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1.0 INTRODUCTION 

―The mission of the Oklahoma Department of Transportation is to provide a 

safe, economical, and effective transportation network for the people, commerce, and 

communities of Oklahoma‖ (1). 

To provide a safe, economical and effective transportation network should be 

the goal of any department of transportation (DOT).  However, with less revenue from 

a sluggish economy, and a national transportation trust fund at a point where it needs a 

major transfusion just to stay alive, a responsible DOT must begin to place major 

emphasis on pavement preservation (2, 3).  This research seeks to provide guidance 

for pavement preservation by investigating the characteristics of different pavement 

preservation techniques as they relate to driver safety and to the economics behind the 

implementation of these treatments. 

 

1.1 BACKGROUND AND RESEARCH NEED 

Research relating the safety aspects of the surface of the road has been 

conducted both abroad and within the United States, but previous studies have been 

focused on either macrotexture alone or microtexture alone (4, 5, 6).   The focus of 

this research is to analyze both mechanisms as they relate to different pavement 

preservation treatments. The research will quantify pavement preservation treatment 

macrotexture and microtexture deterioration over time.  This is being done to establish 

the effective service life of each treatment based on the time it takes for each treatment 

to reach recognized macrotexture and microtexture failure criteria.  
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Additionally, the research will add to the body of knowledge of pavement 

economics by applying macrotexture and microtexture deterioration models for 

pavement preservation treatments for use as service life inputs to life cycle cost 

analysis (LCCA). While there is a rich body of research on pavement LCCA, little 

specifically addresses preservation treatments themselves.  Therefore, this research 

also explores the use of life cycle cost models as tools for selecting pavement 

preservation treatments from an economic standpoint. 

This research is needed to enhance the idea that pavement preservation is the 

embodiment of infrastructure stewardship. Its central theme is using pavement 

technology to ―keep good roads good.‖ (4) There is a wide range of pavement 

preservation and maintenance program funding levels among US DOTs that range 

from a low of $15.0 million to a high of $1.7 billion per year (5). In those agencies, 

like the Oklahoma Department of Transportation (ODOT) that are on the low end of 

the funding spectrum, the need for an aggressive pavement preservation program is 

critical to getting as much value out of each maintenance dollar as possible (4, 5).   

Pavement preservation is inherently sustainable as it seeks to minimize the amount of 

natural resources consumed over a pavement’s life cycle (6). Therefore, focusing on 

pavement preservation rather than reactive maintenance and repair furnishes a broad 

foundation on which to build ODOT’s pavement sustainability program.  With this 

foundation constructed ODOT can easily become a national standard for other DOT’s 

to use as an example of how to implement as system of their own. 
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1.2 OBJECTIVE OF RESEARCH 

The objective of this research was to leverage research done abroad in 

Australia and New Zealand, as well as research conducted within the United States to 

determine the role pavement preservation treatments have on safety aspects, pavement 

skid number and pavement macrotexture, of the highway system (7, 8, 9).  Methods 

for pavement preservation range in variety from a simple chemical treatment, like a 

fog seal, to a more complex surface treatment, like a chip seal or overlay, to the 

sophisticated mechanical treatments, like shot-blasting.  To meet the objective of this 

study, certain data was gathered for each pavement preservation treatment included for 

analysis.  This data included microtexture measurements, and since it was deemed 

unreasonable to utilize the British Pendulum Tester considering the variability and 

difficult nature of field research, the American Society for Testing and Material’s 

(ASTM) E274 skid tester was used to create an index for microtexture (10).  Two 

separate tests were used to determine the macrotexture values for each treatment; they 

are the Transit New Zealand T/3 sand circle test (11) and the ASTM E965 outflow 

meter tester (12).  A thorough anaylsis of available life cycle cost models was needed 

to establish economic data to each pavement preservation treatment, thus meeting the 

primary objective of this study.  This will allow pavement managers to have the 

required information to be able to make rational engineering design decisions based on 

both physical and financial data for a suite of potential pavement preservation tools.  
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1.3 LITERATURE REVIEW 

Skid resistance of pavement is an important engineering component of the road 

from a safety standpoint. Slippery pavements are the result of several causes, chief of 

which is the loss of pavement surface micro and macrotexture. A European study 

found that increasing the pavement’s macrotexture not only reduced total accidents 

under both wet and dry conditions but also reduced low speed accidents (13).  As a 

result, pavement managers must not only manage the structural condition of their 

roads but also their skid resistance (14, 15). In fact, it is possible for a structurally 

sound pavement to become unsafe from a loss of skid resistance due to polishing of 

the surface aggregate or in the case of chip seals, flushing of the binder in the wheel 

paths (16). This results in a safety requirement to modify the pavement surface to 

restore skid resistance. Many of the possible tools for restoring skid resistance, like 

chip seals, are also used for pavement structural preservation. Thus, it seems that 

maintenaning adequate pavement skid resistance is also a pavement preservation 

activity (17).  This intersection of two requirements creates a technical synergy that a 

state like Oklahoma can leverage to stretch its pavement maintenance budget if it has 

the necessary technical and financial information to assist decision-makers in selecting 

the appropriate surface treatment tool for a given situation. 

 

1.3.1 Previous Studies 

Transportation agencies in the United States have procedures in place to 

identify and rectify skid resistance problems. However, the procedures are often 

empirical and tend to be reactive rather than proactive in nature. This is not the case in 
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other countries. For example, Austroads, the Australia/New Zealand equivalent to 

AASHTO, developed and has been successfully using a set of procedures to literally 

manage pavement macrotexture for the past three decades (18).  Austroads sees 

macrotexture as furnishing enhanced drainage to combat hydroplaning during wet 

periods as well as enhancing skid resistance. As such, they implemented an aggressive 

macrotexture-oriented monitoring and measurement program as part of their pavement 

management system.  Therefore, it is not necessary to develop new procedures for the 

industry and the transportation agencies in this country. This project seeks to 

―customize‖ the Austroads model to suit American needs. The Austroads ―Procedure 

to Identify and Treat Sites with Skidding Resistance Problems‖ uses the following five 

steps: 

1. ―Identify [possible] treatment [alternatives] 

2. Cost works and carry out economic evaluation 

3. Shortlist schemes in priority order 

4. Carry out short-term measures, if required 

5. Program longer term measures‖ (18). 

It is evident from the above discussion that pavement managers in Australia 

and New Zealand have the engineering technical data that they need to generate a set 

of technically feasible options for rectifying a loss of skid resistance.  But, they also 

have the economic data required to be able to place those alternatives in the context of 

a limited maintenance budget. It should be noted that this approach does not merely 

involve selecting the lowest cost alternative.  Instead Austroads requires a life cycle 

cost analysis to accompany all public works infrastructure projects and as a result, 
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selects treatment alternatives on a basis of the lowest life cycle cost not the lowest 

construction cost (18). As a result, a treatment alternative with a higher initial cost but 

which effectively extends the service life of a pavement for a longer period can be 

selected, and the long-term benefits to the agency’s multi-year budgets can be accrued.   

Additionally, Austroads advocates the use of both short and long-term 

measures.  For example, a given pavement may lose its skid resistance during the 

winter months where it is climatically impossible to install a bituminous surface 

treatment due to low ambient air temperatures. Austroads has a machine called the 

ultra-high pressure watercutter that can literally go out in a limited area such as a 

slippery superelevated curve or a freeway ramp and restore pavement macrotexture in 

any weather (19). This would be a short-term measure. The long-term measure might 

involve installing microsurfacing or a new chip seal in the summer when the climatic 

conditions allow it. Both treatments would be included in the life cycle cost analysis 

used to justify the retexturing project. 

 

1.3.2  Point of Departure 

There is a wealth of information on skid resistance in the literature (13, 16, 20, 

21). However, most of the previous research has been in the safety realm developing 

the relationship between skid resistance and crashes. There is also a wealth of 

information on pavement surface treatments (15).  However, a majority of previous 

studies has been laboratory-based and focused on the material science aspect.  Very 

little substantive work has been done in the field regarding surface treatment 

performance.  Also, most of the research in this area is focused on short-term 
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performance (22). The FHWA Long Term Pavement Performance Program (LTPP) 

collects friction data as part of its standard protocol (23). However, the LTPP data 

largely relates to pavement mix design criteria and while it includes data for chip 

seals, it does not collect data for any of the other potential pavement preservation 

treatments. Additionally, the typical research project only examines a single surface 

treatment.  Also making it more difficult for DOT pavement managers, much of the 

published research is commercial in nature and while valid, it may contain a inherent 

bias toward showing the given product in its best light (7, 24, 25). Finally, with three 

notable exceptions (26, 27, 28), virtually no research in this area has addressed the 

economic aspects of pavement retexturing in conjunction with the engineering aspects. 

Thus, the gap in the body of knowledge is the lack of engineering data correlated with 

a comparative economic analysis of different alternatives to restore skid resistance on 

a long-term basis. 

 

1.4 IMPORTANCE OF PAVEMENT SURFACE TEXTURE 

Engineers must use every possible tool during design, construction and 

operations to make the road as safe as possible. The design/construction engineer has 

control over the geometry of the road, both in horizontal and vertical alignments, the 

speed of travel, the signage of the roadway system, the material properties of the 

surface course and over time as the pavement deteriorates, and the maintenance 

engineer can control the characteristics of that surface by selecting various pavement 

preservation and maintenance treatments.  Ultimately the physics of the moving 

vehicle will determine if the engineers who have been involved in the road’s service 
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life will determine whether or not the road can be safely traveled. Once the road is 

built, the only facet of the road that is truly controllable is its surface. No other factor 

in the complex three-dimensional equation that determines whether a moving vehicle 

will be able to safely remain on the surface of the road can be changed without a large 

relative commitment of resources to effect the desired change. As a result, the mission 

of a maintenance engineer must be to preserve the structural capacity of the road and 

to ensure that its surface frictional characteristics are sufficient to safely handle the 

traffic load for which it was originally designed.  

Roadway crashes are complex events that are the result of one or more 

contributing factors.  Such factors fall under three main categories: driver-related, 

vehicle-related, and highway condition-related (9).  This project addresses solutions 

for highway condition-related crashes.  The project does this by quantifying the rate at 

which the surface texture of different pavement preservation treatments deteriorates 

over time. The comparative knowledge of treatment texture deterioration rates is 

essential for maintenance engineers to select the appropriate treatment for a given 

pavement condition problem.  

 

1.4.1  Surface Texture 

Surface texture is one of the primary physical characteristic that can be 

measured after a traffic accident (29). One author posits that the factors that cause loss 

of skid resistance can be grouped into two categories: 

 mechanical wear and polishing action rolling or braking  

 accumulation of contaminants. (30) 
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These two categories directly relate to the two physical properties of 

pavements that create the friction that produces a pavement’s skid resistance. The first 

is called microtexture and it consists of the natural surface roughness of the aggregate 

as shown in Figure 1.1.  

 
Figure 1.1 Pavement Surface Microtexture and Macrotexture (31) 

Microtexture is lost due to mechanical wear of the aggregate’s surface as it is 

polished by repetitive contact with vehicle tires and gets smoother. The second is 

macrotexture and relates to the resistant force provided by the roughness of the 

pavement's surface. Macrotexture is reduced as the voids between the aggregate and 

either the cement or binder in the pavement’s surface is filled with contaminants. This 

can happen in three possible ways: 

1. Transient macrotexture loss from icing or mud tracked onto the surface 

2. Persistent macrotexture loss from flushing or bleeding in the asphalt 

binder 

3.  Localized macrotexture loss from accumulation of tire rubber deposits 

from braking or skidding. 
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The skid resistance of a highway pavement is the result of a ―complex 

interplay between two principal frictional force components—adhesion and 

hysteresis‖ (32). There are other components such as tire shear, but they are not nearly 

as significant as the adhesion and hysteresis force components. Figure 1.2 shows these 

forces and one can see that the force of friction (F) can be modeled as the sum of the 

friction forces due to adhesion (FA) and hysteresis (FH) per Equation 1.1 below: 

F = FA + FH       Eq. 1.1 

Relating Figures 1.1 and 1.2, one can see that the frictional force of adhesion is 

―proportional to the real area of adhesion between the tire and surface asperities,‖ 

which makes it a function of pavement microtexture (32). The hysteresis force is 

―generated within the deflecting and visco-elastic tire tread material, and is a function 

of speed‖ making it mainly related to pavement macrotexture (32). Thus, if an 

engineer wants to improve skid resistance through increasing the inherent friction of 

the physical properties of the pavement they should seek to improve both surface 

microtexture and macrotexture. This idea is confirmed in a 1984 study of the effect of 

rubber deposits on airport runway pavements that stated: ―Rubber buildup alters the 

texture properties of the runway as well as the frictional coefficient‖ (33). 
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Figure 1.2 Pavement Friction Model (37) 

In Australia and New Zealand extensive work has been done to manage 

macrotexture to control crash rates (6, 7, 34).  In North America extensive work has 

been done to manage skid number, or microtexture, to control crash rates (9).  

Generally, US agencies believe that if an engineer could control wet weather related 

crashes then all crashes would be reduced. Therefore, most studies regarding crash 

rates versus surface characteristics (i.e. macrotexture, skid number, or microtexture) 

primarily focus on the reduction of wet weather crashes (32).  To better understand 

exactly how to manage the surface characteristics over time, a thorough definition of 

each characteristic must be established in order to see the role each plays in 

contribution to safe travel.   

Skid number is a critical component when analyzing road safety, making it one 

of the most widely studied surface characteristics.  Skid number can be measured in a 

number of ways with the common method being ASTM E 274 skid tester equipped 
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with either with a smooth tire or a ribbed tire (10).  Other common methods are the 

Sideway-force Coefficient Routine Investigation Machine (SCRIM) device, the grip 

tester device, and the mu-meter devices (35).  For this research, the ASTM E 274 skid 

tester with a ribbed tire serves as the primary way of obtaining the skid number (10). 

The testing apparatus is towed behind a vehicle at the desired speed, 40 mph which is 

the standard for ODOT skid testing. Water is then applied in front of the tire just 

before the trailer’s brakes force the tire to lock up. The resultant force is then 

measured and converted into a skid number value (36).  

Surface texture is separated into three components microtexture, macrotexture, 

and megatexture, as shown in Figure 1.3. Each has a varying range of texture depth 

and influences to the pavement tire interactions.  Microtexture is the grittiness of the 

surface; it is a function of the aggregate’s geology and its ability to withstand 

polishing. The force normally associated with microtexture is ―adhesion‖ which 

occurs from the shearing of molecular bonds formed when the tire rubber is pressed 

into close contact with pavement surface (9).   
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Figure 1.3 Pavement Texture Definitions (37) 

Macrotexture can also be broken into two separate physical components: 

hysteresis and drainage.  Good texture depth assists with drainage, preventing the 

formation of a water sheet across the surface with the resulting risk of hydroplaning.  

While hysteresis is the mechanical deformation of tire with the surface, good texture 

depth is needed to enable this mechanical deformation to occur, which then releases 

energy through heat (34).   The World Road Association describes macrotexture as a 

surface roughness quality defined by the mixture properties, i.e. shape, size, and 

gradation of aggregate, of asphalt paving mixtures and the method of finishing or 

texturing used on concrete paved surfaces, such as dragging, tining, or grooving.  

Macrotexture’s range is set at 0.5mm to 50mm, and it predominately controls the 

stopping ability of a vehicle on the roadway surface at speeds greater than 45 mph. 

Megatexture is on a much larger scale than both microtexture and macrotexture 

and is in essence the irregularities of the road such as potholes, rutting, joints, cracks, 

raveling, and skin patches (4).  These have a small effect on stopping ability. 
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However, megatexture plays a significant role in how the driving public perceives the 

road, via the resultant road noise or poor ride quality. Another surface characteristic 

that accompanies microtexture, macrotexture, and megatexture is ride quality or 

roughness measured by the International Roughness Index (IRI) number (4).  Many 

DOTs use roughness measurements to portray of the overall integrity of their roadway 

system (38, 39, 40). The focus of this research is on microtexture and macrotexture, 

which are the variables of interest for road surface safety; it does not address 

megatexture or roughness. 

 

1.4.2  Surface Texture as a Pavement Preservation Activity  

Microtexture, macrotexture, megatexture, and roughness, taken together, 

summarize the universe of roadway surface defects that the maintenance engineer 

must address in their pavement management program.  If the road surface begins to 

ravel, rut, or develop base failures, megatexture will increase.  If the road is found to 

be losing its skid resistance, measured microtexture will be found to be decreasing.  If 

a section of road begins to experience crashes due to hydroplaning, its macrotexture 

will have decreased. The same is true if a chip sealed road does not retain its 

aggregate.  All these scenarios are the direct result of the surface characteristics of the 

highway and can be used by the maintenance engineer to identify and select an 

appropriate pavement preservation or maintenance treatment for a given problem.   

The focus of pavement preservation is placing‖ the right treatment, on the right 

road, at the right time‖ (4). If a road’s megatexture or IRI becomes unacceptable, it is 

too late to attempt to ―preserve‖ the pavement. These measures are indicative of 
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inadequate structural capacity and will require major maintenance or reconstruction 

treatments to rectify the loss in ride quality and to recapture the pavement’s structural 

capacity.  Hence, understanding the relationships between microtexture and 

macrotexture deterioration over time, allows the engineer to establish ―trigger points‖ 

that permit sufficient time to schedule pavement preservation before the pavement’s 

structural capacity is permanently compromised.   

A good example of a trigger point comes from the New Zealand Transport 

Agency (NZTA). NZTA uses macrotexture measurements as one of the key 

performance indicators (KPI) on its national highway network (29). Much of that 

network is surfaced with a chip seal and the rainy climate found in New Zealand 

demands that pavement engineers manage macrotexture as a means to furnish the 

requisite surface drainage for safety. NZTA has established that if the average 

macrotexture of a road drops below 0.9mm with posted speed limits greater than 70 

km/hr (43.5 mph) that pavement preservation by resealing is no longer an option. If 

this occurs, the NZTA calls for the removal and replacement of the surface course (8). 

With this failure criterion in mind, NZTA maintenance engineers have then developed 

individual trigger points based on local conditions that allow the programming of a 

pavement preservation seal before the macrotexture loss becomes critical (31). 

 

1.5 PAVEMENT ECONOMICS 

What pavement preservation research projects often overlook are the other 

constraints a maintenance engineer faces.  These constraints are primarily budgetary in 

nature but also can include political or construction timelines.  When an engineer 
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determines that a roadway surface needs a treatment to address a surface characteristic 

deficiency, selecting the appropriate treatment is a critical decision. Currently, the 

engineer must rely on practical empirical data, gathered through experience in the field 

to estimate the impact of each treatment option and how long each treatment will last.  

The treatment’s service life is important due to factors such the availability of current 

and/or future funding or the timing of the next major reconstruction project.  This 

information has historically been estimated through laboratory testing or left to the 

judgment of the engineer.  The goal of this research is to standardize the pavement 

preservation treatment selection process by quantifying the engineering properties of 

commonly available surface treatments.   To assist the pavement maintenance 

engineers in making treatment selection decisions, this research will apply that data to 

create short term deterioration models for each treatment based on actual field testing.  

 

1.5.1 Investment Decision Making in Transportation  

The use of economic analysis, specifically Life Cycle Cost Analysis (LCCA), 

to achieve the cost-effectiveness and return on investment that supports transportation 

decision-making is one way to promote sustainability in transportation (41, 42).  State 

agencies generally reserve LCCA application for the long-term, strategic planning 

process. LCCA could be used by DOTs for evaluating pavement-type selection (i.e., 

concrete or asphalt), determing strategies, and determining design specifications. It 

may be reserved for major projects only (41, 43).  This research is interested in the 

implementation of LCCA at the pavement preservation treatment projects level of 

decision-making by the pavement manager. The literature review in that subject area 
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has a limited amount of information regarding life cycle cost analysis procedures 

employed at the pavement manager’s level (44, 45, 46).  The goal of this research 

project in regards to the economic analysis of pavement preservation treatments was to 

create a modeling system that would be user friendly to all pavement managers.  

However, the literature review found that, ―The emphasis upon economic cost analysis 

principles is recent, so models, methods, and tools to construct and analyze economic 

tradeoffs are still being developed‖ (47). ―Creating a tool that can be readily used by 

all agencies is difficult due to variations in agency practices, such as condition rating 

systems, data availability, and data quality‖ (48).  This led to a more expanded scope 

on how pavement preservation projects are related to LCCA. 

 

1.5.2 Life Cycle Cost Model  

As the nation’s infrastructure deteriorates, sustainability within the confines of 

operating and maintenance budgets becomes a contentious issue.  Considering only 

the initial project cost may result in the selection of a maintenance alternative that is 

more costly over the long run, burdening an ever-shrinking transportation budget as 

the overall quality and safety of the network decline (48, 49). A sustainable solution, 

pavement preservation, is currently being pursued and will be instrumental in 

addressing pavement system needs by keeping good roads good (4) instead of 

allowing them to deteriorate to the point of no return. 

Although LCCA is a powerful project economic evaluation tool, there is no 

commonly accepted method in use by state agencies to conduct economic analysis at 

the pavement preservation level (32, 43, 45, 46).  In general, LCCA is not wide-spread 
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in transportation decision making, possibly due to the complexity and challenges 

associated with engineering economic theory (41).  The current issues with LCCA 

application methods may be resulting in its limited use, especially at the 

implementation-level, where it may not be used at all (32, 42, 43, 45, 46, 50, 51, 52). 

Current LCCA models, such as the Federal Highway Administration’s (FHWA) 

RealCost, are complex and intended for large-scale pavement design decisions and do 

not adequately address pavement preservation treatment evaluation and its short-term 

nature (50, 52, 53).   

No solid answer was gathered from the literature review on how to implement 

LCCA at the pavement preservation and maintenance level, possibly because the 

―emphasis upon economic cost analysis principles is recent, so models, methods, and 

tools to construct and analyze economic tradeoffs are still being developed‖ (47).  The 

FHWA suggests, however, that the level of LCCA detail ―should be consistent with 

the level of investment‖ (54).  The level of investment of some activities at the 

implementation level can somewhat be inferred by the following FHWA statement: 

―When discounted to the present, small reactive maintenance cost differences have 

negligible effect on Net Present Value (NPV) [of pavement design alternatives] and 

can generally be ignored.‖ (54)  Therefore, the one goal of this research became to 

analyze the steps and procedures of LCCA and determine if current LCCA application 

employed at the long-range-planning level is appropriate at the short-term-treatment-

implementation level. 
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1.6 Research Methodology and Protocols 

When setting up a research project of this magnitude it is useful to study 

research projects of the past.  One of the largest research projects in the field of 

surface-tire interaction occurred at the NASA test complex on Wallops Island, 

Virginia (35).  It was designed to characterize the various testing methods and 

machines used to determine the skid number, microtexture, and macrotexture.  In 

doing so, they set up a large number of pavement test sections that furnish a wide 

variety of surface treatments.  By the end of the process, the NASA experiment 

captured a number of important lessons on how to create test sections that support the 

technical objectives of this research (35). 

The goal of this research is to create simple deterioration models for a wide 

variety of pavement preservation treatments to assist the maintenance engineer with 

selecting the most appropriate treatment given their situational needs.  To do this a 

uniform test section for each treatment was developed.  Conversely, the project needed 

to eliminate as many ancillary factors as possible.  For all the asphalt test sections, it 

was determined that a stretch of a 4-lane state highway (SH77H) would furnish a 

satisfactory location to build the test sections.  It had an adequate length to install all 

the test sections in the same lane of traffic.  It also facilitated safety and ease of 

testing, as active traffic could flow at normal speed while testing was being conducted 

under a single standard lane closure.  The sections were placed in the outside, south-

bound lane of travel with gaps between each to avoid major turning motions at 

intersections and driveways and to act as control sections.  The length was 

predetermined to be 1320 feet which allowed three skid measurements per section but 
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reduced the expense to the contractors donating and installing each section.  To ensure 

uniformity the sections were also designed as full lane-width sections to not 

inadvertently create an uneven driving surface.  The test section locations were 

determined before the treatments were applied and a baseline test of micro and 

macrotexture was completed for each section.  It is important to note that while this 

section of state highway was the best location to conduct this test, it would not have 

been considered a candidate highway for some of the treatments applied. 

 

1.6.1 Test Section Development 

In 2005, the FHWA issued a memorandum that standardized the terminology 

for pavement preservation projects (6). This document described those practices that 

are eligible for federal funding. The essence of that document was to restrict pavement 

preservation treatments to those that do not enhance or restore structural integrity. 

Subsequent guidance refined the definition to allow thin overlays up to 1.5 inches 

thick (14). Thus, authorized asphalt pavement preservation treatments range from 

minimal treatments such as shotblasting that merely restores microtexture and fog 

seals to significant treatments like thin overlays on asphalt pavements. A similar range 

of possible treatments exists in concrete pavements which run from shotblasting 

through grinding and grooving to white-topping. 

From the pavement preservation treatments approved by the FHWA, the 

researchers selected a series of pavement preservation treatments that spanned the 

spectrum of possible treatments, as well as cover some that weren’t highlighted by the 
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FHWA but were available.  The asphalt sections are shown in Table 1.1 and the 

concrete sections are shown in Table 1.2. 

All sections included in Phase One were constructed in the summer of 2008, 

and all sections included in Phase Two were constructed in the summer of 2009.  All 

the asphalt sections were constructed in the southbound outside lane of Oklahoma 

State Highway 77H and the concrete sections were constructed on United States 

Highway 77, two in the southbound outside lane, one in the southbound inside lane, 

one in the northbound outside lane, and one in the northbound inside lane.  A map of 

the locations is shown in Figure 1.4. 

The construction of each test section was orchestrated by both the researchers 

and the contractor donating the material, time and labor.  Test sections for the most 

part were donated by participating contractors; however a conscious effort was made 

on the part of the researchers to incorporate a broad spectrum of pavement 

preservation treatments.  The best way to describe the test sections is to go one by one 

and explain the process and treatment section. 
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Table 1.1 Asphalt Test Sections 

Asphalt Test Sections 

Phase One (Completed Summer 2008) Phase Two (Completed Summer 2009) 

Chip Seal (5/8″) E-krete 

Chip Seal (5/8″) with Fog Seal Chip Seal (Single Size) 

Chip Seal (3/8″) Chip Seal (Single Size) With Calupave 

Open Graded Friction Course (OGFC) Calupave Seal 

OGFC with Fog Seal Novachip 

1″ Mill and Inlay Microsurfacing 

Asphalt Pentrating Conditioner (APC)  

APC with Asphalt Planer  

Fog Seal  

Shotblasting (Skidabrader)  

Shotblasting (Skidabrader) with Fog Seal  

Shotblasting (Blastrac)  

Table 1.2 Concrete Test Sections 

Concrete Test Sections 

Phase One (Completed Summer 2008) Phase Two (Completed Summer 2009) 

Shotblasting (Skidabrader) Shotblasting (Blastrac) with Densifier 

Shotblasting (Blastrac) Diamond Grinding 

 Next Generation Diamond Grinding 
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Figure 1.4 Map of Research Test Sections  
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Test Section #1 was constructed in Phase 2 to replace a Phase 1 section that 

was unexpectedly withdrawn.  This section was then given to Calumet Specialty 

Products to apply a low penetration fog seal they call ―Calupave.‖  This acts and looks 

very similar to a standard fog seal, however, visually it was much darker and held its 

color much longer than the traditional fog seal. This can be seen by comparing Figure 

1.5 and Figure 1.9. 

 

 
Figure 1.5 Test Section #1 –Calupave Seal 

Test Section #2 shown below in Figure 1.6 is of Open Graded Friction Course 

(OGFC) with a Fog Seal.  It seems weird to place a fog seal on an open graded 

surface; however the researchers wanted to determine if this process would produce a 

longer life cycle than just normal OGFC of Test Section #3, as shown in Figure 1.7.  

Open Graded Friction Course exhibits a negative macrotexture which means that it is 

porous and allows water to flow through the surface thus increasing drainage.  Both 

OGFC sections were part of Phase 1. 
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Figure 1.6 Test Section #2 – Open Graded Friction Course w/ Fog Seal 

 
Figure 1.7 Test Section #3 – Open Graded Friction Course 

Test Section #4 shown in Figure 1.8 is that of a 1″ Mill and Inlay, which in 

practice requires the removal of 1″ of existing surface material and replacement of that 

material with new asphalt.  In this case the researcher used a standard Oklahoma 

Department of Transportation (ODOT) mix design.  This treatment serves as a good 

bench mark to compare all other treatments. It is probably the most commonly used 

treatment by ODOT maintenance engineers and as such was included in Phase 1. 

 
Figure 1.8 Test Section #4 – 1″ Mill and Inlay 
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Test Section #5 was a standard fog seal placed according to ODOT 

specifications.  This treatment applies a small amount of emulsion to the surface to 

help oxidized material.  It was included in Phase 1 and shown below in Figure 1.9. 

 
Figure 1.9 Test Section #5 – Fog Seal 

Test Sections #6 and #7 were installed by the same contractor, JLT Inc.  Test 

section #6 was a product called an Asphalt Penetrating Conditioner which works as a 

rejuvenator for asphalt pavements.  In theory, it penetrates the asphalt, reacts with the 

bitumen and then hardens sealing and giving life to an older oxidized pavement.  This 

research was only focused on determining the effects this product had on texture and 

therefore, did not test any penetration.  Test Section #7 was placed using a special 

machine developed by the contractor to plane the surface of the roadway, removing 

any humps, ruts, or inconsistencies.  After that process was complete the contractor 

then uses the Asphalt Penetrating Conditioner to seal the surface.  Both of these test 

sections are shown below in Figures 1.10 and 1.11, and were included in Phase 1. 
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Figure 1.10 Test Section #6 – Asphalt Penetrating Conditioner 

 
Figure 1.11 Test Section #7 – Asphalt Planer w/ Asphalt Penetrating 

Conditioner 

 

Test Section #8 and #9 are identical chip seals using ODOT specification 3C 

(5/8″) gradation for  aggregate and the same rate and type for binder, with the only 

difference being that Test Section #8 had fog seal applied after construction.  A close 

up of the texture can be seen in Figure 1.12 and Figure 1.13.  Test Section #10 is a 

chip seal using ODOT specification 2 (3/8″) gradations for aggregate and the same 

rate and type for binder, its texture is shown in Figure 1.14. 
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Figure 1.12 Test Section #8 – Chip Seal (5/8″) w/ Fog Seal 

 
Figure 1.13 Test Section #9 – Chip Seal (5/8″) 

 
Figure 1.14 Test Section #10 – Chip Seal (3/8″) 

The next three test sections, #11, #12, and #13, all consist of a technique called 

shotblasting.  This consists of shooting steel balls, called shot, at the roadway surface 

at high speeds, when the shot impacts the surface the road it removes excess bitumen 

roughening up and exposing aggregate, thus creating new texture.  This product is 

promising due to the fact that it has no temperature constraints for application and its 

application process requires no aggregate or binder material.  Test Section #11, shown 
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in Figure 1.15, was installed by Blastrac using a single directional shot pattern and 4′ 

wide head. Test Sections #12 and #13, shown in Figure 1.16 and Figure 1.17, 

respectively, were shotblasted by Skidabrader using a multidirectional shot pattern and 

6′ wide head with the only difference between the two sections being that section #12 

had a fog seal applied after the shotblasting application.   

 
Figure 1.15 Test Section #11 – Shotblasting (Blastrac) 

 
Figure 1.16 Test Section #12 – Shotblasting (Skidabrader) w/ Fog Seal 

 
Figure 1.17 Test Section #13 – Shotblasting (Skidabrader) 



30 

 

 

 

Test Section #14, shown in Figure 1.18, is an example of an ultra-thin bonded 

wearing course, in this case it is called Novachip.  This section was supplied by 

Haskell Lemon Construction and Hall Brothers.  It is a 3/4" thick mixture of well-

graded aggregate, polymerized Performance Grade binder, and mineral fillers that is 

mixed at an asphalt plant and delivered to the project.  It is then placed at the project 

using a material transfer device and a spray paver. 

 
Figure 1.18 Test Section #14 – Novachip 

Test Sections #15, #16, and #17 are shotblasting sections on a concrete 

roadway surface. Test Sections #15 and #17, shown in Figure 1.19 and Figure 1.21, 

respectively, were shotblasted by Blastrac using a single directional shot pattern and 4′ 

wide head with the only difference between the two sections being that section #17 

had a nanolithium densifier applied to the surface after the shotblasting application to 

test the extent a denisfying agent has on the life of the shotblasted surface. Test 

Section #16, shown in Figure 1.20, was installed by Skidabrader using a 

multidirectional shot pattern and 6′ wide head.   
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Figure 1.19 Test Section #15 – Shotblasting (Blastrac) 

 
Figure 1.20 Test Section #16 – Shotblasting (Skidabrader) 

 
Figure 1.21 Test Section #17 – Shotblasting (Blastrac) w/ Densifier 

Test Sections #18 and #19 were installed by Penhall, Inc and consist of next 

generation diamond grinding and traditional diamond grinding, respectively both of 

which were placed on a concrete roadway surface.  Diamond grinding is a process 

where a drum-size cylinder compiled of many diamond tipped discs is pressed into the 

pavement while the cylinder is spinning, effectively grinding the surface of the 

roadway and adding texture.  With the next generation diamond grinding technique 
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grooves are installed into the pavement surface by systematically placing larger 

diameter discs around the spinning cutter drum.  These treatments can be seen in 

Figure 1.22 and Figure 1.23. 

 
Figure 1.22 Test Section #18 – Next Generation Diamond Grinding 

 

 
Figure 1.23 Test Section #19 – Diamond Grinding 

Test Section #20 is a proprietary product called E-Krete produced by Polycon.  

This product is in essence a Portland cement based slurry seal which is placed on the 

road at a thickness of 1/8″.  This product can then either be dragged or tined to 

produce the desired texture.  This treatment can be seen in Figure 1.24. 
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Figure 1.24 Test Section #20 – E-Krete 

Test Sections #21 and #22 are both chip seal that incorporate the same 

aggregate and the same rate and type of emulsion.  The only differences between these 

sections and Test Sections #8 and #9 are that these sections utilized a more uniform 

gradation of aggregates.  Test Section #22, shown in Figure 1.26, varies from Test 

Section #21, shown in Figure 1.25, by the fact that it was treated with Calupave which 

is the same low penetration fog seal material that was used in Test Section #1. 

 
Figure 1.25 Test Section #21 – Chip Seal (Single Size) 

 
Figure 1.26 Test Section #22 – Chip Seal (Single Size) w/ Calupave 
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The last test section in this research project is a microsurfacing process shown 

in Figure 1.27 as Test Section #23.  Microsurfacing is a mixture of well-graded 

aggregate, polymerized asphalt emulsion, fillers, additives, and water that is mixed on 

the project. 

 
Figure 1.27 Test Section #23 – Microsurface 

As pictured in Figures 1.5 - 1.27, there were a total of 23 test sections 

constructed in two separate phases, all section where tested monthly.  These sections 

also covered a wide range of possible pavement preservation techniques. 

 

1.6.2 Microtexture Testing Protocols 

Testing protocols for microtexture involved monthly testing of microtexture 

using the ODOT skid tester as shown in Figure 1.28.  This tester throughout the course 

of the project measured skid number, using the ASTM E274 testing standard using a 

ribbed tire, on a monthly basis for each of the 23 test sections (10).  This value then 

was used as an index of the amount of microtexture present on the surface of the test 

section.   
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Figure 1.28 ODOT Skid Tester 

 

1.6.3 Macrotexture Testing Protocols  

There are a number of different tests that can be used to measure macrotexture 

of each test section but the most methods have been mostly volumetric methods, with 

one of the most common being the ASTM E-965 Sand Patch Method (12).  However, 

the sand patch method as demonstrated in an early California DOT study and a more 

recent Texas DOT study has a reliability issue due to grain size and volume amount 

(55, 56).  In the later study, it was found that the TNZ T/3 Sand Circle testing method 

produced more reliable results, thus was the test of choice on this research project.  

This test is a volumetric test, preformed by placing a known volume of sand, in this 
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case 45 ml, which is then spread by revolving a straight edge untensil in a circle until 

the sand is level with the tops of the surface aggregate and can no longer be moved 

around (11). Once the known volume has been spread in a circle on the surface of the 

roadway and can no longer be moved, two measurements are taken to determine the 

average diameter of the circle, this value is then plugged into Equation 1.2. 

 

Since the surface texture is inversely porportional to the diameter of the circle 

produced on the surface, one can deduce that the smaller the circle the greater the 

macrotexture.  This testing protocol is relatively simple but, it is susceptible to 

operator inconsistency, environmental issues with rain and wind, and roadway 

imperfections such as abnormal aggregate hieghts on the surface of the road.  The 

results vary from wheel path to between wheelpath, and the test is slow and 

cumbersome requiring forward planning, good time management and adequate traffic 

control.  This technique is not suited for routine monitoring of the road surface texture 

over a large road network (18). 

The second test used in this study for determining macrotexture is an outflow 

meter as specified by ASTM E2380/E2380M (57).  This method does not measure the 

texture depth directly; it measures the ability of the depth and interconnected nature of 

the voids in the surface to let water pass through the road’s surface.  It is based on a 

known volume of water, under a standard head of pressure, which is then allowed to 

disperse through the gaps, or macrotexture, between a circular rubber ring and the road 

surface. The time it takes to pass the known volume of water, i.e. the outflow time, is 
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measured. The outflow meter test quantifies the connectivity of the texture as it relates 

to the drainage capability of the pavement through its surface and subsurface voids.  

The technique is intended to measure the ability of the pavement surface to relieve 

pressure from the face of vehicular tires and thus is an indication of hydroplaning 

potential under wet conditions.  A faster outflow time indicates a thinner film of water 

may exist between the tire and the pavement, thus more macrotexture is exposed to 

indent the face of the tire and more surface friction is available to the tire.  To 

calculate mean texture depth the following equation is used. 

 

The outflow meter testing apparatus is shown below in Figure 1.29. 

 
Figure 1.29 Outflow Meter Testing Apparatus 

Each section is tested on a monthly basis to gather sufficient data to develop a 

deterioration model.  There were three tests performed on each section: 

 First, the Oklahoma Department of Transportation(ODOT) determines 

the skid number for each section using its skid trailer  
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 Next, macrotexture is measured using a New Zealand sand circle test  

 Lastly, a second macrotexture measurement is taken using a 

Hydrotimer outflow meter.  

These tests are again shown in Figure 1.30.  

 
Figure 1.30 Test Method Order  

1.7 Limitations of Testing Procedures 

Within this research process limitations were discovered to exist in the testing 

practices, however, these limitations were explored and accounted for by the way the 

testing procedures were designed.  The major limitation was with repeatability of 

testing at the same location for each testing cycle.  This was overcome within the 

testing standards by taking multiple readings in the designated area and then averaging 

those readings together for the measured aggregate value.  This limitation occurred in 

both the New Zealand Sand Circle test as well as the Hydrotimer Outflow meter test. 
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The second limitation discovered was a temperature limitation related to the 

use of water for the Hydrotimer Outflow meter and the ASTM 274E Skid Tester.  This 

made testing using these two techniques very difficult if not at times impossible when 

the temperature at the test site locations fell below freezing. 

The last limitation discovered through this research involved the timing 

mechanism for the Hydrotimer Outflow meter.  In Chapter 3, this is further explored 

giving way to a new testing protocol as to when to use which macrotexture testing 

apparatus. 

 

1.8 Organization of the Dissertation  

The focus of this dissertation is the development of the relationships between 

the change in surface texture over time and relating that to the engineering and 

economic measures that can be used by pavement managers to make decisions in their 

pavement preservation programs. The remainder of the dissertation  presents the 

findings of this research project formatted into five journal publications (two 

published, one accepted for publication, and two submitted for publication).  

Subsequent chapters (2 to 6) contains a single journal paper. Chapter 7 is composed of 

overall conclusions and recommendations for future research. 

Chapter 2 entitled ―Comparative Field Testing of Asphalt and Concrete 

Pavement Preservation Treatments in Oklahoma,‖ discusses the preliminary results of 

the Phase 1 field testing.  This chapter validates the need for the research and begins to 

lay the foundation needed create deterioration models for various pavement 

preservation treatments. 
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Chapter 3 entitled ―Comparative Analysis of Macrotexture Measurement Tests 

for Pavement Preservation Treatments‖ presents a critical analysis of the macrotexture 

test protocols and presents the limitations that must be recognized when using each 

test. This paper resulted in the manufacturer of the Hydrotimer modifying its 

equipment to overcome the limitations found in this study.  However, due to the nature 

of this limitation, future use of the outflow meter was appropriately not used in 

analysis of deterioration models. 

Chapter 4 is entitled ―Life Cycle Cost-Based Pavement Preservation Treatment 

Design.‖  It presents a new LCCA model that was developed for pavement 

preservation treatments in this study. The model is currently being implemented by the 

FHWA as a new chapter in its pavement LCCA manual.  This chapter presents a 

solution to common LCCA problem among maintenance engineers related to the short 

durations needed for pavement preservation treatments and the possible do nothing 

approach. 

Chapter 5, ―Modeling Pavement Texture Deterioration as a Pavement 

Preservation Management System Tool,‖ presents a pavement preservation 

deterioration modeling method based on time series analysis. This modeling method 

permits a rigorous statistics-based procedure to validate pavement surface 

deterioration and to compute tigger points for pavement preservation treatment 

scheduling. 

Chapter 6 is entitled ―Preservation of Concrete Pavement Using a Nano-

Lithium Densifier and Shotblasting: A Life Cycle Cost Analysis,‖ and furnishes a 

discussion of a previously unrecognized pavement preservation treatment for concrete 
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pavements. The paper combines this project’s findings regarding microtexture 

deterioration with research using the same technology completed by the California 

Department of Transportation to demonstrate the potential of using nano-lithium 

densifer and shotblasting to increase the service lives of concrete pavements that are 

subject to abrasion from studded tires and snow plowing. 

Chapter 7 summarizes the major contributions of this research and offers 

recommendations for future research. 
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2.0  COMPARATIVE TESTING OF ASPHALT AND CONCRETE 

PAVEMENT PRESERVATION TREATMENTS IN OKLAHOMA
1
 

 

Riemer, C., D.D. Gransberg, M. Zaman, and D. Pittenger, ―Comparative Field Testing 

of Asphalt and Concrete Pavement Preservation Treatments in Oklahoma,‖ 

Proceedings, 1
st
 International Conference on Pavement Preservation, Transportation 

Research Board, Newport Beach, California, April  2010, pp.447-460. 

 

2.1 Paper Synopsis 

This paper was the initial foray into the world of pavement preservation for 

this research project, kind of a here I am statement to the professionals within the 

pavement preservation industry.  It stated the number of test sections that were 

installed, as illustrated in Figure 1.4, and focused on those test sections that were 

installed in Phase One, as shown in Table 1.1 and Table 1.2.  The use of Phase One 

test sections in this paper was due to the fact that initial trends were starting to become 

evident and clues as to what may be coming as more data is collected could be 

hypothosized.  This paper was written to show the importance of long term pavement 

preservation and to show the need for both microtexture measurements and 

macrotexture measurements in analyzing the effectiveness of pavement preservation 

techniques.  This paper also began to lay the framework for investigating new methods 

to handle the economics of pavement preservation life cycle costing. 

                                                 

1
 The original paper has been reformatted to make it consistent with the other published papers 

in this document. 
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2.2 Results of the Study 

At the time this paper was written only phase one sections had provided 

enough date to report on their performance. So, a few examples are provided that 

illustrate the emerging findings of the project. The fundamental objective involves 

measuring the change in macrotexture and skid number over time. A previous study 

found that ―the skid number gradient with speed is inversely proportional to the 

pavement macrotexture‖ (59). Thus, as this study is focused on pavement 

preservation, it is important to be able observe the change over time for each 

measurement on each test section treatment. Figures 2.1 and 2.2 show the observed 

changes to date (11 months) for a concrete pavement retextured using the Blastrac 

shotblasting technology and an asphalt pavement that was covered with an open-

graded friction course (OGFC). The concrete pavement is one with very low 

macrotexture but high microtexture which produces a high skid number. Figure 2.1 

shows that the macrotexture of this test section remained virtually constant over the 

year. The skid dropped from the initial value but since then has remained basically 

constant. It must be noted that the test protocol was established to reduce as much 

variation in test locations as possible. However, all three tests are inherently variable 

as it is functionally impossible to take the measurements in exactly the same spot. 

Thus, it is the trends over time that are important rather than the individual 

measurements. 
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2.2.1  Measurements for Year-1 

The next example is a test section that was treated with an asphalt penetrating 

pavement conditioner (i.e. one of the chemical treatments). This treatment was 

recommended as a pavement preservation treatment for structurally sound asphalt 

pavements whose primary distress is oxidation.  No surface retexturing was done on 

this section, and this is seen in the two macrotexture test measurements remaining 

relatively constant in Figure 2.3. However, the conditioner had an initial negative 

impact on skid number. However, this immediate loss in skid resistance dissipated as 

the surface film was worn away by traffic. The project has a second test section that 

used the same product after milling 1/8″ off the surface. It too suffered a short-term 

loss of skid but it had increased macrotexture. This is the type of information that is 

currently missing in the body of knowledge. This shows that while there is a loss in 

skid number initially, it takes roughly 3 months to reach a level of 35 and then stays 

above that level for at least the remainder of the year. A maintenance engineer can 

now make a rational decision as to the viability of this pavement preservation 

treatment. 

Figure 2.4 shows an example of a thin 1″ hot-mix asphalt overlay that has very 

low macrotexture by high skid numbers. This is the most expensive of the pavement 

preservation treatments. It is also the one with the least macrotexture; 
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Figure 2.1 Test Section 15, Skid Number and Macrotexture
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Figure 2.2 Test Section 3, Skid Number and Macrotexture 
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note that its initial skid numbers are quite high. Given the research by Flintsch et al 

(2003) that shows that macrotexture is important to pavement drainage and the 

reduction of hydroplaning, this treatment would be best used in areas where climatic 

conditions and pavement geometry do not lend themselves to periods of wet pavement 

(59). If this does not apply to the problem at hand then a treatment such as a chip seal 

would be a better choice. 

Figure 2.5 shows the comparison with the above mill and inlay test section and 

a chip seal test section. First it should be noted that the inlay test section was 

constructed 2 months after the chip seal test section, hence the different periods shown 

in the graph. This example graphically shows the trade-off that must be made by a 

maintenance engineer when deciding to which pavement preservation treatment is 

most appropriate for a given problem on the highway. A later phase of this research 

project will set to measuring cost effectiveness based on actual field performance. The 

technique that will be used will be cost index number theory (60). This technique 

allows the analyst to measure the ―bang for the buck.‖ In this case, the following 

equation can be used to calculate the Skid Number Cost Index for each treatment 

alternative (28). 

 

where: SNCIi  = Skid Number Cost Index of Treatment ―i‖ 

 Ave SNi      = Average Skid Number of Treatment ―i‖ 

 TCi  = Total Cost per Lane-mile of Treatment ―i‖ 
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Figure 2.3 Test Section 6, Skid Number and Macrotexture 

Measurements for Year-1 
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Figure 2.4 Test Section 4, Skid Number and Macrotexture 

Measurements for Year-1 
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Figure 2.5 Comparison of Skid Number and Macrotexture 

Measurements, Mill and Inlay versus Chip Seal. 
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Using the July 2008 prices from the Oklahoma Department of Transportation, 

which is the period in which these two treatments were installed, the results are 

obtained and shown in Table 2.1. The alternative with the lower cost index number is 

the more cost effective option. So given the information on skid change, macrotexture 

and the financial facts, the maintenance engineer can now determine if spending six 

times as much per lane mile is justified by a 40% increase in skid number. The 

location and traffic level of the road in question would also play into this decision. The 

idea is to change the decision criterion from ―minimize cost‖ to ―maximize value‖ by 

having all the necessary decision-making information in one place. 

Table 2.1 Skid Number Cost Index Analysis of Treatment Alternatives 

Treatment 
Unit Price 

(July 2009) 

Total Cost per 

Lane-Mile 

Average Skid 

Number 

Skid Number 

Cost Index 

1‖ Mill and Inlay $8.52/SY $59,981 52.6 1,141.28 

Emulsion Chip 

Seal 
$1.51/SY $10,630 37.6 282.45 

1 SY = 0.84 SM; 1 Lane-mile = 5,890 SM 

 

2.3 Conclusions 

This study shows that the value of long-term pavement preservation field 

research. It also shows the need to have the combination of both skid resistance and 

macrotexture available to the maintenance engineer when pavement preservation 

treatments are selected. The combination of these two measurements with financial 

information and cost analysis provides all the tools that are necessary to permit an 

informed engineering and management decision to be made. 
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This project demonstrates a robust partnership between government, academia, 

and industry. The fact that over $400,000 worth of pavement preservation treatments 

were donated as well as the in-kind donations of ODOT in providing traffic control, 

skid testing, and engineer’s time, shows the importance of research in pavement 

preservation. This project is not a competition between products. It is the start of an 

encyclopedia of pavement preservation comparative analysis, and projects of this 

nature should be instituted throughout the US to provide the unique local performance 

information that only long-term filed testing can generate. 
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3.0  COMPARATIVE ANALYSIS OF MACROTEXTURE MEASUREMENT 

TESTS FOR PAVEMENT PRESERVATION TREATMENTS 
2
 

 

Aktas, B., C. Riemer, D.D. Gransberg, and D. Pittenger, ―Comparative Analysis of 

Macrotexture Measurement Tests for Pavement Preservation Treatments,― 2011 

Transportation Research Record, Journal of the Transportation Research Board 

National Academies, (Accepted for publication in 2011).  (61) 

 

3.1 Paper Synopsis  

This paper reports the results of field pavement preservation research regarding 

two accepted methods for measuring pavement macrotexture. The project has been 

ongoing for two and a half years and has used the outflow meter ASTM STP 583 and 

the Transit New Zealand TNZ T/3 sand circle to measure macrotexture on 23 asphalt 

and concrete pavement preservation treatments. As a result of the protocol which calls 

for monthly texture measure in the field, the researchers have observed that there are 

functional limitations regarding macrotexture depth on both standard tests. The 

differences are a function of the physical mechanics of the two methods. The paper 

furnishes guidance to researchers and practitioners with regard to the pavement 

textures where each test method is most appropriate. Essentially, the paper finds that 

the sand circle should be used on pavements with macrotexture greater than 0.79 mm 

                                                 

2
 The original paper has been reformatted to make if consistent with the other published papers 

in this document. 
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and the outflow meter should be used on pavements with textures less that 1.26 mm. 

Both tests can be used accurately in the 0.79 mm to 1.26 mm range. 

  

3.2 Results of the Study 

In this study, macrotexture data has been analyzed in 23 Test Sections (TS).  

Sand circle and outflow meter tests were completed on each test section once a month 

and macrotexture depths on the road surfaces were calculated. Macrotexture depths 

and relative differences between both methods for only one month, taken in November 

2009, are shown in Figure 3.1.  In Figure 3.1, macrotexture values between the two 

methods are given as a percentage. As is seen in this figure, the largest relative 

difference between the test methods are on TS8, TS9, TS10, TS11, TS21, and TS22.  

Those test sections showed a difference between the two test methods that is greater 

than 30%.  The test sections, TS8, TS9, TS10, TS21 and TS22, are all chip sealed 

surfaces, which have greater macrotexture depths than the other surface treatments. 

Thus, the outflow meter test times are very low, which yields calculated macrotexture 

depths that are excessively high. Chip seal surface smoothness that is not regular due 

to different aggregate dimensions, creates a situation where the bottom surface of the 

outflow meter test device cannot completely cover the road surface causing the water 

to flow out very quickly. In many cases the outflow time was one second or less. This 

creates a limitation within the equipment since the smallest measurable unit of time is 

one second. For these reasons, the calculated macrotexture depth differences are great 

when compared to the sand circle. Test Section #11 consists of shotblasting on hot mix 
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asphalt. This section has structural and capillary cracks on the road’s surface, which 

affect the outflow time by providing a channel for the water to pass that is not related 

to macrotexture. This explains the high relative difference between the two methods 

on this test section.   

In other test sections, the relative macrotexture value differences between the 

two test methods were less than 30%. The lowest differences occurred in test sections 

2, 3, 6, 7, 12, 13, 14, 16, 18, and 23. These test sections had macrotexture depths 

between 1.00 – 2.00 mm and the difference in the two test methods is less than 25%.In 

test sections 1, 5, 15, 17 and 20, macrotexture depths are less than 1.00 mm and the 

difference between the two methods are between 25% and 30%. In TS4 the 

macrotexture depth is less than 1.00 mm and the difference is 18.6%.  

 

 



56 

 

 

   

 
Figure 3.1 Test Sections Macrotexture Results and Differences of Two 

Test Methods in November 2009. 
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Figure 3.2 illustrates the average macrotexture results and differences between 

the two test methods in the test sections over a total of 24 months.  This graph’s results 

are similar to the results shown in Figure 3.1, the results for a single month. Therefore, 

Figure 3.2 validates the Figure 3.1 trend showing differences between the two 

methods are high on surfaces where macrotexture depth is high (roughly greater than 

1.5 mm) and low (roughly less than 1.00 mm). This leads to the conclusion that each 

method has its own inherent functional limitations. The outflow meter is not ideal for 

high macrotexture surfaces because it cannot measure outflow times less than one 

second. The limitation of the sand circle is for low macrotexture surfaces. The 

limitation here is the ability of the engineer to be able to reliably observe when all the 

voids have been filled and stop expanding the sand circle. On a totally smooth surface 

such as glass, the circle would be one grain of sand deep and could be theoretically 

expanded to infinity since there are no voids to fill. In fact, NZTA (62) specifies the 

functional limit of sand circles to be 300 mm in diameter or less. Any larger 

measurements are deemed to be unreliable. The results of these analyses indicate that 

neither test method is appropriate for all surfaces.  
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Figure 3.2 Average Macrotexture Results and Differences between 

Two Test Methods Over 24 Months 
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Figure 3.3 shows the percentage difference in calculated macrotexture values 

versus outflow time. It shows that the relative change in macrotexture is very high in 

the initial seconds of the outflow meter test. For instance, if the outflow time were to 

be 0.1 second, which cannot be measured by the current device, then the calculated 

macrotexture is 31.7 mm, and if outflow time is 1.0 second then macrotexture is 

calculated 3.75 mm. Difference between those values is 88.20%. Since the device 

cannot measure outflow times of less than 1.0 seconds, the engineer will get the same 

outflow time value across the range from 3.7 mm to 31.8 mm. Since macrotexture 

values decrease as the outflow time increases, this trend continues until the curve 

flattens out. For instance, the calculated macrotexture value changes 41.52 % between 

1-2 seconds, 23.67% between 2-3 seconds, 15.50% between 3-4 seconds, and 11.01% 

between 4-5 seconds. If outflow time is more than 5 seconds, macrotexture changes 

per second of outflow time are less than 10 %.This leads to the conclusion that the 5
th

 

second of outflow time portrays a functional limiting point past which the calculated 

macrotexture values become more reliable. Taking this information, one can infer that 

the outflow meter method should not be used on surfaces that result in outflow times 

less than 5 seconds. This translates to a macrotexture value of 1.26 mm or more. 

Macrotexture curves that are derived from outflow meter and sand circle methods are 

shown as a theoretical curve in Figure 3.4. It shows that across the initial 5 seconds in 

the outflow meter test the macrotexture curve is steep which means measurements will 

be unreliable. Hence, if outflow time is less than 5 seconds then the sand circle method 

should be used for macrotexture measurements.  The outflow meter and sand circle 

curves cross at 0.79 mm macrotexture value. This value is equal at the 20
th

 second in 
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outflow meter method and a sand circle with a diameter of 265 mm.  The sand circle 

diameter is large because the surface’s macrotexture values are low. This value is 

close the NZTA specified maximum diameter of 300mm. The difficulty of creating a 

large circle during the testing, results in a testing error and reproducibility. The 

outflow meter method is faster and easier than the sand circle test and should be used 

on surfaces where the macrotexture value is less than 0.79 mm.  

 
Figure 3.3 Macrotexture Percentage Differences between Seconds in Outflow 

Meter Test 
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Figure 3.4 Theoretical Curves of Outflow meter and Sand Circle Tests 

3.3 Conclusions 

Determining macrotexture on pavement correctly and quickly is important for 

safety and economy in pavement preservation testing. This study investigated and 

compared two methods commonly used to determine macrotexture on pavement 

surfaces: the outflow meter and the sand circle test. The research and analysis results 

show that there are functional limitations in each method’s ability to accurately 

measure pavement macrotexture. The outflow meter provides users with results 

measured in seconds. It is portable, practical on wet surfaces, inexpensive, and fast, 

but the measured outflow time can be inaccurate for pavement preservation treatments 

with high macrotextures. The opposite is true for the sand circle method which should 
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be avoided on surfaces with low macrotexture.  This results in the following 

recommendations for appropriate use of each test method: 

 If macrotexture < 0.79mm, use the outflow meter only 

 If macrotexture > 0.79mm and < 1.26mm either test is appropriate 

 If macrotexture > 1.26mm (0.05 in.), use the sand circle test only. 

Previous studies have been conducted to establish relationships of various test 

methods to measure macrotexture. However, those typically looked at a single surface 

treatment and as a result did not create an opportunity to observe the relative 

differences between two or more macrotexture measurement methodologies. The 

results discussed above are the first to give quantitative guidance to researchers and 

practitioners regarding trigger points where the two test methods become most 

appropriate for differing pavement surfaces. It is recommended that the macrotexture 

limitations for each test method be contained in specifications for each test to ensure 

that those agencies that use these tests are made aware of the functional limitations of 

each test. 
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4.0   LIFE CYCLE COST-BASED PAVEMENT PRESERVATION 

TREATMENT DESIGN
3
 

 

Pittenger,D.M.,  D.D. Gransberg, C. Riemer, and M. Zaman, ―Life Cycle Cost-Based 

Pavement Preservation Treatment Design,‖ 2011 Transportation Research Record, 

Journal of the Transportation Research Board National Academies, (Accepted for 

publication in 2011). 

 

4.1 Paper Synopsis 

Classic engineering economic theory was developed to furnish the analyst a 

tool to compare alternatives on a basis of life cycle cost (LLC). However, tools used to 

apply theory to transportation focus on new construction projects with relatively long 

service lives.  These tools do not accurately model the economic aspects of short-lived 

alternatives such as those that pavement managers must evaluate when seeking the 

most cost effective pavement preservation treatment.  The field of pavement 

preservation seeks to ―keep good roads good‖ and hence, pavement preservation 

treatments are applied to extend the functional service life of the underlying pavement.  

No significant research has been done to quantify the actual service lives of the 

pavement preservation treatments themselves nor a model been furnished to analyze 

their LCC.  This paper addresses those two gaps in the pavement economics body of 

knowledge by proposing a methodology for using field test data to quantify the service 

                                                 

3
 The original paper has been reformatted to make it consistent with the other published papers 

in this document. 
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lives of pavement preservation treatments for both asphalt and concrete pavements.  

Additionally, it concludes that a LCC model based on equivalent uniform annual cost, 

rather than net present value, specifically addresses the relatively short term nature of 

pavement preservation treatments and allows the engineer to better relate treatment 

LCC output to annual maintenance budgets. 

 

4.2 LCCA Issues 

LCCA is used to compare pavement design alternatives, but there are issues 

regarding the real value of LCCA output (54, 63, 64).  According to the FHWA, issues 

regarding the appropriate performance period and AP, among other things, can create 

obstacles in conducting LCCAs (41).  This can create issues regarding ―fairness‖, 

resulting in ―controversy‖ and doubt as to whether LCCA can be applied consistently 

and correctly to determine which alternative is truly the most cost effective (65).  An 

analyst that is not thoroughly acquainted with underlying engineering economic 

analysis theory may inadvertently choose input values that create invalid output, 

especially when ―asset alternatives have radically different technical aspects and 

dissimilar service lives‖ (65, 66). 

 

4.2.1  Analysis Period, Net Present Value Method 

One important input value is the analysis period (AP).  Its selection is based on 

either a mandated value or the analyst’s judgment.  The AP is often selected arbitrarily 

because conventional theory states that if two options are evaluated over the same 

period of time using the same discount rate, then the comparison is fair (65, 66).  
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While this may be true in theory, if the LCCA output effectively makes the pavement 

design decision (i.e. the engineer selects the one with the lowest value), then using an 

AP mandated by public entity for all analyses is tantamount to allowing an economist 

to practice pavement engineering (65).   

Selecting an AP for alternatives with differing service lives, often the case in 

pavement treatment alternatives is necessary in determining the net present value 

(NPV) of competing alternatives so that cost differences can be assessed and results 

fairly compared (64) and engineering economic analysis principles upheld (66).  The 

methods for selecting an AP to determine the NPV of competing alternatives are as 

follows (66):   

1. set AP equal to the shortest life among alternatives 

2. set AP equal to the longest life among alternatives 

3. set AP equal to the least common multiple of the lives of the various 

alternatives 

4. use a standard AP, such as 10 years 

5. set the AP equal to the period the best suits the organization’s need for the 

investment 

6. use an infinitely long AP. 

There is no consensus on which method is the ―best‖ for selecting an AP, but 

the decision should be based on the investment scenario at hand (66).  As a default, if 

the ―best‖ method is not obvious, the use of a standard AP, if logical considering the 

investment scenario, is preferred (66).  This default selection is evidenced in the 

FHWA’s Interim Technical Bulletin, ―LCCA Principles of Good Practice‖ section 

(54).  The FHWA does suggest a standard AP chosen from the range of 35 to 40 years 
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for pavement design decisions (53).  But selecting an appropriate AP can be 

problematic due to its sensitivity, meaning that with all other inputs held constant, 

changing the AP can result in different alternative rankings (66, 67).   

It is suggested that setting the AP equal to the shortest life can easily result in 

the shortest-life alternative being favored over the other longer-life alternatives (63).  

It has also been suggested that setting the AP equal to the longest life alternative is 

preferred and that an AP be ―sufficiently long to reflect significant differences in 

performance among the different strategy alternatives,‖ but not so long that it becomes 

unreasonable (54, 63).  The issues with setting the AP consistent with methods 1, 2 

and 4 are that gaps and/or residual values must be addressed for all alternatives whose 

service lives are shorter or longer than the AP, respectively, and are unacceptably 

sensitive to the input value (65).  

   If the analyst intends to assume that costs and service life lengths will remain 

constant over time, then only mathematical adjustments of gaps and residual values for 

AP accommodation, consistent with FHWA’s Interim Technical Bulletin, ―LCCA 

Principles of Good Practice,‖ are required (54).  The analysis method selected, in this 

case, would be irrelevant because all should yield the same decision support (66).  In 

other words, the same outcomes can be rendered regardless of AP chosen so long as 

gaps and residual values are proportionately spread so as to be consistent with the 

fully crediting the treatment in accordance with FHWA ―good practices,‖ then the 

analysis can be considered ―fair‖ and supported by engineering economic principles 

(54, 65, 66).  Hence, setting the AP consistent with the shortest life, longest life or  
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using a standard AP, which require adjusting alternatives to fit the same AP can yield 

the same ranking of alternatives as using the least common multiple of alternatives and 

an infinite period, which do not require the adjust-to-fit mechanisms, rendering the 

―arbitrarily truncated lifetime unnecessary‖ (66, 68).  However, it is unreasonable to 

assume that costs and service lives will remain constant over time, especially when a 

specific pavement or treatment has its service life expressed as a range (63, 65). 

 

4.2.2  Equivalent Uniform Annual Cost  

Equivalent Uniform Annual Cost (EUAC) is an alternative method that avoids 

issues associated with NPV, such as determining the least common multiple of service 

lives to compare alternatives and others previously mentioned.  Furthermore, ―instead 

of employing a rule of thumb for establishing [an AP]‖, one should consider the nature 

of the investment (66). EUAC has been suggested as proper to use in transportation 

decision making when service lives differ in length for given alternatives (65) (69). 

The EUAC model created for this research calculates the life cycle cost for 

each alternative based on the EUAC method.  All incurred costs expected throughout 

the service life of an alternative are brought to a base year, summed, and then 

annualized according to the treatment’s service life as determined by field data and 

pavement manager professional judgment.  In other words, the AP for each treatment 

alternative is equal to its own anticipated service life (ASL): 

ASLalt = analysis periodalt      Eq. 4.1 

In NPV models, the annualization is based on the common AP.  This model is 

unique because it seemingly bypasses the common-AP selection process.  It 
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determines the EUAC based on each alternative’s respective anticipated service life by 

using the following EUAC calculation: 

 

where: i = discount rate 

P = present value 

n = pavement treatment anticipated service life 

The EUAC model is tailored to pavement-management decision-making.  It 

considers the short-term, limited scenarios (continuous and terminal) that the 

pavement manager encounters.  The pavement manager is able to intuitively analyze 

the LCCA results because they are displayed within the context of the pavement 

manager’s expertise.  Treatment-relevant input values, such as service life, are 

utilized.  In contrast, other (NPV) models obscure these pavement-manager relevant 

values in a possibly arbitrary AP selection (41).  Thus, EUAC minimizes the 

associated sensitivity and complexity issues.  Because maintenance funding is 

authorized on an annual basis, comparing alternatives on a EUAC basis better fits the 

funding model than using NPV, which would assume availability of funds across the 

treatment’s entire service life.  Since pavement managers typically consider several 

alternatives with varying services lives based on available funding rather than 

technical superiority, the FHWA LCCA method based on NPV creates more problems 

than it solves.  Furthermore, the EUAC method simplifies the LCCA process and 

results in the same ranking of alternatives as the NPV method, all else held constant, 

rendering the problematic AP irrelevant (66).   
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4.2.3  Continuous and Terminal Scenarios  

A road segment (asset) is generally intended to remain in service indefinitely 

and pavement treatments are expected to be applied continuously over the life of the 

asset, although the service life of a treatment is finite (68).  The pavement manager 

will encounter one of two scenarios in the short-term-implementation level of decision 

making: the year of the next expected rehabilitation or reconstruction will either be 

known (terminal scenario) or it will not (continuous scenario) (68). When using 

EUAC, the ―mistake‖ occurs when the planning horizon, or terminal scenario, is not 

considered or acknowledged for the investment (66).  In other words, if the 

encroachment of the next expected rehabilitation or reconstruction on the service lives 

of treatment alternatives is expected to have a material effect with regard to the 

treatment of residual value for one or more of the treatment alternatives, this 

encroachment must be addressed in the calculations (66).  The intent of using EUAC 

as the basis of the model was to address both scenarios with its ―covert‖ flexibility, 

which is recommended in economic analysis, while maintaining its efficient, ―overt‖ 

inflexibility with regard to disallowing common AP selection (66).  The continuous 

feature in the model disallows the ―unnecessary truncating of [service] lives‖ while the 

―automatic truncate‖ terminal feature is built in to ensure adherence to engineering 

economic principles (68).  This fixed flexibility reduces the negative impact associated 

with standard new pavement LCCA complexities and the possibility of faulty output. 
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4.2.4  EUAC Model, Continuous Feature   

EUAC accommodates the continuous, short-term nature of pavement 

preservation treatment application because the next expected rehabilitation or 

reconstruction of the pavement is commonly unknown, i.e. is not on the current work 

plan.  The pavement manager must plan to continuously maintain, preserve or ―do 

nothing‖ to the pavement in the undefined interim.  Because encroachment is not 

expected in the continuous mode, the material or mathematical adjustments to cost or 

service life lengths are not required and the pavement manager avoids the 

―unnecessary truncating of lives‖ (68).  Therefore, the input value of each treatment’s 

service life will be equivalent to its anticipated service life (n), which is the value used 

in EUAC calculations in this model to determine life cycle cost.   

 

4.2.5  EUAC Model, Terminal Feature 

In the terminal scenario, the pavement manager generally chooses the ―do 

nothing‖ option.  In other words, the pavement manager usually defers maintenance 

because the pavement is scheduled to be rehabilitated or reconstructed according to 

the work plan. Therefore, the decision essentially is to ignore pavement preservation 

on a given pavement knowing that it will be ―fixed‖ in the near future. This permits 

the reprogramming of those funds to preserving other pavements in the network.   

To avoid the common ―mistake‖ associated with employing the EUAC 

method, the pavement manager must consider the encroachment upon (i.e. materially 

alter) treatment service lives to adhere to LCCA principles (66).  For example, if the 

next rehabilitation is scheduled in two years and the pavement manager cannot defer 
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maintenance due to safety concerns, any treatment service life that is expected to 

extend past two years must be truncated for the purpose of analysis, consistent with 

the ―organization’s need for the investment‖ (66).  If one of the alternatives is 

expected to have a four-year service life, it may not be able to realize the last two 

years of service life because its cash flow profile would have to be materially altered 

to accommodate the rehabilitation in two years.  In other words, the residual value 

would equal zero at time two for the four-year alternative because it can no longer be 

considered continuous.  It ceases having value (or remaining service life) as a 

pavement treatment because it will be removed when the road is rehabilitated (64, 68).  

In a terminal scenario, it has been argued that a pavement treatment’s material 

salvaged from removal can have salvage value, but then the analyst must quantify the 

cost of removal and value what has been salvaged (68). 

The model has been built to accommodate the terminal scenario and 

engineering economic principles.  The input value of each treatment’s service life that 

extends past the year of the next expected rehabilitation/reconstruction is 

automatically truncated to coincide with the year of the next rehabilitation or 

reconstruction.  This truncated value becomes the treatment’s anticipated service life 

(n), which is the value used in EUAC calculations in this model to determine life cycle 

cost.  

Pavement preservation theory asserts that proactively applying treatment 

extends the life of the pavement, allowing for the deferment of the expected 

rehabilitation/reconstruction (48).  In this case, a sensitivity analysis is useful to 
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determine the relative impact of the possibility of pavement life extension and 

encroachment of the rehabilitation activity on truncated treatment service life. 

If, on the other hand, the pavement manager considers employing a one-year 

treatment in this example, a one-year gap would exist between the treatment’s service 

life and the year of the expected rehabilitation/reconstruction.  The EUAC model is 

built to ignore the gap in terminal mode and calculate EUAC for all alternatives.  This 

situation, although rare due to the ―do nothing‖ preference and very short-term nature 

of the terminal scenario, may not explicitly adhere to the specific ―common period of 

time‖ engineering economic principle, but does not warrant it because the gap will 

most likely be filled with another ―do nothing‖ option.  All analysis-period selection 

methods, when applied to this scenario, have inherent issues as previously stated, so 

one must decide which method would yield the best information for the pavement 

manager. The shortest-life method would adhere to the ―common period of time‖ 

engineering economic principle while EUAC would overtly not.  However, if the 

pavement manager were to choose the shortest-life alternative to set the AP and the 

other longer-life alternatives were adjusted to fit in accordance with FHWA straight-

line-depreciation-like method, the LCCA should still yield the same preferred 

alternative as the EUAC method.  Because the same preferred alternative is yielded 

from both methods, for the purposes of a consistent model, and with all of the 

previously-cited issues with the AP, EUAC was selected as the appropriate terminal 

scenario method.  Even in this rare situation, EUAC behaves essentially like a covert 

short-life method and can provide the pavement manager with relevant decision-
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making information based on cost, service life and the real possibility of ―do nothing‖ 

during this state.  

 

4.2.6  Pavement Treatment Service Life Input Value  

As pavement preservation emerges as a possible solution to the aging 

infrastructure problem, research has shown that coupling cost efficiency and treatment 

effectiveness, termed economic efficiency may be the key to determining the optimal 

preservation timing (46, 48). Microtexture and macrotexture data is routinely collected 

by the Oklahoma Department of Transportation (ODOT).  Incorporating this type of 

localized performance data into LCCA may reduce the level of inherent uncertainty 

associated with [service life] ―guesses‖ and can yield insight to a treatment’s 

effectiveness and cost-effectiveness (67).  If treatment effectiveness (performance) is 

not considered when determining cost effectiveness, the results may be biased (46).   

 

4.3 Results of Study 

A commonly used approach to determine a treatment’s expected service life 

(effectiveness) is to extrapolate data based on surface condition such as microtexture 

and macrotexture data (46).  This is the approach used in this research and applied to 

pavement preservation treatments exhibited in field trials (44).  Linear regression was 

applied to the treatments’ microtexture and macrotexture data to approximate the 

deterioration rate and extrapolate the remaining service life of each treatment.  These 

were then compared to failure criteria found in the literature.  Service life was 

determined by identifying the time it took each treatment to deteriorate to each failure 
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criterion. The failure criterion for macrotexture was 0.9mm, which is consistent with 

TNZ P12 performance specification.  The failure point considered for microtexture 

was a skid number less than 25.   

Demonstrating this methodology, Figure 4.1 shows the deterioration of 

microtexture over time experienced in current research field trial data for chip seal.    

Linear regression was applied. The equation shown in the upper right-hand corner of 

the figure was derived and the coefficient of determination (R
2
) was calculated to be 

0.836. The regression equation was then used to calculate the deterioration rate 

beyond the available data.  These values were added to the actual data points to 

extrapolate the curve out to 50 months (i.e. 4+ years) as shown in Figure 4.2.  Based 

upon this procedure and a failure criterion of 25, it appears that the chip seal will fail 

due to a loss of skid resistance around the 46-month (3.8-year) mark. 

Using the same methodology outlined for microtexture data regression, chip 

seal macrotexture data was extrapolated (Figures 4.3 & 4.4).  The chip seal is expected 

to fall below the failure criteria for macrotexture around 36 months (3 years).  

The resulting approximate service life input values for each alternative were 

compared to the ODOT survey and literature review results (51, 70, 71).  The average 

cost for treatments and maintenance came from the ODOT survey and was verified by 

field trial and vendor data, literature review results (51, 70, 71) and bid tabulations.  

These values are displayed in Table 4.1.   
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Table 4.1  Treatment Service Life and Average Cost 

Pavement Preservation 

Treatments on Asphalt 

Pavement 

Service Life (years) 
Average 

Cost 

Microtexture Macrotexture 
ODOT & 

Lit. Review 
Minimum $/SY 

1‖ Hot Mix Asphalt Mill 

and Inlay (HMA) 
>10 N/A 10 10 4.00 

Open Graded Friction 

Course (OGFC) 
>10 5.3 10 5.3 3.75 

Chip Seal (5/8‖) 3.8 3 5 3 1.77 

 

The service life input value for each treatment for EUAC LCCA would be the 

minimum service life value represented in Table 4.1 and is expressed: 

SLalt = MIN<Mi, Ma, Ex> 

where the service life input for a treatment alternative (SLalt) equals the MIN 

(minimum value) of the Mi (microtexture deterioration model output), Ma 

(macrotexture deterioration model output), and the Ex (pavement manager’s 

expectation of treatment service life). 
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Figure 4.1 Chip seal microtexture field trial performance data. 
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 Figure 4.2 Chip seal microtexture deterioration model. 
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Figure 4.3 Chip seal macrotexture field trial performance data.  
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Figure 4.4 Chipseal macrotexture deterioration model. 
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4.3.1  Conducting EUAC Life Cycle Cost Analysis on Selected 

Treatments 

 

Cost-effectiveness evaluation of treatments based on engineering economic 

principles was conducted on the pavement preservation treatments listed in Table 4.1.  

The FHWA suggests the following LCCA procedures when evaluating design 

alternatives (54, 64): 

1. Establish design alternatives [and AP] 

2. Determine [performance period and] activity timing 

3. Estimate costs [agency and user] 

4. Compute [net present value] life cycle costs 

5. Analyze results 

6. Re-evaluate design strategies.   

This study has demonstrated that FHWA LCCA procedures 1, 2 & 4 in the 

above list do not adequately address pavement preservation treatment evaluation and 

need to be adapted so that it can be used as a frontline tool by the pavement manager 

to determine pavement treatment cost effectiveness.  To recap, EUAC LCCA 

procedures include: 

 1.  Establish [treatment] alternatives, where a treatment’s anticipated service 

life equals its AP: Equation 4.1 

2.  Determine [performance period and] activity timing, where the service life 

of an alternative equals the minimum value of microtexture and 

macrotexture deterioration model outputs and engineering judgment:     
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3. Compute [EUAC] life cycle costs, where n is each treatment’s anticipated 

service life:  Equation 4.2 and  

4. The anticipated service life is further adjusted as necessary by the terminal 

feature of the EUAC model. 

FHWA LCCA procedures 3, 5 and 6 are incorporated into the EUAC 

evaluation.  Initial construction costs and associated future maintenance costs were 

estimated for the alternatives being analyzed.  Activity timing includes maintenance, 

which is a crack seal and 2%-of-total-area patching with a three-year frequency for all 

asphalt treatments.    The selected alternatives and the corresponding minimum service 

life values from Table 4.1 were entered into the model, as well as other items required 

for LCCA.   

User costs have been shown to potentially contribute a notable difference 

between the life cycle costs of preservation treatment alternatives so they were 

included in this analysis (32, 46).  The initial construction installation time is 

represented by days, to two significant digits, to capture the differences between 

alternatives for user cost calculations.  Production rates came from the ODOT survey 

and vendor data.  The discount rate selected for the demonstration of the model is 4%, 

in accordance with FHWA recommendation (54).  In this calculation, the continuous 

state is assumed, so each treatment’s service life is equal to its anticipated service life.  

Project length will be one lane-mile.  The pavement treatment alternative with the 

lowest EUAC should be considered for selection.  EUAC results for the treatments 

were manually verified and are listed in Table 4.2.   
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Table 4.2 EUAC LCCA Results, Continuous Mode 

Pavement Preservation Treatment 

on Asphalt Pavement 

Microtexture 

Service Life 

Macrotexture 

Service Life 

Expected 

Service Life 

EUAC,   

$/lane-mile 

EUAC,  

 $/lane-mile 

EUAC,  

$/lane-mile 

1″ Hot Mix Asphalt Mill & Inlay (HMA) 4,696 4,696 4,696 

Open Graded Friction Course (OGFC) 4,460 6,434 4,460 

Chip Seal (5/8″) 4,696 7,529 3,651 

 

The FHWA suggests that a sensitivity analysis be included in LCCA 

(Procedure 5).  The sensitivity of the service life input value for treatments is exhibited 

in Table 4.2.  Based on this data, the service life parameter is sensitive, as one should 

expect, because an alternative’s service life and cost are directly correlated in LCCA.  

By changing the service life input value of chip seal from 3 years (Mi) to 3.8 years 

(Ma) and then to 5 years (Ex), its rank changes from 3 to tied with HMA to 1, 

respectively.  

Essentially, EUAC allows for the sensitivity to be moved from the AP 

parameter, which may be arbitrary and uncontrollable, to the service life parameter, 

which allows the pavement manager to intuitively adjust and account for service life 

selection and sensitivity based on professional judgment.  In this case, the pavement 

manager can consider whether or not the chip seal is expected to remain in service for 

at least 3.8 years to justify the chip seal decision.  Using NPV, the pavement manager 

would only be able to adjust an arbitrary ―common period of time‖ to assess 

sensitivity, and the service life sensitivity would be obscured.  Extensive economist 
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training would be required to determine service life sensitivity and creates an LCCA 

implementation obstacle.   

This proves that using field data derived deterioration curves and performance 

based failure criteria in an EUAC setting provides a more accurate result than the 

empirical values for service life in an NPV setting in use for the current FHWA-

approved LCCA process.  The sensitivity analysis tool, coupled with deterioration 

models, can yield information that would satisfy ―What if‖ scenarios pertinent to 

pavement managers and gives the pavement manager the enhanced ability to truly 

identify, then justify, the most cost-effective pavement treatment for a given project, 

enhancing stewardship. 

The pavement manager would need to put the LCCA results into context, and 

then reevaluate the results in accordance with FHWA ―good practices‖ (Procedure 6).  

LCCA results should be coupled with other decision-support factors such as ―risk, 

available budgets, and political and environmental concerns‖ (64).  The output from 

an LCCA should not be considered the answer, but merely an indication of the cost 

effectiveness of alternatives (54).   

If the next expected rehabilitation/reconstruction was expected in six years and 

was entered into the model, the model would automatically switch to terminal mode.  

The HMA and OGFC service lives would be automatically truncated from 10 years to 

6 years.  Thus, the anticipated service life for both would be 6 years.  With a 5-year 

service life, the chip seal EUAC would remain $3,651 as shown in Table 4.2.  With 6-

year anticipated service lives, the HMA and the OGFC would have  
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EUAC values of $6,124 and $5,759, respectively.  In this case, chip seal would be the 

preferred alternative.  It would also be the intuitive choice because it, with a short ―do 

nothing‖ period, would efficiently fill the gap.  A quick sensitivity analysis, conducted 

in accordance with FHWA LCCA Procedure 5, reveals that even if HMA or OGFC 

were expected to extend the life of the underlying pavement by its full, 10-year service 

life, chip seal would still have the lowest EUAC, as shown in Table 4.2.  If, on the 

other hand, the pavement-life extension parameter was sensitive, the pavement 

manager may ascertain the effect by intuitively adjusting the year when the next 

rehabilitation is expected, which will automatically adjust a treatment’s anticipated 

service life value until the preferred alternative changes, within the expected limits of 

service life for alternatives.  As in the continuous scenario, the pavement manager is 

able to intuitively analyze model results in terminal mode because input and output are 

both in the realm of the pavement manager’s expertise.   

 

4.3.2  Comparable NPV Calculations, Continuous Mode 

To verify the model, EUAC and NPV were calculated to demonstrate that all 

should yield the same preferred alternative when gaps and residual values are 

addressed as discussed and cited as appropriate in the previous sections (66).  The 

standard AP was set to twenty years, consistent with an FHWA case study on project-

level planning (51).  User costs were omitted for simplification.  All methods returned 

the same ranking, as illustrated in Table 4.3, in support of validating the EUAC model 

as an appropriate pavement preservation LCCA method.  This illustrates the point that  



85 

 

 

   

using different APs corresponding with the differing service lives of alternatives in a 

life cycle cost analysis does not remove the ―fairness‖ nor does it result in differing 

benefits; it does, however, bypass the commonly problematic AP selection, associated 

adjust-to-fit requirements and well-cited sensitivity issues for that parameter.   

Table 4.3  Comparable EUAC (Continuous Mode) & NPV Rankings 

Pavement Treatments Agency Costs Analysis Period Rank 

    

Equivalent Uniform Annual Cost    

Chip Seal - 5/8″ (5-yr)  $ 3,408 5 1 

Open Graded Friction Course (10-yr) $ 4,150 10 2 

1″ Hot Mix Asphalt Mill and Inlay (10-yr) $ 4,367 10 3 

    

Present Value – Shortest Life    

Chip Seal - 5/8″ (5-yr) $ 15,172 5 1 

Open Graded Friction Course (10-yr) $ 20,463 5 2 

1″ Hot Mix Asphalt Mill and Inlay (10-yr) $ 21,343 5 3 

    

Present value – Longest Life & LCM    

Chip Seal - 5/8″ (5-yr)  $ 30,344 10 1 

Open Graded Friction Course (10-yr) $ 33,663 10 2 

1″ Hot Mix Asphalt Mill and Inlay (10-yr) $ 35,423 10 3 

    

Present Value – Standard Period    

Chip Seal - 5/8″ (5-yr) $ 60,688 20 1 

Open Graded Friction Course (10-yr) $ 67,326 20 2 

1″ Hot Mix Asphalt Mill and Inlay (10-yr) $ 70,846 20 3 

 

4.3.3  Comparable NPV Calculations, Terminal Mode 

The model should rarely be operated in terminal mode due to a pavement 

manager’s propensity to ―do nothing‖ when the next rehabilitation/reconstruction is 

known.  However, if ―do nothing‖ is not an option, the model can be used to determine 

the preferred alternative in this short-term period.  Although it can yield the same 
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preferred alternative as NPV regardless of AP selected as exhibited in Table 4.4, it can 

be sensitive to the AP selection depending on the input data.  In an AP-sensitive 

situation, the EUAC will function like NPV when setting the AP consistent with the 

shortest-life alternative.   

Table 4.4 EUAC (Terminal Mode-Year 6) & NPV Results 

Pavement Treatments Agency Costs Analysis Period Rank 

    

Equivalent Uniform Annual Cost    

Chip Seal - 5/8‖ (5-yr) $ 3,408 5 1 

Open Graded Friction Course (10-yr) $ 5,553 6 2 

1‖ Hot Mix Asphalt Mill and Inlay (10-yr) $ 5,889 6 3 

    

Present Value – Shortest Life    

Chip Seal - 5/8‖ (5-yr) $ 15,172 5 1 

Open Graded Friction Course (10-yr) $ 29,111 5 2 

1‖ Hot Mix Asphalt Mill and Inlay (10-yr) $ 30,871 5 3 

    

Present value – Longest Life & LCM    

Chip Seal - 5/8‖ (5-yr) $ 27,633 6 1 

Open Graded Friction Course (10-yr) $ 29,111 6 2 

1‖ Hot Mix Asphalt Mill and Inlay (10-yr) $ 30,871 6 3 

 

4.4 Conclusions 

Economic and engineering technical data gathered from pavement preservation 

field trials can be quantified and correlated to produce meaningful, standardized 

economic and life cycle cost analysis information that furnishes pavement managers 

measurable failure criteria to estimate extended service lives of pavements.  This 

research produced a previously unpublished EUAC-based model for LCCA that 

specifically addresses the nature of pavement preservation treatments and develops 

LCCA-based pavement preservation treatment design. The  fixed flexibility of the model 
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offered via continuous and terminal scenario allows it to adhere to engineering 

economic principles and provide the pavement manager project-level evaluation 

within a wider spectrum of pavement manager expertise. The research also developed 

a methodology for developing pavement preservation treatment-specific deterioration 

models and demonstrated how these provide a superior result to those based on 

empirical service lives.  Finally, the research demonstrated how the new model could 

be utilized to assist a pavement manager in selecting the most economically efficient 

pavement preservation treatment for a given pavement management problem.  
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5.0 MODELLING PAVEMENT TEXTURE DETERIORATION AS A 

PAVEMENT PRESERVATION MANAGEMENT SYSTEM TOOL
4
 

 

Riemer, C. and D.M. Pittenger, ―Modeling Pavement Texture Deterioration as a 

Pavement Preservation Management System Tool,‖ 2012 Transportation Research 

Record, Journal of the Transportation Research Board National Academies, 

(Submitted for publication in August 2011). 

 

5.1 Paper Synopsis  

This paper examines the change of pavement surface treatment microtexture 

and macrotexture over time, and presents deterioration models for six commonly used 

pavement preservation treatments. The data for the models was developed from a 3-

year field trial that exposed all six treatments to the same traffic and environmental 

conditions on an identical substrate. Monthly measurements of microtexture and 

macrotexture were taken during the test.  The modeling of a pavement performance is 

an essential activity in all pavement management systems.  These models play a 

crucial role in several aspects of a successful pavement management system, such as 

financial planning and budgeting as well as pavement design and life-cycle economic 

analysis (72). It is essential that a deterioration model include, as completely as 

possible, all the factors that affect the condition of the pavement and accurately 

represent the effect of maintenance on pavement condition (73).  These models play 

                                                 

4
 A modified version of this paper has been submitted to the 2012 Transportation Research 

Board for publication in TR News, August 2011. 
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important role in pavement preservation by providing pavement managers with the 

critical treatment timing information needed to ―put the right treatment, on the right 

road, at the right time‖ (4). However, pavement deterioration models have historically 

been focused on only distress types and traffic characteristics, combining multiple 

different variations of defects and traffic data to compute some form of pavement 

condition rating/score such as the Pavement Serviceability Index (PSI) (72, 73).  

These models fail to include the safety aspect of the pavement management process.   

The focus of this paper is on surface texture, its ability to be modeled, and it 

importance in pavement management systems. This paper seeks to determine if 

deterioration models of surface texture can be established to furnish safety 

performance criteria for various pavement preservation techniques to enhance the 

current pavement management systems that currently don’t account for any safety 

criteria. 

 

5.2 Model Results 

Tests for both microtexture and macrotexture were conducted on a monthly 

basis for three years on each pavement preservation test section and remain ongoing.  

The data gathered was then analyzed using time series analysis (74).  The information 

shown in Table 5.1 is used to determine whether a deterioration model is reliable for a 

given texture, by examining the model’s coefficient of determination (R
2
) value (72). 

Unlike laboratory research, the researchers engaged in field research are unable to 

exercise total control over all the variables. Therefore, based on the definition of the 

R
2
 value and the reported experience of a similar study of skid resistance, the team 
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determined that if the independent variable (time) could account for 50% or more of 

the variation in the dependent variable (texture) that the given deterioration model 

added value to the pavement preservation management process (75, 76). Thus, a 

model whose R
2
 value is above 0.50 the model is considered reliable and if the R

2 
is 

above 0.70 the model is highly reliable. Using this standard, one can look at the Table 

5.1 and determine the treatments which have a reliable model.  

There are certain attributes within the equation of the model that must be 

explained to better understand what one could expect from the model’s predictions.  

For the macrotexture deterioration models, it was determined that logarithmic 

functions   best modeled deterioration, by comparing the coefficients of determination 

of several different regression equations for the list of pavement preservation 

treatments and selecting the function that produced the highest R
2
 value. When 

analyzing the macrotexture deterioration models it is important to ensure that the 

regression output is realistic by checking to see if the sign in front of the equation, 

negative, which means that the equation represents deterioration (i.e., the microtexture 

decreases over time).  The second check is the constant at the end of the equation to 

ensure that it roughly equals the initial macrotexture for the given section.  For 

instance, in the Table 1 macrotexture deterioration model for the Chip Seal (3/8″) test 

section, the equation is y = -0.509 ln(x) + 2.4198.  Therefore, the equation shows that 

the initial macrotexture should be approximately 240 mm, the rate of deterioration is -

0.509 ln(x) and the R
2
 value is 0.85. 
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Table 5.1 Summary of Time Series Data 

 

The power function was selected for microtexture modeling because it 

produced the best R
2
 values. Within these regression equations, the coefficient in front 

of the variable is now the initial value of the microtexture index value, (i.e. the initial 

Pavement Preservation 

Treatment 

Macrotexture Deterioration Microtexture Deterioration 

Logarithmic Equation 
R

2
 

Value 
Power Equation 

R
2
 

Value 

Open Graded Friction Course y = -0.499ln(x) + 2.9017 0.77 y = 29.67x
0.0724

 0.49 

Open Graded Friction Course w/ 

Fog Seal 
y = -0.625ln(x) + 3.2829 0.77 y = 28.597x

0.08
 0.56 

Mill and Inlay y = 0.038ln(x) + 0.4864 0.23 y = 56.652x
-0.046

 0.47 

Fog Seal y = -0.034ln(x) + 0.95 0.21 y = 41.347x
0.0418

 0.45 

Penetrating Asphalt Conditioner 

(P.A.C.) 
y = -0.084ln(x) + 1.4699 0.52 y = 34.135x

0.0839
 0.70 

P.A.C. w/ Asphalt Planer y = -0.077ln(x) + 1.1715 0.56 y = 32.82x
0.0974

 0.79 

Chip Seal (5/8″) w/ Fog Seal y = -0.386ln(x) + 2.8431 0.90 y = 36.399x
-0.071

 0.38 

Chip Seal (5/8″) y = -0.636ln(x) + 3.8985 0.85 y = 44.065x
-0.115

 0.71 

Chip Seal (3/8″) y = -0.509ln(x) + 2.4198 0.85 y = 54.729x
-0.162

 0.77 

Shotblasting (Blastrac) y = 0.0028ln(x) + 1.3458 0.001 y = 52.16x
-0.031

 0.27 

Shotblasting (Skidabrader) w/ 

Fog Seal 
y = -0.064ln(x) + 1.7158 0.34 y = 49.868x

-0.023
 0.12 

Shot-blasting (Skidabrader) y = -0.054ln(x) + 1.7522 0.21 y = 51.286x
-0.031

 0.27 

Shotblasting (Blastrac) on 

Concrete 
y = -0.03ln(x) + 0.7103 0.28 y = 49.115x

-0.008
 0.03 

Shotblasting (Skidabrader) on 

Concrete 
y = -0.075ln(x) + 1.1123 0.56 y = 39.681x

0.01
 0.02 
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skid number), and the exponent is the rate of or deterioration.  Again using the 

microtexture deterioration model for the Chip Seal (3/8″), the equation is  

y = 54.729 x
-0.162

. Therefore, the initial measurement should be about 55, the rate of 

deterioration is x
-0.162

, and the R
2
 value is 0.79.  This method helps determine the 

likelihood that a given pavement preservation treatment has a viable model to help 

predict its service life based on loss of texture (i.e., safety performance 

characteristics). 

 

5.3 Test Section Evaluation 

The next step is to determine which pavement preservation techniques provide 

deterioration models that are reliable, and then to determine their predicted service 

lives based on their safety performance characteristics.  This is accomplished by again 

analyzing their time series analysis and extrapolating the resultant regression equation 

to estimate service life of each treatment.  There are three possible outcomes for the 

different pavement preservation treatments in the field trial: 

1. Viable deterioration model 

2. No model: R
2
 value is to low or equation constants are unrealistic 

3. A constant model: Macro or microtexture measurements were roughly linear 

over time. 

The Chip Seal (3/8″) test section, shown in Figure 5.1, shows a highly reliable 

deterioration model can be estimated as displayed on the graph, the R
2
 value is 0.85. 

By extrapolating the deterioration model out and comparing that to a known failure 

criteria of 0.9mm, shown in Figure 5.2, the model estimates its service life to be 20 
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months (8).  When compared to the actual data, on Figure 5.1, one can see that the 

deterioration model holds true because as the macrotexture approaches 0.9mm, the 

rate of change decreases until ultimate failure occurs at month 20.  This validates the 

literature and the case that deterioration models can be used to estimate service life 

(9). Using this process, all three chip seal test sections, and both open graded friction 

course test sections produced highly reliable deterioration models. 

The second possible outcome from this process is a deterioration model that 

doesn’t show any failure criteria or improvement, which would be considered a ―no 

model‖ scenario.  This was seen in test sections that involved chemical treatments 

such as the standard fog seal, as shown in Figure 5.3, and the penetrating asphalt 

conditioner, as shown in Figure 5.4. 

These treatments haven't exhibited deterioration but rather an increase in 

microtexture due to the chemical being worn off the surface by traffic. It is important 

to note in dealing with chemical treatments that there will be an initial decrease in 

microtexture followed by a gradual increase back to the original values or slightly 

lower than original values.  By coupling the use of chemical treatments with other 

treatments that increase texture such as chip seals or shotblasting can prove to be a 

very effective pavement preservation technique (26).  While discussing chemical 

treatments it is helpful to see the full picture as shown in Figure 5.5 and Figure 5.6, 

which show the application of a chemical only affects the microtexture while the 

macrotexture remains constant. 

The last case is related to possible macrotexture or microtexture deterioration 

models where the texture was relatively constant and where the slopes of the texture 
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trend lines are quite gentle.  This occurred in a number of test sections during the 

research and can be explained by one of two possible scenarios.  The first scenario is 

that the test section may be still at the beginning of its service life even with 3 years of 

data.  Figure 5.7 shows the asphalt mill and inlay which should last around 10-12 

years; therefore, any deterioration within the first 3 years would signal major problems 

(72).  Because of the given material qualities, it’s hypothesized that this section will 

fail due to microtexture loss rather than macrotexture loss, but currently as seen in 

Figure 8 the data remains fairly constant and texture loss is minimal. It is notable that 

mill and inlay section has markedly higher microtexture than the original surface and 

that texture appears to remain at that high level for a period longer than has been 

tested so far in this research project. 

Figure 5.8 shows shotblasting (Blastrac), this section increased the 

macrotexture of the original surface and the macrotexture has remained constant for 

the length of the project.  Both test sections have shown that constant levels of texture 

can be maintained over the length of the research project, as of May 2011 which was 

the analysis cutoff date for this research project, and these sections can also be used to 

increase and sustain higher texture levels. 
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Figure 5.1 Chip Seal (3/8”) Actual Macrotexture Graph 
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Figure 5.2 Chip Seal (3/8”) Extrapolated Macrotexture Graph  
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Figure 5.3 Fog Seal Microtexture Model 
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Figure 5.4 Penetrating Asphalt Conditioner Microtexture Model 
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Figure 5.5 Fog Seal Texture Combination Graph 
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Figure 5.6 Penetrating Asphalt Conditioner Combination Graph 
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Figure 5.7 Mill and Inlay Texture Combination Graph  
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Figure 5.8 Shotblasting (Blastrac) Texture Combination Graph 
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5.4 Pavement Management System Implementation 

This research lays the ground work to begin to associate safety data, the level 

of both types of texture, with the currently used surface characteristics and traffic data 

to develop a more holistic view of pavement management. An example of how this 

process could be implemented can be seen in Figure 5.9.  In this scenario, the 

deterioration models, developed for a chip seal using 5/8″ aggregate, are used to 

determine trigger points that alert pavement management engineers that the project 

development process needs to begin in order to implement a pavement preservation 

project before the pavement fails.  Recognizing that every state DOT’s project 

development process is different and will take a different amount of time to go from a 

trigger point alert to the installation of a pavement preservation treatment.  A 

hypothetical example with 12 months duration is used to illustrate the proposed 

process for integrating pavement texture into the pavement management process. The 

first step, of course, is to collect macro and microtexture data for the roads under 

management and develop the deterioration models as previously described in the 

paper.  Next, failure criteria must be established to allow the computation of a rational 

trigger point. In this example, the macrotexture failure criterion of 0.9mm used in New 

Zealand is used (8). The pavement engineer then extrapolate the deterioration curve to 

the failure value and back up the required 12 months to initiate a project one can 

determine a macrotexture trigger value of 0.969mm. This is too precise to measure 

with the available test equipment. So a value of 1.0mm is chosen, which generates an 

alert 16 months prior to failure, giving the engineer a period greater than required 
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project development and authorization period to initiate action to preserve this 

pavement. The same approach can be used with microtexture.  

The example uses skid number criteria found in the literature to develop a skid 

number failure criterion. Minnesota, Wisconsin, Maine, and Washington have cutoff 

or acceptable value limits of 45, 38, 35, and 30, respectively (9).  These values are the 

trigger points used by each DOT, and therefore this example will use 30, the lowest 

published trigger value and 25 as the failure criterion to illustrate the proposed 

process. Analyzing the test section used in this example, one can see that a trigger 

value for microtexture is reached early on in the life of the section, at month 29, yet 

this gives the pavement management engineer almost 9 years before ultimate failure to 

act and indicating that this particular treatment will likely fail due to macrotexture loss 

before it reaches the microtexture failure point.  However, a chip seal in a different 

location that uses a less durable aggregate that is susceptible to polishing would have a 

deterioration model that predicted failure much earlier. If the failure occurred before 

the macrotexture trigger value the pavement manager would start the project 

development process upon reaching the microtexture trigger point.  By using safety 

trigger values in this manner, the pavement management engineer should now be able 

to better prioritize which roads need to preserved first, and coupled with standard 

pavement management systems what treatments need to be placed, further ensuring 

that the ―right treatment is placed on the right road at the right time‖ (4). 

Testing apparatus have recently become available to maintain network wide 

data for both types of safety criteria; for microtexture, the ASTM E274 skid tester with 

ribbed tires serves as a texture index, and for macrotexture the ASTM E1845 can be 
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used along with a high speed laser to determine mean profile depth at highway speed 

(77).  Therefore, it appears the time-consuming macrotexture test procedure can be 

replaced with the high speed laser, making data collection both safer and more 

efficient since it can be collected without the need to establish traffic control. With 

high speed data collection and the above-described methodology for texture 

deterioration modeling, a pavement management engineer now has the tools to better 

incorporate surface texture safety criteria into the PMS system. 
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Figure 5.9 Deterioration Models for Chip Seal (5/8″) 
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5.5 Conclusions 

This study has shown that not only can deterioration models be created using 

the safety criteria of various pavement preservation techniques, but that these models 

either show reliable deterioration models or can be shown to remain constant over the 

life of the treatment.  Specific conclusions are as follows: 

 Treatments with high coefficients of determination as shown in Table 5.1 have 

deterioration models that can used in determining their estimated service lives 

as defined by surface texture failure criteria 

 Chemical treatments have a slight short term affect on the microtexture of the 

treatment but could prove a useful ally to other texture methods to be used in 

combination with these treatments 

 Treatments like Shotblasting and Mill and Inlay exhibit constant texture over 

time and provide increased levels of texture when compared to the texture of 

the original surface. 
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6.0 PRESERVATION OF CONCRETE PAVEMENT USING A NANO-

LITHIUM DENSIFIER AND SHOTBLASTING: A LIFE CYCLE COST 

ANALYSIS
5
 

 

Riemer, C., D.M. Pittenger, and D.D. Gransberg, ―Preservation of Concrete Pavement 

Using a Nano-Lithium Densifier and Shotblasting: A Life Cycle Cost Analysis,‖ 2012 

Transportation Research Record, Journal of the Transportation Research Board 

National Academies, (Submitted for publication in August 2011). 

 

6.1 Paper Synopsis 

This paper explores the use of nano-lithium based concrete hardener applied 

over shotblasting as a concrete pavement preservation treatment for locations that are 

subject to wear due to studded tires, snow chains and snow plowing. Lithium-based 

concrete hardeners have long been used to preserve industrial concrete floors from 

wear due to forklift and other traffic in warehouses and parking lots. However, the 

concern with the treatment’s effect on skid resistance has limited their use to slow 

speed areas only. This study combines field tests in California, Delaware, and 

Oklahoma and shows that when the concrete pavement surface is first retextured using 

shotblasting and then treated with the concrete hardener that not only does it reduce 

wear/rutting due to abrasion but it also maintains safe skid numbers for periods of up 

to 3 years. A life cycle cost analysis shows this treatment to be a cost effective 

                                                 

5
 A modified version of this paper has been submitted to the 2012 Transportation Research 

Board for publication in TR News, August 2011. 
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pavement preservation tool to extend the life of concrete pavements on roads prone to 

rutting caused by snow chains. 

 

6.2 Literature Review 

Pavement preservation involves keeping good roads good (17). There is a large 

body of literature describing asphalt pavement preservation tools and their benefits 

(27, 78). Unfortunately much less research has been completed regarding the 

preservation of concrete pavements and the research has largely been limited to topics 

crack sealing, joint filling, grinding, etc. (58, 79, 80). Much fundamental research in 

this area remains to be accomplished (80). This paper reports the results of three 

geographically separated studies that focused on the use of a concrete surface 

treatment to harden the surface against abrasion. Two common types of abrasion 

found in mountain highways are surface wear due to snow plowing and rutting due to 

snow chains and studded tires. Since these distresses are unavoidable due to the need 

to allow safe passage of traffic during winter periods, developing a pavement 

preservation tool to reduce the long-term impact on pavement service life is important 

for major northern highways.  

 

6.2.1 Concrete Densification 

The term ―densify‖ refers to a chemical process where a reaction between a 

hardening agent and the concrete creates a surface texture that is denser and hence 

harder than plain concrete.  Lithium silicate has proven itself to be a reliable agent to 

harden the surface of Portland cement concrete (81). It has been used successfully to 
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extend the service lives of concrete floors in industrial setting where low speed 

vehicular traffic is present. It works by reacting with the calcium hydroxide produced 

by cement hydration. The reaction produces calcium silicate hydrate. This is the same 

product that is produced by adding water to Portland cement, which develops the 

strength and hardness in Portland cement concrete. During hydration, the calcium 

hydroxide is dissolved in the water; migrates to the surface where the lithium silicate 

reaction occurs; and the newly formed calcium silicate hydrate is deposits itself in the 

pores and voids on the concrete’s surface. The lithium part’s function of the silicate is 

"to stabilize and solubilize the silicate so it can remain in solution until it penetrates 

the concrete and then can react with the abundant calcium hydroxide found in the 

concrete" (81).  

Lithium silicate has two main advantages over other, less expensive hardening 

agents. First, when it dries, it forms a dust rather than a crust. Secondly, after the 

lithium silicate penetrates the concrete's pores, it reacts with calcium hydroxide to 

create the chemical hardening and densifying, which increases the concrete's surface 

strength and resistance to wear from abrasion due to wheeled traffic. In the Portland 

cement concrete pavement (PCCP) scenario, it makes the pavement more rut resistant. 

It also makes it more resistant to wear from snow plow abrasion. The reaction works 

best when applied to a porous concrete surface because the porosity promotes 

penetration of the hardening agent, which in turn results in a deeper hardened surface 

(81). 

The major concern with many concrete surface treatments is the impact of the 

treatment on skid resistance. For example, the use of curing compounds and sealants 
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on bridge decks often requires the agency to specify shotblasting after the curing is 

completed to restore surface microtexture that is filled by the treatments themselves in 

order to perform the intended function (82). Additionally, concrete floor hardeners 

were originally developed with a secondary purpose of producing a ―shiny‖ surface 

for aesthetics (81). This reduces surface friction and resulted in their use only in areas 

with low speed traffic. Therefore, while the preservation of PCCPs by hardening their 

surface to make them rut and wear resistant certainly makes sense, this quality cannot 

be achieved while sacrificing safety.  

 

6.3 Methodology 

This study combines the results of three research projects that involved the use 

of the same nano-lithium concrete densifier and shotblasting on highway projects to 

harden the concrete pavement’s surface and make it resistant to abrasion. The first is a 

study that looked at lithium penetration in the concrete pavement of Route 113 in 

Delaware (83). Its purpose was to compare concrete pavement surfaces that had been 

shotblasted before being treated with the concrete hardener and those that were treated 

in situ. The second study was sponsored by the California Department of 

Transportation (Caltrans) and measured concrete pavement wear over 12 months on a 

test section on in Donner Pass which was subjected to both frequent snow plowing and 

over which traffic was required to use snow chains or studded tires (84). This project 

also measured skid numbers on the test sections. Finally, a 3-year pavement 

preservation study in Oklahoma included a concrete test section that had been 

shotblasted and treated with nano-lithium concrete densifier as well as shotblasted 
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sections with no treatment. Monthly macrotexture and skid numbers tests were 

conducted to construct deterioration models for use in estimating pavement 

preservation treatment service lives (58). While the Oklahoma test sections did not 

experience abrasion from snow chains, the sections did receive two to three periods 

where snow was plowed. 

The Delaware DOT study sought to determine the efficacy of diamond 

grinding and shotblasting for enhancing the penetration of the lithium silicate densifier 

(83). The field test site had 7 different surface conditions .Two sections were 

designated as ―typical‖ and since they were only treated with the densifier, they 

formed the baseline against which the shotblasting and diamond grinding were 

compared. The next two were shotblasted with densifier; another set of two consisted 

of a shotblasted, diamond ground surface with densifier and the last was an unblasted, 

but diamond ground surface treated with densifier. The amount of penetration was 

determined by the percentage of the initial amount of lithium silicate that was present 

in core samples taken approximately 6 months after the application of the densifier. 

Figure 6.1 illustrates the results of that study and clearly shows that shotblasting the 

pavement’s surface before applying the densifier greatly enhances penetration, which 

should result in a thicker surface layer of hardened concrete. 
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Figure 6.1 Results of Delaware DOT Surface Texture/Densifier Penetration 

Study (adapted from (83)). 

 

The Caltrans study built a test site on Interstate 80 on Donner Summit.  The 

site was selected because it ―sees some of the worst conditions in the country in terms 

of deicing salts, chain traffic, and snow removal‖ (84).  The test site was three lanes 

wide and one mile long and included three different test sections.  The first acted as 

the control and was not shotblasted nor treated with densifier. The second section was 

only treated with densifier and the last was shotblasted and treated with densifier. 

Measurements of rut depth were taken before constructing the test sections and after 

12 months.  Table 1 contains the outcome of the test. The Caltrans research oversight 

engineer commented that ―in general the [lithium silicate densifier] treated areas 

appeared to have about half the wear of untreated section.‖   Skid numbers were also 

checked in this experiment and found to be an average of 45 across the three lane test 

site. 
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Table 6.1  Results of Caltrans Donner Pass Study on the Effectiveness of Lithium 

Silicate Densfier on Enhancing Resistance to Abrasion Loss (84) 

Core ID C1 C3 C4 C6 C10 C12 D1 D3 D5 D6 D7 D8 

Wear 

(inches) 
3/16 1/4 1/4 1/4 1/8 3/16 1/16 1/8 1/16 1/16+ 0 1/16 

 

The final study was sponsored by the Oklahoma DOT and consisted of a total 

of 23 different pavement preservation treatments installed on US Highway 77 near 

Oklahoma City (58). Two of the sections are related to this specific topic and 

consisted of a section of concrete pavement that had been shotblasted and another that 

had shotblasting and a densifier treatment. This study took monthly measurements of 

macrotexture and skid numbers for 33 months. One of the study’s objectives was to 

track skid number change over time and directly addresses the potential safety issue of 

applying a chemical treatment that might reduce skid resistance. Figure 6.2 shows the 

findings of that study for the test sections that were shotblasted with and without the 

densifier. One can see that after an initial loss of skid number as the microtexture is 

initially abraded by traffic, the addition of the densifier surface treatment results in a 

marginally lower skid number, but one that is above safe limits. Additionally, Figure 

6.2 shows that the skid resistance of the shotblasted, densifier-treated section retained 

its skid resistance for 26 months at a skid number of roughly 44. 

To summarize the three studies, it seems that the application of a lithium 

silicate densifier on a PCCP whose surface has been prepared by shotblasting as a 

pavement preservation tool is technically viable. The Delaware DOT study showed 

that shotblasting enhances the penetration of the densifier. This leads to increased 

resistance to wear and rut due studded tires/snow plow abrasion has shown in the 
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Caltrans study, and the process can be used on a high speed highway without 

compromising safety has shown in the Oklahoma study.  

 

6.4 Life Cycle Cost Analysis 

The Federal Highway Administration’s (FHWA) Life-Cycle Cost Analysis in 

Pavement Design —Interim Technical Bulletin defines life cycle cost analysis (LCCA) 

for highway projects as: ―…an analysis technique … to evaluate the overall long-term 

economic efficiency between competing alternative investment options‖ (85).  This 

study uses the FHWA LCCA model complete the LCCA for two alternatives that best 

describe the potential for concrete pavement preservation using lithium densifier over 

shotblasting. The following list describes the scenario used in the calculations of net 

present worth. 

 The selected road is a lane mile of Interstate 80 in Donner’s Pass, California, 

which has an average daily traffic of 20,000. Both alternatives begin with an 

initial cost for completing a 12″ full-depth replacement 

 The engineer has the following pavement preservation options with regard to 

rutting due to snow chain and studded tire wear 

 Whitetop the pavement when ruts reach a failure depth of 10 millimeters (86) 

 Finish the new pavement by shotblasting it and applying nanolithium densifer 

(84).
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Figure 6.2 Oklahoma DOT Results of Skid Number Change Over Time (58). 

0102030405060

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

32
34

36

Skid Number (mu)

M
on

th
ly

 O
bs

er
va

tio
n 

#

Sh
ot

bl
as

t w
/N

an
o-

Li
th

iu
m

Sh
ot

bl
as

t



117 

 

 

   

Research completed by the Washington State DOT (86) has shown that it takes 

from 6 to 9 years for a PCCP to develop ruts 10mm deep. The same report shows the 

predicted service life for a Thin Whitetopping (TWT) of 6.3 to 7.1 years. The Caltrans 

study found that shotblasting and coating a PCCP with densifier reduced wear by 

50%.  Based on these and other facts found in the literature, the following assumptions 

are made to support the calculation: 

 The service life of a new PCCP subjected to snow chain/studded tire wear will 

be 7 years 

 The service life of the same new PCCP will be 14 years if densifier over 

shotblasting is applied before opening it to traffic  

 Every 7 years a TWT alone or a TWT finished with densifier over shotblasting 

(DOS) will be installed as a pavement preservation measure 

 All alternatives will be analyzed over a period of 28 years and the patterns for 

each alternative described above will repeat throughout the period of analysis 

 All other maintenance costs associated with the road are equal in all the 

alternatives 

 A discount rate of 3% will be used in accordance with the FHWA technical 

bulletin (85)  

 Work zone user costs during the installation of the TWT and the TWT with 

DOS are computed using the Florida DOT method for a rural freeway with an 

ADT of 20,000 (87) 
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 The Net Present Value (NPV) of the life cycle costs for a single lane-mile of 

roadway will be calculated. 

The FHWA Technical Bulletin LCCA is done two ways (85).  First a 

deterministic life cycle cost analysis is conducted using the minimum, mean, and 

maximum possible values for each option, providing life cycle costs for each of three 

possible scenarios.  Next, a stochastic version of the FHWA life cycle cost analysis 

model is run using the possible range in values as a probability density function to 

associate the probability of achieving a lower life cycle cost for each of the 

alternatives and to quantify the differences between each using a Monte Carlo 

simulation. 

 

6.4.1 Deterministic Life Cycle Cost Analysis  

Deterministic LCCA uses ―minimize estimated life cycle costs‖ as the decision 

criterion to compare alternatives. Thus, the economic dynamics of each alternative 

must be fully understood. Unit prices for each alternative were taken from 2010 bid 

tabulations from across the nation.  The unit prices were then extended to calculate a 

cost per lane-mile assuming a standard 12-foot (3.7 meter) lane. Table 1 shows the 

values used for the various cost components to the LCCA model. One can see that the 

adding the densifier over shotblasting adds to the cost of each treatment. Thus, the 

LCCA is warranted to determine if the service life extension gained by this method is 

cost effective. 



119 

 

 

   

Table 6.2 shows the results of the deterministic life cycle cost analysis. One 

can see that while the TWT with densifier over shotblasting has a lower estimated 

lane-mile cost than the other options at each possible value. This leads to the 

conclusion that using densifier over shotblasting as a pavement preservation treatment 

is at very least a competitive alternative to thin whitetopping overlays.   

Table 6.1 Life Cycle Cost Analysis Input Values 

Alternative 
Minimum 

$/lane-mile 

Mean 

$/lane-mile 

Maximum 

$/lane-mile 

12″ Full-depth Replacement $1,056,000 $1,056,000 $1,056,000 

12″ Full-depth Replacement 

 with Densifier over Shotblasting 
$1,069,939 $1,079,126 $1,090,214 

Thin Whitetopping $221,769 $400,340 $633,600 

Thin Whitetopping  

with Densifier over Shotblasting 
$242,011 $436,106 $643,864 

 

However, the highest possible value of the DOS option is greater than the 

lowest possible value of the TWT option alone, making it is theoretically possible that 

prices associated with the TWT could put them at the low end of their possible ranges 

at the same time that the actual cost of DOS is at the high end of its range. Thus, it is 

impossible to conclude without further analysis that the DOS option is the preferred 

alternative. 
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Table 6.2 Deterministic Life Cycle Cost Analysis Output 

Alternative 
Minimum 

$/lane-mile 

Mean 

$/lane-mile 

Maximum 

$/lane-mile 

Thin Whitetopping $1,599,054 $2,607,582 $2,607,582 

Thin Whitetopping with Densifier over 

Shotblasting 
$1,335,715 $1,558,056 $1,792,816 

 

6.4.2 Stochastic Life Cycle Cost Analysis 

A spreadsheet was developed using the FHWA life cycle cost model and a 

commercial simulation software package was used to perform the Monte Carlo 

simulation necessary to conduct the stochastic LCCA.  The input variables shown in 

Table 6.1 were modeled as having stochastic values, and each was assigned a 

triangular probability distribution using the minimum, maximum and mean values 

shown in Table 6.1. 100,000 iterations of the simulation were run, and the resulting 

LCC are shown in Table 6.3. The probability distributions for the two alternatives are 

shown in Figure 6.3. Taking Table 3 and Figure 6.3 together, one can see that there is 

only about a 7% the minimum probable value for the TWT option’s LCC will be less 

than the maximum probable value of the DOS option’s LCC. 

Table 6.3 Deterministic Life Cycle Cost Analysis Output 

Alternative 
Minimum 

$/lane-mile 

Mean 

$/lane-mile 

Maximum 

$/lane-mile 

Thin Whitetopping $1,599,054 $2,607,582 $2,607,582 

Thin Whitetopping with Densifier over 

Shotblasting 
$1,343,194 $1,563,690 $1,790,942 
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6.5 Conclusions 

This study has shown that the use of nanolithium densifier over shotblasting to 

extend the life of concrete pavements by making them more wear resistant is both 

technical and financially viable. Specific conclusions are as follows: 

 Shotblasting the surface of a PCCP creates a condition where the nanolithium 

densifier is able to penetrate deeper, making the depth of the hardened surface 

greater and enhancing the wear-resistance of the pavement. 

 Treating a new concrete surface such as a new pavement or a thin whitetopping 

overlay by with nanolithium densifer applied over shotblasting can be done 

without compromising the skid resistance of the pavement. The Oklahoma 

study shows that the surface maintains its skid numbers for at least 33 months. 

 Treating a new concrete surface such as a new pavement or a thin whitetopping 

overlay by with nanolithium densifer applied over shotblasting is more cost 

effective than merely whitetopping due to the increased service life extension. 
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7.0 CONCLUSIONS AND RECOMMENDATIONS 

This study focuses on the importance of pavement preservation as a tool to 

manage infrastructure at a time in our nation’s history where appropriate stewardship 

of governmental resources is critical and can be applied at all levels of government. 

 

7.1 Conclusions 

 This research demonstrated the cooperation that can take place within the 

industry and state agency for the betterment of travelling public.  This is evident in the 

amount of support received from both parties to do this research.  In this project the 

researchers were able to establish like comparisons for 23 different pavement 

preservation treatments.  This comparison included both, microtexture and 

macrotexture measurements.  Along the way a number of discoveries were made that 

can be attributed original contributions to the field of study within pavement 

preservation.  These include the following: 

 This research produced a clear guideline as to testing procedures for measuring 

macrotexture using two different testing apparatuses, as discussed in Chapter 

3.  The value of the research is validated by the fact that in response to the 

limitations chronicled in this project’s journal paper, the production company 

for the outflow meter altered the design of new flowmeters to include a more 

accurate timer. 

 This research produced a previously unpublished EUAC-based model for 

LCCA that specifically addresses the nature of pavement preservation 
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treatments and develops LCCA-based pavement preservation treatment design. 

The model’s fixed flexibility offered via continuous and terminal scenario 

allow it to adhere to engineering economic principles and provide the 

pavement manager project-level evaluation within a wider spectrum of 

pavement manager expertise. 

 This research demonstrated how deterioration models could be utilized by a 

pavement manager in selecting the most cost effective pavement preservation 

treatment on a case by case basis. It also provides a rational method to 

determining the timing of treatment application by using the deterioration 

model for each treatment to identify trigger points. 

 This research validated the use of these procedures by applying the 

deterioration models to each Phase 1 test section and determining viable 

candidates for deterioration models using the chosen failure criteria. 

 Lastly, this research combined external data with data produced by this project 

to analyze the effects of densifiers on the life cycle of concrete pavements 

exposed to abrasion from studded tires and snow chains. 

 

7.2 Limitations 

The objective of the research is to focus on the change in microtexture and 

macrotexture measurements over time and develop rational deterioration models for a 

suite of pavement preservation treatments. All treatments were applied to the same 

highway (SH77) and as a result, experienced the same traffic loads, the same 
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environmental conditions, and the same frequency of testing. Hence, the major 

limitation of the research is that the deterioration models developed in this project can 

only be applied to the local region, Oklahoma City, Oklahoma, in which the testing 

was conducted. Researchers and maintenance engineers from other parts of the nation 

can replicate this project’s methodology but must collect their own data and develop 

pavement preservation treatment models that are appropriate for the materials and 

conditions in the region in which the testing is conducted.    

The second limitation deals with the skid testing procedures. The initial 

experimental plan depended on the locked wheel skid test using a ribbed tire skid 

testing. Consultation with Dr. Tom Yeager, a NASA scientist and author of much of 

the seminal research on pavement surface friction, indicated that a bald tire might 

furnish a more consistent measurement of microtexture. As a result, the research team 

purchased bald tires for the ODOT skid test trailer and began collecting both data 

using both methods. Because the bald tire was not used during the first year of the 

research, no conclusions can be drawn by comparing the two methods.  This leads to 

the final limitation which is the time period over which the research was conducted. 

Even though this research has been active over a 3.5 year period, a number of the 

preservation treatments have not yet begun to fail. This forced the researchers to 

utilize failure criteria found in the literature to develop proposed trigger points for 

treatments that had not reached the end of their service lives. Therefore, testing needs 

to continue beyond the time allotted in the scope of the funded research project to 

follow each treatment to failure and furnish ODOT with validated deterioration 

models for every pavement preservation treatment in the project. 
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7.3 Recommendations for Future Research 

The following are recommendations for future research based on to the findings of this 

research project.  These include the following: 

 Continue testing each test section for both microtexture and macrotexture to 

the point of failure.  This will validate the deterioration models as well as help 

determine the actual service life of each test section as it relates to the metrics 

chosen in this project. 

 Expansion of the research data to include a set of national test sections would 

allow this research to cover various climatic and traffic conditions.  This would 

further make this a national research project rather than just a regional project. 

The AASHTO pooled fund model would be an ideal mechanism to fund this 

research. 

 Create and analyze a comparison of the ribbed tire with the smooth tire skid 

measurements on each treatment in order to better define testing protocols as 

they relate to microtexture and macrotexture. 

 Develop a protocol for the routine measurement of macrotexture on those 

treatments found in this project to have macrotexture as the critical failure 

criterion. 

 Investigate the pavement noise of each treatment and compare it to each 

treatment’s deterioration model.



127 

 

 

   

BIBLIOGRAPHY 

1. Oklahoma Department of Transportation Website, ―odot.org‖ July 29, 2011, 

www.odot.org   

2. Wolf, C. ―U.S. Highway Fund Faces Insolvency by 2013, CBO Says.‖ 

Bloomberg.  January 26, 2011 <http://www.bloomberg.com/news/print/2011-

01-26/u-s-highway-transit-fund-faces-insolvency> 

3. Kile, J. ―The Highway Trust Fund and Paying for Highways.‖ Testimony 

before the Committee on Finance, United States Senate, CBO, May 17, 2011. 

4. Galehouse, L., J.S. Moulthrop, and R.G. Hicks, ―Principles for Pavement 

Preservation: Definitions, Benefits, Issues and Barriers,‖ TR News, 

Transportation Research Board, pp. 4-9, 2003. 

5. National Highway Institute (NHI) ,  Pavement Preservation Treatment 

Construction Guide, ―Chapter 8 – Microsurfacing,‖ FHWA Washington, D.C., 

2007 [Online] Available:  http://fhwapap34.fhwa.dot.gov/NHI-PPTCG/ 

chapter_8/ unit3.htm [April 12, 2010]. 

6. Geiger, D.R., ―Pavement Preservation Definitions,‖ Federal Highway 

Administration Memorandum, Washington, D.C., September 12, 2005, p.2. 

 



128 

 

 

   

7. Australian Road Research Board (ARRB), ―Variation in Surface Texture with 

Differing Test Methods,‖ Unpublished report prepared for National 

Bituminous Surfacings Research Group by ARRB Transport Research, 

Melbourne, Australia, 2001. 

8. Transit New Zealand (TNZ), Notes for the Specification for Bituminous 

Reseals, TNZ P17, Wellington, New Zealand, 2002. 

9. Noyce, D.A., H.U. Bahia, J.M. Yambo, and G. Kim, ―Incorporating Road 

Safety into Pavement Management: Maximizing Asphalt surface Friction for 

Road Safety Improvements,‖ Midwest Regional University Transportation 

Center, Madison, Wisconsin, 2005. 

10. American Society of Testing and Materials Standard E274, ―Standard Test 

Method for Skid Resistance of paved Surfaces Using a Full-Scale Tire,‖ 

ASTM International, West Conshohocken, PA, DOI:10.1520/E0274_E0274M-

11, www.astm.org (August 24, 2011) 

11. Transit New Zealand, Standard Test Procedure for Measurement of Texture by 

the Sand Circle Methods, TNZ T/3,Wellington, New Zealand, 1981. 

12. American Society of Testing and Materials International ―Standard Test 

Method for Measuring Pavement Macrotexture Depth Using a 

VolumetricTechnique,‖ E965-96,Philadelphia, Pennsylvania, 2006, 

http://www.astm.org/cgi-bin/SoftCart.exe/DATABASE. CART/ 

REDLINEPAGES/E965.htm (Dec. 31, 2006). 



129 

 

 

   

13. Roe, P.G., A.R. Parry, and H.E. Viner. ―High and Low Speed Skidding 

Resistance: The Influence of Texture Depth.‖ TRL Report 367. Crowthrone, 

U.K., 1998. 

14. Gee, K.W., ―Preservation and Rehabilitation,‖ Proceedings, AEMA-ARRA-

ISSA Joint Meeting, Bonita Springs Florida, p. 8., 2007. 

15. National Cooperative Highway Research Program, Evolution and Benefits of 

Preventative Maintenance Strategies. Synthesis of Highway Practice No. 153, 

National Cooperative Highway Research Program, Transportation Research 

Board. Washington, DC., 1989. 

16. Patrick, J.E., Cenek, P.D., and Owen, M., Comparison of Methods to Measure 

Macrotexture. Proc. 1
st
 Int’l Conf. World of Asphalt Pavements on CD, 

Australian Asphalt Pavement Association, Sydney, pp. 24-27., 2000. 

17. Moulthrop, J. ―Pavement Preservation: Protecting the Investment,‖ 

Presentation made at NEAUPG Annual Meeting, Wilkes-Barre, Pennsylvania., 

2003. 

18. Austroads, Guidelines for the Management of Road Surface Skid Resistance. 

Austroads Publication No.AP-G83/05. Sidney, Australia., 2005. 

19. VicRoads. Bituminous Sprayed Surfacing Manual (Draft), VicRoads 

Bookshop, Victoria, Australia, p.233., 2003. 



130 

 

 

   

20. Voigt, G. F. ―Moving Forward on Surface Texture Issues,‖ Better Roads 

Magazine, Vol 76(8), August 2006, pp.64-70., 2006. 

21. Henry, J. J. NCHRP Synthesis of Highway Practice No. 291: Evaluation of 

Pavement Friction Characteristics. TRB, National Research Council, 

Washington, D.C., 2000. 

22. Owen, M. Managing the Risk in a New Performance Based Environment, 

Conference on Asphalt Pavements for Southern Africa, Zimbabwe., 1999. 

23. Titus-Glover, L. and Tayabji, S.D. Assessment of LTPP Friction Data LTPP 

Report # FHWA-RD-99-037, Federal Highway Administration, MacLean, 

Virginia., 1999. 

24. Vercoe, J.  ―Chip Seal Texture Measurement by High Speed Laser.‖ 

Unpublished research report. Fulton Hogan, Christchurch, p.11., 2002. 

25. Bennett R. ‖ Balstrac Shot Blasting Trial and Technical Assessment, Bendigo, 

Victoria,‖ Unpublished draft research report prepared by Geotest Civil 

Services, North Geelong, Victoria, Australia, August 2007, pp. 4-9., 2007. 

26. Gransberg, D.D. ―Life Cycle Cost Analysis of Surface Retexturing with 

Shotblasting as a Pavement Preservation Tool,‖ Transportation Research 

Record 2108, Journal of the Transportation Research Board, National 

Academies, December 2009 pp. 46-52., 2009. 



131 

 

 

   

27. Gransberg, D.D. and B.D. Pidwerbesky, "Strip Sealing and Ultra-High 

Pressure Watercutting Technique for Restoring Skid Resistance on Low-

Volume Roads: Life Cycle Cost Comparison,‖ Transportation Research 

Record 1989, Journal of the Transportation Research Board, National 

Academies, pp. 234-239., 2007. 

28. Gransberg, D.D. and M. Zaman, ―Analysis of Emulsion and Hot Asphalt 

Cement Chip Seal Performance,” Journal of Transportation Engineering, 

ASCE, Vol.131 (3), pp. 229-238, 2005. 

29. Manion, M. and S.L. Tighe, ―Performance-Specified Maintenance Contracts: 

Adding Value Through Improved Safety Performance,‖ Transportation 

Research Record: Journal of the Transportation Research Board 1990, 

Transportation Research Board of the National Academies, Washington, D.C., 

2007, pp. 72-79. 

30. Neubert, T.W., ―Runway Friction Measurement and Reporting Procedures,‖ 

Presentation to 2006 Airfield Operations Area Expo and Conference, 

Milwaukee, Wisconsin, 2006, p.3. 

31. Pidwerbesky, B.D., Gransberg, D.D.  Stemprok, R.  and Waters, J.  Road 

Surface Texture Measurement Using Digital Image Processing and 

Information Theory, Land Transport New Zealand Research Report 290, 

Wellington, New Zealand, 2006, 42pp. 



132 

 

 

   

32. Hall, J.W., K.L. Smith, L. Titus-Glover, J.C. Wambold, T.J. Yager, Z. Rado. 

―NCHRP Web-Only Document 108: Guide for Pavement Friction.‖.  National 

Cooperative Highway Research Program (NCHRP) Project 01-43 Contractor’s 

Final Report.  Transportation Research Board.  Washington, D.C. 2009. 

33. Lenke, L.R., and Graul, R.A., ―Development of Runway Rubber Removal 

Specifications Using Friction Measurements and Surface Texture for Control‖ 

Chapter in The Tire Pavement Interface, American Society for Testing and 

Materials, STP929-EB, West Conshohocken, Pennsylvania, 1986, pp, 1-17. 

34. Cairney, P. and E. Styles, ―A Pilot Study of the Relationship between 

Macrotexture and Crash Occurrence,‖ Road Safety Research Report, CR223, 

ARRB Transport Research, Victoria, Australia. February 2005. 

35. Yager, T.J., ―Pavement Surface Properties,‖ Transportation Research Board, 

Report A2B07: Committee of Surface Properties-Vehicle Interaction, 

Millennium On-Line Publication, National Academies, Washington, D.C., 

2000, http://onlinepubs.trb.org/onlinepubs/millennium/00087.pdf (September 

26, 2009) 

36. ASTM International (2000), Standard Test Method for Side Force Friction on 

Paved Surfaces Using the Mu-Meter, ASTM E670-94, ASTM International, 

West Conshohocken, PA, http://www.astm.org. (October 3, 2007). 

 



133 

 

 

   

37. Sandburg, U.  ―Influence of Road Surface Texture on Traffic Characteristics 

Related to Environment, Economy, and Safety: A State-of-the-Art Study 

Regarding Measures and Measuring Methods,‖ VTI Report 53A-1997, 

Swedish National Road Administration, Borlange, Sweden., 1998. 

38. Li, Y., A. Cheetham, S. Zaghloul, K. Helali, and W. Bekheet,  ―Enhancement 

of Arizona Pavement Management System for Construction and Maintenance 

Activities,‖ Transportation Research Record: Journal of the Transportation 

Research Board, No. 1974, Transportation Research Board of the National 

Academies, Washington, D.C., 2006, pp. 26–36. 

39. Moulthrop, J., T. Thomas, B. Ballou, ―Initial Improvement in Ride Quality of 

Jointed, Plain Concrete Pavement with Microsurfacing: Case Study,‖ 

Transportation Research Record: Journal of the Transportation Research 

Board, No. 1545, Transportation Research Board of the National Academies, 

Washington, D.C.,  pp. 3–11., 1996. 

40. Zaniewski, J. and M. Mamlouk, ―Pavement Preventive Maintenance Key to 

Quality Highways, ―Transportation Research Record: Journal of the 

Transportation Research Board, No. 1680, TRB, National Research Council, 

Washington, D.C., 1999, pp. 26-31. 

41. U.S. Department of Transportation Federal Highway Administration Office of 

Asset Management Asset Management Primer.  Washington, D.C. 1999.  



134 

 

 

   

42. USDOT/FHWA Office of Asset Management, (2009). Transportation Asset      

Management Case Studies. Life Cycle Cost Analysis: The Colorado 

Experience.Washington D.C. 2009. 

43. Cambridge Systematics, Inc., PB Consult and System Metrics Group, Inc., 

Analytical Tools for Asset Management. National Cooperative Highway 

Research Program (NCHRP) Report 545.  Washington, D.C., 2005. 

44. Gransberg, Douglas D., Musharraf Zaman, Caleb J. Riemer and Dominique       

Pittenger. ―Quantifying the Costs and Benefits of Pavement Retexturing as a        

Pavement Preservation Tool.‖  Oklahoma Transportation Center Research 

Project  OTCREOS7.1-16.  Norman, Oklahoma. 2009. 

45. Monsere, C.M., L. Diercksen, K. Dixon, and M. Liebler, Evaluating the 

Effectiveness of the Safety Investment Program (SIP) Policies for Oregon, SPR 

651, Final Report.  Oregon Department of Transportation Research Section., 

Portland, Oregon., 2009. 

46. Bilal, Muhammad, Muhammad Irfan and Samuel Labi Comparing the Methods 

for Evaluating Pavement Interventions – A Discussion and Case Study, 

Transportation Research Board (TRB)Paper No. 09-2661.  Washington, D.C., 

2009. 

47. USDOT/FHWA Office of Asset Management.  Asset Management Overview.    

Washington D.C. 2007. 



135 

 

 

   

48. Peshkin, D.G., T.E. Hoerner and K.A. Zimmerman,  Optimal Timing of 

Pavement Preventive Maintenance Treatment Applications, NCHRP, Report 

523 Transportation Research Board, , National Research Council, Washington, 

D.C., 2004. 

49. Lee, Jr. Douglass B. ―Fundamentals of Life-Cycle Cost Analysis,‖ 

Transportation Research Record 1812, Paper No. 02-3121.  Transportation 

Research Board (TRB), Washington, D.C., 2002. 

50. USDOT/FHWA Office of Asset Management Economic Analysis Primer.    

 Washington, D.C. 2003. 

51.  USDOT/FHWA Office of Asset Management.  Transportation Asset 

Management Case Studies. Economics in Asset Management:  The 

Hillsborough County, Florida  Experience. Washington D.C. 2005. 

52. USDOT/FHWA Office of Asset Management.  Transportation Asset 

Management Case Studies. Economics in Asset Management: The Ohio-

Kentucky-Indiana Regional Council of Governments Experience.  Washington 

D.C. 2007. 

53. USDOT/FHWA Office of Asset Management. Life-Cycle Cost Analysis 

RealCost User Manual. RealCost Version 2.1.  Washington, D.C. 2004. 



136 

 

 

   

54. USDOT/FHWA.  Life Cycle Cost Analysis in Pavement Design, Interim 

Technical Bulletin.  Washington, D.C. 1998. 

55. Doty, R.N., ―A Study of the Sand Patch and Outflow Meter Methods Of 

Pavement Surface Texture Measurement,‖ Proceedings, ASTM 1974 Annual 

Meeting, June 27, 1974, Washington, D.C., 35pp. 

56. Gransberg, D.D., ―Using a New Zealand Performance Specification to 

Evaluate US Chip Seal Performance,‖ Journal of Transportation Engineering, 

ASCE, Vol. 133 (12), December 2007, pp 688-695. 

57. ASTM ASTM International ―Standard Test Method for Measuring Pavement 

Texture Drainage Using an Outflow Meter,‖ ASTM E2380/E2380M – 09, 

2009,  http://www.astm.org/Standards/E2380.htm [July 18, 2010]. 

58. Riemer, C., D.D. Gransberg, M. Zaman, and D. Pittenger, ―Comparative Field 

Testing of Asphalt and Concrete Pavement Preservation Treatments in 

Oklahoma,‖ Proceedings, 1st International Conference on Pavement 

Preservation, Transportation Research Board, Newport Beach, California, 

April  2010, pp.447-460. 

59. Flintsch, G.W., E. de León, K.K. McGhee, and I.L. Al-Qadi, ―Pavement 

Surface Macrotexture Measurement and Applications,‖ Transportation 

Research Record 1860, Journal of the Transportation Research Board, National 

Academies pp 168-178., 2003. 



137 

 

 

   

60. West, T.M. and Riggs, J.L, Engineering Economics, Third Edition, McGraw-

Hill Inc. New York, New York, pp.781-789., 1986. 

61. Aktas, B., C. Riemer, D.D. Gransberg, and D. Pittenger, ―Comparative 

Analysis of Macrotexture Measurement Tests for Pavement Preservation 

Treatments, 2011 Transportation Research Record, Journal of the 

Transportation Research Board National Academies, (Accepted for publication 

in 2011).   

62. Transit New Zealand (TNZ). Chipsealing in New Zealand, Transit New 

Zealand, Road Controlling Authorities, and Roading New Zealand, 

Wellington, New Zealand, 2005. 

63. Hall, Kathleen T., Carlos E. Correa, Samuel H. Carpenter and Robert P. Elliot.         

Guidelines for Life-Cycle Cost Analysis of Pavement Rehabilitation Strategies.        

Transportation Research Board TRB 2003 Annual Meeting CD-ROM.        

Washington, D.C. 2003. 

64. USDOT/FHWA Office of Asset Management.  Life Cycle Cost Analysis 

Primer. Washington, D.C. 2002. 

65. Gransberg, Douglas D. and Eric Scheepbouwer.  Infrastructure Asset Life 

Cycle Cost Analysis Issues.  To be published AACE, TRK.01, May 2010. 



138 

 

 

   

66. White, John A., Case, Kenneth E., Pratt, David B.  Principles of Engineering 

Economic Analysis, Fifth Edition..  John Wiley & Sons, Inc., Hoboken, New 

Jersey.  2010. 

67. Reigle, Jennifer A. and John P. Zaniewski.  ―Risk-Based Life-Cycle Cost 

Analysis for Project-Level Pavement Management‖.  Transportation Research 

Record 1816, Paper No. 02-2579. 2002. 

68. Lee, Jr. Douglass B. ―Fundamentals of Life-Cycle Cost Analysis‖.  

Transportation Research Record 1812, Paper No. 02-3121.  Transportation 

Research Board (TRB), Washington, D.C. 2002. 

69. Sinha, Kumares C., and Samuel Labi.   Transportation Decision Making: 

Principles of Project Evaluation and Programming.  John Wiley & Sons, Inc., 

Hoboken, New Jersey.  2007. pp. 199-211. 

70. Stroup-Gardiner, Mary and Shakir Shatnawi ―The Economics of Flexible 

Pavement Preservation.‖  TRB 2009 Annual Meeting Paper.  2008. 

71. Bausano, Jason P., Karim Chatti and R. Christopher Williams.  ―Determining 

Life Expectancy of Preventive Maintenance Fixes for Asphalt-Surfaced 

Pavements‖. Transportation Research Record: Journal of the Transportation 

Research Board, No. 1866, TRB, National Research Council, Washington D.C. 

2004.  pp. 1-8.   



139 

 

 

   

72. George, K.P., A.S. Rjagopal and L.K. Lim, ―Models for Predicting Pavement 

Deterioration,‖ Transportation Research Record 1215, Journal of the 

Transportation Research Board, National Academies, pp.1-7., 1989. 

73. Ramaswamy, R. And M. Ben-Akiva, ―Estimitation of Highway Pavement 

Deterioration from In-Service Pavement Data,‖ Transportation Research 

Record 1272, Journal of the Transportation Research Board, National 

Academies, pp. 96-106., 1990. 

74. Chatfield, C. The Analysis of Time Series: An Introduction. New York: 

Chapman & Hall/CRC., 2004. 

75. Meier, K. J.  Applied Statistics for Public and Nonprofit Administration. 

Toronto: Thomson Wadsworth, 2006. 

76. Ali, G.A., Al-Mahrooqi, R. Al-Mammari, M. Al-Hinai, N. And Taha, R. 

―Measurement, Analysis, Evaluation, and Restoration of Skid Resistance on 

Streets of Muscat,‖ Transportation Research Record 1655, Journal of the 

Transportation Research Board, National Academies, 1999, pp. 200-211. 

77. ASTM Standard E1845, 2009, ―Standard Practice for Calculating Pavement 

Macrotexture Mean Profile Depth,‖ ASTM International, West Conshohocken, 

PA, 2009, DOI:10.1520/E1845-09, www.astm.org 



140 

 

 

   

78. Gransberg, D.D., and D.M.B. James. Chip Seal Best Practices, National 

Cooperative Highway Research Program Synthesis 342, Transportation 

Research Board, National Academies, Washington, D.C, 2005. 

79. Corley-Lay, J. and J.N. Mastin, ―Ultrathin Bonded Wearing Course as a 

Pavement Preservation Treatment for Jointed Concrete Pavements,‖ 

Proceedings, TRB 2007 Annual Meeting, 2007, 16pp. 

80. Federal Highway Administration, ―Pavement Preservation, A Road Map for 

the Future,‖ US DOT, FHWA, Washington, DC, 1998, 21pp. 

81. Nasvik, J. ―Lithium Silicate Densifiers,‖ Concrete Construction, December 

2008, pp. 1-5. On-line, Available: 

http://www.concreteconstruction.net/concrete-construction/lithium-silicate-

densifiers.aspx. [July 12, 2011]. 

82. South Dakota Department of Transportation (SDDOT), ―Surface Preparation 

for Epoxy Chip Seal,‖ Special Provision, South Dakota Department of 

Transportation, Pierre, South Dakota, 2001, p. 6.  

83. Stokes, D. ―Lithium Ion Penetration in the Route 113 Treatment Site,‖ Letter 

Report, FMC Corporation, Lithium Division, Bessemer City, North Carolina, 

July 28, 2010, pp. 1-2. 



141 

 

 

   

84. Haworth, M. ―Interstate 80 Donner Summit Shotblasting and Transil 

Application,‖ Testing Report, Blastrac, Inc. Oklahoma City, Oklahoma, 2011, 

pp. 1-4. 

85. Federal Highway Administration (FHWA). Life Cycle Cost Analysis. 

Summary of Proceedings: FHWA Life Cycle Cost Symposium, Washington, 

DC, 1993 

86. Anderson, K.W, Uhlmeyer, J. Russell, M. and Weston, J. Wear Resistant 

Pavement Study, WSDOT Research Report WA-RD 657.2 State Materials 

Laboratory, Washington State Department of Transportation , Olympia, 

Washington,  2009,124pp. 

87. Zhu, Y., Ahmad, I. and Wang L., ―Estimating Work Zone Road User Cost for 

Alternative Contracting Methods in Highway Construction Projects,‖ Journal 

of Construction Engineering and Management, Vol. 135 (7), July 2009, pp. 61-

69. 

 


