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Abstract

Each irreducible, admissible representation (π,V) of GL(n) over a non-archimedean

local field F has associated fixed vector spaces VK(m), for K(m) a compact-open

subgroup of GL(n). It is known that there exists some non-negative integer m such

that dim(VK(m)) = 1 and, if m′ < m, then dim(VK(m′)) = 0. Such an m is called the

conductor of π which is denoted by c(π). If the representation is also generic, an

equation is given by Reeder for calculating the dimension of VK(m). In this paper,

the dimension of VK(m) is determined when (π,V) is a non-generic representation of

GL(3).

For m ≥ c(π), an element of VK(m) is considered to have level m. A non-zero

element in VK(c(π)) is a local newform, elements of higher level are known as oldforms.

Level raising operators are maps from VK(m) to VK(m+1) that lift an element from

one level to the next. In this paper, level raising operators are presented for VK(m)

associated to representations of GL(3) and the main theorem proves that, when

applied to a local newform, these level raising operators can be used to obtain a set

of basis elements for each level.

In the generic case, the proof uses Whittaker functions, zeta integrals, Hecke

operators and Satake parameters. For the non-generic case, it is shown that un-

ramified characters of F play a role and the matrix of each level raising operator is

used.
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1 Introduction

A representation, denoted (π,V), of a group G consists of some complex vector

space V and a homomorphism π from G to the group of linear operators on V. Of

particular interest, are certain compact-open subgroups, K(m), of G and the vector

spaces, VK(m) ⊂ V, whose elements are invariant under the action of K(m). Much is

known about the dimension of VK(m) for certain types of representations and about

the relationship between dim(VK(m)) and the conductor, pc(π), of π.

In this thesis, we shall consider both generic and non-generic representations of

the group GL(3). We will present level raising operators βi : VK(m) → VK(m+1), and

will show that these level raising operators provide a surjective map from level m to

level m + 1. Part of the focus will be on representations that arise from induction

on a particular parabolic subgroup, P, of GL(3). These are irreducible, admissible,

non-generic representations, (π,V), for which we will determine the dimensions of

VK(m). By combining this information with that which is already known, we can

and do determine dim(VK(m)) for the remaining non-supercuspidal representations

of GL(3).

The first two sections are basically a review of the definitions and concepts we

will use to obtain our results. We begin with some basic definitions from general

representation theory. We then review important concepts, such as characters, con-

ductors, generic representations, and induction, that will be used throughout this

paper. Various known coset decompositions for GL(n) are listed since some will

play a role in what we do.

Following the general representation theory, the focus will be on known GL(2)

theory that pertains to the new results for GL(3). Many facts about generic and

non-generic representations are given, along with information about dimensions and
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conductors. The zeta integral is defined as are level raising operators. It is shown

that all the oldforms can be obtained by applying the level raising operators to a

newform and taking linear combinations. This is proven through the use of the zeta

integral. Some information about Hecke operators and Satake parameters is given,

but it is limited to what is useful for the main results of this thesis. The section on

GL(2) concludes with a table of its representations which sums up some pertinent

information.

The final section begins with a review of known GL(3) theory that is relevant

to our work. It starts with a proof of the double coset decomposition of GL(3)

that makes use of our parabolic subgroup P. This is followed by a description of

parabolic induction specific to GL(3). A table of the representations of GL(3) which

lists their irreducible constituents and specifies which are generic is given. The focus

then moves onto the generic representations, specifically on the Whittaker models

and zeta integrals.

The main results achieved in this thesis are then presented. Level raising oper-

ators are put forward and a proof is given showing that, in the generic case, one

can obtain all oldforms from the local newform using said level raising operators.

Finally, a non-generic representation, (π,V), is considered. The dimension of VK(m)

is calculated and the necessary level raising operators are determined. Proof that

all oldforms are obtained by applying the level raising operators to the newform

and taking linear combinations is then given for any irreducible, admissible repre-

sentation. This information is then used to present a table of the non-supercuspidal

representations of GL(3) which now includes the dimensions of VK(m) for all of the

representations.
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1.1 Notations

Throughout the paper, F will be a non-archimedean, local field with ring of integers

o, which has a maximal ideal p. Also, $ will be a fixed generator of p with the

property that |$| = q−1 for q = |o/p|. Furthermore, ν will be a valuation on F

normalized so that ν($) = 1. We will be working with G = GL(n,F), the group

of invertible n × n matrices with entries in F. The standard Borel subgroup of G

consisting of upper triangular matrices will be denoted B. We set K := K(0) :=

GL(n, o), a maximal compact-open subgroup of G. Finally, for integers m > 0,

K(m) will denote the subgroup of K which consists of all matrices having the form

(
A b
c d

)
(1)

for A ∈ GL(n − 1, o), with c a 1 × (n − 1) row matrix with entries in pm. For an

element of F to be in pm, simply means that said element is divisible by $m. Thus,

b is an (n− 1)× 1 column matrix with entries in o, placing d ∈ o×.

2 Some basics

We will be interested in irreducible, admissible representations with trivial central

character. Thus, some definitions are in order. There are concepts from represen-

tation theory that will be needed. Therefore, a review of these concepts is included

in this section. Throughout this section, let (π,V) be a representation of G on the

complex vector space V.
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2.1 Definitions

Definition. The representation π is said to be smooth if

StabG(v) := {g ∈ G | π(g)v = v}

is open for every v ∈ V.

In fact, if we define

VK̃ := {v ∈ V | π(k)v = v, ∀ k ∈ K̃}, (2)

for K̃ a compact-open subgroup of G, then π is smooth if and only if each v ∈ V is

in some such VK̃. In other words, we have

V =
⋃
K̃

VK̃,

where K̃ ranges over all of the compact-open subgroups of G.

Definition. If a smooth representation has a subspace W such that π(g)w ∈ W

for all w ∈ W and g ∈ G, such a subspace is said to be invariant. A smooth

representation is irreducible if its only invariant subspaces are {0} and the space V

itself.

Definition. A smooth representation is admissible if the space VK̃ is finite dimen-

sional for every compact-open subgroup K̃ of G.

In fact, for such K̃, a smooth representation of G is admissible if and only if

every irreducible representation of K̃ occurs a finite number of times in V.
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Definition. Denote the center of G by Z and let 1V be the identity on V. For a

smooth, irreducible representation π of G, the smooth, one-dimensional representa-

tion ωπ of Z such that

π(z) = ωπ(z)1V,

for z ∈ Z, is the central character of π. For π to have trivial central character, means

that ωπ(z) = z for every z ∈ Z. Hence,

π(

a . . .

a

)v = v, (3)

for all a ∈ F× and all v ∈ V.

2.2 Characters and conductors

A character of G is a continuous homomorphism G→ C×. Note that a character is

a representation (χ,C) which is smooth. In fact, a one-dimensional representation

is smooth if and only if it is equivalent to a representation that is defined by a

character. In other words, a character χ of F× results in a character of G of the

form g 7→ χ(det(g)), and this gives all the characters of G. In fact, any finite

dimensional, smooth, irreducible representation of G is one-dimensional and thus a

character of G. If π is any representation of G, then π can be twisted by a character

χ. The twist is denoted by π⊗χ with (π⊗χ)(g) = χ(det(g))π(g) and has the same

representation space as π.

If χ is a nontrivial character of G, the level of χ is either zero, in which case

χ|o× = {1}, or the smallest positive integer m such that χ|1+pm = {1}. In general, for

an irreducible, admissible, generic representation (π,V) of G, the level is associated

with an ideal pc(π), where c(π) is known as the conductor of π. One may also refer
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to the ideal itself as the conductor. In fact, the conductor for said representation

is the smallest integer m such that VK(m) 6= {0} and for such m it is known that

dim(VK(m)) = 1, i.e, dim(VK(c(π))) = 1, [JPSS81]. We say the character is unramified

if the conductor is zero, equivalently, if the conductor is o×. Otherwise, we say the

character is ramified. If we are dealing with an additive character, the level is zero if

the character is trivial on o×, otherwise the level is the integer m > 0 such that the

character is trivial on pm but is not trivial on pm−1, with the definition of conductor

as above.

If χ is an unramified character of F×, then χ is determined by its value on a

prime element of F×. For example, χ is determined by its value at $. This value

can be any non-zero complex number, i.e, χ($) = α ∈ C×. Such an α is called a

Satake parameter of χ.

There is a special character that occurs called the modulus character. It arises

as a result of certain properties of the Haar measures of locally compact, topological

groups. If P is such a group, then it has a left Haar measure, dx, which is unique

up to scalars. Thus, for any y ∈ P, one has dx(xy−1) is also a left Haar measure.

Hence, there exists a δP(y) ∈ R×>0 such that dx(xy−1) = δP(y)dx(x). The resulting

map

δP : P→ R×>0

is called the modulus character of P. For more details about the Haar measure, see

[Mur].

2.3 Generic representations

We will consider both generic and non-generic representations. To define a generic

representation of G, fix a non-trivial additive character ψ : F → C×. Let N be
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the subgroup of unipotent, upper triangular matrices in G. Now define a one-

dimensional representation θψ of N by

θψ : N→ C× : ((uij)) 7→ ψ(u12 + · · ·+ un−1,n).

For π any representation of G, consider HomN(π|N, θψ). If π is smooth and irre-

ducible with HomN(π|N, θψ) 6= 0, then we say π is generic. The property of π being

generic does not depend on the choice of ψ.

For a generic representation (π,V) of G, which has conductor c(π), from [Ree91]

theorem 1, it is known that

dim(VK(m+c(π))) =

(
m+ n− 1

m

)
, (4)

for m ∈ Z≥0. Equivalently, it can be written as

dim(VK(m)) =

(
m− c(π) + n− 1

m− c(π)

)
, (5)

for all integers m ≥ c(π).

Whittaker model

Let λ ∈ HomN(π|N, θψ) be given. In particular, this implies that λ commutes with

the action of N. Thus, λ(π(u)v) = θψ(u)λ(v) for all u ∈ N and all v ∈ V. Now, for

v ∈ V, define a function Wv : G→ C by Wv(g) = λ(π(g)v). Thus, we have

Wv(ug) = λ(π(ug)v) = λ(π(u)π(g)v)

= θψ(u)λ(π(g)v) = θψ(u)Wv(g),
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for all u ∈ N and for all g ∈ G. Such a λ is called a Whittaker functional.

Set

W(π, ψ) := {Wv | v ∈ V} ⊂ {W : G→ C | W (ug) = θψ(u)W (g)},

where the action of G is by right translation, i.e., (π(h)Wv)(g) = Wv(gh) for all

h and g ∈ G. We call W(π, ψ) the Whittaker model of π with respect to ψ. Note

that V ' W via the map v 7→ Wv.

Conversely, suppose that the Whittaker model W(π, ψ) exists. Define a map

λ :W(π, ψ)→ C : W 7→ W (1). Thus, we have

λ(π(u)W ) = (π(u)W )(1) = W (1u) = θψ(u)W (1) = θψ(u)λ(W ),

implying that λ ∈ HomN(π|N , θψ).

In conclusion, we see that W(π, ψ) 6= {0} if and only if HomN(π|N, θψ) 6= {0}.

Therefore, a representation has a non-zero Whittaker model if and only if the rep-

resentation is generic.

2.4 Coset decompositions of GL(n,F)

There are many decompositions of G. These include the Bruhat decomposition

which states

G =
⊔
w∈W

BwB,

where W is the Weyl group of G; the Cartan decomposition which states

G =
⊔
a∈A

KaK,
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for A = {diag($m1 , . . . , $mn) | mi ∈ Z, m1 ≤ m2 ≤ . . . ≤ mn}; and the Iwasawa

decomposition which states that G = BK. Of these, we will make use of the Iwasawa

decomposition in particular. To see proofs of these decompositions, see [PR08]. We

will also make use of the decomposition

G =
⊔

m≥mi≥mj

i>j

Bγm1,...,mn−1K(m), (6)

for m,mi, and mj ∈ Z≥0, with i and j ∈ {1, . . . , n}, found in [Ree91], where

γm1,...,mn−1 :=


1

1
. . .

1
$m1 $m2 . . . $mn−1 1

 . (7)

2.5 Induced representations

The focus of this thesis will be on induced representations. Let (σ,W) be a repre-

sentation of H, a closed subgroup of G. Let X be the space of functions f : G→W

such that

f(hg) = σ(h)f(g)

for all h ∈ H and all g ∈ G, and for which there exists some compact-open subgroup

K̃ of G on which f is right invariant. Thus, also

f(gk) = f(g)

for all g ∈ G and all k ∈ K̃. Define a homomorphism Σ : G→ AutC(X) by

Σ(g)f : x 7→ f(xg),

9



for all g and x in G. Then (Σ,X) is a representation of G called the representation

of G induced by σ. This representation is denoted by IndG
H(σ).

For example, if χ is a character of B, then IndG
B(χ) is the set of locally constant

functions, also known as smooth functions, f : G→ C with the property that

f(bg) = χ(b)δ(b)
1
2f(g),

for all b ∈ B, all g ∈ G, and for δ the modulus character of B. Let ai, i = 1, . . . , n,

be the elements on the diagonal of b, then δ(b) = | a1 |n−1| a2 |n−3 . . . | an |−(n−1) in

this case.

The conductor of an induced representation is related to the conductors of the

characters used in the induction. For example, in GL(2,F) if χ = χ1 × χ2 then

c(χ) = c(χ1) + c(χ2), [Sch02].

Parabolic induction

We will make use of a special form of induction called parabolic induction. This

type of induction is induction from a parabolic subgroup of G up to G. A standard

parabolic subgroup, P, is made up of upper triangular block matrices, i.e, matrices

of the form 
An1 ∗ ∗ ∗

An2 ∗ ∗
. . .

...
Anr


such that

r∑
i=1

ni = n, where Ani
is a ni×ni matrix in GL(ni,F), and each ∗ represents

an appropriate sized matrix with entries in F. A parabolic subgroup is a subgroup

of G which is conjugate to one of the standard parabolic subgroups.

For parabolic induction, define M to be the block diagonal subgroup which con-
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sists of matrices of the form 
An1

An2

. . .

Anr

 ,

for Ani
as above. This is known as the Levi subgroup of P. Let (ρ,W) be a smooth

representation of M. We can inflate ρ to a representation of P, also called ρ. The

parabolically induced representation, IndG
P (ρ), is then the set of all locally constant

functions f : G→ C that have the following transformation property

f(pg) = δP(p)
1
2ρ(p)f(g), (8)

for p ∈ P, g ∈ G, and where δP is the modulus character associated with P. The

space of the parabolically induced representation π = π(χ1, . . . , χr), where each

χi, i = 1, . . . , r, is a character of GL(ni,F), is denoted V(χ1, . . . , χr).

Principal series representation

In the special case where P = B and χi is a character of F×, for i = 1, 2, . . . , n, so

that

χ(


a1 ∗ ∗ ∗

a2 ∗ ∗
. . .

...
an

) = χ1(a1)χ2(a2) . . . χn(an), (9)

the representation π(χ) obtained by parabolic induction is a principal series repre-

sentation of G. Such a π(χ) is irreducible if and only if χi 6= χj| · |, for every i 6= j,

where | · | is the normalized absolute value on F, [Kud94].
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Spherical representations

There are principal series representations called spherical representations, or unrami-

fied representations, which arise from parabolic induction with unramified characters

and thus have conductor 0. Let (π,V) be a representation induced from B as above

and consider a function f ∈ VK. For g ∈ G, use the Iwasawa decomposition to write

g = bk for some b ∈ B and some k ∈ K. Then

f(g) = f(bk) = f(b) = π(b)δ(b)
1
2f(1) ∈ C,

for δ the modulus character of B. If f(1) = 0, then f(g) = 0, for all g ∈ G, implying

that f ≡ 0. Therefore, the function VK → C : f 7→ f(1) is an injective map. Thus,

dim(VK) ≤ 1. If dim(VK) = 1, we have a spherical representation. Note that, in this

case, since each χi is a character of F×, for i = 1, . . . , n, in order to have a non-zero

f ∈ VK, each χi must be unramified. This is because the Iwasawa decomposition is

NOT unique. But if bk = b′k′, then b−1b′ ∈ B∩K, which means b = b′b̄, for b̄ ∈ B(o).

In particular, all elements, bii, on the diagonal of b̄ are in o× and therefore, each

bii is reduced to one by χi if and only if each χi is unramified. Conversely, if each

χi is unramified, then there exists a unique, well-defined K-invariant vector fo in

VK such that fo(1) = 1. Such an fo is called the spherical vector. Thus, we have a

spherical representation and a corresponding spherical vector if and only if each χi

is unramified.

Steinberg representation

The Steinberg representation is obtained as a result of parabolic induction on the

Borel subgroup. Use the characters χ1 = ν
1−n
2 , χ2 = ν

1−n
2

+1, · · · , χn = ν
n−1
2 of

F× to obtain a character χ of B defined as per equation (9) and induce up to a

12



representation of G. Note that this representation is reducible. The unique irre-

ducible quotient of IndG
B(χ) is called the Steinberg representation, which is denoted

by StGL(n). It is square integrable and has trivial central character.

Oldforms and newforms

If an irreducible, admissible representation (π,V) arises from induction with some

of the characters ramified, then dim(VK) = 0. But, as stated above, it is known that

there exists some VK(m) such that dim(VK(m)) = 1. In particular, the conductor of π

is pm, i.e., c(π) = m, and there exists a distinguished vector v ∈ VK(c(π)), unique up

to multiples, which spans this one-dimensional space. For any irreducible, admissible

representation (π,V) that has invariant vectors, any non-zero vector in VK(c(π)) is

called a local newform. The spherical vector is a special case of a local newform.

It is also known, for integers m > c(π), that dim(V K(m)) > 1. Elements of VK(m),

m > c(π), are known as oldforms.

2.6 Supercuspidal representations

An irreducible, admissible representation that does NOT occur as a subquotient of

a representation arising from parabolic induction from a proper parabolic subgroup

is called a supercuspidal representation. Such supercuspidal representations are the

building blocks of all irreducible representations. In fact, if π is an irreducible,

admissible representation of G, then there exists some parabolic subgroup P and a

supercuspidal representation ρ of M ⊂ P, for M the Levi subgroup of P, so that π

is a subrepresentation of IndG
P (ρ). All supercuspidal representations are generic.
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3 GL(2,F) theory

It is known that an irreducible, admissible, representation of G := GL(2,F) with

trivial central character is either infinite-dimensional, and thus generic, or one-

dimensional, and thus non-generic. Furthermore, we know the principal series

representation π(χ1, χ2) is irreducible if and only if χ1χ
−1
2 6= | · |±1. Note that

π(χ1, χ2) ∼= π(χ2, χ1). The representation π(| · | 12 , | · |− 1
2 ) has two constituents;

the trivial representation is the unique quotient and the Steinberg representation,

StGL(2), is the unique subrepresentation. In general, for χ a character of F×, the

two constituents of the representation π(χ| · | 12 , χ| · |− 1
2 ) are the one-dimensional

representation χ ◦ det, which is the quotient, and χStGL(2), the unique subrepresen-

tation which is the twist of StGL(2). These twists of the Steinberg are called special

representations.

3.1 Parabolic induction

There is only one form of parabolic induction in this case as B, the standard Borel

subgroup of G, is the only proper standard parabolic subgroup of G. Start with a

representation (π,V) of B which is induced to a representation of G referred to as

the standard induced representation. Let χ1 and χ2 be characters of F×, then

χ := χ1 × χ2 : B→ C× :

(
a b

d

)
7→ χ1(a)χ2(d)

is a character of B, and V(χ1 × χ2) := IndG
B(χ) is the set of all locally constant

functions φ : G→ C such that

φ(

(
a b

d

)
g) = χ1(a)χ2(d)

∣∣∣a
d

∣∣∣ 12 φ(g),
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for all (
a b

d

)
∈ B

and all g ∈ G. In this case, the modulus character δ of B is
∣∣a
d

∣∣.
3.2 Spherical vector of the Whittaker model

Suppose (π,V) is a spherical representation with a Whittaker model W . Let Wo be

the spherical vector in W . Because Wo is K-invariant, we need only consider Wo|B.

Note that here K := GL(2, o) and we are using the Iwasawa decomposition G = BK

to conclude Wo(g̃) = Wo(b̃k̃) = Wo(b̃), for g̃ ∈ G, some b̃ ∈ B, and some k̃ ∈ K.

But, for b̃ ∈ B,

b̃ =

(
a b

d

)
=

(
1 bd−1

1

)(
a

d

)
.

Thus, because of the transformation property of Wo, only diagonal matrices need

to be considered. However, any diagonal matrix may be written

(
a

d

)
=

(
ad−1

1

)(
d

d

)
,

and, as we are assuming that π has trivial central character, we have

Wo(

(
ad−1

1

)(
d

d

)
) = π(

(
d

d

)
)Wo(

(
ad−1

1

)
)

= Wo(

(
ad−1

1

)
).

Hence, the diagonal matrix may be ignored.
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Now, replacing ad−1 with just a, our matrix may be written as

(
a

1

)
=

(
u$r

1

)
=

(
$r

1

)(
u

1

)
,

for some u ∈ o× and some r ∈ Z. Again, using the fact that Wo is K-invariant and

that the final matrix is an element of K, it can be ignored. Let’s take a closer look

at what we have left. Using K-invariance once more, let r < 0 and

(
1 x

1

)
∈ K.

This gives us

Wo(

(
$r

1

)
) =Wo(

(
$r

1

)(
1 x

1

)
)

=Wo(

(
1 x$r

1

)(
$r

1

)
)

=ψ(x$r)Wo(

(
$r

1

)
).

Since x can be any element of o and we are assuming r < 0, we know there exists

an x such that x$r ∈ p−1. Hence, we can find x such that ψ(x$r) 6= 1. Thus, we

conclude that

Wo(

(
$r

1

)
) = 0

for all r < 0. Therefore, Wo is determined on

{
(
$r

1

)
| r ≥ 0}.
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3.3 Zeta integrals

There exist zeta integrals for generic representations. In GL(2,F), for W in the

Whittaker model, the zeta integral is defined as

Z(s,W) :=

∫
F×

W(

(
a

1

)
)| a |s−

1
2 d×a (10)

for s ∈ C. Here d×a is a Haar measure on G. It is well known that the zeta integral

converges for Re(s) large enough, and that it is not zero for W 6≡ 0.

The main use of the zeta integral for our purposes will be to aid in showing

linear independence of certain elements that arise from repeated application of level

raising operators to a local newform.

3.4 Level raising operators

Suppose (π,V) is an irreducible, admissible representation of G and that m = c(π)

is the smallest non-negative integer such that VK(m) 6= 0. Then dim(VK(c(π))) = 1

and the conductor of π is pc(π), or just c(π). Let vo be the local newform. It is known

that for all integers m ≥ c(π) we have dim(VK(m)) = 1+m−c(π), [Cas73]. Since the

dimension increases by one with each increase in level, two level raising operators

are needed to obtain a basis of oldforms for VK(m) from the newform. They are

βo = id, and β1 = π(

(
1

$

)
).

First we need to show that the level raising operators are maps from VK(m) to

VK(m+1). Then, since the basis is obtained through repeated applications of the

17



level raising operators we need to show that, for m > c(π), if

∑
i+j=m−c(π)
i,j∈Z≥0

ai,j(β
i
oβ

j
1)(vo) = 0, (11)

then ai,j = 0 for every i, j.

If we start with vo, then

βovo = vo ∈ VK(c(π)+1),

because K(c(π) + 1) ⊂ K(c(π)). Note that this puts vo ∈ VK(m) for every m ≥ c(π).

Now we need to show that β1vo ∈ VK(c(π)+1). Let

k =

(
a b
x u

)
∈ K(c(π) + 1).

Then

(π(k))(β1vo) = π(

(
a b
x u

)(
1

$

)
)vo

= π(

(
1

$

)(
a b$

x$−1 u

)
)vo

= π(

(
1

$

)
)vo = β1vo,

since (
a b$

x$−1 u

)
∈ K(c(π)),

and vo is K(c(π))-invariant.

Performing the same calculations by replacing c(π) with some m > c(π) and vo

18



with some vi ∈ VK(m) shows that βovi and β1vi are indeed in VK(m+1).

To show that with repeated applications of the level raising operators we can

obtain a basis for any VK(m) when m > c(π), and in so doing proving that these

two level raising operators are all that are needed to obtain all the oldforms from a

newform, we will make use of the zeta integral. First, we need to look at how the

zeta integral behaves with respect to the level raising operators. Clearly, for s ∈ C

with Re(s) large enough for convergence of the integral, and W ∈ W , we have

Z(s, βoW) = Z(s,W).

Applying the zeta integral to β1W gives us

Z(s, β1W) =

∫
F×

π(

(
1

$

)
)W(

(
a

1

)
)| a |s−

1
2 d×a

=

∫
F×

W(

(
a

1

)(
1

$

)
)| a |s−

1
2 d×a

=

∫
F×

W(

(
$

$

)(
a$−1

1

)
)| a |s−

1
2 d×a.

Use the fact that π has trivial central character and make use of the Haar measure

that allows us to send a→ a$ to get

Z(s, β1W) =

∫
F×

W(

(
a

1

)
)| a$ |s−

1
2 d×a

= q
1
2
−sZ(s,W).

Now we use the isomorphism from V to its Whittaker model to map equation (11)
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to ∑
i+j=m−c(π)
i,j∈Z≥0

ai,j(β
i
oβ

j
1)(Wo) = 0. (12)

In particular, note that Wo is a newform in the Whittaker model and is therefore

non-zero. Next we use the relationship between the zeta integral and βo and β1,

choosing s such that Re(s) is large enough to ensure that Z(s,Wo) converges, to get

Z(s,
∑

i+j=m−c(π)
i,j∈Z≥0

ai,j(β
i
oβ

j
1)(Wo)) =

∑
i+j=m−c(π)
i,j∈Z≥0

ai,jq
j( 1

2
−s)(Z(s,Wo)) = 0.

Because Wo is not zero, we know Z(s,Wo) 6= 0, thus,

∑
i+j=m−c(π)
i,j∈Z≥0

ai,jq
j( 1

2
−s) = 0,

which can be viewed as a polynomial in q
1
2
−s. As such, we conclude that ai,j = 0

for every i, j.

3.5 Hecke operators

Now let (π,V) be an irreducible, admissible representation of G and let θ be the

characteristic function of

K

(
1

$

)
K.

Define

Tv :=

∫
G

θ(g)π(g)v dg,

for all v ∈ V, where dg is a Haar measure on G.
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Note that

Tv =

∫
K( 1

$ )K

θ(g)π(g)v dg

=

∫
K( 1

$ )K

π(g)v dg,

because

θ(g) :=


1 if g ∈ K

(
1

$

)
K;

0 if g 6∈ K

(
1

$

)
K.

Let v ∈ VK and k ∈ K. Note that

k−1g ∈ K

(
1

$

)
K,

if and only if

g ∈ K

(
1

$

)
K.

Therefore, by virtue of the Haar measure,

π(k)Tv =

∫
K( 1

$ )K

π(k)π(g)v dg

=

∫
K( 1

$ )K

π(kg)v dg, let g 7→ k−1g

=

∫
K( 1

$ )K

π(g)v dg = Tv.
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Thus, Tv is K-invariant. Such a T is known as a Hecke operator. It acts on the

space of K-invariant vectors, which is known to be one dimensional, via v 7→ Tv.

Therefore, we know Tv = λv for some eigenvalue λ. For more on the subject of

Hecke operators, see [Bum97].

It will be helpful to have a more explicit formula for such a Hecke operator. In

order to find this formula, we begin by making use of a known decomposition of K.

It is easy enough to show that

K =
⊔
x∈ o/p

(
1
x 1

)(
o o
p o

)
t
(

1
−1

)(
o o
p o

)
. (13)

This implies that

K(

(
1

$

)
)K =

⋃
x∈ o/p

(
1
x 1

)(
o o
p o

)(
1

$

)
K

∪
(

1
−1

)(
o o
p o

)(
1

$

)
K.

In fact, this is a disjoint union. With a little work, one ends up with

K(

(
1

$

)
)K =

⊔
x∈ o/p

(
1
x 1

)(
1

$

)
K t

(
$

1

)
K. (14)

In particular, one can think of it as

K(

(
1

$

)
)K =

⊔
i

γiK,

where the union is a finite one.
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Normalizing the Haar measure so that

∫
K

dg = 1,

with v as above, gives

Tv =

∫
⊔
i
γiK

π(g)v dg =
∑
i

∫
γiK

π(g)v dg

=
∑
i

∫
K

π(γig)v dg =
∑
i

∫
K

π(γi)v dg

=
∑
i

(π(γi)v)

∫
K

dg =
∑
i

π(γi)v

=
∑
x∈ o/p

π(

(
1
x 1

)(
1

$

)
)v + π(

(
$

1

)
)v.

In particular, this implies

∑
x∈ o/p

π(

(
1
x 1

)(
1

$

)
)v + π(

(
$

1

)
)v = λv. (15)

3.6 Satake parameters

Let χ1 and χ2 be unramified characters of F×. The character χ1×χ2 of G, irreducible

or not, has exactly one spherical representation, call it π(χ1($), χ2($)), where χi($)

is a Satake parameter. The following well known theorem gives a connection between

the Satake parameters and spherical representations.

Theorem 3.1. Given any spherical representation π of G, there exist α1 and α2 in

C× such that π ' π(α1, α2).
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Table 1: Representations of GL(2,F)
constituent of representation generic c(π)

I χ1 × χ2 χ1 × χ2 • c(χ1) + c(χ2)
χ1χ

−1
2 6= | |±1

IIa χν
1
2 × χν− 1

2 χStGL(2) • 1 c(χ) = 0
2c(χ) c(χ) > 0

IIb χ1GL(2) 0 c(χ) = 0
2c(χ) c(χ) > 0

III supercuspidals • ≥ 2

Note that in the case where the representation also has trivial central character,

we would have χ2 = χ−11 . Thus, the corresponding Satake parameters would be

(α, α−1).

In fact, there is an isomorphism between the set of Satake parameters of spher-

ical representations which have trivial central character, (α, α−1)/ ∼, for ∼ the

equivalence relation (α, α−1) ∼ (α−1, α), and the set of Hecke eigenvalues, λ, via

the map (α, α−1) 7→ q
1
2 (α + α−1) = λ. See [AS01] for a very nice description of

the relationships between Satake parameters, spherical representations, and Hecke

eigenvalues.

3.7 Table of representations of GL(2,F)

Table (1) summarizes some of what we know about representations of GL(2,F).

Note that, for a representation (π,V), it does not include the dimension of VK(m).

However, for every m ≥ c(π), we know that dim(VK(m)) = m + 1− c(π) in group I

and III, dim(VK(m)) = 1 in group IIb, and dim(VK(m)) = m− c(π) for group IIa. In

all cases, we know dim(VK(m)) = 0 for all m < c(π).
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4 GL(3,F) theory

For G := GL(3,F), a one-dimensional representation is non-generic. However, un-

like the case for GL(2,F), there are other non-generic representations. It is known

that a representation parabolically induced from a generic representation of a Levi

subgroup has a unique generic irreducible constituent, any other irreducible con-

stituents being non-generic, [JPSS79]. In this section, set B to be the standard

Borel subgroup of G, define K := K(0) = GL(3, o), and, for an integer m > 0, let

K(m) := K ∩ {

 ∗ ∗ ∗
∗ ∗ ∗
pm pm ∗

}.
4.1 Double coset decomposition of GL(3,F)

Using what we know about the double coset decomposition of GL(n,F), see equa-

tions (6) and (7), we have

G =
⊔

m≥s≥r

BγsrK(m), (16)

for

γsr =

 1
1

$s $r 1

 ,

with m, s, and r ∈ Z≥0.

Now define P to be the parabolic subgroup whose F-points are

P(F) := {
(
A ∗

x

)
∈ GL(3,F) | A ∈ GL(2,F)}, (17)

for ∗ a 2x1 column matrix with entries in F. This places x ∈ F×. Define P(o) by

replacing F with o. We can then use the double coset decomposition B\G/K(m)

above to obtain the decomposition set forward in the following lemma.
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Lemma 4.1. Let m and r be non-negative integers. Define

γr =

1
1
$r 1

 , (18)

then

G =
m⊔
r=0

P(F)γrK(m). (19)

Proof. By the Iwasawa decomposition, it is enough to show that

GL(3, o) =
m⊔
r=0

P(o)γrK(m).

Clearly
m⋃
r=0

P(o)γrK(m) ⊆ GL(3, o).

It remains to show that the other inclusion,

GL(3, o) ⊆
m⋃
r=0

P(o)γrK(m),

holds and that
m⋃
r=0

P(o)γrK(m) =
m⊔
r=0

P(o)γrK(m).

For A ∈ GL(3, o), we can write

A = b̃

 1
1

$s $r 1

 k̃,

for some b̃ ∈ B(o), the standard Borel subgroup of GL(3, o), some k̃ ∈ K(m), and
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some non-negative integers s and r such that m ≥ s ≥ r. Therefore, we can write

A =

a d e
b f

c

 1
1

$s $r 1

g h i
j k l
x y u



=

a− d$s−r d e
−b$s−r b f

c

 γr

 g h i
g$s−r + j h$s−r + k i$s−r + l

x y u

 .

Hence, A is in P(o)γrK(m) as desired.

Now suppose pγrk = p′γsk
′ for some p, p′ ∈ P(o) and k, k′ ∈ K(m). This means

γ−1s (p′)−1pγr ∈ K(m). Say

(p′)−1p =

a b e
c d f

w

 ,

then 1
1
−$s 1

a b e
c d f

w

1
1
$r 1



=

 a b+ e$r e
c d+ f$r f
−c$s w$r − d$s w − f$s

 ∈ K(m).

Thus, both c$s and w$r − d$s ∈ pm. Furthermore, since ad − bc ∈ o×, either

ad or bc ∈ o×. Hence, either d ∈ o× or c ∈ o×. If c ∈ o×, then s = m because

c$s ∈ pm. Thus, d$s ∈ pm putting w$r ∈ pm. Since w ∈ o×, it follows that r = m.

Therefore, r = s as desired. If d ∈ o×, since ν(w$r) = r and ν(d$s) = s with

w$r − d$s ∈ pm, and both r, s ≤ m, it must be that r = s. Else r < s, placing

w$r − d$s ∈ pr 6⊂ pm.
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Thus, a set of double coset representatives for K, and hence G, is given by γr,

with 0 ≤ r ≤ m. Note that there are exactly m + 1 cosets in this decomposition.

The cosets for K are P(o)γ0K(m),P(o)γ1K(m), . . . ,P(o)γmK(m) = P(o)K(m). In

particular, for m = 0 there is just one coset, i.e., P(o)γ0K(0) = GL(3, o).

4.2 Parabolic induction

For n = 3, there are two forms of parabolic induction. One is similar to that of the

n = 2 case. Given characters χ1, χ2, and χ3 of F×, we have a character of B denoted

χ : B→ C× :

a d e
b f

c

 7→ χ1(a)χ2(b)χ3(c).

Thus, we have V(χ) := V(χ1, χ2, χ3) := IndG
B(χ) is the set of all locally constant

functions φ : G→ C such that

φ(

a d e
b f

c

 g) = χ1(a)χ2(b)χ3(c)
∣∣∣a
c

∣∣∣φ(g),

for all a d e
b f

c

 ∈ B

and all g ∈ G. Here we have δ, the modulus character of B, equals
∣∣ a
c

∣∣2. Recall

that this representation is irreducible if and only if χi 6= νχj, for all i 6= j, where

i, j ∈ {1, 2, 3}, [Kud94]. If the representation is irreducible, then it is generic and

we know by equation (4) that

dim(VK(m+c)) =

(
m+ 2
m

)
=

(
m+ 2

2

)
. (20)
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Converting equation (20) into the VK(m) notation gives

dim(VK(m)) =

(
m+ 2− c(π)

2

)
. (21)

The second form of parabolic induction involves the subgroup P := P(F). What

follows is a description of the explicit model for inducing a character of P. For this

induction, start with two characters χ1 and χ2 of F× to obtain the character of P

which we define by

χ : P→ C× :

(
A ∗

b

)
7→ χ1(det(A))χ2(b). (22)

We induce this up to G to get V(χ11GL(2) × χ2) := IndG
P (π), the set of all locally

constant functions φ : G→ C that have the transformation property

φ(

(
A ∗

b

)
g) = χ1(det(A))χ2(b)

| det(A)| 12
| b|

φ(g), (23)

for all g ∈ G, all A ∈ GL(2,F), and all b ∈ F×. Note that, in this case, the modulus

character of P is

δP =
| det(A)|
| b |2

.

Note: There is also the parabolic subgroup P(1,2) ' P whose F-points are

P(1,2)(F) = {
(
x ∗

A

)
∈ GL(3,F) |A ∈ GL(2,F)}, (24)
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Table 2: Representations of GL(3,F)

constituent of representation generic
I χ1 × χ2 × χ3 (irreducible) •

IIa ν
1
2χ1 × ν−

1
2χ1 × χ2 χ1StGL(2) × χ2 •

IIb (χ2 6= ν±
3
2χ1) χ11GL(2) × χ2

IIIa χStGL(3) •
IIIb νχ× χ× ν−1χ L(νχ, ν−

1
2χStGL(2))

IIIc L(ν
1
2χStGL(2), ν

−1χ)
IIId χ1GL(3)

so x ∈ F×, and ∗ is a 1 × 2 row matrix with entries in F. Use χ1 and χ2 as above

to obtain the character of P(1,2) defined by

χ : P(1,2) → C× :

(
b ∗
A

)
7→ χ1(b)χ2(det(A)).

Upon induction, IndG
P(2,1)

(π) is the set of all locally constant functions φ : G → C

that have the transformation property

φ(

(
b ∗
A

)
g) = χ1(b)χ2(det(A))

| b|
| det(A)| 12

φ(g).

Although we work with the parabolic subgroup P in this thesis, it is clear that with

some slight modification the work would be essentially the same if we had chosen

to work with the parabolic subgroup P(1,2).

4.3 Table of representations of GL(3,F)

Table (2), which lists the non-supercuspidal representations of G along with their

irreducible constituents, specifying which are generic, can easily be deduced from

[Kud94].
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Table 3: Constituents of νχ× χ× ν−1χ
ν

1
2χStGL(2) × ν−1χ ν

1
2χ1GL(2) × ν−1χ

νχ× ν− 1
2χStGL(2) χStGL(3) L(νχ, ν−

1
2χStGL(2))

νχ× ν− 1
2χ1GL(2) L(ν

1
2χStGL(2), ν

−1χ) χ1GL(3)

Furthermore, it follows from induction in stages that

νχ× χ× ν−1χ =ν
1
2χStGL(2) × ν−1χ+ ν

1
2χ1GL(2) × ν−1χ

=νχ× ν−
1
2χStGL(2) + νχ× ν−

1
2χ1GL(2).

The first terms on the right are the subrepresentations, while the second terms are

the quotients. All four of the representations on the right are reducible. Each has

two irreducible components. Table (3) shows the relationships of these constituents.

In the table, the quotients are on the bottom, respectively on the right.

4.4 Level raising operators

If (π,V) is a smooth representation of GL(3,F) and v is in VK(m), for m ∈ Z≥0, then

the formulas

β0(v) := v,

β1(v) := π(

1
1

$

)v, and

β2(v) :=
∑

A∈K2/K2(1)

π(

(
A

1

)
)π(

1
$

$

)v,
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take v to VK(m+1). In other words, these three equations define level raising oper-

ators. The notation K2 = GL(2,F), while K2(1) is the subgroup of K2 that has

entries from p in the (2, 1) position.

Proposition 4.2. For any integer m ≥ 0, the maps β0, β1, and β2 define operators

from VK(m) to VK(m+1) which pairwise commute.

Proof. The fact that the maps are pairwise commutative, i.e., (βiβj)(v) = (βjβi)(v),

for every v ∈ V and for i, j ∈ {0, 1, 2}, is an immediate result from the defining

formulas.

Since VK(m) ⊂ VK(m+1), each v ∈ VK(m) is also in VK(m+1). Hence, each element

in VK(m) will be raised to the same element in VK(m+1) by the level raising operator

β0.

For the second level raising operator, we want to show that

β1(v) ∈ VK(m+1),

for any v ∈ VK(m). Let

ko =

g h i
j k l
x y u

 ∈ K(m+ 1),
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then

(π(ko))(β1(v)) = π(

g h i
j k l
x y u

1
1

$

)v

= π(

1
1

$

 g h i$
j k l$

x$−1 y$−1 u

)v

= π(

1
1

$

)v = β1(v),

because x and y ∈ pm+1 puts x$−1 and y$−1 ∈ pm, and v is invariant under the

action of K(m) with  g h i$
j k l$

x$−1 y$−1 u

 ∈ K(m).

To show that β2(v) ∈ VK(m+1) for all v ∈ VK(m), we need to show that β2(v) is

invariant under the action of K(m + 1). To do so, it suffices to show invariance on

a set of generators of K(m+ 1).

Lemma 4.3. Every k ∈ K(m+ 1) can be written as

1
1

w z 1

(Ã
ũ

)1 e
1 f

1

 ,

for w and z ∈ pm+1, Ã ∈ GL(2, o), ũ ∈ o×, and e and f ∈ o.

Proof. Let g h i
j k l
x y u

 ∈ K(m+ 1).

This places x and y in pm+1, and u in o×. Thus, gk− hj is in o×, and both kx− jy
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and gy − hx are in pm+1. Therefore,

g h i
j k l
x y u



=

 1
1

kx−jy
gk−hj

gy−hx
gk−hj 1

g h
j k

u− ikx−ijy−lhx+lgy
gk−hj

1 ik−hl
gk−hj

1 gl−ij
gk−hj

1

 .

This is of the correct form since by our given we have

• kx−jy
gk−hj and gy−hx

gk−hj ∈ pm+1,

• ikx− ijy − lhx+ lgy ∈ pm+1, thus u− ikx−ijy−lhx+lgy
gk−hj ∈ o×,

• ik−hl
gk−hj and gl−ij

gk−hj ∈ o.

Thus, the following 3 cases are enough to show the K(m+ 1)-invariance of β2(v).

i) Show

π(

1
1

w z 1

)β2(v) = β2(v),

for all v ∈ VK(m).

We know that 1
1

w z 1

(A
1

)1
$

$



=

(
A

1

)1
1

x y 1

1
$

$



=

(
A

1

)1
$

$

 1
1

x$−1 y 1

 ,
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where we set (
x y

)
=
(
w z

)
A.

Thus, x and y must be in pm+1 and therefore, x$−1 ∈ pm, placing the last matrix

in K(m). Hence, for v ∈ VK(m), we have

π(

1
1

w z 1

)β2(v) = β2(v).

ii) Show that

π(

(
Ã

ũ

)
)β2(v) = β2(v),

for all v ∈ VK(m).

We know that

(
Ã

ũ

)(
A

1

)1
$

$



=

(
ÃA

ũ

)1
$

$



=

(
C

1

)1
1

ũ

1
$

$



=

(
C

1

)1
$

$

1
1

ũ

 .

Note we are setting C = ÃA, which just changes the coset representatives for
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K2/K2(1), and where 1
1

ũ

 ∈ K(m).

Hence,

π(

(
Ã

ũ

)
)β2(v) = β2(v).

iii) Show that

π(

1 e
1 f

1

)β2(v) = β2(v),

for all v ∈ VK(m).

We know that 1 e
1 f

1

(A
1

)1
$

$



=

(
A

1

)1
1

A−1
(
e
f

)
1

1
$

$



=

(
A

1

)1 a
1 b

1

1
$

$



=

(
A

1

)1
$

$

1 a$
1 b

1

 .

Note we are setting (
a
b

)
= A−1

(
e
f

)
.

Therefore, a and b ∈ o. Thus, also a$ ∈ o. This places the last matrix in K(m).
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Hence,

π(

1 e
1 f

1

)β2(v) = β2(v).

Thus, we see that the proposed three level raising operators do indeed take any

v ∈ VK(m) to an element βi(v) ∈ VK(m+1), for i = 0, 1, 2.

It will be useful to have an explicit formula for β2. Start with the decomposition

of K2 given by equation (13)

K2 =
⊔
x∈ o/p

(
1
x 1

)(
o o
p o

)
t
(

1
−1

)(
o o
p o

)
.

Furthermore, note that

⊔
x∈ o/p

(
1
x 1

)(
o o
p o

)
=

⊔
x∈ (o/p)×

(
1
x 1

)(
o o
p o

)
t
(

1
1

)(
o o
p o

)
. (25)

This allows us to write

β2(v) =
∑

x∈(o/p)×
π(

1
x 1

1

)π(

1
$

$

)v

+π(

1
$

$

)v + π(

 1
−1

1

)π(

1
$

$

)v.

First note that 1
−1

1

1
$

$

 =

$ 1
$

 1
−1

1

 . (26)
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Also, for x ∈ (o/p)×, the useful identity gives us

(
1
x 1

)
=

(
1 x−1

1

)(
−x−1

−x

)(
1

−1

)(
1 x−1

1

)
. (27)

In particular, this implies

1
x 1

1

 =

1 x−1

1
1

−x−1 −x
1

 1
−1

1

1 x−1

1
1

 .

Therefore,

1
x 1

1

1
$

$



=

1 x−1

1
1

−x−1 −x
1

 1
−1

1

1 x−1

1
1

1
$

$



=

1 x−1

1
1

$ 1
$

−x−1 −x
1

 1
−1

1

1 x−1$
1

1

 .

Now note that the final three matrices are each in K(m) for any m ≥ 0. Hence,

since v ∈ V implies that v is invariant under the action of K(m) for some m, we end

up with

π(

1
x 1

1

)π(

1
$

$

)v = π(

1 x−1

1
1

)π(

$ 1
$

)v (28)

Using equation (26) and equation (28), we arrive at the explicit formula

β2(v) =
∑
x∈o/p

π(

1 x
1

1

)π(

$ 1
$

)v + π(

1
$

$

)v. (29)
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Remark 4.4. Because of the pairwise commutativity of the level raising opera-

tors, the maximum number of linearly independent vectors that can be obtained

by applying the three level raising operators to one newform gives the progression

1, 3, 6, 10, 15, . . . . Note that, if V is an irreducible, admissible, generic representa-

tion, then formula (20) can be used to compute the dimension of VK(c(π)+m). Doing

so results in exactly the same progression, 1, 3, 6, 10, 15, . . . , for the dimensions of

VK(c(π)),VK(c(π)+1), . . . .

In the generic case, to show that the vectors obtained via the level raising op-

erators are linearly independent, zeta integrals will be employed. Therefore, we

will explore more about generic representations in the following section. Afterward,

non-generic representations, V, will be considered and the dimension of VK(m) in

that case will be determined, too.

4.5 Generic representations

Much is known about the generic representations of GL(3,F). It is known that

irreducible representations that arise from parabolic induction from the Borel with

χi 6= χj| · |, for i 6= j, where i, j ∈ {1, 2, 3}, are generic, as are all supercuspidal rep-

resentations. We also know that reducible representations have a unique irreducible,

generic constituent. There are methods to determine the conductors for the generic

representations as well as a formula for dim(VK(m)) when (π,V) is an irreducible,

generic representation.

Whittaker model

We know any generic representation has a Whittaker model. Fix an additive char-

acter ψ of F, with the conductor c(ψ) = o. Define a character θ of N, the unipotent,
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upper triangular matrices of G, by

θ(

1 a b
1 c

1

) = ψ(a)ψ(c).

The induced representation I(θ) := IndG
N(θ) is then the set of all smooth functions

f : G→ C such that f(ng) = θ(n)f(g), for every n ∈ N and every g ∈ G.

Since we are assuming that (π,V) is a generic representation, we then have

V ⊂ {W : G→ C | W(

1 a b
1 c

1

 g) = ψ(a)ψ(c)W(g)}

and V =W(π, ψ), the Whittaker model of π with respect to ψ.

Spherical vector

Let W(π, ψ) be a spherical Whittaker model with spherical vector Wo, and assume

π has trivial central character. Thus, by virtue of the properties of the spherical

vector and by making use of the Iwasawa decomposition, for g̃ ∈ G, we have Wo(g̃) =

Wo(b̃k̃) = Wo(b̃) for some b̃ ∈ B and some k̃ ∈ K. Therefore, Wo is determined on

the Borel. Furthermore,

Wo(

a d e
b f

c

) = Wo(

1 db−1 ec−1

1 fc−1

1

a b
c

).
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Hence, Wo is determined on A, the diagonal matrices in G. Also, because we are

assuming that π has trivial central character,

Wo(

a b
c

) = π(

c c
c

)Wo(

ac−1 bc−1

1

)

=Wo(

ac−1 bc−1

1

).

Thus, Wo is determined on matrices in A that have 1 in the (3,3) position. Now

a = u$r and b = v$t for some u and v in o×, and some r and t in Z. Therefore,

Wo(

a b
1

) = Wo(

$r

$t

1

u v
1

) = Wo(

$r

$t

1

 ,

because Wo is right K-invariant.

In fact, Wo is determined on such matrices where 0 ≤ t ≤ r. If r < t, then for

any x ∈ o

Wo(

$r

$t

1

) = Wo(

$r

$t

1

1 x
1

1

)

= Wo(

1 x$r−t

1
1

$r

$t

1

)

= ψ(x$r−t)Wo(

$r

$t

1

).

This implies that

Wo(

$r

$t

1

) = 0,
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for r < t, because there exists some x ∈ o such that ψ(x$r−t) 6= 1. Similarly, if

t < 0, then for any x ∈ o

Wo(

$r

$t

1

) = Wo(

$r

$t

1

1
1 x

1

)

= Wo(

1
1 x$t

1

$r

$t

1

)

= ψ(x$t)Wo(

$r

$t

1

).

Hence,

Wo(

$r

$t

1

) = 0,

for t < 0, since there exists some x ∈ o which gives ψ(x$t) 6= 1.

In conclusion, Wo is determined on the set

{

$r

$t

1

 | 0 ≤ t ≤ r}. (30)

Zeta integrals

With π an irreducible, admissible, generic representation of G and τ an irreducible,

admissible, generic representation of GL(2,F), the zeta integral for G is defined as

Z(s,W,W′) :=

∫
N2\G2

W(

(
g

1

)
)W′(g)| det(g)|s dg, (31)

where G2 = GL(2,F) and N2 = N(2,F), and for some W ∈ W(π, ψ), some W′ ∈

W(τ, ψ−1), and some s ∈ C. The Haar measure, dg, is chosen so that the volume
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of K is one, and we will assume that s is such that Re(s) is large enough to ensure

that the zeta integral converges.

For any h ∈ GL(2,F), the Haar measure gives us

∫
N2\G2

W(

(
g

1

)
)W′(g)| det(g)|s dg =

∫
N2\G2

W(

(
gh

1

)
)W′(gh)| det(gh)|s dg.

(32)

Now suppose h ∈ K2 := GL(2, o), then we can use the K(m)-invariance of W and

the fact that | det(h)| = 1 to show that, in this case, equation (32)

=

∫
N2\G2

W(

(
g

1

)
)W′(gh)| det(g)|s dg.

Therefore, for dh the Haar measure on GL(2,F) chosen such that the volume of K2

will be one,

∫
K2

∫
N2\G2

W(

(
g

1

)
)W′(g)| det(g)|s dg dh

=

∫
K2

∫
N2\G2

W(

(
g

1

)
)W′(gh)| det(g)|s dg dh.
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Thus,

∫
N2\G2

W(

(
g

1

)
)W′(g)| det(g)|s dg

=

∫
K2

∫
N2\G2

W(

(
g

1

)
)W′(gh)| det(g)|s dg dh

=

∫
N2\G2

W(

(
g

1

)
)(

∫
K2

W′(gh) dh)| det(g)|s dg

Now set

W′′ =

∫
K2

W′(gh) dh. (33)

This gives us Z(s,W,W′) = Z(s,W,W′′), and by equation (33) we have W′′ is right

K2-invariant. In other words, if Z(s,W,W′) is non-zero for some W′, then it is

non-zero for a W′ which is right K2-invariant. Therefore, we can and do assume τ

is spherical with spherical vector W′. Furthermore, for W 6≡ 0, there exists some

spherical vector W′ so that the zeta integral is non-zero, see [JPSS81] lemme (3.5)

and the thèoréme on page 208.

The explicit formula given in part (ii) of the thèoréme on page 208, [JPSS81],

is of particular interest for the results of this thesis. The formula implies that if W

is a new vector in the Whittaker model, then Z(s,W,W′) depends holomorphically

on the Satake parameters of W′.

Zeta integrals and level raising operators

Now we want to check how the zeta integral behaves under the level raising operators

from section 4.4. We will assume both π and τ have trivial central character.
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Since β0 is the identity map, we have

Z(s, β0W,W′) = Z(s,W,W′). (34)

By virtue of the Haar measure and the trivial central character of both π and τ , we

have

Z(s, β1W,W′) =

∫
N2\G2

W(

(
g

1

)1
1

$

)W′(g)| det(g)|s dg

=

∫
N2\G2

W(

g($ $

)
1

1
1

$

)W′(g

(
$

$

)
)| det(g

(
$

$

)
)|s dg

= q−2s
∫

N2\G2

π(

$ $
$

)W(

(
g

1

)
)τ(

(
$

$

)
)W′(g)| det(g)|s dg

= q−2s
∫

N2\G2

W(

(
g

1

)
)W′(g)| det(g)|s dg.

Thus,

Z(s, β1W,W′) = q−2sZ(s,W,W′). (35)

Using the explicit formula for β2 gives

(β2W)(

(
g

1

)
) =

∑
x∈o/p

W(

(
g

1

)1 x
1

1

$ 1
$

)

+W(

(
g

1

)1
$

$

).

45



In the zeta integral, the second term becomes

∫
N2\G2

W(

(
g

1

)1
$

$

)W′(g)| det(g)|s dg

=

∫
N2\G2

W(

g($ 1

)
1

1
$

$

)W′(g

(
$

1

)
)| det(g

(
$

1

)
)|s dg

=q−s
∫

N2\G2

π(

$ $
$

)W(

(
g

1

)
)W′(g

(
$

1

)
)| det(g)|s dg

= q−s
∫

N2\G2

W(

(
g

1

)
)W′(g

(
$

1

)
)| det(g)|s dg. (36)

Let’s take a closer look at the first term when calculating the zeta integral. Let

g 7→ g

(
1 −x

1

)
.

Note that

det(g

(
1 −x

1

)
) = det(g),

and because x ∈ o×, we also have

W′(g

(
1 −x

1

)
) = W′(g).

46



Thus, in the zeta integral, the first term becomes

∑
x∈o/p

∫
N2\G2

W(

(
g

1

)1 x
1

1

$ 1
$

)W′(g)| det(g)|s dg

=
∑
x∈o/p

∫
N2\G2

W(

(
g

1

)$ 1
$

)W′(g)| det(g)|s dg

letting g → g

(
1

$

)

=q

∫
N2\G2

W(

(
g

1

)
)W′(g

(
1

$

)
)| det(g

(
1

$

)
)|s dg

= q−s
∫

N2\G2

W(

(
g

1

)
)qW′(g

(
1

$

)
)| det(g)|s dg. (37)

Now we use equations (37) and (36) to determine that

Z(s, β2W,W′) =q−s
∫

N2\G2

W(

(
g

1

)
)qW′(g

(
1

$

)
)| det(g)|s dg

+q−s
∫

N2\G2

W(

(
g

1

)
)W′(g

(
$

1

)
)| det(g)|s dg

= q−s
∫

N2\G2

W(

(
g

1

)
) [q(W′(g

(
1

$

)
)) + W′(g

(
$

1

)
)] | det(g)|s dg. (38)

If we let

g 7→ g

(
1
x 1

)
,

then

W′(g

(
1

$

)
) 7→W′(g

(
1
x 1

)(
1

$

)
)
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is the only change that occurs in the integral (38). This is because there exists some

non-negative integer m for which W is right K(m)-invariant and

1
x 1

1

 ∈ K(m),

for any m ∈ Z≥0 and for any x ∈ o. Also,

(
1
x 1

)(
$

1

)
=

(
$

1

)(
1
x$ 1

)
,

with (
1
x$ 1

)
∈ K2,

and W′ is right K2-invariant. Lastly, because we have

det(

(
1
x 1

)
) = 1.

So far we have that

Z(s, β2W,W′) = q−s
∫

N2\G2

W(

(
g

1

)
) [qW′(g

(
1
x 1

)(
1

$

)
)

+W′(g

(
$

1

)
)] | det(g)|s dg.

Take
∑

x∈ o/p
of both sides of this equation. This results in multiplying the left hand

side of the equation, and also

W′(g

(
$

1

)
)
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by q, since these terms have no x, and changing

W′(g

(
1
x 1

)(
1

$

)
) 7→

∑
x∈ o/p

W′(g

(
1
x 1

)(
1

$

)
).

By setting

(π(θ)W′)(g) :=
∑
x∈ o/p

W′(g

(
1
x 1

)(
1

$

)
) + W′(g

(
$

1

)
),

we get Z(s, β2W,W′) = q−sZ(s,W, π(θ)W′).

Looking back at equation (15) for a Hecke operator of GL(2,F), we see that π(θ)

is such a Hecke operator. Thus, π(θ)W′ = λW′, for λ ∈ C the Hecke eigenvalue of

τ related to α, the Satake parameter of W′, via λ = q
1
2 (α + α−1). Therefore, we

conclude that

Z(s, β2W,W′) = λq−sZ(s,W,W′). (39)

The results of these relationships between the zeta integral and the level raising

operators are summarized in the following lemma.

Lemma 4.5. For W ∈ W(π, ψ) and spherical vector W′ ∈ W(τ, ψ−1), where both π

and τ have trivial central character, the zeta integral has the following transformation

properties:

i.) Z(s, β0W,W
′) = Z(s,W,W ′)

ii.) Z(s, β1W,W
′) = q−2sZ(s,W,W ′)

iii.) Z(s, β2W,W
′) = λq−sZ(s,W,W ′), where λ = q

1
2 (α + α−1) ∈ C× is the Hecke

eigenvalue of τ and α is the Satake parameter of W′.
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Level raising in generic representations

In this section, we focus once again on irreducible, admissible, generic representa-

tions. For the zeta integrals that will come into play, we choose s such that Re(s)

is large enough to ensure that the integral converges, and W′ is chosen so that the

zeta integral is non-zero.

Theorem 4.6. Let (π,V) be a generic, irreducible, admissible representation of

GL(3,F) with trivial central character. If v ∈ VK(c(π)) is non-zero, then the space

VK(m) for any integer m ≥ c(π) is spanned by the linearly independent vectors

βh0β
i
1β

j
2v,

for h, i, j ∈ Z≥0 and where h + i + j = m − c(π). In particular, the oldforms can

be obtained by applying level raising operators to one newform and taking linear

combinations.

Proof. As a result of Remark (4.4), we need only show that the elements in VK(m)

that arise as the result of raising the level of the newform through repeated use of the

level raising operators are linearly independent. To do so, we use the interplay found

above between the zeta integral and the level raising operators, the isomorphism

between V and its Whittaker model W , as well as the Satake parameters described

in section 3.6.

Let Wo be a new vector in W , and assume

∑
h,i,j∈Z≥0

h+i+j=m−c(π)

ahij(β
h
0β

i
1β

j
2)(Wo) = 0. (40)
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Applying the zeta integral to equation (40) gives us

Z(s,
∑

h,i,j∈Z≥0

h+i+j=m−c(π)

ahij(β
h
0β

i
1β

j
2)(Wo),W

′) = 0.

Therefore, we end up with

∑
h,i,j∈Z≥0

h+i+j=m−c(π)

ahijq
−2si−sjλjZ(s,Wo,W

′) = 0. (41)

By our choice of s and W′, and because Wo 6= 0 there is an open neighborhood, U1,

around s where the integral converges and is not zero. Now we use the fact that the

zeta integral depends holomorphically on the Satake parameter α, i.e., there exists

an open neighborhood around α in which the zeta integral converges and is not zero.

Therefore, since the Hecke eigenvalue λ is equal to q
1
2 (α + α−1), there is an open

neighborhood, U2, around λ in which the integral converges and is not zero. Thus,

equation (41) implies that

∑
h,i,j∈Z≥0

h+i+j=m−c(π)

ahijq
−2si−sjλj =

∑
h,i,j∈Z≥0

h+i+j=m−c(π)

ahij(q
−2s)i(q−sλ)j = 0, (42)

for every s ∈ U1 and every λ ∈ U2.

Now consider equation (42) to be a polynomial in the two variables X = q−2s

and Y = q−sλ, i.e., Y = X
1
2λ. Hence, we have

f(X, Y ) =
∑

h,i,j∈Z≥0

h=m−c(π)−i−j

ahijX
iY j = 0,

for every X ∈ U′1, where U′1 depends on U1, and for every Y ∈ U′2, where U′2 depends
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on both U1 and U2. Basically, we have a map C × C → C × C : (X,λ) 7→ (X, Y ),

and we choose an open neighborhood U′1 × U2 in the domain such that its image

is in the open neighborhood U′1 × U′2. Consider the zero set of this polynomial,

{(X, Y ) | f(X, Y ) = 0}. If f(X, Y ) is not the zero polynomial, then its zero set

is known to be one-dimensional. This contradicts the previous statement that the

sum equals zero on some open set U′1×U′2 in C. Hence, it must be that ahij = 0 for

every h, i, j. This proves the theorem.

4.6 Non-generic representations

In the previous section, we considered generic representations arising from parabolic

induction on the Borel subgroup. In this section, we make use of parabolic induction

on P defined in section 4.1, along with the double coset decomposition put forward

in lemma 4.1.

Let χ1 and χ2 be characters of F×, and let χ := χ11GL(2,F)×χ2 have trivial central

character. Set π(χ11GL(2,F) × χ2) = π(χ), the associated induced representation on

IndG
P (χ) =: V (χ11GL(2) × χ2) = V(χ). This is the set of all smooth functions

φ : G→ C that have the transformation property

φ(

(
A ∗

u

)
g) = χ1(det(A))χ2(u)

| det(A)| 12
|u|

φ(g),

for all g ∈ G, all A ∈ GL(2,F), and all u ∈ F×, where ∗ is a 2 × 1 column matrix

with entries in F. Define γr as in equation (18).

Lemma 4.7. With the above definitions, the following are equivalent.

i.) χ is unramified, i.e., c(χ1) = 0 = c(χ2).

ii.) VK(m) 6= {0} for every m ∈ Z≥0.
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iii.) VK(m) 6= {0} for some m ∈ Z≥0.

Proof. Clearly, if c(χ) = 0, i.e, χ is unramified, then dim(VK(0)) = 1 which implies

that VK(m) 6= 0 for any m. Hence, i) implies ii). The implication from ii) to iii) is

trivial. To prove that iii) implies i), take m such that VK(m) 6= 0. Let φ ∈ VK(m)

be non-zero and r be such that φ(γr) 6= 0. For a ∈ o×, we have

a 1
1

 ∈ K(m).

Thus,

φ(γr) = φ(γr

a 1
1

)

= φ(

a 1
1

 γr)

= χ1(a)φ(γr).

Since φ(γr) 6= 0, it must be that χ1(a) = 1 for every a ∈ o×, i.e. c(χ1) = 0.

By virtue of the trivial central character, we know that χ2
1χ2 = 1. In particular,

χ2
1(a)χ2(a) = 1 for every a ∈ o×. Hence, χ2(a) = 1 for every a ∈ o×, implying that

χ2 is unramified.

As a result of the lemma, under the given conditions, we need only concern

ourselves with the case where χ1 and χ2 are both unramified.
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Dimension of VK(m) for group IIb

In order to determine the dimensions of VK(m) associated with the non-generic rep-

resentations of G from group IIb table (2), we will make use of Reeder’s formula

for irreducible generic representations [Ree91], information that is known about the

conductor of χStGL(2), and a deformation argument. By Reeder’s paper, we have for-

mula (21) for dim(VK(m)) if χ1×χ2×χ3 is irreducible and thus generic. We use the

following deformation argument to show that formula (21) still holds if χ1×χ2×χ3

is not irreducible, i.e., in the full induced representations from group II and III.

Let χ = χ1 × χ2 × χ3 be an irreducible, generic representation of G with trivial

central character. So in particular, we have χ1χ2χ3 ≡ 1. Because the action of G on

V(χ) is by right translation, and by utilizing the Iwasawa decomposition, another

model for π(χ1, χ2, χ3) is obtained by restricting functions in V(χ) to K. We denote

this space of functions on K by V(χ)K. Hence, there is an injective map from V(χ) to

V(χ)K that commutes with the K-action. Therefore, V(χ) ' V(χ)K as K-modules.

Now suppose we deform χ by modifying each χi, i=1,2,3, by multiplication with a

power of an absolute value. Say χ′ = | · |s1χ1 × | · |s2χ2 × | · |s3χ3. To preserve

the trivial central character, it must be that s1 + s2 + s3 = 0. Arguing as above we

see that V(χ′) ' V(χ′)K. Furthermore, we know |k|si = 1 for all k ∈ K and each

i = 1, 2, 3. Hence, V(χ)K = V(χ′)K. This implies that V(χ) ' V(χ′) as K-modules.

Therefore, the dimension of the VK(m) associated to either of these representation

spaces will be the same. Thus, for the full induced representations in group II and

III from table (2) we can use formula (21) to compute dim(VK(m)).

In group IIa, π = χ1StGL(2) × χ2, and we know c(π) = c(χ1StGL(2)) + c(χ2). By

lemma (4.7), we are only concerned with unramified characters in this case and by
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[Sch02] we have c(χStGL(2)) = 1 when χ is unramified. Therefore, we have

dim(VK(m)) =

(
m+ 1

2

)
. (43)

Using the above argument and equations (21) and (43), we conclude that in group

IIb

dim(VK(m)) =

(
m+ 2

2

)
−
(
m+ 1

2

)
= m+ 1. (44)

Level raising operators

Notice that, in this case, a unit increase in level results in a unit increase in dimen-

sion. Thus, only two level raising operators are needed.

Claim 4.8. Under the conditions of this section and if χ2 6= χ1| · |
3
2 , all the oldforms

can be obtained by applying the two level raising operators β0 and β1 to the new-

form and taking linear combinations. Equivalently, β0 and β1 combine to provide a

surjective map from VK(m) to VK(m+1).

Proof. If φ ∈ VK(m), then φ is determined on the set of coset representatives, the

γr’s, from lemma 4.1. For g ∈ K, and fixed r ∈ {0, 1, 2, . . . ,m}, try to define a

non-zero function φr by

φr(g) :=


χ1(det(A))χ2(x) | det(A)|

1
2

|x| if g ∈
(
A ∗

x

)
γrK(m);

0 if g 6∈ P(F)γrK(m).

Clearly such φr are in VK(m), they are linearly independent, and there are exactly

m+ 1 of them. Thus, they form a basis for VK(m).

By definition of β0 and φr, we note that (β0φr)(γs) = δrs for every integer s such

that 0 ≤ s ≤ m+ 1, and every r, except when r = m and s = m+ 1. In that case,
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we have (β0φm)(γm+1) = 1 because γm+1 ∈ K(m) and φm is invariant under right

multiplication by K(m).

Therefore, fixing {φr}mr=0 as a basis for VK(m) gives the following (m + 1) × m

matrix for β0 when m > 0



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1
0 0 0 · · · 0 1


.

Now consider the second level raising operator. If s 6= 0, then, in general,

(β1φr)(γs) =φr(γs

1
1

$

)

=φr(

1
1
$s $

)

=φr(

1
1

$

1
1

$s−1 1


=χ1(1)χ2($)

∣∣∣∣ 1

$

∣∣∣∣φr(γs−1).

Therefore,

(β1φr)(γs) =


qχ2($) if s = r + 1;

0 if s 6= r + 1.
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Consider the case where s = 0. We have

(β1φr)(γ0) =φr(γ0

1
1

$

)

=φr(

1
1
1 $

)

=φr(

1
$ 1−$

1

1
1
1 1

1
1 $ − 1

1

)

=χ1($)χ2(1)|$|
1
2φr(γ0).

Therefore,

(β1φr)(γ0) =


q−

1
2χ1($) if r = 0;

0 if r 6= 0.

Thus, for the same fixed basis, we have the following (m + 1) × m matrix for β1

when m > 0 

χ1($)q−
1
2 0 0 · · · 0 0

χ2($)q 0 0 · · · 0 0
0 χ2($)q 0 · · · 0 0
0 0 χ($)q · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · χ2($)q 0
0 0 0 · · · 0 χ2($)q


.
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Combining these two matrices gives us the following (m+ 1)× (m+ 1) matrix



1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0 0
0 0 0 · · · 0 1 0
0 0 0 · · · 0 0 χ2($)q


.

This matrix has non-zero determinant for any m 6= 0. Thus, under these conditions,

for a newform v, the vectors βi0β
j
1v are linearly independent, for i, j ∈ Z≥0 with

i+ j = m− c(π).

In the case where m = 0, we have (β0φ0)(γi) = 1, for i = 0, 1, since γi ∈ K.

Hence, our matrix with respect to β0 looks like

(
1
1

)
.

By our previous work, we know the matrix with respect to β1 is:

(
χ1($)q−

1
2

χ2($)q

)
.

Thus, combining the matrices gives:

(
1 χ1($)q−

1
2

1 χ2($)q

)
.

Note that this has non-zero determinant if and only if χ2 6= χ1| · |
3
2 . Thus explaining

why this extra condition needs to be in the hypothesis of this claim.

Note that the condition χ2 6= χ1| · |
3
2 agrees with the condition placed on group
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II of table (2).

Suppose we would like to understand group IIIb from our table in section 2. Table

(3) which states the relationship between the various components of νχ× χ× ν−1χ

leads to the following short exact sequence

0→ L(νχ, ν−
1
2χStGL(2))→ ν

1
2χ1GL(2) × ν−1χ→ χ1GL(3) → 0. (45)

By taking contragredients and replacing χ−1 with χ, we also get the short exact

sequence

0→ χ1GL(3) → ν−
1
2χ1GL(2) × νχ→ L(νχ, ν−

1
2χStGL(2))→ 0. (46)

Now check the condition χ2 6= χ1| · |
3
2 . In the first sequence (45), we relate

ν
1
2χ1GL(2) × ν−1χ to our representation χ11GL(2) × χ2, by setting χ1 = ν

1
2χ and

setting χ2 = ν−1χ. Thus, we get χ2 = χ1| · |−
3
2 . Hence, our condition is satisfied

which implies that we can use the two level raising operators to obtain all the old

forms from the newform in the subrepresentation L(νχ, ν−
1
2χStGL(2)). But, in se-

quence (46), we would have χ1 = ν−
1
2χ and χ2 = νχ. This results in χ2 = χ1| · |

3
2 .

This implies that in the subrepresentation χ1GL(3), applying the level raising oper-

ators only results in scalar multiples of the newform. This is to be expected since if

we let V be the representation space of χ1GL(3), then dimVK(m)=1 for all m ≥ c(π).

Now we have only group IIIc to consider. Recall definition (24) of the parabolic

subgroup P(1,2), and the corresponding induction. Use table (3) to set up the short

exact sequence

0→ L(ν
1
2χStGL(2), ν

−1χ)→ νχ× ν−
1
2χ1GL(2) → χ1GL(3) → 0.
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The representation we obtain from induction on P(1,2) is of the form χ1 × χ21GL(2).

Relate it to the representation νχ× ν− 1
2χ1GL(2) by setting χ1 = νχ and χ2 = ν−

1
2χ.

Thus, we have χ2 = ν−
3
2χ1, which satisfies our condition and hence implies that all

oldforms can be obtained by applying the two level raising operators to the newform

and taking linear combinations.

Combining theorem (4.6) with claim (4.8) and the above information on groups

IIIb, c, and d, leads to and proves the following theorem.

Theorem 4.9. Let (π,V) be an irreducible, admissible representation of GL(3,F)

with trivial central character. All the oldforms can be obtained by applying the level

raising operators β0, β1 and β2 to one newform and taking linear combinations.

4.7 Dimensions of VK(m) for the representations of GL(3,F)

Using what is already known about dimensions of some VK(m), the deformation

argument, Reeder’s dimension formula and a certain fact about the conductor of

χStGL(3), we can now compute the dimensions of the remaining cases. The groups

refer back to table (2). Note in all cases we are assuming that m ≥ c(π). In the

case that m < c(π), dim(VK(m)) = 0.

Group I: In group I it is known [Ree91] that

dim(VK(m)) =

(
m− c(π) + 2

2

)
.

Group II: By lemma (4.7), we assume χ1 and χ2 are unramified. From the com-

putations done in this paper, we know for group IIa

dim(VK(m)) =

(
m+ 1

2

)
,
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while for group IIb

dim(VK(m)) = m+ 1.

Group III: By setting χ′ = ν
1
2χ1GL(2)×ν−1χ, we can use the deformation argument

on the representation from group IIb to show that dim(VK(m)) = m + 1 for the

representation ν
1
2χ1GL(2)× ν−1χ. Similarly, setting χ′ = νχ× ν 1

2χ1GL(2) shows that

dim(VK(m)) = m+ 1 for the representation νχ× ν 1
2χ1GL(2). We know if (πd,Vd) is

a representation in group IIId, then

dim(V
K(m)
d ) = 1.

Thus, we have dim(V
K(m)
d ) + dim(V

K(m)
b ) = m + 1, for a representation (πb,Vb) in

group IIIb. Therefore,

dim(V
K(m)
b ) = m

for representations of the form L(νχ, ν−
1
2χStGL(2)).

Similarly we can compute

dim(VK(m)
c ) = m,

for (πc,Vc) a representation in group IIIc.

Finally, if (πa,Va) is a representation in group IIIa, we have

m+ dim(VK(m)
a ) =

(
m+ 1

2

)
.

Our final computation gives us

dim(VK(m)
a ) =

(
m
2

)
.
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Table 4: Iwahori-spherical representations of G with dim(VK(m))

constituent of representation conductor dim(VK(m))

I χ1 × χ2 × χ3 (irreducible) 0
(
m+ 2

2

)
IIa ν

1
2χ1 × ν−

1
2χ1 × χ2 χ1StGL(2) × χ2 1

(
m+ 1

2

)
IIb (χ2 6= ν±

3
2χ1) χ11GL(2) × χ2 0 m+ 1

IIIa χStGL(3) 2
(
m
2

)
IIIb νχ× χ× ν−1χ L(νχ, ν−

1
2χStGL(2)) 1 m

IIIc L(ν
1
2χStGL(2), ν

−1χ) 1 m
IIId χ1GL(3) 0 1

In all cases we assume m ≥ c, else dim(VK(m)) = 0.

We can also use Reeder’s formula since IIIa is an irreducible, generic representation.

To do so, we use the proposition on page 18 of [Roh94] and the Local Langlands’

Conjecture to determine that c(χStGL(3)) = 2 when χ is unramified. Therefore,

Reeder’s formula gives us

dim(VK(m)) =

(
m+ 2− 2

2

)
=

(
m
2

)
.

The results presented in table (4) are for Iwahori-spherical representations which

simply means that we are assuming that all the χi are unramified. If a representation

is not Iwahori-spherical, Reeder’s formula can be used to determine dimensions of

the VK(m) for all the generic representations, and in the non-generic case we know

by lemma (4.7) there are no fixed vectors.

5 Conclusion

Some of the fundamentals of representation theory of GL(2) transfer quite nicely

to GL(3). One has to make adjustments to allow for the differences in the two
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groups, but the basic concepts seem to hold up. The concept of a conductor, and

the existence of a relationship between the conductor and the dimension of our space

VK(m) extends from GL(2) to GL(3). In the case of generic representations, there are

similar zeta integrals and Whittaker models. Our results give level raising operators

that act on the fixed vector spaces VK(m) of representation spaces V of GL(3,F)

just as there are those for such spaces in GL(2,F). We also proved an oldforms

theorem for GL(3,F) showing that all oldforms can be obtained from a newform by

applying certain level raising operators and taking linear combinations that relates

to the oldforms theorem of GL(2,F).

By using representation theory in general, some GL(2,F) representation theory

itself, and by extending some GL(2,F) representation theory to GL(3,F), we were

able to compute the dimension of the VK(m) for all the non-supercuspidal representa-

tions of GL(3,F). In the end, we were able to present our information in a complete

table with all the pertinent information about the representations of GL(3).
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[JPSS79] Hervé Jacquet, Ilja Iosifovitch Piatetski-Shapiro, and Joseph Shalika, Au-

tomorphic forms on GL(3). I, Ann. of Math. (2) 109 (1979), no. 1, 169–

212.

[JPSS81] H. Jacquet, I. I. Piatetski-Shapiro, and J. Shalika, Conducteur des

représentations du groupe linéaire, Math. Ann. 256 (1981), no. 2, 199–

214.

[Kud94] Stephen S. Kudla, The local Langlands correspondence: the non-

Archimedean case, Motives (Seattle, WA, 1991), Proc. Sympos. Pure

Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 365–391.

[Mur] Fiona Murnaghan, Representations of reductive p-

adic groups, course notes (2009), available at

www.math.toronto.edu/murnaghan/courses/mat1197/notes.pdf.

[PR08] Dipendra Prasad and A. Raghuram, Representation theory of GL(n) over

non-Archimedean local fields, School on Automorphic Forms on GL(n),

64



ICTP Lect. Notes, vol. 21, Abdus Salam Int. Cent. Theoret. Phys., Trieste,

2008, pp. 159–205.

[Ree91] Mark Reeder, Old forms on GLn, Amer. J. Math. 113 (1991), no. 5, 911–

930.

[Roh94] David E. Rohrlich, Elliptic curves and the Weil-Deligne group, Elliptic

curves and related topics, CRM Proc. Lecture Notes, vol. 4, Amer. Math.

Soc., Providence, RI, 1994, pp. 125–157.

[Sch02] Ralf Schmidt, Some remarks on local newforms for GL(2), J. Ramanujan

Math. Soc. 17 (2002), no. 2, 115–147.

65


