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Chapter 1

Introduction

A tremendous amount of what we know about the physical world, we have learned

from scattering processes. From simply looking at something with our eyes to

see what color it is or throwing rocks at windows to see if they break, to complex

processes like x-ray crystallography or scanning electron microscopes, we have been

learning by bouncing things off of each other since the beginning of history. Young

children might perform several scattering experiments every day.

We use scattering to probe that which we don’t know, and we do this usually

by taking that which we don’t know and making it interact with something we do

know. We can tell the color of some object easily if we know that we are looking at

it in the presence of a faithfully white light source. We know the light is white, so

the color we see must be the object’s true color. In exactly the same way, we use

electron microscopes to explore very small things by taking a beam of electrons, the

known part, and looking at how they interact with the object under observation,

the unknown part.

In fact, the more we know about the “known” part before the scattering, the

more we can learn from the “unknown” part afterward. This is why the invention

of lasers was so profound. Never before did we have anything that we knew so much
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about as these coherent beams of light, and suddenly new worlds of measurement

and research opened.

Suffice to say, aiming to understand scattering is a worthwhile goal. And, as

new areas of science become interesting, new types of scattering processes will be

developed in order to learn about them.

So, let us define a scattering process to be any one in which two or more

bodies are brought into close proximity of each other such that their behavior

is affected, then the aim of any scattering calculation is to determine the effects

of this interaction. In literal collisions, this interaction is the physical contact

of the bodies in question, such as the scattering of billiard balls. In a quantum

mechanical treatment, this interaction is just that the bodies come close enough

to exert significant1 force on each other, usually through electromagnetic fields,

that the presence of each influences the behavior of the others. There might be no

direct contact in quantum scattering, but the process is still called a collision.

This work aims to study the collision of three atoms by theoretical calculations,

and then use the understanding gained from this to either explain or predict exper-

imental results. In this way, like nearly every other scientific endeavor, scattering

theory works in tandem with experiment. However, this work is novel in that it

expands on existing work in this field by employing new methodologies to treat

the situation where all three atoms are separated. That is, the system may be

three separated atoms in its initial state or its final state or both. The scenario

where the three atoms begin separated but collide to form a atom and diatomic

1It is worth noting that the meaning of “significant” in this context is dependent entirely on
the magnitude of these forces and the degree of accuracy desired from the calculation.
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molecule (diatom) pair is called three-body recombination (3BR). The time rever-

sal of three-body recombination is where an atom and diatomic molecule collide

to form three free atoms, and is called collision-induced dissociation (CID).

Three-body recombination and collision-induced dissociation are physical pro-

cesses that occur in a large number of chemical reactions, and these reactions them-

selves occur in a wide variety of regimes in natural science. Such processes happen

in upper atmosphere ozone production and are responsible for a vast number of the

chemical processes that occur in combustion, and also are of vital importance to

thorough understanding of cold and ultra-cold chemical dynamics; a field that has

been of great interest in recent decades and has produced multiple Nobel laureates.

It this field of cold and ultra-cold chemical processes where we focus our interests.

Certainly for as long as this area of physics has been interesting, it has also been

difficult. Theoretical predictions of these processes can be very complicated, having

to account for numerous possible outcomes. The limiting factor is computational

power, both in time and memory, since many of these calculations could easily

grow to be impossibly large for today’s computers, or take a prohibitively long

time to conduct. An atom-diatom interaction has the possibility of scattering

elastically, inelastically, or reactively, and the atoms could all break apart entirely

in collision-induced dissociation. Accurately representing all of these possibilities

in a scattering calculation is an arduous task, one that requires basis functions that

accurately describe all of these possible outcomes. This is exceptionally difficult

for states were all atoms break apart and are free (CID), since the basis functions

corresponding to such outcome states must span enormous regions of space. In

many calculations over the years, this task has been simplified by restricting the

collision energy to sufficiently low values that CID processes are not possible.
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The goal of this work is to remove this restriction by developing a methodol-

ogy of constructing a set of basis functions that are highly efficient and accurate.

These basis functions are physically motivated, which in the simplest sense means

that the form of the basis functions is influenced by the physical potential of the

system as well as the boundary conditions. Other methods such as a discrete vari-

able representation (DVR)[1, 2], finite element methods (FEM)[3], or distributed

approximating functionals (DAF)[4], rely on a basis set that does obey the bound-

ary conditions, but otherwise attempts to solve for physical states by employing a

large basis set.

In brief overview, this method constructs basis functions for the three-body

system by first calculating the two-body wave functions for each possible pair of

atoms. Between two atoms, there will be a finite number of bound and quasibound

wavefunctions, and and infinite number of continuum states, i.e. those for which

the two atoms break apart. All of the bound and quasibound wavefunctions are

calculated as functions of the internuclear distance between the two atoms. These

two-body wavefunctions are then projected onto a set of hyperspherical coordinates

for the three-body system. The continuum state basis functions are constructed

from a direct product of the zero-potential solutions to the hyperspherical coor-

dinate Hamiltonian, and the linear combination of the zero-energy solutions to

each set of two-atom Hamiltonians. The resultant functions have appropriate be-

havior in the regions where all three atoms are widely separated, as well as in

regions where the two-atom potentials are not negligible. If possible, any available

symmetry afforded by the system is used to simplify the projected wavefunctions

and reduce computation. For systems of three like atoms, this savings can be

significant.
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As the three atoms separate after collision, either each individually or as an

atom-diatom product, this basis set becomes more accurate as the three-body

effects of the potential diminish. At short ranges, when the three atoms are near

each other and the three-body interaction effects are large, this basis method is

less effective because it does not account for these effects. However, at short

distances, the space spanned by the wavefunctions is much smaller than at large

distances, and the basis functions require much less storage and computation.

Therefore, when the three atoms are close, the basis set can be augmented easily

and inexpensively to compensate for any shortcomings in the basis without adding

any significant costs in time or memory. Thus, this basis can be used quickly and

effectively throughout the entire scattering process.

The layout of this document is organized to first provide a theoretical back-

ground of the quantum treatment of scattering for a three-body system, and then

to introduce the new basis method as applied to the HNe2 model problem. This

application to the HNe2 model problem demonstrates the effectiveness, efficiency,

and accuracy of the new basis method against existing solutions of a CID/3BR

problem. Next, the development of the basis method is given for a realistic, three-

body homonuclear system, along with an explanation of how group theory can

be applied to take advantage of the system’s symmetries in order to reduce the

computational overhead. The results of these calculations is then presented.
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Chapter 2

Three-Body Scattering

This work concerns three-body scattering of atoms A, B, and C, such that the

possible processes of the collision are

A+BC

B + AC

C + AB

A+B + C


←→



A+BC

B + AC

C + AB

A+B + C

where any of these may be an elastic or inelastic process, which is to say that

the collision of an atom A with diatom BC may result in A + BC → A+BC or

A + BC → A+BC∗, where BC∗ is a different internal state of the BC diatom.

This work treats the three-body scattering problem in a time-independent quantum

formalism[5, 6] in which we solve for wavefunctions at a single constant energy.

At that constant energy we can find the probabilities of transition between all

of these processes simultaneously, whereas in a time-dependent calculation, one

would solve for a range of energies, but only get the transition probabilities of

one initial state per calculation. In terms of reactive scattering, where we are just

looking at A+BC ↔ B + AC ↔ C + AB, each of the different diatomic outcomes
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is generally called an arrangement channel. This, however, can often be confused

with the general term of channel, which often refers to a of specific quantum state

being considered in the calculation. Using channel to refer to a specific quantum

state is very common in the literature1 and does not generally refer to a specific

atom-diatom permutation and can refer to a three-body breakup state.

Ultimately, the goal is to solve for the total wavefunction of the system, Π,

which is a solution of the equation

HΠp
i = EΠp

i (2.1)

where E is the total scattering energy and H is the time-independent Hamilto-

nian. The subscript i represents a composite quantum number that specifies a

specific state and/or arrangement channel. The subscript f will also be used in

this capacity, and thus i and f loosely refer to initial and final states, respectively.

While initial and final are not meaningful terms in a time-independent formalism,

in discussing scattering generally, they are useful in labeling the from and to states.

We say that when the scattering bodies are removed to the point that they are

no longer reacting, that the potential between them is negligible, then the system

is asymptotic. We assume that the initial state of the system is asymptotic and

that the final state is asymptotic. The range of asymptotic depends highly on the

type of particles being scattered and the extent of the long-range potential energy

factors [7]. If we describe such asymptotic states by Ai(x), where x here refers

1see referenced works by M. H. Alexander, G. C. Schatz, W. Miller, B. R. Johnson, W. A.
Lester, Jr., J. C. Light, K. D. McLenithan, G. A. Parker, R. T Pack, D. Secrest, R. B. Walker,
A. Kuppermann, B. K. Kendrick, and others
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to the nine coordinates describing the positions of the three atoms, then in the

asymptotic limit we have

Πi → Ai(x) +
∑
f

F (f ← i|ki,kf )Af (x) (2.2)

The vector kf is the wave number vector with a magnitude given by

ki =

[
2µ

~2
(E − εf )

]1/2

(2.3)

where E is the total energy, εf is the energy of the f state, and µ is the system

reduced mass. The direction of the kf vector is that of the vector separating the

products of the reaction, and the angles used to describe this direction depend

on the chosen coordinate system chosen. The quantity F (f ← i|ki,kf ) is the

scattering amplitude[5, 6, 8], which contains all information that we can possibly

know about the collision interaction and is a function of the initial and finial

internal energies.

The next step is to expand Πi as a series of partial waves labeled by an angular

momentum[9], J , and by M which is the projection of J on a space-fixed axis.

Πi =
2π

k
1/2
i

∑
JM`i

ili+1C(ji`iJ ;mi,M −mi,M)Yli,M−mi(k̂i)Ψ
JMi (2.4)

where `i is the orbital angular momentum of state i about the system center of

mass, and ji is the internal angular momentum of the collision products, and C is

a Clebsch-Gordan coefficient. The problem now becomes one of solving for ΨJMi,

which is an eigenfunction of an angular momentum operator with eigenvalue J and
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an eigenfunction of the operator of the projection of J on an axis with eigenvalue

M .

There are two main reasons for expressing Π as the expansion of equation

2.4. First, solving for Ψ functions is theoretically and computationally simpler

since only one total angular momentum J must be considered at a time. Second,

and the more significant reason, is that expressing Π in this fashion illuminates

physical reasons for limiting the number of initial and final states that need to

be considered. At small collision energies, only a very limited number of ΨJM

wavefunctions, specifically those with small or zero values of J , are involved in

the collision process, and the rest are unaffected. As the energy increases, ΨJM

wavefunctions with higher values of J must be solved for in order to get accurate

scattering cross sections, but it is always a finite number. This means that only a

limited number of ΨJM states need to be considered for a given collision process,

and only the initial and final states related to J by the Clebsch-Gordan coefficient

need to be considered in the scattering calculation.

The formulation of three-body scattering has been, so far, as generic as possible.

To describe this process in more detail requires a choice of coordinates in which to

define ki,f , x, and definitions of the asymptotic states Ai,f (x). We will now look

at some of the ways to do this that are relevant to the present work.

Formally, a quantum description of the three-body scattering process requires

nine dimensions. Usually three of these coordinates can be ignored by factoring

out the center of mass motion of the system, which has no influence on the inter-

action of the particles, and then attempt to solve the equation in the remaining

six coordinates. While there are means to solve such a differential equation with

direct numerical solvers, such a computation is prohibitively extremely expensive
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and time consuming. Instead, the problem is broken into smaller, more manage-

able pieces by solving only portions of the full Hamiltonian at a time and then

expanding the full wavefunction in a basis of partial solutions.

In the rest of this chapter, we describe the Hamiltonians and Ψ wavefunctions

in the coordinates that are relevant to this present work on collision-induced dis-

sociation. Later, we draw parallels to these formulations to show how the basis set

used for CID is developed.

2.1 Jacobi Hamiltonian and Wavefunctions

A review of Jacobi coordinates[10, 11] is given in appendix B.1, but in brief, there

are three sets of Jacobi coordinates for a three atom system. These sets are labeled

by τ , where τ = A,B,C. The coordinates, minus center of mass, are given by rτ ,

which is the vector between the τ + 1 and τ + 2 atoms, and Rτ , which is the vector

between the center of mass of the diatom and the τ atom.

It is more convenient, however, to work in mass-scaled Jacobi coordinates that

are defined as

Sτ = Rτdτ (2.5)

sτ = rτ/dτ (2.6)

where dτ is a mass-scaling factor defined as

dτ =

[
mτ

µ

(
1− mτ

M

)]1/2

(2.7)
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where M is the total mass, M = mA +mB +mC and µ is the three-body reduced

mass given as

µ =

√
mAmBmC

M
(2.8)

The effects of this mass-scaling on Rτ and rτ can be seen in figure B.2, but it

should be noted that dτ is not far from one for systems of atoms with similar

masses, and dτ only effects an order of magnitude difference on Rτ and rτ if the

atomic masses differ by three or four orders of magnitude. If the masses are all

identical, then dτ = 1.07457 for all τ .

There are two distinct advantages to using mass-scaled Jacobi coordinates over

the standard definition. First, the kinetic energy operators ∇2
sτ and ∇2

Sτ
both

have the same reduced mass, µ as defined above. The kinetic terms in rτ and

Rτ have different reduced mass factors. This change merely allows the kinetic

energy operator to be written more simply. The second benefit is more substantial.

By using mass-scaled coordinates, the transformation from one set of mass-scaled

Jacobi coordinates to another, say from those oriented for channel τ to those

oriented for channel τ+1, is simply a kinematic rotation on a six-dimensional vector

comprised of the components of Sτ and sτ . Furthermore, this transformation is

a continuous and unitary transformation that is a function of only a single angle

(see appendix B.1 or reference [8]). Thus this mass-scaling affords an easy way

to change from one set of Jacobi coordinates to another, and so the Sτ and sτ

coordinates are used throughout this work.

H =
−~2

2µ

[
1

Sτ

∂2

∂S2
τ

Sτ +
1

sτ

∂2

∂s2
τ

sτ

]
+
L2
τ

2µS2
τ

+
J 2
τ

2µs2
τ

+ V (sτ ,Sτ ) (2.9)
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where J is the rotational angular momentum operator of the diatomic molecule,

L is the orbital angular momentum operator of the third atom about the diatom

center of mass. The total angular momentum operator J is defined as

J = Jτ + Lτ (2.10)

and µ is the three-body reduced mass,

µ =

[
mAmBmC

mA +mB +mC

]1/2

(2.11)

First, for mass-scaled Jacobi coordinates, Ψ is expanded in functions of sτ ,Sτ ,

and the angles that define ŝτ and Ŝτ , totaling six coordinates, such that we have

for a given J total angular momentum with space-fixed (SF) projection M ,

ΨJMτiνiji`i =
∑

τfνf jf `f

1

sτfSτf
GJτiνiji`i
τfνf jf `f

(Sτf )ζνf jf (sτf )Y
JM
jf `f

(ŝτf Ŝτf ) (2.12)

where i and f are initial and final state labels, τ labels the arrangement channel,

ν and j define the vibrational and rotational quantum numbers of the diatom, and

` is the angular momentum of the atom and diatom about the system center of

mass. For simplicity, here on i and f may be used to represent any or all of the

channel dependent labels.

The Y (ŝτ , Ŝτ ), are defined as

Y JM
j` (Ŝτ , ŝτ ) =

∑
m

C(j, `, J ;m,M −m,M)Yjm(ŝτ )Y`,M−m(Ŝτ ) (2.13)

where C is the appropriate Clebsch-Gordan coefficient. The Y are eigenfunctions of

the J2, Jz,J 2,L2 operators with eigenvalues of J(J+1)~2,M~, j(j+1)~2, `(`+1)~2
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respectively. The basis functions, ζνj are defined as solutions to the vibrational

diatomic equation,

[
−~2

2µ

∂2

∂s2
τ

+
j(j + 1)~2

2µs2
τ

+ V2(sτ )

]
ζνj(sτ ) = Eνjζνj(sτ ) (2.14)

where V2(sτ ) is the diatomic potential between the τ + 1 and τ + 2 atoms.

The Ψ wavefunction is expanded in these sets of ζ and Y functions, and a set

of coupled channel matrix equations are formed by expanding the wavefunction

and Hamiltonian in the ζY basis to form matrices with elements labeled by the

basis quantum numbers νj`,

〈
ζν′j′`′Y

JM
j′`′

∣∣H + V
∣∣Ψ〉 = HG(Sτ ) + VG(Sτ ) = EG(Sτ ) (2.15)

where H and V are matrices in the ζY basis. The solutions of these coupled

equations is a set of G(Sτ ). These G functions are usually found numerically by

applying any one of several methods to solve these coupled differential equations.

The states that are considered bound are those basis functions ζY that corre-

spond to diatomic energies that are less than zero. These correspond to distinct

rovibrational states labeled by νj`, for when the third atom is far away and the

potential reduces to the diatomic potential, the Jacobi Hamiltonian reduces to a

two body Hamiltonian, as will be shown explicitly in section.

Likewise, the continuum states are those for which the two-body energy is

greater than zero asymptotically. Since the third atom is already assumed to be

infinitely far away, a continuum diatomic state means that the energy is suffi-

cient that all three atoms can separate infinitely. These wavefunctions oscillate

indefinitely to sτ →∞.
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2.2 Delves Hamiltonian and Wavefunctions

The relationship between Delves[12] and Jacobi coordinates is as simple as that of

polar to Cartesian coordinates,

sτ = ρ sin(ϑτ ) (2.16)

Sτ = ρ cos(ϑτ ) (2.17)

and so the formulation of the Hamiltonian and wavefunctions is quite similar. In

Delves hyperspherical coordinates, the wavefunction Ψ is expanded as

ΨJMi = 2
∑
f

1

ρ5/2
ΓJfi(ρ)

Υf (ϑτ f ; ρξ)

sin(2ϑτ f )
Y JM
f (ŝf , Ŝf ) (2.18)

which is a solution to

H =
−~2

2µ

[
1

ρ5

∂

∂ρ
ρ5 ∂

∂ρ
+

2

ρ sin(2ϑτ )

(
∂2

∂ϑ2
τ

)
sin(2ϑτ )

2
+

4

ρ2

]
+

J 2

ρ2 sin2(ϑτ )
+

L2

ρ2 cos2(ϑτ )
+ V (~ρ) (2.19)

The Y functions used here are identical to those of equation 2.13 used in the Jacobi

formulation, and the Υ functions are the solutions to the “vibrational” equation

of

[
−~2

2µρ2
ξ

(
∂2

∂ϑ2
τ

− j(j + 1)

sin2(ϑτ )
− `(`+ 1)

cos2(ϑτ )

)
+ V BC(ρξ sinϑτ )

]
Υνj`(ρξ;ϑτ )

= HvibΥνj`(ρξ;ϑτ ) = Eνj`(ρξ)Υνj`(ρξ;ϑτ ) (2.20)
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where ρξ is some fixed value of ρ and is a parameter of this equation. The potential

V BC is the two-body potential energy curve between atoms B and C. The Υ

functions represent vibrations of the triatomic system, since ϑτdepends only on

the magnitudes of sτ and Sτ . At a large ρξ, the Υ(ϑτ ) functions for bound states

closely resemble the ζ(sτ ) functions, since the range for which the bound states

have appreciable amplitude is limited to a finite range of sτ . In this case, a small-

angle approximation can be used, sτ = ρ sinϑτ ≈ ρϑτ and Sτ = ρ cosϑτ ≈ ρ,

and so the Υ functions can be thought of as though representing the vibrational

motion of the diatom. At short or moderate ρξ values this is not necessarily a

good analogy; the bound wavefunctions have amplitude across the entire [0,π/2]

domain of ϑτ , and so while not a vibration of the diatom, it is still a vibrational

motion and ν is a vibrational quantum number.

The Delves Hamiltonian is expanded in this basis of Υ(ϑτ )Y (ŝ, Ŝ), and the set

of coupled equations is solved for solutions Γ(ρ). The combination

Υνj`(ϑτ )Y JM
j` (ŝ, Ŝ)

ρ(5/2) sin(2ϑτ )
(2.21)

is called a surface function, as it is a function that spans the surface of the hyper-

sphere at a particular value of ρ.

It should be noted that this formulation of the surface functions is intended to

produce an expansion basis that is close to physical. Any set of functions could be

used provided that they are complete and obey the boundary conditions. By using

differential equations that are subsets of the terms of the full Hamiltonian, it is

hoped that these basis functions will be more efficient, that is, we will need fewer

of them to obtain an accurate Ψ, than what a generic, non-physically motivated

basis could provide.
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If we multiply from the left by a Y JM function and integrate over the angles

of the s and S vectors, we get matrix elements in the basis of the coupled-angular

functions. The Y functions are orthogonal with respect to J and M , so the

matrices produced by the kinetic energy terms are diagonal – ρ and ϑτ depend

only on the magnitudes of s and S, and derivatives with respect to these variables

have no effect on Y . The potential matrix elements, however, are not generally

diagonal. For a single matrix element where a specific value of ` and j have been

selected, the Hamiltonian becomes

〈Yj`|H|Ψ〉 =

{
−~2

2µ

2

ρ5/2 sin(2ϑτ )

[
∂2

∂ρ2
+

1

4ρ2

]
ρ5/2 sin(2ϑτ )

2
+
∑
j′`′

V ABC
jj′``′ (ρ, ϑτ )

− ~2

2µρ2

2

ρ5/2 sin(2ϑτ )

[
∂2

∂ϑ2
τ

− `(`+ 1)

cos2 ϑτ
− j(j + 1)

sin2 ϑτ

]
ρ5/2 sin(2ϑτ )

2

}
〈Yj`|Ψ〉

(2.22)

Now we both subtract and add the diatomic potential, V BC , so that the full Delves

Hamiltonian can be written with terms that exactly match equation 2.20,

V ABC
jj′``′ (~ρ) = V ABC

jj′``′ (~ρ) + V BC(ρ sinϑτ )− V BC(ρ sinϑτ ) (2.23)

Note that V BC(s) does not depend on the angles defining ŝτ or Ŝτ , and thus matrix

elements of this potential are diagonal with regard to the angular momentum basis
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functions;
〈
Yj`|V BC |Yj′`′

〉
= δjj′δ``′ . After making this change and rearranging we

have

〈Yj`|H|Ψ〉 =

{
−~2

2µ

2

ρ5/2 sin(2ϑτ )

[
∂2

∂ρ2
+

1

4ρ2

]
ρ5/2 sin(2ϑτ )

2

+
∑
j′`′

V ABC
jj′``′ (~ρ)− V BC(ρ sinϑτ )

− ~2

2µρ2

[
∂2

∂ϑ2
τ

− `(`+ 1)

cos2 ϑτ
− j(j + 1)

sin2 ϑτ
+ V BC(ρ sinϑτ )

]}
〈Yj`|Ψ〉

(2.24)

It is important to make the distinction that integrating over the angles of sτ and

Sτ changes H; the angular momentum operators are replaced by their eigenvalues.

Making use of the identity operator I =
∑

n |Yn

〉〈
Yn| with n as a composite index

representing j and `, we have

∑
n

〈Ym|H|Yn〉 〈Yn|Ψ〉 = H ′δmn 〈Yn|Ψ〉 (2.25)

Furthermore, we can see from equation 2.18 that

〈
Yn(ŝ, Ŝ)

∣∣∣∣Ψ(~ρ)

〉
=

2

ρ5/2 sin(2ϑτ )
Υn(ρ;ϑτ )Γn(ρ) (2.26)

so making this substitution and then multiplying from the left by ρ5/2 sinϑτ/2

gives

H ′Υ(ρ;ϑτ )Γ(ρ) =

{
−~2

2µ

[
∂2

∂ρ2
+

1

4ρ2

]
+
∑
j′`′

V ABC
jj′``′ (~ρ)− V BC(ρ sinϑτ )

− ~2

2µρ2

[
∂2

∂ϑ2
τ

− `(`+ 1)

cos2 ϑτ
− j(j + 1)

sin2 ϑτ
+ V BC(ρ sinϑτ )

]}
Υ(ρ;ϑτ )Γ(ρ)

(2.27)
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where again sτ = ρ sinϑτ . For a given value of ρ, the terms in square brackets in the

second line of equation 2.27 above are identical to those of vibrational Hamiltonian

in equation 2.20. By multiplying from the left with an Υ function and integrating

over ϑτ , we now create matrix elements that are labeled by j, `, and ν. Because Υ

depends on ρ only parametrically, the kinetic energy matrix is still diagonal, but it

is important to note that the set of Υ functions change continuously as ρ is varied

– each new value of ρ requires a new basis set, but this is a difficulty handled by

the propagator algorithm. Because of this parametrization, the terms in square

brackets mentioned earlier can be replaced by the eigenvalue, E , of equation 2.20,

H ′′ 〈Υνj`Yj`|Ψ〉 =

{
−~2

2µ

[
∂2

∂ρ2
+

1

4ρ2

]
+
∑
j′`′ν′

V ABC
jj′``′νν′i(ρ)−

∑
ν′

V BC
νν′ (ρ)− [Eνj`(ρ)]

}
〈Υνj`Yj`|Ψ〉 (2.28)

where in similar fashion to equation 2.25, we have

∑
n

〈Υm|H ′|Υn〉 〈Υn|Ψ〉 = H ′′δmn 〈Υn|Ψ〉 (2.29)

As matrices, the above equation 2.28 can be more simply expressed using the

notation

[Tρ]mn =

〈
ΥmYm

∣∣∣∣−~2

2µ

∂2

∂ρ2

∣∣∣∣ΥnYn

〉
Diagonal (2.30)

[
VABC

]
mn

=

〈
ΥmYm

∣∣∣∣−~2

2µ
V ABC

∣∣∣∣ΥnYn

〉
Non−Diagonal (2.31)

[
VBC

]
mn

=

〈
ΥmYm

∣∣∣∣−~2

2µ
V BC

∣∣∣∣ΥnYn

〉
Diagonal (2.32)

[E]mn =

〈
ΥmYm

∣∣∣∣E − ~2

8µρ2

∣∣∣∣ΥnYn

〉
Diagonal (2.33)
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where m and n have been used as composite indices to represent one or all ν,j,

and `, as appropriate. With these, equation 2.28 can be rewritten as

[H] = [T] +
[
VABC

]
−
[
VBC

]
− [E] (2.34)

Like the Jacobi ζ(sτ ) functions, the states considered “bound” are those that

correspond to a atom+diatom result, and for these the Υ(ϑτ ) functions have a

negative energy relative to the three-body break-up limit. Also, the continuum

states here have positive energies that approach zero. Different from the continuum

ζ(sτ ) functions, though, the continuum Υ(ϑτ ) states are bounded by the finite

domain of ϑτ , which is [0, π/2]. Therefore, they have a discrete energy spectrum

and a finite range of amplitude in hyperspherical coordinates, and integrals over

these states are manageable.

2.3 APH Hamiltonian and Wavefunctions

The APH coordinates of Pack and Parker[8] have a much more complicated trans-

formation from Delves or Jacobi coordinates than what what Delves and Jacobi

coordinates share between them, and visualizing the motion of the atoms in re-

lation to changes in the coordinates is more difficult. An explanation of these

coordinates is given in appendix B.3. The APH Hamiltonian is

H =− ~2

2µρ5

∂

∂ρ
ρ5 ∂

∂ρ
− ~2

2µρ2

[
4

sin 2θ

∂

∂θ
sin 2θ

∂

∂θ
+

1

sin2 θ

∂2

∂χ2

]
+

J2
x

µρ2(1 + sin θ)
+

J2
y

2µρ2 sin2 θ
+

J2
z

µρ2(1− sin θ)
− i~ cos θ

µρ2 sin2 θ
Jy

∂

∂χ
+ V (~ρ

(2.35)
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As before, the intention is to propagate in ρ, and so we expand Ψ in a set of

functions in the coordinates θ and χ, with a set of coefficients ψ(ρ),

ΨJMpn = 4
∑
t,Λ

1

ρ5/2
ψJpntΛ (ρ)ΦJptΛ(θ, χ; ρξ)D̂

Jp
ΛM(α, β, γ) (2.36)

where here Λ is the body-fixed (BF) projection of J . The D̂ functions are the

Wigner rotation functions of the Euler angles, αβγ, that rotate from a space-fixed

coordinate system to a body-fixed one. The Φ(θ, χ; ρξ) function is called a surface

function, as it is the solution to the Hamiltonian of the APH surface at a constant

ρξ.

It should be noted that the Hamiltonians of equations 2.9, 2.19, and 2.35 are

all the same Schrödinger equation, just expressed in different coordinate systems.

Furthermore, while labeled differently depending on the definition of an initial and

final channel, the full wavefunctions, Ψ, defined in equations 2.12, 2.18, and 2.36

are all equivalent.

The motions of the three atoms described by changing either θ or χ alone is not

easily describable as a rotational or vibrational motion, and the APH Hamiltonian

of equation 2.35 is not separable into equations that could define functions of θ

alone or χ alone, as was done in the Jacobi system with sτ , Sτ ,Θτ , or in the Delves

system with ρ, ϑτ ,Θτ . The Φ surface functions are solutions to the differential

equation (equation 164 in reference [8]),

HJΛ
surfΦ

J
tΛ(θ, χ; ρξ) = EJtΛ(ρξ)Φ

J
tΛ(θ, χ; ρξ) (2.37)
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where Hsurf is the APH surface Hamiltonian defined at a constant value of ρ = ρξ,

which is given as,

Hsurf =
−~2

2µρ2
ξ

[
4

sin(2θ)

∂

∂θ
sin(2θ)

∂

∂θ
+

1

sin2(θ)

∂2

∂χ2

]
+
A+B

2
~2J(J + 1) +

15~2

8µρ2
ξ

+

[
C − A+B

2

]
~2Λ2 + V (ρξ, θ, χ) (2.38)

where A, B, and C are defined as

A =
1

µρ2
ξ(1 + sin θ)

(2.39-a)

B =
1

2µρ2
ξ sin2 θ

(2.39-b)

C =
1

µρ2
ξ(1− sin θ)

(2.39-c)

It is possible to solve for Φ(θ, χ; ρξ) numerically by several methods. In Pack

and Parker’s original paper on the APH coordinate system[8], surface functions

were generated for the H3 system using a finite element method (FEM). It is

also possible to use analytic functions, such as hyperspherical harmonics or set

of orthogonal polynomials, but such bases usually do not represent the physical

system well, and many basis functions are required.

A notable difference to the Delves and Jacobi formulation is that this equation

has body-fixed labels rather than space-fixed. Either a space-fixed or body-fixed

system can be used, they are equivalent up to a unitary transformation by Wigner

rotation functions. In the space-fixed frame, a set of coordinate axes is chooses

such that the projection of the total angular momentum along the z axis is given

by M . In a body-fixed frame, a set of coordinates is chosen relative to the position
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of the atoms, and the total angular momentum projection on the body-fixed z

axis is given by Λ. The choice to use a body-fixed coordinate system here will be

explained in section 4.3.

With the definition of Hsurf in equation 2.38, the APH Hamiltonian of 2.35

can be written as

H = Hsurf + Tρ + Tc + Ta (2.40)

where Tρ are the kinetic terms associated with ρ, and Tc and Ta are the Coriolis

and Asymmetric-Top terms that arise from the angular momentum operators. The

Coriolis and asymmetric-top terms will be discussed in more detail in chapter 4,

but for now it should be noted that these two terms couple the ΦJ
tΛ functions

of different Λ values; the Coriolis terms couple states of Λ with Λ ± 1, and the

asymmetric-top operator couples states of Λ with Λ± 2.

22



Chapter 3

Collision Induced Dissociation of the

Helium-Neon2 System

The method of constructing physically-motivated basis functions from asymptotic

states was first tested on the HNe2 system that was studied by Parker et al.[13]

and Colavecchia et al.[14] as a system to exemplify collision-induced dissociation

(CID) in a single channel.

In the above-noted work on HNe2, the masses of the atoms were reduced from

their physical values to 0.7 amu for Hydrogen and to 16.025757 amu for Neon. The

purpose behind this alteration was that, with these masses, there existed n HNe

diatomic bound states. As a result, there was no possibility of a reactive scattering

process (i.e. no H + NeNe→ Ne+HNe reaction), and the problem can be handled

effectively with a single channel set of Delves or Jacobi coordinates.

In this chapter we look at the methods used by Parker et al.[13] and Colavecchia

et al.[14] to solve the problem and compare these methods to one where we replace

the basis set with the asymptotic bound, quasibound, and continuum solutions.

The results of these calculations are then presented in section 3.6.
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3.1 Replacement Functions

In the work done on the HNe2 system[13, 14], the Υ(ϑτ ) vibrational basis functions

were determined by calculating numerical solutions of the equation 2.20, rewritten

here,

[
−~2

2µρ2
ξ

(
∂2

∂ϑ2
τ

− j(j + 1)

sin2(ϑτ )
− `(`+ 1)

cos2(ϑτ )

)
+ V BC(ρξ sinϑτ )

]
Υνj`(ρξ;ϑτ )

= HvibΥνj`(ρξ;ϑτ ) = Eνj`(ρξ)Υνj`(ρξ;ϑτ )

where again, V BC is the two body potential of diatom BC. This set of functions, in

conjunction with the coupled spherical harmonic functions Y JM
j` (ŝτ , Ŝτ ), form the

“propagation” or “adiabatic” basis set. This basis is ideal in that it it automatically

forms a set of orthonormalized, physically motivated basis functions, and as ρ

increases and the three-body contributions to the potential energy surface diminish,

this basis approaches exact solutions for the Delves surface functions.

The downside to this basis is the need to recalculate it at every propagation

step. For a small basis, this is not infeasible, but it does become unwieldy or

impossible for a large basis set. The HNe2 problem also has a distinct advantage

in calculating basis functions in this way because only one channel needs to be

accounted for; there is no HNe diatom. Furthermore, the Delves surface functions

are separable in terms of ϑτ and Θτ . The coupled spherical harmonic functions,

Y (Θτ ), are analytically known, and only the vibrational Υ functions need to be

calculated.

The intention is to replace these Υ functions with bound and quasibound state

functions that are based on the diatomic Hamiltonian for the Ne2 diatom, and

continuum functions that are related to the zero energy solutions of equation 2.20.
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The diatomic Hamiltonian in mass-scaled Jacobi coordinates is

HBCζν(s) = ενζν(s) =

[
−~2

2µ

∂2

∂s2
+

~2

2µ

j(j + 1)

s2
+ V BC(s)

]
ζν(s) (3.1)

where by virtue of using the three-body reduced mass, µ, the two-body Hamilto-

nian can be written in terms of s, a three-body coordinate, that still describes the

internuclear distance between atoms B and C.

To understand how making basis functions from a diatomic Hamiltonian for use

in a triatomic scattering problem, it is important to show the connection between

the Υ and ζ functions, and the Hamiltonian equations that define them (equations

2.20 and 3.1).

As the system approaches the A+BC asymptotic configuration, the value of

ρ becomes very large while the value of sτ = ρ sin(ϑτ ) remains relatively small.

Thus, using the large ρ limit and the small ϑτ approximation of ϑτ ≈ sinϑτ , we

have

∂2

∂s2
τ

=
∂2

∂(ρ2 sin2 ϑτ )2
=

1

ρ2

∂2

∂ϑ2
τ

(3.2)

It can also be shown that there is a direct relationship between derivatives with

respect to the mass-scaled Jacobi coordinate sτ , and the non-mass-scaled Jacobi

coordinate rτ such that

∂2

∂s2
τ

= d2
τ

∂2

∂r2
τ

(3.3)

where dτ is the mass-scaling factor and is dependent on the arrangement channel,

τ , which in this example is arrangement A. It can be further shown, with a bit of
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algebra, that there is a relationship between the three-body reduced mass, µ, the

two-body reduced mass for the diatom BC, µ2, and the mass-scaling factor dA,

µ = µ2/d
2
τ (3.4)

which allows for the relation (in the limit of Sτ →∞),

1

2µ

1

ρ2

∂2

∂ϑ2
τ

→ 1

2µ

∂2

∂(ρ sinϑτ )2
=

1

2µ

∂2

∂s2
τ

=
d2
τ

2µ

∂2

∂r2
τ

=
1

2µ2

∂2

∂r2
τ

(3.5)

Here we can see that in the asymptotic limit of Sτ →∞, the derivative term with

respect to ϑτ in equation 2.20 directly relates to the derivative term with respect

to rτ , the BC diatomic internuclear distance, that is in equation 3.1.

Now we look at the other terms of equation 2.20 in the limit of ρ → ∞ and

ϑτ ≈ sinϑτ (or Sτ →∞, sτ finite):

~2

2µρ2

`(`+ 1)

cos2 ϑτ
→ ~2

2µ

`(`+ 1)

S2
τ

= 0 (3.6)

~2

2µρ2

j(j + 1)

sin2 ϑτ
→ ~2

2µ

j(j + 1)

s2
τ

=
~2

2µ2

j(j + 1)

r2
τ

(3.7)

V ABC(~ρ)→ V BC(r) (3.8)

where equation 3.8 is necessarily true as atom A is being removed infinitely far

away as S →∞.

Observing the terms of equation 2.20, which I will reprint here for convenience,

HvibΥj`ν(ρξ;ϑτ ) =

[
−~2

2µρ2
ξ

[
∂2

∂ϑ2
τ

− j(j + 1)

sin2(ϑτ )
− `(`+ 1)

cos2(ϑτ )

]
+ V BC(ρξ sinϑτ )

]
Υj`ν(ρξ;ϑτ )

= Ej`ν(ρξ)Υj`ν(ρξ;ϑτ )

26



and the terms of equation 3.1,

HBCζν(sτ ) = ενζν(sτ ) =

[
−~2

2µ

∂2

∂s2
τ

+
~2

2µ2

j(j + 1)

s2
τ

+ V BC(s)

]
ζν(sτ )

it is apparent that in the limit of Sτ → ∞ or ρ → ∞ and ϑτ ≈ sinϑτ , these two

equations are identical; Hvib → HBC . Therefore, it can be concluded that

Υ(ρ, ϑτ )→ ζ(rτ ) (3.9)

For clarity, it must be noted that this is true only for the bound states – that

is, those states corresponding to a low enough energy that it is not possible for

atoms B and C to separate and the small angle approximation can be used for ϑτ .

It is only with this condition that these limits may be taken. Otherwise, it would

be possible for sτ to approach infinity as well, but as it stands, sτ is finite and only

the limit of Sτ →∞ need be considered.

3.2 Bound, Quasibound State Replacement

The bound and quasibound Υ(ϑτ ) functions are replaced with projections of the

bound and quasibound ζ(ρ sinϑτ ) functions at some intermediate value of ρ. As

discussed in reference [13], asymptotically the bound state basis functions approach

a constant, negative energy, while the quasibound states approach a constant,

positive energy.

This is accomplished by identifying the Υ functions with quantum labels νj`that

correspond to the known bound and quasibound “asymptotic” states, which are

the known diatomic solutions ζ(sτ ) and substituting ζ functions that correspond
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to the same values of ϑτ as the original Υ functions did. The ζ are functions of sτ ,

not ϑτ , what we are really doing is projecting the function ζ(s) onto the constant

ρξ surface by use of the relation sτ = ρξ sin(ϑτ ).

In section 2.2, we showed how the full Hamiltonian of the problem could be

simplified by expanding the solution, Ψ, in a basis set where the basis functions

were defined by some of the operators in the Hamiltonian, thereby allowing us to

substitute operators with eigenvalues.

We have shown that the solutions to equation 2.20, Υ, are equivalent to the

solutions to equation 3.1,ζ, in the asymptotic case. For S <∞, this equivalence is

not true. This is of critical importance, because using the solutions to the vibra-

tional, three-body Hamiltonian in equation 2.20 as a basis set is only sensible while

the functions are orthogonal to each other, are representative of the physical sys-

tem, and as a basis are compete enough to accurately describe Ψ. The substituted

ζ functions, while they do represent an asymptotic case of the A+BC system, are

not orthogonal to the continuum state solutions of the vibrational surface function

equation, 2.20.

The new basis most easily represented as

{Ῡ} = {Υ} − {Υbound}+ {ζbound} (3.10)

In order to recreate an orthonormal basis set to represent the vibrational motion

of the BC diatom, we must orthonormalize the set of functions. There are multiple

ways in which we can do this, and the option of which method to use is left open.

Once the set of functions {Ῡ} have been orthonormalized, the matrix elements

of equation 2.28 must be recalculated. The {Ῡ} basis functions are not eigen-

functions of the Hamiltonian operator in equation 2.20, and therefore the operator
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terms in the Full Hamiltonian that are used in the vibrational Hamiltonian, equa-

tion 2.20, to define the Υ functions cannot be replaced with the eigenvalues E , as

was done with the {Υ} basis. This means that the matrix, whose elements are

defined by equation 2.33, is no longer diagonal, and a new equation for propagation

must be employed after this replacement is made.

Similar to equations 2.30-2.33, we now have

[Tρ]mn =

〈
ῩmYm

∣∣∣∣−~2

2µ

∂2

∂ρ2

∣∣∣∣ῩnYn

〉
Diagonal (3.11)

[
V̄ABC

]
mn

=

〈
ῩmYm

∣∣∣∣−~2

2µ
V ABC

∣∣∣∣ῩnYn

〉
Non−Diagonal (3.12)

[
VBC

]
mn

=

〈
ῩmYm

∣∣∣∣−~2

2µ
V BC

∣∣∣∣ῩnYn

〉
Diagonal (3.13)

[
Ē
]
mn

=

〈
ῩmYm

∣∣∣∣Hvib −
~2

8µρ2

∣∣∣∣ῩnYn

〉
Non−Diagonal (3.14)

Note that the full potential term is different than in equation 2.31 due to

integration over a different basis set, as is the E term different. The most notable

change is in equation 3.14, in which the eigenvalue E has been replaced with the

vibrational Hamiltonian since Ῡ is no longer an eigenfunction of this operator.

This also means that E is not diagonal. The Y functions are not altered; E is still

block-diagonal with respect to given values of j and `. The only matrix elements

of E that need to be calculated directly are those with the same values of j and `.
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3.3 Continuum State Replacement

The continuum state functions are physically motivated by the structure of the

zero-potential continuum solutions of the Delves internal Hamiltonian, equation

2.20, rewritten here for convenience,

HvibΥj`ν(ρξ;ϑτ ) =

[
−~2

2µρ2
ξ

[
∂2

∂ϑ2
τ

− j(j + 1)

sin2(ϑτ )
− `(`+ 1)

cos2(ϑτ )

]
+ V BC(ρξ sinϑτ )

]
Υj`ν(ρξ;ϑτ )

= Ej`ν(ρξ)Υj`ν(ρξ;ϑτ ) (3.15)

The solutions to this differential equation for a zero potential are Jacobi poly-

nomials, Pνj`(ϑτ ), multiplied by sine and cosine terms that depend on the values

of j and `. They have the form of

ϕCj`n(ϑτ ) = sinj+1(ϑτ ) cos`+1(ϑτ )Pj`n(2ϑτ ) (3.16)

where the superscript C denotes the continuum function. The Jacobi polynomials

are analytically known, and the function φC(ϑτ ) is the exact solution of the internal

Delves Hamiltonian with a zero potential. These functions are also labeled by j, `,

and n, which serve as the quantum number labels for these “vibrational” continuum

functions.

An important note to make regarding the “vibrational” quantum number ν and

its relation to the label n in the above functions is that, though they represent the

same quality of the function, they are not the same number. The basis functions

label ν = 0 as the lowest state, which in this case and most others, is the lowest

bound state. A value of n = 0 in equation 3.16 gives the Jacobi polynomial with

zero nodes, which is the lowest continuum state. Therefore, n relates to ν as
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ν = n + nbqb, where nbqb is the number of bound and quasibound states. Some

care must be taken in keeping these number straight in practice to ensure the

continuum states are faithfully represented, for neglecting this difference produces

continuum states with too many nodes.

As ρ → ∞, the range for the diatom well region diminishes to zero, and the

continuum eigenstates approach the functions of equation 3.16. The effect of the

two-body potential is that more nodes are added in the well region, and the wave-

function is shifted in accordance with the two-body scattering length.

These effects can be included in the constructed continuum states by first calcu-

lating the two-body, zero energy wavefunction in s, converting this to be a function

of ϑτ , and using this data in place of the sinj+1 term. Thus, we seek the solution

to

−~2

2µ

(
∂2

∂s2
τ

+
j(j + 1)

s2
τ

)
φC0
j (sτ ) + V (sτ )ϕ

C0
j (sτ ) = 0 (3.17)

This appropriately adds the extra nodes to the continuum functions, as well as

shifting the wavefunction closer or farther from the diatom coalition point. Since

this zero-energy, non-zero potential diatom solution is constant (as a function of

sτ ) throughout the propagation, it needs to be calculated only once for each value

of j.

Thus, the constructed continuum function in entirety for the ϑτ coordinate is

ϕCj`ν(ϑτ ) = ϕC0
j (ϑτ ) cos`+1(ϑτ )Pj,`,ν−nbqb(ϑτ ) (3.18)

and, like for the bound states, the surface function is ϕC multiplied by the coupled

spherical harmonic function, Y JM
j` (ŝτ , Ŝτ )
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3.4 Orthonormalization and Eigenvalues

The φ functions so far constructed for the bound, quasibound, and continuum

states are not orthonormal, though they do represent the physical features of the

exact eigenfunctions of the internal Hamiltonian. For the propagation stage, it

is necessary to get the eigenvalues of the internal Hamiltonian in this basis, and

for matching it is important that these basis functions, which are serving as the

primitive basis, be orthonormal.

Orthonormalization can be accomplished by a Graham-Schmidt procedure, or

through an overlap matrix. Computationally, constructing an overlap matrix is

no more expensive than the Graham-Schmidt procedure, and has the benefit that

can be incorporated directly with diagonalizing the Hamiltonian. This is done by

solving the eigenvalue equation

HintX = OXE (3.19)

Where H is the Hamiltonian matrix in the φ basis, and O is the overlap matrix,

and X are the non-orthonormal eigenvectors. By multiplying on the left by O−1/2

and using an identity between H and X, we can rewrite this equation as

O−1/2HO−1/2O1/2X = O1/2XE (3.20)

Solving this equation for O1/2X does give orthonormal eigenvectors, and the cor-

rect eigenvalues of the internal Hamiltonian as solved by the orthonormalized set

of the φ functions. Multiplying Hint on both sides with O−1/2 has the effect of or-

thonormalizing the basis Hint is represented in, which is in this case the constructed

basis.
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However, to calculate the O1/2 matrices requires another diagonalization step.

The O matrix is constructed and diagonalized. The eigenvectors of this diagonal-

ization step are stored. Then, the square root of each eigenvalue is taken, and the

matrix transformed back by reapplying the transformation matrix of eigenvectors,

requiring two matrix multiplications and one matrix solve. This is in addition to

diagonalizing the Hint matrix. For a large basis set, this can greatly increase the

time required in the calculation.

After diagonalization of the Hamiltonian, by which ever orthonormalization

procedure, the eigenvectors produced are, as normal, coefficients of the given ba-

sis that produce orthonormalized eigenvectors associated with the Hamiltonian’s

eigenvalues.

There are a few more points in this process that one must be very careful about.

Diagonalization routines generally order the eigenvalues of the matrix in some fash-

ion. The LAPACK eigenvalue routines order the eigenvalues in ascending order.

If one is trying to maintain labels on the basis functions, an unnecessary but often

useful practice, then the diagonalization procedure can reorder the states, and thus

confuse the state labels. This is especially true when the spectrum of eigenenergies

spans many rovibrational states. In practice if the states are sorted by rotational

quantum numbers, this ordering will be destroyed if the states are reordered by

energy. Therefore it is useful to construct and diagonalize the internal Hamiltonian

in blocks of like angular momentum quantum numbers. In Delves coordinates, this

is particularly useful since the angular momentum functions associated with the

basis are coupled spherical harmonics indexed by the j and ` quantum numbers.
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Basis states of different j and ` values are orthogonal by definition of the spheri-

cal harmonics, and there is no coupling between angular momentum blocks in the

internal Hamiltonian matrix or the overlap matrix.

Within a specific angular momentum block, energy sorting can still mis-align

the states with their labels. This can occur if there are quasibound states among

the basis functions. Asymptotically, continuum states approach zero energy, while

quasibound states approach a positive constant. Continuum states that are at one

value of ρ higher in energy than the quasibound states will eventually drop below

the quasibound state in energy ordering. If only a set number of the lowest energy

states are kept in the basis, then the basis function representing the quasibound

states eventually drops from the basis as more continuum states are included.

However, if in the formulation process of the basis the quasibound state is faithfully

represented, then there is no concern of whether it stays in the basis. If the labels

can be disregarded, then there is no concern of this reordering.

3.5 HNe2 Symmetry Analysis

The potential energy surface for the HNe2 system belongs to the totally symmetric

A1 irreducible representation of the C2v point group. In this point group, there are

two reflection planes, and a single C2 rotation, which can be seen in Figure 3.1.

The dashed line in the figure is a reflection plane, as is the horizontal solid line (all

of the solid lines represent reaction channels). A positive reflection in the plane

of the dashed line corresponds to an even parity, as does a positive C2 rotation.

The reflection plane containing the horizontal solid line along the NeNe channel

can also be positive or negative. It is positive for all states of the Ne2 diatom that
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have an even j rotation quantum number, and the reflection is likewise negative

for all rotations for which j is odd for the diatom.

The Ne2 diatomic arrangement channel is the horizontal solid line in Figure 3.1.

This channel is aligned with a reflection plane element of the C2v group. If this

reflection is even, then it means that the rotational quantum number of the Ne2

diatom cannot be odd, for if j were odd, then the wavefunction value would be a

different sign above this line then it would be below, constituting an odd reflec-

tion. Therefore, when calculating this scattering interaction for a single irreducible

representation, only even or odd values of j can be included for this channel.

This is not to say that even and odd values of j cannot be coupled, ever. It

does mean that they cannot be coupled when it violates the symmetry of the

wavefunction, and this is simply because states belonging to different irreducible

Figure 3.1: Potential surface symmetry for the HNe2 system in APH coordinates,
belonging to the C2v point group in APH coordinates. The solid lines show where
two atoms coalesce in a given arrangement channel. The vertical dashed line and
the horizontal solid line represent the two reflection planes of C2v.
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representations cannot couple. Therefore, all wavefunctions in irreducible represen-

tation A1 will have even values of j, all wavefunctions in irreducible representation

A2 will have odd j values, and so on for B1 and B2.

This separation of even and odd j values is not true for the other two channels.

In the calculated and published results for HNe2 [13, 14], the masses of the nuclei

were scaled to disallow any HNe channels. Still, for this an any AAB type system

where the irreducible representation is C2v the heteronuclear diatomic channels are

not aligned with any reflection symmetry elements, and therefore the irreducible

representation of the system does not affect the rotational levels

3.6 Results of HNe2 Calculations

The goal of this calculation was to test whether using an asymptotic basis set for

the formulation of adiabatic bases was effective. To this end, it is worth noting that

there were no changes in the transition probabilities of the bound state interactions.

This is not true of the continuum functions due to the quasibound state.

Figure 3.2 shows an energy correlation diagram for a 25 channel problem. All

states up to λ = 16, where λ is defined as 2ν + j + `, were included in the

propagation. Notable is the mostly flat line at positive energies that corresponds to

the j = 4 quasibound state. In the original formulation of the problem, the lowest

25 energy states were included in the propagation basis, according to their allowable

values of νj`, and we see that at around 235 Bohr, this state looses quasibound

character. Were more basis functions included, we would see avoided crossing

instead. As it is, by this point, the quasibound state is no longer represented in

the basis functions.
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In the new method, the eigenfunctions of the Delves’ vibrational equation (eqn.

2.20) for bound and quasibound states are explicitly included in the basis as pro-

jections of the asymptotic states. As a result, the quasibound state never leaves

the basis, as is shown in figure 3.3.

The transition probabilities for energies less than three-body breakup were not

affected significantly by this change, as can be seen in comparing the ground state

to ground state ν = 0, j = 0 to ν = 0, j = 0 transition probabilities in figures 3.4,

transition probabilities without bound and quasibound state replacement, and 3.5,

with the bound and quasibound state replacement.

It is very difficult to see the difference between the numbers in comparing the

data in figures 3.4 and 3.5. The numbers actually differ by about 0.001% between

the cases of using the replacement basis functions and the original basis functions

at the lowest propagation energy. At higher energies, the transition probabilities

differ by as much as 5%, but in either case of using the original basis functions or

the replacement functions, the transition probabilities still oscillate at 300 Bohr

with an amplitude of 10-15%, which indicates they are not converged results. The

basis is simply too small at this energy, but the two methods to agree to within

the margins of error. This indicates that the constructed basis set works nearly as

well as using numerically exact solutions to the Delves’ vibrational equations.
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Figure 3.2: HNe2 energy correlation diagram for 25 channels with the standard
Υ(ϑτ ) basis functions. No replacement functions used. Note that the quasibound
state, appearing here as a line approaching a positive constant energy, eventually
drops out of the basis.
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Figure 3.3: HNe2 energy correlation with bound and quasibound states replace
with asymptotic ζ(sτ ) functions. Note that in comparison to figure 3.2, the quasi-
bound state is kept in the basis.
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Figure 3.4: HNe2 transition probabilities for νj = 00 to νj = 00, 25 channels, at
−47.5e− 6 Hartree without replacing bound or quasibound basis functions
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Figure 3.5: HNe2 transition probabilities for νj = 00 to νj = 00, 25 channels,
at −47.5e − 6 Hartree with replacing bound and quasibound basis states with
asymptotic diatom states.

39



Chapter 4

Three Atom Reactive Scattering with Collision

Induced Dissociation

4.1 Introduction

Finding solutions to the Schrödinger equation in which the possible products of

the scattering process are

A+BC

B + AC

C + AB

A+B + C (4.1)

is best handled in a coordinate system that can universally treat all channels with-

out giving preference to any specific channel. For this we employ the Adiabatically

Adjusting Principle-Axis Hyperspherical coordinate system of Pack and Parker[8].

A brief description of these coordinates is given in appendix B.3. This is an in-

ternal coordinate system, in that it describes the three coordinates that show the
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relative positions of the atoms to each other, with the other six dimensions of the

wavefunction described by the three Euler angles, αβγ, and the three coordinates

of the system’s center of mass.

This problem differs from the discussion of the HNe2 system in that all reactive

scattering is possible, such that the system may undergo the exchange reactions of

A+BC 
 B + AC 
 C + AB (4.2)

in addition to the possibility of A+B+C. The full Hamiltonian in this system is

given by

H = T + V (ρ, θ, χ) (4.3)

where

T =− ~2

2µρ5

∂

∂ρ
ρ5 ∂

∂ρ
− ~2

2µρ2

[
4

sin 2θ

∂

∂θ
sin 2θ

∂

∂θ
+

1

sin2 θ

∂2

∂χ2

]
+

J2
x

µρ2(1 + sin θ)
+

J2
y

2µρ2 sin2 θ
+

J2
z

µρ2(1− sin θ)
− i~ cos θ

µρ2 sin2 θ
Jy

∂

∂χ
(4.4)

and V (ρ, θ, χ) is the full three-body potential, which for our purposes here we

assume to be defined at all points of ρ, θ, χ and to approach zero where all three

atoms are infinitely separated.

We wish to find solutions to this equation, Ψ, that are wavefunctions with good

quantum numbers of the total angular momentum J , the projection M of J on a

fixed axis, and parity, p, such that we have

HΨJMpn(ρ, θ, χ) = EnΨJMpn(ρ, θ, χ) (4.5)

where n refers to the nth solution of the Hamiltonian.
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In six coordinates, including the rotations of the system described by the Euler

angles, we define the nth solution Ψ as in equation 2.36, repeated here

ΨJMpn = 4
∑
t,Λ

ρ−5/2ψJpntΛ (ρ)ΦJp
tΛ(θ, χ; ρξ)D̂

Jp
ΛM(αQ, βQ, γQ) (4.6)

where t is simply a counting number, Λ is the body-fixed projection of the total

angular momentum J , D̂ are normalized Wigner rotation functions, and the Q

labels on the Euler angles define a set of body fixed axes.

It should be noted that this is exactly the same wavefunction as that expressed

in Delves hyperspherical coordinates in equation 2.18; the expansions are different,

but the full wavefunction must be identical.

The challenge is to construct basis functions Φ that can be used for this expan-

sion without solving for them by expensive direct numerical processes. As noted

in section 2.3, the Φ functions should be solutions to the surface Hamiltonian of

equation 2.38, reprinted here,

Hsurf =
−~2

2µρ2
ξ

[
4

sin(2θ)

∂

∂θ
sin(2θ)

∂

∂θ
+

1

sin2(θ)

∂2

∂χ2

]
+
A+B

2
~2J(J + 1) +

15~2

8µρ2
ξ

+

[
C − A+B

2

]
~2Λ2 + V (ρξ, θ, χ)

We do this by projecting asymptotic states onto the APH hypersphere of a constant

ρξ, just as was done with the HNe2 formulation in chapter 3.

It is useful to understand the symmetry properties of the APH Hamiltonian

before discussing how the basis states are constructed. The kinetic terms of the

surface Hamiltonian are unchanged by symmetry operations; the symmetry of the

potential V (θ, χ; ρξ) is the term that dictates the appropriate symmetry group.

For an AAA system, i.e. all atoms are identical, this symmetry is C6v in APH
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coordinates. In the next section, we discuss how this symmetry influences the

construction of the basis states and how it can be used to simplify the general

problem.

4.2 Symmetry Analysis for AAA (C6v) Systems

We use asymptotic states associated with each arrangement channel to construct

symmetrized basis functions according to the irreducible representation of the sym-

metry group that is defined by the potential. In the HNe2 problem described

earlier, the Born-Oppenheimer potential energy surface as represented in APH co-

ordinates belonged to the C2v symmetry point group, and the nuclear wavefunction

solutions belonged to the irreducible representation of that group. Whether this

solution was even or odd with respect to the reflection plane containing the Ne2

diatomic arrangement channel determined what values of j were allowed in that

channel for that irreducible representation.

For an AAA system, the symmetry and irreducible representations play a

greater role. With all three atoms being identical, then there now do exist re-

flection plans for each of the different arrangement channels (see Figure 4.1), and

the system now belongs to the C6v symmetry point group. A similar situation ex-

ists to that with the Ne2 channel being aligned with a reflection plane, but here all

of the channels now contain a reflection plane. Therefore, a nuclear wavefunction

of A1 symmetry in the C6v point group must have even rotational j values for all

three of the arrangement channels. Likewise, an A2 solution must have odd values

of j for each of them. These restrictions do not apply to solutions of E1 or E2

irreducible representation .
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Figure 4.1: This image depicts the C6v symmetry of an AAA system in APH
coordinates. The solid lines represent the arrangement channels, and both the
solid and dashed lines represent reflection planes. The label “A” denotes the A+BC
arrangement channel, and so on. The numbers 1-12 denote different regions of the
plot, and likewise different functions.

C6v E 2C6 2C3 C2 3σv 3σd
A1 1 1 1 1 1 1
A2 1 1 1 1 -1 -1
B1 1 -1 1 -1 1 -1
B2 1 -1 1 -1 -1 1
E1 2 1 -1 -2 0 0
E2 2 -1 -1 2 0 0

Table 4.1: C6v point group character table.

Construction of the basis states according to the irreducible representation is

done by applying the symmetry elements of the point group to a single function

using the character table to provide coefficients for the linear combinations. The

character table for C6v is shown in table 4.1

Symmetrized surface functions are constructed by defining a function in the

regions defined by the C6v symmetry, as shown in Figure 4.1. Each of the twelve
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numbered sections describe a basis function, but to avoid overuse of the term

“basis”, we will call them the “numbered” functions. Alone, these functions need

not posses any symmetry of their own, but they are are related to each other by the

symmetry operations of the C6v point group. A single C6 rotation moves function

|1〉 to |3〉, and a single C3 rotation moves function |1〉 to |5〉. The σd reflections

applied to function |1〉 produce functions |2〉, |6〉, and |10〉. The symmetry of the

system dictates that these functions are identical except for position or reflection.

It is important to note that these functions need not be localized to the re-

gions where their labels are. Each function can, and generally will, span the full

surface space. Furthermore, for this reason, there is no claim that these functions

are orthogonal. What these functions do accomplish is that the form a reducible

representation of the C6v point group. This reducible representation has a definite

character set, and can be decomposed into the irreducible representations. It is

useful to look at this decomposition explicitly. To form the character table for this

12-function representation, we apply the symmetry operations to the numbers in

Figure 4.1 and with each operation, we note how many of the functions changed

their positions, and the resulting characters are how many have not changed posi-

tion. This is related to the characters of the matrices that represent the symmetry

operations (see appendix C).

The E operation changes none of the functions, and so with 12 functions re-

maining unchanged, the E character is 12. Every other operation moves each

function to some other location, and so each other character is 0. This represen-

tation has a character table of

E 2C6 2C3 C2 3σv 3σd

Γ 12 0 0 0 0 0
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Following standard methods [15], to decompose Γ we project onto each of the

irreducible representations and count their multiplicity. First, we multiply the

characters of each irreducible representation with the character of the Γ represen-

tation, and again multiply by how many operations are in each symmetry class

(e.g. three for σv, two for C6, etc.), and then divide by the order of the group,

which in the case of C6v is 12 (there are 12 symmetry operations). Since the char-

acters of Γ are zero for every symmetry element but the identity operation, E, we

have

N(A1) =
1

12
(1 ∗ 12 ∗ 1 + 0 + . . .) = 1 (4.7-a)

N(A2) =
1

12
(1 ∗ 12 ∗ 1 + 0 + . . .) = 1 (4.7-b)

N(B1) =
1

12
(1 ∗ 12 ∗ 1 + 0 + . . .) = 1 (4.7-c)

N(B2) =
1

12
(1 ∗ 12 ∗ 1 + 0 + . . .) = 1 (4.7-d)

N(E1) =
1

12
(2 ∗ 12 ∗ 1 + 0 + . . .) = 2 (4.7-e)

N(E2) =
1

12
(2 ∗ 12 ∗ 1 + 0 + . . .) = 2 (4.7-f)

From this we see that Γ contains one instance of each of A1, A2, B1, B2, and two

instances of both E1 and E2. We should then be able to construct functions that

represent each of these irreducible representations from the 12 numbered functions.

Note that because the E1 and E2 irreducible representations are two dimensional,

each of them contains two symmetry functions. This count shows that with the

12 numbered, we can create 12 symmetrized functions, as should be expected.
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To produce the A1 symmetry surface state, we use the character table of Ta-

ble 4.1 for the A1 symmetry. This is the totally symmetric state, so the linear com-

bination of the basis functions are totally symmetric. Explicitly, we have (using

the notation of ζXA1
representing the character for the A1 irreducible representation

for symmetry element X),

|A1〉 = ζEA1
E |1〉+ ζC6

A1
C6 |1〉+ ζC3

A1
C3 |1〉+ ζC2

A1
C2 |1〉+ ζ

C2
3

A1
C2

3 |1〉+ ζ
C5

6
A1
C5

6 |1〉

+ ζσv1A1
σv1 |1〉+ ζσv2A1

σv2 |1〉+ ζσv3A1
σv3 |1〉+ ζσd1A1

σd1 |1〉+ ζσd2A1
σd2 |1〉+ ζσd3A1

σd3 |1〉

= |1〉+ |3〉+ |5〉+ |7〉+ |9〉+ |11〉

+ |4〉+ |8〉+ |12〉+ |2〉+ |6〉+ |10〉 (4.8)

Likewise for the A2 symmetry, we have

|A2〉 = ζEA2
E |1〉+ ζC6

A2
C6 |1〉+ ζC3

A2
C3 |1〉+ ζC2

A2
C2 |1〉+ ζ

C2
3

A2
C2

3 |1〉+ ζ
C5

6
A2
C5

6 |1〉

+ ζσv1A2
σv1 |1〉+ ζσv2A2

σv2 |1〉+ ζσv3A2
σv3 |1〉+ ζσd1A2

σd1 |1〉+ ζσd2A2
σd2 |1〉+ ζσd3A2

σd3 |1〉

= |1〉+ |3〉+ |5〉+ |7〉+ |9〉+ |11〉

− |4〉 − |8〉 − |12〉 − |2〉 − |6〉 − |10〉 (4.9)

Examples of these functions, as well as those for the B1 and B2 irreducible

representations can be seen in Figure 4.2.

From these figures one can note the effect of the σv reflection planes. The

A2 and B2 states are odd with respect to this reflection, indicating that the A2

and B2 surface functions have a node in these planes. Since we are attempting to

describe wavefunctions, which must be continuous, the surface function should be

smoothly varying across these planes. Diatomic wavefunctions with odd values of
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Figure 4.2: Stereographic plots of example functions of the one-dimensional C6v

irreducible representations . See appendix B.3 for more explanation of APH surface
plots.

the rotational j quantum number satisfy this requirement. Furthermore, the C2

rotation corresponds to parity in APH coordinates, and so we see that the A1 and

A2 functions are even with respect to parity, while the B1 and B2 functions are

odd.
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The E1 and E2 states, being two dimensional in their representation of the

C6v point group, do not contain definite characters with respect to the reflection

planes, and so are not directly associated with even or odd values of j. Thus, j

can be even or odd in the Ex symmetries (where Ex means either E1 or E2), and

this explains why the Γ representation of the 12 numbered functions contained two

instances of each of E1 and E2, one of each for the even j states and one of each

for the odd.

The E1 and E2 states do have definite characters with respect to the C2 rota-

tion symmetry element, and so do represent states of definite parity. Inclusion of

these states, however, is necessary in order to ensure the set of states is complete.

Individual incoming and outgoing wavefunctions in a specific channel cannot be

represented without the E irreducible representations included in the basis set.

Examples of the symmetries of these functions can be seen in figures 4.3 and 4.4.

The Ex irreducible representations are constructed in the same way as the one-

dimensional representations: by applying the symmetry operators and characters of

the representation to the numbered functions. However, this method only produces

one of the two Ex basis functions. To find the other, we must find the symmetrized

function that also exhibits the character of the Ex irreducible representation but

is orthogonal to the one produced by the character table.

First, let us determine the first symmetrized function for the j-even E1 sym-

metry, and we’ll call this function E
(1)
1 . Just as in equation 4.8 Since there is
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no explicit definition for the reflection operations, it is useful to define new num-

bered functions that are linear combinations of the existing functions, minus the

reflection symmetry:

|i〉 = (|1〉 ± |12〉)/N

|ii〉 = (|2〉 ± |3〉)/N

|iii〉 = (|4〉 ± |5〉)/N

|iv〉 = (|6〉 ± |7〉)/N

|v〉 = (|8〉 ± |9〉)/N

|vi〉 = (|10〉 ± |11〉)/N (4.10)

where N is an unknown normalization factor.

While the Ex states do not dictate a symmetry between the even and odd num-

bered states, the physical rotational symmetry of the diatomic channels does, and

therefore whether the linear combinations of Equation 4.10 are positive or negative

depends on whether we are interested in states of even or odd j, respectively. Using

the Roman numeral states simplifies the symmetrized state construction, and the

results apply equally to even or odd j values.

For E
(1)
1 , we have

∣∣∣E(1)
1

〉
= 2 |i〉+ |ii〉 − |iii〉 − 2 |iv〉 − |v〉+ |vi〉 (4.11)

and for the first state of the E2 representation, we have

∣∣∣E(1)
2

〉
= 2 |i〉 − |ii〉 − |iii〉+ 2 |iv〉 − |v〉 − |vi〉 (4.12)
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To find the E
(2)
x states that are orthogonal to the E

(1)
x states, we can apply a

symmetry operation. This will give us a new state, let’s call it Qx, that is not

orthogonal to the E
(1)
x states, but the Hilbert space spanned by the E1 states (or

the E2) is only two dimensional, and thus the new function Qx acquired by the

symmetry operation must contain, in some part, the other orthogonal state. Using

the C6 rotation, the Qx functions are,

Q1 = C6E
(1)
1 = 2 |ii〉+ |iii〉 − |iv〉 − 2 |v〉 − |vi〉+ |i〉 (4.13)

Q2 = C6E
(2)
2 = 2 |ii〉 − |iii〉 − |iv〉+ 2 |v〉 − |vi〉 − |i〉 (4.14)

and now, we look for the solutions of

∣∣E(2)
x

〉
= Qx −

〈
E

(1)
x

∣∣∣Qx

〉
〈
E

(1)
x

∣∣∣E(1)
x

〉 ∣∣E(1)
x

〉
(4.15)

A very important point must be made at this stage. So far, we have allowed for

the Arabic-numbered functions (|1〉, etc.) to span the whole space of the surface.

We have not performed any integrals over the functions, and we have left the

normalization factor N in equations 4.10 undefined. Were the Arabic-numbered

functions orthonormal, this normalization would be trivial, but this is generally not

the case, and likewise, integrals between two different Roman-numbered functions

is generally not zero. For the one dimensional irreducible representations , this did

not cause any problem in their construction (though as defined so far, they too are

not normalized). Now, though, we apparently need both the overlap between the

Qx functions with E
(1)
x , as well as

〈
E

(1)
x

∣∣∣E(1)
x

〉
in order to construct E

(2)
x . It turns
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out, though, that we do not need to calculate these values explicitly in order to

construct the second Ex state, and again it is for reasons of symmetry.

We know that |ii〉 = C6 |i〉, and for this reason 〈i|i〉 = 〈ii|ii〉. By the rotational

symmetries, we also know that 〈i|ii〉 = 〈ii|iii〉. What this means is that all integrals

between any two adjacent Roman-numbered functions are equal, and furthermore

all integrals between two functions that differ by a C3 rotation are equal and all

integrals between two functions that differ by a C2 rotation. Let us define m0 to be

the value of an integral between a function an itself, m1 to be the value of an integral

between a function and one differing by a C6 rotation, m2 the integral between

functions differing by a C3 rotation, and m3 those differing by a C2 rotation. More

than this is not necessary, since these describe all possible combinations of the six

Roman-numbered functions.

Looking at the integral of E
(1)
1 with itself, we have (noting 〈i|j〉 = 〈j|i〉),

〈
E

(1)
1

∣∣∣E(1)
1

〉
= 4 〈i|i〉+ 〈ii|ii〉+ 〈iii|iii〉+ 4 〈iv|iv〉+ 〈v|v〉+ 〈vi|vi〉

+ 4 〈i|ii〉 − 2 〈ii|iii〉+ 4 〈iii|iv〉+ 4 〈iv|v〉 − 2 〈v|vi〉+ 4 〈vi|i〉

− 4 〈i|iii〉 − 4 〈ii|iv〉+ 2 〈iii|v〉 − 4 〈iv|vi〉+ 2 〈ii|vi〉 − 4 〈i|v〉

− 8 〈i|iv〉 − 2 〈ii|v〉 − 2 〈iii|vi〉 (4.16)

= 12m0 + 12m1 − 12m2 − 12m3 (4.17)

Likewise, calculating
〈
Q1

∣∣∣E(1)
1

〉
gives,
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〈
Q1

∣∣∣E(1)
1

〉
= 2 〈i|i〉+ 2 〈ii|ii〉 − 〈iii|iii〉+ 2 〈iv|iv〉+ 2 〈v|v〉 − 〈vi|vi〉

+ 5 〈i|ii〉 − 〈ii|iii〉 − 〈iii|iv〉+ 5 〈iv|v〉 − 〈v|vi〉 − 〈vi|i〉

+ 〈i|iii〉 − 5 〈ii|iv〉+ 〈iii|v〉+ 〈iv|vi〉 − 5 〈v|i〉+ 〈ii|vi〉

− 4 〈i|iv〉 − 4 〈ii|v〉+ 2 〈iii|vi〉 (4.18)

= 6m0 + 6m1 − 6m2 − 6m3 (4.19)

From this we can get the following,

〈Q1|E1(1)〉〈
E

(1)
1

∣∣∣E(1)
1

〉 =
6(m0 +m1 −m2 −m3)

12(m0 +m1 −m2 −m3)
=

1

2
(4.20)

The same formulation applied to the E2 symmetry gives a factor of −1/2.

Therefore, without having to know any of the integrals, we can still construct

the orthogonal state because the explicit integral values cancel. This directly

results from the integrals between the numbered functions being equivalent for all

functions related by the same symmetry operation.

Also, if we were to choose to normalize the E
(1)
x functions before this process,

the overall normalization would also drop out of this relation, as the factor that

normalizes E
(1)
x would also normalize Qx, and thus divides out directly.

From this result we can now solve equation 4.15 to get

∣∣∣E(2)
1

〉
=

3

2
(|ii〉+ |iii〉 − |v〉 − |vi〉) (4.21)∣∣∣E(2)

2

〉
=

3

2
(|ii〉 − |iii〉+ |v〉 − |vi〉) (4.22)
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We note that the integral of
〈
E

(1)
1 (j+)

∣∣∣E(2)
1 (j−)

〉
is non-zero. This is because

the construction of the E
(2)
1 (j−) state, by virtue of j being odd, produces a state

that has the same symmetry structure as an E
(1)
1 (j+) state. This is because the

E irreducible representation states, as constructed by the projection operators on

even and odd j states, result in functions that do exhibit reflection symmetries,

even though there isn’t a definition of reflection symmetry to the E irreducible

representations . This actually is consistent, because this symmetry is accidental

for the E states, and emerges because there does exist a reflection symmetry only

in a single given channel that is even or odd depending on whether j is even or odd.

That this symmetry exists is not necessary for the definitions of the E irreducible

representation states, but does produce two reflection planes, one along the x axis

and one along the y axis in the E states. Therefore, the E states constructed here

do exhibit reflections of

Using the projection operators to construct a states of odd j in the same way

- +
- +

+ +
- -

+ +
+ +

- +
+ -

E
(1)
1 (j+) E

(2)
1 (j+) E

(1)
2 (j+) E

(2)
2 (j+)

as for the even j states gives functions with reflection symmetries of Note that

+ +
- -

- +
- +

- +
+ -

+ +
+ +

E
(1)
1 (j−) E

(2)
1 (j−) E

(1)
2 (j−) E

(2)
2 (j−)

the reflection symmetries for the E1 states are reversed for odd j from what they

are for even j, and likewise for the E2 states. To rectify this, we redefine the

projections for the odd states by exchanging the projection definitions according

to E
(1)
1 (j−)↔ E

(2)
1 (j−) E

(1)
2 (j−)↔ E

(2)
2 (j−). This prevents any state with a (1)
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superscript mixing with a state of (2) superscript. The E states, regardless of even

or odd j, then all have the reflection properties of

- +
- +

+ +
- -

+ +
+ +

- +
+ -

E
(1)
1 (j±) E

(2)
1 (j±) E

(1)
2 (j±) E

(2)
2 (j±)

After this exchange, the final definitions are

∣∣∣E(1)
1 (j+)

〉
= 2

∣∣i+〉+
∣∣ii+〉− ∣∣iii+〉− 2

∣∣iv+
〉
−
∣∣v+
〉

+
∣∣vi+〉 (4.23)∣∣∣E(2)

1 (j+)
〉

=
3

2

(∣∣ii+〉+
∣∣iii+〉− ∣∣v+

〉
−
∣∣vi+〉) (4.24)∣∣∣E(1)

2 (j+)
〉

= 2
∣∣i+〉− ∣∣ii+〉− ∣∣iii+〉+ 2

∣∣iv+
〉
−
∣∣v+
〉
−
∣∣vi+〉 (4.25)∣∣∣E(2)

2 (j+)
〉

=
3

2

(∣∣ii+〉− ∣∣iii+〉+
∣∣v+
〉
−
∣∣vi+〉) (4.26)∣∣∣E(1)

1 (j−)
〉

= 2
∣∣i−〉+

∣∣ii−〉− ∣∣iii−〉− 2
∣∣iv−〉− ∣∣v−〉+

∣∣vi−〉 (4.27)∣∣∣E(2)
1 (j−)

〉
=

3

2

(∣∣ii−〉+
∣∣iii−〉− ∣∣v−〉− ∣∣vi−〉) (4.28)∣∣∣E(1)

2 (j−)
〉

=
3

2

(∣∣ii−〉− ∣∣iii−〉+
∣∣v−〉− ∣∣vi−〉) (4.29)∣∣∣E(2)

2 (j−)
〉

= 2
∣∣i−〉− ∣∣ii−〉− ∣∣iii−〉+ 2

∣∣iv−〉− ∣∣v−〉− ∣∣vi−〉 (4.30)

Where the Roman kets have superscript labels of + or − to denote the choice

of addition or subtraction in equation 4.10.

Examples of these functions is shown as stereographic projections in APH co-

ordinates (see appendix B.3) in Figures 4.3 and 4.4. While it is true that the

integrals do not need to be computed in order to construct the E
(2)
x states, the

integrals must be computed in order to normalize the symmetrized states and to

calculate the potential energy matrices. However, this result means that only a

twelfth of the full space must be integrated over.
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(a):E
(1)
1 j even

(b):E
(2)
1 j even

(c):E
(1)
2 j even

(d):E
(2)
2 j even

Figure 4.3: Example functions of the two-dimensional C6v irreducible representa-
tions for even rotational j states. On the left are the orthogonal pair for the E1

representation, on the right are the orthogonal pair for E2. Note that for plots (a)
and (c), the functions for |i〉 and |iii〉 aligned with channel A have greater ampli-
tude than those for channels B and C, while they have zero amplitude in plots (b)
and (d).

There are a few fine points that need to be made regarding the integrals be-

tween these states. The inclusion of m3 in the above analysis is for completeness.
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(a):E
(1)
1 j odd

(b):E
(2)
1 j odd

(c):E
(1)
2 j odd

(d):E
(2)
2 j odd

Figure 4.4: Example functions of the two-dimensional C6v irreducible representa-
tions for odd rotational j states. The left side plots are the orthogonal pair for the
E1 representation, and the right side plots are the orthogonal pair for E2. Like
figure 4.3, note that the functions associated with channel A, |i〉 and |iii〉, in plots
(a) and (c) have larger amplitude than the functions in channels B and C.

However, as we have described the Roman numeral states, the physical wavefunc-

tion only extends to ±π/2 from the associated arrangement channel. This means

that there is no overlap between function |i〉 and |iv〉, for example.
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Furthermore, in the definition of the Roman numbered states, we have dropped

any overlap between the adjacent Arabic states that constitute the Roman states.

Thus, there is no overlap between |1〉 and |12〉, but this too is physically accurate,

since |1〉 and |12〉 are simply two parts of the same function, and the reflection

symmetry between them is a property of that function, not a property of the space

and two different functions.

There is also no overlap between |1〉 and |6〉, as mentioned before. APH coor-

dinates represents all of physical space twice, and a function centered on channel

A only extends to a range in χ that is ±π/2 from the channel. While |1〉 and |6〉

are directly related by the values of j and the parity, they have no overlap. This

is true for each of the Arabic numbered functions. Function |1〉 has a domain in χ

of [0, π/2], |2〉 has a domain of [−π/3, π/6], |3〉 has a domain of [−π/6, π/3], and

so on for each of them. The limitations on the ranges for each of these reduces

the number of integrals that need to be performed to normalize the symmetrized

states, or to get overlaps.

Just as we defined mi for the integrals between the Roman numbered states, it

is useful to define values for the Arabic numbered states in order to more clearly

see which functions are included in integrals of the entire symmetry state. Let

us define n0 as the integral of an Arabic function with itself, n1 the value of the

integral with a function and the one immediately next to it as related by the σd

symmetry (those related by σv, such as |1〉 and |12〉 are always zero), and so on.

The only non-zero integrals are those between functions that have overlapping

domains.

All of the normalizations for the symmetrized functions, and their overlaps, are

explicitly determined in terms of the n values in appendix E.2. One integral of key
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interest is that of the E
(1)
1 (j+) state and the E

(1)
1 (j−) state. As we saw in equation

4.7-a, the E1 and E2 irreducible representations are both represented twice by these

twelve functions. We used this freedom to define two sets of E functions, one with

even j and one with odd. However, the set of even j E1 states are not necessarily

orthogonal to the set of odd j E1 states, and likewise for the E2 even and odd

j states. Group theory does not dictate that functions of the same irreducible

representation must be orthogonal, and since the σ symmetry elements do not

appear in the E representations, different symmetries with respect to j being even

or odd do not cause these states to be orthogonal. When we constructed the E
(2)
x

functions, we were assured that they were orthogonal to the corresponding E
(1)
x

states of the same j symmetry, but this does not assure that they are orthogonal

to the other E representation. The E1 states of odd j and the E1 states of even j

can mix.

This is an important point to consider, for this is the source of any mixing

between initial states with an even rotational quantum number, and a final state

with an odd rotational quantum number, or the reverse. Such a transition is

allowed by symmetry, and it is allowed specifically because each E irreducible

representation is represented twice.

The benefit of using symmetrized basis functions is demonstrated most dra-

matically in the propagation stage of scattering. Since the basis functions and

eigenfunctions of different irreducible representation are orthogonal and do not

couple, the radial wavefunction can be propagated separately for each irreducible

representation . For example, if we have 50 basis functions in a single channel,

then we have 150 total basis functions for an even parity case. The propagation

stage would then involve multiplying and inverting matrices that were 150× 150.
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However, in symmetrizing the system, if we have roughly half even j states and

half odd j states, then the A1 block is 25 × 25, the A2 block is 25 × 25, and the

two E2 blocks are 50 × 50. Since the computational cost of the propagation is

dominated by matrix-matrix multiplications, which scale as N3, the symmetrized

propagation is 54 times faster. But another improvement can be made. The two

E2 blocks are exactly degenerate energetically, and the energy values are the only

relevant factors in the propagation, so only one of them must be propagated. With

this, the computational savings increases to a factor of 72.

For ABB (A and B are different atoms) or ABC (all three atoms different)

systems, there is not as much available symmetry to use to reduce the problem.

An ABB system has a potential surface that belongs to the C2v point group in

APH coordinates, and so a comparable even parity calculation could be reduced

to two one-dimensional irreducible representations , A1 and A2, or for odd parity,

B1 and B2. But this still reduces the computational cost in propagation by a

factor of about 8. An ABC system belongs to the C2 point group, and exhibits

only even or odd parity symmetry, and so in this case, if using the same example

as above, the full 150 × 150 matrix would have to be propagated. While these

cases are logistically much simpler than the AAA/C6v case, they can be much

more computationally intensive.

4.3 Basis Construction

The same methods employed for the replacement basis sets of the HNe2 problem

can be used in the construction of basis functions for a reactive scattering problem
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in which there are three end channels. The relationship between Delves hyper-

spherical coordinates and the APH coordinates of Pack and Parker [8] can be used

to produce states that represent the bound states for a full three-channel problem.

Here we look at the properties of the APH surface Hamiltonian in order to

ensure that the constructed functions have proper physical properties and bound-

ary conditions. For the three-dimensional problem, we are seeking solutions to the

surface Hamiltonian as given in reference [8], equation 164, which is

Hsurf =
−~2

2µρ2
ξ

[
4

sin(2θ)

∂

∂θ
sin(2θ)

∂

∂θ
+

1

sin2(θ)

∂2

∂χ2

]
+
A+B

2
~2J(J + 1) +

15~2

8µρ2
ξ

+

[
C − A+B

2

]
~2Λ2 + V (ρξ, θ, χ) (4.31)

where A, B, and C are defined as

A =
1

µρ2
ξ(1 + sin θ)

(4.32-a)

B =
1

2µρ2
ξ sin2 θ

(4.32-b)

C =
1

µρ2
ξ(1− sin θ)

(4.32-c)

We define solutions to the surface Hamiltonian of equation 4.31 as

HsurfΦJp
tΛ(ρξ; θ, χ) = EJptΛ (ρξ)Φ

Jp
tΛ(ρξ; θ, χ) (4.33)
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which are normalized according to

∫ π

−π
dχ

∫ π/2

0

sin 2θdθΦJp′

t′Λ(θ, χ; ρξ)Φ
Jp
tΛ(θ, χ; ρξ) = δtt′δpp′ (4.34)

As an aside, the derivatives with respect to θ in equation 4.31 can be written

as

1

sin(2θ)

∂

∂θ
sin(2θ)

∂

∂θ
=

2

sin1/2(2θ)

(
∂2

∂θ2

)
sin1/2(2θ)

2
+

(
2 +

cos2(2θ)

sin2(2θ)

)
(4.35)

Note that since the range of θ is [0, π/2], sin1/2(2θ) introduces no complexities.

Making the replacement of equation 4.35 is often very useful, for if we define some

new function

Φ =
2

sin1/2(2θ)
Φ̄ (4.36)

with an orthonormalization condition of

∫ π

−π
dχ

∫ π/2

0

dθΦ̄Jp′

t′Λ(θ, χ; ρξ)Φ̄
Jp
tΛ(θ, χ; ρξ) = δtt′δpp′ (4.37)

then the surface Hamiltonian can be rewritten in terms of Φ̄ and contains only

second derivatives with respect to θ. This is useful and often necessary for some

algorithms that solve second order differential equations that require only a second

derivative term be present and no first derivative term, such as Johnson’s log-

derivative method [16] or a Numerov method [14]. It may be possible to use a two-

dimensional Numerov algorithm to numerically solve for the Φ eigenstates much

more efficiently than existing methods, and the development of such an algorithm

is planned for future work.
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The surface Hamiltonian must be Hermitian, and being real, this means its

matrix representation must be symmetric, so it is useful to see how the terms of

equation 4.31 applied to the Φ functions behave under integration. Breaking the

terms of equation 4.31 into groups as

Hθ
surf =

−~2

2µρ2
ξ

4

sin(2θ)

∂

∂θ
sin(2θ)

∂

∂θ
(4.38)

Hχ
surf =

−~2

2µρ2
ξ

1

sin2(θ)

∂2

∂χ2
(4.39)

H0
surf =

A+B

2
~2J(J + 1) +

15~2

8µρ2
ξ

+

[
C − A+B

2

]
~2Λ2 + V (ρξ, θ, χ) (4.40)

The integrals over
〈
Φm

∣∣H0
surf

∣∣Φn

〉
clearly produce matrix elements of H0

surf that

are symmetric in indices m and n, as none of the terms in equation 4.40 alter the

functions Φ in any way. For [Hθ
surf ]mn we have

[
Hθ
surf

]
mn

=

∫ π

−π
dχ

∫ π/2

0

dθ sin(2θ)Φm
4

sin 2θ

∂

∂θ

(
sin 2θ

∂

∂θ
Φn

)
=

∫ π

−π
dχ

[
Φm sin 2θΦ′n

∣∣∣∣π/2
0

−
∫ π/2

0

dθΦ′m sin 2θΦ′n

]

=

∫ π

−π
dχ

[
0−

∫ π/2

0

Φ′m sin 2θΦ′ndθ

]

= −
〈
Φ′m
∣∣Hθ

surf

∣∣Φ′n〉 = −
〈
Φ′n
∣∣Hθ

surf

∣∣Φ′m〉 (4.41)

where the primes refer to differentiation with respect to θ, and in the second line

we have used integration by parts, where the surface term must be zero in order

for Hθ
surf to be Hermitian. This condition means that

Φm sin 2θΦ′n

∣∣∣∣π/2
0

= 0 (4.42)
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for all Φ, so any combination of ΦmΦ′n must not blow up at θ = 0, π/2 faster

than 1/θ, since sin 2θ approaches zero at these points only linearly. However, in

order for the solution to be regular everywhere, it is necessary that the θ boundary

conditions at θ = 0, π/2 are such that Φ has either a zero value or a zero derivative.

The matrix elements for Hχ
surf are more simple,

[
Hθ
surf

]
mn

=

∫ π/2

0

sin 2θ

sin2 θ

∫ π

−π
dχΦm

∂2

∂χ2
Φn

=

∫ π/2

0

sin 2θ

sin2 θ

[
ΦmΦ′n

∣∣∣∣π
−π
−
∫ π

−π
Φ′mΦ′ndχ

]
=

∫ π/2

0

sin 2θ

sin2 θ

[
0−

∫ π

−π
Φ′mΦ′ndχ

]
= −

〈
Φ′m
∣∣Hχ

surf

∣∣Φ′n〉 = −
〈
Φ′n
∣∣Hχ

surf

∣∣Φ′m〉 (4.43)

where here the primes refer to differentiation with respect to χ and this time the

surface term is identically zero because χ is a cyclic coordinate; χ = −π and

χ = π are the same point in χ space, so assuming Φ to be single valued means

Φm(θ, χ = −π) is the same as Φm(θ, χ = π).

If we can satisfy these boundary conditions, then we need only to calculate the

first derivatives of Φ with respect to each coordinate. We will show in the following

sections that the process of constructing these states from asymptotic states meets

these boundary conditions automatically, and that the derivative information for

the projected functions can be attained from knowledge of the derivatives of the

asymptotic functions.
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4.3.1 APH Bound State Construction

Next we wish to construct basis functions to represent continuum states. In the last

section we developed the theory for projecting the asymptotic ζ(sτ ) functions onto

a constant ρ surface by taking limits as Sτ →∞, and then using these functions as

approximations to the bound Υ(ϑτ ) functions. Now we wish to replace all of the

basis functions with asymptotic type states, and by doing so we remove completely

the need to calculate basis functions numerically at every propagation step.

The construction of the bound states in the case of three identical channels is an

extension of how they are constructed for the single channel as described in section

3.2. For one channel, we used the two-body potential to solve for a vibrational

function in the mass-scaled Jacobi coordinate sτ , and then at each value of ρ as

the propagation proceeded in Delves coordinates, a vibrational function in ϑτ was

constructed by projecting the calculated function of s onto the Delves coordinate

hypersurface.

To do this for three channels, there are some notable complications. First,

the propagation is in APH coordinates, instead of Delves hyperspherical coordi-

nates. This makes the projection step of the vibrational wavefunctions in Jacobi

coordinates more difficult. A function of the Jacobi coordinate s projects on to

the Delves hypersphere as a function of ϑτ and ϑτ only. To project on to the

APH hypersphere, the resulting vibrational motion is a function of both θ and χ.

Furthermore, because the motion in APH coordinates is not separable, the pro-

jected state must also include the coupled spherical harmonic functions, Y of 2.13,

whereas in projecting from Jacobi to Delves coordinates used the same Y function

an there was no change from one set of bases to another.
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Secondly, there are three channels, and while it is easy to determine which

diatomic vibrational state should be considered when close to the arrangement

channels in APH coordinates, it is more difficult to make such a determination in

intermediate regions of the APH hypersphere. In these regions, rather than dif-

ferentiate between channels, effectively choosing which channel’s vibrational state

to use in constructing the surface function, it is more appropriate to create sur-

face functions that are linear combinations of vibrational states for all channels.

The vibrational functions decay to zero as sτ increases, and so as ρ increases, the

non-zero portions of the vibrational wavefunctions become increasingly localized

around the arrangement channels. At large values of ρ, these functions approx-

imate the bound-state surface functions very well, and there is negligible to no

overlap between the vibrational states for different channels.

In moderately valued ρ regions, taking a linear combination of the vibrational

functions is similar to solving the surface Hamiltonian for a pairwise potential,

neglecting the three-body potential contribution. Constructing surface functions

in this manner is an approximation that gets better as propagation in ρ progresses

and the presence of the third atom becomes less significant.

In small ρ regions of the propagation, it is possible for the bound vibrational

wavefunction to be non-zero in APH coordinates at a location where two atoms

from another channel coalesce. This causes large inaccuracies in constructing the

interaction matrix elements, because here the full three-body potential is very re-

pulsive, but since the constructed vibrational wavefunction for one diatomic chan-

nel ignores the presence of a third atom, this repulsion is not considered. Thus,

the potential matrix element can be much, much too large. This means that this

method of constructing surface functions must only be used after ρ is large enough
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that this effect is negligible. This problem also occurs for the continuum surface

functions, but ways to assuage this will be discussed in the next section.

The symmetry and C6v irreducible representation plays a role in how the linear

combination of the bound state surface functions are constructed. As discussed in

section 4.2, the parity and rotational j quantum number determine the behavior

of some of the symmetry elements. If j is odd, then the surface function must

belong to an irreducible representation that has a -1 character for σv reflections.

The linear combination of vibrational states must consider the σd reflections of the

irreducible representation , as well as the parity, in order to produce states of the

correct symmetry. This can be seen more clearly in figure 4.2. The A1 irreducible

representation symmetrized function must have even j and even parity, while the

B1 irreducible representation must have even j and odd parity.

To evaluate the surface Hamiltonian in APH coordinates, it is necessary to

construct matrix elements of the full three-body potential energy surface, and

also to construct matrix elements of the kinetic energy operators for θ and χ.

In solving the APH surface Hamiltonian numerically, the functions calculated are

usually eigenfunctions of the surface Hamiltonian operator. In the constructed

basis method, however, the functions are not eigenfunctions, and the kinetic terms

must be calculated explicitly. It is necessary to get derivatives of these functions

with respect to the APH surface coordinates θ and χ.

For the bound states, what we do know are the derivatives of these functions

with respect to the Jacobi coordinate sτ . The bound state vibrational functions

are independent of Sτ , and so these derivatives are zero. What is necessary, then,

to accurately represent the first and second derivatives of these functions with

respect to θ and χ is knowledge of the first and second derivatives of the functions
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with respect to s, and the first and second derivatives of sτ with respect to θ and

χ. Explicitly, we have

∂2f

∂θ2
=
∂2f

∂s2
τ

(
dsτ
dθ

)2

+
∂f

∂sτ

d2sτ
dθ2

+
∂2f

∂Θ2

(
dΘ

dθ

)2

+
∂f

∂Θ

d2Θ

dθ2
(4.44)

∂2f

∂χ2
=
∂2f

∂s2

(
ds

dχ

)2

+
∂f

∂s

d2s

dχ2

+
∂2f

∂Θ2

(
dΘ

dχ

)2

+
∂f

∂Θ

d2Θ

dχ2
(4.45)

From equations 52(a-c) in reference [8], we have the relations for the mass-scaled

Jacobi coordinates with respect to the APH coordinates,

sτ =
ρ√
2

(1− sin(θ) cos[2(χi − χτi)])1/2 (4.46-a)

Sτ =
ρ√
2

(1 + sin(θ) cos[2(χi − χτi)])1/2 (4.46-b)

Θτ = arccos

(
sin(θ) sin(2χ)[

1− sin2(θ) cos2(2χ)
]1/2

)
(4.46-c)

We need the terms in equations 4.44 and 4.45 for the derivatives of s and Θ with

respect to θ and χ. These are provided explicitly in appendix B.4.

The derivatives of the bound states with respect to s can be computed once

and then by use of a spline, the function or its derivative can be found at any point

68



in APH coordinates. The second derivatives are analytic by virtue of the two-body

Hamiltonian of equation 3.1, rewritten here for convenience,

HBCζν(s) = ενζν(s) =

[
−~2

2µ

∂2

∂s2
+

~2

2µ

j(j + 1)

s2
+ V BC(s)

]
ζν(s)

and so the second derivative of the ζν functions can be found explicitly. The

first derivatives are again found numerically by Blatt’s method [17]. If the two-

body Hamiltonian is solved by a Numerov method or something similar, the error

of Blatt’s method for the first derivatives is on the same order as the error of

the solution function anyway, and so a more accurate or analytic derivative is

unnecessary. The function and its derivatives are determined at a grid of s points

and then splined. The spline coefficients are constant throughout the propagation

and can be used repeatedly to determine the function or derivative values at any

point in APH space.

These projections were used for the bound states in the HNe2 expansion, but

only after a certain value of ρξ. The numerically solved Υ(ϑτ ) functions were used

up to ρξ = 30a0, and then the replacement functions were used afterward. In

the present case, we do not have numeric solutions for Φ, and so must use these

projected functions for the entire range for which ρ is propagated. This causes an

issue with these functions behaving physically at short ρ distances. The projected

function can get cut off, as shown in figure 4.5 which, when projected onto the

APH hypersphere, can cause discontinuities in the surface function in cases where

there is odd parity, and discontinuities in the surface function derivatives in cases

of even parity.

A simple solution is to use a tangent projection instead of sine. A direct

projection (shown in part a of figure 4.6) employs the relation sτ = ρξ sinϑτ . If we
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Figure 4.5: Plot of ζ(sτ ) projected onto Delves hypersurface at ρξ = 8.0a0 with
“direct” projection of sτ = ρξ sinϑτ

instead use sτ = ρξ tanϑτ , the entire domain of sτ is mapped onto the hypersurface

(as in part b of figure 4.6). At small ρξ, this can drastically change the appearance

of the function; for example, the same function as in figure 4.5 is plotted again

with a tangent projection in figure 4.7.

This does not cause serious problems, however. For one, at a short ρξ, the

diatomic basis functions are not good physical representations anyway, since they

are functions created by neglecting the three-body potential terms, which are non-

negligible at this range. Secondly, provided a sufficient number of states are in-

cluded, an optimized adiabatic basis can still be formed during the diagonalization

process of the surface Hamiltonian.
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Figure 4.6: In figure a, a sτ = ρ sinϑτ projection is used to project the asymptotic
Jacobi functions onto the constant ρ hypersurface. In figure b, a sτ = ρ tanϑτ
projection is used in order to ensure that the entire domain of sτ is projected onto
the hypersurface and to avoid any discontinuities in the projected function.
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Figure 4.7: Plot of ζ(sτ ) projected onto Delves hypersurface at ρξ = 8.0a0 with
projection of sτ = ρξ tanϑτ
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At large ρξ, because of the finite range of sτ for which the bound states have

amplitude, there is little difference in the two projections. Figure 4.8 shows the

same state as those plotted in figure 4.6. but this at 100a0. At this distance, the

two are nearly indistinguishable. We can now fully form the projected bound state

for a single channel onto a Delves hypersurface. The complete description of the

bound states must also include the coupled spherical harmonic functions, Y , that

were used in section 3.

A very important point to note is the distinction between space-fixed labels and

body-fixed labels. Throughout this process, we have used space-fixed functions la-

beled by νj` to describe the state. The intention, though, is to generate symmetry

labeled Φ functions that are eigenfunctions of the APH surface Hamiltonian with
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Figure 4.8: Plot of ζ(sτ ) projected onto Delves hypersurface both with sτ =
ρξ sinϑτ and sτ = ρξ tanϑτ at ρξ = 100.0a0. At this value of ρ, the two are
nearly indistinguishable. Note that the domain of ϑτplotted here is reduced to
show the function more clearly.
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body-fixed labels. There is not an incongruity here; these constructed ϕ states are

simply to be used as basis functions. An alternate definition of Y can be used,

Y JM
j` (ŝ, Ŝ) =

(
2`+ 1

2J + 1

)1/2∑
Λ

C(j`J ; Λ0Λ)P̂jΛ(Θτ )D̂
J
Λ,M(ατ , βτ , γτ ) (4.47)

where P̂ is a normalized associated Legendre polynomial, and D̂J
Λ,M(ατ , βτ , γτ ) is

the normalized Wigner rotation function that establishes the relationship between

the space-fixed axes and the body-fixed axes for the respective angular momentum

projections M and Λ. The ζ bound states do not depend on `, and so we can

generate a set of functions that are labeled by the body-fixed Λ, the projection of

the total angular momentum on the body-fixed z axis without any difficulty, and

indeed this is what is done. However, the next step is to symmetrize this basis to

get functions not labeled by the channel τ , but by the irreducible representation Γ.

In the symmetrization process, the functions are reflected or rotated in the APH

internal coordinates, and for these Λ looses its physical meaning since we change

the orientation of the function to the z axis by which it was defined. But in using

the functions defined in internal (θ, χ) coordinates only, Λ is only a parameter

in the APH surface Hamiltonian, and these are merely basis functions; we don’t

actually need to label them with anything at all. Therefore, in the final definition

of the internal-only basis function, we ignore for the time the D̂ function. However,

in order to make the basis as physically representative as possible, the Λ on P̂jΛ

should match that in the APH surface Hamiltonian (equation 2.38.

The resultant basis function for a single channel is thus defined as

ϕJΛ
τνjξ(ϑτ ,Θ; ρξ) =

1

sin(2ϑτ )
ζτνj(ρξ tanϑτ )P̂jΛ(Θτ ) (4.48)
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Noting that the Delves wavefunction expansion in equation 2.18 also includes a

1/sin2ϑτ term in the basis definition, it must be included in the projected basis here

as well. This set of ϕ functions represents a set of channel specific basis functions.

From here we can generate a symmetrized set of basis functions according to the

theory set forth in section 4.2. This produces a set of functions, φB that are

labeled by irreducible representation instead of by channel. But, it is exactly the

same number of basis functions either way. The ϕ functions are not devoid of

symmetry as it is, and as discussed in 4.2, whether j is odd or even affects which

irreducible representations the function contributes to, as well as the parity, but

we can define a generic symmetrizing operator, S(j, p, τ,Γ) such that

φJΛ
Γνj(θ, χ; ρξ) =

∑
τ

S(j, p, τ,Γ)ϕJΛ
τνj (4.49)

where for simplicity we have omitted the coordinates on the right side, as the corre-

lation between the coordinates between the Delves and APH systems is somewhat

complex, but the relations are given in appendix B. However, for any given point

in θ, χ we can evaluate the basis function as it is defined.

4.3.2 APH Continuum State Construction

A continuum state in this context refers to states of the three-atom system in

which all three atoms can separate infinitely as opposed to a bound state in which

the asymptotic system consists of a diatomic molecule and a separated atom. The

latter should not be confused with the triatomic bound states where all three atoms

are bound together, which is not discussed here.
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The goal is to construct basis functions on the APH hyper-surface at constant

ρ that represent the continuum states, and like the bound and quasibound states,

it would be ideal to use functions that are as similar to the asymptotic (ρ → ∞)

continuum state functions as possible. The bound states were constructed from

diatomic rovibrational states in mass-scaled Jacobi coordinates, and then as the

propagation proceeds, are used to create bound states in APH coordinates by use

of a simple coordinate transform. Constructing the continuum states in the same

way has some complications:

1. Unlike the bound state basis functions, the continuum state functions do

not become localized to any particular region as ρ → ∞. Instead, they

have amplitude over the entire domain of space. At no point can any region

of space be ignored as having negligible contribution as can be done with

scattering calculations involving bound states alone.

2. While the continuum basis functions can be labeled and associated with a

specific channel, such basis functions from different channels can correspond

to identical quantum numbers (i.e. J2,Λ), and so identical asymptotic con-

tinuum states can be over-represented by the basis if continuum states from

each channel are included.

3. The bound states, being derived from diatomic wavefunctions of two atoms

associated with a given channel, ran the risk of being non-zero in the other

channels where a different combination of two atoms coalesced. On the other

hand, by definition the continuum states have amplitude throughout the

whole space. If constructed as they were for the HNe2 problem, i.e. for

a single channel, they will certainly have amplitude in the highly repulsive

regions of the other channels because the continuum functions in Delves
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coordinates, as constructed, ignores the diatomic potentials for the other

channels.

4. The continuum state basis functions cannot be represented easily in Jacobi

coordinates. Were they constructed the same way as the bound and qua-

sibound states, from solutions to the diatomic Hamiltonian, their energy

spectrum would be continuous rather than discrete, thus forcing one to make

explicit choices as to the diatomic energies to include, and the functions

would oscillate indefinitely in the Jacobi sτ coordinate, making it impossible

to project them onto the APH hypersurface with any consistence.

Not all of these issues are highly problematic. Item 1 requires that all inte-

grals involving the basis functions be over the whole spatial domain of a constant

ρ surface. While theoretically trivial, in practice such integrals can be numeri-

cally cumbersome and very difficult to perform accurately. However, this difficulty

can be assuaged with careful consideration of the function’s properties and a well

tailored integration grid as is explained in chapter 5.

Item 2 is solved by virtue of the symmetrization of the basis sets. Contin-

uum functions from each channel are combined in linear combinations to produce

symmetrized surface functions on the APH hypersphere.

Item 3 can be handled in multiple ways. One is to ignore it, and allow the diag-

onalization of the surface Hamiltonian (eqn 4.31) to produce eigenfunctions. For

the propagation phase of the scattering calculation, it is not necessary to include

the same number of eigenfunctions of equation 4.31 as we have basis functions, so

increasing the number of basis functions and allowing the variational principle to

optimize the low energy eigenfunctions is a viable and simple solution. However, it

is also possible to tailor the continuum functions so that they have small amplitude
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in the classically forbidden potential regions by multiplying them by a “killing”

function, a function designed to reduce the amplitude near the highly repulsive

regions of the potential but not affecting the rest of it. This function may take

the form of a simple inverse tangent function of sτ for each channel, or a function

similar to the zero-energy diatomic wavefunction may be used, as was done for

the single channel continuum states of HNe2 (see section 3.3). The downside to

either of these methods is that the numerical derivatives necessary for the surface

Hamiltonian calculation can be much more complicated.

To address issue 4, we do know how to construct the continuum functions for

a single channel in Delves coordinates, and the solution is given in equation 3.18

in section 3.3. Rewriting that definition here again we have

φτj`νξ(ϑτ ) = φ0
j(ρξ sinϑτ ) cos`+1(ϑτ )Pj,`,ν−nbqb(ϑτ ) (4.50)

were again the φ0 functions are the two-body, zero energy wavefunctions that

replaced the sinj+1(ϑτ ) term in the zero-potential Delves solution (equation 3.16).

These φ0 functions are calculated as functions of s and then transformed, while the

rest of the constituents of the continuum function are developed as functions of ϑτ .

The zero-potential solution to the surface Hamiltonian in APH coordinates are not

known analytically, so we must continue to use the Jacobi polynomial solutions.

The coordinate transformations between Delves coordinates and APH coordinates,

and between Jacobi coordinates and APH coordinates, are known analytically and

can be applied without difficulty to transform the continuum functions into APH

coordinates. To do so does, however, require some care in ensuring that the proper

transformation between coordinate systems are applied to each constituent part of

the constructed continuum function.
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One way to do this is to apply the zero-energy, φ0 function for each channel

to the whole linear combination. Let’s redefine the notation of the φ functions to

include the channel index, τ , and drop the other indices for clarity. Further, let us

separate the zero-energy part of the function from the rest, and thus define

φτ (θ, χ) = φ0
τ (θ, χ)φ1

τ (θ, χ) (4.51)

where the coordinate transformation to APH has been assumed, and the φ1
τ term

represents everything in the φτ definition except the zero-energy function.

The continuum functions as defined in equation 4.51 do not behave correctly

in the regions were the other channel lines lie, which is to say they ignore the

repulsive potential of where two atoms would coalesce in a different channel. To

account for this, we multiply this result by the product of the φ0
τ functions for each

channel. Calling the new APH continuum function ϕ, we have

ϕJMτνj`ξ(θ, χ) =
(
φ0
j

)
A

(
φ0
j

)
B

(
φ0
j

)
C
φ1
τjν`Y

JM
τj` (4.52)

The ϕ function behaves correctly at each of the different channels, yet are still

associated with a specific channel. Linear combinations of these states can be

created to make symmetrized functions, just like the

To get the kinetic matrix elements of these functions, we must get their deriva-

tives with respect to the APH coordinates θ and χ. This is done by taking the

derivative of each component of ϕ(θ, χ) as defined in equation 4.52. Like the deriva-

tives for the HNe2 problem, the φ0 functions are functions of the mass-scaled Jacobi

78



coordinate sτ , and the φ1 functions are functions of the Delves hyperspherical co-

ordinates for the associated channel. Thus we have

∂ϕτ
∂θ

=
∂

∂s

(
φ0
Aφ

0
Bφ

0
C

)(∂s
∂θ

)
φ1
τY

J
τ

+
(
φ0
Aφ

0
Bφ

0
C

) ∂

∂ϑτ

(
φ1
τY

J
τj`

)(∂ϑτ
∂θ

)
+
(
φ0
Aφ

0
Bφ

0
C

) ∂

∂Θ

(
φ1
τY

J
τj`

)(∂Θ

∂θ

)
(4.53)

with the derivative with respect to χ following the same form. The terms of Delves

coordinates differentiated with respect to APH coordinates are given explicitly in

appendix B.4. Only the Y functions in equation 4.53 depend on Θ, and derivatives

of these functions are analytic. The φ1 “vibrational” continuum functions contain

the Jacobi Polynomials as functions of ϑτ , the derivatives of which can be found

by recurrence relations, as shown in appendix D.

The second derivative terms can be found by further use of the differentiation

chain rule. Once these are constructed from the already known quantities, then

we can construct matrix elements of the APH surface Hamiltonian as given in

equation 4.31.

Like with the bound states described in section 4.3.1, the ϕ0 functions are

calculated once in terms of the Jacobi s coordinate, and then splined so that

the value of this function can be found where needed. The derivatives of these

functions with respect to sτ are also splined. All other terms in equation 4.53 are

analytically known.

Another way to handle item 4 is to simply include more continuum states to the

basis and employ the variational principle by constructing the Hamiltonian matrix

with an excess of continuum functions and diagonalizing this to get eigenfunctions
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that do behave physically. In this way, we use the zero-potential solutions to the

Delves vibrational Hamiltonian, equation 2.20, with V = 0, and solutions given in

equation 3.16, which are

ϕCj`n(ϑτ ) = sinj+1(ϑτ ) cos`+1(ϑτ )Pj`n(2ϑτ )

where the C superscript refers to a continuum state.

Including these states for each channel introduces linear dependency, since these

states for a single channel alone constitute a complete basis. However, in creating

the symmetrized basis functions, these states from each channel are included in the

basis. If there is linear dependency, it can be removed by either forming an overlap

matrix and looking for eigenvalues of this overlap matrix that are very small, thus

indicating the corresponding eigenfunction to be linearly dependent, or by looking

or eigenvalues of the Hamiltonian that are exceedingly large, which corresponds to

states that behave non-physically in the highly repulsive potential regions. Either

way, the basis set can then be truncated to just include the states with reasonable

eigenvalues of either the overlap matrix or the Hamiltonian matrix.

In practice, this second method is much simpler to implement than the process

of replacing the sinj+1(ϑτ ) terms as in equation 4.52. The functions are analytic,

as are their derivatives, and can be calculated very quickly. For these reasons, after

comparison, this was the method used.

4.4 Projections With Asymptotic-type States

The asymptotic states for the bound channels do not posses the symmetry of the

full wavefunction, that is, they do not possess C6v symmetry, but instead they
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are functions of C2v symmetry in APH coordinates. Naturally in other coordinate

systems, they might belong to a different point group. However, a coordinate

transformation can only change the point group to another that is isomorphic to

the first, and so the concepts of this section still apply.

An asymptotic bound state for channel A is closely related to the functions

discussed already that constitute the symmetry states. As shows in section 3.1,

the two body constructed states approach the exact diatomic bound states as

S → ∞. So while the asymptotic-type states discussed in this section might not

be exactly the asymptotic states, the symmetry relationships are the same and the

physical representation is very similar, especially in moderate to large ρ regions.

An asymptotic state is labeled by its parity and rotational quantum number

which completely define its symmetry in C2v. The C2v point group is of order four,

whereas C6v is of order twelve, and so only four functions need to be used to define

it. Labeling these states by their channel, j, and parity, we can see that we have

for an even (+) j, even (+) parity state on channel A,

Ap+j+ = |1〉+ |6〉+ |7〉+ |12〉 (4.54)

or for a different channel, say

Bp+
j− = |9〉 − |2〉+ |3〉 − |8〉 (4.55)

Plotted examples of these asymptotic functions for the A channel can be seen

in figure 4.9

These asymptotic states consist of the same functions that the symmetry states

do, and could themselves be used as a basis. The symmetrized basis has a great
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(a) j+, p+

(b) j−, p+

(c) j+, p−

(d) j−, p−

Figure 4.9: Example asymptotic functions for channel A and labeled by even or
odd rotational j values and even or odd parity.
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advantage that in most cases, it is obvious if integrals between states cancel due

to symmetry, while it is not necessarily obvious with these asymptotic states.

It is therefore of interest to know how these functions relate to each other. The

projections of each of the asymptotic states onto the symmetrized states is given

in appendix E.3.

4.5 Propagation, Boundary Conditions,

and Asymptotic Matching

Once the propagation has reached a point where the potential is effectively asymp-

totic, that is, where there are no longer three-body effects and the potential is

only non-zero where two atoms become close, then the boundary conditions for

the radial wavefunction, ψ(ρ) can be applied, and scattering information can be

extracted. Since the basis used for propagation, Φ(θ, χ; ρξ) = Φξ, is an adiabatic

basis in that it diagonalizes the APH surface Hamiltonian at every ρξ, we must

transform this basis to the asymptotic basis set, which are the functions that de-

scribe the system beyond the range of the three-body interaction potential. In

this basis, we can form ψasy(ρ) which can be expressed in terms of the reactance

matrix, K as

ψasy(ρξ) = aξ − bξK (4.56)

where a and b are known regular and irregular solutions to the radial Schrödinger

equation. At an asymptotic region where the potential is ineffectual, all solutions

to the Schrödinger equation can be expressed as a linear combination of the a

and b solutions. The reactance matrix K contains all of the attainable scattering

information.
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The possible asymptotic states include the two-body, diatomic wavefunctions

for each arrangement channel, and the continuum wavefunctions that describe

three separated atoms. Let us call this asymptotic basis {Ξ}ξ, which is defined at

some ρξ, and Ξξ will represent a matrix of these states. We require a transformation

from the adiabatic Φ basis, evaluated at an asymptotic ρ∞, to the asymptotic basis,

such that

Φ(θ, χ; ρ∞) = Ξ∞D∞ (4.57)

Since studies of convergence would ask that asymptotic analysis be performed at

many different values of ρ∞, it is sensible to label each basis set and transformation

matrix by a propagation step index rather than ∞.

Φ(θ, χ; ρξ) = Φξ = ΞξDξ (4.58)

The set of {Ξ}ξ must be well defined. Since these would represent the system

asymptotically and must represent all possible asymptotic states, this set of func-

tions must include diatomic wavefunctions plus a free atom, and wavefunctions

that describe three free atoms. These we call bound and continuum states, respec-

tively, but not to be confused with three-body bound states. Thus the set can be

written as

{Ξ}ξ =
∑
nb

Ξ(E < 0) +
∑
nc

Ξ(E > 0) (4.59)

How to form the Ξ functions will be discussed later in this section, but at present, if

we assume these functions are well defined, then the propagated radial coefficients,

ψ(ρ) = ψadia that are defined in equation 4.6 can be transformed from the adiabatic
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basis in which they are propagated, to the primitive basis by substituting equation

4.57 into the full wavefunction equation, such that

Ψξ = Φξψ
adia
ξ

Ψξ = ΞξDξψ
adia
ξ (4.60)

In this Dξψ
adia provides a transformation only on the “final” states, since the row

index of this matrix refers to the asymptotic primitive basis, and the column index

is still the adiabatic propagation basis. To complete this appropriately we multiply

on the right by DT, the transpose of D,

ΨξD
T
ξ = ΞξD

T
ξ ψ

adia
ξ DT

ξ (4.61)

which gives Ψ fully in the asymptotic basis, and we can define a transformation

between the sets of propagation coefficients,

[ψξ
asy] = [DT

ξ ][ψadiaξ ][Dξ]

[ψξ
adia] = [Dξ][ψ

asy
ξ ][DT

ξ ] (4.62)

In using the Smooth Variable Discretized (SVD) Enhanced Renormalized Nu-

merov algorithm[14] for the propagation, we calculate an R matrix rather than

ψadia, where again the relation between them is given as

Rξ(I−Tξ)ψ
adia
ξ = Oξ,ξ+1(I−Tξ+1)ψadiaξ+1 (4.63)
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Using equation 4.62 to change to the asymptotic basis, we get

Rξ(I−Tξ)D
T
ξ ψ

asy
ξ Dξ = Oξ,ξ+1(I−Tξ + 1)DT

ξ+1ψ
asy
ξ+1 (4.64)

where Oξ,ξ+1 is the overlap matrix between the Φξ and Φξ+1 bases. If we make

the approximation that

DξD
T
ξ+1 ≈ I (4.65)

then we can multiply on the right by DT
ξ+1 and use equation 4.56 to get

Rξ(I−Tξ)D
T
ξ (aξ − bξ+1K) = Oξ,ξ+1(I−Tξ+1)DT

ξ+1(aξ+1 − bξ+1K) (4.66)

This can be put in the form of

A = BK (4.67)

B =
[
Oξ,ξ+1(I−Tξ+1)DT

ξ+1bξ+1 −Rξ(I−Tξ)D
T
ξ bξ
]

(4.68)

A =
[
Oξ,ξ+1(I−Tξ+1)DT

ξ+1aξ+1 −Rξ(I−Tξ)D
T
ξ aξ
]

(4.69)

From here K can be solved for easily with linear algebra methods.

While this procedure is not new, there are some notes of interest that are

relevant to the current problem. It must be observed that for the above transfor-

mations by the D matrix, which is dimensioned as Nadia×Nasy, it is assumed that

D is square and orthogonal (or unitary if complex functions are used). For this

to be true, it is necessary that both the adiabatic basis and the asymptotic basis

are sets of orthonormalized functions, and that there are equal numbers of each of

them. This is not generally true; there could be more or less of either. In such a

case, the generalized inverse of D would need to be used instead of DT .
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If Nasy < Nadia, then more functions are being propagated than are necessary

for the desired scattering information, and either Nadia should be reduced to save

computation, or Nasy should be increased.

Colavecchia et al.[14] address the situation where there Nasy > Nadia, noting

that asymptotically, and for a given channel, the adiabatic bound states approach

the asymptotic bound states. If the indices of D represent states that are or-

dered by energy, then D would exhibit an nb × nb block that would approach the

unit matrix. Furthermore, it is stated that the coupling between continuum and

bound states is approximately zero for all combinations of asymptotic and adia-

batic functions. With these provisions, they use DT as an inverse, and show that

this is effective as well as much more efficient than propagating an adiabatic basis

that is as large as the asymptotic basis.

One other issue to address is the validity of DξDξ+1
T ≈ I. In practice, calcula-

tions on the HNe2 system showed that at asymptotic ρ values used, the off-diagonal

elements of DξDξ+1
T at ρ up to 100a0 reached values of 0.01-0.03. While it is pos-

sible in theory to solve for K without making this approximation, attempts to

numerically solve equation 4.64 for K either as a form of Sylvester’s equation or

by iterative processes were unsuccessful. The a and b matrices are composed of

either tiny or huge numbers, depending on whether asymptotic channels were open

or closed energetically, and too much accuracy was lost to get any converged result

for K. This approximation does improve, though, as the further one propagates.

4.5.1 Asymptotic Bound State Definitions

For the bound states, the asymptotic functions are the two-body diatomic wave-

functions, which are labeled by τνj`, where τ labels the arrangement channel,
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and ν and j label the rovibrational state of the diatom, and ` labels the orbital

angular momentum of the free atom about the center of mass of the diatom. The

radial wave functions that correspond to these states asymptotically are the reg-

ular and irregular Riccati-Bessel functions for open states. Previous calculations

[18, 19, 20], have shown that these functions are best described in a Jacobi coor-

dinate system where sτ measures the internuclear distance of the diatom, and Sτ

is so large that there is no interaction between the third atom and the diatom. In

a Jacobi coordinate matching scheme, a,b are defined as

a(Sf )fi = δfik
1/2
f Sfj`f (kfSf )

b(Sf )fi = δfik
1/2
f Sfy`f (kfSf ) (4.70)

and for closed states the radial functions in Jacobi use regular and irregular Mod-

ified Bessel functions

a(Sf )fi = δfi

(
kfSf

π

2kf

)1/2

I`f+1/2(kfSf )

b(Sf )fi = δfi

(
kfSf

π

2kf

)1/2

K`f+1/2(kfSf ) (4.71)

Attempts have been made define these states in hyperspherical coordinates

[21, 22, 13], but the resultant transition probabilities between states exhibited

oscillations as a function of ρ. These oscillations diminished as ρ∞ was increased,
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but one had to propagate to much greater distances than if Jacobi coordinates

were used. In Delves coordinates, we have for open states

a(ρ)fi = δfik
1/2
f ρj`f (kfρ) (4.72)

b(ρ)fi = δfik
1/2
f ρy`f (kfρ) (4.73)

and for closed states,

a(ρ)fi = δfi

(
kfρ

π

2kf

)1/2

I`f+1/2(kfρ) (4.74)

b(ρ)fi = δfi

(
kfρ

π

2kf

)1/2

K`f+1/2(kfρ) (4.75)

In either the Jacobi or the Delves equations above, the δfi is provided by the

integrals performed on the respective orthonormal asymptotic basis sets.

Where continuum states are possible, however, it is desirable to propagate in

hyperspherical coordinates, so to improve on bound state asymptotic matching,

Kuppermann and Kaye introduced[23] a mixed boundary condition where by the

bound states are expressed in Jacobi coordinates but are projected onto a hyper-

spherical surface for matching. Colavecchia et al.[14] showed that applying this

method did not remove the oscillations in the transition probabilities entirely, but

did reduce them significantly, and converged results were possible without the need

to propagate to very large distances.

In a mixed boundary condition, the functions are matched at a constant ρ as

in the Delves equations of 4.73 and 4.75, but the integrations give the projection
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of Jacobi asymptotic states, e.g.
√
kfj`f (Sf )Ξ

Jac
f (sf ), onto a constant ρ surface

with a Delves coordinate asymptotic basis, ΞDel
f (ρ), which gives

af i =
√
kf

∫ π/2

0

ρ cos(ϑτ f )dϑτ fζ
Jac
i (ρ sinϑτ f )Ξ

Del
f (ϑτ f )j`f (kfρ cosϑτ f )

bf i =
√
kf

∫ π/2

0

ρ cos(ϑτ f )dϑτ fζi(ρ sinϑτ f )Ξ
Del
f (ϑτ f )y`f (kfρ cosϑτ f ) (4.76)

for the open states. The closed states not changed from the standard definition.

As ρ becomes large, the ΞJac and ΞDel functions approach being identical, and the

integral approaches the delta function times j or y evaluated at Sf = ρ. However,

at moderate ρ values, this is effectively an overlap matrix that attempts to express

the Jacobi asymptotic boundary conditions in terms of the Delves functions; two

different orthonormal sets that span slightly different spaces.

In the present case of scattering in APH coordinates, this same mixed boundary

procedure is used for the open bound states, but instead of matching onto a Delves

hypersurface, we match onto an APH one. This requires a double integral over

θ and χ in lieu of the single integral over ϑτ , but this does not add significant

complexity as one simply projects the asymptotic Jacobi diatom wavefunctions,

ζνj`(sτ ) onto a constant ρ APH hypersurface in θ and χ. Otherwise, the afi and

bfi matrices are formed identically to the Delves case.

Since this method of mixed boundary conditions provides the benefit of prop-

agating in hyperspherical coordinates along with significant improvement in the

calculated bound state transitions, we choose to use it here also. The bound di-

atomic wavefunctions in each channel are calculated in Jacobi coordinates for the

entire range of sτ for which they have amplitude, and these are labeled by good

diatomic rovibrational quantum numbers.
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4.5.2 Asymptotic Continuum State Definitions

Defining asymptotic continuum states is not as simple as the bound states. Hy-

perspherical coordinate definitions of the continuum states is desirable because if

one were to define them in Jacobi coordinates, the continuum wavefunctions in

sτhave amplitude to sτ →∞, making integration difficult, and have a continuous

energy spectrum. If defined in hyperspherical coordinates, these states are defined

by angles and thus have a finite range of amplitude and a discrete energy spectrum.

Asymptotically, the Delves continuum states approach the energy[13]

lim
ρ→∞

ρ2Eνj` =
~2(λ+ 2)2

2µ
(4.77)

where λ is Smith’s grand angular momentum [11] and is defined as λ = 2ν + j+ `.

The radial functions become a linear combination of Bessel functions as

[a(ρ)]fi = δfi

(πρ
2

)1/2

Jλ+2(kρ) (4.78-a)

[b(ρ)]fi = δfi

(πρ
2

)1/2

Yλ+2(kρ) (4.78-b)

where J and K are the integer-order regular and irregular Bessel functions, and

k2 =
2µE

~2
(4.79)

For closed states, we replace J and Y with the modified Bessel functions I and

K. The asymptotic Delves continuum functions are well defined; equation 3.16,

rewritten here,

φCj`n(ϑτ ) = sinj+1(ϑτ ) cos`+1(ϑτ )Pj`n(2ϑτ )
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for the “vibrational” ϑτ coordinate, and the Y rotational functions for the other

coordinates. In APH coordinates, however, these motions are not separable in

θ and χ. Furthermore, the asymptotic condition on the continuum states is not

simply a zero potential case; for this the APH wavefunctions are well defined hyper-

spherical harmonics. But instead we have a case where exists diatomic potentials

for all values of ρ. No matter how large ρ becomes, there are regions of (θ, χ) space

where two of the atoms may become close, and at the point where they coalesce the

potential becomes effectively infinite. As ρ→∞, the regions of non-zero diatomic

potential on the (θ, χ) hypersphere become infinitesimally small, but a physical

continuum state should still be zero at the points of diatom coalescence.

Furthermore, excluding the diatomic potentials from the definition of the asymp-

totic continuum states, thereby using a zero potential hyperspherical harmonic

definition, leads to asymptotic continuum states that are not orthogonal to the

asymptotic bound states. Since it is the masses of the atoms that determine the

location of the channels, and proper continuum states of definite quantum num-

bers that are orthogonal to the bound states must be influenced by the diatomic

potentials, an analytic solution that satisfies these conditions may not be possible.

One possible solution is to use the adiabatic states that correspond to ener-

gies greater than zero asymptotically. These have the advantage that they are by

definition orthogonal to the adiabatic bound states, and as noted previously, at

large ρ, the adiabatic bound states approach the asymptotic bound states. The

adiabatic continuum states do have a difficulty in that they are linear combina-

tions of the symmetrized primitive basis functions, the φ(θ, χ) functions defined

in equation 4.49. The symmetrized φ functions have a definite λ label, but the Φ

do not. It is possible to use these still, but this would result in the afi and bfi
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in equations 4.78-a,4.78-b to be non-diagonal. If the transformation coefficients

are kept that relate the symmetrized φ basis to the Φ basis, then these could be

used to determine the off-diagonal elements, but the asymptotic states would still

require a definite λ to be meaningful.

Another possibility is to simply use the symmetrized φ states that correspond

to the asymptotic continuum states. While these do provide functions with a

definite λ, these states are not orthogonal to each other. Continuum states for

a single channel, ϕτ (θ, χ) defined in section 4.3.2, each span the entire space and

continuum states from different channels overlap for all values of ρ. These cannot

then be used as an orthogonal asymptotic basis, and again afi and bfi are non-

diagonal matrices.

A third option is to use the continuum functions for a single channel only. This

is still physically realistic; a continuum state represents a state in which all three

atoms can separate to infinity, and we don’t need asymptotic continuum states

that are defined for each channel. Furthermore, if the zero potential states are

used as the asymptotic definition, then these functions are simple to compute,

have a definite λ value, and are orthonormal to each other. They are not, however,

orthogonal to the bound states. If matching is performed at a large value of ρ,

however, than the overlap with the bound states is small, and as has been done

before[24], one can approximate orthogonality. At this time, this is the method we

choose to employ.
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4.5.3 Adiabatic to Asymptotic Transformation

At the end of propagation we must construct the D matrix defined in equation

4.57. This is done by an integration,

Dmn =
〈

ΦJp
tΛ

∣∣∣Ξτνj`

〉
(4.80)

If J 6= 0, this is where the space-fixed to body-fixed transformations become rel-

evant. In constructing the Φ functions from the symmetrized basis, as noted in

section 4.3.1, we did not include the Wigner D̂ functions. Instead we constructed

functions of internal coordinates only that were physically motivated by the asymp-

totic states, but did not correspond to a specific set of body-fixed axes. In the

definition of APH coordinates, the body-fixed axes are determined by maximizing

the moment of inertia along the ẑbf axis, while simultaneously minimizing it in the

x̂bf . Using this to define the Euler angles αQ, βQ, γQ for the APH wavefunction

expansion in equation 4.6, and for each asymptotic function we define ατ , βτ , γτ

for the asymptotic state definition in body-fixed coordinates, we can then use the

relation

D̂J
ΛM(αQ, βQ, γQ) =

∑
Ω

DJ
ΛΩ(0, βQτ , 0)D̂J

ΩM(ατ , βτ , γτ ) (4.81)

to label all of the states in the same set of body-fixed axes for the integration. The

rotation from the τ set of axes to the Q set of axes, βQτ is given by[8]

sin βQτ =
sτ sinχτ sin Θτ

Q

cos βQτ =
Sτ cosχτ + sτ sinχτ cos Θτ

Q
(4.82)
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Chapter 5

Integration of the APH Hypersphere Surface

One of the prime difficulties of using multidimensional basis functions to expand the

full scattering Hamiltonian is find ways to perform accurate integrals as efficiently

as possible. In this section, we discuss how these difficulties arise and some methods

to assuage them.

In the present case of a three atom system, the basis functions are defined at

specific, constant values of the hyperradius, ρ. With the center of mass motion

removed from consideration and ρ held fixed at some ρξ, five coordinates remain,

and it is over these coordinates that the basis functions, or surface functions, are

defined.

In the previous sections, these surface functions were developed as functions of

the APH surface coordinates (θ, χ), and the Euler angles (α, β, γ). The Wigner

D(α, β, γ) functions serve to represent the system’s rotational motion, and the

integrals over these functions can be done analytically. What is left is to perform

integrals over the internal APH surface coordinates of θ and χ, which have domains

of [0, π/2] and [0, 2π), respectively.
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The physical behavior of the system in APH coordinates is highly non-separable,

which is why great care has been taken in the formulation of surface basis func-

tions, but this also means that the integrals over the APH hypersurface (θ, χ at

some fixed ρξ) is impossible to separate into one-dimensional integrals. Though

the functions are separable in Delves’ or Jacobi coordinates, from which the con-

structed basis functions were created and then projected onto APH coordinates,

and the primitive functions of a given channel could be projected back to these

coordinates and integrated analytically, the integrals between functions of different

channels cannot be done analytically. If only two-body bound state primitive basis

functions are being used, then at sufficiently large ρξ values, there would be no

overlap between channels. But, the continuum state primitive functions would al-

ways produce cross terms between channels. A two-dimensional integration scheme

is necessary.

That the continuum functions have amplitude over the entire domain of the

internal space, in any coordinate system, is one of the principle difficulties of

collision-induced dissociation scattering. A scattering calculation without pos-

sibility of three-body break-up has final states that are always an atom plus a

diatom, and the maintained close proximity of two of the atoms for all values

of ρ (or Sτ ) mean that the amplitude of basis functions and/or eigenfunctions is

restricted to some localized piece of space. Hence, integrals over these functions

could be focused or even constricted entirely to this localized area, and numeric

integration could be done quickly and without excessive computation power. In a

Jacobi coordinate system, for instance, such functions could be simply represented

as functions of sτ and Θτ , both with finite domains since the bound states do not

have amplitude far beyond the two-body potential well. The continuum functions,
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however, are not similarly localized. At large, or even just moderate values of

ρ, this adds the complication that the integration must accommodate the entire

space while still sufficiently focusing on the localized regions where the bound state

functions exist such that they, too, are integrated accurately. This can require very

large numbers of integration points or very complicated fitting schemes, as well as

a lot of computation time.

Fortunately, as we saw in section 4.2, taking advantage of the system’s symme-

tries can simplify the integration process. For a homonuclear triatomic system, an

integral over a mere 1/12 of χ’s [0, 2π) domain is needed for the one-dimensional

irreducible representations of A1, A2, B1, B2, and integrating only a quarter of the

surface is sufficient for the two-dimensional irreducible representations , E1 and

E2. Knowing that the integral of two functions belonging to different irreducible

representations must be zero, we need only consider the integrals between func-

tions of the same irreducible representation . As such, the rotational and reflective

symmetries of the one-dimensional irreducible representations enable integrals over

χ to be performed from [0, π/6) to give exactly 1/12 of the value of the total inte-

gral. Likewise for E1 and E2, integrating from [0, π/4) gives a quarter of the total

integral.

5.1 Direct Square Integration by Quadrature

The least elegant and least efficient method to integrate these spaces is by simply

defining quadrature points in both θ and χ coordinates, finding the integrand

values at these points, and then summing the product of the integrand values with

the quadrature weights. A simple, evenly distributed grid may work well at short

values of ρξ, but at larger values, it can be very ineffective. Specifically, in regards
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to the aforementioned point of bound state localization, as ρ increases, the region

where the bound state functions have amplitude becomes a smaller and smaller

region on the hypersphere. While the domains of θ and χ do not change, the larger

ρξ is, the more physical space is covered by the hypersphere. Eventually, an evenly

distributed grid will have so few points in the bound state regions that there is no

hope of accurate integration. Or, there will be no points at all in this region, and

all integrals will evaluate to zero.

There is merit, though, in a square grid of integration points. It is very easy to

implement, very easy to increase the number of points, and is enormously useful

for checking other, more complicated schemes. Also, at small values of ρξ where

no basis functions are constricted to small regions of space, a simple square grid

is effective at getting accurate integrals. Yet even still, it might take many more

quadrature points than other methods.

5.2 Static Jacobi Grid

In this method, a rectilinear grid in Jacobi sτ and Θτ , and then the grid is pro-

jected onto the APH hypersurface at each value of ρξ. Each rectangular integration

element in sτ ,Θτ space has a set of Gauss-Legendre quadrature points forming a

grid in each direction. In this work, we used a 6 × 6 grid. The Gauss-Legendre

integration weights are scaled appropriately to the width and height of the rect-

angle element. When this is projected onto the APH hypersurface, the rectangle

becomes a general quadrilateral in θ, χ space. A linear transformation is used to

place the quadrature points in the APH quadrilateral and to scale the integration

weights according to the new shape of the element.

98



The constant Θτ grid distribution was determined by the maximum rotational

state used in the asymptotic basis set. A points-per-wavelength parameter was

established that determined how many elements in the Θτ direction should be es-

tablished with 6 points per element such that integrals over these functions squared

could be performed accurately.

In the sτ direction, the constant grid was determined by the diatomic potential,

and again the defining parameter was a requisite number of points per wavelength

(pw). First, the energy difference, ∆Emax, between the highest rotational (j =

jmax) barrier peak to the depth of the j = 0 diatomic well minimum was calculated.

The first line of constant sτ was set at the well minimum. The ∆Emax was then used

to calculate a local wavelength, λs, at this point. With pe points per integration

element, the distance to the next constant sτ value ∆sτ is determined by

∆sτ = λs
pe
pw

(5.1)

if 12 points per wavelength are required, with 6 points per element, the next

constant sτ line is a half wavelength away from the well minimum. This was done

in both directions. At the next outward step, the same peak energy was used, but

the potential was re-evaluated, so ∆E1 is less than ∆Emax. The wavelength was

recomputed, and a new ∆sτ determines the second outward constant sτ line. This

process was repeated until sτ >= ρmax, the largest ρ value for which the basis

is generated. The inward process is the same as the outward until the classical

turning point is reached for the maximum barrier energy, and then a set number

of constant sτ elements was used in the classically forbidden region.

Examples of the resultant grids are shown for ρ = 5a0, 10a0, 15a0, 55a0 in figures

5.1-5.4
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In figures 5.3 and 5.4 the well region is visible by a more dense band of points

that follows the well minimum in sτ .

One other modification to this grid was made, which was to determine the

largest vibrational state of the continuum functions and determine how many

points would be necessary to integrate it accurately. Then an estimation was

made on the largest distance in sτ for which the bound or quasibound states had

amplitude. Beyond this distance, a fixed number of constant sτ values was used,

regardless of how large ρ became. Since the continuum states do not increase their

oscillations as ρ increases, and the diatomic well part of the potential diminishes in

size on the hypersphere for large ρ, we reach a point were no additional integration

elements are ever necessary. This allows us to propagate to very large ρ values,

but always use the same number of integration points.
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Figure 5.1: Static Jacobi grid for integration projected onto the APH hypersurface
at ρ = 5a0.
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Figure 5.2: Static Jacobi grid for integration projected onto the APH hypersurface
at ρ = 10a0.
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Figure 5.3: Static Jacobi grid for integration projected onto the APH hypersurface
at ρ = 15a0.
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Figure 5.4: Static Jacobi grid for integration projected onto the APH hypersurface
at ρ = 55a0.
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Chapter 6

Results of H3 calculations

Scattering calculations were performed on the H3 system in order to test the va-

lidity of the method. Comparisons were made against the calculations done for

reference [8], and both calculations use the Porter-Karplus[25] H3 potential energy

surface. It should be noted that this potential is not highly accurate, but many

calculations have been done on this potential surface so it is an excellent choice

for testing.

There are specific criteria to be met in order to validate the theory of chapters

3,4, and 5,

1. The basis set described can be used effectively to reproduce known energy

correlation diagrams for a given system

2. The basis set consistently includes quasibound states regardless of energy.

However, this criteria is met automatically by the process of constructing

the basis set.

3. The basis set can adequately represent continuum state functions
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4. The basis set faithfully represents the symmetry of the system and can allow

for the problem to be reduced solving a single irreducible representation at

a time.

5. The integration method is sufficient to the task of accurately calculating

integrals, but is also sufficiently efficient to allow the scattering calculation

to be performed in a reasonable time period.

6.1 Energy Correlations

In regards to item 1, one of the most crucial tests is the output of the eigenvalues

of the surface Hamiltonian of equation 4.31. In the energy correlation diagrams,

we are looking for three things in particular: behavior that corroborates that from

energy correlation diagrams in other calculations, correct asymptotic eigenvalues,

and degeneracy between states from different irreducible representations .

In regards to the first in this list, we compare the energy correlation diagrams in

figures 6.1 and 6.2 to the results published in reference [8]. The energy correlation

diagrams are plots of the eigenenergies of the surface Hamiltonian, defined in

equation 4.31 and reprinted here,

Hsurf =
−~2

2µρ2
ξ

[
4

sin(2θ)

∂

∂θ
sin(2θ)

∂

∂θ
+

1

sin2(θ)

∂2

∂χ2

]
+
A+B

2
~2J(J + 1) +

15~2

8µρ2
ξ

+

[
C − A+B

2

]
~2Λ2 + V (ρξ, θ, χ)

If the eigenenergies of this equation are poor, then there is little hope that the

basis set is performing well enough to conduct a scattering calculation.
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Figure 6.1: Energy correlation diagram for the H3 system using the Porter-
Karplus[25] potential energy surface. In this plot are all even parity irreducible

representations : A1, A2, E
(1)
2 , and E

(2)
2 In the calculation that produced this data,

all single-channel ϕ states included up to λmax = 16, where λ = 2ν + j + `. Many
of these states are degenerate or very nearly so.

In figures 6.1 and 6.2, we see plotted the energy correlation in atomic units

(Hartrees) as a function of ρ in Bohr.

In looking at the plots in figures 6.1 and 6.2, we see behaviors that correspond

with figure 6 in reference [8]. The short-ρ belly of the ground state is very clearly

reproduced, as well as the locations of the first several avoided crossings.

Next, we look at the values of the energy correlation diagrams in comparison

to the asymptotic energies. In table 6.1 is a comparison between the asymptotic
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Figure 6.2: Energy correlation diagram for the H3 system using the Porter-
Karplus[25] potential energy surface. This plot is a blow-up of figure 6.1

energy values as calculated in three different ways. The first column are the eigen-

values for a given ν and j for the solutions to the Jacobi rovibrational Hamiltonian

in equation 2.14. In the second column are the eigenenergies energies found by

applying the Delves rovibrational Hamiltonian, given in equation 2.20 to the Ja-

cobi eigenfunctions as projected onto the constant ρ = 12.1 Bohr. This Delves

Hamiltonian matrix was then diagonalized. The intention behind this test was to

see how much the projection process changed the function. Since the constant ρ

surface is not a constant Sτ surface, there is some difference between the two func-

tions at any finite value of ρ. The constant Sτ surface is tangent to the constant ρ

surface. In the last column are the values of the APH surface Hamiltonian at 12.1
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(ν, j) EJ ED EA
(0,0) -0.164400 -.164146 -.164476
(0,1) -0.163869 -.163602 -.163926
(0,2) -0.162782 -.162494 -.162671
(1,0) -0.145242 -.144511 -.145035
(1,1) -0.144716 -.143971 -.144509
(1,2) -0.143678 -.142917 -.143464
(2,0) -0.127272 -.126085 -.126945
(2,1) -0.126767 -.125574 -.126444
(2,2) -0.125786 -.124557 -.125445

Table 6.1: Asymptotic energies. The first column is the Jacobi two-body rovibra-
tional energies, the second column is the Delves two-body rovibrational energies at
12.1 Bohr, and the third column is the corresponding limits for the APH eigenen-
ergies at 12.1 Bohr.

Bohr. Technically, because of mixing between even and odd j states, these values

do not have a (ν, j) set of quantum numbers. But, for a Jtotal = 0 case, at at a

sufficiently large value of ρ, these can be sorted by appearance, as will be shown

in the next section.

The numbers given in table 6.1 are from a calculation with only functions

corresponding to these quantum numbers given as a basis. This small of a basis

does not perform well at short ρ distances where the three-body contribution to

the total potential energy is significant. But, at large ρ values (12.1 is sufficiently

large for H3 that the three body terms are negligible), even this small of a basis

does fairly well as is demonstrated in table 6.1.

Between this agreement and tests done for convergence, on these energies, this

data also lends confidence that the integration procedure is sufficient, thus satis-

fying criteria 5.
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6.2 Symmetrized Eigenfunctions

For a system of three identical particles, the potential energy surface in APH

coordinates exhibits a C6v point group symmetry, as shown in figure

The lowest energy A1 irreducible representation eigenfunction is plotted in fig-

ure 6.3, and the lowest A2 irreducible representation eigenfunction in figure 6.4

for ρ = 2.1, 4.6, 7.1, 9.6 Bohr. As ρ increases, we can see that the amplitude of

the eigenfunction becomes centralized around the different arrangement channels

located at 0, 60, 120, 180, 240, and 300 degrees on the circle. Note that the A2

functions have negative reflection symmetry about each channel, corresponding

to an odd j rotational state, whereas for the A1 functions correspond to an even

rotational state.
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a

b

c

d

Figure 6.3: Lowest A1 eigenfunctions at ρ values a,b,c,d = 2.1, 4.6, 7.1, 9.6 Bohr
respectively. The overall phase of the functions is arbitrary, so the function will
change sign at some sectors, as shown by the switching of positive amplitude
(white) and negative (black). See appendix B.3 for more explanation of APH
surface plots.
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a

b

c

d

Figure 6.4: Lowest A2 eigenfunctions at ρ values a,b,c,d = 2.1, 4.6, 7.1, 9.6 Bohr
respectively.
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a

c

b

d

Figure 6.5: Lowest E
(1)
2 eigenfunctions at ρ values a,b,c,d = 2.1, 4.6, 7.1, 12.1 Bohr

respectively.

113



a

c

b

d

Figure 6.6: Second Lowest E
(1)
2 eigenfunctions at ρ values a,b,c,d = 2.1, 4.6, 7.1,

12.1 Bohr respectively.
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a

c

b

d

Figure 6.7: Lowest E
(2)
2 eigenfunctions at ρ values a,b,c,d = 2.1, 4.6, 7.1, 12.1 Bohr

respectively.
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c
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d

Figure 6.8: Second lowest E
(2)
2 eigenfunctions at ρ values a,b,c,d = 2.1, 4.6, 7.1,

12.1 Bohr respectively.
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6.3 Representation of Continuum States

The ultimate goal of this project was to construct a basis for scattering that would

efficiently allow for three-body breakup states. The basis functions representing

the continuum states must have amplitude over the entire constant ρ hypersur-

face, obey the physical boundary conditions, and be orthogonal to the bound and

quasibound states.

In this section we present the continuum state basis functions developed by

the methods described in section 4.3. These states are the eigenstates of the

APH surface Hamiltonian that have positive energy, and by virtue of diagonalizing

the surface Hamiltonian matrix, these states are orthonormal to the bound and

quasibound states, as required. Lastly, since the primitive basis functions used to

construct the eigenstates are themselves asymptotic solutions of the system, we

are guaranteed to have physical behavior at the boundaries.

In figures 6.9-6.12 are plots of the first continuum states for the labeled irre-

ducible representations . The continuum states have amplitude over the entire

region of the constant ρ hyper-surface, showing that the continuum functions are

in fact able to be represented by the basis.
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a

c

b

d

Figure 6.9: First continuum state for A1 irreducible representation at ρ values of
a,b,c,d = 2.1, 4.6, 7.1, 12.1 Bohr

118



a

c

b

d

Figure 6.10: First continuum state for A2 irreducible representation at ρ values of
a,b,c,d = 2.1, 4.6, 7.1, 12.1 Bohr
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a

c

b

d

Figure 6.11: First continuum state for E
(1)
2 irreducible representation at ρ values

of a,b,c,d = 2.1, 4.6, 7.1, 12.1 Bohr
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c

b

d

Figure 6.12: First continuum state for E
(1)
2 irreducible representation at ρ values

of a,b,c,d = 2.1, 4.6, 7.1, 12.1 Bohr
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6.4 Conclusion

The criteria enumerated at the beginning of the chapter have been shown to be

satisfied, and the goal of generating basis functions that can represent general

collision-induced dissociation or three-body breakup processes has been successful.

With a given three-body potential energy surface, this process can be applied to

most any three-atom system. Depending on the number of bound states and the

collision energy, some calculations may still be computationally very expensive,

however, much of the process of generating these basis functions can be easily

parallelized for multiprocessor systems or clusters. Very little shared memory is

required for calculations at different sectors, as each ρξsector’s basis functions can

be computed independently of every other sector. Even the processes of projecting

asymptotic states to generate symmetrized primitives and the matrix generation

and diagonalization naturally lend themselves to parallel calculation. Furthermore,

with the integration scheme introduced in chapter 5, the number of integration

points increases with ρ until a maximum is reached and then it remains constant,

so it does not become more expensive to calculate basis functions at values of ρ

of many thousands or millions of Bohr. Propagating to such distances may be

necessary for some systems, such as He3, where the two-body bound state extends

to several hundred Bohr, and the three-body asymptotic region may not be reached

until ρ is much, much larger than as is necessary for H3 or Li3. It is expected that

much research can be produced with this methodology and the corresponding set

of scattering codes that have been developed to implement it.
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Appendix A

Notation

The following symbols are used throughout this document.

Labels

• τ : index specifying a specific three-body arrangement channel

• ξ : index specifying propagation sector

• j : space-fixed rotational angular momentum of diatomic molecule

• ` : space-fixed orbital angular momentum of an atom about a diatom

• ν : two-body vibrational quantum number

• Jtotal : total three-body angular momentum

• M : space-fixed projection of total angular momentum, Jtotal

• Λ : body-fixed projection of total angular momentum, Jtotal
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Symmetry

• C2 : point group symmetry of APH surface Hamiltonaian for system of three

atoms of different masses

• C2v : point group symmetry of APH surface Hamiltonian for system of three

atoms where two have the same mass and one is different

• C6v : symmetry point group of APH surface Hamiltonian for system of three

atoms of identical mass

• D3h : symmetry point group, isomorphic to C6v, for doubled Delves’ hyper-

spherical coordinates with threee identical atoms

• Cs : symmetry Point group of space with three atoms

• Γ : irreducible representation label of a given point group

• σv : reflection in plane containing primary rotation axis

• σd : reflection in plane containing primary rotation axis, but of a different

class than σv

• σh : reflection in plane orthogonal to primary rotation axis

• Cn : nth order rotational symmetry

• Sn : nth order improper rotational symmetry, a Cn rotation followed by a

reflection in plane orthogonal to rotation axis

• i : inversion symmetry
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Coordinates

• α, β, γ : Euler Angles

• rτ : Jacobi coordinate, distance between two atoms forming a diatom

• Rτ : Jacobi coordinate, distance from center of mass of diatom to third atom

• sτ : Jacobi Mass-Scaled coordinate, scaled of rτ

• Sτ : Jacobi Mass-Scaled coordinate, scaled of Rτ

• Θτ : angle between Jacobi s and S vectors. Also part of Delves’ hyperspher-

ical coordinates

• ϑτ : Delves’ theta coordinate, specific to an arragement channel and so either

implicitly or explicitly labeled by τ , etc.

• ρ : APH and Delves’ hyperradius coordinate

• θ : APH theta coordinate, defined in appendix B

• χ : APH coordinate, defined in appendix B

Functions

• Ψ : solution full three-body differential equation, coordinate independent

• Φ : solutions of APH surface Hamiltonian

• Υ : solutions of Delves’ surface Hamiltonian in ϑτ

• ζ : solutions of the Jacobi coordinate s diatomic vibrational Hamiltonian
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• ϕ : either a 2D or 5D function, depending on inclusion of Euler angles. ϕ

refers to a constructed basis function specific to a single channel. The ϕ

functions are not orthonormal.

• φ : symmetrized non-orthogonal linear combinations of ϕ functions

• DJ
MΛ : Wigner rotation functions, D̂J

MΛ are normalized

• Pm
l : associated Legendre Polynomials, P̂m

l are normalized

• Y m
l : spherical harmonic functions, Ŷ m

l are normalized

• Y JM
j` : coupled angular momentum functions; linear combinations of spher-

ical harmonics, normalized

• Pj`
n : Jacobi Polynomials, P̂j`

n are normalized

Acronyms

• CID : Collision-Induced Dissociation

• 3BR : Three-Body Recombination

• APH : Adiabatically-adjusting Principle-axis Hyperspherical

• FEM : Finite Element Method

• DAF : Distributed Approximating Functionals

• DVR : Discrete Variable Representation
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Appendix B

Coordinate Systems

Here we describe the coordinate systems used in this paper. There are multi-

ple ways in which the positions of three atoms can be described, and each has

advantages in illuminating physical properties.

B.1 Jacobi Coordinates

For three atoms, there are three different sets of Jacobi coordinates that can be

employed. For Jacobi coordinate set “A”, a vector rA is defined between the centers

of mass of atoms B and C. Then, the vector RA is defined from the center of mass

of the BC diatom to the atom A. Likewise for the “B” set, a vector rB is defined

between atoms A and C, and a vector RB is defined from the center of mass of the

AC diatom to the B atom.

It is almost always more useful, however, to work with Mass-Scaled Jacobi

coordinates. With standard Jacobi coordinates, the kinetic energy terms for R
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Figure B.1: Diagrams of the three sets of Jacobi coordinates. Diagrams a, b, and c
represent the Jacobi coordinates associated with arrangement channels A, B, and
C, respectively.

Figure B.2: Diagrams of the three sets of Mass-Scaled Jacobi coordinates. Dia-
grams a, b, and c represent the Jacobi coordinates associated with arrangement
channels A, B, and C, respectively. Note that with mass-scaling, the s vector
length is shorter than r, and the S vector length is longer than R.

and r have different mass factors. In mass-scaled coordinates, there is a single

reduced mass factor defined as

µ =

[
mAmBmC

mA +mB +mC

]1/2

(2.1)
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and the new coordinates S and s are defined as

sτ = d−1
τ rτ

Sτ = dτRτ (2.2)

where τ = A,B,C, and dτ is

dτ =

[
mτ

µ

(
1− mτ

mA +mB +mC

)]1/2

(2.3)

With this definition, the kinetic energy operator has the same reduced mass for

both the ∇2
S and ∇2

s terms so that

T = − ~2

2µ
(∇2

Sτ +∇2
sτ ) (2.4)

Jacobi coordinates are especially useful in ranges where two atoms are close

together and the third is moderately to distantly removed. In such a case it is

convenient to use s to describe the “diatom” and have S point to the third, farther

away atom.

B.2 Delves Hyperspherical Coordinates

The Delves hyperspherical coordinate system [12] is related to the Jacobi coordi-

nate system in a direct and simple way. Instead of coordinates sτ and Sτ that are

vectors describing the positions of the atoms, the Delves coordinates are ρ and ϑτ ,
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which are the polar equivalent of Sτand sτ if one considers the magnitudes of Sτ

and sτ as Cartesian coordinates. We then have the simple relation,

sτ = ρ sinϑτ (2.5)

Sτ = ρ cosϑτ (2.6)

which leads to the simple inverse relationship

ρ =
√
s2
τ + S2

τ (2.7)

tanϑτ =
sτ
Sτ

(2.8)

The third internal coordinate, Θτ , is the same coordinate for both the Jacobi and

Delves coordinate systems. We see that ϑτ is also labeled by the same arrangement

channel τ as Sτ and sτ are labeled by, as the value of ϑτwill depend on which

set of mass-scaled Jacobi coordinates one is using. The hyperradius,ρ, however,

is independent of arrangement channel, and is the same for all sets of Sτ and sτ

coordinates.

B.3 Adiabatically Adjusting Principle-Axis

Hyperspherical (APH) Coordinates

The ρ coordinate remains unchanged from Delves’ hyperspherical coordinates, how-

ever, the internal hyperangles are defined for θ and χ (in terms of mass-scaled

Jacobi coordinates) as
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tan θ =
[(S2

τ − s2
τ )

2 + (2Sτ · sτ )2]
1/2

2Sτsτ sin(Θτ )
(2.9)

with inverse relationships given as

sτ =
ρ√
2

[1− sin θ cos(2(χi − χτi))]1/2 (2.10)

Sτ =
ρ√
2

[1 + sin θ cos(2(χi − χτi))]1/2 (2.11)

cos Θτ =
sin θ sin(2(χi − χτi))[

1− sin2 θ cos2(2(χi − χτi))
]1/2 (2.12)

We know that the angle Θτ is the angle between the S and s vectors, and so

we have the relation,

Sτ · sτ = Sτsτ cos(Θτ ) (2.13)

Furthermore, from equation 2.12, we can see that the denominator can be written

as [
1− sin2 θ cos2(2(χi − χτi))

]1/2
=

2

ρ2
sτSτ (2.14)

such that

cos(Θτ ) =
ρ2 sin θ sin(2(χi − χτi))

2Sτsτ
(2.15)

Sτsτ cos(Θτ ) =
ρ2

2
sin(θ) sin(2(χi − χτi)) (2.16)

Sτ · sτ =
ρ2

2
sin(θ) sin(2(χi − χτi)) (2.17)
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It can be difficult to visualize how hyperspherical coordinates represent the

physical system, so it is helpful to see plots of how the Jacobi and Delves coordinate

systems project into the APH coordinate system. In figures B.3, B.4, B.5, and B.6,

are plots of the sτ , Sτ , ϑτ , and Θτcoordinates for the Jacobi and Delves systems

on an APH hypersurface of constant ρ = 1 Bohr. These plots are stereographic

projections, where the x and y values are given in terms of APH coordinates as

x = tan(θ/2) cos(χ) and y = tan(θ/2) sin(χ). The value of tan(θ/2) behaves as a

radius in these two dimensional plots, and χ behaves as a standard polar system

angular coordinate.
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Figure B.3: Stereographic constant ρ = 1 plot of the Jacobi mass scaled sτvariable
for channel A. In this plot, x = tan(θ/2) cos(χ), y = tan(θ/2) sin(χ). The range
of sA is from 0 to 1 Bohr, and each contour shows a 0.02 Bohr change in sA, and
sA increases from black to white. APH θ is zero at the center of the circle, and
π/2 at the circumference. χ = 0 is along the positive x axis. The sA = 0 at the
χ = 0, θ = π/2 and χ = π, θ = π/2 positions, represented by the black regions,
and sA = 1 at χ = π/2, θ = π/2, χ = 3π/2, θ = π/2 which are shown in white.
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Figure B.4: Stereographic constant ρ = 1 plot of the Jacobi mass scaled Sτvariable
for channel A. In this plot, x = tan(θ/2) cos(χ), y = tan(θ/2) sin(χ). The range of
SA is from 0 to 1 Bohr, and each contour shows a 0.02 Bohr change in SA, and
SA increases from black to white. APH θ is zero at the center of the circle, and
π/2 at the circumference. χ = 0 is along the positive x axis. The SA = 0 at
the χ = π/2, θ = π/2 and χ = 3π/2, θ = π/2 positions, represented by the black
regions, and SA = 1 at χ = 0, θ = π/2, χ = π, θ = π/2 which are shown in white.
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Figure B.5: Stereographic constant ρ = 1 plot of the Delves ϑτcoordinate for chan-
nel A. In this plot, x = tan(θ/2) cos(χ), y = tan(θ/2) sin(χ). The ϑτ coordinate
ranges from 0 to π/2, increasing in this plot from black to white. The contours
show increments in ϑτ of π/100.
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Figure B.6: Stereographic constant ρ = 1 plot of the Delves and Jacobi
Θτcoordinate for channel A. In this plot, x = tan(θ/2) cos(χ), y = tan(θ/2) sin(χ).
The Θτ coordinate ranges from 0 to π, increasing in this plot from black to white.
The contours show increments in Θτ of π/50. As Θτchanges, the two atoms defin-
ing the Jacobi sτcoordinate are rotating. Following a single constant sτcontour in
figure B.3 from one point on the circle edge to another corresponds to Θτ changing
by 180 degrees; the two atoms have switched position by a rotation.
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B.4 Derivatives in Coordinate Transformations

In the process of transforming the derivative of a function with respect to one set of

coordinates into a new set of coordinates, terms arise through the differentiation

chain rule that are derivatives of the old set of coordinates with respect to the

new. These are provided here for completeness, and to show how formulas used in

computer code were developed.

B.4.1 Derivatives of Jacobi Coordinates with Respect to

APH Coordinates

We use the relation of the Jacobi coordinates for a specified channel in terms of

APH coordinates as

s =
ρ√
2

[1− sin(θ) cos(2(χi − χiτ ))] (2.18)

S =
ρ√
2

[1 + sin(θ) cos(2(χi − χiτ ))] (2.19)

Where χτ is the value of χ for the τ channel.

Setting χ = χi − χτi for simplicity, these terms are easily calculated by chain-

rule derivatives to give

ds

dθ
=

−ρ cos(θ) cos(2χ)
√

8 (1− sin(θ) cos(2χ))1/2
(2.20-a)

d2s

dθ2
=

ρ sin(θ) cos(2χ)
√

8 (1− sin(θ) cos(2χ))1/2
− ρ cos2(θ) cos2(2χ)
√

32 (1− sin(θ) cos(2χ))3/2
(2.20-b)

ds

dχ
=

ρ sin(θ) sin(2χ)
√

2 (1− sin(θ) cos(2χ))1/2
(2.20-c)
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d2s

dχ2
=

ρ
√

2 sin(θ) cos(2χ)

(1− sin(θ) cos(2χ))1/2
− ρ sin2(θ) sin2(2χ)
√

2 (1− sin(θ) cos(2χ))3/2
(2.20-d)

Equations 2.20-a-2.20-d are analytic, and can be calculated for any given point

as needed. Similar formulas can be found for the derivatives of S with respect to

θ and χ, but again they are never needed because the vibrational bound states are

not functions of S.

Likewise, for S we have,

dS

dθ
=

ρ cos(θ) cos(2χ)
√

8 (1 + sin(θ) cos(2χ))1/2
(2.21-a)

d2S

dθ2
= − ρ sin(θ) cos(2χ)
√

8 (1 + sin(θ) cos(2χ))1/2
− ρ cos2(θ) cos2(2χ)
√

32 (1 + sin(θ) cos(2χ))3/2
(2.21-b)

dS

dχ
= − ρ sin(θ) sin(2χ)
√

2 (1 + sin(θ) cos(2χ))1/2
(2.21-c)

d2S

dχ2
= − ρ

√
2 sin(θ) cos(2χ)

(1 + sin(θ) cos(2χ))1/2
− ρ sin2(θ) sin2(2χ)
√

2 (1 + sin(θ) cos(2χ))3/2
(2.21-d)

B.4.2 Derivatives of Delves’ coordinates With Respect To

APH Coordinates

The continuum state construction also requires the Delves’ Hyperspherical co-

ordinate derivatives with respect to the APH coordinates, since the constructed

continuum state functions include the Jacobi Polynomials as functions of Delves’

theta, θd. Since any value of ϑτ or s and S require a specified channel, we again

simplify the equations with χ = χi − χiτ , and recognize that the value of χ is
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channel dependent. Furthermore, since we will always have the derivatives of the

Jacobi coordinates with respect to the APH coordinates, also, it is convenient

and computationally simpler to formulate the derivatives in Delves’ coordinates in

terms of the Jacobi coordinates. From reference [8], we have the definitions

tanϑτ =
( s
S

)
(2.22)

Applying the chain rule of derivatives to this equation gives

d tanϑτ
dθ

=
1

S

ds

dθ
− s

S2

dS

dθ

sec2 ϑτ
dϑτ
dθ

=
1

S

ds

dθ
− tanϑτ

S

dS

dθ
dϑτ
dθ

=

[
cosϑτ
ρ

ds

dθ
− sinϑτ

ρ

dS

dθ

]
(2.23)

and likewise for χ,

dϑτ
dχ

=

[
cosϑτ
ρ

ds

dχ
− sinϑτ

ρ

dS

dχ

]
(2.24)

and for second derivatives, we have

d2ϑτ
dθ2

=
d

dθ

[
S

ρ2

ds

dθ
− s

ρ2

dS

dθ

]
(2.25)

=
1

ρ2

[
S
d2s

dθ2
− sd

2S

dθ2

]
(2.26)

=
1

ρ

[
cos(ϑτ )

d2s

dθ2
− sin(ϑτ )

d2S

dθ2

]
(2.27)

and for chi we have the same form,

d2ϑτ
dχ2

=
1

ρ

[
cos(ϑτ )

d2s

dχ2
− sin(ϑτ )

d2S

dχ2

]
(2.28)
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We must also have the derivatives of Θτ with respect to the APH coordinates.

The Delves’ bending angle Θτ is channel dependent, so again we must understand

that all terms of χ that appear are in relation to the channel specified. Θτ is

defined in APH coordinates as

cos(Θτ ) =

(
sin(θ) sin(2χ)(

1− sin2(θ) cos2(2χ)
)1/2

)
(2.29)

With some algebraic manipulation, we can alter this relationship to give simpler

derivative terms. From equation 2.9, we can write

sin(Θτ ) =
[(S2

τ − s2
τ )

2 + (2Sτ · sτ )2]
1/2

2Sτsτ tan(θ)
(2.30)

Using the definitions of the mass-scaled Jacobi coordinates in terms of APH coor-

dinates given in equations 2.10 and 2.11, we can write

(S2 − s2)2 = ρ4 sin2(θ) cos2(2χ) (2.31)

and from equation 2.29 we can write

(2S · s)2 = 2Ss cos(Θτ ) = ρ4 sin2(θ) sin2(2χ) (2.32)

to give

sin(Θτ ) =
ρ2 sin(θ)

2Ss tan(θ)
(2.33)

Noting that equation 2.29 can be written as

cos(Θτ ) =
ρ2 sin(θ) sin(2χ)

2Ss
(2.34)
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we can now write

sin(Θτ )

cos(Θτ )
=

2ρ2Ss

2ρ2Ss tan(θ) sin(2χ)
(2.35)

so that

tan(Θτ ) =
1

tan(θ) sin(2χ)
(2.36)

With this form of this equation, we can get simple derivative terms. Since Θ is an

orthogonal coordinate to S, s, and ρ, changes in theta do not depend on changes

of these coordinates. What we have done in the above simplification is attempt to

remove as many orthogonal terms from the definition of Θ as possible. From here

we can get derivative terms of Θ with respect to θ and χ

d

dθ
tan(Θτ ) =

d

dθ

1

tan(θ) sin(2χ)
(2.37-a)

sec2(Θτ )
dΘτ

dθ
=

−1

sin(2χ) cos(θ) sin(θ) tan(θ)
(2.37-b)

sec2(Θτ )
dΘτ

dθ
=
− tan(Θτ )

cos(θ) sin(θ)
(2.37-c)

dΘτ

dθ
=
− cos2(Θτ ) tan(Θτ )

cos(θ) sin(θ)
(2.37-d)

This is a relatively simple expression for the derivative, and it is easy to compute.

We also have for χ,

sec2(Θτ )
dΘτ

dχ
=

d

dχ

1

tan θ sin(2χ)
(2.38-a)

=
−2

tan θ tan(2χ) sin(2χ)
(2.38-b)

=
−2

tan(2χ)
tan(Θτ ) (2.38-c)

dΘτ

dχ
=
−2 sin(Θτ ) cos(Θτ )

tan(2χ)
(2.38-d)
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As for second derivatives of Θ with respect to θ and χ, we have

d2

dθ2
tan(Θτ ) =

d2

dθ2

1

tan(θ) sin(2χ)
(2.39-a)

d

dθ

[
sec2(Θτ )

dΘτ

dθ

]
=

d

dθ

[
− tan(Θτ )

cos(θ) sin(θ)

]
(2.39-b)

Working with just the left side now, we have,

d

dθ

[
sec2(Θτ )

dΘτ

dθ

]
= 2 sec2(Θτ ) tan(Θτ )

(
dΘτ

dθ

)2

+ sec2(Θτ )
d2Θτ

dθ2

= sec2(Θτ )

[
2 tan(Θτ )

(
dΘτ

dθ

)2

+
d2Θτ

dθ2

]
(2.39-c)

and now the right side of equation 2.39-b,

d

dθ

[
− tan(Θτ )

cos(θ) sin(θ)

]
= tan Θτ

d

dθ

−1

sin θ cos θ
+

−1

sin θ cos θ

d

dθ
tan(Θτ ) (2.39-d)

=

(
1

sin2 θ
− 1

cos2 θ

)
tan(Θτ ) +

tan(Θτ )

cos2 θ sin2 θ
(2.39-e)

= tan(Θτ )

[
1

sin2 θ cos2 θ
+

cos2 θ − sin2 θ

cos2 θ sin2 θ

]
(2.39-f)

= tan(Θτ )

[
2

sin2 θ

]
(2.39-g)

recombining equations 2.39-c and 2.39-g gives

sec2(Θτ )

[
2 tan(Θτ )

(
dΘτ

dθ

)2

+
d2Θτ

dθ2

]
= tan(Θτ )

[
2

sin2 θ

]
(2.39-h)

d2Θτ

dθ2
=

2 cos2(Θτ ) tan(Θτ )

sin2 θ
− 2 tan(Θτ )

(
dΘτ

dθ

)2

(2.39-i)
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For the derivatives with respect to χ, a simpler form is found by directly dif-

ferentiating equation 2.38-d,

d2Θτ

dχ2
=

d

dχ

[
−2 sin(Θτ ) cos(Θτ )

tan(2χ)

]
(2.40-a)

d2Θτ

dχ2
=

[
sin2(Θτ )− cos2(Θτ )

tan(2χ)

]
dΘτ

dχ
+

sin(Θτ ) cos(Θτ )

cos2(2χ)
(2.40-b)
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Appendix C

Symmetry Operations as Matrices

To show a smaller example than the 12 function basis set used in section 4.2,

consider a C2v system with a symmetry plot that looks like figure C.1. The numbers

in each quadrant of the image could represent basis functions, and a representation

of C2v symmetry using these functions would be of dimension four.

To find the character table, we apply the symmetry operations to these four

functions and observe if any of them stay the same or become inverted. In matrix

Figure C.1: C2v symmetry example. The solid and dashed line represent two
different reflection planes. There exists a C2 rotation symmetry about the axis
defined by the intersection of the reflection planes, i.e. perpendicular to the plane
of the page.
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notation, we define matrices that represent the operators. A C2 rotation would

move |1〉 to |3〉, and |2〉 to |4〉, etc., so the C2 operation would appear as

C2



|1〉

|2〉

|3〉

|4〉


=



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0





|1〉

|2〉

|3〉

|4〉


=



|3〉

|4〉

|1〉

|2〉


(3.1)

The character of the C2 rotation defined in equation 3.1, as with the character

of any matrix, is defined as the sum of the diagonal elements. In this case we can

see that the character of the C2 rotation is zero. The identity operation, E, which

changes the positions of none of the basis functions, is the identity matrix, and

therefore always has a character equal to the dimension of the representation.
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Appendix D

Jacobi Polynomials and Delves’ Continuum

Functions

The constructed continuum state functions used throughout this paper contain the

Jacobi polynomials. The Jacobi polynomials are terms in the analytic solution to

the zero potential three-body Hamiltonian in Delves’ hyperspherical coordinates.

This appendix contains relevant information regrading these functions.

The Jacobi polynomial has three indices, generically called α, β, and ν. In

this paper, these correspond to the Delves’ coordinate rotational and vibrational

quantum numbers of j, `, and n, respectively. (Where n is ν−nbqb, and nbqb is the

number of bound and quasibound states. See note on continuum state vibrational

ordering in section 3.3.)

Further information on the Jacobi polynomials can be found in references [26]

and [27].

The Jacobi polynomials are the solutions to the Jacobi differential equation,

(1− x2)
d2y

dx2
+ [β − α− (α + β + 2)x]

dy

dx
+ n(n+ α + β + 1)y = 0 (4.1)

and they are defined on the range of [−1, 1].
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The Jacobi polynomial recursion relation is defined as

2(n+ 1)(n+ α + β + 1)(2n+ α + β)Pα,β
n+1(x)

=
[
(2n+ α + β + 1)(α2 − β2) + x(2n+ α + β)3

]
Pα,β

n (x)

− 2(n+ α)(n+ β)(2n+ α + β + 2)Pα,β
n−1(x) (4.2)

where the term (2n+ α + β)3 employs the Pochhammer symbol and evaluates as

(x)k = x(x+ 1)(x+ 2) . . . (x+ k − 1) (4.3)

for a total of k terms.

The derivative formula is given as

d

dx
Pαβ

n (x) =
1

2
(α + β + n+ 1)Pα+1,β+1

n−1 (x) (4.4)

Defining a new function u(x) as,

u(x) = (1− x)(α+1)/2(1 + x)(β+1)/2Pα,β
n (x) (4.5)

then the Jacobi differential equation can be transformed into

d2u

dx2
+

[
1

4

1− α2

(1− x)2
+

1

4

1− β2

(1 + x)2
+
n(n+ α + β + 1) + 1

2
(α + 1)(β + 1)

1− x2

]
u = 0

(4.6)

Next if we make a coordinate transformation of x = cos(θ), and making use of

the half-angle formulas sin(θ/2) =
√

(1− cos(θ))/2 and cos(θ/2) =
√

(1 + cos(θ))/2,

we get
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d2u(θ)

dθ2
+

[ 1
4
− α2

4 sin2(θ/2)
+

1
4
− β2

4 cos2(θ/2)
+

1

4
(2n+ α + β + 1)2

]
u(θ) = 0 (4.7)

with

u(θ) = sinα+1/2(θ/2) cosβ+1/2(θ/2)Pα,β
n (cos(θ)) (4.8)

Lastly, if we make the following substitutions,

ϑτ = θ/2 (4.9)

α = j + 1/2 (4.10)

β = `+ 1/2 (4.11)

then we arrive with a form of

d2u

dϑ2
τ

−
[
j(j + 1)

sin2(ϑτ )
+
`(`+ 1)

cos2(ϑτ )
− (2n+ j + `+ 2)2

]
u(ϑτ ) = 0 (4.12)

with

u(ϑτ ) = sinj+1(ϑτ ) cos`+1(ϑτ )P
j+1/2,`+1/2
n (cos(2ϑτ )) (4.13)

This last definition corresponds directly with the form of equation 2.20. Note that

now the domain of ϑτ for which u(ϑτ ) is defined is [0, π/2], corresponding to the

physical range of Delves’ coordinates ϑτ . Also, the last term in square brackets of

equation 4.12 can be simplified. We know that λ = 2n+ j + `, so we can see that

the eigenvalue is (λ+ 2)2, as expected from equation 49 in reference [13].
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Appendix E

Integrals Of Symmetrized Basis Surface

Functions and Asymptotic Functions

This section contains integrals for the normalization of the symmetrized con-

structed basis functions and also overlaps with asymptotic states.

The states in this appendix are defined as follows. Note that the symmetrized

states maintain labels for even or odd rotational quantum numbers, j, and for

even or odd parity. These labels are redundant for the one-dimensional irreducible

representations , since whether they are even or odd is determined by the character

tables. The one exception is j for the E irreducible representations , which does not

have a symmetry element to define whether j is even or odd. The inclusion of this
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notation is for clarity; it shows some of the physical properties of the symmetrized

states.

∣∣(A1)p+j+
〉

= |1〉+ |2〉+ |3〉+ |4〉+ |5〉+ |6〉

+ |7〉+ |8〉+ |9〉+ |10〉+ |11〉+ |12〉 (5.1)∣∣(A2)p+j−
〉

= |1〉 − |2〉+ |3〉 − |4〉+ |5〉 − |6〉

+ |7〉 − |8〉+ |9〉 − |10〉+ |11〉 − |12〉 (5.2)∣∣(B1)p−j+
〉

= |1〉 − |2〉 − |3〉+ |4〉+ |5〉 − |6〉

− |7〉+ |8〉+ |9〉 − |10〉 − |11〉+ |12〉 (5.3)∣∣(B2)p−j−
〉

= |1〉+ |2〉 − |3〉 − |4〉+ |5〉+ |6〉

− |7〉 − |8〉+ |9〉+ |10〉 − |11〉 − |12〉 (5.4)

∣∣∣(E(1)
1 )p−j+

〉
= 2 |1〉+ |2〉+ |3〉 − |4〉 − |5〉 − 2 |6〉

− 2 |7〉 − |8〉 − |9〉+ |10〉+ |11〉+ 2 |12〉 (5.5)∣∣∣(E(2)
1 )p−j+

〉
=

3

2
(|2〉+ |3〉+ |4〉+ |5〉

− |8〉 − |9〉 − |10〉 − |11〉) (5.6)∣∣∣(E(1)
2 )p−j+

〉
= 2 |1〉 − |2〉 − |3〉 − |4〉 − |5〉+ 2 |6〉

+ 2 |7〉 − |8〉 − |9〉 − |10〉 − |11〉+ 2 |12〉 (5.7)∣∣∣(E(2)
2 )p−j+

〉
=

3

2
(|2〉+ |3〉+ |4〉+ |5〉

− |8〉 − |9〉 − |10〉 − |11〉) (5.8)
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∣∣∣(E(1)
1 )p−j−

〉
=

3

2
(− |2〉+ |3〉 − |4〉+ |5〉

+ |8〉 − |9〉+ |10〉 − |11〉) (5.9)∣∣∣(E(2)
1 )p−j−

〉
= 2 |1〉 − |2〉+ |3〉+ |4〉 − |5〉+ 2 |6〉

− 2 |7〉+ |8〉 − |9〉 − |10〉+ |11〉 − 2 |12〉 (5.10)∣∣∣(E(1)
2 )p−j−

〉
=

3

2
(− |2〉+ |3〉+ |4〉 − |5〉

− |8〉+ |9〉+ |10〉 − |11〉) (5.11)∣∣∣(E(2)
2 )p−j−

〉
= 2 |1〉+ |2〉 − |3〉+ |4〉 − |5〉 − 2 |6〉

+ 2 |7〉+ |8〉 − |9〉+ |10〉 − |11〉 − 2 |12〉 (5.12)

And the asymptotic-type states,

∣∣Ap+j+〉 = |1〉+ |6〉+ |7〉+ |12〉 (5.13)∣∣Ap−j+〉 = |1〉 − |6〉 − |7〉+ |12〉 (5.14)∣∣Ap+j−〉 = |1〉 − |6〉+ |7〉 − |12〉 (5.15)∣∣Ap−j−〉 = |1〉+ |6〉 − |7〉 − |12〉 (5.16)

∣∣Bp+
j+

〉
= |9〉+ |2〉+ |3〉+ |8〉 (5.17)∣∣Bp−

j+

〉
= |9〉 − |2〉 − |3〉+ |8〉 (5.18)∣∣Bp+

j−
〉

= |9〉 − |2〉+ |3〉 − |8〉 (5.19)∣∣Bp−
j−
〉

= |9〉+ |2〉 − |3〉 − |8〉 (5.20)
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∣∣Cp+
j+

〉
= |5〉+ |10〉+ |11〉+ |4〉 (5.21)∣∣Cp−

j+

〉
= |5〉 − |10〉 − |11〉+ |4〉 (5.22)∣∣Cp+

j−
〉

= |5〉 − |10〉+ |11〉 − |4〉 (5.23)∣∣Cp−
j−
〉

= |5〉+ |10〉 − |11〉 − |4〉 (5.24)

E.1 Integral Definitions

Not all of the numbered functions overlap with each other. This section explicitly

defines the n numbers, and which overlaps between the numbered functions are

non-zero. The overlap of a function with itself is n0. The others are defined as

n1 = 〈1|2〉 = 〈3|4〉 = 〈5|6〉

= 〈7|8〉 = 〈9|10〉 = 〈11|12〉 (5.25)

n2 = 〈1|3〉 = 〈2|4〉 = 〈3|5〉

= 〈4|6〉 = 〈5|7〉 = 〈6|8〉

= 〈7|9〉 = 〈8|10〉 = 〈9|11〉

= 〈10|12〉 = 〈11|1〉 = 〈12|2〉 (5.26)

n3 = 〈1|4〉 = 〈2|11〉 = 〈3|6〉

= 〈5|8〉 = 〈7|10〉 = 〈9|12〉 (5.27)
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All other integrals are zero.

E.2 Symmetrized Function Normalizations and

Overlaps

This section contains the results of integrals between each of the symmetrized

states. From this we can get normalizations in terms of the n0,n1,n2, and n3

numbers. The definitions of these numbers is given in appendix E.1. While most

of these numbers are zero, knowing those that are not in terms of the ni numbers

allows the values of the integrals to be determined very quickly. Note also that

overlaps between even and odd j states for functions of E1 symmetry are not

zero, and the same is true for E2. This is notable because it is only through these

elements that any coupling between even and odd rotational asymptotic states can

occur.
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〈
(A1)p+j+

∣∣(A1)p+j+
〉

= 12.0n0 + 12.0n1 + 12.0n2 + 12.0n3 6= 0 (5.28)〈
(A1)p+j+

∣∣(A2)p+j−
〉

= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.29)〈
(A1)p+j+

∣∣(B1)p−j+
〉

= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.30)〈
(A1)p+j+

∣∣(B2)p−j−
〉

= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.31)〈
(A1)p+j+

∣∣∣(E(1)
1 )p−j+

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.32)〈

(A1)p+j+

∣∣∣(E(2)
1 )p−j+

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.33)〈

(A1)p+j+

∣∣∣(E(1)
1 )p−j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.34)〈

(A1)p+j+

∣∣∣(E(2)
1 )p−j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.35)〈

(A1)p+j+

∣∣∣(E(1)
2 )p+j+

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.36)〈

(A1)p+j+

∣∣∣(E(2)
2 )p+j+

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.37)〈

(A1)p+j+

∣∣∣(E(1)
2 )p+j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.38)〈

(A1)p+j+

∣∣∣(E(2)
2 )p+j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.39)
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〈
(A2)p+j−

∣∣(A2)p+j−
〉

= 12.0n0 − 12.0n1 + 12.0n2 − 12.0n3 6= 0 (5.40)〈
(A2)p+j−

∣∣(B1)p−j+
〉

= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.41)〈
(A2)p+j−

∣∣(B2)p−j−
〉

= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.42)〈
(A2)p+j−

∣∣∣(E(1)
1 )p−j+

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.43)〈

(A2)p+j−

∣∣∣(E(2)
1 )p−j+

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.44)〈

(A2)p+j−

∣∣∣(E(1)
1 )p−j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.45)〈

(A2)p+j−

∣∣∣(E(2)
1 )p−j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.46)〈

(A2)p+j−

∣∣∣(E(1)
2 )p+j+

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.47)〈

(A2)p+j−

∣∣∣(E(2)
2 )p+j+

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.48)〈

(A2)p+j−

∣∣∣(E(1)
2 )p+j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.49)〈

(A2)p+j−

∣∣∣(E(2)
2 )p+j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.50)
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〈
(B1)p−j+

∣∣(B1)p−j+
〉

= 12.0n0 − 12.0n1 − 12.0n2 + 12.0n3 6= 0 (5.51)〈
(B1)p−j+

∣∣(B2)p−j−
〉

= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.52)〈
(B1)p−j+

∣∣∣(E(1)
1 )p−j+

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.53)〈

(B1)p−j+

∣∣∣(E(2)
1 )p−j+

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.54)〈

(B1)p−j+

∣∣∣(E(1)
1 )p−j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.55)〈

(B1)p−j+

∣∣∣(E(2)
1 )p−j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.56)〈

(B1)p−j+

∣∣∣(E(1)
2 )p+j+

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.57)〈

(B1)p−j+

∣∣∣(E(2)
2 )p+j+

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.58)〈

(B1)p−j+

∣∣∣(E(1)
2 )p+j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.59)〈

(B1)p−j+

∣∣∣(E(2)
2 )p+j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.60)

156



〈
(B2)p−j−

∣∣(B2)p−j−
〉

= 12.0n0 + 12.0n1 − 12.0n2 − 12.0n3 6= 0 (5.61)〈
(B2)p−j−

∣∣∣(E(1)
1 )p−j+

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.62)〈

(B2)p−j−

∣∣∣(E(2)
1 )p−j+

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.63)〈

(B2)p−j−

∣∣∣(E(1)
1 )p−j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.64)〈

(B2)p−j−

∣∣∣(E(2)
1 )p−j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.65)〈

(B2)p−j−

∣∣∣(E(1)
2 )p+j+

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.66)〈

(B2)p−j−

∣∣∣(E(2)
2 )p+j+

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.67)〈

(B2)p−j−

∣∣∣(E(1)
2 )p+j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.68)〈

(B2)p−j−

∣∣∣(E(2)
2 )p+j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.69)

〈
(E

(1)
1 )p−j+

∣∣∣(E(1)
1 )p−j+

〉
= 24.0n0 + 12.0n1 + 12.0n2 − 12.0n3 6= 0 (5.70)〈

(E
(1)
1 )p−j+

∣∣∣(E(2)
1 )p−j+

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.71)〈

(E
(1)
1 )p−j+

∣∣∣(E(1)
1 )p−j−

〉
= 0.0n0 − 18.0n1 − 18.0n2 − 18.0n3 6= 0 (5.72)〈

(E
(1)
1 )p−j+

∣∣∣(E(2)
1 )p−j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.73)〈

(E
(1)
1 )p−j+

∣∣∣(E(1)
2 )p+j+

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.74)〈

(E
(1)
1 )p−j+

∣∣∣(E(2)
2 )p+j+

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.75)〈

(E
(1)
1 )p−j+

∣∣∣(E(1)
2 )p+j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.76)〈

(E
(1)
1 )p−j+

∣∣∣(E(2)
2 )p+j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.77)
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〈
(E

(2)
1 )p−j+

∣∣∣(E(2)
1 )p−j+

〉
= 18.0n0 + 9.0n1 + 9.0n2 − 9.0n3 6= 0 (5.78)〈

(E
(2)
1 )p−j+

∣∣∣(E(1)
1 )p−j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.79)〈

(E
(2)
1 )p−j+

∣∣∣(E(2)
1 )p−j−

〉
= 0.0n0 + 18.0n1 + 18.0n2 + 18.0n3 6= 0 (5.80)〈

(E
(2)
1 )p−j+

∣∣∣(E(1)
2 )p+j+

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.81)〈

(E
(2)
1 )p−j+

∣∣∣(E(2)
2 )p+j+

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.82)〈

(E
(2)
1 )p−j+

∣∣∣(E(1)
2 )p+j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.83)〈

(E
(2)
1 )p−j+

∣∣∣(E(2)
2 )p+j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.84)

〈
(E

(1)
1 )p−j−

∣∣∣(E(1)
1 )p−j−

〉
= 18.0n0 − 9.0n1 + 9.0n2 + 9.0n3 6= 0 (5.85)〈

(E
(1)
1 )p−j−

∣∣∣(E(2)
1 )p−j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.86)〈

(E
(1)
1 )p−j−

∣∣∣(E(1)
2 )p+j+

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.87)〈

(E
(1)
1 )p−j−

∣∣∣(E(2)
2 )p+j+

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.88)〈

(E
(1)
1 )p−j−

∣∣∣(E(1)
2 )p+j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.89)〈

(E
(1)
1 )p−j−

∣∣∣(E(2)
2 )p+j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.90)
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〈
(E

(2)
1 )p−j−

∣∣∣(E(2)
1 )p−j−

〉
= 24.0n0 − 12.0n1 + 12.0n2 + 12.0n3 6= 0 (5.91)〈

(E
(2)
1 )p−j−

∣∣∣(E(1)
2 )p+j+

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.92)〈

(E
(2)
1 )p−j−

∣∣∣(E(2)
2 )p+j+

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.93)〈

(E
(2)
1 )p−j−

∣∣∣(E(1)
2 )p+j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.94)〈

(E
(2)
1 )p−j−

∣∣∣(E(2)
2 )p+j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.95)

〈
(E

(1)
2 )p+j+

∣∣∣(E(1)
2 )p+j+

〉
= 24.0n0 − 12.0n1 − 12.0n2 − 12.0n3 6= 0 (5.96)〈

(E
(1)
2 )p+j+

∣∣∣(E(2)
2 )p+j+

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.97)〈

(E
(1)
2 )p+j+

∣∣∣(E(1)
2 )p+j−

〉
= 0.0n0 − 18.0n1 − 18.0n2 + 18.0n3 6= 0 (5.98)〈

(E
(1)
2 )p+j+

∣∣∣(E(2)
2 )p+j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.99)

〈
(E

(2)
2 )p+j+

∣∣∣(E(2)
2 )p+j+

〉
= 18.0n0 − 9.0n1 − 9.0n2 − 9.0n3 6= 0 (5.100)〈

(E
(2)
2 )p+j+

∣∣∣(E(1)
2 )p+j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.101)〈

(E
(2)
2 )p+j+

∣∣∣(E(2)
2 )p+j−

〉
= 0.0n0 + 18.0n1 + 18.0n2 − 18.0n3 6= 0 (5.102)
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〈
(E

(1)
2 )p+j−

∣∣∣(E(1)
2 )p+j−

〉
= 18.0n0 + 9.0n1 − 9.0n2 + 9.0n3 6= 0 (5.103)〈

(E
(1)
2 )p+j−

∣∣∣(E(2)
2 )p+j−

〉
= 0.0n0 + 0.0n1 + 0.0n2 + 0.0n3 = 0 (5.104)

〈
(E

(2)
2 )p+j−

∣∣∣(E(2)
2 )p+j−

〉
= 24.0n0 + 12.0n1 − 12.0n2 + 12.0n3 6= 0 (5.105)
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E.3 Projections of Asymptotic States with

Symmetrized States

The overlaps between the symmetrized functions, labeled by irreducible represen-

tation , and the asymptotic functions, labeled by channel, even and odd diatomic

rotational states, j, and even and odd parity p, are given in table E.1. If the

asymptotic and symmetrized states are normalized, then the values given in the

table are exact and known analytically.

A1 A2 B1 B2 Ej+
1(1) Ej−

1(1) Ej+
1(2) Ej−

1(2) Ej+
2(1) Ej−

2(1) Ej+
2(2) Ej−

2(2)

Ap+
j+

1√
3

0 0 0 0 0 0 0 2√
6

0 0 0

Ap−
j+ 0 0 1√

3
0 2√

6
0 0 0 0 0 0 0

Ap+
j− 0 1√

3
0 0 0 0 0 0 0 0 0 2√

6

Ap−
j− 0 0 0 1√

3
0 0 0 2√

6
0 0 0 0

Bp+
j+

1√
3

0 0 0 0 0 0 0 −1√
6

0 1√
2

0

Bp−
j+ 0 0 1√

3
0 −1√

6
0 −1√

2
0 0 0 0 0

Bp+
j− 0 1√

3
0 0 0 0 0 0 0 1√

2
0 −1√

6

Bp−
j− 0 0 0 1√

3
0 −1√

2
0 −1√

6
0 0 0 0

Cp+
j+

1√
3

0 0 0 0 0 0 0 −1√
6

0 −1√
2

0

Cp−
j+ 0 0 1√

3
0 −1√

6
0 1√

2
0 0 0 0 0

Cp+
j− 0 1√

3
0 0 0 0 0 0 0 −1√

2
0 −1√

6

Cp−
j− 0 0 0 1√

3
0 1√

2
0 −1√

6
0 0 0 0

Table E.1: Values of overlaps between normalized functions of a given irreducible
representation with a function associated with a given channel. j± refers to
whether a state is labeled by an even or odd diatomic rotational quantum number,
and p± refers to even or odd parity. The E irreducible representations are labeled
by superscripts of j± to show even or odd “rotational” states, and subscripts of
n(m), where n labels which E irreducible representation number, E1 or E2, and
m labels one of two orthogonal functions that make up the two dimensional irre-
ducible representation .
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Appendix F

Publications

Listed in this appendix are the published papers that I have authored, co-authored,

or was integrally involved in the development thereof.

• Conical intersection between the lowest spin-aligned Li3(
4A′) po-

tential energy surfaces D. A. Brue, X. Li, and G. A. Parker, J. Chem.

Phys. 123 091101 (2005)

Abstract: We have calculated new potential-energy surfaces for

the lowest two spin-aligned 4A′ states of the Li3 trimer. This cal-

culation shows a seam of conical intersections between these states

resulting from the extra symmetry of the system when the atoms

are in a collinear arrangement. This seam is especially important

because of its proximity to the three-body dissociation limit of

the system; ultracold scattering calculations and the bound-state

energies of the system will be affected by the presence of this con-

ical intersection. In this paper we discuss the calculation of the
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potential-energy surface and the location of the conical intersec-

tion seam.

• Potential energy surfaces for the 14A′, 24A′ 14A′′ and 24A′′ States of

Li3 by X. Li, D. A. Brue and G. A. Parker J. Chem. Phys. Volume 129,

Page 124305 (2008)

Abstract: Global potential energy surfaces for the 14A′, 24A′,

14A′′, and 24A′′ spin-aligned states of Li3 are constructed as sums

of a diatomics-in-molecules (DIM) term plus a three-body term.

The DIM model, using a large basis set of 15 4A′′ and 22 4A′

states, is used to obtain a “mixed-pairwise additive” contribution

to the potential. A global, fit of the three-body terms conserves the

accuracy of the ab initio points of a full configuration-interaction

calculation. The resulting fit accurately describes conical intersec-

tions for both the 14A′ and 24A′ surfaces with a root-mean-square

(RMS) deviation of 5.4×10−5 Ha. inD∞h geometries and 1.2×10−4

Ha. in C∞v geometries. The global fit appears to be quantitatively

correct with a RMS deviation of 1.8×10−4 Ha. for 14A′, 9.2×10−4

Ha. for 24A′, 2.5×10−4 Ha. for 14A′′, and 5.1×10−4 Ha. for 24A′′.

A possible diabolic conical intersection, also called an accidental

degeneracy, in C2v geometries, indicating a seam of conical inter-

sections in Cs geometries, is also found in ab initio calculations

for A2 states. As shown in this example, the DIM procedure can

be optimized to describe the geometric phase and non-adiabatic

effects in multi-surface potentials.
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• Li3 bound state calculations A New Method for Calculating Bound

States: the A1 States of Li3 on the Spin-Aligned Li3(1
4A′) Potential

Energy Surface by X. Li, D. A. Brue and G. A. Parker J. Chem. Phys.

Volume 127, Page 014108 (2007)

Abstract: In this paper, we present a calculation for the bound

states of A1 symmetry on the spin-aligned Li314A′ potential en-

ergy surface. We apply a mixture of discrete variable represen-

tation and distributed approximating functional methods to dis-

cretize the Hamiltonian. We also introduce a new method that

significantly reduces the computational effort needed to determine

the lowest eigenvalues and eigenvectors bound state energies and

wave functions of the full Hamiltonian. In our study, we have found

the lowest 150 energy bound states converged to less than 0.005%

error, and most of the excited energy bound states converged to

less than 2.0% error. Furthermore, we have estimated the total

number of the A1 bound states of Li3 on the spin-aligned Li314A′

potential surface to be 601.

• General Laser Interaction Theory General Laser Interaction The-

ory in Atom-Diatom Systems for Both Adiabatic and Non-Adiabatic

Cases by X. Li, Daniel A. Brue, Gregory A. Parker, and Sin-Tarng Chang

J. Phys. Chem. A 110 5504 (2006)
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Abstract: This paper develops the general theory for laser fields

interacting with bimolecular systems. In this study, we choose to

use the multipolar gauge on the basis of gauge invariance. We

consider both the adiabatic and nonadiabatic cases and find they

produce similar interaction pictures. As an application of this the-

ory, we present the study of rovibrational energy transfer in Ar +

CO collisions in the presence of an intense laser field.
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