
The University of Oklahoma

Graduate College

Achieving Low latency and High Packet Reception Ratio in Media

Access Control Layer in VANET

A dissertation

Submitted To The Graduate Faculty

in partial fulfillment of the requirements for the

Degree of

Doctor Of Philosophy

by

Xianbo Chen

Norman, Oklahoma

2010

Achieving Low latency and High Packet Reception Ratio in Media

Access Control Layer in VANET

A Dissertation Approved For The

School Of Electrical And Computer Engineering

By

Hazem H. Refai PhD, Chair

William Ray PhD

James Sluss PhD

Monte Tull PhD

Samuel Cheng PhD

c© Copyright by Xianbo Chen 2010

All Rights Reserved.

To my lovely daughter Melody...

Acknowledgments

I would like to thank members of my doctoral committee, Dr. William Ray, Dr. James

Sluss, Dr. Monte Tull, and Dr. Samuel Cheng for their advice and suggestions in the

early stages of this work, and Dr. Xiaomin Ma from Oral Robert University for giving

me the privilege of working with him. My appreciation also goes to my advisor, Dr.

Hazem Refai, for his direction and aid in the fulfillment of this work, which would not

have been possible without him. Lastly I thank my wife Huanhuan and my parents, for

their constant support and understanding throughout this lengthy process.

v

Table of Contents

1 Introduction . 1

1.1 VANET . 1

1.2 MAC History . 4

1.3 Challenges And Requirements In VANET 4

1.3.1 Point-to-point or point-to-multipoint: Unicast, broadcast, or mul-

ticast? . 4

1.3.2 One-hop communication . 5

1.3.3 Bounded latency . 6

1.3.4 Short packet length . 6

1.3.5 Adverse channel quality . 6

1.3.6 High packet delivery ratio (PDR) 7

1.3.7 More severe hidden terminal problem 7

1.3.8 Other considerations . 8

2 Background and Comparison . 10

2.1 Space division multiple access (SDMA) 10

2.1.1 The workload of generating P-FUNC and M-FUNC will be tremen-

dous . 10

2.1.2 Updating P-FUNC and M-FUNC in all vehicles in a synchronous

and timely manner will be hardly achievable 12

2.1.3 Other issues . 12

2.2 ADHOC MAC . 12

2.2.1 How to determine the optimal number of slots in one frame? . . . 13

2.2.2 How to solve possible collision when multiple nodes contend for

the same slot? . 13

2.2.3 How to effectively reduce RR-ALOHA protocol overhead? 14

2.3 D-MAC . 14

2.4 802.11p MAC . 16

2.5 Existing Enhancements on IEEE 802.11 MAC 16

vi

2.5.1 Repetition . 17

2.5.2 Reception confirmation mechanisms 17

2.5.3 Adaptive backoff . 19

2.5.4 Priority . 21

2.5.5 Location aided MAC . 21

2.5.6 Broadcast RTS/CTS . 22

2.5.7 Transmission power control (TPC) and adaptive rate 22

2.5.8 Out-of-band signaling (OBS) . 23

3 Broadcasting in VANET . 25

3.1 Overview of DSRC MAC . 25

3.1.1 RTS/CTS . 25

3.1.2 Physical and virtual carrier-sense 26

3.1.3 Inter-Frame Spacing (IFS) . 26

3.1.4 Random backoff . 27

3.1.5 Positive acknowledge and retransmission 28

3.1.6 Fragmentation and defragmentation 28

3.2 DSRC MAC Broadcast . 28

3.3 Limitations of DSRC MAC Broadcast . 30

3.4 Broadcast in R-ALOHA . 30

3.4.1 Overview of R-ALOHA . 30

3.4.2 R-ALOHA Broadcast . 32

3.4.3 Limitations of R-ALOHA Broadcast 32

3.5 Simulation . 33

3.5.1 Simulation Setting . 33

3.6 Results and Analysis . 36

3.6.1 Normalized Throughput . 36

3.6.2 Average Delay . 39

3.6.3 Packet Delivery Ratio . 41

vii

4 Saturation Performance of IEEE 802.11 MAC 44

4.1 How CFP Happens . 44

4.2 CFP Differences in Between Unicast and Broadcast 46

4.3 Performance Analysis . 47

4.3.1 Packet Transmission Probabilities 47

4.3.2 Channel Performance . 49

4.3.3 Performance Indices . 50

4.4 Simulation . 51

4.5 Numerical Results And Discussions . 52

5 Performance of IEEE 802.11 MAC In A Highway Scenario 56

5.1 System Model And Analysis . 57

5.1.1 Assumptions . 57

5.1.2 Backoff Process in IEEE 802.11 Broadcast 58

5.1.3 Performance of the Tagged Vehicle 59

5.1.4 Service Time . 59

5.1.5 Performance Indices . 61

5.2 Simulation . 62

5.3 Numerical Results And Discussions . 63

6 Conclusion and Future Work . 66

References . 68

A Glossary . 74

B MatLab Code Conducting Fast One-hop 802.11 MAC layer broadcast-

ing Simulation . 76

B.1 Main File . 76

B.2 Initialization . 83

B.3 Protocol Processing . 87

C MatLab Code Conducting Event-driven 802.11 MAC layer Simulation 96

viii

List of Figures

1.1 National ITS Architecture [1] . 2

1.2 Safety-related VANET applications . 3

1.3 Hidden terminal problems . 8

2.1 Example of straight parallel highway . 11

2.2 Example of meshed road structure (NYC) 11

3.1 Inter-Frame Spacing . 27

3.2 An example of backoff mechanism . 27

3.3 DSRC MAC broadcast . 29

3.4 R-ALOHA frame and slot . 30

3.5 (a) R-ALOHA point-to-point (b) R-ALOHA broadcast 33

3.6 Terminal position arrangement . 34

3.7 Normalized throughput . 36

3.8 Normalized throughput of slot-by-slot R-ALOHA with different contention

probability . 38

3.9 Average delay . 40

3.10 Delay of DSRC . 40

3.11 Channel usage of DSRC . 41

3.12 Packet Delivery Ratio . 42

3.13 Packet Delivery Ratio of Slot-by-slot R-ALOHA 42

3.14 Packet Delivery Ratio of Frame-by-frame R-ALOHA 43

4.1 Example of backoff counter operation (a) backoff without consecutive

freeze; (b) backoff with consecutive freeze 45

4.2 Markov chain model for SBP in broadcast 48

4.3 Saturation throughput of IEEE 802.11 for broadcast 54

4.4 Saturation delay of IEEE 802.11 for broadcast 54

4.5 Saturation packet delivery ratio of IEEE 802.11 for broadcast 55

5.1 Highway topology abstraction: 2-D to 1-D 57

ix

5.2 Markov chain model for IEEE 802.11 broadcast 58

5.3 Generalized state transition diagram for broadcast 61

5.4 Delay of DSRC Highway safety messaging 64

5.5 PDR of DSRC highway safety messaging 64

x

List of Tables

3.1 Limitation of DSRC MAC Broadcast . 30

3.2 Global Parameters . 35

3.3 DSRC MAC parameters . 35

3.4 R-ALOHA parameters . 35

4.1 IEEE 802.11 FHSS System Parameters 53

5.1 Other Parameters . 63

xi

Abstract

Vehicular ad hoc networks (VANETs) or inter-vehicle communication (IVC) makes pos-

sible the development of a number of innovative and powerful transportation system

applications. VANET technology proves an important extension of both cellular and

wireless local area networks (WLANs) currently used in the transportation industry. It

is widely recognized that the transportation industry serves as an ideal platform for a

large number of existing and future wireless applications, many of which have yet to be

developed for commercial use.

Safety messaging is one of the most critical uses for VANET, supporting a number

of potential safety applications, e.g. emergency electronic brake lights, lane change and

pre-crash warning, among others. Many applications require extremely low latency (less

than 100ms) and highly reliable (over 99% packet delivery ratio) communication services.

In order to satisfy these critical requirements, an efficient media access control (MAC)

layer is necessary. At the time of this writing, a de facto standard of VANET MAC is

being developed.

Extensive VANET MAC research with regard to safety applications has yet to be

done. The proposed base for the VANET future standard uses an 802.11a media access

layer whose performance-although studied-is known to contain deficiencies and was ac-

complished outside the VANET context. These factors motivated the author to initiate

the study of VANET and MAC.

In this work, MAC for VANET MAC is extensively researched, and a history of

MAC is initially reviewed. The special and critical requirements of VANET MAC are

presented and four major categories were investigated and analyzed. Because the under-

development of 802.11p is based on the IEEE 802.11a, special consideration is given with

regard to the performance of 802.11a MAC and associated requirements. Extensive re-

search enhancements centering on safety applications of the 802.11 MAC are conducted.

The author’s research generated a platform in which VANET performance can be quan-

titatively evaluated, analyzed, and verified. The quantitative behavior of the current

protocols/algorithms, which include delay and packet delivery ratio, are presented on

this platform. Furthermore, the future protocol and algorithm proposals can be added

into this platform so that a faster research cycle can be achieved. Through theoretical

analysis and simulation, this investigation shows that current proposed VANET MAC

and 802.11a MAC enhancements have yet met the critical requirements of VANET. The

future work may focus on how to use this theoretical model and simulation tool to assist

xii

MAC layer protocol design. Meanwhile, when new algorithms are proposed or accepted

by the standard, this model and tool can serve as a fast and convenient platform, where

the new algorithm can be easily added for the sake of evaluation and verification. The

feasibility of relaxing some assumptions included therein, such as the hidden node prob-

lem in a two dimensional space, may also be studied to make the platform closer to a

real system.

xiii

CHAPTER 1

Introduction

1.1 VANET

Although severity amelioration technologies, including seat belts, air bags and automatic

braking systems (ABS), have been utilized for many years to provide passive protections

to vehicle occupants in motor vehicles, nearly 6.2 million police-reported motor vehicle

crashes occurred every 5 seconds on U.S. highways in 2005. On average, a person was

injured in a police-reported motor vehicle crash every 12 seconds, and fatality occurred

every 12 minutes [2].

Deployment of crash avoidance technologies such as cooperative collision avoidance

(CCA) [3], has the potential to improve highway safety. Active protection is possible

when motor vehicles are, in effect, able to observe what is happening around them, i.e.

to foresee what will happen next, and advise motor vehicle operators accordingly of

protective measures. As a result, for example, it is possible that fewer motor vehicles

are involved in a chain collision. To achieve improved safety, motor vehicles must be

equipped for vehicle-to-vehicle wireless communication of sufficient, promptly-conveyed

information.

VANET addresses these aforementioned needs and requirements, and as shown in

Fig. 1.1, VANET provides Intelligent Transportation System (ITS) capabilities that en-

hance existing applications and foster additional applications among which safety-related

applications reside. To accomplish vehicle-to-vehicle communication, vehicles and road-

side-units must have a common communication interface. However, such commonality

has yet to be achieved among automobile manufacturers, wireless device vendors, and

wireless service carriers. Hence, interoperability between vehicular communication de-

vices is both costly and challenging.

Regardless of the final, agreed-upon VANET standard configuration, safety mes-

saging must be supported. In [4], eight potential safety applications based on safety

messaging were selected for further study:

• Traffic signal violation warning

• Curve speed warning

• Emergency electronic braking

1

Figure 1.1: National ITS Architecture [1]

• Pre-crash warning lights

• Cooperative forward collision warning

• Left turn assistant

• Lane change warning

• Stop sign movement assistance

Potentially, these applications have the ability to enlarge a driver’s vision range. A

variety of VANET applications are illustrated in Fig. 1.2

The IEEE 1609 family of standards for wireless access in vehicular environments

(WAVE) is currently under development with hope of solving interoperability issues. It

is anticipated that the four standards serve as the foundation for a complete commu-

nication solution for potential VANET applications. The multi-channel operations are

defined in IEEE P1609.4, which is based on IEEE 802.11p - the physical layer (PHY) and

MAC layer amendment for WAVE to the predominant IEEE 802.11 technology. Amer-

ican Society for Testing and Materials (ASTM) first wrote the dedicated short range

communication (DSRC), which is a synonym of WAVE. These terms are used inter-

changeably throughout this dissertation. Its PHY&MAC specifications are based IEEE

802.11a, as noted in one fo the standard documents. These were accepted and merged

2

Traffic signal
violation warning

Pre-crash
warning

Lane
change
warning

construction
notification

road condition report to
central office

accident report to
central office

accident severity
amelioration

Figure 1.2: Safety-related VANET applications

3

into the IEEE 802.11 standard family as 802.11p, which is scheduled for publication in

November 2010.

1.2 MAC History

The Media Access Control (MAC) data communication protocol sub-layer, also known as

the Medium Access Control, is a part of the data link layer specified in the seven-layer

OSI model (layer 2). It provides addressing and channel access control mechanisms

making it possible for several terminals or network nodes to communicate within a

multipoint network, typically a local area network (LAN) or metropolitan area network

(MAN).

The MAC sub-layer acts as an interface between the Logical Link Control sublayer

and the network’s physical layer.

Media access control is often used as a synonym for multiple access protocol, since the

MAC sublayer provides protocol and control mechanisms required for a certain channel

access method. This makes it possible for several stations to share a connection to the

same physical medium. Examples of a shared physical medium include bus networks

(Ethernet), ring networks, and wireless networks.

1.3 Challenges And Requirements In VANET

The unique deployment environment of VANET and the nature of VANET safety critical

applications (VSCAs) pose a number of technical challenges and requirements.

1.3.1 Point-to-point or point-to-multipoint: Unicast, broadcast, or multi-

cast?

A wireless radio channel is, by its nature, broadcast because the wireless signal propaga-

tion is physically unbounded. Benefiting from this, point-to-multipoint communication

is favorable for delivering safety-critical messages as soon as possible to as many neigh-

boring vehicles as possible. For this reason, unicast is not proposed for VSCAs.

While both broadcast and multicast carry out point-to-multipoint communication,

attention to their differences must be considered when designing VSCA communication

protocols. They have yet to be clearly stated in the literature.

Broadcast transmits information to every node within its coverage, and yet the trans-

4

mitter does not recognize or count the number of receivers. As such, there is no practical

and deterministic mechanism guaranteeing that the information can be delivered suc-

cessfully to each potential receiver located within the broadcast range. The mechanism

of negative acknowledgement (NAK) tone [5, 6, 7] can merely notify in general the failure

of broadcast reception by a receiver but cannot indicate a specific receiver.

Multicast distributes information to a designated group whose identities namely lo-

cation, quantity, addresses, and the like, should be known by the transmitter. As a

result, a feasible mechanism can be conceived. Positive acknowledgement (ACK) from

each receiver is but one example of a reliable information delivery mechanism.

In order to increase the broadcast’s transmission reliability, countermeasures such as

decreasing access collision, interference, and transmission bit error rate (BER) can be

taken. In addition, ACK provides a deterministic success of transmission.

Multicast requires the sender to learn the identity of its receivers. This is achieved

by continuously monitoring channel activities. Broadcast is relatively simpler, as it does

not require this same procedure.

The broadcast nature of the communication is required for the development of VS-

CAs. A dedicated channel is proposed as a reserved conduit for safety messaging [4, 8].

The author posits that a mixed and cooperative use of broadcast and multicast should

be of benefit for VSCAs. A possible combination algorithm is discussed in Chapter 6.

1.3.2 One-hop communication

It is intuitively understandable that the closer a vehicle is to an accident, the more dan-

gerous the situation. Therefore, it is important that safety-critical messages are delivered

as soon as possible to vehicles located within the vicinity of the message originator. In

this way, a vehicle operator has ample time to take preventive measures. In other words,

VSCAs are locally geo-significant.

When sending safety-critical messages to all local vehicles, two modes of communi-

cation are potentially of use, namely one-hop communication and multi-hop communi-

cation.

The designated transmission range of the DSRC transmitter is sufficient to cover

the required VSCA vicinity [9, 10]. Following is the design specification of DSRC

transceivers.

• Maximum Transmission power is 28.5 dBm which can cover 1000 m, and

5

• Receiver sensitivity is -77 dBm

Therefore, it can be concluded that the one-hop communication mode is supported

or proposed for VSCAs in [11, 12, 9, 13, 14, 8, 4, 15].

1.3.3 Bounded latency

Latency is defined as the duration of time between the point at which a packet is gener-

ated and when it is successfully delivered. Because safety-critical events occur suddenly

and are often short-lived, the effective and valid time span for countermeasures is ac-

cordingly short, a fact which challenges the bounded latency requirement underlying the

communication system.

A 100ms latency requirement is proposed in [4] . For example, in an emergency

electronic brake lights application, given the same deceleration rate and speed of 75 mph

for every vehicle in a platoon, the 100ms latency criterion potentially prevents a chain

collision at an even extreme headway value of around 4 meters, providing processing

delays incurred from other subsystems are ignored. If instead, braking is dependent

upon human reaction instead, minimum 32-meter headway is required [16].

The latency requirement is more stringent, i.e. around 20ms [4], for pre-crash warning

applications.

1.3.4 Short packet length

Given a data rate, the shorter the length is, the shorter the transmission time. Fur-

thermore, shorter packets are less exposed to the influence of channel burst error. Data

packets that support most vehicle-to-vehicle communications were determined to be less

than 100 bytes [4]. This poses a challenge to developing a compact protocol.

1.3.5 Adverse channel quality

The highly-dynamic vehicular environment is harsh. High mobility and varying trans-

portation conditions result in a large Doppler effect and multi-path delay spread [17, 9,

18]. In such an environment, simulations show that the 802.11a/RA and DSRC phys-

ical layer exhibit high error rate [17, 9], which is confirmed in [18] through real-world

experiments and measurements. The BER is highly sensitive to vehicle speeds and can

reach an irreducible error floor (> 10−3) when vehicles move at higher speeds [9].

A high-gain forward error correction mechanism or feedback mechanism is absolutely

6

necessary to combat adverse channel conditions existing in a VANET environment.

1.3.6 High packet delivery ratio (PDR)

High packet delivery ratio (PDR) is defined as the ratio of the number of broadcast pack-

ets received successfully by all receivers to the total number of packets sent. An accurate

and timely information delivery is needed to alleviate and hopefully avoid safety-critical

events. Thus a high delivery ratio (99% [19]) of packets conveying information must be

achieved and guaranteed.

Three factors impede VANET from reaching the desired PDR.

1. Access collision. Packets transmitted by terminals collide when they transmit

simutaneously. VANET’s nature of shared broadcast medium and of distributed

system makes access collision unavoidable. The hidden terminal problem further

aggravates access collision. Such collisions can be alleviated by applying appropri-

ate MAC protocols to coordinate terminal access activities.

2. Interference. This can be alleviated by either an appropriate physical layer al-

gorithm design or the cooperation between MAC layer and physical layer - for

transmission power control (TPC).

3. Multi-path fading and Doppler effect. This factor is discussed in the previous

subsection.

Two of the aforementioned factors can be battled by improving MAC designs and

implementations.

1.3.7 More severe hidden terminal problem

Since broadcast is recommended for VSCAs, the hidden terminal problem is more prob-

lematic, as illustrated in Fig. 1.3. A unicast scenario is shown in Fig. 1.3(a). The

shaded area is the potential hidden terminal area, which is determined by the only one

transmitter-receiver pair. The potential hidden terminal area is the area where all the

potential hidden terminals might exist. In a broadcast scenario shown in Fig. 1.3(b),

the potential hidden terminal area is apparently much larger because more than one

receivers exist therein.

7

text text

text

Unicast
Terminal S

Receiving
Terminal T

Potential hidden
Terminal area

text

Potential hidden
Terminal area

Broadcast
Terminal S

 T

 T

 T

 T

(a) Unicast (b) Broadcast

Figure 1.3: Hidden terminal problems

1.3.8 Other considerations

Link life for vehicles traveling in opposite directions [13] can be extremely short and

possibly devastating for multi-hop communications, as a result of its one-hop nature,

short packet length, high data rate, and 100 ms bounded delay requirement.

However, for safety messaging, mobility does not aggravate the hidden terminal prob-

lem because DSRC data rate is high and safety messages are short. Given the 100 ms

delay bound and 120 mph speed, a vehicle can, at most, move approximately three

meters. In other words, no more hidden terminals are activated when safety-related

messages are being sent.

The research conducted in this work has the following contributions to the research

community in the area of study:

• Thorough survey on the existing VANET MAC layer enhancement proposals.

• First identified the CFP process in the 802.11 protocol.

• Built a Markovian model for 802.11 one-hop broadcast MAC layer performance

analysis

• Developed a simulation Platform for 802.11a based VANET MAC simulation.

The organization of this dissertation is as follows. Chapter 2 covers the current

VANET MAC proposals and existing enhancements to IEEE 802.11 MAC. Chapter 3

compares the performance between DSRC MAC and R-ALOHA MAC. A theoretical

model is presented in Chapter 4 for performance analysis of IEEE 802.11 MAC in a

one-hop broadcast network under saturation traffic condition. The performance in a

8

more realistic environment with highway topology and un-saturated traffic is analyzed

in Chapter 5. A simulation platform for 802.11-based VANET is presented in Chapter 4

and Chapter 5. Chapter 6 gives the conclusion and suggestions for future work.

9

CHAPTER 2

Background and Comparison

IEEE 802.11p is the proposed MAC protocol for VANET applications. At the time

of this writing, researchers have proposed different IVC MAC schemes, which, to the

author’s best knowledge, consist of four general schemes. In this section, each scheme is

briefly depicted and analyzed.

2.1 Space division multiple access (SDMA)

SDMA was proposed for inter-vehicle communication in [20, 21, 22]. Fundamentally,

its concept is to partition the geographical area into multiple divisions and to map

each division to a channel or channels. Thus, the function of partitioning divisions (P-

FUNC) and the function of mapping divisions to channels (M-FUNC) are two critical

SDMA functions. Meanwhile, a real-time and accurate positioning system is mandated.

While SDMA might be efficient for straight highway scenarios, it is difficult to deploy

as a general IVC MAC solution because homogenous, stable, and optimal P-FUNC and

M-FUNC are hard to derive for various transportation scenarios. As such, previously

derived functions target straight highway scenarios, however, as noted above, these can-

not be generalized for all cases. For example, in urban areas where roads are meshed, its

format and ambient are subject to continuously change. If P-FUNC and M-FUNC are

developed for each road in accordance with the algorithm for straight highway scenar-

ios [20, 21, 22], several issues might arise. These are explained in the following sections.

2.1.1 The workload of generating P-FUNC and M-FUNC will be tremen-

dous

For straight parallel highways, such as the one shown in Fig. 2.1, it is relatively uncom-

plicated to generate P-FUNC and M-FUNC.

However, realistic situations are not always this simple. Fig. 2 illustrates a meshed

road structure [23]. Generating P-FUNC and M-FUNC for this scenario is more com-

plex. SDMA is accomplished manually on a single scenario basis, and because there

are thousands of different meshed road structures in this world, manually generating

fucntions for each may not be a sound solution. An automatic generation of P-FUNC

and M-FUNC is indeed necessary for SDMA MAC solutions.

10

Figure 2.1: Example of straight parallel highway

Figure 2.2: Example of meshed road structure (NYC)

11

2.1.2 Updating P-FUNC and M-FUNC in all vehicles in a synchronous and

timely manner will be hardly achievable

The homogeneity of P-FUNC and M-FUNC in all vehicles must be maintained in order

to provide reliable communication networks. In real world scenarios, road construction

is constant as old roads are torn down and new are built. Road changes will likely trigger

a change in P-FUNC and M-FUNC. Therefore managing change and distributing vehicle

updates proves a difficult design challenge for SDMA MAC-based VANET systems.

2.1.3 Other issues

Multiple vehicles occupying a single division, FDMA simultaneous multiple receptions,

TDMA bounded latency, division border effect, and position accuracy, add complexity

to the vehicular SDMA design and implementation.

So although the use of SDMA might theoretically achieve a minimum number of

collisions and bounded delays under certain assumptions, the method might also suffer

feasibility issues.

2.2 ADHOC MAC

ADHOC MAC [24, 25, 26, 27, 28] is a protocol developed within the CarTalk2000

project [29, 30] funded by the European Commission. The basis of ADHOC MAC

is Reliable R-ALOHA (RR-AHOHA). It is well-known that R-ALOHA can effectively

coordinate channel usage in centralized networks. RR-ALOHA aims to fulfil the role

as R-ALOHA, albeit in a dynamic and distributed manner. Essentially, when running

RR-ALOHA protocol, it is expected that the setup of a reliable mobile ad hoc wire-

less communication is accomplished through the timely exchange of TDMA slot usage

information.

Two primary advantages are expected when deploying RR-ALOHA for VANET.

1. Hidden terminal problems and exposed terminal problems are greatly alleviated,

and

2. Highly reliable one-hop unicast, one-hop broadcast, and multi-hop broadcast are

supported.

However, whether or not VANET can make use of these two advantages is truly

dependent upon the speed and accuracy of exchanging slot usage information among

12

vehicles. Research in [25] shows

1. at least two frame cycles must be spent reserving a slot, and

2. the probability of achieving the reservation in two frame cycles is merely around

50%, and

3. the frame length given is 100 milliseconds.

These factors indicate that a minimum time (> 200ms) is needed to successfully ob-

tain the basic channel (BCH) in a static scenario and that the average time is even longer.

Furthermore [26], if mobility and heavier offered-traffic are considered, additional time

to compensate for access collision is required for vehicles to constantly release/request

slots. The short link life shown in [13] and the possible lengthy time required for a new

terminal to acquire the BCH implies that vehicles moving in opposite direction might

not be able to renew their BCHs and communicate when passing each other. Meanwhile

the latency of safety-critical messaging recommended in [4] is only 100 ms. Further study

of RR-ALOHA is needed to show whether or not a vehicle with emergency information

and without slots can obtain a slot in a timely manner.

In addition, questions relating to the verification of RR-ALOHA suitability for VANET

should be answered.

2.2.1 How to determine the optimal number of slots in one frame?

It is difficult to dynamically adjust the size of the frame in VANET; hence it should be

fixed. Size is related to other parameters, such as typical packet length, minimum access

delay, data rate, and network capacity, among others.

2.2.2 How to solve possible collision when multiple nodes contend for the

same slot?

The probability of collision is foreseen to increase when more than one node competes

for available slots. A mechanism must be provided to coordinate the contention for slots

among multiple terminals. In [24, 25, 27, 28], a transmission probability p was set as

p =
1

k
(2.1)

k is derived from

k = M − x (2.2)

13

where M is the fixed maximum number of terminals in any two-hop cluster and x is the

number of terminals that have already acquired the channel.

This algorithm proves conservative when the actual number of terminals is much less

than M and too aggressive when the number is greater than M .

Since it is impossible to know how many terminals are actually contending for slots

at any given time according to the RR-ALOHA mechanism, it is a significant challenge

to obtain the optimal p and avoid access collision. J. J. Blum et al [13] showed similar

concern.

Previous literature assumes an ideal wireless channel. Wireless communication is,

however, notorious for its harsh channel quality. Because the BER in VANET is high [17,

9, 18] and frame information (FI) of RR-ALOHA can be as long as 2500 bits per slot,

the error rate might be extremely high and the RR-ALOHA mechanism might suffer

tremendously. Accurate RR-ALOHA operations are based on the successful FI decoding.

An inaccurate FI transmission will cause corresponding terminals to either erroneously

relinquish the reserved slots or continuously fail slot acquisition.

2.2.3 How to effectively reduce RR-ALOHA protocol overhead?

The total RR-ALOHA overhead can be as high as 2500 bits [25]. The average length of

safety-related messages, however, is only 200 to 400 bytes [4]. This low efficiency (44%

to 56%) might not be acceptable.

2.3 D-MAC

Directional MAC (D-MAC) exerting directional antennas has been thoroughly researched

for packet radio networks [31, 32, 33, 34, 35, 36, 37].

Addtionally, certain aspects of the application of directional antennas in wireless

ad hoc networks have been researched [38, 31, 39, 40, 41, 42, 43]. In summary, the

advantages of applying directional antenna in wireless ad hoc network, i.e. throughput

increase due to simultaneous transmissions, are achieved only if the following two key

constraints are addressed:

1. Constrain the wave propagation between the source and destination (the beam)

as narrowly as possible.

2. If such a narrow constraint is achievable, coordinate multiple simultaneous in-

14

stances of such narrow transmissions.

The literature often assumes a directional antennas consist of ideally non-overlapping

M beams and that the span of each beam is calculated as 360/M degree. It is obvi-

ous that on one hand the larger M , the narrower the beam. On the other hand, an

increase of M will increase the hardware design cost, e.g. antenna interference, multiple

transceivers, and the like.

Terminal coordination is dependent on the presence of the following information at

each terminal:

• the antenna (beam) the terminal should use to transmit to the neighbor, and

• the antenna (beam) its neighbor uses to receive transmission.

There are two ways to accomplish these tasks. One is that the terminal knows its

neighbors’ position information [31, 39, 40, 41, 42, 43]. The other one is that a terminal

constantly listens to the channel and subsequently builds a location table [38].

The DMAC proposal using directional antennas is feasible for static or relatively low

dynamic ad hoc networks. However, for VANET applications, this needs to be further

improved and evaluated.

The transportation ambient is complicated. Many obstacles can block line-of-sight

for directional antenna beams. Even when location information of a receiver is known,

it might be impossible for a direct beam link between transmitter and receiver. Also,

building the location table could be time consuming, which is in conflict with the real-

time requirement of VANET.

Repeaters are required at intersections and other places where vehicles line-of-sight

is needed, not possible for communication. This phenomenon necessitates additional

investment in VANET.

With high mobility in VANET, antenna element usage must be constantly changed.

This might considerably complicate the inter-beam control procedure. The impact of

mobility for an omni-directional antenna based system was studied in [44] and it was

deemed trivial for safety-related message broadcast.The impact of mobility for DMAC

should be studied.

D-MAC performance for VANET was investigated in [45, 42]. In [45], D-MAC’s

broadcast performance, namely throughput and delay, was shown to be lower than omni-

MAC.

15

Other possible issues regarding the usage of directional antennas in VANET, e.g.

security consideration and the hidden terminal problem are discussed in [13].

2.4 802.11p MAC

A brief introduction of the evolution history of 802.11p can be found in Section 1.1. The

distributed coordination function (DCF) serves as its core mechanism [46].

The simplicity is a prominent advantage when compared with other MAC shecmes.

However, this simplicity is achieved at the sacrifice of other performance parameters.

This and other shortcomings are further investigated in Chapter 4 and Chapter 5.

SDMA, RR-ALOHA, and DMAC have not been pervasively deployed in WLAN.

With regard to market applications, IEEE 802.11p has a solid foundation resultant from

the ubiquity of IEEE 802.11 networks (Wi-Fi). From an engineering perspective, it is

advantageous and prudent to inherit core mechanisms from the predecessor, unless, of

course, new applications are not compatible with the previous technology. The pre-

dominance of IEEE 802.11 in the market, coupled with the active development of IEEE

802.11p and IEEE 1609 standards suggest that the 802.11 based MAC has a greater

potential of acceptance as the de facto VANET MAC than the three MAC protocols

mentioned above.

Several limitations of 802.11 MAC, including unfairness, high collision probability

in large networks, and unreliable broadcast service, are well known. Addressing these

limitations has resulted in a vast amount of research with the aim to increase the per-

formance of IEEE 802.11 MAC [46].

Because 802.11p is currently under development based on 802.11, inherent limitations

might persist. Furthermore, recent VANET applications pose additional challenges for

the underlying communication system. In this dissertation, previously proposed 802.11

MAC enhancements are examined along with their ability to successfully meet the special

requirements of each VANET safety-critical application. It is determined whether or not

enhancements to 802.11 MAC fit into and provide QoS for VSCAs.

2.5 Existing Enhancements on IEEE 802.11 MAC

Due to the aforementioned deficiency of IEEE 802.11 MAC for VSCAs, enhancements

are needed for deployment of IEEE 802.11 based VANET. In this section, existing 802.11

MAC enhancements are first researched, and then categorized. An analysis of suitability

16

for VSCAs follows.

2.5.1 Repetition

A conventional flooding technique is widely considered the oldest and simplest repetition

scheme. This, along with its severe impact on the network performance, is well-known.

Clearly, this type of arbitrary technique is not suitable for VSCAs.

An extension layer between the logical link control layer and the standard MAC layer

is proposed to control repetitions in [11, 47, 15]. Packet lifetime is divided into even

slots, and the packet is repetitively passed over to the MAC layer on each slot. Packet

reception rate is studied in [11, 15], however a key performance index - delay is not

addressed.

The ECHO repetition scheme is a controlled flooding technique proposed in [14], al-

though detailed performance indices, such as throughput and delay, are not provided [14].

Repetition schemes may statistically improve the reception rate of broadcast packets,

however, this is not guaranteed during a relatively short period of time. This is especially

true when a burst of interference-induced bit error occurs.

Repetition has the potential to burden the channel and degrade its performance, i.e.

sending multiple copies of the same packet increases data traffic and decreases effective

throughput.

Because repetition schemes reside upon the generic 802.11 MAC, none of the afore-

mentioned reasons that account for the low performance are addressed. Likewise, reasons

for the low performance still persist.

Simply repeating a broadcast packet is not efficient for ad hoc networks.

2.5.2 Reception confirmation mechanisms

Ideally, if each receiver confirms the consequence (success or failure) of reception to the

sender, failed trasmissons might be retransmitted by the sender. Without consideration

for other performance indices, highly satisfying PDR can be achieved. The author

believes the reception confirmation mechanism is necessary for high performance in

VSCAs.

Unicast in 802.11 DCF utilizes the straightforward positive acknowledgement (ACK)

for successful transmission confirmation. If the unicast sender does not receive an ACK

in a predetermined period of time, the sender deems the transmission a failure and

17

engages in re-transmittal. It should be noted that the broadcast based on 802.11 DCF

does not support the acknowledgement mechanism.

Extensive efforts have been taken to apply a similar ACK/NAK mechanism in 802.11

DCF unicast in broadcast [48, 49, 50, 51, 52, 5, 53, 14].

In [48], a random access MAC protocol that supports broadcast, namely BSMA, is

proposed. Its operations are outlined as follows [48]:

1. Collision avoidance phase.

2. Source sends RTS to all neighbors and sets the timer to WAIT-FOR-CTS.

3. Upon receiving RTS (and when not in YIELD state), neighbors send and set the

timer to WAIT-FORDATA.

4. If the source receives CTS, sends DATA and sets the timer to WAITFORNAK.

Else, if no CTS and WAIT-FOR-CTS timer expires, back off and go to step 1.

Nodes that are not involved in the broadcast exchange, upon receiving CTS, set

their state to YIELD and set their timer long enough to allow for the broadcast

exchange to complete.

5. Neighbors send NAK if the WAIT-FOR-DATA timer expires and DATA has not

been received.

6. If the source receives NAK before the WAIT-FOR-NAK timer expires, back off and

go to step 1. Else, if no NAK and WAIT-FOR-NAK timer expires, the broadcast

is complete. Go to step 1 and get ready to transmit new DATA.

According to BSMA’s mechanism, three cases might exist to deteriorate its perfor-

mance:

1. Even when only one neighbor replies CTS (other neighbors did not hear the RTS

due to collision or interference), the source still proceeds to the next step, which

cannot fulfill the high reliability requirements of VSCAs.

2. The source must be equipped with very good capture capability in order to pick

up one good CTS when multiple CTS packets coexist on the channel. However,

according to the ad hoc nature, the neighbors who reply CTS simultaneously might

all be located close enough to the source, which invalidates the source’s capture

capability [54].

18

3. If NAK is lost or corrupted, a transmission is still deemed as a good one.

Similar to [49], proposals in [50, 51, 52, 5, 53, 14] try to collect acknowledgements

from the neighbors in variant ways and to take action according to the outcome of the

acknowledge collection. Notwithstanding all of them emphasize the PDR increase after

their algorithms are applied, none of them consider the impact of their new algorithms

on the key VSCAs delay performance and the overall network performance, such as

throughput.

The reception confirmation can also be achieved by using a receiver-initiated scheme [55,

56, 57, 58]. The most prominent issue of applying a receiver-initiated scheme for VS-

CAs is to identify the initiator among many receivers to guarantee the delivery to other

receivers other than the initiator. As a result, receiver-initiated scheme might not be

efficiently applied either to broadcast or to VANET.

It must be noted that ACK is definitely needed to guarantee delivery in VSCAs. The

key is how to ACK the sender in an efficient and effective way with minimum overhead

(delay, bandwidth, implementation complexity and cost). The ACK process must be

accomplished within the required latency.

2.5.3 Adaptive backoff

The backoff mechanism directly affects the collision sequel. If the size of the contention

window or the number of backoff slots can be adjusted in real-time for VANET, the gain

on the performance is clear.

Thus intensive research has been conducted to optimize the function of the 802.11

backoff mechanism in order to reduce collision as much as possible. There are two

categories of backoff optimization.

2.5.3.1 Dynamically tuning contention window size

In the 802.11 standard [46], it is stated that the number of backoff slots is chosen

uniformly from [0, CW − 1], where CW is the current size of contention window. It

is evident that the channel resource is wasted when the number of terminals N in the

network is much less than CW and that the access collision is high when N >> CW .

A statistically ideal performance is expected to be achieved when N ≈ CW . Since

the 802.11 MAC is based on a binary exponential backoff (BEB) whose granularity

of variation is too coarse, finer tuning mechanisms [59, 60, 61, 62, 63, 64, 65] have

19

been proposed in order to resolve the collision by estimating the number of contending

terminals. However in the real world, it is not that easy to accurately estimate the

number of contending terminals. For example, in [64] a symptotic condition is assumed,

which might not be valid in a real network. For the highly dynamic VANET, the accurate

estimation is even harder.

A fast collision resolution (FCR) algorithm is proposed in [66]. According to FCR,

some terminals are picked out from all the competing nodes to transmit successfully

or to collide, which gives these terminals probabilistic priority to send or contend first.

Because the minimum contention window is 3, which is very small, and because FCR

depends on the capability to sense the occurrence of collisions, it does not work in

broadcast mode. Therefore, it is not directly applicable for VSCAs.

[67] adjusts the size of the contention window by overhearing the sequence number of

received packets and accordingly evaluating the network congestion. However, it might

not work in the highly dynamic VANET because the evaluation and adjustment are

based on post-processing of information.

2.5.3.2 Cooperatively selecting the number of backoff slots

The early backoff announcement (EBA) algorithm proposed in [68] announces the value

of next backoff timer of a certain terminal in its previous packet. By overhearing the

channel, other terminals are supposed to be able to know the terminal’s tentative choice

of the number of backoff slots and avoid choosing that value in its own next backoff. As

a result, collisions are expected to be reduced.

After entering a network, terminals with EBA must first spend some time on learning

which values have been used by others. Then, they are able to cooperatively pick the

number of backoff slots. This might not work in VANET because vehicles join and leave

a network at high velocity. Not enough time can be guaranteed for them to learn the

usage of backoff slots.

EBA also implicitly requires each terminal to reach a saturation condition, which

is not realistic. Otherwise, the backoff usage information can easily become stale and

channel slots are wasted.

Furthermore, the prerequisite of EBA is a reliable share of contention window usage.

If collision or a fading channel causes the packet carrying EBA information to become

corrupted, the cooperation of backoff slot usage among terminals is broken. This can

occur easily in IEEE 802.11 broadcast, thus in 802.11 MAC based VANET as well.

20

2.5.4 Priority

IEEE 802.11e enhanced DCF (EDCF) [69] prioritizes different applications in order to

provide QoS to delay-sensitive applications such as Voice over IP. In a fixed way, it

assigns different backoff ranges and different inter-frame spaces to different applications.

With a shorter backoff range and inter-frame space, those delay-sensitive applications

are supposed to receive higher QoS.

Other priority-based enhancements have also been proposed [70, 71, 72, 73]. The

common principle existing in them is similar to IEEE 802.11e: assign different priority

with different parameters.

However, all of them face the same issue that the probability of collision might be still

high if the number of terminals which have equal-priority packets is large. If 802.11e or its

counterparts are applied in VANET, it might encounter serious performance degradation

when the vehicle density is high.

2.5.5 Location aided MAC

Location aware multicast MAC (LAMM) proposed in [52] states that if the total coverage

area A(S ′) of a subset S ′ of all the receivers S satisfies

A(S ′) ≥ A(S) (2.3)

where A(S) is the total coverage area of all the receivers and if the ACKs from S ′ are

successfully received by the sender, the sender is able to conclude that all receivers S

have received the broadcast packet. However, the statement is based on the assumption

that the transmission error is caused primarily by packet collision, which might not be

advisable in VANET, because the bit error rate is high in VANET [17, 9, 18].

At the same time, the location sensitivity of VANET applications does remind that

it might be possible to use location information to evaluate the significance of a neighbor

to the current broadcast information. If the significance is high enough (for example,

higher than a given threshold), multicast with ACK is used to deliver the packet to that

neighbor. Algorithms to evaluate the significance are critical and depend on multiple

criteria such as distance to the sender, relative speed, trajectory tendency, etc. However,

it is still an open issue to update location information in a real-time manner.

21

2.5.6 Broadcast RTS/CTS

The key to prevent hidden terminal problem from happening to a receiver is to silence

all the receiver’s neighbors when it is receiving.

As shown in Fig. 1.3, because of the existence of multiple receivers for broadcast

transmission, the potential hidden terminal area in broadcast is greatly enlarged, which

in turn aggravates the access collision and interference. It is really difficult to effectively

achieve that all the potential hidden terminals are silent every time the source broadcasts.

However, [74, 48] directly applies unicast RTS/CTS into broadcast. This may make

the source believe the transmission is going well while many receivers are suffering from

collision or interference due to hidden terminal problem.

The broadcast medium window (BMW) in [49] breaks down a broadcast into multi-

ple unicasts. Apparently, this is not a feasible and practical way for VSCAs broadcast

because too much overhead and delay are introduced. Although the batch mode multi-

cast MAC (BMMM) in [52] optimizes the BMW by sending RTS/CTS and RAK/ACK

pairs in a batch mode, the overhead and the delay incurred are still proportional to the

number of receivers.

In the leader based protocol (LBP) in [75], a leader is selected to receive RTS and

reply CTS on behalf of all the receivers. Since the leader cannot represent all receivers, an

acceptably reliable transmission cannot be guaranteed even though single CTS scheme

avoids the collision caused by simultaneously multiple CTS.

2.5.7 Transmission power control (TPC) and adaptive rate

If a TPC mechanism (different nodes transmit at a different and adaptive power level)

were implemented realistically, it would have three folds of advantages

• Less collision/interference

• Higher spatial reuse

• Less energy consumed

For wireless transceivers on a vehicle, technically energy saving is not an issue al-

though environmentally it is.

It is very straightforward that the former two advantages indeed can help increase

packet delivery ratio.

22

The proposed TPC schemes either suffer from practicality issues or are throughput

oriented [76]. From the author’s point of view, more studies on whether TPC is a

practically viable option for VANET is worthwhile.

All the proposed TPC schemes focus on unicast services. In VSCAs, multiple re-

ceivers exist for one broadcast frame. Hence a sender needs to know the channel con-

ditions between the sender and each one of the receivers are in order to effectively

implement TPC. This adds more challenges than it has in unicast.

A node dynamically varies its modulation and error-coding schemes to fight against

time-varying channel, which is called adaptive rate. It is theoretically and practically

reasonable for unicast service [76]. However, it faces the same challenges that TPC has

in VSCAs. In order to adopt a rate, the sender needs first to know the channel situations

between it and each of the receivers.

2.5.8 Out-of-band signaling (OBS)

Because control packets and data packets can collide with one another if they go on the

same channel, schemes of OBS to shunt different traffic into different channels to reduce

packet collisions have been proposed [76, 77]. OBS can be either in the way of a busy

tone or in the way of control packets, i.e. sending control packets such as RTS/CTS in

a separate channel.

Researchers in [76] use the busy tones to alleviate hidden terminal problems or ex-

posed terminal problems in unicast services. Researchers in [77] use busy tone technique

to alleviate channel access collision. It is good for a one-hop network to utilize the

channel to its maximum performance, but might not be good for VANET where hid-

den terminals might desynchronize signaling and deteriorate severely the accuracy of

the signaling. Furthermore, since it is a throughput-oriented enhancement, it might

not be directly applied in VANET for VSCAs. Researchers in [53] use multicast RTS

(MRTS) and busy tones to alleviate the hidden terminal problem and to acknowledge

the reception of the multicast packet. Since the sender must include the information of

all the receivers in the MRTS, a reliable broadcast cannot be guaranteed. MRTS still

suffers from packet collision and channel fading, given that adding MRTS with receiver

information makes the packet length long. Researchers in [5] use a negative CTS tone

to replace CTS and use a negative ACK to replace ACK. A serious problem exists in

this mechanism. If RTS collides, which is common when the number of nodes is high

and when hidden terminals exist, the receivers are unable to recognize whether it is a

collision of multiple RTS (it might be just noise) and they are not able to send out the

23

NCTS tone.

The most common attempt of OBS control packets is to send RTS/CTS in a channel

different from that of data packets [76]. This indeed removes control packets from

competing in the same channels with data packets, which provide more bandwidth for

data at the first glance. And based on the success exchange of control packets on the

separate control channel, the multiple access on the data channel is expected to be

resolved. However, control packets such as RTS/CTS themselves are packets. They also

suffer from fading and collision among themselves when the traffic load is high.

The busy tone scheme provides simple solution to multiple access problems and have

the advantages of small bandwidth and simple coding which simplifies the transceiver

design, it is thus worthwhile investigating it to realize its viability and suitability in

VANET.

24

CHAPTER 3

Broadcasting in VANET

An overview of DSRC MAC and R-ALOHA and their details of broadcasting are pre-

sented in this chapter.

ALOHA is the origin of the contention-based MAC mechanism, which can be sum-

marized as ”Send anytime. Resend if failed.” Both CSMA and R-ALOHA use ALOHA’s

basic contention mechanism. The difference is that some private new features were added

to ALOHA to improve the basic mechanism to accommodate specific situations.

3.1 Overview of DSRC MAC

DSRC MAC uses carrier sense multiple access with collision avoidance (CSMA/CA).

CSMA/CA is a random-access, contention-based protocol for which the basic idea first

appeared in ALOHA. It is well known that ALOHA has a very low efficiency due to the

high probability of collision. DSRC MAC improves the performance of contention-based

protocol by integrating the following mechanisms to provide feasible, multiple access

among all stations in a distributed manner on a single wireless medium.

3.1.1 RTS/CTS

RTS/CTS stands for Request To Send/Clear To Send. RTS/CTS mechanism works as

follows:

Before a data packet is ready to be sent, the sender always sends an RTS packet to

the receiver and then waits for the receiver to send back CTS.

When a receiver receives the RTS packet, it promptly replies with a CTS packet.

After receiving the CTS packet, the sender sends the data packet.

Transmission of RTS/CTS between sender and receiver lets all neighbors of the sender

and the receiver know the data is coming so that the two most notorious problems-hidden

terminal problems and exposed terminal problems-are eliminated.

25

3.1.2 Physical and virtual carrier-sense

Due to the nature of a wireless medium, it is impossible for terminals to detect packet

collision. Therefore, physical carrier-sense and virtual carrier-sense of DSRC MAC only

determine the channel status: busy or idle. If a terminal senses the channel busy by

either physical carrier-sense or virtual carrier-sense, it refrains from sending data. This

decreases the number of packet collisions greatly.

The physical layer implements the physical carrier-sense and conveys the result to

the MAC layer.

Virtual carrier-sense exploits the so-called network allocation vector (NAV) to fulfill

the sensing function. “The NAV maintains a prediction of future traffic on the medium

based on duration information that is announced in RTS/CTS frames prior to the actual

exchange of data. The duration information is also available in the MAC headers of all

frames sent during the CP other than PS-Poll Control frames.” [69]

3.1.3 Inter-Frame Spacing (IFS)

IFS is the time interval between frames. Terminals use carrier-sense function to deter-

mine a specific IFS. There are four types of IFS in DSRC MAC:

• Short inter-frame space (SIFS)

• Point Coordination Function (PCF) inter-frame space (PIFS)

• Distributed Coordination Function (DCF) inter-frame space (DIFS)

• Extended inter-frame space (EIFS)

For the details of each IFS, please refer to [69]. In this thesis, only DIFS and EIFS

are discussed. Fig. 3.1 is the illustration of IFS. IFS function includes four aspects:

• Provide the transceiver sufficient time to switch transmission/receiving functions

• Provide fair access to medium among all terminals

• Provide access priority

• Alleviate channel failure caused by collision or bit error

Each physical layer has its own fixed IFS. DSRC uses orthogonal frequency division

multiplexing (OFDM) as its physical layer and its related IFSs are defined in [10][69].

26

SIFS

PIFS

DIFS

EIFS

Busy Medium Backoff slot by slot

Contention window

Busy
Medium

time

Figure 3.1: Inter-Frame Spacing

Busy Medium Idle medium
Busy

Medium

Variation of Medium
status along time axis

DIFS/EIFS

deferral Terminal #1's action
along time axisAt t1,

packet
ready but
medium

busy

At t2,
medium

idle

sending

DIFS/EIFS

deferral Terminal #2's action
along time axis

At t3,
packet

ready but
medium

busy

At t2,
medium

idle

deferral

At t5,
medium

busy
again

At t4,
IFS

reache
d, back

off

At t6,
medium

idle

At t4,
IFS

reache
d, back

off

Idle medium

sending

At t7,
IFS

reache
d, back

off

At t5,
sending

At t8,
sending

Figure 3.2: An example of backoff mechanism

3.1.4 Random backoff

As mentioned previously, one terminal executes a carrier-sense to test the medium before

initiating a data transfer. If the medium is busy, the terminal defers transmission until

the medium is continuously idle for a period of time equal to DIFS/EIFS. After this

DIFS/EIFS idle time, if the backoff timer of the terminal contains zero, the terminal

generates randomly a non-negative integer equal to the number of backoff slots, which is

uniformly distributed on [0, w-1], where w is the size of the contention window. Backoff

then occurs. During backoff, terminals continue sensing the medium, and terminals must

freeze the backoff procedure when the medium becomes busy again before the backoff

timer expires.

The random backoff mechanism scatters the terminals that have been deferred due

to the same event in time domain and reduces collisions. Fig. 3.2 shows an example of

the principle of backoff.

27

3.1.5 Positive acknowledge and retransmission

Air links are not only expensive but unreliable because of multi-path fading and inter-

ference. The error-prone wireless medium increases the vulnerability of the data being

carried on it. The DSRC MAC specification [10] requires that each unicast data packet

transmission must be positively acknowledged by the receiver. If the sender does not

receive the positive acknowledgement in a specified period, the packet must be scheduled

for retransmission. Positive acknowledgement and retransmission improve the reliability

of the communication; however, they also increase service overhead.

3.1.6 Fragmentation and defragmentation

It has been mentioned that the wireless medium is error prone. Based on the bit error

rate of a channel and the error-correction mechanism that can fix a limited number of

bit errors, a packet size range exists for achieving the highest probability of receiving a

packet successfully. Beyond the size range, i.e., the length of one packet is longer than

the packet size for optimum packet reception, the probability drops tremendously. The

fragmentation process cuts the long packet into shorter fragments at the transmitter side

and defragmentation reassemblies those fragments back to the original long packet on the

reception side. Therefore, fragmentation and defragmentation plus the retransmission

mechanism, can effectively improve the successful reception of large-sized packets.

3.2 DSRC MAC Broadcast

The broadcast procedure of 802.11 MAC follows the basic medium access protocol of

distributed coordination function (DCF) with three functions disabled. RTS/CTS is

not used in broadcast. ”The RTS/CTS mechanism cannot be used for MPDUs with

broadcast and multicast immediate address because there are multiple destinations for

the RTS, and thus potentially multiple concurrent senders of the CTS in response.” [69]

No positive acknowledgement and retransmission exist. ”There is no MAC-level

recovery on broadcast or multicast frames, except for those frames sent with the ToDS

bit set. As a result, the reliability of this traffic is reduced, relative to the reliability

of directed traffic, due to the increased probability of lost frames from interference,

collisions, or time-varying channel properties.” [69]

The fragmentation operation is inhibited for broadcast packets. ”Only MPDUs with

a unicast receiver address shall be fragmented. Broadcast/multicast frames shall not be

28

DIFS/EIFSBusy Medium Backoff slot by slot

Contention window

Busy
Medium

time

Figure 3.3: DSRC MAC broadcast

fragmented even if their length exceeds aFragmentationThreshold.” [69]

Broadcast of DSRC MAC occurs when a broadcast packet arrives at DSRC MAC

layer from upper layer and the MAC senses the channel status first and stores the status.

Next, once an idle period equal to DIFS/EIFS is observed, MAC takes the next operation

according to the stored channel status and the current value of its backoff time.

If the current value of the backoff counter is not zero, MAC begins the backoff

countdown process. If the current value of the backoff counter is zero and the status

of the medium is busy, MAC generates random backoff time and begins the backoff

countdown process. If the current value of the backoff counter is zero and the status of

the medium is idle, MAC begins data packet transmission immediately.

During the backoff countdown process, carrier-sense persists. If the medium becomes

busy again, MAC goes back to the DIFS/EIFS observation process. If the backoff timer

expires, MAC begins data packet transmission right away.

During or after transmission, MAC does not monitor the success or failure of the

transmission. Once the transmission is completed, MAC simply releases the medium

and competes for it when a new packet is ready to be sent. Fig. 3.3 illustrates the

broadcast of DSRC MAC.

To fully understand DSRC MAC, two concepts must be emphasized.

First, if one terminal has an immediate packet in its queue upon completion of the

transmission of the previous packet, the current queued packet cannot be transmitted

until a random backoff is executed. This means that there must be a random backoff

between two consecutive packets. ”When an MSDU has been successfully delivered or

all retransmission attempts have been exhausted, and the STA has a subsequent MSDU

to transmit, then that STA shall perform a backoff procedure.”

Second, after a broadcast transmission, a DIFS or an EIFS must be observed before

backoff or the next transmission. DIFS is observed in most cases. EIFS is used by a

terminal when it has received an erroneous packet. But once a good packet is received

later, that terminal switches to use normal DIFS again.

29

Table 3.1: Limitation of DSRC MAC Broadcast

Limitations Consequences Reasons

RTS/CTS forbidden Collision increased Hidden terminal problems

Broadcast storm

No positive ACK Reliability decreased Unknown tx result

Collision increased Fixed contention window

Broadcast storm

No fragmentation Collision increased Long packets

Fixed contention window

High bit error

Frame, N=20

time

RESERVED

FREE

Figure 3.4: R-ALOHA frame and slot

3.3 Limitations of DSRC MAC Broadcast

As previously stated, 802.11 MAC has three limitations that might degrade its service

quality in IVC. These three limitations are summarized in TABLE 3.1.

3.4 Broadcast in R-ALOHA

3.4.1 Overview of R-ALOHA

Based on ALOHA, R-ALOHA [78] includes the following differences:

Time is divided into frames. Each frame consists of N slots.

A slot must be reserved by the terminal before it starts the transmission.

Fig. 3.4 shows R-ALOHA.

One slot is marked as RESERVED when it is used by a terminal. Otherwise, it is

30

marked as FREE. Any terminal without a reserved slot will have to reserve a FREE slot

before the terminal is allowed to transmit. If the reservation is recognized as successful,

the slot is reserved for the reserving terminal for the subsequent frame. No other termi-

nals can access that slot until it is released. If the reservation fails, the terminal has to

contend for this or another slot in order to transmit a packet.

R-ALOHA is further divided into two ways of observing slot usage:

Slot-by-slot R-ALOHA

Frame-by-frame R-ALOHA

Slot-by-slot. In slot-by-slot R-ALOHA, terminals exchange with one another the

observations of slot usage and decide the reservation of each slot in a slot-by-slot man-

ner. A ready terminal contends for an empty slot with probability p, called contention

probability. The terminal generates a random number x on (0, 1). If p is greater than

or equal to x, this terminal will contend for this empty slot, otherwise it will postpone

its contention until next time when p is greater than or equal to x. If there is only one

terminal contending for the empty slot, the terminal’s reservation for the slot is suc-

cessful. If there is more than one terminal contending for the same empty slot, collision

occurs; and no terminal reserves that slot. The colliding terminals have to contend later.

It is easy to see that the value of the contention probability is very important for the

success rate of slot reservation. If the value of the contention probability is too high, the

probability of collision of more than one terminal contending for the same slot is also

very high. On the other hand, if the value of contention probability is too low, slots are

wasted. In the simulation performed for the research on which this paper is based, as will

be addressed in a subsequent chapter, three values of 0.2/0.1/optimized were used. The

optimized value results in the best theoretical value of contention probability. It is equal

to the reciprocal of the number of terminals currently contending for a slot. Although

some special techniques are required to implement this optimized value mechanism in

an ad hoc network, the author used this optimized value directly in the simulation to

compare performance difference with various contention probabilities.

Frame-by-frame. In frame-by-frame R-ALOHA, all exchanges of slot usage and slot

reservation are conducted at the beginning of each frame. Each ready terminal chooses

one empty slot from all the available slots. If one empty slot is chosen by only one

terminal, that terminal successfully reserves the slot. However, if two or more terminals

choose the same empty slot, collision occurs; and no terminal reserves the slot. During

a frame, no signaling messages are exchanged, and only data packets are transmitted by

the terminals that have successfully reserved slots at the beginning of the frame.

31

R-ALOHA in an infrastructure network requires a central coordinator that collects,

decides, and distributes the slot usage. This means that every terminal is under the

control of the coordinator, and the reservation can be achieved. The packet reservation

multiple access (PRMA) protocol is such a centralized R-ALOHA protocol [79].

However, in IVC, such a coordinator does not exist. R-ALOHA in IVC must be im-

plemented in a distributed way. Although some MAC designs were proposed to realize

distributed R-ALOHA, they did not support a reliable broadcast service. Examples of

these MAC designs includes distributed packet reservation multiple access (D-PRMA)

protocol, hop reservation multiple access (HRMA) protocol, five-phase reservation pro-

tocol (FPRP), etc [79]. The next section of this paper describes the details of R-ALOHA

broadcast and the reason those distributed R-ALOHA designs are not suitable for reli-

able R-ALOHA broadcast service.

3.4.2 R-ALOHA Broadcast

It is key for R-ALOHA implementation (either centralized or distributed) that a mech-

anism exists that guarantees that reservation information and competition results are

communicated effectively. For centralized R-ALOHA or point-to-point R-ALOHA, the

previously mentioned protocols have been implemented and proved to be effective [79].

For broadcast R-ALOHA however, the situation is different making it hard to implement.

The aim of broadcast is to deliver the broadcast packet to everyone inside the net-

work. Therefore, more than one receiver might exist. This is different from the point-

to-point case depicted by Fig. 3.5(a) in which each packet is destined for one receiver.

Hence, in the point-to-point case, each slot is divided into several segments to carry

signaling messages (Ex. REQ and ACK), and a slot reservation can be determined to

be successful if the signaling message exchange succeeds on that slot between the source

and the destination terminal or determined to have failed because the signaling messages

collided with other contending messages or because of interference. Multiple receivers

prevent this mechanism from being applied in the broadcast case depicted by Fig. 3.5(b)

because the channel will be in chaos if all the receivers reply at the same time.

3.4.3 Limitations of R-ALOHA Broadcast

High mobility has the greatest impact on the reservation protocol. Vehicles move at

high and different speeds and in different directions. A vehicle might enter and leave

networks very frequently. This might cause the following problem:

32

sender

receiver

ACK

Req

sender

receiver
receiver

receiver

receiver

a b

Figure 3.5: (a) R-ALOHA point-to-point (b) R-ALOHA broadcast

The very frequent request and release of a slot when a terminal enters and leaves a

network. For R-ALOHA, a slot is reserved and released for one packet.

More collisions happen when a terminal enters a new network bearing its previous

reserved slot.

3.5 Simulation

The simulation is conducted in a two-dimensional space. The whole space is divided

into small squares. Each square is the same size, 64 square meters (eight by eight)

according to the size of the distance between vehicles. Initially, each terminal is randomly

positioned on a corner of a square, and only one terminal is put on one corner. Fig. 3.6

shows the terminal position arrangement. The circles represent the radio coverage of

the transceivers.

3.5.1 Simulation Setting

For the sake of simplicity, the simulation was conducted in a one-hop broadcast network,

which means the hidden terminal problem does not exist and the signal propagation

simulation was disabled. The mobility module was also disabled. But the mobility factor

was considered by introducing the signal-to-noise ratio at a certain vehicle velocity [9].

Global parameters influencing the whole simulation platform and their values used

in the simulation are listed in TABLE 3.2.

TABLE 3.3 lists the parameters used in DSRC MAC simulation.

TABLE 3.4 lists the parameters used in R-ALOHA simulation.

33

Y

X

Figure 3.6: Terminal position arrangement

34

Table 3.2: Global Parameters

Parameter Name Value

Simulation duration 100s

Data rate 12Mbps

Poisson packet interval 0.01s

Number of terminal 5 205

Terminal average velocity 85mph

Signal to noise ratio [9] 13dB

Bit Error Rate 10−3

Frame error correction bits 3bits

Capture effect off

Maximum MPDU length 800bits

Table 3.3: DSRC MAC parameters

Parameters Value

Min contention window 31

slot size 16us

SIFS 32us

DIFS 64us

Table 3.4: R-ALOHA parameters

slot per frame slot size REQ probability

Slot-by-slot N/A 80us 0.2/0.1/optimized

Frame-by-frame 120 80us N/A

35

Figure 3.7: Normalized throughput

3.6 Results and Analysis

3.6.1 Normalized Throughput

Normalized throughput S is defined as the ratio of two periods of time duration Tr and

Tt.

S =
Tr

Tt

(3.1)

Tr is defined as the time duration when only one of the nodes transmits (no collision)

and the packet transmitted by the node is received by at least one receiver.

Tt is the total time duration of the simulation.

Fig. 3.7 shows the normalized throughput performance of each protocol, all three of

which is fairly low (under 40%) under broadcasting circumstances. The main reason for

the low throughput is that each terminal has to contend for a channel every time it has

a packet to send because no packet fragmentation is allowed in broadcasting.

36

3.6.1.1 DSRC MAC Throughput

According to [69] ”Only MPDUs with a unicast receiver address shall be fragmented.

Broadcast/multicast frames shall not be fragmented even if their length exceeds aFragmentationThreshold.”

The broadcast message in the simulation is not fragmented by MAC layer, which means

each node will have to compete for the channel through the DIFS mechanism every time

it has a broadcast packet to send. The normalized throughput curve of DSRC MAC

consists of three stages.

In the first stage, the normalized throughput increases from 5% to around 28% as

the number of terminals increases from 5 to 65. The average range of traffic of this

stage is 500 to 6500 packets per second, and the contention window size is fixed at 32.

Under this circumstance, the random backoff number selection mechanism is still able

to scatter each ready terminal (ready to send a packet) to a different time slot, which

means the probability of collision (two or more terminals start transmission at the end of

the same time slot) remains low. When the traffic is low, some of the time slots are not

used while the collision rate is also low. The traffic accruement brought by the increase

in the number of terminals statistically makes more slots be used. Meanwhile, collision

increases. However, the increase of slot usage is higher than the increase of collision;

therefore, the normalized throughput increases.

In the second stage, the normalized throughput remains at around 28% to 29% when

the number of terminals is between 65 and 85. The slot usage and collision rate are equal

in this stage; therefore, the normalized throughput peaks and remains at that level.

The third stage occurs when 85 terminals are in use. Throughput drops when more

than 85 terminals are used. Having more than 85 terminals results in higher traffic,

thus, there is a greater probability that a slot will be contended for by more than one

terminal, resulting in collision. Collision wins over the slot usage.

The normalized throughput performance of DSRC MAC is the lowest of the three

protocols studied. The low throughput exists because of the high collision probability

brought by the basic access mechanism and the fixed contention window size. However,

DSRC MAC has the advantage of simplicity.

3.6.1.2 Slot-by-slot R-ALOHA throughput

The normalized throughput curve of slot-by-slot R-ALOHA consists of two stages.

The first stage starts when the number of terminals equals five and ends when the

number of terminal is 65. The normalized throughput increases linearly in this stage.

37

Figure 3.8: Normalized throughput of slot-by-slot R-ALOHA with different contention

probability

The reason for the increase is that more traffic (caused by the increased number of

terminals) makes slot usage increase.

The normalized throughput curves and then stabilizes and remains around 37% in

the second stage. This stability of throughput is explained later in this dissertation.

Slot-by-Slot R-ALOHA shows the best throughput performance among the three pro-

tocols studied. However, the normalized throughput is achieved by using the optimized

contention probability. Fig. 3.8 shows normalized throughput of slot-by-slot R-ALOHA

with different contention probability.

If contention probability is not set as optimized, the throughput is poorer than op-

timized throughput. It is even unacceptable. When the contention probability is 0.2,

the throughput drops suddenly to almost zero when the number of terminals reaches 25.

When the contention probability is 0.1, the throughput drops suddenly also to almost

zero when the number of terminals reaches 45. Although the severe situation of sudden

drop disappears when 0.01 or 0.005 is chosen as the contention probability, the through-

put cannot remain at a maximum level in the same way optimized contention probability

does. Eventually, the throughput will drop if the optimized contention probability is not

applied. Therefore, how to implement the optimized mechanism or how to maintain an

acceptable contention probability in the IVC ad hoc network is a key problem for the

development of slot-by-slot R-ALOHA.

38

Fig.. 3.7 shows slot-by-slot R-ALOHA throughput stability when the optimized con-

tention probability is chosen. Recalling that the definition of optimized contention prob-

ability is the reciprocal of the number of terminals that currently are contending for the

current slot.

3.6.1.3 Frame-by-frame R-ALOHA throughput

The normalized throughput performance curve of frame-by-frame R-ALOHA lies be-

tween the throughput of slot-by-slot R-ALOHA and DSRC MAC. It consists of 3 stages.

Stage I: Throughput increases as the number of terminals increases from 5 to around

120

Stage II: Throughput remains at about 39% when the number of terminals remains

around 120

Stage III: Throughput starts to drop when the number of terminals exceeds 120

If the number of terminals is less than the frame size (each frame consists of 120

slots) there is a low probability that a collision will occur when two or more terminals

choose the same slot. When the number of terminals is greater than 120, more and more

terminals collide in the same slot. Thus, more and more slots are wasted because of the

collision. The above statement determines the shape of the throughput performance

curve of frame-by-frame R-ALOHA.

3.6.2 Average Delay

Average delay is defined as the average time lapse between the time a packet is generated

and the time it is sent.

Fig. 3.9 shows the average delay of each protocol.

The latency requirement for IVC is 100ms [4] and delay performance of each protocol

satisfies this requirement. The maximum delay is around 0.045 sec.

Fig. 3.10 shows delay of DSRC, which looks extremely low (less than 220us). This

extremely low delay is a result of the mechanism used in 802.11 MAC.

In 802.11 MAC, there is no fragmentation and positive acknowledgement for broad-

cast/multicast. In this simulation, the contention window size is fixed to a minimum

value for broadcasting. Therefore, the latency for each packet is equal to the sum of

the time spent on waiting for DIFS and the backoff time with a maximum value is

15 ∗ 16 = 240us and an average value of 8 ∗ 16 = 120us. Behind this low latency, how-

39

Figure 3.9: Average delay

Figure 3.10: Delay of DSRC

40

Figure 3.11: Channel usage of DSRC

ever, is the high probability of packet collision. In order to show this, Fig. 3.11 shows

the plot of channel usage. It is clear that the collision and DIFS backing-off increase

while the number of terminals increases and occupy almost 90% of the channel, which

makes the throughput drop.

3.6.3 Packet Delivery Ratio

Packet delivery ratio is defined as the ratio of the number of packets successfully received

to the number of packets expected to be received.

Fig. 3.12 shows the packet delivery ratio of each protocol.

Fig. 3.13 and Fig. 3.14 show the tendency of packet delivery ratio of R-ALOHA

separately.

In R-ALOHA, the failure of packet delivery is solely caused by error bits. Although

the ratio drops while traffic increases, it still remains at a very high level, which is over

97%.

However in DSRC, collision is the most important factor affecting packet delivery

ratio. Fig. 3.11 illustrates the reason why the packet delivery ratio in DSRC is becoming

so low as traffic increases.

41

Figure 3.12: Packet Delivery Ratio

Figure 3.13: Packet Delivery Ratio of Slot-by-slot R-ALOHA

42

Figure 3.14: Packet Delivery Ratio of Frame-by-frame R-ALOHA

43

CHAPTER 4

Saturation Performance of IEEE 802.11 MAC

In this chapter, the performance of IEEE 802.11 broadcast investigated by developing

an analytic model as well as by conducting simulation.

The saturation performance of the distributed coordination function (DCF) mode of

the IEEE 802.11 MAC protocol has been extensively studied [59, 80, 81, 82]. However all

of the studies focused on IEEE 802.11 unicast services. A phenomenon which is referred

to as backoff counter consecutive freeze process (CFP) exists in IEEE 802.11 network.

This phenomenon in unicast has been addressed and analyzed in [80, 82]. In unicast

service, after a busy period, only the station which just had a successful transmission may

consecutively access the channel if its newly chosen backoff time is zero [80]. However,

in broadcast service where an acknowlegement (ACK) or retransmission mechanism is

not available, all stations that just finished their transmissions may have a chance to

consecutively access the channel even if a collision has just occurred. Therefore, CFP

in broadcast happens more often than that in unicast service. This aggravation of CFP

in broadcast causes the analytical models for unicast [59, 80, 81, 82] to not be directly

applicable for the analysis of the broadcast service, which will be shown in the subsequent

sections.

A simple but very accurate model is constructed to characterize backoff counter oper-

ation to evaluate performance of broadcast service in IEEE 802.11 including throughput,

packet delay, and packet delivery ratio, under the same assumptions of saturation condi-

tion and ideal channel as in [59, 80, 82]. The close form expressions of these performance

indices are derived and the results of the analytical model are validated by simulation.

4.1 How CFP Happens

In light of IEEE 802.11 standards [46], the following four facts are known.

1. the initial backoff time Tib is generated by using

Tib = Uniform(0, w − 1)× σ (4.1)

where w is the contention window size and σ is the time duration of one backoff

slot;

2. transmission shall commence whenever the backoff time counter reaches zero;

44

time

DIFS contention window

Backoff-window Next frame

t1 t2 t3

Backoff counters are frozen

t4

Backoff counters decrement Backoff counters are frozen

Busy Medium

(a)

One slot length

t5

t1 t2 t3 t4

time

DIFS

Backoff counters are frozen Backoff counters are frozen

Busy Medium

One slot length

No backoff after
t3

Next frame

(b)

Figure 4.1: Example of backoff counter operation (a) backoff without consecutive freeze;

(b) backoff with consecutive freeze

3. if no medium activity is detected for the duration of a particular backoff slot, then

the backoff procedure shall decrement its backoff time counter by one slot;

4. if the medium is determined to be busy at any time during a backoff slot, then

the backoff procedure is suspended; that is, the backoff time counter shall not

decrement for that slot.

As a result of the above four facts, it is possible that a station that just completes

a transmission and has a new packet to send chooses zero as its initial backoff time,

and starts to transmit right after a DIFS [80, 82]. Such consecutive transmissions shall

seize the channel continuously and leave other stations no chances to backoff, which is

referred to as CFP. CFP is further illustrated in Fig. 4.1 and briefly explained as follows.

Suppose that three stations (station1, station2, and station3) are in the network and

the time duration between t3 and t4 is equal to the time duration of one backoff slot.

From t1 to t2, station1’s transmission makes the channel busy and freezes station2’s and

station3’s backoff time counters. At this time, the value of either station2’s or station3’s

backoff time counter is nonzero. Station1 finishes transmission at t2. Then, a DIFS is

observed by all stations until t3. If station1 immediately has a second packet to send

(this is definite under the saturation assumption), it randomly generates a new initial

45

backoff time at t3. If the value of the initial backoff time that station1 randomly chooses

is nonzero, minimum value in the backoff counters of all three stations must be greater

than or equal to one so that the channel is idle before t4. According to the above fact

No. 3 each station will back off for at least one time slot before the channel becomes

busy again at t5. This is shown in Fig. 4.1(a). However, as shown in Fig. 4.1(b), if

station1 chooses zero as its new initial backoff time, according to fact No. 2 it starts

the transmission right at t3. Before t4, the transmission of station1 is definitely sensed

by station2 and station3 which are meanwhile doing the backoff procedure. Therefore

according to fact No. 4, the backoff procedure of station2 and station3 is suspended,

which makes the backoff time counters of station2 and station3 become consecutively

frozen for at least two transmission periods.

4.2 CFP Differences in Between Unicast and Broadcast

Although it is the same aforementioned mechanism that causes CFP in both IEEE 802.11

unicast and broadcast, its scale and impact are significantly different in the unicast from

in the broadcast.

According to IEEE 802.11 [46], a station randomly selects its backoff time when

either a successful transmission or a transmission failure due to collision or channel

interference has just occurred. A zero value is probable according to (4.1).

In the unicast, CFP may happen only after a station just successfully transmitted

a packet. Acknowlegement and request-to-send/clear-to-send (RTS/CTS) frames are

exchanged to increase the reliability of the unicast traffic. In the case of transmission

failure, the involved transmitters must wait for ACK/CTS timeout Ttimeout, which is

defined as [46]:

Ttimeout = SIFS + TACK/CTS + TH + σ (4.2)

where SIFS is the length of short inter-frame space (SIFS), TACK/CTS is the time to

send an ACK or a CTS frame, TH is the time to send the preamble and the physical

layer header. This timeout delays the involved transmitters to access the channel again

after a transmission failure even if the transmitters select zero as their new backoff time;

this permits other stations to backoff accordingly. In other words, only one station is

monopolizing the channel when CFP happens in the unicast.

In the broadcast, CFP could happen either after a succussful transmission or after

a failed transmission. Because no ACK and RTS/CTS frames are used in broadcast,

stations that have just sent a frame cannot know the outcome of the transmission. If

46

anyone of them has a new packet ready right after the end of the transmission, it is

possible to select zero as its new backoff time and thus monopolizes the channel. In

other words, one or more stations could possibly monopolize the channel simultaneously

when CFP happens in the broadcast. In addition, lack of MAC-level acknowledgement

mechanism in the broadcast causes that the contention window size of each broadcasting

station stays constant and minimum. Thus the station’s probability of selecting zero as

backoff time, which is the reciprocal of the contention window size, stays constant and

maximum. These collectively lead to more frequent occurrence of CFP in the broadcast

than in the unicast.

4.3 Performance Analysis

CFP was studied in [80, 82] for the unicast. Given the number of contending stations,

they assumed the following two probabilities are constant and do not depend on the

backoff procedure.

• the probability that a packet transmitted shall collide and;

• the probability that a station transmits in a randomly chosen slot.

However, the CFP differences in between IEEE 802.11 unicast and broadcast make this

assumption no longer tenable. In broadcast, these probabilities actually do depend

on the backoff procedure. Therefore, these two models cannot be directly applied for

the analysis of broadcast and the backoff operation of broadcast stations cannot be

characterized as only a Markov process.

By exploiting the special features of the backoff counter in IEEE 802.11 broadcast,

the backoff counter process is divided into two involving sub-processes: the sequential

backoff process (SBP) which involves the general backoff procedure without zero initial

backoff time and the CFP which involves consecutive transmissions as a result of zero

initial backoff time.

4.3.1 Packet Transmission Probabilities

First, an analytic model is constructed for the SBP in which the probability that a

station transmits in a virtual slot time is assumed reasonably to be constant as it was

in [59, 80, 81]. A virtual slot is the time interval between two consecutive backoff

counter decrements of non-transmitting stations [81]. Consider a fixed number n of

47

0 W0 - 221 W0 - 3
1 1 1 1

1/(W0 - 1)

. . .

Figure 4.2: Markov chain model for SBP in broadcast

contending stations. As described in [81], the stochastic process {bk}, indexed by virtual

slot number k, is a one dimensional discrete-time Markov chain. The state transition

diagram describing backoff counter decrement is shown in Fig. 4.2, with the only nonnull

one-step transition probabilities being




P{k|k + 1} = 1, k ∈ [0,W0 − 3];

P{k|0} = 1/(W0 − 1), k ∈ [1,W0 − 2].
(4.3)

From Fig. 4.2, the following relations can be derived through chain regularities

bk = W0−k−1
W0−1

b0, 0 < k ≤ W0 − 2 (4.4)

W0−2∑

k=0

bk = 1. (4.5)

Let τs be the probability that a station transmits in the SBP during a virtual slot

time. As any transmission occurs when the backoff counter value is equal to zero, solving

(4.4) and (4.5), we have

τs = b0 =
2

W0

. (4.6)

Then, the CFP is analyzed. Packet transmissions triggered by zero initial backoff

time could happen right after a busy period resulted from the SBP, which is referred

to as first freeze stage, or could happen right after a freeze stage, which is referred to

as the ith freeze stage (i = 2, 3, . . .). Under the saturation condition, a station that

just completes a transmission in the previous freeze stage will attempt to send one more

packet out. It chooses zero as its initial backoff time with a uniform probability 1/W0.

The CFP will continue until zero initial backoff time is no longer chosen by any station

which attempts to send new packets out. Here, performance analysis on the CFP is

approached through evaluating transmission probability of each station in each stage.

Define τf (i) (i = 1, 2, . . .) to be the probability that a station transmits i packets

consecutively in a virtual slot due to zero initial backoff time. Hence, given the initial

probability τs, the probability that such a station transmits in the first freeze stage is

derived as

τf (1) =
τs

W0

. (4.7)

48

Consequently, the probability that such a station transmits in the ith freeze stage

can be evaluated as

τf (i) =
τf (i−1)

W0
= τs

W i
0
, i = 2, 3, . . . (4.8)

4.3.2 Channel Performance

Now, let’s consider evaluation of channel performance resulted from SBP. Let pbs denote

the probability that the channel is busy as a result of SBP. Given τs, we have

pbs = 1− (1− τs)
n. (4.9)

Furthermore, the probability pss that a successful transmission occurs is derived as

pss =

(
n

1

)
τs(1− τs)

n−1 = nτs(1− τs)
n−1. (4.10)

Then, let’s consider the channel performance resulted from the CFP. Knowing τf (i) (i =

1, 2, . . .), the probability psf (i) that a successful transmission occurs in the ith freeze

stage is obtained

psf (i) = nτf (i)(1− τf (i))
n−1. (4.11)

Similarly, the probability pbf (i) that the channel is busy in the ith freeze stage, is

derived as

pbf (i) = 1− (1− τf (i))
n. (4.12)

Let E[Nsf] denote the average number of successful transmissions in the CFP in a

virtual slot time, which is expressed as

E[Nsf] =
∞∑

i=1

1 · psf (i) =
∞∑

i=1

nτs

W i
0

(1− τs

W i
0

)n−1. (4.13)

Under the conditions τs

W i
0

= 2
W i+1

0

¿ 1, i > 0, and W i
0 À n > 1,

(1− τs

W i
0

)n ≈ 1− nτs

W i
0

(4.14)

holds, and provides the following approximate expression:

E[Nsf] ≈ nτs

W0 − 1
− n(n− 1)τ 2

s

W 2
0 − 1

. (4.15)

Let E[Nbf] be the average number of freeze stages on which the channel is busy. We

have

E[Nbf] =
∞∑

i=1

1 · pbf (i) =
nτs

W0 − 1
. (4.16)

49

Let Ts be the average time the channel is sensed busy because of a successful trans-

mission and Tc be the average time the channel is sensed busy by each station during a

collision. It is assumed that the packet average length is E[P]. Let δ be the propagation

delay, and DIFS be the time period for a distributed inter-frame space. All are in the

same unit.

T = Ts = Tc = TH + E[P] + DIFS + δ. (4.17)

4.3.3 Performance Indices

4.3.3.1 Saturation Throughput

Let S be the normalized saturation throughput, expressed as the fraction of time the

channel is used to transmit payload bits successfully in a virtual slot time. Effects on

the throughput from both the SBP and the CFP are combined. Considering that there

must be an idle backoff slot in each virtual slot, we obtain

S =
E[P]′

E[Lvs]
(4.18)

where

E[P]′ = (1 · pss + E[Nsf]) · E[P] (4.19)

is the average amount of payload bits transmitted successfully in a virtual slot and

E[Lvs] = σ + (1 · pbs + E[Nbf]) · T (4.20)

is the average time of a virtual slot.

4.3.3.2 Saturation Delay

E[D] is the average delay a packet experiences between the time at which the packet is

generated and the time at which the packet is successfully received under the saturation

condition. It includes the medium access delay (due to backoff, and channel busy,

interframe spaces, etc.), transmission delay, and propagation delay. The delay that a

successfully transmitted packet experiences could be either the delay Db for a successful

packet transmission by sequential backoff process, or the delay Df for a successful packet

transmission by choosing zero initial backoff time.

It is evident that E[Df] = T . On the other hand, the average delay E[Db] is given

by

E[Db] = E[X] · E[Lvs] (4.21)

50

where E[X] denotes the average number of the virtual slot that a packet successfully

transmitted observes. As we know that each virtual slot contains only one backoff slot

time, E[X] equals to the average number of initial backoff slot. Therefore, we have

E[X] = W0/2.

Let pfr be the probability that given a successful transmission it is carried out through

choosing zero initial backoff time, which is evaluated as

pfr =
E[Nsf]

E[Nsf] + 1 · pss

. (4.22)

So, the average saturation delay E[D] is obtained as

E[D] = pfr · E[Df] + (1− Pfr) · E[Db]. (4.23)

4.3.3.3 Packet delivery ratio (PDR)

PDR is defined as the ratio of the number of packets successfully received to the number

of packets transmitted. So, PDR can be interpreted as 1·pss+E[Nsf] that the number of

successfully transmitted packets during a virtual slot over E[Npktvs] which is the average

number of stations transmitting packets in a virtual slot.

PDR =
1 · pss + E[Nsf]

E[Npktvs]
. (4.24)

Given the probability τ that a station transmits in a virtual slot, the average number

of stations transmitting packets in a virtual slot is nτ [83]. So, we have

E[Npktvs] = nτs +
∞∑

i=1

nτf (i) = nτs(1 +
1

W0 − 1
). (4.25)

4.4 Simulation

A highly efficient MatLab program was developed to conduct a fast computer simulation

on one-hop 802.11 MAC layer broadcasting. The simulation time is significantly short-

ened by calculating and predicting the time when the channel becomes active again to

skip periods when the channel content is not meaningful. For example backoff, DIFS,

collision, etc. Following pseudo code describes the simulation structure briefly.

main.m

51

Parameter setup based on user input;

Parameter print and confirm in main.m;

Construct simPara and pass it to function satu_bc_80211_init();

satu_bc_80211_init.m

Initialize nodes’ location based on the input from main.m;

Initialize packet generation time on each node;

Initialize backoff count using the minimum window size;

Initialize the first event on each node;

Initialize statistic variables;

Return to main.m

main.m

Pass the initialized parameters to function satu_bc_80211();

satu_bc_80211.m

Find the next event time;

Identify all the node that’ll be active @ next event time;

Calculate if collision is happening at this time;

Do statistics;

Calculate the next event time for each timed out node;

Go back to the first step unless simulation time is up;

Return simulation results to main.m

main.m

Print and plot simulation results;

The source code of the simulation can be found in Appendix B.

4.5 Numerical Results And Discussions

All the parameters used in the analytical model and in the computer simulation follow

the parameters in paper [59] for consistency, and are summarized in TABLE 4.1.

Fig. 4.3 shows the saturation throughput over the number of stations with different

contention window sizes. As it is seen in Fig. 4.3 that the analytical model highly

matches the simulation results. It is also observed that the saturation throughput for

broadcast is much lower than that of basic access mechanism or RTS/CTS mechanism for

unicast service in IEEE 802.11 [59]. Increasing window size helps improve the throughput

performance of the broadcast service. In contrast to the throughput evaluation without

52

Table 4.1: IEEE 802.11 FHSS System Parameters

Parameters Value

Packet Payload, P 8184 bits

MAC header 272 bits

PHY header 128 µs

Bit rate 1 Mbit/s

Propagation delay, δ 1 us

DIFS 128 µs

Slot time, σ 50 µs

taking CFP into consideration, the throughput derived from our proposed model is

higher as the network traffic becomes heavier.

Fig. 4.4 shows the saturation packet delay over the number of stations with different

contention window sizes. The analytical results (lines) coincide with the simulation

results (symbols) very well. As demonstrated in Fig. 4.4, the larger the number of

stations is, the longer the packet delay will be expected when the contention window size

is relatively small (W0 = 32). Explanation for this observation is that as the contention

window size is small compared to the number of stations in the network, the probability

that zeros are chosen as initial backoff times increase. Therefore, there are more and

more successful transmissions triggered by choosing zeros as initial backoff times while

the network traffic becomes heavier. Such packets are transmitted right after a DIFS

period, which reduces the average delay. Under such a circumstance, ignoring the CFP

in the analytic model will bring significant errors to the evaluation of the packet delay,

and will even result in different tendency.

Fig. 4.5 shows the packet delivery ratio over the number of stations with different

contention window sizes. The analytical results (lines) match the simulation results

(symbols) very well. The packet delivery ratio demonstrates similar characteristics to

those of the throughput. As we observe, ignoring the CFP will bring some modeling

errors to the evaluation of the PDR when the window size is relatively small (W0 = 32)

and the network traffic is heavier (n > 30). It is also observed that the PDR only

depends on the number of stations n and the selected contention window size W0.

When a bigger window size is chosen (W0 = 128), no significant difference can be

53

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Stations

T
hr

ou
gh

pu
t

W=32, theoretical w/ CFP
W=32, simulation w/ CFP
W=32, theoretical w/o CFP
W=128, theoretical w/ CFP
W=128, simulation w/ CFP
W=128, theoretical w/o CFP

Figure 4.3: Saturation throughput of IEEE 802.11 for broadcast

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Stations

A
ve

ra
ge

 D
el

ay
 ti

m
e

(s
ec

on
d)

W=32, theoretical w/ CFP
W=32, simulation w/ CFP
W=32, theoretical w/o CFP
W=128, theoretical w/ CFP
W=128, simulation w/ CFP
W=128, theoretical w/o CFP

Figure 4.4: Saturation delay of IEEE 802.11 for broadcast

54

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Stations

P
ac

ke
t D

el
iv

er
y

R
at

io

W=32, theoretical w/ CFP
W=32, simulation w/ CFP
W=32, theoretical w/o CFP
W=128, theoretical w/ CFP
W=128, simulation w/ CFP
W=128, theoretical w/o CFP

Figure 4.5: Saturation packet delivery ratio of IEEE 802.11 for broadcast

observed between the performance with CFP and the performance without taking CFP

into consideration. This is because CFP happens less likely when the contention window

size becomes bigger.

55

CHAPTER 5

Performance of IEEE 802.11 MAC In A Highway Scenario

With regard to DSRC, studies were conducted to analyze or to improve its perfor-

mance [3, 16, 45, 53, 84, 19]. In [3] limitations of 802.11a in DSRC environment are

identified. In [16] certain communication protocols are used to manage inter-vehicle

communication for highway cooperative collision avoidance. Some protocols [45][53] in-

troduce feedback or acknowledgement information from receivers to reduce unnecessary

forwarding transmission. A cluster-based DSRC architecture for QoS provisioning over

vehicular ad hoc networks is proposed in [84] to support the real-time transmission of

safety related messages. After analyzing the DSRC control channel for inter-vehicle

safety messaging, authors of [19] propose several MAC protocols to improve the recep-

tion reliability (namely, the PDR) and the channel throughput.

Broadcast service is the basis for the research in the aformentioned papers. This

is fairly intuitive and reasonable because inter-vehicle safety applications are local and

because broadcast is able to cover the locality with low latencies. In the government

research reports [4][85], the broadcast is also proposed as the communication mode for

the highway safety application because of its significant advantage over point-to-point

wireless communications. Although the broadcast performance of IEEE 802.11 MAC

is studied in [86], the quantitative performance of the current DSRC broadcast has not

been researched. As a matter of fact, it is very important to know quantitatively the

performance in a given environment in order to successfully apply a technology to a real

application or to make improvements.

A quantitative approach is presented to evaluate the quality of service that the

inter-vehicle communication (using IEEE- and ASTM-adopted dedicated short range

communication (DSRC)) can provide to the inter-vehicle safety application in the context

of highway scenarios. Based on the proposed model, performance indices such as delay

and packet delivery ratio (PDR) are analyzed. Outputs of the model are validated by

computer simulations. Our quantitative model provides not only a convenient framework

to conduct fast evaluation for the communication of the inter-vehicle safety applications

but also a means to analyze the suitability of 802.11a-based DSRC for highway safety

applications. Furthermore, it reveals the needs for further improvements on the protocol

development.

56

Transmission Coverage Area Potential Hidden
Terminal Area

Potential Hidden
Terminal Area

Tagged
vehicle

Transmission
Coverage

Area

Mapping Mapping

(a) A typical highway topology

(b) An abstraction of the typical highway topology

: Vehicles in potential
hidden terminal area

: Vehicles in transmission range : Tagged vehicle

R R R R

Figure 5.1: Highway topology abstraction: 2-D to 1-D

5.1 System Model And Analysis

5.1.1 Assumptions

Real-world radio networks are influenced by many factors. In this study, some assump-

tions are made to build a simplified yet reasonable and extendable model.

A typical highway topology illustrated in Fig. 5.1 (a) is abstracted into a one-

dimensional mobile ad hoc network consisting of a collection of statistically identical

mobile stations randomly located on a line. This abstraction is viable when the network

size is exceedingly large and mobile nodes are placed with certain finite network den-

sity [87][88]. In this scenario, as shown in Fig. 5.1, the distance between the parallel lanes

is neglected compared to the extended length of the vehicle network. The distribution

of vehicles on this abstract line is according to a Poisson point process with a density β

(in vehicles per meter); i.e. the probability P (i, l) of finding i vehicles in length of l is

given by

P (i, l) =
(βl)i · e−βl

i!
. (5.1)

A vehicle is chosen (called tagged vehicle) and placed in the origin. Its transmission

and sensing range are assumed equal to R. The potential hidden terminal area of the

tagged vehicle in broadcast communication drops in the range of [R, 2R] and [−2R,−R].

At each vehicle, packets arrive in Poisson process with rate λ (in packets per second).

Here, we notice that the same assumption has been widely used to keep the tractability

57

0 W0 - 121 W0 - 2
1 1 1 1

1/(W0)

. . .

Figure 5.2: Markov chain model for IEEE 802.11 broadcast

of the anaytical model [89]. At the MAC layer, the packet queue length of each terminal

is unlimited. The reason for this assumption is that safety related messages at each

vehicle are short, too critical to drop, and expected to arrive once in a while. Hence

each vehicle can be modelled as a discrete time M/G/1 queue.

Because of the hidden terminals problem and the unsaturated traffic, terminals’

knowledge of time slots might be heterogeneous, which makes the synchrony of backoff

operation described in [59] seem no longer valid. In this model, this asynchrony is

ignored on purpose to approximate the process. This approach is validated by finding

that the theoretical results match the simulation very closely. Therefore it is assumed

that the asynchrony is negligible and the quasi-synchrony is advisable under the given

conditions in this paper.

Based on the above assumptions, in this paper, the performance for a snapshot of

the highway vehicular network is studied in a perfect channel.

5.1.2 Backoff Process in IEEE 802.11 Broadcast

A model is constructed to characterize backoff counter process in IEEE 802.11 broad-

cast network which is a simplified one as in [59]. The stochastic process {bk}, indexed

by backoff counter value k of a broadcast terminal, is a one-dimensional discrete-time

Markov chain. The state transition diagram describing backoff counter decrement is

shown in Fig. 5.2, with the only nonnull one-step transition probabilities being




P{k|k + 1} = 1, k ∈ [0,W0 − 2];

P{k|0} = 1/(W0), k ∈ [1,W0 − 1].
(5.2)

We can derive following relations through chain regularities

bk = W0−k
W0

b0;
∑W0−1

k=0 bk = 1. (5.3)

Let τ be the probability that a station transmits. Because a transmission occurs

when the backoff counter value equals zero, solving (5.3), we have

τ = b0 =
2

W0 + 1
. (5.4)

58

When the channel is detected busy, the backoff timers of the detecting terminals will

be suspended and deferred a time period of T ′ which is expressed as

T ′ = DIFS + TH + E[P] + δ, (5.5)

where DIFS is the time period for a distributed inter-frame space, the packet header

TH includes physical layer header plus MAC layer header, E[P] is the average packet

length, and δ is the propagation delay. All are in the same unit.

5.1.3 Performance of the Tagged Vehicle

Let Ncs denote the average number of vehicles in carrier sensing range of the tagged

vehicle and let Ntr denote the average number of vehicles in transmission range of the

tagged vehicle, From Fig. 5.1, we have

Ncs = Ntr = 2βR. (5.6)

Let Nph denote the average number of vehicles in the potential hidden terminal area:

Nph = 4βR−Ncs. (5.7)

Now, let’s calculate channel performance from the tagged vehicle’s point of view.

Define pb as the probability that the tagged vehicle senses channel busy. Knowing that

the channel is busy if there is at least one vehicle transmitting in the transmission range

of the tagged vehicle, we have

pb = 1−
∞∑

i=0

(1− p0τ)i (Ntr)
i

i!
e−Ntr = 1− e−Ntrp0τ , (5.8)

where p0 is the probability that there are packets ready to transmit, which will be derived

later in the paper.

5.1.4 Service Time

The characteristics of each station in the network is modeled as an M/G/1 queue and

approach service time distribution through a probability generating function (PGF).

The MAC layer service time is the time interval from the time instant when a packet

becomes the head of the queue and starts to contend for transmission, to the time instant

when the packet is received. Apparently, the distribution of the MAC layer service time

is a discrete probability distribution when the time unit of the backoff timer is a time

59

slot σ. It is understood that the backoff counter in each station will be decremented by

a slot once an idle channel is sensed, and will wait for a transmission time once a busy

channel is sensed. For a station in broadcast communication, the transition for backoff

counter decremented by one slot can be expressed by the following PGF,

Hd(z) = (1− pb)z + pb · zbT/σc. (5.9)

Denote qi as the steady state probability that the packet service time is iσ. Let Q(z)

be the PGF of qi, which is

Q(z) =
∑

i

qiz
i. (5.10)

Due to the simplicity of notation in the z-transform domain and the one-to-one

correspondence between Q(z) and qi, let’s discuss how to calculate Q(z) instead of

individual qi.

Now, it is possible to draw the generalized state transition diagram for the broad-

cast transmission process as shown in Fig. 5.3. Knowing that successful transmission

and transmission with collision take the same amount of time in broadcast, SC(z) =

zb(P+TH)/σc can be obtained. From Fig. 5.3, the transfer function of the linear system or

distribution of the service time can be derived as

Q(z) =
∑

i

qiz
i =

zb
P+TH

σ
c

W0

W0−1∑

i=0

H i
d(z). (5.11)

Based on (5.11), the arbitrary nth moment of service time can be obtained by differ-

entiation. Therefore, the average service time can be obtained by

T s
ave =

∑

i

qi(iσ) = Q′(z)|z=1. (5.12)

In order to derive the average service time distribution, the probability p0 must be

determined, while p0 calculation depends on duration of service time. Here, the iterative

algorithm is applied to calculate p0. The iterative steps are outlined as follows.

Step 1 : Initialize p0 = 1, which is the saturated condition.

Step 2 : With p0, calculate pb according to (5.8).

Step 3 : Calculate service time distribution through PGF.

Step 4 : Service rate µ = 1/Q′(1).

Step 5 : if λ < µ, p0 = λ/µ; otherwise, p0 = 1.

60

0 W0-121 W0-2
Hd(z) Hd(z)

1/W0

. . .

1/W0

Hd(z) Hd(z)

SC(z)

end

start

Figure 5.3: Generalized state transition diagram for broadcast

Step 6 : If p0 converges with the previous values, then stop the algorithm; otherwise,

go to step 2 with the updated p0.

5.1.5 Performance Indices

5.1.5.1 Delay

Packet transmission delay E[D] is the average delay that a packet experiences between

the time at which the packet is generated and the time at which the packet is successfully

received. It includes the medium service time (due to backoff, transmission delay, and

propagation delay, etc.) and the queuing delay.

The expected queuing delay can be obtained by the Pollaczek-Khinchin mean value

formula for M/G/1 queues.

E[Dq] =
λ(Q′′(1) + Q′(1))

2(1− ρ)
. (5.13)

The average packet transmission delay can be calculated as

E[D] = E[Dq] + T s
ave + DIFS + σ + δ. (5.14)

5.1.5.2 Packet Delivery Ratio

Packet delivery ratio (PDR) is defined as the ratio of the number of packets successfully

received to the number of packets transmitted. So, PDR can be interpreted as, given a

broadcast packet sent, the probability that all vehicles within transmission range of the

tagged vehicle receive the packet successfully. Taking hidden terminal into account, we

have

PDR = P (Ncs) · P (Nph) = e
−(Ncs+

Tv
σ+pbT ′Nph−1)p0τ

, (5.15)

where

P (Ncs) =
∞∑

i=0

(1− p0τ)i (Ncs − 1)i

i!
e−(Ncs−1), (5.16)

61

is the probability that none of the other vehicles within the transmission range of the

tagged vehicle transmits when the tagged vehicle starts transmission and

P (Nph) =
[∞∑

i=0

(1− p0τ)i (Nph)
i

i!
e−Nph

]b Tv
σ+pbT ′ c

, (5.17)

is the probability that none of the vehicles in the two potential hidden terminal areas (see

Fig. 5.1) transmits during the hidden terminal vulnerable period Tv = 2(E(P) + TH).

The expression b Tv

σ+pbT ′
c discretizes Tv into the number of time slots.

5.2 Simulation

An event and message driven computer simulation program is developed by using Mat-

Lab. This simulation program support 802.11 basic unicast, RTS/CTS unicast, and

broadcast. The following pseudo code describes the implementation briefly.

ao2dot11.m

Define the state machine;

Define message types;

Define event types;

Define three packet types;

Define other constants such as PHY and MAC parameters;

Set current state of each node to IDLE;

Initialize message box;

Initialize each communication node;

while simulation time is not up, do the following

Find the nearest event time;

Notify associated stations about the event by messaging;

All messages are stored in the message box;

Process all messages according to priority;

Print and plot simulation results;

The source code of the simulation can be found in Appendix C.

62

Table 5.1: Other Parameters

Parameters Value Parameters Value

Propagation delay 1 µs Tx range, R 500 m

Average packet length variable Packet arrival rate, λ variable

Vehicle density, β variable CWMin, W0 15

SIFS 32 µs Slot size, σ 16 µs

PHY preamble 40 µs PLCP header 4 µs

5.3 Numerical Results And Discussions

All DSRC parameters used in this paper follow [10] and are listed in TABLE 5.1.

Fig. 5.4 and Fig. 5.5 depict the delay and packet delivery ratio, respectively, over the

density of vehicles on the road with varied data rate Rd Mbps, average packet length

E[P] bytes, and packet arrival rate λ (packets per minute). The results from the model

and the simulation match well. The differences between them are mainly due to limited

road range in the simulation and possible asynchrony of time slots among vehicles. The

biggest delay observed is about 0.6 ms. Therefore, the latency requirement of 100 ms

in [4] and the range from 0.1 second to 0.4 second for the CCA system [16] can definitely

be satisfied. The phenomenon results from high date rate, small backoff window size, and

the proposed one-hop direct transmission strategy. However, The packet delivery ratios

decrease fast away from the reliability requirement 0.99 [19] for DSRC safety critical

messaging when the vehicle density increases. Therefore, when designing such a DSRC

broadcast-based highway safety system, designers can relax the stringent constraints of

considering the delay requirement and have the flexibility to use this to compensate the

deficiency of other performance indices, such as PDR.

The delay and PDR both benefit from a shorter message length because the shorter

the message is, the lower the probability of collision shall be. Therefore, it is significantly

critical to have a semantically concise and accurate description of highway safety events

in a DSRC highway safety system because this determines the length of the message.

In Fig. 5.4, it is observed that the delay decreases when the parameter setting is

changed from Rd = 12, λ = 2 to Rd = 24, λ = 10. It is because the increase of data

rate decreases the duration of the vulnerable period, given the same E[P]. Although

the increase of λ indeed increases the data traffic which might be able to lengthen the

63

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

1

2

3

4

5

6

7
x 10

−4

Density (vehicles/meter)

D
el

ay
 (

se
co

nd
)

R
d
=12, λ=2, E[P]=200, model

R
d
=12, λ=2, E[P]=400, model

R
d
=24, λ=10, E[P]=200, model

R
d
=24, λ=10, E[P]=400, model

R
d
=12, λ=2, E[P]=200, simulation

R
d
=12, λ=2, E[P]=400, simulation

R
d
=24, λ=10, E[P]=200, simulation

R
d
=24, λ=10, E[P]=400, simulation

Figure 5.4: Delay of DSRC Highway safety messaging

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.5

0.6

0.7

0.8

0.9

1

Density (vehicles/meter)

P
ac

ke
t D

el
iv

er
y

ra
tio

R
d
=12, λ=2, E[P]=200, model

R
d
=12, λ=2, E[P]=400, model

R
d
=24, λ=10, E[P]=200, model

R
d
=24, λ=10, E[P]=400, model

R
d
=12, λ=2, E[P]=200, simulation

R
d
=12, λ=2, E[P]=400, simulation

R
d
=24, λ=10, E[P]=200, simulation

R
d
=24, λ=10, E[P]=400, simulation

Figure 5.5: PDR of DSRC highway safety messaging

64

delay, the overall change of the delay still drops due to the increase of the data rate.

65

CHAPTER 6

Conclusion and Future Work

This research effectively demonstrates that the proposed VANET MAC and 802.11a

MAC enhancements have yet to meet critical requirements, e.g. when applying 802.11a

MAC to a one-hop broadcast network with saturated traffic, both delay and PDR per-

formance is unacceptable. Although a 100ms delay is observed in a highway scenario

with un-saturated traffic, a low PDR performance persists.

As the supporting technology for the future Intelligent Transportation System, VANET

will provide a versatile and flexible communication platform for vehicle-to-vehicle and

vehicle-to-roadside communication. Researchers and engineers continue their diligent

work developing proposals toward a VANET MAC and PHY that will serve as the de

facto standard. The guidelines for future design and enhancement are as follows.

• The legacy IEEE 802.11 back-off mechanism must be improved to reduce collision

caused by simultaneous transmission. The current adaptive back-off mechanisms

presented in section 2.5.3 are not effectively implemented in VANET. Further study

and design work are required.

• A priority mechanism might be considered when multiple packet priority exists.

For example, a safety-related broadcast packet could perhaps have higher priority

than a normal packet.

• For (multicast, ACK) + (broadcast, NAK), we propose the use of multicast to de-

liver safety-critical messages to the most vulnerable neighboring vehicles. (How to

define and determine critical vulnerability remains uncertain for specific applica-

tions, but could be, for example, the vehicle closest in proximity.) As mentioned in

Section 2.5.5, the locality of safety-critical applications is an important character-

istic, one that has eluded researchers to this point. Locality is the determinate for

identifying that the most critical messages are those closest to the event-bearing

vehicle. Meanwhile, broadcast is applied to neighboring, but not the most critical,

vehicles of the sender. LAMM [52] can be utilized to achieve satisfactory QoS in

multicast for those vehicles nearest to the sender, thus increasing the broadcast

QoS. For multicast, ACK is used; for broadcast, NAK. As long as the reception

rate within the specified range is satisfied, the broadcast is acceptable. A high

reception rate within the transmission range of the transmitter is unnecessary.

66

• Utilize alternate forwarding schemes for different scenarios. For example, trucks

(NLOS) must forward safety messages; however, cars (small vehicles LOS) do not.

• Delay can be sacrificed to obtain PDR gain. In Fig. 5.4, the delay is always

observed lower than 2.7ms. The PDR shown in Fig. 5.5 is too low to satisfy

the reliability requirement. Because the latency requirement for VSCAs is 100ms

which is much longer than 2.7ms, it is advisable to modify the protocol so as to

achieve higher PDR; however, it is speculated that this modification might incur

allowable penalty on the latency.

• A uniform testing environment (real or simulation) is needed to verify the validity

of each VANET MAC proposal.

• Due to the vital importance of a safety critical message, it is imperative that a

continuous failure of transmission occurs as a result of a burst of errors. In this

instance, safety-related events might occur as a result of the burst loss of infor-

mation. However, the average performance of the MAC might still be acceptable

in spite of the burst loss, as it is compensated for in volumes of successful trans-

mission. Therefore, when designing MAC to support VSCAs, it is unacceptable to

look at the long-term average QoS. The way in which the protocol deals with the

burst of errors should also be a critical criterion to measure the QoS.

The theoretical model and simulation platform presented are expected to serve as

convenient tools for rapid algorithm evaluation and verification, thus providing an ac-

curate design reference for researchers and engineers. For future work, assumptions in

the current model will be strategically removed, making the new model a more realistic

representation, e.g. the hidden node problem considered in two-dimensional space. New

algorithms are expected subsequent to their acceptance into the standard.

67

References

[1] http://ops.fhwa.dot.gov.

[2] National Highway Traffic Safety Administration, Traffic Safety Facts 2005. US-
DOT, 2005.

[3] Z. Jing and S. Roy, “MAC for dedicated short range communications in intelligent
transport system,” IEEE Communications Magazine, vol. 41, no. 12, pp. 60–67,
2003.

[4] The CAMP Vehicle Safety Communications Consortium, Vehicle Safety Communi-
cations Project Task 3 Final Report - Identify Intelligent Vehicle Safety Applications
Enabled by DSRC. USDOT, 2005.

[5] S. K. S. Gupta, V. Shankar, and S. Lalwani, “Reliable multicast MAC protocol for
wireless LANs,” in Proc. of the IEEE International Conference on Communications
(ICC2003), 2003.

[6] D. Towsley, J. Kurose, and S. Pingali, “A comparison of sender-initiated and
receiver-initiated reliable multicast protocols,” IEEE Journal on Selected Areas in
Communications, vol. 15, no. 3, pp. 398–406, 1997.

[7] M. Yamamoto, J. F. Kurose, D. F. Towsley, and H. Ikeda, “A delay analysis of
sender-initiated and receiver-initiated reliable multicast protocols,” in Proc. of the
16th IEEE Conference on Computer Communications (INFOCOM1997).

[8] M. Torrent-Moreno, M. Killat, and H. Hartenstein, “The challenges of robust inter-
vehicle communications,” in Proc. of the 62th IEEE Vehicular Technology Confer-
ence (VTC2005-Fall), 2005.

[9] J. Yin, T. ElBatt, G. Yeung, B. Ryu, S. Habermas, H. Krishnan, and T. Talty, “Per-
formance evaluation of safety applications over DSRC vehicular ad hoc networks,”
in Proc. of the 1st ACM International Workshop on Vehicular Ad Hoc Networks
(VANET’04), 2004.

[10] A. E2213-03, Standard Specification for Telecommunications and Information Ex-
change Between Roadside and Vehicle Systems 5 GHz Band Dedicated Short Range
Communications (DSRC) Medium Access Control (MAC) and Physical Layer
(PHY) Specifications. ASTM Intl., 2003.

[11] Q. Xu, T. Mak, J. Ko, and R. Sengupta, “Vehicle-to-vehicle safety messaging in
DSRC,” in Proc. of the 1st ACM International Workshop on Vehicular Ad Hoc
Networks (VANET’04), 2004.

[12] M. Torrent-Moreno, D. Jiang, and H. Hartenstein, “Broadcast reception rates and
effects of priority access in 802.11-based vehicular ad-hoc networks,” in Proc. of
the 1st ACM International Workshop on Vehicular Ad Hoc Networks (VANET’04),
2004.

[13] J. J. Blum, A. Eskandarian, and L. J. Hoffman, “Challenges of intervehicle ad hoc
networks,” IEEE Transactions on Intelligent Transportation Systems, vol. 5, no. 4,
pp. 347–351, 2004.

[14] D. Jiang, V. Taliwal, A. Meier, W. Holfelder, and R. Herrtwich, “Design of 5.9
ghz dsrc-based vehicular safety communication,” IEEE Wireless Communications,
vol. 13, no. 5, pp. 36–43, 2006.

68

[15] Q. Xu, T. Mak, J. Ko, and R. Sengupta, “Layer-2 protocol design for vehicle
safety communications in dedicated short range communications spectrum,” in
Proc. of the 7th International IEEE Conference on Intelligent Transportation Sys-
tems (ITSC2004), 2004.

[16] S. Biswas, R. Tatchikou, and F. Dion, “Vehicle-to-vehicle wireless communication
protocols for enhancing highway traffic safety,” IEEE Communications Magazine,
vol. 44, no. 1, pp. 74–82, 2006.

[17] S. Sibecas, C. A. Corral, S. Emami, and G. Stratis, “On the suitability of
802.11a/RA for high-mobility DSRC,” in Proc. of the 55th IEEE Vehicular Tech-
nology Conference (VTC2002-Spring), 2002.

[18] B. Gallagher, H. Akatsuka, and H. Suzuki, “Wireless communications for Vehicle
safety: Radio Link Performance & Wireless Connectivity Methods,” IEEE Vehicu-
lar Technology Magazine, 2006.

[19] Q. Xu, K. Hedrick, R. Sengupta, and J. VanderWerf, “Effects of vehicle-
vehicle/roadside-vehicle communication on adaptive cruise controlled highway sys-
tems,” in Proc. of the 56th IEEE Vehicular Technology Conference (VTC2002-Fall),
2002.

[20] S. V. Bana and P. Varaiya, “Space Division Multiple Access (SDMA) For Robust
Ad Hoc Vehicle Communication Networks,” in Proc. of the 4th Internatinal IEEE
Conference on Intelligent Transportation Systems (ITSC2001), 2001.

[21] S. Katragadda, C. N. S. Ganesh Murthy, M. S. Ranga Rao, S. Mohan Kumar, and
R. Sachin, “A Decentralized Location-based Channel Access Protocol For Inter-
vehicle Communication,” in Proc. of the 57th IEEE Vehicular Technology Confer-
ence (VTC2003-Spring), 2003.

[22] J. J. Blum and A. Eskandarian, “A reliable link-Layer protocol for robust and scal-
able intervehicle communications,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 8, no. 1, pp. 4–13, 2007.

[23] maps.google.com.

[24] F. Borgonovo, L. Campelli, M. Cesana, and L. Coletti, “MAC for ad-hoc inter-
vehicle network: services and performance,” in Proc. of the 58th IEEE Vehicular
Technology Conference (VTC2003-Fall), 2003.

[25] F. Borgonovo, A. Capone, M. Cesana, and L. Fratta, “ADHOC MAC: new MAC
architecture for ad hoc networks providing efficient and reliable point-to-point and
broadcast services,” Wireless Networks, vol. 10, no. 4, pp. 359–66, 2004.

[26] F. Borgonovo, L. Campelli, M. Cesana, and L. Fratta, “Impact of user mobility on
the broadcast service efficiency of the ADHOC MAC protocol,” in Proc. of the 51th
IEEE Vehicular Technology Conference (VTC2005-Spring), 2005.

[27] F. Borgonovo, A. Capone, M. Cesana, and L. Fratta, “ADHOC: a new, flexible
and reliable MAC architecture for ad-hoc networks,” in Proc. of IEEE Wireless
Communications and Networking Conference (WCNC2003), 2003.

[28] ——, “RR-ALOHA, a Reliable R-ALOHA broadcast channel for ad-hoc inter-
vehicle communication networks,” in Med-Hoc-Net, 2002.

[29] Intelligent Transportation Systems and Road Safety Report. European Transport
Safety Council (ETSC), 1999.

69

[30] www.cartalk2000.net.

[31] K. Young-Bae, V. Shankarkumar, and N. H. Vaidya, “Medium access control pro-
tocols using directional antennas in ad hoc networks,” in Proc. of the 19th IEEE
Conference on Computer Communications (INFOCOM2000), 2000.

[32] C. Lau and C. Leung, “A Slotted ALOHA packet radio networks with multiple
antennas and receivers,” IEEE Transactions on Vehicular Technology, vol. 39, no. 3,
pp. 218–226, 1990.

[33] N. Pronios, “Performance considerations for slotted spread-sprectrum random ac-
cess networks with directional antennas,” in Proc. of the 41th IEEE Global Com-
munication Conference (GLOBECOM1998), 1998.

[34] J. Ward and R. Compton, “Improving the performance of slotted ALOHA packet
radio network with an adaptive array,” IEEE Transactions on Communications,
vol. 40, pp. 292–300, 1992.

[35] ——, “High throughput slotted ALOHA packet radio networks with adaptive ar-
rays,” IEEE Transactions on Communications, vol. 41, pp. 460–470, 1993.

[36] Y. T.-S. and K.-W. Hung, “Design algorithms for multihop packet radio networks
with multiple directional antennas stations,” IEEE Transactions on Communica-
tions, vol. 40, no. 11, pp. 1716–1724, 1992.

[37] I. Zander, “Slotted ALOHA multiple packet radio networks with directional anten-
nas,” Electronic letters, vol. 26, no. 25, 1990.

[38] K. Thanasis, J. Gentian, and T. Leandros, “A MAC protocol for full exploitation of
directional antennas in ad-hoc wireless networks,” in Proc. of the 4th ACM Inter-
national Symposium on Mobile Ad Hoc Networking & Computing (MobiHoc2003),
2003.

[39] A. Nasipuri, S. Ye, J. You, and R. E. Hiromoto, “A MAC protocol for mobile ad hoc
networks using directional antennas,” in Proc. of IEEE Wireless Communications
and Networking Conference (WCNC2000), 2000.

[40] Z. Huang, C.-C. Shen, C. Srisathapornphat, and C. Jaikaeo, “A busy-tone based
directional MAC protocol for ad hoc networks,” in Proc. of IEEE Military Com-
munications Conference (MILCOM2002), 2002.

[41] C. Romit Roy, Y. Xue, H. V. Nitin, and R. Ram, “Using directional antennas
for medium access control in ad hoc networks,” in Proceedings of the 8th Annual
International Conference on Mobile Computing And Networking.

[42] M. Sadashivaiah, R. Makanaboyina, B. George, and R. Raghavendra, “Performance
evaluation of directional MAC protocol for inter-vehicle communication,” in Proc.
of the 61th IEEE Vehicular Technology Conference (VTC2005-Spring), 2005.

[43] R. R. Choudhury and N. H. Vaidya, “Deafness: a MAC problem in ad hoc net-
works when using directional antennas,” in Proc. of the 12th IEEE International
Conference on Network Protocols (ICNP2004), 2004.

[44] X. Ma, X. Chen, and H. H. Refai, “Delay and broadcast reception rates of highway
safety applications in vehicular ad hoc networks,” in Proc. of the 26th IEEE Con-
ference on Computer Communications (INFOCOM2007) MOVE Workshop, 2007.

70

[45] M. Y. Ravi, C. H. Adithya, S. Mohan, and M. Ranga, “Reliable MAC broadcast
protocol in directional and omni-directional transmissions for vehicular ad hoc net-
works,” in Proc. of the 2nd ACM International Workshop on Vehicular Ad Hoc
Networks (VANET), 2005.

[46] IEEE-802.11, Part 11: wireless LAN medium access control (MAC) and physical
layer (PHY) specifications. IEEE, 1999.

[47] Q. Xu, S. R., J. D., and C. D., “Design and analysis of highway safety communica-
tion protocol in 5.9 GHz dedicated short range communication spectrum,” in Proc.
of the 57th IEEE Vehicular Technology Conference (VTC2003-Spring), 2003.

[48] K. Tang and M. Gerla, “Random access MAC for efficient broadcast support in
ad hoc networks,” in Proc. of IEEE Wireless Communications and Networking
Conference (WCNC2000), 2000.

[49] ——, “MAC reliable broadcast in ad hoc networks,” in Proc. of IEEE Military
Communications Conference (MILCOM2001), 2001.

[50] S. Shiann-Tsong, T. Yihjia, and C. Jenhui, “A highly reliable broadcast scheme
for IEEE 802.11 multi-hop ad hoc networks,” in Proc. of the IEEE International
Conference on Communications (ICC2002), 2002.

[51] J. Chen and M. Huang, “BEAM: broadcast engagement ACK mechanism to support
reliable broadcast transmission in IEEE 802.11 wireless ad hoc networks,” in Proc.
of the 60th IEEE Vehicular Technology Conference (VTC2004-Fall), 2004.

[52] M.-T. Sun, L. Huang, A. Arora, and T.-H. Lai, “Reliable MAC layer multicast in
IEEE 802.11 wireless networks,” in International Conference on Parallel Processing
(ICPP2002), 2002.

[53] W. Si and C. Li, “RMAC: a reliable multicast MAC protocol for wireless ad hoc
networks,” in International Conference on Parallel Processing (ICPP2004), 2004.

[54] M. Zorzi and R. R. Rao, “Capture and retransmission control in mobile radio,”
IEEE Journal on Selected Areas in Communications, vol. 12, no. 8, pp. 1289–1298,
1994.

[55] H. Wu, Y. Peng, K. Long, S. Cheng, and J. Ma, “Performance of reliable transport
protocol over IEEE 802.11 wireless LAN: analysis and enhancement,” in Proc. of
the 21th IEEE Conference on Computer Communications (INFOCOM2002), 2002.

[56] Y. Wang and J. J. Garcia-Luna-Aceves, “A new hybrid channel access scheme for
ad hoc networks,” in Proc. of the 1st Annual Mediterranean Ad Hoc Networking
Workshop (Med-hoc-Net).

[57] S. Shiann-Tsong, T. Chen, C. Jenhui, and Y. Fun, “An improved data flushing
MAC protocol for IEEE 802.11 wireless ad hoc network,” in Proc. of the 56th IEEE
Vehicular Technology Conference (VTC2002-Fall), 2002.

[58] D. Kim, C. K. Toh, and Y. Choi, “ROADMAP: a robust ACK-driven media access
protocol for mobile ad hoc networks,” in Proc. of IEEE Military Communications
Conference (MILCOM2001), 2001.

[59] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination
function,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 3, pp.
535–547, 2000.

71

[60] K.-J. Noh, W.-Y. Choi, and S.-K. Lee, “Adaptive and dynamic tuning of the oper-
ation parameter value for QoS and fairness in wireless LAN,” in Proc. of the 60th
IEEE Vehicular Technology Conference (VTC2004-Fall), 2004.

[61] L. Gannoune, S. Robert, N. Tomar, and T. Agarwal, “Dynamic tuning of the max-
imum contention window (CWmax) for enhanced service differentiation in IEEE
802.11 wireless ad-hoc networks,” in Proc. of the 60th IEEE Vehicular Technology
Conference (VTC2004-Fall), 2004.

[62] Y. Xiao, F. H. Li, K. Wu, K. K. Leung, and Q. Ni, “On optimizing backoff counter
reservation and classifying stations for the IEEE 802.11 distributed wireless LANs,”
IEEE Transactions on Parallel and Distributed Systems, vol. 17, no. 7, pp. 713–722,
2006.

[63] F. Cali, M. Conti, and E. Gregori, “Dynamic tuning of the IEEE 802.11 protocol to
achieve a theoretical throughput limit,” IEEE/ACM Transactions on Networking,
vol. 8, no. 6, pp. 785–799, 2000.

[64] ——, “IEEE 802.11 wireless LAN: capacity analysis and protocol enhancement,”
in Proc. of the 17th IEEE Conference on Computer Communications (INFO-
COM1998), 1998.

[65] A. L. Toledo, T. Vercauteren, and X. Wang, “Adaptive optimization of IEEE 802.11
DCF based on bayesian estimation of the number of competing terminals,” IEEE
Transactions on Mobile Computing, vol. 5, no. 9, pp. 1283–1296, 2006.

[66] Y. Kwon, Y. Fang, and H. Latchman, “Design of MAC protocols with fast colli-
sion resolution for wireless local area networks,” IEEE Transactions on Wireless
Communications, vol. 3, no. 3, pp. 793–807, 2004.

[67] B. Nathan and J. Guo, “Increasing broadcast reliability in vehicular ad hoc net-
works,” in Proc. of the 3rd international workshop on Vehicular ad hoc networks
(VANET), 2006.

[68] J. Choi, J. Yoo, S. Choi, and C. Kim, “EBA: an enhancement of the IEEE 802.11
DCF via distributed reservation,” IEEE Transactions on Mobile Computing, vol. 4,
no. 4, pp. 378–390, 2005.

[69] IEEE-802.11, Part 11: wireless LAN medium access control (MAC) and physical
layer (PHY) specifications, Amendment 8: Medium Access Control (MAC) Quality
of Service Enhancements. IEEE, 2005.

[70] A. Veres, A. T. Campbell, M. Barry, and S. Li-Hsiang, “Supporting service differ-
entiation in wireless packet networks using distributed control,” IEEE Journal on
Selected Areas in Communications, vol. 19, no. 10, pp. 2081–2093, 2001.

[71] I. Aad and C. Castelluccia, “Differentiation mechanisms for IEEE 802.11,” in Proc.
of the 20th IEEE Conference on Computer Communications (INFOCOM2001),
2001.

[72] J. L. Sobrinho and A. S. Krishnakumar, “Real-Time traffic over the IEEE 802.11
medium access control layer,” Bell Labs Tech. J., 1996.

[73] M. Demirbas and M. Hussain, “A MAC layer protocol for priority-based reliable
multicast in wireless ad hoc networks,” in Proc. of International Symposium on a
World of Wireless, Mobile and Multimedia Networks (WoWMoM2006), 2006.

[74] K. Tang and M. Gerla, “MAC layer broadcast support in 802.11 wireless networks,”
in Proc. of IEEE Military Communications Conference (MILCOM2000), 2000.

72

[75] J. Kuri and S. K. Kasera, “Reliable multicast in multi-access wireless LANs,” Wire-
less Networks, vol. 7, no. 4, pp. 359–369, 2001.

[76] H. Zhai, J. Wang, X. Chen, and Y. Fang, “Medium access control in mobile ad hoc
networks: challenges and solutions,” Wireless Communications and Mobile Com-
puting (Special issue on Ad Hoc Networks), 2006.

[77] J. W. Tantra and F. Chuan Heng, “Achieving near maximum throughput in IEEE
802.11 WLANs with contention tone,” IEEE Communications Letters, vol. 10, no. 9,
pp. 658–660, 2006, 1089-7798.

[78] W. Crowther, R. Rettberg, D. Walden, S. Ornstein, and F. Heart, “A system for
broadcast communications: reservation ALOHA,” in the Hawaii International Con-
ference on System Sciences, 1968.

[79] C. S. R. Muthy and B. S. Manoj, Ad Hoc Wireless Networks, Architectures and
Protocols. Prentice Hall.

[80] G. Bianchi and I. Tinnirello, “Remarks on IEEE 802.11 DCF performance analysis,”
IEEE Communications Letters, vol. 9, no. 8, pp. 765–767, 2005.

[81] X. J. Dong and P. Varaiya, “Saturation throughput analysis of IEEE 802.11 wireless
LANs for a lossy channel,” IEEE Communications Letters, vol. 9, no. 2, pp. 100–
102, 2005.

[82] C. H. Foh and J. W. Tantra, “Comments on IEEE 802.11 saturation throughput
analysis with freezing of backoff counters,” IEEE Communications Letters, vol. 9,
no. 2, pp. 130–132, 2005.

[83] K. S. Trivedi, Probability and statistics with reliability, queuing and computer sci-
ence applications. John Wiley & Sons, INC., 2002.

[84] H. Su, X. Zhang, and H.-H. Chen, “Cluster-Based DSRC Architecture for QoS
Provisioning over Vehicle Ad Hoc Networks,” in Proc. of the 49th IEEE Global
Communication Conference (GLOBECOM2006), 2006.

[85] FCC, Amendments regarding DSRC. FCC, 2004.

[86] X. Chen, H. H. Refai, and X. Ma, “Saturation Performance of IEEE 802.11 Broad-
cast Scheme in Ad Hoc Wireless LANs,” in Proc. of the 66th IEEE Vehicular Tech-
nology Conference (VTC2007-Fall), 2007.

[87] O. Dousse, P. Thiran, and M. Hasler, “Connectivity in ad-hoc and hybrid net-
works,” in Proc. of the 21th IEEE Conference on Computer Communications (IN-
FOCOM2002), 2002.

[88] C. H. Foh, G. Liu, B. S. Lee, B.-C. Seet, K.-J. Wong, and C. P. Fu, “Network
connectivity of one-dimensional MANETs with random waypoint movement,” IEEE
Communications Letters, vol. 9, no. 1, pp. 31–33, 2005.

[89] H. Zhai, Y. Kwon, and Y. Fang, “Performance analysis of IEEE 802.11 MAC pro-
tocols in Wireless LANs,” Wireless Communications and Mobile Computing, John
Wiley & Sons, Ltd, vol. 4, no. 8, pp. 917–931, 2004.

73

APPENDIX A

Glossary

ABS Automatic Braking System

ACK Acknowledgement

ASTM American American Society for Testing and Materials

BCH Basic Channel

BEB Binary Exponential Backoff

BER Bit Error Rate

BMMM Batch Mode Multicast MAC

BMW Broadcast Medium Window

CCA Cooperative Collision Avoidance

CFP Consecutive Freeze Process

CTS Clear To Send

DIFS DCF Inter-Frame Space

DCF Distributed Coordination Function

DSRC Dedicated Short Range Communication

DMAC Directional MAC

EBA Early Backoff Announcement

EDCF Enhanced DCF

EIFS Extended Inter-Frame Space

FCR Fast Collision Resolution

FDMA Frequency Division Multiple Access

FI Frame Information

FPRP Five-Phase Reservation Protocol

FHSS Frequency Hopping Spread Spectrum

HRMA Hop Reservation Multiple Access

74

IFS Inter-Frame Space

IVC Inter-Vehicle Communication

LAMM Location Aware Multicast MAC

LBP Leader Based Protocol

LOS line Of Sight

MAC Media Access Control

MRTS Multicast RTS

NAK Negative Acknowledgement

NLOS Non-Line Of Sight

OFDM Orthogonal Frequency Division Multiplexing

PCF Point Coordination Function

PDR Packet Delivery Ratio

PGF Probability Generating Function

PHY Physical Layer

PIFS PCF Inter-Frame Space

QoS Quality of Service

REQ Request

RTS Request To Send

SBP sequential Backoff Process

SDMA Space Division Multiple Access

SIFS Short Inter-Frame Space

TDMA Time Division Multiple Access

TPC Transmission Power Control

WLAN Wireless Local Area Networks

VANET Vehicular Ad Hoc Network

VSCA VANET safety Critical Applications

75

APPENDIX B

MatLab Code Conducting Fast One-hop 802.11 MAC layer broadcasting

Simulation

B.1 Main File

% main.m

%

% IVC MAC performance simulation system

%

% by Xianbo Chen

%

% Copyright 2006~2007. All right reserved

clear;

TIME_UNIT = 1e-6; % us

SIM_DURATION=input(’simulation duration [3 seconds]? ’); if

0==length(SIM_DURATION)

SIM_DURATION = 3/TIME_UNIT;

else

SIM_DURATION = SIM_DURATION/TIME_UNIT;

end

NUM_OF_SIM=input(’# of simulation repetition [1]? ’); if

0==length(NUM_OF_SIM)

NUM_OF_SIM = 1;

end

TX_RANGE=input(’tx range [500 meters]? ’); if 0==length(TX_RANGE)

TX_RANGE = 500; %meter

end

EXPWAY_LEN=input(’express way length [5000 meters]? ’); if

76

0==length(EXPWAY_LEN)

EXPWAY_LEN = 5000;

end

TER_DENSITY=input(’terminal density [0.02 0.04 0.06 .08 .1 .12 .14

.16 .18 #/meter]? ’); if 0==length(TER_DENSITY)

TER_DENSITY = [0.02 0.04 0.06 .08 .1 .12 .14 .16 .18];

end

P_TRAFFIC_ARRIVAL_RATE=input(’periodical packet arrival rate [5

#/second]? ’); if 0==length(P_TRAFFIC_ARRIVAL_RATE)

P_TRAFFIC_ARRIVAL_RATE = [5];

end

E_TRAFFIC_ARRIVAL_RATE=input(’emergent packet arrival rate [1

#/second]? ’); if 0==length(E_TRAFFIC_ARRIVAL_RATE)

E_TRAFFIC_ARRIVAL_RATE = [1];

end

PKT_LEN=input(’packet length[200 bytes]? ’); % 1023 bytes

if 0==length(PKT_LEN)

PKT_LEN = 200 * 8; % bit

else

PKT_LEN = PKT_LEN * 8; % bit

end

BER=input(’bit error rate [0]? ’); if 0==length(BER)

BER = 0;

end

DATA_RATE=input(’data rate[24 Mbps]? ’); if 0==length(DATA_RATE)

DATA_RATE = 24* 1e6 * TIME_UNIT; % bit per us

else

DATA_RATE = DATA_RATE * 1e6 * TIME_UNIT; % bit per us

end

77

E_CW_L=input(’Lower bound of CW size for emergent packets [0]? ’);

if 0==length(E_CW_L)

E_CW_L = 0;

end

E_CW_U=input(’Upper bound of CW size for emergent packets [15]? ’);

if 0==length(E_CW_U)

E_CW_U = 15;

end

P_CW_L=input(’Lower bound of CW size for periodical packets [16]?

’); if 0==length(P_CW_L)

P_CW_L = 16;

end

P_CW_U=input(’Upper bound of CW size for periodical packets [63]?

’); if 0==length(P_CW_U)

P_CW_U = 63;

end

PREAMBLE_LEN=input(’PHY preamble length (ofdm:40us, fh:96us,

ds:144us) [40 us]? ’); if 0==length(PREAMBLE_LEN)

PREAMBLE_LEN = round(40e-6/TIME_UNIT);

else

PREAMBLE_LEN = round(PREAMBLE_LEN*1e-6/TIME_UNIT);

end

PLCP_HEADER_LEN=input(’PLCP header length (ofdm:8us, fh:32us,

ds:48us) [8 us]? ’); if 0==length(PLCP_HEADER_LEN)

PLCP_HEADER_LEN = round(8e-6/TIME_UNIT);

else

PLCP_HEADER_LEN = round(PLCP_HEADER_LEN*1e-6/TIME_UNIT);

end

SLOT_TIME=input(’slot time (ofdm:16us, fh:50us, ds:20us) [16 us]?’);

if 0==length(SLOT_TIME)

78

SLOT_TIME = round(16e-6/TIME_UNIT);

else

SLOT_TIME = round(SLOT_TIME*1e-6/TIME_UNIT);

end

SIFS_TIME=input(’SIFS time (ofdm:32us, fh:28us, ds:10us) [32 us]?

’); if 0==length(SIFS_TIME)

SIFS_TIME = round(32e-6/TIME_UNIT);

else

SIFS_TIME = round(SIFS_TIME*1e-6/TIME_UNIT);

end

CW_MAX = 1023;

MAC_HDR_LEN = 272; % bits

dateAndTime = now;

[outputFilePath, errmsg] = sprintf(’./80211bc_%s.txt’,

datestr(dateAndTime, 30));

%fid = fopen(outputFilePath,’a’);

%fprintf(fid, ’\nPARA_LIST_START\n’);

%fprintf(fid, ’current_date_time = %s\n’, datestr(dateAndTime));

%fprintf(fid, ’time_unit (s) = %e\n’, TIME_UNIT);

%fprintf(fid, ’simulation_duartion (time_unit) = %e\n’, SIM_DURATION);

%fprintf(fid, ’number_of_simulation = %d\n’, NUM_OF_SIM);

%fprintf(fid, ’preamble_len (time_unit) = %d\n’, PREAMBLE_LEN);

%fprintf(fid, ’plcp_header_len (time_uint) = %d\n’, PLCP_HEADER_LEN);

%fprintf(fid, ’PKT_LEN (bit) = %d\n’, PKT_LEN);

%fprintf(fid, ’minimum_contention_window_size = %d\n’, CW_MIN);

%fprintf(fid, ’maximum_contention_window_size = %d\n’, CW_MAX);

%fprintf(fid, ’slot_time (time_unit) = %d\n’, SLOT_TIME);

%fprintf(fid, ’SIFS_time (time_unit) = %d\n’, SIFS_TIME);

%fprintf(fid, ’bit_error_rate = %e\n’, BER);

%fprintf(fid, ’data_rate (bit/time_unit) = %e\n’, DATA_RATE);

%fprintf(fid, ’express_way_len (m) = %d\n’, EXPWAY_LEN);

%fprintf(fid, ’transmission_range (m) = %d\n’, TX_RANGE);

%fprintf(fid, ’PARA_LIST_END\n’);

79

%fprintf(fid, ’\n\nS\t\tD\t\tST\t\tDR\t\tDensity\t\tarrival_rate\n’);

%fclose(fid);

fprintf(’\n---------- sim starts ----------\n\n’);

fprintf(’current_date_time = %s\n’, datestr(dateAndTime));

fprintf(’time_unit (s) = %e\n’, TIME_UNIT);

fprintf(’simulation_duartion (time_unit) = %e\n’, SIM_DURATION);

fprintf(’number_of_simulation = %d\n’, NUM_OF_SIM);

fprintf(’preamble_len (time_unit) = %d\n’, PREAMBLE_LEN);

fprintf(’plcp_header_len (time_uint) = %d\n’, PLCP_HEADER_LEN);

fprintf(’PKT_len (bit) = %d\n’, PKT_LEN);

fprintf(’e_CW_size_lower_bound = %d\n’, E_CW_L);

fprintf(’e_CW_size_upper_bound = %d\n’, E_CW_U);

fprintf(’p_CW_size_lower_bound = %d\n’, P_CW_L);

fprintf(’p_CW_size_upper_bound = %d\n’, P_CW_U);

fprintf(’slot_time (time_unit) = %d\n’, SLOT_TIME);

fprintf(’SIFS_time (time_unit) = %d\n’, SIFS_TIME);

fprintf(’bit_error_rate = %e\n’, BER);

fprintf(’data_rate (bit/time_unit) = %e\n’, DATA_RATE);

fprintf(’express_way_len (m) = %d\n’, EXPWAY_LEN);

fprintf(’transmission_range (m) = %d\n’, TX_RANGE);

%for trafficArrivalRate=TRAFFIC_ARRIVAL_RATE

for terDensity=TER_DENSITY

clear perform;

fprintf(’\nterminal_density (#/m) = %f\n’, terDensity);

% fprintf(’traffic_arrival_rate (#/s) = %f\n’, trafficArrivalRate);

for i=1:NUM_OF_SIM

clear phy mac within simPara prtclPerformSumStru

% resetting of the random table

rand(’state’,sum(100*clock));

80

%init corresponding protocol

simPara.ber = BER;

simPara.dataRate = DATA_RATE;

simPara.preambleLen = PREAMBLE_LEN;

simPara.plcpHeaderLen = PLCP_HEADER_LEN;

simPara.mpduLen = MAC_HDR_LEN + PKT_LEN;

simPara.sifsTime = SIFS_TIME;

simPara.slotTime = SLOT_TIME;

simPara.txRange = TX_RANGE;

simPara.expWayLen = EXPWAY_LEN;

simPara.eCwLrBd = E_CW_L;

simPara.eCwUpBd = E_CW_U;

simPara.pCwLrBd = P_CW_L;

simPara.pCwUpBd = P_CW_U;

simPara.terDensity = terDensity; % # per meter

% pkt per second

simPara.pTrafficArrivalRate = P_TRAFFIC_ARRIVAL_RATE;

% pkt per second

simPara.eTrafficArrivalRate = E_TRAFFIC_ARRIVAL_RATE;

simPara.timeUnit = TIME_UNIT;

simPara.simDura = SIM_DURATION;

[phy mac within actualExpWayLen numOfTerminals] =

satu_bc_80211_init(simPara);

prtclPerformSumStru = satu_bc_80211(phy, mac, within, simPara.simDura);

perform.eS(i) = PKT_LEN / DATA_RATE *

prtclPerformSumStru.eNumOfGoodPkt /

prtclPerformSumStru.actualSimDura;

perform.eD(i) = prtclPerformSumStru.eTotalSlotTime /

prtclPerformSumStru.eNumOfGoodPkt;

perform.eST(i) = prtclPerformSumStru.eTotalSlotTime2 /

prtclPerformSumStru.eNumOfGoodPkt;

perform.eDR(i) = prtclPerformSumStru.eNumOfGoodPkt /

81

prtclPerformSumStru.eTotalPktSent;

perform.pS(i) = PKT_LEN / DATA_RATE *

prtclPerformSumStru.pNumOfGoodPkt /

prtclPerformSumStru.actualSimDura;

perform.pD(i) = prtclPerformSumStru.pTotalSlotTime /

prtclPerformSumStru.pNumOfGoodPkt;

perform.pST(i) = prtclPerformSumStru.pTotalSlotTime2 /

prtclPerformSumStru.pNumOfGoodPkt;

perform.pDR(i) = prtclPerformSumStru.pNumOfGoodPkt /

prtclPerformSumStru.pTotalPktSent;

if 0 == perform.eDR(i)

prtclPerformSumStru

plot(phy.status.geoPosition, 2, ’kp’);

pause

end

end

fprintf(’\n\neS\t\teD\t\teST\t\teDR\t\t

Density\t\te_arrival_rate\n’);

fprintf(’%f\t%f\t%f\t%f\t%f\t%f\n’, mean(perform.eS),

mean(perform.eD), ...

mean(perform.eST), mean(perform.eDR), ...

terDensity, E_TRAFFIC_ARRIVAL_RATE);

fprintf(’\n\npS\t\tpD\t\tpST\t\tpDR\t\tDensity\t\t

p_arrival_rate\n’);

fprintf(’%f\t%f\t%f\t%f\t%f\t%f\n’,

mean(perform.pS), mean(perform.pD), ...

mean(perform.pST), mean(perform.pDR), ...

terDensity, P_TRAFFIC_ARRIVAL_RATE);

end

fprintf(’\n---------- sim ends ----------\n\n’);

%graph(outputFilePath);

82

return;

B.2 Initialization

% satu_bc_80211_init.m

%

% saturation broadcast 802.11 initialization

%

% by Xianbo Chen

%

% Copyright 2006~2007. All right reserved

function [phy mac within actualExpWayLen numOfTerminals] =

satu_bc_80211_init(simPara)

phy.attrib.timeUnit = simPara.timeUnit;

phy.attrib.ber = simPara.ber; % channel bit error rate

phy.attrib.dataRate = simPara.dataRate; % bit per us

phy.attrib.sifs = simPara.sifsTime; phy.attrib.difs =

phy.attrib.sifs + 2*simPara.slotTime; phy.attrib.slotTime =

simPara.slotTime;

phy.attrib.txRange = simPara.txRange; % meter;

phy.attrib.preambleLen = simPara.preambleLen;

phy.attrib.plcpHeaderLen = simPara.plcpHeaderLen;

phy.attrib.propDelay = 0; %us

% position distribution

gapLenBtwNodes = (1/simPara.terDensity); % meter

numOfTerminals = 1; phy.status.geoPosition(numOfTerminals) =

ceil(-gapLenBtwNodes*log(1-rand));

%while (phy.status.geoPosition(numOfTerminals) < simPara.expWayLen)

while (numOfTerminals < ceil(simPara.expWayLen/gapLenBtwNodes))

numOfTerminals = numOfTerminals + 1;

83

phy.status.geoPosition(numOfTerminals) =

phy.status.geoPosition(numOfTerminals-1) +

ceil(-gapLenBtwNodes*log(1-rand));

end

within = zeros(numOfTerminals, numOfTerminals); for

i=1:numOfTerminals

for j=i:numOfTerminals

if (abs(phy.status.geoPosition(i) - phy.status.geoPosition(j)) <=

phy.attrib.txRange)

within(i, j) = 1;

within(j, i) = 1;

end

end

% within(i,i) = 0;

end

actualExpWayLen = phy.status.geoPosition(numOfTerminals);

% calculating sampling area

centerOfExpWay = actualExpWayLen/2;

mac.statistics.lowBoundOfSamplingArea =

centerOfExpWay - phy.attrib.txRange;

mac.statistics.upBoundOfSamplingArea = centerOfExpWay +

phy.attrib.txRange;

mac.statistics.minSamplingStaId = 0;

mac.statistics.maxSamplingStaId = 0;

for i=1:numOfTerminals

if phy.status.geoPosition(i) >=

mac.statistics.lowBoundOfSamplingArea

mac.statistics.minSamplingStaId = i;

break;

end

end

84

for j=mac.statistics.minSamplingStaId:numOfTerminals

if (j-mac.statistics.minSamplingStaId) >=

ceil((mac.statistics.upBoundOfSamplingArea -

mac.statistics.lowBoundOfSamplingArea)/gapLenBtwNodes)

mac.statistics.maxSamplingStaId = j;

break;

end

end

fprintf(’\n\n%d\t%d\n\n’, mac.statistics.minSamplingStaId,

mac.statistics.maxSamplingStaId);

if j==numOfTerminals

mac.statistics.maxSamplingStaId = numOfTerminals;

end

phy.status.numOfTxSignal = zeros(1, numOfTerminals);

phy.status.signalIntegrity = zeros(1, numOfTerminals);

%mac.attrib.qInterval = (1/simPara.trafficArrivalRate)/phy.attrib.timeUnit;

mac.attrib.pArrivalInterval =

(1/simPara.pTrafficArrivalRate)/phy.attrib.timeUnit;

mac.attrib.eArrivalInterval =

(1/simPara.eTrafficArrivalRate)/phy.attrib.timeUnit;

mac.status.mpduLen = simPara.mpduLen;

mac.attrib.propGoodPkt = (1-phy.attrib.ber)^(mac.status.mpduLen +...

round((phy.attrib.preambleLen +

phy.attrib.plcpHeaderLen)*simPara.dataRate));

mac.attrib.CwLrBd(1) = simPara.eCwLrBd; mac.attrib.CwUpBd(1) =

simPara.eCwUpBd; mac.attrib.CwLrBd(2) = simPara.pCwLrBd;

mac.attrib.CwUpBd(2) = simPara.pCwUpBd;

mac.status.pPktBornTime = -mac.attrib.pArrivalInterval*log(1-rand(1,

85

numOfTerminals)); mac.status.ePktBornTime =

-mac.attrib.eArrivalInterval*log(1-rand(1, numOfTerminals));

mac.status.pktBornTime = min(mac.status.ePktBornTime,

mac.status.pPktBornTime); mac.status.pktType =

(mac.status.ePktBornTime > mac.status.pPktBornTime) + 1;

mac.attrib.PKT_TYPE_E = 1; mac.attrib.PKT_TYPE_P = 2;

%mac.status.backOffSlotCnt = floor(rand(1, numOfTerminals) *

mac.status.contentionWindowSize);

%mac.status.backOffSlotCnt = ceil(rand(1, numOfTerminals) *

mac.status.contentionWindowSize +

mac.status.pktType*

(mac.status.contentionWindowSize+1));

%mac.status.backOffSlotCnt = ceil(rand(1, numOfTerminals) *

mac.status.contentionWindowSize);

for i=1:numOfTerminals

mac.status.backOffSlotCnt(i) = ceil(rand *

(mac.attrib.CwUpBd(mac.status.pktType(i)) -

mac.attrib.CwLrBd(mac.status.pktType(i))) +

mac.attrib.CwLrBd(mac.status.pktType(i)));

end

mac.status.syncTime = mac.status.pktBornTime;

mac.status.pktSrvStartTime = mac.status.pktBornTime;

mac.status.nxtEvtTime = mac.status.syncTime + phy.attrib.difs +

mac.status.backOffSlotCnt * phy.attrib.slotTime;

mac.status.nxtEvtType = zeros(1, numOfTerminals);

mac.status.dsrcTimer = 0;

mac.statistics.eNumOfPktSent = zeros(1, numOfTerminals);

mac.statistics.eNumOfGoodPkt = zeros(1, numOfTerminals);

mac.statistics.eTotalSlotTime = zeros(1, numOfTerminals);

mac.statistics.eTotalSlotTime2 = zeros(1, numOfTerminals);

mac.statistics.pNumOfPktSent = zeros(1, numOfTerminals);

mac.statistics.pNumOfGoodPkt = zeros(1, numOfTerminals);

mac.statistics.pTotalSlotTime = zeros(1, numOfTerminals);

86

mac.statistics.pTotalSlotTime2 = zeros(1, numOfTerminals);

return;

B.3 Protocol Processing

% satu_bc_80211.m

%

% 802.11 saturation broadcast simulation function

%

%

% by Xianbo Chen

%

% Copyright 2006~2007. All right reserved

function prtclPerformSumStru = satu_bc_80211(phy, mac, within,

simDuration)

percentage = 1; s = ’’;

while (mac.status.dsrcTimer < simDuration)

if percentage == floor(100*mac.status.dsrcTimer/simDuration)

for j=1:length(s)

fprintf(’\b’);

end

[s, errmsg] = sprintf(’%%%d finished’, percentage);

fprintf(’%s’, s);

percentage = percentage + 1;

end

nxtEvtTime = min(mac.status.nxtEvtTime);

mac.status.dsrcTimer = nxtEvtTime;

% deal with evt_end_tx:1 first, then evt_start_tx:0

idxNext2EndTx = find(mac.status.nxtEvtTime == nxtEvtTime

87

& 1 == mac.status.nxtEvtType);

for i = 1 : length(idxNext2EndTx)

terId = idxNext2EndTx(i);

% according to varibles within and nxtEvtType to decide

% the reaction of each terminal within the range to

% this event.

IdxNeighbor = find(1 == within(terId, :));

% if it has no neighbors, do nothing

if ~isempty(IdxNeighbor)

if mac.attrib.PKT_TYPE_E == mac.status.pktType(terId)

mac.statistics.eNumOfPktSent(terId) =

mac.statistics.eNumOfPktSent(terId) + 1;

else

mac.statistics.pNumOfPktSent(terId) =

mac.statistics.pNumOfPktSent(terId) + 1;

end

phy.status.numOfTxSignal(IdxNeighbor) =

phy.status.numOfTxSignal(IdxNeighbor) - 1;

if (all(0==phy.status.signalIntegrity(IdxNeighbor))

& all(0==phy.status.numOfTxSignal(IdxNeighbor)))

% no collision, this tx is a good one, do statistics

if rand < mac.attrib.propGoodPkt

if mac.attrib.PKT_TYPE_E == mac.status.pktType(terId)

mac.statistics.eTotalSlotTime2(terId) =

mac.statistics.eTotalSlotTime2(terId) +

mac.status.dsrcTimer -

mac.status.pktSrvStartTime(terId);

mac.statistics.eTotalSlotTime(terId) =

mac.statistics.eTotalSlotTime(terId) +

mac.status.dsrcTimer - mac.status.pktBornTime(terId);

mac.statistics.eNumOfGoodPkt(terId) =

mac.statistics.eNumOfGoodPkt(terId) + 1;

88

else

mac.statistics.pTotalSlotTime2(terId) =

mac.statistics.pTotalSlotTime2(terId) +

mac.status.dsrcTimer -

mac.status.pktSrvStartTime(terId);

mac.statistics.pTotalSlotTime(terId) =

mac.statistics.pTotalSlotTime(terId) +

mac.status.dsrcTimer -

mac.status.pktBornTime(terId);

mac.statistics.pNumOfGoodPkt(terId) =

mac.statistics.pNumOfGoodPkt(terId) + 1;

end

end

% medium idle detected by all its neighoring terminals,

% next event for these terminals is to send if any

% packet ready.

tmpIdx = mac.status.dsrcTimer >=

mac.status.pktBornTime(IdxNeighbor);

mac.status.syncTime(IdxNeighbor(tmpIdx)) =

mac.status.dsrcTimer;

tmpIdx = mac.status.dsrcTimer <

mac.status.pktBornTime(IdxNeighbor);

mac.status.syncTime(IdxNeighbor(tmpIdx)) =

mac.status.pktBornTime(IdxNeighbor(tmpIdx));

mac.status.nxtEvtType(IdxNeighbor) = 0;

mac.status.nxtEvtTime(IdxNeighbor) =

mac.status.syncTime(IdxNeighbor) +

phy.attrib.difs +

mac.status.backOffSlotCnt(IdxNeighbor) *

phy.attrib.slotTime;

else

for j = 1 : length(IdxNeighbor)

neighborId = IdxNeighbor(j);

if (0 == phy.status.numOfTxSignal(neighborId))

if (0 ~= phy.status.signalIntegrity(neighborId))

89

phy.status.signalIntegrity(neighborId) = 0;

end

% medium idle detected by this neighoring terminal,

% next event for this terminal is to send if any

% packet ready

if mac.status.dsrcTimer >=

mac.status.pktBornTime(neighborId)

mac.status.syncTime(neighborId) =

mac.status.dsrcTimer;

else

mac.status.syncTime(neighborId) =

mac.status.pktBornTime(neighborId);

end

mac.status.nxtEvtType(neighborId) = 0;

mac.status.nxtEvtTime(neighborId) =

mac.status.syncTime(neighborId) +

phy.attrib.difs +

mac.status.backOffSlotCnt(neighborId) *

phy.attrib.slotTime;

end

end

end

end

mac.status.nxtEvtType(terId) = 0;

% mac.status.pktBornTime(terId) =

% mac.status.pktBornTime(terId) -

% mac.attrib.qInterval*log(1-rand);

%% for saturation

% mac.status.pktBornTime(terId) = mac.status.dsrcTimer;

if mac.attrib.PKT_TYPE_E == mac.status.pktType(terId)

mac.status.ePktBornTime(terId) =

mac.status.ePktBornTime(terId) -

mac.attrib.eArrivalInterval*log(1-rand);

90

else

mac.status.pPktBornTime(terId) =

mac.status.pPktBornTime(terId) -

mac.attrib.pArrivalInterval*log(1-rand);

end

if mac.status.ePktBornTime(terId) <=

mac.status.dsrcTimer

mac.status.pktBornTime(terId) =

mac.status.ePktBornTime(terId);

mac.status.pktType(terId) = 1;

else

mac.status.pktBornTime(terId) =

min(mac.status.ePktBornTime(terId),

mac.status.pPktBornTime(terId));

mac.status.pktType(terId) =

(mac.status.ePktBornTime(terId) >

mac.status.pPktBornTime(terId)) + 1;

end

% mac.status.backOffSlotCnt(terId) =

% floor(rand * mac.status.contentionWindowSize); % CFP

% mac.status.backOffSlotCnt(terId) =

% ceil(rand * mac.status.contentionWindowSize);

mac.status.backOffSlotCnt(terId) = ceil(rand *

(mac.attrib.CwUpBd(mac.status.pktType(terId)) -

mac.attrib.CwLrBd(mac.status.pktType(terId)))

+ mac.attrib.CwLrBd(mac.status.pktType(terId)));

if mac.status.dsrcTimer >= mac.status.pktBornTime(terId)

mac.status.syncTime(terId) = mac.status.dsrcTimer;

else

mac.status.syncTime(terId) = mac.status.pktBornTime(terId);

end

mac.status.pktSrvStartTime(terId) = mac.status.syncTime(terId);

91

mac.status.nxtEvtTime(terId) =mac.status.syncTime(terId) +

phy.attrib.difs +

mac.status.backOffSlotCnt(terId) * phy.attrib.slotTime;

end

% propagation delay might be considered.

idxNext2StartTx = find(mac.status.nxtEvtTime <=

(nxtEvtTime+phy.attrib.propDelay) &

0 == mac.status.nxtEvtType);

for i = 1 : length(idxNext2StartTx)

terId = idxNext2StartTx(i);

% according to varibles within and nxtEvtType to decide

% the reaction of each terminal within the range to

% this event.

IdxNeighbor = find(1 == within(terId, :));

phy.status.numOfTxSignal(IdxNeighbor) =

phy.status.numOfTxSignal(IdxNeighbor) + 1;

for j = 1 : length(IdxNeighbor)

neighborId = IdxNeighbor(j);

if (0 == phy.status.signalIntegrity(neighborId))

if (2 <= phy.status.numOfTxSignal(neighborId))

% signal interference, integrity destroyed

phy.status.signalIntegrity(neighborId) = 1;

end

% % not in the tx idx

% if (0 == length(find(neighborId == idxNext2StartTx))) &

% (Inf ~= mac.status.nxtEvtType(neighborId))

if (isempty(find(neighborId == idxNext2StartTx))) &

(Inf ~= mac.status.nxtEvtType(neighborId))

% deal with the possible backoff counter decreament

if (0 == mac.status.nxtEvtType(neighborId))

numOfSlotPassed = floor((mac.status.dsrcTimer -

mac.status.syncTime(neighborId) -

92

phy.attrib.difs)/phy.attrib.slotTime);

if (numOfSlotPassed > 0)

mac.status.backOffSlotCnt(neighborId) =

mac.status.backOffSlotCnt(neighborId) -

numOfSlotPassed;

end

end

if (1 == mac.status.nxtEvtType(neighborId))

wrong;

end

mac.status.nxtEvtType(neighborId) = Inf;

mac.status.nxtEvtTime(neighborId) = Inf;

end

end

end

mac.status.nxtEvtType(terId) = 1;

mac.status.nxtEvtTime(terId) = mac.status.nxtEvtTime(terId) +

mac.status.mpduLen/phy.attrib.dataRate +

phy.attrib.preambleLen + phy.attrib.plcpHeaderLen;

end

end

%for i=1:length(mac.statistics.numOfPktSent)

% while mac.status.pktBornTime(i) < mac.status.dsrcTimer

% mac.status.pktBornTime(i) =

% mac.status.pktBornTime(terId) -

% mac.attrib.qInterval*log(1-rand);

% mac.statistics.numOfPktSent(i) =

% mac.statistics.numOfPktSent(i);

% end

%end

prtclPerformSumStru.eTotalPktSent =

93

sum(mac.statistics.eNumOfPktSent(

mac.statistics.minSamplingStaId:

mac.statistics.maxSamplingStaId));

prtclPerformSumStru.eTotalSlotTime =

sum(mac.statistics.eTotalSlotTime(

mac.statistics.minSamplingStaId:

mac.statistics.maxSamplingStaId));

prtclPerformSumStru.eTotalSlotTime2 =

sum(mac.statistics.eTotalSlotTime2(

mac.statistics.minSamplingStaId:

mac.statistics.maxSamplingStaId));

prtclPerformSumStru.eNumOfGoodPkt =

sum(mac.statistics.eNumOfGoodPkt(

mac.statistics.minSamplingStaId:

mac.statistics.maxSamplingStaId));

prtclPerformSumStru.pTotalPktSent =

sum(mac.statistics.pNumOfPktSent(

mac.statistics.minSamplingStaId:

mac.statistics.maxSamplingStaId));

prtclPerformSumStru.pTotalSlotTime =

sum(mac.statistics.pTotalSlotTime(

mac.statistics.minSamplingStaId:

mac.statistics.maxSamplingStaId));

prtclPerformSumStru.pTotalSlotTime2 =

sum(mac.statistics.pTotalSlotTime2(

mac.statistics.minSamplingStaId:

mac.statistics.maxSamplingStaId));

prtclPerformSumStru.pNumOfGoodPkt =

sum(mac.statistics.pNumOfGoodPkt(

mac.statistics.minSamplingStaId:

mac.statistics.maxSamplingStaId));

prtclPerformSumStru.actualSimDura = mac.status.dsrcTimer;

%totalPkt1to25 = sum(mac.statistics.numOfPktSent(1:25));

%goodPkt1to25 = sum(mac.statistics.numOfGoodPkt(1:25));

%fprintf(’\n\nS1~25=%f \t\t D1~25=%f\n’, 200 * 8 /

94

% phy.attrib.dataRate

% * goodPkt1to25 / prtclPerformSumStru.actualSimDura,

% goodPkt1to25 / totalPkt1to25);

return ;

95

APPENDIX C

MatLab Code Conducting Event-driven 802.11 MAC layer Simulation

% ignore the fact that a station may not backoff when

% transmitting its first packet after power-up becuase

% it may achieve its first DIFS without finding the

% medium was ever busy.

% propagation delay is ignored

function ao2dot11

clear;

% *** MAC state mechine

MAC_STATE_IDLE = 0;

MAC_STATE_WAIT_FOR_NAV = 1;

MAC_STATE_WAIT_FOR_DIFS = 2;

MAC_STATE_BACK_OFF = 3;

MAC_STATE_TX_BC = 4;

MAC_STATE_TX_UC = 5;

MAC_STATE_SIFS_AFTER_TX_UC = 6;

MAC_STATE_WAIT_FOR_ACK = 7;

MAC_STATE_RX_ACK = 8;

MAC_STATE_TX_RTS = 9;

96

MAC_STATE_WAIT_FOR_CTS = 10;

MAC_STATE_TX_CTS = 11;

MAC_STATE_WAIT_FOR_DATA = 12;

MAC_STATE_SIFS_AFTER_TX_RTS = 13;

MAC_STATE_RX_CTS = 14;

MAC_STATE_RX_UC = -1;

MAC_STATE_SIFS_AFTER_RX_UC = -2;

MAC_STATE_TX_ACK = -3;

MAC_STATE_RX_BC = -4;

MAC_STATE_RX_RTS = -5;

MAC_STATE_SIFS_AFTER_RX_RTS = -6;

MAC_STATE_SIFS_AFTER_TX_CTS = -7;

MAC_STATE_SIFS_AFTER_RX_CTS = -8;

% *** message type

MSG_TP_NULL = 0;

MSG_TP_TRANSIT_2_IDLE = 1;

MSG_TP_SOMEONE_TX = 2;

MSG_TP_SOMEONE_STOP_TX = 3;

97

MSG_TP_DIFS_ACHEIVED = 4;

MSG_TP_TX_UC_DATA_START = 5;

MSG_TP_TX_UC_DATA_END = 6;

MSG_TP_READY_TO_RX_ACK = 7;

MSG_TP_ACK_TIME_OUT = 8;

MSG_TP_RX_ACK_START = 9;

MSG_TP_RX_ACK_END = 10;

MSG_TP_RX_UC_DATA_START = 11;

MSG_TP_RX_UC_DATA_END = 12;

MSG_TP_TX_ACK_START = 13;

MSG_TP_TX_ACK_END = 14;

MSG_TP_TX_BC_DATA_START = 15;

MSG_TP_TX_BC_DATA_END = 16;

MSG_TP_RX_BC_DATA_START = 17;

MSG_TP_RX_BC_DATA_END = 18;

MSG_TP_TX_RTS_START = 19;

MSG_TP_RX_RTS_START = 20;

MSG_TP_TX_RTS_END = 21;

98

MSG_TP_RX_RTS_END = 22;

MSG_TP_TX_CTS_START = 23;

MSG_TP_RX_CTS_START = 24;

MSG_TP_TX_CTS_END = 25;

MSG_TP_RX_CTS_END = 26;

MSG_TP_READY_TO_RX_CTS = 27;

MSG_TP_CTS_TIME_OUT = 28;

MSG_TP_READY_TO_RECEIVE_DATA = 29;

% *** event type

EVT_TP_TRANSIT_2_IDLE = MSG_TP_TRANSIT_2_IDLE;

EVT_TP_DIFS_ACHEIVED = MSG_TP_DIFS_ACHEIVED;

EVT_TP_UC_TX_DATA_START = MSG_TP_TX_UC_DATA_START;

EVT_TP_UC_TX_DATA_END = MSG_TP_TX_UC_DATA_END;

EVT_TP_READY_TO_RX_ACK = MSG_TP_READY_TO_RX_ACK;

EVT_TP_ACK_TIME_OUT = MSG_TP_ACK_TIME_OUT;

EVT_TP_TX_ACK_START = MSG_TP_TX_ACK_START;

EVT_TP_TX_ACK_END = MSG_TP_TX_ACK_END;

EVT_TP_BC_TX_DATA_START = MSG_TP_TX_BC_DATA_START;

EVT_TP_BC_TX_DATA_END = MSG_TP_TX_BC_DATA_END;

99

EVT_TP_READY_TO_RX_CTS = MSG_TP_READY_TO_RX_CTS;

EVT_TP_TX_RTS_START = MSG_TP_TX_RTS_START;

EVT_TP_TX_RTS_END = MSG_TP_TX_RTS_END;

EVT_TP_CTS_TIME_OUT = MSG_TP_CTS_TIME_OUT;

EVT_TP_TX_CTS_START = MSG_TP_TX_CTS_START;

EVT_TP_TX_CTS_END = MSG_TP_TX_CTS_END;

EVT_TP_READY_TO_RECEIVE_DATA = MSG_TP_READY_TO_RECEIVE_DATA;

% *** packet type

PKT_TP_UC_BAS = 0; % unicast with basic access mechanism

PKT_TP_BC = 1; % broadcast

PKT_TP_UC_RTS = 2; % unicast with RTS/CTS

% *** other constant

MIN_NUM_OF_STA = 5;

NUM_OF_STA_STEP = 5;

MAX_NUM_OF_STA = 50;

TIME_UNIT = 1e-6; % micro second

SIM_DURATION = 100 / TIME_UNIT; % TIME_UNIT

DATA_RATE = 1e6; % bps

SLOT_SIZE = 50; % TIME_UNIT

100

SIFS = 28; % TIME_UNIT

DIFS = SIFS + 2 * SLOT_SIZE; % TIME_UNIT

MIN_CW_STAGE = 7;

MAX_CW_STAGE = 10;

ACK_TIMEOUT = 300; % ACK TIME_UNIT

CTS_TIMEOUT = 300; % CTS TIME_UNIT

DATA_PAYLOAD_LEN = 8184; % bit

MAC_HEADER_LEN = 272; % bit

PHY_HEADER_LEN = 128; % bit

DATA_PKT_LEN = DATA_PAYLOAD_LEN + ...

MAC_HEADER_LEN + ...

PHY_HEADER_LEN; % bit

ACK_PKT_LEN = 112 + PHY_HEADER_LEN; % bit

RTS_PKT_LEN = 160 + PHY_HEADER_LEN; % bit

CTS_PKT_LEN = 112 + PHY_HEADER_LEN; % bit

numOfLoop = 0;

% & execution &

for numOfSta = MIN_NUM_OF_STA : NUM_OF_STA_STEP : MAX_NUM_OF_STA

% *** parameters initialization

curTime = 0; % TIME_UNIT

101

% *** event scheduler initialization

for staId = 1 : numOfSta

evt.occurTime(staId) = curTime;

evt.evtType(staId) = EVT_TP_TRANSIT_2_IDLE;

evt.para1(staId) = 0;

end

% *** message box initializaion

msgP1Counter = 0;

msgP1.staId = repmat(0, 1, numOfSta);

msgP1.msgType = repmat(MSG_TP_NULL, 1, numOfSta);

msgP1.para1 = repmat(0, 1, numOfSta);

msgP2Counter = 0;

msgP2.staId(1) = 0;

msgP2.msgType(1) = MSG_TP_NULL;

msgP2.para1(1) = 0;

% *** station (sta) initialization

for staId = 1 : numOfSta

sta.phy.status.medState(staId) = 0;

sta.mac.status.ucpktBornTime(staId) = 0;

sta.mac.status.bcpktBornTime(staId) = 0;

sta.mac.status.bcTxStatus(staId) = 0;

sta.mac.status.state(staId) = MAC_STATE_IDLE;

sta.mac.status.bakOffCnter(staId) = 0;

sta.mac.status.bakOffStartTime(staId) = 0;

sta.mac.status.cwStage(staId) = MIN_CW_STAGE;

tempVar = staId;

while tempVar == staId

tempVar = ceil(rand * numOfSta);

end

sta.mac.status.dstStaId(staId) = tempVar;

sta.mac.status.srcStaId(staId) = 0;

sta.mac.status.pktType(staId) = PKT_TP_UC_RTS;

102

sta.statistics.NumOfUcpktBasSentSuccessfully(staId) = 0;

sta.statistics.ucpktBasTotalDelay(staId) = 0;

sta.statistics.NumOfBcpktSentSuccessfully(staId) = 0;

sta.statistics.bcpktTotalDelay(staId) = 0;

sta.statistics.NumOfUcpktRtsSentSuccessfully(staId) = 0;

sta.statistics.ucpktRtsTotalDelay(staId) = 0;

end

% *** run

while (curTime <= SIM_DURATION)

% event handling, jump to the nearest time point

nearestTimePoint = min(evt.occurTime);

if (inf == nearestTimePoint)

fprintf(’WRONG, nearest time point is inf’);

pause;

else

staIdIdx = find(nearestTimePoint == evt.occurTime);

end

% notify corresponding stations the event by messaging

for i = 1 : length(staIdIdx)

staId = staIdIdx(i);

para1 = evt.para1(staId);

switch evt.evtType(staId)

case EVT_TP_TRANSIT_2_IDLE

msgP1Counter = msgP1Counter + 1;

msgP1.staId(msgP1Counter) = staId;

msgP1.msgType(msgP1Counter) =

MSG_TP_TRANSIT_2_IDLE;

case EVT_TP_DIFS_ACHEIVED

msgP1Counter = msgP1Counter + 1;

msgP1.staId(msgP1Counter) = staId;

msgP1.msgType(msgP1Counter) =

MSG_TP_DIFS_ACHEIVED;

103

case EVT_TP_UC_TX_DATA_START

msgP1Counter = msgP1Counter + 1;

msgP1.staId(msgP1Counter) = staId;

msgP1.msgType(msgP1Counter) =

MSG_TP_TX_UC_DATA_START;

tempVar = msgP2Counter + 1;

msgP2Counter = msgP2Counter + numOfSta - 1;

msgP2.staId(tempVar:msgP2Counter) =

[1:(staId-1) (staId+1):numOfSta];

msgP2.msgType(tempVar:msgP2Counter) =

MSG_TP_SOMEONE_TX;

% in order to align

msgP2.para1(tempVar:msgP2Counter) = staId;

if para1<staId

msgP2.msgType(tempVar + para1 - 1) =

MSG_TP_RX_UC_DATA_START;

else

msgP2.msgType(tempVar + para1 - 2) =

MSG_TP_RX_UC_DATA_START;

end

case EVT_TP_UC_TX_DATA_END

msgP1Counter = msgP1Counter + 1;

msgP1.staId(msgP1Counter) = staId;

msgP1.msgType(msgP1Counter) =

MSG_TP_TX_UC_DATA_END;

tempVar = msgP2Counter + 1;

msgP2Counter = msgP2Counter + numOfSta - 1;

msgP2.staId(tempVar:msgP2Counter) =

[1:(staId-1) (staId+1):numOfSta];

msgP2.msgType(tempVar:msgP2Counter) =

MSG_TP_SOMEONE_STOP_TX;

% in order to align

104

msgP2.para1(tempVar:msgP2Counter) = staId;

if para1<staId

msgP2.msgType(tempVar + para1 - 1) =

MSG_TP_RX_UC_DATA_END;

else

msgP2.msgType(tempVar + para1 - 2) =

MSG_TP_RX_UC_DATA_END;

end

case EVT_TP_READY_TO_RX_ACK

msgP1Counter = msgP1Counter + 1;

msgP1.staId(msgP1Counter) = staId;

msgP1.msgType(msgP1Counter) =

MSG_TP_READY_TO_RX_ACK;

case EVT_TP_ACK_TIME_OUT

msgP1Counter = msgP1Counter + 1;

msgP1.staId(msgP1Counter) = staId;

msgP1.msgType(msgP1Counter) =

MSG_TP_ACK_TIME_OUT;

case EVT_TP_TX_ACK_START

msgP1Counter = msgP1Counter + 1;

msgP1.staId(msgP1Counter) = staId;

msgP1.msgType(msgP1Counter) =

MSG_TP_TX_ACK_START;

tempVar = msgP2Counter + 1;

msgP2Counter = msgP2Counter + numOfSta - 1;

msgP2.staId(tempVar:msgP2Counter) =

[1:(staId-1) (staId+1):numOfSta];

msgP2.msgType(tempVar:msgP2Counter) =

MSG_TP_SOMEONE_TX;

% in order to align

msgP2.para1(tempVar:msgP2Counter) = staId;

if para1<staId

105

msgP2.msgType(tempVar + para1 - 1) =

MSG_TP_RX_ACK_START;

else

msgP2.msgType(tempVar + para1 - 2) =

MSG_TP_RX_ACK_START;

end

case EVT_TP_TX_ACK_END

msgP1Counter = msgP1Counter + 1;

msgP1.staId(msgP1Counter) = staId;

msgP1.msgType(msgP1Counter) =

MSG_TP_TX_ACK_END;

tempVar = msgP2Counter + 1;

msgP2Counter = msgP2Counter + numOfSta - 1;

msgP2.staId(tempVar:msgP2Counter) =

[1:(staId-1) (staId+1):numOfSta];

msgP2.msgType(tempVar:msgP2Counter) =

MSG_TP_SOMEONE_STOP_TX;

% in order to align

msgP2.para1(tempVar:msgP2Counter) = staId;

if para1<staId

msgP2.msgType(tempVar + para1 - 1) =

MSG_TP_RX_ACK_END;

else

msgP2.msgType(tempVar + para1 - 2) =

MSG_TP_RX_ACK_END;

end

case EVT_TP_BC_TX_DATA_START

msgP1Counter = msgP1Counter + 1;

msgP1.staId(msgP1Counter) = staId;

msgP1.msgType(msgP1Counter) =

MSG_TP_TX_BC_DATA_START;

tempVar = msgP2Counter + 1;

msgP2Counter = msgP2Counter + numOfSta - 1;

106

msgP2.staId(tempVar:msgP2Counter) =

[1:(staId-1) (staId+1):numOfSta];

msgP2.msgType(tempVar:msgP2Counter) =

MSG_TP_RX_BC_DATA_START;

msgP2.para1(tempVar:msgP2Counter) = staId;

case EVT_TP_BC_TX_DATA_END

msgP1Counter = msgP1Counter + 1;

msgP1.staId(msgP1Counter) = staId;

msgP1.msgType(msgP1Counter) =

MSG_TP_TX_BC_DATA_END;

tempVar = msgP2Counter + 1;

msgP2Counter = msgP2Counter + numOfSta - 1;

msgP2.staId(tempVar:msgP2Counter) =

[1:(staId-1) (staId+1):numOfSta];

msgP2.msgType(tempVar:msgP2Counter) =

MSG_TP_RX_BC_DATA_END;

msgP2.para1(tempVar:msgP2Counter) = staId;

case EVT_TP_TX_RTS_START

msgP1Counter = msgP1Counter + 1;

msgP1.staId(msgP1Counter) = staId;

msgP1.msgType(msgP1Counter) =

MSG_TP_TX_RTS_START;

tempVar = msgP2Counter + 1;

msgP2Counter = msgP2Counter + numOfSta - 1;

msgP2.staId(tempVar:msgP2Counter) =

[1:(staId-1) (staId+1):numOfSta];

msgP2.msgType(tempVar:msgP2Counter) =

MSG_TP_SOMEONE_TX;

% in order to align

msgP2.para1(tempVar:msgP2Counter) = staId;

if para1<staId

msgP2.msgType(tempVar + para1 - 1) =

107

MSG_TP_RX_RTS_START;

else

msgP2.msgType(tempVar + para1 - 2) =

MSG_TP_RX_RTS_START;

end

case EVT_TP_TX_RTS_END

msgP1Counter = msgP1Counter + 1;

msgP1.staId(msgP1Counter) = staId;

msgP1.msgType(msgP1Counter) =

MSG_TP_TX_RTS_END;

tempVar = msgP2Counter + 1;

msgP2Counter = msgP2Counter + numOfSta - 1;

msgP2.staId(tempVar:msgP2Counter) =

[1:(staId-1) (staId+1):numOfSta];

msgP2.msgType(tempVar:msgP2Counter) =

MSG_TP_SOMEONE_STOP_TX;

% in order to align

msgP2.para1(tempVar:msgP2Counter) = staId;

if para1<staId

msgP2.msgType(tempVar + para1 - 1) =

MSG_TP_RX_RTS_END;

else

msgP2.msgType(tempVar + para1 - 2) =

MSG_TP_RX_RTS_END;

end

case EVT_TP_READY_TO_RX_CTS

msgP1Counter = msgP1Counter + 1;

msgP1.staId(msgP1Counter) = staId;

msgP1.msgType(msgP1Counter) =

MSG_TP_READY_TO_RX_CTS;

case EVT_TP_CTS_TIME_OUT

msgP1Counter = msgP1Counter + 1;

108

msgP1.staId(msgP1Counter) = staId;

msgP1.msgType(msgP1Counter) =

MSG_TP_CTS_TIME_OUT;

case EVT_TP_TX_CTS_START

msgP1Counter = msgP1Counter + 1;

msgP1.staId(msgP1Counter) = staId;

msgP1.msgType(msgP1Counter) =

MSG_TP_TX_CTS_START;

tempVar = msgP2Counter + 1;

msgP2Counter = msgP2Counter + numOfSta - 1;

msgP2.staId(tempVar:msgP2Counter) =

[1:(staId-1) (staId+1):numOfSta];

msgP2.msgType(tempVar:msgP2Counter) =

MSG_TP_SOMEONE_TX;

% in order to align

msgP2.para1(tempVar:msgP2Counter) = staId;

if para1<staId

msgP2.msgType(tempVar + para1 - 1) =

MSG_TP_RX_CTS_START;

else

msgP2.msgType(tempVar + para1 - 2) =

MSG_TP_RX_CTS_START;

end

case EVT_TP_TX_CTS_END

msgP1Counter = msgP1Counter + 1;

msgP1.staId(msgP1Counter) = staId;

msgP1.msgType(msgP1Counter) =

MSG_TP_TX_CTS_END;

tempVar = msgP2Counter + 1;

msgP2Counter = msgP2Counter + numOfSta - 1;

msgP2.staId(tempVar:msgP2Counter) =

[1:(staId-1) (staId+1):numOfSta];

109

msgP2.msgType(tempVar:msgP2Counter) =

MSG_TP_SOMEONE_STOP_TX;

% in order to align

msgP2.para1(tempVar:msgP2Counter) = staId;

if para1<staId

msgP2.msgType(tempVar + para1 - 1) =

MSG_TP_RX_CTS_END;

else

msgP2.msgType(tempVar + para1 - 2) =

MSG_TP_RX_CTS_END;

end

case EVT_TP_READY_TO_RECEIVE_DATA

msgP1Counter = msgP1Counter + 1;

msgP1.staId(msgP1Counter) = staId;

msgP1.msgType(msgP1Counter) =

MSG_TP_READY_TO_RECEIVE_DATA;

otherwise

fprintf(’unknown event %d on sta # %d\n’,

evt.evtType(staId), staId);

pause;

end % end of "swtich evt.evtType(staId)"

end % end of "for i = 1 : length(staIdIdx)"

evt.occurTime(staIdIdx) = inf; % clear event

curTime = nearestTimePoint;

% message processing

msgCounter = msgP1Counter + msgP2Counter;

msg.staId = [msgP1.staId(1:msgP1Counter)

msgP2.staId(1:msgP2Counter)];

msg.msgType = [msgP1.msgType(1:msgP1Counter)

msgP2.msgType(1:msgP2Counter)];

msg.para1 = [msgP1.para1(1:msgP1Counter)

110

msgP2.para1(1:msgP2Counter)];

msgP1Counter = msgP1Counter - msgP1Counter; % clear

msgP2Counter = msgP2Counter - msgP2Counter; % clear

for i = 1 : msgCounter

staId = msg.staId(i);

msgType = msg.msgType(i);

para1 = msg.para1(i);

if MSG_TP_SOMEONE_TX == msgType ||

MSG_TP_RX_UC_DATA_START == msgType ||

MSG_TP_RX_ACK_START == msgType ||

MSG_TP_RX_BC_DATA_START == msgType || ...

MSG_TP_RX_RTS_START == msgType ||

MSG_TP_RX_CTS_START == msgType

sta.phy.status.medState(staId) =

sta.phy.status.medState(staId) + 1;

end

if MSG_TP_SOMEONE_STOP_TX == msgType ||

MSG_TP_RX_UC_DATA_END == msgType ||

MSG_TP_RX_ACK_END == msgType ||

MSG_TP_RX_BC_DATA_END == msgType || ...

MSG_TP_RX_RTS_END == msgType ||

MSG_TP_RX_CTS_END == msgType

sta.phy.status.medState(staId) =

sta.phy.status.medState(staId) - 1;

end

switch sta.mac.status.state(staId)

case MAC_STATE_IDLE

switch msgType

case MSG_TP_TRANSIT_2_IDLE

sta.mac.status.state(staId) =

MAC_STATE_WAIT_FOR_DIFS;

evt.occurTime(staId) =

111

curTime + DIFS;

evt.evtType(staId) =

EVT_TP_DIFS_ACHEIVED; % set event

otherwise

fprintf(’wrong msg %d with para %d

in state %d on sta # %d\n’,

msgType, para1,

sta.mac.status.state(staId),

staId);

pause;

end

case MAC_STATE_WAIT_FOR_NAV

switch msgType

case MSG_TP_SOMEONE_TX

%fprintf(’Ignore message %d from

station %d when I %d am

in state %d\n’, msgType,

para1, staId,

sta.mac.status.state(staId));

case MSG_TP_SOMEONE_STOP_TX

if 0 == sta.phy.status.medState(staId)

sta.mac.status.state(staId) =

MAC_STATE_WAIT_FOR_DIFS;

evt.occurTime(staId) =

curTime + DIFS;

evt.evtType(staId) =

EVT_TP_DIFS_ACHEIVED;

end

case MSG_TP_RX_UC_DATA_START

if 1 == sta.phy.status.medState(staId)

sta.mac.status.state(staId) =

MAC_STATE_RX_UC;

sta.mac.status.srcStaId(staId) =

para1;

end

112

case MSG_TP_RX_UC_DATA_END

if 0 == sta.phy.status.medState(staId)

sta.mac.status.state(staId) =

MAC_STATE_WAIT_FOR_DIFS;

evt.occurTime(staId) =

curTime + DIFS;

evt.evtType(staId) =

EVT_TP_DIFS_ACHEIVED; % set event

end

case MSG_TP_RX_BC_DATA_START

if 1 == sta.phy.status.medState(staId)

sta.mac.status.state(staId) =

MAC_STATE_RX_BC;

sta.mac.status.srcStaId(staId) =

para1;

end

case MSG_TP_RX_BC_DATA_END

if 0 == sta.phy.status.medState(staId)

sta.mac.status.state(staId) =

MAC_STATE_WAIT_FOR_DIFS;

evt.occurTime(staId) =

curTime + DIFS;

evt.evtType(staId) =

EVT_TP_DIFS_ACHEIVED;

end

case MSG_TP_RX_RTS_START

if 1 == sta.phy.status.medState(staId)

sta.mac.status.state(staId) =

MAC_STATE_RX_RTS;

sta.mac.status.srcStaId(staId) =

para1;

end

case MSG_TP_RX_RTS_END

if 0 == sta.phy.status.medState(staId)

sta.mac.status.state(staId) =

MAC_STATE_WAIT_FOR_DIFS;

113

evt.occurTime(staId) =

curTime + DIFS;

evt.evtType(staId) =

EVT_TP_DIFS_ACHEIVED;

end

otherwise

fprintf(’wrong msg %d with para %d in

state %d on sta # %d\n’,

msgType, para1,

sta.mac.status.state(staId),

staId);

pause;

end

case MAC_STATE_WAIT_FOR_DIFS

switch msgType

case MSG_TP_SOMEONE_TX

sta.mac.status.state(staId) =

MAC_STATE_WAIT_FOR_NAV;

evt.occurTime(staId) = inf;

case MSG_TP_DIFS_ACHEIVED

sta.mac.status.state(staId) =

MAC_STATE_BACK_OFF;

sta.mac.status.bakOffStartTime(staId) =

curTime;

% calculate the expecting backoff time

if 0 ==

sta.mac.status.bakOffCnter(staId)

sta.mac.status.bakOffCnter(staId) =

floor(rand * 2^sta.mac.status.cwStage(staId));

end

bckOffDuration = sta.mac.status.bakOffCnter(staId)

* SLOT_SIZE;

evt.occurTime(staId) = curTime + bckOffDuration;

114

if PKT_TP_UC_BAS == sta.mac.status.pktType(staId)

evt.evtType(staId) = EVT_TP_UC_TX_DATA_START;

evt.para1(staId) = sta.mac.status.dstStaId(staId);

else

if PKT_TP_BC == sta.mac.status.pktType(staId)

evt.evtType(staId) = EVT_TP_BC_TX_DATA_START;

else

evt.evtType(staId) = EVT_TP_TX_RTS_START;

evt.para1(staId) =

sta.mac.status.dstStaId(staId);

end

end

case MSG_TP_RX_UC_DATA_START

sta.mac.status.state(staId) = MAC_STATE_RX_UC;

sta.mac.status.srcStaId(staId) = para1;

evt.occurTime(staId) = inf; % clear event

case MSG_TP_RX_RTS_START

sta.mac.status.state(staId) = MAC_STATE_RX_RTS;

sta.mac.status.srcStaId(staId) = para1;

evt.occurTime(staId) = inf; % clear event

case MSG_TP_RX_BC_DATA_START

sta.mac.status.state(staId) = MAC_STATE_RX_BC;

sta.mac.status.srcStaId(staId) = para1;

evt.occurTime(staId) = inf; % clear event

case MSG_TP_RX_BC_DATA_END

otherwise

fprintf(’wrong msg %d with para %d in state %d

on sta # %d\n’, msgType, para1,

sta.mac.status.state(staId), staId);

pause;

end

case MAC_STATE_BACK_OFF

switch msgType

case MSG_TP_SOMEONE_TX

sta.mac.status.state(staId) = MAC_STATE_WAIT_FOR_NAV;

115

% calculate how many slots have passed

sta.mac.status.bakOffCnter(staId) =

sta.mac.status.bakOffCnter(staId) -

floor((curTime -

sta.mac.status.bakOffStartTime(staId)) /

SLOT_SIZE);

evt.occurTime(staId) = inf; % clear event

case MSG_TP_TX_UC_DATA_START

% clear backoff counter

sta.mac.status.bakOffCnter(staId) = 0;

sta.mac.status.state(staId) = MAC_STATE_TX_UC;

time2SendDataPkt = DATA_PKT_LEN / DATA_RATE /

TIME_UNIT;

evt.occurTime(staId) = curTime + time2SendDataPkt;

evt.evtType(staId) = EVT_TP_UC_TX_DATA_END;

evt.para1(staId) = sta.mac.status.dstStaId(staId);

case MSG_TP_TX_BC_DATA_START

sta.mac.status.bakOffCnter(staId) = 0;

sta.mac.status.state(staId) = MAC_STATE_TX_BC;

time2SendDataPkt = DATA_PKT_LEN / DATA_RATE /

TIME_UNIT;

evt.occurTime(staId) = curTime + time2SendDataPkt;

evt.evtType(staId) = EVT_TP_BC_TX_DATA_END;

evt.para1(staId) = sta.mac.status.dstStaId(staId);

case MSG_TP_TX_RTS_START

sta.mac.status.bakOffCnter(staId) = 0;

sta.mac.status.state(staId) = MAC_STATE_TX_RTS;

time2SendDataPkt = RTS_PKT_LEN / DATA_RATE /

TIME_UNIT;

evt.occurTime(staId) = curTime + time2SendDataPkt;

evt.evtType(staId) = EVT_TP_TX_RTS_END;

evt.para1(staId) = sta.mac.status.dstStaId(staId);

case MSG_TP_RX_UC_DATA_START

sta.mac.status.state(staId) = MAC_STATE_RX_UC;

sta.mac.status.srcStaId(staId) = para1;

% calculate how many slots have passed

116

sta.mac.status.bakOffCnter(staId) =

sta.mac.status.bakOffCnter(staId) -

floor((curTime -

sta.mac.status.bakOffStartTime(staId)) /

SLOT_SIZE);

evt.occurTime(staId) = inf;

case MSG_TP_RX_RTS_START

sta.mac.status.state(staId) = MAC_STATE_RX_RTS;

sta.mac.status.srcStaId(staId) = para1;

% calculate how many slots have passed

sta.mac.status.bakOffCnter(staId) =

sta.mac.status.bakOffCnter(staId) -

floor((curTime -

sta.mac.status.bakOffStartTime(staId)) /

SLOT_SIZE);

evt.occurTime(staId) = inf;

case MSG_TP_RX_BC_DATA_START

sta.mac.status.state(staId) = MAC_STATE_RX_BC;

sta.mac.status.srcStaId(staId) = para1;

% calculate how many slots have passed

sta.mac.status.bakOffCnter(staId) =

sta.mac.status.bakOffCnter(staId) -

floor((curTime -

sta.mac.status.bakOffStartTime(staId)) /

SLOT_SIZE);

evt.occurTime(staId) = inf;

otherwise

fprintf(’wrong msg %d with para %d in state %d

on sta # %d\n’, msgType, para1,

sta.mac.status.state(staId), staId);

pause;

end

case MAC_STATE_TX_UC

switch msgType

case MSG_TP_SOMEONE_TX

117

%fprintf(’Ignore message %d from station %d

when I %d am in state %d\n’, msgType,

para1, staId,

sta.mac.status.state(staId));

case MSG_TP_RX_UC_DATA_START

%fprintf(’Ignore message %d from station#%d

when I %d am in state %d\n’, msgType,

para1, staId,

sta.mac.status.state(staId));

case MSG_TP_TX_UC_DATA_END

sta.mac.status.state(staId) =

MAC_STATE_SIFS_AFTER_TX_UC;

evt.occurTime(staId) = curTime + SIFS;

evt.evtType(staId) =

EVT_TP_READY_TO_RX_ACK;

otherwise

fprintf(’wrong msg %d with para %d in state %d

on sta # %d\n’, msgType, para1,

sta.mac.status.state(staId), staId);

pause;

end

case MAC_STATE_TX_BC

switch msgType

case MSG_TP_RX_BC_DATA_START

sta.mac.status.bcTxStatus(staId) =

sta.mac.status.bcTxStatus(staId) + 1;

case MSG_TP_TX_BC_DATA_END

sta.mac.status.state(staId) =

MAC_STATE_WAIT_FOR_DIFS;

evt.occurTime(staId) = curTime + DIFS;

evt.evtType(staId) = EVT_TP_DIFS_ACHEIVED;

if 0 == sta.mac.status.bcTxStatus(staId)

sta.statistics.NumOfBcpktSentSuccessfully(staId) =

sta.statistics.NumOfBcpktSentSuccessfully(staId)

118

+ 1;

sta.statistics.bcpktTotalDelay(staId) =

sta.statistics.bcpktTotalDelay(staId) +

curTime - sta.mac.status.bcpktBornTime(staId);

end

sta.mac.status.bcpktBornTime(staId) = curTime;

sta.mac.status.bcTxStatus(staId) = 0;

otherwise

fprintf(’wrong msg %d with para %d in state %d on

sta # %d\n’, msgType, para1,

sta.mac.status.state(staId), staId);

pause;

end

case MAC_STATE_TX_RTS

switch msgType

case MSG_TP_SOMEONE_TX

%fprintf(’Ignore message %d from station %d when

I %d am in state %d\n’, msgType, para1,

staId, sta.mac.status.state(staId));

case MSG_TP_RX_RTS_START

%fprintf(’Ignore message %d from station#%d when

I %d am in state %d\n’, msgType, para1,

staId, sta.mac.status.state(staId));

case MSG_TP_TX_RTS_END

sta.mac.status.state(staId) =

MAC_STATE_SIFS_AFTER_TX_RTS;

evt.occurTime(staId) = curTime + SIFS;

evt.evtType(staId) = EVT_TP_READY_TO_RX_CTS;

otherwise

fprintf(’wrong msg %d with para %d in state %d

on sta # %d\n’, msgType, para1,

sta.mac.status.state(staId), staId);

pause;

end

119

case MAC_STATE_SIFS_AFTER_TX_UC

switch msgType

case MSG_TP_READY_TO_RX_ACK

sta.mac.status.state(staId) =

MAC_STATE_WAIT_FOR_ACK;

evt.occurTime(staId) = curTime + ACK_TIMEOUT;

evt.evtType(staId) = EVT_TP_ACK_TIME_OUT;

case MSG_TP_RX_UC_DATA_END

%fprintf(’Ignore message %d from station#%d when

I %d am in state %d\n’, msgType, para1,

staId, sta.mac.status.state(staId));

case MSG_TP_SOMEONE_STOP_TX

%fprintf(’Ignore message %d from station#%d when

I %d am in state %d\n’, msgType, para1,

staId, sta.mac.status.state(staId));

otherwise

fprintf(’wrong msg %d with para %d in state %d

on sta # %d\n’, msgType, para1,

sta.mac.status.state(staId), staId);

pause;

end

case MAC_STATE_SIFS_AFTER_TX_RTS

switch msgType

case MSG_TP_READY_TO_RX_CTS

sta.mac.status.state(staId) =

MAC_STATE_WAIT_FOR_CTS;

evt.occurTime(staId) = curTime + CTS_TIMEOUT;

evt.evtType(staId) = EVT_TP_CTS_TIME_OUT;

case MSG_TP_RX_RTS_END

%fprintf(’Ignore message %d from station#%d when

I %d am in state %d\n’, msgType, para1,

staId, sta.mac.status.state(staId));

case MSG_TP_SOMEONE_STOP_TX

%fprintf(’Ignore message %d from station#%d when

120

I %d am in state %d\n’, msgType, para1,

staId, sta.mac.status.state(staId));

otherwise

fprintf(’wrong msg %d with para %d in state %d on

sta # %d\n’, msgType, para1,

sta.mac.status.state(staId), staId);

pause;

end

case MAC_STATE_WAIT_FOR_ACK

switch msgType

case MSG_TP_SOMEONE_TX

sta.mac.status.state(staId) =

MAC_STATE_WAIT_FOR_NAV;

if (MAX_CW_STAGE > sta.mac.status.cwStage(staId))

% Enlarge contention window

sta.mac.status.cwStage(staId) =

sta.mac.status.cwStage(staId) + 1;

end

evt.occurTime(staId) = inf;

case MSG_TP_ACK_TIME_OUT

sta.mac.status.state(staId) =

MAC_STATE_WAIT_FOR_DIFS;

evt.occurTime(staId) = curTime + DIFS;

evt.evtType(staId) = EVT_TP_DIFS_ACHEIVED;

if (MAX_CW_STAGE > sta.mac.status.cwStage(staId))

% Enlarge contention window

sta.mac.status.cwStage(staId) =

sta.mac.status.cwStage(staId) + 1;

end

case MSG_TP_RX_ACK_START

if sta.mac.status.dstStaId(staId) ~= para1

fprintf(’dstStaId %d and para1 %d don’’t match

on sta # %d\n’,

sta.mac.status.dstStaId(staId),

para1, staId);

121

pause;

end

sta.mac.status.state(staId) = MAC_STATE_RX_ACK;

evt.occurTime(staId) = inf;

case MSG_TP_RX_UC_DATA_START

sta.mac.status.state(staId) = MAC_STATE_RX_UC;

sta.mac.status.srcStaId(staId) = para1;

if (MAX_CW_STAGE > sta.mac.status.cwStage(staId))

% Enlarge contention window

sta.mac.status.cwStage(staId) =

sta.mac.status.cwStage(staId) + 1;

end

% clear event

evt.occurTime(staId) = inf;

otherwise

fprintf(’wrong msg %d with para %d in state %d

on sta # %d\n’, msgType, para1,

sta.mac.status.state(staId), staId);

pause;

end

case MAC_STATE_WAIT_FOR_CTS

switch msgType

case MSG_TP_SOMEONE_TX

sta.mac.status.state(staId) =

MAC_STATE_WAIT_FOR_NAV;

if (MAX_CW_STAGE > sta.mac.status.cwStage(staId))

% Enlarge contention window

sta.mac.status.cwStage(staId) =

sta.mac.status.cwStage(staId) + 1;

end

evt.occurTime(staId) = inf; % clear event

case MSG_TP_CTS_TIME_OUT

sta.mac.status.state(staId) =

MAC_STATE_WAIT_FOR_DIFS;

122

evt.occurTime(staId) = curTime + DIFS;

evt.evtType(staId) = EVT_TP_DIFS_ACHEIVED;

if (MAX_CW_STAGE > sta.mac.status.cwStage(staId))

% Enlarge contention window

sta.mac.status.cwStage(staId) =

sta.mac.status.cwStage(staId) + 1;

end

case MSG_TP_RX_CTS_START

if sta.mac.status.dstStaId(staId) ~= para1

fprintf(’dstStaId %d and para1 %d don’’t match on

sta # %d\n’,

sta.mac.status.dstStaId(staId),

para1, staId);

pause;

end

sta.mac.status.state(staId) = MAC_STATE_RX_CTS;

evt.occurTime(staId) = inf;

case MSG_TP_RX_RTS_START

sta.mac.status.state(staId) = MAC_STATE_RX_RTS;

sta.mac.status.srcStaId(staId) = para1;

if (MAX_CW_STAGE > sta.mac.status.cwStage(staId))

% Enlarge contention window

sta.mac.status.cwStage(staId) =

sta.mac.status.cwStage(staId) + 1;

end

evt.occurTime(staId) = inf;

otherwise

fprintf(’wrong msg %d with para %d in state %d on

sta # %d\n’, msgType, para1,

sta.mac.status.state(staId), staId);

pause;

end

case MAC_STATE_RX_ACK

switch msgType

case MSG_TP_RX_ACK_END

123

if sta.mac.status.dstStaId(staId) ~= para1

fprintf(’dstStaId %d and para1 %d don’’t match

on sta # %d\n’,

sta.mac.status.dstStaId(staId),

para1, staId);

pause;

end

sta.mac.status.state(staId) =

MAC_STATE_WAIT_FOR_DIFS;

evt.occurTime(staId) = curTime + DIFS;

evt.evtType(staId) = EVT_TP_DIFS_ACHEIVED;

% Restore contention window

sta.mac.status.cwStage(staId) = MIN_CW_STAGE;

% generate new destination station ID

tempVar = staId;

while tempVar == staId

tempVar = ceil(rand * numOfSta);

end

sta.mac.status.dstStaId(staId) = tempVar;

if PKT_TP_UC_BAS == sta.mac.status.pktType(staId)

sta.statistics.NumOfUcpktBasSentSuccessfully(staId) =

sta.statistics.NumOfUcpktBasSentSuccessfully(staId) +

1;

sta.statistics.ucpktBasTotalDelay(staId) =

sta.statistics.ucpktBasTotalDelay(staId) +

curTime - sta.mac.status.ucpktBornTime(staId);

else

sta.statistics.NumOfUcpktRtsSentSuccessfully(staId) =

sta.statistics.NumOfUcpktRtsSentSuccessfully(staId) +

1;

sta.statistics.ucpktRtsTotalDelay(staId) =

sta.statistics.ucpktRtsTotalDelay(staId) +

curTime - sta.mac.status.ucpktBornTime(staId);

124

end

sta.mac.status.ucpktBornTime(staId) = curTime;

otherwise

fprintf(’wrong msg %d with para %d in state %d

on sta # %d\n’, msgType, para1,

sta.mac.status.state(staId), staId);

pause;

end

case MAC_STATE_RX_CTS

switch msgType

case MSG_TP_RX_CTS_END

if sta.mac.status.dstStaId(staId) ~= para1

fprintf(’dstStaId %d and para1 %d don’’t

match on sta # %d\n’,

sta.mac.status.dstStaId(staId),

para1, staId);

pause;

end

sta.mac.status.state(staId) =

MAC_STATE_SIFS_AFTER_RX_CTS;

evt.occurTime(staId) = curTime + SIFS;

evt.evtType(staId) = EVT_TP_UC_TX_DATA_START;

% Restore contention window

sta.mac.status.cwStage(staId) = MIN_CW_STAGE;

otherwise

fprintf(’wrong msg %d with para %d in state %d

on sta # %d\n’, msgType, para1,

sta.mac.status.state(staId), staId);

pause;

end

case MAC_STATE_SIFS_AFTER_RX_CTS

switch msgType

case MSG_TP_TX_UC_DATA_START

sta.mac.status.state(staId) =

125

MAC_STATE_TX_UC;

time2SendDataPkt = DATA_PKT_LEN / DATA_RATE /

TIME_UNIT;

evt.occurTime(staId) = curTime +

time2SendDataPkt;

evt.evtType(staId) = EVT_TP_UC_TX_DATA_END;

evt.para1(staId) = sta.mac.status.dstStaId(staId);

otherwise

fprintf(’wrong msg %d with para %d in state %d on

sta # %d\n’, msgType, para1,

sta.mac.status.state(staId), staId);

pause;

end

case MAC_STATE_RX_UC

switch msgType

case MSG_TP_SOMEONE_TX

sta.mac.status.state(staId) =

MAC_STATE_WAIT_FOR_NAV;

case MSG_TP_RX_UC_DATA_START

sta.mac.status.state(staId) =

MAC_STATE_WAIT_FOR_NAV;

case MSG_TP_RX_UC_DATA_END

if sta.mac.status.srcStaId(staId) ~= para1

fprintf(’srcStaId %d and para1 %d don’’t match

on sta # %d\n’,

sta.mac.status.srcStaId(staId),

para1, staId);

pause;

end

sta.mac.status.state(staId) =

MAC_STATE_SIFS_AFTER_RX_UC;

evt.occurTime(staId) = curTime + SIFS;

evt.evtType(staId) = EVT_TP_TX_ACK_START;

evt.para1(staId) = sta.mac.status.srcStaId(staId);

otherwise

126

fprintf(’wrong msg %d with para %d in state %d on

sta # %d\n’, msgType, para1,

sta.mac.status.state(staId), staId);

pause;

end

case MAC_STATE_SIFS_AFTER_RX_UC

switch msgType

case MSG_TP_TX_ACK_START

sta.mac.status.state(staId) =

MAC_STATE_TX_ACK;

time2SendAckPkt = ACK_PKT_LEN / DATA_RATE /

TIME_UNIT;

evt.occurTime(staId) = curTime + time2SendAckPkt;

evt.evtType(staId) = EVT_TP_TX_ACK_END;

evt.para1(staId) = sta.mac.status.srcStaId(staId);

otherwise

fprintf(’wrong msg %d with para %d in state %d

on sta # %d\n’, msgType, para1,

sta.mac.status.state(staId), staId);

pause;

end

case MAC_STATE_TX_ACK

switch msgType

case MSG_TP_TX_ACK_END

sta.mac.status.state(staId) =

MAC_STATE_WAIT_FOR_DIFS;

evt.occurTime(staId) = curTime + DIFS;

evt.evtType(staId) = EVT_TP_DIFS_ACHEIVED;

otherwise

fprintf(’wrong msg %d with para %d in state %d

on sta # %d\n’, msgType, para1,

sta.mac.status.state(staId), staId);

pause;

end

127

case MAC_STATE_RX_BC

switch msgType

case MSG_TP_RX_BC_DATA_START

sta.mac.status.state(staId) =

MAC_STATE_WAIT_FOR_NAV;

case MSG_TP_RX_BC_DATA_END

if sta.mac.status.srcStaId(staId) ~= para1

fprintf(’srcStaId %d and para1 %d don’’t

match on sta # %d\n’,

sta.mac.status.srcStaId(staId),

para1, staId);

pause;

end

sta.mac.status.state(staId) =

MAC_STATE_WAIT_FOR_DIFS;

evt.occurTime(staId) = curTime + DIFS;

evt.evtType(staId) = EVT_TP_DIFS_ACHEIVED;

otherwise

fprintf(’wrong msg %d with para %d in state

%d on sta # %d\n’, msgType,

para1, sta.mac.status.state(staId),

staId);

pause;

end

case MAC_STATE_RX_RTS

switch msgType

case MSG_TP_SOMEONE_TX

sta.mac.status.state(staId) =

MAC_STATE_WAIT_FOR_NAV;

case MSG_TP_RX_RTS_START

sta.mac.status.state(staId) =

MAC_STATE_WAIT_FOR_NAV;

case MSG_TP_RX_RTS_END

if sta.mac.status.srcStaId(staId) ~= para1

128

fprintf(’srcStaId %d and para1 %d don’’t

match on sta # %d\n’,

sta.mac.status.srcStaId(staId),

para1, staId);

pause;

end

sta.mac.status.state(staId) =

MAC_STATE_SIFS_AFTER_RX_RTS;

evt.occurTime(staId) = curTime + SIFS;

evt.evtType(staId) = EVT_TP_TX_CTS_START;

evt.para1(staId) = sta.mac.status.srcStaId(staId);

otherwise

fprintf(’wrong msg %d with para %d in state %d on

sta # %d\n’, msgType, para1,

sta.mac.status.state(staId), staId);

pause;

end

case MAC_STATE_SIFS_AFTER_RX_RTS

switch msgType

case MSG_TP_TX_CTS_START

sta.mac.status.state(staId) = MAC_STATE_TX_CTS;

time2SendAckPkt = CTS_PKT_LEN / DATA_RATE /

TIME_UNIT;

evt.occurTime(staId) = curTime + time2SendAckPkt;

evt.evtType(staId) = EVT_TP_TX_CTS_END;

evt.para1(staId) = sta.mac.status.srcStaId(staId);

otherwise

fprintf(’wrong msg %d with para %d in state %d

on sta # %d\n’, msgType, para1,

sta.mac.status.state(staId), staId);

pause;

end

case MAC_STATE_TX_CTS

switch msgType

129

case MSG_TP_TX_CTS_END

sta.mac.status.state(staId) =

MAC_STATE_SIFS_AFTER_TX_CTS;

evt.occurTime(staId) = curTime + SIFS;

evt.evtType(staId) = EVT_TP_READY_TO_RECEIVE_DATA;

otherwise

fprintf(’wrong msg %d with para %d in state %d on

sta # %d\n’, msgType, para1,

sta.mac.status.state(staId), staId);

pause;

end

case MAC_STATE_SIFS_AFTER_TX_CTS

switch msgType

case MSG_TP_READY_TO_RECEIVE_DATA

sta.mac.status.state(staId) =

MAC_STATE_WAIT_FOR_DATA;

otherwise

fprintf(’wrong msg %d with para %d in state %d on

sta # %d\n’, msgType, para1,

sta.mac.status.state(staId), staId);

pause;

end

case MAC_STATE_WAIT_FOR_DATA

switch msgType

case MSG_TP_RX_UC_DATA_START

sta.mac.status.state(staId) = MAC_STATE_RX_UC;

otherwise

fprintf(’wrong msg %d with para %d in state %d on

sta # %d\n’, msgType, para1,

sta.mac.status.state(staId), staId);

pause;

end

otherwise

130

fprintf(’wrong state %d w/ message %d on sta # %d\n’,

sta.mac.status.state(staId), msgType, staId);

pause;

end

end

end

numOfLoop = numOfLoop + 1;

% ucBasThroughput(numOfLoop) =

% sum(sta.statistics.NumOfUcpktBasSentSuccessfully)*

% DATA_PAYLOAD_LEN/DATA_RATE/TIME_UNIT/SIM_DURATION;

% ucBasDelay(numOfLoop) =

% sum(sta.statistics.ucpktBasTotalDelay)/

% sum(sta.statistics.NumOfUcpktBasSentSuccessfully)*

% TIME_UNIT;

% bcThroughput(numOfLoop) =

% sum(sta.statistics.NumOfBcpktSentSuccessfully)*

% DATA_PAYLOAD_LEN/DATA_RATE/TIME_UNIT/SIM_DURATION;

% bcDelay(numOfLoop) =

% sum(sta.statistics.bcpktTotalDelay)/

% sum(sta.statistics.NumOfBcpktSentSuccessfully)*

% TIME_UNIT;

ucRtsThroughput(numOfLoop) =

sum(sta.statistics.NumOfUcpktRtsSentSuccessfully)*

DATA_PAYLOAD_LEN/DATA_RATE/TIME_UNIT/SIM_DURATION;

ucRtsDelay(numOfLoop) =

sum(sta.statistics.ucpktRtsTotalDelay)/

sum(sta.statistics.NumOfUcpktRtsSentSuccessfully)*

TIME_UNIT;

fprintf(’numOfSta %d loop finished\n’, numOfSta);

end % end of "for numOfSta = MIN_NUM_OF_STA ..."

%plot(MIN_NUM_OF_STA : NUM_OF_STA_STEP : MAX_NUM_OF_STA,

% ucBasThroughput, ’g*-’);

%plot(MIN_NUM_OF_STA : NUM_OF_STA_STEP : MAX_NUM_OF_STA,

% bcThroughput, ’g*-’);

131

plot(MIN_NUM_OF_STA : NUM_OF_STA_STEP : MAX_NUM_OF_STA,

ucRtsThroughput, ’g*-’); axis([0 50 0.5 0.9]);

figure(2);

%plot(MIN_NUM_OF_STA : NUM_OF_STA_STEP : MAX_NUM_OF_STA,

% ucBasDelay, ’ko-’);

%plot(MIN_NUM_OF_STA : NUM_OF_STA_STEP : MAX_NUM_OF_STA,

% bcDelay, ’ko-’);

plot(MIN_NUM_OF_STA : NUM_OF_STA_STEP : MAX_NUM_OF_STA,

ucRtsDelay, ’ko-’);

axis([0 50 0 0.5])

ucRtsThroughput

ucRtsDelay

132

