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Chapter 1

Long-Run Growth Differences and the

Neoclassical Growth Model

1.1 Introduction

The neoclassical growth model (hereafter NGM) has had some success in explaining

differences in income levels across countries.1 When combined with the criticism of

endogenous growth models by Jones (1995a,b), this success has confirmed the NGM

as the cornerstone of long-run macroeconomics. The NGM is far less satisfactory

when considering long-run growth rates. One of the key implications of the standard

NGM is that there is a single, world-wide long-run growth rate of output due to the

nature of technological knowledge. This view of technology growth as a pure public

good is well articulated by Mankiw et al. (1992, MRW hereafter): “We assume that

g [is] constant across countries. g reflects primarily the advancement of knowledge,

which is not country-specific.” Yet Lee et al. (1997) provide evidence that per capita

1I use the term NGM to mean predominantly the general exogenous savings model originally pro-
posed by Solow (1956), along with the added simplifying assumptions suggested by Solow (1957) and
generally made in the subsequent literature.
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output growth rates do in fact differ across countries. The challenge to the NGM

is compounded when considering, as pointed out by Grier and Grier (2007), that the

world income distribution is diverging despite clear non-divergence (and in most cases

significant convergence) in the standard determinants of income levels.

So far, despite the criticisms, many economists still favor the NGM for the sim-

plicity of its analysis and the clear policy implications that are the hallmark of the

model. In order to address some of the NGM’s shortcomings, economists often mod-

ify or augment the model in order to account for the empirical anomalies mentioned

above. One of the more common alternatives is to identify factors not usually included

in the theoretical model that are important for explaining growth. Examples include

human capital as in MRW, institutional differences as in Hall and Jones (1999), and

geography as in Sachs (2001).

The approach of this paper is unique in that rather than augmenting the model or

estimating atheoretical growth regressions, I relax some of the common simplifying

assumptions of the NGM that are not economically motivated. The most common

simplifying assumptions are

• The production function is Cobb-Douglas

• Factor markets are perfectly competitive (that is, factor elasticities in the pro-

duction function are also factor income shares)

• There are constant returns to scale in capital and labor

• Factor shares are identical across all countries, allowing pooling of the data in

cross-country analysis

• Technology is Harrod neutral, or labor-augmenting
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While this paper retains the assumptions of Cobb-Douglas production and perfectly

competitive factor markets, it relaxes the latter three assumptions. These simple

changes give the result that the growth rate of GDP per capita is no longer equal to

the growth rate of labor-augmenting technology, as is implied by the standard NGM.

Output growth with this more general production function also depends on the output

elasticities of labor and natural resources, which under competitive markets are equal

to their respective factor income shares.2

In particular, if technology growth is exogenous and common across all countries

but countries differ in their output elasticities for various factors, they will still have

differing long-run growth rates in output. Such differences could potentially explain

the continued divergence in output levels despite convergence in output determinants

as documented in Grier and Grier (2007).

This paper also empirically examines how well factor elasticity differences across

countries can explain differences in output growth rates, and whether the predicted

differences in growth rates are sufficient to explain the divergence pattern in incomes.3

I utilize the structure of the theoretical model (namely, that pooling the data in a cross-

section is appropriate if technology growth rates are treated as parameters), along with

data on factor income shares for 51 countries (using the best measure of capital), to

determine whether the variance in long-run growth rates projected by the model can

account for the observed variance in long-run growth rates across countries.4

Although several measures of factor income shares are presented for complete-

ness, the preferred results utilize factor share data for total capital and reproducible

2This result is relatively intuitive, since labor augmenting technology is no longer improving all
non-capital resources.

3Zuleta (2008), using an endogenous growth model, also makes a connection between factor income
shares and long-run growth, but the spirit and mechanics of his model differ substantially from mine.

4Although factor shares do vary between countries, I assume that they are constant over time within
countries (a result consistent with the claims of Gollin, 2002). This insures that analysis along the
balanced growth path is valid.
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capital from Caselli and Feyrer (2007). This data extends the work of Gollin (2002),

who argues that this labor share data is less likely to suffer significant measurement

error than more conventional measures based on corporate employee compensation.

The Caselli and Feyrer data also provides the best fit for the model and the most

reasonable parameter estimates.

I find that, after relaxing the simplifying assumptions regarding factor income

shares, technology, and returns-to-scale, the model is able to account for 45% to 75%

of the variation in long run output per capita growth rates between countries (depend-

ing on the specification). In addition, the preferred results imply a labor-augmenting

technology growth rate of 1.6% to 2.1% per year, and equally plausible estimates of

technology growth augmenting capital and land. I perform several robustness checks,

finding that in all cases the parameter estimates as a group are statistically significant

at any level desired.

This result suggests that these seemingly innocuous assumptions can signficantly

affect the results of cross-country comparisons, and that empirical work in this area

needs to take their affects into account. It also indicates that the NGM can account

for a substantial portion of cross-country growth differences while retaining the as-

sumption of Cobb-Douglas production, despite a significant literature to the contrary

(discussed below). Although this analysis does not address major swings in within-

country growth rates, this version of the NGM is able to account for a sizable portion

of the variation in cross-country growth.

The rest of the paper is organized as follows. The next section discusses some

of the literature on the NGM and presents the previous work most directly related to

my approach. Section 3 presents the basic theory behind the standard Solow model

and the version which relaxes the simplifying assumptions. Section 4 describes the

empirical version of the model and discusses the data used. Section 5 presents the
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results and offers some discussion. Section 6 concludes.

1.2 Previous Literature

Following the initial work of Solow (1956, 1957), one of the most influential recent

works on the NGM is MRW, which showed that the NGM (when augmented by in-

cluding human capital along with physical capital) does a good job of accounting for

differences in cross-country income level differences. This approach was extended to

a panel framework by Islam (1995) and Caselli et al. (1996). The implications of the

model are supported by Sala-i Martin (1996) and Barro and Sala-i Martin (2002). In

contrast to MRW, Lee et al. (1997) provide evidence that countries belong to multiple

growth regimes, as opposed to the single growth regime suggested by the NGM.

The case against the NGM has received more attention in recent years.5 East-

erly and Levine (2001) argue that many predictions of the NGM, such as a constant

cross-country steady state growth rate which is independent of policy variables, are

unquestionably inconsistent with empirical patterns of growth; a similar argument is

made by Hausmann et al. (2005). This claim certainly seems in line with the evidence

from Pritchett (2000), Jerzmanowski (2006), and Jones and Olken (2008).

Bernanke and Gurkaynak (2002) build on MRW by conducting a more targeted

test of the restrictions imposed by the Solow model, rejecting the implication that

the savings rate is independent of output. Grier and Grier (2007) show that income

continues to diverge over time, despite strong evidence that the determinants of virtu-

ally every version of the NGM are either converging or at least holding constant over

time. All of these criticism suggest that one or more of the assumptions driving the

neoclassical results are in error.
5I do not offer an exhaustive list of the criticisms of the NGM here. What follows is only a small

sampling from an extensive literature.
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A significant recent literature has focused on the Cobb-Douglas production func-

tion as the possible source of this counterfactual. Duffy and Papageorgiou (2000),

using panel data, reject the Cobb-Douglas specification in favor of a heterogeneous

CES, in which the elasticity of substitution between physical and human capital is

less than one for developing countries but greater than one for the wealthiest coun-

tries. Masanjala and Papageorgiou (2004) and Miyagiwa and Papageorgiou (2007)

provide subsequent support for these conclusions. Klump et al. (2007) reach differ-

ent conclusions on the value of the elasticity of substitution but still reject the unitary

elasticity of substitution implied by Cobb-Douglas.6 In contrast to these results, I re-

tain the assumption of Cobb-Douglas aggregate production and identify how much of

the variation in growth rates may be accounted for by relaxing assumptions related to

other facets of production.

In particular, I use a more complex version of the NGM’s Cobb-Douglas pro-

duction function. I then combine the theoretical structure with the empirical data

on cross-country factor share differences from Caselli and Feyrer (2007) to produce

empirical results.

1.3 Theoretical Background

1.3.1 The Standard Neoclassical Growth Model

In a typical representation of the Solow model, output is created by a concave produc-

tion function with capital and effective labor as inputs, Y (t) = F (K (t) , A(t)L(t)).

Assuming the production function is Cobb-Douglas, the production process is as fol-

6A more complete survey of this literature can be found in Chirinko (2008).
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lows:

Y (t) = K (t)α (A(t)L(t))β (1.1)

α, β > 0, and α +β = 1,

where Y denotes output, K denotes capital stock, A denotes labor-augmenting tech-

nological progress, and L denotes labor. By also assuming that markets are perfectly

competitive (as is typically done in this literature), α and β represent capital and labor

shares of national income, respectively.

Since this production process is constant returns-to-scale (CRS), a typical ap-

proach is to divide both sides by effective labor and analyze the model in intensive

form. However, an equally valid approach is to examine the dynamics of the model

directly and identify the balanced growth path. Since this approach will simplify the

generalization I use in the following section, I also follow it below.

Assuming the standard laws of motion and common parameterizations,7 finding

a balanced growth path means the growth rate of capital must be constant, which

requires that Y/K be constant.8 This implies that on the balanced growth path the

growth rates of output and capital must be equal, or gY (t) = gK (t). Applying this

implication to production function (having taken logs of both sides and differentiated

with respect to time) yields

gY (t) = αgY (t)+β (n+g) , (1.2)

7That is, K̇ (t) = sY (t)−δK (t), L̇(t) = nL(t), and Ȧ(t) = gA(t), where dots represent time deriva-
tives of the respective variables; s > 0 and δ > 0 are the savings and depreciation rates, respectively;
n > 0 is the long-run growth rate of the population; and g > 0 is the long-run growth rate of technology.

8Since gK (t) = K̇ (t)/K (t) = sY (t)/K (t)−δ .
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and given β = 1−α , this implies

gY = n+g

⇒ gY/L = g. (1.3)

Thus, in the standard NGM the long-run growth rate of output per worker is simply the

long-run growth rate of labor-augmenting technology. If knowledge is a purely pub-

lic good, as is typically suggested by the neoclassical framework, then all countries

should converge to the same long-run growth rate, and only ongoing divergence in the

determinants of steady state income should lead to widening income differences. Es-

sentially, the standard NGM can account for zero variation in long-run growth rates.

Unless we are willing to say that all of the variation in observed growth rates is due to

transition dynamics (despite convergence in the determinants of income levels), some

modification to the standard NGM is needed.

1.3.2 The General Technology Case

The above is only true if technology is Harrod-neutral and output is CRS in capital

and labor. However, the Solow model can operate with a more general production

process.9 Consider the Cobb-Douglas production function

Y (t) = A(t)K (t)α L(t)β T (t)γ (1.4)

α, β , γ ≥ 0, and α +β + γ = 1,

where T denotes productive land (or any other non-reproducible input to production).

Assume that the Hicks-neutral technological progress A(t) can be decomposed into

9The following is based on Nordhaus (1992) and Romer (2006).
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components augmenting each input to production according to the following equation:

A(t) = AK (t)α AL (t)β AT (t)γ . (1.5)

If AK (t) = AT (t) = 1 and γ is zero (implying α and β sum to one), A(t) is the standard

labor-augmenting technology / CRS in capital and labor case. Substituting (1.5) into

(1.4) and decomposing this into growth rates yields

gY (t) = gA (t)+αgK (t)+βgL (t)+ γgT (t)

= [αgAK (t)+βgAL (t)+ γgAT (t)] (1.6)

+αgK (t)+βgL (t)+ γgT (t) ,

where the growth rates of each input augmenting technology may be unique.

In the absence of ongoing changes to national borders, no country can expand its

productive land. To reflect this fact, I assume gT = 0. As before, in the steady state

capital and total output must grow at the same rate, which implies the following steady

state growth in total output

gY (t) =
α

1−α
gAK (t)+

β

1−α
gAL (t)+

γ

1−α
gAT (t)+

β

1−α
n, (1.7)

which implies that the long-run growth rate of output per worker is

gY/L =
α

1−α
gAK +

β

1−α
gAL +

γ

1−α
gAT −

γ

1−α
n. (1.8)

This result differs from the standard result in two ways.

First, the long-run growth rate of output per worker depends on factor income

shares and population growth, not just technology growth. This result is due to the

9



introduction of land to the production function, which eliminates the CRS in K and

L assumption. With only capital and labor in the production process, the long-run

growth equation would be

gY/L =
α

1−α
gAK +gAL. (1.9)

In this case, in addition to the growth due to labor-augmenting knowledge, some ad-

ditional amount of growth would result due to better technology augmenting capital

goods. One plausible interpretation of this capital augmenting technology is an im-

provement in the average quality of capital goods, although this is by no means the

only possible meaning of the growth term.

Second, the long-run growth rate of output per worker depends on multiple tech-

nology growth rates, not just labor-augmenting technology. This is due to the gen-

eral multiplicative technology used. Without this generalization, the long-run growth

equation would be

gY/L =
β

1−α
gAL−

γ

1−α
n. (1.10)

Aside from the drag caused by population growth, notice that the growth rate of output

per worker in this case is not directly proportional to the growth rate in technology.

The reason for this is straightforward: since the model only has labor augmenting

technology, land’s contribution to output does not develop as knowledge improves.

1.4 Empirical Approach and Data

Most empirical models of the NGM have some similar elements to the approach de-

scribed above, but they differ in several important respects. First, they are typically

estimated on levels rather than growth rates. Second, growth rates in population and

10



technology (as well as savings and depreciation rates) are treated as data while the

estimated parameters are functions of the output shares, thus implying that all coun-

tries have the same αs and β s (and γs, if land were to be an included factor).10 This

second aspect is particularly problematic, since previous research in a panel setting

has indicated that pooling the output elasticities across countries is not supported by

the data (see Grier and Tullock, 1989; Durlauf and Johnson, 1995).

If the output elasticities (which are also factor income shares when markets are

competitive) are taken to be identical for all countries, then the NGM still predicts all

countries must have the same long-run growth rate, and the observed divergence in

per capita incomes can only be explained by ongoing divergence in the determinants

of the balanced growth path, such as the savings rate, population growth rate, and

depreciation.11 This must be the case since the NGM assumes that technology is a

Samuelsonian public good, and thus any increase in knowledge must also be identical

for all countries.

While maintaining the assumption of knowledge as a public good, I relax the

assumption that all countries must have the same factor income shares. I reverse

the usual paradigm by using data on factor shares, which differ across countries, to

estimate factor-specific technological growth rates, which should be pooled across

countries according to the NGM.

If the output elasticities vary across countries, as they most certainly do, equation

10Owen et al. (2009) estimate a growth rate equation based on a neoclassical structure and estimate
the number of growth regimes (implicitly determining the number of distinct αs and β s) using a finite
mixture model. They primarily focus on the evidence that there are multiple components to the mixture
rather than on implications for the NGM.

11Although differences in population growth rates in the above model would lead to differences in
ouput growth, the term γ/(1−α) scales down these small differences even more, making it exceed-
ingly unlikely that growth rates would differ enough to see the profound divergence observed in the
data.
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1.8 above becomes

gY/L, i = gAK
αi

1−αi
+ gAL

βi

1−αi
+ gAT

γi

1−αi
−ni

γi

1−αi
+ εi

⇒ g̃i = gAK
αi

1−αi
+ gAL

βi

1−αi
+ gAT

γi

1−αi
+ εi, (1.11)

where subscripts indicate countries, g̃i = gY/L, i +
γi

1−αi
ni, εi∼N (0, σε) is a mean-zero

i.i.d. country specific error term, and all other parameters are defined as in Section 2.

The above cross-sectional regression can be estimated using OLS.

If the estimated technology growth rate coefficients are jointly insignificant, then

the model fails even a basic test of applicability to real world data. Since even previous

versions of the NGM have passed this test in cross-sectional data, such a result may

lead us to question the appropriateness of the data or the transformation suggested by

the analysis above rather than the NGM itself. Given that the parameters are jointly

significant, how well the variation in predicted growth rates matches the observed

variation (as indicated by the R2 value) can be seen as indicating how much of the di-

vergence in income levels can be accounted for by dropping simplifying assumptions,

rather than depending on more fundamental alterations to the model.

1.4.1 Data

I use several measures of factor income shares. The first are based on the “naïve labor

shares” (NLS) from Gollin (2002). Gollin’s NLS data construct labor shares based

directly on corporate employee compensation data, which he argues will overesti-

mate cross-country differences by failing to properly account for the income of small

business employees, especially in developing countries. Nevertheless, these measure-

ments are standard in the literature and are thus included as a baseline for comparison.

The dates for the NLS factor income measurements vary among the countries from
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1982 to 1992. The use of factor shares in these various periods reflects the common

assumption that factor shares do not vary significantly over time within countries.

In order to determine land shares of income, I utilize the result from Valentinyi and

Herrendorf (2008) that in the US land makes up approximately 1/3 of capital share

in the agricultural sector, but is only about 15% of capital share for nonagriculture

sectors. I assume that this relationship holds for all countries, reflecting the fact that

agricultural technology should be similar across countries under the Solow model.

Although this assumption is restrictive, it allows me to estimate the empirical model

using the NLS.12 The data on agricultural sector share of GDP in 1993 also come

from Gollin.

I use a version of Gollin’s preferred data from Bernanke and Gurkaynak (2002),

who provide an expanded list of countries. Caselli and Feyrer (2007) further improve

this dataset by distinguishing the factor share of reproducible capital (RC) from total

capital (TC) for 53 countries.13 I thus have three sets of factor income data: The first

uses NLS data, and calculates capital and land share using data on the agricultural

sector; the second uses TC for the capital share, which also calculates land share

using data on the agricultural sector, and defines the residual as labor share; the third

uses RC as the land share, TC minus RC as the capital share, and the residual as labor

share. This final measure is the preferred one, as it does not risk the measurement error

in labor shares from the NLS data or in land shares from the assumption regarding

agricultural sector shares. The NLS and TC results are included for comparison.

Data on output per capita and population come from the Penn World Tables of

Heston et al. (2009). 14 For population and output variables, I determine the long-run

12The preferred results use the reproducible capital data of Caselli and Feyrer (2007), which does
not require this assumption.

13Due to the availability of agricultural sector share, the TC data only include 37 of these countries.
The RC data includes 51, dropping two due to output data availability.

14The output variables are chain-weighted real per capita GDP (RGDPCH) and real GDP per worker
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growth rates using two methods: in the first (AVG) I take the difference between the

natural logs of the first and last period and divide by the number of periods; in the

second (REG) I calculate a simple linear regression on time over the sample periods

for each variable within each country.

I use 18-year average growth rates from 1990-2007 for all regressions reported.15

These years are selected so that most factor income shares are calculated prior to

the growth data, avoiding possible arguments that the growth is driving the factor

income shares rather than the other way around; although this is not a concern if

factor income shares are roughly constant over time, it still serves as a helpful hedge

against a potential data problem. As a robustness check against the possibility that 18

years is insufficient to reflect steady state growth, I also run the regressions beginning

20 years before the last factor income observation, from 1973-2007, and find similar

results. Recent evidence by McQuinn and Whelan (2007) suggests that covergence

speeds are substantially higher than earlier estimates indicate, and thus the 18 year

sample is still preferred.

Descriptive statistics for all variables are available in Table 1.1.16 It is clear from

this table that the empirical growth rates of output per capita vary substantially, with

the NLS sample varying from -6% up to +5% growth. Although the TC and RC sam-

ples have a smaller range—from around -2.5% to +4% depending on the measure—

they still show substantial variation. Most of the countries in the sample fall within

2.5 percentage points on either side of the sample mean. Given the economic signif-

icance of a 5% long run growth rate difference among countries, the size of the gap

underscores the importance of accounting for the variation.

Two brief comments on the other descriptive statistics are worth making at this

(RGDPWOK).
15Due to data availability, Bahrain’s growth rates are from 1990-2004.
16A full list of countries and which regressions include them is available in Table 1.4.
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Table 1.1: Descriptive Statistics

NLS (N=60) MEAN ST DEV MAX MIN
α/1−α 1.038 0.540 2.635 0.2211
β/1−α 0.758 0.162 0.940 0.184
γ/1−α 0.242 0.162 0.816 0.060
n (AVG) 0.014 0.010 0.049 -0.011

gY/L (RGDPCH AVG) 0.015 0.017 0.051 -0.051
gY/L (RGDPWOK AVG) 0.011 0.017 0.046 -0.055

n (REG) 0.015 0.011 0.053 -0.011
gY/L (RGDPCH REG) 0.016 0.018 0.060 -0.054

gY/L (RGDPWOK REG) 0.011 0.018 0.047 -0.057

TC (N=37)
α/1−α 0.426 0.173 0.857 0.207
β/1−α 0.913 0.036 0.956 0.827
γ/1−α 0.087 0.036 0.173 0.044
n (AVG) 0.013 0.010 0.049 0.001

gY/L (RGDPCH AVG) 0.018 0.015 0.049 -0.023
gY/L (RGDPWOK AVG) 0.012 0.016 0.035 -0.023

n (REG) 0.014 0.010 0.053 0.002
gY/L (RGDPCH REG) 0.018 0.016 0.060 -0.027

gY/L (RGDPWOK REG) 0.012 0.016 0.043 -0.028

RC (N=51)
α/1−α 0.238 0.113 0.613 0.031
β/1−α 0.807 0.102 0.929 0.489
γ/1−α 0.193 0.102 0.511 0.071
n (AVG) 0.013 0.010 0.049 -0.001

gY/L (RGDPCH AVG) 0.019 0.014 0.056 -0.023
gY/L (RGDPWOK AVG) 0.013 0.015 0.038 -0.023

n (REG) 0.014 0.010 0.053 -0.002
gY/L (RGDPCH REG) 0.019 0.015 0.065 -0.027

gY/L (RGDPWOK REG) 0.013 0.015 0.044 -0.028

The output variables are chain-weighted real per capita GDP (RGDPCH) and real GDP
per worker (RGDPWOK).
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point. First, the output growth rate data are very similar whether using the AVG

method or the REG method (roughtly 1.0% to 1.9% average output growth, with 1.3%

to 1.5% average population growth), although the latter leads to slightly higher stan-

dard deviations. This suggests that the results from either should be similar, although

both are included in all samples for completeness. Second, note that by construction

the variables β/1−α and γ/1−α always sum to 1, whether summing the means

or adding the max of one variable to the min of the other. Thus these variables do

not represent independent information; rather, they indicate how the 1−α share of

income is split between labor and land / non-reproducible capital.

1.5 Results and Discussion

The estimation results of equation (1.11), g̃i = gAK
αi

1−αi
+ gAL

βi
1−αi

+ gAT
γi

1−αi
+ εi, are

presented in Table 1.2. The four columns indicate the different measures of output,

using PPP adjusted constant-price GDP per capita and PPP adjusted constant-price

GDP per worker. The table is further broken down into three sections representing

the different measures of factor income shares: the standard Naïve Labor Shares and

agriculture share of GDP decomposition (NLS); the Total Capital shares calculated by

Bernanke and Gurkaynak (2002), also decomposed using agriculture share of GDP

(TC); and the Reproducible Capital breakdown from the Caselli and Feyrer (2007)

data (RC).

In all cases, the growth rate of labor-augmenting technological progress is positive

and statistically significant at the 1% level, ranging between 1.6% and 2.8%. Also in

all cases, the parameters are jointly significant at any level (Prob > F = 0.000), and

the model accounts for roughly 45% to 75% of the variation in the data (depending

on specification).
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Table 1.2: OLS Regression Results, 18-Year Growth Rates

NLS RGDPCH (AVG) RGDPWOK (AVG) RGDPCH (REG) RGDPWOK (REG)
gAK 0.008 -0.008 0.003 -0.013

(0.010) (0.011) (0.011) (0.011)
gAL 0.018*** 0.018*** 0.020*** 0.020***

(0.004) (0.004) (0.005) (0.005)
gAT -0.120 0.040 0.006 0.054

(0.038) (0.041) (0.041) (0.043)
N 60 60 60 60

R2 0.592 0.454 0.584 0.453

TC RGDPCH (AVG) RGDPWOK (AVG) RGDPCH (REG) RGDPWOK (REG)
gAK 0.123** 0.117** 0.121* 0.119**

(0.054) (0.051) (0.060) (0.056)
gAL 0.025*** 0.025*** 0.028*** 0.027***

(0.006) (0.005) (0.006) (0.006)
gAT -0.648** -0.693*** -0.665** -0.720***

(0.246) (0.227) (0.270) (0.247)
N 37 37 37 37

R2 0.730 0.629 0.720 0.617

RC RGDPCH (AVG) RGDPWOK (AVG) RGDPCH (REG) RGDPWOK (REG)
gAK 0.031* 0.028 0.027 0.029*

(0.017) (0.018) (0.017) (0.017)
gAL 0.017*** 0.016*** 0.021*** 0.018***

(0.006) (0.006) (0.006) (0.006)
gAT 0.004 -0.022* -0.003 -0.030**

(0.014) (0.012) (0.012) (0.012)
N 51 51 51 51

R2 0.754 0.652 0.744 0.664

The output variables are chain-weighted real per capita GDP (RGDPCH) and real GDP
per worker (RGDPWOK).
White (1980) heteroscedasticity-consistent standard errors are in parentheses
*** indicates statistical significance at the 1% level; ** at the 5% level; * at the 10%
level
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For the NLS data, the growth rate of labor-augmenting technology is the only pa-

rameter that is statistically significant. The other parameters vary widely and change

sign depending on output specification. However, if these data introduce noise into

the measurement of labor shares, as Gollin and others suggest, this could lead to prob-

lems in parameter estimation. There is evidence of this in the NLS data descriptive

statistics, as the mean value of α/1−α implies that the average reproducible capital

share is greater than 0.5; in contrast, the maximum value implied by the TC data is

about 0.46. This is in line with various critiques suggesting that the naïve labor data

frequently underestimates true labor shares. For this reason, the NLS estimates should

only be seen as a first pass at examining these data.

The TC data produce much stronger results, with every parameter individually

significant at the 10% level or higher, and the lowest R2 (0.617) above the highest

for the NLS data (0.592).17 However, these estimates seem to suffer from problems

of their own. First, the sample size is somewhat small (37 countries), which leaves

open the possibility that the goodness of fit is an artifact of this particular sample.

Second, the growth rate of capital-augmenting technology is implausibly high (11.7%

to 12.3% annual growth), while the growth rate of land-augmenting technology is

implausibly large and negative (-64.8% to -72% annual growth). Since on average

the TC data on α/1−α are roughly five times the magnitude of the data on γ/1−α ,

and the parameter estimates reverse this magnitude (and are always of opposite sign),

these estimates are likely the result of improper splitting of capital into reproducible

and non-reproducible capital.

I next turn to the RC data, which should substantially reduce measurement error

problems over the previous two and is thus the preferred measure of factor shares. I

find that the growth rate of labor-augmenting technology is again significant at the 1%
17Of course, directly comparing the R2 for different samples is not appropriate; the point is made

here for descriptive purposes rather than inference.
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level and of plausible magnitude in all cases. Capital-augmenting technology ranges

from 2.7% (but statistically insignificant) to 3.1% and significant at the 10% level.

Land-augmenting technology ranges from +0.4% but insignificant to -3% and signif-

icant at the 5% level. For the various measures of output, the R2 ranges from 0.652

to 0.754. Thus the best data suggests that as much as 75% of observed differences in

growth rates can be accounted for by the Solow model once unnecessary simplifying

assumptions are dropped.18

A bit of caution is needed when interpreting the coefficients, especially gAT . What

precisely does a -3% growth rate on land-augmenting technology really mean? Cer-

tainly it indicates that countries depending more heavily on non-reproducible capital

will have lower growth rates, but it does not go very far in explaining why. Is it

because countries that depend heavily on agriculture have fewer opportunities for in-

vestment? Or is it because natural resources are not merely experiencing zero growth,

but are actually being used up over time? This suggests some promising areas for

future research, as dealing with these details is beyond the scope of this paper.19

At this point a final comment on coefficient significance is needed. In the preferred

specification, although all three coefficients are significant at the 10% level or higher

for some measure of output, the only coefficient that is robust across measures is labor-

augmenting technology, gAL. This may suggest that allowing factor income shares to

differ across countries and allowing the production function to have decreasing returns

to scale in capital and labor are driving the results, and that relaxing the assumption of

Harrod-neutral technology is not as important. Retaining the assumption of Harrod-
18A possible concern here is that pooling developed countries with less developed countries may

not be appropriate. At the 5% significance level, a Chow test for splitting the sample into OECD and
non-OECD countries fails to reject the appropriateness of pooling in all four regressions using the RC
data.

19An additional point on interpretation is that the regressions only include those variables which the
theoretical model suggests are important. These results would not be meaningful outside the context
of testing the model presented, since a model suggesting additional variables would likely imply an
omitted variable bias in the results presented here.
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neutrality would imply that the correct model is the one in equation (1.10) rather than

the more general equation (1.8) used above. Some caution is needed here as well,

though. It is also plausible that labor-augmenting knowledge diffuses quickly across

national borders, while technology augmenting other factors of production does not

diffuse as readily. As an example, improved management techniques may be readily

applied almost anywhere, whereas insect-resistant crops may only provide benefits in

the specific land and climate where it was developed.20 In this case, I would expect

the gAL coefficient to be statistically significant in the pooled sample, while gAK and

gAT may not be.

The estimation model assumes that the 18-year growth rates represent the balanced

growth paths of the countries in the dataset. However, if convergence to the steady

state is a slow process, as MRW and others have suggested, then this may not be a long

enough period to capture output growth rates in the long run.21 As a robustness check

against this, I construct 35-year growth rates (1973-2007) in order to capture growth

rates over a longer run. The results appear in Table 1.3. For the NLS and TC data, the

signs, significance, and general magnitude of all estimates are similar to the 18-year

data. In terms of goodness of fit, the NLS data improve for all specifications, while

the TC data stay roughly the same of suffers somewhat. The most notable change is

for the RC data: the magnitude of gAL is cut in half, causing the estimates to become

insignificant, while gAK rises to the 4.1% to 5.1% range and is significant at the 5%

level for all specifications. The R2 increases slightly for the AVG output measures,

but falls for the REG measures. While this may suggest that technology growth has

shifted from capital-augmenting to labor-augmenting over the last several decades,

such an interpretation would require a very strong belief that output shares do not

20It may be possible to explicitly test this explanation using a technology lag similar to Comin et al.
(2008), but this is left to future research.

21I am grateful to an anonymous referee for pointing this out.
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Table 1.3: OLS Regression Results, 35-Year Growth Rates

NLS RGDPCH (AVG) RGDPWOK (AVG) RGDPCH (REG) RGDPWOK (REG)
gAK 0.007 -0.005 0.003 -0.011

(0.010) (0.011) (0.011) (0.012)
gAL 0.021*** 0.019*** 0.019*** 0.019***

(0.004) (0.004) (0.004) (0.005)
gAT -0.009 0.031 -0.002 -0.044

(0.034) (0.038) (0.039) (0.043)
N 60 60 60 60

R2 0.715 0.608 0.618 0.476

TC RGDPCH (AVG) RGDPWOK (AVG) RGDPCH (REG) RGDPWOK (REG)
gAK 0.129*** 0.114** 0.121* 0.128**

(0.044) (0.045) (0.060) (0.050)
gAL 0.021*** 0.016*** 0.028*** 0.015**

(0.005) (0.006) (0.006) (0.007)
gAT -0.618*** -0.568*** -0.665** -0.649***

(0.197) (0.183) (0.270) (0.212)
N 37 37 37 37

R2 0.745 0.5941 0.643 0.437

RC RGDPCH (AVG) RGDPWOK (AVG) RGDPCH (REG) RGDPWOK (REG)
gAK 0.046** 0.041** 0.051** 0.047**

(0.020) (0.021) (0.020) (0.022)
gAL 0.012* 0.008 0.010 0.007

(0.006) (0.006) (0.007) (0.008)
gAT 0.009 -0.003 0.000 -0.014

(0.011) (0.012) (0.012) (0.014)
N 51 51 51 51

R2 0.790 0.670 0.718 0.537

The output variables are chain-weighted real per capita GDP (RGDPCH) and real GDP
per worker (RGDPWOK).
White (1980) heteroscedasticity-consistent standard errors are in parentheses
*** indicates statistical significance at the 1% level; ** at the 5% level; * at the 10%
level
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change even over long time horizons. Since the sample includes many developing

countries that we know have experienced significant shifts in their economies since

1973, I prefer not to make this claim over a 35-year horizon and thus prefer the 18-

year estimates.22

1.6 Conclusion

In this paper I demonstrate that the NGM is able to account for a sizeable part of

cross-country growth rate differences. This is made possible by relaxing the assump-

tions of common cross-country factor income shares, Harrod-neutral technological

progress, and CRS in labor and capital—assumptions implemented more for mathe-

matical convenience than economic realism. This suggests that researchers conduct-

ing cross-country growth comparisons should be particularly careful about using these

assumptions. I am also able to retain the standard assumptions of a Cobb-Douglas ag-

gregate production function and perfectly competitive factor markets, and show that

much of the discrepancy between the NGM and observed output growth can still be

reconciled.

I estimate a model in which individual countries’ output growth rates depend

on factor income shares and population growth rates. Utilizing several measures of

country-specific factor income shares, I find that relaxing simplifying assumptions can

account for between 45% and 75% of observed differences in output growth rates. Al-

though it is important to use caution when interpreting the coefficients, the implied

growth rate of labor-augmenting knowledge falls into a very plausible range around

22One might also suspect that the R2 values for the preferred model are high because adding the
term γ

1−α
n to the empirical growth rates soaks up much of the variation. Although this would be an

interesting result in itself, it turns out not to be the case. I estimated the regression without correcting
for this term, in which case the coefficient on γi

1−αi
represents gAT − n̄ where n̄ represents the world-

wide average population growth rate. The R2 falls somewhat, as should be expected, but the model still
accounts for 35% to 73% of the variation in all cases.
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1.5% to 2% per year.

The model still leaves some questions unanswered. Because of the cross-sectional

nature of the analysis, it cannot address the major swings in within-country growth

rate trends as documented by Pritchett (2000) and Jones and Olken (2008). Further,

depending on the specification the model still leaves between a quarter and half of the

variation in long-run growth rates unexplained.

Nevertheless, I show that the weight of evidence brought against the NGM is not

as burdensome as it at first appears. The conclusion that the NGM implies all countries

should have the same rate of output growth along the balanced growth path depends

critically on simplifying assumptions. When these assumptions are relaxed, the NGM

falls much more in line with empirical reality.
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Table 1.4: Country List

COUNTRY NLS TC RC COUNTRY NLS TC RC
Algeria X X X Mauritius X X X
Australia X X X Mexico X X X
Austria X X X Morocco X
Belgium X Namibia X
Benin X Nepal X
Bolivia X Netherlands X X X
Botswana X X X New Zealand X
Bulgaria X Niger X
Burundi X X X Nigeria X
Cameroon X Norway X X X
Canada X Panama X X X
Colombia X X X Papua New Guinea X
Congo X X X Paraguay X X X
Costa Rica X X X Peru X X X
Cote d’Ivoire X X X Philippines X X X
Denmark X X X Portugal X
Ecuador X X X Romania X
Egypt X Rwanda X
El Salvador X Sierra Leone X
Fiji X Singapore X
Finland X X X South Africa X X X
France X X X Spain X
Germany, FRG X Sri Lanka X X X
Ghana X Sweden X X X
Greece X X X Switzerland X
Honduras X Thailand X
Hong Kong Trinidad and Tobago X X X
Hungary X Tunisia X
Ireland X X X Turkey X
Israel X Ukraine X
Italy X X X United Kingdom X X X
Jamaica X X X United Rep. of Tanzania X
Japan X X X United States X X X
Jordan X Uruguay X X X
Kenya X Venezuela X X X
Korea, Rep. of X X X Viet Nam X
Malaysia X X Zambia X X X
Mali X Zimbabwe X
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Chapter 2

Beyond Twin Peaks: Development and

Polarization in the World Income

Distribution

2.1 Introduction

The influential work of Quah (1993, 1996, 1997) encouraged us to think about “twin

peaks” and dynamics in the cross-country distribution of per-capita income. His work

popularized the view that this distribution was moving from being uni-modal to bi-

modal, with a hollowing out of the middle. Subsequent research has worked to refine

and extend Quah’s results. In this paper we study the evolution of the distribution of

per capita income over 135 countries and 6 decades using variable dimension mixture

models. The model assumes that the observed income distribution is composed of an

unknown number of individual component densities.

We use a version of the reversible jump Markov Chain Monte Carlo (MCMC)

model presented in Richardson and Green (1997) and further developed in Cappé
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et al. (2003). This approach uses Bayesian methods to probabilistically determine (a)

the number of distinct component densities in the overall distribution, (b) the means

and variances of each component density, (c) the weight of each component density

in the overall mixture, and (d) an allocation of countries to individual component

densities. To our knowledge, this is the first application of reversible jump MCMC

to the cross-country income distribution, and our novel method produces novel and

provocative results.

Our findings imply that as early as 1950, there were multiple components in the

cross country distribution of per-capita incomes, and rather than a hollowing out of the

middle, more recent decades feature a large middle class of countries. It also seems

that the development process fundamentally changed in the 1970s.

For the 1950s and 1960s, the distribution of per-capita income is most likely com-

posed of two separate component densities.1 We call this period “development”, be-

cause a large number of countries move from likely being in the poorer component

to likely being in the richer component, even as the mean of the richer component is

increasing.

During the 1970s, the distribution changes into one that is most likely composed

of three individual component densities, with a very large gap opening between the

means of the poorest and richest components. This gap increases notably in the 1980s.

We label this period “polarization”, as the richest group of countries gets smaller and

further away from the low and middle income groups.

In the 1990s and 2000s, the allocation of countries to component groups is rela-

tively stable as is the percentage gap between the means of the components. We refer

to this period as “hysteresis” because low inter-group mobility means that the poor

and middle income countries are seemingly stuck in their relatively disadvantaged
1More precisely, the posterior density of the number of components in the mixture has a strong

mode at 2.
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positions.

Our work speaks to several distinct areas of growth and development. First, we

document a different version of unconditional divergence than has been studied in

the literature (see Pritchett, 1997, and Grier and Grier, 2007, for examples). In 1950

the gap between the mean income level of the poorest group of countries and the

richest group in the distribution is around 5, while by 2008 it is around 22. Our

results are also relevant to the poverty trap literature (see Azariadis and Drazen, 1990,

and Bloom et al., 2003). We find that the mean income level of the bottom group

of countries barely moves between 1950 and 2008 and that 32 countries are sorted

into the bottom group with a probability of .66 or greater for all 7 decades that we

study. Our results also have implications for club convergence (see Baumol, 1986;

Galor, 1996). We consistently find strong evidence of recognizable groups or clubs of

countries. However in the 1950s and 1960s we see considerable inter-group mobility.

Later in our sample, the number of distinct groups rises but the amount of inter-group

mobility falls, suggesting that club convergence may be occurring in our data since

1980.

The rest of the paper proceeds as follows. In Section 2.2 we review some of the

important empirical work on the evolution of the world income distribution. Section

2.3 contains a description of mixture models and a brief description of reversible jump

MCMC, along with the explicit setup that we use in our analysis. Section 2.4 contains

our main results along with discussions of the performance of our algorithm and a

sensitivity analysis on some of our priors. Section 2.5 concludes.
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2.2 Previous Literature

There are two branches in the empirical literature on the evolution of the world income

distribution. The first branch follows Quah in looking for multi-modality via kernel

methods. The second branch models the distribution using finite mixture methods.

2.2.1 Multi-Modality papers

Quah’s pioneering work used stylized graphs, kernel density plots, and Tukey box

plots to forcefully argue that the world income distribution was becoming multi-modal

and that the “middle class” of countries was hollowing out. Quah, however, did not

provide formal statistical tests for multi-modality. This was first done by Bianchi

(1997), whose non-parametric tests confirmed an emerging multimodality over time

in the world income distribution.

Henderson et al. (2008) provide an excellent review of this literature along with

their own work, which applies a variety of multi-modality tests to a range of different

macro variables. Henderson et al. show that the finding of multiple modes in the

income distribution is sensitive to the type of test employed, especially when using

unweighted data.

While this literature has unquestionably changed how we think about growth and

development, it is fair to point out that rejecting uni-modality does not give us very

specific information about exactly how many modes or clubs exist in the income dis-

tribution.

2.2.2 Finite mixture models

The first paper to apply a finite mixture model to the world income distribution is

Paap and van Dijk (1998). They estimate a series of two component mixture models
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using a Weibull density and a truncated normal density as the underlying components

for a sample of 120 countries from 1960 to 1989. While Paap and van Dijk do ex-

periment with what types of densities to use as their two components, they do not

consider whether the correct number of components is two, or whether the number of

underlying components changes over time.

Pittau et al. (2010) estimate a series of finite mixture models for a sample of 102

countries from 1960 to 2000. They make the important point that the number of

underlying components in a mixture model does not have to be the same as the number

of visible modes in a Kernel estimate and they argue that a mixture modeling approach

may find “hidden” groups that would not be seen from what they call “bump-hunting”

exercises. Pittau et al. estimate mixture models with 1,2,3, and 4 components and

then use likelihood ratio tests to try and determine the preferred number of mixture

components. They exclusively use normal components in their mixture models. Pittau

et al. claim that the number of components in the mixture is 3 throughout their sample

and find very little movement of countries from one component to the other.

We agree with Paap and van Dijk that, since an income distribution is truncated

at zero and skewed to the right, the underlying components should not necessarily be

normal. We also agree with Pittau et al. that it is important to estimate the number

of components from the data rather than imposing a certain number ex ante. Our

approach is to directly endogenize the number of components in the mixture by using

a reversible jump MCMC method for finite mixtures as pioneered by RG and extended

by Cappé et al. (2003). This method is fully Bayesian and produces estimates of the

full posterior densities of the model parameters.

The next section briefly explains mixture modeling and then describes how we use

reversible jump MCMC to endogenize the number of underlying components in the

mixture.
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2.3 Empirical Approach

In this section, we present the basic intuition behind our empirical approach, includ-

ing a discussion of how a reversible jump MCMC algorithm can be used to identify

the number of components in the mixture model. We then present the model more

formally and specify the prior distribution.

2.3.1 Finite, fixed dimension mixture models

The object of our analysis is a non-standard distribution, and there are theoretical

reasons to believe that it is composed of several distinct but unobserved groups (such

as the convergence clubs of Baumol, 1986). This sort of problem lends itself naturally

to finite mixture modeling, in which a complex distribution is treated as a combination

of several more conventional distributions, and the particular component any given

observation comes from is unknown.2

Typically, the chief objectives of analyzing any mixture model are to estimate

(1) the parameters of each component density, (2) the weight of each component in

the overall mixture, and (3) the probabilities that any particular observation is drawn

from a given component in a given year. The structure of these models lends itself

particularly well to using data augmentation and Gibbs sampling to solve them.3

Our approach extends the usual Bayesian framework by also estimating (4) the

probability of different numbers of component densities in the overall distribution in

the model.
2It is possible to use mixture modeling to approximate any target distribution with an arbitrary

degree of precision by using a large enough number of components. However, we focus on small
mixtures because our objective is to sort observations into specific components which are interpretable.

3An introduction to this mixture analysis is presented by Lavine and West (1992), Koop (2003),
and most general texts on Bayesian analysis. For a more complete discussion of mixture analysis in a
Bayesian context, see Robert and Casella (2004) and Früwirth-Schnatter (2006).
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2.3.2 Reversible Jump MCMC and Model Selection

Green (1995) developed a generalization of the standard MCMC methods that is able

to endogenize the model selection process. Green’s reversible jump MCMC technique

enables the estimation of the posterior probability of each model among a finite set of

alternatives, enabling the statistician to select the best model(s) for inference (usually

those with the highest probabilities). This technique has been used to identify the

number of components in a mixture by RG and we describe it below.

The problem of determining the number of clubs is essentially a problem of model

selection. That is, the statistical question is whether to use a mixture model with one

normal component, or three, or any other number. Once the appropriate number of

distributions is chosen using the reversible jump MCMC, the rest of the inference can

proceed in the standard Bayesian fashion using a Gibbs sampler.

Since the reversible jump MCMC techniques simulate over the entire posterior

model space, once the chain has converged the draws from each model represent

draws from the true posterior. Thus, the posterior probability of that mixture contains

J components may be estimated by

P(M = J |y) =
1
T

T

∑
i=1

I{i=J}, (2.1)

where T is the total number of draws from the posterior and Ii=J is an indicator func-

tion that takes the value 1 whenever the model being drawn from contains J compo-

nents.

2.3.3 Specification of the Model

We model the distribution of the per capita income levels across countries as a finite

mixture of lognormal components. We use lognormal components instead of normal
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components because, given that we are studying an income distribution, we expect it

to be left truncated at zero and generally have positive skewness. Thus data from a

single lognormal density could easily show up as being made up of multiple normal

components, as that would be the only way the normal mixture model could deal with

the asymmetry. It is easy to implement a mixture of lognormals model by simply

using mixtures of normals to capture the distribution of the log of per-capita incomes.

More formally, we assume that the log-levels of income are drawn from the mix-

ture distribution

yi ∼
J

∑
j=1

η jN
(
µ j, σ

2
j |M = J

)
, (2.2)

which indicates that, conditional on the number of components in the mixture M , any

particular country yi is drawn (with probability η j, also called the weight of compo-

nent j) from a Normal distribution with mean µ j and variance σ2
j . The weights must

each be non-negative and must sum to one.

The techniques we use treat each observation (the log of per capita GDP for a

country in a given year) as having been drawn from a single distribution. Since the

“club membership” of each observation is unobserved, we use a latent allocation vari-

able zi for each observation. This allows us to divide the estimation process between

estimating the parameters of each component and, given these parameters, estimating

the allocation of each observation yi such that

yi | zi = j, M = J ∼N
(
µ j, σ

2
j
)
. (2.3)

Because the allocation variable is randomly drawn from the sampler, it is pos-

sible in any particular pass through the sampler (which we will call a ‘sweep’) that

one or more components will have no observations allocated to it, creating an “empty
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component.” The presence of empty components, which will be more frequent when

particular components have a low probability of allocation η j, is essential to the re-

versible jump algorithm.

For updating parameters given a particular model, we use the Gibbs sampler for

within model steps using data augmentation. This step takes the number of compo-

nents as given, and draws from the posterior of each parameter conditional on previous

values of all the others. For jumps between models, we employ the birth and death

moves based on RG. This approach begins with J components, some of which might

not have any observations allocated to them. An increase in the number of compo-

nents is accomplished by adding a new empty component, called a ‘birth’ move, or by

removing an existing empty component, called a ‘death’ move. Whether a proposed

move is a birth (J +1 components) or a death (J−1 components) is chosen randomly

with equal probability, and the proposed move is accepted or rejected probabilistically

in a manner similar to the Metropolis-Hastings algorithm. A proposed birth move is

accepted with probability π = min{1, A} (or π = min
{

1, A−1} for death moves),

while the previous draw from the sampler (from the current model) is repeated other-

wise.4

Unlike Metropolis-Hastings samplers, though, it is not straightforward to say that

this can create a Markov chain that must converge to draws from the true posterior

distribution across models with different parameters, and especially with different

numbers of parameters as we have here. The key advance produced by Green (1995)

was to show that we can draw a vector of random variables as part of the jumping pro-

cedure, and use those additional variables to match the dimensionality of the smaller
4Richardson and Green also utilize split-combine moves in order to increase the efficiency of the

sampler and allow it to decrease the number of components even when there are no empty components.
However, Cappé et al. (2003) show that the reversible jump algorithm will still converge to the true
posterior across models with only the birth-death moves. Since including the split-combine moves
greatly complicates the technical aspects of the algorithm, and the efficiency gains are negligible in our
application, we have chosen to omit them.
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model space to that of the larger. This dimension matching procedure insures that the

move is reversible, and thus maintains the detailed balance condition of an MCMC

sampler. The reversible jump MCMC thus modifies the conventional Metropolis-

Hastings formulation of A as follows:

A =
p(θ ′ | y)
p(θ | y)

× rm (θ ′)
rm (θ)q(u)

×
∣∣∣∣ ∂θ ′

∂ (θ , u)

∣∣∣∣ , (2.4)

where the first term is the ratio of posteriors; the second term is the ratio of the prob-

ability of jumping up to the higher model (with parameters θ ′) to the probability of

jumping from the higher dimension space down to the lower space (with parameters

θ and random draws u); and the final term is the determinant of the Jacobian of the

proposal function that matches the dimensions of the two spaces. In our case, since

the allocation of data points do not change, the first term is just the ratio of priors,

while the second is decreasing in the number of empty components in the previous

draw from the current model. In this way both the priors and the data directly affect

the probability of a jump, and the reversible jump algorithm allows us to probabilis-

tically sample across different models in essentially the same manner as Metropolis-

Hastings.

On a less technical note, we follow the earlier literature by focusing on the un-

conditional distribution rather than conditioning on various sources of income such

as human and physical capital levels. The estimates we present thus do not represent

any particular theoretical growth model, but rather constitute a thorough description

of the world income distribution.
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2.3.4 Prior Specification and Hyperparameter Selection

Utilizing the reversible jump MCMC technique requires specifying proper prior dis-

tributions for all parameters. Our priors follow RG; they assign a uniform prior proba-

bility to every possible number of components up to the maximum number considered

(ten), and tune the priors on component parameters (which are identical for all com-

ponents regardless of the number of components) to the data.5

The priors for the component means are Normal with means ξ and variances κ ,

where ξ is set to the midpoint of the observed data and κ is the square of the observed

range of the data (so that one standard deviation is the full range of the observations

R). The component variances are distributed inverse Gamma with shape parameter

α and scale parameter β .6 Although we set α = 2, for β we wish to avoid strong

influence of the hyperparameter. This is achieved by imposing a hierarchical prior

such that β is itself a random variable which follows a Gamma distribution. The shape

parameter g is set to 0.2, while the scale parameter h is set to 100×g/
(
α×R2). These

hyperparameters are chosen to have a very low influence on the posterior results.

The prior for the weights η j is a Dirichlet distribution with an identical parameter

for every component, δ = 1. Increases in the parameter δ increase the likely number

of observations sorted into each component, bounding this number away from zero.

Since the birth-death step that the estimation relies on can only decrease the model

size if there are empty components, RG suggest using the value here, which readily

allows the existence of empty components while still permitting full exploration of

higher parameter spaces.

The prior structure we use is not a ‘natural conjugate’ prior discussed in the

5For a detailed discussion of the necessity of proper priors, as well as the common forms these
priors take, see Green (1995).

6Following RG, we use the parameterization of the Gamma distribution such that α/β is the mean
and α/β 2 is the variance.
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Bayesian literature, but it is very similar and does provide many of the benefits of con-

jugacy. The conjugate structure is not necessary for our approach; as with all MCMC

methods, any prior desired may be used (so long as they are proper). However, conju-

gacy is convenient and not particularly restrictive as long as the hyperparameters are

chosen to keep the influence of prior information low.

2.4 Results

A discussion of the performance of the sampler using a well known dataset and simu-

lated data is available in the appendix. This analysis shows that the sampler is capable

of replicating previous work and is able to recover all components from a three mix-

ture distribution even when the third component is not observable in a kernel density

plot. Given the good performance of our sampler on these two problems, we now

move to examining our main question of interest, namely what is the posterior density

of the number of components in the empirical distribution of per capita income across

countries and how has this density evolved over time?

2.4.1 Data and details

The per capita income data we use come from Maddison (2010).7 We use this dataset

instead of the Penn World Tables because of its larger collection of countries over

a longer time period. Having a larger number of countries is important in order to

be able to label what we study as the “world” income distribution. The Maddison

data allows us to have countries like North Korea, Cuba, and many eastern European

countries in our data as of 1950.
7This data adjusts for purchasing power parity using the Geary-Khamis (GK) method and uses

constant dollars with 1990 as the benchmark year.
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We have a sample of the same 135 countries in the years 1950, 1960, 1970, 1980,

1990, 2000, and 2008. For each cross section we run our sampler for 300,000 draws,

discard the first 100,000 as burn-in, and use the last 200,000 for analysis. We do this

for each of the seven cross sections listed and then examine patterns and changes in

the number of components or the allocations over the time period. Our priors are set

following RG, as we described in Section 2.3.4 above.

2.4.2 The posterior densities of the number of components

We have argued that we can capture the number of groups or clubs in the world income

distribution by the number of individual lognormal components in the best mixture

model for that distribution. We construct the marginal posterior density for the number

of components in the mixture model using the fraction of the time our sampler spends

in each of the 10 possible models (k = 1, . . . ,10). Figure 2.1 presents the posterior

densities of the number of lognormal components in the data as calculated by our

sampler for each of the cross sections we use.

Several features merit attention here. First, even in 1950 and 1960, there is almost

no probability attached to the k = 1 point. There were “twin peaks”, in the sense

we study here, from the beginning of our sample. Second, for the first three cross

sections, the mode of the posterior is at k = 2, and the next most likely answer is

k = 3. Third, in 1980, the mode clearly switches to k = 3, with k = 4 being the second

most likely answer. Fourth, in the last 3 cross sections the mode is either at k = 3

or k = 4, though both command almost the same level of posterior probability. Fifth,

point four notwithstanding, over 40% of the posterior probability in 2008 falls in the

range k > 4.

Thus, we can say that, since 1950, there have always been multiple components to

this distribution of per-capita incomes across countries and that the number of compo-
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Figure 2.1: Histograms of Posterior Probability of Number of Components
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nents comprising the distribution has risen over time. Since 1990 there is essentially

no probability that the distribution is composed of 2 components, and while the modal

answer is 3 or 4 components, there is a fair amount of probability on even higher di-

mensional models.8

2.4.3 The evolution of the world income distribution from 1950 -

1970

As noted, in the first three cross sections, the posterior density of k has a strong mode

at two, meaning the overall distribution is composed of a weighted average of two

component lognormal densities. In this section we describe the evolution of the means

of the two component densities and the weights on each one in the overall distribution.

This information is presented in Table 2.1. In 1950, the low income component has a

mean of $1,194 while the high income component has a mean of $5,613. The overall

distribution is a weighted average with a weight of .66 on the low distribution and .34

on the high.

By 1970, we can see that the mean of the low distribution is almost unchanged, at

$1,206, while the mean of the high distribution has risen to $6,778. More significantly

though, the weights for the overall distribution have change to .45 on the low and .55

on the high. In practical terms, while the spread between the low and high components

increased slightly, much more of the overall distribution is coming from the high

component.

We thus think of this period as being one of development, with countries “jump-

ing” from the poor to the rich group while the rich group still gets richer. Specifically,

45 countries move from having over a 50% chance of being from the poor component
8In what follows below, we will concentrate our analysis from 1980-2008 on the three component

model, rather than the four-component model. We explain the reasons for this decision in section 5.5
below. None of the substantive conclusions in our analysis are affect by the choice of k=3 vs. k=4.
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Table 2.1: Parameter Means of Lognormal Component Densities

PANEL A: mean standard deviation weight

Year low high low high low high

1950 1,194 5,613 880 6,663 0.661 0.339

1960 1,087 5,017 621 5,464 0.478 0.522

1970 1,207 6,778 651 6,689 0.452 0.548

PANEL B: mean standard deviation weight

Year low mid high low mid high low mid high

1980 936 4,069 12,587 366 2,934 6,673 0.323 0.422 0.255

1990 953 4,533 16,170 357 3,031 4,633 0.343 0.483 0.174

2000 1,110 5,638 19,650 641 4,308 6,142 0.374 0.438 0.188

2008 1,113 6,217 22,670 571 4,881 6,093 0.312 0.479 0.208

Means and standard deviations are in 1990 dollars adjusted for purchasing-power par-
ity.
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in 1950 to having more than a 50% chance of being in the rich component in 1970.

Of these, 22 move from having more than a 60% chance of being in the poor group

to more than a 60% chance of being in the rich group. We see these moves mostly in

Southern and Eastern Europe, South Asia, Latin America and the Middle East. Figure

2.2 (panel A) illustrates this upward mobility by plotting the probability of being in

the top component in 1950 on the horizontal axis and the corresponding probability

in 1970 on the vertical axis. Countries above the 45 degree line have increased their

probability of being in the rich group over these two decades.

Some specific examples include Greece (62% chance of being in the low group

in 1950, 95% chance of being in the high group in 1970), Romania (75% chance of

being in the low group in 1950, 74% chance of being in the high group in 1970),

Brazil (66% chance of being in the low group in 1950, 77% chance of being in the

high group in 1970), Panama (62% chance of being in the low group in 1950, 86%

chance of being in the high group in 1970), Japan (62% chance of being in the low

group in 1950, 97% chance of being in the high group in 1970), Taiwan (79% chance

of being in the low group in 1950, 67% chance of being in the high group in 1970),

South Korea (80% chance of being in the low group in 1950, 57% chance of being in

the high group in 1970), and Turkey (67% chance of being in the low group in 1950,

78% chance of being in the high group in 1970).

2.4.4 The evolution of the world income distribution from 1980 –

2008

As noted above, our reversible jump sampler indicates that the number of separate

lognormal components in the world income distribution increased from 2 to 3 between

1970 and 1980. The empirical distribution in 1980 is a weighted average of these three

41



Figure 2.2: Development vs. Polarization

PANEL A:

PANEL B:
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components with a weight of .32 on the low component, .42 on the middle component

and .26 on the high component. The means of the three components in 1980 are $936,

$4,068, and $12,587 respectively. The substantive change from 1970 to 1980 is the

pulling away of the upper group with an average income level over 12 times greater

than that of the low group.

In 1990, the weights on the three groups comprising the empirical distribution

change notably. The weight on the rich group falls from .26 to .175, while the weight

on the poor group rises slightly and the weight on the middle group rises from .42

to .482. Greece, Portugal, Argentina, Venezuela, Kuwait, and Qatar are examples of

countries that fall from being most likely in the top component in 1980 to being most

likely in the middle component in 1990 (though Greece and Qatar return to being

most likely in the top component by 2008).

The ratio of the mean of the poor component to the mean of the rich component

falls from .075 to .06 while the ratio of the middle component to the rich component

falls from .32 to .28. Thus the 1970s and 1980s are decades of polarization, as a

shrinking group of rich countries move farther away from larger groups of middle

income and poor countries.

In 2000 and 2008, the results do not change nearly as dramatically. The weight on

the rich component rises very slightly, the percentage gap in means between rich and

poor rises very slightly, and the percentage gap in means between the middle class

and rich remains quite stable. In 2008 the mean of the low component is $1,113, the

middle mean is $6,217 and the high component’s mean is $22,670.

We categorize these last two decades as ones of stability or hysteresis in the in-

come distribution. The poor and middle income countries seem increasingly locked in

to their relatively disadvantaged positions. Figure 2.2 (panel B) illustrates the relative

lack of mobility in the world income distribution since 1980. The probability of being
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in the rich group in 1980 is on the horizontal axis and the same probability in 2008

on the vertical. Compared to the 1950 – 1970 period, many more countries here are

below the 45 degree line indicating that they are less likely to be in the richest group

in 2008 than they were in 1980. Only Equatorial Guinea, South Korea and Taiwan

move into the top group in this 28 year period, while Argentina, Venezuela, Kuwait,

and Saudi Arabia fall out.

Of course there is also some mobility in and out of the middle group during this

period. 9 countries (China, India, Burma, Pakistan, Cambodia, Vietnam, Cape Verde

Islands, Lesotho, and Mozambique) move from the bottom to the middle group, while

5 countries (Nicaragua, North Korea, Iraq, Ivory Coast, Dijbouti, and Sao Tome &

Principe) fall from the middle to the bottom.

Overall, there are 22 moves between groups in this 29 year period and half of

them are downward moves, compared to 45 moves between groups, all of which were

upward, in the 21 years from 1950 – 1970.

2.4.5 Discussion

There is some good news in these results: (1) While the lowest component’s mean in

1950 was $1,198 and is $1,130 in 2008, the weight on the lowest component in the

empirical distribution has fallen from .66 in 1950 to .32 in 2008. (2) Over time there

has developed a “middle class” component, which has a weight of around 45% in

the empirical distribution of country incomes per capita. (3) The mean of the highest

component in the empirical distribution has risen from $5,588 in 1950 to $22,634 in

2008.

The bad news of course is that (1) 32% of the weight in the 2008 world income

distribution is still coming from a component whose mean has not budged in 59 years.

(2) The middle class component mean is not catching up at all to the mean of the

44



Table 2.2: The Perpetually Rich and the Chronically Poor

PANEL A: Prob. of being in top component always greater than .66
Australia Belgium Canada Finland France
Netherlands New Zealand Norway Sweden Switerland
UK US

PANEL B: Prob. of being in bottom component always greater than .66
Bangladesh Benin Burkina Faso Burundi Cameroon
Central Afr. Rep. Chad Comoros Ethiopia Gambia
Guinea Guinea Bissau Madagascar Malawi Haiti
Kenya Sierra Leone Sudan Mali Mauritania
Nepal Niger Nigeria Rwanda Tanzania
Togo Uganda Zaire (Congo) Zimbabwe

highest component over the 1980 – 2008 period.

There are a small group of countries that are highly likely to be in the top compo-

nent throughout the entire sample period. Specifically, panel A of Table 2.2 lists the

13 countries whose probability of being in the top group is always greater than .66.

More significantly though, there are a much larger group of countries whose proba-

bility of being in the bottom component of the distribution is always greater than .66.

Panel B of Table 2.2 lists those 32 countries. While the majority of them are Sub-

Saharan African countries, not all of them are and not all of the Sub-Saharan African

countries are in this chronically poor group. It is perhaps not an exaggeration to say

that these 32 chronically poor countries are caught in a poverty trap.

Of course the interpretation of the results in the last three cross sections should

be tempered by the fact that there is almost as much posterior probability on k = 4 as

there is on the k = 3 case that we discuss above. We prefer to emphasize the three-

component model over the four-component one because the added component does

not provide any additional substantive insights. When we increase k to 4, the middle

component in the three-component model is split into the second and third groups,
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with the summed probability of these groups roughly equal to the probability of being

in the middle group when k = 3. While this is not a problem in itself, the four-

component model does not do a very good job of sorting countries into the middle

two components. In particular, no country is put into component 2 with a probability

of greater than .45.

Given that the move from k = 3 to k = 4 almost exclusively consists of fairly im-

precisely dividing the middle class into two groups, we have concentrated our efforts

in this paper on describing the composition and evolution of the three group model.

Overall we see the stagnation of the lowest component, the incredible increase in

the mean of the upper component and, since 1980, the existence of a robust middle

component.

2.4.6 On the behavior of the sampler

The previous results depend on appropriate mixing behavior in the MCMC sampler.

Figure 2.3 provides some information on the mixing of our sampler for each of the

7 cross-sections by graphing the last 50,000 draws for k (the number of components

in the mixture) from each of the 7 chains of 300,000 that we ran. As can be seen the

sampler is moving through the full space, except for k = 1 in the early years and k = 1

or 2 in the later years.

Figure 2.4 presents some information on how stable our estimates of the number

of components are over the chains. It is easy to see how the probabilities move a

fair amount during the burn-in period (the first 100,000 sweeps) and settle down to

be stable during the last 200,000 sweeps that we use for analysis. As an experiment,

we ran one of our cross-sections for 500,000 sweeps (an additional 200,000) and the

results we found in that case were basically the same as in our baseline case.

It is also worth noting that our sampler does a good job of assigning countries to
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a particular component density. In 1970 (the last cross section with a posterior mode

at k = 2), 113 of our 135 countries can be assigned to one of the components with

probability of .66 or above. In 2008, using k = 3, 124 of our 135 countries can be

assigned to one of the three components with probability of .66 or above. That is 84%

in 1970 and 92% in 2008.

In sum, we believe our reversible jump MCMC sampler is fully exploring the

parameter space for the number of components in the mixture and that the draws we

use for analysis represent draws from converged chains. The draws for the means and

variances of the components are straightforward Gibbs steps and we do not present

information on their evolution over draws of the chain here.

2.4.7 Prior sensitivity analysis

In this section we study the sensitivity of the posterior density of k, the number of

components, to two types of changes in our priors. We undertake this analysis for

the 1960 and 1990 cross sections of our data. Our uniform prior for the number

of mixture components places no direct restrictions on the results (except for our

restriction that k ≤ 10), so the main candidates for influential priors are the prior on

the variance of the variances of the components and the prior on the variance of the

mean of the components. Intuitively, if the variance of the components is restricted to

be small, then it will take more components to describe a given dataset other factors

held constant. Similarly, if the means of the components are restricted to be close

together, i.e. are drawn from a distribution with a small variance, then it will take

more components to describe a given dataset.

As described above, the prior on the variance of the variances of the components

is hierarchical in order to minimize its effect on the posterior density of the number of

components. We draw the scale parameter for the gamma density prior from another
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gamma density. In our sensitivity analysis, we first double and then halve the variance

of scale parameter in the hierarchical gamma density and check what effect that has

on our posterior for the number of components.

Figure 2.5 (panel A) shows the posterior for the number of components when

the scale parameter in the hierarchical prior is doubled for 1960 and 1990. Panel B

reports the same results for the case where the scale parameter is halved. In all cases,

the mode of the posterior remains the same as that found in our baseline case and

overall, the histograms are quite similar. This supports the idea that making this prior

hierarchical does limit its effect on the main results.

The variance parameter for the normal prior distribution of the means of the com-

ponents is, for the reasons described above, another candidate to be an influential

prior. In our sensitivity analysis we first double and then half the standard deviation

of the density we use to draw the means of the components.

Figure 2.5 panel C shows that doubling the standard deviation concentrates the

posterior for the number of components at the lower values, though the mode does

not change from our baseline case. Panel D shows that halving the standard deviation

shifts the posterior markedly to the higher values with no clear mode in the distribu-

tion.

We think that our baseline choice of prior for this parameter, where the standard

deviation for the prior distribution of the component means is set equal to the range

of the data, is a “Goldilocks” prior, where the means aren’t forced either too close to-

gether or too far apart. We can say though that, if anything, our results are conservative

in that they more likely understate rather than overstate the number of components in

the overall data.

50



Figure 2.5: Prior Sensitivity Analysis

PANEL A: 2×h

PANEL B: h/2

PANEL C: 4×κ

PANEL D: κ/4
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2.5 Conclusion

In this paper we use Bayesian variable dimension mixture models to characterize the

evolution of the distribution of per capita incomes across 135 countries from 1950

– 2008. Our work is the next step in a natural progression from Quah’s seminal

contributions to the formal multi-modality tests of Bianchi (1997) and Henderson

et al. (2008) to the mixture models of Paap and van Dijk (1998) and Pittau et al.

(2010).

In our paper, for the first time in the literature, the number of individual compo-

nents or groups in the overall distribution, the means and variances of each group, and

the allocation of countries into groups are all being estimated in a single comprehen-

sive model.

Our new approach leads to new insights. We show that the 1950s and 1960s were

decades of development with two groups in the distribution and a significant amount

of movement from the poor to the rich group. This configuration changed in the

1970s to a three group setting and the 70s and 80s showed polarization as the richest

countries moved farther away from the middle and bottom income groups. In the

1990s and 2000s, the percentage gaps between groups stabilize, but the bottom two

groups are stuck in their relatively disadvantaged positions.

Our work raises interesting questions for future research. What events in the 1970s

influenced the formation of a third group and the start of the polarization of the income

distribution? What happened over the last 18 years to significantly slow down that

polarization? It also illustrates a very useful method for studying the number and

structure of hidden component groups in overall empirical distributions.

52



Chapter 3

Miracles, Disasters, and Clubs in

Steady-State Growth

3.1 Introduction

Theoretical models of economic growth often make claims about the underlying growth

trend in per capita income levels. A major problem with investigating these underly-

ing (or steady-state) growth clubs is that steady-state growth is unobservable. We

would like to be able to identify, for example, whether some countries have essen-

tially zero underlying growth, with only transitory deviations from this trend. We

might also like to confirm that countries which we consider close to the technological

frontier all grow at something close to the same underlying rate, with movements in

relative income levels possible but not major, lasting differences in growth rates. To

answer these kinds of theoretically motivated questions using empirical observations,

economists must find meaningful ways to approximate steady-state growth.

I utilize two estimation procedures not commonly seen in the growth and devel-

opment literature to address the problem. Following previous work by Hausmann
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et al. (2005) and Jones and Olken (2008) to identify underlying growth trends, I first

estimate the steady-state growth rates of income per capita using a dynamic mixture

model approach from the business cycle literature. My approach expands on theirs

by explicitly trying to capture the gradual convergence to the steady state common in

most growth models. I then characterize the distribution of steady-state growth rates

using a variable-dimension mixture of normal components previously used to capture

the evolution of the world income distribution by Grier and Maynard (2010).

Using country-level data on annual per capita GDP growth rates from 1952 to

2008, I find a wide variety of growth experiences in the estimated steady-state growth

rates. Broad historical events are captured by the estimates, including wide-spread

growth deceleration in the mid-1970s, severe reversals of growth around 1980, and a

large number of accelerations or growth ‘miracles’ amid the smaller shifts and con-

stant steady-steady growth rates found in some countries.

Despite this large variation, over 85% of the steady states are well described by

a single normal component. The remaining steady states occupy the tails of another

normal component, suggesting the latter may represent a ‘noise’ component or may be

compensating for a true distribution with heavier tails than a single normal distribution

can account for. I find no evidence of distinct groups of stagnant or frontier growth

rates in the unconditional steady states. This places the results at odds with models

of growth clubs—and in particular poverty traps—which generally imply sharp coun-

try groupings, often associated with key variables being on opposite sides of some

threshold. At the same time the large standard deviation of the primary component

(around 2%) is at odds with neoclassical and similar models, which suggests that in

the steady state growth rates should be very tightly distributed around the growth rate

at the technological frontier. My results instead suggest that more attention should be

paid to theoretical models in which variables or groups of variables with heavy tailed
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distributions affect determine steady-state growth rates across countries.

The rest of the paper is organized as follows: Section 3.2 outlines the related

literature and highlights the contribution of this paper. Section 3.3 explains the first

stage, within-country mixture model I use to estimate steady-state growth rates and

discusses the first-stage results. Section 3.4 shows how these results can be used in a

variable dimension mixture of normal components to compare long-run growth rates

across countries. The section then describes the cross-country results and discusses

their implications for the multiple steady state model. Section 3.5 concludes.

3.2 Previous Literature

Early research on multiple balanced growth paths by Murphy et al. (1989), Azariadis

and Drazen (1990), Galor (1996), and others have emphasized the possibility of multi-

ple balanced growth paths and/or poverty traps as an explanation for the varied growth

experiences of different countries. More recent work by Klump and De La Grandville

(2000) and Howitt and Mayer-Foulkes (2005) have continued this emphasis on differ-

ences in long-run growth paths across countries, and in particular in connecting them

with the aggregate production function.

These models frequently imply the existence of groups of countries which grow

at the same rate in the steady state. In the neoclassical growth model and semi-

endogenous growth models built on the work of Jones (1995a), all countries should

have the same steady-state growth rate. Models with poverty traps suggest we should

see a group of countries with steady-state growth of zero. Empirical work related to

these models have generally investigated differences in income levels rather than in

growth rates. Research approximating the steady-state growth rates proposed by the-

oretical models is rare. Beginning with Durlauf and Johnson (1995), a branch of the
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literature has focused on using sophisticated techniques to identify groups of coun-

tries that seem to follow a similar growth processes, but even this research program

has generally avoided statements about steady-state growth.1

Pritchett (2000) and Jerzmanowski (2006) have shown that multiple long-run growth

paths are not just a cross-country phenomenon; many countries seem to switch among

distinct growth regimes over time. To accomodate these insights, I use dynamic mix-

ture modeling tools more frequently applied in business cycle analysis to estimate the

steady-state growth rates of output per capita. These tools allow the steady states to

experience structural shifts.2 The within-country estimates of steady-state growth are

similar to the work of Hausmann et al. (2005) and Jones and Olken (2008), in which

the data determines when shifts in the underlying growth trend occur, rather than as-

suming a constant steady-state growth rate or breaking the data into segments of pre-

determined length. However, rather than treating annual growth rates as i.i.d. random

variables around some mean, the dynamic mixture model allows annual growth rates

to adjust slowly toward their steady state. The estimated underlying growth rates are

thus more closely linked to theoretical steady-state growth rates than previous mea-

sures have been. Using these estimated steady-state growth rates as data, I then use

Bayesian mixture models to identify any distinct groupings of steady states, such as

poverty traps or growth along the technological frontier.

Paap et al. (2005) attempt to identify the number of distinct growth clubs us-

ing data on GDP per capita, finding evidence for three growth classes. They use a

likelihood-based latent class model which imposes the assumption that all countries

within a cluster have identical long-run growth rates which must be constant for the

entire sample. In contrast, my approach allows steady-state growth rates to vary over

1Recent contributions to this literature include Bloom et al. (2003) and Canova (2004).
2The sources of these shifts from one steady-state path to another is an interesting empirical ques-

tion that is beyond the scope of this paper.
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time within countries, and the growth rates themselves are grouped into latent classes

by the mixture of normal components.

This paper is similar to Alfo et al. (2008) and Owen et al. (2009) in that all three

analyze growth rates using mixture models. Unlike this paper, Alfo et al. and Owen et

al. focus on estimating parameters for a standard, neoclassical growth equation which

are allowed to differ across components within the mixture. They use information

criteria to select the number of components and use maximum likelihood methods to

estimate the parameters of the growth regression clubs. Both papers use five-year av-

erage growth rate data. While this approach may be sufficient on a descriptive level,

theoretical growth models make claims about underlying steady-state growth, which

is almost certainly not reflected in simple averages taken over arbitrary periods. In or-

der to develop stylized facts about economic growth more suitable for guiding mod-

eling decisions, I introduce a first-stage dynamic mixture model, providing a more

systematic way to approximate steady-state growth rates within countries.

3.3 Dynamic Mixture Models and Steady-State Growth

In the first stage, I utilize a dynamic mixture model within individual countries to esti-

mate the steady-state growth rate and any shifts that might take place in that variable.3

The next section briefly discusses dynamic mixture modeling before describing the

results of the first stage. A brief review of Bayesian statistical methods and Markov

Chain Monte Carlo (MCMC) simulations is available in the appendix.

3This technique, rather than a regime switching model, is used in order to keep from restricting the
model to a preconceived number of regimes.
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3.3.1 Approximating steady-state growth Rates

Since theoretical growth models make claims about the steady-state growth of per

capita income, which is inherently unobservable, I estimate steady-state growth rates

from the annual data. A more common solution is to take an average growth rate over

several years. Averaging over all available data, however, implies that there must be

a single steady-state growth rate at all times. But just as we could conceivably see

different groups of growth rates across countries, we could also see variation within

a country in the underlying growth rate over time. For this reason, it is also common

to have many observations for each country by averaging over a set number of years,

typically five or ten years.

While this approach is not unreasonable from a purely descriptive perspective, it

faces a couple of weaknesses if the goal is to identify the underlying growth rate which

might be described by a theoretical model. First, steady-state growth over the sample

period may shift, but both the timing and number of shifts are unknown. Second, if

a country is slow to converge to its balanced growth path, we would expect growth

which is far from steady-state growth to slowly adjust between the previous period’s

growth and the steady state.

In order to capture these features, I estimate the following dynamic mixture model:

ỹt = ρgt +(1−ρ) ỹt−1 + εt (3.1)

gt = gt−1 +Stηt ,

where ỹt represents per capita GDP growth in year t, gt represents the underlying

steady-state growth rate in year t, and εt and ηt are normally distributed random vari-

ables.4 Dynamic mixture models are similar to the time varying parameter models

4Fagiolo et al. (2008) suggest that εt should be a fat-tailed distribution, rather than normal. I have
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seen in applied macroeconometrics, but instead of allowing the parameter of inter-

est to shift every period, dynamic mixture models assume that the parameter only

shifts when the (unobserved) indicator variable St equals one. St is meant to capture

structural shifts in the steady-state growth rate gt , which we assume are relatively in-

frequent. The coefficient ρ , which I assume is between zero and one, captures how

quickly the growth rate returns to its steady state after a deviation in the previous

period.

The dynamic mixture model imposes very little structure on the observed data.

Unlike regime switching or multiple change-point models, it does not impose a min-

imum duration on a given value of gt or a minimum change in gt to be classified as

a shift.5 The dynamic mixture model also differs from a regime switching model by

treating all moves in gt as structural breaks rather than moves from one well-defined

regime to another. That is, if gt shifts up by 0.03 but later shifts down by the same

value, this model treats this as a third value of gt , not a return to the previous regime.

I use Bayesian estimation methods for dynamic mixture models pioneered by Ger-

lach et al. (2000) and further developed by Giordani et al. (2007).6 Their methodology

allows for taking draws from the posterior of St without conditioning on gt , substan-

tially reducing the complexity of the estimation process. Conditional on the location

and number of breaks, the steady-state growth rates are estimated using the algorithm

of Carter and Kohn (1994). The other parameters to be estimated (ρ , σ2
ε , and σ2

η ) can

be drawn from their conditional distributions, which are conventional (The conditional

posterior of ρ is distributed normally, truncated between 0 and 1, while both variance

estimated the results allowing for εt to switch between a low- and high-variance distribution, which is
similar to allowing more weight in the tails than a normal distribution can accomodate. This approach
increased computation time and complexity without having a significant effect on the estimated steady-
state growth rates or the timing of structural shifts in gt .

5Using the Bayesian methods described below, I use the priors to impose a penalty on steady states
lasting two years or less.

6These techniques have been used for analysis of higher frequency data by Primiceri (2005), Gior-
dani and Kohn (2008), and Koop et al. (2009).
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Table 3.1: Summary Statistics for Maddison Data and First Stage Results
SERIES # OBS MEAN STD MAX MIN BEGIN END

Maddison (Annual Growth) 7,638 1.8% 5.4% 51.0% -95.4% 1952 2008

Maddison (Steady States) 243 1.5% 4.7% 19.5% -27.1%

terms are conditionally drawn from independent inverse gamma distributions). The

process used is thus a Gibbs sampler, and is iterated through until a sufficiently long

chain (less some burn-in period to allow for convergence of the Markov chain) is pro-

duced. I estimate the above model for each country in the sample (134 countries)

using annual growth rates from 1952 through 2008.7

3.3.2 Prior and Comments on the Dynamic Mixture Model

Using per capita GDP from Maddison (2010), I estimate the dynamic mixture model

for each country in my sample (summary statistics are available in Table 3.1). I have

a total of 57 annual observations per country.8 I run the sampler for 1200 draws and

drop 200 for burn in, leaving 1000 draws for inference. Using the diagnostics of

Raftery and Lewis (1992) on several countries suggests that this exceeds the require-

ments for convergence and inference.

At this stage it is worth briefly considering some of the distinctive features of

Bayesian analysis. In Bayesian estimation, the object is not selecting parameters to

maximize a likelihood function, but rather to identify the entire distribution of the

parameters conditional on the data observed. This distribution is called the posterior

7The Maddison income per capita data is available for these countries from 1950–2008. I lose one
observation by constructing growth rates as the difference between the natural log of income in a given
year and the natural log of income in the previous year. I lose another observation constructing the
lagged dependent variable ỹt−1.

8Maddison measures income in Geary-Khamis constant dollars using 1990 as the base year.
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distribution. The posterior is typically described as being proportional to the likeli-

hood function times the he prior distribution, or

p(θ |y) ∝ p(y |θ)× p(θ) , (3.2)

where p(θ) is the prior distribution, which incorporates any previous knowledge the

researcher may have about the parameters in question. In practical terms, the prior

may be based on a naive, preliminary analysis of the data, and in general priors may

be designed to have little influence on the posterior, rather than being informative, by

insuring that the variances of parameter priors are relatively diffuse.

One common concern with Bayesian anaylsis is the choice of density for the pri-

ors. One of the most convenient choices is conjugate priors, which means that the

prior density is chosen such that the posterior, which derives its form from the prior

times the likelihood function, will be of the same functional form as the prior. This

implies that as more data is added, the functional form of the posterior will not change.

Conjugate priors can sometimes allow for closed form solutions to the posterior, and

were thus essential for Bayesian analysis prior to the advent of numerical simulation

methods. Conjugacy is no longer necessary in order to estimate posteriors, but it is

still convenient and is not particularly restrictive as long as the variances chosen are

diffuse. I use independent conjugate priors which are somewhat tuned to the data, but

are not particularly informative.

The prior for gt is normal with mean set equal to the mean growth rate in the data

and standard deviation equal to half of the observed range of the data. The prior for

the autoregressive parameter ρ is standard normal truncated to the interval [0, 1]. The

variances have their priors independently distributed inverse gamma with identical

scale parameters equal to twice the observed variance, and shape parameter set so that
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the mean of the prior is half the observed variance in the data. The results are quite

insensitive to changes in any of these parameters.

The probability that in any period there is a structural shift could be sensitive to

the value of a strict prior probability on the frequency of shifts. To some degree this is

desireable, since I assume that shifts in the steady-state growth rate are somewhat rare

(and we wish to limit the effect of large but brief shifts in annual growth); on the hand,

priors which are too influential could overwhelm the information provided by the data.

In order to balance these issues, I use a hierarchical prior on St with a relatively small

variance. The hierarchical prior follows a beta distribution with parameters four and

seventy six, which can be interpreted as if the researcher had eighty observations prior

to the sample, four of which are known to include a shift.9

The average probability of shifts across years varies widely from country to coun-

try, making inference trickier than simply selecting a probability above which a year

is counted as a shift. Consistent with trying to identify rare shifts, I count a year as

containing a shift when the probability of a shift for a given year is three standard

deviations from the mean for the entire series. For most observations the actual prob-

ability is more than four standard deviations from the mean, and closer to six is not

uncommon. Varying this cutoff slightly on either side does not have much effect on

the final results.10

9These parameters restrict the variance of the hierarchical prior, essentially penalizing shifts which
are too frequent. However, the results are nearly unchanged if the parameters are one and nineteen,
which retains the same average value but allows the prior on St to vary closer to 0 and 1.

10On a few occassions, the data transition gradually enough that the estimator has difficulty selecting
between a shift in one year or a shift in an adjacent year. This can lead to two adjacent years having
a lower frequency of shifts than would otherwise be the case, although in the sampler there is never a
shift in both periods in the same sweep. In these cases, I use a cutoff of 2.5 standard deviations, and
select whichever year has a higher frequency of shifts as the true shift. The results are not particularly
sensitive to either of these choices.
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Figure 3.1: Shifts in Steady-State Growth Rates (Maddison Data)

109 total shifts in Maddison dataset.

3.3.3 Results of First Stage Estimation

The distribution of steady-state growth shifts over time is shown in Figure 3.1. Two

prominent periods stand out as times of unusually instability in steady-state growth:

the mid 1970s, and 1979-1982. In the 1970s we see seven Western European economies

(see Figure 3.2 for examples and Table 3.2 for a full list) slowing down, with growth

rates ending up roughly within a one percentage point range for all of them. We see

a similar pattern in three non-European countries still associated with the economic

frontier—Israel, Puerto Rico, and Japan. In four additional countries—Comoros Is-

lands, Jamaica, North Korea, and Saudi Arabia—we see a shift from moderate or high

growth to low or even negative steady-state growth. Only one country sees a strong

and sustained shift to higher growth during this period: Botswana moves from 2.4%

to 6.4% steady-state growth in 1975.

A second wave of growth decelerations arrived between 1979 and 1982, coincid-
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Figure 3.2: Growth Decelerations: The Mid-1970s

Dotted lines represent annual growth rates in per capita GDP (Maddison). Solid lines
are estimated steady-state growth rates. Note that vertical axes differ for each country.
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Table 3.2: Growth Decelerations: The Mid-1970s

STEADY STATES STEADY STATES
COUNTRY YEAR PREV. NEW COUNTRY YEAR PREV. NEW

Italy 1970 4.9% 2.7% Israel 1973 5.3% 1.9%
Austria 1974 4.1% 2.9% Puerto Rico 1974 5.0% 2.2%
France 1974 3.4% 1.8% Japan 1974 6.3% 3.0%
Portugal 1974 4.2% 1.9%
Belgium 1975 4.1% 2.2% Comoros Is. 1972 2.3% -3.6%
Netherlands 1975 3.3% 1.9% Jamaica 1974 5.3% -0.9%
Spain 1975 6.4% 2.4% N. Korea 1974 5.9% 0.7%

Saudi Arabia 1975 4.7% 0.6%

ing with major international events such as rising interest rates in the developed world,

the Latin American debt crisis, and the recession of the early 1980s. As expected, a

number of Central and South American countries experience decreases in steady-state

growth during this this period (see Figure 3.3 for examples and Table 3.3 for a full

list). A number of African and Middle Eastern countries are affected, as well. Unlike

the deceleration of the early to mid 1970s, however, this wave is perhaps better de-

scribed as a reversal of growth. Of all the countries affected, only Brazil’s steady-state

growth exceeded 0.5%, and most of the countries involved switched from periods of

sustained positive growth to sustained negative growth. Nicaragua and Gabon expe-

rienced short, extreme periods of negative growth (in the Nicaraguan case associated

with political revolution) in the late 1970s, Yemen experienced high growth through-

out the 1970s, while the United Arab Emirates entered a severe downturn that lasted

most of the 1980s. In all four cases, these shorter periods of dramatic change give

way after 1982 to new steady-state growth rates lower than they had been in the 1950s

and 1960s.

In contrast to the bad news of the mid 1970s and around 1980, there are a num-
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Figure 3.3: Growth Reversals: 1979-1982

Dotted lines represent annual growth rates in per capita GDP (Maddison). Solid lines
are estimated steady-state growth rates. Note that vertical axes differ for each country.
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Table 3.3: Growth Reversals: 1979-1982

STEADY STATES STEADY STATES
COUNTRY YEAR PREV. NEW COUNTRY YEAR PREV. NEW

Bolivia 1979 2.1% -3.3%* Gabon 1979 3.5%† -2.2%
El Salvador 1979 2.2% -4.9%* Togo 1980 1.9% -2.4%
Honduras 1979 1.0% 0.1% S. Tomé & P. 1981 1.9% -1.4%
Nicaragua 1980 2.5%† -2.6% Côte d’Ivoire 1982 2.1% -3.6%
Brazil 1981 3.1% 1.3% Congo 1982 1.6% -0.7%
Haiti 1981 -0.2% -1.7%
Paraguay 1981 1.4% -0.2% Yemen 1979 6.6% 0.5%
Mexico 1982 2.7% 0.2% UAE 1981 2.0% -9.3%

* El Salvador returned to positive steady-state growth in 1983 (and Bolivia in 1987),
but at a rate of 1.1% (1.5% in Bolivia).
† Nicaragua actually has growth drop for two years in 1978 to a rate of -24.9%, while
Gabon experienced a similar drop in 1977 of -27.1%. They are included on this list
because the shift from a gradual upward trend prior to 1977/78 to steady decline after
1980 is still noteworthy.

ber of positive stories to be found as well. Many of these stories fall roughly into

two broad categories: accelerations, movements from low growth (less than 0.5%) to

moderate positive growth; and growth miracles or take offs, movements from mod-

erate to high growth (4.0% or higher). A list of countries in these two categories is

presented in Table 3.4, with examples in Figure 3.4. In the table we see that Kuwait

began to grow moderately following the 1991 Gulf War after decades of decline. Bo-

livia actually experiences two distinct periods of acceleration: in 1960, towards the

end of the decade long rule of the Revolutionary Nationalist Movement, Boliva shifted

from -2.7% growth to positive 2.1%; after the political turmoil and economic decline

begining in 1979, the Bolivian economy shifted back into positive 1.5% steady-state

growth in 1987.

As expected, the growth miracles category includes such countries as China, Sin-

gapore, and India; the model dates their periods of economic take off to 1962, 1967,
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Figure 3.4: Economic Take-Offs

Dotted lines represent annual growth rates in per capita GDP (Maddison). Solid lines
are estimated steady-state growth rates. Note that vertical axes differ for each country.
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Table 3.4: Economic Take-Offs

STEADY STATES STEADY STATES
COUNTRY YEAR PREV. NEW COUNTRY YEAR PREV. NEW

Belgium 1959 2.0% 4.0% Poland 1992 2.8% 4.1%
Spain 1961 3.4% 6.4% Albania 1993 2.6% 5.2%
China 1962 2.8% 4.7% Angola 1994 0.3% 5.4%
Singapore 1967 1.9% 7.1% Bulgaria 1998 2.7% 5.1%
Yemen 1970 1.1% 6.6% Uruguay 2003 0.6% 5.7%
Botswana 1975 2.4% 6.4% Argentina 2004 1.2% 5.2%
India 1987 1.9% 4.2% Cambodia 2004 2.2% 5.3%
Burma 1992 1.8% 6.2% Ethiopia 2004 1.2% 5.6%

Bolivia 1960 -2.7% 2.1% Kuwait 1991 -2.2% 3.7%
Sri Lanka 1967 0.4% 2.1% Cuba 1994 -0.1% 3.9%
Bolivia 1987 -3.3% 1.5% Afghanistan 1995 0.4% 3.0%

Tanzania 1999 0.2% 3.5%

and 1987, respectively.11 Several countries—such as Belgium, Spain, and Yemen—

experience sustained periods of miracle-like steady-state growth before returning to

modest levels of growth later on. We see two Sub-Saharan African countries fit into

this category as well: Botswana shifts from a modest 2.4% growth rate to 6.4% steady-

state growth in 1975, and Angola shifts from near-zero steady-state growth to 5.4% in

1994. Finally, we see several countries—Argentina, Uruguay, Cambodia, and Eritrea

& Ethiopia—experiencing what seems to be a take off in the mid-2000s, although

interpretations of the shift must be tempered by the fact that the dataset ends in 2008.

Finally, it is worth noting patterns in the lack of shifts. Out of 134 countries,

11It may seem odd to date the take-off of China in 1962 rather than the more commonly accepted date
of 1978. However, after the Great Leap Forward of 1958-1961, China did undertake several key reform
measures. Those measures were undermined or surpressed during the Cultural Revolution, but were
reinstated along with many others in 1978. Thus we must either classify the strong positive growth c.
1962-1966 as an aberation to a pre-1978 steady state, or we must classify the Cultural Revolution as
an aberation from a post-1962 steady state. The dynamic mixture model selects the latter.
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52 hold to the same steady-state growth rate for the entire 57 year sample. These

countries are drawn from all continents, including countries like Colombia, Costa

Rica, the Dominican Republic, Lesotho, Morocco, Malaysia, Thailand, Tunisia, and

Turkey. Despite the broad range of countries in this category, we do see two noticable

country groupings that never shift their steady-state growth rates: the Nordic countries

(Sweden, Finland, Norway, and Denmark), and the UK and its offshoots Austraila,

Canada, and New Zealand.12 Among the remaining 82 countries, there are 109 growth

shifts, or an average of 1.3 shifts per country.

The approach and results of this first stage are similar in spirit to those presented

by Hausmann et al. (2005) and Jones and Olken (2008). The emphasis in all three ef-

forts is to classify growth within each country around underlying trend growth which

may experience shifts. Unlike the previous literature, however, the dynamic mixture

model I utilize allows annual growth rates to return to trend slowly, thus assigning to

the trend properties we think of in the theoretical literature as applying to steady-state

growth. This difference, along with the use of the Maddison dataset instead of the

Penn World Table, leads to some differences in the estimated results. While Jones

and Olken find the economic take off of Botswana occurs in 1966, and Hausmann et

al. find it in 1969, I find that steady-state growth does not shift until 1975; I find that

China’s take off, at least in terms of steady states, takes place in 1962 (following the

Great Leap Forward), rather than in 1978 (following the Cultural Revolution) as Jones

and Olken and Hausmann et al. do; and while Jones and Olken find Côte d’Ivoire ex-

periences a downward shift in 1979, I find that steady-state growth does not become

negative until 1982.

The steady-state growth rates estimated here capture many of the broad patterns

of cross-country economic growth described by Pritchett (2000). We see mountains
12The United States is not in this category, interestingly, because of an increase in steady-state growth

from 1.3% to 2.3% in 1959.
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like Côte d’Ivoire, plateaus like Mexico, hills like Costa Rica, accelerators like India,

and plains like Chad. This holds even allowing for (1) an unknown number of shifts

in the underlying growth rate and (2) gradually adjusting transitional dynamics after

a shift in the steady state.

Once we have identified the steady states, though, we wish to know if we see mul-

tiple distinct clubs as theoretical models like Howitt and Mayer-Foulkes (2005) and

Davis (2008) seem to suggest. Do steady states with near-zero growth form a clearly

defined ‘poverty trap’ club, while a separate group describes growth of countries on

the technological frontier? To answer this question, I represent the steady-state growth

rates as a mixture of normally distributed components and estimate the number of

components (clubs) in the mixture.

3.4 Cross-Country Comparison using Mixtures of Nor-

mals

The first stage dynamic mixture model identifies the steady-state growth rate for 134

countries over 57 years, resulting in 243 unique steady states.13 In the second stage,

I estimate a finite mixture of normal components, a technique which approximates a

non-standard distribution by using a probabilistic combination of more conventional

ones. This allows for the estimation of both the component parameters and the alloca-

tion of observations across components. In addition, I use the reversible jump Markov

Chain Monte Carlo (MCMC) algorithm developed by Green (1995) and specifically

13Using only unique steady states implies that countries that have followed a constant steady state for
the entire sample, such as the United States, would provide only one observation, whereas countries that
have shifted many times, such as Bolivia, would contribute more. However, using all 7,638 country-
years would result in a histogram with many high local modes at values that are repeated exactly for
a large number of time periods; estimating a mixture of normals across all these observations would
almost certainly result in an over-fitting model.
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applied to mixture models by Richardson and Green (1997) to estimate the number of

components.

In what follows I briefly discuss mixtures of normal components in general and

the reversible jump MCMC algorithm used to estimate the correct number of compo-

nents.14 I then turn to the estimation results.

3.4.1 Mixtures of Normals and Reversible Jumps

Finite mixture models represent complex distributions as a weighted combination of

several more conventional distributions. For a mixture of normal distributions, we can

write the overall distribution in terms of observation xi as

ỹi ∼
J

∑
j=1

w jN
(
µ j, σ

2
j
)
, (3.3)

where J is the total number of components in the mixture, µ j and σ2
j are the mean and

variance of component j, and weight parameter w j is the probability that any given

observation will be drawn from component j. The weights are all non-negative and

must sum to one.

Although mixture models can be used strictly as a means of fitting an observed

distribution, often the observations in the non-standard distribution are interpreted as

being drawn from the individual components distinctly, but the identity of the true

component is not available. It is convenient in this case to represent the observations

using the conditional distribution

ỹi | ai = j ∼N
(
µ j, σ

2
j
)
, (3.4)

14A more complete discussion of the reversible jump methodology is available in the appendix.
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where ai is a latent allocation variable produced using data augmentation. I use this

latent variable approach in the estimation below.

Conditional on the appropriate number of components J, it is straightforward in

Bayesian statistics to estimate the means, variances, and weights of the components,

as well as the posterior probability that each observation is drawn from any given

component, using Gibbs sampling.15 Identifying the correct number of components is

a more complicated matter. I utilize the reversible jump MCMC technique pioneered

by Green (1995). This technique allows the sampler to probabilistically jump among

a finite set of separate models with distinct parameter spaces. It generates random

draws from a proposal generating density in order to match the parameter spaces of

two models, then uses something very similar to a Metropolis-Hastings step to either

move to the new model or to continue sampling from the current model. The approach

used here is identical to that of Grier and Maynard (2010), and the interested reader

is referred there for the details of the algorithm used.16

I run the model for 200,000 sweeps and remove the first 50,000 as burn in, leaving

150,000 sweeps for inference.17 Each sweep consists of a Gibbs move updating all

parameters conditional on the number of components and a reversible jump move

which probabilistically increases or decreases the number of components by one. My

priors in all cases are tuned to the data as in Richardson and Green (1997) and Grier

and Maynard (2010). Several graphs illustrating the performance of the sampler are

presented in Figure 3.5.

15In order to address the potential problem of ‘label switching,’ I utilize the Equivalent Class Re-
ordering method of Papastamoulis and Iliopoulos (2010); in practice, however, almost no relabeling
occurs, at least for the number of components given the highest probability by the reversible jump
algorithm.

16For a more thorough discussion of reversible jump MCMC in the context of finite mixture models,
see Richardson and Green (1997) and Früwirth-Schnatter (2006).

17I have run the model for 150,000 sweeps (leaving 100,000 for inference) and 300,000 sweeps (with
75,000 burn in, leaving 225,000 for inference) respectively, and found the same results.
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Figure 3.5: Graphs of Simulator Performance

(A) Cumulative Occupancy Fractions

(B) Draws of Posterior Parameters

(C) Draw of Number of Components (Last Fifty Thousand Draws)

The left column shows results for the Maddison dataset, while the right column shows
results for the Penn World Table 6.3.
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Table 3.5: Number of Normal Components (Maddison)

DATA SERIES OBS p(1) p(2) p(3) p(4) p(5) p(6) p(7–10)
Steady State 243 0 0.580 0.265 0.103 0.035 0.012 0.006

Average growth 134 0.649 0.231 0.082 0.023 0.007 0.005 0.003

5-year growth 1,474 0 0 0.683 0.261 0.045 0.010 0.001

10-year growth 670 0 0.026 0.188 0.383 0.237 0.114 0.053

Dataset includes 134 countries, 1952-2008. For each data series, the highest proba-
bility model is indicated in bold.

3.4.2 Mixture Model Results

The posterior probabilities of each possible number of components is presented in

Table 3.5. Using the estimated steady-state growth rates from the first stage yields

strong support for two normal components: this model receives more than half of the

total probability, and more than double the probability of the next most likely model.

After removing the initial draws, the reversible jump algorithm never drops down to a

single normal component.

Table 3.5 also illustrates a significant drawback to approximating steady state

growth by averaging over a set number of years—the number of components selected

changes depending on the number of years used to construct average growth. If we

use all 57 years to construct a single average for each country, we get strong support

for a single normal component. But averaging over only five years provides equally

strong support for three components, and an intermediate number of years (ten) yields

an even higher number of components (four) as the most probable, and a substantial

probability on even more.

This shortcoming is the result of failing to correctly identify the break dates in

steady-state growth. For a given block of years, it’s possible that half have an under-
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Figure 3.6: Shifts in Steady-State Growth Rates (Penn World Table Data)

lying growth rate of -5%, while the other half have an underlying growth rate of +5%.

Averaging across this break date will yield an estimate of 0% growth, failing to cap-

ture either period well. An accurate picture of how underlying growth is distributed,

then, depends crucially on first estimating steady-state growth rates themselves.

This sensitivity is equally apparent when we consider a change of dataset. To

demonstrate this, I ran the first stage estimation again using the Penn World Table 6.3

data of Heston et al. (2009). This dataset includes 110 countries from 1960 to 2007,

thus excluding several countries and years contained in the Maddison dataset, but

adding other countries.18 The broad groupings for the steady state data—including

an increased number of shifts in the mid-1970s, around 1980, and in the mid-2000s—

remain, although shift dates and exact values for steady-state growth for particular

countries may differ. A graph showing the distribution of steady-state growth shifts

over time is shown in Figure 3.6, with summary statistics available in Table 3.6.

18For country-years in both datasets, many of the measurements are the same, although some will
still differ due to data quality issues and alternative methods of calculating purchasing power parity.
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Table 3.6: Summary Statistics for Penn World Table Data and First Stage Results
SERIES # OBS MEAN STD MAX MIN BEGIN END

PWT 6.3 (Annual Growth) 5,060 2.0% 6.2% 78.0% -56.1% 1962 2007

PWT 6.3 (Steady States) 208 2.4% 6.7% 62.9% -41.2%

Table 3.7: Number of Normal Components (PWT 6.3)

DATA SERIES OBS p(1) p(2) p(3) p(4) p(5) p(6) p(7–10)
Steady State 208 0 0.787 0.163 0.038 0.010 0.001 0.001

Average growth 110 0.683 0.206 0.070 0.023 0.009 0.005 0.003

5-year growth 990 0 0 0.572 0.286 0.102 0.031 0.009

10-year growth 440 0 0.524 0.311 0.111 0.036 0.013 0.006

Dataset includes 110 countries, 1962-2007. For each data series, the highest proba-
bility model is indicated in bold.

With this alternative data, we again estimate the mixture model for the estimated

steady states, as well as for five, ten, and 57 year growth averages (the results are

presented in Table 3.7). The model still selects two components for the distribution of

steady states, and it again selects different numbers of components depending on the

number of years used to calculate average growth. However, it is also worth pointing

out that for the ten year averages, the estimated number of components is now two,

as opposed to four using the Maddison dataset. Taking average growth over some

number of years does not seem to describe underlying growth very precisely, since it

is highly sensitive to the number of years chosen and the choice of datset. Estimating

where shifts in trend growth take place seems to be particularly important in this

context.
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Table 3.8: Mixture Parameter Estimates

First Component Second Component
Steady States mean variance weight mean variance weight

Maddison 2.2% 0.04% 86.9% -3.3% 1.2% 13.1%
(0.1%) (0.01%) (3.2%) (2.2%) (0.4%) (3.2%)

PWT 6.3 2.3% 0.05% 94.5% 4.6% 7.3% 5.5%
(0.2%) (0.01%) (1.8%) (8.5%) (3.8%) (1.8%)

Point estimates are means of the posterior distributions (standard deviations of poste-
riors in parenthesis).

Figure 3.7: Steady-State Growth Histogram and Estimated Mixture Components
(Maddison Data)

243 steady states in Maddison dataset.

3.4.3 Discussion

Having identified the number of normal components, I now turn to describing the

components and country allocations themselves (parameter estimates for the mixture

model are presented in Table 3.8). Histograms of the Maddison and Penn World Ta-

ble datsets and the estimated components are can be seen in Figures 3.7 and 3.8. The

steady states sort quite well, with every steady state in the Maddison dataset sort-

ing into one group or another with at least 59% probability (79% for Penn World

Table), and an average probability of 94% (98% for Penn World Table). For both
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Figure 3.8: Steady-State Growth Histogram and Estimated Mixture Components
(Penn World Table Data)

208 steady states in Maddison dataset.

the Maddison and Penn World Table datasets, most of the steady states (over 85% in

both cases) seem to be drawn from a single normal component, and in both cases this

component is centered in the 2–2.5% range with variances between 0.004 and 0.005,

implying standard deviations around 2%. The posterior distribution of these param-

eters is relatively tight around the means in both cases. The mean and variance of

the second component, in contrast, are imprecisely estimated, and differ substantially

across datasets. This is not surprising given how few steady states are sorted into the

second component: 21 of 243 steady states in the Maddison dataset, and only 6 of

110 in the Penn World Table dataset. Further, the observations are all drawn from the

tails of the component, high and low, in both datasets. It is possible that this second

component is thus serving as a ‘noise’ component, only absorbing outliers or possibly

fatter tails to the distribution than a normal distribution can accomodate.19

In the Maddison data, the second component is clearly capturing only extreme

growth rates, with every steady state either less than -3% or greater than 10%. As is

19Estimating a mixture using Student’s t-distribution components rather than normals, I found the
model overwhelming selected a single component with very fat tails (degrees of freedom less than
two). However, using simulated data the estimation procedure used to take draws from Student’s t-
distributions required extremely large gaps between means in order to differentiate two components
from a single component with excessively high degrees of freedom.
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Table 3.9: Steady States Sorted into Noise Component (Maddison)

Years
Country Begin End Duration Growth Rate
Kenya 1952 – 1953 2 -5.70%
South Korea 1952 – 1953 2 10.10%
Gabon 1977 – 1978 2 -27.10%
Nicaragua 1978 – 1979 2 -24.90%
Nigeria 1968 – 1970 3 16.20%
Cape Verde 1978 – 1980 3 13.40%
Hungary 1989 – 1991 3 -6.20%
Mongolia 1990 – 1992 3 -12.50%
North Korea 1994 – 1996 3 -15.30%
Sierra Leone 1995 – 1997 3 -21.30%
Iran 1977 – 1980 4 -13.70%
El Salvador 1979 – 1982 4 -4.90%
Qatar 1981 – 1986 6 -18.20%
UAE 1981 – 1986 6 -9.30%
Qatar 1974 – 1980 7 -3.40%
Bolivia 1979 – 1986 8 -3.30%
Cameroon 1987 – 1994 8 -7.80%
Zimbabwe 1999 – 2008 10 -5.40%
Equatorial Guinea 1995 – 2008 14 19.50%
Côte d’Ivoire 1982 – 2008 27 -3.60%
Comoro Islands 1972 – 2008 37 -3.60%

shown in Table 3.9, none of the countries represented spend the entire sample in the

second component, and these extreme steady states tend to be quite short lived. The

median duration of steady states in this component is four years, and of the 21 steady

states in the component, only four—Comoro Islands beginning in 1972, Côte d’Ivoire

beginning in 1982, Equatorial Guinea beginning in 1995, and Zimbabwe beginning in

1999—are sustained for ten or more years.

The result that more than 85% of steady state since 1952 appear to be drawn

from a single normal distribution, with the remaining steady states well captured by

a ‘noise’ or ‘heavy-tails’ component, is surprising. Theoretical research such as Mur-
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phy et al. (1989), Azariadis and Drazen (1990), and Azariadis (1996) has focused on

the possibility of underdevelopment or poverty traps, with empirical applications such

as Bloom et al. (2003) and Graham and Temple (2006) still occupying a prominent

place in the development literature. Others such as Pritchett (2000), Paap et al. (2005),

Jerzmanowski (2006), and Owen et al. (2009) have found a variety of growth patterns

or groups across countries. The results presented here suggest that the range of growth

patterns, patterns which are clearly visible when estimating steady-state growth rates

within countries, can almost entirely be accounted for by a single normal distribu-

tion. Periods of economic take-off or decline, the miracles and disasters of economic

growth, are drawn from a single diffuse distribution that may best be thought of as

capturing noise or fat-tails in the growth process.20 At least in unconditional steady-

state growth rates, there does not appear to be a discrete distinction between countries

with near-zero growth and positive growth.

Yet these results also run against the neoclassical growth literature and the idea that

worldwide technological progress drives a common steady-state growth rate across

countries. The variance of the main component in both datasets implies a standard

deviation of 1.9–2.3%; this indicates a wide range in the steady-state growth rates

themselves, not just annual rates around some common steady state. Further, although

the steady states in the noise component tend to be more brief, the range in the main

component does not fall for longer duration steady states (see Figure 3.9). There is a

broad range of growth rates even in the most persistent steady states. This stands in

contrast to the neoclassical model, which would imply that the standard deviation be

small enough to only reflect measurement error in the sampler.

The results do not indicate discrete growth clubs, but neither do they suggest a

distribution with very little variation around a worldwide steady-state growth rate. In-
20This suggests that heavy-tailedness could describe steady-states across countries in much the same

way that Fagiolo et al. (2008) show it describes annual growth within countries.
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Figure 3.9: Range of Growth Rates by Duration

Solid circles indicate steady states from the first component, while open circles indi-
cate steady states from the noise component. The dispersion of steady states in the
first component is relatively constant regardless of how long the country remains in
the steady state.

stead, they suggest that there is substantial variability across countries in steady-state

growth, and that this variability follows a single, potentially fat-tailed distribution.

The key question this raises from a theoretical standpoint, then, is not how to account

for growth clubs, but what places a country high or low within this distribution.

To illustrate the kind of model being described, consider the work of Davis (2008).

This model includes a growth regime similar to an AK model, in which the growth

rates of individual countries will be depend on institutional characteristics, and the

distribution of growth rates within this group could be quite broad depending on

the range of institutions represented.21 Howitt and Mayer-Foulkes (2005) have simi-

lar implications for below-frontier growth, although their model implies that frontier

growth should appear as a peak in the upper tail of the distribution while Davis’ model

21AK models have fallen out of favor in economic growth, although Todo and Miyamoto (2002)
have suggested that scale effects may be more relevant than previously thought. Recent work by Bond
et al. (2010) suggests that the relationship between investment and long run growth suggested by AK
models holds quite well for non-OECD countries, which is precisely in line with the implications of
this model.
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suggests that some countries with small but rapidly growing market size should ex-

perience steady-state growth well above that of the frontier. The empirical results

presented here indicate that these models, which imply a broad distribution of steady-

state growth rates, deserve more focus in the literature.

3.5 Conclusion

This paper uses a mixture of normal components to characterize the distribution of

steady-state growth rates in per capita income across countries. In order to capture

the possibility of changes in steady-state growth within a country over time, I first use

a dynamic mixture model previously applied to business cycle analysis to estimate

underlying steady-state growth rates. The first stage resembles the within-country

estimation of Hausmann et al. (2005) and Jones and Olken (2008), but captures dy-

namic features generally associated with theoretical steady states. I find a wide range

of growth experiences captured in the movements of the steady-state growth rates, in-

cluding major cross-country decelerations and growth reversals in the mid-1970s and

around 1980, as well as many examples of strong growth accelerations throughout the

1952-2008 sample.

The second stage provides insight into the literature on poverty traps as well as

work on multiple growth paths such as Howitt and Mayer-Foulkes (2005). Despite

the wide range of experiences captured by the estimated steady-state growth rates, I

find that over 85% of steady-state growth rates are well described by a single normal

distribution, with the remaining observations all drawn from the tails of another nor-

mal component, which is best thought of as a noise or heavy-tailedness component.

These results suggest that poverty-trap stagnation and technological frontier growth

are not well-defined, distinct groups, at least without conditioning on variables which
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are able to account for the singular (but possibly fat-tailed) nature of the distribution

of steady-state growth rates. What is driving the distribution of steady-state growth

rates, and the mechanisms by which they affect the growth process, are interesting

questions for future theoretical and empirical work.
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Appendix A

Bayesian Analysis and Reversible

Jump MCMC

A.1 Bayesian Analysis and MCMC

Classical estimation techniques revolve around identifying the set of parameters, which

we will refer to as θ ∗, which maximize the likelihood function of the data, p(y |θ).

Typically a familiar functional form is assumed, and the likelihood maximizing pa-

rameters are found either analytically or through iterative numerical methods.

In Bayesian estimation, the object is not selecting parameters to maximize a func-

tion, but rather to identify the entire distribution of the parameters conditional on the

data observed, or the posterior distribution. The posterior probability of the parame-

ters is p(θ |y) = [p(y |θ) p(θ)]/p(y) by Bayes rule. The typical Bayesian formula-

tion is

p(θ |y) ∝ p(y |θ)× p(θ) (A.1)

where p(θ) is the prior distribution, which incorporates any previous knowledge the

researcher may have about the parameters in question. In practical terms, the prior
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may be tuned to the data being analyzed in a way that reflects what might be gleaned

from naive analysis, and in general priors may be designed to have little influence on

the posterior, rather than being informative.

Since these posterior distributions are often complex and cannot be expressed an-

alytically except for the simplest cases, they are frequently simulated using Markov

chain Monte Carlo (MCMC) simulation techniques. MCMC simulation methods

come in two main varieties: Gibbs sampling takes random draws from the conditional

posterior distribution of a single parameter (conditional on the current values of all

other parameters), stores this draw as the new value of the parameter, then continues

to draw from the conditional posteriors of each other parameter; Metropolis-Hastings

sampling takes random draws from a more conventional distribution and, with proba-

bilities based on the value of the posterior at this draw, probabilisticaly either accepts

the draw and stores it as a draw from the posterior or rejects the draw and stores the

previous draw.

In both cases the Monte Carlo simulation forms a Markov chain in that the value

of the draws are serially dependent on the immediately preceding draw. As long

as the probability of moving between two values in the Markov chain are the same

regardless of the direction of movement, a property known as detailed balance, it has

been shown that any MCMC method will converge to drawing from an equilibrium

distribution which is exactly the posterior distribution of interest.1

1For a more thorough introduction to MCMC techniques for Bayesian statistics, see Casella and
George (1992) and Chib and Greenberg (1995). Robert and Casella (2004) and Früwirth-Schnatter
(2006) provide a more complete discussion of of Bayesian approaches to mixture analysis.
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A.2 Reversible Jump MCMC

What follows is a brief technical summary of the steps in the reversible jump Markov

chain Monte Carlo approach. Waagepetersen and Sorensen (2001) provide a tutorial

of reversible jump MCMC, and Green (1995) offers a more thorough presentation.

1. Initially the parameter vector for the current model M j should be updated ac-

cording to some standard MCMC method (In my case the Gibbs sampler). The

Gibbs sampler takes advantage of the fact that the conditional distributions of

the parameters have simple closed form solutions, although the joint distribution

can be quite complicated. A sweep takes some initial values of all parameters

but one, then takes a random draw of this last parameter from its conditional dis-

tribution. This draw is then counted as the new value for that parameter. This

is done for each of the parameters in turn until all have been drawn, in which

case the new draws are treated as new initial values in another sweep. After a

sufficient number of draws, this sampling procedure will converge to the true

joint posterior, and subsequent draws from the conditionals will also be draws

from the joint posterior. The exact conditional posteriors used in this paper are

as follows:

(a) η j | · · · ∼D (δ +n1, . . . , δ +nk) where n j = ∑
N
i=1 I{zi= j};

(b) µ j | · · · ∼N

{(
σ
−2
j ∑

N
i=1 I{zi= j}yi +κξ

)
/
(

σ
−2
j n j +κ

)
,
(

σ
−2
j n j +κ

)−1
}

;

(c) σ
−2
j | · · · ∼ Γ

(
α +n j/2, β + 1

2 ∑
N
i=1 I{zi= j}

(
yi−µ j

)2
)

;

(d) β | · · · ∼ Γ

(
g+ kα, h+∑

k
j=1 σ

−2
j

)
; and

(e) p(zi = j | · · ·) ∝
(
η j/σ j

)
exp
{
−
[
yi−µ j

]2
/2σ2

j

}
, which is normalized

so that ∑
k
j=1 p(zi = j | · · ·) = 1;
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2. For the between models moves, Richardson and Green (1997) utilize two steps:

a split-combine move and a birth-death move. Cappé et al. (2003) show that

using the birth-death step alone will also converge to the true posterior. As this

step is substantially simpler to code, I procede without the split-combine step.

A general formulation of the reversible jump algorithm is given below, followed

by the specific birth-death application used.

(a) Randomly choose (with predetermined probability pi j) an alternative model

M j from the available options, and propose a move to the alternative pa-

rameter space of the randomly chosen model.

(b) Determine the parameters to use for the proposal. Since the parameter

spaces are of different sizes, if the size of the parameter space is greater

in the proposed model, generate a random vector ui from a proposal gen-

erating density qi j(ui|θi) such that dim(ui) = dim(θ j)−dim(θi) and θ j =

ϕi j(θi, ui), where ϕi j(·) is an invertible mapping. If dim(θ j) < dim(θi),

then for the proposed jump set (θ j, u j) = ϕ
−1
ji (θi) (in such a case u jis

irrelevant, but is included here for completeness).

(c) Make the jump from Mi to M j with probability

α = min
{

1,
P(M j, θ j|y)p ji

P(Mi, θi|y)pi jqi j(u1|θi)
J
}

where P(M j, θ j|y) is the posterior probability of the model and parame-

ters; in practice, since this is proportional to the likelihood multiplied by

the prior, this is replaced with P(y|θ j)P(θ j) as long as the models i and j

are known up to the same multiplicative constant. J here is the determinant
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of the Jacobian of the transition function, or

J =
∣∣∣∣∂ϕi j(θi, ui)

∂ (θi, ui)

∣∣∣∣ ,
and is necessary in order for the dimension matching of Green (1995) to

occur.2

3. The birth-death step randomly chooses between two possible types of jump: in-

creasing the number of components by one through the birth of an empty com-

ponent (that is, a component with no observations allocated to it) and decreasing

the number of components by one through the death of an empty component.

(a) A birth move is chosen with probability bk and a death move is chosen

with probability dk = 1− bk. Since a single component cannot have a

death and once the maximum model size is reacher ther cannot be a birth,

b1 = 1 and bk max = 0, with d1 and dk max defined appropriately. For all

other jumps, I set bk = dk = 0.5.

(b) For the birth step, a new component is generated with the parameters

drawn from the prior distributions:

i. µ j∗ ∼N
(
ξ , κ−1);

2Note that if we were to consider in our mapping from section 3 the possibility of mapping in
both directions (which may be necessary in the case of non-nested models), we would additionally
require random vector u jfrom proposal generating density q ji(u j|θ j) such that dim(ui) + dim(θi) =
dim(u j)+dim(θ j). The non-unit expression in α would then need to be multiplied by the new proposal
generating density. Combining this with the use of the likelihood and prior to determine the posterior
yields the following intuitively paired interpretation of α:

α = min
{

1,
P(y|θ j)
P(y|θi)

×
P(θ j)
P(θi)

×
p ji

pi j

q ji(u2|θ j)
qi j(u1|θi)

×
∣∣∣∣∂ϕi j(θi, ui)

∂ (θi, ui)

∣∣∣∣}
= min{1, (likelihood ratio)× (prior ratio)
×(proposal ratio)× (Jacobian)}
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ii. σ
−2
j∗ ∼ Γ(α, β ); and the weight drawn from

iii. η j∗ ∼ Beta(1, k)where k is the number of components before the

birth.

iv. Once the new component is created, the existing weights are muliti-

plied by 1−η j∗ so that the weights of the new model sum to 1.

(c) For the death step, each empty component is given an equal probability of

being chosen and removed (so the probability of a particular component

being removed depends not only on the total number of components k but

on how many of those components have n j∗ = 0). Once component j∗

has been removed, the existing weights are divided by 1−η j∗ so that the

weights of the new model sum to 1.

4. When the proposed jump has been formulated, the algorithm probabilistically

jumps to the new model with probability min(1, A) for a birth and min
(
1, A−1)

for a death, where A is defined below:

(a) The prior ratio is PR = p(Mk+1)/ [p(Mk)×B(kδ , δ )]×(k +1)×η
δ−1
j∗
(
1−η j∗

)kδ−k+N ,

where B(·, ·) is the Beta function and N is the total number of observa-

tions;

(b) The proposal ratio is PROPR = dk+1/
[
(k0 +1)×bk×beta1,k

(
η j∗
)]

, where

k0 is the number of empty components before the birth and beta1,k (·) is

the density of Beta(1, k);

(c) The determinant of the Jacobian is |J|=
(
1−η j∗

)k; and therefore

(d) A = PR×PROPR× |J| since the likelihood ratio is 1. Modification of

these definitions for the death step is straightforward.
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5. I iterate through this algorithm to generate a sufficiently long converged chain,

remove some amount of burn-in at the beginning for which the chain has not

yet converged, and conduct inference based on the posterior of each model and

the parameters of the most likely model.3

A.3 Does our sampler work?

At the end of the day, what you get from MCMC is the output of the sampler. Typ-

ically, there are no goodness of fit metrics available. So it is important to establish

that our sampler works well in situations where we already know something about the

correct answer. To that end, we present a replication of a result in RG and also a small

simulation experiment.

A.3.1 Replicating Richardson and Green’s results using the Galaxy

data

One of the three datasets RG use is the “Galaxy data” often used in other papers on

mixture modeling. It comprises a velocity measure for 82 galaxies. Figure A.1 (left

panel) presents a kernel density plot of the data. We use the same priors as RG, run

our sampler for 300,000 draws and discard the first 100,000 as burn-ins. We differ

from RG by limiting the maximum number of components to 10 (compared to their

30), and using only birth / death steps to change dimensions. In other respects our

sampler is the same as RG, including labeling components for identification purposes

by the order of the means.4

3See Raftery and Lewis, 1992 for a discussion of long chain Bayesian diagnostics, as opposed to
the multiple sequence procedure advocated by Gelman and Rubin, 1992

4More specifically, we sort each draw in the order of the drawn means from lowest to highest. We
do this in order to avoid the problem of “label switching,” in which draws from distinct components
cannot be readily distinguished. Although there are limitations to using the order of the means as the
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Figure A.1: Kernel Plots of Galaxy and Simulation Data

Table A.1: Posterior Probabilities of Test Data

PANEL A: p(1) p(2) p(3) p(4) p(5) p(6) p(7) p(8) p(9) p(10)

Galaxy (RG) 0 0 .061 .128 .182 .199 .16 .109 .071 .04

Replication 0 0 .071 .153 .194 .198 .164 .1096 .069 .041

PANEL B:

Simulation 0 .301 .379 .184 .076 .036 .014 .0062 .0018 .0003

Percentage of jumps accepted: Galaxy RG–4%; Galaxy replication–16.6%; Simula-
tion experiment–3.8%.

Table A.1 (panel A) compares the posterior distribution for the number of com-

ponents, k, in the galaxy data presented in RG with the posterior we generate with

our sampler.5 As can be seen, our sampler puts a bit more posterior probability on a

lower number of components than does RG’s (which is likely because of the fact that

we limit the maximum number of components to 10), but overall the two posterior

densities are quite close. Both samplers agree that k = 5 or k = 6 are the most likely

number of components and both put no probability on k ≤ 2.

labeling criterion, in practice we do not encounter these difficulties for the models with the numbers of
components we interpret.

5Richardson and Green (1998) point out that their original paper included an error in the acceptance
probability equation. The changes to their results were quite small, and we have corrected for the error
in our own code.
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A.3.2 An experiment using simulated data

The above exercise shows that our sampler produces results similar to another well

known, highly cited, sampler. Here we create a dataset that is a mixture of three

underlying components and check to see if our sampler can recover the correct num-

ber of components, the parameters of the components, and the correct allocation of

observations to components.

Specifically we create a 200 observation dataset that is a mixture of three normal

components. 45% of the data are drawn from a normal with mean 10 and standard

deviation 2, 22.5% from a normal with mean 30 and standard deviation 2.5, and 32.5%

from a normal with mean 35 and standard deviation 2. Figure 1 (right panel) shows

a kernel density plot of the data. Notice that even though we know there are three

underlying components, the kernel density has only two modes.

Panel B of Table 1 shows the posterior distribution for the number of components

in the data as generated by our sampler. We again form our priors as in RG, set

kmax equal to 10, and take 300,000 draws discarding the first 100,000 as burn-in. Our

sampler finds a strong mode at k = 3 (41% of the posterior probability is on this point),

and almost no probability on k > 4. Figure A.2 presents the posterior distributions for

the parameters of the three distributions estimated by the k = 3 output of the sampler,

showing that these parameters are being estimated fairly well. Finally, we note that

our algorithm correctly classifies 188 of the 200 observations in the sample, which is

94% success.
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Figure A.2: Posterior Distributions of Simulated Data Parameters (k = 3)

The means of the posterior distributions for the means and variances are as follows:
Component 1–mean 10.2, standard deviation 2.2; Component 2–mean 28.7, standard
deviation 2.7; Component 3–mean 34.9, standard deviation 2.4.
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