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ABSTRACT 

 

 About 50% of the world population nowadays lives in urban areas. With the fast 

growing trends of urbanization, understanding meteorological processes in such 

environments is rapidly gaining importance. A complex process that still needs thorough 

investigation is turbulent transfer of sensible heat across the urban canopy and the 

roughness sub-layer. It is particularly important to understand how individual sections of 

the canopy contribute to its integrated role. In an attempt to address this problem, sonic 

anemometer and scintillometer measurements were organized in three field campaigns. 

The first two were designed to evaluate and calibrate the scintillometer. The third and 

core campaign consisted of a one-year-long experiment carried out in an urban 

environment. The campaign was prolonged to address temporal representativeness issues 

present from the briefness of previous campaigns. Spatial representativeness was 

addressed with scintillometer measurements since they represent path-integrated 

quantities.  

 

 A limitation of scintillometers is their dependence on Monin-Obukhov Similarity 

Theory, which does not apply in heterogeneous surfaces and non stationary flows. 

Studies have yet showed good agreement between scintillometer and sonic anemometer 

sensible heat fluxes over complex environments, attained by modifying empirical 

coefficients to approximate Monin-Obukhov Similarity quantities. Although this was 

attempted, it was found that correcting errors in the measurement of the inner scale of 

turbulence and the structure function of refractive index fluctuations produced much 

better results. Corrective expressions were thus proposed and the applicability of 

scintillometers over the highly complex urban environment was then explored.  
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 Urban campaign results revealed several complex interactions present inside the 

urban canopy. The distribution of sensible heat fluxes was found to exhibit high three-

dimensional complexity, and to be mostly regulated by surface properties and their 

interaction with solar radiation, local advection and turbulent mixing. Sensible heat 

fluxes in the RSL decrease across street canyons during periods of stronger mixing with 

low-momentum and low-sensible heat flux in-canyon air. 

 

 Scintillometers were found skillful for measuring turbulent heat fluxes over the 

canopy but only for some wind directions. Problems were identified when measurements 

were placed within the wake of large roughness elements, which suggest that under some 

wind directions the measurements were made too close to the surface. Yet, scintillometer 

measurements in the urban environment depend on a large number of corrections. From 

these, the most critical is the determination of an appropriate value of zero-plane 

displacement height, which needs to be considered to account for flow modification by 

the roughness elements. The dependence on a large number of factors and limitations on 

the determination of appropriate values of zero-plane displacement height suggest that at 

this point in time scintillometer measurements made that close to the canopy should be 

considered with care. 
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1. INTRODUCTION 

 This study focuses on two different topics relevant to the field of Boundary-Layer 

Meteorology. The first one is the role of the urban canopy on the turbulent transfer (TT) 

of heat in the urban roughness sub-layer (URSL). The second topic explores the 

reliability of small aperture scintillometers (SAS) as means to measure TT inside the 

URSL. Scintillometers are instruments that measure variations in the intensity of 

electromagnetic radiation produced by turbulence in a fluid. In the surface layer (SL), the 

lowest portion of the atmosphere, they can be used to measure turbulent fluxes of heat 

and momentum using Monin-Obukhov Similarity (MOS), a theory that allows to express 

key SL atmospheric variables as functions of dimensionless height. Although MOS was 

established under the assumptions of homogeneity and stationarity, data measured over 

heterogeneous surfaces suggest that it can still be applied under certain weather 

conditions with the aid of corrective expressions. The study thus focuses on TT in the 

URSL and on the reliability of a SAS in such heterogeneous environment. 

 

 The approach was based on observations of sensible heat fluxes and other relevant 

variables, and was made possible by Petra Klein's NSF Career Award ILREUM: 

"Innovative Laboratory for the Research and Education in Urban Meteorology" (NSF 

Proposal 6500235). The measurements were organized in three field campaigns where 

sensible heat fluxes were measured with a SAS and several sonic anemometers (SA). The 

first two campaigns were conducted over flat and homogeneous terrain (i.e. where MOS 

can be considered valid) to evaluate SAS data. Two sets of empirical corrections were 

proposed based on the evaluation. Once applied to the SAS data, very good agreement 

with the SA measurements was attained.  
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 The third and core campaign focused on SAS and SA measurements made in two 

urban street-canyon. The campaign lasted thirteen months to account for temporal 

representativeness. The SAS was operated over rooftops and across two canyons. The SA 

(13 instruments) were operated over rooftops and inside the canyon. SA data served as 

reference measurements and to map the three-dimensional distribution of TT in the urban 

canopy and in the lowest part of the URSL.  

 

1.1. Motivation. 

 About 50% of the world population lived in urban areas by 2009. This number 

was even larger for developed countries and approached 75%. The United Nations (2009) 

suggested that these percentages were increasing rapidly due to a fast urbanization trend 

observed during the last six decades (Figure 1.1).  

 

 

Figure 1.1. 1950-2050 urbanization trends plotted with data provided by the United Nations (2009). 
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 These projections suggest that more people will be likely moving into urban areas 

during the coming decades and that by 2050 about 70% of the world population will live 

in such environments. This number approaches 85% for developed countries only.  Based 

on these trends, understanding, simulating and forecasting meteorological processes in 

urban environments is rapidly gaining importance. The knowledge about urban 

meteorology is, however, still limited. This is particularly true in the context of TT inside 

and above the urban canopy, where the number of studies available is small and limited 

in terms of spatial and temporal representativeness. 

 

 Most of the research on TT in the atmospheric boundary-layer has focused over 

ideal (i.e. flat and homogeneous) terrain located away from urban areas mostly due to 

limitations associated with the measurements and the collapse of ideal assumptions 

derived for flat and homogeneous environments. Measurement complications arise from 

the high cost of instrumentation designed for the measurement of turbulence; limitations 

on instrument deployment due to complex infrastructures and required permissions from 

authorities; spatial representativeness limitations due to the large three-dimensional 

heterogeneity of the urban environment; and the collapse of some simplifying 

assumptions such as MOS (Barlow and Coceal, 2009). As a result, only a small number 

of studies have explored TT in the URSL, and most of them have been conducted over 

periods in the order of only a few weeks. Some examples can be found in Roth and Oke 

(1993a,b), Rotach (1993, 1995), Oikawa and Meng (1995), Louka et al. (1998, 2000), 

Feigenwinter et al. (1999, 2005), Grimmond et al. (2004), Longley et al. (2004), Christen 

(2005), Dobre et al. (2005), Boddy et al. (2005), Eliasson et al. (2006), Kanda et al. 

(2006), Moriwaki and Kanda (2006), Roth et al. (2006), Christen et al. (2007), Klein and 

Clark (2007) and Offerle et al. (2007).  
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But why is this important? Understanding TT in the URSL has applications into 

several fields, in particular Boundary-Layer Meteorology, Microscale and Mesoscale 

Meteorology, Urban Meteorology, Air Quality and Scintillometry. The results are 

discussed primarily in the context of Microscale Meteorology that focuses on scales 

smaller than two kilometers (Glickman, 2000). They also address means to improve the 

Harman-Barlow-Belcher model for scalar fluxes from Urban Street Canyons (Harman et 

al., 2004). Related studies have shown significant positive impacts on model output when 

urban parameterizations are improved, especially when resolutions tend toward finer 

mesoscales. Some examples of successful model output improvement from urban 

parameterizations are available in Uno et al. (1989), Kusaka et al. (2001), Otte et al. 

(2004) and Dupont and Mestayer (2004, 2006). 

  

The impact of urban areas on mesoscales is sometimes questioned. In the 

horizontal, mesoscales range from a few to several hundred kilometers (Glickman, 2000). 

Urban environments are usually perceived as small when viewed from a mesoscale 

perspective. Is placing efforts on improving the representation of this very small fraction 

of the surface worthwhile? The answer is yes. Urban areas modify the atmosphere above 

them and across non-negligible three-dimensional regions located downwind. This is not 

only important in the context of mesoscale meteorology but in the context of air quality 

forecasting as well. Air quality at mesoscales is often studied with mesoscale models due 

to the high non-linearity of the system. Moreover, pollutants emitted in urban areas 

usually interact with air masses in the mesoscale, where secondary pollutants are formed 

and dispersed (Martilli et al., 2002). An example is the formation of tropospheric ozone 

O3 from nitrogen oxides NOx, carbon monoxide CO and volatile organic compounds 

VOCs emitted, for the most part, in urban environments. These compounds are exposed 
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to a series of chemical reactions in which sunlight becomes important, and can lead to 

high levels of tropospheric ozone in areas sometimes located hundreds of kilometers 

away. Improving the understanding of TT in urban areas has thus important applications 

in mesoscale air quality studies as well, aside from those in the fields of urban 

meteorology and climatology themselves.  

 

The general goals of the study are thus (1) to improve the understanding of TT 

across the urban canopy and in the lower part of the URSL via observations and 

validation of the Harman-Barlow-Belcher parameterization; and (2) to explore the 

reliability of SAS measurements in the URSL. There is a special interest on describing 

how individual sections of the urban canopy contribute to its integrated role. The analysis 

was oriented to improve the understanding of the interactions between urban scales, i.e. 

those in the order of tenths of meters; and small mesoscales, those in the order of a few 

kilometers; and to provide a background to improve their representation in mesoscale 

models. They were also targeted to provide a means for future studies to infer the 

integrated role of the urban canopy based on sparse measurements, which is generally the 

norm to sample the highly three-dimensionally complex urban atmosphere.  

 

1.2. Dissertation structure. 

 The dissertation is structured in eight chapters. Chapter 2 introduces essential 

concepts relevant to the study, discusses current research issues and the approach 

considered to address them. A general description of the atmospheric boundary layer is 

first presented, followed by the introduction of important concepts such as sensible heat 

fluxes, the eddy covariance approach and MOS, amongst other relevant notions. 

Scintillometers are then discussed with emphasis on the theory behind turbulent flux 
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calculations from scintillations. The urban boundary layer is then addressed, followed by 

an introduction to efforts conducted to represent it numerically. The ILREUM project is 

then addressed, followed by the set of open questions investigated and by the approach 

and rationale selected to address them. 

 

 Chapter 3 discusses the instrumentation used during the ILREUM campaigns, and 

focuses on sonic anemometers, the scintillometer and the Norman MESONET site. 

  

 Chapter 4 focuses on the suburban campaigns. The procedures followed to 

evaluate scintillometer skill and the empirical corrections needed to attain good 

agreement with sonic anemometer measurements are described. 

 

 Chapter 5 discusses the set up of the ILREUM urban campaign (IUC). The 

analysis procedures to attain reliability of scintillometer data are described. 

 

 Chapter 6 highlights important findings of the IUC. The general characteristics of 

the flow are first addressed, followed by analysis of sensible heat fluxes. Interesting cases 

under different reference wind directions are selected, with emphasis on cases measured 

under southerly flow, the most common wind direction in Central Oklahoma. A more 

general analysis is then presented, with emphasis on data stratification upon different 

wind directions, wind speeds and solar radiation regimes. 

 

 Chapter 7 provides the summary and conclusions of the dissertation. 
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2. BACKGROUND, CURRENT ISSUES AND APPROACH. 

2.1. The Atmospheric Boundary Layer. 

 Section 2.1 summarizes overviews of the atmospheric boundary layer (ABL) 

documented by Oke (1987), Garratt (1992), Kaimal and Finnigan (1994), Arya (1999), 

Stull (2000), Glickman (2000), Wallace and Hobbs (2006) and Stensrud (2007). A 

general description of the ABL is first addressed followed by an introduction to sensible 

heat fluxes, the eddy covariance approach and Monin-Obukhov Similarity theory, a key 

consideration for the representation of processes in the atmospheric surface layer and for 

scintillometry. 

 

2.1.1. General description. 

 The ABL is the lowest part of the troposphere, adjacent to the surface of the earth. 

ABL flow is highly controlled by the effects of the surface, which are felt directly in 

timescales of an hour or less. The ABL is dominated by turbulence generated by both 

thermal (i.e. buoyancy) and mechanical processes (i.e. wind shear). Turbulent fluxes are 

thus important, and are essential to describe the connection between the surface and the 

rest of the troposphere or free atmosphere, typically characterized by less turbulence and 

stable stratification. The TT of sensible heat is of particular interest and will be addressed 

with more detail in section 2.1.2. 

 

 The ABL can be subdivided into several layers. To illustrate this classification, a 

schematic cross section of the standard daytime atmosphere has been constructed based 

on Garratt (1992) and Kaimal and Finnigan (1994) and is presented in Figure 2.1. It 

shows the vertical structure and characteristic thickness of the troposphere, the free 

troposphere, the ABL, the mixed layer, the surface layer, the inertial sub-layer and the 
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roughness sub-layer. Height above ground � is indicated in meters and using a 

logarithmic scale. A few typical features such as roughness elements (i.e. pasture in this 

case) and an ABL-deep thermal and associated cloud are also indicated. The depth of the 

ABL ���, and is generally in the order of one to two kilometers, but can vary largely. The 

depth of the SL is about one tenth of that of the ABL and the depth of the roughness sub-

layer is larger than the roughness length ��, defined as the height above ground where the 

mean wind speed becomes zero (Glickman, 2000). 

 

 

 
 

Figure 2.1. Components of the ABL constructed based on Garratt (1992) and Kaimal and Finnigan (1994). 
 

 

 

 The ABL can be subdivided into two layers: an outer and an inner layer. The 

outer layer is referred to as the Mixed Layer (ML) and is characterized by thorough 
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mixing of heat, momentum and scalars. The flow shows little dependence on the nature 

of the surface and turbulent fluxes tend to decrease with height. The inner layer is known 

as the Surface Layer (SL). It usually comprises the lowest 10% of the ABL and is 

characterized by turbulent fluxes that are nearly constant with height. This can sometimes 

be a rough approximation but, when applicable, it leads to important simplifications such 

as MOS. The SL itself can be subdivided into two different layers, the Inertial Sub-layer 

(ISL) and the Roughness Sub-layer (RSL). When roughness elements are small, the latter 

is usually very shallow. Its vertical extension becomes important in rough environments 

such as forest canopies and urban areas, as will be addressed in section 2.3. The ISL, 

located above the RSL, is horizontally homogeneous since the signature of individual 

elements has been mixed out by turbulence. The RSL, on the other hand, exhibits a fully 

three-dimensional structure due to the direct influence of the roughness elements on the 

flow. The effect of individual roughness elements, however, cannot be easily 

distinguished (Otte et al., 2004) and becomes more subtle with height until it blends out 

completely by turbulence. This height is defined as the blending height, and represents 

the division between the ISL and the RSL (Glickman, 2000). 

 

 Another view of the ABL is provided in Figure 2.2, a photograph taken from an 

airplane flying over Central Oklahoma. It shows a cumulus cloud field. As illustrated in 

Figure 2.1, cloud tops coincide with the top of the ABL where an overlying layer of high 

stability hinders their vertical development into the free troposphere. If moisture is 

sufficient, clouds form in the upper region of updrafts while clear skies prevail over 

downdrafts. The haze observed is characteristic of most ABLs. It is caused by a 

combination between a large number of aerosols and high relative humidity. It contrasts 

with the relatively drier and clear air present in the free atmosphere above. 
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Figure 2.2. Photograph of a partly cloudy ABL looking downwards from an 

airplane during a spring afternoon in Oklahoma in 2006.  

 

 The characteristics of the ABL are determined by the characteristics of the 

surface, by the atmospheric conditions and by the interactions between these two. The 

surface of the earth can be described as a collage of features with different physical 

properties. From these, the ABL is particularly sensitive to variations in roughness, 

albedo, moisture, and various thermal properties of the surface. Roughness is very 

important since it modifies the characteristics of turbulence and thus several aspects of 

the ABL. Increased roughness favors the development and intensification of turbulence 

and is generally associated with larger vertical extensions of the ABL. Examples are 

relatively deep ABLs found over forest and urban canopies or mountain ranges when 

compared against those observed over flat plateaus with otherwise similar physical 

properties. The effects of albedo soil, moisture and thermal properties are also important, 

and can be explained in terms of the surface-atmosphere energy balance. 

 The energy available for ABL processes comes directly or indirectly from the 

solar radiation. The surface energy balance can be expressed via: 
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      �� � � 	 
 	 � 	 ∆�    (2.1)  

 

where �� is the net radiation, 
 is the vertical flux of latent heat, � is the vertical flux of 

sensible heat, � is the heat flux into the ground and ∆� is the heat storage term and 

describes the rate of change of internal energy of the layer (Garratt, 1992; Arya, 1999). 

Positive �� signifies that energy is available to be redistributed among 
, � and �. From 

these terms, � is responsible for temperature changes in the ABL and is discussed with 

detail in section 2.1.2.  

 

 Net radiation �� represents the balance between the incoming and outgoing 

components of electromagnetic radiation at different wavelengths. The principal input of 

energy into the system occurs in the form of shortwave radiation from the sun, therefore 

diurnal and annual cycles of solar radiation are essential for ABL processes. As indicated 

in equation 2.1, part of the energy available at the surface is devoted to warm up the 

atmosphere via �. Heat is then redistributed throughout the ABL by turbulence. Stronger 

surface heating can be ultimately associated with deeper ABL. Contrasting examples are 

the relatively deep ABL observed during daytime/summer versus those observed during 

nighttime/winter. The constant variation of solar zenith angles also generates complex 

heating/cooling mechanisms in heterogeneous surfaces such as canopies or over complex 

terrain such as valleys and mountain slopes in general. 

 

 The diurnal cycle of the ABL is largely determined by the diurnal cycle of the 

surface energy balance, driven by the diurnal cycle of solar radiation. As an example, 

monthly averages of the components of the energy balance measured in Vancouver, 

Canada are presented in Figure 2.3 after Oke (1987). The measurements were made over 

a suburban surface (top) and over a rural surface (bottom). In addition, a characteristic 
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description of the diurnal cycle of the ABL is summarized in Figure 2.4. after Kaimal and 

Finnigan (1994). Details are discussed in the following. 

 

     

Figure 2.3. Monthly averages of the diurnal cycle of the surface 

energy balance in Vancouver, Canada after Oke (1987). 
 

 

 
Figure 2.4. Diurnal cycle of the standard ABL after Kaimal and Finnigan (1994). 
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 The ABL grows during daytime driven by positive � that originate at the surface 

once energy is available from the absorption of solar radiation. � leads to temperature 

gradients and the development of thermal turbulence which then transports heat and other 

quantities vertically. Temperature, moisture and momentum thus become well mixed in 

the vertical. The top of the daytime ABL is defined by a temperature inversion referred to 

as capping inversion. The strong stability in this layer behaves as a sharp boundary 

between the turbulent ABL flow and the free atmosphere above. 

 

 Once solar radiation decreases after midday sensible heat fluxes start decreasing 

accordingly. They eventually become negative and heating from the surface stops. In 

order to balance negative values of ��, � becomes negative and heat is drawn from the 

atmosphere into the ground. This process leads to the development of a stable layer near 

the surface and decoupling with the residual mixed layer above it. The stable layer 

persists until sometime after sunrise when solar radiation causes �� to become positive. 

Once values of �� become large enough � becomes positive and the mixed layer starts 

developing again from heating originated at the surface. 

 

 The percentage of solar radiation reflected is the albedo. Since the remaining 

energy is absorbed and becomes available for surface energy processes, albedo is 

important in ABL development. High albedo leads to low energy availability at the 

surface. It can be associated with lower �, less thermal turbulence and generally 

shallower ABL. As an example, surfaces with high albedo such as white sands and salt 

flats reflect more solar radiation than darker surfaces such as a pine forest canopy or a 

parking lot paved with asphalt.  

 



14 

 

 Another important variable is soil moisture. It determines which fraction of the 

energy available at the surface will be devoted to an increase in temperature, i.e. �; and 

which will be devoted to evaporation, i.e. 
 (equation 2.1). When soil moisture is scarce 

most of the energy is ingested into the atmosphere in the form of � and leads to deep 

ABL. An example can be found over deserts during daytime. Large values of � inland 

favor the development of deep ABL. 

 

Aside from surface properties, atmospheric conditions determine the environment 

for the development, growth and collapse of the ABL, and are relevant for several ABL 

processes. Examples include pollutant advection and dispersion; development or 

suppression of convection; intensity and extension of mesoscale circulations such as sea, 

lake or valley breezes; development and intensification of heat waves; and evolution of 

low-level clouds among others. 

 

Stability is important. It is determined by the vertical gradients of temperature and 

velocity. Vertical fluxes of heat are directed upwards/downwards under unstable/stable 

regimes. Unstable ABL occur mostly during daytime and are associated with vigorous 

turbulence and large vertical extensions. A scheme that shows the structure of a fully-

developed mixed ABL present during unstable conditions is presented in Figure 2.5. 

reformatted after Kaimal and Finnigan (1994).  

 

The ABL in Figure 2.5 is shaded with a dark pattern. Arrows represent the 

distribution of circulations that organize in thermals of different sizes. The largest 

updrafts reach the top of the ABL. Interactions with the free atmosphere are in the form 

of limited mixing due to the generally strong stability present at the ABL top. Free 
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atmosphere air entrains the ABL top predominantly over broad the regions of sinking 

motion, downdrafts, that surround large thermals.  

 

 

Figure 2.5. Schematic representation of the mixed ABL after Wyngaard (1990). 
 

 

Wind and potential temperature profiles are sketched to the left. Average potential 

temperature is nearly constant with height and increases in the top of the ABL defining 

the capping inversion which divides well mixed ABL air from stable air above. 

Temperature also increases near the ground in a super-adiabatic layer that forms from 

intense heating of the surface. 

  

Stable ABL form during nighttime and are associated with weaker turbulence, for 

the most part mechanical, and intermittent bursts of activity (Hartogensis, 2006). A 

schematic representation of the stable ABL is presented in Figure 2.6, also after 

Wyngaard  (1990), and is described in the following. 
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Figure 2.6. Schematic representation of the stable ABL after Wyngaard (1990). 

 

Nocturnal stable ABL exhibit smaller vertical extensions than daytime mixed 

layers, in response to the absence of strong thermal forcing. They develop from surface 

cooling and lay underneath the residual layers produced by thorough turbulent mixing 

during daytime. The stable layer is characterized by temperature and velocities that 

increase with height and turbulence is produced only mechanically; i.e. by wind shear. As 

noted in Figure 2.6, velocity and temperature profiles in the stable ABL are not as well 

mixed when compared to mixed layer profiles. The relatively shallow extension of the 

stable ABL allows the development of low level jets in the residual layer region. The 

stability generated close to the ground suppresses vertical motion and dispersion of 

scalars that originate near the surface. 

 

The vertical extension of the ABL ranges from infinitesimal to up to a few 

kilometers. The deepest well established ABLs develop over dry and rough terrain during 

periods of strong solar radiation, i.e. early afternoons during spring or summer. Yet ABL 

depth locally increases in cumulonimbus clouds. Shallow well established ABL develop 

in cold-current marine environments, snow-covered surfaces and flat regions under weak 
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or non-existing solar radiation forcing. Strictly speaking, however, the shallowest ABL in 

nature occur during transition periods, and since they originate near the surface their 

minimum depth can be assumed to be infinitesimal. 

 

TT is crucial for ABL processes since heat, momentum and scalars are 

transported by turbulence except very close to the surface where molecular transfer 

dominates. Both thermal and mechanical turbulence coexist and their sources are usually 

difficult to discern. Thermal turbulence originates in regions where temperature gradients 

occur in response to differential heating and cooling of adjacent surfaces, air parcels 

and/or advected air masses. Mechanical turbulence is produced by wind shear, which is 

particularly enhanced in the RSL or/and in transition zones when ABL decoupling 

occurs. Thermal turbulence dominates during daytime, when solar heating of the surface 

leads to strong temperature gradients. Mechanical turbulence dominates during nighttime, 

when turbulence is produced by the interaction of the flow with the roughness elements, 

and by wind shear that results from the distribution of pressure in the atmosphere. 

Synoptic forcing also plays a role in the ratio of mechanical versus thermal turbulence. 

Periods with strong wind shear and low solar radiation favor the development of 

mechanical turbulence, e.g. passage of frontal systems, outflow boundaries and low-level 

jets among others. Periods with weak wind shear and strong solar heating favor the 

development of thermal turbulence, e.g. a sunny day with weak winds. 

 

As described, turbulence is a key process in the ABL and understanding TT is 

essential to describe, model and forecast ABL processes that eventually will affect the 

entire troposphere. TT of sensible heat is of particular interest in the present study, thus 

relevant notions including its calculation using the eddy-covariance approach will be 

addressed in the following. 



18 

 

2.1.2. Sensible heat flux and the Eddy-Covariance approach. 

  

 Sensible heat �� is the portion of the total heat associated with a temperature 

difference (Stull, 2000). It can be expressed via: 

 

                   �� � � �� ∆�     (2.2) 

 

where � is mass, ��~1004 J kg�� K�� is the specific heat of air at constant pressure and 

∆� is the temperature difference associated with ��. Sensible heat in a fluid is 

transported by the flow. The flux of �� is defined as its transport across a unit area. �� in 

the ABL is transported by turbulence, hence the sensible flux of heat in the ABL can be 

referred to as turbulent flux of sensible heat. The vertical component of sensible heat flux 

is of particular interest, as it describes the connection between most surfaces and the 

atmosphere. Horizontal components gain importance when the contribution of fluxes 

normal to vertical surfaces becomes non-negligible. This is true in the urban environment 

where the fluxes from building walls affect TT between the surface and ultimately the 

RSL (Harman et al., 2004). 

 

 The Eddy Covariance or Eddy Correlation (EC) approach computes fluxes using 

turbulent components of velocities and of the properties being transferred (Kaimal and 

Finnigan, 1994). It is a direct method since it is does not require the use of empirical 

constants (Foken, 2006). This method has been used over several decades to calculate 

sensible heat fluxes. Some examples are available in Raupach (1979), Kaimal and 

Wyngaard (1990), Rotach (1995), Berger et al. (2001), McAloon (2001), Wilczak et al 

(2001), Weiss (2002), Baldocchi (2003), Finnigan et al. (2003), Salmond et al. (2003), 

Van de Wiel et al. (2003), Grimmond et al. (2004), Finnigan (2004), Mestayer et al. 
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(2005), Foken (2006), Randow et al. (2006), Hoedjes et al. (2007) and Kleissl et al. 

(2008) among others. 

 

 Turbulent components are calculated by subtracting high temporal resolution 

measurements from a mean state following the Reynolds Decomposition Method 

(Garratt, 1992; Kaimal and Finnigan, 1994; and Arya 1999): 

 

           � !" � �# 	 �$ !"     (2.3) 

           % !" � %& 	 %$ !"     (2.4) 

           ' !" � '( 	 '$ !"    (2.5) 

           � !" � �# 	 �$ !"     (2.6) 

 

where � !" are the observed values of zonal velocity, �# represents zonal velocities 

averaged over a period of time ) and �$ !" are the perturbations from the mean state. The 

same applies for meridional velocity, vertical velocity and temperature respectively. High 

temporal resolution data are usually obtained using hot wire and sonic anemometers.  

 

 Once data becomes available, the definition of a mean state is necessary. The 

period of time ) used to define the mean state has been a topic of wide discussion. Some 

authors agree that ) should be in the order of tens of minutes to achieve acceptable 

significance in the convective ABL, e.g. Wyngaard (1973) and Thiermann and Grassl 

(1992).  Lee et al. (2004) discussed the use of Ogive Plots to depict adequate averaging 

periods. Ogive Plots integrate under the cospectral curve and thus show the cumulative 

contribution of eddies of different size to the total transport. Using plots from the 

Chewawegon tower dataset (Berger et al., 2001), Lee et al. (2004) suggested that a value 

of )=30 minutes was sufficiently large to account for stationarity of near-ground data. 

Finnigan et al. (2003) agreed and indicated that the averaging period increases away from 
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the ground with the increase of spatial and temporal scales. Based on these studies, )=30 

minutes was used to define the mean state of ILREUM data. 

 

 A common practice over flat and homogeneous terrain is to use streamline 

coordinates, where the x-direction is always parallel to the mean flow (Kaimal and 

Finnigan, 1994), as illustrated on Figure 2.7. The use of this system eliminates problems 

associated with instrument alignment and allows a simpler interpretation of turbulence 

properties in terms of along and across-flow components. Averages recalculated for a 

dataset exposed to a 2-3 rotation become zero for the cross-flow components %*### � 0 and 

'*#### � 0. More detailed descriptions of this method can be found in Wilczak (2001), 

Finnigan (2003), Foken (2003) and Lee et al. (2004). 

 

 

Figure 2.7. Scheme of the 2-3 rotation technique applied to the Cartesian Coordinate system to convert it 

into the Streamline Coordinate System. Original (rotated) vectors are indicated in orange (black). 
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 Turbulent velocities for the along-flow, �*+ and cross-flow components  %*+ and 

'* + are calculated using the Reynolds Decomposition Method, which yields: 

 

       �*+ � �* , �*####     (2.7) 

       %*+ � %*     (2.8) 

       '* + � '*     (2.9) 

 

Covariances can then be calculated by multiplying perturbations and averaging them over 

). If potential temperature measurements are made, the covariance of potential 

temperature and vertical velocity can be expressed as: 

 

          �- � '*$.$#######       (2.10) 

 

where .$ represents potential temperature perturbations. �-  is the kinematic flux of 

sensible heat and describes the net heat transported by turbulence across a horizontal 

surface. �-  is expressed in units of Kms
-1

. Sensible heat fluxes in Wm
-2

 are attained by 

considering the density of air / and �0 via: 

 

        � � /�0�-        (2.11) 

 

Potential temperature . is preferred since it is conserved during adiabatic processes. It 

represents the temperature that a parcel would have if it were brought to 1000 hPa 

adiabatically, and can be expressed as: 

 

      . � � 1020 3*4/67
     (2.12) 

 

where 8� is 1000 hPa and 8 is atmospheric pressure and �9  ~ 287 J=kg��K�� is the gas 

constant for dry air. 
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 The horizontal components of sensible heat fluxes become important in the urban 

canopy (see section 2.3) where part of the heat stored by buildings is released into the 

atmosphere through building walls. When the structure of the flow is complex coordinate 

rotation is not recommended. Expressions for sensible heat fluxes thus become: 

 

       �> � /&�0�$.$#####       (2.13) 

       �? � /&�0%$.$#####       (2.14) 

       �@ � /&�0'$.$######         (2.15) 

 

where �>, �?  and �@ are the zonal, meridional and vertical components of sensible heat 

flux in Wm
-2

.  

 

 Sensible heat fluxes represent the transport of heat. Positive �@ arise from 

positive values of '$.$###### and indicate that the net transport of heat by turbulence during ) is 

upwards. Negative �@ indicate that the net transport of heat during ) is downwards. A 

more clear physical understanding can be attained with the four quadrant analysis 

explained in Figure 2.8. Fluxes are positive when the warm air is transported upwards or 

cool air is transported downwards by turbulence. Both situations correspond to cases 

where unstable stratification prevails. On the other hand, negative fluxes arise from cool 

air transported upwards or warm air transported downwards, which corresponds to stable 

stratification. 
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Figure 2.8. Four quadrant analysis of vertical heat fluxes using turbulent velocities and temperatures. 
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2.1.3. Monin-Obukhov Similarity: a critical consideration. 

 The Navier-Stokes equations describe atmospheric motions. They can be 

modified to resolve the effects of turbulence in the ABL via Reynolds Decomposition. 

This modification, however, results in a larger number of unknowns than equations and 

cannot be solved analytically without the aid of some kind of parameterization. Although 

new equations can be derived for the covariance terms, new triple correlation terms 

appear and the need for either deriving new sets of equations for these, or parameterizing 

their values arises again. This issue is known as the Turbulence Closure problem (i.e. 

more information in Garratt, 1992; Arya, 1999; and Glickman, 2000) and implies that the 

stochastical description of turbulence demands an infinite set of equations. The 

Turbulence Closure Problem can be successfully addressed inside the SL with the 

similarity hypothesis proposed by Monin and Obukhov (1954), which is described in the 

following based mostly on the summary available in Arya (1999). 

 

 The Monin-Obukhov Similarity (MOS) hypothesis is a very successful tool to 

describe the vertical distribution of basic parameters in the SL (Sorbjan, 1989). MOS 

stipulates that mean gradients and turbulence characteristics of a stratified SL depend 

only on the height �, the kinematic surface stress )�//, the kinematic heat flux �-  and 

buoyancy parameter A/� (Arya, 1999); where )� is the surface stress and A is the 

acceleration of gravity. This simplification is very important to establish a connection 

between the surface and the rest of the ABL. MOS assumes that vertical fluxes of 

momentum and sensible heat are constants within the SL, generally a good 

approximation since  the decrease with height is usually smaller than 10% throughout the 

entire layer (Panofsky and Dutton, 1984). It also assumes horizontal homogeneity and 

stationarity, which limits its applicability. 
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 Four independent scales can be defined: friction velocity �B, virtual friction 

temperature .CB, height above the surface � and the buoyancy length, also known as the 

Monin-Obukhov or Obukhov length D, where: 

 

           �B � E�$'$######F 	 %$'$######FG�/H � IJ2K L� F⁄
     (2.16) 

 

                 .CB � �N+OP+########QB        (2.17) 

 

          D � OP###QBR
STOPB     (2.18) 

 

where U~0.4 is the Von Kármán constant. .C### is the virtual potential temperature 

averaged over ) and the virtual potential temperature  .C is defined as follows: 

 

      .C � . 1 	 0.61 XY"     (2.19) 

 

where XY is specific humidity (Stull, 2000). In our case, the effects of moisture were not 

considered, thus .C was replaced by . in equations 2.17 and 2.18. Monin and Obukhov 

(1954) also introduced the concept of non-dimensional height Z that can be used to 

describe stability in the SL: 

 

        Z � @�     (2.20) 

 Z is zero/positive/negative under neutral/stable/unstable conditions. Its behavior is similar 

to that of the Richardson number Ri and expressions that relate them can be found in 

Arya (1999).  
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 MOS states that vertical gradients of various atmospheric quantities can be 

normalized by combinations of the scaling parameters, and become universal functions of 

dimensionless height Z. The expressions for velocity and potential temperature are: 

 

      1T@QB3 1[Q[@3 � \] Z"      (2.21) 

      1T@OB 3 1[O[@3 � \^ Z"      (2.22) 

 

where \] Z" and \^ Z" are the universal functions of Z for momentum and heat. The 

term ‘universal’ refers to the validity of these functions is SL that fulfill MOS 

applicability conditions. In reality not all SL assumptions are perfectly fulfilled and these 

expressions become close approximations.  

 

 Equations (2.21) and (2.22) define vertical gradients of wind and temperature 

over a layer of infinitesimal depth inside the SL. Their integration leads to: 

 

    
TQ @"QB � _` @@2 , a] Z, Z�"             (2.23) 

           
T O @"�O2"OB � _` @@2c , a^ Z, Z�"    (2.24) 

 

respectively, where ��d is the thermal roughness length (Garratt, 1992). a] Z, Z�" and 

a^ Z, Z�" are stability corrections for profiles in the neutral SL and can be expressed as 

integral forms of the universal functions for momentum and heat as follows: 

 

             a] Z, Z�" � e f1 , \]ghlnZkk2     (2.25) 

              a^ Z, Z�" � e f1 , \^ghlnZkk2       2.26) 
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  Once the universal functions are established, vertical profiles of SL quantities and 

statistics can be reliably sketched by only knowing the values of the four SL scales 

(Garratt, 1992). The universal functions are thus important and their shapes can be 

determined empirically via measurements made under conditions where MOS applies. 

This has already been explored by several authors (e.g. Dyer and Hicks, 1970; Businger 

et al., 1971; Wyngaard and Coté, 1971; Dyer, 1974; Högström, 1988). There is still some 

controversy about their exact forms, but amongst all, those suggested by Businger et al. 

(1971) and Dyer (1974) have been widely accepted by BL researchers. More information 

about MOS can be found in Monin and Yanglom (1971) and in Panofsky and Dutton 

(1984). 

 

 MOS was not designed for environments where the conditions of homogeneity 

and stationarity are violated. This is true in the RSL, where horizontal heterogeneity 

prevails. Since scintillometers depend on MOS, they were not designed to be used inside 

the heterogeneous environments. Several studies have yet demonstrated good agreement 

with EC measurements made at different sections of the path. Some examples can be 

found in  Meijninger et al. (2002), Kanda et al. (2002), Salmond et al. (2003), Lemonsu et 

al (2004), Meijninger et al. (2005) and Roth et al. (2006). Examples of some successful 

intercomparisons between SLS and EC measurements over heterogeneous environments, 

especially the RSL, is described with more detail in section 2.2.3.  The suggestion that 

MOS violation is minimal is encouraging to explore the aplicability SLS measurements 

inside the RSL. 
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2.2. Scintillometry theory. 

 Scintillations are fluctuations of intensity of electromagnetic radiation caused by 

turbulence in a media. Turbulent eddies produce variations in the refractive index of the 

media, which alters the propagation of electromagnetic radiation. Scintillations occur in 

the atmosphere, and can sometimes be captured by the human eye. Examples include 

distorted visibility and sensation of movement over a paved road during a hot and sunny 

summer day or the twinkling of stars. 

 

 Scintillations can be measured with scintillometers. When used in the SL, these 

instruments sense radiation intensity and translate its fluctuations into turbulent fluxes 

once wave propagation theory and MOS are considered. Scintillometers consist of a 

transmitter and a receiver that are separated by path lengths that vary between tens of 

meters and about ten kilometers. As a result, they measure path-integrated quantities, 

which is considered one of their major advantages over point-sampling devices. 

Scintillometer data are also unaltered by mast distortion and horizontal misalignment 

issues, and represent averages over short intervals while EC data require ) in the order of 

tens of minutes. Their ability to measure fluxes over short averaging intervals has 

important applications such as measuring the often non-stationary stable boundary-layer 

(Hartogensis , 2006). 

 

 The transmitter emits electromagnetic radiation at optical or radio wavelengths. 

SL turbulence affects propagation and produces refractive index scattering that, when 

integrated over a propagation volume, leads to fluctuations in radiation intensity that are 

measured by the receiver. Scintillations are defined as the logarithms of the variances of 

these fluctuations.  
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 Scintillometers are classified into two types based on aperture and associated path 

length: large-aperture scintillometers (LAS) and small-aperture scintillometers (SAS). 

LAS emit radio wavelengths that need to transverse distances between 0.5 and 10-km to 

measure a signal that can be interpreted by the receiver (Wang et al., 1978 and Kleissl et 

al., 2008). SAS on the other hand require distances in the order of 50 to 200 m. The 

aperture diameter of LAS is larger than the Fresnel zone (De Bruin, 2002). The Fresnel 

distance, lm � no8� , describes the size of the most active eddies present along the 

propagation path, where o is the optical wavelength and 8� the path length. SAS have 

smaller apertures and are also referred to as 'laser scintillometers' since they emit 

radiation at optical wavelengths. SAS can also be bichromatic and emit two radiation 

beams at once. The beams must have different polarizations so the receiver can recognize 

them individually. Bichromatic scintillometers have an advantage over LAS: they can 

calculate the inner scale of turbulence _� from the covariance of intensity fluctuations. 

The measurement of _� eliminates the need to introduce additional parameters and 

variables such as �� and �B, which need to be considered in LAS measurements 

(Hartogensis, 2006). 

 

2.2.1. Relevant concepts. 

 An important concept is that of energy spectra, described with more detail in 

Kaimal and Finnigan, 1994; Arya, 1999 and Hartogensis, 2006. Energy spectra describe 

how energy is distributed among different scales of motion, and is essential for the study 

of turbulence. Turbulent kinetic energy (TKE) is produced by buoyancy and shear at 

larger scales, where it can also be destroyed by buoyancy under stable conditions. Energy 

available in the largest eddies is transmitted to eddies of smaller size. The range of length 
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scales in which energy is not produced or destroyed but only redistributed toward smaller 

scales is known as the inertial range (IR) of energy spectra, and the energy re-distribution 

process is known as the energy cascade. At scales smaller than those of the IR, energy is 

dissipated by the viscosity of the flow. The range of scales where viscous dissipation 

dominates is known as the dissipation range of turbulence spectra (DR). A schematic 

representation of turbulence spectra is displayed in Figure 2.10. 

 

 

Figure. 2.9. Schematic representation of turbulence spectra. 

 

 The smallest eddy size at which turbulence dissipates is described by the 

Kolmogorov Microscale p-  and is a function of the dissipation rate of TKE ε and the 

viscosity of air. An expression for p-  is: 
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       p- � 1qr
s 3�/H

     (2.27) 

 

where ν is the kinematic viscosity of air. The length scale used to describe eddy sizes 

associated with dissipation maxima as well as the boundary between the IR and DR is the 

inner scale of turbulence _�. p-  is proportional to _� via:  

 

     _� � 7.4p-  � 7.4 1qr
s 3�/H

     (2.28) 

 

where the constant of proportionality 7.4 has been considered by several authors, e.g. Hill 

(1997), Hartogensis (2006), SCINTEC AG (2006).  

 

 The log-covariance of refractive index fluctuations t>?F  measured by the 

scintillometer is modulated by the most active eddies in optical scintillometry. These 

eddies have sizes in the order of _�, which allows the establishment of relationships 

between t>?F  and _�. Covariances decrease as eddy sizes decrease. A graphic example is 

presented in Figure 2.10. Hartogensis (2006) indicated that when _� increases above  ~ 20 

mm the covariance levels off as eddy sizes increase and not much information is gained 

with eddy size increase anymore.  

 

 

Figure. 2.10. Schematic representation of eddy sizes with respect to scintillometer beam 

separation. Turbulent eddies are represented with gray circles. 
 

 

  The relation between _� and t>?F  together with equation 2.28 allows to 

retrieve u from measurements of t>?F . MOS can then be used to determine values of SL 
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scales from u. An expression for non-dimensional dissipation \s Z" can be established 

using height above the ground � and friction velocity �B as scaling parameters: 

 

          
T@QBr u � \s Z"    (2.29)  

 

In this case the unknown is the friction velocity �B. Universal expressions for \s Z"  are 

available in the literature. They have been determined empirically by fitting curves to 

simultaneous measurements of u and �B. Equation 2.29 then allows to determine values 

of �B from u, which shows that t>?F  can be ultimately used to determine �B. 

 

 Another concept important in scintillometry is that of structure functions, which 

can be established in the IR of turbulence spectra where motions can be assumed as 

random and locally isotropic. The second order structure function for the refractive index 

of air `, after isotropy is assumed, can be expressed as: 

 

         v� X" � f` w" , ` w 	 X"gF########################    (2.30)  

 

where w is the spatial coordinate, X is the distance between measurements and v� 

represents the second order structure function of ` (Kaimal and Finnigan, 1994; and 

Hartogensis, 2006). Structure function parameters can be obtained from structure 

functions by considering the distance between simultaneous observations. They represent 

statistical representations of turbulence and thus are relevant in scintillometry. The 

structure function parameter of refractive index fluctuations ��F can be expressed via: 

 

        ��F � xy z"zR/r � f� >"�� >{z"gR#######################
zR/r     (2.31) 

 

(Monin and Yanglom, 1971 and De Bruin et al., 1995) and will be discussed with more 

detail in section 2.2.2.  
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2.2.2. Calculation of turbulent fluxes from scintillations. 

 The beam aperture of the small aperture scintillometer (SAS) lies within the 

dissipation range of turbulence and is small compared to the Fresnel zone l|. This is 

important to capture the strongest signal and avoid contamination by reflection from 

adjacent surfaces. Tatarskii (1961) was the first to relate the variance of the logarithm of 

the amplitude of intensity fluctuations t>F to ��F and _�. The approach developed assumed 

isotropic turbulence and weak scintillations (Thiermann and Grassl, 1992). The last 

constrain limited scintillometer path length since fluctuation intensity increases with 

increasing sampling volume. SAS can thus be operated over path lengths shorter than 200 

m (Hartogensis, 2006).  

 

 This study uses the SLS20 model (hereafter, SLS) manufactured by Scintec AG  

and used by Thiermann and Grassl (1992) and Hartogensis (2006). Details about the 

instrument can be found in Scintec AG (2006). The SLS uses two parallel light beams at 

a wave length of o � 670 nm. The beams are displaced by a distance of h � 2.7 mm and 

have orthogonal polarizations. The SLS measures both t>F and t>?F , which can be used to 

calculate ��F and _�, which can in term be used to calculate SL scales and turbulent fluxes 

of sensible heat and momentum. 

 

 A summary of the process is presented in Figure 2.11, which will be frequently 

addressed to describe the process in the rest of this section. Input variables and 

parameters are shown with blue boxes, calculations with green boxes, calculated 

variables with purple boxes and the final output with orange boxes. Thick black arrows 

indicate the flow of the main algorithm. Gray arrows indicate the places where values of 

parameters and variables enter the algorithm. The region near the end of the algorithm 

shaded in light gray indicates MOS expressions.  
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Figure. 2.11. SLS algorithm to retrieve fluxes from scintillations. Input variables and functions 

are indicated in blue. Output variables are indicated in orange. Calculated variables are indicated 

in purple and mathematical expressions are in green. 
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 Hill and Lataitis (1989) presented the following expression to describe the log-

covariance of amplitude of refractive index fluctuations t>?F  also used by Thiermann and 

Grassl (1992), Weiss (2002) and Scintec, AG (2006): 

 

t>?F � 4}F~�F e e ~�� ~, _�, ��F"�� ~h" sinF 1�R> 0��>"F��0� 3 �H��R����R���
����R���R � h~�� hw0��   (2.32) 

 

In this equation w is the spatial coordinate along the propagation path length 8�, ~ is the 

spatial wave number, and ~� is the optical wave number. �� is the three-dimensional 

refractive index spectra, which is a function of the spatial wave number ~,  _� and ��F.  �� 

and �� are Bessel functions of the first kind. h is the distance between both radiation 

beams and v is the aperture diameter. If saturation is present, the covariance measured 

becomes smaller than that predicted by equation (2.32). The variance of refractive index 

fluctuations can be expressed as: 

 

   t>F � 4}F~�F e e ~�� ~" sinF 1�R> 0��>"F��0� 3 h~�� hw0��    (2.33) 

 

 (Weiss, 2002). The three-dimensional refractive index spectra has the form of  

 

    �� ~, _�, ��F" � 0.033��F~���r ��y ~, _�"   (2.34)  

 

where the first three terms describe refractive index spectra in the inertial range and 

��y ~, _�" describes refractive index spectra in the dissipation range (Hill, 1978 and 

1992). An approximation for ��y ~, _�" was first developed by Tatarskii (1971), who 

based his work upon a formula for velocity spectra suggested by Novikov (1961). The 

largest limitations of the Tatarskii approximation were in the dissipation range. The 

approximation proposed by Hill (1978) led to some improvement. Hill's expression, 
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however, is still limited in accuracy due to the difficulty of measuring refractive index 

spectra in the dissipation range, which requires accurate high frequency measurements. 

An example of different refractive index spectra was plotted by Weiss (2002) and is 

presented in Figure 2.12. Figure 2.13 compares scaled versions of the Tatarskii and the 

Hill spectra. 

 

 

Figure. 2.12. Comparison of different representations of 

refractive index spectra plotted by Weiss (2002). 
 

 

 

Figure. 2.13. Comparison of scaled versions of the Tatarskii 

Spectrum (dotted line) and Hill Spectrum (solid line) Weiss (2002). 
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 The differences are larger in the dissipation range and in the high wave number 

end of the inertial range. The replacement of the Tatarskii Spectrum with that of Hill lead 

to significant improvement in the calculation of sensible heat fluxes from scintillations 

(Thiermann and Azoulay, 1989). Yet, some problems are still present and arise from 

limitations on the representation of the dissipation range. More information about the Hill 

spectrum can be found in Hill (1978), Thiermann and Azoulay (1989), Thiermann and 

Grassl (1992), Weiss (2002) and Hartogensis (2006). 

 

 Once ��F and _� become available from scintillations they can be used to calculate 

�dF and u. ��F  is affected by temperature, moisture and pressure. Hartogensis (2006) 

indicated that the effects of pressure variations are so small that they can be neglected. 

The effects of moisture variations are negligible only for scintillometers that operate in 

the visible or near-infrared region. This is the case of displaced beam small aperture 

scintillometers such as the SCINTEC SLS20 model. �dF can be related to ��F via:  

 

         �dF � ��F d�
�0R I1 	 �.��� L    (2.35) 

 

where � is air temperature in K,  8 is air pressure in Pa and � � � 
⁄  is the Bowen Ratio 

or latent heat flux divided by sensible heat flux (SCINTEC AG, 2006). The constant � is 

a function of wavelength and for  o � 670 nm,  � � 7.887 � 10�� KPa
-1

 (Meijninger et 

al. 2002, Hartogensis, 2006 and SCINTEC AG, 2006). 

 

 On the other hand, u is calculated using equation 2.28. The kinematic viscosity of 

air � can be calculated from temperature and pressure measurements via: 

 

          � � *4d0 f1.7 	 4.9 � 10�� �g � 10��    (2.36) 
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where � can be expressed in Celsius and 8 in hPa (SCINTEC AG, 2006). �9 � 287 J 

Kg
-1

 K
-1

 is the gas constant for dry air. 

 

 Once �dF and u are available, MOS can be used to retrieve turbulent fluxes of  heat 

and momentum. As shown in section 2.1.3, MOS allows to non-dimensionalize SL 

quantities using SL scales and non-dimensional variables can be expressed in terms of 

empirical approximations that are functions of dimensionless height Z. A non-

dimensional expression for �dF is  

 

       
@�R r⁄

OBR �dF � \6cR Z"     (2.37)  

 

and the one for u is described in 2.29. From the different empirical approximations to 

\6cR Z" and \s Z" available in the literature, those considered by Thiermann and Grassl 

(1992) and SCINTEC AG (2006) were tested and produced satisfactory results.  The  

sensitivity of  sensible heat fluxes to alternative approximations to \s Z" was explored 

and was found to be very small. A more detailed description is presented in Appendix 1. 

 

 The forms of \6cR Z" and \s Z" are different upon stratification. The expressions 

considered have the following forms for \6cR Z": 

 

      \6cR Z" � 4�� f1 , 7Z 	 75ZFg  for Z ¡ 0 (2.38)  

      \6cR Z" � 4�� f1 	 7Z 	 20ZFg  for Z ¢ 0 (2.39)  

 

and for \s Z": 
      \s Z" � f1 , 3Zg�� , Z   for Z ¡ 0 (2.40)  

      \s Z" �  f1 	 4Z 	 16ZFg��/F  for Z ¢ 0 (2.41)  
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where ��~.86 is the Obukhov-Corrsin constant (SCINTEC AG, 2006). Solving equations 

2.38 through 2.41 requires an iteration scheme and leads to the calculation of three SL 

scales: �B, .B and D. 

 

 The calculated SL scales can then be used to calculate turbulent fluxes of heat 

�� and momentum ¤� via: 

          �� � ,/&���B.B    (2.42)  

and 

          ¤� � ,/&�BF    (2.43)  

 

 One important limitation is that stability cannot be determined by the 

scintillometer. It needs to be calculated using a complementary platform. An approach to 

the problem is to use sonic anemometers placed along the scintillometer path and was 

considered in this study. 

 

2.2.3. Applicability. 

 Several studies have measured turbulent fluxes with scintillometers. Examples 

can be found in Wesely (1976), Hill et al. (1992, 1997), Azoulay et al. (1988), Thiermann 

and Grassl (1992), Green et al. (1994), De Bruin et al. (1995) and Chehbouni et al. (1999) 

among others. Most of these have focused on the homogeneous and stationary SL due to 

MOS validity requirements. Their results showed good agreement when compared 

against sonic anemometer measurements. The discrepancies found were below 20%, e.g. 

10-20% (Thiermann and Grassl, 1992),  ~ 7% (Green et al., 1994), lower than 10% and 

~10% (Chehbouni et al., 1999). 
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 Reasonable values of agreement prompted some studies to investigate the 

applicability of MOS over heterogeneous surfaces including urban areas. Surprisingly, 

they found that MOS violation was generally small and that the measurements could be 

adapted by modifying the empirical approximations to non-dimensional MOS functions. 

An example is the study of Meijninger et al. (2005) who explored the relationship 

between scintillometer and EC sensible heat fluxes over forests, grasslands and cereals in 

Northern Germany. They found reasonable agreement with discrepancies were in the 

order of 20%. Another example can be found in Meijninger et al. (2002) who found 

discrepancies smaller than 8% for scintillometer and EC measurements made over 

different crops. 

 

  Studies of scintillometer applicability in the urban environment include those of 

Kanda et al. (1997) where measurements were made over a densely built-up district of 

Tokyo, followed by observations made over densely built-up neighborhood (Kanda et al., 

2002). They found modified versions of MOS equations that led to good agreement with 

EC heat fluxes measured at the same height and location. Disagreement values were 

lower than 10%.  

 

 Mestayer et al. (2005) and Lagouarde et al. (2006) described the use of large-

aperture scintillometers over Marseille as part of the ESCOMPTE project. The 

instruments were operated over the city center and along three different paths. They used 

friction velocities �B determined from a co-located EC system. Sensible heat flux inter-

comparisons were successful with disagreement lower than 10%. 

 

 Another example is the study of Salmond et al. (2003), who developed a modified 

version of MOS equations based upon the environmental characteristics of the city of 
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Basel, Switzerland. This was done as part of the Urban Boundary Layer Experiment 

(BUBBLE) conducted in the summer of 2002. This work was later detailed in Roth et al. 

(2006). Empirical fits were developed by comparing SAS data against sonic anemometer 

measurements over rooftop and across the top of a canyon. The process is based on 

comparing dissipation rate calculations given that they provide a means of comparison 

that is independent from MOS. As expected, better agreement was found over rooftops 

with variability in the order of 10% whereas over the canyon top the variability was in the 

order of 40%. They highlighted that larger disagreement over the canyon top was 

possibly caused by contributions from canyon walls that EC instruments were unable to 

capture.  

 

 These results are encouraging. With the exception of the canyon top 

measurements documented by Roth et al. (2006), all these examples fall within the 10-

20% range of agreement found by Thiermann and Grassl (1992) over a homogeneous 

surface. They indicate that scintillometer measurements are indeed possible in the urban 

environment under certain weather conditions and after some considerations that include 

the modification of MOS expressions. 
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2.3. The Urban Boundary Layer. 

2.3.1. General description. 

 Urban environments are areas of the surface of the earth modified by humans, and 

are characterized by very large values of roughness due to the presence of large and 

complex structures. Roughness elements are organized in the form of varied 

arrangements of buildings, open areas and vegetation. Land-surface properties are highly 

heterogeneous. Surface types include asphalt, concrete, dirt, metal, and varied vegetated 

surfaces among others. Heterogeneities that result from the combination of different 

morphological and physical properties usually peak in the vicinity of downtown areas and 

tend to decrease away from them. Nevertheless, this can vary largely among urban areas 

and is not always the case. Together, the large heterogeneity that results from varied 

morphological and physical properties distinguish urban areas from the relatively flat and 

homogeneous environments that surround them. 

 

The intricate morphologies and surface types lead to large complexities in 

atmospheric flows and TT. Variables relevant in the BL that are the most affected include 

solar radiation and its balance; wind direction and speed; fluxes of heat, momentum and 

scalars; heat storage/release and in a general sense the heterogeneous distribution of 

sources and sinks of scalars (Roth, 2000). Three-dimensional gradients become important 

and the structure of the ABL becomes significantly different when compared to its rural 

counterpart. It is also important to keep in mind that these modifications do not apply to 

the urban environment itself but to areas located downwind. Understanding Urban 

Boundary-Layer (UBL) processes thus has implications in regions that are not only 

constrained urban areas.  
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The vertical structure of the ABL over urban areas differs in some aspects with 

that of the standard ABL. Oke (1976) was the first to propose a simple classification that 

consisted of the urban canopy (UC) and the UBL itself. A concise description is available 

in Roth (2000). The UBL itself can be subdivided in the urban RSL (URSL), the urban 

ISL (UISL) and the urban ML (UML). A visual description of the layers that describe the 

UBL is detailed in Figure 2.14. 

 

 

 

 

Figure. 2.14 Components of the Urban Boundary Layer after Roth (2000). 

 

 The Urban Canopy (UC) is the lowest section of the UBL system. It is defined as 

the layer of air located at and below the mean height of the buildings and trees ¥ 

(Glickman, 2000). Its climate is dictated by dynamic and thermal processes highly 
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affected by the immediate surroundings (Roth, 2000). The most remarkable processes can 

be summarized into form drag, wake diffusion and the development of highly 

heterogeneous sources and sinks of heat and momentum. All three processes are 

determined by building morphology and by surface properties, i.e. building orientation, 

albedo, emissivity, thermal properties and others. Form drag represents pressure 

differences across individual roughness elements, and dominates momentum transfer into 

the surface. Wake diffusion represents mixing generated by turbulent wakes behind 

individual elements. It mixes heat, momentum and other scalars in an efficient manner 

(Roth, 2000). The heterogeneous distribution of sources and sinks of heat and momentum 

is a product of differential heating/cooling of sunlit/shaded surfaces, as well as the 

diverse distribution of surface types and surface moisture. The top of the UC is 

characterized by a strong shear layer where the mean kinetic energy available above the 

canopy is converted into turbulence kinetic energy (TKE) and leads to strong turbulence 

intensities (Roth, 2000). 

  

 The URSL includes the UC and extends from the ground to the blending height 

�B. Influenced by individual roughness elements, flow inside the URSL has a fully three-

dimensional structure. This leads to dissimilar TT of heat and momentum (Roth and Oke, 

1995) and local-scale advection is important (Roth, 2000). The depth of the URSL �B 

typically extends over several tens of meters in the vertical (Rotach, 1999). It can be 

estimated based on the height of the buildings ¥ and usually varies between 2¥ in closely 

spaced canopies and 5¥ over rough vegetated canopies (Roth, 2000). It can be also 

estimated with the roughness length �� (Tennekes, 1973) and in some cases with the 

zero-plane displacement height h� (Garratt, 1980 and Raupach and Legg, 1984); where 

h� is a length introduced in rough environments to account for the vertical displacement 
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of the logarithmic wind profile due to the effects of canopies detailed in section 2.3.2. 

The blending height is also a function of stability and becomes larger during unstable 

stratification (Garratt, 1980). The horizontally-homogeneous UISL or Constant-Flux 

Layer (CFL) lays above the URSL. It is similar to the standard SL and therefore MOS is 

applicable.  

 

Three different scales can be identified when studying an urban environment. A 

sketch showing these scales is available in Figure 2.15, after Grimmond (2006).  

 

 

Figure. 2.15. Three different scales used to study the urban atmosphere (Grimmond, 2006). 

 

The largest scale in Figure 2.15. is the mesoscale, where urban areas appear as an 

increase in roughness, different thermal properties and sources of pollutants. These 
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differences produce changes in the structure of the ABL that are advected downwind, 

thus urban areas affect regions in the mesoscale that are several times larger than the 

urban area itself, depending on the characteristics of the flow and stability.  

 

On the local scale, three-dimensional structures become important. The 

distribution of houses and vegetation determine the complex circulations that occur 

around them. Interactions between the UC, URSL and between the URSL and the ISL 

become important. Local scales also consider the ISL but focus on the UC.  

 

The microscale is the smallest scale and where the present analysis concentrates. 

This scale permits to investigate the UC and the shear layer near its top. The three-

dimensional representation of the UC and its circulations become essential.  

 

The research here presented focuses on the microscale but with applications on 

the mesoscale in mind. It investigates TT of heat in the UC and across the overlying shear 

layer. It is of particular interest to understand the role of discrete sections of the UC in the 

TT of sensible heat and how they relate to the integrated role of the UC. 

 

 

2.3.2. Assumptions that fail in the Urban Roughness Sub-layer. 

 The URSL is characterized by high heterogeneity, which limits the applicability 

of well-established relationships derived for the flat and homogeneous SL (Roth, 2000).  

The ISL, where fluxes are constant and MOS applies, sits above the blending height and 

is usually located too far from the surface. Below the UISL, the three-dimensional 

structure of the environment rarely allows to establish a homogeneous fetch. This has 

motivated the development of footprint models to determine the source of turbulent 

fluxes (Schmid and Oke, 1990; Schmid, 1994 and Schmid, 2002). These models are 
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usually functions of stability, wind speed, lateral dispersion, surface roughness and height 

(Grimmond, 2006). 

 

 Local advection is important in the URSL as the sources and sinks of heat, 

momentum and scalars have complex distributions. Stationarity can be hard to attain 

(Roth et al., 2006). The presence of a shear layer over the UC produces large turbulence 

intensities and transient sweeps and ejections that modulate TT (Roth, 2000). Together, 

these limitations hinder the applicability of micrometeorological theories such as profile 

methods (Oke 1987) and MOS (Monin and Obukhov, 1954). It should be noted, however, 

that data calculated using MOS has shown reasonable agreement with reliable 

measurements made in urban environments under certain conditions (see section 2.2.3). 

This is the case of some scintillometer studies  

 

 Another consideration is the vertical displacement of the logarithmic wind profile. 

In canopies where roughness elements are packed together (e.g. some urban and forest 

canopies) they act like a displaced ground surface (Stensrud, 2007). A new parameter, the 

zero-plane displacement height h�, is usually introduced to account for this displacement. 

The use of h� allows the establishment of an effective height �+ that allows the 

application of SL theories such as MOS above the canopy when possible, where: 

 

         �+ � � , h�     (2.44) 

 

The effects of h� on the SL logarithmic wind profile are illustrated in Figure 2.16. Wind 

vectors are indicated with red arrows. Velocities are represented with arrow length. 

Surface features are indicated with gray shading. 
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Figure 2.16. Schematic example of wind profiles over a flat rural environment (left) and over an urban 

environment (right). d0 is describes the vertical displacement of the base of the logarithmic wind profile. 
 

  

 Kaimal and Finnigan (1994) suggested that a rough approximation to 
92̂ ~0.25. 

This is valid in homogeneous canopies but can vary largely in the complex urban 

environment. Grimmond and Oke (1999) consider 
92̂ ~0.7 as appropriate. 

 The determination of values for h� in the urban environment is a complex task. It 

depends on the characteristics of the urban canopy structure (Grimmond and Oke, 1999; 

Roth, 2000), and is generally attained via morphometric methods (detailed in Chapter 5). 

Appropriate determination of h� is of great importance since MOS (i.e. when applicable) 

relies on functions of �+/D. Lagouarde et al (2006) showed that the determination of h� 

and its variability along the optical path is indeed crucial to attain reliable scintillometer 

measurements in the URSL. 

 

  



49 

 

2.4. Numerical representation of the Urban Boundary Layer. 

 Stensrud (2007) presents a comprehensive overview of Numerical Weather 

Prediction (NWP) models and the various types of parameterizations used to represent 

physical processes. From these, Urban Canopy Models (UCM) are of special interest 

here. Unfortunately, most NWP models that operate on the mesoscale represent urban 

areas in very simple ways (Craig and Bornstein, 2002; Rotach et al., 2005), partly due to 

computational limitations but also due to limited knowledge of atmospheric processes in 

urban environment and a limited number of urban models available. This section 

introduces the approaches used to model urban areas and then focuses on the Harman-

Barlow-Belcher parameterization (Harman et al. 2004), analyzed in the context of the 

urban campaign results in Chapter 6. 

 

 A NWP model is a numerical algorithm designed to resolve the conservation 

equations numerically over limited periods of time. They are excellent tools for short and 

medium range forecasts, but also for climate studies. NWP models require initial and 

lateral conditions provided by grids constructed using in situ data and fields derived from 

remote sensing platforms. Since all atmospheric processes cannot be resolved explicitly, 

some need to be represented with parameterizations, which are simplified and idealized 

representation of complex physical processes. Yet simple, they are designed to retain the 

essence of the processes represented. They are important because they strongly affect 

model output through indirect interactions via changes in model variables (Stensrud, 

2007). The types available in NWP models usually resolve processes such as radiation, 

land-surface-atmosphere interactions, soil interactions, the ABL, turbulence, convection, 

microphysics and orographic drag (Stensrud, 2007). The parameterization of TT in the 

SL is of special interest, since it establishes the connection between the surface and the 
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atmosphere, and the physical processes behind this connection differ between standard 

SL and those over urban areas. 

 

2.4.1. The urban street canyon. 

 The urban street canyon or urban canyon is considered as the generic unit of an 

urban surface (Núñez and Oke, 1977) and has been used as the basis for several studies 

(e.g. Johnson et al., 1991; Mills, 1993; Sakakibara, 1996; Arnfield and Gimmond, 1998; 

Masson, 2000; Kusaka et al., 2001; Martilli et al., 2002; Barlow et al., 2004; Harman et 

al., 2004, among others). An urban canyon is the space between two elongated buildings. 

Four facets are usually considered to represent and urban canyon: the ground or street, 

the two walls from the buildings and the roof of one of the buildings. This is, of course, a 

simple representation of an urban area. In reality urban areas have very complex 

morphologies. An illustration of an urban street canyon is provided in Figure 2.17 after 

Núñez and Oke (1977). This concept is essential in the modeling of urban areas and will 

be addressed several times in the following. 

 

 

Figure 2.17. Structure of an urban canyon after Núñez and Oke (1977). Note that the north 

does not necesarilly points along the canyon. In this study the north pointed across it. 
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2.4.2. Urban modeling approaches. 

 The way urban areas are represented in mesoscale models can be organized into 

three approaches listed in order of increasing complexity: Slab Models, Single-Layer 

Models and Multi-Layer Models (Dupont et al. 2004, 2006). Figure 2.18 describes these 

approaches and the main components of their land-surface models and input parameters. 

 

 

 

 

 

Figure. 2.18. Classification of urban parameterization approaches used in mesoscale models. 

  

 A schematic representation of the differences between the three types of 

approaches is provided in Figure 2.19 in which TT transfer is represented using resistance 

networks (Stensrud, 2007) after Kuzaka et al. (2001).  
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Figure. 2.19. Example of the parameterization of the TT of heat in the urban canopy via three different 

approaches, reformatted after Kuzaka et al. (2001). 

 

 Slab Models are the most popular due to their simplicity and low computational 

cost. They are thus used in many atmospheric models to represent land-surface-

atmosphere interactions (Seaman et al., 1989; Menut, 1997; Chen and Dudhia, 2001; 

Kusaka et al., 2001, Masson, 2000). Slab Model descriptions are available in Martilli et 

al., 2002, Dupont et al., 2004 and Dupont et al., 2006. Urban areas in Slab Models are 

described as soil types with high values of roughness (i.e. one to a few meters, Wieringa, 

1993 and Petersen, 1997) and reduced vegetation cover. TT in the SL of the models is 

described with MOS, which is sometimes a very coarse approximation since constant 

fluxes, stationarity and homogeneity cannot be usually assumed close to the urban 

surface. These limitations in the representation of urban areas gain importance with the 

use of higher resolution models. Negative effects include failure in the reproduction of 

the vertical structure of turbulent fluxes and limitations on the reproduction of the urban 

heat island effect. The major source of problems is that the sink of momentum is the 

ground instead of the upper canopy and that modifications of the radiative balance by the 

UC are ignored (Martilli et al., 2002). Improvements in the representation of urban areas 

without adding too much computational cost have been made. Some represent urban 

areas as solid canopies of concrete (Best, 2005). Roughness length parameterization 
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(Rotach, 1999) and exploitation of the concept of thermal roughness length have also 

been discussed (De Ridder and Schayes, 1997) but still, important limitations remain 

(Dupont and Mestayer, 2006). 

 

 Single-layer models are next in order of complexity. They provide the 

atmospheric model with values that represent the entire influence of the UC. Building 

characteristics such as building height, area densities and ratios are considered. These 

models parameterize physical processes such as the surface energy balance and turbulent 

transfer in the UC and provide the atmospheric model with quantities that represent the 

integrated effect of the canopy. Limitations arise when fine grids (i.e. spacing smaller 

than 1 kilometer) are used, since three-dimensional gradients become important (Dupont 

and Mestayer, 2006). Furthermore, problems associated with MOS violation are not 

resolved. Some examples of Single-Layer Models can be found in Masson (2000), 

Kusaka et al. (2001), Ca et al. (2002), Martilli et al. (2002), Dupont et al. (2004) and Otte 

et al. (2004). These models are particularly relevant to this study due to the focus on the 

integrated role of the UC in terms of TT. Accordingly, a couple of examples are provided 

in the following: the models presented by Masson (2000) and Kusaka et al. (2001). 

 

 Masson (2000) presented the Town Energy Budget (TEB) scheme, a single-layer 

urban parameterization. The scheme made as general as possible to increase its 

applicability into different urban environments around the world. Being a single-layer 

model, the TEB provides the atmospheric model with information from a constant flux 

layer in the lowest boundary. Energy budgets are considered for roofs, roads and walls 

and assumes an isotropic array of surfaces. TT is parameterized using the bulk 

aerodynamic approach (Garratt, 1992) and the concept of resistances (Stensrud, 2007). A 

summary is presented in Figure 2.20. 
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Figure. 2.20. Parameterization of the TT the urban canopy from Masson (2000) showing aerodynamic 

resistances and wind profiles. 

  

 Exchange coefficients are calculated with empirical parameterizations. Turbulent 

fluxes of sensible heat from rooftops and canyon tops are obtained using classical ABL 

laws. Inside the canyon, the model also considers the effects from sensible and latent heat 

fluxes produced by building walls, traffic and industry. Resistances are calculated based 

on Mascart et al. (1995). 

 

 Another good example of a single-layer approach is the model developed by 

Kusaka et al. (2001). In this model, the influence of urban geometry is considered via a 

parameterization of the influence of street canyons, where the surface temperature and 

heat fluxes from roofs, walls and roads is estimated. It also includes the effects of 

shadowing from buildings and reflection of radiation. The authors compared the model 

against multi-layer and slab models. Their simulations agreed well with observations and 

results from the multi-layer model. They agreed in that the rooftops were the hottest 
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surfaces during daytime and the coolest after midnight, and both models produced similar 

diurnal cycles of the energy budget.  

 

 Multi-layer models are the most accurate in the representation of TT inside urban 

areas. Yet computationally expensive, these models are suitable and recommended for 

fine resolutions. Multi-layer models divide the UC into several layers. Fluxes of heat, 

momentum and moisture are explicitly resolved using modified versions of the 

conservation equations. These contain extra terms that describe the sources and sinks 

associated with buildings and vegetated areas, and the surface energy balance is usually 

modified (Martilli et al, 2002). Implementation of multi-layer models in mesoscale 

models has resulted in improved model output. Dupont et al. (2004, 2006) demonstrated 

that better agreement was attained between model results and observations once an 

urbanized version of MM5 was used. Specific areas of improvement included the 

representation of the nocturnal heat island; the representation of the effects of individual 

elements on flow characteristics; the representation of a decrease in wind velocities over 

the UC; and the development of a layer of cool air inside the canopy during daytime from 

the shading effects of buildings and trees. Urbanized mesoscale models also tend to 

produce deeper boundary layers, which is observed in reality. Some examples can be 

found in Uno et al. (1989), Brown (2000), Ca et al. (2002), Martilli et al. (2002), Lacser 

and Otte (2004), Dupont et al. (2004) and Dupont and Mestayer (2006). 

 

 An example of a multi-layer model is the Urban Canopy Parameterization (UCP) 

implemented into MM5 by Otte et al. (2004), and tested over Philadelphia, Pennsylvania. 

Their results showed closer agreement with observations when compared against single-

layer simulations. The use of several layers in the UC accounts for the dynamic effects of 

the urban environment. Since the lowest level of the atmospheric model corresponds to 
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the ground, h� does not need to be parameterized.  TKE equations were modified to 

account for the area-averaged effects of the urban elements and were oriented for an ABL 

parameterization scheme that  considers a prognostic equation for TKE. They used the 

Gayno-Seaman ABL Parameterization scheme (e.g. Shafran et al., 2000). The fraction of 

urban area in a grid cell is partitioned into the total area represented by canyons (i.e. 

street level between buildings) and roofs. It is assumed that buildings affect the flow and 

that they do not take any volume within the grid cell. The treatment of the 

thermodynamics was more simple and consisted of using simplified approximations in 

the temperature tendency equations and in the ground surface energy budget. Different 

approximations were used for in-canopy layers versus those located above it.  

 

 An example of the representation of the UC within a grid cell is presented in 

Figure 2.21 after Brown and Williams (1998), followed by an example of the 

representation of physical interactions in the UC in Figure 2.22. The latter was 

constructed based on the SMU-2 Canopy Parameterization implemented in the MM5 

model (Dupont et al., 2004). 

 

 

 

Figure. 2.21. Schematic illustration of the side view of an urban grid cell adapted from Brown and 

Williams (1998). 
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Figure. 2.22. Schematic comparison of the Simple-layer (Roughness approach) and Multi-layer 

(Drag approach) models, reformatted after Dupont et al. (2004). 

 

 

 One of the most recent comprehensive efforts to represent urban areas in 

mesoscale models is available in Chen et al. (2011). The authors developed an urban 

modeling system coupled with the Weather Research and Forecasting model (WRF). The 

coupling was made through the parameter urban fraction. For a given grid cell, the Noah 

LSM  (Chen et al., 1996; Chen and Dudhia, 2001) provides surface fluxes and 

temperature for the vegetated components of urban areas and the UCM for the 

anthropogenic components. The authors also incorporated the three available approaches: 

a slab model, the single-layer UCM developed by Kusaka et al. (2001) and Kusaka and 

Kimura (2004); and a multi-layer UCM presented by Martilli et al. (2002). 

  

 Some additional examples of efforts on the development and/or validation of 

urban parameterizations include the work of Taha (1999), Taha and Bornstein (1999), 
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Dupont et al. (2004), Harman et al. (2004), Roulet et al. (2005), Dupont et al. (2006), 

Lemonsu et al. (2006), Liu et al. (2006), Holt and Pullen (2007), Lee and Park (2008), 

Taha (2008a,b) and Porson and Harman (2009). 

 

 It is evident that an increase in complexity and in the representation of physical 

processes in urban parameterizations improves mesoscale model results. Yet, these 

parameterizations are computationally expensive. Even when there is still large room for 

improvement, it is essential to work on finding a balance between accuracy and 

computational requirements. From the parameterizations presented, the Harman-Barlow-

Belcher Model for scalar fluxes (Harman et al., 2004) is described with more detail in the 

following and inter-compared with the data collected during the ILREUM urban 

campaign in Chapter 6. This parameterization was selected based on the geometrical 

resemblance with the geometry of the ILREUM measurement site. 

 

2.4.3. The Harman-Barlow-Belcher Model. 

 Harman et al. (2004) developed a model that parameterizes the TT of scalars in 

urban street canyons. The model was validated with data collected in wind tunnel 

experiments (Barlow et al. 2004) and good agreement was found. This particular model 

was of special interest due to the geometrical resemblance between one of the studied 

cases and the urban canyon measured in this study (i.e.  ¥ ¦⁄ � 0.25". Model output is 

compared with the results from the urban campaign in Chapter 6. 

 

 The Harman-Barlow-Belcher model emphasizes the geometrical dependence of 

TT under cross-canopy flow conditions. The model considers the urban area as a series of 

infinitely long canyons oriented normally to the reference flow §(. Building height is 
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considered uniform and the roofs flat. TT transfer is represented two-dimensionally 

where a canyon cross-section is divided into four components or facets: upstream wall, 

ground, downstream wall and downstream roof  as shown in Figure 2.23.  

 

 

Figure 2.23. Schematic representation of the street canyon modeled by Harman et al. (2004). 

 

 The model represents different canyon height-to-width ratios ¥ ¦⁄  and was tested 

for four geometries that ranged from narrow  ¥ ¦⁄ � 2" to wide  ¥ ¦⁄ � 0.25" 

canyons. The latter coincides to the geometry of the ILREUM urban campaign site 

(Chapter 5). Flow and TT is urban canyons highly sensitive to canyon width ¦. The size 

of the recirculation region Dz that forms in urban canyons under normal flow conditions 

matters, especially how it relates to ¦. The relationship between Dz and ¦ leads to the 

identification of three different flow regimes in urban canyons. These are summarized in 

Figure 2.24 after Oke (1987) and Harman et al. (2004). The isolated roughness regime 

prevails in canyons where Dz ¡ ¦ (Figure 2.24a). It is characterized by a region of 

ventilation in the downwind end of the canyon that reaches the canyon floor. The wake 

interference flow regime occurs when Dz/2 ¡ ¦ ¡ Dz (Figure 2.24b) and is 

characterized by a ventilation region that does not reach the ground. When the buildings 
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are too close together the skimming flow regime occurs (Figure 2.24c). In this case in-

canyon flow is mostly decoupled from above-canyon flow, and ventilation near canyon 

top is small. 

 

 

 

Figure 2.24. Schematics of the streamlines for three flow regimes: (a) isolated roughness, (b) wake 

interference and (c) skimming flow, reformatted after Oke (1987) and Harman et al. (2004). 

 

  Dz can be related to building height ¥. Studies have found that Dz varies between 

2¥ and 3.5¥ (Oke, 1987; Castro and Robins, 1977 and Okamoto et al., 1993). Data from 

the urban campaign agreed with those of Okamoto et al., 1993 in that Dz is closest to 

3.5¥, but even larger values were observed. 
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 As detailed in Stensrud (2007), a common approach to represent TT in the SL is 

to parameterize it in terms of resistance networks. Harman et al. (2004) divided the 

parameterization into two cases: one for a canyon with ventilation (Figure 2.25a) and one 

for a canyon with skimming flow (Figure 2.25b). 

 

 

Figure 2.25. Resistance network used to parameterize SHFX Harman et al. (2004) in two different canyons. 
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2.5. Context of the study. 

2.5.1. Open questions. 

 There are two sets of general questions given the two topics of interest. Regarding 

TT in the urban environment, the main questions are "What is the integrated role of the 

UC on the TT of heat with the URSL?", "What are the roles of the individual components 

of the UC" and "How do the individual components tie to the integrated role"? On the 

other hand, the main questions regarding the use of scintillometers over the highly 

heterogeneous urban canopy are "Are scintillometer reliable means to sample the highly 

heterogeneous urban canopy? Are scintillometer skill evaluation campaigns always 

necessary before using one of these instruments for data collection? Can a pragmatical 

approach to correct scintillometer fluxes be developed? What approach can be used and 

what are the details behind it?" 

 

2.5.2. ILREUM: the opportunity. 

The NSF Career Award 'Innovative Laboratory for the Research and Education in 

Urban Meteorology' (ILREUM) was initiated in 2007. This project was motivated, 

among other goals, by an interest in understanding the integrated effects of the urban 

canopy on the turbulent exchange of heat and momentum. One specific interest of 

ILREUM was to measure turbulence properties within the urban RSL by the means of a 

comprehensive and prolonged observational campaign. Long-lasting measurements were 

planned strategically with the goal of addressing temporal representativeness limitations 

on data available that exist from the briefness of previous urban campaigns. Available 

results are also limited in space due to the highly heterogeneous nature of urban areas, 

which poses a spatial representativeness issue. Overcoming this issue is, however, a 
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different and more complex problem. One of the possible solutions considered in 

ILREUM, was to complement strategically positioned sonic anemometer measurements 

with those from a platform designed to provide quantities integrated in space. It was here 

that the idea of using scintillometers emerged. Given their documented skill when 

operated over heterogeneous surfaces, scintillometers were considered as plausible means 

to collect spatially-integrated TT data and thus address the spatial representativeness 

issue. Since discrepancies regarding scintillometer skill over heterogeneous surfaces has 

been described in some studies, it was also considered necessary to evaluate 

scintillometer skill under such level of heterogeneity. Given the motivation overlap and 

opportunity, the present work arose as an excellent means to address some these two 

topics, and was thus carried out with the support of ILREUM. 

 

 

2.5.3. Approach and rationale. 

The approach to attain the research objectives was based on observations. 

Turbulent fluxes of heat were measured using several sonic anemometers and a small 

aperture scintillometer. Sonic anemometers were placed at strategic locations to measure 

the behavior of TT in different sections of the sampling domains. The scintillometer was 

used to measure the integrated role of the domain in terms of TT.  

 

The measurements were organized in three field campaigns. The core urban 

campaign was carried out in and above the UC, but data were also collected over a flat 

and homogeneous environment (i.e. or also referred to as 'suburban' campaigns, see 

Chapter 4 for details) to evaluate and calibrate the performance of the scintillometer 

under conditions where MOS applies. The distance between the core urban campaign and 

the  suburban ones was only six kilometers. The distance was kept short to collect 
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measurements in regions characterized by similar climates and whose differences could 

be attributed mostly to urban effects. The main goal of these campaigns was, however, to 

evaluate and calibrate the measurements made with the scintillometer so they could be 

relied on once made over the urban environment. These campaigns were also planned to 

explore alternative methods to calibrate scintillometer data, and were successful in the 

determination of a novel calibration approach that should increase the confidence in 

future scintillometer measurements. 

 

 The core campaign was carried out in and over an urban street canyon located in 

the campus of the University of  Oklahoma, in the city of Norman, Oklahoma. The 

campaign lasted a little over 13 months. The prolonged duration was planned  to address 

temporal representativeness limitations that arose from the briefness of previous 

campaigns. Spatial representativeness issues were addressed by measuring the integrated 

role of the canopy on TT with the scintillometer. Comparisons between sonic 

anemometer and scintillometer measurements was planned to establish the connections 

between the role of individual sections of the canopy on the integrated effect in terms of 

turbulent transfer between the urban canopy and the RSL. An additional goal of the 

campaign was to evaluate the performance of the scintillometer in the heterogeneous 

RSL, and to gain more insight regarding the conditions in which the data can be relied 

upon when the instrument is operated inside the RSL. 
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3. INSTRUMENTATION. 

 The core of ILREUM measurements were made with the SCINTEC SLS20 

displaced-beam small aperture scintillometer (SLS) and with several RMYoung-81000 

and CSAT3 Campbell Scientific SA. Additional measurements considered for the 

analysis included data from the Norman MESONET site. General information about 

these platforms is provided in the following. 

 

3.1. The sonic anemometers. 

SA are electronic instruments designed to measure high-resolution velocities 

based on deviation from the theoretical speed of sound in a media. They calculate the 

time that it takes a sound wave to travel from an emitter to a receiver that are generally 

separated by a few centimeters. Observations are generally made at frequencies in the 

order of 10 and 20 Hz, but can be as high as 60 Hz (Campbell Scientific, 2010). The high 

measurement frequency makes the use of data loggers a requirement.  

 

SA can be two- and three-dimensional. The latter are of particular interest when 

investigating the vertical transfer of heat. Three-dimensional SA consist of three emitters 

and three receivers that allow to measure three orthogonal wind components. 

Temperature can also be retrieved, yet the instruments are precise on measuring 

temperature fluctuations but not the value of temperature itself: the accuracy for 

temperature is �2°C for wind speeds that range between 0 and 30 ms
-1

 (R. M. Young 

Company, 2011). Complementary temperature sensors are recommended if temperature 

measurements need to be made simultaneously. 

 

Two types of sonic anemometers were used as part of ILREUM. The CSAT3 

sonic anemometers were manufactured by Campbell Scientific Inc. (Campbell Scientific, 
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2010). They operate under wind speeds < 30 ms
-1

 and have offset errors in the order of 

.02 ms
-1

 for horizontal velocities, .04 ms
-1

 for vertical velocities and 0.025°C for 

temperature. This anemometer model has the advantage of having reasonable exposure to 

vertical velocities. Mast interference can be important over a narrow range of angles in 

the order of �10°. An photograph of the instrument is presented in Figure 3.1. 

 

 

 

Figure 3.1. CSAT3 sonic anemometer. A cup anemometer can be seen in the background.  

 

The RMYoung-81000 Model (R.M. Young Company, 2011) operates under wind 

speeds < 40 ms
-1

. It exhibits wind speed errors in the order of �1% under wind speeds < 

30 ms
-1

. These increase to �3% as wind speeds increase to 40 ms
-1

. A limitation of this 

instrument is the possible mast interference of the instrument shaft with the flow, which 

is primarily a concern for the vertical velocity. Nevertheless, comparisons against CSAT3 
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data (Chapter 4) suggest that differences between platforms are small. A photograph of 

RMYoung is presented in Figure 3.2. 

 

 

Figure 3.2. RMYoung sonic anemometers, Model 81000, being tested at the School of Meteorology 

(SoM - OU) Instrumentation Laboratory before the core ILREUM campaign. 
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3.2. The scintillometer. 

 The scintillometer used in ILREUM was a displaced-beam small aperture 

scintillometer manufactured by SCINTEC (SCINTEC AG, 2006). The model used was 

the SLS20. Figure 3.3. shows a photograph of the receiver operating during a lightning 

storm. The red laser reflection on the tripod is remarkable. Figure 3.4. shows a 

photograph of both transmitter and receiver while operated during the core ILREUM 

campaign. Details are available in sections 2.2.1. and 2.2.2.  

      

 

Figure 3.3. ILREUM SLS receiver during a lightning storm. April 2010. 

 

 

 

Figure 3.4. SLS transmitter (background) and receiver (foreground) 

collecting data during the core ILREUM campaign. 
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3.3. The Norman MESONET site. 

 The Oklahoma MESONET is a network of environmental monitoring stations 

distributed throughout the state of Oklahoma. It consists of 120 automated stations Mc 

Pherson et al. (2007). Each site is characterized by sets of instruments located on or near 

10-meter-tall towers. The measurements are provided to the public as 5-minute averages. 

Variables measured at the Norman MESONET site include battery voltage, atmospheric 

pressure, rainfall since midnight, relative humidity at 1.5 meters, solar radiation, air 

temperature at 9 and 1.5 meters, wind direction at 10 meters and wind speed at 2 and 10 

meters. Soil temperatures under bare soil and under native vegetation are also provided at 

time as 15-minute averages. A more detailed description of the variables measured is 

presented in Table 3.1, from McPherson et al. (2007). 

 

Table 3.1. Oklahoma MESONET instrumentation summary from Mc Pherson et al. (2007). 
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 MESONET data were used as reference for the analysis of several ILREUM 

datasets. A photo of the Norman MESONET site is presented in Figure 3.5. A more 

detailed information about the MESONET can be found in Brock et al. (1995) and Mc 

Pherson et al. (2007). 

 

 

                    Figure 3.5. Norman MESONET site. 
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4. SCINTILLOMETER SKILL EVALUATION 

4.1 Goal and approach. 

 Several studies have investigated the skill of SLS on the measurement of turbulent 

fluxes and most have encountered reasonable agreement with simultaneous 

measurements made using reliable platforms such as SA (see section 2.2.3). Still, 

differences that require improvement have also been found. In the past, these have been 

mostly attributed to the MOS empirical approximations used in the SLS algorithm. While 

proven to be sources of uncertainty, the findings from this study confirmed recent 

findings described by SLS researchers (Bram Van Kesteren, personal communication, 

2011) in that the Hill Refractive Index Spectrum (Hill, 1978) seems to be the largest 

source of disagreement and ultimately affects calculation of the inner scale of turbulence 

l0. Chapter 4 explores the sources of these discrepancies, but focuses on the establishment 

of a pragmatic approach to correct them. The goal of Chapter 4 is then to present a new 

method of corrections that improves the measurement of SLS sensible heat fluxes 

(SHFX) determined upon data from the suburban campaigns and later use them to correct 

the SLS measurements made in the urban environment, which are addressed in Chapter 5. 

 

 The corrections were determined based on SA measurements made near SLS path 

center (see sections 2.1.2, 3.1 and 3.2). Data were collected in an ideal environment (i.e. 

flat and homogeneous to fulfill MOS assumptions) and during two three-month long 

periods. The set of corrections proposed were also tested with the data. Findings suggest 

that SLS SHFX - and momentum fluxes as well - can be improved by correcting SLS 

measurements of l0 and also ��
� using polynomial fits. The methodology, findings, 

corrections and their impact on SLS data are presented in this chapter. 
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4.2. ILREUM suburban campaigns. 

4.2.1. General description. 

 Two field campaigns were made in a flat and homogeneous environment covered 

by ten to fifteen-centimeter tall prairie grasses. The site was located only 100 meters 

away from the Norman MESONET (35°14’10’’ N, 97°27’47’’ W and 357 mASL) and 

~200 km south of the site where the Kansas experiments were carried out (Kaimal and 

Wyngaard, 1990). The placement was encouraging in terms of inter-comparisons using 

some MESONET data and in terms of MOS applicability. One limitation, however, was 

the closeness to the Norman, Oklahoma urban area, which justifies the use of the term 

'sub-urban' instead of 'rural'. The closeness to an urban environment could lead to slight 

deviations from MOS that introduce some uncertainty into the inter-comparison exercise. 

 

 The campaigns were conducted during the summers of 2007 (22 June - 13 

September) and 2008 (22 May - 5 September). Relatively prolonged campaigns were 

planned to measure under a broad spectrum of flow and stability regimes. The SLS 

(section 3.2) was operated over a 100-meter-long east-west oriented path and at two 

meters above the ground. Several SA were operated along the path: one RMYoung SA 

during 2007; and one RMYoung and four CSAT-3 SA during 2008. SLS data was 

recorded at 1-minute intervals whereas sonic anemometer data was recorded at a 

frequency of 10 Hz. The SLS was powered by a 12V power source and the data were 

transmitted by cable. SA were powered via solar panels and a battery, and their data were 

transmitted wirelessly. A map that shows instrument distribution is presented in Figure 

4.1, and a photograph of some of the instruments on Figure 4.2. 
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Figure 4.1. Map of the site were both ILREUM sub-urban campaigns were carried out. 

 

 

 
 

Figure 4.2. Photographs showing some of the instruments operated during the 2007 and 2008 campaigns. 
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 Figure 4.1 shows the location of the SA (colored circles) and the SLS (black 

arrow). The MESONET is indicated with a red square, buildings in black and paved 

surfaces in gray. Some remarkable obstacles were located to the east, northeast and 

northwest of the path, with the best fetch located to the south-southeast. A photograph 

showing some instrumentation is presented in Figure 4.2. Panel (a), looking west, shows 

the SLS receiver in the foreground, the RMYoung SA being installed near the center of 

the path, the SLS transmitter at the end of the path and the MESONET in the background. 

Panel (b), looking northeast, shows the RMYoung and two CSAT3 SA operated near 

path center during 2008. 

 

4.2.2. Data and processing. 

 Datasets available include SLS and SA measurements, and 5-minute averages of 

different variables collected at the Norman MESONET site. The SLS system provided 

several variables, some of which consisted of calculations from different parts of the 

algorithm designed to retrieve turbulent fluxes from scintillations (section 2.2). Turbulent 

fluxes were calculated for 15-minute intervals using the EC approach (section 2.1.2), so 

inter-comparisons were made in term of 15-minute averages. 

 

 Inter-comparisons were established in terms of �� and ��
�. The goal of comparing 

data high up the algorithm was to avoid errors associated with MOS. Yet the SLS 

algorithm (Figure 2.12) was applied backwards to obtain SA ��
� and � from SA 

measurements �	 and SA 
	 via expressions 2.16, 2.17, 2.29, 2.36 and 2.38 through 2.41. 

�� and ��
� were then calculated using  2.28 and 2.35. 
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4.2.3. Stratification upon wind direction. 

 Data were stratified upon wind direction WD due to the presence of some 

obstacles around the measurement site. Obstacle effects on the data were explored by 

comparing SA WD and WS against 10 m MESONET data. The latter were selected as 

reference values due to the platform location away from obstacles. Inter-comparison 

showed that the largest differences occur at angle sectors consistent with the presence of 

buildings. This is illustrated in Figure 4.3 and backed up by Figure 4.1. 

 

 

 

Figure 4.3. WS differences between ILREUM SA and the 10-m MESONET data. 
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 Figure 4.3 shows WS differences �WS�� � WS�������� averaged over 10-degree 

sectors for two CSAT3 SA located at 25% and 75% of the path. CS3 (yellow) and CS4 

(brown) correspond to the easternmost and westernmost locations respectively. Figure 4.3 

clearly shows that the smallest WS differences occur during periods with southerly flow. 

This is consistent with the region characterized by the largest fetch with flat and 

homogeneous conditions (Figure 4.1). The largest differences are found on the 

easternmost SA for WD from 50° to 110°. These differences occur when CS3 is located 

at the lee side of the building complex located to the east-northeast. A second signal is 

evident for WD between 220° and 260°, consistent with the location of CS3 at the 

windward side of the complex. A third difference signal can be found on CS4 between 

300° and 340°, when the platform is located on the lee of a meteorological radar. 

 

 Given the need to concentrate the analysis on conditions close to those ideal for 

MOS to apply, only measurements that correspond to the cleanest fetch were considered. 

Any data outside from the 140° to 210° range was excluded.  

 

4.3. Findings. 

4.3.1. Selected diurnal cycles. 

 Diurnal cycles of selected days are presented in Figures 4.4 through 4.10. Top 

panels indicate sensible heat fluxes (hereafter SHFX) from the SLS (red) and EC (blue). 

Lines indicate fluxes scaled by WS, faint asterisks indicate non-scaled fluxes. The ratio 

between SLS and SA SHFX was calculated via: 

 

 

            RATIO � ���� ! 

���� "
# 100 %   (4.1) 
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The second panel from the top shows WS in ms
-1

 (light green bars) and WD in degrees 

(dark green). The third panel from the top shows solar radiation in Wm
-2

 (yellow bars), 

stability in terms of (/* (black dots) and periods in which rainfall was present (blue bars 

on top), yet rainfall amounts are not shown. MESONET temperatures in °C are presented 

in the bottom panel. Soil temperatures at 5 cm under sod are shown in brown, air 

temperature at 1.5 m in light blue and air temperature at 9 m in dark blue. Vertical 

temperature differences (T1.5-T9) are shown with a black line and dots. Remarks about 

some interesting features from these selected cases are discussed in the following. 

 

 Figure 4.4 shows a typical day characterized by clear skies and winds slightly 

weaker than the average (July 26, 2008).  

 

 

Figure 4.4. July 26, 2008: Typical day with clear skies and relatively weak winds. 



78 

 

 The diurnal cycle of SHFX is quite close to the overall average, which will be 

shown and discussed later on. The SLS underestimated the fluxes over most of the period 

with some exceptions. The underestimation was slightly below the average, which 

suggests that the SLS functions better under weaker winds. Overestimation constrained to 

transition periods due to problems near neutral conditions when scintillations become 

weak. Another period of overestimation was present during the early night, when high 

stability and very weak winds were present.  Once winds increased in magnitude after 23 

LST the SLS underestimated SHFX again. Daytime underestimation was smaller than 

20% during this day whereas nighttime underestimation was sometimes as large as 50%. 

Overestimation can be pretty large (over 400%) but is generally short lived and 

constrained to periods with weak winds and high stability. 

 

 A contrasting case is presented in Figure 4.5 (August 17, 2008), when thick 

clouds were frequently present. WS were also below the average during most of the 

period. The SLS did a better job measuring SHFX partly due to the weak winds. During 

daytime, SLS SHFX were close to SA SHFX and ranged from underestimation in the 

order of 30% to overestimation in the order of 30%. Underestimation was more frequent. 

Overestimation during stability transition periods was also present, but more dramatic 

during the early morning, associated with very weak winds. Fluxes during nighttime were 

weak and in good agreement between both platforms.  
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Figure 4.5. August 17, 2008: Cloudy skies and weak winds. 

 

 Figure 4.6 shows an interesting case (June 27, 2008), since it illustrates a period 

in which winds were strong but the cloudiness decreased dramatically around local noon. 

Although the behavior between SLS and SA SHFX was similar, the SLS underestimated 

fluxes largely (20-50%) and consistently. Underestimation was more dramatic during 

nighttime. This figures illustrates that underestimation increases as wind speed increases. 

Brief overestimation was present again during stability transition periods, but the values 

were smaller than in the other cases due to the strong winds. An interesting feature was 

the good agreement found during a brief period with thick clouds present before noon. 

The agreement can only be attributed to the decrease in SHFX associated with a sharp 



80 

 

decrease in solar radiation. This supports the statement that underestimation decreases 

towards neutral conditions. 

 

 

Figure 4.6. June 27, 2008: Strong winds under cloudy and clear skies. 

 

 A similar behavior was present during the previous day (June 26, 2008) and is 

shown in Figure 4.7.  The main difference was the weaker winds. Consequently, 

underestimation was present but reduced in magnitude and overestimation during 

stability transitions increased significantly. Another interesting feature to point out is the 

more smooth nature of the behavior of SLS SHFX when compared against EC ones, 

which has been widely discussed in the literature. This behavior is associated to the fact 

that SLS fluxes represent path-averaged quantities. 
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Figure 4.7. June 26, 2008: Strong winds under cloudy and clear skies. 

 

 

 Figure 4.8 illustrates the common response of SLS to rainfall. During rainfall 

events, scintillations are distorted by water droplets and the SLS cannot measure correct 

quantities. It is observed, however, that sometimes when heavy rainfall occurs the SLS 

takes some time to recover. This seems to be caused by water entering the transmitter and 

receiver windows and taking some time to evaporate. When rainfall is light the SLS only 

has problems measuring during the event itself. 
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Figure 4.8. June 28, 2007: Effects of rainfall on measurements. 

 

 

4.3.2. Average diurnal cycles. 

 Average diurnal cycles of sensible heat fluxes are illustrated in Figure 4.9. Blue is 

used for EC sensible heat fluxes and red for the SLS. The scatter represents individual 

observations and the lines the average diurnal cycles. The average SHFX ratio 

(SLS*100/EC) is plotted with a black line. Time is expressed in local standard time 

(LST).  As expected, the behavior of SHFX is almost perfectly sinusoidal during daytime 

in response to the diurnal cycle of incoming solar radiation. During nighttime, larger 

SHFX are found before midnight due to stronger wind speeds that decrease as the night 

progresses. Transition periods occur around 19 LST during the evening and around 7:30 

LST during the early morning or about one hour after sunrise and one hour before sunset. 
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Given that the measurements were carried during the summer, sunrise and sunset times 

did not change largely during this period but some effect of day length is definitely 

present. The largest SHFX occur around 13 LST which coincides with the time of the day 

with the largest incoming solar radiation, since daylight savings were present. 

 

 

Figure 4.9. Average diurnal cycle of sensible heat fluxes for both 2007 and 2008, 

measured with the RMYoung SA. 

  



84 

 

 SHFX magnitudes vary between -60 and +5 W.m
-2

 during nighttime, and between 

-5 and +280 W.m
-2

 during daytime. This figure confirms that the SLS underestimates 

SHFX most of the time with the exception of stability transition periods (i.e. neutral 

conditions), when problems due to weak scintillations lead to overestimation. The 

inability of the SLS to determine the sign of the fluxes takes a toll very close to 

neutrality: EC SHFX are close to zero it is not certain whether SLS fluxes are positive or 

negative since they represent path-averaged quantities instead of a point measurement. 

Nighttime underestimation ranges between 10 and 40%, and is larger than during daytime 

when it varies between 0 and 25% on the average sense. The behavior of the ratio is also 

dependent of stability. Nighttime ratios exhibit more variability which responds to a 

wider scatter in SHFX during this period. Daytime ratios have a sinusoidal behavior 

which indicates that underestimation is larger when SHFX are larger. 

 

 The effects of WS on the diurnal cycle of SHFX ratio are explored in Figure 4.10. 

It shows that there is a clear WS dependence with increased underestimation under 

stronger winds. The scatter is much smaller during daytime. During nighttime, wide 

scatter occurs when winds are weak (wind speed < 4 m.s
-1

). This indicates that periods 

with weak winds under stable conditions lead generally to SHFX overestimation, but the 

scatter is quite large. Observations with large underestimation (50-90%) are also present 

during this period, but they are few. The scatter is also large near transition periods when 

neutral conditions prevail, and in this case the effects of wind speed are less important. 
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Figure 4.10. Average diurnal cycle of sensible heat flux ratio. 

 

 

4.3.3. Sensible heat flux scatter plot. 

 The next step was to explore the SHFX scatter plot, which is presented in Figure 

4.11. The fluxes are plotted as a function of WS. Flux ratios and standard deviation of the 

flux ratios are included with black lines. The data were organized in 10 Wm
-2

 bins and 

bin statistics were calculated. Figure 4.11 shows that SHFX compare relatively well. The 
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scatter is smaller under unstable conditions when +�~0.9. Under stable conditions the 

scatter is larger with +�~0.7. The slope of linear fits are also different. It should be 

noticed, however, that the trend is not perfectly linear, especially under unstable 

conditions. Underestimation is large under stable conditions and increases with 

increasing WS (slope ~ 0.48). Under unstable conditions underestimation is less. 

 

 

Figure 4.11. SHFX scatter plot and ratio. 
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 Since the relationship between the SLS and the SA SHFX is not perfectly linear, 

it becomes more appropriate to explore the ratios and their standard deviation. Except 

near neutral conditions when large overestimation occurs, SHFX underestimation is 

present everywhere. Under unstable conditions the ratio is almost constant for SHFX 

larger than 40 W.m
-2

 with some variability. The standard deviation increases for fluxes 

larger than 200 W.m
-2

, partly in response to a smaller number of observations. Under 

stable conditions ratios decrease almost linearly as a function of increasing SHFX 

magnitude. The standard deviation also increases accordingly. 

 

4.3.4. Effects of wind speed and stability. 

 The results so far indicate that there is both a dependence on WS and stability, 

and significant SHFX underestimation which requires further investigation. SHFX ratios 

were thus plotted as a function of stability (z/L) and WS in Figure 4.12. Friction 

temperature 
	 and friction velocity �	 ratios were also plotted to partition the effects of 

WS and stability based on equation 4.2: 

 

              ,-./ � �0�1
	�	    (4.2) 

 

It should be noted that these values are not independent of each other, and the 

implications will be discussed accordingly. The results are colored for different stabilities 

just with the aim of improving visualization. 

 

 The effects of �	 dominate closer to neutrality since their values are larger than 

those of 
	 while the opposite occurs away from neutrality. When stratified by stability, 

these effects balance out for the most part, leading to a general slight underestimation 

except when high stability is present (i.e. associated with weak winds). On the other 
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hand, the results confirm again that there is clear dependence on WS with 

underestimation under strong winds, when �	 is largely underestimated. 

 

 

Figure 4.12. SHFX ratio as a function of stability (left) and wind speed (right). 

 

  

4.3.5. Corrections to scintillometer measurements. 
 

 

 

 The positive implications of improving MOS empirical approximations to 23 and 

24�� (section 2.2.3), geared the initial analysis towards the evaluation and adjustment of 

SLS 23 with SA 23 derived from turbulence spectra. It was found, however, that the 

impact of the new expressions was not the main source of the discrepancies found on the 

SLS data. The analysis was then oriented to establish inter-comparisons in other sections 

of the algorithm which is detailed in the following. A summary of the initial analysis that 

focused on MOS is summarized in Appendix 1. 
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 After further investigation, it was found that largest source of discrepancies arises 

from the measurement of l0 and �5
�. These results coincide with those described by a few 

SLS researchers (Bram Van Kesteren, personal communication, 2011; Oscar Hartogensis, 

personal communication, 2011) who also argue that these discrepancies are systematic so 

there is room for correction. In the case of l0, problems arise from inaccuracies present in 

the dissipation range of the Hill Spectrum for Refractive Index Fluctuations (Hill, 1978). 

These discrepancies are not easy to overcome due to the need of measurements with very 

high temporal resolution. 

 

 It is important to highlight that �5
� and �� are interconnected via the Hill Spectrum 

(see section 2.2). Yet small, �� has an effect on the calculation of �5
�. An ideal approach 

to correct SLS measurements would be to evaluate SLS �� and 67
� using SA data. Yet, a 

more practical and applicable approach for future researchers and SLS users is to correct 

�� and �5
� instead. 

 

 Errors in �� and �5
� can be tied to those found in �	 and 
	 via the SLS algorithm 

(Figure 2.12). Yet when �	 and 
	 are connected, �	 is tightly linked to 23, 8 and ��; 

whereas 
	 is closely related to 29��, ��
�  and �5

�. In the case of ��, the SLS overestimates 

it and this overestimation increases under stronger WS. Accordingly, the effects of WS 

were accounted in the determination of corrections for �� by scaling it by WS before 

fitting polynomials. Normalization was done in terms of WS instead of �	 because WS 

information is usually easier to obtain than �	 data. 

 

 SLS-SA ��/WS inter-comparison and the polynomial fits are summarized in 

Figure 4.13. The data is shown for stable (left) and unstable conditions (right). The data 

used was only that of 2007. 
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Figure 4.13. ��/WS scatter plots under stable (left) and unstable (right) conditions. 

 

 

 The proposed corrections to ��/WS are the polynomial fits indicated with thick 

black curves. The polynomial expressions that produced the optimal results for are: 
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where �� is in 10
-3

 m and WS is in ms
-1

.  

 

 The corrections were tested in ILREUM data. Their impact was positive for 2007 

data, and also for 2008 data, which suggests that the expressions can be generalized. 

Figure 4.14 compares SA and SLS SHFX and ratio before corrections (left) and after the 

corrections were applied (right). Data for 2007 is indicated with red (top) and that of 

2008 with yellow (bottom). The figure suggests that the application of the corrective 

expressions was successful for these datasets collected using different SA. Small 

differences between the 2007 and 2008 data can yet be depicted due to variability that 
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can be attributed to the SA used. These differences can however be improved by minimal 

adjustments to the coefficients determined for expressions 4.3 and 4.4, but the proposed 

expressions are sufficiently general. 

 

 

Figure 4.14. Effect of corrections when applied to SLS ��. 

 

 Figure 4.14 shows that better agreement after the corrections were applied. Ratios 

that ranged from ~50-90% under stable conditions and 70-90% under unstable conditions 

improved to ~90-100% under unstable conditions. Under stable conditions SHFX 
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improved for stronger negative fluxes, yet ratios increased too much closer to neutrality 

on the stable side, which is explored in the following. 

 

 The impact of the corrections on the diurnal cycle of SHFX is presented in Figure 

4.15. Individual observations are indicated with light blue rectangles for SA and red 

rectangles for SLS data. Averages are indicated with a dashed line for SA and a solid 

thick line for the SLS. Ratios are indicated with asterisks. 

 

 

Figure 4.15. Diurnal cycle of SA SHFX (light blue squares and dashed line), SLS SHFX 

(red squares and thick line) and SHFX ratio (asterisks) before and after l0 corrections were 

applied. 
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 To address the overestimation close to neutrality, especially in the stable side, the 

behavior of SLS �5
� in terms of SA �5

� was investigated. Limitations arise from a 

difficulty of the SLS on the measurements of scintillations that are too weak. A scatter 

plot that inter-compares �5
� from SA and the SLS is presented in Figure 4.16. Since the 

corrections were not linear in this case, it was necessary to establish them based on non-

dimensional quantities. Accordingly, the inter-comparison exercise was established in 

terms of �5
�(�/J, and is valid for ( � 2 m. 

  

 

Figure 4.16. �5
� scatter plot with polynomial fit. 

  

 Red squares represent the data measured under SHFX in the -30 to +30 Wm
-2

 

range, and green asterisks for the remaining data. SLS �5
� overestimation is evident. The 

correction expression proposed is: 

 

 �5_5PQ
�  (�/J � R1.8�5

�(�/JS
T.J

� .001         for  . 004 K �5
� (�/J K .09 (4.5) 
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Where �5
� is in 10

-12
 m

-2/3
 and z is in m. The application of equation 4.5 on SLS SHFX 

produced better agreement with SA SHFX. A scatter plot similar to that of Figure 4.14 is 

presented in Figure 4.17, but the right panels show the data after both corrections were 

applied (equations 4.3 through 4.5).  

 

 

 

Figure 4.17. Effect of corrections when applied to SLS �� and SLS �5
�. 

 

 The effects on the diurnal cycle of SHFX is presented in Figure 4.18. 
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Figure 4.18. Diurnal cycle of SA SHFX (light blue squares and dashed line), SLS SHFX 

(red squares and thick line) and SHFX ratio (asterisks) before and after l0 and �5
� 

corrections were applied. 

 

 These results are encouraging. Even when expressions 4.3 through 4.5 were 

determined based on data collected during 2007, they largely improved the agreement 

with SA data once applied to 2008 data. Lingering discrepancies in the latter suggest that 

instrument differences may be present. Although instrument-related discrepancies can be 
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improved by adjusting the corrective expressions following the method described in this 

chapter, the proposed expressions should be sufficient.  

  

 The effect of the corrections on selected diurnal cycles is presented in Figures 

4.19 and 4.20. Figure 4.19 shows an inter-comparison of SHFX from SA (light blue 

squares) and from the SLS (red diamonds) for a selected period during 2007. Original 

measurements are presented in the lower panel, and corrected SLS measurements in the 

upper panel.  Figure 4.20 is similar but for a selected period during 2008. 

 

 

Figure 4.19. Selected diurnal cycles of SHFX before the corrections (bottom) and after the 

corrections (top). The data corresponds to 2007. 
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Figure 4.20. Selected diurnal cycles of SHFX before the corrections (bottom) and after the 

corrections (top). The data corresponds to 2007. 

 

 

 Both figures show that the proposed corrections lead to better agreement between 

SA and SLS SHFX. 
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5. ILREUM URBAN CAMPAIGN (IUC) GENERALITIES 

5.1. Campaign description. 

 The ILREUM Urban Campaign (IUC) was conducted in an urban canyon (Núñez 

and Oke, 1977) located in the campus of the University of Oklahoma in the city of 

Norman, Oklahoma. The site was located only ~5 kilometers southeast of the sub-urban 

site and the Norman MESONET site for inter-comparison purposes. Measurements were 

organized in one ~13 month-long campaign in which the SLS was operated together with 

13 SA. A detailed description of the measurement site, the data and the corrections 

applied follows. 

 

5.1.1. Measurement site. 

 An urban canyon-like structure was selected based on morphology, location 

inside an urban environment, closeness to the sub-urban campaigns measurement site and 

the proper permission from the authorities. The urban canyon selected was located inside 

the campus of the University of Oklahoma, in the southern tier of the city of Norman, 

Oklahoma at 35°11'55'' N, 97°26'34''W and at 353 mASL. The measurements were made 

in the Cross Center Building Complex, which consisted of four east-west oriented 

buildings each measuring ~80 � long. Building height was �~12 �, width 	
~14 � 

and separation or canyon width �~45 � ~ 3.5 �. A birds-eye view sketch of the site is 

presented in Figure 5.1, where buildings (white), ground cover (paved surfaces, grass and 

trees), instrument masts with SA (black dots) and the SLS (tripods and pink beam) are 

indicated. 
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Figure 5.1. Birds-eye view sketch of the measurement site showing instrument placement. 

 

 Most instruments were installed across the canopy to measure the cross-canopy 

distribution of TT. Installed infrastructure included two instrument towers and one 

ground mast in the canyon, and three roof masts in the surrounding rooftops. The SLS 

was operated across a similar plane and above the UC. Limitations on path length 

required measuring SLS fluxes over two urban canyons, however most SA were placed 

near the widest canyon due to its ideal geometry. 

  

 The canyons and buildings were east-west oriented, ideal to maximize the amount 

of measurements made under cross-canopy flow since Central Oklahoma is characterized 

by extensive periods with southerly flow close to the ground (Crawford and Hudson, 

1973).  The only limitation was that the surface was covered with grass and a few small 

trees, not a typical ground cover for an urban canyon, usually which usually contains a 
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paved road (Núñez and Oke, 1977). Site selection was also constrained by the appropriate 

permission from authorities. Permissions were ready by the Spring of 2009 and all 

instrumentation became operational by July 2009, when the official campaign started. 

 

 Describing the fetch that surrounds a measurement site is essential because a large 

part of the SHFX advected into the domain are generated in this region. Accordingly, a 

map of the measurement site is presented in Figure 5.2.  

 

 

Figure 5.2. Map of the measurement site showing paved surfaces (gray) and the placement and height of 

objects taller than 4 m (yellows, oranges and reds). Sonic anemometers appear as black dots and the 

scintillometer as a dark gray arrow. 
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 The map in Figure 5.2 highlights the location of paved surfaces (gray), objects of 

increasing height (yellow, orange, red, burgundy) and instrument masts (black dots for 

SA and a dark gray arrow for the SLS). The Cross Center building complex can be 

depicted as the four red buildings near the center. It is important to highlight the road 

immediately south of the southernmost building. Flow advected from this region was 

characterized by higher values of SHFX than when advected from the northern tier. This 

shows the differences present in the URSL that arise from flow interaction with the 

different arrangements of surfaces present in the UC. The large tower located to the 

extreme northwest, one of a set of three, placed the site under its wake during periods 

with strong northwest winds. This affected the calculation of ��, an essential parameter to 

achieve a representative calculation of dimensionless height �� �⁄ . 

 

 Photographs of the measurement site are presented in Figure 5.3.  

 

 

Figure 5.3. Photos of the measurement site and instrumentation.  
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 Panel A shows the SLS transmitter and the array of six SA located near the path. 

The photograph was taken from the SLS receiver. Panels B and C show different views 

taken from the central courtyard. The south tower is visible in both pictures. Panel C 

shows the ground mast, which was powered with solar panels and a battery. 

 

5.1.2. Data collection and data sets. 

 The data collected included SA velocity and temperature measured at 10 Hz. 

Turbulence data from the SLS were measured simultaneously but at 1-minute intervals. 

The data collection process was made automatic. SA data were transmitted wirelessly to a 

computer whereas SLS data were transmitted via a cable to the same computer. Once 

available, data were stored automatically in a server. SA masts and the SLS transmitter 

were powered using solar panels and batteries. Only the towers and the SLS receiver 

were powered with local energy sources. Short-lived interruptions of the data collection 

were experienced during heavy rainfall, storms and infrequent power outages. 

 

  Data collection started in July 2009 and ended in August 2010. The first 

instruments set operational were SA placed in roof and the ground mast in early July, 

followed by the towers and the SLS by early August. Problems with the SLS transmitter 

occurred after only one day of operation and the instrument had to be sent for repair. This 

lead to an unplanned duration of only four months with SLS data between late March and 

July of 2010. SLS data analysis in Chapter 6 thus concentrates in this period. 

 

 A summary of instrument placement and data collection periods is presented in 

Table 5.1, and can be visualized as well in Figure 5.4. SA F (or F1) was the only SA not 

aligned on the plane where the rest of the measurements were made. 
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Table 5.1. Instruments operated during the ILREUM Urban Campaign. 

 

 
 

 

 

Figure 5.4. Cross-section of the measurement site looking west. Instrumentation is shown according to the 
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5.2. Corrections applied to the data. 

 

 As discussed in section 2.3.2, several assumptions made over the homogeneous 

and stationary SL fail in the URSL. As a result, several corrections to data from the SLS 

become necessary. This section describes the corrections applied to the raw SLS data 

collected during the IUC. The number of corrections was reduced to the essential ones, to 

minimize the introduction of noise into the datasets. Three sets of corrections were thus 

explored: corrections to raw SLS measurements determined during the sub-urban 

campaigns, the determination of appropriate values for �� and flux sign determination. 

 

5.2.1. Corrections to raw SLS measurements. 

 All SLS measurements are subject to errors associated with the instrument itself. 

Some errors can be improved via the modification of MOS coefficients as suggested by 

Roth et al. (2006) or by correcting problems in other sections of the algorithm (Oscar 

Hartogensis and Bram Van Kesteren, personal communication 2011). The corrective 

expressions determined in Chapter 4 were used here, since they provided very good 

agreement between SA and SLS data once applied to SLS measurements made under 

ideal conditions.  

 

 Problems with l0 and wind speed were addressed with expressions 4.14 and 4.15. 

SLS limitations on the measurement of weak scintillations were then corrected by 

applying expression 4.16 to ��� measurements. Once both l0 and ��� were corrected, the 

algorithm was run to calculate � and ��
�. To calculate SL scales in the urban environment, 

the next procedure in the algorithm, using �� was necessary and a reliable value of d0 

needed to be calculated. This step is the most critical step of the algorithm as will be 

discussed in the following and in Chapter 6, since SLS fluxes are highly sensitive to ��. 
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5.2.2. The critical role of zero-plane displacement height. 

 In rough environments, the mean flow does not necessarily penetrate downward 

to the very bottom of the RSL. This is particularly true when the flow is perpendicular to 

the roughness elements. Accordingly, the origin of the vertical axis must be displaced in 

the vertical by a distance ��, as explained in section 2.3.2. This allows to apply SL theory 

assumptions above the new height ��. In the URSL, however, large heterogeneity,  lack of 

stationarity, and the absence of a constant flux layer limits MOS applicability. Yet, using 

�� is necessary and can lead to SLS fluxes that agree well with SA ones (Roth et al., 

2006). 

 

 The determination of ��, however, can be a non-trivial procedure. There are two 

common approaches: micrometeorological or anemometric and morphometric or 

geometric (Grimmond and Oke, 1999). Micrometeorological methods use field 

observations of wind to solve for �� using different expressions valid in the SL. An 

example is the method used by Rotach (1994), where �� was determined based on 

temperature variances scaled by friction temperatures ��
�/��. The following expression, 

verified by Tillman (1972) was used: 
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     (5.1) 

 

where �% ~ 0.95 (Wyngaard et al., 1971) and �� is larger than 2.5 but can be as large as 

3.5 (Tillman, 1972, Beljaars et al., 1983 and De Bruin et al.,1988). �� is calculated by 

minimizing the root-mean-square difference between observations and predictions made 

using equation 5.3. Although this method was based on ISL similarity theory, Rotach 

(1994) showed that the results agreed well with those from a morphological approach 

based on empirical relationships when applied inside the URSL. 
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 Large heterogeneity in urban areas yet poses limitations in the estimation of �� 

using micrometeorological approaches. The problem arises from the failure of SL theory 

assumptions in the URSL and from the dependence of �� on the characteristics of the 

roughness elements (Roth et al. 2006). A logarithmic wind profile cannot always be 

attained. Morphometric methods are thus preferred because they are based upon the 

characteristics of the roughness elements.  

 

 The simplest morphometric approaches associate �� with a simple representation 

of the level of roughness. Monin and Yaglom (1971) and Garratt (1992), for example, 

indicated that for very rough surfaces �� ~ 2/3 �. under neutral conditions, where �. is 

the average height of the roughness elements.  

 

 An example of a more complex morphological approach is that of Bottema 

(1995). The approach uses planar areas of buildings and trees and average object height 

to calculate  �� via  
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    (5.2) 

 

where :.; is the area of the buildings, :.< is the area of the trees, :� is the total area and 

p is the porosity of the trees. The average height of the roughness elements �. is also 

considered. The porosity coefficient varies from 0.6 in winter to 0.2 in the summer. A 

more complete description and examples of methods used to determine �� can be found 

in Grimmond and Oke (1999). 

 

 Equation 5.2 was used to determine �� for the urban measurement site. This 

method produces values that are dependent on wind direction, since the fetch varies upon 

direction. Object height and area were determined using the map in Figure 5.5, which 
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was broken into twelve angular sectors each of 30 degrees. A fixed value of tree porosity 

of 0.3 was used. This value corresponds to springtime. SLS measurements started in 

April 1, when most of the leaves of the local trees are already out. Finally, a centered 

mean was applied to the data for smoothing. 

 

 

Figure 5.5. Map of the measurement site that was divided in 12 sectors to calculate 

zero-plane displacement height from building and tree planar areas and heights. 

 

  

 The values of �� obtained for the IUC are presented in Figure 5.6. �� distribution 

illustrates the east-west orientation of the canyon, with lower values when the flow is 
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parallel to the canyon. Values range from ~6.5 to ~8.5 m. Minor asymmetries present can 

be explained by the effect of trees and buildings scattered in areas that surround the Cross 

Center Building Complex. These results did capture the change of �� based on canyon 

morphology and also the simple rough approximation of  �� ~ 2/3 �.. Furthermore, 

feasible values of SHFX were obtained once the calculated values of �� were considered 

in the SLS algorithm for the calculation of SHFX from scintillations. Some limitations 

were, however, identified for some wind directions which indicate that the values of �� 

were too small, and a larger domain was needed. For some wind directions, however, no 

value of �� (i.e.  from 0 to �) produced satisfactory results, which indicates that SLS 

measurements were inapplicable for certain wind directions. This will be discussed with 

more detail in Chapter 6. 

 

Figure 5.6. �� as a function of WD. 

 

  



109 

 

5.2.3. Flux sign determination. 

 

 As discussed in section 2.2, one of the limitations of scintillometry is the inability 

of scintillometers to determine the direction of the fluxes. This is why an SLS needs to be 

operated together with an instrument platform that can provide a measurement of 

stability. The common procedure has been to place a SA near the center of the path (e.g. 

Roth et al, 2006). This approach is generally more than sufficient in homogeneous 

environments, where flow and turbulence vary very little within the SLS path. In the 

urban environment, however, the situation is different. Large horizontal heterogeneity 

present in the URSL can lead to regions of opposite stratification along the SLS path, 

especially near neutral conditions. For example, during some stable nights the heat 

release from buildings can lead to slightly positive nocturnal SHFX when those over the 

canyon are negative. 

 

 A set of questions thus arises: What is the optimal way to calculate the SHS 

SHFX sign? If a weighted average of the sonic anemometers operated along the path is 

the answer, what are the weights that should be considered for each SA? These weights 

probably depend on stability and wind direction: what is the dependence? What is the 

solution when not all of the SA along the path operate simultaneously? Some of these 

questions will be addressed with the results presented in Chapter 6. 
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6. ANALYSIS OF IUC MEASUREMENTS 

 Chapter 6 discusses the results found during the IUC. Section 6.1 addresses 

general flow characteristics. Section 6.2 addresses cases measured during periods with 

southerly flow. Emphasis was placed on southerly reference WD to investigate TT under 

cross-canopy flows, since southerly winds the most common WD in Central Oklahoma 

(Crawford and Hudson, 1973) and more observations were available. Section 6.3 moves 

into the analysis of TT under different WD. Section 6.4 investigates physical properties 

behind SHFX distribution.  

 

 SA data are presented using the different symbols and colors introduced in Figure 

6.1. The analysis is focused on SA data from three levels. Above-canyon data measured 

at 15-m or 
�

�
� is displayed using orange, green and red asterisks. Upper-canyon data 

measured at 9-m or 
�

�
� is presented using blue and brown squares for the south and north 

walls. Lower-canyon data measured at 3-m or 
�

�
� is presented with small blue and brown 

asterisks, also for the south and north walls. 

 

 

Figure 6.1. Plotting symbols used to represent SA data.    
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6.1. Characteristic flow. 

 The characteristics of UC flows are mostly determined by the interactions 

between the mean flow and the different roughness elements. In the case of an urban 

canyon, flow modification by the buildings is highly dependent on WD and WS of the 

reference flow (hereafter, ���	
  and ���	
). Flows that are parallel to urban canyons 

produce in-canyon symmetrical gradients with respect to the canyon facets. Complexity 

increases under other ���	
 . Perpendicular ���	
  are of particular interest and will be 

the analysis foci. 

 

 Flows perpendicular to urban canyons produce a rotor or region of recirculation in 

the upstream section. Recirculation morphology is a function of canyon width � (section 

2.4.3) and ���	
  (detailed later in this section). From the types of flows described by 

Oke (1987), the wake interference flow regime prevailed given the urban site 

morphology. This regime is characterized by a recirculation region that extends from wall 

to wall, but allows a small region of ventilation in the upper downstream end of the 

canyon. The latter does reach the ground. A schematic example of this canyon flow 

regime is presented in Figure 6.2 after Harman et al. (2004) and Oke (1987). 

 

 

 

Figure 6.2. Schematic representation of the wake interference flow regime. 
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 IUC observations averaged over periods of northerly and southerly flow are 

presented in Figure 6.3 and show the prevalence of the wake interference flow regime. 

 

 

Figure 6.3. Winds measured at the IUC site during selected periods with ���	

��������� from the north 

(top) and from the south (bottom). 

  

 Figure 6.3 is a cross section of the measurement site looking west, and shows 

individual (gray) and average (black) wind vectors for a selection of cases with ���	

��������� 

(i.e. 10-m MESONET winds) that are perpendicular to the canyon. Numbers are mean 

vertical velocities � (red) and mean meridional velocities �� (blue) expressed in ms
-1

. 

Flow enters the canyon along the top and leads to general downward motion along the 

downstream section and upward motion constrained to the upstream end. In-canyon 

velocities are more than three times smaller than those measured above the canyon. The 

downstream section is the exception, where enhanced mixing produces larger velocities. 

Vectors on the upper upstream end suggest that the recirculation morphology varies. To 

explore these and other characteristics of in-canyon flows, SA velocities are compared 

against reference data in the following. 



113 

 

 In-canyon flows are analyzed using data from the south tower, selected due to the 

availability of measurements at three different levels. The tower is located upstream 

under ���	

��������� from the south, and downstream under ���	


��������� from the north. Figure 6.4 

explores how mean vertical velocities � behave as a function of ���	

���������. 

 

 

Figure 6.4. SA �  as a function of ���	

���������. 15-m, 9-m and 3-m are presented with green asterisks, light 

blue squares and small blue asterisks, respectively. 

 

 

 The data show that � in and over the canyon are functions of ���	

���������. The 

relationship is not perfectly linear and deviations from linearity are associated with 

interactions between the flow and the buildings. Scatter is also present due to the 

complex interactions with the urban area, and the distance to the Norman MESONET or 

reference site, located 4.5 km to the northeast.  

 

 The differences between upstream and downstream ends of the canyon are 

remarkable. Above- and in-canyon � behave very differently in the upstream end. Flow 

above the canyon sinks into it for all WS, with a few measurements that show upward 
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motions, in particular when ���	

��������� � 5 ms

-1
. Upward motion prevails inside the canyon, 

especially in the upper end. The differences between the flow at 3 and 9 m suggest that 

the shape of the region of recirculation changes with ���	

���������. Under weak ���	


��������� rising 

motion is larger at 9 m and sinking motion occasionally takes place in the lower canyon. 

This suggests that the center of recirculation is located higher and descends into the 

canyon as ���	

��������� increases. 

 

 In the downstream end, flow primarily sinks and shows very similar behavior at 

all levels due to turbulent mixing of momentum as the flow progresses along the canyon 

top. Sinking motion remains smaller than 0.3 ms
-1

 until ���	

��������� �8 ms

-1
, when downward 

velocities increase linearly to 0.4 ms
-1

 when ���	

���������~10 ms

-1
. A small region of rising 

motion develops in the upper canyon when ���	

���������<2 ms

-1
. This confirms that the rotor is 

smaller under weak WS and that the depth of the region of ventilation decreases when 

���	

���������>5ms

-1
. A scheme that illustrates the change in the size of the recirculating region 

is presented in Figure 6.5. 

 

 

Figure 6.5. Scheme that suggests changes on the recirculation region with ���	

���������. 
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 The behavior of WS as a function of  ���	

��������� is presented in Figure 6.6.  

 

 

Figure 6.6. SA ������� as a function of ���	

���������. 15-m, 9-m and 3-m are presented with green asterisks, light 

blue squares and small blue asterisks, respectively. 

 

 Figure 6.6 suggests that the relationship between canopy WS and ���	

��������� is close 

to linear, especially within the 2 ms
-1

 � ���	

��������� � 9 ms

-1
 range. It also shows how WS 

decrease inside the canyon, and  in a different manner in the upstream and downstream 

sections. An interesting finding is that WS at 3 m  were larger than WS at 9 m, especially 

near the upstream end. The cause is the closeness of 9 m SA to the center of the region of 

recirculation. In the downstream end WS at both in-canyon levels exhibit similar 

magnitudes again associated with more efficient mixing of momentum. WS above the 

canyon are smaller in the downstream end due to enhanced mixing with low-momentum 

in-canyon air, as the flow progresses along the canyon top. 

 

 Linear fits are also presented to relate canopy flows to reference flows. The slopes 

show that in-canyon WS were 5-20% of  ���	

���������. Above the canyon, flow decelerates due 
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to turbulent mixing from ~70% of ���	

��������� to ~ 45% of ���	


��������� in the downstream end. 

Since ���	

��������� was measured at 10-m and away from the urban site 

 

  Linear fits were also established as a function of canyon top winds measured over 

the upstream side (i.e. at 5�/4) and are presented in Figure 6.7. Establishing relationships 

to estimate in-canyon WS is important as WS plays an important role in the 

parameterization of SHFX inside the canyon (e.g. equation 2.45; Kusaka et al., 2001; 

Barlow et al, 2004). 

 

 

Figure 6.7. In-canyon WS as a function of above-canyon WS (WS5h/4=WSTOP). 

 

 WS in all regions inside the canyon with the exception of the upper upstream end 

can be expressed as linear functions of above-canyon WS (WS5h/4=WSTOP). Figure 6.7 

shows that in-canyon WS decrease along the recirculation region. WS in the downstream 

end are ~50% smaller than above the upstream canyon and have similar magnitudes at 

both levels. The main difference is WD, where the lowest level exhibits larger zonal 

components. WS in the lower downstream end are ~40% smaller than above the upstream 
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canyon. And decrease more in the upper upstream section, however the latter relationship 

is not linear. 

 

 WD is explored as a function of ���	

��������� in Figure 6.8. It shows the region of 

recirculation under cross-canopy ���	

���������, and how it transitions into along-canyon WD at 

all levels when ���	

��������� becomes parallel to the canyon. Under other ���	


���������, in-canyon 

WD is determined by the small deviations from cross-canopy WD. 

 

 

Figure 6.8. SA WD at different levels as a function of reference WD. 

 

 For example, when a small easterly component is present in ���	

���������, WD inside 

the canyon exhibit larger easterly components, especially closer to the ground. The 

canyon funnels the flow and the primary exit region becomes the downstream lateral end 

of the canyon. A schematic example is provided in Figure 6.9, which shows how under 

SSE ���	

��������� the flow circulates inside the canyon but ultimately exits along the western 

end. Darker arrows indicate foreground wind vectors (eastern end of the canyon) and 

lighter colors indicate background vectors (western end of the canyon). Arrow length 

suggest WS. 
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Figure 6.9. Scheme of in-canyon circulations during period with SSE ���	

���������. 

 

6.2. Selection of interesting cases under southerly flow. 

 Selected diurnal cycles of SHFX under different flow and stabilities are here 

presented. Timeseries consist of complete diurnal cycles of five minute averages that start 

at 06 LST, or near sunrise time. Each figure contains five panels. The uppermost panel 

shows SHFX from three SA located above the canyon and the SLS. The second panel 

from the top shows SHFX from four SA located inside the canyon and from the SLS. A 

scheme with the location of the SA analyzed in the two upper panels and the symbols 

used in the plots is provided in Figure 6.1. The third panel shows reference WS and WD 

measured at the Norman MESONET site and at a height of 10-meters. The fourth panel 

shows solar radiation (yellow), periods with precipitation (green marks at the top) and 

stability (red for unstable and blue for stable). Stability was calculated using height above 

ground � and � calculated from SA data. The last panel shows MESONET air 

temperatures measured at 1.5 (light blue) and 9 meters (dark blue) and their difference 

(black). 
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6.2.1. Clear skies and moderate southerly winds. 

 Figure 6.10 illustrates a diurnal cycle measured under clear skies and moderate 

southerly winds.  

 

 

Figure 6.10. Diurnal cycle under moderate southerly winds and clear skies. 

 

 Clear skies are evidenced by the almost perfect sinusoidal behavior of the solar 

radiation curve. Wind direction was nearly constant with the slight diurnal oscillation 

between SSW flow during daytime and SSE flow at night. This oscillation is common in 

Central Oklahoma and is related to enhanced mixing with overlying westerly flow during 
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daytime followed by BL decoupling at night. The diurnal cycle of WS also reflects the 

effects of turbulent mixing with overlying higher-momentum air. Daytime values (4-7 

ms
-1

) were higher than nighttime ones (2-4 ms
-1

). Skies were clear which reflects in the 

almost perfect sinusoidal behavior of the solar radiation curve. These weather conditions 

lead to the expected unstable/stable regimes during daytime/nighttime. 

 

 SHFX behaved in accordance to the diurnal cycle of solar radiation, but 

differences were observed between masts. The portion of the canopy that behaved the 

closest to the diurnal cycle of solar radiation were the rooftops (red and orange curves), 

with the exception of a slight delay on the occurrence of SHFX maxima, associated with 

the release of heat stored by the buildings. Above the canyon-top (green curve) the 

behavior is slightly different. The fluxes are not only larger in magnitude but the peak in 

SHFX occurs earlier in the day, which is confirmed by SHFX measured by the SLS 

(black crosses). The early peak in SHFX is associated with the peak in WS measured 

during the late morning. The measurement of larger values of SHFX inside the canyon is 

associated with increased turbulent mixing over the canyon than at the same height but 

above rooftops. This process is caused by the penetration of high-momentum air from the 

shear layer, which will be discussed with more detail later in the document. 

 

 SHFX inside the canyon exhibit a slightly different behavior but, in general, 

similar to the simulations and model described by Barlow et al. (2004) and by Harman et 

al. (2004). SHFX magnitudes are smaller associated with decreased velocities inside of 

the canyon. Near the downstream wall (north wall in this case) SHFX behavior resembles 

somewhat that measured over rooftops and over the canyon top. An early afternoon 

maximum (instead of a morning one) suggests the effects of heat release by the building 

walls. These effects were enhanced by the orientation of the building walls (i.e. south-
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facing), which were exposed to direct sunlight during an extensive period of time. 

Turbulent mixing with higher momentum air that penetrated the area from the top of the 

canyon leads to large vertical velocities near the downstream wall that decrease towards 

the ground. This is reflected not only on the presence of larger SHFX in the higher level, 

but by the resemblance of the 9-m curve to that measured over the canyon top.  

 

 SHFX near the upstream wall (south wall in this case) behave in a different 

manner. Yet positive during daytime, SHFX magnitudes are much lower than those 

observed over the rest of the canopy. This is also consistent with the findings described 

by Barlow et al. (2004) and by Harman et al. (2004). The low magnitudes are associated 

with the presence of low-momentum flow in this section of the canopy, associated with a 

region of recirculation that develops near the upstream wall. 

 

6.2.2. Partly cloudy skies. 

 Figure 6.11 shows a similar case but measured under variable cloudiness.  All 

SHFX measured over the canopy (top panel) and those near the upper downstream wall 

(brown squares, second panel) behaved in close agreement with the diurnal cycle of 

incoming solar radiation. The behavior of in-canyon SHFX near the upstream wall, yet 

consistent in the vertical, was different to the rest of the canopy. In some instances 

upstream wall SHFX decreased once those measured by the other masts increased; in 

other instances their behavior was similar. Flux magnitudes, however, remained low and 

the fluxes became occasionally negative with values that oscillated between -50 and +50 

W.m
-2

. Flux reversal suggest the periodic occurrence of vertical temperature gradient 

reversals. These are associated with the advection of relatively warm air from the rooftop 
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region over relatively cool in-canyon air. Furthermore, local temperature gradients that 

lead to enhanced variability of SHFX are favored by the presence of scattered clouds.   

 

 

 

Figure 6.11. Diurnal cycle under moderate southerly winds and partly cloudy skies. 

 

 

 Daytime SLS SHFX behaved in close agreement with those measured above 

rooftops and above the canyon top. Again, their magnitude laid in between that of rooftop 

SHFX and that of canyon-top SHFX.  
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6.2.3. Effect of increasing wind speeds. 

 Figure 6.12 shows data collected during two consecutive days in which the only 

remarkable difference was an increase in wind speed during daytime.  The response 

of SHFX varied upon location within the canopy. Above rooftop level, the increase was 

larger over the canyon top (~80-100%)  than over rooftops (~50-70%). An even larger 

increase was observed in SLS SHFX (~100-120%). These results reflect enhanced 

turbulent mixing with high momentum air located in the shear layer present in all regions. 

The increases are larger over the canyon, however, since shear layer air is also brought 

downwards into the canyon in the form of transient high-momentum injections (Harman 

et al. 2004). The increase is the largest in SLS data since the sampled region extends 

further into the shear layer. 

 

 

Figure 6.12. Consecutive days with similar weather conditions aside from different daytime wind speeds. 
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 Inside the canyon, the increase also was different depending on the location. The 

largest increase was observed on the downstream end, especially away from the surface 

(brown squares) with values in the order of 100-120 %. Similar percentual increases to 

those observed near the shear layer (i.e. SLS data) support the findings from Harman et 

al. (2004) that state that high-momentum shear layer air penetration into the canyon is 

mostly concentrated towards the downward end. Shear layer flow that enters the canyon 

progresses downward into the lower canyon and mixes with lower-momentum air. This 

produces a decrease in velocities which constrains the increase in lower-canyon SHFX. 

SHFX near the downstream end remain virtually unchanged. 

 

6.2.4. Windy and cloudy environment.  

 Figure 6.13 shows a diurnal cycle under strong southerly winds and cloudy skies. 

These conditions lead to stability stratification that approaches neutrality. All measured 

SHFX, except those from the upstream section of the canyon behaved in agreement with 

the diurnal cycle of solar radiation. SLS SHFX magnitudes were closer to the SHFX  

measured in the roof than to those measured over the canyon,  which suggests the 

possibility that the effects from the roofs dominate during periods with strong winds and 

weak solar radiation rates.  
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Figure 6.13. Diurnal cycle under strong southerly winds and cloudy skies. 
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6.3. Turbulent transfer under other wind directions. 

6.3.1. Northerly flow. 

 Figures 6.14 and 6.15 summarize four cases under northerly reference flow. The 

cases shown in Figure 6.14 were collected under moderate winds and clear skies (a), and 

under weaker winds under partly cloudy skies (b). The former is associated with larger 

daytime SHFX due to larger surface heating and larger vertical velocity fluctuations. The 

cases in Figure 6.15 were both collected under windy conditions and allow to explore the 

effects of solar radiation under similar wind regimes. Figure 6.15b shows particularly 

distinct behaviors between platforms and larger SHFX magnitudes. This is a response to 

a combination between strong winds and large solar heating since this was the only panel 

with clear skies during springtime, when solar zenith angles are maximized. Furthermore, 

the data were collected after a frontal passage, which is associated with larger daytime 

SHFX due to the presence of a cool air mass over a relatively warm surface. 

 

 Both figures show SHFX behavior that is almost a mirror of what occurs under 

reference southerly winds. Discrepancies can be attributed to asymmetries caused by (i) 

solar radiation angles and associated shades and (ii) interactions between the flow and the 

roughness elements located upwind. Also, all figures confirm that SHFX over the canyon 

nearly double or triple in magnitude those located inside the canyon with the exception of 

the upper downstream end. As suggested by Oke (1987) and Barlow et al. (2004), the 

ventilation region is located near the downstream end of the canyon. High SHFX from 

above-canyon air mix with in-canyon air which leads to larger magnitudes than those 

found in other portions of the canyon.  

 



127 

 

 

Figure 6.14. Selected diurnal cycles measured under northerly flow. 
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Figure 6.15. Selected diurnal cycles measured under northerly flow. 
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 There is also a WS dependence of canyon-top relative to rooftop SHFX. In 

general, canyon-top fluxes are larger than those measured over rooftops. The main 

physical mechanism behind this difference is advection of larger SHFX from the shear 

layer downwards into the canyon, as observed under southerly flow conditions as well. 

Differences between the upstream and downstream rooftops also exist. They do not 

become clear until WS and solar radiation become both large (e.g. Figure 6.15b). During 

these situations, SHFX over the downstream roof become smaller due to the effects of 

ventilation from the canyon: lower SHFX in-canyon air is both advected and mixed-in 

into the downstream rooftop region. 

 

 SHFX advected into the canopy under northerly flow conditions were smaller 

than those advected under southerly flows of similar speed. These differences can be 

partly attributed to the characteristics of the fetch that surrounds the measurement site. 

SHFX are smaller under northerly flows because they are advected from a relatively 

urbanized area, characterized by lower momentum and more homogeneous vertical 

temperature gradients than those advected from the less urbanized southern tier. Large 

SHFX (i.e. larger than 300 Wm
-2

) are only observed during the post frontal case, 

 

 The variability of SHFX measured over canyon-top and downstream rooftop was 

larger than over the upstream roof. This reflects the effects of turbulent mixing between 

shear layer air and that in the upper portion of canyon and its downstream advection by 

the flow (i.e. the upstream roof mast is located close to the edge of the canyon, so it feels 

mostly the effects of the northern rooftop). This link can be verified by a closer behavior 

of SHFX in this section of the canyon when compared against the values measured over 

the upstream roof. 
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 The behavior inside the canyon was, again, almost a mirror of that observed under 

southerly flow cases. The largest SHFX were observed near the downstream wall and 

away from the ground. They were smaller in magnitude but behaved similarly to those 

measured over the downstream roof. SHFX in the lowest part of the canyon were 

particularly sensitive to a combination of large solar radiation rates and strong wind 

speeds. With the exception of panel d, the downstream lower portion of the canyon 

exhibited very low SHFX magnitudes and in some instances, negative values (-20 to +50 

W.m
-2

). In the upstream section of the canyon sensible heat fluxes magnitudes were 

generally very small (< 50 W.m
-2

) and, in some instances, negative. The latter was 

particularly true in panel d. This suggest the development of a temperature inversion with 

warmer air being likely advected away from the northern roof.  

 

 SLS data was available during this period but SHFX were too large. This is 

associated with an underestimation of �� for the northern quadrant, which should have 

larger values after the flow interacts with the tall buildings present in the northern campus 

and central Norman urban area. This suggests that SLS measurements cannot necessarily 

be relied upon for all wind directions, when made too close to the canopy, issue that will 

be discussed with more detail in section 6.5. 

 

6.3.2. Non-perpendicular wind directions. 

 Figure 6.16 illustrates cases measured under non-perpendicular reference flow 

conditions. Panel a illustrates a case with angled reference flow, from the NE; and panel 

b a case with westerly or along-canyon flow. Scintillometer data will, again, not be 

discussed in this section. It is important, however, to point out that problems with the 

underestimation of �� are also present for NE winds. 
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Figure 6.16. Non-perpendicular flows. 
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 Results suggest that under non-perpendicular reference flow cases, SHFX over 

rooftops and canyon-top exhibit similar magnitudes and behavior. In contrast with what 

was observed under southerly flow conditions, canyon-top fluxes were not larger in 

magnitude. Parallel flows are associated with smaller vertical velocity fluctuations due to 

reduced interactions with the roughness elements along a given streamline. Accordingly, 

the downward transport of high-momentum air found in the shear layer is not as large as 

during cross-canopy flow conditions. Inside the canyon, SHFX are smaller and 

comparable in magnitude in all sections of the canyon. 

 

6.4. Sensible heat fluxes upon wind speed and solar radiation. 
 

 The behavior of SHFX with WS and solar radiation is here explored. A cross 

section with four selected southerly flow cases is presented in Figure 6.17. The numbers 

plotted are, in order of increasing size, SHFX in Wm
-2

, WS in ms
-1

 and SHFX scaled by 

WS in Wm
-1

s
-1

. Colored circles represent SHFX and both their size and darkness are 

proportional to SHFX magnitude. The length of horizontal bars indicate WS. 

 

 Under periods of strong radiation, the largest SHFX were measured at the canyon-

top. These were followed by the roofs, downstream canyon, lower canyon and finally the 

upstream section. It is important to note that the canyon is characterized by vegetation 

instead of a paved surface, so SHFX should be smaller than those expected over standard 

canyons. When solar radiation is small, the distribution of SHFX inside the canyon is a 

function of WS, with higher values in the upstream section when WS are weak. 
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Figure 6.17. SHFX, WS and SHFX scaled by WS under contrasting WS and solar radiation scenarios. 
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 Panels a and b, measured under periods of strong radiation, are first analyzed. 

Fluxes are larger in the shear-layer associated with higher velocities, especially above the 

canyon where higher-momentum air is advected from above. SHFX in the downstream 

roof are smaller, especially under cases with very strong winds where enhanced turbulent 

mixing diffuses vertical gradients. Inside the canyon, the behavior is very similar to that 

described by Barlow et al. (2004) and Harman et al. (2004), with larger SHFX in the 

downstream wall and very small values in the upstream section. The 

upstream/downstream differences for this case increase with WS. 

 

 The expressions used in Harman et al. (2004) based on the bulk aerodynamic 

formulation allow to relate a flux measurements with aerodynamic resistances via: 

 

           �� � ∆��/��     (6.1) 

 

which, combined with equations (2.45) and (2.46) yields to the following proportionality 

relationships inside the canyon (6.2) and in the shear layer (6.3): 

 

                �  ~ ∆!� #$�%�&'    (6.2) 

               �  ~ ∆!� ()
* /∆$    (6.3) 

 

Equation (6.2) suggests that the parameterized in-canyon flux of sensible heat �  is 

proportional to the local vertical temperature gradient ∆!� and to the spatially-averaged 

WS at a given level #$�%�&'. SHFX normalization by WS allows to infer the distribution 

and contribution of in-canyon vertical temperature gradients in SHFX values.  

 

 SHFX/WS (large numbers) were the largest near the upper downstream, followed 

by the canyon  top. This is expected since advection plays an important role and brings 

large values of SHFX and momentum from the shear-layer region into the canyon. 
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Furthermore, the north side of the canyon receives direct solar radiation, which plays a 

role in the enhancement of vertical temperature gradients. The next facet in terms of large 

SHFX/WS values is the upstream roof followed by the downstream one. The latter 

exhibits smaller values due to gradient diffusion along the canyon top from turbulent 

mixing, and from ventilation. The upstream canyon showed the smallest SHFX/WS. 

These, however, varied largely upon WS which suggests that ∆!� in this section of the 

canyon are largely dependent on WS.  Larger values are present during periods of weak 

winds, when mixing is smaller and vertical gradients are generally maintained. When WS 

become large, gradients diffuse and in some occasions even revert (e.g. panel c) when 

warmer air from the rooftop is advected over a cooler canyon. 

 

 The cases measured under small solar radiation rates (panels c and d) show a 

similar behavior and more sensitivity to WS. The distribution suggests the presence of a 

warmer layer near the center of the region of recirculation. 

 

 The behavior of SHFX under different WD combined with different atmospheric 

conditions is explored in figures 6.10 through 6.12. Accordingly, all variables presented 

are plotted as a function of reference WD. Upper/lower panels present data collected 

under high/low WS. Left panels show SHFX, central panels vertical velocity variance 

++������ and right panels temperature variance !+!+�����. Green is still used for canyon top data, 

orange for data from the south rooftop and red for data from the north rooftop. 

 

a. Fluxes under strong solar radiation. 

 Figure 6.18 displays observations collected under periods with strong incoming 

solar radiation (> 600 W.m
-2

). These periods are associated with strong surface heating 

and the consequent development of local temperature gradients between the diverse 
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surfaces present in the urban canopy. They are also associated with the middle of the day 

when the boundary layer is well developed. Strong solar radiation is associated with 

convective boundary layers, which are characterized by enhanced turbulent mixing and 

vertical extent. Interaction with high-momentum flow from above leads to relatively large 

values of momentum inside the BL, which are brought downwards by turbulent mixing 

and lead to larger wind velocities near the surface. 

 

 Figure 6.18 shows that the behavior of sensible heat fluxes is clearly a function of 

WD. This results from different interactions with the diverse roughness elements located 

around the measurement site. A nearly symmetrical plot would be expected if the fetch 

around the central courtyard were homogeneous. The only asymmetries would be related 

to the canyon-top anemometer placement, which was closer to the south than to the north 

wall. The surrounding fetch is, however, not homogeneous and the effect of surrounding 

elements is visible. Asymmetries that increase as a function of WS suggest the influence 

of large roughness elements located far away. An example can be seen in Figure 6.10 

under strong W and NW flow. All measured variables show relatively large values for W 

and NW flow. These are caused by the wake of the OU Dormitories large building 

complex and by the presence of extensive parking lots in this direction. Wake turbulence 

is evidenced by large values of velocity variance ++������. Large temperature variance !+!+����� 

is partly explained by the presence of extensive parking lots to the west and north of the 

area. These asymmetries are less pronounced under periods with weaker winds when the 

influence of nearby elements dominates turbulent transfer. 
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Figure 6.18. Role of WD and WS on sensible heat fluxes (left), vertical velocity variance (center) and 

temperature variance (right) during periods of strong solar radiation (> 600 W.m
-2

). Canyon top 

(green), south roof (orange) and north roof (red) data are presented. 

 

 SHFX above the canopy behave differently depending on WD. Only under 

southerly flow, which is perpendicular to the buildings, canyon fluxes are larger in 

magnitude than those measured over rooftops. This is not evident under northerly flow 

periods. A partial explanation is the closeness of the canyon-top sonic anemometer to the 

southern wall (i.e. located at a distance of about 20% of the canyon width).  

 

 Nevertheless, some observations suggest that the effect of the upstream fetch is 

also important in the generation of differences between southerly versus northerly flow 

cases. One factor is the presence of enhanced ++������ under southerly flow that is present 

not only over the canyon-top but over both rooftops. This suggests the presence of a 

stronger shear layer under southerly wind directions associated with a more rural-like 
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boundary layer. Under northerly wind directions the flow has interacted with the Norman 

urban area which results in the arrival of a weaker shear layer. These results are also 

supported by the location of canyon-top SHFX maxima with respect to the south. The 

maxima under both weak and strong WS cases coincide with the upstream fetch 

characterized by the smallest roughness elements and paved surfaces (i.e. located to the 

south-southeast). 

 

 Whereas over the canyon SHFX are mostly explained by ++������, over rooftops !+!+����� 

dominates. Temperature effects particularly dominate under weak WS, when gradients 

are enhanced by weaker turbulent mixing. Under stronger wind speeds, the effects of  

++������ dominate everywhere. Values of !+!+�����, still larger over rooftops than over the 

canyon, decrease from enhanced mixing. 

 

 Under flow regimes that are perpendicular to the canopy, SHFX are larger over 

the upstream roof and are mostly explained by !+!+�����.  Whereas !+!+����� over the upstream 

roof is relatively large and dominated by rooftop thermals, that over the downstream roof 

is influenced by well-mixed air advected from the canyon. 

 

 Fluxes differ under flow regimes that are not normal to canyon orientation. Under 

parallel flow regimes, SHFX are lower over the canyon-top associated with a decrease in 

++������. This decrease is also present over rooftops, but a local increase in !+!+����� favors a 

slight increase on SHFX under these conditions.  

 

b. Weak solar radiation. 

 All cases with weak solar radiation (50-300 W.m
-2

) are summarized in Figure 

6.19. Whereas the effects of ++������. remain similar for the most part, the effects of !+!+�����. 
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decrease from decreased surface heating. The effects of canyon shape on ++������. are, 

however, more evident. This can be explained by the arrival of a stronger shear layer 

from the north compared to the shear layer that arrives when the heating is larger. This 

behavior reflects the effect friction from thermal turbulence, which causes a decrease in 

the velocity of the flow over the Norman Urban area. Sensible fluxes are still highest 

under wind directions perpendicular to canyon orientation, but the differences are smaller 

than when solar radiation rates and surface heating are large. The effect of surrounding 

roughness elements is also evident under large WS. 

 

Figure 6.19. Role of WD and WS on sensible heat fluxes (left), vertical velocity variance (center) and 

temperature variance (right) during periods of low solar radiation (50-300 W.m
-2

). Canyon top 

(green), south roof (orange) and north roof (red) data are presented. 
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7. SUMMARY AND CONCLUSIONS. 

 A SLS and several SA were used to study the TT of sensible heat in the UC and to 

explore the reliability of the SLS in such complex environment. To do so, the 

measurements were organized in two 3-month-long sub-urban campaigns and one 13-

month-long urban campaign. The campaigns were all conducted in nearby locations and 

within 5 kilometers of the Norman MESONET site, for inter-comparison purposes. 

 

 The main goal of the sub-urban campaigns was to verify that SLS measurements 

were reliable. This was done by inter-comparing SLS and SA SHFX measured 

simultaneously over flat and homogeneous terrain for MOS validity. Some discrepancies 

were found, and attempts to correct them were made. The first attempt was to test the 

validity of ���
�

�
� by comparing SLS measurements with �� derived from SA velocity 

spectra. Once corrections were established, however, their impact on SLS SHFX was 

minimal. Further analysis and discussion with Bram Van Kesteren and Oscar Hartogensis 

(personal communication, 2011) indicated that most of the discrepancies originated 

higher up in the algorithm and were associated with limitations in the representation of 

the refractive index spectrum proposed by Hill (1978). This spectrum, still the most 

reliable nowadays, has limitations on the DR that arise from the difficulty of measuring at 

such high frequencies. These limitations affect mostly �� and eventually SLS sensible 

heat fluxes. The analysis showed that the discrepancies are stability and WS dependent, 

and that can be overcome by the use of the corrective expressions for �� proposed in 4.15 

and 4.16. The application of these corrections improved SLS fluxes positively. 

 

 Some discrepancies were also found in SLS 	

� data. These occur very close to 

neutrality, when scintillations are too small to be measured correctly by the SLS and 
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overestimation occurs. These could also be overcome with the corrective expression 

proposed in 4.17. The application of both corrections to �� and 	

� together lead to 

excellent agreement between SLS and SA fluxes. Looking into the Hill spectrum and 

discrepancies on the variance measurements themselves is still recommended. 

 

 Once ready to operate over the urban environment, additional considerations were 

necessary for SLS data reliability. The most critical was the determination of appropriate 

values for �� and �, which showed to have a strong effect on the calculation of SLS 

turbulent fluxes. This limitation is again tied to the applicability of MOS in scintillometry 

that has a large impact since MOS relies on functions of �/�. The estimation of �� in the 

urban environment is based on morphological approaches instead of micrometeorological 

ones, since the latter consider the characteristics of the roughness elements. Accordingly, 

�� was estimated using the Bottema (1995) method that is based on building and 

vegetation planar areas and heights. The method was successful to predict �� for some 

WD and captured the effects of canyon shape on �� but especially those of the 

surrounding environment. For some WD, however, �� was underestimated. This was 

partly due to the need of considering a broader domain for the calculations but also due to 

limitations associated with MOS applicability. The findings suggest that SAS can be 

operated immediately over the UC but their data is reliable for only certain WD upon the 

surrounding fetch. Increasing measurement height is recommended to increase reliability. 

  

 Aside from exploring scintillometer measurement applicability, TT of sensible 

heat in the UC was also investigated. The urban location selected consisted of a street 

canyon-like structure with dimensions of W~3.5h. Site selection was based on building 

geometry, east-west canyon orientation and the feasibility of attaining the proper 

permissions for instrument installation and operation. A site limitation was the ground 
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cover, which consisted of grass and scattered small trees instead of pavement. This type 

of surface cover is usually associated with smaller values of lower-canyon diurnal SHFX 

than those expected over pavement since a larger percentage of the available energy is 

usually partitioned into latent heat flux. 

 

 An idealized sketch that represents a cross section of the urban canyon sampled is 

presented in Figure 7.1, and will be referred to in the following.  

 

 

Figure 7.1. Schematic representation of average wind vectors (arrows) and average daytime 

sensible heat fluxes (circles). Magnitudes are represented with arrow and circle size. 

 

 Velocities measured during the urban campaign confirmed the presence of a shear 

layer above the UC that separates in-canopy low-momentum air from larger velocities 

found above. Turbulent mixing in this layer largely modulates the circulations inside and 

downstream from the canyon. Under perpendicular reference flow conditions, a region of 

recirculation develops and covers most of the canyon with the exception of the 

downstream end where ventilation occurs. The region of ventilation remained away from 

the ground most of the time. This type of in-canyon flow regime was classified by Oke 

(1987) as Wake Interference Flow Regime. The primary region for flow entrance was 
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through the canyon-top where the largest downward vertical velocities occurred in the 

windward end. The data also suggested that the primary exit regions were located in the 

eastern and western ends of the canyon, and that central canyon WD were for the most 

part regulated by the direction of the reference flow.  

 

 SHFX showed a distinct distribution and behavior that were functions of  WD, 

WS and stability; but also highly modulated by the geometry of the canyon and the 

surface cover. Advection and diffusion played an important role and was evidenced by 

the distribution of SHFX. This was mostly due to small vertical velocity perturbations 

found in the low-momentum in-canyon air, but was exacerbated by the contrasting 

surface covers between the roof materials (i.e. characterized by rapid heating and 

cooling) and the often shaded and moist grass cover from the canyon (i.e. characterized 

by slower heating and cooling). In some instances, daytime temperature gradients 

reversed in the upper upstream end of the canyon especially when warm and well mixed 

rooftop air was advected over relatively cool shaded in-canyon air under strong WS. 

These large velocity and thermal differences lead to large gradients near the UC top. The 

scintillometer was placed only a few meters above the strongest gradients, but the data 

revealed that it may have been operated too close to the surface. These findings suggest 

that a constant flux layer was not often present at scintillometer height and supports the 

previous findings that increasing measurement height is largely recommended. 

 

 Fluxes inside the canopy exhibit complex two-dimensional distributions with very 

low magnitudes near the ground and towards the upstream side, and increasing 

magnitudes towards the upper windward end. The distribution is highly affected by 

advection by the canyon rotor and by diffusion caused by turbulent mixing. A good 

example is the diffusion of the large SHFX gradient that forms near the upstream top of 
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the canyon as the flow progresses along the canyon and mixes with lower-SHFX in-

canyon air. This results in weaker gradients and smaller SHFX magnitudes above the 

canyon downstream end. 

 

 As expected, flow interactions are a function of reference WD. Across-canyon 

flows lead to stronger SHFX over the lee part of the canyon than at a similar height 

located over rooftops. This was mostly caused by enhanced vertical velocity 

perturbations from the downward mixing of momentum into this region. Yet SHFX 

decrease near the downwind end as mixing occurs with cooler and low-momentum in-

canyon air.  

 

 The effects of surrounding roughness elements was also evident. SHFX were 

larger above the canyon when flow originated from the southern quadrant, characterized 

by sub-urban and rural environments; than when the flow originated from the northern 

quadrant, characterized by larger roughness elements from the Norman urban area. These 

results suggested that the flow that arrives from the urban quadrant is characterized by 

smaller vertical gradients due to the effect of larger roughness elements. Incoming 

velocities were even smaller under the presence of large solar radiation, which evidences 

the effects of thermal turbulence on flow deceleration. 
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APPENDIX 1 

 

Dissipation rates of TKE as means for SLS  SHFX evaluation 
 

Dissipation rates calculated from sonic anemometer data were explored as a 

means to evaluate SLS SHFX. The connection is through the non-dimensional dissipation 

rate function from the SLS algorithm ��, which is computed using an empirical 

approximation. Unfortunately, the impact of computing a new empirical approximation 

for �� and applying it to SLS data was not  as significant as expected. This lead to the 

consideration of different approaches described in Chapter 4. It was considered useful, 

however, to present the methodology in this appendix. 

 

The dissipation rate of turbulent kinetic energy ε describes the flow of energy 

towards smaller scales within the inertial sub-range (ISR) of energy spectra, where 

isotropy and a lack of sources and sinks of energy prevail (Kaiser and Fedorovich, 1998). 

As a result, one of the most reliable methods used to estimate ε is by considering the 

slope in the ISR of high-temporal-resolution velocity spectra.  

 

Dissipation rates play an important role in several areas within the field of 

boundary-layer meteorology and turbulence. In bichromatic scintillometry, ε are essential 

for the calculation of turbulent fluxes from scintillations. In brief, ε are obtained from 

measurements of l0 via expression (3.12); they are then combined with ��
� and MOS 

empirical functions of dimensionless height ����� and �	

���� to determine surface layer 

scales via iterations; finally the latter are used to determine turbulent fluxes of heat and 

momentum. Since the largest source of uncertainty arises from ����� and �	

����, it is 

appropriate and recommended to ensure that the empirical functions used by the 

scintillometer are suitable for the sampling environment. With this goal in mind, ����� 
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were computed using sonic anemometer observations collected during ILREUM sub-

urban campaigns. These were then compared against ����� used in the scintillometer 

algorithm and against some alternate approximations described in the literature.  

 

 The methodology considered to determine ����� for MOS evaluation was based 

on procedures described in Kaimal and Finnigan (1994), Kaiser and Fedorovich (1998), 

Roth (2000) and Roth and Salmond (2006). Comparisons were established between 

scintillometer dissipation rates and those computed from sonic anemometer 

measurements made near the center of the path. In an attempt to assure the validity of 

MOS, only data from wind directions representative of a homogeneous fetch (140° to 

210°) were considered. Steps considered include determination of energy spectra from 

velocity perturbation timeseries; identification of the inertial sub-range; calculation of 

normalized dissipation rates; quality-assurance to ignore odd-looking spectra; 

comparisons against empirical fits used in the scintillometer algorithm as well as others 

described in the literature and, finally, estimation of appropriate empirical fits for 

ILREUM data. 

 

a. Determination of energy spectra. 
 

Energy spectra can be calculated from velocity perturbation timeseries. A 

commonly accepted technique is to work in the natural coordinate system, which implies 

rotation of velocity data so that the mean flow is aligned with the zonal component of the 

Cartesian coordinate system. Once zonal velocity perturbations U'(t) have been 

calculated, energy spectra can be computed by applying the Fast Fourier Transform FFT 

(Kaiser and Fedorovich, 1998 and Kaimal and Finnigan, 1994). The FFT allows to 
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express finite time series as a function of frequencies f instead of time t. It can be defined 

as: 

        

                      ������Δ��� � Δ� ∑ ���Δ�������2����Δ����Δ����� !"#
$%&    

 

                                              � Δ� ∑ ���Δ�������2����/()*+��� !"#
$%&    (A1.1) 

 

where ���Δ�� is a finite timeseries, Δ� is the sampling interval in seconds, Δ� is the 

frequency interval in Hz and ()*+ is the total number of observations. Indices � and � 

represent time and frequency space respectively. When calculated, the result of the FFT 

can be converted into energy -.��� by calculating the square of the absolute value of the 

real part of the spectrum (the first half); and after appropriate scaling as follows: 

 

       -.��� � �
�� !/0 |������Δ���23*4|�          (A1.2) 

 

The corresponding range of frequencies can be then calculated via:  

 

       �$ � $
�� !/0              (A1.3) 

 

(Kaimal and Finnigan, 1994; Kaiser and Fedorovich, 1998). This method was applied to 

ILREUM sub-urban datasets. The data was organized into 15-minute-long timeseries 

sampled at a frequency of 10 Hz (Δ�=0.1 s). This lead to ()*+=9000. 

 

b. Non-dimensional dissipation from spectra. 

 

 According to Kolmogorov (1941), the following expression is valid for the ISR of 

energy spectra expressed as a function of wave number k: 

 

 

                                                             -.�5� � 6 7�/8 5"9/8    (A1.4) 
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where α~0.52 is a constant of proportionality found to fall between 0.4 and 0.6; -.�5� is 

energy density as a function of k and 7 is the dissipation rate of TKE. Once combined 

with the MOS expression for non-dimensional dissipation ��: 

 

        �� �  :;7/<=8      (A1.5) 
 

one can obtain an expression for �� as a function of energy density and wave number: 

                                                               �� � >?
.=@

ABC�D�
E F

8/�
59/�      (A1.6) 

 

A relationship between wave number and frequency spectra can be established by 

considering that Taylor's hypothesis is valid. This assumption allows to relate wave 

number k and frequency f using the mean wind speed GH  as follows: 

                                                             5 � �I
J �  �IK

LH        (A1.7) 
 

and: 

                                                           -.�5� � LH
�I -.���     (A1.8) 

 

The combination of expressions (A1.6), (A1.7) and (A1.8) yields the following 

expression for ��: 

 

                �� �  �I>?
L.=@

�9/� A�-<���
6 F

3/2
      (A1.9) 

 

which allows to determine non-dimensional dissipation directly from frequency spectra. 

Expression (A1.9) is valid only within the ISR of velocity spectra, under conditions 

where Taylor's Hypothesis applies. A representative value of �� can be obtained by 

averaging all calculated values that fall within the ISR, whose limits need to be carefully 

defined. 
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c. Inertial sub-range limits. 

 

 Defining ISR location in energy spectra can be a non-trivial procedure. In theory, 

slope in the ISR should approach -2/3 once both frequency and energy density have been 

normalized into non-dimensional quantities. In reality, however, this is not strictly the 

case. Slopes can often be larger than -2/3 (Roth et al., 2006) and in some cases spectra 

shapes can deviate significantly from the expected. Factors that cause these deviations 

include instrument characteristics, sampling frequency, sampling height and 

characteristics of the sampling environment itself. 

 

 A common practice to define ISR location consists of finding a range of 

frequencies that leads to: (i) �� approaching 1 near neutrality (i.e.  in theory,  ���0� � 1) 

and (ii) spectra shapes that approach those of theoretical spectra. ISR position varies upon 

datasets and must be determined accordingly (Roth et al. 2006).  

 

 The first necessary step is spectra normalization. The method applied to ILREUM 

spectra, one commonly described in the literature, uses friction velocity <= and non-

dimensional dissipation �� as follows: 

 

                  -.P ��� � �-.���/<=���
�/8

                (A1.10) 
 

 

where �� is calculated from the ISR of the spectra itself. Frequency f is also normalized 

into non-dimensional frequency F via: 

                  ���� � �;/GH        (A1.11) 
 

 

where GH is the mean wind speed. This method of is also commonly applied to v' and w' 

spectra, which were also explored a means to verify that calculations were correct.  
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 One limitation of this method is that values of �� are unknown before 

normalization. They can only be calculated once the ISR F range has been defined. This 

requires thorough exploration of spectra and associated �� under different definitions of 

F ranges. This analysis was applied to ILREUM data and the results are presented in 

Figure A1.9. Spectra (left) and corresponding ����� (right) are shown for selected F 

ranges. Thick black curves are references calculated from spectra collected during the 

Kansas experiments (Kaimal and Finnigan, 1994) for stabilities that range between -2.0 <  

� < +2.0. Trials using different ranges are indicated using different colors. Yellow and 

orange are used for higher frequencies and purples and blues for lower frequencies. 

Figure A1.9 demonstrates that ISR F range definition does affect calculated values of �� 

in addition to the shape and magnitude of normalized spectra. The results were also 

compared against ranges suggested by other studies. These ranges, together with the 

results from this study, are summarized in Table A1.1. 

 

 Both Figure A1.9 and Table A1.1 show that for ILREUM data the best results 

were attained using ranges that fell within the lower end of those described in the 

literature. Spectra and associated ����� plotted in blue and purple produced better results 

than those plotted using yellow and orange. Differences upon limit selection are caused 

by slight changes in spectra slope and magnitude that occur under different frequency 

ranges. Slopes tend to decrease towards higher frequencies, which produce values of 

����� that are too large. Spectra and associated ISR F ranges also differ amongst 

instrument platforms. The RM-Young sonic anemometers seemed to perform better than 

the CSAT sonic anemometers, based only upon spectra shape and magnitude. ISR limit 

definition appears more critical in the latter, where the behavior of spectra slope as a 

function of frequency deviates more from linearity.  
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Figure A1.1. Normalized spectra (left) and non-dimensional dissipation rates (right) calculated using 

different selected ISR definitions. 
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Table A1.1. Summary of inertial sub-range statistics for suburban studies based on Roth et al. (2006). 

___________________________________________________________________________________________________________________________ 
 

Study z/zH Slope F Comments 
________________________________________________________________________________________________________________________________________________________________________________________________________________________ 
 

Rotach (1991) 1.55 > -2/3 3 Urban slope for u, v, and w 

 1.27 > -2/3 3  

 0.91 > -2/3 3  

 0.71 > -2/3 3.5, 11  

     

Roth and Oke (1993) 2.62 -2/3 2.5-5 Suburban (slope for u,v,w) 

     

Christen et al. (2004) 2.17 > -2/3 ~0.9-9 Urban (slope for u) 

 1.23 > -2/3 ~0.5-5  

 1.01 > -2/3 ~0.5-5  

 0.77 > -2/3 ~0.6-6  

     

Roth et al. (2006) 1.32 -2/3 3-6 Urban (slope for w) 

 1.01 -2/3 4-10  

     

ILREUM (Present study)  >-2/3 0.3-1.5 Sub-urban, RMY 2007 (u) 

  >-2/3 0.1-1.2 Sub-urban, RMY 2008 (u) 

  >-2/3 0.1-1.4 Sub-urban, CS1 2008 (u) 

  >-2/3 0.6-1.5 Sub-urban, CS2 2008 (u) 
___________________________________________________________________________________________________________________________ 

z - sensor height, zH - average height of buildings, F - non-dimensional frequency, f - natural frequency 

 

 The most remarkable discrepancies with respect to other studies arise in the high 

end of frequencies. Other studies we able to consider larger frequencies / smaller scales. 

ILREUM measurements, especially those made with the CSAT sonic anemometers, 

struggled resolving frequencies larger than F~4. The sampling frequency of 10 Hz was 

not large enough to capture energy at large values of F. Furthermore, smaller scales are 

also generally affected by aliasing. 

 

d. Quality assurance and spectral stability dependence. 

 

 Before looking into the calculated values for ��, it was appropriate to verify that 

each energy spectrum looked reasonable in comparison against standard spectra 

described in the literature. The quality assurance procedure applied to energy spectra was 

to remove those spectra that  showed values out of given bounds. Spectra out of the 
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following bounds were removed: F < 0.005 and -.P ��� > 0.25; F > 0.009 and -.P ��� > 

0.04; 0.009 > F > 0.105 and -.P ��� < 0.02; and 2.2 < F < 3.5 and -.P ��� < 0.007 or -.P ��� 

> 0.025. Bounds selection was based on careful screening of all raw ILREUM spectra 

and could vary if another dataset is considered.  

 

 Once the final spectra were selected, a final quality checkpoint was to explore 

their dependence on stability and compare them against theoretical spectra from data 

from the Kansas Experiments described in Kaimal and Finnigan (1994). Spectra for v' 

and w' were also plotted as a means to revise that the calculations were correct. These 

comparisons are summarized in Figure A1.2. Thin colored curves represent all selected 

ILREUM spectra stratified by stability ranges. Reds and yellows are used for unstable 

conditions whereas blues are used for stable conditions. Thick black curves represent 

findings from the Kansas experiment. 

 

 The results in Figure A1.2. indicate that ILREUM spectra generally fall within the 

expected range. Spectra tended to collapse as expected within the inertial sub-range. 

Shape dependence on stability was also evident but not as clearly as expected. Spectra 

calculated using v' and w' do show a more clear tendency for a shift of the energy peak 

towards larger frequencies as stability increases. This trend, yet existing, is much less 

clear in u' spectra. Overall, spectra look reasonable and were consider suitable for the 

calculation of �����.  
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Figure A1.2. Spectra for u', v' and w' of the four sonic anemometers operated near path center. Spectra are 

stratified for different stability categories (color scale). Theoretical spectra for different stabilities (Kaimal 

and Finnigan, 1994) are provided with thick black curves. 

  

e. Empirical fits. 

 

The values of ����� calculated from spectra were plotted as a function of stability 

and compared against different empirical fits described in the literature in Figure A1.3.  
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Figure A1.3. Distribution of ����� from spectra compared against various proposed empirical fits. 

 

Values of ����� derived from ILREUM data are displayed using asterisks. 

Different colors represent different instrumentation platforms, as indicated in the figure. 

ILREUM data was also organized in bins which are plotted using solid circles and 

vertical lines that represent standard deviation. Empirical fits described in the literature 

are plotted with thin lines: solid for the functions used in the scintillometer algorithm 

after (SCINTEC AG, 2006); dashed for those presented by Kanda et al. (2002) and by 

Roth et al. (2006) both from urban areas and dotted for the function proposed by 

Wyngaard et al. (1971). The fits proposed based on ILREUM data are presented using 

thick black lines. Since ILREUM results follow closely the functions described by 
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Wyngaard et al. (1971), these were selected as appropriate. Please note that the function 

proposed by Wyngaard et al. (1971) is invisible due to overlap. A summary of the 

different empirical fits explored and plotted in Figure A1.3 is presented in Table A1.2. 

 

Table A1.2. Empirical fits for ����� explored and plotted in Figure A1.11. 

 

Unstable stratification 

Empirical fit Source Comments 

����� � Q1 R 0.5|�|�/8U8/�
 (�2 V � V 0; κ=0.35)   

 

Wyngaard et al. (1971) Rural 

����� � �1 � 10.5��"# � � (�3 V � V 0)  

 

Kanda et al. (2002) Urban 

����� � �1 � 3��"# � �  (� V 0)   
Thiermann (1990). 

Thiermann and Grassl 

(1992) and SCINTEC 

AG (2006) 

Function used in SLS 

algorithm. Determined 

using tower data. 

����� � �0.93 � 5.4��"#.# � 2� (�2 V � Y �0.001)    

 

Roth et al. (2006) Urban 

����� � Q1 R 0.5|�|�/8U8/�
        (�0.4 V � V 0) 

Proposed  

����� � �1 � 7��"# R 4.5� � 4.5��     (�0.4 V � V 0)  
Proposed Without CS1-2008 

   
 

 

Stable stratification 

Empirical fit Source Comments 

����� � �1 R 4� R 16���#/� (� \ 0)   Thiermann and Grassl 

(1992) and SCINTEC 

AG (2006) 

Function used in 

SLS algorithm 

����� � �1 R 6� � 4���#/� (0 V � Y 0.4)   Proposed  

����� � �1 R 5.5� � 4���#/� (0 V � Y 0.4)   Proposed Without CS1-

2008 
 

 

 Figure A1.11 shows general agreement between the values derived from 

ILREUM data and the fits described in the literature. Nevertheless, their impact on SLS 

data was minimal. 
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