isolations have become a common completion 

technique in the oil and gas industry. Sand problems, damaged zones, and water or gas 

coning are the main reasons for using isolators to maintain or improve oil and gas 

recovery. However, the use of isolators affects pressure behavior of the horizontal wells 

and changes the flow regimes that may develop in the vicinity of the wellbore. In 

addition, zonal isolations technique leads to an increase of the skin factor significantly. 

Pressure transient analysis is used to investigate the effects of the isolators on both 

pressure behavior and flow regimes of horizontal wells. Several analytical solutions 
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have been developed in this study. These models were used for different applications 

such as: reservoir characterization and for the evaluation of the isolators performance. 

1- Zonal isolation can be a practical solution for different formation problems 

such as water cresting, gas coning and sand or asphaltic production, however, 

it has great impact on the skin factor. 

2- The main influence of zonal isolation is observed on early flow regimes of 

the horizontal wellbore, such as early radial and early linear flow regimes. 

3- Well test analysis is the most effective tool to evaluate the performance of the 

zonal isolations. 

4- The development of intermediate radial flow can be used as an indication of 

serious problems, such as damaged perforated sections, that may lead to the 

complete loss of the well, depending of the nature of the problem. 

5- System radial flow and system linear flow can only be developed for the 

cases where the horizontal well contains multiple zonal isolators. 

Hydraulic fractures: 

Hydraulic fracturing is an important stimulation technique that has been widely used 

in conventional and unconventional oil and gas reservoirs all over the world. The 

technique involves the creation of multiple hydraulic fractures to overcome wellbore 

damage, and to improve oil and gas productivity in low permeability reservoirs.  

Depending on the stresses orientation relative to the wellbore, the fractures may be 

transverse or longitudinal, vertical or inclined, fully penetrating or partially penetrating 

the formations.  

For hydraulically fractured horizontal wells, well test analysis is commonly used to 
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determine reservoir parameters and to estimate well productivity. Many factors, such as 

vertical permeability or the vertical anisotropy, inclination angle from the vertical 

direction, the spacing between fractures, and the penetration ratio (the ratio of the 

fractures height to the formation height) can be estimated from pressure transient data. 

The performance of the hydraulic fractures can be evaluated and the location of the 

damaged fractures can be determined by the well test. 

1- Both the inclination from the vertical direction and the deviation from the 

horizontal wellbore have a significant effect on pressure behavior of the 

hydraulically fractured horizontal well. 

2- Both transverse and longitudinal hydraulic fractures have the same pressure 

response and flow regimes if the formation is isotropic. Different behaviors are 

expected for anisotropic formations. 

3- Early radial flow can be used as an indication of long spacing between fractures 

or as an indication of non-functioning hydraulic fractures. 

4- An early radial flow regime is expected to be observed for the case of the 

partially penetrating hydraulic fractures where the fluid flows radially in the 

normal plane to the wellbore. 

5- A third linear flow regime is developed for short spacing partially penetrating 

hydraulic fractures where the fluid flows linearly in a parallel plane to the 

wellbore. 

6- For small penetrating ratio and large number of hydraulic fractures, the pressure 

behavior is similar to the behavior of long horizontal wells.  
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RECOMMENDATIONS 

 

1- The wellbore storage and skin factors should be included for the models of 

horizontal wells with either zonal isolations or hydraulic fractures. 

2- The infinite conductivity solution should be investigated and compared to 

the uniform flux solution. 

3- Zonal isolation models have been derived for no-flow isolated sections. It is 

more realistic to assume different flow rates from these sections toward the 

wellbore. 

4- Finite conductivity solution can be studied for both fully and partially 

penetrating fractures. 

 

 

 

 

 

 

 

 

 

 

 

 

 



184 

 

NOMENCLATURES 

B           Oil formation volume factor, RB/STB 

D    Spacing between fractures, ft 

DD        Dimensionless spacing 

h           Formation height, ft 

fh         Fracture height, ft 

tc Total compressibility, psi
-1 

xk  Permeability in the X-direction, md 

yk  Permeability in the Y-direction, md 

zk  Permeability in the Z-direction, md 

DL          Dimensionless wellbore length 

pL  Length of perforated section, ft 

sL          Length of isolated section, ft 

wL  Wellbore length, ft 

n            Number of perforated section or hydraulic fractures 

tP   Total pressure drop, psi 

iP   Pressure drop of single perforated interval or single hydraulic fracture, psi 

DP   Dimensionless pressure 

tq       Total flow rate, STB/D 

iq   Flow rate from single perforated section or single hydraulic facture, STB/D 

wr           Wellbore radius, ft 

t   Time, hr 

Dt          Dimensionless time 

 

)'( DD Pt  Dimensionless pressure derivative 

 

fx  Half fracture length, ft 

wx           X-Cartesian coordinates of the production point 

wy         Y-Cartesian coordinates of the production point 

wz          Z-Cartesian coordinates of the production point  
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x          The position in the X-direction of any single production interval 

y          The position in the Y-direction of any single production interval 

z         The position in the X-direction of any single production interval 

GREEK SYMBOLS 

          Porosity 

          Viscosity, cp 

           Diffusivity coefficient, ft
2
/sec 

x         Diffusivity coefficient in the X-direction, ft
2
/sec 

y  Diffusivity coefficient in the Y-direction, ft
2
/sec 

z  Diffusivity coefficient in the Z-direction, ft
2
/sec 

           Dummy variable of time 

v         Inclination angle from vertical direction 

h Deviation from horizontal direction 

SUBSCRIPTS 

ERF early radial flow 

IRF         intermediate radial flow 

SRF        system radial flow 

PRF pseudo radial flow 

ELF early linear flow 

EF          elliptical flow 

FLF        first linear flow 

SLF        second linear flow 

TLF        third linear flow 

PSF pseudo-spherical flow 
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APPENDIXES 

APPENDIX-A: Plots for horizontal wells with zonal isolations. 

Single perforation zone & single zone isolator

Infinite reservoir LD=1, yD=0.0001
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Figure A-1: Pressure and pressure derivative plot.          Figure A-2: Pressure and pressure derivative plot. 

 
Single perforation zone & single zon isolator

 infinite reservoir LD=4, yD=0.0001
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 infinite reservoir LD=8, yD=0.0001
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Figure A-3: Pressure and pressure derivative plot.        Figure A-4: Pressure and pressure derivative plot. 

 
Single perforation zone & single zon isolator
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Double perforation zones & Double zon isolators

 infinite reservoir LD=1, yD=0.0001
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Figure A-5: Pressure and pressure derivative plot.        Figure A-6: Pressure and pressure derivative plot. 
Double perforation zones & Double zon isolators

 infinite reservoir LD=2, yD=0.0001
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Double perforation zones & Double zon isolators

 infinite reservoir LD=4, yD=0.0001
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Figure A-7: Pressure and pressure derivative plot.        Figure A-8: Pressure and pressure derivative plot. 

Double perforation zones & Double zon isolators

 infinite reservoir LD=8, yD=0.0001
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Double perforation zones & Double zon isolators

 infinite reservoir LD=16, yD=0.0001
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Figure A-9: Pressure and pressure derivative plot.        Figure A-10: Pressure and pressure derivative plot. 

Four perforation zones & four zone isolators

Infinite reservoir LD=1, yD=0.0001
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Four perforation zones & four zone isolators

Infinite reservoir LD=2, yD=0.0001
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Figure A-11: Pressure and pressure derivative plot.      Figure A-12: Pressure and pressure derivative plot. 
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Four perforation zones & four zone isolators

Infinite reservoir LD=4, yD=0.0001
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Four perforation zones & four zone isolators

Infinite reservoir LD=8, yD=0.0001
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Figure A-13: Pressure and pressure derivative plot.        Figure A-14: Pressure and pressure derivative plot. 

Four perforation zones & four zone isolators

Infinite reservoir LD=16, yD=0.0001

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01

tD

P
D
 &

 t
D
*
P

D
'

LsD=0.00 LsD=0.10

LsD=0.20 LsD=0.30

LsD=0.40 LsD=0.50

LsD=0.60 LsD=0.70

LsD=0.80 LsD=0.90

y

x

w

w
D

x

zw
D

w

s
sD

k

k

L

r
y

k

k

h

L
L

L

L
L  ,,

Eight perforation zones & Eight zone isolators

Infinite reservoir LD=1, yD=0.0001
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Figure A-15: Pressure and pressure derivative plot.        Figure A-16: Pressure and pressure derivative plot. 

Eight perforation zones & Eight zone isolators

Infinite reservoir LD=2, yD=0.0001

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01

tD

P
D
 &

 t
D
*
P

D
'

LsD=0.00 LsD=0.10

LsD=0.20 LsD=0.30

LsD=0.40 LsD=0.50

LsD=0.60 LsD=0.70

LsD=0.80 LsD=0.90

y

x

w

w
D

x

zw
D

w

s
sD

k

k

L

r
y

k

k

h

L
L

L

L
L  ,,

Eight perforation zones & Eight zone isolators

Infinite reservoir LD=4, yD=0.0001
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Figure A-17: Pressure and pressure derivative plot.        Figure A-18: Pressure and pressure derivative plot. 
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Eight perforation zones & Eight zone isolators

Infinite reservoir LD=8, yD=0.0001
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Eight perforation zones & Eight zone isolators

Infinite reservoir LD=16, yD=0.0001
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Figure A-19: Pressure and pressure derivative plot.        Figure A-20: Pressure and pressure derivative plot. 

Sixteen perforation zones & sixteen zone isolators

Infinite reservoir LD=1, yD=0.0001
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Sixteen perforation zones & sixteen zone isolators

Infinite reservoir LD=2, yD=0.0001
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Figure A-21: Pressure and pressure derivative plot.        Figure A-22: Pressure and pressure derivative plot. 

Sixteen perforation zones & sixteen zone isolators

Infinite reservoir LD=4, yD=0.0001
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Sixteen perforation zones & sixteen zone isolators

Infinite reservoir LD=8, yD=0.0001
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Figure A-23: Pressure and pressure derivative plot.        Figure A-24: Pressure and pressure derivative plot. 
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Sixteen perforation zones & sixteen zone isolators

Infinite reservoir LD=16, yD=0.0001
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Double perforation zones & single zone isolator

Infinite reservoir LD=1, yD=0.0001
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         Figure A-25: Pressure and pressure derivative plot.             Figure A-26: Pressure and pressure derivative plot. 

Double perforation zones & single zone isolator

Infinite reservoir LD=2, yD=0.0001
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Double perforation zones & single zone isolator

Infinite reservoir LD=4, yD=0.0001
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Figure A-27: Pressure and pressure derivative plot.            Figure A-28: Pressure and pressure derivative plot. 

Double perforation zones & single zone isolator

Infinite reservoir LD=16, yD=0.0001
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Double perforation zones & single zone isolator

Infinite reservoir LD=8, yD=0.0001
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Figure A-29: Pressure and pressure derivative plot.            Figure A-30: Pressure and pressure derivative plot. 
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Triple perforation zones & double zone isolators

Infinite reservoir LD=1, yD=0.0001
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Triple perforation zones & double zone isolators

Infinite reservoir LD=2, yD=0.0001
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Figure A-31: Pressure and pressure derivative plot.              Figure A-32: Pressure and pressure derivative plot.        

Triple perforation zones & double zone isolators

Infinite reservoir LD=4, yD=0.0001
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Triple perforation zones & double zone isolators

Infinite reservoir LD=8, yD=0.0001
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        Figure A-33: Pressure and pressure derivative plot.               Figure A-34: Pressure and pressure derivative plot. 

Triple perforation zones & double zone isolators

Infinite reservoir LD=16, yD=0.0001
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Single perforation zone & single zonal isolation

infinite reservoir, LD>20, yD=0.0001
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         Figure A-35: Pressure and pressure derivative plot.                   Figure A-36: Pressure and pressure derivative plot. 



198 

 

Double perforation zones & double zonal isolations

infinite reservoir, LD>20
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Four perforation zones & four zonal isolations

infinite reservoir, LD>20
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Figure A-37: Pressure and pressure derivative plot.                Figure A-38: Pressure and pressure derivative plot. 

Eight perforation zones & eight zonal isolations

infinite reservoir, LD>20
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Double perforation zones & single zonal isolations

infinite reservoir, LD>20
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Figure A-39: Pressure and pressure derivative plot.                   Figure A-40: Pressure and pressure derivative plot. 

Triple perforation zones & double zonal isolations

infinite reservoir, LD>20, yD=0.0001
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Four perforation zones & three zonal isolations

infinite reservoir, LD>20, yD=0.0001

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02

tD

P
D
 &

 t
D
*P

D
'

LsD=0.00 LsD=1.0

LsD=0.20 LsD=0.30

LsD=0.40 LsD=0.50

LsD=0.60 LsD=0.70

LsD=0.80 LsD=0.90

y

x

w

w
D

x

zw
D

w

s
sD

k

k

L

r
y

k

k

h

L
L

L

L
L  ,,

 

Figure A-41: Pressure and pressure derivative plot.               Figure A-42: Pressure and pressure derivative plot. 
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APPENDIX-B: Plots for multiple inclined hydraulic fractures. 
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Three transverse fractures, hD=1.0 , DD=1
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     Figure B-1: Pressure and pressure derivative plot.                    Figure B-2: Pressure and pressure derivative plot. 
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Five transverse fractures, hD=1.0 , DD=1
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Figure B-3: Pressure and pressure derivative plot.                Figure B-4: Pressure and pressure derivative plot. 

 

Six transverse fractures, hD=1.0 , DD=1
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Seven transverse fractures, hD=1.0 , DD=1
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Figure B-5: Pressure and pressure derivative plot.                Figure B-6: Pressure and pressure derivative plot. 
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Eight transverse fractures, hD=1.0 , DD=1
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Nine transverse fractures, hD=1.0 , DD=1
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Figure B-7: Pressure and pressure derivative plot.               Figure B-8: Pressure and pressure derivative plot. 

Ten transverse fractures, hD=1.0 , DD=1
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Figure B-9: Pressure and pressure derivative plot.           Figure B-10: Pressure and pressure derivative plot. 
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Figure B-11: Pressure and pressure derivative plot.              Figure B-12: Pressure and pressure derivative plot. 



201 

 

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03

P
D

&
 (

tD
*P

D
')

tD

Five transverse fractures, hD=1.0 , DD=2

Theta=0.0

Theta=15

Theta=30

Theta=45

Theta=60

Theta=75

yz

x

f

D

yz

x

f

D
k

k

x

D
D

k

k

x

h
h  ,

 

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04

P
D

&
 (

tD
*P

D
')

tD

Six transverse fractures, hD=1.0 , DD=2

Theta=0.0

Theta=15

Theta=30

Theta=45

Theta=60

Theta=75

yz

x

f

D

yz

x

f

D
k

k

x

D
D

k

k

x

h
h  ,

 

Figure B-13: Pressure and pressure derivative plot.                Figure B-14: Pressure and pressure derivative plot. 
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Figure B-15: Pressure and pressure derivative plot.          Figure B-16: Pressure and pressure derivative plot. 

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04

P
D

&
 (

tD
*P

D
')

tD

Nine transverse fractures, hD=1.0 , DD=2

Theta=0.0

Theta=15

Theta=30

Theta=45

Theta=60

Theta=75

yz

x

f

D

yz

x

f

D
k

k

x

D
D

k

k

x

h
h  ,

 

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04

P
D

&
 (

T
D
*P

D
')

tD

Ten transverse fractures, hD=1.0 , DD=2

Theta=0.0

Theta=15

Theta=30

Theta=45

Theta=60

Theta=75

yz

x

f

D

yz

x

f

D
k

k

x

D
D

k

k

x

h
h  ,

 

Figure B-17: Pressure and pressure derivative plot.            Figure B-18: Pressure and pressure derivative plot. 
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Figure B-19: Pressure and pressure derivative plot.             Figure B-20: Pressure and pressure derivative plot. 
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Figure B-21: Pressure and pressure derivative plot.            Figure B-22: Pressure and pressure derivative plot. 
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Figure B-23: Pressure and pressure derivative plot.            Figure B-24: Pressure and pressure derivative plot. 
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Figure B-25: Pressure and pressure derivative plot.               Figure B-26: Pressure and pressure derivative plot. 
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Figure B-27: Pressure and pressure derivative plot.           Figure B-28: Pressure and pressure derivative plot. 
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Figure B-29: Pressure and pressure derivative plot.            Figure B-30: Pressure and pressure derivative plot. 
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Figure B-31: Pressure and pressure derivative plot.             Figure B-32: Pressure and pressure derivative plot. 
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Figure B-33: Pressure and pressure derivative plot.           Figure B-34: Pressure and pressure derivative plot. 
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Figure B-35: Pressure and pressure derivative plot.          Figure B-36: Pressure and pressure derivative plot. 
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Figure B-37: Pressure and pressure derivative plot.              Figure B-38: Pressure and pressure derivative plot. 
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Figure B-39: Pressure and pressure derivative plot.                      Figure B-40: Pressure and pressure derivative plot.       

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04

P
D

&
 (

tD
*P

D
')

tD

Five transverse fractures, hD=1.0 , DD=10

Theta=0.0

Theta=15

Theta=30

Theta=45

Theta=60

Theta=75

yz

x

f

D

yz

x

f

D
k

k

x

D
D

k

k

x

h
h  ,

 

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04

P
D

&
 (

tD
*P

D
')

tD

Six transverse fractures, hD=1.0 , DD=10

Theta=0.0

Theta=15

Theta=30

Theta=45

Theta=60

Theta=75

yz

x

f

D

yz

x

f

D
k

k

x

D
D

k

k

x

h
h  ,

  

Figure B-41: Pressure and pressure derivative plot.         Figure B-42: Pressure and pressure derivative plot. 
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Figure B-43: Pressure and pressure derivative plot.          Figure B-44: Pressure and pressure derivative plot. 
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Figure B-45: Pressure and pressure derivative plot.          Figure B-46: Pressure and pressure derivative plot. 
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Figure B-47: Pressure and pressure derivative plot.      Figure B-48: Pressure and pressure derivative plot. 
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APPENDIX-C: Plots for partially penetrating multiple inclined hydraulic fractures. 

Single vertical transverse hydraulic fracture, hxfD=1
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Single vertical transverse hydraulic fracture,  hxfD=2
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Figure C-1: Pressure and pressure derivative plot.           Figure C-2: Pressure and pressure derivative plot. 

 
Single vertical transverse hydraulic fracture,  hxfD=4
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Single vertical transverse hydraulic fracture,  hxfD=8
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Figure C-3: Pressure and pressure derivative plot.          Figure C-4: Pressure and pressure derivative plot. 

 
Single vertical transverse hydraulic fracture,  hxfD=16
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Single vertical transverse hydraulic fracture,  hxfD=32
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Figure C-5: Pressure and pressure derivative plot.            Figure C-6: Pressure and pressure derivative plot. 
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Two vertical transverse hydraulic fractures, hxfD=1, DD=1
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Two vertical transverse hydraulic fractures, hxfD=2, DD=1
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Figure C-7: Pressure and pressure derivative plot.          Figure C-8: Pressure and pressure derivative plot. 

Two vertical transverse hydraulic fractures, hxfD=4, DD=1
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Two vertical transverse hydraulic fractures, hxfD=8, DD=1
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Figure C-9: Pressure and pressure derivative plot.              Figure C-10: Pressure and pressure derivative plot. 

Two vertical transverse hydraulic fractures, hxfD=16, DD=1
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Two vertical transverse hydraulic fractures, hxfD=32, DD=1
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Figure C-11: Pressure and pressure derivative plot.               Figure C-12: Pressure and pressure derivative plot. 
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Two vertical transverse hydraulic fractures, hxfD=1, DD=4
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Two vertical transverse hydraulic fractures, hxfD=2, DD=4
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Figure C-13: Pressure and pressure derivative plot.             Figure C-14: Pressure and pressure derivative plot. 

Two vertical transverse hydraulic fractures, hxfD=4, DD=4
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Two vertical transverse hydraulic fractures, hxfD=8, DD=4
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Figure C-15: Pressure and pressure derivative plot.                Figure C-16: Pressure and pressure derivative plot. 

Two vertical transverse hydraulic fractures, h fD=16, LsD=4
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Two vertical transverse hydraulic fractures, hxfD=32, DD=4
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Figure C-17: Pressure and pressure derivative plot.            Figure C-18: Pressure and pressure derivative plot. 
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Two vertical transverse hydraulic fractures, hxfD=1, DD=8
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Two vertical transverse hydraulic fractures, hxfD=2, DD=8
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Figure C-19: Pressure and pressure derivative plot.             Figure C-20: Pressure and pressure derivative plot. 

Two vertical transverse hydraulic fractures, hxfD=4, DD=8
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Two vertical transverse hydraulic fractures, hxfD=8, DD=8
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Figure C-21: Pressure and pressure derivative plot.             Figure C-22: Pressure and pressure derivative plot. 

Two vertical transverse hydraulic fractures, hxfD=16, DD=8
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Two vertical transverse hydraulic fractures, hxfD=32, DD=8
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Figure C-23: Pressure and pressure derivative plot.               Figure C-24: Pressure and pressure derivative plot. 
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Four vertical transverse hydraulic fractures, hxfD=1, DD=1
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Four vertical transverse hydraulic fractures, hxfD=2, DD=1
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Figure C-25: Pressure and pressure derivative plot.                    Figure C-26: Pressure and pressure derivative plot. 

Four vertical transverse hydraulic fractures, hxfD=4, DD=1
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Four vertical transverse hydraulic fractures, hxfD=8, DD=1
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Figure C-27: Pressure and pressure derivative plot.             Figure C-28: Pressure and pressure derivative plot. 

Four vertical transverse hydraulic fractures, hxfD=16, LsD=1
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Four vertical transverse hydraulic fractures, hxfD=32, DD=1
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Figure C-29: Pressure and pressure derivative plot.           Figure C-30: Pressure and pressure derivative plot. 
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Four vertical transverse hydraulic fractures, hxfD=1, DD=4
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Four vertical transverse hydraulic fractures, hxfD=2, DD=4
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Figure C-31: Pressure and pressure derivative plot.              Figure C-32: Pressure and pressure derivative plot. 

Four vertical transverse hydraulic fractures, hxfD=4, DD=4

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03

tD

t D
*P

D
'

hhfD=1.0 hhfD=0.9

hhfD=0.8 hhfD=0.7

hhfD=0.6 hhfD=0.5

hhfD=0.4 hhfD=0.3

hhfD=0.2 hhfD=0.1

y

x

f

D

x

zf

xfD

f

hfD
k

k

x

D
D

k

k

h

x
h

h

h
h  ,,

 

Four vertical transverse hydraulic fractures, hxfD=8, DD=4
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Figure C-33: Pressure and pressure derivative plot.             Figure C-34: Pressure and pressure derivative plot. 

Four vertical transverse hydraulic fractures, hxfD=16, DD=4
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Four vertical transverse hydraulic fractures, hxfD=32, DD=4
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Figure C-35: Pressure and pressure derivative plot.            Figure C-36: Pressure and pressure derivative plot. 
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Four vertical transverse hydraulic fractures, hxfD=1, DD=8
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Four vertical transverse hydraulic fractures, hxfD=2, DD=8
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Figure C-37: Pressure and pressure derivative plot.                          Figure C-38: Pressure and pressure derivative plot. 

Four vertical transverse hydraulic fractures, hxfD=4, DD=8
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Four vertical transverse hydraulic fractures, hxfD=8, DD=8
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Figure C-39: Pressure and pressure derivative plot.             Figure C-40: Pressure and pressure derivative plot. 

Four vertical transverse hydraulic fractures, hxfD=16, DD=8
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Four vertical transverse hydraulic fractures, hxfD=32, DD=8
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Figure C-41: Pressure and pressure derivative plot.         Figure C-42: Pressure and pressure derivative plot. 
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Eight vertical transverse hydraulic fractures, hxfD=1, DD=1

1.0E-02

1.0E-01

1.0E+00

1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03

tD

t D
*P

D
'

hhfD=1.0 hhfD=0.9

hhfD=0.8 hhfD=0.7

hhfD=0.6 hhfD=0.5

hhfD=0.4 hhfD=0.3

hhfD=0.2 hhfD=0.1

y

x

f

D

x

zf

xfD

f

hfD
k

k

x

D
D

k

k

h

x
h

h

h
h  ,,

 

Eight vertical transverse hydraulic fractures, hxfD=2, DD=1
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Figure C-43: Pressure and pressure derivative plot.             Figure C-44: Pressure and pressure derivative plot. 

Eight vertical transverse hydraulic fractures, hxfD=4, DD=1
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Eight vertical transverse hydraulic fractures, hxfD=8, DD=1
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Figure C-45: Pressure and pressure derivative plot.                Figure C-46: Pressure and pressure derivative plot. 

Eight vertical transverse hydraulic fractures, hxfD=16, DD=1
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Eight vertical transverse hydraulic fractures, hxfD=32, DD=1
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Figure C-47: Pressure and pressure derivative plot.              Figure C-48: Pressure and pressure derivative plot. 
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Eight vertical transverse hydraulic fractures, hxfD=1, DD=4
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Eight vertical transverse hydraulic fractures, hxfD=2, DD=4
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Figure C-49: Pressure and pressure derivative plot.             Figure C-50: Pressure and pressure derivative plot. 

Eight vertical transverse hydraulic fractures, hxfD=4, DD=4
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Eight vertical transverse hydraulic fractures, hxfD=8, DD=4
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Figure C-51: Pressure and pressure derivative plot.                  Figure C-52: Pressure and pressure derivative plot. 

Eight vertical transverse hydraulic fractures, hxfD=16, DD=4
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Eight vertical transverse hydraulic fractures, hxfD=32, DD=4
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Figure C-53: Pressure and pressure derivative plot.             Figure C-54: Pressure and pressure derivative plot. 
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Eight vertical transverse hydraulic fractures, hxfD=1, DD=8
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Eight vertical transverse hydraulic fractures, hxfD=2, DD=8
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Figure C-55: Pressure and pressure derivative plot.              Figure C-56: Pressure and pressure derivative plot. 

Eight vertical transverse hydraulic fractures, hxfD=4, DD=8
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Eight vertical transverse hydraulic fractures, hxfD=8, DD=8
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Figure C-57: Pressure and pressure derivative plot.                Figure C-58: Pressure and pressure derivative plot. 

Eight vertical transverse hydraulic fractures, hxfD=16, DD=8
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Eight vertical transverse hydraulic fractures, hxfD=32, DD=8
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Figure C-59: Pressure and pressure derivative plot.              Figure C-60: Pressure and pressure derivative plot. 
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APPENDIX-D: Pseudo skin factor for multiple inclined hydraulic fractures.  

Two Transverse Fractures 

 DD=1 DD=2 DD=5 DD=8 DD=10 

0.0v  -0.620 -0.971 -1.489 -1.556 -1.774 

15v  -0.629 -0.976 -1.492 -1.566 -1.778 

30v  -0.655 -0.994 -1.501 -1.597 -1.793 

45v  -0.706 -1.035 -1.526 -1.658 -1.828 

60v  -0.794 -1.126 -1.589 -1.767 -1.912 

75v  -1.05 -1.291 -1.789 -2.000 -2.134 

 

Four Transverse Fractures 

 DD=1 DD=2 DD=5 DD=8 DD=10 

0.0v  -1.309 -1.876 -2.520 -2.764 -2.994 

15v  -1.312 -1.877 -2.521 -2.768 -2.995 

30v  -1.324 -1.881 -2.526 -2.783 -3.000 

45v  -1.346 -1.889 -2.538 -2.812 -3.012 

60v  -1.381 -1.912 -2.569 -2.866 -3.044 

75v  -1.464 -1.971 -2.666 -2.979 -3.146 
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Six Transverse Fractures 

 DD=1 DD=2 DD=5 DD=8 DD=10 

0.0v  -1.700 -2.312 -3.029 -3.368 -3.608 

15v  -1.702 -2.313 -3.030 -3.371 -3.608 

30v  -1.709 -2.315 -3.033 -3.381 -3.610 

45v  -1.723 -2.320 -3.041 -3.399 -3.614 

60v  -1.745 -2.335 -2.061 -3.433 -3.627 

75v  -1.793 -2.373 -3.125 -3.507 -3.679 

 

 

Eight Transverse Fractures 

 DD=1 DD=2 DD=5 DD=8 DD=10 

0.0v  -1.980 -2.617 -3.360 -3.768 -4.095 

15v  -1.982 -2.620 -3.361 -3.770 -4.095 

30v  -1.987 -2.622 -3.363 -3.776 -4.095 

45v  -1.997 -2.626 -3.369 -3.790 -4.096 

60v  -2.013 -2.637 -2.384 -3.815 -3.099 

75v  -2.046 -2.664 -3.432 -3.868 -4.114 
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Ten Transverse Fractures 

 DD=1 DD=2 DD=5 DD=8 DD=10 

0.0v  -2.195 -2.881 -3.733 -4.048 -4.394 

15v  -2.196 -2.881 -3.733 -4.049 -4.394 

30v  -2.200 -2.882 -3.733 -4.054 -4.394 

45v  -2.209 -2.883 -3.734 -4.064 -4.395 

60v  -2.221 -2.887 -3.737 -4.085 -4.396 

75v  -2.246 -2.903 -3.750 -4.127 -4.405 

 

Five Semi-Transverse Fractures, DD=1 

 0.0v  30v  60v  

15h  -1.255 -1.390 -1.432 

30h  -1.343 -1.424 -1.463 

45h  -1.411 -1.464 -1.500 

60h  -1.456 -1.498 -1.531 

75h  -1.471 -1.519 -1.551 

90h  -1.490 -1.527 -1.558 
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Five Semi-Transverse Fractures, DD=5 

 0.0v  30v  60v  

15h  -2.794 -2.798 -2.820 

30h  -2.802 -2.805 -2.827 

45h  -2.811 -2.814 -2.836 

60h  -2.820 -2.823 -2.844 

75h  -2.827 -2.830 -2.850 

90h  -2.829 -2.832 -2.852 

 

Five Longitudinal Fractures 

 DD=1 DD=5 

0.0v  -2.507 -2.870 

15v  -2.508 -2.897 

30v  -2.511 -2.905 

45v  -2.551 -2.948 

60v  -2.587 -3.048 

75v  -2.664 -3.142 

 

 



221 

 

APPENDIX-E Pseudo skin factor for partially penetrating hydraulic fractures. 

Single vertical fractures 

HhfD hxfD=1 hxfD=2 hxfD=4 hxfD=8 hxfD=16 hxfD=32 

0.0 -0.01804 -0.01804 -0.01804 -0.01804 -0.01804 -0.01804 

0.1 0.017739 -0.00137 -0.01044 -0.01734 -0.01804 -0.01804 

0.2 0.060897 0.018669 -0.00156 -0.01655 -0.01804 -0.01804 

0.3 0.112727 0.042644 0.008382 -0.01569 -0.01804 -0.01804 

0.4 0.175179 0.071546 0.019082 -0.01482 -0.01804 -0.01804 

0.5 0.251176 0.106756 0.030047 -0.01398 -0.01804 -0.01804 

0.6 0.345206 0.149289 0.040626 -0.01321 -0.01804 -0.01804 

0.7 0.466256 0.1978 0.050048 -0.01256 -0.01804 -0.01804 

0.8 0.632365 0.246128 0.057515 -0.01207 -0.01804 -0.01804 

0.9 0.83231 0.283126 0.062322 -0.01177 -0.01804 -0.01804 

 

Two vertical fractures, LD=1 

HhfD hxfD=1 hxfD=2 hxfD=4 hxfD=8 hxfD=16 hxfD=32 

0.0 -0.58441 -0.63443 -0.63443 -0.63443 -0.63443 -0.63443 

0.1 -0.56756 -0.6344 -0.6344 -0.6344 -0.6344 -0.6344 

0.2 -0.54732 -0.63437 -0.63437 -0.63437 -0.63437 -0.63437 

0.3 -0.52314 -0.63434 -0.63434 -0.63434 -0.63434 -0.63434 

0.4 -0.49407 -0.6343 -0.6343 -0.6343 -0.6343 -0.6343 

0.5 -0.4586 -0.63427 -0.63427 -0.63427 -0.63427 -0.63427 

0.6 -0.41527 -0.63424 -0.63424 -0.63424 -0.63424 -0.63424 

0.7 -0.36473 -0.63421 -0.63421 -0.63421 -0.63421 -0.63421 

0.8 -0.313 -0.6342 -0.6342 -0.6342 -0.6342 -0.6342 

0.9 -0.27247 -0.63418 -0.63418 -0.63418 -0.63418 -0.63418 
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Two vertical fractures, LD=8 

HhfD hxfD=1 hxfD=2 hxfD=4 hxfD=8 hxfD=16 hxfD=32 

0.0 -1.59554 -1.59554 -1.59554 -1.59554 -1.59554 -1.59554 

0.1 -1.58661 -1.59551 -1.59551 -1.59551 -1.59551 -1.59551 

0.2 -1.57643 -1.59548 -1.59548 -1.59548 -1.59548 -1.59548 

0.3 -1.56546 -1.59545 -1.59545 -1.59545 -1.59545 -1.59545 

0.4 -1.55425 -1.59542 -1.59542 -1.59542 -1.59542 -1.59542 

0.5 -1.5434 -1.59538 -1.59538 -1.59538 -1.59538 -1.59538 

0.6 -1.53349 -1.59535 -1.59535 -1.59535 -1.59535 -1.59535 

0.7 -1.52511 -1.59533 -1.59533 -1.59533 -1.59533 -1.59533 

0.8 -1.51873 -1.59531 -1.59531 -1.59531 -1.59531 -1.59531 

0.9 -1.51474 -1.5953 -1.5953 -1.5953 -1.5953 -1.5953 

 

Four vertical fractures, LD=1 

HhfD hxfD=1 hxfD=2 hxfD=4 hxfD=8 hxfD=16 hxfD=32 

0.0 -1.27819 -1.27819 -1.27819 -1.27819 -1.27819 -1.27819 

0.1 -1.27372 -1.27818 -1.27819 -1.27819 -1.27819 -1.27819 

0.2 -1.26862 -1.27816 -1.27819 -1.27819 -1.27819 -1.27819 

0.3 -1.26313 -1.27814 -1.27819 -1.27819 -1.27819 -1.27819 

0.4 -1.25752 -1.27813 -1.27819 -1.27819 -1.27819 -1.27819 

0.5 -1.25209 -1.27811 -1.27819 -1.27819 -1.27819 -1.27819 

0.6 -1.24713 -1.27811 -1.27819 -1.27819 -1.27819 -1.27819 

0.7 -1.24293 -1.27808 -1.27819 -1.27819 -1.27819 -1.27819 

0.8 -1.23974 -1.27807 -1.27819 -1.27819 -1.27819 -1.27819 

0.9 -1.23775 -1.27807 -1.27819 -1.27819 -1.27819 -1.27819 
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Four vertical fractures, LD=8 

HhfD hxfD=1 hxfD=2 hxfD=4 hxfD=8 hxfD=16 hxfD=32 

0.0 -2.70685 -2.70685 -2.70685 -2.70685 -2.70685 -2.70685 

0.1 -2.70238 -2.70683 -2.70685 -2.70685 -2.70685 -2.70685 

0.2 -2.69729 -2.70682 -2.70685 -2.70685 -2.70685 -2.70685 

0.3 -2.69181 -2.7068 -2.70685 -2.70685 -2.70685 -2.70685 

0.4 -2.6862 -2.70678 -2.70685 -2.70685 -2.70685 -2.70685 

0.5 -2.68077 -2.70677 -2.70685 -2.70685 -2.70685 -2.70685 

0.6 -2.67582 -2.70675 -2.70685 -2.70685 -2.70685 -2.70685 

0.7 -2.67163 -2.70674 -2.70685 -2.70685 -2.70685 -2.70685 

0.8 -2.66844 -2.70673 -2.70685 -2.70685 -2.70685 -2.70685 

0.9 -2.66645 -2.70673 -2.70685 -2.70685 -2.70685 -2.70685 

 

Eight vertical fractures, LD=1 

HhfD hxfD=1 hxfD=2 hxfD=4 hxfD=8 hxfD=16 hxfD=32 

0.0 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 

0.1 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 

0.2 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 

0.3 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 

0.4 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 

0.5 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 

0.6 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 

0.7 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 

0.8 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 

0.9 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 -2.03185 
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Eight vertical fractures, LD=8 

HhfD hxfD=1 hxfD=2 hxfD=4 hxfD=8 hxfD=16 hxfD=32 

0.0 -3.81424 -3.81424 -3.81424 -3.81424 -3.81424 -3.81424 

0.1 -3.81424 -3.81424 -3.81424 -3.81424 -3.81424 -3.81424 

0.2 -3.81424 -3.81424 -3.81424 -3.81424 -3.81424 -3.81424 

0.3 -3.81424 -3.81424 -3.81424 -3.81424 -3.81424 -3.81424 

0.4 -3.81424 -3.81424 -3.81424 -3.81424 -3.81424 -3.81424 

0.5 -3.81424 -3.81424 -3.81424 -3.81424 -3.81424 -3.81424 

0.6 -3.81424 -3.81424 -3.81424 -3.81424 -3.81424 -3.81424 

0.7 -3.81424 -3.81424 -3.81424 -3.81424 -3.81424 -3.81424 

0.8 -3.81424 -3.81424 -3.81424 -3.81424 -3.81424 -3.81424 

0.9 -3.81424 -3.81424 -3.81424 -3.81424 -3.81424 -3.81424 

 

 

Two inclined fractures, LD=1 Two inclined fractures, LD=8 

 hxfD=1, 

hhfD=1 

hxfD=10, 

hhfD=1 

hxfD=10, 

hhfD=0.5 

hxfD=1, 

hhfD=1 

hxfD=10, 

hhfD=1 

hxfD=10, 

hhfD=0.5 

0.0v  -0.605 -0.605 -0.605 -1.542 -1.618 -1.618 

15v  -0.600 -0.605 -0.605 -1.537 -1.618 -1.618 

30v  -0.583 -0.605 -0.605 -1.520 -1.618 -1.618 

45v  -0.550 -0.605 -0.605 -1.487 -1.618 -1.618 

60v  -0.498 -0.605 -0.605 -1.436 -1.618 -1.618 

75v  -0.439 -0.605 -0.605 -1.376 -1.618 -1.618 
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APPENDIX-F: Synthetic data for Examples. 

Example 3-1 

t,hrs Pwf, psi t,hrs Pwf, psi t,hrs Pwf, psi t,hrs Pwf, psi 

0.0000 5000.00 0.512 4939.59 102.39 4807.26 15358.36 4529.54 

0.0017 4965.95 0.683 4937.47 119.45 4799.61 17064.85 4523.58 

0.0034 4962.89 0.853 4935.60 136.52 4792.86 34129.69 4484.44 

0.0051 4961.10 1.024 4933.92 153.58 4786.84 51194.54 4461.54 

0.0068 4959.83 1.195 4932.36 170.65 4781.39 68259.39 4445.29 

0.0085 4958.85 1.365 4930.92 341.30 4744.54 85324.23 4432.68 

0.0102 4958.04 1.536 4929.57 511.95 4721.64   

0.0119 4957.36 1.706 4928.29 682.59 4705.39   

0.0137 4956.77 3.413 4918.13 853.24 4692.78   

0.0154 4956.25 5.119 4910.70 1023.89 4682.49   

0.0171 4955.79 6.826 4904.71 1194.54 4673.78   

0.0341 4952.73 8.532 4899.61 1365.19 4666.24   

0.0512 4950.94 10.239 4895.13 1535.84 4659.59   

0.0683 4949.67 11.945 4891.08 1706.48 4653.63   

0.0853 4948.69 13.652 4887.38 3412.97 4614.49   

0.1024 4947.88 15.358 4883.95 5119.45 4591.59   

0.1195 4947.20 17.065 4880.75 6825.94 4575.34   

0.1365 4946.61 34.130 4856.39 8532.42 4562.73   

0.1536 4946.08 51.195 4839.57 10238.91 4552.44   

0.1706 4945.60 68.259 4826.64 11945.39 4543.73   

0.3413 4942.12 85.324 4816.12 13651.88 4536.19   
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Example 3-2 

t,hrs Pwf, psi t,hrs Pwf, psi t,hrs Pwf, psi t,hrs Pwf, psi 

0.0000 5000.00 0.273 4984.05 54.61 4870.45 8191.13 4469.33 

0.0014 4998.96 0.410 4980.45 68.26 4860.52 9556.31 4454.52 

0.0027 4998.49 0.546 4977.42 81.91 4851.74 10921.50 4441.69 

0.0041 4998.13 0.683 4974.77 95.56 4843.82 12286.69 4430.37 

0.0055 4997.83 0.819 4972.41 109.22 4836.57 13651.88 4420.25 

0.0068 4997.56 0.956 4970.26 122.87 4829.88 27303.75 4353.66 

0.0082 4997.32 1.092 4968.30 136.52 4823.65 40955.63 4314.70 

0.0096 4997.10 1.229 4966.49 273.04 4777.17 54607.51 4287.06 

0.0109 4996.89 1.365 4964.80 409.56 4746.07 68259.39 4265.63 

0.0123 4996.69 2.730 4952.38 546.08 4722.59 81911.26 4248.11 

0.0137 4996.51 4.096 4944.23 682.59 4703.70 95563.14 4233.30 

0.0273 4995.02 5.461 4938.13 819.11 4687.88 109215.02 4220.47 

0.0410 4993.88 6.826 4933.22 955.63 4674.27   

0.0546 4992.92 8.191 4929.07 1092.15 4662.31   

0.0683 4992.07 9.556 4925.45 1228.67 4651.64   

0.0819 4991.31 10.922 4922.22 1365.19 4642.00   

0.0956 4990.60 12.287 4919.28 2730.38 4576.38   

0.1092 4989.95 13.652 4916.57 4095.56 4535.92   

0.1229 4989.33 27.304 4896.34 5460.75 4508.28   

0.1365 4988.75 40.956 4882.03 6825.94 4486.84   
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Example 3-3 

t,hrs 

Pwf, 

psi t,hrs Pwf, psi t,hrs Pwf, psi t,hrs Pwf, psi t,hrs Pwf, psi 

0.0000 5000.00 0.039 4969.10 2.12 4949.15 57.64 4885.13 3943.88 4643.11 

0.0006 4982.55 0.042 4968.86 2.43 4947.87 60.68 4883.14 4247.25 4638.33 

0.0009 4981.25 0.046 4968.64 2.73 4946.70 91.01 4866.05 4550.63 4633.88 

0.0012 4980.32 0.049 4968.43 3.03 4945.63 121.35 4852.56 4854.00 4629.73 

0.0015 4979.60 0.052 4968.24 3.34 4944.63 151.69 4841.39 5157.38 4625.82 

0.0018 4979.01 0.055 4968.05 3.64 4943.69 182.03 4831.86 5460.75 4622.13 

0.0021 4978.52 0.058 4967.88 3.94 4942.81 212.36 4823.55 5764.13 4618.65 

0.0024 4978.09 0.061 4967.71 4.25 4941.98 242.70 4816.17 6067.50 4615.34 

0.0027 4977.71 0.091 4966.41 4.55 4941.19 273.04 4809.55 9101.25 4589.21 

0.0030 4977.37 0.121 4965.47 4.85 4940.43 303.38 4803.53 12135.00 4570.67 

0.0033 4977.06 0.152 4964.65 5.16 4939.70 333.71 4798.01 15168.75 4556.29 

0.0036 4976.78 0.182 4963.99 5.46 4939.01 364.05 4792.92 18202.50 4544.54 

0.0039 4976.52 0.212 4963.43 5.76 4938.33 394.39 4788.19 21236.25 4534.60 

0.0042 4976.28 0.243 4962.92 6.07 4937.68 424.73 4783.77 24270.00 4526.00 

0.0046 4976.06 0.273 4962.46 9.10 4932.05 455.06 4779.63 27303.75 4518.41 

0.0049 4975.85 0.303 4962.03 12.14 4927.36 485.40 4775.73 30337.50 4511.62 

0.0052 4975.66 0.334 4961.62 15.17 4923.21 515.74 4772.04 33371.26 4505.47 

0.0055 4975.47 0.364 4961.24 18.20 4919.43 546.08 4768.55 36405.01 4499.87 

0.0058 4975.30 0.394 4960.87 21.24 4915.92 576.41 4765.22 39438.76 4494.71 

0.0061 4975.13 0.425 4960.52 24.27 4912.64 606.75 4762.05 42472.51 4489.93 

0.0091 4973.83 0.46 4960.18 27.30 4909.54 910.13 4736.47 45506.26 4485.49 

0.0121 4972.90 0.49 4959.85 30.34 4906.60 1213.50 4717.74 48540.01 4481.33 

0.0152 4972.18 0.52 4959.53 33.37 4903.81 1516.88 4704.69 51573.76 4477.42 

0.0182 4971.59 0.55 4959.22 36.41 4901.14 1820.25 4692.94 54607.51 4473.74 

0.0212 4971.10 0.58 4958.93 39.44 4898.58 2123.63 4683.00 57641.26 4470.25 

0.024 4970.67 0.61 4958.63 42.47 4896.13 2427.00 4674.40 60675.01 4466.95 

0.027 4970.29 0.91 4956.07 45.51 4893.77 2730.38 4666.81 91012.51 4440.81 

0.030 4969.95 1.21 4953.96 48.54 4891.49 3033.75 4660.02   

0.033 4969.64 1.52 4952.15 51.57 4889.30 3337.13 4653.87   

0.036 4969.36 1.82 4950.56 54.61 4887.18 3640.50 4648.27   
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Example 5-1 

t,hrs Pwf, psi t,hrs Pwf, psi t,hrs Pwf, psi t,hrs Pwf, psi t,hrs Pwf, psi 

0.0000 6000.00 0.046 5976.51 2.29 5821.30 68.81 5439.59 4587.03 4146.90 

0.0008 5996.97 0.054 5974.62 3.06 5794.93 76.45 5424.82 5351.54 4066.44 

0.0015 5995.71 0.061 5972.87 3.82 5773.24 152.90 5315.11 6116.04 3995.66 

0.0023 5994.75 0.069 5971.23 4.59 5754.85 229.35 5238.44 6880.55 3932.50 

0.0031 5993.93 0.076 5969.67 5.35 5738.87 305.80 5176.95 7645.05 3883.79 

0.0038 5993.22 0.153 5957.10 6.12 5724.76 382.25 5124.56 15290.10 3461.72 

0.0046 5992.57 0.229 5947.41 6.88 5712.13 458.70 5078.42 22935.15 3214.82 

0.0054 5991.98 0.306 5939.11 7.65 5700.70 535.15 5036.93 30580.20 3039.64 

0.0061 5991.42 0.382 5931.65 15.29 5623.06 611.60 4999.03 38225.26 2903.76 

0.0069 5990.90 0.459 5924.74 22.94 5576.24 688.05 4964.02 45870.31 2792.74 

0.0076 5990.41 0.535 5918.25 30.58 5542.38 764.51 4931.38 53515.36 2698.88 

0.0153 5986.44 0.612 5912.09 38.23 5515.50 1529.01 4662.66 61160.41 2617.57 

0.0229 5983.39 0.688 5906.23 45.87 5492.92 2293.52 4486.38 68805.46 2545.85 

0.0306 5980.82 0.765 5900.62 53.52 5473.22 3058.02 4350.61 76450.51 2481.69 

0.0382 5978.55 1.529 5854.86 61.16 5455.61 3822.53 4240.07   
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Example 5-2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          

t,hrs Pwf, psi t,hrs Pwf, psi t,hrs Pwf, psi t,hrs Pwf, psi t,hrs Pwf, psi 

0.0000 10000.00 0.0114 9914.60 0.57 9628.89 17.06 8874.51 1137.66 7282.04 

0.0002 9988.95 0.0133 9907.90 0.76 9593.99 18.96 8838.68 1327.27 7219.46 

0.0004 9984.38 0.0152 9901.74 0.95 9564.35 37.92 8592.78 1516.88 7165.25 

0.0006 9980.86 0.0171 9896.03 1.14 9538.27 56.88 8444.23 1706.48 7117.44 

0.0008 9977.90 0.0190 9890.70 1.33 9514.78 75.84 8338.78 1896.09 7074.67 

0.0009 9975.29 0.0379 9850.93 1.52 9493.31 94.80 8257.49 3792.19 6793.28 

0.0011 9972.94 0.0569 9824.44 1.71 9473.43 113.77 8191.51 5688.28 6628.68 

0.0013 9970.77 0.0758 9804.54 1.90 9454.86 132.73 8136.07 7584.38 6511.90 

0.0015 9968.75 0.0948 9788.56 3.79 9312.07 151.69 8088.34 9480.47 6421.31 

0.0017 9966.85 0.1138 9775.14 5.69 9210.44 170.65 8046.53 11376.56 6347.30 

0.0019 9965.06 0.1327 9763.52 7.58 9130.30 189.61 8009.40 13272.66 6284.72 

0.0038 9950.59 0.1517 9753.20 9.48 9063.94 379.22 7728.02 15168.75 6230.52 

0.0057 9939.49 0.1706 9743.88 11.38 9007.27 568.83 7563.42 17064.85 6182.70 

0.0076 9930.15 0.1896 9735.34 13.27 8957.83 758.44 7446.63 18960.94 6139.93 

0.0095 9921.95 0.3792 9672.57 15.17 8913.95 948.05 7356.05 37921.88 5858.55 
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Example 5-3 

t, hrs Pwf, psi t, hrs Pwf, psi t, hrs Pwf, psi t, hrs Pwf, psi 

0.0000 8000.00 0.2133 7935.40 42.662 7365.71 6399.32 5248.28 

0.0007 7996.27 0.2844 7925.40 49.772 7330.51 7110.35 5192.49 

0.0014 7994.73 0.3555 7916.61 56.883 7298.37 14220.71 4825.47 

0.0021 7993.54 0.4266 7908.67 63.993 7268.64 21331.06 4610.77 

0.0028 7992.54 0.4977 7901.39 71.104 7240.89 28441.41 4458.45 

0.0036 7991.66 0.5688 7894.64 142.207 7028.27 35551.76 4340.29 

0.0043 7990.86 0.6399 7888.34 213.311 6879.55 42662.12 4243.75 

0.0050 7990.13 0.7110 7882.42 284.414 6764.33 49772.47 4162.13 

0.0057 7989.45 1.4221 7836.72 355.518 6670.19 56882.82 4091.42 

0.0064 7988.81 2.1331 7804.50 426.621 6590.59 63993.17 4029.06 

0.0071 7988.21 2.8441 7778.83 497.725 6521.67 71103.53 3973.27 

0.0142 7983.32 3.5552 7757.00 568.828 6460.91 142207.05 3606.25 

0.0213 7979.57 4.2662 7737.73 639.932 6406.60 213310.58 3391.55 

0.0284 7976.41 4.9772 7720.34 711.035 6357.50 284414.11 3239.23 

0.0356 7973.63 5.6883 7704.42 1422.071 6003.16 355517.63 3121.07 

0.0427 7971.11 6.3993 7689.71 2133.106 5799.60 426621.16 3024.53 

0.0498 7968.79 7.1104 7676.01 2844.141 5653.70 497724.69 2942.91 

0.0569 7966.64 14.2207 7573.50 3555.176 5539.97 568828.21 2872.20 

0.0640 7964.62 21.3311 7503.99 4266.212 5462.97 639931.74 2809.84 

0.0711 7962.70 28.4414 7450.02 4977.247 5381.35   

0.1422 7947.25 35.5518 7404.98 5688.282 5310.64   
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Example 7-1 

t,hrs Pwf, psi t,hrs Pwf, psi t,hrs Pwf, psi t,hrs Pwf, psi 

0.000000 5000.00 0.0030 4995.98 0.61 4971.01 364.05 4739.89 

0.000006 4999.76 0.0036 4995.76 1.21 4960.61 424.73 4724.94 

0.000012 4999.66 0.0042 4995.57 1.82 4953.41 485.4 4711.16 

0.000018 4999.58 0.0049 4995.41 2.43 4947.9 546.08 4698.32 

0.000024 4999.52 0.0055 4995.25 3.03 4943.44 606.75 4686.27 

0.000030 4999.46 0.0061 4995.11 3.64 4939.7 1213.5 4592.89 

0.000036 4999.41 0.0121 4993.99 4.25 4936.48 1820.25 4526.84 

0.000043 4999.36 0.0182 4993.13 4.85 4933.64 2427 4475.29 

0.000049 4999.32 0.0243 4992.41 5.46 4931.1 3033.75 4432.96 

0.000055 4999.27 0.0303 4991.78 6.07 4928.79 3640.5 4397.07 

0.000061 4999.23 0.0364 4991.2 12.14 4912.48 4247.25 4365.94 

0.000121 4998.92 0.0425 4990.68 18.20 4901.52 4854 4338.49 

0.000182 4998.68 0.0485 4990.19 24.27 4892.83 5460.75 4313.95 

0.000243 4998.48 0.0546 4989.73 30.34 4885.44 6067.5 4291.78 

0.000303 4998.31 0.0607 4989.29 36.41 4878.92 12135 4142.55 

0.000364 4998.16 0.1214 4985.77 42.47 4873.04 18202.5 4053.79 

0.000425 4998.03 0.1820 4983.07 48.54 4867.66 24270 3983.97 

0.000485 4997.91 0.2427 4980.8 54.61 4862.67 30337.5 3929.82 

0.000546 4997.80 0.3034 4978.79 60.68 4858.02 36405.01 3885.57 

0.000607 4997.70 0.3641 4976.98 121.35 4822.17 42472.51 3848.16 

0.001214 4997.00 0.4247 4975.33 182.03 4796.11 48540.01 3815.76 

0.00182 4996.56 0.4854 4973.79 242.7 4774.77 54607.51 3787.17 

0.00243 4996.23 0.5461 4972.36 303.38 4756.33 60675.01 3761.6 
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Example 7-2 

t,hrs Pwf, psi t,hrs Pwf, psi t,hrs Pwf, psi t,hrs Pwf, psi t,hrs Pwf, psi 

0 10000 0.000777 9994.95 0.1553 9971.73 23.299 9479.96 3106.56 6668.39 

7.77E-06 9999.47 0.0016 9993.35 0.233 9966.34 31.066 9391.53 3883.2 6510.57 

1.55E-05 9999.25 0.0023 9992.35 0.311 9961.44 38.832 9314.31 4659.84 6381.28 

2.33E-05 9999.09 0.0031 9991.61 0.388 9956.8 46.6 9245.3 5436.48 6271.79 

3.11E-05 9998.94 0.0039 9991.03 0.466 9952.35 54.36 9182.67 6213.12 6176.88 

3.88E-05 9998.82 0.0047 9990.55 0.544 9948.04 62.13 9125.24 6989.76 6093.16 

4.66E-05 9998.71 0.0054 9990.14 0.621 9943.86 69.9 9072.15 7766.4 6018.29 

5.44E-05 9998.6 0.0062 9989.77 0.699 9939.78 77.66 9022.76   

6.21E-05 9998.51 0.007 9989.45 0.777 9935.8 155.33 8657.22   

6.99E-05 9998.42 0.0078 9989.16 1.553 9900.11 232.99 8416.47   

7.77E-05 9998.33 0.0155 9986.99 2.33 9869.83 310.66 8236.67   

0.000155 9997.64 0.0233 9985.41 3.107 9843.21 388.32 8093.13   

0.000233 9997.12 0.0311 9984.09 3.883 9819.25 465.98 7973.71   

0.000311 9996.68 0.0388 9982.92 4.66 9797.32 543.65 7871.5   

0.000388 9996.3 0.0466 9981.86 5.436 9777 621.31 7782.17   

0.000466 9995.98 0.0544 9980.89 6.213 9757.99 698.98 7702.85   

0.000544 9995.68 0.0621 9979.98 6.99 9740.07 776.64 7631.51   

0.000621 9995.41 0.0699 9979.13 7.766 9723.09 1553.28 7154.65   

0.000699 9995.17 0.0777 9978.33 15.533 9585.47 2329.92 6871.03   

 

 


