
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

PARALLEL SUBSPACE SUBCODES OF REED-SOLOMON CODES FOR

MAGNETIC RECORDING CHANNELS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

HAN WANG

Norman, Oklahoma
2010

PARALLEL SUBSPACE SUBCODES OF REED-SOLOMON CODES FOR
MAGNETIC RECORDING CHANNELS

A DISSERTATION APPROVED FOR THE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY

 Dr. Joao R. Cruz, Committee Chair

 Dr. Marilyn Breen

 Dr. Joseph Havlicek

 Dr. Thordur Runolfsson

 Dr. Tian-You Yu

© Copyright by HAN WANG 2010

All Rights Reserved.

To the love, charity, and harmony of the world

v

ACKNOWLEDGEMENTS

 First, I would like to express my greatest gratitude to my academic advisor Dr.

Joao R. Cruz. Thank you most sincerely for the guidance, tolerance and advices

during my Ph.D. study. I am always admiring your integrity, ingenuity and diligence.

What you have taught me is far beyond the research itself, and I do believe it will

benefit all my career life. Thank you for opening a door to a great treasure of coding

theory.

 Second, special great thanks to Dr. Havlicek for his kind helps to solve visa

issues for my career.

 I would like to thank Dr. Marilyn Breen, Dr. Joseph Havlicek, Dr. Thordur

Runolfsson, and Dr. Tian-You Yu for not only serving as my graduate committee

members, but also giving the great suggestions and knowledge for this work. Thank

you all for your great courses. I give my special great appreciations to Dr. Marilyn

Breen for elegant and inspiring discussions on the graph and convex based approach

in finding the minimum convex of codewords over Galois field.

 I would like to thank Dr. Runsheng He so much for recommending me here

and some important advices for my career life. Best wishes to your business.

 I would like to thank Dr. Haitao Xia for all kinds of helps these years. For

years, you have kept offering good advices, which helped me a lot. Thank you!

vi

 I would like to thank Dr. Cheng Zhong for interesting discussions in coding

theory and applications on JPWL. Your family is so nice to me, and gave me one of

the best memories in Norman during the past years.

 I would like to give specials thanks to all my fellow students at the

Communications Signal Processing Laboratory for helpful discussions, especially to

Wu Chang. I am so glad to be a member of this wonderful family.

 I would like to thank Lynn hall for all the helps during these five years. Thank

you sincerely.

 Sincere thanks to my girl friend Chao for your encouragements and companies

these years. We experienced and shared every great moment, and will build the

splendid future. Thank you for your loves.

 To a special friend of mine, thank for the memory during my first two years

here. Wish you well and happy.

 Great special thanks to Chang Cheng. You helped me to conquer the most

difficult time during my study here. Thank you so so so much.

 Great thanks to Bin Qin. You helped me a lot.

 Thanks to people here who helped me and cared about me these years.

 Finally, I want to dedicate this Ph.D. dissertation to my dear parents. You two

are really cool. Thank you for what you have done to make me strong and wise in all

aspects. Thank you for your loves.

vii

TABLE OF CONTENTS

ABSTRACT..xix

Chapter Introduction ………..1

1.1 Motivation………...2

1.2 Problem statement….………………………………………………….....4

1.3 Approach……………………………………………………………..…...5

1.4 Contribution……………………………………………………..………..6

1.5 Outline…………………………………………………………………....6

Chapter 2 Reed-Solomon codes: Encoding and decoding algorithms…..…….....8

2.1 Introduction………………………………………………………….……9

2.2 Definition and encoding methods……………………………….………10

2.2.1 Polynomial evaluation approach…….………………..……………….11

2.2.2 Generator polynomial approach ……………………………...………11

2.2.3 Discrete Fourier transform (DFT) over Galois Field………..………...12

2.3 Algebraic decoding algorithms………………………………………….14

2.3.1 Hard-decision decoding algorithms…………………………………...13

2.3.2 Soft-decision decoding algorithms……………………………………20

2.4 Conversions and connections of different definitions…..…………….24

viii

Chapter 3 Chase Algorithms for Soft-Decision Decoding……………………….26

3.1 Low complexity Chase (LCC) soft-decision decoding…………………27

3.1.1 Introduction……………………………………………………………27

3.1.2 Low-complexity Chase-type decoding algorithm....………………….29

3.1.2.1 Complexity reduction……………………………………………….30

3.1.2.2 Polynomial interpolation and factorization…………………………30

3.1.2.3 Algorithm analysis…………………………………………………..31

3.1.3 Simulation results and analysis………………………………………..33

3.1.4 Conclusions…………………………………………………………....36

3.2 A Chase-GMD algorithm for soft-decision decoding…………………37

3.2.1 Introduction…………………………………………………………....37

3.2.2 Interpolation-bases RS decoding a lgor ithms and the ir recurs ive
property……………………………………………………………………...38

3.2.3 Performance analysis of forward recursive algorithms…………..…40

3.2.4 A Chase-GMD type algorithm using reliability information….…...…44

3.2.5 Simulation results……………………………………………………48

3.2.6 Conclusion…………………………………………………………….53

Chapter 4 Subcodes of Reed-Solomon codes with a para lle l subcode

structure…………………………………………………………………………….55

4.1 Subspace subcodes of RS codes………………………………..………56

4.2 Subcodes of RS codes with a parallel subcode structure……….……….60

ix

4.2.1 Class-I subcodes ℂI…….……………………………………………...60

4.2.2 Class-II subcodes ℂII….…….………………………………………...62

4.2.2.1 ℂII
𝑣 codes……………………………………………………………..64

4.2.2.1.1 ℂII
𝑣=1 codes………………………………………………………...55

4.2.2.2 ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥
codes…………………………………………………75

4.2.2.3 Multiple-stage ℂII

 𝑣1⊃𝑣1.1⊃𝑣1.2⊃⋯ 𝑣2⊃𝑣2 .1⊃𝑣2 .2⊃⋯ ⋯|𝑣𝑚𝑎𝑥 ⊃𝑣𝑚𝑎𝑥 .1⊃𝑣𝑚𝑎𝑥 .2⊃⋯

codes……………………………………………………………………...…78

4.3 Simulation results….……………………………………………………80

4.4 Summary………………………………………………………………...84

Chapter 5 Iterative parallel local decoding of LDPC+RS concatenated codes...86

5.1 Introduction……………………………………………………………...87

5.2 Concatenated codes………………………………………………..........88

5.3 Conventional LDPC+RS concatenation………………………………...90

5.4 New LDPC+RS (ℂII
𝑣=1) concatenation system…………...……………..92

5.5 Iterative parallel local decoding of LDPC+RS concatenation system…..94

5.5.1 Avoiding trapping sets………………………………………………...95

5.5.2 Iterative parallel local decoding algorithm ……………………...……99

5.6 Performance……………………………………………….…………..100

5.6.1 Sector length code……………………………………………………100

5.6.2 Big sector (4KB) sectors…………………………………………......105

x

5.7 Summary and recommendations..……………………………………..109

Chapter 6 Conclusions…………………………………………………………...112

Bibliography…………………………………………………………………….115

APPENDIX A. PROOF OF THEOREM 4.2-5……………………………….127

APPENDIX B. EXAMPLE OF ℂ𝐼𝐼
𝑣=1 ’S “LOCAL” BIT ERROR

CORRECTION………………………………………………………………..….133

APPENDIX C. EXAMPLE OF ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥
= ℂII

 𝑣1=1 𝑣2=2
………...….135

APPENDIX D. CONSTRUCTION METHOD FOR ℂII

 𝑣1⊃⋯ 𝑣2⊃⋯ ⋯|𝑣𝑚𝑎𝑥 ⊃⋯
...141

APPENDIX E. ENCODING SCHEME FOR NEW LDPC+ℂII
𝑣=1

CONCATENATION SYSTEM………………………………...………………..143

APPENDIX F. ITERATIVE PARALLEL LOCAL DECODING

WORKFLOW FOR ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥
………………………………………...…….146

xi

LIST OF TABLES

Table 3.1 Maximum number of multiplications required for decoding……….....…51

Table 3.2 Average number of interpolation and factorizations……………………..53

xii

LIST OF FIGURES

Fig. 3.1. Performance of 𝑅𝑆(440,410) on a PMRC equalized to an optimal GPR4

target with 90% jitter noise. The target is [1 0.307 -0.039 -0.002] and user density

0.938…………………………………….………………………………………..…34

Fig. 3.2. Number of interpolations/factorizations as a function of η for one sample

execution of the LCC algorithm...………………………………………..………....35

Fig. 3.3. Performance of 𝑅𝑆(440,410) on a PMRC equalized to an optimal GPR4

target with 90% jitter noise. The target is [1 0.471 -0.068 -0.004] and user density

1.1257……………………………………………………….………………………36

Fig. 3.4. The reliability-sorted received vector and its interpolation order………....46

Fig. 3.5. Performance of RS (440, 410) on a PMRC equalized to an optimal GPR4

target with 90% jitter noise, and user density Du=0.9381………………………..…49

Fig. 3.6. Comparison of the number of interpolated points between LCC and Chase-

GMD algorithms for RS (440, 410) on a PMRC equalized to an optimal GPR4 target

with 90% jitter noise and user density Du =0.9381…………………….………...…50

Fig. 3.7. Factorization success ratio vs. the number of GMD interpolation point pairs

at various SNRs……………………..………………………………………...…….52

Fig. 4.1. The binary 3-tuple of 𝑅𝑆(7,5,3)codeword: (2,2,3,0,1,3,1) …………....…57

xiii

Fig. 4.2. The binary 2-tuple of 𝑅𝑆(7,5,3) codeword 2,2,3,0,1,3,1 ……………….57

Fig. 4.3. The package structure of several parallel SSRS codes……….……………60

Fig. 4.4. Class-I subcodes ℂI of RS codes…………………………………………61

Fig. 4.5. Decoding structure for ℂI codes……………………..…………………….62

Fig. 4.6. Class-II subcodes of RS codes……………………….....…………………63

Fig. 4.7. ℂII
𝑣=1 subcodes of RS codes……………………………..…………………66

Fig. 4.8. Vardy-Be‟ery decomposition of the binary image of an RS generator

matrix………………………………………………………………..………………67

Fig. 4.9. Wolf‟s star shape of trellis…………………………………………………68

Fig. 4.10. Removal of the glue generate matrix……...……………………………..68

Fig. 4.11. The multi- level decoding architecture for subcode 𝐶(𝑁, 𝑘, 𝐷, 𝑑) ……….72

Fig. 4.15. An example of three- level decoding structure for subcode 𝐶(𝑁,𝑘 , 𝐷, 𝑑)..73

Fig. 4.16. ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥
 code………………………………………………………76

Fig. 4.14. Multiple parallel structures for ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥
 with different

 𝑣1 𝑣2 ⋯ |𝑣𝑚𝑎𝑥 ………………………………………………………………...…..78

Fig. 4.15. Multiple stage structures of ℂII

 𝑣1⊃⋯ 𝑣2 ⊃⋯ ⋯|𝑣𝑚𝑎𝑥 ⊃⋯
……………………..79

xiv

Fig. 4.16. Performance of 𝐶 7,4,3,3 on a PMRC equalized to an optimal GPR4

target with 90% jitter noise. The user density is 1.5309.The code rate is 0.571...….81

Fig. 4.17. Performance of 𝐶 460,410,11,11 over 𝐺𝐹(1024) on PMRC equalized to

an optimal GPR4 target with 90% jitter noise. The user density is 0.9811. The cod

rate is 0.891...82

Fig. 4.18. Performance of 𝐶 1023,973,25,9 on a PMRC channel equalized to an

optimal GPR4 target with 90% jitter noise. The user density is 0.919. The code rate

is 0.951………………………………………………………………………………84

Fig. 5.1. RS+CC Concatenated coding system………………………….….……….89

Fig. 5.2. Conventional LDPC+RS coding system…………………………………..90

Fig. 5.3. LDPC+PSSRS..……………………….…………………………………92

Fig. 5.4. New LDPC+RS(ℂII
𝑣=1) concatenation system…………………………..…93

Fig. 5.5. The decoding workflow of the new LDPC+RS (ℂII
𝑣=1) concatenation

system……………………………………………………………………………….94

Fig. 5.6. A (3,1) trapping set………………………………………………….......96

Fig. 5.7. “Virtual dynamic” check nodes added by ℂII
𝑣=1 codes……………………97

Fig. 5.8. Optimization of number of turbo iterations and inner BP iterations……101

Fig. 5.9. Optimization of the overall rate of the concatenation system……………102

xv

Fig. 5.10. Comparison to the conventional concatenation system………………103

Fig. 5.11. Performance of iterative parallel local decoding algorithm for LDPC+RS

system on a PMRC equalized to an optimal GPR4 target with 90% jitter noise. The

user density is 1.0757……………………………………………………………...105

Fig. 5.12. Performance of 4K-Byte sector length code of 𝐿𝐷𝑃𝐶 + 𝑅𝑆(3340,2731)

over 𝐺𝐹(4096) on a PMRC equalized to an optimal GPR4 target with 90% jitter

noise. User density is 1.0757…………………………………………………...….107

Fig. 5.13. Performance of 4K-Byte sector length code of 𝐿𝐷𝑃𝐶 + 𝑅𝑆(3340,2731)

over 𝐺𝐹(4096) on a PMRC equalized to an optimal GPR4 target with 90% jitter

noise. User density is 1.5073………………………………………………………108

Fig. B.1. The binary 3-tuple of 𝑅𝑆(7,5,3) codeword (1,4,0,0,1,5,4)……………. 133

Fig. B.2. The binary 3-tuple of 𝑅𝑆(7,5,3) codeword: (1,4,0,0,1,5,4)……….……133

Fig. B.3. Example of ℂII
𝑣=1‟s “local” bit error correction………….……………..134

Fig. C.1. ℂII

 𝑣1=1 𝑣2=2
 structure I…………………………………………………..135

Fig. C.2. ℂII

 𝑣1=1 𝑣2=2
 structure II………………………………………………….135

Fig. C.3. 𝐺𝐹(16) element decomposition with basis ℬ ′ = {1, 𝛼2 } over 𝐺𝐹(4)…139

Fig. E.1. Encoding scheme I……………………………………………………… 144

xvi

Fig. E.2. Encoding scheme 𝐸𝑆1.2. II…………………………………………………....145

Fig. E.3. Encoding scheme using the 𝑄-ary LDPC code………….……………….145

Fig. E.4. Binary 𝑚-tuple image of the scheme using a 𝑄-ary LDPC codeword…..146

Fig. E.5. Encoding scheme using a multiple codeword interleaver………………..146

Fig. F.1. Iterative parallel local decoding for LDPC+RS (ℂII

 v1 v2 ⋯|vmax
) system..147

xvii

ABSTRACT

 Read channel architectures based on a single low-density parity-check (LDPC)

code are being considered for the next generation of hard disk drives. However,

LDPC-only solutions suffer from the error floor problem, which may compromise

reliability, if not handled properly. Concatenated architectures using an LDPC code

plus a Reed-Solomon (RS) code lower the error- floor at high signal- to-noise ratio

(SNR) at the price of a reduced coding gain and a less sharp waterfall region at lower

SNR. This architecture fails to deal with the error floor problem when the number of

errors caused by multiple dominant trapping sets is beyond the error correction

capability of the outer RS code. The ultimate goal of a sharper waterfall at the low

SNR region and a lower error floor at high SNR can be approached by introducing a

parallel subspace subcode RS (SSRS) code (PSSRS) to replace the conventional RS

code. In this new LDPC+PSSRS system, the PSSRS code can help localize and

partially destroy the most dominant trapping sets. With the proposed iterative

parallel local decoding algorithm, the LDPC decoder can correct the remaining

errors by itself. The contributions of this work are: 1) We propose a PSSRS code

with parallel local SSRS structure and a three-level decoding architecture, which

enables a trade off between performance and complexity; 2) We propose a new

LDPC+PSSRS system with a new iterative parallel local decoding algorithm with a

0.5dB+ gain over the conventional two- level system. Its performance for 4K-byte

sectors is close to the multiple LDPC-only architectures for perpendicular magnetic

xviii

recording channels; 3) We develop a new decoding concept that changes the major

role of the RS code from error correcting to a “partial” trapping set destroyer.

1

Chapter 1

Introduction

2

1.1 Motivation

 Error-correcting codes (ECCs) are currently used in most digital communication

systems, including the read channels of hard disk drives (HDDs). The history of

modern ECCs starts with the single error-correcting Hamming code [1], and

progresses to multiple error-correcting codes, such as the Bose-Chaudhuri-

Hocquenghem (BCH) code [2], which is not maximum distance separable (MDS).

Later, Reed and Solomon [3] introduced an MDS code, the Reed-Solomon (RS) code,

which has a unique and elegant algebraic structure. More recently, non-algebraic

codes such as turbo codes [4], [5], and low-density parity-check (LDPC) codes [6],

which utilize soft channel output reliability information for their iterative decoding

algorithms, have become widely used.

 There is always a tradeoff between complexity and coding gain. The soft-decision

decoding (SDD) algorithms for RS codes perform very well for low-rate codes with

error-correction capability beyond half the minimum distance. However, the coding

gain for high-rate RS codes using SDD is much smaller. The computational

complexity of SDD for RS codes becomes prohibitive with increasing code length

and error correction capability. Modern ECCs must provide large coding gains with

moderate complexity. The current trend is to replace current RS coded systems with

LDPC-coded systems because of their large coding gain in random noise. LDPC

codes are the best error correcting codes for approaching the capacity of the channel,

thus they are the codes of choice for the next generation of many applications,

3

including magnetic recording systems. However, the performance of LDPC codes at

high signal-to-noise ratio (SNR) is not accurately known, and they exhibit an error

floor when decoded by the commonly used belief propagation (BP) algorithm. RS

codes have a more elegant structure than LDPC codes, and their decoding

performance is well determined at high SNRs. It is well known that the error floor of

LDPC codes at high SNRs is caused by certain error patterns, which require a lot of

effort to avoid. The error floor problem might preclude the usage of LDPC codes in

systems, which require extremely high reliability.

 One example of the difficulty in transitioning from RS to LDPC codes is the future

generation of HDDs with 4K-Byte sectors [8]-[11]. For codes this long, the

complexity of LDPC codes could be prohibitive. The “error- floor” problem could

also be an issue at very high recording density, which is required to build high

capacity storage systems with good “format efficiency” [8]-[11]. Efforts have been

made to handle these problems. For example, it has been identified that there exist

some error patterns which are the major cause of the “error- floor” [12]-[18]. To pre-

detect and avoid these patterns, they are usually collected by computer and hardware

simulations [13], to help lower the “error- floor”. There is no evidence, however, that

this method can theoretically solve the “error-floor” problem. Another approach is to

use a concatenated system consisting of an RS code as an outer code and an LDPC

code as an inner code (LDPC+RS system). This method can lower the “error- floor”

at a cost of a reduced coding gain compared to an LDPC-only system. (The LDPC-

4

only system refers to a one-level coded system.) The conventional LDPC+RS system

can lower the “error- floor” due to the outer RS code. In some cases, however, the

LDPC code fails to decode for certain error patterns, creating more errors (error

propagation) than the error-correction capability of the RS code. There is no easy

way for the current conventional LDPC+RS system to avoid this situation by

excluding these error patterns.

 This motivates us to find ways to handle the error floor problem by designing new

LDPC codes with local error correction capability that can handle certain error

patterns, and by designing new LDPC+RS concatenation systems, in which the RS

code can help dealing with certain error patterns.

1.2 Problem Statement

 Read channel architectures based on a single LDPC code are being considered for

the next generation of HDDs. However, LDPC-only solutions suffer from the error

floor problem, which may compromise reliability if not handled properly.

Concatenated architectures using an LDPC code plus an RS code lower the error-

floor at high SNRs at a cost of a reduced coding gain and a less sharp waterfall

region at lower SNRs. This architecture fails to deal with the error floor problem

when the number of errors caused by multiple dominant error patterns is beyond the

error correction capability of the outer RS code. Conventional LDPC+RS systems

5

for long codes may not be able to use SDD algorithms to improve the error

correction capability of the RS code, because of their computational complexity.

 This problem can be solved by changing the role of the RS code from that of error

correction to removal of certain error patterns. An LDPC decoding failure is usually

caused by some error patterns, and it is not necessary to correct all the errors in the

pattern. If the troublesome error pattern is avoided, the LDPC decoder itself can

correct the remaining errors instead of the RS decoder. The role of RS codes here is

to help the LDPC decoder to avoid certain error patterns and let the LDPC decoder

itself correct the remaining errors. Because the LDPC code is now able to deal with

the remaining errors, it does not need a more powerful RS decoder with a high

decoding computational complexity. The central idea is to use the RS decoder to

remove problematic error patterns.

 We propose a new code which can provide a local error correction capability in

addition to its global error correction capability.

1.3 Approach

 Conventional RS codes do not have local error correction capability. A new code is

required to provide a local error correction capability as well as the global error

correction capability. We propose new parallel subspace subcodes of RS (PSSRS)

codes to replace the conventional RS codes. We utilize this PSSRS code in a new

LDPC+PSSRS concatenated system. In this new concatenated system, the PSSRS

6

code can help locate and partially remove some problematic error patters. With the

proposed iterative parallel local decoding algorithm, the LDPC decoder can correct

the remaining errors by itself.

1.4 Contribution

 The major contributions of this work are: 1) We propose a PSSRS code and a three-

level decoding architecture, which enables a tradeoff between performance and

complexity; 2) We propose a new LDPC+PSSRS system with a new iterative

parallel local decoding algorithm which provides some gains over the conventional

two- level system. Its performance for long (4K-Byte) sectors is close to the multiple

LDPC-only architectures for perpendicular magnetic recording channels (PMRCs); 3)

We develop a new decoding concept that changes the major role of the RS code from

error correction to error pattern removal.

1.5 Outline

 In Chapter 2, we present a brief review of RS codes, including encoding and

decoding algorithms, and basic definitions.

 In Chapter 3, we evaluate the performance of a low-complexity Chase (LCC)

algorithm on PMRCs and propose a new interpolation-based Chase decoding

algorithm based on the Chase and generalized minimum distance (Chase-GMD)

7

algorithms, which has the property of having decreasing complexity with increasing

SNRs.

 In Chapter 4, we provide an introduction to subspace subcodes of RS (SSRS) codes,

which are a generalization of generalized BCH (GBCH) [2] and trace-shortened RS

(TSRS) codes [19]. Then we propose new PSSRS codes, which have several parallel

local SSRS structures. We divide PSSRS codes into two major types: Type I and

Type II with unequal and equal error correction capabilities, respectively. We focus

mostly on Type II codes, because they are easy to encode and decode.

 In Chapter 5, we propose a new LDPC+PSSRS concatenated system. For this

concatenated system, we provide a new iterative parallel local decoding algorithm to

let the LDPC decoder replace the RS decoder in the elimination of the remaining

errors from the initial burst of errors from the output of the LDPC decoder. We

develop a new decoding framework that changes the major role of the RS code from

error correction to error pattern removal. We evaluate the performance of the new

LDPC+PSSRS system on PMRCs with standard and long sectors.

 In Chapter 6, we provide a conclusion and discuss possible directions for future

work.

8

Chapter 2

Reed-Solomon Codes: Encoding and
Decoding Algorithms

9

2.1 Introduction

 The emergence of the single-error correction Hamming code marked the

beginning of modern coding theory. However, the success of ECCs was not widely

demonstrated until the RS codes were introduced in 1960 as MDS polynomial codes

[3], which have been the most successful and dominant codes for decades. RS codes

are widely used in satellite communications, storage systems such as HDDs, compact

discs (CDs), digital video discs (DVDs), blue-ray discs (BDs), solid state drive

(SSD), JPEG-2000 for wireless (JPWL), etc.

The success of RS codes is due to their interesting properties, namely:

1) Cyclic linear MDS block codes.

2) Multiple error correction capability.

3) Non-binary codes capable to correct burst errors.

4) Easy to encode in a systematic way.

5) Flexible to decode with various decoding algorithms.

RS codes are a special subclass of the BCH codes, which were also proposed in

1960 as well as RS codes and at the same time as LDPC codes. Both RS and BCH

codes are multiple-error correction codes. However, RS codes have a more elegant

algebraic structure than BCH codes. The relationship between RS and BCH codes

will be further discussed in this work. In this chapter we summarize the basic

knowledge on RS codes and introduce the latest SDD algorithms. Unlike other works,

we will focus on introducing the RS codes from a BCH-code point of view.

10

This chapter is organized as follows. In Section 2.2, we briefly introduce the

definition and several encoding methods for RS codes. In Section 2.3, we introduce

decoding algorithms with a special focus on the Welch-Berlekamp and SDD

algorithms. In Section 2.4, we discuss a special relationship between RS codes and

BCH codes.

2.2 Definition and encoding methods

 RS codes are linear cyclic MDS block codes with length 𝑛, and dimension 𝑘

over a finite field 𝐺𝐹(𝑞𝑚).

Definition: An RS code is the set of all codewords 𝑐 of length 𝑛 = 𝑞𝑚 − 1, with

the alphabet of 𝐺𝐹(𝑞𝑚) such that the codeword 𝑐 satisfies 𝐻𝑐𝑇 = 0, where 𝐻 is the

parity-check matrix of a primitive non-binary BCH code over 𝐺𝐹(𝑞𝑚).

In this work, the default finite field is 𝐺𝐹(2𝑚) for practical purposes, unless we

specify it otherwise.

Notation: Let 𝑅𝑆(𝑛, 𝑘) denote an RS code with length n, and dimension k,

over 𝐺𝐹(2𝑚). The transmitted messages 𝑚 = (𝑚0,𝑚1,⋯ ⋯ , 𝑚𝑘−1) are expressed in

polynomial form as

 𝑚(𝑥) = 𝑚0 + 𝑚1𝑥 + 𝑚2𝑥
2 + ⋯ + 𝑚𝑘−1𝑥

𝑘−1. (2.1)

11

 There are several distinct encoding methods such as the polynomial evaluation,

generator polynomial, and the discrete Fourier transform (DFT) on a Galois field [1],

[2].

2.2.1 Polynomial evaluation approach

 In [3], Reed and Solomon introduced a new non-binary cyclic block code and

an original encoding method, which is known as the polynomial evaluation approach.

The symbol values of the codewords are generated by evaluating the message

polynomial in (2.1) with distinct non-zero elements of 𝐺𝐹(2𝑚).

Polynomial evaluation

 Let 𝛼 be a primitive element of 𝐺𝐹(2𝑚) , and 𝛼𝑖 ‟s are distinct non-zero

elements of 𝐺𝐹(2𝑚). The RS codewords 𝑐 are generated as:

 𝑐 = (𝑐0,𝑐1, ⋯ , 𝑐𝑛−1) = (𝑚 𝛼0 , ⋯ , 𝑚 𝛼𝑛−1). (2.2)

2.2.2 Generator polynomial approach

 An RS codeword can be generated in polynomial form as [1], [2],

 𝑐 𝑥 = 𝑔 𝑥 𝑚 𝑥 , (2.3)

where𝑔(𝑥) is the generator polynomial, which was initially utilized in the generation

the BCH codes, and is the product of the minimal polynomials of 2𝑡 consecutive

elements of the form 𝛼𝑖 , 𝑖 = 1,⋯ ,2𝑡, where 𝑡 is the number of error corrections. Let

12

𝑀 𝑖 𝑥 be the minimal polynomial of 𝛼𝑖 over 𝐺𝐹(𝑞𝑚) , then

𝑔 𝑥 = 𝐿𝐶𝑀(𝑀 1 𝑥 𝑀 2 𝑥 𝑀 3 𝑥 ⋯ 𝑀 2𝑡 𝑥) . We know that the minimal

polynomial of 𝛼𝑖 over 𝐺𝐹(𝑞𝑚) is (𝑥 − 𝛼𝑖) , so 𝑔 𝑥 = (𝑥 − 𝛼1) ⋯ (𝑥 − 𝛼2𝑡) .

Codewords generated using (2.3) are non-systematic and the encoding method is

inefficient.

 RS codes can be efficiently encoded in a systematic way as follows,

𝑐 𝑥 = 𝑟 𝑥 + 𝑥𝑛−𝑘𝑚 𝑥 , (2.4)

where

𝑟 𝑥 = 𝑥𝑛−𝑘𝑚 𝑥 𝑚𝑜𝑑 𝑔 𝑥 . (2.5)

 The systematic encoding of the generator polynomial approach is the most efficient

encoding method for RS codes, which is widely used in modern applications. We can

get the shortened RS codes easily by inserting a certain length of zeros into the

message part to get the parity. It is not necessary to send these zeros, because they

are known. Thus this approach can generate the shorten RS codes, which have a very

flexible code length.

2.2.3 Discrete Fourier transform (DFT) over a Galois field

 The DFT can be utilized to implement the encoding of RS codes [1], [2]. The

definition of the DFT of a vector 𝑣 = (𝑣0, 𝑣1, ⋯ , 𝑣𝑛−1) over a Galois field is

𝑐 ≜ 𝐷𝐹𝑇 𝑣 = (𝑐0, 𝑐1,⋯ , 𝑐𝑛−1),

13

where 𝑐𝑖 = 𝑣𝑗
𝑛−1
𝑗 =0 𝛼𝑖𝑗 , 𝑖 = 0,⋯ , 𝑛 − 1 and 𝛼 is the primitive element of 𝐺𝐹(𝑞) .

Then

𝑣 = 𝐼𝐷𝐹𝑇 𝑐

𝑣𝑖 =
1

𝑛
 𝑐𝑗𝛼

−𝑖𝑗

𝑛−1

𝑗 =0

. (2.6)

 Here, the non-systematic encoding of RS codes using the DFT has two steps.

The first step adds 𝑛 − 𝑘 zeros to the message,𝑚 = (𝑚0,𝑚1,⋯ , 𝑚𝑘−1), and gets

𝑣 = (𝑚0,𝑚1,⋯ , 𝑚𝑘−1, 0, ⋯ ,0). The second step performs the DFT on 𝑣 to get

𝑐 = 𝐷𝐹𝑇 𝑣 = 𝐷𝐹𝑇 𝑚0,𝑚1,⋯ , 𝑚𝑘−1, 0, ⋯ ,0 . (2.7)

2.3 Algebraic decoding algorithms

 In 1960, Peterson introduced a decoding algorithm for the binary BCH code,

which is extremely useful to correct a small number of errors [1], [2]. For a large

number of errors, this algorithm becomes impractical because of the prohibitive

complexity. In 1967, Berlekamp invented the most efficient decoding algorithm for

both binary and non-binary BCH codes [1]. An equivalent method to Berlekamp‟s

algorithm was proposed by Massey utilizing a linear feedback shift-register (LFSR)

[1]. For non-binary BCH codes and RS codes, the error magnitudes can be solved by

using Forney‟s algorithm [1].

14

 Traditional algebraic algorithms can only correct up to 𝑡 errors. Since the

1990‟s, two new algebraic decoding algorithms using the channel reliability

information have emerged, whose error correction capabilities go beyond the

traditional correction bound 𝑡. The first is the Guruswami-Sudan (GS) algorithm [13]

and the second is the Koetter-Vardy (KV) algorithm [14]. Both algorithms have very

good performance for short low-rate codes. However the coding gain for long high-

rate codes is much smaller, and the complexity to achieve a large gain is prohibitive,

which seriously limits the practical application of these algorithms.

2.3.1 Hard-decision decoding algorithms

 Hard-decision decoding algorithms depend only on the hard-decision vector of

the channel outputs. There are two major categories. The algorithms in the first

category such as Peterson‟s, Perterson-Gorensteian-Zierler‟s, Berlekamp-Massey‟s,

and the Euclidean algorithm are all syndrome-based [1]. The second category is

interpolation-based, such as the Welch-Berlekamp (WB) algorithm.

Syndrome-based decoding general procedure

1) Compute the syndromes: 𝑆𝑗 .

 Given the binary codeword polynomial 𝑐 𝑥 = 𝑐0 + 𝑐1𝑥 + ⋯+ 𝑐𝑛−1𝑥
𝑛−1 ,

the received polynomial 𝑟 𝑥 = 𝑟0 + 𝑟1𝑥 + ⋯+ 𝑟𝑛−1𝑥
𝑛−1 is the sum of 𝑐 𝑥 and

15

𝑒 𝑥 , where 𝑒 𝑥 = 𝑒𝑙1
𝑥 𝑙1 + 𝑒𝑙2

𝑥 𝑙2 + ⋯+ 𝑒𝑙𝑣
𝑥 𝑙𝑣 is the error polynomial, and 𝑣 is

the number of errors.

𝑆𝑗 = 𝑟 𝛼𝑗 = 𝑐 𝛼𝑗 + 𝑒 𝛼𝑗 = 𝑒 𝛼𝑗 = 𝑒𝑙𝑘
(

𝑣

𝑘=1

𝛼𝑗)𝑙𝑘 ,

= (𝛼𝑗)𝑙𝑘

𝑣

𝑘=1

= 𝑋𝑙𝑘

𝑗

𝑣

𝑘 =1

, 𝑗 = 1,2, ⋯ ,2𝑡, (2.8)

where {𝑋𝑙𝑘
= 𝑒𝑙𝑘

−1} is the set of error locators.

2) Determine the error-locator polynomial,

Λ 𝑥 = (1 + 𝑋𝑙𝑘
𝑥)

𝑣

𝑘=1

= Λ0 + Λ1𝑥 + ⋯+ Λ𝑣𝑥
𝑣 . (2.9)

3) Find the roots of 𝛬 𝑥 using Chien’s search [24].

4) Find the error values using Forney’s algorithm [25].

Berlekamp-Massey (BM) algorithm

 The direct solution of the matrix form decoding algorithms such as Peterson‟s, and

Perterson-Gorensteian-Zierler‟s is only suitable for codes with a small 𝑡. For a large

𝑡, the complexity of computing the inverse matrix becomes prohibitive. It needs a

more efficient method, which was introduced by Berlekamp for decoding non-binary

16

BCH codes. Berlekamp‟s algorithm can obtain 𝛬 𝑥 by finding the polynomial

satisfying the following key equation,

 1 + 𝑆 𝑥 𝛬 𝑥 ≡ 𝛺 𝑥 𝑚𝑜𝑑 𝑥2𝑡+1 , (2.10)

where 𝑆 𝑥 is the infinite-degree syndrome polynomial and 𝛺 𝑥 is the error

magnitude polynomial [1]. Berlekamp‟s algorithm is an iterative algorithm that

solves the following equation [1]

 1 + 𝑆 𝑥 𝛬(2𝑘) 𝑥 ≡ 1 + 𝛺2𝑥
2 + ⋯+ 𝛺2𝑘𝑥

2𝑘 𝑚𝑜𝑑 𝑥2𝑘+1, 𝑤𝑒𝑟𝑒 𝑘 = 1 𝑡𝑜 𝑡.

 Berlekamp‟s algorithm also works most efficiently for finding the 𝛬 𝑥 polynomial

with the LFSR proposed by Massey [26]. The fundamental idea is based on

𝑆𝑗Λ0
+ 𝑆𝑗−1 Λ

1
+ ⋯+ 𝑆𝑗−𝑣Λ

𝑣
 = 0, Λ0 = 1.

It means that the later syndrome can be described recursively in the sum-product

form of the earlier coefficients of 𝛬 𝑥 and syndromes. The idea is to find the 𝛬 𝑥 ,

which enables the same LFSR„s outputs as the 2𝑡 syndromes. For details of the BM

algorithm, please refer to [1], [2], [27].

Welch-Berlekamp (WB) algorithm

 As we know, the syndrome-based algorithms need to calculate the syndromes for

solving the key-equations for RS and BCH codes, whose syndrome sequences are

17

introduced by the received vector. In 1983, Welch and Berlekamp proposed a new

decoding algorithm [28] for RS codes, which does not need to calculate the

syndromes. The Welch-Berlekamp (WB) algorithm is the first interpolation-based

algebraic hard-decision algorithm. This new decoding algorithm proposed a new

key-equation for decoding RS codes [28], namely

𝑝𝑖𝛼
𝑖𝑁 𝛼𝑖 = 𝑟 𝑖𝑊 𝛼𝑖 , (2.11)

with

𝑑𝑒 𝑔 𝑁 𝑥 < 𝑑𝑒 𝑔 𝑊 𝑋 = 𝑒 ≤
𝑛 − 𝑘

2
. (2.12)

Now what we need to do is to find out two polynomials, 𝑁(𝑥) and 𝑊(𝑥), such that

the polynomial 𝑥𝑁 𝑥 = 𝑦𝑊 𝑥 goes through all these data pairs: {(𝑥,𝑦)|𝑥 =

𝛼𝑖 , 𝑦 =
𝑟 𝑖

𝑝 𝑖
, 𝑖 = 0,⋯ , 𝑛 − 𝑘 − 1} , where 𝑟 𝑖 and 𝑝𝑖 are coefficients of polynomials

𝑟 𝑥 and 𝑝 𝑥 defined in (2.13) and (2.14).

WB algorithm decoding procedure:

1) Calculate the 𝑝𝑖 and 𝑟 𝑖 from the received vector 𝑟(𝑥).

𝑝 𝑥 =
𝑔(𝑥)

𝑥 − 1
= 𝑥 −𝛼𝑖 =

𝑛−𝑘−1

𝑖=1

 𝑝𝑖𝑥
𝑖

𝑛−𝑘−1

𝑖=0

 (2.13)

18

𝑟 𝑥 = 𝑟 𝑥 𝑚𝑜𝑑 𝑔 𝑥 . (2.14)

2) Use {𝛼𝑖 , 𝑝𝑖 ,𝑟 𝑖} to calculate 𝑁(𝑥) and 𝑊(𝑥),

𝑝𝑖𝛼
𝑖𝑁 𝛼𝑖 = 𝑟 𝑖𝑊 𝛼𝑖 , 𝑖 = 0, ⋯ , 𝑛 − 𝑘 − 1,

𝑑𝑒 𝑔 𝑁 𝑥 < 𝑑𝑒 𝑔 𝑊 𝑋 ≤
𝑛 − 𝑘

2
.

3) Use 𝑁(𝑥) and 𝑊(𝑥) to calculate the error locations and error values.

Using Chien search [24] to find the roots of 𝑊(𝑥), which are the error locations.

The error values are 𝑌𝑖 = 𝑓(𝑍𝑖)
𝑁(𝑍𝑖)

𝑊′ (𝑍𝑖)
, here 𝑊′ 𝑥 is the formal derivative of 𝑊(𝑥)

over 𝐺𝐹(𝑞), and

𝑓 𝑍 = 𝑍−𝑏
𝑝𝑖𝛼

𝑖 (𝑏+1)

𝛼𝑖 − 𝑍

𝑛−𝑘−1

𝑖=0

 , (2.15)

𝑊′ 𝑥 = 𝛼𝑖

𝑒

𝑖=0

 (𝛼𝑘𝑥 − 1)

𝑘≠𝑖

. (2.16)

 The WB algorithm can also be expressed in matrix form, which will not be

addressed in this work.

19

 In [29], one of the modification proposed by Gemmell and Sudan later leads to

the GS algorithm [22]. From [29] and [30], the authors discovered that if 𝑟𝑖 = 𝑐𝑖 ,

then 𝑟𝑖 = 𝑚 𝛼𝑖 . If 𝑟𝑖 ≠ 𝑐𝑖 , then 𝑊 𝛼𝑖 = 0. Hence, we can get this equation,

𝑊 𝛼𝑖 𝑟𝑖 = 𝑊 𝛼𝑖 𝑚 𝛼𝑖 , 𝑖 = 0,⋯ , 𝑛 − 1. (2.17)

Use 𝑃 𝑥 = 𝑊 𝑥 𝑚 𝑥 , and the key equation becomes

𝑊 𝛼𝑖 𝑟𝑖 = 𝑃 𝛼𝑖 , 𝑖 = 0, ⋯ , 𝑛 − 1. (2.18)

With 𝑃 𝑥 and 𝑊 𝑥 , the message polynomial is

𝑚 𝑥 =
𝑃 𝑥

𝑊 𝑥
. (2.19)

We can solve this problem in a modified way. To find a bivariate polynomial

𝑄 𝑥, 𝑦 = 𝑊 𝑥 𝑦− 𝑃 𝑥 passing through all the data pairs {(𝑥,𝑦)|𝑥𝑖 =

𝛼𝑖 𝑎𝑛𝑑 𝑦 = 𝑟𝑖}. After factorization of 𝑄 𝑥,𝑦 , we find a solution

𝑦 = 𝑚 𝑥 =
𝑃 𝑥

𝑊 𝑥
, 𝑖𝑓 deg 𝑦 < 𝑘 . (2.20)

 This process is an interpolation-based process. It uses a bivariate polynomial

containing 𝑦 , whose degree is at most one. With the extension of this idea,

Guruswami and Sudan later proposed a breakthrough decoding algorithm [22] with

20

𝑄 𝑥, 𝑦 passing through data pairs 𝑚 > 1 times instead of one time. The degree of y

is more than one, which will produce a list of possible message polynomials. With

the channel output of reliabilities, so called “soft information”, an extension of the

GS decoding algorithm called the KV decoding algorithm adopted a strategic way of

assigning different multiplicities to different data pairs. These two important

decoding algorithms will be introduced in later sections.

2.3.2 Soft-decision decoding algorithms

 SDD algorithms utilize channel output reliabilities to improve decoding

performance. The early versions of soft-decision algorithms are generalized

minimum distance (GMD) [31] and Chase [32], which were proposed decades ago

playing an important roles in the decoding of RS codes. Soft information provides

not only the information about the most reliable bits/symbols for hard-decision

algorithms, but can also be the overall metric for list decoding. In addition, soft

information can also be used to assign multiplicities to the number of interpolation

on data pairs, as in the KV algorithm [23].

Guruswami-Sudan algorithm

 Guruswami and Sudan proposed an interpolation-based decoding algorithm

[22] as an extension of the key-equation of the WB algorithm [28]. The problem of

finding two polynomials 𝑁 𝑥 and 𝑊 𝑥 has been converted into finding a bivariate

21

polynomial 𝑄 𝑥, 𝑦 = 𝑊 𝑥 𝑦− 𝑃 𝑥 passing through the all data pairs determined

from the channel output information. The GS algorithm with interpolation

multiplicity equaling to one can only generate at most one message polynomial,

which does not make full use of the channel output information. When the

multiplicities are larger than one, the degrees of 𝑥 and 𝑦 in 𝑄 𝑥,𝑦 are both more

than one. After factorizations, there exist multiple candidate message polynomials,

which lead to a list of candidate codewords. By evaluating the overall reliabilities

based on the channel output information as a judging metric, the one with most

overall reliability is declared the correct codeword.

 The GS algorithm [13] is an interpolation-based list decoding algorithm, which

finds out a bivariate polynomial with minimal 1, 𝑘 − 1 -weighted degree over the

polynomial ring 𝐺𝐹 2𝑚 [𝑥, 𝑦] passing through N interpolation pairs with a given

positive integer multiplicity, given by

𝑄 𝑥, 𝑦 = 𝑞𝑎 ,𝑏𝑥
𝑎

∞

𝑏=0

∞

𝑎=0

𝑦𝑏 ∈ 𝐺𝐹 2𝑚 𝑥, 𝑦 . (2.21)

 Notation: The 𝑤𝑥 ,𝑤𝑦 -weighted degree of a bivariate polynomial over

𝐺𝐹 2𝑚 is defined as

𝑑𝑒𝑔𝑤𝑥 ,𝑤𝑦
 𝑄 𝑥,𝑦 = max 𝑎𝑤𝑥 + 𝑏𝑤𝑦 |𝑞𝑎 ,𝑏 ≠ 0 .

The(𝑢, 𝑣)-th Hasse derivative of polynomial 𝑄(𝑥,𝑦) is defined as

22

𝐷𝐻

 𝑢 ,𝑣 𝑄 𝑥,𝑦 =
𝑖
𝑢

𝑑𝑒𝑔 𝑦 𝑄

𝑗 =𝑣

𝑗
𝑣
 𝑞𝑖,𝑗𝑥

𝑖−𝑢𝑦𝑗 −𝑣

𝑑𝑒𝑔 𝑥 𝑄

𝑖=𝑢

, (2.22)

and can be used to verify that the polynomial has a zero with a multiplicity l at a

certain pair (𝑥, 𝑦) if the condition 𝐷𝐻

 𝑢 ,𝑣 𝑄 𝑥, 𝑦 ≡ 0 at (𝑢, 𝑣), for 0 ≤ 𝑢 + 𝑣 < 𝑙 is

satisfied.

Guruswami-Sudan algorithm decoding procedure

1) Initialize the selected data pairs based on the channel output

information. 𝑥𝑖 ,𝑦𝑖 , 𝑖 = 0, ⋯ , 𝑛 − 1. Select the interpolation multiplicity 𝑙.

2) Interpolate to get 𝑄(𝑥, 𝑦) with 𝑒𝑎𝑐 𝑝𝑜𝑖𝑛𝑡 𝑥𝑖 , 𝑦𝑗 𝑜𝑓 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝑙.

3) Factorization using Roth’s factorization algorithm from [33] .

4) Regenerate all the candidate codewords from the list of all the factors of the

form (𝑦 −𝑚𝑖(𝑥)) with degree of x less than k [22].

Koetter-Vardy algorithm

 The GS algorithm has a much better performance than the conventional hard-

decision decoding algorithms. However, the multiplicities are fixed all over the

codeword, which ignores the fact that not all the data pairs are “reliable”. When

passing through the “non-reliable” data pairs with a large multiplicity, it may lead to

a worse situation. The major limitation of this algorithm is that the multiplicities of

each interpolation pair are the same, and when we increase the multiplicity, the

overall complexity goes up by a factor of N.

23

 It is a better strategy to assign multiplicities according to how reliable the data

pair is. Koetter and Vardy proposed a new way to utilize the channel output

information to decide the different multiplicities for data pairs. The KV algorithm

[23] introduced a reliability matrixΠ[𝑖, 𝑗] derived from the “soft” information. With a

preselected total multiplicity 𝑠 , the reliability matrix Π[𝑖, 𝑗] is converted to a

multiplicity matrix 𝑀[𝑖, 𝑗]. The total sum of each entry of 𝑀[𝑖, 𝑗] equals to 𝑠.

 The KV’s algorithm for assigning multiplicities [23].

1) Given the reliability matrix Π 𝑖, 𝑗 , 𝑖 = 𝛼0, 𝛼1 , ⋯ , 𝛼𝑞−1, 𝑗 = 0, 𝛼0, 𝛼1, ⋯ , 𝛼𝑞−1 ,

and the total multiplicity 𝑠, let ∀𝑚𝑖,𝑗 = 0 and Π∗ 𝑖,𝑗 = Π 𝑖,𝑗 .

2) Find the 𝑀 𝑖, 𝑗 iteratively.

 𝐼𝑓 (𝑠 > 0) {Search in Π 𝑖, 𝑗 to find the largest 𝜋𝑖 ,𝑗 ,

𝜋∗
𝑖,𝑗 =

𝜋𝑖 ,𝑗

𝑚𝑖 ,𝑗+1
, 𝑚𝑖,𝑗 = 𝑚𝑖,𝑗 + 1, 𝑠 = 𝑠 − 1 }

 Else output 𝑀 𝑖, 𝑗 .

Koetter-Vardy algorithm decoding procedure

1) Initialize 𝑀 𝑖, 𝑗 .

2) Initialize the selected data pairs based on the channel output

information. 𝑥𝑖 ,𝑦𝑖 , 𝑖 = 0, ⋯ , 𝑛 − 1.

24

3) Interpolate to get 𝑄(𝑥, 𝑦) with 𝑒𝑎𝑐 𝑝𝑜𝑖𝑛𝑡 𝑥𝑖 , 𝑦𝑗 𝑜𝑓 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝑙𝑖,𝑗 from

𝑀 𝑖, 𝑗 .

4) Factorization using Roth’s factorization algorithm from [33] .

5) Regenerate all the candidate codewords from the list of all the factors of the

form (𝑦 −𝑚𝑖(𝑥)) with degree of x less than k [22].

2.4 Conversions and connections of different definitions

 All definitions of RS and BCH codes are special cases of generalized RS codes

(GRS) [2], [36], [37]. A codeword of the generalized RS codes is generated by the

evaluation map encoding with a evaluation map set 𝑥 = [𝑥0,𝑥2, ⋯ , 𝑥𝑛−1] and a

weighted set 𝑣 = [𝑣0 , 𝑣2 ,⋯ , 𝑣𝑛−1] . Here the all 𝑥𝑖‟s are strictly distinct non-zero

elements in 𝐺𝐹(𝑞), and all 𝑣𝑖‟s are also strictly non-zero but not necessarily distinct.

We have 𝑐 = 𝑣0𝑚 𝑥0 ,𝑣1𝑚 𝑥1 ,⋯ , 𝑣𝑛−1𝑚(𝑥𝑛−1) . Here 𝑛 ≤ 𝑞 − 1.

 The RS codes are a subclass of the non-binary BCH codes and the primitive

𝑞-ary BCH code must be a subfield subcode of the RS codes over 𝐺𝐹 𝑞𝑑 , where 𝑑

is an integer larger than one. The additional relations between the RS codes and BCH

codes are as follows: 1) The trace mapping 𝐹: 𝐺𝐹 𝑞𝑚 → 𝐺𝐹(𝑞) can convert certain

subcodes of RS codes into BCH codes over 𝐺𝐹(𝑞). 2) The decomposition of certain

RS polynomials over 𝐺𝐹 𝑞𝑑 can introduce several parallel 𝑞-ary BCH polynomials

25

over 𝐺𝐹(𝑞) , here 𝑞 is a prime power. 3) The RS codes with error correction

capability 𝑡 is the sum of a glue code and a linear combination of several BCH with

the same error correction capability 𝑡. In Chapter 4, we will show a subcode of a

PSSRS code with 𝑚 parallel primitive binary BCH codes in the structure, which

enables a practical systematic scheme for the parallel local decoding of RS codes.

26

Chapter 3

Chase Algorithms for Soft-Decision
Decoding

27

3.1 Low Complexity Chase (LCC) Soft-Decision Decoding

3.1.1 Introduction

 Algebraic soft-decision RS decoding algorithms [22], [23], [38], [39] with

improved error-correcting capability and comparable complexity to standard

algebraic hard-decision algorithms are very attractive candidates for possible

implementation in the next generation of read channels. In this chapter, we

investigate the performance of a low-complexity Chase (LCC)-type soft-decision RS

decoding algorithm [38], recently proposed by Bellorado and Kavčić, on PMRCs at

various user densities for sector- long RS codes of practical interest. Previous results

for additive white Gaussian noise channels have shown that for a moderately long

high-rate code the LCC algorithm can achieve a coding gain comparable to the KV

algorithm with much lower complexity. We present a set of numerical results that

show that this algorithm provides small coding gains, on the order of 0.2 dB, with

similar complexity to the hard-decision algorithms currently used, and that larger

coding gains can be obtained if we use more test patterns, which significantly

increases its computational complexity.

 RS codes and algebraic hard-decision decoding algorithms are the current standard

for magnetic recording systems. The development of algebraic soft-decision

decoding algorithms for RS codes, such as the GS [22] and the KV algorithms [23],

opened up the possibility of using soft-decision decoding in future generations of

read channels to obtain improved performance without having to change the codes.

28

Although they provide significant coding gains over hard-decision decoding

algorithms, the main drawback is that the cost in terms of computational complexity

is prohibitively high. A large body of work has been quickly assembled on ways to

further improve their coding gain and on reducing the overall decoding complexity

[38], [40], [41]. A recent example of such work is a LCC soft-decision decoding

algorithm, proposed by Bellorado and Kavčić, which utilizes a re-encoding

technique [39] and a simplified factorization method to reduce complexity while

using a Chase algorithm to enhance performance.

 The LCC algorithm [38] is a symbol- level interpolation-based soft-decision list

decoding algorithm implemented in a computationally efficient manner. By sorting

the received symbols by their reliability, the LCC algorithm divides the received

vector into two disjoint parts, namely a set of common interpolation points and a set

of uncommon elements or test patterns used in the Chase algorithm. These test

patterns are generated using the channel soft information to identify the least reliable

positions, and generate a set of bivariate polynomials, which produce a

corresponding list of candidate message polynomials. After calculating the product

of the reliabilities of the symbols in each candidate codeword in the list, the one with

the largest value is chosen as the correct codeword.

29

3.1.2 Low-complexity Chase-type decoding algorithm

 The LCC algorithm for decoding RS codes was proposed in [38] and its

performance on additive white Gaussian channels was shown to be similar to the KV

algorithm with a complexity comparable to classical hard-decision decoding

algorithms.

 The algorithm can be informally described as follows. Let an 𝑅𝑆(𝑛, 𝑘) codeword 𝒄

be transmitted through a channel and consider a channel detector which computes a

2𝑞 × 𝑛 reliability matrix ∏ whose entries 𝜋𝑖 ,𝑗 are the symbol‟s soft information. Let

us denote 𝛼, 𝑗 as the entry in the jth column of ∏ indexed by 𝛼 ∈ 𝐺𝐹(2𝑞).

From the reliability information, hard-decision vectors

 𝑦𝐻𝐷 = 𝑦0
𝐻𝐷 , ⋯ , 𝑦𝑛−1

𝐻𝐷 and 𝑦2𝐻𝐷 = 𝑦0
2𝐻𝐷 , ⋯ , 𝑦𝑛−1

2𝐻𝐷

can be generated as follows

𝑦𝑖
𝐻𝐷 = arg𝑚𝑎𝑥𝛼∈𝐺𝐹 2𝑞 𝛼, 𝑖 , (3.1)

 𝑦𝑖
2𝐻𝐷 = arg𝑚𝑎𝑥𝛼∈𝐺𝐹 2𝑞 ,𝛼≠𝑦𝑖

𝐻𝐷 𝛼, 𝑖 . (3.2)

 Using𝑦𝐻𝐷 , 𝑦2𝐻𝐷 and ∏, we calculate the figure-of-merit

 𝛾𝑖 =
max

𝛼 ∈𝐺𝐹 2𝑞 ,𝛼≠𝑦𝑖
𝐻𝐷 𝛼,𝑖

max 𝛼∈𝐺𝐹 2𝑞 𝛼,𝑖
≤ 1, (3.3)

30

which is a measure of the confidence in the hard-decision for that particular symbol.

For 𝛾𝑖 ≈ 1, it is very likely that an error may have occurred. The LCC algorithm

sorts all the 𝛾𝑖„s, and segments the coordinate positions into two parts by selecting

𝜂 ≪ 𝑛 coordinates with the largest 𝛾𝑖 ‟s as the uncommon part 𝐼 = {𝑖1,⋯ , 𝑖𝜂 } ,

and 𝐼 = 0, ⋯ , 𝑛 − 1 ∖ 𝐼 as the common part composed by the remaining more

reliable positions. The LCC algorithm forms test vectors equivalent in all coordinate

positions except the least reliable ones, where there are two hard-decision choices at

each position. Thus the algorithm will form a test set of cardinality 2𝜂 = 𝑐𝑎𝑟𝑑(2|𝐼|).

3.1.2.1. Complexity reduction

 The LCC algorithm utilizes a re-encoding procedure to reduce complexity by

“zeroing-out k entries” [38]. Let 𝑦 = 𝑐 + 𝑒 be any test vector, where e is an error

vector, and let 𝐽 contain the k most reliable positions. We can use erasure decoding to

find a codeword 𝜓 = 𝜓0 , 𝜓1 , ⋯ , 𝜓𝑛 −1 with 𝜓𝑖 = 𝑦𝑖 for ∀𝑖 ∈ 𝐽, and add it to y to

get a new codeword with these k most reliable positions equal to zero.

 In our work, since we use the evaluation-map encoding method, the erasure

decoding is implemented by Lagrange interpolation. With 𝐽 ⊂ 𝐼 being “zeroed-out”,

the complexity of the interpolation of the common part is significantly reduced.

3.1.2.2. Polynomial interpolation and factorization

 The interpolation step generates polynomials 𝑄(𝑥, 𝑦) with 𝑑𝑒𝑔𝑦 𝑄 ≤ 1, which

can be expressed as [38]

31

𝑄 𝑥, 𝑦 = 𝑞𝑧 𝑥 𝑣 𝑥 + 𝑦 ∙ 𝑞𝑧 𝑥 , (3.4)

where 𝑣 𝑥 = 𝑥 − 𝑥𝑖 𝑖∈𝐽 thus the polynomial 𝑄 𝑥,𝑦 passes through the (𝑥𝑖 ,0)‟s

and 𝑄 𝑥𝑖 ,0 = 0. If the root of 𝑄(𝑥,𝑦) = 0 is m 𝑥 , then 𝑄 𝑥, 𝑚 𝑥 = 0, and

𝑚 𝑥 =
𝑞𝑧 𝑥 𝑣 𝑥

𝑞𝑧 𝑥
. (3.5)

3.1.2.3. Algorithm analysis

 The multiplicity matrix L used by the LCC algorithm is a symbol- level matrix with

only one entry 𝑙𝑖,𝑗 = 1 per column and all the other entries are zero. The cost of

decoding with such a multiplicity matrix is

𝐶 =
1

2
 𝑙𝑖,𝑗 (𝑙𝑖,𝑗 + 1)𝑛−1

𝑗 =0
2𝑞 −1
𝑖=0 = 𝑛. (3.6)

For a long high-rate code, 3 < 𝑙𝑖𝑚𝑘→𝑛 1 +
8𝑛

𝑘−1
< 4, and 𝑑𝑒𝑔𝑦 𝑄 is given by [16]

𝑑𝑦 =
1+ 1+

8𝐶

𝑘−1

2
 − 1 =

1+ 1+
8𝑛

𝑘−1

2
 − 1 = 1. (3.7)

The interpolation step for the KV algorithm can be described as follows.

32

𝐺 ← 𝑔0 = 1, 𝑔1 = 𝑦, ⋯⋯ , 𝑔𝑑𝑦
= 𝑦𝑑𝑦

𝑓𝑜𝑟 𝑒𝑎𝑐 𝑝𝑜𝑖𝑛𝑡 𝑥𝑖 , 𝑦𝑗 𝑤𝑖𝑡 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝑙𝑖,𝑗 > 0 𝑑𝑜

 𝑓𝑜𝑟 𝑢 ← 0 𝑡𝑜 𝑙𝑖,𝑗 − 1 𝑑𝑜

 𝑓𝑜𝑟 𝑣 ← 0 𝑡𝑜 𝑙𝑖,𝑗 − 1 − 𝑢 𝑑𝑜

 𝑓 ← 𝑚𝑖𝑛𝑑𝑒𝑔 (1 ,𝑘−1) {𝑔 ∈ 𝐺 𝑠𝑢𝑐 𝑡𝑎𝑡 𝐷𝐻

 𝑢 ,𝑣 𝑔 𝑥𝑖 ,𝑦𝑗 ≠ 0}

 𝑓𝑜𝑟 𝑔 ∈ 𝐺 𝑠𝑢𝑐 𝑡𝑎𝑡 𝑔 ≠ 𝑓 𝑑𝑜

 𝑔 ← 𝑔 ∙ 𝐷𝐻

 𝑢 ,𝑣 𝑓 𝑥𝑖 ,𝑦𝑗 − 𝑓 ∙ 𝐷𝐻

 𝑢 ,𝑣 𝑔 𝑥𝑖 ,𝑦𝑗

 𝑒𝑛𝑑 𝑓𝑜𝑟

 𝑓 ← 𝑥 − 𝑥𝑖 ∙ 𝑓

 𝑒𝑛𝑑 𝑓𝑜𝑟

 𝑒𝑛𝑑 𝑓𝑜𝑟

𝑒𝑛𝑑 𝑓𝑜𝑟.

Given 𝑙𝑖,𝑗 = 1 , only the 0,0 -th Hasse derivative needs to be calculated

and 𝐷𝐻

 0,0 𝑓 𝑥,𝑦 = 𝑓 𝑥,𝑦 , therefore, the interpolation update step simplifies to

 𝑔 ← 𝑔 ∙ 𝑓 𝑥𝑖 ,𝑦𝑗 − 𝑓 ∙ 𝑔 𝑥𝑖 , 𝑦𝑗 ,

 𝑓 ← 𝑥 − 𝑥𝑖 ∙ 𝑓 ,

33

which is exactly the same as the LCC interpolation update step in Algorithm 1 of

[38].

 In summary, the LCC algorithm is a special case of the GS algorithm with

multiplicity one or a special case of the KV algorithm with total multiplicity 𝑠 = 𝑛,

and a multiplicity assignment of a single entry equal to one for each coordinate

position. This is the basis for the complexity reduction for both the interpolation

update and the polynomial factorization steps.

3.1.3 Simulation results and analysis

 We consider a shortened 𝑅𝑆(440,410) code over 𝐺𝐹(210)on an equalized PMRC

with 90% jitter noise, and a Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm as the soft-

decision channel detector. Fig. 3.1 shows that the LCC algorithm outperforms

traditional hard-decision decoding algorithms. At a frame-error rate (FER) of 10-4,

the LCC algorithm has coding gains of about 0.2 dB and 0.4 dB over hard-decision

decoding for 𝜂 = 4 and 8, respectively. As we increase η, we get better performance,

but the number of test patterns increases exponentially. In Fig. 3.2 we show the

number of interpolations and factorizations for the LCC algorithm with full

factorization.

34

Fig. 3.1. Performance of 𝑅𝑆(440,410) on a PMRC equalized to an optimal GPR4

target with 90% jitter noise. The target is [1 0.307 -0.039 -0.002] and user density

0.938.

35

Fig. 3.2. Number of interpolations/factorizations as a function of η for one sample

execution of the LCC algorithm.

36

Simulations at higher user densities produced similar results as shown in Fig.3.3

for user density 1.1257, and for user density 1.313 (not shown).

Fig. 3.3. Performance of 𝑅𝑆(440,410) on a PMRC equalized to an optimal GPR4

target with 90% jitter noise. The target is [1 0.471 -0.068 -0.004] and user density

1.1257.

3.1.4 Conclusions

The LCC algorithm provides small gains with comparable complexity to standard

hard-decision algorithms for high-rate RS codes on PMRCs. In order to deliver large

performance gains, however, it requires a very large number of test vectors and the

37

overall computational complexity of the algorithm, which is exponential in η,

becomes impractical.

3.2 A Chase-GMD algorithm for soft-decision decoding

3.2.1 Introduction

 RS codes are widely used on both transmission and storage channels to support

high data rates in packet oriented applications, and are usually decoded using

efficient hard-decision algebraic algorithms. Guruswami and Sudan [22] and Koetter

and Vardy [23] proposed soft-decision algebraic RS decoding algorithms with

improved performance but high decoding complexity. These soft-decision algebraic

algorithms consist of three main steps: multiplicity computation, polynomial

interpolation and factorization. The polynomial interpolation is the most

computational complex step, and the common feature of these two algorithms and of

a host of related ones which we will refer to as interpolation-based algorithms. The

focus of most of the recent work on interpolation-based algorithms has been on

improving their performance and reducing their computational complexity [38]-[41].

For example, in [40], a Chase-type algorithm with improved performance was

introduced, and in [41], Gross et al. used a re-encoding technique to reduce the

complexity of the interpolation step. Bellorado and Kavcic [38] presented a low

complexity algorithm utilizing both the re-encoding technique and a Chase algorithm

38

and using a constant multiplicity of one. Forward generalized minimum distance

(GMD)-type and recursive Chase algorithms were proposed in [42].

 In this chapter, we further investigate the recursive property of the interpolation-

based RS decoding algorithms originally presented in [42], and propose an efficient

recursive algorithm for algebraic soft-decision decoding of RS codes combining the

Chase [32] and GMD [31] concepts to achieve short latency as well as improved

decoding performance by further exploiting the channel reliability information. The

paper is organized as follows: In Section 3.2.2, we present a brief summary of

interpolation-based algorithms and discuss their recursive property, and in Section

3.2.3 we investigate the decoding performance of the reliability-based recursive

algorithms. In Section 3.2.4, we propose a Chase-GMD algorithm based on the

recursive interpolation property and the utilization of symbol reliabilities. In Section

3.2.5, we discuss the simulation results and summarize our conclusions in Section

3.2.6.

3.2.2 Interpolation-based RS decoding algorithms and their recursive property

 An RS code of length n and dimension k can be generated by evaluating the

information polynomial 𝑓 𝑥 over the nonzero distinct elements of 𝐺𝐹 𝑞 ,

where 𝑞 = 𝑛 + 1 . For a received vector 𝒚 = 𝑦0 𝑦1 … 𝑦𝑛−1 with channel

reliability П we can generate a set of symbol pairs 𝑥𝑖 , 𝑦𝑖 and the associated

probabilities𝑃𝑟 𝑦𝑖 𝑥𝑖 ,П , which can be used to obtain an integer constraint matrix

39

M. An interpolation algorithm is then used to find a bivariate polynomial 𝑄 𝑥,𝑦

passing through symbol pairs 𝑥𝑖 , 𝑦𝑖 and satisfying the constraints defined by M.

Finally, a factorization algorithm is used to find factors of the form 𝑦 − 𝑓 𝑥 , and

generate a list of possible decoding answers. The decoding answer is chosen to be

the most likely one on the list. Further details on interpolation-based algorithms can

be found in [22], [23], and references therein.

 Interpolation-based algorithms can be viewed as finding a set of surfaces that pass

through a number of given points 𝑥𝑖 ,𝑦𝑖 subject to certain constraints, and the

intersection of the lowest degree surface with the plane 𝑄 𝑥, 𝑦 = 0 is the list o f

decoding candidates 𝑦 = 𝑓 𝑥 . The polynomial interpolation procedure is the key

step and can be formulated recursively [42] as:

𝑄 𝑁 = 𝑊 𝑁−1 𝑊 𝑁−2 … 𝑊 0 𝑄 0 = 𝑊 𝑖 𝑄 0

𝑁−1

𝑖=0

, 3.8

where 𝑄 0 = 𝑦0𝑦1 … 𝑦𝐿−1 𝑇 , each𝑊 𝑖 is an 𝐿𝘹𝐿 matrix related to an interpolation

point pair with a given multiplicity 𝑚𝑖 and 𝐿 − 1 is the highest degree of 𝑦 needed

for the polynomial interpolation. The final output bivariate polynomial 𝑄 𝑥, 𝑦 is

selected from the 𝐿 polynomials in vector 𝑄 𝑁 as the one with the smallest weighted

degree. It is worth noting that the order of multiplication of the vectors 𝑊 𝑖 can be

changed arbitrarily, and that reliability information can be used to select a specific

order to improve the performance of the algorithm [42]. In addition, the

40

interpolation of a given point can be reversed recursively since 𝑄 𝑖−1 =

𝑊 𝑖 −1
𝑄 𝑖 = 𝑊 𝑖 −1

𝑊 𝑖 𝑄 𝑖−1 .

3.2.3 Performance analysis of forward recursive algorithms

Forward recursive interpolation-based algorithms are erasure-and-trial algorithms,

which can be viewed as using a set of multiplicity matrices 𝑀𝑖 at each interpolation

step, with 𝑀𝑁 = 𝑀 [42]. For Chase-type algorithms, the set of multiplicity matrices

is further expanded to include𝑀𝑖

 𝑗 , where the superscript denotes the j-th test pattern.

Let 𝐵𝑖

 𝑗 = 𝑀 𝑗 −𝑀𝑖

 𝑗
 be the erasure matrix whose nonzero entries correspond to

the number of polynomial constraints not yet satisfied for the j-th test pattern. At

each step of the forward recursive algorithm, the correct codeword is found, if the

condition in Theorem 3 in [23] is satisfied, namely

 𝑆
𝑀

𝑖

 𝑗 𝑐 > deg1,𝑘−1 𝑄
𝑀

𝑖

 𝑗 𝑥, 𝑦 , (3.9)

where 𝑆
𝑀

𝑖

 𝑗 𝑐 is the score of a codeword 𝒄and the function deg1,𝑘−1 ∙ is the

weighted degree of a bivariate polynomial. We can express the score as

𝑆
𝑀

𝑖

 𝑗 𝑐 = 𝑚𝑡 − 𝑒𝑗 −

𝑒−1

𝑗 =0

𝑁−1

𝑡=0

 𝑏𝑙

𝑓−1

𝑙=0

= 𝑚𝑡𝑜𝑡𝑎𝑙 − 𝑒𝑗 −

𝑒−1

𝑗 =0

 𝑏𝑙

𝑓−1

𝑙=0

,

(3.10)

41

where the summation of the nonzero entries 𝑚𝑡 0
𝑁−1 in 𝑀 is 𝑚𝑡𝑜𝑡𝑎𝑙 ; 𝑏𝑙

𝑓−1
𝑙=0 is the

summation of all nonzero entries in 𝐵𝑖

 𝑗 , which can be denoted as 𝑏𝑙 0
𝑓−1

; and

 𝑒𝑗
𝑒−1
𝑗 =0 is the summation of the nonzero erroneous entries 𝑒𝑗 0

𝑒−1
in 𝑀𝑖

 𝑗
. In addition,

let us define another matrix 𝑅𝑖

 𝑗
 containing all the “correct” entries in 𝑀𝑖

 𝑗 , which

are denoted as 𝑟𝑖 0
𝑔−1

. The right-hand side of (3.14) is given by

deg1,𝑘−1 𝑄
𝑀

𝑖

 𝑗 𝑥,𝑦 = 𝛥 𝐶 − 𝐹

 = 𝛥
1

2
 𝑚𝑡 𝑚𝑡 + 1 −

1

2
 𝑏𝑙 𝑏𝑙 + 1

𝑓−1

𝑙=0

𝑁−1

𝑡=0

 = 𝛥
1

2
 𝑟𝑖 𝑟𝑖 + 1 +

1

2
 𝑒𝑗 𝑒𝑗 + 1

𝑒−1

𝑗 =0

𝑔−1

𝑖=0

 .

 (3.11)

Equation (3.11) is bounded by 𝛥 𝐶 − 𝐹 < 2 𝑘 − 1 𝐶 − 𝐹 , where 𝐶 is the cost

of the whole multiplicity matrix 𝑀𝑖

 𝑗
, and 𝐹 the cost of the erasure matrix 𝐵𝑖

 𝑗
, that

is
1

2
 𝑏𝑙 𝑏𝑙 + 1 𝑓−1

𝑙=0 . To get the correct codeword, the score given in (3.10), must be

larger than the weighted degree given in (3.11), which can be expressed as

42

 𝑒𝑗 𝑒𝑗 + 1 <
1

𝑘 − 1
 𝑟𝑖

𝑔−1

𝑖=0

2

− 𝑟𝑖 𝑟𝑖 + 1 .

𝑔−1

𝑖=0

𝑒−1

𝑗 =0

 (3.12)

Given a multiplicity matrix 𝑀𝑖

 𝑗
, as long as the “correct” entries 𝑟𝑖 and “erroneous”

entries 𝑒𝑖satisfy (3.12) the correct codeword will be found.

 Consider the error-correction capability of the Guruswami-Sudan (GS) algorithm

with constant multiplicity 𝑚𝑡 = 𝑚 and error-only decoding; using (3.11) and (3.12),

we can derive a bound on the number of correctable errors 𝑒 as

𝑒 < 𝑛 − 𝑘 − 1 𝑛 𝑚 + 1 /𝑚.

As 𝑚 → ∞ and if we use an error-and-erasure decoding algorithm, the bound

becomes

𝑒 < 𝑛− 𝑓 − 𝑘 − 1 𝑛− 𝑓 .

 As originally discussed in [23], finding a good multiplicity matrix for the

interpolation is one of the key issues. The performance improvement obtained by

soft-decision RS decoding algorithms is a direct consequence of using the channel

output information to find the best multiplicity matrix, i.e., finding the best

multiplicity computation method. In reality, we only have the received reliability

matrix П, with entries 𝜋𝑖𝑗 , and an intuitive way to compute the multiplicity matrix is

to use a large enough scalar λ to multiply the reliability matrix as in [43], which leads

to 𝜆П = 𝑀. Assume that 𝜋𝑒𝑗
corresponds to the reliability of an “erroneous point” in

43

the reliability matrix, and 𝜋𝑟𝑖
corresponds to the reliability of a “correct point”. Then

(3.12) becomes

 𝜆𝜋𝑒𝑗

𝑒−1

𝑗 =0

 𝜆𝜋𝑒𝑗
 + 1 <

1

𝑘 − 1
 𝜆𝜋𝑟𝑖

𝑔−1

𝑖=0

2

− 𝜆𝜋𝑟𝑖

𝑔−1

𝑖=0

 𝜆𝜋𝑟𝑖
 + 1 ,

 (3.13)

 and for λ→ ∞, we have

 𝜋𝑒𝑗

2
𝑒−1

𝑗 =0

<
1

𝑘 − 1
 𝜋𝑟𝑖

𝑔−1

𝑖=0

2

− 𝜋𝑟𝑖

2

𝑔−1

𝑖=0

. (3.14)

With 𝑒 = 𝑛𝑞 − 𝑛 and 𝑔 = 𝑛, (3.14) corresponds to (28) in [14], and describes the

asymptotic performance when the total multiplicity 𝑚𝑡𝑜𝑡𝑎𝑙 goes to infinity, which

requires an infinite decoding complexity. A significant amount of work, such as [43]

[44], has been done on finding the best multiplicity computation method given a

fixed moderate value for 𝑚𝑡𝑜𝑡𝑎𝑙 , to minimize the decoding failure

probability 𝑃𝑟 𝑆𝑀 > 𝛥 𝑀 |П,𝑚𝑡𝑜𝑡𝑎𝑙 .

Another way to improve decoding performance would be to feed the soft-decision

decoder output back to fine tune the computation of the multiplicity matrix. The

ultimate goal of iterative soft-decision RS decoding is to find a way to generate soft

information from the decoder just like in the decoding of low-density parity-check

44

codes [45]. However, the search for such method is an open problem. Some alternate

methods use hard information to generate an input to feed back to the channel

detector/decoder, for example the Chase and GMD-type algorithms used in [38],

[42], and in [46]-[48] and references therein. For any given channel reliability

information П and reliability ordered received vector, we can modify the multiplicity

matrix accordingly if one decoding trial fails. For example, in the Chase-type

interpolation-based recursive algorithm, we try to minimize

𝑃𝑟 𝑆П < 𝛥 П = 1 − 𝑃𝑟 𝑆
𝑀

𝑖

 𝑗 > 𝛥 𝑀𝑖

 𝑗 |П,𝑚𝑡𝑜𝑡𝑎𝑙

𝑖,𝑗

, (3.15)

for a given test pattern.

3.2.4 A Chase-GMD type algorithm using reliability information

 In order to utilize the recursive property of interpolation-based algorithms and

the reliability information, we propose a forward recursive Chase-GMD algorithm

with reduced average decoding complexity and improved decoding performance. In

contrast to the algorithms proposed in [42], we have moved the Chase flipping

patterns to the early interpolation stages, and process the remaining point pairs using

a GMD-type algorithm. Simulation results show an early convergence to the correct

codeword. The detailed algorithm is as follows.

 From the received channel output information, we can generate a set of symbol

pairs 𝑥𝑖 , 𝑦𝑖 with corresponding multiplicities 𝑚𝑖 .

45

Step 1: Sort the sequence of symbol pairs in decreasing order of their reliability, and

identify the η least reliable symbol pairs, or the symbol pairs that contain the η least

reliable bits. (Note that in the latter case the number of symbol pairs may not be η.)

Step 2: Divide the sorted symbol pairs into two groups: the first k pairs form the

reliable group and the remaining n-k the unreliable group. The unreliable group can

be further divided into two groups: a Chase group consisting of the η least reliable

symbol pairs and the GMD group consisting of the remaining n-k-η pairs.

Step 3: Generate an initial bivariate polynomial 𝑄 𝑥, 𝑦 passing through all the

symbol pairs in the reliable group. (If one uses the re-encoding algorithm [43], this

step becomes trivial.)

Step 4: Factorize the intermediate bivariate polynomial 𝑄 𝑥, 𝑦 and obtain a

decoding answer. If the stopping criterion is met go to End.

Step 5: For the given Chase test pattern, let 𝑄 𝑥, 𝑦 pass through the η additional

symbol pairs.

Step 6: Factorize the intermediate bivariate polynomial 𝑄 𝑥, 𝑦 and obtain a

decoding answer. If the stopping criterion is met go to End.

Step 7: Recursively let 𝑄 𝑥,𝑦 pass through one more symbol pair in the GMD

group. If all symbol pairs in the GMD group have been used, generate the next Chase

test pattern and go to Step 5.

46

Step 8: Factorize the intermediate bivariate polynomial 𝑄 𝑥, 𝑦 and obtain a

decoding answer. If the stopping criterion is met go to End, otherwise go to Step 7.

End.

The stopping criterion can be implemented by checking the Euclidean distance

between the decoded codeword and the received vector, and if the distance is smaller

than a programmable threshold, the decoding is considered successful. The number

of symbols in the Chase group is used to trade-off complexity for performance. The

value for η is usually chosen to be small to keep the complexity low. The order of

Steps 5 and 7 can be interchanged, giving rise to an interpolation-based GMD-Chase

algorithm. A variation of the proposed algorithm terminates Step 7 after a fixed

number of points have been interpolated but before all points have been used.

(x1, y1) (x2, y2) (xp, yp) (xp2, yp2) (xn, yn)

reliable symbols Chase-flipping symbols GMD symbols

sliding window for Chase-flipping symbols

Fig. 3.4. The reliability-sorted received vector and its interpolation order.

The reliability-based forward recursive algorithm described above performs

multiple factorization trials in contrast to the GS or KV algorithms, which perform a

single factorization step. However, simulation results show that only a small number

of factorization trials are needed at high SNRs. Given the benefits of the shorter

47

decoding latency, due to the fact that most of the time we do not need to interpolate

through all the point pairs before we can find the correct answer, and the potential

performance improvement [42], the slight increase in the number of factorization

trials is a good trade-off.

A way to further reduce the number of factorization trials is as follows. After

sorting the received vector, we select the first k+1 pairs from the reliable group

instead of k pairs in our original algorithm. Then we save the most reliable pair and

use the remaining k pairs from the reliable group to generate our initial bivariate

polynomial. In some cases, we may even sacrifice the code rate and use some extra

redundancy to protect one pair to make it very likely to be error free. If the generated

initial bivariate polynomial passes through this highly reliable pair, we will execute

the factorization step. Otherwise, we will continue our interpolation using additional

pairs in the unreliable group. Prior to any factorization, we check the latest

intermediate polynomial to make sure that it passes through this pair; otherwise we

skip the factorization step. This interpolation check and factorization flow reduces

the total number of factorizations and the complexity of the decoding algorithm.

 The basic concept of the proposed algorithm can be used to modify the original

interpolation-based algorithms described in [22], [23] as well as for some reduced

complexity algorithms using the re-encoding technique, such as the low-complexity

Chase (LCC) algorithm proposed by Bellorado and Kavcic [38], which uses re-

48

encoding and a bivariate polynomial with y-degree of one. In their implementation,

the factorization step is very simple, which will also ease the complexity of the

proposed modification.

3.2.5 Simulation results

As an illustrating example, we use the proposed interpolation-based recursive

algorithm on an equalized PMRC. A symbol-based BCJR algorithm is used as the

channel decoder and the results are compared with the LCC algorithm presented in

[38]. The multiplicity for each non-zero entry in 𝑀 is set to only one, and the

complexity comparison is based on the number of points interpolated.

 In Fig.3.5, we compare the frame-error rate (FER) performance of the proposed

Chase-GMD algorithm to hard-decision RS decoding, and the LCC algorithm on a

channel equalized to an optimal GPR4 target with 90% jitter noise for a shortened

𝑅𝑆(440,410) code over 𝐺𝐹(1024) , with code rate R=0.9318 at user density

Du=0.9381. The user density is defined as Du = T50/Tu , where T50 is the parameter in

the hyperbolic-tangent model [49], and Tu is the user bit interval. Note that Tu = Tc *

R , where Tc is the channel bit interval.

49

Fig. 3.5. Performance of RS (440, 410) on a PMRC equalized to an optimal GPR4

target with 90% jitter noise, and user density Du=0.9381.

Note that this is not the total number of interpolations for one codeword, since we

have 2𝜂 patterns per codeword. At high SNR, the proposed Chase-GMD algorithm

only interpolates a few point pairs in the GMD group, before it finds the correct

answer, i.e., it only interpolates fewer than n-k points.

The simulation results show that the Chase-GMD algorithm slightly

outperforms the LCC algorithm for the same number of test patterns. However, when

we compare the complexity of the two algorithms in terms of the number of

50

interpolated points required to execute them, as shown in Fig. 3.6, a different picture

emerges. The proposed Chase-GMD algorithm with η=12 has a 0.4-dB gain over the

LCC algorithm with η=4 at a FER of 10-5 with almost the similar complexity in

terms of the number of the multiplications.

Fig. 3.6. Comparison of the number of interpolated points between LCC and Chase-

GMD algorithms for RS (440, 410) on a PMRC equalized to an optimal GPR4 target

with 90% jitter noise and user density Du =0.9381.

51

Note that the LCC algorithm has a constant number of total interpolations and it

always performs 2𝜂 factorizations. From Figs.3.6 and 3.7, we can see that the average

number of interpolations and factorizations for the Chase-GMD algorithm decreases

with increasing SNR, and that it has a very low average number of factorizations. In

Table I we compare the complexity of the proposed (C-GMD) algorithm to LCC

decoding. At high SNRs, our algorithm has a very low average number of total

interpolations (AI) and factorizations (AF), and provides a significant coding gain

with a total complexity in terms of the number of multiplications approximately

twice as the Berlekamp-Massey algorithm for HDD.

TABLE 3.1

MAXIMUM NUMBER OF MULTIPLICATIONS REQUIRED FOR DECODING

Algorithm RS(440,410)
HDD 26085

LCC 𝜂 = 4 AF = 16 201449

LCC 𝜂 = 8 AF = 256 3189797

LCC 𝜂 = 12 AF = 4096 51009009

C-GMD 𝜂 = 4 AF = 4 49672

C-GMD 𝜂 = 8 AF = 4 50148

C-GMD 𝜂 = 12 AF = 4 50784

C-GMD 𝜂 = 4 AF = 8 99348

C-GMD 𝜂 = 8 AF = 8 99984

C-GMD 𝜂 = 12 AF = 8 100780

C-GMD 𝜂 = 4 AF = 12 149184

C-GMD 𝜂 = 8 AF = 12 149980

C-GMD 𝜂 = 12 AF = 12 150936

52

Fig. 3.7. Factorization success ratio vs. the number of GMD interpolation point pairs

at various SNRs.

In Fig. 3.8, we present the factorization success ratio distribution for point pairs in

the GMD group, which show that the first four pairs can lead to a cumulative

probability > 90% to obtain the correct codeword at a given SNR. The figure shows

that there is a very large probability to get the correct codeword with a relatively

small number of total factorizations, and therefore low complexity. The figure

displays factorization success ratio curves at various SNRs and the average number

of factorizations.

53

TABLE 3.2

AVERAGE NUMBER OF INTERPOLATIONS AND FACTORIZATIONS

Algorithm
RS(440,410)

AF / AI at
9dB

AF / AI at
9.6dB

AF / AI at
10.2dB

LCC 𝜂 = 4 16/90 16/90 16/90

LCC 𝜂 = 8 256/2070 256/2070 256/2070

LCC

𝜂 = 12

4096/49170 4096/49170 4096/49170

C-GMD

𝜂 = 4

314/366 26/32 4/8

C-GMD

𝜂 = 8

3190/4352 109/149 4/12

C-GMD

𝜂 = 12

36393/60657 670/1126 4/16

In Table II, we present the average number of interpo lations and factorizations

executed in the processing of point pairs in the GMD group before we find the

correct codeword. The same observations on the low complexity of the Chase-GMD

algorithm, especially at high SNRs, can be made from this set of results. All

complexity results presented refer to the original algorithm. Further reductions in

complexity can be realized by using the reduced factorization implementation.

3.2.6 Conclusion

The Chase-GMD type algorithm for soft-decision RS decoding presented has an

appreciable gain over standard hard-decision decoding algorithms on PMRCs, which

compares favorably with recently proposed implementations of Chase-type

algorithms. More importantly, for similar complexity at high SNR, our algorithm

exhibits significant coding gains over other low complexity implementations. These

54

algorithms are particularly attractive for magnetic recording systems which operate

at relatively high SNR.

55

Chapter 4

Subcodes of Reed-Solomon Codes
With a Parallel Subcode Structure

56

4.1 Subspace subcodes of RS codes

 In 1992, G. Solomon proposed a non-linear non-binary code [50], which is a

new cyclic code of length 2𝑚 − 1 with a smaller alphabet size of 𝑣-bit symbols over

𝐺𝐹 2𝑚 . This code was initially proposed to have a code rate as close to the RS code

rate as possible [50] and a higher 𝑣-bit symbol dimension than BCH codes of the

same length. In [51], G. Solomon did not give a formula for the binary dimension for

this new code, although he did provide a method to find out the number of

codewords for some special cases, which are highly dependent on the choices of the

primitive roots for the 𝐺𝐹 2𝑚 and the subspace for the 𝑣-bit symbols [20], [21].

Later, in [52], a new trace-shortened RS code (TSRS) is proposed to generalize this

non- linear non-binary code by extending the choices of the subspace to some larger

classes instead of just some special cases [20]. Hattori later proposed the SSRS codes

to further extend the restrictions on the choices of the subspace to arbitrary

subspaces, and provide a formula for the bit dimension [20], [21]. From this formula

in [20], one can find out the subspace which leads to a code with the maximum bit

dimension, when 𝑚 is small.

 Given an RS code over 𝐺𝐹 2𝑚 , an SSRS code [20], [21] is a subcode whose

binary 𝑚-tuple projections consist of all zeros for the 𝜇-dimensional subspace of

𝐺𝐹 2𝑚 , where 𝜇 is a positive integer and 0 < 𝜇 < 𝑚 [20]. Let 𝑣 = 𝑚 −𝜇 , and

consider a simple example of an SSRS code.

57

Given an 𝑅𝑆(7,5,3) code, consider the codeword (2,2,3,0,1,3,1), since 𝑚 = 3,

the corresponding binary 3-tuple is shown in Fig. 4.1.

 .

Fig. 4.1. The binary 3-tuple of 𝑅𝑆(7,5,3) codeword: (2,2,3,0,1,3,1).

 Given that the top row of the binary 3-tuple consists of all zeros, we can only

consider the binary 2-tuple (𝑣 = 2) given in Fig. 4.2.

 .

Fig. 4.2. The binary 2-tuple of 𝑅𝑆(7,5,3) codeword (2,2,3,0,1,3,1).

The codeword (2,2,3,0,1,3,1) is an SSRS codeword with 𝑣 = 2 over 𝐺𝐹 23 .

The set of codewords with this property is an SSRS code of the parent 𝑅𝑆(7,5,3)

code. This SSRS code is based on a 2-dimensional subspace of 𝐺𝐹 23 [20].

In general, given 𝐺𝐹 2𝑚 , the SSRS code based on a 𝑣-dimensional subspace of

𝐺𝐹 2𝑚 is not linear over 𝐺𝐹 2𝑣 , when 𝑣 ≠ 1 [20]. However, it is always linear on

𝐺𝐹(2) . When 𝑣 is a factor of 𝑚 (notated as 𝑣|𝑚), a 𝑣 -dimensional subspace of

𝐺𝐹 2𝑚 is a subfield of 𝐺𝐹 2𝑚 with a certain basis [20], [21], and 𝐺𝐹 2𝑚 is the

2 2 3 0 1 3 1

1 1 1 0 0 1 0

0 0 1 0 1 1 1

0 0 0 0 0 0 0

2 2 3 0 1 3 1

1 1 1 0 0 1 0

0 0 1 0 1 1 1

58

extension field of 𝐺𝐹 2𝑣 [20]. A codeword of an SSRS code is also a codeword of

the parent RS code, so the SSRS code is linear over 𝐺𝐹 2𝑚 . However, the linear

combination of SSRS codewords over 𝐺𝐹 2𝑚 in most cases is not an SSRS

codeword.

The dimension of an SSRS code is strictly dependent on the exact number of

SSRS codewords [20]. SSRS codes based on a 𝑣-dimensional subspace of 𝐺𝐹 2𝑚

could have different dimensions, which depends on the choice of the basis for this 𝑣-

dimensional subspace of 𝐺𝐹 2𝑚 [20]. When 𝑚 is small, it is possible to get all of

the different dimensions by trying all possible bases. It is not computationally

feasible to find out all possible dimensions when 𝑚 is large [20]. The alternative way

is to find a larger class or an even larger category, whose elements are equivalent,

meaning that every two elements have the same dimension [20]. Unfortunately, the

number of these classes or categories is still too large, when 𝑚 is large. A dimension

formula is introduced in [20], which is strongly dependent on the choice of the

subspace and the parent RS code. A lower bound formula is also introduced in [20].

Most SSRS codes with higher dimensions do not have an integer “symbol”

dimension [20], because the binary dimension is neither a multiple of 𝑣 nor 𝑚, which

seriously limits the application of an SSRS code with a higher dimension [20].

Interested readers can refer to [20] for more details on the formulas.

59

 There are two encoding methods for SSRS codes in general: the first one is

frequency domain encoding, and the second one is systematic encoding [20].

Frequency domain encoding needs to calculate two sets of information bits: the

independent coefficients and the dependent ones. After that, all other coefficients are

set to zeros, and then the DFT over a Galois field is used to get the time domain

codeword [20]. It is complicated to find out these two coefficient sets, when 𝑚 is

large. The encoding of SSRS codes described in [20] is not perfect and needs further

development, because it does not always encode systematically. When 𝑑𝑚𝑖𝑛 ≫ 𝑚 −

1, the mapping Φ method described in [20] will not always exist. The size of the

mapping Φ will grow exponentially with 𝑚, which is not suitable for implementation.

This encoding problem is solved by selecting a suitable subspace [53] or by a

“partial” systematical encoding in [54]. However, the dimension of the SSRS codes

generated by the method in [53] is equal to the lower bound introduced in [20]. We

can find that the 𝑎𝑅‟s in [54] are not totally free, thus the encoding is only “partially”

systematic.

 It is easy to find out that SSRS codes have a smaller alphabet size compared to

the parent RS codes but with the same length from its definition. How can we make

full use of this structural property? Can we have a code, which has several SSRS

codes in parallel as a package like the one shown in Fig. 4.3? What code ℂ will that

be? How can we select suitable SSRS codes to make this new code linear, cyclic, and

easy to encode and decode?

60

Fig. 4.3. The package structure of several parallel SSRS codes.

4.2 Subcodes of RS codes with a parallel subcode structure

 First, we only use narrow-sense RS codes unless we specify it to be a

generalized RS code. We propose a new subcode of RS codes with a parallel SSRS

structure. We call this new subcode the parallel subspace subcode of RS codes

(PSSRS). The PSSRS code has two major classes, which are the Class-I subcode ℂI

and the Class-II subcode ℂII .

Theorem 4.1: For narrow sense RS codes, given 𝑅𝑆(𝑛, 𝑘1, 𝑑1) and 𝑅𝑆(𝑛, 𝑘2, 𝑑2) with

𝑑1 < 𝑑2 , then 𝑅𝑆(𝑛, 𝑘2, 𝑑2) is a subcode of 𝑅𝑆(𝑛, 𝑘1,𝑑1) [23].

Theorem 4.2: A codeword of ℂ in Fig. 4.3 is still an RS codeword.

For proof, please refer to Appendix A.

4.2.1 Class-I subcodes ℂI

 We now define ℂ in Fig. 4.4 as the Class-I subcodes ℂI of RS codes with a

parallel SSRS structure over 𝐺𝐹 2𝑚 .

ℂ

ℂ1: SSRS code based on 𝑣1-dimensional subspace 𝑆1of 𝐺𝐹(2𝑚)

 ℂ2: SSRS code based on 𝑣2-dimensional subspace 𝑆2of 𝐺𝐹(2𝑚)

 ⋮ ⋮ ⋮

 ℂ𝜎: SSRS code based on 𝑣𝜎 -dimensional subspace 𝑆𝜎of 𝐺𝐹(2𝑚)

𝑚-tuples

61

Definition: Class-I subcodes ℂI are the subcodes of RS codes with a parallel SSRS

structure over 𝐺𝐹 2𝑚 , in which there exists at least a pair {(𝑖, 𝑗)|𝑖 ≠ 𝑗} satisfying

𝑣𝑖 ≠ 𝑣𝑗 . ℂ𝑖‟s are SSRS codes based on different parent RS codes with different 𝑣𝑖-

dimensional subspaces of 𝐺𝐹 2𝑚 and different error-correction capabilities 𝑡𝑖 .

Fig. 4.4. Class-I subcodes ℂI of RS codes.

ℂI is a linear combination of {ℂ1,ℂ2, ⋯ , ℂ𝜎}

ℂI = 𝛼
 𝑣𝑗

𝑖
𝑗=1

 −𝑣𝑖ℂ𝑖

𝜎

𝑖=1

. (4.1)

The binary dimension of ℂI is denoted as 𝐾2 ℂI , and is given by

𝐾2 ℂI = 𝐾2 ℂ𝑖

𝜎

𝑖=1

. (4.2)

Because ℂI is a linear combination of {ℂ1,ℂ2, ⋯ , ℂ𝜎 }, the “global” symbol-based

error-correction capability of ℂI is denoted as 𝑡𝐺 = MIN 𝑡1, 𝑡2, ⋯ ,𝑡𝜎 .

The real error-correction capability 𝑡ℂI
 of ℂI has a lower bound and an upper bound

ℂI

ℂ1: SSRS code based on 𝑣1-dimensional subspace 𝑆1of 𝐺𝐹(2𝑚)

 ℂ2: SSRS code based on 𝑣2-dimensional subspace 𝑆2of 𝐺𝐹(2𝑚)

 ⋮ ⋮ ⋮

 ℂ𝜎: SSRS code based on 𝑣𝜎 -dimensional subspace 𝑆𝜎of 𝐺𝐹(2𝑚)

𝑚-tuples

62

MIN (𝑡1,𝑡2, ⋯ ,𝑡𝜎) ≤ 𝑡ℂI
≤ 𝑡𝑖

𝜎

𝑖=1

. (4.3)

Class-I codes can be denoted as ℂI(𝑛, 𝑘, 𝑇, 𝑉) , where 𝑇 = (𝑡1,𝑡2, ⋯ , 𝑡𝜎) and

𝑉 = (𝑣1, 𝑣2 , ⋯ , 𝑣𝜎).

The possible decoding structure is shown in Fig. 4.5.

Fig. 4.5. Decoding structure for ℂI codes.

 Class-I codes are very flexible in structure but of limited practical interest,

because there exists at least one 𝑣𝑗 > 1 , which leads to a very complicated

systematic encoder with a possible non- 𝑣𝑗 -multiple binary dimension [20], [21].

Class-I codes need several different encoders due to different 𝑣𝑗 ‟s, which will

increase the hardware implementation cost and complexity.

4.2.2 Class-II subcodes ℂII

ℂI global decoder: RS decoder with 𝑡ℂI

ℂ1: Parent RS decoder with 𝑡1

 ℂ2: Parent RS decoder with 𝑡2

 ⋮ ⋮

 ℂ𝜎: Parent RS decoder with 𝑡𝜎

𝑚-tuples

63

For practical purposes, we would like to introduce the following simplified

version.

Definition: Class-II subcodes ℂII are the subcodes of RS codes with a parallel SSRS

structure over 𝐺𝐹 2𝑚 , in which each arbitrary pair{(𝑖, 𝑗)|𝑖 ≠ 𝑗} satisfies 𝑣𝑖 = 𝑣𝑗 =

𝑣 = 𝑚/𝜎, where 𝜎|𝑚. ℂ𝑖‟s are SSRS codes based on the same parent RS code with

same 𝑣-dimensional subspace of 𝐺𝐹 2𝑚 and the same error-correction capability 𝑡.

Fig. 4.6. Class-II subcodes of RS codes.

It is shown that ℂII is also a linear combination of {ℂ1,ℂ2, ⋯ , ℂ𝜎 }

ℂII = 𝛼
 𝑣𝑗

𝑖
𝑗 =1

 −𝑣𝑖 ℂ𝑖

𝜎

𝑖=1

= 𝛼 𝑖−1 𝑣ℂ𝑖

𝜎

𝑖=1

. (4.4)

The binary dimension of ℂII is

𝐾2 ℂII = 𝐾2 ℂ𝑖

𝜎

𝑖=1

. (4.5)

ℂII

ℂ1: SSRS code based on 𝑣-dimensional subspace 𝑆1 of 𝐺𝐹(2𝑚)

 ℂ2: SSRS code based on 𝑣-dimensional subspace 𝑆2 of 𝐺𝐹(2𝑚)

 ⋮ ⋮ ⋮

 ℂ𝜎: SSRS code based on 𝑣-dimensional subspace 𝑆𝜎 of 𝐺𝐹(2𝑚)

𝑚-tuples

64

The error-correction capability 𝑡ℂII
 of ℂII also has a lower bound and an upper

bound

𝑡 ≤ 𝑡ℂII
≤ 𝜎𝑡 =

𝑚𝑡

𝑣
. (4.6)

 It is easy to see that when 𝑣 = 1, we can reach a maximum upper bound 𝑚𝑡.

This maximum upper bound is far beyond the conventional error-correction

capability of the parent RS code with the error-correction capability 𝑡. However, this

results in further dimension degradation [20]. The stochastic error-correction

capability deserves further study. The simulation result shows that the performance

of a Class-II code is marginal compared to an RS code with the same code rate and

length over the same field. We propose three subclasses of the Class-II code ℂII .

They are the ℂII
𝑣 code, the ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥
 code and the ℂII

 𝑣1⊃⋯ 𝑣2⊃⋯ ⋯|𝑣𝑚𝑎𝑥 ⊃⋯
 code,

respectively.

4.2.2.1ℂII
𝑣 codes

 The ℂII
𝑣 Code has two categories. The SSRS codes of the first one are all on a

1-dimension subspace of 𝐺𝐹 2𝑚 . For the second code, the SSRS codes are all on a

𝑑-dimension subspace of 𝐺𝐹 2𝑚 , where 𝑑 is a factor of 𝑚 and 𝑑 ≠ 1. We denote it

as 𝑑|𝑚.

Notation: ℂII
𝑣 codes with 𝑣 = 1 are denoted as ℂII

𝑣=1.

Notation: ℂII
𝑣 codes with 𝑣 = 𝑑, 𝑑|𝑚, 𝑑 ≠ 1 are denoted as ℂII

𝑣=𝑑 .

65

ℂ𝐼𝐼
𝑣=1 codes

 First, let us focus on ℂII
𝑣=1. The SSRS code with a 1-dimension subspace of

𝐺𝐹 2𝑚 is actually equivalent to the primitive binary BCH code [20]. We know

that if 𝑣 = 1 or 𝑣 = 𝑚 − 1, SSRS code is always “ordinary”, which is defined in

[20] as an SSRS code whose binary dimension reaches the lower bound. In [20], the

author calls the code with a higher binary dimension than the lower bound as

“exceptional” and concludes that the SSRS code with 𝑣 = 1 has a unique dimension

which reaches the lower bound of the SSRS code.

There are several advantages for ℂII
𝑣=1 .

1) We do not need to find the “exceptional subspace”, which is very difficult to

find, when 𝑚 is large [20].

2) The SSRS code based on a 1-dimension subspace is linear over 𝐺𝐹 2𝑑 ,

when 𝑑|𝑚 [20], [22].

3) The SSRS code based on a 1-dimension subspace is actually equivalent to the

primitive binary BCH code, which can be encoded systematically [1], [54].

4) The primitive binary BCH code is the subfield subcode of the parent RS code

[1], [2]. It can be decoded by all existing available RS decoders [54] with less

complexity, because its alphabet is over 𝐺𝐹(2).

66

5) It is easy to implement in hardware, because the symbol level RS decoder can be

repeatedly used on both symbol level decoding and local bit level binary BCH

decoding, where the binary BCH codeword is also a codeword of the global RS

code.

Fig. 4.7. ℂII
𝑣=1 subcodes of RS codes.

ℂ𝐼𝐼
𝑣=1 codes from the modification of the Vardy-Be’ery decomposition

 We developed a new scheme to generate ℂII
𝑣=1 from a modification of Vardy-

Be‟ery‟s decomposition [55]. In [55], Vardy and Be‟ery demonstrated that the binary

image of the generator matrix of RS codes is a “concatenation” of 𝑚 binary BCH

code generator matrices along the diagonal of the matrix with a glue vector code

generator matrix on the bottom. Vardy and Be‟ery used a trellis decoding [55] and

later Fedorenko [56] came up with a star trellis decoding for RS codes. In [56], the

gain for small codes can achieve 2-3dB over hard-decision decoding. In [55], Vardy

and Be‟ery introduced an RS decoder utilizing the soft bit- level information. To use

the same notation as in [55], consider the code 𝑅𝑆 (𝑁,𝐾, 𝐷) over 𝐺𝐹(2𝑚) with

RS code

 ℂ1: 1𝑠𝑡 Primitive Binary BCH code

ℂ2: 2𝑛𝑑 Primitive Binary BCH code

 ⋮ ⋮ ⋮

ℂ𝑚: 𝑚𝑡 Primitive Binary BCH code

𝑚-tuples

67

roots(𝛼𝑠+1 , 𝛼𝑠+2, ⋯ , 𝛼𝑠+𝑁−𝐾−1) . A linear mapping 𝜙: 𝐺𝐹(2𝑚)𝑁 → 𝐺𝐹(2𝑚𝑁) will

convert a symbol level codeword over 𝐺𝐹 2𝑚 to a sequence of bits of length 𝑚𝑁

with the basis (𝛾1 , 𝛾2 , ⋯ , 𝛾𝑚) of 𝐺𝐹 2𝑚 over 𝐺𝐹(2) . Here, 𝛼 is the primitive

element of 𝐺𝐹(2𝑚) . The binary BCH code ℬ(𝑁, 𝑘, 𝑑) is generated by the roots

(𝛼𝑠+1 , 𝛼𝑠+2, ⋯ , 𝛼𝑠+𝑁−𝐾−1) of the RS code and their cyclotomic conjugates over

𝐺𝐹(2) [1], [55]. As described in [55], we can generate ℬ with the combination of 𝑘

independent codewords in ℬ, namely, ℬ1, ℬ2,⋯ , ℬ𝑘.

 Thus, we have the following illustration for the permutated version of 𝐺𝑅𝑆 in

[55].

𝐺𝐵𝐶𝐻

𝐺𝐵𝐶𝐻

⋱
𝐺𝐵𝐶𝐻

𝐺𝑔𝑙𝑢𝑒

Fig. 4.8. Vardy-Be‟ery decomposition of the binary image of an RS code generator

matrix [55].

 In [55], the RS codewords are the sum of the concatenation of the 𝑚 binary

BCH codewords and the glue codeword generated by the sub-generator matrix of

glue vector in the binary image of 𝐺𝑅𝑆 . For long, high-rate RS codes, the binary

image length will be even longer, which will make it prohibitive to calculate the glue

vector part. A star-shape factor graph structure is given in [57] with the Wolf trellis

68

in [58] based on the Vardy-Be‟ery decomposition, where the glue node acts as the

constraint node.

 Fig. 4.9. Wolf‟s star shape of trellis [57].

 Without correctly decoding the glue vector in [55], it will not be possible to

decode the full RS codeword correctly.

𝐺𝐵𝐶𝐻

𝐺𝐵𝐶𝐻

⋱
𝐺𝐵𝐶𝐻

𝐺𝑔𝑙𝑢𝑒

→

𝐺𝐵𝐶𝐻

𝐺𝐵𝐶𝐻

⋱
𝐺𝐵𝐶𝐻

Fig. 4.10. Removal of the glue generate matrix.

 Here we propose a way to remove the glue vector shown in Fig. 4.10. The new

“permutated” form of the subcodes of the original RS codes with concatenation of

the 𝑚 binary BCH codes [55] is actually a ℂII
𝑣=1 code after de-permutation. This is a

Glue code

constraint

node

1𝑠𝑡 Wolf parity check

trellis

2𝑛𝑑 Wolf parity check

trellis

𝑚 − 1𝑡 Wolf parity check

trellis

𝑚𝑡 Wolf parity check

trellis

69

new way to generate a ℂII
𝑣=1 code with the global symbol error correction capability

equaling to the local bit error correction capability. It is not the best encoding method.

Further, 𝑚 parallel binary BCH code can correct some „local‟ error distributions.

The subcode will enable to eliminate some symbol level errors by correcting some

„local‟ bit-level errors.

A special subcode of ℂ𝐼𝐼
𝑣=1 : Thangaraj and Raj’s subcodes with non-trivial trace

 In [59], Thangaraj and Raj introduced a subcode of RS codes with a non-trivial

trace, which is a special subcode of ℂII
𝑣=1. In this section, we use the notation of

Thangaraj and Raj and refer to their code as: 𝑆𝑅𝑆 𝑡, 𝑡′ [59]. The method using the

modification of Vardy-Be‟ery decomposition can generate ℂII
𝑣=1 codes with “global”

𝑡𝐺 equaling to “local” 𝑡𝐿, which are special cases of SRS codes, when 𝑡 = 𝑡′. How

about the situation when 𝑡𝐺 ≠ 𝑡𝐿 for ℂII
𝑣=1? How can we generate this special code?

Thangaraj and Raj‟s SRS codes provide the answer. Before showing that, we need a

new notation for this special subcode of ℂII
𝑣=1 codes.

Notation: Denote 𝐶(𝑛,𝑘 , 𝐷, 𝑑) as the notation for the special ℂII
𝑣=1 codes, Thangaraj

and Raj‟s SRS codes. Here 𝐷 = 2𝑡𝐺 + 1 = 2𝑡 + 1 and 𝑑 = 2𝑡𝐿 + 1 = 2𝑡′ + 1.

Now, let us show how to generate this code with the construction method in [59].

The parent narrow sense 𝑅𝑆(𝑛, 𝑘, 𝐷 = 2𝑡𝐺 + 1) has generator polynomial

70

𝑔 𝑥 = (𝑥 + 𝛼𝑖

2𝑡𝐺

𝑖=1

).

Let 𝑧 = {1,2,⋯ , 2𝑡𝐺 }, and 𝑧 ℂII
𝑣=1 = 𝑧 ∪ ∁, here ∁ is the union of cyclotomic cosets of

{1,2, ⋯ ,2𝑡𝐿 } 𝑚𝑜𝑑𝑢𝑙𝑜 𝑛 with respect to 𝐺𝐹(2).

The generator polynomial

𝑔ℂII
𝑣=1 𝑥 = (𝑥 +

𝑖∈𝑧
 ℂII
𝑣=1

𝛼𝑖)

defines a ℂII
𝑣=1 code.

In [59], the authors did not give a proof that this ℂII
𝑣=1 code is a 𝐶(𝑛, 𝑘, 𝐷, 𝑑) code

with 𝐷 = 2𝑡𝐺 + 1 and 𝑑 = 2𝑡𝐿 + 1. We show our proof in Appendix A.

Theorem 4.3: The ℂII
𝑣=1 code generated by 𝑔ℂII

𝑣=1 𝑥 is a 𝐶(𝑛, 𝑘 , 𝐷, 𝑑) with 𝐷 =

2𝑡𝐺 + 1 and 𝑑 = 2𝑡𝐿 + 1.

Theorem 4.4: 𝑡𝐿 ≤ 𝑡𝐺 with 𝐷 = 2𝑡𝐺 + 1 and 𝑑 = 2𝑡𝐿 + 1.

 The binary BCH code is the subfield subcode of an RS code [20], [26]. Thus,

these 𝑚 parallel binary BCH codewords can be decoded by either an RS hard-

decision decoder or a soft-decision decoder over 𝐺𝐹 2𝑚 instead of a binary BCH

decoder over 𝐺𝐹 2 . Using an RS symbol level soft-decision decoding algorithm,

the 𝐶(𝑛, 𝑘, 𝐷, 𝑑) code can correct more „local‟ bit- level errors, which are treated as

the symbol- level errors.

71

A multi-level decoding architecture

In [59], Thangaraj and Raj proposed a scheme of two-stage decoding. In Section

VI of [59], the first stage using BCH decoders produces 2𝑚 test patterns for the

second stage RS decoder, which is a list decoding. Section VII of [59] introduced the

“soft-guided” decoder for trace in the first stage with a soft RS decoder for the

second stage. Parts VII-B and VII-C utilized the bitwise-MAP decoder of [60] in the

first stage but a hard-decision decoder and a KV in the second stage, respectively.

 Based on the above, we modified the scheme by adding an extra stage in first

place which leads to a three level decoding structure. Meanwhile, the decoders of

each level are all RS decoders, because the binary BCH code can be decoded by RS

decoders [2], [21]. This is a flexible multi- level decoding architecture. It is a slightly

generalized version of Thangaraj and Raj‟s architecture in [59]. It has the flexible

combination of three- level RS decoding algorithms. Different combinations can lead

to different gains with different complexity. A powerful RS decoding algorithm is

highly recommended in the second level in order to get extra bit- level error

corrections, which can cause a significant error deduction in the number of the global

symbol- level errors.

The three- level decoding architecture is shown in Fig. 4.11. The level 1 (L1) RS

decoder can handle a small number of errors, which may be enough at high SNR‟s.

72

Fig. 4.11. The multi- level decoding architecture for subcodes 𝐶(𝑁, 𝑘, 𝐷, 𝑑).

The performance of the L2 decoder plays the most important role in the overall

decoding performance. An iterative decoder for L2 is not recommended if low

complexity is required. The level 3 (L3) is the final level for error correction. If a

higher coding gain is to be achieved, a high complexity decoding algorithm is

required.

 Next we present an example of possible decoder combinations. Let us select

the BM algorithm for the L1 decoder. The L2 decoders can be selected from any of

the following algorithms GS, Chase, GMD, Bit Generalized Minimum Distance

(BGMD) [61], and KV. The L3 decoder could use the LCC algorithm. The choice

combination of algorithms is very flexible and therefore can accommodate

computational complexity and hardware implementation requirements.

𝑚

L1

RS

decoder

L2

 1𝑠𝑡 RS

decoder
2𝑛𝑑 RS

decoder
⋯

𝑚𝑡 RS

decoder

L3

RS

decoder
𝑚

73

Fig. 4.12. An example of three-level decoding structure for subcodes 𝐶(𝑁, 𝑘, 𝐷, 𝑑).

Rotation structure of 𝐶(𝑛, 𝑘, 𝐷, 𝑑)

Definition: 𝑠-shift

Given a codeword of a cyclic code 𝑐 = (𝑐0, 𝑐1,𝑐2 , ⋯ , 𝑐𝑛−1), a shift is defined as a 𝑠-

shift, when 𝑐 = 𝑐0, 𝑐1,𝑐2 , ⋯ , 𝑐𝑛−1 → 𝑐′ = 𝑐𝑠, 𝑐𝑠+1 ,⋯ , 𝑐𝑛−1, 𝑐0, ⋯ , 𝑐𝑠−1 .

Definition: Rotation ℜ(𝑠1, 𝑠2 , ⋯ , 𝑠𝑚−1)

ℜ 𝑠1, 𝑠2 ,⋯ , 𝑠𝑚−1 is defined, when each tuple of the 𝑚 -tuple of a codeword

performs a corresponding 𝑠𝑖-shift, 𝑖 = 1,2, ⋯ , 𝑚 − 1.

Definition: Rotation structure of 𝐶(𝑛, 𝑘, 𝐷, 𝑑)

𝐶(𝑛, 𝑘, 𝐷, 𝑑) is said to have a rotation structure, if after an arbitrary rotation

ℜ(𝑠1, 𝑠2 ,⋯ , 𝑠𝑚−1), a codeword of 𝐶(𝑛, 𝑘 , 𝐷, 𝑑) is still a codeword of 𝐶 𝑛, 𝑘, 𝐷, 𝑑 .

L1 L2

BM

GS

CHASE

⋯

KV

L3

LCC

74

Theorem 4.5: A 𝐶(𝑛, 𝑘, 𝐷, 𝑑) has a rotation structure, if 𝐷 = 𝑑.

 A 𝐶(𝑛, 𝑘, 𝐷, 𝑑) code with a rotation structure can make error redistributions,

and be used to get some new codes with more elegant structure. However, we will

not address this topic in this work.

ℂ𝐼𝐼
𝑣 codes, 𝑣|𝑚 and 𝑣 ≠ 1

 Unlike ℂII
𝑣=1 , when 𝑣 ≠ 1 , the 𝑣 -dimensional subspaces are not always

equivalent, because some of them are “exceptional” and others are “ordinary” [20].

From Appendix A in [59, pp. 157], we can find that given 𝑚 = 4 and 𝑣 = 2, when

the basis is {1, 𝛼}, the 2-dimensional subspace is “ordinary”; however the one with

basis {1, 𝛼5 } is “exceptional” [20]. Here, define 𝛼 to be the primitive element of

𝐺𝐹(24). The above SSRS code with basis {1, 𝛼5} is actually a subfield subcode of

the parent RS code [1], [20]. The maximum binary dimension is dependent on the

parent RS code, the subspace dimension 𝑣, and also the basis of the subspace [20],

which can be found out from the examples in Appendix C of [20]. For example,

given 𝑚 = 6 and 𝑣 = 2, when the parent RS code has a symbol dimension of 35,

the binary dimensions of the SSRS codes with basis {1,𝛼}, {1, 𝛼9}, and {1,𝛼21 } are

24, 27, and 26, respectively [20, Appendix C, p. 192]. The two SSRS codes with

binary dimensions of 27 and 26 above are “exceptional”, but the one with the basis

{1, 𝛼21 } is the subfield subcode of the parent RS code [1], which tells that the

subfield subcode of parent RS code could be “exceptional” but may not have the

75

maximum dimension [20]. From [20, Appendix C, p. 192], it can be seen that given

parent RS codes with symbol dimensions from 54 to 62, the SSRS codes based on all

𝑣 = 2 dimensional subspaces are all “ordinary”.

 Based on the facts above, we make the following observations: 1. It is difficult

to get a maximum binary dimension SSRS code from the parent RS code. 2. The

maximum binary dimension may not be a multiple of 𝑣, which will create a non-

integer “2𝑣”-symbol dimension. 3. It is hard to encode systematically.

To limit implementation complexity, in this work, we use the special case of this

kind of SSRS codes: the 2𝑣-ary BCH codes over 𝐺𝐹(2𝑚) for these parallel SSRS

codes in Fig. 4.6.

Notation: 𝐶(𝑛, 𝑘, 𝐷, 𝑑(𝑣))

𝐶(𝑛, 𝑘 , 𝐷, 𝑑(𝑣)) denotes ℂII
𝑣 codes with 𝐷 = 2𝑡𝐺 + 1 over 𝐺𝐹(2𝑚) and 𝑑𝑣 = 2𝑡𝐿 + 1

over 𝐺𝐹(2𝑣). Here 𝑣 ≠ 1.

The construction methods are the same as those in Section 4.2.2.1.1.3.

4.2.2.2 ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥
 codes

 Actually, by “embedding” certain zeros [1], [59], the parent RS code over

𝐺𝐹(2𝑚) can be modified to a more generalized subcode of RS code of Class-II. This

code can have several parallel 2𝑣-ary BCH codes structures simultaneously shown in

Fig. 4.13.

76

Fig. 4.13. ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥
 code.

 Here 𝑣𝑖 is a divider of 𝑚 . The parent RS code is over 𝐺𝐹(2𝑚). From the

construction method in [59] and the “extraneous zeros” concept in [1], we derived

this Zeros-Embedding Algorithm to get the ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥
 code, which is a

generalized more powerful version of ℂII with multiple parallel structures

simultaneously with an arbitrary 𝑡𝐿1
, 𝑡𝐿2

, ⋯ , 𝑡𝐿𝑚𝑎𝑥
 .

Zeros-Embedding Algorithm

1) Given 𝐺𝐹(2𝑚), 𝑚 is a positive integer, there exist a series of positive dividers

 𝑣1 , 𝑣2, ⋯ , 𝑣𝑚𝑎𝑥 ∀𝑣𝑖 𝑚, 𝑣1 = 1 < 𝑣2 < ⋯ < 𝑣𝑚𝑎𝑥 < 𝑚 .

2) Given a parent narrow sense 𝑅𝑆(𝑛,𝑘 , 𝐷 = 2𝑡𝐺 + 1) with generator polynomial

𝑔 𝑥 = (𝑥 + 𝛼𝑖

2𝑡𝐺

𝑖=1

),

ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥

ℂ1: Primitive (2𝑣𝑖)-ary BCH code

ℂ2: Primitive (2𝑣𝑖)-ary BCH code

 ⋮ ⋮

 ⋮

ℂ𝑚/𝑣𝑖

: Primitive (2𝑣𝑖)-ary BCH code

𝑚-tuples

77

 ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥
 has 𝑑 = | 𝑣1 , 𝑣2 , ⋯ , 𝑣𝑚𝑎𝑥 | distinct parallel structures, which contain

parallel primitive (2𝑣𝑖) -ary BCH codes respectively with corresponding error

correction capabilities of 𝑡𝐿1
,𝑡𝐿2

, ⋯ , 𝑡𝐿𝑚𝑎𝑥
 .

3) Compute the corresponding cyclotomic cosets

∁𝑡𝐿𝑖
of 1,2, ⋯ ,2𝑡𝐿1

 , ⋯, 1,2, ⋯ ,2𝑡𝐿𝑚𝑎𝑥

 module 𝑛 with respect to 𝐺𝐹(2𝑣1),⋯ , 𝐺𝐹(2𝑣𝑚𝑎𝑥).

4) ∁ is the union of the ∁𝑡𝐿𝑖
: ∁= ∁𝑡𝐿1

∪ ∁𝑡𝐿2
∪ ⋯∪ ∁𝑡𝐿𝑚𝑎𝑥

.

Let 𝑧 = {1,2,⋯ , 2𝑡𝐺 }, and 𝑧
 ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥 = 𝑧 ∪ ∁.

𝑔
ℂII
 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥 𝑥 = (𝑥 +

𝑖∈𝑧
 ℂII
 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥

𝛼𝑖)

5) Compute the codeword of ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥
.

𝑐
ℂII
 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥 = 𝑔

ℂII
 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥 𝑥 𝑚 𝑥 .

The code ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥
 has multiple distinct parallel structures, which can make

error redistributions possible with a proper basis selection. Multiple parallel

structures for ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥
 are shown in Fig. 4.14.

78

Fig. 4.14. Multiple parallel structures for ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥
 with different 𝑣1 𝑣2 ⋯ |𝑣𝑚𝑎𝑥 .

4.2.2.3 Multiple-stage ℂII

 𝑣1⊃𝑣1 .1⊃𝑣1 .2⊃⋯ 𝑣2⊃𝑣2.1⊃𝑣2.2⊃⋯ ⋯|𝑣𝑚𝑎𝑥 ⊃𝑣𝑚𝑎𝑥 .1⊃𝑣𝑚𝑎𝑥 .2⊃⋯
 codes

 Let us simplify the notation to ℂII

 𝑣1⊃⋯ 𝑣2⊃⋯ ⋯|𝑣𝑚𝑎𝑥 ⊃⋯
. From [55, Fig. 2], we

know that ℂII
𝑣 with 𝑣 ≠ 1 should have a recursive structure as shown in Fig. 4.15.

ℂ1: Primitive (2𝑣𝑚𝑎𝑥)-ary BCH code

ℂ2: Primitive (2𝑣𝑚𝑎𝑥)-ary BCH code

 ⋮ ⋮

 ⋮

ℂ𝑚/𝑣𝑚𝑎𝑥

: Primitive (2𝑣𝑚𝑎𝑥)-ary BCH code

ℂ1: Primitive (2𝑣2)-ary BCH code

ℂ2: Primitive (2𝑣2)-ary BCH code

 ⋮ ⋮

 ⋮

ℂ𝑚/𝑣2
: Primitive (2𝑣2)-ary BCH code

ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥

ℂ1: Primitive (2𝑣1)-ary BCH code

ℂ2: Primitive (2𝑣1)-ary BCH code

 ⋮ ⋮

 ⋮

ℂ𝑚/𝑣1
: Primitive (2𝑣1)-ary BCH code

79

Fig. 4.15. Multiple stage structures of ℂII

 𝑣1⊃⋯ 𝑣2⊃⋯ ⋯|𝑣𝑚𝑎𝑥 ⊃⋯
.

 Here we have 𝑣𝑖.𝑑𝑖
= 1|⋯ 𝑣𝑖.2 𝑣𝑖.1 |𝑣𝑖 . We can arbitrarily select a depth 𝑑𝑖

which satisfies 1 ≤ 𝑣𝑖.𝑑𝑖
|⋯ 𝑣𝑖.2 𝑣𝑖.1 |𝑣𝑖 . For the construction method of

ℂII

 𝑣1⊃⋯ 𝑣2⊃⋯ ⋯|𝑣𝑚𝑎𝑥 ⊃⋯
, please refer to Appendix D for details.

ℂ1: Primitive (2𝑣𝑚𝑎𝑥)-ary BCH code

ℂ2: Primitive (2𝑣𝑚𝑎𝑥)-ary BCH code

 ⋮ ⋮

 ⋮

ℂ𝑚 /𝑣𝑚𝑎𝑥
: Primit ive (2𝑣𝑚𝑎𝑥) -ary BCH

code

ℂ1: Primitive (2𝑣2)-ary BCH code

ℂ2: Primitive (2𝑣2)-ary BCH code

 ⋮ ⋮

 ⋮

ℂ𝑚 /𝑣2
: Primitive (2𝑣2) -ary BCH

code

ℂII

 𝑣1 ⊃⋯ 𝑣2 ⊃⋯ ⋯|𝑣𝑚𝑎𝑥 ⊃⋯

ℂ1: Primitive (2𝑣1)-ary BCH code

ℂ2: Primit ive (2𝑣1)-ary BCH code

 ⋮ ⋮

 ⋮

ℂ𝑚 /𝑣1
: Primitive (2𝑣1) -ary BCH

code

ℂ1: Primitive (2𝑣1.1)-ary BCH code

ℂ2: Primitive (2𝑣1.1)-ary BCH code

 ⋮ ⋮

 ⋮

ℂ𝑣1/𝑣1.1
: Primitive (2𝑣1.1)-ary BCH code

ℂ1: Primitive (2𝑣𝑚𝑎𝑥 .1)-ary BCH code

ℂ2: Primitive (2𝑣𝑚𝑎𝑥 .1)-ary BCH code

 ⋮ ⋮

 ⋮

ℂ𝑣𝑚𝑎𝑥 /𝑣𝑚𝑎𝑥 .1
: Primitive (2𝑣𝑚𝑎𝑥 .1)-ary BCH

code

80

4.3 Simulation results

 The performance of the PSSRS is investigated on a PMRC equalized to an

optimal GPR4 target with 90% jitter noise. The channel detector uses the BCJR

algorithm to provide the soft-decision information to soft-decision decoder. We

investigated several different codes from the short, low-rate code, and the shortened

sector length code to the long, high-rate code. We chose the multi- level decoding

architecture for PSSRS codes, and used the conventional RS hard-decision decoding

as the baseline.

 Firstly, we tested a 𝐶 7,4,3,3 code over 𝐺𝐹 23 . The 𝐶 7,4,3,3 code has a

global symbol level error correction capability of one, and a local bit level error

correction capability of one, respectively. The curve marked with the left-pointing

triangle stands for the performance of the conventional RS hard-decision decoding.

In Fig. 4.16, the curve marked with the circle stands for the performance of

the 𝐶 7,4,3,3 code with the multi- level decoding architecture. The RS decoding

algorithm combination consists of hard-decision decoding RS algorithms on all three

levels. The one marked with squares also uses a multi- level architecture with a hard-

decision decoding RS algorithm for the L1, and an LCC algorithm for both L2 and

L3. On L2 and L3, the LCC algorithms both use 𝜂 = 1. It is shown in Fig. 4.16 that

the 𝐶 7,4,3,3 algorithm outperforms the conventional hard-decision decoding

81

algorithm at an FER of 10-5. The coding gains are about 1dB, and 2dB over RS hard-

decision decoding only at an FER of 10-5, respectively.

Fig. 4.16. Performance of 𝐶(7,4,3,3) over 𝐺𝐹(23) on a PMRC equalized to an

optimal GPR4 target with 90% jitter noise. The user density is 1.5309. The cod rate

is 0.571.

 Second, we tested a shortened 𝐶 460,410,11,11 code over 𝐺𝐹 210 under

the same conditions. Fig. 4.17 shows its performance using a three–level decoding

architecture. We use a hard-decision decoding algorithm for L1 and parallel LCC

82

algorithms with 𝜂 = 7 for L2 and an LCC algorithm with 𝜂 = 1 for L3. We observe

a coding gain of about 0.4 dB over hard-decision decoding at an FER of 10-4. The

code rate is 0.891.

Fig. 4.17. Performance of 𝐶(460,410,11,11) over 𝐺𝐹(210) on a PMRC equalized to

an optimal GPR4 target with 90% jitter noise. The user density is 0.9811. The cod

rate is 0.891.

 We finally tested a 𝐶(1023,973,25,9) code over 𝐺𝐹(210) under the same

condition. This is a long, high-rate code, where the code rate 𝑅 = 0.951. Fig. 4.17

shows that the three- level decoding algorithm has a coding gain of about 0.5 dB over

83

hard-decision decoding at an FER of 10−4 . To evaluate the stochastic error-

correction capability, we tested the performance of the pseudo RS hard-decision

decoding with 𝑡 = 40 and 𝑡 = 50. The performance of the curve with 𝑡 = 40 over

the one of the 𝐶(1023,973,25,9) code with three- level decoding architecture is

marginal. The coding gain of the pseudo RS hard-decision decoding with 𝑡 = 50

over the 𝐶(1023,973,25,9) code is about 0.5 dB at an FER of 10−4. The stochastic

error-correction capability is very close to the theoretic upper bound of the

𝐶(1023,973,25,9) code. It shows that the stochastic error-correction capability can

reach or even go beyond the upper bound by choosing some more powerful RS

decoders for both L2 and L3.

 The simulation results show that the short, low-rate PSSRS codes can get

larger coding gains compared to the long, high-rate codes. The RS decoder at L2 is

the most important overall. A moderate coding gain can be achieved with low-

complexity RS decoding algorithms on both L2 and L3. For ultra long, high-rate

codes, the PSSRS using multi- level decoding architecture can achieve more gain

over other soft-decision decoding algorithms with the same computational

complexity, because the conventional ultra long, high-rate RS codes have a relatively

much higher error-correction capability 𝑡 than both the global symbol level error-

correction capability and the local bit level error-correction capability of PSSRS

codes.

84

Fig. 4.18. Performance of 𝐶(1023,973,25,9) over 𝐺𝐹(210) on a PMRC equalized to

an optimal GPR4 target with 90% jitter noise. The user density is 0.919. The cod rate

is 0. 951.

4.4 Summary

 In this chapter, we propose new PSSRS codes with a parallel SSRS structure.

We also propose a flexible multi- level decoding architecture, which enables a

flexible combination of choices of RS decoding algorithms. For practical purposes,

we propose the systematic encoding algorithms for ℂII
𝑣=𝑑 codes, ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥
 codes,

85

and ℂII

 𝑣1⊃⋯ 𝑣2⊃⋯ ⋯|𝑣𝑚𝑎𝑥 ⊃⋯
 codes, whose SSRS codes are “ordinary”. The PSSRS

code can achieve a better performance over the conventional RS code of the same

length and the same rate with the same computational complexity if L2 decoding is

in a real parallel fashion. The simulation results show that the PSSRS code is very

promising for the very long, high-rate codes because of a lower decoding

computational complexity, which is caused by the fact that PSSRS codes have a

relatively small global symbol level error-correction capability and even smaller

parallel local bit level error-correction capabilities without sacrificing the overall

stochastic error-correction capability. The PSSRS code also offers some local

robustness, which cannot be achieved by the conventional RS codes. The PSSRS can

get a better performance, if a faster “exceptional” SSRS systematic encoding method

can be found.

86

Chapter 5

Iterative Parallel Local Decoding of
LDPC+RS Concatenated Codes

87

5.1 Introduction

 The performance of LDPC codes has been shown to have large gains over RS

hard-decision decoding. Unlike RS codes, LDPC codes always have an “error- floor”

problem at high SNRs [13], [16], [62], [63], which seriously limits its practical

application in systems requiring extremely high reliability, such as storage systems.

Lots of research has been carried out to study long codes for the next generation of

4KB sectors [8]-[11]. As we know, for this form of very long codes, the decoding

complexity of LDPC codes could be prohibitive for practical implementations. The

“error- floor” problem will be extremely severe at very high densities which are

required to build high capacity storage systems with good “format efficiency” [8]-

[11]. Efforts have been carried out to handle these problems. There exist some

dominant error patterns called “trapping sets” [54]-[60], which are one of the major

issues causing the “error-floor”. Pre-detecting and avoiding these “trapping sets”,

which are usually collected by computer and hardware simulations [13], helps to

somehow lower the “error-floor”. There is no evidence that this method can

theoretically solve the “error- floor” problem. Another effort is to use a concatenation

system where an RS code works as an outer code and an LDPC code as an inner

code. This method can lower the “error-floor” with a degradation of the coding gain

compared to the LDPC only system. The conventional LDPC+RS system can lower

the “error-floor” due to the outer RS code. But in some cases, the LDPC code has a

failure in decoding certain error patterns, and causes error propagation, which create

88

more errors than the error-correction capability of the RS code. The current

conventional LDPC+RS system cannot avoid this situation by skipping certain

“trapping sets” easily.

 We propose some new schemes for LDPC+RS concatenation systems, some of

which have demonstrated the ability to achieve:

1) Parallel decoding.

2) Changing the error-pattern by “locally” eliminating some error bits.

3) Redistributing the error bits by means of a multiple codeword interleaver.

4) 0.5𝑑𝐵+ gain over conventional LDPC+RS concatenation systems on PMRCs

with an iterative parallel local decoding algorithm.

5) Lowering the complexity of very long LDPC codes.

5.2 Concatenated codes

 A concatenated code is a class of codes, which contains an inner code and an outer

code [1]. The most famous example is the concatenated code for NASA‟s deep space

communication in the Voyager program, which uses an 𝑅𝑆(255,223,33) code and a

rate 1/2 convolutional code (CC) with constraint length seven [1]. Although RS

codes have a better performance at high SNRs, the CC code outperforms RS codes at

low channel SNRs [1]. The RS+RS concatenation codes are very suitable for high

reliability systems [1]. However, to achieve a moderately reliable performance for a

89

power-poor channel like the satellite downlink system [1], the RS+CC concatenation

is a better choice [1], [64].

Fig. 5.1. RS+CC Concatenated coding system [1], [64].

 This concatenation system still has applications nowadays. However, with the

rediscovery of LDPC codes, people replace the convolutional code with a more

powerful LDPC code as the inner code, because LDPC codes can get a much better

performance at low SNRs. The outer RS code can remove the remaining errors from

the output of the LDPC decoder, which inherently has an “error- floor” problem. An

LDPC+BCH concatenation scheme was proposed for the DVB-C2 standard [65],

which is reported to approach the theoretic Shannon limit. For storage systems, one

of the architectures of the current generation of HDD systems uses a concatenation

of an inner LDPC code with an RS outer code [66], which will be introduced in the

next section.

Message: 𝑚 Outer RS encoder Inner CC encoder

Channel

Message: 𝑚 Outer RS decoder Inner CC decoder

90

5.3 Conventional LDPC+RS concatenation

 LDPC is reported to approach the Shannon capacity limit over several channels

[67], [68]. Using the performance of the RS hard-decision decoding as the baseline,

the LDPC codes can achieve a large gain of more than 2dB in certain channels.

However, the LDPC code is not as efficient as the RS code for dealing with burst

errors [66], which are common in magnetic storage channels. The media noise,

thermal asperity and media defects are the major sources contributing to the burst

errors [1]. For decades, RS codes were utilized as the conventional method to dealing

with these burst errors due to their burst error correction nature [1], especially when

the alphabet size is large. There are two choices for the next generation reading

channels in magnetic storage systems: the first is the LDPC only (one level) system.

The second is the conventional LDPC+RS concatenation system. The LDPC+RS

concatenation system has a smaller gain at low SNRs and a lower error floor than the

LDPC only system. The inner LDPC code is more powerful for handling random

noises, and can correct most random errors.

Fig. 5.2. Conventional LDPC+RS coding system.

Message: 𝑚 Outer RS encoder Inner LDPC encoder

Channel

Message: 𝑚 Outer RS decoder Inner LDPC decoder

91

 The outer RS code is designed to correct burst errors from the output of the

inner decoder or certain residual errors. The performance of the LDPC+RS

concatenation system on magnetic recording channels from different points of view

is investigated in [66], [69]-[71]. The authors concluded that the outer RS code

cannot simply improve the overall performance, which needs an optimal selection of

parameters for both LDPC and RS codes at a particular bit density [69], [71]. In the

low SNR region, the LDPC only system is better than the LDPC+RS concatenation

system [69], because of two reasons: the LDPC nature and the density penalty of the

LDPC+RS concatenation system. The worst situation in this LDPC+RS

concatenation system happens, when the number of the burst errors is beyond the

error correction capability of the outer RS code [71]. Thus RS codes cannot correct

the burst errors from the output of inner LDPC codes, and the concatenation

structure reduces the overall rate causing a severe density penalty [69], [71]. Some of

the errors at the output of the LDPC decoder are caused by dominant “trapping sets”

[13], [72]. The outer RS codes with the error correction capability 𝑡 can only deal

with the situation that it has no more than 𝑡 symbol errors. To decode successfully,

the conventional LDPC+RS system requires the error correction capability of RS

codes beyond the number of errors from the LDPC output. In this work, we proposed

a new decoding framework where it is not necessary for RS codes to correct all the

errors all at once, but just partially destroy the “trapping set”, then the remaining

errors can be corrected by the LDPC decoder in an iterative scheme. This idea cannot

92

work in the conventional LDPC+RS system, because the conventional RS codes

cannot partially correct errors. However the PSSRS codes can perform partial

correction. In this work, we will focus on the ℂII codes, especially the ℂII
𝑣=1 codes,

because the ℂII
𝑣=1 codes have a higher dimension, which suffers a smaller density

penalty.

5.4 New LDPC+RS (ℂII
𝑣=1) concatenation system

 We can simply replace RS codes with ℂII
𝑣=1 codes as the outer code in the

conventional concatenation system.

Fig. 5.3. LDPC+PSSRS in a conventional format.

In this concatenation system, ℂII
𝑣=1 codes try to correct all the burst errors from

the output of the LDPC decoder output. The encoding procedure is the same as the

conventional concatenation system. The multiple-level decoding architecture

provides a flexible choice of RS decoders based on gain and complexity. In Chapter

Message: 𝑚 ℂII
𝑣=1 encoder Inner LDPC encoder

Channel

Message: 𝑚 ℂII
𝑣=1 decoder Inner LDPC decoder

93

4, we have shown that the ℂII
𝑣=1 with RS hard-decision decoding algorithms on all

three levels only provides a marginal gain over the conventional hard-decision

decoding. There is no advantage by simply using the ℂII
𝑣=1 codes to replace the RS

codes with the conventional decoding framework. As said in Section 5.3, ℂII
𝑣=1 codes

can partially correct the error pattern, and LDPC codes can correct the rest of the

errors. In the concatenation system in Fig. 5.3, ℂII
𝑣=1 codes cannot correct any errors

from the output of the LDPC decoders, when the error patterns are distributed in the

parity part of the LDPC codewords. Thus, we proposed another concatenation

structure.

Fig. 5.4. New LDPC+RS (ℂII
𝑣=1) concatenation system.

 In this new system, we change the order of the ℂII
𝑣=1 encoder and the LDPC

encoder. This will not change the position of the messages, because both the ℂII
𝑣=1

and LDPC encoder are systematic. At the channel output, we use the LDPC decoder

to correct most errors in the LDPC codewords. The remaining errors in the LDPC

codewords can be partially corrected by some of the 𝑚 parallel local structure of

Message: 𝑚 LDPC encoder Systematic ℂII
𝑣=1

encoder

Channel

Message: 𝑚 ℂII
𝑣=1 decoder LDPC decoder

94

ℂII
𝑣=1 codes. The error patterns from the output of the LDPC decoder are distributed

into the 𝑚 parallel local structure of ℂII
𝑣=1 codes. If at least one of these 𝑚 parallel

local structures can correct some part of the errors, the ℂII
𝑣=1 codes then change the

error patterns by partially correcting some errors. Then the new error pattern may be

corrected by the LDPC decoders. The decoding workflow is shown in Fig. 5.5.

Fig. 5.5. The decoding workflow of the new LDPC+RS (ℂII
𝑣=1) concatenation system.

5.5 Iterative parallel local decoding of LDPC+RS concatenation

system

 Compared to the conventional LDPC+RS concatenation system, our method

uses the parallel structure of ℂII codes to correct a small number of partial errors of

Local Reliabilities Updating

Message: 𝑚 LDPC encoder Systematic ℂII
𝑣=1

encoder

Channel

𝑚

ℂII
𝑣=1 decoder

Parallel local

decoding

LDPC decoder

ℂII
𝑣=1 decoder

Symbol level

Global decoding

95

stable “trapping sets”. There has been a lot of work about the error floor of the

iterative decoding algorithms based on graphical model with cycles [13], [14], [16],

[72]-[75], which show that the major cause of the error floor are trapping sets [13]

and absorbing sets [73], [74]. The (𝑎, 𝑏) trapping sets are usually referred to 𝑎

variable nodes in error and 𝑏 check nodes of odd degrees associated with these

variable nodes in the subgroup of these wrong variable nodes [13]. It is very difficult

to find the complete list of trapping sets [13], but it is possible to search for dominant

larger classes, of which it is enough to find a representative. Absorbing sets are

essentially special cases of trapping sets [13], [73], so in this work, in general, we

just refer to trapping sets as the structure causing the error floor problem in the high

SNR region.

5.5.1 Avoiding trapping sets

 The idea of avoiding trapping sets is to destroy the trapping sets iteratively in

two possible ways. The first one is to correct part of the variable nodes in error. The

second one is to add additional “virtual dynamic” check nodes connecting to these

variable nodes. Currently, these two are equivalent due to the fact that the graphical

model of the parity check matrix makes no changes to the BP algorithm, although we

add some additional “virtual dynamic” check nodes connecting to these variable

nodes. The “virtual dynamic” check nodes do not get involved into the graphical

model for BP decoding, thus make no changes to the neighborhood relationship of

96

the original graph. Later we will design an LDPC code with the local structure,

which can decode locally and in parallel. In that decoding algorithm, some real

dynamic check nodes will be added to the Tanner graph of the local parity check

matrix, or added between two or more local Tanner graphs as a “bridge”. The local

Tanner graph has a larger girth or is totally cycle free. The purpose is to avoid

trapping sets as much as we can. Furthermore the local structure can locate the

trapping sets locally, and the current trapping sets will be destroyed in most cases by

adding some other local Tanner graphs. To do this process iteratively based on what

trapping sets we hunt, we will select the dynamic check nodes to add.

Fig. 5.6. A (3,1) trapping set.

 In Fig. 5.6, we have a (3,1) trapping set, whose variable nodes 2, 3, 4 are in error.

This will cause an LDPC decoding failure. In Fig. 5.7, the ℂII
𝑣=1code helps to add

some “virtual dynamic” check nodes as the ℂII
𝑣=1code global check nodes and the

ℂII
𝑣=1code local check nodes. Currently these “dashed virtual dynamic” connections

are not involved in the BP decoding, but just correct some wrong variables (variable

1 2 3 4 5 5 8

1 2 5 5 7 8 9

7

3 4

97

4, say) to destroy the (3,1) trapping set. We have to repeat this very important idea

that in order to correct the errors coming from the trapping sets, it is not necessary to

expect and require the outer RS code to correct all the errors due to the fact that

multiple trapping sets will happen simultaneously in one LDPC codeword, of which

the number of total errors will go beyond the error correction capability of the outer

codes.

Fig. 5.7. “Virtual dynamic” check nodes added by ℂII
𝑣=1 codes.

The more efficient way is to destroy the trapping set by either correcting some

partial errors or changing the trapping set structure. This idea is partially motivated,

strengthened and tested by the examples in [72], [73], [76]. In [72], the author

proposed a bi-mode erasure decoding in order to change the structure of some typical

trapping sets. In [73], the bit-pinning technique is to fix some variable bits, which

ℂII
𝑣=1: Global C1 ℂII

𝑣=1: Local C1

1 2 3 4 5 5 8

1 2 5 5 7 8 9

7

3 4

98

have very high possibilities to be trapped in a trapping set, to a maximum reliability

value. In [76], a post-processing method is adopted to weaken the message passing

among the nodes in the strapping set, however, it strengthens the one from outside

the trapping set.

In this LDPC+ℂII
𝑣=1 concatenation system, the 𝑚 parallel local structure can be

utilized to correct local errors in order to partially change the error patterns. The

LDPC decoder may correct the changed error patterns or get “trapped” again. Then

the ℂII
𝑣=1 codes have to correct some local errors again. This iterative process

continues until the inner and outer codewords are both verified to be valid or a pre-

setup maximum iteration has been reached. In some cases, the ℂII
𝑣=1 codes have too

many errors in all 𝑚 parallel local structures, none of which can correct some partial

errors. Thus the LDPC+RS (ℂII
𝑣=1) concatenation system is recommended, using the

Chase type algorithm to decode the ℂII
𝑣=1 codeword or flip the bit to destroy the

trapping sets directly. The LDPC+ ℂII

 v1 v2 ⋯|vmax
 concatenation system is

recommended to the channel without a severe density penalty because of a lower

dimension. However, ℂII

 v1 v2 ⋯|vmax
 will bring various “virtual dynamic” check

nodes of different combinations in order to destroy most trapping sets. The

simulation performance of this novel LDPC+RS (ℂII
𝑣=1) concatenation system shows

a great improvement in destroying the trapping sets and leads to a 0.5𝑑𝐵+ coding

99

gain and a sharp waterfall region comparing to the LDPC only system which has

demonstrated a strong tendency to error floor at high user density in the PRMC.

5.5.2 Iterative parallel local decoding algorithm

 We propose an iterative parallel local decoding algorithm for LDPC+PSSRS

systems. In the following algorithm, we specify the PSSRS code to be a ℂII
𝑣=1 code.

Iterative parallel local decoding algorithm

1) Encode the message information using systematic LDPC encoder.

2) Interleave the LDPC codeword(s).

3) Use the interleaved LDPC codeword(s) as the message of the systematic

ℂII
𝑣=1 encoder.

4) At the channel output, de- interleave the information part of ℂII
𝑣=1 codeword,

which is the LDPC codeword.

5) Perform the LDPC decoding, and get a candidate LDPC codeword.

6) Interleave the LDPC codeword, and replace the information part of ℂII
𝑣=1

codeword.

7) Perform 𝑚-tuple parallel local decoding of the ℂII
𝑣=1 code.

8) If decoding successfully, update the information part reliabilities; else,

remain the information part of ℂII
𝑣=1 codeword with no changes.

9) If the iterative maximum number has been reached, go to 10); else go to 5).

100

10) Perform a ℂII
𝑣=1 global decoding.

11) Output the message 𝑚 .

5.6 Performance

 We evaluate the performance of the new LDPC+PSSRS concatenation system

for both sector length and 4KB sector formats. For each evaluation, the conventional

LDPC+RS concatenation system is optimized and used as the baseline curve. For a

fair comparison, two systems must have same overall lengths and code rates. We fix

the code rates of all LDPC and RS codes to be very close to 0.9. The new

LDPC+PSSRS concatenation system is optimized with the same setup as the

conventional LDPC+RS concatenation system. The global and local error correction

capabilities of the PSSRS code are also optimized.

5.6.1 Sector length code

 To get an optimal iterative scheme for the sector length system, the turbo

equalization has been adopted, which is inspired by the work in [77]. Selecting the

optimal parameters of global (turbo) iterations and inner (BP) iterations is based on

the simulation results. The optimization process is based on the conventional

LDPC+RS concatenation system with the designed LDPC code encoded with the

progressive edge-growth (PEG) algorithm in [78]. The simulation is evaluated on a

101

PMRC with a noise mixture of 90% jitter noise and 10% electric noise. From the left

part of Fig. 5.8, it can be found that under various turbo iterations, the performance

begins to be stable for eight inner iterations. From the right part of Fig. 5.8, the

performance stabilizes for six turbo iterations. So we choose the optimal iteration

scheme for the conventional LDPC+RS concatenation system as: six turbo iterations

and eight inner iterations.

Fig. 5.8. Optimization of number of turbo iterations and inner BP iterations.

102

We use an optimal conventional LDPC+RS concatenation system as the

baseline with overall rate around 0.81 with the LDPC code rate about 0.9 and the RS

code rate about 0.9. We finalize the conventional LDPC+RS concatenation system,

whose overall rate is 410/505 ≈ 0.818 with an 𝑅𝑆(456,410)code and a binary

𝐿𝐷𝑃𝐶(5050,4560) code. With simulations, we tested several different overall rates

around 0.81 as shown in Fig. 5.9 for the new LDPC+PSSRS concatenation system. It

shows that a binary 𝐿𝐷𝑃𝐶(4550,4100)+ ℂII
𝑣=1(505,455) is the best. Here the

shortened ℂII
𝑣=1(505,455) code is over𝐺𝐹(210).

Fig. 5.9. Optimization of the overall rate of the concatenation system.

103

 Further, the simulations in Fig. 5.9 show that simply replacing the RS code

with a ℂII
𝑣=1 code can only get a marginal gain over the conventional LDPC+RS

concatenation system, due to the fact that the local error correction capability is

small, which cannot correct the errors from output of the inner LDPC code.

Fig. 5.10. Comparison to the conventional concatenation system.

The local error correction capability is very important for the iterative parallel

local decoding, because a small error correction capability has a smaller possibility

104

to destroy the trapping sets. Meanwhile, it might create some additional errors, which

makes iterative parallel local decoding ineffective.

 In Fig. 5.10, even after the iterative parallel local decoding has been adopted to

decode the LDPC codeword, the performance does not improve. There is no

advantage to simply replace the RS codes with the ℂII
𝑣=1 code in the conventional

concatenation system. How about the new LDPC+ℂII
𝑣=1 concatenation system shown

in Fig. 5.4? In the new concatenation system, we implement the ℂII
𝑣=1 code as the

pseudo- inner code from the channel point of view. But from a decoding point of

view, we actually decode the LDPC codeword first, since the ℂII
𝑣=1 encoder is

systematic.

We use a binary 𝐿𝐷𝑃𝐶(4550,4100) and a ℂII
𝑣=1(505,455) code for this new

concatenation system. The number of parallel local iterations is seven. The

ℂII
𝑣=1(505,455) is a 𝐶(505,455,11,11) code, whose global and local error correction

capabilities are both five. Because it is over 𝐺𝐹(210), there are ten parallel local

structures. For each parallel local iteration, the ℂII
𝑣=1(505,455) code can correct

some partial errors for the LDPC code, if at least one local structure has less than or

equal to five local errors occurring. The performance shows that implementing the

ℂII
𝑣=1 code as the pseudo- inner code has a better performance. At the FER of 10−5,

the gain over the conventional concatenation system is about 0.45 dB. It is obvious

that a higher local error correction capability plays a very important role in

105

destroying the trapping sets, which turns out to have a sharper waterfall. A soft-

decision RS decoding algorithm can make the gain even larger with a price of

increased complexity.

Fig. 5.11. Performance of iterative parallel local decoding algorithm for LDPC+RS

system on a PMRC equalized to an optimal GPR4 target with 90% jitter noise. The

user density is 1.0757.

106

 5.6.2 Long (4KB) sectors

 The computational complexity for 4KB sectors and a code rate 0.81 binary

LDPC code (B-LDPC) is beyond our computational capability. Interested reader can

refer to [79] for a non-binary LDPC and B-LDPC of rate 0.9 for the 4KB sector. In

this simulation, we encode this 4KB information messages into twelve parallel

𝐵 − 𝐿𝐷𝑃𝐶(3034,2731), which have a total of 2731 ∗ 12/8 = 4096.5 bytes. Then

encoded these twelve parallel binary 𝐿𝐷𝑃𝐶(3034,2731) with a systematic

ℂII
𝑣=1 encoder: 𝐶(3340,3034,57,57) over 𝐺𝐹(212) . Thus we have a 𝐿𝐷𝑃𝐶 +

ℂ𝐼𝐼
𝑣=1(3340,2731) code with an overall rate 2731/3340 = 0.818. For a relatively

fair comparison, we compared the performance to the one of the eight consecutive

𝐿𝐷𝑃𝐶(5010,4096) codes. A frame error is defined as any decoding failure in these

eight consecutive 𝐿𝐷𝑃𝐶(5010,4096) codewords. An interleaver is implemented

here for these twelve parallel 𝐿𝐷𝑃𝐶(3034,2731) codes. The major function of this

interleaver is to distribute the errors relatively uniformly at low SNRs, and to

partition every trapping set into 𝑚-parallel local structures at high SNRs. Because at

high SNRs, if the system does not have an interleaver, it might cause the situation

where most local structure do not have “enough” errors, and one might have some

dominant trapping sets. It will fail to decode this local structure and cause a global

decoding failure as the conventional concatenation system, whose output of the

LDPC decoder has errors beyond the error correction capability of the outer RS

107

decoder. With the interleaver, it can distribute these errors from these dominant

trapping sets to 𝑚-parallel local structures, which actually break these trapping sets

into several pieces. So it makes full use of the error correction capabilities of every

local structure and is likely to destroy the trapping set.

Fig. 5.12. Performance of 4K-Byte sector length code of 𝐿𝐷𝑃𝐶 + 𝑅𝑆(3340,2731)

over 𝐺𝐹(212) on a PMRC equalized to an optimal GPR4 target with 90% jitter noise.

User density is 1.0757.

108

Fig. 5.13. Performance of 4KB sector length code of 𝐿𝐷𝑃𝐶 + 𝑅𝑆(3340,2731) over

𝐺𝐹(212) on a PMRC equalized to an optimal GPR4 target with 90% jitter noise.

User density is 1.5073.

Due to the computational complexity, we did not use the turbo iteration scheme

and we used only two parallel local iterations. We simulated with two different

densities for PMRCs with 90% jitter noise. The performance results show that with

the increase of the density, the LDPC only curve is getting closer to the iterative

109

parallel decoding curve. At user density 1.5073, the gain is less than 0.25dB at an

FER of 10−4. Meanwhile, the LDPC only curve has a slight tendency to have an

error floor. This provides us an alternative solution that the LDPC only system might

be outperformed by this iterative parallel local decoding algorithm in a PMRC at a

very high density, which has a sharper waterfall region and much lower error floor.

The parallel structure can enable extremely long codes with length longer than 4KB

system in both theory and practice.

5.7 Summary and recommendations

 In this chapter, we propose a new LDPC+PSSRS concatenation system and

compare it with the conventional LDPC+RS system. An iterative parallel local

decoding algorithm for this new concatenation system is proposed to get a sharper

waterfall region with the idea of partially destroying the most dominant “trapping

sets”. The simulation of codes of sector length of 4KB sectors have shown about 0.5

dB gain over the conventional LDPC+RS system. The PSSRS can provide the ability

to help the LDPC code itself to eliminate the remaining errors instead of the RS code

by providing a parallel local structure, which can partially destroy some parts of the

most dominant “trapping sets”, even when the number of the overall global system

errors goes beyond the error-correction capability of the RS code of the same length

and rate. This new concatenation system is specially suited for extremely long codes

110

for the next generation of drives, because the complexity for decoding the RS code

of the same length and same rate as the PSSRS code is prohibitive when using a soft-

decision decoding algorithm, but the PSSRS code has much smaller global and local

error-correction capability, which introduces a moderate computational complexity

with similar performance. Next we list several cases that need further study.

1) The reliability updating between symbol level and parallel local bit- level

needs further research.

2) A better strategy to select ℂII or ℂI codes: current concatenation system is

simply designed to have equal error protection no matter what the structure of

the codeword. Actually, the structure of codeword will play an important role

in decoding. ℂI codes need to be studied further, because they can provide

unequal error protections.

3) For the LDPC+RS(ℂII) concatenation system, the current LDPC code structure

design is independent of the RS(ℂII). In the future, the LDPC decoding

algorithm can be modified to get RS (ℂII) decoding involved dynamically. A

better dynamic LDPC decoding strategy in BP decoding is required.

4) ℂ
II

 𝑣1⊃⋯ 𝑣2⊃⋯ ⋯|𝑣𝑚𝑎𝑥 ⊃⋯
 can bring more dynamic local structures. How should

it be used to help redistribute the errors and destroy most trapping sets

efficiently?

111

5) To evaluate how the most dominant trapping sets can be handled with these

new concatenation structure and how much lower the error floor will be?

6) Current LDPC code structure cannot be changed dynamically, which is unlike

some ℂII codes. How do we construct an LDPC code having a local structure

or logically local structure from the decoding point of view, which can be used

to cooperate with ℂII codes?

112

Chapter 6

Conclusions

113

 In this work, we proposed a new class of SSRS codes with a parallel structure,

which we named PSSRS code. The PSSRS code introduced the possibility of local

error correction capabilities and global error correction, which provides robustness to

both the random errors and the burst errors. Compared to conventional RS codes of

the same length and dimension, the PSSRS codes have some major advantages: 1.

They provide local robustness. 2. They have a parallel SSRS structure, which allows

for parallel decoding. 3. Their error correction capabilities are beyond the half

minimum distance of conventional RS codes. 4. The global symbol error correction

capability and local error correction capability are both much smaller than the one

for the conventional RS codes, thus the PSSRS code can provide a larger gain with

the same decoding computational complexity, which is especially suitable for the

soft SDD algorithms. 5. For long codes, the PSSRS code affords a practical

complexity to achieve a moderate gain. 6. The rotation structure of some class-II

codes can introduce error redistributions.

 The PSSRS code may offer a possible alternative solution for solving the

problem in conventional LDPC+RS concatenated systems, when the number of

errors in certain error patterns causing the error floor, is beyond the error correction

capability of the conventional RS code. We proposed a new LDPC+PSSRS

concatenated system with a new iterative parallel local decoding algorithm. We also

developed a new decoding framework that views the major role of the RS code as

removing troublesome error patterns. In this new LDPC+PSSRS system, the PSSRS

114

code can help locate and eliminate some trapping sets. With the proposed iterative

parallel local decoding algorithm, the LDPC decoder can correct the remaining

errors by itself. We evaluated this LDPC+PSSRS system with this iterative parallel

local decoding algorithm with a sector long code for the next generation 4KB sectors

on the PMRC under various densities. The performance showed that it can achieve

about 0.5 dB+ gain over the optimal conventional LDPC+RS system with RS hard-

decision decoding algorithms, making its performance close to the multi-LDPC only

system. It is highly recommended to use a low-complexity powerful SDD algorithm

to get even better performance.

We also proposed a Chase-GMD type algorithm, which has about 0.6 dB gain

over standard hard-decision decoding algorithms on PMRCs, and compares

favorably with recently proposed implementations of Chase-type algorithms. For

similar complexity at high SNR, our algorithm exhibits a 0.4 dB+ gain over other low

complexity implementations.

This new LDPC+PSSRS concatenation system using the iterative parallel local

decoding algorithm with our Chase-GMD algorithm on both L2 and L3 is

particularly attractive for PMRCs which operate at relatively high SNRs.

The future research directions are 1) PSSRS based LDPC codes. 2) Parallel bit

and symbol level partial local decoding using the adaptive BP decoding algorithms

based on ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥
 and ℂII

 𝑣1 ⊃⋯ 𝑣2⊃⋯ ⋯|𝑣𝑚𝑎𝑥 ⊃⋯
 codes.

115

BIBLIOGRAPHY

[1] S. B. Wicker, Error Control Systems for Digital Communication and Storage.

Upper Saddle River, NJ: Prentice Hall, 1995.

[2] F. J. McWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes.

2nd ed. New York, NY: North-Holland, 1978.

[3] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” J. Soc.

Indust. and Appl. Math., vol. 8, pp. 300-304, 1950.

[4] C. Berrrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-

correcting coding and decoding: Turbo codes,” in Proc. IEEE Int. Conf. Commun.,

Geneva, Switzerland, 1993, pp. 1064-1070.

[5] C. Berrrou and A. Glavieux, “Near optimum error correcting coding and

decoding: turbo-codes,” IEEE Trans. Commun., vol. 44, no. 10, pp. 1261-1271, Oct.

1996.

[6] R. G. Gallager, Low-Density Parity-Check Codes, Cambridge, MA: MIT Press,

1963.

[7] R. G. Gallager, “Low density parity-check codes,” IRE Trans. Inf. Theory, vol. 8,

no. 1, pp. 21-28, Jan. 1962.

116

[8] M. Hassner and E. Grochowski. (2009, Nov. 3). 4K Byte-Sector HDD-Data

Format Standard. [Online]. Available: http://www.idema.org/.

[9] P. Chicoine, M. Hassner, E. Grochowski, S. Jenness, M. Noblitt, G. Silvus, C.

Stevens, and B. Weber. (2007, Apr. 20). Hard Disk Drive Long Data Sector White

Paper. [Online]. Available: http://www.idema.org/.

[10] K. Fung. Large Blocks for Reliability. [Online]. Available: http://www.idema.org/.

[11] M. Hassner. 4K-Block Format Efficiency. [Online]. Available:

http://www.idema.org/.

[12] C. Cole, S.G. Wilson, E.K. Hall, T.R. Giallorenzi, “A general method for

finding low error rates of LDPC codes,” eprint arXiv:cs/0505051, 05/2005.

[13] T. Richardson, “Error floors of LDPC codes,” in Proc. 41st Allerton Conf.

Commun., Control, and Computing, Monticello, IL, 2003, pp.1426-1435.

[14] X. Hu, B.V.K. Vijaya Kumar, Z. Li, and R. Barndt, “Error floor estimation of

long LDPC codes on partial response channels,” in Proc. IEEE Global Commun.

Conf., Washington, DC, 2007, pp. 259-264.

[15] Z. Zhang, L. Dolecek, M. Wainwright, V. Anantharam, B. Nikolic,

"Quantization effects in low-density parity-check decoders," in Proc. IEEE Int. Conf.

Commun., Glasgow, UK, Jun. 2007, pp. 6231-6237.

http://www.idema.org/
http://www.idema.org/
http://www.idema.org/
http://www.idema.org/

117

[16] D. MacKay and M. Postol, “Weaknesses of Margulis and Ramanujan-Margulis

low-density parity check codes,” Electron. Notes in Theoretical Comput. Sci., vol. 74,

2003.

[17] S. Laendner and O. Milenkovic, "Algorithmic and combinatorial analysis of

trapping sets in structured LDPC codes," in Proc. IEEE Int. Conf. Wireless Commun.

and Mobile Comput., Maui, HI, 2005, pp. 630-635.

[18] X. Hu, M.P.C. Fossorier, and E. Eleftheriou, “On the computation of the

minimum distance of low-density parity-check codes,” in Proc. IEEE Int. Conf.

Commun., Paris, France, 2004, pp. 757-771.

[19] R. J. McEliece and G. Solomon, “ Trace-Shortened Reed-Solomon Codes.” JPL

NASA, Pasadena, CA, REP. 42-117, 1994.

[20] M. Hattori, "Subspace subcodes of Reed-Solomon codes," Ph.D. dissertation,

Dept. Elect. Eng., Calif. Inst. Technol., Pasadena, 1995.

[21] M. Hattori, R. J. McEliece, and G. Solomon, “Subspace subcodes of Reed-

Solomon codes,” IEEE Trans. Inf. Theory, vol. 44, no. 5, pp. 1851-1880, Sept. 1998.

 [22] V. Guruswami and M. Sudan, “Improved decoding o f Reed-Solomon and

algebraic-geometry codes,” IEEE Trans. Inf. Theory, vol. 45, no. 6, pp. 1757-1767,

Sept. 1999.

118

[23] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of Reed-Solomon

codes,” IEEE Trans. Inf. Theory, vol. 49, no. 11, pp. 2809-2825, Nov. 2003.

[24] R. T. Chien, “Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem

codes,” IEEE Trans. Inf. Theory, vol. 10, no. 4, pp. 357-363, Oct. 1964.

[25] G. D. Forney, “On decoding BCH codes,” IEEE Trans. Inf. Theory, vol. 11, no.

4, pp. 549-557, Oct. 1965.

[26] J. L. Massey, “Shift-register synthesis and BCH decoding,” IEEE Trans. Inf.

Theory, vol. 15, no. 1, pp. 122-127, Oct. 1969.

[27] R. E. Blahu, Theory and Practice of Error Control Codes, Reading, MA:

Addison-Wesley, 1983.

[28] L. Welch and E. R. Berlekamp, “Error Correction for Algebraic Block Codes,”

U.S. Patent 4 533 470, Sep. 27, 1983.

[29] P. Gemmell and M. Sudan, “Highly resilient correctors for polynomials,” Inf.

Process. Lett., vol. 43, pp. 169-174, 1992.

[30] S. V. Fedorenko, “A simple algorithm for decoding Reed-Solomon codes and its

relation to the Welch-Berlekamp algorithm,” IEEE Trans. Inf. Theory, vol. 51, no. 3,

pp. 1196-1198, Mar. 2005.

119

[31] G. D. Forney, Jr., “Generalized minimum distance decoding,” IEEE Trans. Inf.

Theory, vol. 12, no. 2, pp. 125-131, Apr. 1966.

[32] D. Chase, “A Class of algorithms for decoding block codes with channel

measurement information,” IEEE Trans. Inf. Theory, vol. 18, no. 1, pp. 170-182, Jan.

1972.

[33] R. M. Roth and G. Ruckenstein, “Efficient decoding of Reed-Solomon codes

beyond half the minimum distance,” IEEE Trans. Inf. Theory, vol. 46, no, 1, pp. 246-

257, Jan. 2000.

[34] D. J. C. Mackay and R. M. Neal, “Near Shannon limit performance of low

density parity check codes,” IEEE Electron. Lett., vol. 32, pp. 1545, Aug. 1995.

[35] J. Jiang and K. R. Narayanan, “Iterative soft- input soft-output decoding of

Reed-Solomon codes by adapting the parity-check matrix,” IEEE Trans. Inf. Theory,

vol. 52, no. 8, pp. 3746-3756, Aug. 2006.

[36] C. Zhong, ”Effcient soft-decision decoding of Reed-Solomon codes,” Ph.D.

dissertation, Dept. Elect. Eng., Univ. of Oklahoma, Norman, 2008.

[37] S. Lee and B. V. K. V. Kumar, “Application of Soft-Decision Decoders to Non

Narrow-Sense Reed-Solomon Codes,” in Proc. IEEE Int. Conf. Commun., Glasgow,

Scotland, 2007, pp. 5225-5230.

120

[38] J. Bellorado and A. Kavcic, “A low-complexity method for Chase-type

decoding of RS codes,” in Proc. IEEE Int. Symp. Inf. Theory, Seattle, WA, 2006, pp.

2037-2041.

[39] R. R. Nielsen and T. Hoholdt, “Decoding RS codes beyond half the minimum

distance,” in Coding Theory, Cryptography and Related Areas, J. Buchmann, T.

Hoholdt, T. Stichtecnoth, and H. Tapia-Recillas, Eds., 2000, pp. 221-235.

[40] H. Xia, C. Zhong, and J. R. Cruz, “Chase-type algorithm for soft-decision RS

decoding on Rayleigh fading channels,” in Proc. IEEE Global Telecommun. Conf.,

San Francisco, CA, 2003, pp. 1751-1755.

[41] W. J. Gross, F. R. Kschichang, R. Koetter, and P. G. Gulak, “Towards a VLSI

architecture for interpolation-based soft-decision RS decoders,” J. VSLI Signal

Process., vol. 39, pp. 93-111, Jan. 2005.

[42] H. Xia and J. R. Cruz, “Reliability-based forward recursive algorithms for

algebraic soft-decision decoding of RS codes,” IEEE Trans. Commun., vol. 55, no. 7,

pp. 1273-1278, July 2007.

[43] W. J. Gross, F. R. Kschischang, R. Koetter, and P. G. Gulak, “Simulation results

for algebraic soft-decision decoding of RS codes,” in Proc. 21st Biennial Symp.

Commun., Kingston, Ontario, Canada, 2002, pp. 356-360.

121

[44] F. Parvaresh, and A. Vardy, “Mulitplicity assignments for algebraic soft-

decoding of RS codes,” in Proc. IEEE Int. Symp. Inf. Theory, Yokohama, Japan,

2003, pp. 205.

[45] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low

density parity check codes,” IEEE Electron. Lett., vol. 32, pp. 1645, Aug. 1996.

[46] T.-H. Hu and S. Lin, “An efficient hybrid decoding algorithm for RS codes

based on bit reliability,” IEEE Trans. Commun., vol. 51, no. 7, pp. 1073-1081, July

2003.

[47] W. Jin and M. Fossorier, “Efficient box and match algorithm for reliability-

based soft-decision decoding of linear block codes,” in Proc. Inf. Theory Appl.

Workshop, La Jolla, CA, 2007, pp. 160-169.

[48] W. Jin and M. Fossorier, “Probabilistic sufficient conditions on optima lity for

reliability based decoding of linear block codes,” in Proc. IEEE Int. Symp. Inf.

Theory, Seattle, WA, 2006, pp. 2235-2239.

[49] H. Sawaguchi, Y. Nishida, H. Takano, and H. Aoi, “Performance analysis of

modified PRML channels for perpendicular recording systems,” J. Magnetism Magn.

Materials, vol. 235, pp. 265-272, Oct. 2001.

 [50] G. Solomon, “Non- linear, non-binary cyclic group codes.” JPL TDA Progress

Report, vol. 43, pp. 84-95, Feb. 1992.

122

[51] G. Solomon, “Non- linear, non-binary cyclic group codes.” in Proc. IEEE Int.

Symp. Inf. Theory, San Antonio, Texas, 1993, pp. 192.

[52] R. J. McEliece and G. Solomon, “ Trace-shortened Reed-Solomon codes.” JPL

TDA Progress Report, vol. 42, pp. 119-128, Feb. 1994.

[53] M. Van Dijk, L. Tolhuizen, “Efficient encoding for a class of subspace

subclodes,” IEEE Trans. Inf. Theory, vol. 45, no. 6, pp. 2142-2145, Sept. 1999.

[54] C. Le Dantec and P. Piret, “An encoder to match Reed-Solomon codes over

GF(q) to subalphabet of GF(q),” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1697-

1701, July. 1999.

[55] A. Vardy and Y. Be‟ery, “Bit level soft-decision decoding of Reed-Solomon

codes,” IEEE Trans. Commun., vol. 39, no. 3, pp. 440-444, Mar. 1991

[56] Sergei V. Fedorenko, “The Star trellis decoding of Reed-Solomon codes,” eprint

arXiv:0707.1025v1, 07/2007.

[57] T. R. Halford, V. Ponnampalam, A. J. Grant, and K. M. Chugg, “Soft-In Soft-

Out decoding of Reed-Solomon codes based on Vardy and Be‟ery decompostion,”

IEEE Trans. Inf. Theory, vol. 51, no. 12, pp. 4353-4358, Dec. 2005.

[58] J. Wolf, “Efficient maximum likelihood decoding of linear block codes using a

trellis,” IEEE Trans. Inf. Theory, vol. 24, no. 1, pp. 75-80, Jan. 1978.

123

[59] A. Thangaraj and S. J Raj, “Reed-Solomon Subcodes with Nontrivial Traces:

Distance Properties and Soft-Decision Decoding,” eprint arXiv:0810.0567v1,

10/2008.

[60] A. Ashikhmin and S. Litsyn, “Simple MAP decoding of first-order Reed-Muller

and Hamming codes,” IEEE Trans. Inf. Theory, vol. 50, no. 8, pp. 1812-1818, Aug.

2004.

[61] J. Jiang and K. R. Narayanan, “Algebraic soft-decision decoding of Reed-

Solomon codes using bit- level soft information,” IEEE Trans. Inf. Theory, vol. 54,

no. 9, pp. 3907-3928, Sept. 2008.

[62] P. Lee et al., “Error floors in LDPC codes: Fast simulation, bounds and

hardware emulation,” in Proc. IEEE Int. Symp. Inf. Theory, Toronto, Ontario,

Canada, 2008, pp. 444-448.

[63] C. Cole, S.G. Wilson, E.K. Hall, T.R. Giallorenzi, “A general method for

finding low error rates of LDPC codes,” eprint arXiv:cs/0505051, 05/2005.

[64] L. J. Deutsch, "The effects of Reed-Solomon code shortening on the

performance of coded telemetry systems." JPL TDA Progress Report 42-75, July-

Sept. 1983.

[65] DVB-C2 Bluebook A138, pp. 16. [Online]. http://www.dvb.org.

http://www.dvb.org/

124

[66] S. Sankaranyanan, A. Kuznetsov, and D. Sridhara, “On the concatenation of

LDPC and RS codes in magnetic recording systems,” in Proc. IEEE Global Commun.

Conf. Workshops, Washington, DC, 2007, pp. 1-1.

[67] S.-Y. Chung, G. D. Forney Jr. T. J. Richardson, and R. Urbanke, “On the design

of low-density parity-check codes within 0.0045dB of the Shannon limit,” IEEE

Commun. Lett., vol. 5, pp. 58-60, Feb. 2001.

[68] T. J. Richardon, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity-

approaching irregular low-density parity-check codes,” IEEE Trans. Inf. Theory, vol.

47, no. 2, pp. 619-637, Feb. 2001.

[69] E. M. Kurtas, A. V. Kuznetsov, and I. Djurdjevic, “ System perspectives for the

application of structured LDPC codes to data storage devices,” IEEE Trans. Magn.,

vol. 42, no. 2, pp. 200-207, Feb. 2006.

[70] W. Tan, “Design of inner LDPC codes for magnetic recording channel,” IEEE

Trans. Magn., vol. 44, no. 1, pp. 217-222, Jan. 2008.

[71] S. Jeon, X. Hu, and B. V. K. V. Kumar, “Evalution of the concatenation of

LDPC and RS codes in magnetic recording channel using field programmable gate

arrays,” in Proc. IEEE Global Telecommun. Conf., New Orleans, LA, 2008, pp. 1-5.

125

[72] Y. Han, W. E. Ryan, “LDPC decoder strategies for achieving low error floors,”

in Proc. Inf. Theory and Applica. Workshop, San Diego, CA, 2008, pp. 277-286.

[73] Z. Zhang, L. Dolecek, B. Nikolic, V. Ananatharam, and M. J. Wainwright,

“Lowering LDPC error floors by postprocessing,” in Proc. IEEE Global

Telecommun. Conf., New Orleans, LA, 2008, pp. 1-6.

[74] L. Dolecek, Z. Zhang, V. Anantharam, M. Wainwright, and B. Nikolic,

“Analysis of absorbing sets for array-based LDPC codes,” in Proc. IEEE Int. Conf.

on Commun., Glasgow, Scotland, 2007, pp. 6261-6268.

[75] B. J. Frey, R. Kotter, and A. Vardy, “Skewness and pseudocodewords in

iterative decoding,” in Proc. IEEE Int. Symp. Inf. Theory, Cambridge, MA, 1998, pp.

148.

[76] Y. Zhang, and W. Ryan, “Toward low LDPC-code floors: a case study,” IEEE

Trans. Commun., vol. 57, no. 6, pp. 1566-1573, Jun. 2009.

[77] W. Chang, and J. R. Cruz, “RS plus LDPC codes for perpendicular magnetic

recording,” submitted for publication.

[78] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular progressive

edge-growth Tanner graphs,” IEEE Trans, Inf. Theory, vol. 51, no. 1, pp. 386-398,

Jan. 2005.

126

[79] W. Chang and J. R. Cruz, “Nonbinary LDPC codes for 4-kB sectors,” IEEE

Trans. Magn., vol. 44, no. 11, pp. 3781-3784, Nov. 2008.

127

APPENDIX A

Proof of Theorem 4.2-5.

Theorem 4.2: A codeword of ℂ in Fig. 4.3 is still an RS codeword.

Proof: Each ℂi , 𝑖 = 1, ⋯ ,𝜎 is an SSRS code of a different parent RS code over

𝐺𝐹(2𝑚). Thus, every ℂi has the same error correction capability as its parent RS

code. We denote the corresponding error correction capability as 𝑡i , 𝑖 = 1, ⋯ , 𝜎. Sort

𝑡i , and get 𝑡i1
≤ 𝑡i2

≤ ⋯ ≤ 𝑡iσ
. From theorem 4.1, we know that every ℂi is the

subcode of ℂi1
. Every codeword of ℂi is a codeword of a RS code with error

correction capability 𝑡i1
. Thus the linear combination of arbitrary codewords 𝑐i over

𝐺𝐹(2𝑚) is still a codeword 𝑐 of the RS code with error correction capability 𝑡i1
.

𝑐 = 𝛼
 𝑣𝑗

𝑖
𝑗 =1

 −𝑣𝑖𝑐𝑖

𝜎

𝑖=1

= 𝛽𝑖𝑐𝑖

𝜎

𝑖=1

, 𝛽𝑖 ∈ 𝐺𝐹(2𝑚)

So 𝑐 is a codeword of the RS code with error correction capability 𝑡i1
. Thus, ℂ is a

subcode of the RS code with error correction capability 𝑡i1
. ∎

Theorem 4.3: The ℂII
𝑣=1 code generated by 𝑔ℂII

𝑣=1 𝑥 is a 𝐶(𝑛, 𝑘 , 𝐷, 𝑑) with 𝐷 =

2𝑡𝐺 + 1 and 𝑑 = 2𝑡𝐿 + 1.

128

Proof: Given the message polynomial 𝑚 𝑥 = 𝑚0 + 𝑚1𝑥 + 𝑚2𝑥
2 + ⋯+

𝑚𝑘−1𝑥
𝑘−1, with 𝑘 = 𝑛 − | 𝑧 ℂ𝐼𝐼

𝑣=1 |. The codeword polynomial is

𝑐 𝑥 = 𝑚 𝑥 𝑔ℂII
𝑣=1 𝑥 .

Denote 𝐶𝑖
𝑞
 as the cyclotomic coset of 𝑖 module 𝑛 with respect to 𝐺𝐹(𝑞). Here 𝑞 = 2.

𝐽 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑒𝑎𝑐 𝐶𝑖
𝑞 𝑤𝑖𝑡𝑜𝑢𝑡 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛, 𝑖 = 1,2,⋯ ,2𝑡𝐿 ,

𝑐 𝑥 = 𝑔ℂII
𝑣=1 𝑥 𝑚 𝑥 = 𝑥 + 𝛼𝑖

𝑖∈𝐶
𝑗
𝑞𝑗∈𝐽

 𝑥 + 𝛼𝑙

𝑙∉∁ 𝑎𝑛𝑑 𝑙∈𝑧
 ℂ𝐼𝐼
𝑣=1

 𝑚 𝑥 .

From [23, pp. 56, theorem 3-4], we know that if 𝑝(𝑥) is the minimal polynomial of

𝛼 ∈ 𝐺𝐹(𝑞𝑚) over 𝐺𝐹(𝑞)[𝑥], 𝑝(𝑥) has roots which are exactly the conjugates of 𝛼

with respect to 𝐺𝐹 𝑞 .

 𝑥 + 𝛼𝑖

𝑖∈𝐶
𝑗
𝑞𝑗∈𝐽

 = LCM minimum polynomials of 𝐽 over 𝐺𝐹 𝑞 .

So it is the generator polynomial 𝑔𝑡𝐿
𝑏𝑖𝑛𝐵𝐶𝐻 𝑥 of the primitive binary BCH code over

𝐺𝐹 𝑞 with error-correction capability 𝑡𝐿.

𝑔𝑡𝐿
𝑏𝑖𝑛𝐵𝐶𝐻 𝑥 = 𝑥 + 𝛼𝑖

𝑖∈𝐶
𝑗
𝑞𝑗 ∈𝐽

,

129

𝑐 𝑥 = 𝑔ℂII
𝑣=1 𝑥 𝑚 𝑥 = 𝑔𝑡𝐿

𝑏𝑖𝑛𝐵𝐶𝐻 𝑥 𝑥 + 𝛼𝑙

𝑙∉∁ 𝑎𝑛𝑑 𝑙∈𝑧
 ℂ𝐼𝐼
𝑣=1

 𝑚 𝑥

= 𝑔𝑡𝐿
𝑏𝑖𝑛𝐵𝐶𝐻 𝑥 𝑀 𝑥 ,

𝑀 𝑥 = 𝑥 + 𝛼𝑙

𝑙∉∁ 𝑎𝑛𝑑 𝑙 ∈𝑧
 ℂ𝐼𝐼
𝑣=1

 𝑚 𝑥 .

Let 𝜅 = 𝑑𝑒𝑔𝑟𝑒𝑒(𝑀 𝑥),

𝑀 𝑥 = 𝑀0 + 𝑀1𝑥 + ⋯ + 𝑀𝜅−1𝑥
𝜅−1,

𝑐 𝑥 = 𝑔𝑡𝐿
𝑏𝑖𝑛𝐵𝐶𝐻 𝑥 𝑀 𝑥 = 𝑔𝑡𝐿

𝑏𝑖𝑛𝐵𝐶𝐻 𝑥 ∙ 𝑀0 + 𝑀1𝑥 + ⋯+ 𝑀𝜅−1𝑥
𝜅−1 ,

it assumes the basis for 𝐺𝐹 𝑞𝑚 is ℬ = 𝛽0, 𝛽1,⋯ , 𝛽𝑚−1 = 1, 𝛼 ,⋯ , 𝛼𝑚−1 , then

𝑀𝑖 = 𝑀
𝑖

(0)
𝛽0 + 𝑀

𝑖

(1)
𝛽1 + ⋯ + 𝑀

𝑖

(𝑚−1)
𝛽𝑚−1,

𝑐 𝑥 = 𝑔𝑡𝐿
𝑏𝑖𝑛𝐵𝐶𝐻 𝑥 𝑀𝑖

 0
𝑥 𝑖

𝜅−1

𝑖=0

𝛽0 + 𝑀𝑖

 1
𝑥𝑖

𝜅−1

𝑖=0

𝛽1 + ⋯+ 𝑀𝑖

 𝑚−1
𝑥 𝑖

𝜅−1

𝑖=0

𝛽𝑚−1 .

The 𝑗𝑡 tuple of the binary 𝑚-tuple of 𝑐(𝑥) is

𝑔𝑡𝐿
𝑏𝑖𝑛𝐵𝐶𝐻 𝑥 𝑀𝑖

 𝑗 𝑥 𝑖

𝜅−1

𝑖=0

.

It is a binary BCH codeword polynomial with error-correction capability 𝑡𝐿.

130

𝑔 𝑥 = (𝑥 + 𝛼𝑖)

2𝑡𝐺

𝑖=1

is a factor of

𝑔ℂII
𝑣=1 𝑥 = (𝑥 +

𝑖∈𝑧
 ℂII
𝑣=1

𝛼𝑖).

Thus 𝑐 𝑥 generated by 𝑔ℂII
𝑣=1 𝑥 is also a codeword which can be generated by

𝑔 𝑥 with error-correction capability 𝑡𝐺 by theorem 4.1.

Concluding all above, the code generated by 𝑔ℂII
𝑣=1 𝑥 is a 𝐶 𝑛, 𝑘, 𝐷, 𝑑 with

𝐷 = 2𝑡𝐺 + 1 and 𝑑 = 2𝑡𝐿 + 1. ∎

Theorem 4.4: 𝑡𝐿 ≤ 𝑡𝐺 with 𝐷 = 2𝑡𝐺 + 1 and 𝑑 = 2𝑡𝐿 + 1.

Proof: The symbol level RS codeword with 𝑡𝐺 is the linear combination of the 𝑚-

parallel primitive binary BCH codewords with 𝑡𝐿. Since the primitive binary BCH

code is not maximum distance separable (MDS), the total binary dimens ion of 𝑚-

parallel primitive binary BCH codewords is strictly less than 𝑚(𝑛 − 𝑑 + 1) [23, pp.

176, BCH bound]. Thus the maximum symbol dimension of symbol level RS code is

less than 𝑛 − 𝑑 + 1, which comes from the fact that 𝑛 − 𝑑 + 1 = 𝑚 𝑛 − 𝑑 + 1 /

𝑚 . Because an RS code is a MDS code, the dimension is 𝑛 − 𝐷 + 1. That is

𝑛 − 𝐷 + 1 ≤ 𝑛− 𝑑 + 1, which leads to 𝑡𝐿 ≤ 𝑡𝐺 . ∎

Theorem 4.5: A 𝐶(𝑛, 𝑘, 𝐷, 𝑑) has a rotation structure, if 𝐷 = 𝑑.

131

Proof: Given 𝐷 = 𝑑, it means 𝑡𝐺 = 𝑡𝐿, and

𝑐 𝑥 = 𝑔ℂII
𝑣=1 𝑥 𝑚 𝑥 = 𝑔𝑡𝐿

𝑏𝑖𝑛𝐵𝐶𝐻 𝑥 𝑥 + 𝛼𝑙

𝑙∉∁ 𝑎𝑛𝑑 𝑙∈𝑧
 ℂ𝐼𝐼
𝑣=1

 𝑚 𝑥

= 𝑔𝑡𝐿
𝑏𝑖𝑛𝐵𝐶𝐻 𝑥 𝑀 𝑥 .

If 𝑡𝐺 = 𝑡𝐿 , then

𝑔ℂII
𝑣=1 𝑥 = 𝑔𝑡𝐿

𝑏𝑖𝑛𝐵𝐶𝐻 𝑥 ,

 𝑥 + 𝛼𝑙

𝑙∉∁ 𝑎𝑛𝑑 𝑙∈𝑧
 ℂ𝐼𝐼
𝑣=1

 = 1,

𝑀 𝑥 = 𝑥 + 𝛼𝑙

𝑙∉∁ 𝑎𝑛𝑑 𝑙∈𝑧
 ℂ𝐼𝐼
𝑣=1

 𝑚 𝑥 = 𝑚 𝑥 .

Then 𝜅 = 𝑑𝑒𝑔𝑟𝑒𝑒 𝑀 𝑥 = 𝑑𝑒𝑔𝑟𝑒𝑒 𝑚 𝑥 = 𝑘, and

𝑀 𝑥 = 𝑀0 + 𝑀1𝑥 + ⋯+ 𝑀𝜅−1𝑥
𝜅−1 = 𝑚0 + 𝑚1𝑥 + ⋯+ 𝑚𝜅−1𝑥

𝑘−1,

𝑐 𝑥 = 𝑔𝑡𝐿
𝑏𝑖𝑛𝐵𝐶𝐻 𝑥 𝑀 𝑥 = 𝑔𝑡𝐿

𝑏𝑖𝑛𝐵𝐶𝐻 𝑥 ∙ 𝑚0 + 𝑚1𝑥 + ⋯ + 𝑚𝜅−1𝑥
𝑘−1 .

Given that the basis for 𝐺𝐹 𝑞𝑚 is ℬ = 𝛽0, 𝛽1,⋯ , 𝛽𝑚−1 = 1, 𝛼, ⋯ , 𝛼𝑚−1 , i.e.

𝑀𝑖 = 𝑀
𝑖

(0)
𝛽0 + 𝑀

𝑖

(1)
𝛽1 + ⋯+ 𝑀

𝑖

(𝑚−1)
𝛽𝑚−1

= 𝑚
𝑖

(0)
𝛽0 + 𝑚

𝑖

(1)
𝛽1 + ⋯ + 𝑚

𝑖

(𝑚−1)
𝛽𝑚−1,

132

𝑐 𝑥 = 𝑔𝑡𝐿
𝑏𝑖𝑛𝐵𝐶𝐻 𝑥 𝑚𝑖

 0 𝑥 𝑖

𝜅−1

𝑖=0

𝛽0 + 𝑚𝑖

 1 𝑥 𝑖

𝜅−1

𝑖=0

𝛽1 + ⋯ + 𝑚𝑖

 𝑚−1 𝑥 𝑖

𝜅−1

𝑖=0

𝛽𝑚−1 .

After an arbitrary rotation ℜ(𝑠0, 𝑠2 ,⋯ , 𝑠𝑚−1),

𝑐ℜ 𝑥 = 𝑔𝑡𝐿
𝑏𝑖𝑛𝐵𝐶𝐻 𝑥 𝛼𝑠0𝑚𝑖

 0
𝑥𝑖

𝜅−1

𝑖=0

𝛽0 + 𝛼𝑠1𝑚𝑖

 1
𝑥𝑖

𝜅−1

𝑖=0

𝛽1 + ⋯

+ 𝛼𝑠𝑚−1𝑚𝑖

 𝑚−1
𝑥𝑖

𝜅−1

𝑖=0

𝛽𝑚−1 .

The 𝑗𝑡 tuple of the binary 𝑚-tuple of 𝑐(𝑥) is:

𝑔𝑡𝐿
𝑏𝑖𝑛𝐵𝐶𝐻 𝑥 𝛼𝑠𝑗 𝑚𝑖

 𝑗 𝑥 𝑖

𝜅−1

𝑖=0

.

It is a binary BCH codeword polynomial with error-correction capability 𝑡𝐿.

Given

𝑔 𝑥 = (𝑥 + 𝛼𝑖

2𝑡𝐺

𝑖=1

) 𝑖𝑠 𝑎 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑔ℂII
𝑣=1 𝑥 = (𝑥 +

𝑖∈𝑧
 ℂII

𝑣=1

𝛼𝑖),

i.e. 𝑔ℂII
𝑣=1 𝑥 = 𝑔𝑡𝐿

𝑏𝑖𝑛𝐵𝐶𝐻 𝑥 , and 𝑔 𝑥 is a factor of 𝑔𝑡𝐿
𝑏𝑖𝑛𝐵𝐶𝐻 𝑥 .

𝑐ℜ 𝑥 = 𝑔 𝑥 𝑚ℜ 𝑥 .

Conclude above, 𝑐ℜ 𝑥 is a codeword of 𝐶(𝑛, 𝑘, 𝐷, 𝑑) by theorem 4.1. ∎

133

APPENDIX B

Example of ℂII
𝑣=1’s “local” bit error correction.

 Let 1,4,0,0,1,5,4 be a codeword of 𝑅𝑆(7,5,3) . 1,4,0,0,1,5,4 ∈

𝑅𝑆(7,5,3) and 1,4,0,0,1,5,4 ∈ ℂII
𝑣=1 . The binary image of 1,4,0,0,1,5,4 is

shown in Fig. B.1.

Fig. B.1. The binary 3-tuple of 𝑅𝑆(7,5,3) codeword (1,4,0,0,1,5,4).

(0,1,0,0,0,1,1), (0,0,0,0,0,0,0), and (1,0,0,0,1,1,0) 𝜖 𝐵𝐶𝐻 7,4,3 . Suppose that three

symbol errors existed in the received vector, which is actually caused by the bit

errors underlined in Fig. B.2.

Fig. B.2. The binary 3-tuple of 𝑅𝑆(7,5,3) codeword: (1,4,0,0,1,5,4).

1 4 0 0 1 5 4

0 0 0 0 0 0 0

1 0 0 0 1 1 0

0 1 0 0 0 1 1

0 6 4 0 1 5 4

0 1 0 0 0 0 0

0 0 0 0 1 1 0

0 1 1 0 0 1 1

134

 The received vector (0,6,4,0,1,5,4) cannot be corrected by 𝑅𝑆 7,5,3 . However,

the binary image of (0,6,4,0,1,5,4) shows us that it can be corrected by the parallel

sub-structure of ℂII
𝑣=1 . Namely, (0,1,1,0, 0,1,1) can be decoded by 𝐵𝐶𝐻 7,4,3 , (0,1,

0,0,0,0,0) can be decoded by 𝐵𝐶𝐻(7,4,3), and (0,0,0,0,1,1,0) can be decoded

by 𝐵𝐶𝐻(7,4,3).

The “local” bit error correction process is shown in Fig. B.3.

Fig. B.3. Example of ℂII
𝑣=1‟s “local” bit error correction.

From this example, we can see that 𝑅𝑆(7,5,3) can only correct one error, so that it

cannot decode (0,6,4,0,1,5,4) . However, using the parallel sub-structure, we can

decode (1,4,0,0,1,5,4) from (0,6,4,0,1,5,4) which has three errors.

0 6 4 0 1 5 4

0 1 0 0 0 0 0

0 0 0 0 1 1 0

0 1 1 0 0 1 1

1 4 0 0 1 5 4

0 0 0 0 0 0 0

1 0 0 0 1 1 0

0 1 0 0 0 1 1

135

APPENDIX C

Example of ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥
= ℂII

 𝑣1 =1 𝑣2 =2
.

For example, with 𝑚 = 4 , ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥
= ℂII

 𝑣1=1 𝑣2=2
. As above

defined, ℂII

 𝑣1=1 𝑣2=2
 has two different parallel structures, because 𝑚 has two distinct

integer dividers:𝑣1 = 1, 𝑣2 = 2. Structure I and II are shown in Fig. C.1, and Fig.

C.2, respectively.

Fig. C.1. ℂII

 𝑣1=1 𝑣2=2
 structure I.

Fig. C.2. ℂII

 𝑣1=1 𝑣2=2
 structure II.

ℂII

 𝑣1=1 𝑣2=2

ℂ1: Primitive (21)-ary BCH code

4-tuples
ℂ2: Primitive (21)-ary BCH code

ℂ3: Primitive (21)-ary BCH code

ℂ4: Primitive (21)-ary BCH code

ℂII

 𝑣1=1 𝑣2=2

ℂ1: Primitive (22)-ary BCH code

4-tuples
ℂ2: Primitive (22)-ary BCH code

136

As an example, given a parent narrow sense 𝑅𝑆(15,9,7) code over 𝐺𝐹 2𝑚 with

𝑚 = 4, the ze ro s o f the genera to r po lynomia l a re 𝑧 = 1,2,3,4,5,6 , and

𝑔 𝑥 = (𝑥 + 𝛼𝑖

6

𝑖=1

).

The subcode of the parent RS code has two distinct parallel structures with 𝑡𝐿1
=

2, 𝑡𝐿2
= 3 and 𝑣1 = 1, 𝑣2 = 2 .

 The corresponding cyclotomic cosets ∁𝑡𝐿𝑖
are:

∁𝑡𝐿1
: cyclotomic coset of {1,2,3, 2𝑡𝐿1

= 4} 𝑚𝑜𝑑𝑢𝑙𝑒 𝑛 = 15 with respect to

𝐺𝐹(2𝑣1) = 𝐺𝐹(2), 1,2,4, 8 and {3,6,12, 9}.

∁𝑡𝐿2
: cyclotomic coset of {1,2,3, 4,5,2𝑡𝐿2

= 6} 𝑚𝑜𝑑𝑢𝑙𝑒 𝑛 = 15 with respect to

𝐺𝐹(2𝑣2) = 𝐺𝐹(4) is: {1,4}, {2,8}, {3,12}, {5}, {6,9}.

∁ is the union of the ∁𝑡𝐿𝑖
,

∁= ∁𝑡𝐿1
∪ ∁𝑡𝐿2

= 1,2,3,4,5,6,8,9,12 ,

𝑧
 ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥 = 𝑧 ∪ ∁= 1,2,3,4,5,6,8,9,12 .

The zeros we embedded are {8,9,12}, and

137

𝑔
ℂII
 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥 𝑥 = (𝑥 +

𝑖∈𝑧
 ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥

𝛼𝑖).

We can compute the codeword of ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥
 as

𝑐
ℂII
 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥 = 𝑔

ℂII
 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥 𝑥 𝑚 𝑥 .

For structure I:

𝑐
ℂII
 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥 = 𝑔

ℂII
 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥 𝑥 𝑚 𝑥

= 𝑥 + 𝛼1 𝑥 + 𝛼2 𝑥 + 𝛼4 𝑥 + 𝛼8

∙ 𝑥 + 𝛼3 𝑥 + 𝛼6 𝑥+ 𝛼12 𝑥 + 𝛼9 ∙ 𝑥 + 𝛼5 𝑚 𝑥

= 𝑥4 + 𝑥 + 1 ∙ 𝑥4 + 𝑥3+𝑥2 + 𝑥 + 1 ∙ 𝑥 + 𝛼5 𝑚 𝑥

= 𝑔𝑡𝐿1
=2

𝑏𝑖𝑛𝐵𝐶𝐻 𝑥 ∙ 𝑥 + 𝛼5 𝑚 𝑥 = 𝑔𝑡𝐿1
=2

𝑏𝑖𝑛𝐵𝐶𝐻 𝑥 ∙ 𝑀 𝑥 .

Let 𝜅 = 𝑑𝑒𝑔𝑟𝑒𝑒(𝑀 𝑥).

𝑀 𝑥 = 𝑀0 + 𝑀1𝑥 + ⋯ + 𝑀𝜅−1𝑥
𝜅−1,

𝑐 𝑥 = 𝑔𝑡𝐿1
=2

𝑏𝑖𝑛𝐵𝐶𝐻 𝑥 𝑀 𝑥 = 𝑔𝑡𝐿1
=2

𝑏𝑖𝑛𝐵𝐶𝐻 𝑥 ∙ 𝑀0 + 𝑀1𝑥 + ⋯+ 𝑀𝜅−1𝑥
𝜅−1 .

Assume that the basis for 𝐺𝐹 24 is ℬ = 𝛽0,𝛽1, ⋯ , 𝛽3 = 1, 𝛼, ⋯ , 𝛼3 . Then

𝑀𝑖 = 𝑀
𝑖

(0)
𝛽0 + 𝑀

𝑖

(1)
𝛽1 + ⋯ + 𝑀

𝑖

(3)
𝛽3,

𝑐 𝑥 = 𝑔𝑡𝐿1
=2

𝑏𝑖𝑛𝐵𝐶𝐻 𝑥 𝑀𝑖

 0 𝑥 𝑖

𝜅−1

𝑖=0

𝛽0 + 𝑀𝑖

 1 𝑥𝑖

𝜅−1

𝑖=0

𝛽1 + ⋯+ 𝑀𝑖

 3 𝑥 𝑖

𝜅−1

𝑖=0

𝛽3 .

138

The 𝑗𝑡 tuple of the binary 𝑚-tuple of 𝑐(𝑥) is:

𝑔𝑡𝐿1
=2

𝑏𝑖𝑛𝐵𝐶𝐻 𝑥 𝑀𝑖

 𝑗 𝑥 𝑖

𝜅−1

𝑖=0

.

It is a binary BCH codeword polynomial with error-correction capability 𝑡𝐿1
= 2.

𝑔 𝑥 = (𝑥 + 𝛼𝑖6
𝑖=1) is a factor of 𝑔

ℂII
 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥 𝑥 = 𝑥 + 𝛼1 𝑥 + 𝛼2 𝑥 +

𝛼4 𝑥 + 𝛼8 ∙ 𝑥 + 𝛼3 𝑥 + 𝛼6 𝑥 + 𝛼12 𝑥 + 𝛼9 ∙ 𝑥 + 𝛼5 .

That is: 𝑐 𝑥 = 𝑔 𝑥 ∙ 𝑥 + 𝛼8 𝑥 + 𝛼9 𝑥 + 𝛼12 ∙ 𝑚(𝑥). This is a codeword of

the parent RS code with the generator polynomial 𝑔 𝑥 .

For structure II:

𝑐
ℂII
 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥 = 𝑔

ℂII
 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥 𝑥 𝑚 𝑥

= 𝑥 + 𝛼1 𝑥 + 𝛼4 ∙ 𝑥 + 𝛼2 𝑥 + 𝛼8 ∙ 𝑥 + 𝛼3 𝑥 + 𝛼12

∙ 𝑥 + 𝛼5 ∙ 𝑥 + 𝛼6 𝑥 + 𝛼9 𝑚 𝑥

= 𝑥2 + 𝑥 + 𝛽 ∙ 𝑥2 + 𝑥 + 𝛽2 ∙ 𝑥2 + 𝛽2𝑥 + 1 ∙ 𝑥 + 𝛽

∙ 𝑥2 + 𝛽𝑥 + 1 𝑚 𝑥 = 𝑔𝑡𝐿2
=3

4−𝑎𝑟𝑦 𝐵𝐶𝐻 𝑥 ∙ 𝑚 𝑥 .

Here 𝛽 = 𝛼5 , 𝛽2 = 𝛼10 ∈ 𝐺𝐹 4 = {0,1, 𝛽, 𝛽2 } with 𝛽3 = 1, and

𝑐
ℂII
 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥 = 𝑔𝑡𝐿2

=3
4−𝑎𝑟𝑦 𝐵𝐶𝐻 𝑥 ∙ 𝑚 𝑥 .

Choose ℬ ′ = 𝛽0
′ ,𝛽1

′ = {1, 𝛼2 }, every 𝜏 ∈ 𝐺𝐹 24 can be represented as a form:

139

𝜏 = 𝜏0 ∙ 𝛽0
′ + 𝜏1 ∙ 𝛽1

′ , with 𝜏0, 𝜏1 ∈ 𝐺𝐹 4 = {0,1, 𝛽, 𝛽2} .

Fig. C.3. 𝐺𝐹(16) element decomposition with basis ℬ ′ = {1, 𝛼2 } over 𝐺𝐹(4).

Then,

𝑐
ℂII
 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥 = 𝑔𝑡𝐿2

=3
4−𝑎𝑟𝑦 𝐵𝐶𝐻 𝑥 ∙ 𝑚 𝑥

= 𝑔𝑡𝐿2
=3

4−𝑎𝑟𝑦 𝐵𝐶𝐻 𝑥 ∙ 𝑚𝑖

 0
𝑥 𝑖

𝑘−1

𝑖=0

𝛽0
′ + 𝑚𝑖

 1
𝑥 𝑖

𝑘−1

𝑖=0

𝛽1
′ .

The 𝑗𝑡 tuple of the 4-ary 2-tuple of 𝑐(𝑥) is:

𝑔𝑡𝐿2
=3

4−𝑎𝑟𝑦 𝐵𝐶𝐻 𝑥 𝑚𝑖

 𝑗 𝑥 𝑖

𝑘−1

𝑖=0

.

It is a 4-ary BCH codeword polynomial with error-correction capability 𝑡𝐿2
= 3.

𝑔 𝑥 = (𝑥 + 𝛼𝑖6
𝑖=1) is a factor of 𝑔

ℂII
 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥 𝑥 = 𝑥 + 𝛼1 𝑥 + 𝛼2 𝑥 +

𝛼4 𝑥 + 𝛼8 ∙ 𝑥 + 𝛼3 𝑥 + 𝛼6 𝑥 + 𝛼12 𝑥 + 𝛼9 ∙ 𝑥 + 𝛼5 . That is: 𝑐 𝑥 =

 𝑔 𝑥 ∙ 𝑥 + 𝛼8 𝑥 + 𝛼9 𝑥 + 𝛼12 ∙ 𝑚(𝑥). This is a codeword of the parent RS

code with generator polynomial 𝑔 𝑥 . Previously we used 𝐶(𝑛, 𝑘, 𝐷, 𝑑) as the

0 +

0

𝛽1
′

𝛽𝛽1
′

𝛽2𝛽1
′

1 𝛽 𝛽2

0 1 𝛼5 𝛼10

𝛼2 𝛼8 𝛼1 𝛼4

𝛼7 𝛼9 𝛼13 𝛼6

𝛼12 𝛼11 𝛼14 𝛼3

140

notation for the generalized ℂII
𝑣=1codes with 𝐷 = 2𝑡𝐺 + 1 and 𝑑 = 2𝑡𝐿 + 1. For the

generalized ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥
 codes, we use 𝐶(𝑛, 𝑘, 𝐷, 𝑑(𝑣1) , ⋯ , 𝑑(𝑣𝑚𝑎𝑥)) with 𝐷 =

2𝑡𝐺 + 1,𝑑(𝑣1) = 2𝑡𝐿1
+ 1,⋯ , 𝑑(𝑣𝑚𝑎𝑥) = 2𝑡𝐿𝑚𝑎𝑥

+ 1 . As an example, given the

parent RS(15,9,7) code, the ℂII
𝑣=1 with 𝑡𝐿1

= 2 is 𝐶(15,6,7,5); the ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥
=

ℂII

 𝑣1=1 𝑣2=2
 with 𝐷 = 5,𝑡𝐿1

= 2, 𝑡𝐿2
= 3 is 𝐶(15,5,7, 5(1) ,7(2)) , which has two

distinct parallel structures.

141

APPENDIX D

Construction method for ℂII

 𝑣1⊃⋯ 𝑣2⊃⋯ ⋯|𝑣𝑚𝑎𝑥 ⊃⋯
.

1) Given 𝐺𝐹(2𝑚), 𝑚 is positive integer, there exist series of positive dividers

 𝑣1 , 𝑣2, ⋯ , 𝑣𝑚𝑎𝑥 ∀𝑣𝑖 𝑚, 𝑣1 = 1 < 𝑣2 < ⋯ < 𝑣𝑚𝑎𝑥 < 𝑚 .

2) Given a parent narrow sense 𝑅𝑆(𝑛,𝑘 , 𝐷 = 2𝑡𝐺 + 1) with generator polynomial

𝑔 𝑥 = (𝑥 + 𝛼𝑖

2𝑡𝐺

𝑖=1

).

The desinged ℂ
II

 𝑣1 ⊃𝑣1 .1⊃⋯⊃𝑣1 .𝑑1
 𝑣2 ⊃𝑣2 .1⊃⋯⊃𝑣2 .𝑑2

 ⋯|𝑣𝑚𝑎𝑥 ⊃𝑣𝑚𝑎𝑥 .1⊃⋯⊃𝑣𝑚𝑎𝑥 .𝑑𝑚𝑎𝑥

code has

| 𝑣1 , 𝑣2, ⋯ , 𝑣𝑚𝑎𝑥 | distinct parallel structures in each of which there are 𝑑𝑖 stages of

parallel primitive (2𝑣𝑖 .𝑗)-ary BCH codes structures respectively with corresponding

error correction capability of 𝑡𝐿𝑖 .𝑗
, satisfying that 𝑡𝐿𝑖

≥ 𝑡𝐿𝑖 .1
≥ 𝑡𝐿𝑖 .2

≥ ⋯ ≥ 𝑡𝐿𝑖 .𝑑𝑖
.

3) For i = 1 to max

Start from each cyclotomic coset ∁𝑡𝐿𝑖

(0)
 of 1,2, ⋯ ,2𝑡𝐿𝑖.𝑑𝑖

 module 𝑛 with respect to

𝐺𝐹(2𝑣𝑖.𝑑𝑖).

 𝐹𝑜𝑟 𝑘 = 1 𝑡𝑜 𝑑𝑖 − 1

 ∁𝑡𝐿𝑖

(𝑘)
 is the cyclotomic coset of the union of ∁𝑡𝐿𝑖

(𝑘−1)
∪ 1,2, ⋯ ,2𝑡𝐿𝑖.(𝑑𝑖−𝑘)

 module 𝑛

with respect to 𝐺𝐹(2𝑣𝑖.(𝑑𝑖−𝑘)).

 𝐸𝑛𝑑

142

 ∁𝑡𝐿𝑖
 is the cyclotomic coset of the union of ∁𝑡𝐿𝑖

(𝑑𝑖−1)
∪ 1,2,⋯ ,2𝑡𝐿𝑖

 module 𝑛 with

respect to 𝐺𝐹(2𝑣𝑖).

End

4) ∁= ∁𝑡𝐿1
∪ ∁𝑡𝐿2

∪ ∁𝑡𝐿3
∪⋯ ∪ ∁𝑡𝐿𝑚𝑎𝑥

.

5) Let 𝑧 = {1,2, ⋯ , 2𝑡𝐺 }, and use the simplified notation ℂII

 𝑣1⊃⋯ 𝑣2⊃⋯ ⋯|𝑣𝑚𝑎𝑥 ⊃⋯
.

𝑧
 ℂII

 𝑣1 ⊃⋯ 𝑣2⊃⋯ ⋯|𝑣𝑚𝑎𝑥 ⊃⋯ = 𝑧 ∪ ∁.

𝑔
ℂII
 𝑣1⊃⋯ 𝑣2⊃⋯ ⋯|𝑣𝑚𝑎𝑥 ⊃⋯ 𝑥 = (𝑥 +

𝑖∈𝑧
 ℂII

 𝑣1⊃⋯ 𝑣2⊃⋯ ⋯|𝑣𝑚𝑎𝑥 ⊃⋯

𝛼𝑖).

6) Compute the codeword of ℂII

 𝑣1⊃⋯ 𝑣2⊃⋯ ⋯|𝑣𝑚𝑎𝑥 ⊃⋯
:

𝑐
ℂII
 𝑣1⊃⋯ 𝑣2⊃⋯ ⋯|𝑣𝑚𝑎𝑥 ⊃⋯ = 𝑔

ℂII
 𝑣1⊃⋯ 𝑣2⊃⋯ ⋯|𝑣𝑚𝑎𝑥 ⊃⋯ 𝑥 𝑚 𝑥 .

The notation used for the generalized ℂII

 𝑣1 𝑣2 ⋯|𝑣𝑚𝑎𝑥
 codes is

 𝐶(𝑛, 𝑘 , 𝐷, 𝑑 𝑣1
,⋯ , 𝑑 𝑣1 .𝑑1

 , ⋯)

wtih

𝐷 = 2𝑡𝐺 + 1, 𝑑(𝑣1) = 2𝑡𝐿1
+ 1, ⋯, 𝑑(𝑣𝑚𝑎𝑥) = 2𝑡𝐿𝑚𝑎𝑥

+ 1, 𝑑
 𝑣𝑖 .𝑑𝑖

= 2𝑡𝐿𝑖.𝑑𝑖

+ 1.

143

APPENDIX E

Encoding schemes for new LDPC+ℂII
𝑣=1 concatenation sytem.

The message is first encoded into a long LDPC code ℒ or 𝑚 parallel short

LDPC codewords ℒ𝓅1
,ℒ𝓅1

, ⋯ , ℒ𝓅𝑚
. Then the LDPC codeword(s) is (are) then

encoded by the systematic ℂII
𝑣=1 encoder as the information message of the

ℂII
𝑣=1 codeword. Here the ℂII

𝑣=1 code is acting as the inner code. However, at the

channel output, because the ℂII
𝑣=1 encoding is systematic, the message part of ℂII

𝑣=1

codeword is the LDPC codeword. It is well known that LDPC is a more powerful

code to deal with more errors, so we use the LDPC decoding to eliminate most errors

in the message part of the ℂII
𝑣=1 codeword. After the LDPC decoding, we then use

ℂII
𝑣=1 decoding to remove remaining errors from the output of the LDPC decoding as

well as those from the parity part of ℂII
𝑣=1 codeword.

Encoding scheme I

Given a long binary LDPC codeword ℒ, we partition it into 𝑚 parts: denote as

ℒ1 , ℒ2 , ⋯ , ℒ𝑚 in the binary form. Given 𝐺𝐹(2𝑚), each symbol has a binary 𝑚- tuple

image. ℒ1 , ℒ2 , ⋯ , ℒ𝑚 have the same length, say 𝑛, so we take the same index bit 𝑏𝑖.𝑗

from each ℒ𝑖 , where 𝑖 = 1, ⋯ , 𝑚 and 𝑗 = 1,⋯ , 𝑛. We take every 𝑚 𝑏𝑖 .𝑗 (𝑖 = 1, ⋯ , 𝑚)

of the same index 𝑗 as the binary 𝑚- tuples of a symbol over 𝐺𝐹(2𝑚). In the way, we

144

can convert ℒ1 , ℒ2 , ⋯ , ℒ𝑚 into 𝑛 symbols over 𝐺𝐹(2𝑚), which are the messages of

the systematic ℂII
𝑣=1 encoder. The work flow is shown in Fig. E.1.

Fig. E.1. Encoding scheme I.

 As noted in Chapter 4, 𝐶(𝑛, 𝑘, 𝐷,𝑑) is the symbol level ℂII
𝑣=1 codeword, whose

binary 𝑚-tuples are 𝑚 parallel binary BCH codewords. So in encoding scheme I,

each ℒ𝑖 and each 𝒫𝑖 are the corresponding message part and the parity part of the

binary BCH codeword, respectively.

Encoding scheme II

ℒ

ℒ1 ℒ3 ℒ4 ⋯ ℒ𝑚 ℒ2

ℒ2

ℒ1

ℒ3

ℒ4

⋯

 ℒ𝑚

Symbol Message

ℒ2

ℒ1

ℒ3

ℒ4

⋯

 ℒ𝑚

Systematic

ℂII
𝑣=1

encoder

𝐶(𝑛,𝑘, 𝐷, 𝑑)

ℒ2

ℒ1

ℒ3

ℒ4

⋯

 ℒ𝑚

𝒫1

𝒫2

𝒫3

𝒫4

⋯

 𝒫𝑚

145

 In this scheme, we have 𝑚 parallel short binary LDPC codewords,

 ℒ𝓅1
, ℒ𝓅1

, ⋯ , ℒ𝓅𝑚
 instead of a long binary LDPC codeword in the scheme I.

Fig. E.2. Encoding scheme II.

Encoding scheme III

 In the scheme III, we use the 𝑄-ary LDPC codeword over 𝐺𝐹(2𝑚) directly as

the message part of the ℂII
𝑣=1 codeword

Fig. E.3. Encoding scheme using the 𝑄-ary LDPC code.

ℒ𝓅2

ℒ𝓅1

ℒ𝓅3

ℒ𝓅4

⋯

 ℒ𝓅𝑚

ℒ𝓅2

ℒ𝓅1

ℒ𝓅3

ℒ𝓅4

⋯

 ℒ𝓅𝑚

ℂII
𝑣=1 encoder

𝐶(𝑛,𝑘, 𝐷, 𝑑)

ℒ𝓅2

ℒ𝓅1

ℒ𝓅3

ℒ𝓅4

⋯

 ℒ𝓅𝑚

𝒫1

𝒫2

𝒫3

𝒫4

⋯

 𝒫𝑚

𝐶(𝑛,𝑘, 𝐷, 𝑑)

𝑄-ary LDPC: ℒ𝑄−𝑎𝑟𝑦 𝐿𝐷𝑃𝐶

ℂII
𝑣=1 encoder ℒ𝑄−𝑎𝑟𝑦 𝐿𝐷𝑃𝐶

𝒫(ℒ𝑄−𝑎𝑟𝑦 𝐿𝐷𝑃𝐶
)

)

146

Fig. E.4. Binary 𝑚-tuple image of the scheme using a 𝑄-ary LDPC codeword.

 Encoding scheme IV

Fig. E.5. Encoding scheme using a multiple codeword interleaver.

ℒ𝑄−𝑎𝑟𝑦 𝐿𝐷𝑃𝐶

ℒ𝑄−𝑎𝑟𝑦 𝐿𝐷𝑃𝐶

(1)

ℒ𝑄−𝑎𝑟𝑦 𝐿𝐷𝑃𝐶

(0)

ℒ𝑄−𝑎𝑟𝑦 𝐿𝐷𝑃𝐶

(2)

ℒ𝑄−𝑎𝑟𝑦 𝐿𝐷𝑃𝐶

(3)

⋯

ℒ𝑄−𝑎𝑟𝑦 𝐿𝐷𝑃𝐶

(𝑚−1)

ℂII
𝑣=1 encoder

𝐶(𝑛, 𝑘, 𝐷, 𝑑)

ℒ𝑄−𝑎𝑟𝑦 𝐿𝐷𝑃𝐶

(1)

ℒ𝑄−𝑎𝑟𝑦 𝐿𝐷𝑃𝐶

(0)

ℒ𝑄−𝑎𝑟𝑦 𝐿𝐷𝑃𝐶

(2)

ℒ𝑄−𝑎𝑟𝑦 𝐿𝐷𝑃𝐶

(3)

⋯

ℒ𝑄−𝑎𝑟𝑦 𝐿𝐷𝑃𝐶

(𝑚−1)

𝒫(ℒ𝑄−𝑎𝑟𝑦 𝐿𝐷𝑃𝐶

(1)
)

𝒫(ℒ𝑄−𝑎𝑟𝑦 𝐿𝐷𝑃𝐶

(0)
)

𝒫(ℒ𝑄−𝑎𝑟𝑦 𝐿𝐷𝑃𝐶

(2)
)

𝒫(ℒ𝑄−𝑎𝑟𝑦 𝐿𝐷𝑃𝐶

(3)
)

⋯

𝒫(ℒ𝑄−𝑎𝑟𝑦 𝐿𝐷𝑃𝐶

(𝑚−1)
)

ℂII
𝑣=1

encoder

𝐶(𝑛,𝑘, 𝐷, 𝑑)

ℐ(ℒ𝓅2
)

ℐ(ℒ𝓅1
)

)

ℐ(ℒ𝓅3
)

 ℐ(ℒ𝓅4
)

 ⋯

 ℐ(ℒ𝓅𝑚
)

𝒫1

𝒫2

𝒫3

𝒫4

⋯

 𝒫𝑚

Interleaver

ℐ(ℒ𝓅2
)

ℐ(ℒ𝓅1
)

ℐ(ℒ𝓅3
)

ℐ(ℒ𝓅4
)

⋯

 ℐ(ℒ𝓅𝑚
)

ℒ𝓅2

ℒ𝓅1

ℒ𝓅3

ℒ𝓅4

⋯

 ℒ𝓅𝑚

147

APPENDIX F

 Iterative parallel local decoding workflow for ℂII

 v1 v2 ⋯|vmax
.

Fig. F.1. Iterative parallel local decoding for LDPC+RS (ℂII

 v1 v2 ⋯|vmax
) system.

Message: 𝑚 LDPC encoder

Systematic

ℂII

 v1 v2 ⋯|vmax

encoder
Interleaver

Channel

LDPC decoder De-interleaver

Interleaver

Local Reliabilities Updating

⋯

𝑚

ℂII
𝑣=𝑣1 decoder

Parallel local

decoding

ℂII
𝑣=𝑣1 decoder

Symbol level

Global decoding

ℂII
𝑣=𝑣𝑚𝑎𝑥 decoder

Parallel local

decoding

ℂII
𝑣=𝑣𝑚𝑎𝑥 decoder

Symbol level

Global decoding

⋯

