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INTRODUCTION 

Traditionally systems have been analyzed with load inputs which 

are expressible as deterministic mathematical functions of time (e.g., 

step, ramp, sine, etc.). Such a function will be called a conventional 

time function. A function not expressible as a deterministic function 

of time is called a random time function. Random time functions are 

characterized by controlling physical mechanisms of such complexity 

as to make human prediction impossible (e.g., wind gusts, particle 

motion in turbulent flow, etc.). 

A random physical phenomena can frequently be de~cribed sta

tistically. Such a description, while not purporting to exactly express 

a random function, does state its most probable form .. · If the random 

input of a linear system has an adeq1:1ate statistical description, it is 

possible to predict the probable output of the system. An analysis of 

this nature can be carried out either in the time or frequency domains. 

The purpose of this report is an analytical investigation of a 

pipeline system when subjected to random pressure fluctuations. 

Three idealized terminations are considered when acted upon by two, 

separate random inputs. 

This report attempts to unite the work from two fields. It does 

not propose to extend either the fundamental theory of transient con

ditions in pipelines or the tools of analysis employed in random func

tion theory. 
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CHAPTER I 

HYDRAULIC TRANSIENTS IN A PIPELINE SYSTEM 

1. 0 General. 

The discussion following comes in a large part from references 

[1] *, (2], and (3] by Waller. The terminology and symbols intro-

duced in the discussion of pipelines also comes from these references. 

The author feels that the fundamental theory of transient flow in pipe

lines is well established [4, 5], and has been thoroughly confirmed by 

experimentation [6, 7] ; The mode selected for describing the system 

was chosen primarily because of its simplicity and direct application 

to this report. 

1. 1 The General Pipeline System 

The mathematical development for a pipeline from the contin-

uity equation, bulk modulus considerations, and the Navier-Stokes 

equations leads to two simultaneous partial differential equations. 

Solution of these equations is complicated by the presence of a non-

linear frictional resistance term. This difficulty can be eliminated 

by analyzing the flo~ condition as a variab.le fluctuation about some 

mean flow state. To this end, define 

*Numbers in brackets refer to references .in the bibliography. 
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Clt=q+q 

(1) 
Pt = p + p 

where 

qt is the total instantaneous volume flow rate {ft3/sec); 

q is the steady state flow rate which would exist in the absence 

of disturbance; 

q is th€ flow due to disturbance; 

Pt is the total instantaneous pressure {lbs/ft2); 

p is the steady state pressure which would exist in the absence 

of disturbance; · . . : . 

p is the pressure due to disturbance. 

The resulting equations then are [2] 

L aq + Rq + 2E. = 0 
at ax ' 

and (2) 

C~+O+~=O .. at ax 

where L , R , and C are parameters of the pipeline, x and t are · 

the independent variables of direction and time, and p and q , as 

defined in Equation. (1), are the dependent variables. 

The parameters are defined as 

for turbulent flow; 

R = 32µ2 , for viscous flow; 
AD 

(3. a) 
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L = .e_ 
(4) A 

C A 
(5) = K' 

where 

Pf is the portion of the mean pressure p required to dvercome 

frictional resistance and maintain the steady state flow rate; 
' 

i. is the length of the pipeline; 

p is the density of the liquid in the pipeline; 

. A is the cross-sectional area of the pipe; and 

K' is the bulk modulus of the liquid corrected for yield of the pipe . 

. A relationship useful in finding C is the equation for the velocity of 

propagation of liquid-borne sound. This relationship is given by 

2 _ 1 _ K' 
a - LC - p (6) 

where a is the velocity. 

Figure ·l below is definitive of the pipeline system considered in 

this report. 

p J p 

q J q 

: ....... -.. ~----~--------Y-~--------------~>==:_l .... :~-1-_-:::::_x_ ---:_ ---_-_-----..... -.. :-it!B"· 

Soutce 

Figure 1 

(R) 

Receiving End 

Schematic Diagram of the General Pipel~ne System 

I 

The source of mean and disturbing flow and pressure is at i. The 

line is terminated at R , the receiving end. 
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It has been previously demonstrated [8] that the Laplace domain 

solution for Equations (2) with the medi,um initially relaxed (i.e. , 

p(x, 0) = q(x, 0) = 0) is 

P(x, s) = P(R,s) cosh -yx + Z Q(R,s) sinh -yx; 
C 

Q(x,s) = Q(R,s) cosh -yx + P(~s) sinh -yx 
C 

when referenced from the receiving end R , and 

P(y,s) = P(l,s)cosh-yy Z Q(.t , s) sinh 'YY; 
C 

Q(y, s) = Q(l, s) cosh 'YY - P(i s) sinh 'YY 
. C 

when referenced from the source of flow 1 . By definition, 

(7) 

(8) 

(9) 'Y2 = (sC )(R + sL) ; 

2 2 = (R + sL) 
c sC ( 10) 

'Y will be termed the propagation coefficient, while Zc is the charac

teristic impedance. 

This report uses capitalization to denote a transformed rela-

tionship for the dependent variables. This may be shown by 

00 

F(s) = J f(t) e -st dt 

0 

for the one sided Laplace transform. 

1. 2 Idealized Terminations of the General Pipeline System. 

Equations (7) and (8) governing the general system become much 

simpler for certain idealized terminations of the pipeline at R . This 

section will consider three such terminations. 

If at x = 0 the line is terminated in an open end, it has been 
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verified experimentally that p(R, t) = 0 [6) and, consequently, I>" (R, s) = 

0. For this specialized termination Equation (7) reduces to 

P(x, s) = Zc Q(R, s) sinh ')'X; (11) 

Q(x, s) = Q(R, s) cosh "'/X. (12) 

For x = J. , in Equation ( 11), 

P{:t,s) = Z Q(R,s)sinh')'J. 
C . 

(13) 

Substituting for Q(R, s) from Equation (13) into Equation (11), 

_ sinh ')'x 
P(x, s) - P(J., s) sinh ')'~J. . (14) 

Equation (14) states the transformed relationship between the pressure 

a distartce x from the receiving end R in terms of the system pa.-

rameters and the distrubi:6.g pressure at the source J. . 
i 

If at x = 0 the line is terminated in a closed end, obviously 

q(O, t) = 0 ; consequently, Q(O, s) = 0 . For this termination the 

general equations reduce to 

P(x, s) = P(R, s) cosh ')'X; 

Q(x,s) = P(:,s) sinh')'x. 
C 

For x = J. in Equation (15), 

P(J., s) = P(R,:s) cosh 'Yi. 

Substituting from (17) into (15), 

_ cosh ')'X 
P(x, s) - . P(J., s) cosh ')'J. 

(15) 

(16) 

(17) 

(18) 

Equation (18) gives the transformed relationships between the pres-

sure a distance x from R, in terms of the system parameters, and 

the disturbing pressure. 

The third idealized termination is the infinitely terminated pipe-

line and occurs when the receiving end R is far removed from the 



source of disturbance, This case will be approached from the point 

impedence concept. Defining the point impedence of a pipeline as 

_ P(x, s) 
Z(x, s) - Q(x, s) , 

one obtains from Equations (7) and (8) 

7 

Z(R, s) + Zc tanh -yx 
Z(x, s) = Zc Z + Z(R, s) tanh-y-x 

C 

(19) 

and 

Z(l, s) - Z tanh 'YY 
Z( s) = Z c 

y, c Zc - Z(£, s) tanh 'YY 

If x is set equal to 1 in Equation (19), 

Z(l,s) = Z 
C 

Z (R, s) + Z tanh 'Y 1 
C 

Z + Z(R, s) tanh 'Y1 
C 

(20) 

(21) 

It has been shown [lJ that 'Y , the propagation coefficient, is a com-

plex term of the form 

'Y = a + j/3 . (22) 

If 1 is sufficiently large, sinh al = cosh al , and tanh al = 1 . 

For this condition, Equation (21) yields 

Z(i, s) = Z 
C 

Substituting into Equation (20), one obtains 

Z(y, s) = Zc . (23) 

This relationship is in terms of y and is not dependent on the rela-

tive distance between the disturbance and the point of consideration. 

If the result of Equation (23) is substituted into Equation (8), 

P(y, s) = P(l, s) cosh 'YY - P(i, s) sinh'Yy, 

or 

P(y,s) = P(l,s)e-'YY. 
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Finally, since P(x, s) = P(y, s) , 

P(x, s) = P(1, s) e --yy . (24) 

The governing relationships for three physical idealizations have now 

been established. 

Equations (14), (18), and (24) govern respectively t~e open, 

cio-sed, and infinitely terminated pipelines. These equations state 

the transformed relationships between the disturbing pressure, the 

system parameters, and the pressure at some point in the line. 

Pressure fluctuation is of primary importance in pipeline systems; 

therefore, the equations developed are for pressure. 



CHAPTER II 

LINEAR SYSTEMS SUBJECTED TO RANDOM INPUTS 

2. 0 General. 

The material following is available in several excellent sources. 

The author drew heavily from Newton, Gould, and Kaiser [9] in the 

physical interpretation of spectral density. Aseltine (10] and Truxal 

[11] present competent developments of the necessary derivations, 

as does Chan~ (1~] . 

The description of random inputs is frequently approached from 

the theory of probability. For the problems involved in this report, 

this approach is unjustified and unnecessary. For this reason, the 

q.evelopments following are not pursued from such a basis. Persons 

interested in this approach are referred to Laning and Battin (13]. · 

This section is obviously not original with the author. It is 

felt, however, that the relative newness of random function theory 

as applied to systems justifies its inclusion within this report. 

2. 1 . Description of Random Processes in ,the Time Domain. 

The functional statement of a random process in time can pro

ceed from various basic statistical concepts. Averaging processes 

comprise the necessary statistical theory for this report. 

The time average is not unfamiliar and will be introduced first. 

9 
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Consider the emission v(t) from one of N identical function genera

tors. Mathematically the time average for this function may be stated 

as 

1 
= lim 2T 

T-oo 

T 

J vet> dt 
-T 

where T is the period of time. 

A somewhat more difficult concept is the ensemble average. 

Consider the-~mission vi(t 0) of all N function generators at a 

given time t 0 . The ensemble average of the emission of the genera

tors can be defined as 

N 

The ensemble average is often called the statistical average. 

Statistical functions may be roughly classified as stationary 

or nonstationary. A stationary random function may be defined as a 

random function whose statistical description does not vary with time. 

For a physical phenomena this would mean that the complex physical 

mechanism controlling the function generators was time invariant. 

If the output of identical function generators is controlled by 

the same underlying mechanism, and the output is stationary, the 

ergodic hypothesis states that the time averaged emission for a 

single function generator, considered over all time, would be equal 

to the ens·emble average of an infinite number of like function genera

tors at a discrete time t 0 . From intuition, this hypothesis would 

appear re.asonable for most physical pheno.mena. An ·ergodic process 
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may then be defined as a random stationary process whose time aver-

age equals its ensemble average. All ergodic processes are station-

ary, but all stationary processes are not necessarily ergodic. 

Random processes in the time domain are described by the 

correlation function. The correlation function describing two ran-

dom time functions v(t) and u(t) is defined by 

T 

¢, ('T) = v(t) ·u(t+T) = lim 21T 
vu T ...... oo 

f v(t) u(t+T) dt 

-T 

and is called the cross-correlation function of v(t) and u(t) . 

correlation function for v(t) with itself is defined similarly as 

T 

¢, (T) = v(t) v.(t+T) = lim 21T 
vv T ...... oo 

f v(t) v-(t+T) dt , 

-T 

(25) 

The 

(26) 

and is called the autocorrelation function of v(t) . This report will 

concern itself only with the autocorrelation function. It should be 

noted that if 'T = 0, 

cp (0) 
VY 

T 

f V (t)2 dt 

-T 

(27) 

which is the mean square value of v (t) . It can be shown that 10 the 

autocorrelation function is an even function of 'T and is maximum for 

'T = 0 . For v.(t) an ergodic process, 

11\rv_(T) = v(t) v(t+T) = ;(t~~ 

The significance of the autocorrelation function is that it 

serves as the mathematical statement of a random function in time. 

The correlation function of a random input can be used for analysis 

operations, by means of the convolution integral) in exactly the 

same fashion as conventional time functions. 
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2. 2 Description of a Random Process in the Frequency Domain 

The previous section developed the correlation function as the 

describing relationship for random functions in time. As would be 

expected, a corresponding relationship in the frequency domain is 

obtained from 

00 

c/J (T) e dT . J -ST 
vv 

(28) 

-oo 

This relationship defines the spectral density function <2\,v(s) as the 

two sided Laplace transform of the autocorrelation function cjJ (T) 
vv 

The spectral density function is significant in that it serves as the 

mathematical statement of a random function in the frequency domain. 

The inverse relationship also holds. Thus, 

c+joo 

J (/), (s) est ds 
vv 

c-joo 

If s is replaced by jw , the Fourier inversion integral results; 

When T = 0, 

but 

c/J (0) vv 

1 

1 
2 '1T 

joo 

J <,Z'>vv(jw) ejwT dw 

-joo 

joo 

J (/)_ (jw) dw 
vv 

-joo 

T 

= lim 2~ f v(t)2 dt , 
T-oo O 

the m~an square value of the function v(t) . This indicates that the 

spectral density function can be considered a mean-square-value 

(2 9) 

(30) 

(31) 
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density spectrum. The· mean,square value per unit fre.quency for v.(t) 

is found [ 9 J for a· a.is~rete frequency ··w·c by dividing the. spectral 

:.density <t{,.v. ·by·. 2'1T'.: The author recommends.reference (14) by Cheng 

for readers ·desiring adtj.itio:hal i:hsighf into ·frequency spectrum ·ais-

, tributidns .. 

In summary, the spectral density function is the mathematical 

statement of a random time function in the frequency domain. It can 

be employed in a manner -rery similar to the Laplace transform of a 

conventional time function. 

2, 3 Analysis of Linear Systems by Correlation Functions. 

A linear system with a random input may be represented by 

v(t) 

---!~~~ h(t) 

u(t) 

Input Output 

where h(t) , the weighting function, is the time response of the sys

tem due to a unit impulse input. v(t) and u(t) are ·random time func-

tions. The block diagram above represents, from the convolution 

integral, the relationship 

00 

u(t) = J h(t l) V (t - t l) dt l 
-oo 

or 

00 

u(t + T) = J h{t2) v(t + T - t 2) dt2 

-oo 

From the previous definition of the correlation function, 
T. 

¢, (T) = lim 21T 
UU· T -"OO 

J u{t) u{t + T) dt 

-T 

( 32) 

(33) 

(34) 
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Substitution from Equation (32) and (33) for u(t) and u(t + T) yields 

T oo oo 

~uu(7) = ~~00 A J [ J h(t1) v(t - t 1) dt1 ][J h(t2)v(t + 7 - t 2)dt2] dt. 
-T -oo -oo 

(35) 

If the sequence of integration is altered and integration is performed 

first with respect to time, 

</J (T) = uu 

1 
lim 2T 
T--oo 

By definition. however, 

T 

J v(t - t 1) v(t + T - t 2 ) dt 

-T 

(36) 

T ) 

J v(t - t 1) V [ (t - t 1) + ('T ~ t 1 - t 2 ) ] dt . 

-T (37) 

Substituting from Equation (37) into (36), 

00 

</J (T) = uu J h(t2 ) </Jvv(T + t 1 - t 2 ) dt2 (38) 

-oo 

Equation (38) above is a mathematical statement predicting the 

output autocorrelation function of a linear system as a function of the 

unit impulse response of the system and the autocorrelation function 

of the input. This relationship holds for any linear system. 

2. 4 Analysis of Linear Systems by Spectral Density. 

The mode of analysis for a random function has been developed 

for the time domain in Section 2. 3. As with conventional functions, it 

is frequently more convenient to analyze random functions in the 

Laplace domain. 



15 

If both sides of Equation (38) are transformed by the two sided 

Laplace operation. 

+co 

f </,uu(T)e -ST dT = 
+co +co +co 

J [ J h(tl)dtl J h(t2)iJVV('T + t 1 - t2)dt2 }-ST dT . 
-co -co -co -co 

{39) 

Equation (39) c.an be altered by changing the order of integration and 

manipulating the exponential term to the equivalent expression. 

+co 

f</>uu(T)e-sT = 

-co -co ' -co 

(40) 

From Equation (28) and the fundamental definition of the two sided 

Laplace transformation. Equation (40) is seen to be equivalent to the 

relationship 

<t>uu(s) = H(s) H(-s) <t>vv-Cs) (41) 

If s is replaced by jw in Equation (41). the Fourier solution is , 
obtained; 

2 
<t>uu (jw) = H(jw) H(-jw) (/)vv(jw) . = IH(jw )I (/)vv(jw) (42) 

Equation (41) is the fundamental relationship used to analyze 

random time functions. It states the frequency domain relationship 

between the spectral density </J.. (s) of the random input function v , vv 

the system transfer function H(s) which is the transform of the sys-

tem weighting function h(t) , and the spectral density <t>uu (s) of the 

system output u . Equation (41) corresponds to the conventional time 

relationship; U(s) = H(s) V(s) . Equations (41) and (42) are basic 

and applicable to any linear system. 
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It was shown in Section :2. 2 that spectral density is a mean

square-value frequency spectrum distribution. This is the only infor

mation available from frequency domain analysis. This analysis gives 

results for the steady state only, and reveals nothing of the transient 

conditions. 



CHAPTER III 

SPECTRAL DENSITY ANALYSIS OF PIPELINES 

WITH IDEALIZED TERMINATIONS 

3. 0 General. 

The two preceding sections have reviewed pertinent topics in the 

fields of transient pipeline flow and basic random time function theory. 

The following sections will employ portions of both of these fields. 

Basic equations governing the specially terminated pipelines will be 

evolved which will govern these systems when subjected to random 

inputs. The analysis will proceed fro.m a spectral density approach 

as opposed to the correlation function approach. 

3. 1 Open End Termination. 

From Equation (11), the governing relationship for the open end 

line is 

P(x, s) = P(i. ) sinh -y(s)x 
' 8 sinh 'Y (s )i. 

where (sinh_ 'Y (s )x/ sinh 'Y (s )i.] is the system transfer function H(s) . 

Considering the discussion of spectral density analysis and Equation (42), 

. _ . sinh -y(jw)x sinh -y(-jw)x 
<1>pp (x, Jw) - ({)pp (i.' JW) sinh 'Y (jw )i. sinh 'Y (-jw )i. (43·) 

This relationship may be considerably simplified by operation on the 

system parameters -y(jw) and ,y(-jw) . From Equation (9), 
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'Y (jw) = (jwQjwL + R)J l/ 2 

or 

. (. ) [ r-r 2 ·rtn ] 1/ 2 'Y JW = -vLJW + J\...d:\.W , 

From fundamental complex variable theory, 

where 

and 

- CLw2 + jCRw = MejO 

-1 R e = tan (--) . -Lw . 

The parameter 'Y (jw} is now defined by the relationship 1 

where K = O, 1 . The resultant two values of 'Y (jw} are 

18 

(44) 

where the subscripts refer to the respective values of K . A similar 

development on the function -y(-jw) yields 

-y(-jw) 0 = - -y(- jw) 1 = M 1/ 2 [cos(~) - j sin(!>]. 

This report will denote 

(45) 

and 

a _ Ml/2 . ( e) 
/J - sm 2 . (46) 

Operation on Equation (44) yields 

- Lw 
cos e = ------

/ R2 + L2w2 
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which when introduced into the trigonometric relationships for cos (8/2) 

and sin (8/2) results in 

This yields from Equations (45) and (46) 

a = J!¥[JL2w2 + R 2 - Lw] l/
2 

/3 = 1W" [ j L 2w2 + R 2 + Lw ] 1/ 2 

The functions 'Y (jw) and 'Y (-jw) can then be stated 1;1.s 

'Y(jw) = "t (a+ j/3) ; 

,y(-jw) = t (a - j/3) 

(47) 

(48) 

(49) 

(50) 

with a and /3 defined by Equations (47) and (48). The negative sign . 

can be dropped* as it would never occur in a passive physical system. 

Equation (45) may now be stated as 

rA • = .rA • sinh (a+ jJ3)x sinh (a - j~)x 
¥1pp (x. JW) ¥1pp ( 1,Jw) sinh (a:+ j./3)1 sinh ( a ... j/3)1 · (51) 

This equation can be further simplified by now considering the term 

sinh (a + j/3) sinh (a - j/3) . 

From the hyperbolic identities, 

sinh (a+ j/3) = sinh a cos /3 + j cosh a sin /3 

and 

sinh (a - j/3) = sinh a cos /3 - j cosh a sin /3 • 

*See Section (3. 3) for confirmation of this statement. 
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. h ( + "f3) . h. ( "f3) r cosh 2a - cos 2@ 1 sm a · J sm a - J = l 2 . . (52) 

The substitution of Equation (52) into Equation (51) results in 

rt,. . rt,. • [cosh 2ax - cos 2@x] 
'Ppp(x, JW) = ¥-'pp(l dw) cosh 2a1 - cos 2(31 · (53) 

This equation will be employed in the solution of the example problems. 

3. 2 Closed End Termination. 

The relationship governing the closed end pipeline termination, 

from Equation (15 ), is 

_ cosh ')'x 
P(x, s) - P(1, s) cosh 'Y 1 

This system when subjected to random inputs is described by 

. _ . [ cosh 'Y ·w)x cosh 'Y - ·w x] 
c;l>PP (x, JW) - c;l>pp (1, JW) cosh 'Y (jw )1 cosh 'Y (-jw 1 · (54) 

Substitutions from Equation (49) and (50) into Equation (54) yield 

rt,. . ) = rt,. . [cosh (a+ jf3)x cosh (a - jf3)x] 
¥-'pp(x, JW ¥-'pp( 1, JW) cosh (a+ j/3)1 cosh (a - jf3)1 . · (55) 

By a development very much similar to the steps previously employed 

in simplifying the term sinh (a+ jf3) sinh (a - jf3) it can be shown that 

h ( + "f3) h ( "f3) [cosh 2a + cos 2/3] cos a J cos a - J = · · 2 · · 

Equation (56) when substituted into Equation (55) results in 

. . l cosh 2ax + cos 2f3x] 
c;l>pp(x, Jw) = <t>pp(l, Jw) cosh 2a1 + cos 2/31 · 

Equation (57) will be used in solving example problems to follow. 

3. 3 Infinitely Terminated Pipeline. 

(56) 

(57) 

The describing mathematical relationship governing the infinitely 

terminated pipeline is, from Equation (24), 
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P(x, s) = P(i, s) e -,yy (58) 

For P ( 1, s) a random function 

Substituting from Equation (49) and (50). 

C,b, (x. jw) = (,b, (1 , jw )e - 2 ay 
PP PP (59) 

This simplified relationship will be employed in the solution of example 

problems. 

The sign of the exponent in the above equation illustrates why the 

negative sign was· dropped in Equations (49) and (50). A negative a 

would result in a positive exponent~ indicating that pressure is an 

increasing exponential function of y . This would obviously be incor

rect since the pipe is a passive system and tends to damp the input 

pressure rather than amplifying it. 



CEAPTERIV 

PROBLEM PRESENTATIONS 

4. 0 General. 

This chapter contains selected examples of specially terminated 

pipelines designed to illustrate the equations developed in Chapter III. 

Idealized inputs to be used in solution of the examples are also pre-

sented. 

Unfortunately, an adequate solution of a single pipeline entails 

a large nurr:ber of laborious numerical operations. In addition, due to 

the small numbers an9 diverse operations involved, it becomes diffi

cult to obtain a measure of accuracy that is both reasonable and con-

venient. These factors combine to make a computer solution desirable .. 

R , the coefficient of resistance, L , the coefficient of inertia, 

and C , the coefficient of capacitance, are required for a computer 

solution as is i. , the length of the pipeline. The parameter R is 

subject to large fluctuation and is discussed extensively by Waller (6] 

Recent discussion of L and C may be found in fl 5) by Parmakian. 

4 ._ lSpectral Distributions fo~pp ~w). 

Two distributions will be considered in this section and will 

serve as inputs to the specially terminated pipelines. As has been 

previously stated, the inputs are purposely idealized in an attempt to 

22 
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illust~ate _the nature of the system response. 

The limited nature of this report precludes any discussion of 

means for actually computing spectral densities from a trace or re-

cording of a random function. A discussion of this nature can be found 

in Chang [12]. The following discussion then assumes that by some 

means or another the spectral density for the input pressure has been 

obtained. 

The first input considered is a clipped white, or completely 

random, distribution. This input, while physically improbable, is fre

quently used for illustrative purposes. It should clearly show the 

response of the system to the frequencies considered. Figure 2 below 

defines this input. 

+10 q'), ( 1, jw) pp 

, -20 

Figure 2 

Input 1 

The second input is Gaussian, a frequently encountered physical 

distribution. The governing relationship for this input is 

2 w 

<;{)pp(l, jw) = 10 e- lOO 

and is shown in Figure 3. 
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10 (/), (1, jw) pp 

Figure 3 

Input 2 

4. 2 An Open End Pipeline. 

Consider an open end commercial steel pipeline carrying 

water at 70° F. The following information is known: 

q = 0. 5 cfs. ; 

D = 3 in. . 
' 

2. 05 X 10- 5 lb. ft. -2 µ = sec. 

1. 936 slug ft. -3 . p = ' 

J. = 2000 ft. 
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Rather than become involved in additional parameters. the acoustical 

velocity. a • will be set equal to 4000 feet per second for all three 

pipelines, although this would not be so. The preceeding information 

is sufficient to calculate the parameters L and C The additional 

information following is required to compute R : 

1) the Reynolds number, Nr = 241,000; 

2) the Darcy resistance coefficient , f = 0. 018; 

3) n = 1. 80 

Equation (3), (4), and (6) plus the known value of J. give, respectively, 
, 

-6 . R = 26. 7 lb. sec. ft. ' 

L 39. 4 lb. 
2 -4 = sec. ft. . 

' 

C = 15. 85 X 1 0 - l O ft. 4 lb·. - l ; 

J. = 2000 ft. 

R is obtained.as a first term approximation of the series in Equation 

(3). Since q >> q , this would appear to be a good approximation and 

has been experimentally verified [6] to be so. 

4. 3 A Closed-End Pipeline. 

Consider a closed end commercial steel pipeline containing 

water at 70° F .. The following information is given: 

3 -1 q = 0. O ft. sec. ; 

D. = 3 in. . 
' 

2. 05 X 10- 5 lb. sec. ft. -2 
µ = ; 

1. 9 36 slugs ft. -3 p = 
J. = 2000 ft. 

4000 ft. -1 
a = sec. 

This comprises sufficient information to calculate the parameters R , 
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L, and C. Thus; from Equations (3. a), (4), and (6) and the known 

value of i. • one obtains, respectively, 

R = 0.2151b. sec. ft. 
-6 

; 

L 39.4 lb. 
2 -4 

= sec. ft. . 
' 

C = 15. 85 X 10-lO ft. 4 lb. -l; 

i. = 2000 ft. 

Equation (3. a) was used in computing R since for the closed end 

pipeline laminar flow is assumed to exist. 

4. 4 An Infinitely Terminated Pipeline. 

Consider a pipeline carrying water at 70° F. The following 

information is known: 

q = 2 cfs. 

D = 10 in. . ,. 

2. 05 X 10- 5 lb. ft. 
-2 

µ = sec. 

1. 936 slugs ft. -3 
p = 
i. = 50 mi. = 264, 000 ft. 

4000 ft. 
-1 

a = sec. 

Additional information required to calculate the parameter R is: 

1) the Reynolds number, Nr = 289,000 ; 

2) the Darcy resistance coefficient, f = 0. 018 ; 

3) n = 1. 80 . 

Equations (3), (4), and (6) plus the known value of i. give, 

respectively, 

-6 
R = O. 228 lb. sec. ft. ; 

2 -4 
L = 3. 55 lb. sec. ft. ; 

-8 4 -1 
C = 1. 7 6 X 10 ft. lb. ; 

i. = 264, 000 ft. 
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4. 5 Comparative Example Closed End Pipeline. 

One of the primary aims of this report is a comparison of the 

solutions of two pipelines which are identical except for termination 

differences. A comparison of this nature for the open and closed 

terminations is impossible since the closed end pipeline of Section 4. 3 

has a different R from the open end pipeline of Section 4. 2. To 

remedy this, a closed end pipeline is proposed which has identical 

parameters R • L , C and 1 as does the open end pipeline of 

Section 4. 2. Such a pipeline would be very difficult to realize phys

ically. 



CHAPTERV 

PROBLEM SOLUTIONS 

5. O General. 

There are two general types of problem solutions in this report. 

The first type consists of obtaining the spectral density at a given point 

in one of the specially terminated pipelines when subjected to one of 

the inputs. Consider such a solution. namely. the open end pipeline 

with Input 1 at x = 0. 51. Section 4. 2 contains the required pipeline 

data. Equations (47) and (48) give, respectively. a and {3 • while 

Equation (53) provides the defining relationship for the open end pipe

line. If the known data is substituted into Equation (53). the relation-

ship reduces to 

(/). ( 0. 51, jw) = (/) ( 1, jw) F ( w) pp pp 

The solution proceeds by substituting a sequence of values for w into 

the right side of this equation and obtaining their corresponding values 

of (/). (0. 51, jw). For this particular case these values constitute a pp 

solution for the fir st type. 

A second type of solution requires the calculation of values for 

(/)pp(x.wc) at characteristic points along the pipeline for a single fre

quency wc . The results of this calculation may be considered a mean 

squared density distribution in x for a constant value of w . This is 

analogous to the preceding type of solution where a mean square dis-

tribution in w was calculated with x held constant. For the preceding 
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pipeline a s·olution of this nature might be the calculation of (,2), (x, w ) · pp C 

at x equal to . 11, . 2.t, etc. for'w = 6 rad. /sec. Numerical compu-
. C 

tation is the same for both types of solutions. 

Selected solutions of both types are in the figures of the following 

section. It was stated in Section 2. 2 that tlie m,ean square frequency 

distribution ( per unit frequency)* is the square root of this quotient. 

Ordinates of the figures in this section are normalized rms values. 

5. 1 Computer Solution. 

The computer program on the following page illustrates the 

general nature of an I. B. M. 650 Fortran program for a partial pipe-

line solution. The program is presented for illustrative purposes only 

and does not necessarily represent the optimum program. The nature 

of the program is such that on the indices J • M • and N the computer 

selects, respectively, the pipeline, the input and the point of consider· 

ation (value of x) in the pipeline. The index I causes a sequential in-

crease in w . 

The order of operation is such that the computer selects the pipe

line by reading the parameters R , L • C , and 1. • It then selects 

the input·and value for x and proceeds with a cyclic problem solution 

by computing frequency spectrums for each point considered. 

5. 2 Solution Presentation. 

Ordinates in the following figures are normalized rms values of 

p for a given frequency. Normalization was carried out by dividing 

*This is to be understood throughout the remainder of this report. 



C JOOC O COMPUTER SOLUTION 
C 
C 
C 

0000 0 IN THIS PROGRA~ LENGTH =EL 
0000 0 L=D,ALPHA=A,BETA=Bt 
.', ~JOO r_. ! NPUTS=PH IN tOUT PUTS= PH IO. 

1 0 DIMENSION A!3,20)~6!3,20)t 
1 1 PHIN(3,20l,PH10(10,20),Sll10, 
1 2 20),52(10,201 

101 0 ZERO=OeO 
2 C DO 5 I= 1 , 2 0 
3 C \IJ= I 
4 0 PH IN ( 1 ; I ) = 10 • 
5 C PHIN(2,I)=l0~*EXPEF(-(W**2~)/ 
5 1 1oc·.1 
7 0 DO 36 J=l,3 
8 0 READ,R,EL,C,D 
9 0 DO 34 M=l;3. 

10 0 DO 30 N=l,10 
11 J DO 30 I= 1 , 2 0 

111 0 W=I 
12 0 IF ( M-1 ) 13 ,.13, 2 4 
13 b P=N-1 
14 0 IF (N-ll 15,15,17 
15 0 A!J,Il=W*((C*D/2,)*((lle+(R/( 
15 1 D*l~ll**2•l**•5l-lell**•5 
16 0 B(J,J)=W*((C*D/2el*(((le+(R/I 
16 1 D*Wll**j•l**,5)+11)1**•5 
17 0 Q=COSHF(A(Jtll*P*EL/5,I 
18 C X=COSF(B(Jtll*P*EL/5.) 
19 0 Y=COSHF!2,*A!J,Il*EL) 
20 0 Z=CO~F!2~*BIJ,Il*ELI 
210 SllN,Il=IQ-X)/(Y~ZI 
22 0 S21N,1)=(-0+Xl/(Y+ZI 
24 0 GO TO (25,27,291,J · 
25 0 PHIO.(Ntll=PHIN(M;Il*Sl<N,I) 
26 0 GO TO 30 
27 0 PHIO(N,Il=PHIN(Mtll*S2(N,I) 
28 0 GO TO 30 . 
29 0 PHIOCN,Il~PHIN!Mtll*EXPEF(~(A.( 
30 0 CONTINUE 
31 0 DO 32 l=l,20 
32 0 DUMMY=P~NTF(PHIO(ltll,PHI6t2, 
32 1 ll,PHI0!3,Il,PHIOl4,lltPHI0(5 
32 2 ,Il,PHI0(6tI),PHI0(7,Il1PHIO( 
32 3 8,I),PHI0!9,Il,ZERO) 
33 0 DO 34 l=l,20 
34 0 DUMMY=PRNTF!PHI0110,I),ZERO, 
34 1 PHIN!M,1),ZERO,ZEROtZ~RO,ZEROt 
34 2 ZERO,ZERO,ZEROI 
35 ~ DO 36 I=l,20 
36 0 DUMMY=PRNTF(A!J,I)tB(J,I), 
3~ l ZfRO,ZERO,ZfRO,ZERO,ZEROt 
36 l ZERO,ZERO,ZERO) . 
37 0 END 

Figure 4 

Fortran Program for Pipeline Solution 
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all rms values by the input rms value, i.e., by Prms(.t), the rms 

value for p at the· source ( .t). 

Figures 5, 6, 7 and 8 are plots of computed values obtained in 

partial solution of the pipelines presented in Sections 4. 1 and 4. 5. 

These pipelines differ only in termination, being respectively, open 

and closed. 
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Figure 9 illustrates the marked effect that the parameter R has 

on the magnitude of the solution. It is a normalized Prms frequency 

distribution at x = 0 for the pipeline presented in Section 4. 2. Except 

for different values of R , the closed end pipelines introduced in 

Sections (4. 2) and (4. 5) are identical. 

Figure 10 illustrates the effect of a variation in system inputs 

and is for the pipeline presented in Section 4. 1 when subjected to Input 

2. Figure 6 shows the same situation for Input 1. The figure shows 

the normalized p rms frequency distribution at x = 0 . 

Figure 11 illustrates the form of the solution for the infinitely 

terminated pipeline presented in Section 4. 3. The open and closed 

end pipelines of Sections (4. 2) and (4. 5) are also shown for comparison 

of the three terminations at the same input frequency of 8 rad./sec. 

The infinitely terminated pipeline shown in. Figure 11, although ideal

ized, would be physically realizable.· This would be true also for the 

pipelines in Figures (9) and (5 ). 
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CHAPTER VI 

DISCUSSION OF RESULTS 

6. 0 General. 

The discussion in the following sections analyzes and interprets 

the solutions of Chapter V. It begins with a study of the behavior of 

the coefficients a and f3 as functions of the angular frequency w and 

the system parameters R , L , C , .R. , and a . 

The factor IH(x,jw)j 2 [see Equation (42)] is analyzed, rather 

than the defining equations, for the various pipelines. This approach 

is employed since a considerat.ion of the ordinates of the figures in 

Chapter V shows that 

Prms(x, jw) 

p rms (.R., jw) 
-

1 
2'JT 
1 

2 'IT 

(/J(x, jw) 
= I H(x, jw) I 

(/)( 0, jw) 

For simplicity, I H(xc, jc.cl )\ 2 rather than j H(xc, jw) I is discussed, and 

in this report is called the spectral transfer function. 

The primary information desired in a study of spectral transfer 

functions is a prediction of the nature and occurrences of maximums, 

since maximum pressure fluctuations are critical factors in pipeline 

systems. This is accomplished in the following sections by first 

analyzing IH(x,jw)~ 2 as a function of a(w) and f3(w), and as a result, 

as a function of w . ! H(x, jw H 2 is also analyzed as a function of x . 

Characteristics of the various pipeline solutions are interpreted 
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on the basis of this analysis. Variations in the form of the solutions 

as a result of different terminations, inputs, and values of R are 

discussed. 

6. 1 Discussion of a and f3 . 

In the following discussion., the attenuation coefficient a is 

considered a function of w alone. In the limit as w approaches 

infinity,Equation (41), the defining relationship for a(w) , assumes 

the indeterminate form ( i) , and by L 'Hospitals rule can be reduced 

to 

[ 2~]..!. R 
lim a(w) = a(oo) .-, =. CR : 2 = 2aL .. , 4L ·. 
W-"-00 · · 

(60) 

Experience has shown that a(w) very rapidly approaches a(oo) and 

that the rate at which it converges to its final.value is largely deter-

mined by R . This is illustrated by the pipelines in Chapter IV. The 

pipelines in Section 4. 4 and 4. 5 had, respectively, R equal to 26. 7 

-5 and . 215 with a(oo) approximately equal to 8. 46 X 10 and 

6. 821 X 10- 7 . The pipelines were identical in other respects. a(w) 

for the pipeline with R = 26. 7 had a(8) = 8. 4595 X 10- 5 , while for 

-7 . -6 . -1 
R = 0. 215, a(l) = 6. 8209 X 10 (for Rm lbs. sec. ft. , am ft. ). 

{3 , the phase coefficient, is also considered a function of w 
~ 

alone, and for large values of w is seen from Equation (48) to approach 

the linear function 

1 

/3(00) = w [CL]2 = ~ a 
(61) 

The rate at which /3(w) approaches the linear expression in Equation 

(61) is dependent on R, although /3(00) itself is not a function of R . 
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6. 2 Open End Pipeline. 

From Equation (53), the spectral transfer function for the open 

end pipeline is given by 

2 
I H(x, jw) I = 

cosh 2ax - cos 2f3x 
cosh 2al - cos 2{31 (62) 

Equation (62) plots as a three dimensional surface with indepen,-

dent variables x and w. . Formal differentiation to obtain the occur-

rence of maximums becomes extremely involved. Furthermore, the 

surface has a large number of local maximums and would require 

additional involved differentiation to obtain the "maximum" maximums · 

or true maximums. Obviously these true maximums for pressure 

.~ fluctuation are of fundamental importance in a pipeline system. The 

location of these true maximums involves a consideration of the inter-

related variables x and w and is approached in the following para

graphs by first identifying the true maximum and then demonstrating 

the required values of x and w for which it would occur. The terms 

"maximum" maximum, true maximum., and, simply, maximum are used 

interchangeably in the following material. 

For a = 0 , the numerator in Equation (62) has a maximum and 

minimum, respectively, of two and zero, as does the denominator. 

It is seen that the magnitude of the function is heavily dependent on the 

denominator and approaches infinity for 2(31 = n'71' where n = 0, 2~ 4, 

etc. As compared to the denominator, the numerator has a minor role 

in determining the occurrences of maximums. In a true physical sys -

tern, a is never equal to zero. It was pointed out in Section 6. 1, 

how~v~r, that a is generally a very small number, and it would be 

possible for 2al to also be a very small number. If this is the case, 
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2 
IH(x, jw) I , while not infinite, could have very large maximum 

values. 
2 

Consider r H(xe jw)I. , which is a function of w alone at Xe ' 

some constant value of x . It was demonstrated in Section 4. 1 that 

for increasing values of w , a(w) rapidly converges to 2:L, while 

J3(w) approaches (i) . Assuming that this state exists, the denomin

ator in Equation (62) is plotted in Figure 12. This plot shows a nega-

tive displaced cosine curve at cosh 2a1 with minimums at 

(cosh 2a1 - 1) and a period of ('t> , the minimums occurring for 

an'IT 
w = 2°":r where n = 0, 2, 4, etc. The plot of the numerator shows 

maximums of (cosh 2ax + 1) and a period of ( a'IT), the maximums 
C XC 

occurring for w = (n + 1) ~ '1T with n as before. 
XC 

The true maximum value for ( H(x,jw)l 2 at a given point xc 

occurs for a value of w which causes simultaneously, a maximum 

in the numerator and minimum in the denominator and is clearly 

cosh 2ax + 1 
: C 

(63),,. cosh 2a 1 - 1 

For a given value of x the true maximum may or may not occur. 
C 

Consider Figure 12 and assume that this maximum does occur for 

.. a7T a'TT 
some value of w = w{:· For the numerator then, w1 = 2x + N x 

C C 
where N is the number of full periods (!7T) between w = 0 and 

C 

w=w 
1 Similarly for the denominator, w1 = M ~'TT where M is the 

number of full periods ( ~7T) between w = 0 and w = w1 . Equating· 

the two, 

a'IT + N a,r 
2x X 

Ma'IT 
= -1.-

C C 

· and 



cosh 2ll'X - cos 2f3x 

cosh 2£11X + 1 
C ----

cosh 2ax - 1 

I 
I , 
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w( rad.) 
sec . 

. _cosh 2a£ + 2. 

-·- cosh 2a£ . 

cosh 2a1 - 1 

Figure 12 

Numerator and Denominator of IH(xc• jw) 12 

X N = tM(~) - 1] 
X 

w( rad.) 
sec. 

where M and N are by definition integers. If the ratio ( /) is 

such that some integer value of lVl causes an integer value for N • a 
X 

true maximum is possible at x = xc . If the ratio of ( y) is such 

that no integer value of M exists which yields an integer value for N • 
X B 

a true maximum can not occur. Maximums occur for ( 1c = 2M) 

where M = 1, 2, 3, etc. and B = 1, 3, · · · • 2M - 1 . The values 

of M correspond to the modes of vibration, while the values of B 

refer to the peaks of the modes. The first true maximum occurs for 

w1 = M ( ~'IT) and is repeated after a period of 2w1 = 2M ( T) . 
·x 

This analysis is verified in Figure 7. For this case _ :(-f) = ~ 
and for M = 1, N == 0. The first maximum occurs at· T = 6. 28 

2a,r 
rad./sec. The period is seen to be - 1 - = 12. 56 rad./sec. The 
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second maximum occurs for M = 3 , N = 1 at w2 = 18. 84 rad./sec. 

It should be noted that the "maximum" maximum value does not change 

at a given point x with increasing frequency. The maximum at 
C 

X 

w2 = 18. 8~ rad. /sec. for / = 0. 5 is also shown in Figure 5. 

The occurrence of integer multiples of 7r as characteristic 

frequencies is an individual characteristic of the pipeline considered 

and is not the general case, because for this pipeline 21 = a . 

The preceding discussion of the spectral transfer function is 

intended to demonstrate primarily the effects of frequency variations; 

however, they reveal much of the functional relationship of x . Equa

tion (63), which defines the maximum for IH(xc, jw)l 2 , shows that the 

maximum values are increasing functions of x . Figure 5, which 
C 

shows f H(x, jwc)I corresponding to the third mode of vibration at 

wc = 18. 84 rad. /sec., demonstrates this. The locus of both maxi

mum and minimum values in Figure 5 increases from right to left. 

Extending the discussion that developed from Figure 12, it is seen 

that for a given value of M , the largest maximum occurs when 

xc 2M - 1 
B = 2M - 1 and T = M 

Frequencies lying to both sides of w = 18. 84 rad./sec. in 

Figure 5 demonstrate the effect, along the pipeline, of increasing 

frequencies. It is seen that higher harmonics result for inc1:easing 

frequencies. Figure 5 shows the beginning of transition from third 

harmonic to fourth. 

6. 3 Closed End Pipeline. 

Discussion of the closed end pipeline is much the same as for 

the open end and is consequently condensed. 



Equation (57) gives for the closed end pipeline, 

IH(x ·w)l2 = cosh 2ax + cos 2{3x 
' J cosh 2a.f + cos 2/3.f 
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(65) 

The spectral transfer function is seen to have the same possible maxi-

mum for the closed end pipeline as for the open end pipeline. 

If the spectral transfer function is considered as a function of 

frequency alone at x , some constant value of x , an analysis of the 
C 

nature pursued in the preceding section can be followed in determining 
X 

ratios of (y) for which true maximums can occur and the frequen-

cies at which they do occur. 

The following defining relationship for w1 , the frequency at 

which a true maximum occurs in the closed end pipeline is evaluated: 

(66) 

X 

A true maximum may exist for (-j:-) = B 
2 M + 1 where M = 0, 1, 2, 

etc. and B = 0, 2, · · · , M-1 with M and N as previously defined. 

The first maximum occurs in the frequency spectrum at w1 = 

;; (2M + 1) and is repeated after a period of 2w 1 = a.e'"'(2M + 1). For 

the closed end pipeline M + 1 corresponds to the harmonic modes of 

vibration, while B corresponds to the peaks in the modes when 

moving from right to left down the pipeline. 

Figure 6 and 8 illustrate the correctness of this analysis. In 
X 

Figure 8, / = 0. O . The first maximum would be expected for the 

initial value of M = 0 The initial maximum occurs for ~;(2M + 1) == 

3. 14 rad./sec. and is repeated after a period of at(2M + 1) = 6. 28 

rad./sec. The third maximum occurs for M = 2 at W3 = ;;c2M + 1) 

= 15. 70 rad. /sec. This maximum occurs for the third harmonic mode 
X 

(M + 1 = 3) and is seen in Figure 6 at ( /) = 0. 0 (B = 0). The value 
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X 

of B = 2 would correspond to the next peak to the left at . / = 0. 4. 

Study of Figures 6 and 8 reveals that the open and closed end 

pipelines behave similarly in several respects. First, Figure 8 demon~ 

strates that at, a given point x , maximums do not change for increase 

ing frequencies. Figure 6 shows that the closed end pipeline tends to 

damp maximum pressure surges as they proceed away from the source 

of disturbance, and that increasing frequencies result in higher har-

monies. 

The primary difference in the open and closed terminations is 

illustrated by Figures 5 and 6. The receiving end R is always a mode 

in the open end pipeline. In the closed end pipeline for harmonic modes, 

R is always a point of maximum fluctuation. Maximums for the two 

pipelines never ·coincide, making it difficult to compare frequency 

differences. 

6. 4 The Infinitely Ter:rninated Pipeiine. 

Equation (59) yields for the infinitely terminated pipeline 

l 2 -2ay H(x, jw )I· = e . 

This relatively simple relationship is illustrated by Figure 11. Typi-

cally, in an infinite pipeline R is small, and (l'(w) converges to 

a(ao) very rapidly. Consequently, there is pradically no variation in 

the form of this solution for different frequencies. 

Figure 11 shows an interesting contrast in the form of the solu

tions for the three general types of terminations at w = 8 ra.d. /sec. 

The maximums and minimums for the open and closed pipelines nearly 

coincide for this frequency. 
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6. 5 Input and Values of R . 

Figures 10 and 8 show the solution differences which occurred, 

respectively, when Input 2 and Input 1 were inputs to the pipeline of 

Section 4. 5. The solutions differ only in magnitude, reflecting the 

linearity of the system. Figure 10 is of interest in that Input 2 is a 

more physically realistic input than Input 1. It is known that for very 

high frequencies, the pressure fluctuations at x = 0 decrease. On 

the basis of the results in Section 6. 3, this can only be explained by 

decreasing pressure fluctuations at the source for increasing frequen-

cies as illustrated by the Gaussian Input. 

Figure 9 is for the pipeline of Section 4. 3 where R = 0. 215 lb. 

sec. ft. - 5 and demonstrates the marked influence that R has on the 

magnitude of the solutions. It may be compared with Figure 6 which 

shows the same pipeline with R = 26. 7 lb. sec. ft. - 5 . Discussion 

in the first parts of Sections 6. 1 and 6. 2 should .clarify this phenom;:ha. 

It should be noted that the s.olU:tions differ in magnitude but not in phase. 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

The purpose of this report is an analytical investigation of 

specialized pipelines systems when subjected to random pressure 

fluctuations. The investigation proceeds as follows. The governing 

partial differential equations for transient conditions in pipelines are 

introduced and by Laplace transform analysis are reduced, using 

boundary conditions, to a pair of transformed equations in x and 

s . These equations are simplified for idealized pipelines with 

open, closed, and infinite terminations. and are altered in form to 

relate the transformed relationships between pressure at the source 

of disturbance and at some other point in the pipeline. 

The fundamental relationships governing linear systems when 

subjected to random inputs are introduced in Chapter II. On the bases 

of statistical definitions introduced in that chapter. the correlation 

and spectral density functions are shown to serve, respectively. as 

the time and frequency domain description of random functions. Equa

tions are developed to show analytical techniques using both of th.ese 

descriptions. 

Chapter III demonstrates that the transformed relationships of 

Chapter I can be fitted to the analytical techniques evolved in Chapter 

II. Equations relating the spectral density of the input pressure to the 

spectral density of pressure at a point x are developed for the three 
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ideally terminated pipelines. 

Idealized pipelines .and inputs - presented - in : Chapter_ IV · 

are designed to illustrate the nature of the solutions for the various 

terminations in ter~s of the variables; frequency w and distance x 

Solutions to particular cases are presented in Chapter V in the form 

of normalized rms distance and frequency distributions.-

49 

The results presented in Chapter V are analyzed and discussed 

in Chapter VI by correlating predicted results from analysis of the 

spectral transfer function to particular figures in Chapter V. Com-

parison is made on the basis of variations in termination, input, and 

value of the parameter R . 

Analysis is presented in Chapter VI which makes possible pre

diction of the location (value of x) of true maximum pressure fluctua-

tions .and the frequencies at which these true maximums would occur. 

The correctness of this analysis is verified by comparison with ex-

· ample problems. Conclusions are drawn on the basis of this analysis 

which relate the magnitudes of maximum pressure fluctuations to 

changes in x and w . · 

This report clearly illustrates the applicab:Uity of spectral 

density analysis to specially terminated pipelines. It is conceivable 
-· 

that for some investigations the· location of maximum pressure fluctu-

ations and the frequency at which they would be expected to occur could 

be of more significance than the time response of the system. The 

form of analysis presented in this report could then be superior to con-

ventional analysis. 
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