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Abstract

Global teleconnections, involving geopotential height, air temperature, and sea sur-

face temperature, are found for the interannual variability of tropical cyclone (TC)

activity in Northwest-Australian (NWAUS) basin of the Southeast Indian Ocean

(105 − 135◦E). The NWAUS basin averages 5.5 TCs per year, 42 TC days, and 3

TC landfalls. Additionally, a wavelet analysis yields wavelet power maximum in the

4− 6 year and the decadal time periods for both yearly TC frequency and TC days.

To identify significant correlates, the global atmospheric and oceanic parameters men-

tioned above were correlated with the TC frequency and TC days from the Woodside

Petroleum Ltd. TC data set. Large correlations were obtained between the NWAUS

TC frequency and the following variables: Apr–Jun 700-hPa geopotential heights over

North America (r ∼ −0.64), May–Jul 850-hPa geopotential heights over the south

Indian Ocean (r ∼ 0.60), May–Jul 850-hPa air temperature (r ∼ −0.63), Jun–Aug

925-hPa geopotential heights over the south Atlantic Ocean (r ∼ −0.65), and Jun–

Aug 925-hPa geopotential heights over the Eastern Pacific Ocean (r ∼ −0.59). The

collinearity among the five correlates are generally | r |< 0.4. Additionally, large

correlations were obtained between the NWAUS TC days and the following vari-

ables: Jan–Mar 100-hPa v-component of the wind over the Southern Pacific Ocean

(r ∼ 0.52), Apr-Jun 850-hPa geopotential heights over North America (r ∼ −0.58),

and Jul–Sep 1000-hPa geopotential heights over the South Altanic Ocean (r ∼ −0.7).

These variables can be utilized as seasonal predictors for the upcoming TC season

in terms of frequency and days with a lead-time of at least three months for TC

frequency and two months for TC days. This set of seasonal predictors includes,

intra-basin, inter-basin, and cross-hemispheric regions, unlike previous Australian

TC activity studies, which stress the primacy of ENSO. Here it is noted that the

traditional Niño 3.4 and Niño 4 regions were not highly correlated with the NWAUS

TC activity (| r |< 0.5). No local predictors based on SST, geopotential height, or

xiii



air temperature resulted from the correlation analysis. The predictors are used in a

multiple linear regression model for forecasting the coming seasons number of TCs

and TC days. Finally, both prediction schemes are then compared to forecasts made

using persistence, climatology, and random forecasts to determine if they perform

better than these reference forecasts.

xiv



Chapter 1

Introduction

For millennia, tropical cyclones (TCs) have been affecting the lives of people. Before

the advent of modern meteorological sensing instrumentation, TCs often hit with little

or no advance warning. Without comprehensive data coverage it was difficult to as-

certain the different types of meteorological phenomena, let alone predict them. One

notable early U.S. hurricane impact was the Galveston 1900 storm, that decimated

the Galveston, TX area. The people of Galveston received minimal advance warning.

Prior to landfall, Galveston meteorologist Isaac Cline was warned by Cuban meteo-

rologists about a possible TC moving toward Galveston (Larson 2000), but Cline did

not hold the warnings in high regard and did not warn the residents until it was too

late. As a result, many people lost their lives and the town was nearly completely

destroyed.

Even today, with advanced remote sensing technology, potential impacts of TCs

are often misestimated. During the 2005 Atlantic hurricane season the remnants of

Hurricane Stan crossed over the Central American countries of Belize, Honduras, and

Guatemala. The Guatemalan government told its citizens that there was nothing to

worry about from the storm (Flayer 2007; personal communication). Unfortunately,

the remnants of Hurricane Stan produced large amounts of rainfall on the highlands

of Guatemala which caused massive mudslides that destroyed parts of the village of

Panabaj near Santiago/Atitlan. In addition to the homes and lives lost as a result

of the mudslides, the economy of the region was almost destroyed when nearly the

entire coffee bean crop failed. The mudslides were up to 12 m (40 ft) deep in areas

1



near Panabaj, resulting in more than 1000 deaths in this area. Knowing that TCs

affect all parts of society, it is important to understand and predict TCs to better

serve society.

Predicting the number of tropical cyclones that will affect a region is one aspect of

forecasting TCs. Early seasonal prediction schemes were developed for the Australian

region (Nicholls 1979, 1985) and the Atlantic region (Gray 1984a,b) using El-Niño–

Southern Oscillation (ENSO) standard parameters as primary predictors of future TC

activity. These schemes have had varying degrees of success. In general, schemes have

improved with increasing understanding of the large scale forcings affecting different

ocean basins. Since these early works, much focus has been on understanding the

role of global atmospheric parameters in modulating interannual TC activity (e.g.,

Nicholls 1992; Chan 1985; Solow and Nicholls 1990; Gray et al. 1992; Evans and Allan

1992; Gray et al. 1993; Nicholls et al. 1998; Chan and Liu 2004; Klotzbach and Gray

2004; Ramsay et al. 2008) in all of the global TC basins.

The Southern Hemispheric TC basins have not been studied as extensively as

the North Atlantic and Western North Pacific TC basins. The Australian TC basin

(90 − 170◦ E; Fig. 1.1) typically has been investigated as a single TC basin (e.g.,

Nicholls 1979, 1984, 1985, 1992; Evans and Allan 1992; Nicholls et al. 1998; Hall

et al. 2001; Ramsay et al. 2008). However, a few studies have focused on one of the

two distinct primary subbasins of the Australian TC basin, the Southwest Pacific

(SWPAC) Ocean basin (135− 170◦ E; e.g., Revell and Goulter 1986; Hastings 1990;

Basher and Zheng 1995), and the Southeast Indian (SEIND) Ocean basin (90− 135◦

E; e.g., Broadbridge and Hanstrum 1998).

The Northwest Australian (NWAUS) TC basin, itself a subbasin of the SEIND

Ocean (Fig. 1.1), is a major economic center for Australia, yielding a large portion

of its raw materials (e.g., oil, natural gas, iron ore) whose production is greatly

disrupted by yearly TC activity. The NWAUS TC basin is the most active portion

2



Figure 1.1 A map of the Australian TC region (90 − 170◦ E; 0 − 35◦ S), with the
Northwest Australian Region (105− 135◦ E) identified between the dashed lines.
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of the Australian region (Fig. 1.2). While there is much TC activity throughout

the Australian region, the bounds of the NWAUS basin readily can be identified

through the local minima in TC occurrence around the 105◦ and 135◦ longitudes,

which denote the ends of the NWAUS region. Thus the ability to accurately predict

seasonal variability of TC frequency is needed to limit the impact that a TC season

will have on the vital industries in the NWAUS region. In addition to the impacted

industries, TCs in the NWAUS TC basin, are a substantial source of Northwest

Australian rainfall.

Previous work in the Australian region generally has not focused on the NWAUS

TC subbasin but on the entire Australian TC basin. Additionally, the seasonal pre-

diction schemes for the Australian region in the literature have not used global predic-

tors for seasonal TC prediction. This work extends similar work done for the Atlantic

(e.g., Gray 1984a,b; Gray et al. 1992, 1993; Klotzbach and Gray 2003) and Northwest

Pacific (NWPAC) TC regions (e.g., Chan 1985; Chan et al. 1998) to the NWAUS

subbasin of the SEIND Ocean.

In this study, I seek global predictors of TC activity in a subbasin of the SEIND

Ocean and use these newly found predictors in a seasonal forecast scheme. New

global predictors are determined by investigating the interannual variability of TC

frequency and TC days in the NWAUS region and identifying which known global

modes or atmospheric parameters explain the largest part of the TC metric variance.

These global teleconnections are not be limited to the Southern Hemisphere, but are

intra-basin, inter-basin, and cross-hemispheric. The identified global teleconnections

are used to develop a seasonal prediction scheme for yearly TC counts. The prediction

scheme developed outperforms the forecasts using persistence or climatology as the

predictor.

The prediction scheme is developed using seasonal TC data from the 1970/71 to

2004/05. All predictors input into the model go through a stepwise regression, using
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Figure 1.2 The number of TCs that crossed into each 1◦ latitude by 1◦ longitude box
within the entire Australian region during the period 1970/71 to 2005/06. This map
was compiled from the Australian Bureau of Meteorology best-track dataset.
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the Akaike Information Criterion (AIC) statistic to select the minimum number of

predictors needed to minimize the prediction error. The “leave-one-out” and leave-

five-out, predict three cross validation method are used to determine the independent

forecast ability of the seasonal prediction scheme. This allows for an estimation of

the skill of the prediction scheme over climatological and persistence forecasts, which

are commonly used to assess forecast skill. Finally, the four most recent TC seasons,

which have not been used in the development dataset, will be presented as case

studies using the developed forecast scheme. The predictors are all available before

the beginning of the NWAUS TC season so that a forecast can be made prior to the

beginning of the oncoming season.

Nearly all of the studies conducted on the Australian TC basin have focused

primarily on the role of ENSO. However, there has been an increasing interest in the

role of global teleconnections in modulating TC activity world-wide. Many studies

of the Atlantic and NWPAC TC basins have identified key parameters in addition

to ENSO variables that are important to describing the interannual variability of

TC frequency (e.g., Gray 1984a,b; Gray et al. 1992, 1993; Chan 1985; Chan et al.

1998; Klotzbach and Gray 2003). Some of the parameters identified in previous work

for the Atlantic and NWPAC TC basins are the, Quasi-biennial Oscillation (QBO),

Caribbean sea-level pressure, and November 500-hPa geopotential height.

A literature review is presented in Chapter 2, highlighting key issues of variability

in TC metrics for the Australian region including seasonal TC prediction methods

developed by Nicholls (1979, 1985, 1992) and Klotzbach and Gray (2003, 2004) prior

to this work. Additionally, a brief review of global teleconnections is presented as

well as TC prediction methods from other basins. The data and prediction selector

methodology used in this study are discussed in Chapter 3. The results of the search

for TC predictors are presented in Chapter 4. The seasonal prediction scheme is

6



developed and cross-validated in Chapter 5. Finally, some conclusions and future

work are discussed in Chapter 6.
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Chapter 2

Literature Review and Historical Background

There are many different names for the same atmospheric phenomenon known as a

tropical cyclone (TC). For example, in the North Atlantic basin, named storm systems

are called tropical storms and hurricanes, where hurricanes are further delineated by

a five category rating system depending on wind speed. However, in the Northwest

Pacific basin tropical cyclones are referred to as tropical storms, severe tropical storms,

and typhoons. In the Australian region the terms used are five categories of tropical

cyclones and severe tropical cyclones (Cats. 3− 5).

Before regular weather observations began, people living along coastal regions and

sailors at sea were the only people who experienced tropical cyclones. These storms

would often hit without warning and cause major damage to homes and ships. Even

in 1944 − 45, with improved, but still limited meteorological knowledge, there was

still conflicting meteorological information that caused the U.S. Third fleet stationed

in the Pacific Ocean to be caught in two typhoons (Emanuel 2005).

Regular observations of TCs have been taken in the North Atlantic region since

the mid-1940s using airplane reconnaissance, which left many regions still uncovered,

including the Pacific Ocean and the U.S. Third fleet. Globally, TCs have only been

observed extensively since the deployment of satellites, which has provided an ongoing

source of regular observations. Currently, the main method of observing TCs is

through the use of various kinds of satellites, and where intensity usually is estimated

through an interpretation scheme developed by Dvorak (1975, 1984). The Dvorak
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technique uses cloud pattern recognition to estimate the strength of the storm while

out at sea, away from any in situ observations.

There are a number of TC basins globally, including the North Atlantic, Eastern

Pacific, Northwest Pacific, North Indian, Southwest Indian, and Australian basins.

No observations of TCs have occurred in the South Atlantic Ocean1. Global TC

tracks are illustrated in Figure 2.1 and through inference illustrate the locations of

the TC basins. These different ocean basins around the world have different initiating

mechanisms for development, but Gray (1984a,b) hypothesized that within each basin

the processes involved in TC development and intensification were similar. The set of

necessary, but not sufficient conditions for TC development defined by Gray (1968),

are as follows:

a. frictionally forced low-level moisture convergence;

b. upper-level divergence leading to deep cumulus convection;

c. upper-level divergence exceeds low-level convergence;

d. horizontal low-level wind shear, but minimal vertical wind shear;

e. sea surface temperatures exceeding 26.5◦C;

f. low-level disturbance develops poleward of 5◦ latitude for Coriolis turning;

g. an established low-level vorticity disturbance.

The initiating mechanisms vary by TC basin; in the Atlantic basin the main initiating

mechanism are African Easterly Waves, whereas in the Australian region a more

common initiator is the monsoon trough.

1In January 2003 satellites observed a storm that appeared to have characteristics of a TC. The

fact as to whether this was a TC is still debated within the meteorological community.
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Figure 2.1 Nearly 150 years of storm tracks. Courtesy of the Earth Observatory
Daily Image Archive (http://earthobservatory.nasa.gov/IOTD/view.php?id=7079)
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The American Meteorological Society defines a TC as a disturbance originating

over tropical oceans (AMS 2000), whereas Gray (1968) more precisely defines a trop-

ical storm as a “warm-core cyclonically rotating wind system in which maximum

sustained winds are 17 m s−1 (35 kt; 40 mph) or greater.” In the Australian region

the Australian Bureau of Meteorology categorizes TCs by maximum wind gusts into

five categories of severity: category 1 maximum wind gust below 125 km h−1; cate-

gory 2, maximum gust 125 − 164 km h−1; category 3, maximum gust 165 − 224 km

h−1; category 4, maximum gust 225− 279 km h−1; category 5, maximum gust above

279 km h−1.

Observations of TCs have improved with the aid of satellites, which have ad-

vanced the meteorological understanding of what is and is not a TC. Even with the

advances in satellite technology, including advanced wind observing satellites, there

is debate about individual storms and how they should be classified. With this said,

the mean number of global TCs has been estimated to be 90 TCs per year2 (Frank

and Young 2007), with a standard deviation of 10 (Lander and Guard 1998), for TCs

with sustained wind speeds greater than 17 m s−1 (34 kts).

There are three main stages in the life cycle of a TC: genesis, maturation, and

dissipation stages. During the genesis stage, convection is typically quite disorganized,

with little or no rotation occurring in the storm. A cyclonically rotating circulation

with a nearly axisymmetric low-pressure center signifies the mature stage. Finally,

during the dissipation stage the vortex weakens and elongates asymmetrically from

the center.

2While the average is 90, the yearly number of TCs does indeed vary. The myth that the number

of TCs that occur annual across the globe is constant is not true ((Frank and Young 2007)). A

common thought was that when there is an active season in one basin, it is compensated by less

activity in the other basins. Frank and Young (2007) have recently proven this myth false using

global TC counts from the 1985− 2003 seasons.
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A mature TC (hurricane strength or stronger) typically has a well-defined eye and

often is approximated as axisymmetirc (Ooyama 1982; Moller and Montgomery 1999).

The eye region is usually nearly cloud free, with stronger storms more likely to have

a clear eye (Palmén and Newton 1969). The convective region surrounding the eye is

called the eye wall and is the location of the strongest winds within the entire storm

(Willoughby et al. 1982). Within this region we find the radius of maximum winds

(RMW). The cyclonic flow around a TC from the center of the eye to the RMW can

be approximated by solid-body rotation, with winds decreasing radially outward from

the RMW until reaching equilibrium with the environmental flow. This relationship

of winds and radial distance within a TC can be approximated mathematically as a

modified-Rankine vortex where

V r−1 = constant, (2.1)

outside the RMW, and

V r = constant, (2.2)

within the RMW (Depperman 1947). However, the air flow within the RMW does not

exactly conform to solid-body rotation due to frictional effects and was later modified

by Gray and Shea (1973) to be

V rx = constant, (2.3)

where x was determined empirically from wind observations to lie between 0.4 and

0.6. Outside the eye wall region, convection forms in outer rain bands that spiral into

the storm (Maynard 1945; Wexler 1947) and these rain bands can be approximated

as breaking Rossby waves (Montgomery 1997; Moller and Montgomery 1999).

Using a parametric fit of the gradient wind balance, Holland (1980) developed an

empirical relationship for the RMW (Rw) and the maximum wind (Vm)

Rw = A1/B, (2.4)
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and

Vm = (B/ρe)1/2(pn − pc)1/2, (2.5)

where A and B are climatological scaling parameters based on maximum wind, ρ is

the air density (assumed to be 1.15 kg m−3), e is the natural logarithm base, pn is the

ambient surface pressure (assumed to be the pressure of the first anticyclonic curved

isobar), and pc is the central pressure of the TC vortex. The relation for the RMW is

useful in that it does not depend on the ambient or central pressure, only the scaling

parameters A and B. The scaling parameters must be determined for each TC and

the resulting radial values of pressure and wind are sensitive to the choice of A and

B. However, Holland (1980) was able to fit the observed data by choosing A = 23

and B = 1.5. Subsequent attempts to calculate the RMW and maximum wind have

also yielded additional empirical relationships for the TC vortex (e.g., Large and Pond

1982; Emanuel 1986, 1995; Andreas and Emanuel 2001; Emanuel 2003a; Makin 2005).

A TC can be defined mathematically in cylindrical coordinates (r, λ, z),with a set

of equations whose origin is at the center of a stationary TC. This set of equations

describes the flow and energtics surrounding a mature TC. Beginning with the radial,

u, and tangential, v, components of the wind

∂u

∂t
+ u

∂u

∂r
+
v

r

∂u

∂λ
+ w

∂u

∂z
− fv − v2

r
= −1

ρ

∂p

∂r
+

1

ρ

∂τzr
∂z

+ FHr, (2.6)

∂v

∂t
+ u

∂v

∂r
+
v

r

∂v

∂λ
+ w

∂v

∂z
+ fu+

uv

r
= − 1

ρr

∂p

∂λ
+

1

ρ

∂τzλ
∂z

+ FHλ, (2.7)

where u is dr/dt and v is dλ/dt, w is the vertical velocity component, f is the Coriolis

parameter, ρ is the air density, τzλ and τzr are the tangential and radial stresses due

to small-scale vertical momentum mixing, and FHλ and FHr are the tangential and

radial components of horizontal mixing. The vertical component (w) of the equation

of motion can be expressed as

dw

dt
= −1

ρ

∂p

∂z
− g + Fz, (2.8)
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where Fz is a summary term representing forces associated with precipitation particle

drag and turbulent mixing. Generally, the terms dw/dt and Fz are several orders of

magnitude smaller than the vertical pressure gradient force, which allows (2.8) to be

approximated as the hydrostatic balance

∂p

∂z
= −ρg, (2.9)

while noting that vertical motions in TCs are produced by imbalances in the right

hand terms in (2.8). To complete the equations of motion, the full continuity equation

is written as

∂ρ

∂t
+
∂ρru

r∂r
+
∂ρv

r∂λ
+
∂ρw

∂z
= 0, (2.10)

where the changes of air density are related to horizontal and vertical advection. The

first law of thermodynamics, expressed in terms of temperature (T ), is written as

∂T

∂t
= −u∂T

∂r
− v

r

∂T

∂λ
− w∂T

∂z
− ω

ρcp
+
Q

cp
− 1

ρcp

∂Hs

∂z
+ FHT , (2.11)

where ω = dp/dt, Q is the diabatic heating rate, Hs is the vertical heat flux due to tur-

bulent eddies, and FHT represents horizontal mixing due to turbulence. Additionally,

the continuity equation for water vapor is written as

∂q

∂t
= −u∂q

∂r
− v

r

∂q

∂λ
− w∂q

∂z
− C − 1

ρ

∂Hq

∂z
+ FHq, (2.12)

where q is the specific humidity, C is the condensation (evaporation rate), Hq the

vertical flux of water vapor, and FHq the effect of horizontal mixing of water vapor.

These equations, along with the equation of state

p = ρRT, (2.13)

where R is the universal gas constant, complete the system of equations that describe

the dynamics and moist thermodynamic process of a mature TC (Anthes 1982).

Additionally, there are two conserved quantities that are useful to describe the physics
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of TCs, absolute angular momentum (M) and entropy (s). Angular momentum is

conserved for axisymmetric displacements around a TC and is defined as

M = rV +
1

2
fr2, (2.14)

where r is the radius from the center of the storm, V is the tangential velocity,

and f is the Coriolis parameter. Entropy is conserved following reversible adiabatic

displacements of air and is approximated as

s ≈ Cp ln(T )−Rd ln(p) +
Lvq

T
− qRv ln(H), (2.15)

where Cp is the specific heat at constant pressure, T is the absolute temperature, Rd is

the universal gas constant for dry air, p is pressure, Lv is latent heat of vaporization, q

is the concentration of water vapor, Rv is the universal gas constant for water vapor,

and H is the relative humidity (Emanuel 2003b).

The main source of energy for TCs is the heat transfer from the ocean (Riehl

1950; Kleinschmidt 1951). The mature TC with steady, axisymmetric flow has been

approximated as an ideal Carnot engine (Emanuel 1986). As air flows into the center

of the TC it experiences a pressure drop, and entropy increases owing to heat trans-

fer from the ocean and dissipation of kinetic energy in the atmospheric boundary

layer (Bister and Emanuel 1998). Angular momentum also decreases at this time due

to frictional torque with the sea surface. This frictional torque is the most impor-

tant sink of kinetic energy within the TC (Emanuel 2003b), needed to maintain the

Carnot-like cycle. Strong upward vertical velocity in the eyewall forces air upwards

where it ascends to lower pressure with constant entropy and constant angular mo-

mentum. This portion of the energy cycle is nearly adiabatic and free of frictional

torque. Air begins to descend as it moves from the center of the storm to the distant

environment. During this leg, the air loses the entropy gained from the inflow leg

through longwave radiation emitted to space and gains angular momentum through
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mixing with the environment. This segment is nearly isothermal. Finally, the cycle

is closed by an angular momentum conserving segment where air descends adiabat-

ically on the periphery of the TC (Bister and Emanuel 1998) back to the surface.

The energy production in a TC is highly dependent on the saturated specific humid-

ity, which increases exponentially with temperature. Unlike energy production, the

energy dissipation within the storm is not dependent on temperature (Lighthill 1998).

2.1 TC data quality in Australian region

The Australian region has observations of TCs dating back to the beginning of the

19th century, and reliable observations increased through the middle part of the 20th

century, with the onset of the satellite era around 1970 (Holland 1981). However, some

observations, especially of TC intensity, remain questionable during the early satellite

era. Some factors in changing observations of tropical cyclones in the Australian

region include (Holland 1981; Nicholls et al. 1998; Buckley et al. 2003):

• changes in definition;

• changing analysis techniques;

• improvements in satellite technology;

• increased radar coverage of coastal regions;

• increased in situ observations (surface and upperair).

These factors identify the key problems that must be accounted for within any Aus-

tralian region TC dataset. Most of these effects are not mutually exclusive; often

better understanding of TCs lead to changes in analysis techniques and possible

changes in what may be defined as a TC. For example, there have been changes in

analysis techniques, which are linked to changes in the definition of what constitutes

16



a TC, as knowledge about TCs grew during and after World War II (Holland 1981).

Nicholls et al. (1998) noted a marked change in the reported number of weak cyclones

in the mid-1980s, which they hypothesized was attributable to a change in the un-

derstanding of TCs and thus the naming of TCs. Additionally, a dramatic change

also occurred in the relationship between the Southern Oscillation Index (SOI) and

Australian region TCs in the mid-1980’s as noted by Nicholls (1992) and is potentially

artificial due to the abrupt nature of the change. One notable example of persistent

artifacts in Australian region TC datasets can be found in the 1962/63 TC season.

During that season, a record number of 19 TCs were reported in the Bureau of Me-

teorology (BoM) official TC dataset. At one point, three TCs were reported within

150 km of each other (Solow and Nicholls 1990) simultaneously, which is unlikely to

have been the case as TCs typically have sizes much larger that 150 km across.

The regular use of satellites in the Australian region did not begin until 1966 with

geostationary satellites beginning routine observations in 1978 (Holland 1981). Even

today there is limited in situ observations of TCs in the Australian region, especially

storms that never make landfall, as there is no regular aircraft reconnaissance to TCs

in the region. Obviously, the Australian region is not alone in these problems as many

of these issues are valid in other TC basins.

To account for possible shortcomings in the NWAUS region TC dataset, a re-

analysis of the TCs occurring within the region was undertaken by Harper et al.

(2008). The study attempted to clarify the historical accuracy of reported TCs by

comparing the Bureau of Meteorology (BoM) official TC dataset with an explicitly

reviewed dataset commissioned by Woodside Petroleum Ltd. (WPL). When studying

TCs in any basin, a primary concern is whether the historical datasets are reliable

and accurate. The WPL study investigated the reliability and accuracy of the BoM

historical dataset, especially with regards to intensity estimates, as they are the most

critical to an accurate risk assessment for the region. In addition to the intensity
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estimates, the reanalysis effort afforded the opportunity to assemble information on

radii of gale force winds and eye diameter. These additional parameters can be uti-

lized in various empirical techniques to accurately estimate the intensity of each TC.

After the WPL reanalysis was reviewed by ex-BoM meteorologists, it was concluded

that “the WPL Reviewed dataset, albeit far from perfect, is likely to be of an overall

superior quality and consistency relative to any other long-term dataset available for

this region” (Harper et al. 2008). Initially this study will consider only yearly TC

counts and number of TC storm days. However, in the future, a seasonal prediction

on the yearly TC count of intense (< 970 hPa central pressure) TCs and intense TC

storm days will be conducted. Therefore, using one common dataset to develop a set

of seasonal prediction models is preferred, especially in light of the quote from the

Harper paper that their dataset is considered to be the most reliable.

2.2 Characteristics of Australian TCs

2.2.1 Development of TCs in the Australian Region

Research has identified major differences between tropical disturbances that devel-

oped and did not develop into TCs in the Northwest Pacific and North Atlantic

regions by McBride and Zehr (1981). Development is preferred in areas of high low-

level vorticity, where divergence exceeds 100 hPa or more per day over a 4◦ radius

area, with nearly zero vertical wind shear near circulation center, and when large

positive (negative) zonal shear is to the north (south) of a developing system. For the

NWAUS region Foster and Lyons (1988) found that the most important discriminator

between developing and non-developing TCs is the location of the upper-level ridge.

Developing TCs possessed greater anticyclonic vorticity at 200 hPa. While TCs need

similar conditions to develop in each TC basin world-wide, the initiating mechanisms

can vary widely between basins.
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In the Australian region the initiation mechanisms are different from the com-

mon mechanism of tropical easterly waves in the North Atlantic basin . McBride

and Keenan (1982) identified the main Australian region initiation mechanism as the

Southern Hemisphere monsoon trough. The monsoon trough is an area of maximum

cyclonic vorticity, and depending on where it is located across the Australian region

different parts of the region are more susceptible to TC formation (Dare and Davidson

2004). Dare and Davidson (2004) found that two regions of preferred tropical cyclo-

genesis in the Australian region were associated with regions of maximum cyclonic

vorticity. Another location of preferred cyclogenesis was associated with a local mini-

mum in cyclonic vorticity for which Dare and Davidson (2004) hypothesized there are

other factors, such as weak vertical wind shear, that are important in the formation

of TCs in that region.

Dare and Davidson (2004) identified three characteristics of the surrounding en-

vironment unique to the Australian region: 1) the Southern Hemisphere monsoon, 2)

close interaction with mid-latitude westerlies, and 3) the major continental landmass

in the tropical development area. These factors are hypothesized to influence the

behavior of TCs in the Australian region, compared to other TC basins where TC

motion is considered less erratic.

2.2.2 Australian TC Yearly Storm Counts

The average number of TCs in the Australian region is 12.5 per year, with half of the

cyclones occurring in the western region (Dare and Davidson 2004), which is called

NWAUS region in this study. The mean first day of occurrence of a TC in the entire

Australian basin is 19 December and there is a 64% chance that the first cyclone

will be in the NWAUS region (Dare and Davidson 2004). The average life-span of a

TC for the entire Australian region is 7.5 days with an average of 75.4 TC days per

season. For a full listing of the climatological mean characteristics of the Australian
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region and the three identified TC regions refer to Dare and Davidson (2004, see their

Table 3).

The trend in TCs for the entire Australian region was investigated by Nicholls

et al. (1998), who found that the frequency of all TCs was decreasing. When the

time series was split into weak (> 990 hPa), moderate (between 970 and 990 hPa),

and intense TCs (< 970 hPa), both the weak and moderate storms decreased while

the frequency of intense TCs increased marginally. Similarly, Ramsay et al. (2008)

obtained similar results with approximately ten more years of data for the weak

and moderate TCs. Intense TCs (defined as < 965 hPa central pressure) had no

discernable trend in frequency.

Kuleshov et al. (2008) observed a statistically significant increasing trend in the

number of intense (< 945 hPa) TCs in the entire Southern Hemisphere, especially

in the southern Indian Ocean and southern Pacific Ocean. It should be noted that

the time series of data used by Kuleshov et al. only covered the time period from

1980 to 2005 and likely did not account for a longer, multi-decadal, variability in the

frequency of TCs in the Australian region. For all TCs, Kuleshov et al. (2008) did not

observe any statistically significant trend in the frequency of TCs or in the number

of TC days in the Southern Hemisphere.

These papers highlight the concerns regarding how many years to use for a devel-

opment dataset. Depending on how many years (and exactly what years) are used in

a study of the variability of TC storm counts, different trends appear. Additionally,

there are a number of different cut-off points that have been used in the literature for

classifying the intensity of TCs. It is therefore important to keep these issues in mind

when developing a seasonal prediction scheme as they could have an impact on the

final forecast skill of any given scheme. In later sections the frequency of storm counts

will be presented, which indicate similar results to that of Nicholls et al. (1998) and

Ramsay et al. (2008), except for only the NWAUS region, which in not too surprising
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considering that the NWAUS region constitutes approximately half of the Australian

region TCs.

2.2.3 ENSO and Australian Region TCs

Ballenzweig (1957) hypothesized that the variability of TC frequency is related to

the variability of global circulation patterns. A study of the relationship between the

large-scale circulation and the frequency of TCs resulted in noted differences between

active and inactive years for TC counts (Ballenzweig 1959). This has lead to much

research into various global circulation patterns and its effect on TC frequency and

TC days variability. In many regions the circulation pattern of primary focus for

many years has been the El Niño–Southern Oscillation (ENSO).

The regular occurrence of ENSO events identified by Bjerknes (1969), and its

impact on the Pacific and global circulations, lead him to believe that ENSO events

could be used for long-range forecasting. In addition, the Walker Circulation is associ-

ated with the equatorial Pacific sea-surface temperature variations. Due to its known

effects on equatorial (and more broadly tropical) circulations it is not surprising that

ENSO became a leading candidate to help understand the variation of TCs in many

of the global TC basins.

The Australian region is directly impacted by changes in the phase of ENSO, as

shifts in the normal Walker Circulation to an El Niño phase results in higher surface

pressure over eastern Australia. This relationship was used in the development of

the Southern Oscillation Index (SOI), which computes the difference in standardized

anomalies between Tahiti and Darwin, Australia. In the first seasonal prediction

scheme, Nicholls (1979) used Darwin winter sea-level pressure to predict the number

of Australian region TCs as they were highly correlated to the Darwin winter pressure

during the period 1959−1970, especially for the early part of the TC season (October–

December). This result was further supported by strong, stable relationships found
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prior to the beginning of the TC season by Nicholls (1984). Nicholls (1985) predicted

both seasonal TC frequency and seasonal TC days using Darwin pressure as an SOI

surrogate parameter. Additionally, for the southwest Pacific Ocean, Revell and Goul-

ter (1986) found weak, but statistically significant, relationships between the origin

points of TCs and the SOI. (TC prediction is discussed further in section 2.4.)

The strength of the ENSO phase was found to be important with respect to the

overall effect on TC frequency in the Australian region (Dong 1988). During strong

and very strong El Niño phases of the ENSO cycle, there is a large reduction in the

number of TCs compared to neutral or La Niña ENSO phases. In the NWAUS region,

Dong (1988) separates the area into two regions. The eastern region (105 − 125◦E)

TC frequency is not substantially different between the different phases of ENSO,

whereas in the western NWAUS region (125 − 145◦E) there is a notable decrease in

TCs during an El Niño. Overall, this should lead to a slightly lower number of TCs

occurring in the NWAUS region during an El Niño event, especially during strong

El Niño’s. This is likely the result of a shift in the Walker circulation, where the

upward branch is situated over the central Pacific Ocean during El Niño seasons.

The relationship between ENSO and TC frequency is even stronger in the southwest

Pacific Ocean, where a more direct connection can be attributed to changes in the

Walker circulation.

Other research that focuses on the Australian region has investigated how ENSO

affects the seasonal variation of TCs. During an El Niño event the Australian monsoon

is displaced equatorward relative to the normal and La Niña phases. This displace-

ment, coupled with weak vertical wind shear, and warmer SSTs, leads to more TCs

forming in the northern Australian region (Evans and Allan 1992). In general, the

NWAUS and southwest Pacific regions, experience fewer TCs during an El Niño phase

(Evans and Allan 1992). However, at the same time, there is an increased preference
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for storms to track along the coast of northwest Australia leading to an enhanced risk

for coastal and near-coastal entities (Evans and Allan 1992).

For the southwest Pacific region, Basher and Zheng (1995) studied several sub-

regions and the association with the phase of ENSO. The authors found that local

seasonal atmospheric conditions were sufficient to describe seasonal variability of TC

occurrence in the western subregion. The primary effect of higher local SSTs before

the beginning of the season leads to an extension of the active TC season. The east-

ern subregion, however, is principally controlled by the phase of ENSO and not local

parameters. During an El Niño event the South Pacific Convergence Zone (SPCZ) is

shifted east-northeastward across the eastern subregion (Trenberth 1976; Rasmusson

and Carpenter 1982), which moves the main initiating mechanism farther away from

the development area.

In the SEIND Ocean, specifically the NWAUS region, Broadbridge and Hanstrum

(1998) investigated the relationship between SOI and SOI trend, prior to the TC

season, and TC frequency. The authors found that when SOI values were large and

strongly positive there was an increase in TC frequency and, when coupled with

strong positive SOI trends, there were more coastal impacts. Furthermore, when

there were both strong positive values of SOI and strong positive trends in SOI,

a substantial increase in early season TCs was found. Correlations between SOI

and mid-season TCs were not significant. Additionally, Broadbridge and Hanstrum

(1998) found that coastal impacts of severe TCs did not vary with the phase of the

SOI; a location was equally likely to have a severe TC hit in an El Niño or La Niña

dominated season. This work confirmed similar work done for the entire Australian

basin, and Broadbridge and Hanstrum (1998) hypothesized that this work could be

used to predict the frequency of TCs in the NWAUS region.

Recently, the interannual variability of TC frequency in the Australian region

has been investigated to ascertain the role of the large-scale environment. The role of
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SSTs over the central and eastern tropical Pacific is found to be the main contributing

factor in the interannual variability of TC frequency (Ramsay et al. 2008). The highest

correlation between the frequency of TCs in the Australian region and central Pacific

SSTs was present prior to the onset of the active Australian region TC activity.

Ramsay et al. (2008) also observed that during a positive ENSO phase there was

decreased cyclonic vorticity over the Australian region, in conjunction with increased

vertical wind shear and subsidence. The combination of decreased cyclonic vorticity,

increased vertical wind shear, and increased subsidence lead to atmospheric conditions

over Australia detrimental to the development of the long-lasting organized convection

necessary for TC development. Similarly, Kuleshov et al. (2008) presented statistical

results on the connection between TC frequency in the Southern Hemisphere and

ENSO that support the Ramsay et al. (2008) results.

2.3 Cross-Hemispheric Global Teleconnections

During the 1950s, pioneering work done by Radok and Grant (1957) and Ballenzweig

(1959) led to a better understanding of the role of large-scale variations in the global

circulation in long-range forecasting. Radok and Grant (1957) specifically looked

at the upper-air record over Australia and New Zealand to identify Southern Hemi-

spheric patterns prevalent during different seasons, and began using those patterns for

long-range forecasting. They also noted a possible connection between the Northern

Hemispheric flow and the resulting Southern Hemispheric flow during November 1950,

which may be important to understanding the variability of the atmospheric pattern

of the Southern Hemisphere. Ballenzweig (1959) investigated the role of large-scale

circulation teleconnections to TC formation in the Atlantic (discussed in the previous

section).
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Webster and Holton (1982) developed a theoretical dynamical framework of cross-

hemispheric (cross-equatorial) teleconnection patterns. The authors used a barotropic

model with a free surface (namely the shallow water equations) to study the effect a

longitudinally asymmetric base state would have on global patterns through different

forcings. The model was initially run using zonally-symmetric basic state conditions,

which confirmed the development of a critical line that mid-latitude forcings could

not penetrate. This result confirms the work of Charney (1969) and Bennett and

Young (1971), who claimed that mid-latitude forcings could not penetrate into the

equatorial regions.

However, when the model was conditioned with a longitudinally asymmetric base

state, the weak westerly and strong westerly cases were found to have a response in

the equatorial and high-latitude regions of the other hemisphere (Webster and Holton

1982). Thus the large-scale disturbances in the mid-latitudes propagated past the

critical line that would be predicted using a zonally-symmetric base state. Webster

and Holton claimed this was possible only if there existed a westerly wind duct within

a longitudinal zone. Additionally, it was found that the amplitude of the response in

the other hemisphere or the equatorial region was proportional to the magnitude of

the westerlies in the equatorial duct. The authors argue that these results suggest

mid-latitude disturbances can be reflected at a tropical critical line or propagate into

the other hemisphere depending on the zonal wind distribution in the tropics (Webster

and Holton 1982), thus allowing for cross-hemispheric teleconnections.

Love (1985) showed that events occurring in the mid-latitudes in one hemisphere

could lead to the development of TCs in the other hemisphere. Love specifically

investigated TCs developing in the Pacific and Indian Oceans. His analysis also

indicated that a transition from a pattern not conducive to one that is conducive

to TC formation is related to an intensification of the winter hemisphere’s Hadley

circulation. In general, the mid-latitude disturbances preceded TC development by
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three days and were located along the same longitude. The teleconnections therefore

ranged from the subtropical ridge in one hemisphere to the subtropical ridge in the

other hemisphere. While this work is not directly applicable to seasonal predictions

of the number of TCs, it is likely that similar interactions can be occurring on the

longer time scales.

Elsner and Kocher (2000) investigated the role the North American Oscillation

(NAO) in global TC activity. They found that an index of the global TC activity was

moderately correlated with NAO, but not with indices associated with ENSO. The

authors speculate that the dynamical mechanism is related to changes in the global-

atmosphere ocean circulations and the fact that the NAO displays these pattern

changes across a wide range of atmospheric scales. Finally, Elsner and Kocher (2000)

suggested that other extratropical forcings should be investigated for their ability to

describe the interannual variability of TC frequency globally.

Much work has been done on the role of global teleconnections modulating var-

ious atmospheric parameters, such as SSTs, from the Northern Hemisphere to the

Southern Hemisphere and vice versa. However, there are few studies relating cross-

hemispheric patterns to TC development in the opposite hemisphere. Recently,

Klotzbach and Gray (2003) have included Southern Hemispheric predictors for their

North Atlantic TC forecasts, which will be discussed in more detail in the section 2.5.

2.4 Australian Region Prediction Schemes

From earlier suggestions by Ballenzweig (1959) that large-scale circulation anomalies

can be used to predict the characteristics of seasonal TC frequency variability, Nicholls

(1979) proposed a possible prediction scheme for the number of TCs per season in

the Australian region. He found that anomalies in the pressure field over Australia

remained entrenched for a while, which meant that surface sea-level pressure from
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earlier months could be used to predict later months TC activity. Specifically, Nicholls

found a correlation of +0.63 between the winter and following summer pressures at

Darwin. Nicholls subsequently calculated that the winter pressure at Darwin (part of

the SOI) had a high negative correlation with TC frequency in the Australian region

and therefore could be used to predict the number of TCs in the following season.

For the years 1959 to 1974 Nicholls calculated a correlation of −0.68 between the

June, July, August pressure anomalies at Darwin and the TC frequency for the entire

Australian basin.

The method proposed by Nicholls (1979) was used by Nicholls (1985) to predict

the number of TC days for the entire Australian region. Nicholls confirmed the

strong correlation of his previous work between TC numbers and winter pressure at

Darwin. Nicholls (1985) used TC data from 1909/10 to 1982/83 season, correlating

the entire dataset as well as subsets to confirm the statistical relationship between

Australian TCs and surface pressure. Over this 74-yr period, the number of TCs and

TC days increased substantially. Nicholls attributes this trend in TC characteristics

to the improvements of observing systems (e.g., satellites) in detecting and properly

identifying TCs. Therefore, Nicholls assumes there would be no trend in the TC data

when adjusted for improvements in reporting. A cubic spline was used to de-trend the

time series of TC numbers and TC days due to errors in reporting. They were then

correlated to the number of TCs and TC days. The method proposed by Nicholls

(1979) was tested by making a prediction of TC days. This was done because of

the high correlation of the number of TC days with Darwin July–September pressure

(−0.54).

Nicholls (1985) used a simple linear regression between TC days and Darwin July–

September mean sea level pressure to arrive at the following prediction equation:

Cyclone Days = 224.5− [11.6× (pressure− 1000mb)] (2.16)
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This prediction method was tested using the leave-one-out cross-validation technique

on the TC data from 1959/60 − 1982/83. The mean absolute error (MAE) for the

25 forecasts was 9.4 days, compared to the persistence forecast MAE of 19.5 days,

and climatological forecast MAE of 12.7 days. This forecast equation, while simple,

presents an improvement over both persistence and climatological forecasts.

Another approach to predict TCs in the Australian region was developed by Solow

and Nicholls (1990) who use a Poisson statistical model to account for possible missing

observations from early in the TC record. A Poisson model is typically used for

seasonal prediction schemes under two different conditions: the TC data record has a

non-linear trend that may or may not be artificial, or when the counts are particularly

small, as in the case of predicting the number of intense TCs in a given year. A

regression using a Poisson distribution

Pr{I = n|µ} =
µne−µ

n!
, (2.17)

where I is the probability of occurrence, n = 0, 1, 2, 3, etc., and µ is the Poisson pa-

rameter (Elsner and Schmertmann 1993), can be dependent on one or more variables

as a non-linear function

µi = exp[b0 +
n∑
k=1

bkxk], (2.18)

or taking the natural log,

ln(µi) = b0 +
n∑
k=1

bkxk, (2.19)

where (2.19) explicitly requires that the predicted Poisson mean is not negative.

Therefore the distribution of I varies with the independent variables xi = x1, x2,

. . . , xk (Wilks 2005). The unknown parameters, bk, are estimated by maximizing

the Poisson log-likelihood procedure, which must be solved numerically. Thus, the

expected value of the modeled parameter can be written as

E(I|x) = exp[b0 +
k∑
i=1

bkxk], (2.20)
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and from (2.20), the expected value can never be less than zero (Wilks 2005). A Pois-

son scheme developed by Solow and Nicholls (1990) was done to accurately represent

the TC data record in order to not preclude any real trends in the data while still

removing the trend due to changes in observations of TCs. The resulting fitted model

was

m∗t = exp(2.30 + 0.021Xt), (2.21)

where m∗t is the expected number of TCs for the predicted season and Xt is the

September SOI index preceding the beginning of the TC season and is normalized to

a mean of zero with standard deviation of 10. This model was cross-validated using

the TC record from 1965/66 − 1988/89 and yielded a mean square error 6.5. When

cross-validating the entire period 1909/10−1988/89, the cross-validated mean square

error was 11.7, likely higher due to a larger number of anomalous years associated

with poor observation techniques during the early part of the TC record.

Nicholls (1992) further tested the use of SOI as a predictor of yearly TC counts

by using the first differences of SOI. The first difference method takes the difference

of the previous year SOI from the current year SOI. Using the first differences of

monthly SOI values, Nicholls (1992) predicts the change in TCs from the previous

year. Then to make the final prediction, the previous year’s TC count is added to the

predicted change in the number of TCs. Nicholls found that using first differences

of September–November SOI to predict the following TC season was more successful

than using just the observed SOI values for TC predictions.

The prediction relationship was developed from the 1959/60−1978/79 seasons and

then tested on the 1979/80 to 1990/91 TC seasons. The prediction scheme root mean

square errors: (1) using observed September–November SOI was 3.26; (2) using first

differences of September–November SOI was 2.79; (3) using climatological forecasts

was 3.71; and (4) using persistence forecasts was 4.77. Both the current year SOI and

first difference SOI prediction schemes yielded superior results over the climatological
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and persistence forecasts, with the first difference having a noticeable advantage over

the observed SOI prediction scheme. Nicholls (1992) preferred the technique of first

differences to minimize the impact of the non-stationary relationship between SOI and

TC numbers in the Australian region. The author proposed a number of reasons for

the non-stationary relationship including: increased spatial coverage of the tropical

regions with the onset of the satellite era, changes in satellite image interpretation,

and results of spurious trends in either SOI or TC numbers. With these changes in

mind, the first differences provided more consistent correlations for all subsets of the

TC data.

Prediction of the number of TCs for different intensities was investigated by

Nicholls et al. (1998). They obtained similar results to Nicholls (1979, 1985, 1992) that

confirmed the relationship between all Australian region TCs and the SOI. The rela-

tionship with SOI was then tested on different TC intensities (All TCs, >= 990 hPa,

< 990 hPa and greater than 970 hPa, <= 970 hPa) for the period 1969/70−1995/96.

Each TC intensity block was correlated with three-month and monthly SOI averages

prior to the beginning of the active Australian TC season. The correlation between

SOI and all TCs was 0.65, whereas removing the weakest cyclone (> 990 hPa cen-

tral pressure), the correlation value increased to 0.69. This stronger correlation was

postulated to be a result of changes in identifying weak TCs, through an improved

understanding of TCs. By not considering the weakest TCs, Nicholls et al. (1998)

claimed that a more accurate prediction can be made for TCs with central pressures

<= 990 hPa using the following equation

TC<=990 = 8.5 + 0.167SOIAugust, (2.22)

where SOIAugust is the average August value of SOI. The decrease in observed TCs

and observed August SOI values corresponds well for TCs with central pressures

<= 990 hPa. The authors did not provide any statistical measure on the accuracy
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of the prediction equation, but they did present graphics to illustrate the predictive

ability (see Nicholls et al. 1998, Figs. 6 and 7). To predict the number of strongest

TCs (central pressures < 970 hPa), Nicholls et al. (1998) derived an equation using

the first difference method of Nicholls (1985), which yielded the following prediction

equation

δTCintense = 0.126 + 0.138δSOIAugust, (2.23)

where δTCintense is the change from the previous year to current year TC numbers,

and δSOIAugust is the change from the previous year to current year August SOI

values. The predicted change in intense TCs (δTCintense) can then be added to the

previous year’s total number of intense TCs to get the final prediction value for the

upcoming TC season. In this case, the number of intense TCs slightly (although not

statistically significantly) increased, while August SOI values decreased. The authors

concluded that this result indicated that SOI was not a good predictor of the number

of intense TCs in the Australian region.

The predictive power of the first difference method were presented by Nicholls

(1999) using a linear regression with a zero intercept and October SOI as the predictor

variable. The equation

δTC = 0.22δSOIOctober, (2.24)

provided skillful forecasts with root mean square error of hindcasts on independent

data of 2.8, compared to the persistence forecast RMS error of 4.8. Additionally,

two seasonal case studies were presented for the 1997/98 and 1998/99 seasons, which

predicted 15 and 12 storms respectively and were generally good predictions with 12

TCs occurring during each season.

Predictors outside of the traditional ENSO parameter SOI have received substan-

tially less attention in seasonal prediction schemes for the Australian region. Mc-

Donnell and Holbrook (2004a) developed a number of Poisson regression models to
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predict seasonal TC activity using SOI as well as new, physically meaningful predic-

tors. They presented Poisson regression models that predicted the number of TCs

in a 2◦ latitude by 5◦ longitude grid each month using predictors from ranging SOI

and equivalent potential temperature gradients to relative vorticity of varying lead

times. The new predictors studied were those relating to the parameters discussed

by Gray (1968). The values of the predictors were associated with their respective

latitude/longitude coordinates when possible, so most of the predictors investigated

were local.

Elsner and Schmertmann (1993) presented the possibility of using the Poisson

regression for prediction of TCs, specifically for intense TCs, due to the fact that

they were rare occurrences and the regression would always yield a positive number

(see discussion above for a description of the Poisson model). The work of McDonnell

and Holbrook (2004a) also utilized the Poisson regression for the same reasons. Their

implementation of the regression was slightly different, as they wanted to predict the

total number of TCs that occur in a grid box for a particular month of the TC season,

before the season begins. McDonnell and Holbrook (2004a) used varying lead times

for the predictor variables, as well as the time trends of the data. This wide variety

of predictors yielded many different prediction schemes, and through utilizing the

cross-validation technique, they found that the vertical saturated equivalent potential

temperature gradient was the most successful predictor for Australian region TCs. For

all the models, predictions improved up to a 26% over a climatological forecast, and

three schemes (saturated equivalent potential temperature, thermal Gray parameters,

and all-Gray parameters) yielded significant results at the 98% confidence interval.

A later study by McDonnell and Holbrook (2004b) found the best Poisson regres-

sion model used September SOI with spatial and temporal variations of vertical sat-

urated equivalent potential temperature gradient as predictors. This scheme yielded
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results 34% better than climatology and a correlation coefficient with observed sea-

sonal TCs of +0.60. McDonnell and Holbrook (2004b) claim that this model provides

better results than the first difference method using SOI alone and that their method

works best for the Southwest Pacific subregion of the Australian basin.

2.5 TC Prediction Methods in Other Basins

Many different techniques have been used to predict TCs in different basins across

the globe. Regression models have ranged from simple linear regressions, to simple

multiple linear regression models to Poisson regression models. The following is a

summary of various techniques used for prediction of seasonal TCs worldwide. A

complete review of places and their techniques for seasonal tropical cyclone forecasts

can be found in Camargo et al. (2007).

A significant advancement in seasonal tropical cyclone forecasting has come from

William Gray and his research group at Colorado State University. The next section

will outline the papers that have resulted from their work and highlight the techniques

used to make forecasts at different times of year. The last section will focus on the

contributions of others to the study of seasonal prediction of tropical cyclones.

2.5.1 Seasonal Prediction by Gray

For the Atlantic region, Gray (1984a,b) developed the first seasonal TC forecast

scheme. In his initial work, the primary predictor was the average number of TCs,

corrected by various factors such as the Quasi-biennial Oscillation (QBO), ENSO,

and Caribbean sea-level pressure anomaly (SLPA). Through this scheme, minimum

hurricane occurrence values were also used: no less than three hurricanes could be

predicted when El Niño conditions dominated, and no less than four hurricanes could

be predicted in a non-El Niño pattern. Similar forecast systems were developed for
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the total number of TCs (hurricanes plus tropical storms) and hurricane days in

the Atlantic region. Gray (1984b) also states that other global, as well as regional

predictors for forecasting seasonal TCs should be investigated.

In later work, Gray (1990) identified a relationship between wet and dry multi-

decadal trends in West African rainfall and the number of intense Atlantic hurricanes.

Gray contends that we need to improve the monitoring and forecasting West African

weather on multiple time scales to better understand any causal relationship with

intense Atlantic hurricanes.

Gray et al. (1992) investigated extended range predictors using a least-absolute

deviation (LAD) model to predict multiple seasonal TC metrics 6 − 11 months in

advance. The predicted value from a LAD method can be written as

ŷ = β̂0 +
r∑
j=1

β̂jxj, (2.25)

where ŷ is the predicted TC metric, ( 0, 1, . . . , r) are the values of β0, β1, . . . , βr

that minimize the sum of absolute differences given by

n∑
i=1

[|yi − β0 −
r∑
j=1

βjxij|], (2.26)

where n is the number of years used in the prediction scheme development and yi is the

observed value of the TC metric being predicted. The two extended range predictors

were the extrapolated phase of the QBO and the extrapolated western Sahel rainfall.

Seven different models are presented and cross-validated: 1) number of named storms

(NS), 2) number of named storm days (NSD), 3) number of hurricanes (H), 4) number

of hurricane days (NHD), 5) number of intense hurricanes (IH), 6) number of intense

hurricane days (IHD), and 7) hurricane destruction potential (HDP). Unlike Gray’s

previous studies, this one used the cross-validation technique to determine the ability

of the forecast scheme to make accurate predictions (scoring metrics will be discussed

in detail in Chapter 5). The highest measure of agreement between the hindcast and
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observations was for the number of named storm days model (ρ = 0.514), which is

given by,

NSD = 64.072 + 1.031(1.0U50 + 0.252U30 − 0.64|U50 − U30|+ 7.149(1.0RS + 2.39RG)

(2.27)

where U50 and U30 are the extrapolated (November to September) upperair zonal

wind at 50 and 30 hPa in ms−1, respectively, RS is the August–September western

Sahel rainfall index, and RG is the August-November Gulf of Guinea rainfall index.

Each rainfall index is based on a regional average of normalized precipitation (for

description of the western Sahel rainfall index calculation see Landsea and Gray

1992). The model that explained the largest variance of any TC metric was the

predictive equation for the number of intense hurricanes (r2 = 0.581; see their Table

9), given by

IH = 3.571 + 0.042(1.0U50 + 0.103U30 − 1.415|U50 − U30|+ 0.717(1.0RS + 2.455RG),

(2.28)

The results of all the prediction schemes yield many different skillful long-range pre-

dictions of seasonal TC activity in the Atlantic3. The authors stated that the strong

association of seasonal TC activity and the climate system were not expected.

Two more papers by Gray et al. (1993, 1994) refined the least absolute deviation

method for predicting the assortment of seven TC metrics as well as introducing a

measure of net tropical cyclone (NTC) activity, where NTC is defined as

NTC = (%NS + %H + %IH + %NSD + %HD + %IHD)/6, (2.29)

where the percentage of each variable is a given seasons percentage from the long

term mean of that measure’s activity. The NTC activity is a combination of six of

the seven separate previously defined TC metrics. In all, Gray et al. have developed

3Please see their Tables 8 and 10 for a full list of the final model parameters for all 7 prediction

schemes.
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prediction schemes for seasonal forecasts in the Atlantic basin, which are produced

by 1 December, 1 June, and 1 August for the upcoming/ongoing TC season.

Klotzbach and Gray (2003) expanded their search for predictors of TC activity in

the North Atlantic by using the NCEP–NCAR reanalysis data. They were looking

to predict the September TC activity for the North Atlantic basin, using a total of

nine different TC metrics: named storms, named storm days, hurricanes, hurricane

days, intense hurricanes, intense hurricane days, tropical-only hurricanes, tropical-

only named storms, and net tropical cyclone activity. From an initial set of 126

possible predictors, 25 were used in model development, but only 9 predictors had

any appreciable partial correlations with September TC activity while correlating at

least 0.3 with the predictand itself. Klotzbach and Gray then choose up to the best five

predictors for the various TC metrics using an all-subset technique. The predictors

used in the statistical forecast models spanned the globe, including zones in both the

Northern and Southern hemispheres, and consisted of geopotential heights, various

levels of the U and V components of the wind, and SLP. The seasonal forecasts

were found to be statistically significant for all predictions of the 9 different metrics

calculated on 1 August and 1 September, except for the 1 August prediction of the

number of named storms.

With the success of forecasting September TC activity using global reanalysis

data, Klotzbach and Gray (2004) updated the previous work of Gray et al. (1992).

Using a similar all subset technique from Klotzbach and Gray (2003), an ordinary

multiple linear regression scheme4 was used to predict most metrics of TC activity

6 − 11 months in advance. For intense hurricanes a Poisson model similar to that

developed by Elsner and Schmertmann (1993) was used. Predictors for these models

were generally in either the equatorial region or the Northern Hemisphere and pro-

duced hindcast skill explaining nearly 50% of the variance in the net tropical cyclone

4Mathematical development of multiple linear regression is done in Chapter 5
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activity. Using similar global reanalysis datasets and multiple linear regression tech-

niques, Blake and Gray (2004) and Klotzbach (2007) updated the August prediction

of TC activity as they continually seek better more accurate predictors.

2.5.2 Seasonal Prediction by Others

Predicting the number of intense hurricanes or tropical cyclones is a difficult task,

especially with ordinary linear or multiple linear regressions, because the possibility

of predicting a negative number of events is possible. Due to the small number of

storms that reach a high intensity in a given season, it is difficult to make accurate,

positive predictions using simple methods that work well for other TC metrics. In

order to deal with this problem, Elsner and Schmertmann (1993) used a Poisson

regression model instead of a multiple linear regression model to predict the number

of intense hurricanes occurring in the Atlantic basin (see the previous discussion of

the Poisson model in earlier sections). They noted that a Poisson model is better

suited to predicting rare events because the model will never predict a non-negative

number. For counts, such as the number of intense hurricanes, this is ideal since in a

given season there can never be a negative number of TC occurrences.

Elsner and Schmertmann (1993) compared the results from their Poisson model

and a simple linear model to determine which would be better suited for the task

of predicting the number of intense hurricanes. They found that the Poisson model

made better predictions in years where there were either very few or many intense

hurricanes, while a linear model performed slightly better during average years. Due

to these results, the Poisson model method has been used in other basins to predict

similar rare events (McDonnell and Holbrook 2004a,b; Klotzbach and Gray 2004).

In a study by Lehmiller et al. (1997), linear discriminant analysis was used to fore-

cast whether a subbasin of the Atlantic region (Caribbean, Gulf of Mexico, Southeast

U.S., and Northeast U.S.) would be active or inactive in the coming hurricane season.
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The set of predictors used in this study consisted of the predictors used in previous

Atlantic basin studies from Gray et al. (1992, 1993). However, these predictors were

insufficient to predict hurricanes in the east coast subbasins. Therefore, additional

predictors were investigated, including SLP along the east coast of the U.S., 700−200

hPa vertical wind shear, and least squares estimated east coast SLP gradient. The

updated models perform better than climatology for each of the subbasins and al-

lows for a better sense of where an active hurricane season may occur in the Atlantic

region.

In the Northwest Pacific basin, Chan et al. (1998, 2001) developed a season predic-

tion scheme using the Projection Pursuit Regression technique. The predictors used

are parameters related to ENSO, the large-scale circulation, with additional climato-

logical and persistence predictors. The ENSO and large-scale circulation predictors

are similar to those used in the Atlantic and Australian regions already discussed in

this study. The Projection Pursuit Regression technique is an extension of the basic

linear model and the authors used a multiple-response regression to use multiple pre-

dictor variables. This scheme was the first developed for the Northwest Pacific region

and yielded measure of agreement of 0.562 for the predicted tropical cyclone activity.

The Northwest Pacific forecast scheme was updated by Chan et al. (2001) due to

the inaccurate forecasts during the 1997−1998 changing ENSO patterns. As a result,

new predictors were identified for the region to better account for ENSO. The final

results suggested that two schemes would be appropriate for the region, one issued

in April, which is a combination of old and new scheme predictors, and an update in

June to incorporate more recent data related to ENSO.

There have been other models used, such as the space-time model to predict

hurricane probabilities in grid cells by Jagger and Elsner (2002). Elsner and Jagger

(2004, 2006) used Bayesian modeling to predict hurricane and landfalling hurricane

counts. This statistical method provides the ability to use a longer data set that can
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correct differing levels of uncertainty in the data, especially with rare event scenarios.

Finally, Chan (2008) recently presented a method for predicting whether the rest of

the season will be above or below normal using categorizations of the early season

TCs and comparing to historical seasons. This method is meant to be a mid-season

update to seasonal predictions as it takes into account the numbers of storms that

have already occurred during the early part of a given TC season.
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Chapter 3

Data and Predictor Selection Methodology

In recent years, there has been much discussion on the reliability of TC observations.

In the Australian region, Holland (1981) and Buckley et al. (2003) discussed uncer-

tainties in the quality of observations in the Australian Bureau of Meteorology (BoM)

TC best track dataset. Some of these uncertainties are a result of a lack of routine

satellite observations prior to 1970. Therefore, only TCs occurring in the 1970/71

TC season, or later, are used in this study. This section describes the TC dataset and

the analytic methods used in this study. Additionally, the parameters considered in

this study will be defined.

3.1 Tropical cyclone data

The Australian TC season spans across years and for the purpose of this paper the first

year will be used to identify the season (i.e., The 1970/71 season will be identified as

the 1970 TC season) and all TCs that crossed into the NWAUS TC basin are included

in this analysis. Recently, a reanalysis of TCs was undertaken for the NWAUS region

(105 − 135◦E) by Harper et al. (2008) to improve intensity estimates and make a

historically consistent TC dataset for the region. This reanalysis produced substantial

changes to the reported TC intensities from the BoM dataset. By comparison, only a

few differences in the reported TC frequency were made. The Harper reanalysis was

conducted with Woodside Petroleum Ltd. (WPL) and will be referred to as the WEL
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TC dataset. A more complete discussion of the WEL TC dataset, which is used in

this study, is found in Chapter 2.

3.2 SST data

The global SST data used in this study were obtained from the National Oceanic

and Atmospheric Administration (NOAA) extended reconstructed SST (ERSST)

dataset (Smith and Reynolds 2004) for the period January 1970–December 2005. This

dataset was constructed from the most recent International Comprehensive Ocean-

Atmosphere Data Set (ICOADS) and, through improved statistical methods, is able

to produce a stable reconstruction, even when data is sparse. The data is available

for monthly SST values on a 2◦ longitude by 2◦ latitude grid from January 1854 to

present.

3.3 Global modes

Many global teleconnections previously have been identified and are routinely mon-

itored by the NOAA/Climate Prediction Center (CPC). These modes, especially

ENSO, have commonly been used to predict seasonal TC activity in global TC basins.

Most of the global modes were obtained from the CPC (http://www.cdc.noaa.gov/-

ClimateIndices/List/) including: Niño 3.4 SST box (5◦N–5◦S, 170− 120◦W), Niño 4

SST box (5◦N–5◦S, 160◦E–150◦W), Southern Oscillation Index (SOI), Northern Os-

cillation Index (NOI; Schwing et al. 2002), North Atlantic Oscillation (NAO; Walker

and Bliss 1932), Pacific-North American pattern (PNA; Wallace and Gutzler 1981),

Pacific Decadal Oscillation (PDO; Walker and Bliss 1932; Zhang et al. 1997; Mantua

et al. 1997), Artic Oscillation (AO; Thompson and Wallace 1998; Higgins et al. 2000),
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and Quasi-biennial Oscillation (QBO). The Indian Ocean Dipole (IOD) was calcu-

lated from the NOAA ERSST dataset (described previously) and was based on the

dipole discussed by Saji et al. (1999). Because only seasonal, but not intra-seasonal

parameters are being investigated in this study, the Madden-Julian Oscillation is not

currently considered.

3.4 Atmospheric data

Monthly values of geopotential height, air temperature, sea level pressure, and the

u- and v-components of the wind were obtained from the National Center for En-

vironmental Prediction–National Center for Atmospheric Research (NCEP–NCAR)

reanalysis dataset (Kalnay et al. 1996), which has a horizontal grid spacing of 2.5◦.

Except for the mean sea-level pressure, data were obtained for 17 vertical levels: 1000,

925, 850, 700, 600, 500, 400, 300, 250, 200, 120, 100, 70, 50, 30, 20, and 10 hPa. All

of the variables used in this study were classified as class A variables, which indicates

that the reanalysis variables are strongly influenced by observational data and are

considered the most reliable (Kalnay et al. 1996).

3.5 Correlation analysis

The time series of the global modes (discussed previously) were correlated with the

NWAUS TC frequency time series using the Pearson product-moment correlation.

The Pearson correlation can be written as,

rxy =

1
n

n∑
i=1

[(xi − x) (yi − y)][
1

n−1

n∑
i=1

(xi − x)2

]1/2 [
1

n−1

n∑
i=1

(yi − y)2

]1/2
(3.1)

where normal mathematical conventions apply to the notation (Wilks 2005). Each

known global mode was grouped in three-month bins starting with the January–March
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bin preceding the onset of the TC season, through the June–August bin following the

TC season for the period 1970 − 2005. Correlation analyses also were performed

between the frequency of TCs in the NWAUS TC basin and the monthly anomaly

values of SST, geopotential height, air temperature, mean sea level pressure, and the

u- and v-components of the wind in three-month bins beginning with January–March

(preceding the TC season) through September–November (the beginning of the TC

season) over the entire observational domain. Anomalies are based on the long-term

mean from 1970− 2005.

To determine the significance of a correlation between a TC metric and a global

teleconnection variable the student t-test is used, which is defined as

t =
r√
1−r2
N−2

, (3.2)

where r represents the Pearson correlation coefficient between the TC metric and

the variable it is correlated against, and N is the number of predicted years. The

value obtained for t, can then be compared with the t-distribution to determine the

significance of each trend. For 34 degrees of freedom (N − 2) the two-sided t value

is 1.6909 for the 90% confidence interval (Wilks 2005). Neither the all-TC trend

(t = 1.026) nor the intense-TC trend (t = 0.058) is significant. Additionally, the TC

time series has a serial correlation of ∼ +0.32, which is taken into account for testing

the significance of correlations values in Chapter 4.

3.6 Composite analysis

Composite analyses were calculated for the geopotential height and SLP anomaly

fields by averaging the 10 most active and inactive years. The long-term means

calculated for the NCEP-NCAR reanalysis dataset are based on 1968 − 1996 values

of each individual field. The most active years were: 1974, 1984, 1999, 1981, 1972,

43



1973, 1983, 1985, 1980, 1993, 1995 and 1998 (Table 3.1). The least active years were:

1987, 1991, 1992, 1978, 1994, 2001, 1976, 1977, 1982, and 1988 (Table 3.2). For each

set of years, the individual seasons were combined, divided by the total number of

years, and then subtracted from the long-term mean to produce composite maps.

44



Table 3.1 Most active years for NWAUS region
Year No. of TCs

1974 11
1984 10
1999 9
1981 9
1972 8
1973 8
1983 8
1985 8
1980 7
1993 7
1995 7
1998 7

Table 3.2 Least active years for NWAUS region
Year No. of TCs

1987 1
1991 2
1992 2
1978 2
1994 3
2001 3
1976 3
1977 4
1982 4
1988 4
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Chapter 4

NWAUS Variability

4.1 NWAUS TC Variability

There are a number of different TC metrics that can be used in describing the year

to year variation of Tropical Cyclones (TCs) in any given ocean basin. There are

numerous ways to describe the yearly activity within an ocean basin; here, thirteen

TC metrics have been chosen for the Northwest Australian (NWAUS) region. They

are:

(1) Number of TCs;

(2) Number of Intense TCs;

(3) Number of TC days;

(4) Number of Intense TC days;

(5) Number of Landfalling TCs;

(6) Number of Intense Landfalling TCs;

(7) Accumulated Cyclone Energy (ACE);

(8) Power Dissipation Index (PDI);

(9) Mean Storm Duration;

(10) Intense Mean Storm Duration;
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(11) Season Start Day;

(12) Season End Date; and

(13) Season Length.

An intense TC is considered to be a TC with a minimum central pressure of 970 hPa

or lower and an intense TC day has at least one intense TC occurring on that day

(Tables 4.1 and 4.2). Each of these metrics have been calculated using the Woodside

Petroleum Ltd. (WPL) TC dataset, which was discussed in detail in Chapter 2.

Recently, there has been a substantial amount of work examining trends of TC

metrics within ocean basins around the world. Kossin et al. (2007) conducted a

reanalysis of yearly hurricane variability using a new global reanalysis dataset from

Knapp and Kossin (2007). Kossin et al. (2007) concluded that using the globally

consistent dataset only trends in North Atlantic TCs are significant. However, the

reanalysis only includes data from July 1983 to December 2005, which is not long

enough to identify multi-decadal signals present in the TC time series. As described

below, the Northwest Australian region does not exhibit any significant upward or

downward linear trends in any of the TC metrics mentioned previously.

The NWAUS TC basin averaged 5.5 TCs per year during the 39-yr period from

the 1970 to 2008 TC seasons with a standard deviation of 2.4 TCs (Fig. 4.1). In

general, there is a small downward linear trend in the frequency of all TCs over this

period, but the slope of the trend is not significantly different from zero. For intense

TCs, with minimum central pressures below 970 hPa, there is no discernable linear

tread over the same period (Fig. 4.1). The significance of the linear trends of all TC

metrics is determined by a hypothesis test on the slopes of the trend lines. If the

slope is not significantly different than zero, then the time series of the TC metric is

considered to have no discernible linear trend through time.
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Table 4.1 Summary of TC metrics for the NWAUS region.

Years
No. of
TCs

No. of
Intense

TCs TC Days

Intense
TC

Days
TC

Landfall

Intense
TC

Landfall

1970 5 2 37.75 3 5 1
1971 6 3 40.75 9.75 1 0
1972 8 5 61.75 10.5 3 2
1973 8 4 73 6.5 4 2
1974 11 3 76 10.25 4 1
1975 6 3 48.75 12.5 2 2
1976 4 2 24.5 2.25 2 1
1977 4 3 35.5 12.5 1 1
1978 2 1 13 3.5 1 1
1979 6 5 51.5 16.25 3 3
1980 7 4 63 15 1 1
1981 9 2 68.25 4.75 6 0
1982 4 2 31.25 3.25 3 1
1983 8 4 45.25 7.5 3 2
1984 10 6 102.25 14.25 5 1
1985 8 2 50 4.5 1 0
1986 4 2 32.25 3.25 2 2
1987 1 1 6.25 2 0 0
1988 4 4 31 9.75 3 2
1989 5 3 43.25 6.25 1 0
1990 5 1 36.5 3.5 1 0
1991 2 2 15.25 6 1 0
1992 2 0 17.5 0 0 0
1993 7 4 55.25 9 1 0
1994 3 3 24 8.25 3 2
1995 7 5 59.25 11.25 4 3
1996 5 2 35.75 2.75 1 1
1997 5 3 40.25 5 3 1
1998 7 7 49 18.25 5 1
1999 9 6 75.75 13.25 4 2
2000 5 2 36.75 6 2 1
2001 3 1 16 2.5 1 1
2002 6 2 43 7.75 3 0
2003 5 4 38.5 13.75 3 3
2004 4 1 20.25 3.5 2 1
2005 7 4 44.75 8.25 5 1
2006 3 3 25.5 7.25 3 2
2007 5 3 35.25 8 1 0
2008 8 2 49.5 5.5 2 1

Mean 5.5 2.94 42.03 7.61 2.42 1.11
Std. Dev. 2.38 1.58 20.59 4.55 1.52 0.92
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Table 4.2 Summary of TC metrics for the NWAUS region cont.

Years ACE PDI

Mean
Storm

Duration

Intense
Mean
Storm

Duration
Start
Day

End
Day

Season
Length

1970 4.97 4.14 7.55 1.5 331 88 122
1971 7.63 9.07 6.79 3.25 336 88 117
1972 11.29 11.76 7.72 2.1 373 120 112
1973 11.49 10.28 9.12 1.62 321 84 128
1974 15.31 17.47 6.91 3.42 301 145 209
1975 13.19 17.77 8.12 4.17 334 76 107
1976 4.34 4.1 6.12 1.12 371 123 117
1977 8.99 11.94 8.88 4.17 375 104 94
1978 0.45 0.26 6.5 3.5 407 73 31
1979 12.82 16.92 8.58 3.25 369 88 84
1980 14.94 18.39 9 3.75 346 77 96
1981 6.07 3.8 7.58 2.38 334 66 97
1982 4.98 4.83 7.81 1.62 367 119 117
1983 8.17 8.49 5.66 1.88 330 63 98
1984 13.67 12.7 10.22 2.38 337 114 142
1985 8.76 8.84 6.25 2.25 329 99 135
1986 3.88 3.77 8.06 1.62 380 107 92
1987 2.02 2.52 6.25 2 402 43 6
1988 6.49 7.57 7.75 2.44 346 114 133
1989 4.71 4 5.65 2.08 369 85 81
1990 5.47 5.82 7.3 3.5 342 110 133
1991 3.18 4.61 7.62 3 422 103 46
1992 0.94 0.57 8.75 0 389 103 79
1993 8.9 9.88 7.89 2.25 349 102 118
1994 5.28 7.08 8 2.75 346 98 117
1995 8.18 8.14 8.46 2.25 335 102 132
1996 3.66 2.74 7.15 1.38 343 137 159
1997 5.38 6.07 8.05 1.67 358 48 55
1998 16.15 24.1 7 2.61 334 98 129
1999 16.18 18.93 8.42 2.21 342 110 133
2000 6.05 7.4 7.35 3 335 115 145
2001 2.68 3.96 5.33 2.5 323 105 147
2002 5.57 5.56 7.17 3.88 386 98 77
2003 10.98 13.26 7.7 3.44 350 87 102
2004 3.7 5.03 50.6 3.5 364 73 74
2005 8.36 10.16 6.39 2.06 368 117 114
2006 4.91 5.98 8.5 2.42 429 89 25
2007 8.05 8.98 7.05 2.67 360 114 119
2008 9.21 10.33 7.07 2.75 323 119 161

Mean 7.59 8.67 7.55 2.54 356 97.44 106.44
Std. Dev. 4.36 5.67 1.14 0.91 29.14 22.55 41.09
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Figure 4.1 Time series of all the TCs (blue) in the Northwest Australian region
(105− 135◦E) and the number of TCs with minimum central pressure less than 970
hPa (red) for the seasons from 1970 to 2009.
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For the number of TC days and intense TC days similar trends are apparent

(Fig. 4.2). Again neither trend is significant at the 90% confidence interval as the t

values are 1.31 and 0.247 for TC days and intense TC days, respectively. The average

number of TC days in the NWAUS region is 42 days with a standard deviation of

20.6 days.

Of great importance to population centers along the Northwest Australian coast

are the number of TCs that make landfall. Part of the region is bounded by the Gulf

of Carpentia, where any storm forming in the gulf is likely to make landfall and will

invariably affect coastal regions. On average 3 TCs make landfall each year where

∼ 1 of those landfall storms is an intense TC. Neither all landfalling TCs or intense

landfalling TCs exhibit any linear trend (4.3).

The Accumulated Cyclone Energy (ACE) and Power Dissipation Index (PDI) are

both calculated from the maximum sustained wind, which is determined using the

current intensity estimates fitted to the Dvorak (1984) table utilizing the following

parameter

Vmax = 5.37CI1.34. (4.1)

The ACE is defined as,

ACE = 10−4
∑

v2
max (4.2)

where vmax is the maximum sustained wind speed (Bell et al. 2000), and is accumu-

lated over the season to give an estimate of the total length and strength of a given

TC season. The PDI is defined as

PDI =

τ∫
0

v3
maxdt ≈

τ∑
i=1

(v3
maxi
·∆t), (4.3)

where vmax is again the maximum sustained wind speed for a given time, t is time,

and τ is the lifetime of a given storm, and the integral is calculated using the left

endpoint approximation. The PDI is then summed over all TCs occurring during a

given TC season to get the seasonal value. These indices are used to give a more
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Figure 4.2 Time series of all TC days (blue) in the Northwest Australian region
(105− 135◦E) and the number of TC days with minimum central pressure less than
970 hPa (red) for the seasons from 1970 to 2009.

52



1970 1975 1980 1985 1990 1995 2000 2005 2010
Years

0

1

2

3

4

5

6

N
o
. 
o
f 

T
C

 L
a
n

d
fa

ll
s

All TC Landfalls
TC Landfalls <= 970 hPa

Figure 4.3 Time series of the number of TC landfalls (blue) in the Northwest Aus-
tralian region (105 − 135◦E) and the number of intense TC landfalls (red) for the
seasons from 1970 to 2009.
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accurate assessment of the total strength of the TC season. Simply looking at the

number of TCs or TC days during a given season may not signify the true impact

of the season. For example, if there were only three TCs in a season, but they were

all intense and lasted for longer than average, the ACE and PDI values would be

able to assess that in one statistic instead of two. The year to year fluctuations are

evident in (Fig. 4.4), however, neither metric contains a trends significant at the 90%

confidence interval. The t values are 1.011 and 0.492 for ACE and PDI respectively

(Fig. 4.4).

The mean duration of storms is calculated from the number of TCs divided by

the number of storms in a given year. The NWAUS region does not exhibit large year

to year variations in mean storm duration (Fig. 4.5) with an average of 7.5 days and

a standard deviation of 1.1 days. On average, storms in the NWAUS region are at

intense strength for only 2.5 days per season with a standard deviation of ∼ 1 day.

The NWAUS region TC season typically runs from November to April (Fig. 4.6),

with the average date of the first storm forming on December 22nd and the last storm

ending on April 7th. TCs can form outside the typical seasonal time frame, but in the

39 year record there have only been three TCs (one in October and two in May) that

have formed outside of that time period (Fig. 4.6). Seasonal start dates are slightly

more variable than season end dates, with standard deviations of 29 and 22.5 days,

respectively. The number of TCs that form in a season is highly correlated (∼ −0.67)

with the season start date, but is not significantly correlated with season end date

(∼ +0.2). Additionally, the range of yearly TC counts have varied from one TC in

1987 up to eleven in 1974 and the number of times each count has occurred is fairly

well distributed for the period 1970 to 2008 (Fig. 4.7).

It is commonly believed that a NWAUS TC season in which the first storm forms

before Christmas is considered to have an early start (Buckley 2009, personal com-

munication). Inspecting the season start dates for the 39 year period in this study,
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Figure 4.4 Time series of Accumulated Cyclone Energy (ACE; blue) with units of 104

m2 s2 in the Northwest Australian region (105 − 135◦E) and the Power Dissipation
Index (PDI; red) with units of 109 m3 s2 for the seasons from 1970 to 2009.
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Figure 4.5 Time series of mean storm duration (blue) and mean intense storm du-
ration (red) in the Northwest Australian region (105 − 135◦E) for the 1970 to 2008
seasons.
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Figure 4.6 The number of TCs that began in each calendar month in the Northwest
Australian region during the period 1970 to 2005.
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Figure 4.7 The number of TC seasons that had TC counts ranging from 1 to 11 for
the Northwest Australian region during the period 1970 to 2005.
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57.5% of the seasons began on or before December 25th. Clearly, with over half of

the seasons beginning on or before Christmas, a storm forming in the NWAUS region

during that time is not all that surprising.

A late starting NWAUS TC season is one in which the first storm does not form

until February or later (Buckley 2009, personal communication). Only four seasons

on record (1978, 1987, 1991, 2006) have started as late as 1 February, in fact they all

started after 6 February. All of these seasons had well below average (three or less)

number of TCs occurring in those seasons.

The middle 50% of the seasonal start date range from 335 to 370 (December 1st

to January 5th), which is a total of 19 seasons, with ten seasons in the first and last

quartiles. An early start (prior to 1 December) to the NWAUS region TC season

increases the likelihood of an above-average number of TCs occurring during that

season. Similarly, if a season does not have its first storm forms after 5 January, it is

more likely to have a well below average number of TCs occurring during that season.

Computing season length from each start and end date yield an average season

length of 106 days with a standard deviation of 41 days. An earlier starting season

is more likely to have a longer season than one that starts late. Additionally, a late

starting season is more likely to have a well below average season length compared

to the middle 50% of seasons.

No statistically significant linear trends were found in any of the TC metrics

discussed above; however, there could be other dominant modes of variation in the

TC time series. To determine if there are other common frequencies within some

of the TC metrics a wavelet analysis can be conducted. A Morlet wavelet analysis

(Torrence and Campo 1998) is one of several different types of wavelet bases that can

be used to perform the analysis. The Morlet wavelet function, ψ0, can be defined as

a function on a nondimensional ”time” parameter, η,

ψ0(η) = π−1/4eiω0ηe−η
2/2 (4.4)
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Figure 4.8 The Julian start date (blue) and end date (red) in the Northwest Aus-
tralian region (105− 135◦E) for the seasons from 1970 to 2008.
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Figure 4.9 The Northwest Australian region (105−135◦E) TC season length measured
in days for the seasons from 1970 to 2009.
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where ω0 is the nondimensional frequency. To assess the wavelet function along in

time, ”scaled wavelets” can be defined as,

ψ

[
(n′ − n)δt

s

]
=

(
δt

s

)1/2

ψ0

[
(n′ − n)δt

s

]
(4.5)

where s is the ”dilation” parameter used to change the scale and n translates the

function to slide in time. A normalization of the total energy to keep the scale

wavelet constant is accomplished by the factor s−1/2. The wavelet transform can

then be calculated with the individual time series values, xn, with time index n, and

each value is separated by a constant time interval δt, by,

Wn(s) =
N−1∑
n′=0

xn′ψ∗
[

(n′ − n)δt

s

]
(4.6)

where ψ∗ is the complex conjugate of the wavelet function. The wavelet transform can

then be evaluated for various values of the scale s as well as through time, n, between

the start and end dates. The power spectra of the wavelet analyses are calculated by

the absolute value squared of the wavelet transform (Torrence and Campo 1998).

A wavelet analysis of the time series of the number of TCs for the NWAUS region

identifies two major peaks in the wavelet power spectra (Fig. 4.10a) at 4−6 years. The

peak in the wavelet power spectra around 12 years is largely influenced by numerical

effects from a relatively short time series. A different wavelet function can be used to

determine the viability of the decadal signal. The Mexican Hat wavelet function

ψ0(η) = (
2√
3
π−1/4)(1− η2)e−η

2/2, (4.7)

can be used as an alternative to the morlet wavelet to determine if there is a signal

at the decadal time range of TC numbers (Fig. 4.10b).

Due to the relatively short reliable TC record for the NWAUS region, multidecadal

variability cannot be ascertained from this wavelet analysis and therefore no multi-

decadal trend can be reliably identified. With only a little over three decades in the
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dataset, the decadal signal could be spurious; however, with the decadal signal ap-

pearing in both wavelet power spectrums (Morlet and Mexican Hat), we can be more

confident that there is a signal. Similar results appear for a wavlet analysis of the

number of TC days (Figs. 4.11).

4.2 MJO

In previous sections, the inter-annual variability of various TC metrics have been dis-

cussed. On intra-seasonal time scales the Madden-Julian Oscillation (MJO; Madden

and Julian 1994) has been known to influence TC development in the Australian

region (Hall et al. 2001). The 40 − 50 day oscillation of wavenumber 1 generally

consists of two phases that either enhance or inhibit convection in the Eastern Hemi-

sphere, the “wet” and “dry” phases, respectively (Hendon and Liebmann 1994). Hall

et al. (2001) created four categories for the MJO cycle and a fifth category of None

for the Australian region were they found that during their category B, the western

Australian region had enhanced cyclogenesis, where as during category D the western

region had reduced activity. Cyclones that formed when during a time when no active

or inactive MJO cycle could be determine (category None), cyclogenesis rates were

at or just above average (Hall et al. 2001).

Recently, Wheeler and Hendon (2004) developed a new multivariate MJO index,

which is used by the Australian Bureau of Meteorology for monitoring the current

state of the MJO as well as using it in an intra-seasonal prediction scheme for proba-

bilistic forecasting of TC formation. Their index identifies eight phases and a central

weak MJO category. Wheeler and Hendon (2004) use Empirical Orthogonal Functions

(EOFs) and minimal filtering to isolate the MJO signal, similar to Lo and Hendon

(2000). Using this new MJO index to identify the influence of the MJO on NWAUS

TCs similar results of Hall et al. (2001) were found. During phase 4 and 5 of the MJO
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Figure 4.10 Wavelet power spectra of all TCs in the Northwest Australian region
using the (a) Morlet mother wavelet and (b) Mexican hat mother wavelet. On the
left had side is the wavelet scalogram of the time series (count2) over the time period
1970 − 2008 versus the Period (in years) and on the right side is the wavelet power
spectrum (count2) versus the period (in years). The shaded regions indicate the “cone
of influence”, where edge effects become important.
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Figure 4.11 Same as in Fig. 4.10 except for TC days.
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cycle, there was a statistically increased number of storms forming in the NWAUS

region, significant at the 95% level. However, the number of TCs that formed during

other phases was not statistically significant different from climatology.

The MJO has been used extensively for intra-seasonal prediction of TC formation,

especially within the Australian region. However, can the MJO be used as a seasonal

predictor? To answer this question the number of MJO passages from phase 3 to

phase 4 were investigated for how well they relate to seasonal TC counts. There is

almost no correlation between the two, and therefore it is not deemed to be a useful

seasonal predictor.

4.3 ENSO Modes

There is considerable research on the relationship between Australian region TCs

and various indicators of the mode of the El Niño–Southern Oscillation (ENSO)

(e.g., Nicholls 1979, 1985, 1992; Revell and Goulter 1986; Solow and Nicholls 1990;

Evans and Allan 1992; Nicholls et al. 1998; Broadbridge and Hanstrum 1998; Ramsay

et al. 2008). Most studies that encompass the entire Australian region have found a

significant relationship between TC activity and ENSO activity. This relationship is

due mainly to the fact that a major part of the Australian region is directly impacted

by changes in the Walker circulation, which is related to the convective activity in

the western part of the Pacific Ocean basin. Additionally, in numerous prediction

schemes for the Australian region ENSO is one of the main predictors. This section

will investigate the different ENSO variables and determine whether they explain a

large portion of the variance of TCs in the NWAUS region.
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4.3.1 Niño SSTAs

There are numerous variables that can be used to identify the state of ENSO, in-

cluding both atmospheric and oceanic variables. The variability of the Southern

Oscillation first was noted by fisherman working off the coast of Peru, who noticed

that during years when SSTs were warmer than normal there were fewer fish in the

region. Therefore, one common way to identify the state of ENSO is to use one of a

number of different SST regions. There are four areas of tropical Pacific SSTs that are

commonly used, extreme Eastern Tropical Pacific SSTs termed Niño 1+2 (0− 10◦S,

90−80◦W), Eastern Tropical Pacific SSTs termed Niño 3 (5◦N-5◦S, 150−90◦W), Cen-

tral Tropical Pacific SSTs termed Niño 4 (5◦N-5◦S, 160◦E-150◦W), and East-Central

Tropical Pacific SSTs termed Niño 3.4, which is a combination of the Niño 3 and Niño

4 SSTs (5◦N-5◦S, 170−120◦W). Often the values for these SST boxes are reported as

anomalies, defined as the difference between the current time period and some long

term mean (typically 30 years). In this study the Niño 3.4 and Niño 4 boxes are used

with anomalies from the 1971-2000 long term mean. When a large positive (negative)

SSTA in either the Niño 3.4 or Niño 4 box occurs, it is associated with an El Niño

(La Niña) events as SSTs in those regions increase above the long term mean, where

temperature anomaly greater than 1◦C (−1◦C) in the Niño 3.4 region would indicate

a likely El Niño (La Niña) conditions.

The frequency of TCs in the NWAUS basin was not highly correlated to Niño-

SSTs prior to the beginning or during the TC season for the period 1970 to 2005 (Fig.

4.12). A two-sided t test (Wilks 2005) for significance needs to take into account the

serial (lag-1) correlation of the TC time series (Bretherton et al. 1999). A correla-

tion magnitude of 0.46 (0.57) or greater is significant at the 95% (99%) confidence

interval under standard normality assumptions for the 36-yr TC dataset. The ENSO
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parameter with the highest correlation was the Niño-4 SSTAs. Prior to the begin-

ning of the TC season correlations peaked during June–August and July–September

(−0.47). During the season the Niño-4 SSTAs reached a maximum correlation during

March–May (−0.51). Another ENSO SST parameter, Niño 3.4, was initially less cor-

related to the TC frequency; however, correlations increased substantially during the

season and the correlation peaked (−0.48) during February–April and March–May,

the same time as the Niño 4 SSTAs. These correlations are substantially lower than

those reported by Ramsay et al. (2008) for the entire Australian region and are barely

significant at the 95% confidence interval. Ramsay et al. (2008) found statistically

significant correlations for the Niño 3.4 SSTAs and Niño 4 SSTAs.

The correlations between Niño 3.4 and Niño 4 SSTAs with the number of TC

days occurring during a season had similar values to the correlations for TC counts

(Fig. 4.12). The largest correlations (∼ −0.5) occur during the NWAUS TC season.

Prior to the season beginning, Niño 4 SSTAs approach significance at the 95% level

by the Jun–Aug three-month bin and maintains that level through the TC season.

The Niño 3.4 SSTAs do not approach significance until after the TC season begins,

during the Jan–Mar three-month bin. During the Feb–Apr time frame, Niño 3.4

and Niño 4 SSTAs have approximately the same correlation values (∼ −0.5) for two

three-monthly bins and diverge after the end of the TC season (Fig. 4.13).

4.3.2 SOI

Another parameter used to identify the ENSO mode is the Southern Oscillation In-

dex (SOI). The SOI is a difference is sea level pressure between Tahiti and Darwin,

Australia and is calculated as,

SOI =

(
Tahiti SLPStand −Darwin SLPStand

)
MSD

(4.8)

68



Ja
n-

M
ar

Fe
b-

Apr

M
ar

-M
ay

Apr
-Ju

n

M
ay

-Ju
l

Ju
n-

Aug

Ju
l-S

ep

Aug
-O

ct

Se
p-

Nov

Oct
-D

ec

Nov
-Ja

n

Dec
-F

eb

Ja
n-

M
ar

Fe
b-

Apr

M
ar

-M
ay

Apr
-Ju

n

M
ay

-Ju
l

Ju
n-

Aug

3-Month Bins

0.6

0.4

0.2

0.0

0.2

0.4

0.6

C
o
rr

e
la

ti
o
n
 C

o
e
ff

ic
ie

n
t

Nino 3.4 Nino 4 PDO NOI SOI

Figure 4.12 Correlations between five ENSO related parameters Niño 3.4, Niño 4,
Sothern Oscillation Index (SOI), Pacific Decadal Oscillation (PDO), and Northern
Oscillation Index (NOI) and the number of TCs, (defined in the text) beginning
with the three-month bin Jan-Mar prior to the beginning of the NWAUS TC season
through the Jun–Aug three-month bin following the end of the NWAUS TC season.
The 95% and 99% confidence intervals are plotted in dashed black and solid black,
respectively.
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Figure 4.13 Correlations between five ENSO related parameters Niño 3.4, Niño 4,
Sothern Oscillation Index (SOI), Pacific Decadal Oscillation (PDO), and Northern
Oscillation Index (NOI) and the number of TC days, (defined in the text) beginning
with the three-month bin Jan-Mar prior to the beginning of the NWAUS TC season
through the Jun–Aug three-month bin following the end of the NWAUS TC season.
The 95% and 99% confidence intervals are plotted in dashed black and solid black,
respectively.
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where Tahiti SLPStand and Darwin SLPStand are the standardized sea level pressure

(SLP) anomalies for each city, which are calculated as,

Tahiti SLPStand =

[
(Actual SLP−Mean SLP)Tahiti

Tahiti SLPstdev

]
(4.9)

Darwin SLPStand =

[
(Actual SLP−Mean SLP)Darwin

Darwin SLPstdev

]
(4.10)

where Tahiti SLPstdev and Darwin SLPstdev are the standard deviations of SLP anoma-

lies for each location and are defined as,

Tahiti SLPstdev =

√√√√[∑ (Actual SLP−Mean SLP)2
Tahiti

N

]
(4.11)

Darwin SLPstdev =

√√√√[∑ (Actual SLP−Mean SLP)2
Darwin

N

]
(4.12)

where N is the number of months, and the Monthly Standard Deviation (MSD) is

written as,

MSD =

√(
Tahiti SLPStand −Darwin SLPStand

)2
N

(4.13)

where N is the number of summed months and the mean SLP for Tahiti and Darwin

are calculated from the 1951− 1980 base period. An El Niño period occurs when the

SOI values drops below −1.0. In a La Niña event, the opposite is true and a SOI

value above +1.0 indicates the possible beginning of a La Niña period.

For the NWAUS region there is a substantially lower correlation with the NWAUS

TC activity and SOI than has recently been reported for the entire Australian basin

by Ramsay et al. (2008) (Fig. 4.12). The SOI correlation initially peaked during

July–September (+0.38) before the season began and peaked a second time during

the season in February–April (+0.39), which are not statistically significant at the

95% level. Ramsay et al. (2008) found correlations for SOI statistically significant at

the 99% confidence interval for TCs occurring in the entire Australian region. The

lower correlation values for the NWAUS region as compared to those correlations
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found by Ramsay et al. may be attributable to the exclusion of Southwest Pacific

TCs in the current study. Since the Southwest Pacific Ocean is directly connected

to the changing conditions in the eastern and central Pacific Ocean, it is likely that

that area would experience a larger influence from ENSO and subsequently have a

diminished impact in the Southeast Indian Ocean.

Similar correlations are found between the SOI and TC days for a given TC

season (Fig. 4.13). At no time prior to the beginning of the TC season are the

correlations significant. Correlation values increase as the TC season approaches

reaching maximum values at the end of the NWAUS TC season reaching values of

+0.42 during Mar–May. As with TC numbers, SOI does not appear that it would

serve as a suitable seasonal predictor for the number of TC Days.

4.3.3 NOI

The North Oscillation Index (NOI) is an analog climate index to the SOI, which was

developed to more accurately assess the tropical-extratropical interactions that are

resultant from El Niño and La Niña episodes. The NOI attempts to show the links

between the tropical Pacific and extratropical Pacific for the Northern Hemisphere.

Schwing et al. (2002) calculated the NOI as,

NOI = SLPANPH − SLPADARWIN (4.14)

where SLPANPH is the sea level pressure anomaly of the North Pacific High (35◦N,

130◦W) and SLPADARWIN is the sea level pressure anomaly for Darwin, Australia

(10◦S, 130◦E). The base period for the long term mean calculations for the NOI are

from January 1948 to December 1997. An important feature of this index is the

ability to determine not only changes in the Walker Circulation (as with the SOI),

but also changes in the Hadley circulation, which impacts the meridional transport of

momentum, energy, and mass between the tropics and extra-tropics (Schwing et al.
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2002). The NOI might also highlight cross-equatorial teleconnections in the Pacific

Ocean.

Correlations between the NOI and NWAUS TCs follow similar correlation trends

to the SOI, with a pre-season peak in April–June (+0.30), then peaking after the

season (+0.41) in March–May and April–June (Fig. 4.12). The NOI and SOI are

correlated +0.72 across all three-month bins used in this study. The larger correlation

after the season may indicate the tropical atmosphere having a greater impact on

extratropics as opposed to the other way around.

The correlations between the number of TC days and the NOI yield similar corre-

lations to that for TC numbers (Fig. 4.13). Correlations prior to the beginning of the

TC season generally are less than +0.20, increasing during the season to a maximum

of +0.35 during Mar–May three-month bin. The NOI, like the SOI, does not appear

to be a candidate for inclusion as a predictor in a seasonal prediction scheme for TC

frequency or TC days.

4.3.4 PDO

Initially discovered by Walker and Bliss (1932), the Pacific Decadal Oscillation (PDO)

is an analogous oscillation to the North Atlantic Oscillation (NAO). The PDO is de-

fined as a seesaw in north–south Pacific sea level pressure and is identified as the lead-

ing eigenvector in a principal component analysis of monthly SST anomalies poleward

of 20◦N between 110◦E and 110◦W (Mantua et al. 1997). This oscillation varies on

interannual to decadal time scales and is widely used to describe decadal variations in

the Northern Hemisphere and can modulate ENSO teleconnections. A positive PDO

is indicated by a deeper Aleutian low and subsequently the mean extratropical storm

track is pushed southward. When the positive phase of the PDO is in concert with an

El Niño event, more moisture is available to the storms moving through the Pacific,

thus altering precipitation patterns in the western Pacific Ocean. Conversely, during
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the negative (cool phase) of the PDO, the Aleutian low is weaker and extratropical

storms track farther to the north. When coupled with a La Nia phase, precipitation

is enhanced in the Northwest U.S. and British Columbia, while in the Southwest U.S.

precipitation is decreased (Gershunov and Barnett 1998; Goodrich 2007).

The interannual variability of the PDO does not correlate significantly with the

NWAUS TC frequency before the beginning of the season, but does reach a peak in

June–August after the TC season (−0.41; Fig. 4.12). Correlations between the PDO

and the number of TC days are similar to those with the number of TCs, with the

maximum occurring after the end of the TC season during the Jun-Aug three-month

bin after the season has ended (Fig. 4.13). As with the NOI, the stronger correlations

following the NWAUS TC season may be the influence of the tropical Pacific Ocean

on Northern Hemispheric patterns during the late spring/early summer time frame.

Additionally, the PDO has mainly been used for decadal oscillations and currently the

period under consideration limits the ability to confirm any decadal or multidecadal

trends with certainty. Thus, future studies may find a more substantial connection to

the NWAUS TC frequency when multidecadal signals can be identified and researched.

There are a few time periods where the traditional ENSO parameters (Niño 3.4,

Niño 4, and SOI) are statistically significant but, in general, the correlations are

substantially less than those typically found for TC activity over the entire Australian

region. The NOI and PDO, while important in describing interannual to decadal

variations in the Pacific Ocean region, appear to have little modulation effect on

NWAUS TCs. This greatly diminished role of traditional ENSO parameters for the

NWAUS basin in contrast to recent results by Ramsay et al. (2008), which found

highly statistically significant relationships between the TC frequency for the entire

Australian basin and the traditional ENSO parameters. This studies results confirm
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earlier findings by Broadbridge and Hanstrum (1998) that the correlation of SOI to

TC numbers was substantially less in the NWAUS region, when compared to the

correlations for the entire basin. These findings do not imply that ENSO does not

play a role in the variability of TC frequency or TC days in the NWAUS region, just

not a statistically significant role as has been found for Australian basin as a whole,

or other TC basins around the world.

4.4 Other global modes

A primary difficulty with using these other global modes is that they are typically

derived for the Northern Hemisphere. Despite that fact, it is important to consider

these known global modes as they may indicate a Northern Hemispheric pattern,

modulating the equatorial convergence patterns, which can have a large impact on

the formation of TCs in the Australian region. In addition to the traditional global

modes of the North Atlantic Oscillation (NAO), the Arctic Oscillation (AO), the

Pacific-North American (PNA) pattern, and the Quasi-biennial Oscillation (QBO),

an Indian Ocean mode termed the Indian Ocean Dipole (IOD) also is investigated

due to its co-location with the NWAUS TC basin.

4.4.1 North American Oscillation and Arctic Oscillation

Two primarily Northern Hemispheric patterns are the NAO and the AO, which have

been linked to the variability of temperature and precipitation over North America

and Europe. The NAO has been defined several different ways, but has always referred

to a north-south dipole on sea level pressure in the North Atlantic Ocean (e.g., Walker

and Bliss 1932; Wallace and Gutzler 1981; Hurrell 1995; Ambaum et al. 2001). The

NAO also appeared in the analysis by Barnston and Livezey (1987) as one of the ten
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leading rotated principal components of Northern Hemispheric 500-hPa geopotential

heights.

A common way to calculate the NAO is through the standardized (by standard de-

viation) SLP differences between Lisbon, Portugal and Stykkisholmur, Iceland (Hur-

rell 1995), which is in accord with the gradient in SLP observed in map analyses

between the Azores high and the Icelandic low (Wallace and Gutzler 1981). Positive

NAO values indicate a stronger Icelandic low, which produces colder temperatures

over Greenland and warmer weather in the Eastern U.S. and Western Europe. The

negative phase results in opposite responses from the Icelandic low, with colder tem-

peratures across the Eastern U.S. and Western Europe.

The NAO has previously been linked to global TC activity by Elsner and Kocher

(2000), who found that their global TC activity variable has a statistically significant

link to the NAO over a 32 year period from (1966− 1997). Frank and Young (2007)

found similar results to global TC activity, especially when a positive NAO phase

coupled with a positive ENSO (El Niño) phase. During that coupled phase, TC

activity in all basins studied by Frank and Young (2007) see an increase except for

the North Atlantic, which has long been known to have decreased TC activity during

positive ENSO phases. This trend is seen in other TC metrics as well, including storm

days and the number of TCs to reach hurricane strength.

Closely related to the NAO is the Arctic Oscillation (AO) and thus their corre-

lation exceeds +0.8 during one three-month bin. Overall, the correlation between

the NAO and the AO exceeds +0.5 during most three-month bins throughout the

year. The AO is identified as the leading mode of a principal component analysis of

Northern Hemispheric sea level pressure and explains 25% of the variance (Ambaum

et al. 2001). The AO index is calculated by projecting the 1000 hPa height anomalies

poleward of 20◦N on the loading pattern of the AO. The 1000 hPa height anomalies

are calculated from the 1979− 2000 mean Positive (negative) values of the AO index
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lead to higher (lower) sea level pressures in low latitudes, which results in a stronger

(weaker) mid- and high-latitude winds. Over the U.S. there is also a marked differ-

ence in surface temperature, with positive (negative) values of the AO lead to warmer

(cooler) surface temperatures.

The correlation of NWAUS TC frequency with NAO peaks in March–May (−0.36),

but drops to zero correlation after June–August (Fig. 4.14). The AO correlation peaks

in March–May (−0.34) and September–November (−0.43), which almost is significant

at the 95% confidence interval. However, during the TC season the correlation values

drop to near zero (Fig.4.14). Correlations between NWAUS TC days and the NAO

index also peaks in Mar–May (−0.34), but the correlation quickly lowers to near zero

as the TC season approaches, closely resembling the correlation pattern between the

NAO and TC frequency (Fig. 4.15). The correlation between the AO and TC days

are similar to those between the AO and TC frequency. The correlation peaks in

Mar–May (−0.34) and Sep–Nov (−0.40). After the second peak, the correlation is

close to zero (Fig. 4.15).

4.4.2 Pacific-North American Pattern

The Pacific/North American (PNA) pattern is a low-frequency teleconnection pattern

in the North Pacific Ocean, which has similarities to the NAO. The calculation of the

PNA pattern uses the method of rotated principal component analysis as discussed in

Barnston and Livezey (1987). Each month the principal components are calculated

for the 500-hPa geopotential heights and are then rotated using the Varimax rotation

to obtain the rotated principal components. These rotated modes are then identified

as different northern hemispheric patterns and then a least squares solution is found

to the system of equations to calculate the final index values.
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Figure 4.14 Same as in Figure 4.12 except for correlations between NWAUS TC
activity and the Quasi-biennial Oscillation (QBO), North Atlantic Oscillation (NAO),
PacificNorth American (PNA) pattern, Arctic Oscillation (AO), and the Indian Ocean
Dipole (IOD).
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Figure 4.15 Same as in Figure 4.13 except for correlations between NWAUS TC
activity and the Quasi-biennial Oscillation (QBO), North Atlantic Oscillation (NAO),
PacificNorth American (PNA) pattern, Arctic Oscillation (AO), and the Indian Ocean
Dipole (IOD).
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A main feature of the positive phase of the PNA is below-average heights near

Hawaii and above-average heights south of the Aleutian Islands, which is a north-

south dipole similar to the NAO. The East Asian jet stream is shifted eastward during

the positive PNA phase and the jet exit region nears the western U.S. coast. During

the negative phase, the East Asian jet moves westward, creating a blocking pattern

over the central Pacific, resulting in a split flow regime across the Pacific (Wallace and

Gutzler 1981). Despite the fact that the PNA was defined to account for changes in

Northern Hemispheric weather patterns, the PNA can lead to a shift in that pattern,

which in turn can alter the location of the Southern Hemispheric Convergence Zone

(or other global circulations). The PNA correlation with the number of TCs is less

than | 0.3 | until after the TC season, when correlations increase to the highest levels

(−0.39) in the June–August (Fig. 4.14). Similarly, the correlation between the PNA

and the number of TC days is near zero prior to the beginning of the NWAUS TC

season (Fig. 4.15).

4.4.3 Quasi-biennial Oscillation

The Quasi-biennial Oscillation (QBO) is a monthly zonal average of the 30-hPa strato-

spheric wind at the equator. The QBO parameter is calculated from the global re-

analysis data (Kalnay et al. 1996) and can be accessed from the Climate Prediction

Center website. The QBO represents a change in sign of the zonally averaged wind at

the equator from east to west. The QBO was originally introduced by Gray (1984a,b)

as a predictor for TCs in the North Atlantic TC basin. Gray reported that in years

when the QBO was in a westerly phase there were 50−100% more TCs in the Atlantic

region than during an easterly phase. This difference in TC activity has a couple of

explanations one being a reduction in vertical wind shear during the westerly phase

of the QBO (Gray et al. 1992). However, the physical link between TC activity and

the QBO is still uncertain (Baldwin et al. 2001).
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For the NWAUS region, the correlation between the QBO and TC frequency peaks

in March–May (+0.30) and December–February (−0.25). The correlation between the

QBO and TC days is never greater than magnitude 0.2 at any point before, during, or

after the NWAUS TC season (Fig. 4.15). Even though the NWAUS region is situated

in the deep tropics, the QBO does not appear to explain much of the variability in

TC frequency or TC days (Fig. 4.14).

4.4.4 Indian Ocean Dipole

Finally, in the southern Indian Ocean, a dipole in the SSTs has been identified by

Saji et al. (1999) as a leading mode of variability in the Indian Ocean. The Indian

Ocean Dipole (IOD) is the second mode from the Empirical Orthogonal Function

(EOF) analysis of Indian Ocean SSTs, with the first being an ENSO signal. Saji

et al. (1999) calculated an index from SSTAs in the Indian Ocean and found that it

correlated strongly (> +0.7) with the time series associated with the second mode of

the EOF. The IOD is the difference in SST anomalies between the tropical western

Indian Ocean (50−70◦E, 10◦S−10◦N) and the tropical southeastern Indian Ocean

(90−110◦E, 10◦S–Equator). This local mode peaks in September–November (−0.29)

right before the TC season begins and peaks again after the season in March–May

(+0.43). Similar correlation relationships appear for the IOD and TC days with the

strongest correlation occurring after the season during Mar–May (+0.45; Fig. 4.15).

Despite the fact that the IOD is independent of the phase of ENSO (Saji et al. 1999),

the IOD does not explain a significant amount of variability in TC frequency or TC

days in the NWAUS TC basin before the season begins (Figs. 4.14 and 4.15).

Overall the global modes do not adequately represent the variability of TC fre-

quency or TC days in the NWAUS basin. This likely is due to many of these global
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modes having been identified solely for Northern Hemispheric patterns. Due to the

lack of landmass area in the Southern Hemisphere and fewer studies of teleconnec-

tions in that hemisphere, there are not as many identified global modes. Despite that,

previous literature on global teleconnections indicates that patterns in the opposite

hemisphere can have an impact on TC development in the opposite hemisphere (Love

1985). Thus it is important to understand the impact of the known global modes on

TC activity in the NWAUS basin. However, in this case, the global modes do not

appear to have large explanatory power.

4.5 NWAUS TC Season Composite Maps

Composite maps, constructed from NCEP–NCAR reanalysis variables, can be used

to identify changes in global atmospheric patterns between active and inactive TC

seasons. The composite maps are calculated as the 10 most active seasons and the 10

least active seasons for the entire global domain for various atmospheric parameters.

To highlight more effectively the changes between those seasons, anomalies from the

long-term means of each field are used.

Inspection of the geopotential height fields at 700, 500, and 250-hPa yield notice-

able pattern differences between the active and inactive seasons (Fig. 4.16 and 4.17).

Each level contains approximately the same pattern, with magnitude of the height

differences increasing slightly with decreasing pressure for both active and inactive

seasons. There are a number of different areas around the globe that experience a

change in sign of the geopotential height anomaly between active and inactive TC sea-

sons. In the Northern Hemispheric polar region there are higher geopotential heights

during active NWAUS TC seasons (Fig. 4.16) and lower geopotential heights during

inactive seasons (Fig. 4.17). Additionally, an area of lower geopotential heights dur-

ing active NWAUS TC season occurs off the coast of Japan with corresponding higher
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geopotential heights during inactive seasons. With such differences in the geopoten-

tial height field, there may be atmospheric parameters prior to the TC season that

have similar variations to the TC metric time series.

4.6 Correlation with Vorticity and Shear

There are a number of parameters that are important in determining whether a TC

is likely to develop. Two primary limiting factors to TC development is often the

existence of low-level vorticity and minimal vertical wind shear. Over the NWAUS

region, the 850 − 200-hPa zonal shear has a significant negative correlation, where

during active (inactive) TC seasons a region of lower (higher) shear (Fig. 4.18)

exists. This strong correlation across the equatorial Indian Ocean is embedded within

a tripole mode of correlations over the Eastern Indian Ocean, crossing the equator

from 45◦N to 45◦S. There is a mirrored tripole of opposite sign over the central Pacific

Ocean; however, the correlations are smaller than the one in the Eastern Indian Ocean.

The spatial correlation map for low-level vorticity indicates a few areas of moderate

negative correlation (> −0.4) over the NWAUS region, indicating higher (lower)

cyclonic vorticity (which has a negative sign in the Southern Hemisphere) when there

is an active (inactive) TC season (Fig. 4.19). The area of higher cyclonic vorticity is

located in the SEIND Ocean, over Indonesia and along of the Northwest Australian

coast. However, in general, the correlation maps present a noisy pattern from which

little can be ascertained.

In general, both 850 − 200 hPa shear and low-level vorticity are factors in mod-

ulating TC frequency in the NWAUS region. However, the vertical zonal shear has

higher correlations and appears to be the dominating factor in determining active

and inactive TC seasons. The global reanalysis variables are investigated for their
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(a)

Figure 4.16 A map of the difference between the most active and least active TC
seasons for the Nov–Apr geopotential heights (m) at (a) 700-hPa, (b) 500-hPa, and
(c) 250-hPa.
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(b)

(c)

Figure 4.16 cont.
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(a)

Figure 4.17 A map of the difference between the most active and least active TC
seasons for the Nov–Apr geopotential heights (m) at (a) 700-hPa, (b) 500-hPa, and
(c) 250-hPa.

86



(b)

(c)

Figure 4.17 cont.

87



Figure 4.18 Correlation of annual TC frequency (1970/71− 2005/06) with 850− 200
hPa vertical shear computed from the NCEP–NCAR Reanalysis data
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Figure 4.19 Correlation of annual TC frequency (1970−2005) with 850-hPa vorticity
computed from the NCEP–NCAR Reanalysis data
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correlation with the yearly TC frequency and with the 850 − 200 hPa shear in the

NWAUS region.

4.7 Global teleconnections for TC Frequency

While correlation maps of vorticity and 850 − 200 hPa vertical shear are important

in understanding the variability of TC frequency in the NWAUS TC basin, high cor-

relations during the TC season do not provide any information toward predicting

any TC metric prior to the beginning of the season. To further investigate potential

global teleconnections it is necessary to go beyond the pre-identified global modes dis-

cussed in the previous section. Using the NCEP–NCAR reanalysis data (Kalnay et al.

1996), spatial correlations between class A variables and the NWAUS TC frequency

are investigated to identify parameters that exhibit strong correlation patterns with

yearly TC frequency. Many different variables were investigated including air tem-

perature, geopotential height, sea level pressure, u- and v-wind, and 850 − 250 hPa

zonal shear. Additionally, global SSTAs from the NOAA Extended Re-constructed

SST dataset are correlated with TC frequency to identify possible predictors. The

correlation analyses identified a number of different parameters that are highly corre-

lated with the TC frequency of the NWAUS basin, prior to the beginning of the TC

season. The three-month bins and variables discussed are those that will be used in

the development of a seasonal prediction scheme for TC counts in chapter 5.

4.7.1 NCEP–NCAR Reanalysis

Correlation maps were generated for all levels of the NCEP–NCAR global reanalysis

dataset for three-month bins beginning with the Jan–Mar period prior to beginning of

the TC season, through Sep–Nov at the very beginning of the TC season. Described

below are the correlation maps that yielded areas of strong correlation with TC
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frequency. A common problem that occurs in identifying potential seasonal predictors

is in determining if a correlation of a reanalysis field is significant. To address this

issue, the number of TCs time series has been split into two nearly equal subsets. Each

of these subsets are then correlated to its respective time series of reanalysis data. If

the correlation appears in a similar location in both subsets, then the correlation for

the entire period can be considered to exist (Karoly 2009, personal communication).

The correlation map of the 500-hPa geopotential heights for Mar–May over Russia

(RUS500; 55−67.5◦N, 70−85◦E) is moderately correlated (< −0.40) to the NWAUS

TC frequency (Fig. 4.20). After splitting the time series into two, the correlation does

appear in both subsets, suggesting that the correlation is not random and therefore

would render this area a possible seasonal predictor for the number of TCs (Fig.

4.21). A cross-correlation between the RUS500 geopotential heights and 850 − 200

hPa vertical shear yields a weak to moderate correlation reaching 0.3 over the NWAUS

region (Fig. 4.22).

The correlation map of the 850-hPa geopotential heights for May–July is highly

correlated (> +0.5; Fig. 4.23) with NWAUS TC frequency over South Indian Ocean

(SIND850; 42.5 − 55◦S, 47.5 − 72.5◦E). Before an active (inactive) TC season there

are anomalously higher (lower) heights over the South Indian Ocean. A moderate to

strong correlation exists across the time series as evident from the correlation maps

of half the time series (Fig. 4.24). The spatial cross-correlation map for vertical shear

and SIND850 heights suggests the two parameters are not strongly correlated with

vertical shear over the Northwest Australian region. In general, correlations rarely

exceed a correlation of magnitude 0.3 throughout the entire Southern Indian Ocean

(Fig. 4.25).
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Figure 4.20 Correlation map between NWAUS TC frequency and Mar–May 500-hPa
geopotential heights.
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(a)

(b)

Figure 4.21 Same as in Fig. 4.20 except for (a) 1970–1989 and (b) 1990–2007.
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Figure 4.22 Cross-correlation between Mar–May RUS 500 hPa geopotential heights
and 850–200 hPa zonal shear.

Figure 4.23 Same as in Fig. 4.20 except for May–Jul 850-hPa geopotential heights.
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(a)

(b)

Figure 4.24 Same as in Fig. 4.21 except for SIND 850 hPa Geopotential Heights.

95



Figure 4.25 Same as Fig. 4.22 except for May–Jul SIND 850-hPa geopotential heights.
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April–June 700-hPa geopotential heights are significantly correlated to TC activity

in the NWAUS region (< −0.6; Fig. 4.26) over central North America (NA700;

37.5 − 47.5◦N, 102.5 − 82.5◦W). When broken into two time series, the correlation

remains over the same region (Fig. 4.27). The spatial pattern of correlations between

the NA700 heights and global vertical shear is moderately positive correlated over

the region from 0◦ to 15◦S and 90◦ to 140◦E). Lower (higher) heights at 700 hPa over

North America are coincident with lower (higher) vertical shear over the NWAUS

region (Fig. 4.28).

The correlation map of 850-hPa air temperature over the central North Pacific

(HI850; 10− 20◦N, 155− 132.5◦W) for May–July is significantly correlated with TC

activity in the NWAUS region (−0.63; Fig. 4.29). Correlating the two halves of the

TC time series, the area of strong correlation is maintained (Fig. 4.30). The spatial

correlation map for HI850 air temperature and vertical shear indicates a significant

correlation over the NWAUS region (> +0.7). When there are cooler (warmer) tem-

peratures to the Southeast of HI there is less (more) shear over the NWAUS region

(Fig. 4.31). An east-west dipole in the Indian Ocean and a north-south tripole in the

Central Pacific Ocean are present in the correlation map.

The spatial correlation of the 925-hPa geopotential heights for June–August is

significantly correlated (< −0.70; Fig. 4.32) with NWAUS TC frequency over the

South Atlantic Ocean (SATL925; 17.5− 32.5◦S, 12.5− 0◦W). There is a second area

of high correlation in the Eastern Pacific Ocean (EPAC925; 15−27.5◦N, 130−115◦W),

off the coast of California. This secondary area does not appear as a prominent feature

in the composite difference map and its variability is likely related to the variability of

ENSO. There are additional areas of weak to moderate correlations across the central

Pacific and eastern Indian Ocean regions, but the correlations are not statistically

significant. Both areas of high correlation hold up through splitting the dataset into

two subsets (Fig. 4.33).
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Figure 4.26 Same as in Fig. 4.20 except for Apr–Jun 700-hPa geopotential heights.
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(a)

(b)

Figure 4.27 Same as in Fig. 4.21 except for NA 700 hPa Geopotential Heights.
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Figure 4.28 Same as in Fig. 4.22 except for Apr–Jun 700-hPa geopotential heights.

Figure 4.29 Same as in Fig. 4.20 except for May–Jul 850-hPa air temperature.
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(a)

(b)

Figure 4.30 Same as in Fig. 4.21 except for HI 850 hPa Air Temperature.
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Figure 4.31 Same as in Fig. 4.22 except for May–Jul 850-hPa air temperature.
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The spatial correlation between 850 − 200 hPa shear and the EPAC925 region

are moderately positive (> +0.5) in a region between 0◦ and 10◦S and from 105◦ to

140◦E (Fig. 4.34a). Additionally, there is a larger area of correlation exceeding +0.4

throughout the northern half of the SEIND Ocean. This positive correlation suggests

that when the EPAC925 heights are anomalously low (high) it leads to anomalously

low (high) shear in the NWAUS region, which leads to active (inactive) TC seasons in

that region. Also, a similar tripole structure is present over the eastern Indian Ocean

between 50◦N and 45◦S. Additionally, the SATL925 region is moderately negative

correlated with vertical wind shear along the Northwest Australian coast (> +0.3),

and further to the northwest, correlations are stronger (> +0.4) extending out to at

least 90◦E (Fig 4.34b).

All of these parameters represent atmospheric teleconnections that are highly

correlated with the variability of TC frequency in the NWAUS region. These telecon-

nections are intra-hemispheric, inter-hemispheric, and cross-hemispheric and explain

more of the year to year variations in TC frequency and TC days than one obtains

from the classic global modes.

4.7.2 Global Sea Surface Temperatures

Previous work has investigated ENSO related sea surface temperatures. However, it

is beneficial to investigate global Sea Surface Temperature Anomalies (SSTAs) for

any other areas that may influence the global circulation and explain a portion of the

NWAUS TC frequency time series. Composite maps of the 10 most active and 10

least active NWAUS TC season yields an ENSO-like signal for Nov–Apr (Fig. 4.35).

A correlation of global SSTAs with the TC frequency yields a similar patterns to the

composite maps for Mar–May SSTAs (Fig. 4.36). Of particular interest is the area
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in the south Atlantic Ocean (SATL; 28 − 42◦S, 36 − 14◦W) where the correlation

with the NWAUS TC frequency is −0.53. Prior to the onset of the NWAUS TC

season there is not a strong correlation between Niño region SSTs. The SATL SSTAs

correlate strongly with the 850−200 hPa vertical shear over the NWAUS region (Fig.

4.37). With the high correlations the SATL SSTs it is potentially a good predictor

of NWAUS TC activity.

4.8 Global teleconnections for TC Days

Global teleconnections for the number of TC days were investigated in a similar

manner to those for TC frequency. Overall, there were a number of different areas

that indicated substantial correlation with the number of TC days occurring within

a season. However, many of the regions identified were strongly correlated with other

variables. The following three regions discussed were correlated less than magnitude

0.31 with each of the potential predictors.

The first area of interest is from the Jan–Mar 100 hPa v-component of the wind

over the southern Pacific Ocean (SPAC100; 40− 65◦S, 170− 140◦W). This region is

moderately correlated with the TC days time series (+0.52; Fig. 4.38) and similar

regions appear in the first and second half correlations of the time series (Fig. 4.39).

This area of common variability between the TC days time series and 100 hPa v-

component of the wind is a very early predictor of the following TC season.

A second area of interest is in a similar region to one of the ares for TC frequency

over North America (NA850; 30− 50◦N, 105− 80◦W). The correlation map for Apr–

Jun 850 hPa geopotential heights indicates a region of strong correlation over the

western Great Lakes region (−0.58; Fig. 4.40). The NA850 region is likely partially

related to the NAO and AO, which are known to affect Northern Hemispheric climate
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patterns. Consistent through time, an area of strong correlation exists when the time

series is broken into two nearly equal segments (Fig. 4.41).

Finally, a region over the south Atlantic Ocean (SATL1000; 5−45◦S, 35◦W-10◦E),

similar to the SATL925 region identified for the TC frequency variability, exhibits a

strong correlation with TC days (Fig. 4.42). The SATL1000 region is correlated with

TC days at −0.7, significant at the 99% significance interval. Splitting the time series

into two, yields a correlation in the same region (Fig. 4.43).

4.9 Discussion

Trends in the TC frequency for the NWAUS region are similar to those for the entire

Australian region as found by Nicholls et al. (1998) for all TCs. For intense TCs,

Nicholls et al. found that there was a slight increase in the number of intense storms

between 1969 and 1994, this study finds no overall increase or decrease in the number

of intense TCs for the NWAUS region (Fig. 4.1). The difference could be due to

differences in the basins studied, but another factor could be a multi-decadal trend

that was only partially observed in the Nicholls et al. dataset. Ramsay et al. (2008)

found a similar trend as Nicholls et al. (1998), however, the trend in the NWAUS

region is substantially smaller compared to the trend for the entire Australian region

and the trend is not statistically significant. Similar results are obtained for other

TC metrics, for which no significant trends in any of the TC metrics were found.

Additionally, Kuleshov et al. (2008) observed no linear trend in the occurrence of

all TCs, but did observe an identifiable upward trend in TCs with minimum pressures

less than 945 hPa. The upward trend observed in Kuleshov et al. (2008) is only for the

period 1981 to 2005. Eleven years of reliable Southern Hemispheric data (1970−1980)

are not used and likely a multidecadal trend is being only partially observed and

therefore may be an artifact of a small TC dataset. Depending on where you split a
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TC frequency time series, the general downward trend could be reversed, similar to

the point made by Ramsay et al. (2008, see their Fig. 11a). With such a relatively

short, reliable dataset it is not possible to determine trends longer than the decadal

time scale, or to ascertain any affects that a warming climate would be having on the

number or strength of TCs in the NWAUS region.

The results indicate that there are a number of teleconnections modulating the

frequency of TCs and TC days in the NWAUS region. However, previously identified

global teleconnections such as Niño 3.4, Niño 4, SOI, NOI, PDO, NAO, etc. generally

were found not to be significantly correlated to the variability of TC frequency in the

NWAUS region. Specifically, previously identified teleconnections of Niño 3.4 and

Niño 4 SST regions were found to be barely, significantly correlated to TC frequency

and TC days. These correlations do not provide a high confidence in understanding

the variability of TC frequency or TC days.

Previous work by Ramsay et al. (2008) found significant correlations between TC

frequency in the entire Australian region and Central Pacific SSTs. In the SWPAC

Ocean, Basher and Zheng (1995) found a strong relationship between the ENSO

related variables and TC frequency for a number of subbasins. In this study of the

NWAUS region, the correlations for ENSO variables are substantially lower before,

during, and after the TC season.

Other studies have used SOI and ENSO related variables to predict the number

of TCs and TC days for the Australian region. Nicholls (1979) introduced a method

for forecasting TC numbers before the season began using only SOI for the entire

Australian region. In this study it is found that SOI does not explain a substantial

amount of variation in TC frequency or TC days of the NWAUS region. The results

for the NWAUS region are similar to Broadbridge and Hanstrum (1998) for SOI

over the entire season. However, due to the serial correlation of the TC time-series,

confidence that the correlation is meaningful, is low.
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Figure 4.32 Same as in Fig. 4.20 except for Jun–Aug 925-hPa geopotential heights.
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(a)

(b)

Figure 4.33 Same as in Fig. 4.21 except for 925 hPa geopotential heights.
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(a)

(b)

Figure 4.34 Same as in Fig. 4.22 except for Jun–Aug 925-hPa geopotential heights.
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(a)

(b)

Figure 4.35 Composite maps for Nov–Apr SSTAs (a) ten most active seasons and
(b) ten least active seasons.

110



Figure 4.36 Same as in Fig. 4.20 except for Mar–May SSTAs.

Figure 4.37 Same as in Fig. 4.22 except for Mar–May SSTAs.

111



Figure 4.38 Correlation between Jan–Mar 100 hPa v-component of the wind and the
number of TC days.
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(a)

(b)

Figure 4.39 Same as in Fig. 4.42 except for (a) 1970–1989, and (b) 1990-2007.
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Figure 4.40 Correlation between Apr–Jun 850 hPa geopotential heights and the
number of TC days.
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(a)

(b)

Figure 4.41 Same as in Fig. 4.40 except for (a) 1970–1989, and (b) 1990-2007.
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Figure 4.42 Correlation between Jul–Sep 1000 hPa geopotential heights and the
number of TC days.
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(a)

(b)

Figure 4.43 Same as in Fig. 4.42 except for (a) 1970–1989, and (b) 1990-2007.
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There have been other global teleconnections identified, that are not directly linked

to ENSO that are investigated in this study for both TC frequency and TC days. More

research has been done on Northern Hemispheric teleconnections, therefore most re-

search has been primarily focused on how the teleconnections affect precipitation pat-

terns and storm tracks in that hemisphere. During most periods these teleconnection

patterns were not significantly correlated to TC activity. One teleconnection pattern

that has been used to explain the variations of hurricanes in the Atlantic region is the

QBO (Gray 1984a; Gray et al. 1992), however, this study finds no link between the

variability of the QBO and the variability of TC frequency in the NWAUS region.

Other already identified global teleconnections are generally not significantly cor-

related to the TC frequency or TC days in the NWAUS region. Some of the modes

(e.g., NAO and AO) that were investigated were developed for other specific regions

and thus do not adequately capture the atmospheric variability that influences the

NWAUS region. A more encompassing approach may result from looking for new

areas of variability in global reanalysis data.

Studies of the North Atlantic region have identified teleconnections from global

reanalysis data in both the Northern and Southern Hemisphere to use as predictors

for seasonal prediction schemes (e.g., Klotzbach and Gray 2003). A study of tropical

cyclogenesis in the Australian region by McDonnell and Holbrook (2004a) used the six

classic parameters discussed by Gray (1968), but their prediction was for individual

cyclones and not a seasonal, basin-wide forecast. To search for parameters that better

explain the variance of TC frequency and TC days in the NWAUS region, global

parameters from the NCEP–NCAR reanalysis data were used. The areas where base

state variables are strongly correlated with TC frequency and TC days also are related

to the large-scale vertical wind shear, which is described by Dare and Davidson (2004)

to be important to TC formation in the Australian region. The links between the

extratropics and the tropics through global teleconnections are not well known.
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The set of highly correlated base state variables from the NCEP–NCAR reanalysis,

discussed previously, would be candidates for a seasonal prediction scheme of TC

frequency and TC days in the NWAUS region. Previous studies of the NWAUS and

entire Australian regions (Nicholls 1979, 1985, 1992; Solow and Nicholls 1990; Nicholls

et al. 1998; Broadbridge and Hanstrum 1998) have only used ENSO related variables,

where a multivariate approach may produce a more robust seasonal prediction scheme

using the teleconnections identified in this study. In Chapter 5 a seasonal prediction

scheme is developed and assessed using the moderate to highly correlated NCEP–

NCAR reanalysis variables identified in this chapter.
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Chapter 5

Seasonal TC Prediction for the NWAUS Region

Previous TC seasonal prediction schemes for the Australian region have focused pri-

marily on the Southern Oscillation Index as a single linear predictor (e.g., Nicholls

1979, 1985, 1992; Nicholls et al. 1998). Recently, the SOI has been used in conjunction

with the “Gray” parameters for use in a gridded prediction scheme using a Poisson

statistical model. In this study, predictors other than the SOI have been investigated

for use in a multiple linear regression prediction scheme. Using composite analyses

and correlation maps a number of global reanalysis variables have been identified

as possible predictors for a seasonal prediction scheme for the Northwest Australian

region. In this chapter, a multiple-linear regression scheme is developed using the

previously identified predictor variables from global reanalysis data for predicting:

(i) the number of TCs reaching at least 17 m s−1 surface wind speed; and (ii) the

number of TC days, for the NWAUS basin.

5.1 Multiple-Linear Regression

A common statistical technique is regression analysis and usually this is a least squares

analysis with one dependent and independent variable. The goal is to fit a single line

of regression to minimize the residual error in a least squares sense. The technique

can be expanded to have more than one independent variable and then it is commonly

referred to as multiple linear regression (MLR). The following is the development of
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the MLR equations using typical matrix notation. We assume that there is a linear

model that can be written as,

Y = Xβ + ε (5.1)

where Y is an (n × 1) vector of dependent observations, X is an (n × p) matrix of

independent predictor variables, β is a (p × 1) vector of parameters, ε is an (n × 1)

vector of errors, and the elements of ε are uncorrelated because the vector of errors

is expected to sum to zero with variance, V (ε) = Iσ2. The unknown parameter β is

estimated by minimizing the error sum of squares. The error sum of squares can be

written as,

ε′ε = (Y −Xβ)′(Y −Xβ) (5.2)

= Y ′Y − 2β′X ′Y + β′X ′Xβ (5.3)

The final estimate of β is denoted by b and is calculated by differentiating (5.2) with

respect to β and setting the resultant matrix equation equal to zero and simultane-

ously replacing β with b. This will give the value of b for which the error sum of

squares is minimized. The differentiation yields the equation,

(X ′X)b = X ′Y (5.4)

The only solution to (5.4) is if the matrix X′X is not singular. If X′X is singular,

then the model must contain fewer parameters or have larger assumed restrictions.

For the matrix not to be singular the equations cannot depend on each other and X

must be a square matrix. Then, b can be estimated as,

b = (X ′X)−1X ′Y (5.5)

where the estimate of β minimizes the error sum of squares ε′ε with no assumptions

on the distribution of errors, the elements of b are linear functions of the dependent

observations, Y; and if the errors are independent and ε ∼ N(0, σ2); then b is the

maximum likelihood estimate of β (Draper and Smith 1982).
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5.2 Model Development

A common problem that arises during regression analysis is overfitting a model to

the development data. There are many ways to guard against overfitting: selecting

only physically relevant predictors, demanding minimal cross-correlation between pre-

dictors, using stepwise or best subset formations to select only the most important

predictors, test the regression equation developed from a set of data on an inde-

pendent data set, and have a reasonably large development data set. This study

has attempted to account for overfitting by using various techniques to ensure that

overfitting the forecast equation is controlled as much as possible.

Initially, all possible predictor variables for TC frequency from the global reanal-

ysis data are subjectively analyzed to identify the areas with highest correlation to

the TC time series. Next, all possible predictors, including known global climate

modes, were cross-correlated to remove any predictors that were strongly correlated

with another variable (Table 5.1). For example, the Niño 3.4 and Niño 4 SSTAs were

found to be highly correlated with the HI 850-hPa air temperature (HI850), thus the

HI850 predictor was retained with a higher correlation to the TC time series when

compared with the SSTAs. In general, cross-correlations exceeding magnitude 0.4

would lead to the exclusion of one of the two predictor variables. From the final set of

predictors used in the development of the prediction equation for TC numbers, only

one cross-correlation exceeded magnitude 0.4. It is important to note that no Niño

SSTAs are used explicitly in the prediction equations derived here.

After the final set of seven potential predictors was selected for TC frequency

(Fig. 5.1), stepwise regression was used to further reduce the set of predictors to

only include the fewest number of predictors needed to create a forecast model that

minimized the forecast error. The stepwise scheme steps both forward and backward

to select the final prediction model using the Akaike Information Criteria (AIC) to
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determine which predictor variable to discard, before doing another iteration. If the

residual sum of squares can be written as,

RSS =
n∑
i=1

ε̂2
i (5.6)

Then the formulation for the AIC in the case of least squares can be written as,

AIC = n[ln(RSS)/n] + 2k (5.7)

where k is the number of parameters in the statistical model and n is the number

of observations. The first term represents the maximum-log likelihood estimate for

the model and the second term is a penalty for too many predictor parameters in the

model. The penalty term can also be thought of as helping to prevent overfitting. In

this study, the model used was the one that attained the lowest value of AIC. This

produced the best compromise between a good fit model and the least number of

parameters to describe the variance of the data being modeled.

Similarly, for the prediction of TC days, the three reanalysis predictors (Fig. 5.2)

to develop a multiple linear regression equation. The cross-correlation between the

TC days predictors are all less than | 0.3 | (Table 5.2). The prediction equation

developed uses the same stepwise regression technique with the lowest AIC value

indicating the most robust prediction equation.

To provide an assessment of skill for a prediction scheme, it is useful to compare the

prediction scheme against forecasts obtained from climatology and from persistence.

A persistence forecast uses the previous year TC metric as the TC metric that will

occur during the following season, whereas climatological forecasts predict the average

of the TC metric to occur every year. To assess the skill of a particular prediction

scheme, it is essential to have a way to identify the amount of error that results from

its prediction. A commonly used measure of error is the Mean Square Error (MSE),

MSE =
1

n

n∑
i=1

(yi − oi)2 (5.8)
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Table 5.1 Cross-correlation of selected predictors to be used in the multiple linear
regression scheme.

Mar-May
RUS 500 hPa

Geo Hght
Mar-May

SATL SSTA

Apr-Jun NA
700 hPa Geo

Hght

May-Jul Hi
850 hPa Air

Temp

May-Jul
SIND 850
hPa Geo

Hght

Jun-Aug
EPAC 925
hPa Geo

Hght

Jun-Aug
SEATL 925

hPa Geo
Hght

1.000 0.319 0.132 0.309 -0.331 0.398 -0.194
1.000 0.325 0.312 -0.116 0.243 0.222

1.000 0.378 -0.416 0.287 0.232
1.000 -0.331 0.303 0.100

1.000 -0.339 -0.012
1.000 0.132

1.000

Figure 5.1 A location map of the seven predictors used in a seasonal forecast predic-
tion scheme for TC frequency in the NWAUS region.

Table 5.2 Cross-correlation of selected predictors to be used in the multiple linear
regression scheme.

Jan-Mar
SPAC 100 hPa

V-wind

Apr-Jun
NA 850 hPa

Geo Hght

Jul-Sep
SATL 1000 hPa

Geo Hght

1.000 0.286 -0.185
1.000 -0.245

1.000
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Figure 5.2 A location map of the three predictors used in a seasonal forecast prediction
scheme for TC days in the NWAUS region.
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where yi is the predicted TC count for a given year, i, and oi is the observed TC count

for that same given year. The MSE is the average squared difference between the

prediction and observation pairs. A MSE of zero would indicate a perfect prediction

scheme. Many times the MSE is reported as a root mean square error (RMSE), where

RSME =
√
MSE, which puts the error in the same dimensions as the observations.

Another measure of error commonly used to is the Mean Absolute Error (MAE),

MAE =
1

n

n∑
i=1

|yi − oi| (5.9)

where yi is the predicted TC count for a given year, i, and oi is the observed TC

count for that same given year. Similar to the MSE, except that the MAE uses the

absolute difference between the prediction and observation pairs. The MAE is in the

same dimensions as both the MSE and MAE provide a measure of the accuracy of a

given prediction scheme.

The prediction equation developed for TC frequency and TC days have been

assessed using all 39 years of available data. The leave-one-out cross validation tech-

nique to estimate the forecast ability of the seasonal prediction schemes. The leave-

one-out cross validation method develops a seasonal prediction equation, using the

method described above, while leaving one year out to independently predict that

single year up to the number of years used for the development dataset. After that

point the prediction equations 5.10 and 5.11 are used to hindcast the respective TC

metrics. Using the leave-one-out method will provide a more accurate assessment of

the skill of the forecast scheme because the year being predicted was not a part of

the development data set.

Using the leave-one-out method and the RMSE discussed earlier, the number of

years used in the development dataset was varied between 5 and 35 years, in an effort

to determine the minimum number of years needed to provide a stable prediction (Fig.

5.3). Too few years in the development data set and insufficient variance is known
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to inhibit the ability to accurately determine the coefficients in the MLR prediction

scheme. A sharp decrease in RMSE is observed as the development length increases to

10 years for TC frequency (Fig. 5.3a). The RMSE continues to decrease when adding

additional years to the development dataset, leveling off when the development data

set contained 28 or more years. Therefore, in this study the development data set for

TC frequency contains the 28 years from 1970 to 1997.

For TC days, there is a similarly large decline in the RMSE as the number of

years increases in the development dataset. However, the RMSE does not level off

until approximately 32 years of data in the development data set is used (Fig. 5.3b).

Therefore, the development dataset for the TC days prediction scheme covers the 34

years from 1970− 2003.

The seasonal prediction schemes then were derived using each respective develop-

ment data set and yielded the following prediction equation for TC frequency

y = 5.5714+−0.8835X3 +−0.5758X4 +0.5856X5 +−0.4619X6 +−0.8047X7, (5.10)

where y is the predicted number of TCs, X3 is NA 700 hPa geopotential heights, X4

is HI 850 hPa air temperature, X5 is SIND 850 hPa geopotential heights, X6 is EPAC

925 hPa geopotential heights, and X7 is SATL 925 hPa geopotential heights. The

Analysis of Variance (ANOVA) table for the TC frequency prediction scheme indicates

that all predictors are significant at least at the 95% confidence interval (Table 5.3).

Inspecting the residuals from the TC frequency prediction equation yields residual

errors that appear to be constant and normal (Fig. 5.4).

The seasonal prediction equation for TC days

y = 43.641 +−11.072X1 +−7.854X2 + 7.002X3 (5.11)

where y is the predicted number of TC days, X1 is SATL 1000 hPa geopotential

heights, X2 is NA 850 hPa geopotential heights, andX3 is SPAC 100 hPa v-component
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Figure 5.3 A plot of the number of years used in the development prediction scheme
and its reported RMSE for (a) TC frequency and (b) TC days.
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Figure 5.4 A plot of residuals versus fitted values and a Q-Q plot to inspect the error
variance of the TC frequency prediction equation.
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of the wind. For the TC days prediction equation, all of the predictors are significant

at least at the 99% confidence interval (Table 5.4). Residual analysis appears to

indicate that there is constant variance, which is normally distributed, although less

so than for the prediction of TC frequency (Fig. 5.5).

Due to the serial correlation of the TC frequency time series, the leave-one-out

method likely over-estimates the true skill of the prediction scheme. To mitigate the

impact of the serial correlation, the process was repeated, leaving out five consecutive

years and predicting the middle three years from the developed equation for the

remaining data using 28 years in total for the development dataset. Similar results

are found using this technique as to the leave-one-out method. A direct comparison

of the number of TCs predicted using the leave-one-out method to the number of

observed TCs show a qualitatively good agreement (Fig. 5.6a). A Pearson product-

moment correlation yields a cross-correlation of 0.840. The leave-five-out predict

three hindcast predicted TC frequency time series corresponds nearly as well with

the observed numbers of TCs (Fig. 5.6b) and the correlation coefficient is 0.801. Due

to the more conservative results, the second method will be preferred in order to not

over-estimate the true skill of the prediction scheme.

Development of the prediction equation for TC days follows similarly to TC fre-

quency. Using the leave-one-out method the observed and hindcast predicted time

series of TC days indicate good agreement (Fig. 5.7a) with a correlation coefficient of

0.810. Again, owing to the non-negligible seriel correlation of the TC days time series,

the TC Days scheme was re-evaluted leaving five consecutive years out and predicting

the middle three years. Doing so still yields good agreement between observed and

hindcast predicted TC days, with a nearly the same correlation coefficient of 0.797.

To further assess the skill of the forecast equations, the RMSE, and MAE can

be analyzed. The MSE and MAE for persistence and climatological forecasts of the

number of TCs and TC Days for the NWAUS region are given in Tables 5.5 and 5.6,
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Figure 5.5 A plot of residuals versus fitted values and a Q-Q plot to inspect the error
variance of the TC Days prediction equation.
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Figure 5.6 Number of TCs occurring in a given year (red) and the jack-knifed hindcast
from the TC frequency prediction scheme (blue) for (a) leave-one-out method and (b)
leave-out-five predict three method.
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Figure 5.7 Number of TC Days occurring in a given year (red) and the jack-knifed
hindcast from the TC frequency prediction scheme (blue) for (a) leave-one-out method
and (b) leave-out-five predict three method.
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respectively. It is evident from the table that the climatological forecasts are superior

to the persistence forecasts. However, we can quantify how much better a one forecast

is when compared with another using a skill score. A common skill score (SS) can be

written as,

SS =
MSE −MSERef

0−MSERef
= 1− MSE

MSERef
(5.12)

where MSERef is the MSE of a reference forecast and where MSE can be replaced

by MAE or another estimate of the error of a prediction scheme (Wilks 2005). A

perfect SS of 1 is achieved when the MSERef >> MSE and the prediction scheme

being tested would be considered to be 100% better than the reference forecast.

For this study, both the forecast of TC frequency and TC days have lower RMSE

and AME as compared to a forecast using persistence; therefore, the climatology

forecast will be used as the reference forecast to asses the skill of each prediction

equation. The RMSE for TC frequency prediction is 1.41 TCs (Table 5.5) and utiliz-

ing a tilted bootstrap (Efron and Tibshirani 1994), with 1000 replications, to assess a

95% confidence interval the RMSE likely ranges between 0.92 and 1.85 TCs (Fig. 5.8).

Similarly, the AME of TC frequency prediction is 1.08 TCs with a 95% confidence

interval between 0.71 and 1.44 TCs. Conducting a tilted bootstrap using climatology

of 5.6 storms per year as the prediction yields a RMSE of 2.32 storms with a 95% con-

fidence interval between 1.61 and 3.06 storms (Fig. 5.8). The confidence intervals for

the RMSE of TC frequency prediction by 5.10 and climatology only slightly overlap.

With moderate certainty it can be concluded that 5.10 is significantly better than

climatology at forecasting the number of TCs for the oncoming season using Tukey’s

rule of thumb (Fig. 5.8; Tukey 1991). Overall predictions improved over 60% from

a climatological forecast for the median values of the bootstrapped RMSE. Similar

results for AME can be obtained.

For the prediction of TC days, the RMSE is 12.03 days with the 95% confidence

interval falling between 7.47 and 16.3 days (Fig. 5.8). The AME is 9.51 days with
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Table 5.3 ANOVA table for the TC frequency prediction scheme.
Df Sum Sq Mean Sq F value Pr(>F)

X3 1 79.656 79.656 72.8329 1.986E-08 ***
X4 1 30.887 30.887 28.2409 2.47E-05 ***
X5 1 15.314 15.314 14.0020 0.001129 **
X6 1 7.887 7.887 7.2117 0.013512 *
X7 1 13.053 13.083 11.9347 0.002256 **

Residuals 22 24.061 1.094

Signif. Codes: *** 0.001, ** 0.01, * 0.05, . 0.1

Table 5.4 ANOVA table for the TC Days prediction equation.
Df Sum Sq Mean Sq F value Pr(>F)

X1 1 6824.0 6824.0 50.911 9.169E-08 ***
X2 1 2298.5 2298.5 17.148 0.0002876 ***
X3 1 1413.3 1413.3 10.544 0.0030216 **

Residuals 28 3753.1 134.0

Signif. Codes: *** 0.001, ** 0.01, * 0.05, . 0.1

Table 5.5 Observed RMSE error for persistence and climatological forecasts for the
TC frequency prediction using persistence and climatology NWAUS region for the
period 1970 to 2005.

RMSE AME
Persistence 2.77 2.33
Climatology 2.32 1.92

MLR Prediction 1.41 1.08

Table 5.6 Observed RMSE error for persistence and climatological forecasts for the
TC Days prediction using persistence and climatology NWAUS region for the period
1970 to 2005.

RMSE AME
Persistence 24.22 19.96
Climatology 19.72 15.12

MLR Prediction 12.03 9.51
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Figure 5.8 A plot of the confidence intervals (97.5% black circle, 50% red diamond,
2.5% cyan cross, observed value blue plus) of the RMSE of TC frequency and Days
prediction from the multiple linear regression technique developed in this study versus
a prediction RMSE using climatology.
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a 95% confidence interval between 5.89 and 13.6 days. Using climatology as a pre-

dictor yields a RMSE of 19.72 days, and after a tilted bootstrap a 95% confidence

interval between 11.8 and 27.8 days (Fig. 5.8). In this case, the confidence intervals

slightly overlap and a direct determination cannot be made of whether the hindcast

predictions made with 5.11 is significantly better that a prediction using climatol-

ogy. A Mann-Whitney-Wilcoxon test (Mann and Whitney 1947) to assess if the two

populations of bootstrapped RMSE are likely from the same population. The test

returns a value of W = 84044 and a p-value < 2.2E−16, indicating that the RMSE

are significantly different. Thus, the TC days prediction equation developed in this

study performs better than climatology.

Overall, both the TC frequency and TC days prediction equations are an improve-

ment over a climatological forecast of each. Previous studies, including McDonnell

and Holbrook (2004a,b), were not able to produce successful seasonal predictions of

TC activity in the NWAUS region. For the entire Australian region, Nicholls (1985)

had similar MAE for both persistence and climatological forecasts (19.5 and 12.7 days,

respectively), to the values obtained for the NWAUS region in this study (Table 5.6).

Nicholls (1985) reported MAE for his prediction scheme for the entire Australian re-

gion was 9.4 days using a leave-one-out method, as compared to 9.51 days for this

study.

Comparing the prediction equations to similarly developed equations for other

TC basins, indicates that the equations for the NWAUS are as skillfull. Using the

verification statistics (1984 − 2008) for the forecasts for the North Atlantic Ocean

conducted by the Gray research group yields a skill score over climatology of 31% for

named tropical storms and 18% for names tropical storm days for their June forecasts

of the oncoming TC season. The Gray research group has also issued forecasts during

April from 1995 − 2008, these forecasts have not performed better than climatology
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as the calculated skill scores are less than zero for both the predicted named storms

and predicted named storm days.

5.3 Contingency Tables

Another verification tool to assess the ability of the TC metric forecast equations

developed in this study are the use contingency tables. There are different ways to

assess the skill of the forecast schemes developed in this study using contingency

tables, one involving three categories and another involving just two categories. Con-

tingency tables are classically used on binary (yes,no) categorizations of events, in

this study we separate the individual forecasts into three categories (below average,

average, and above average) and two categories (below average, average and above)

to ascertain the skill of the prediction equations.

5.3.1 Three Categories

Initially, the forecasts produced by the TC frequency and TC days prediction schemes

are separated into three categories (Below Average, Average, and Above Average).

The inner-quartile was used to define the average number of TCs per season, which

is 4 to 7 storms. While an above average season is defined as any year in which there

are more than 7 storms and below average year to be on in which there are fewer than

4 storms. The observed contingency table is give in Table 5.7. The forecast equation

for TC frequency was never off by more than one category.

For the prediction of TC days, the inner-quartile was again used to define the

average number of TC days per season, which was 31.75 to 57.25 TC days per year.

An above-average season is one which has more than 57.25 TC days per year and a

below-average season has less than 31.75 storms per year. The observed contingency

table for TC days is given in Table 5.9. Similar to the prediction of TC frequency,
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the forecast scheme never predicted the number of TC days to be off by more than

one category.

A limited number of attributes can be calculated for the three by three contingency

table. The following are the attributes calculated for each prediction scheme: pro-

portion correct (PC), probability of detection (POD), Bias, Peirce Skill Score (PSS),

and Heidke Skill Score (HSS). The PC is a measure of accuracy and is calculated for

the three by three contingency table as

PC =
r + v + z

n
, (5.13)

where n is the total number of forecast-observation pairs, and r, v, and z follow

the convention of Wilks (2005), which are correct categorizations of below average,

average, and above average, respectively. The POD is a measure of discrimination for

the “event” of interested. The calculation of the POD for a three by three contingency

table is reported as three separate PODs for each “event” or category as

POD1 =
r

r + u+ x

POD2 =
v

s+ v + y

POD3 =
z

t+ w + z

(5.14)

where the subscript (1,2,3) indicate the categories (below average, average, above

average) for which the POD is valid, and the denominators are the sum of the obser-

vations within a given category, which also follow the conventions of Wilks (2005).

The bias of a forecast is a comparison of the average forecast to the average observa-

tion, where unbiased forecasts yield a bias score of 1. The bias ratio for the three by

three contingency table is reported similarly to the POD as

Bias1 =
r + s+ t

r + u+ x

Bias2 =
u+ v + w

s+ v + y

Bias3 =
x+ y + z

t+ w + z

(5.15)
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Table 5.7 Three by three contingency table of forecasted and observed TC frequency
using the multiple linear regression model developed in this study.

Obs Below Avg. Obs Avg. Obs Above Avg.

Fcst Below Avg. 4 3 0
Fcst Avg. 3 19 3

Fcst Above Avg. 0 1 6

Table 5.8 Three by three contingency table of forecasted and observed TC frequency
using climatology as the predictor.

Obs Below Avg. Obs Avg. Obs Above Avg.

Fcst Below Avg. 0 0 0
Fcst Avg. 7 23 9

Fcst Above Avg. 0 0 0

Table 5.9 Three by three contingency table of forecasted and observed TC days.
Obs Below Avg. Obs Avg. Obs Above Avg.

Fcst Below Avg. 8 3 0
Fcst Avg. 3 14 2

Fcst Above Avg. 0 3 6

Table 5.10 Three by three contingency table of forecasted and observed TC days.
Obs Below Avg. Obs Avg. Obs Above Avg.

Fcst Below Avg. 0 0 0
Fcst Avg. 11 20 8

Fcst Above Avg. 0 0 0
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where the numerators are the sum of the forecasted categories and the denominators

are the sum of the observed categories. Finally, the skill scores computed represent

two estimates of the possible improvement of correct forecasts over random forecasts.

The HSS is defined as

HSS =
( r+v+z

n
)− [( r+s+t

n
) ∗ ( r+u+x

n
) + (u+v+w

n
) ∗ ( s+v+y

n
) + (x+y+z

n
) ∗ ( t+w+z

n
)]

1− [( r+s+t
n

) ∗ ( r+u+x
n

) + (u+v+w
n

) ∗ ( s+v+y
n

) + (x+y+z
n

) ∗ ( t+w+z
n

)]
,

(5.16)

and the PSS is defined as

PSS =
( r+v+z

n
)− [( r+s+t

n
) ∗ ( r+u+x

n
) + (u+v+w

n
) ∗ ( s+v+y

n
) + (x+y+z

n
) ∗ ( t+w+z

n
)]

1− [( r+u+x
n

)2 + ( s+v+y
n

)2 + ( t+w+z
n

)2]

(5.17)

following the conventions of Wilks (2005).

A tilted bootstrap is used to estimate the previous attributes of the three by

three contingency table for both the TC frequency and TC days prediction equations

(Tables 5.11 and 5.12). Both prediction equations yield approximately the same

median PC, with the TC days prediction having a larger confidence interval. There are

larger differences between the different POD categories for TC frequency prediction,

likely due to the few seasons in which a non-average season occurred. The POD

categories for TC days have similar median values for each, however, the confidence

interval is smallest for the average category, which is the most commonly observed

category by design. All bias estimates for both TC frequency and TC days have a

relatively narrow range around 1.0 in the 95% confidence interval, with the lowest

spread across the average forecast category for both prediction schemes. Both schemes

indicate that they are skillful over a random reference forecast, as both the PSS and

HSS are greater than 0. Each scheme gives approximately the same median values

around 0.5; however, the 95% confidence interval for the TC days prediction scheme

is quite large, so it is more likely than not that each equation performs better than a

climatological forecast.
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The three by three contingency table using climatology as the prediction scheme

(Table 5.8) indicates that the proportion correct drops to 0.5 and the skill scores drop

to zero. Similarly, for TC days the proportion correct is near 0.5 and the skill scores

again are zero (Table 5.10). In neither case do the climatological forecasts show any

skill over a random forecast.

5.3.2 Two Categories

Another option is to categorize the hindcasts only using two categories. The two

categories used are (i) average and above and (ii) below average. These are chosen

because average or above seasons have a potentially large impact on resources in the

region.

Observed contingency tables for the two category hindcasts for TC frequency

and TC days indicate similar results (Tables 5.13 and 5.14). For the hindcasts of

TC frequency and TC days, there were three years for which the prediction scheme

hindcasted a below average number of TCs to occur during the season and there were

an average or above number of storms. Additionally, there were three years that both

schemes predicted average or above, but actually it was a below average season.

Just as with the three by three contingency table, there are a number of different

attributes that can be calculated to assess the effectiveness of the forecast scheme.

Just as with the three by three scheme the Proportion Correct (PC) can be calculated

as

PC =
a+ d

n
, (5.18)

where n is the sum of all forecasts (a, b, c, d), and a and d are hits and correct nulls.

The PC is a measure of the accuracy of the forecast scheme, where a PC = 1 would
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Table 5.11 Bootstrap results of the three by three contingency table attributes for
TC frequency with a 95% confidence interval and median values

2.5% 50% 97.5%

PC 0.66 0.743 0.825
POD1 0.333 0.571 0.802
POD2 0.731 0.825 0.911
POD3 0.478 0.672 0.866
Bias1 0.625 1.01 1.59
Bias2 0.93 1.09 1.28
Bias3 0.559 0.781 1.05
PSS 0.365 0.518 0.666
HSS 0.377 0.532 0.671

Table 5.12 Bootstrap results of the three by three contingency table attributes for
TC days with a 95% confidence interval and median values

2.5% 50% 97.5%

PC 0.462 0.718 0.923
POD1 0.333 0.727 1.00
POD2 0.409 0.7 0.941
POD3 0.333 0.778 1.00
Bias1 0.583 1.00 1.67
Bias2 0.654 0.952 1.36
Bias3 0.625 1.143 2.143
PSS 0.141 0.567 0.869
HSS 0.139 0.554 0.867

Table 5.13 Two by two contingency table of forecasted and observed TC frequency.
Obs Avg. and Above Obs Below Avg.

Fcst Avg. and Abov 29 3
Fcst Below Avg. 3 4

Table 5.14 Two by two contingency table of forecasted and observed TC days.
Obs Avg. and Above Obs Below Avg.

Fcst Avg. and Abov 25 3
Fcst Below Avg. 3 8
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be that all forecasts are correct. The bias is a comparison of the average forecast to

the average observation, represented by a ratio

Bias =
a+ b

a+ c
, (5.19)

where an unbiased forecast with have Bias = 1, meaning that the event is forecast

as often as it is observed. To represent the reliability and resolution of the forecast

scheme, the false alarm ratio (FAR) can be computed as

FAR =
b

a+ b
, (5.20)

where the FAR is the proportion of forecast events that turn out to be wrong. Unlike

the previous attributes, where the highest value is preferred, a low value is desired for

the FAR. Finally, there are two measures of discrimination, the probability of detec-

tion (POD) and the false alarm rate, also known as the probability of false detection

(POFD). The POD is defined similarly to that of the three by three contingency table

POD =
a

a+ c
, (5.21)

where the POD is a ratio of the correct forecasts to the number of times the event

was observed. The POFD is the ratio of false alarms to the total number of non-

occurrences of the event being forecasted,

POFD =
b

b+ d
. (5.22)

Additionally, skill scores for the forecast scheme compared to random forecasts

can also be computed. A total of three skill scores are computed for the two by two

contingency tables in this study. Each skill score uses a slightly different formulation

for the reference accuracy measure. The Heidke skill score (HSS), which is based on

the proportion correct

HSS =
2(ad− bc)

(a+ c)(c+ d) + (a+ b)(b+ d)
, (5.23)
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where a perfect forecast scheme would yield HSS = 1, forecasts equivalent to a ref-

erence forecast would be zero, and forecasts worse than the reference forecast would

have negative scores. The reference forecast for the HSS are random forecasts that

are statistically independent of the observations (Wilks 2005). The reference forecast

is constructed from two marginal probabilities of a ‘yes’ forecast and a ‘yes’ obser-

vation (Wilks 2005). Similar to the HSS in construct, the Peirce skill score (PSS) is

another measure of forecast skill, but with the reference forecast being constrained

to be unbiased. The PSS is computed as

PSS =
ad− bc

(a+ c)(b+ d)
, (5.24)

for the two by two contingency table, where the reference forecast is the marginal

distribution that is qual to climatology (Wilks 2005). The PSS can also be understood

to be the difference between the POD and the POFD (Wilks 2005). Finally, the

Clayton skill score (CSS) indicates positive skill when the event occurs more frequently

when forecast than when not forecast (Wilks 2005). The CSS is computed as

CSS =
ad− bc

(a+ b)(c+ d)
, (5.25)

where a CSS = 1 indicates a perfect forecast and CSS = 0 indicates random forecasts.

A limiting factor in the success of the two by two contingency table as defined in

this section is the relative frequency of non-occurrence events. This will be evident in

the results from the bootstrap of the 39 observed years. For both TC frequency and

TC days prediction the proportion correct and probability of detection are 0.846 and

0.9, respectively. Both confidence intervals are relatively narrow. However, for the

probability of false detection, the confidence interval ranges across the entire range

of possibilities, especially for the prediction of TC frequency. This result impacts the

confidence intervals for the Heidke, Peirce, and Clayton skill scores as they range from

near zero to 1.0. Despite that fact, there is a low false alarm ratio and a bias near 1
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for both TC frequency and TC days prediction. Ultimately, we can not say with cer-

tainty that the TC forecasts of average and above and below average are significantly

different from a random forecast (as all of the skill scores 95% confidence intervals

include 0), but the TC days prediction scheme indicates at least some measurable skill

over random forecasts with the range of skill scores not including zero. However, what

we are more interested in is the correct prediction of the average and above category.

As such, the proportion correct and probability of detection both yield high values.

The PC has a 95% confidence interval between 0.641 and 1.0 with a median value

of 0.846 for TC frequency and TC days. The 95% confidence interval for the POD

is between 0.733 and 1.0 with a median value of 0.909 for TC frequency prediction

and between 0.714 and 1.0 with a median value of 0.9 for TC days prediction. As

expected from Tables 5.15 and 5.15, both prediction schemes are effective in identify

seasons when there will be average and above numbers of TCs and TC days.

5.3.3 Discussion

In the preceding sections of this chapter a seasonal prediction scheme has been devel-

oped to predict both TC frequency and TC days for an upcoming TC season using the

global teleconnections defined in 4. With the relatively limited variation from season

to season in the number of TCs that occur in the NWAUS basin, climatology can be

a difficult forecast to out perform. The results of the contingency tables, along with

the evaluation of RMSE and AME, indicate that both schemes are skillfull relative

to random and climatological forecasts of each metric. By providing forecasts for the

entire season before the season begins, adequate resources therefore can be allocated

for use in mitigating the effects of a TCs impact on the NWAUS region.

The final four seasons, which did not play any role in choosing the predictors or

in the development of the prediction scheme, can be used for independent verification

(Tables 5.17 and 5.18). Initially, the five prediction variables TC frequency and three
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Table 5.15 Bootstrap results of the two by two contingency table attributes for TC
frequency with a 95% confidence interval and median values

2.5% 50% 97.5%

PC 0.641 0.846 1.0
POD 0.733 0.909 1.0

POFD 0.0 0.429 0.857
FAR 0.0 0.091 0.265
Bias 0.853 1.0 1.185
PSS -0.025 0.478 1.0
HSS -0.026 0.478 1.0
CSS -0.025 0.478 1.0

Table 5.16 Bootstrap results of the two by two contingency table attributes for TC
days with a 95% confidence interval and median values

2.5% 50% 97.5%

PC 0.641 0.846 1.0
POD 0.714 0.90 1.0

POFD 0.0 0.265 0.636
FAR 0.0 0.102 0.290
Bias 0.833 1.0 1.208
PSS 0.149 0.623 1.0
HSS 0.148 0.621 1.0
CSS 0.149 0.623 1.0
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predictor variables for TC days were gathered and scaled according to the mean and

standard deviation of the development data set. The prediction variables were then

input into (5.10) and (5.11), which yielded the prediction for that season (Tables 5.17

and 5.18). Predictions for TC frequency were never off by more than 3 storms, and

the final season (2008) was a correct prediction of 8 TCs. For TC days, the number

of TC days, as well as the predicted percentile for that season, are reported. For

this small sample of predictions, all forecasts were within 9 days and the predicted

percentile was within 11%. The predictions for TC days range from low seasonal

percentiles to high seasonal percentiles, for an overall successful prediction.

Since the season was already passed these seasons, they are still considered a

hindcasted. Future predictions for a given season should be able to be completed on

1 September preceding the beginning of the NWAUS TC season for TC frequency

and 1 October for TC days.
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Table 5.17 Summary of seasonal predictions on independent data not included in
development dataset for TC frequency.

Independent
Prediction Observed

Years TC Count TC Count Difference

2005 5 7 -2
2006 4 3 +1
2007 2 5 -3
2008 8 8 0

Table 5.18 Summary of seasonal predictions on independent data not included in
development dataset for TC days. Numbers in parentheses indicate the percentile at
which the predicted and observed values occur relative to the observed values.

Independent
Prediction Observed

Years TC Count TC Count Difference

2005/06 47 (64%) 44.75 (62%) +2.25 (+2%)
2006/07 29.5 (23%) 22.75 (15%) +6.75 (+8%)
2007/08 42 (54%) 33 (33%) +9 (+11%)
2008/09 55.75 (79%) 51.75 (77%) +4 (+2%)
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Chapter 6

Conclusions and Future Work

New global teleconnections have been identified for the NWAUS TC basin; the tele-

connections are intra-basin, inter-basin, and cross-hemispheric. Through correlation

analysis, previously identified ENSO parameters were found not to be primary factors

in describing the variability of TCs in the NWAUS region; however, other NCEP–

NCAR reanalysis variables that explain some of the variability in TCs in the NWAUS

region are in, part related, to ENSO variability and other known global modes. Pre-

vious studies for the NWAUS basin have primarily investigated ENSO as a means

for describing the year to year variations in TC frequency and TC days, among other

TC metrics. This study goes beyond ENSO to investigate global climate variability

to describe year to year variations of thirteen TC metrics, which has never been done

before for this basin.

In this study a small subset of the nearly many possible teleconnection patterns

have been investigated. This study is not meant to be an all inclusive search for every

possible teleconnection, but rather an initial investigation of previously identified

global teleconnections and basic state variables. There are other possible predictors

for seasonal prediction of TCs, which could provide more explanatory power to the

variability of TCs in the NWAUS region.

A successful seasonal prediction was made of the number of TCs and TC days for

the NWAUS region using multiple linear regression with global atmospheric variables

available from the NCEP–NCAR reanalysis dataset as predictors. This is the first

seasonal prediction for the NWAUS region that uses global atmospheric variables and
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has skillful forecasts relative to using persistence, climatology, or random forecasts.

Previous work in the NWAUS region has relied solely on ENSO or local predictors of

atmospheric variables. A successful seasonal prediction scheme will allow people and

industries to prepare adequately for an oncoming TC season, especially in a region

that has a large amount of natural resources that are exported each year, like the

northwest coast of Australia.

In the future, seasonal prediction equations can be developed for predicting any

TC metric defined for the NWAUS region. Each metric adds a piece of the seasonal

TC puzzle and would provide more informative forecasts. The prediction schemes can

be developed in a similar manner to those described in this study. It also would be

useful to try other statistical techniques to accomplish the prediction of TC metrics.

One such technique is the Support Vector Machine, which been increasingly used in

meteorology (Mercer et al. 2008; Lee et al. 2004).
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