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Chapter 1

Introduction

1.1 Mapping class groups

The mapping class group Mod(F ) of an orientable surface F is defined to be

the group of isotopy classes of orientation-preserving self-diffeomorphisms on F .

The mapping class group has been one of the central objects in the field of 2-

dimensional geometric topology. It has been widely studied since it also plays an

important role in several other fields including Teichmüller theory and algebraic

geometry, where it is called the modular group.

The study of mapping class groups was started by Max Dehn [3, 4] and Jakob

Nielsen [17, 18, 19] in the 1920s. Dehn tried to understand the mapping class

groups by addressing such questions as the existence of a finite set of generators.

For this purpose, he studied the action of Mod(F ) on the isotopy classes of curves

on the surface, which he called the arithmetic field. In the process, he introduced

a basic element of Mod(F ) called a Dehn twist.

Regarding S1 as R/Z, a Dehn twist of an annulus S1× I is a homeomorphism

h : S1 × I −→ S1 × I defined by h(x, s) = (x + s, s). A Dehn twist tC about a
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simple closed curve C on a surface F is defined to be the map h on an annular

neighborhood S1 × I of C and the identity elsewhere. The effect of a Dehn twist

on an arc transverse to the curve C is shown in the figure below.

C

Figure 1.1: A Dehn twist

Dehn showed that Mod(F ) is generated by finitely many Dehn twists.

Nielsen, on the other hand, tried to analyze the elements in Mod(S) by using

techniques in hyperbolic geometry. The works of Dehn and Nielsen were later

revisited by Harvey [8, 9], who put a natural simplicial structure on Dehn’s

arithmetic field and called it the complex of curves. William Thurston, in his

theory of surface diffeomorphisms [22, 23], extended the work of Nielsen and

brought it to a complete form (see section 1.6).

1.2 The Fuchsian group viewpoint

The classical approach to the theory of surface diffeomorphisms was by studying

the action of discrete groups on Riemann surfaces. One of the fundamental results

in this theory is the Uniformization Theorem.

Theorem 1.2.1 (The Uniformization Theorem). If a Riemann surface is home-

omorphic to a sphere then it is conformally equivalent to the Riemann sphere.

Any Riemann surface F that is not homeomorphic to a sphere is conformally

equivalent to a quotient of the form C/G, or H2/G, where G is a discrete group
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of conformal isometries acting without fixed points on C, or on H2. Further, G

is holomorphic to the fundamental group of F .

The only Riemann surfaces of the form C/G are the plane C, the punctured

plane C \ {0}, and the tori. Consequently, every Riemann surface F of genus

g ≥ 2 is of the form H2/G for some group G of isometries of the hyperbolic plane

H2. Any group of isometries of H2 is a subgroup of SL(2,R). A Fuchsian group

is a discrete group of isometries of H2, or a discrete subgroup of SL(2,R).

Consider a Riemann surface F of genus g ≥ 2. Since H2 is the universal cover

of F , we have an unramified holomorphic covering map p : H2 → F . Let Γ be the

group of deck transformations of this covering space. As an abstract group, Γ is

isomorphic to π1(F ) and p induces a homeomorphism p̃ : H2/Γ → F . p̃ induces a

H2/Γ structure on F and one usually says that the Fuchsian group Γ uniformizes

F . Also, every group of automorphisms G of F lifts to a group of automorphisms

G̃ of H2 with G = G̃/Γ.

To obtain a presentation for G̃, we consider a fundamental region for the cov-

ering p̃ : H2/Γ → F . The edges of a fundamental polygonal region generate G̃.

We modify this region using cutting and gluing techniques to obtain a new fun-

damental polygonal region R with edges a {x1, . . . , xr, a1, b1, . . . ag̃, bg̃} for some

g̃, satisfying xmi
i = 1, for some mi, and x1x2 . . . xr[a1, b1][a2, b2] . . . [ag̃, bg̃] = 1.

Thus we obtain the following presentation for G̃.

G̃ = ⟨x1, . . . , xr, a1, b1, . . . , ag′ , bg′ | xmi
i = 1, x1 . . . xr[a1, b1] . . . [ag′ , bg′ ] = 1 ⟩.

The tuple (g̃; x1, . . . , xr) is called the signature of G̃.

IfG = G̃/Γ, then the signature (g̃; x1, . . . , xr) provides the topological features

of the action of G on F . F/G has genus g′ and the m1, . . . ,mr provide the

3



ramification data for the projection F → F/G. The hyperbolic area of the

fundamental region is given by the Gauss-Bonnet formula

µ(G̃) = 2π

(
2g′ − 2 +

r∑
i=1

(
1− 1

mi

))
.

If G̃′ is a subgroup of G̃ of finite index, then we have the Riemann-Hurwitz

formula [G̃ : G̃′] = µ(G̃′)/µ(G̃).

1.3 Thurston’s orbifold viewpoint

Thurston, in the 1970s, coined the term n-dimensional orbifold or n-orbifold for

a Hausdoff, paracompact space that is locally homeomorphic to the quotient

space of Rn by a finite G-action. Thurston’s orbifold theory gave a topological

perspective to the theory of groups actions on surfaces that mirrors the classical

algebraic viewpoint of Fuchsian groups.

If p : Y → X is a continuous mapping between the topological spaces under-

lying two orbifolds, then p is said to be a orbifold covering if every point x ∈ X

has an orbifold chart ϕ : Dn/G ↪→ X that is evenly covered by p|p−1(ϕ(Dn/G)). The

cone points are the points of the orbifold that in a local chart are fixed by some

nontrivial element of G. In an orientable 2-orbifold, the cone points are isolated.

If p : Y −→ X is an orbifold covering, then the group of covering transfor-

mations GX(Y ) acts properly discontinuously on Y and Y/GX(Y ) covers X via

the map induced by p. Also, the quotient map Y −→ Y/GX(Y ) is an orbifold

covering. Conversely, if G acts properly discontinuously on the orbifold Y , then

Y → Y/G is an orbifold covering whose group of covering translations is G. A

covering of an orbifold is said to be regular if the induced covering Y/GX(Y ) → X
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is an isomorphism.

The usual proof of existence of universal covers can be adapted to show that

any orbifold X has a universal covering X̃ → X that is regular. This covering

has a group of covering translations called the orbifold fundamental group of X,

πorb
1 (X). All connected coverings of X come, up to isomorphism, by dividing X̃

by a subgroup of πorb
1 (X), and a connected cover is regular if and only if this

subgroup is a normal subgroup.

Thurston showed that the quotient of an n-manifold Y by a properly discon-

tinuous G-action is a n-orbifold X = Y/G, and the quotient map p : Y −→ X

is a regular orbifold covering. This action of G on Y gives the following exact

sequence

1 −→ π1(Y ) −→ πorb
1 (X)

ρ−→ G −→ 1 ,

where ρ has a torsion-free kernel, and is obtained by lifting path representatives

of elements of πorb
1 (X).

Suppose that we have a closed orientable surface F of genus g and G acts prop-

erly discontinuously on F preserving orientation. Then the projection p : F →

O = F/G is a regular orbifold covering. Denote by g̃ the genus of O. To obtain

a presentation for the orbifold fundamental group πorb
1 (O), let {x1, x2, . . . , xk}

denote the finite set of cone points of O. Fixing a base point x for O, let αi be

a loop based at x and going around xi, as shown in Figure 1.2.

x1
x2x3 α1

α2
α3

x

Figure 1.2: The orbifold O
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If 2π/n is the rotation angle of the G-action around each point of p−1(xi),

then αni
i = 1 in πorb

1 (O). In Figure 1.2, the product α1α2 · · ·αk is homotopic to a

loop that bounds a disk D containing the cone points, and for which the closure

S = F \D is a 2-manifold of some genus g̃ and ∂S represents α1α2 · · ·αk. Let-

ting a1, b1, . . . , ag̃, bg̃ be standard generators of π1S chosen so that ∂S represents∏
[ai, bi], we have the following presentation for πorb

1 (O):

πorb
1 (O) = ⟨α1, . . . , αk, a1, b1, . . . , ag̃, bg̃ |

αn1
1 = · · · = αnk

k = 1, α1 · · ·αk =

g̃∏
1=1

[ai, bi] ⟩.

A 2-orbifold is good if its universal covering orbifold is a surface. We state

the following theorem of Thurston on good 2-orbifolds.

Theorem 1.3.1. Every good 2-orbifold without boundary is isomorphic to the

quotient of S2, E2 or H2 by some discrete group of isometries.

In particular, if F is a surface and G is finite group acting on F , then F/G is a

2-orbifold. In fact, every O = F/G has a finite surface covering as stated in the

following theorem.

Theorem 1.3.2. Every good, compact 2-orbifold without boundary is finitely cov-

ered by a surface.

1.3.1 The Riemann-Hurwitz equation

Suppose that we have a good compact 2-orbifold O with underlying surface S

and k cone points of orders ni, 1 ≤ i ≤ k. Then O is finitely covered by a surface

F . If d is the degree of the covering, then we can naturally define the Euler
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number of O by the equation χ(F ) = dχ(O). Let D = D1 ∪ D2 ∪ . . . · · · ∪ Dk

be the disjoint union of open disks containing the cone points {x1, x2, . . . , xk}.

If W = S \ D, then χ(S) = χ(D) + χ(W ) = k + χ(W ). Since p : F → O is a

d-fold covering, the projection p−1(W ) → W is a d-fold covering space so that

χ(p−1(W )) = dχ(W ). Now the pre-image in F of Di is d/ni disks, so we obtain

χ(F ) = dχ(W ) +
k∑

i=1

d/ni .

But χ(F ) = dχ(O), so by dividing the equation by d and substituting χ(W ) =

χ(S)− k, we obtain

χ(O) = χ(S)−
k∑

i=1

(1− 1/ni) ,

which is known as the Riemann-Hurwitz equation. As in case of Fuchsian groups,

here the tuple (g̃;n1, . . . , nk) is called the signature of the orbifold.

1.4 The Wiman-Harvey upper bound

In the late nineteenth century, Hurwitz [10] showed that the group of automor-

phisms of a compact Riemann surface of genus g is finite if g ≥ 2, and obtained

the best possible bound 84(g− 1) for the order of such a group. About the same

time, Wiman [24] improved on this bound for a cyclic group, by showing that the

maximum possible order for an automorphism is 2(2g + 1). Harvey [7], in 1964,

used Fuchsian groups to find the the minimum genus g of a surface which admits

an automorphism of order n and Wiman’s result was a direct consequence of

Harvey’s theorem. In this section, we give a proof of this Wiman-Harvey result

using Thurston’s orbifold viewpoint. We will use one of the number-theoretic

results of Harvey proved in [7], given as Lemma 1.4.5 below.
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Lemma 1.4.1. Let p : F → O be an orbifold covering with cyclic covering group

Cn, and suppose that O has signature (0;n1, . . . , nk). Then the least common

multiple of the orders of any k − 1 cone points is n.

Proof. Let mi = lcm{n1, . . . , n̂i, . . . nk}, and let m = lcm{n1, . . . , nk}. First we

show that mi = m for all i. Since mi|m and nj | mi for j ̸= i, it suffices to show

that ni|mi. Let αj be the generator of πorb
1 (O) going around the cone point of

order nj. From Thurston’s orbifold theory (Section 1.3), since the surface part

of O is a sphere, πorb
1 (O) will have a presentation of the form

πorb
1 (O) = ⟨α1, . . . , αk|αn1

1 = · · · = αnk
k = α1α2 · · ·αk = 1⟩,

and we have an exact sequence

1 −→ π1(F ) −→ πorb
1 (O)

ρ−→ Cn −→ 1 .

Since α1α2 · · ·αk = 1, we note that

α1 · · ·αi−1αi+1 · · ·αn = (αi+1 · · ·αn)
−1α−1

i (αi+1 · · ·αn). (1.1)

Moreover, ρ is a homomorphism and the kernel of ρ is torsion-free, which implies

that ρ(α1)ρ(α2) . . . ρ(αi) . . . ρ(αk) = 1, where |ρ(αj)| = nj in Cn. This shows that

|ρ(α1)ρ(α2) . . . ρ̂(αi) . . . ρ(αk)| = |ρ(αi)
−1| = ni .

Consider the subgroup H of Cn generated by {ρ(αj)|j ̸= i}. The fact that the

order of cyclic group is the least common multiple of the orders of the elements
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in any generating set would imply that

|H| = lcm{ρ(α1), . . . , ρ̂(αi), . . . , ρ(αk)} = lcm{n1, . . . , n̂i, . . . , nk} = mi .

Since ρ(α1)ρ(α2) . . . ρ̂(αi) . . . ρ(αk) ∈ H, we have that ni | mi. Finally, Equa-

tion 1.1 would imply that ρ(αi) ∈ Cn, and from the exact sequence, we have that

ρ is surjective. Consequently, {ρ(γj)} generates Cn, giving m = n.

Lemma 1.4.2. Suppose that F is a closed oriented surface of genus g ≥ 2. Let

p : F → O be an orbifold covering with cyclic covering group Cn, and suppose

that O has signature (g̃;n1, . . . , nk). Then g̃ = 0 whenever n > 2g − 2.

Proof. From the Riemann-Hurwicz equation, we have that

2g − 2

n
= 2g̃ − 2 + k −

k∑
i=1

1

ni

.

Since n > 2g − 2 and ni ≥ 2, we get that

1 > 2g̃ − 2 + k − k

2
= 2g̃ − 2 +

k

2
.

Suppose we assume for the sake of contradiction that g̃ ≥ 1. Then we would have

1 > k
2
, giving k < 2. If k = 0, then would have g = g̃ = 1, which contradicts our

hypothesis. If k = 1, then by Lemma 1.4.1, we would have that n1 = n, so the

Riemann-Hurwitz equation takes the form

2g − 2

n
= 2g̃ − 1− 1

n
,

giving n = 2g−1
2g̃−1

≤ 2g − 1, which is impossible.
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Lemma 1.4.3. Suppose that {n1, . . . , nk} is a collection of integers such that

ni ≥ 2, and let n = lcm{n1, . . . , nk}. If n is even, then
k∑

i=1

1

ni

≤ k − 1

2
+

1

r
,

where

(i) r = n if 4 | n, and

(ii) r = n
2
otherwise.

Proof. We may assume that ni ≤ nj for i ≤ j. Let r be the smallest integer

greater than or equal to 2 such that lcm(2, r) = n. Then r = n if 4 | n, and r = n
2

otherwise. We start by showing that

k∑
i=1

1

ni

≤
k−1∑
i=1

1

ni

+
1

r
.

First, we establish this inequality for k = 2. Consider the sum 1
n1

+ 1
n2
. Suppose

that n1 = 2. Since lcm{n1, n2} = n, we have n2 ≥ r. Consequently,

1

n1

+
1

n2

≤ 1

2
+

1

r
.

Suppose that n1 = 3. Then we would have that

1

n1

+
1

n2

=
1

3
+

1

n2

,

where n2 is even and n2 ≥ 4. If 3 | n2, then n2 = n ≥ r, so we would have

1

3
+

1

n2

<
1

2
+

1

r
.

If gcd(3, n2) = 1, then n2 = n
3
. We consider the cases when 4 | n and 4 - n
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separately. When 4 | n, we would have that n ≥ 12, so

1

n1

+
1

n2

=
1

3
+

3

n
=

(
1

3
+

2

n

)
+

1

n
≤ 1

2
+

1

n
=

1

2
+

1

r
.

When 4 - n, we have that n ≥ 6, and

1

n1

+
1

n2

=
1

3
+

3

n
=

(
1

3
+

1

n

)
+

2

n
≤ 1

2
+

2

n
=

1

2
+

1

r
.

Suppose that n1 ≥ 4. Then n2 ≥ 4, which implies that

1

n1

+
1

n2

≤ 1

4
+

1

4
=

1

2
<

1

2
+

1

r
.

In general, for any k, we consider 1
nk−1

+ 1
nk
. By a similar argument, we can

show that

1

nk−1

+
1

nk

≤ 1

2
+

1

r
.

Since ni ≥ 2, the lemma follows from the fact that

k−1∑
i=1

1

ni

+
1

r
≤ k − 1

2
+

1

r
.

Lemma 1.4.4. Suppose that F is a closed oriented surface of genus g ≥ 2. Let

p : F → O be an orbifold covering with cyclic covering group Cn, and suppose

that O has signature (0;n1, . . . , nk). Then k = 3 whenever

(i) n is even and n > 4g, or

(ii) n is odd and n > 3g − 3.
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Proof. We know from Lemma 1.4.1 that lcm{n1, . . . , nk} = n. Let n = p1
a1p2

a2 . . . pr
ar

be a prime factorization for n, and let p = min{p1, . . . , pk}. For an orbifold with

signature (0;n1, . . . , nk), the Riemann-Hurwicz equation gives

2− 2g

n
= 2− k +

k∑
i=1

1

ni

.

If k ≤ 2, then we would have that 2−2g
n

> 0, which is impossible.

If n is even, then p = 2, and from Lemma 1.4.3

2− 2g

n
= 2− k +

k∑
i=1

1

ni

≤ 2− k +
k − 1

2
+

2

n
,

giving

2g

n
≥ k − 3

2
.

If k ̸= 3, then k ≥ 4 giving n ≤ 4g, which proves (i).

If n is odd, then p ≥ 3. Since ni ≥ p, we have that

2− 2g

n
≤ 2− k +

k

p
,

giving

k ≤
(

2p

p− 1

)(
g − 1

n
+ 1

)
.

If k ≥ 4, then we would have that

n ≤ g − 1

1− 2
p

≤ 3g − 3 ,

and (ii) holds.

We will state the following result of Harvey [7] without proof.
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Lemma 1.4.5. Suppose that a positive integer N has a prime decomposition

N = p1
r1p2

r2 · · · pkrk , where pi < pj for i < j and each ri > 0. Let E denote

the set of all integer triples (n1, n2, n3) satisfying lcm(n1, n2) = lcm(n2, n3) =

lcm(n1, n3) = N and let ∆(E) = max
(a,b,c)∈E

(
1

a
+

1

b
+

1

c

)
. Then

(i) ∆(E) = 1
N
+ 1

p1
+ p1

N
if r1 = 1, and N not prime;

(ii) ∆(E) = 1
N
+ 1

p1
+ 1

N
if r1 > 1.

Theorem 1.4.6. The maximum order n for a cyclic automorphism of a surface

of genus g ≥ 2 is 4g + 2.

Proof. Let F be a hyperbolic surface of genus g ≥ 2. The maximum order must

be at least 4g + 2, since there always exists a C4g+2-action on F with orbifold

signature (0; 2, 2g + 1, 4g + 2).

Suppose for contradiction that there is a homeomorphism of F with finite

order n > 4g+2. Regarding it as a Cn-action, let F → F/Cn = O be the orbifold

covering map, and (g̃;n1, . . . , nk) be a signature of O. Using Lemmas 1.4.2 and

1.4.4, we may assume that k = 3 and g̃ = 0. The Riemann-Hurwitz equation

would then take the form

2− 2g

n
= −1 +

3∑
i=1

1

ni

.

Let n = p1
r1p2

r2 · · · pkrk , where pi < pj for i < j. If r1 > 1 and n is not prime,

then Lemmas 1.4.1 and 1.4.5 tell us that

3∑
i=1

1

ni

≤ 2

n
+

1

p1
,

13



which upon simplification gives

n ≤ 2g

1− 1
p1

≤ 4g .

If r1 = 1, then from Lemmas 1.4.1 and 1.4.5 we would have that

3∑
i=1

1

ni

≤ 1

n
+

1

p1
+

p1
n

.

Since n > 4g + 2, we have that

4g + 2 <
2g + p1 − 1

1− 1
p1

= p1

(
2g

p1 − 1
+ 1

)
,

that is,

2g

(
2− p1
p1 − 1

)
> 2− p1.

which is clearly not true when p1 = 2. If p1 > 2, then we must have g < p1−1
2

.

But
3∑

i=1

1

ni

≤ 1

n
+

1

p1
+

p1
n

,

giving

2− 2g

n
≤ −1 +

1

n
+

1

p1
+

p1
n

,

that is,

g ≥
(
p1 − 1

2

)(
n

p1
− 1

)
≥ p1 − 1

2
,

which is a contradiction when n ̸= p1. If n = p1, then the fact that ni | n would

imply that each ni = n, so the Riemann-Hurwitz equation takes the form

2− 2g

n
= −1 +

3

n
,

14



giving n = 2g + 1, which contradicts our hypothesis.

1.5 Teichmüller space

A marking on a surface F is a pair (S, ϕ) where S is a hyperbolic surface and

ϕ : F → S is a diffeomorphism. Two markings are (S1, ϕ1) and (S2, ϕ2) on a

surface F of genus g are said to be equivalent if ϕ2 ◦ ϕ1
−1 is homotopic to an

isometry. The Teichmüller space of F , denoted by Teich(F ), is the space of all

equivalent markings on F . In other words, the Teichmüller space of F is the

space of all marked hyperbolic structures on F .

We can obtain a natural topology on Teich(F ) by putting Fenchel-Nielsen

coordinates on it. To describe these coordinates, we start by gluing pairs of

pants in the pants decomposition of F along their boundaries with certain twist

parameters. Since each point in Teich(F ) defines a marked hyperbolic structure

on F , we can put coordinates by taking the length of the gluing curves under the

hyperbolic metric together with their twisting parameters. A closed orientable

surface F has 3g − 3 disjoint curves in its pants decomposition. Therefore any

point in Teich(F ) can be described by 6g−6 coordinates and it is a classical result

of R. Fricke and F. Klein [6] that for a surface F of genus g ≥ 2, Teich(F ) ∼= R6g−6.

Mod(F ) acts isometrically and properly discontinuously on Teich(F ), and this

action is defined in the following manner: for any [h] ∈ Mod(F ) and [(S, ϕ)] ∈

Teich(F ), [h] · [(S, ϕ)] = [(S, ϕ ◦ h−1)]. The space thus obtained by taking the

quotient Teich(F )/Mod(F ), is called the moduli space of F , denoted by M(F ).
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1.6 Nielsen-Thurston Classification

As mentioned before, Thurston completed the work initiated by Nielsen in his

classification theorem for surface homeomorphisms.

Theorem 1.6.1 (Nielsen-Thurston Classification). Each g ∈ Mod(F ) has a rep-

resentative f satisfying exactly one of the following:

1. f has finite order.

2. f has infinite order and f(C) = C for some collection C of disjoint noniso-

topic curves in S.

3. f is pseudo-Anosov: There exists a transverse pair of measured singular

foliations on F , Fs (stable) and Fu (unstable), and a real number λ > 1

such that the foliations are preserved by f and their transverse measures

are multiplied by 1/λ and λ.

Thurston’s classification is also related to the action of Mod(F ) on Teich(F ).

Thurston introduced measured laminations and showed that the space of pro-

jectivised measured laminations PML(F ) can be regarded as a boundary of

Teich(F ), giving a compactification of Teich(F ). A key feature of this boundary

is that the action of Mod(F ) on Teich(F ) ∼= R6g−6 extends naturally to an action

on PML(F ) ∼= S6g−5, giving an action on Teich(F ) ∪ PML(F ) ∼= B6g−6. The

type of an element f ∈ Mod(F ) in the Thurston classification is related to its

fixed points when acting on this compactification of Teich(F ):

1. If f is periodic, then there is a non-empty fixed-point set within Teich(F );

these points correspond to hyperbolic structures on F whose isometry group

contains an element isotopic to f ;
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2. If f is pseudo-Anosov, then f has no fixed points in Teich(F ) but has a

pair of fixed points on the Thurston boundary PML(F ); these fixed points

correspond to the stable and unstable foliations of F preserved by f .

3. For some reducible mapping classes f , there is a single fixed point on the

Thurston boundary PML(F ). In general, unlike the isometries of hy-

perbolic space, reducible classes can even fix infinitely many points on

PML(F ), for example, a Dehn twist tC about a curve C fixes every folia-

tion in the complement of C. Keckhoff showed in [13] that for a handlebody

M3 of genus g with boundary surface F , the closure in PML(F ) of simple

closed curves in F which bound disks in M3 is of measure 0.

1.7 Some earlier results on roots

In 2008, C. Bonatti and L. Paris [1] studied the roots in the mapping class groups.

Let F be a compact oriented surface of genus g with boundary ∂F with a finite

set of punctures P , and let Mod(F, P ) denote the mapping class group relative

to the boundary of (F, P ). They proved that if g = 1 and ∂F ̸= ∅, then each

f ∈ Mod(F ) has at most one m-root up to conjugation for all m ≥ 1. However,

if g ≥ 2, then there exist non-conjugate elements f, g ∈ Mod(F, P ) such that

f 2 = g2.

In the same paper, they also derived some results for pseudo-Anosov elements.

They showed that if ∂F ̸= ∅, then each pseudo-Anosov element f ∈ Mod(F, P )has

at most one m-root for all m > 1, but if ∂F = ∅, then there exist two non-

conjugate pseudo-Anosov elements f, g ∈ Mod(F ) such that fm = gm for some

m ≥ 2. Finally, they showed that an element of a pure subgroup G of Mod(F )

can have at most one root of degree m in G.
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In 2009, D. Margalit and and S. Schleimer [15] showed that for a surface f

of genus g ≥ 2, every Dehn twist in Mod(F ) has a nontrivial root. For Dehn

twists about separating curves, the fact is well-known: if C is a separating curve

then a square root of the left Dehn twist tC is obtained by twisting one side of

C through an angle of π. For a nonseparating curve C, they gave a geomet-

ric and algebraic construction of a root of degree 2g − 1. They also gave roots

of several other analogues of Dehn twists like half-twists and Nielsen transfor-

mations. In particular, they noted that their roots of Dehn twists in Mod(F ),

adapted to once-punctured surfaces, provide examples of “geometric” roots of

Nielsen transformations in Out(Fn).

1.8 Roots of Dehn twists

A natural question concerning mapping class groups is whether a Dehn twist tC

can have a root. We have seen that it is easy to find examples of roots for Dehn

twists about separating curves. However, in the case of nonseparating curves,

existence of a root is not obvious. As mentioned earlier, D. Margalit and S.

Schleimer [15] showed the existence of such roots by constructing roots of degree

2g + 1 in the surface of genus g + 1 ≥ 2. The natural questions were whether

there exist roots of other degrees, and whether we could classify them.

These questions motivated me to look deeper into this subject. My first

research work (on nonseparating curves) [16], a collaborative effort with my thesis

adviser Dr. Darryl McCullough, was a direct outcome of this pursuit. The main

theorem said that given a genus g and a degree n, the Dehn twist has a root of

degree n if and only if there exists a collection of integers satisfying some simple

identities mod n. Its proof made extensive use of Thurston’s theory of orbifolds
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(see W. Thurston [22, Chapter 13]).

A number of applications were obtained from the main theorem by elementary

considerations. An immediate consequence was the following corollary.

Corollary 1.8.1. Suppose that tg+1 has a root of degree n. Then

(a) n is odd.

(b) n ≤ 2g + 1.

This corollary shows that Margalit-Schleimer roots always have the maximum

degree among the roots of tg+1 for a given genus.

I have continued this work by examining the case of a Dehn twist about a

separating curve C. Although the existence of some roots is obvious in this case,

there is much to be understood about their possible degrees and other behaviors.

This work constitutes the remainder of this dissertation.

In ongoing work, I have been investigating a generalization of roots, the frac-

tional powers of tC . These are homeomorphisms h such that some hn equals some

tℓC , ℓ ̸= 0, in Mod(F ). In contrast to the case of roots (ℓ = 1), fractional powers

may interchange the sides of C, so new phenomena occur. This work will be

detailed in future publications.
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Chapter 2

Roots of Dehn twists

about separating curves

2.1 Introduction

Let F be a closed orientable surface of genus g ≥ 2 and C be a simple closed

curve in F . Let tC denote a left handed Dehn twist about C.

When C is a nonseparating curve, the existence of roots of tC is not so ap-

parent. In their paper [15], D. Margalit and S. Schleimer showed the existence

of such roots by finding elegant examples of roots of tC whose degree is 2g + 1

on a surface of genus g+1. This motivated an earlier collaborative work with D.

McCullough [16] in which we derived necessary and sufficient conditions for the

existence of a root of degree n. As immediate applications of the main theorem in

the paper, we showed that roots of even degree cannot exist and that n ≤ 2g+1.

The latter shows that the Margalit-Schleimer roots achieve the maximum value

of n among all the roots for a given genus.

Suppose that C is a curve that separates F into subsurfaces F̃i of genera gi for
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i = 1, 2. It is evident that roots of tC exist. As a simple example, for the closed

orientable surface of genus 2, we can obtain a square root of the Dehn twist tC

by rotating one of the subsurfaces on either side of C by an angle π, producing

a half-twist near C. As in the case for nonseparating curves, a natural question

is whether we can give necessary and sufficient conditions for the existence of a

degree n root of tC . In this chapter, we derive such conditions and apply them

to obtain information about the possible degrees. We use Thurston’s orbifold

theory [22, Chapter 13] to prove the main result. A good reference for this

theory is P. Scott [21].

We start by defining a special class of Cn-actions called nestled (n, ℓ)-actions.

These Cn-actions have a distinguished fixed point and the points fixed by some

nontrivial element of Cn form ℓ + 1 orbits. The equivalency of two such actions

will be given by the existence of a conjugating homeomorphism that also satis-

fies an additional condition on their distinguished fixed points. Two equivalence

classes of actions will form a compatible pair if the turning angles of their rep-

resentative actions around their distinguished fixed points add up to 2π/n. The

key topological idea in our theory is defining nestled (ni, ℓi)-actions on the sub-

surfaces F̃i for i = 1, 2 so that they form a compatible pair, thus giving a root

of degree n = lcm(n1, n2). Conversely, for each root of degree n, we reverse this

argument to produce a corresponding compatible pair.

In Section 2.4, we introduce the abstract notion of a data set of degree n. As

in the case of nonseparating curves, a data set of degree n is basically a tuple that

encodes the essential algebraic information required to describe a nestled action.

We show that equivalence classes of nestled (n, ℓ)-actions actually correspond to

data sets, that is, each class has a corresponding data set representation. Data

sets Di of degree ni, for i = 1, 2 form a data set pair (D1, D2) when they satisfy
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the formula n
n1
k1 +

n
n2
k2 ≡ 1 mod n, where the turning angles at the centers of

the disks are 2πki
ni

mod 2π. In Theorem 2.5.2, we show that this number-theoretic

condition is an algebraic equivalent of the compatibility condition for actions,

thus proving that data set pairs correspond bijectively to conjugacy classes of

roots. This theorem is essentially a translation of our topological theory of roots

to the algebraic language of data sets.

As an immediate application of Theorem 2.5.2, we show the existence of a

root of degree lcm(4g1, 4g2+2), and in Section 2.6, we give calculation of roots in

low-genus cases. In Section 2.7, we obtain some bounds on the orders of spherical

nestled actions, that is, nestled actions whose quotient orbifolds are topologically

spheres. For example, we prove that all nestled (n, ℓ)-actions for n ≥ 2
3
(2g − 1)

have to be spherical. Finally, in Section 2.8, we use the main theorem and the

results obtained in Section 2.7 to derive bounds on n. We show that in general,

n ≤ 4g2 + 2g and for any positive integer N , n ≤ 4g2 + (4 − 2N)g + (N−2)2

4

whenever both gi > N + 3.

2.2 Nestled (n, ℓ)-actions

An action of a group G on a topological space X is defined as a homomorphism

h : G → Homeo(X). Since we are interested only in Cn-actions, we will fix a

generator t for Cn and identify the action with the isotopy class of the homeo-

morphism h(t) in Mod(X). In this section, we introduce nestled (n, ℓ)-actions

and give an example for such an action. These actions will play a crucial role in

the theory we will develop for roots of Dehn twists.

Definition 2.2.1. An orientation-preserving Cn-action on a surface F of genus

at least 1 is said to be a nestled (n, ℓ)-action if either n = 1, or n > 1 and:
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(i) the action has at least one fixed point,

(ii) some fixed point has been selected as the distinguished fixed point, and

(iii) the points fixed by some nontrivial element of Cn form ℓ+ 1 orbits.

This is equivalent to the condition that the quotient orbifold has ℓ+1 cone points,

one of which is a distinguished cone point of order n.

A nestled (n, ℓ)-action is said to be trivial if n = 1, that is, if it is the action

of the trivial group on F . In this case only, we allow a cone point of order 1 in

the quotient orbifold. The distinguished cone point can then be any point in F ,

and we require ℓ = 0.

Definition 2.2.2. Assume that F has a fixed orientation and fixed Riemannian

metric. Let h be a nestled-(n, ℓ) action on F with a distinguished fixed point P .

The turning angle θ(h) for h is the angle of rotation of the induced isomorphism

h∗ on the tangent space TP , in the direction of the chosen orientation.

Example 2.2.3 (Margalit-Schleimer, [15]). Rotate a regular (4g + 2)-gon with

opposite sides identified about its center P through an angle 2π(g+1)
(2g+1)

. Identifying

the opposite sides of P , we get a C2g+1-action h on Sg with three fixed points

denoted by P , x and y. Since the quotient orbifold has three cone points of order

2g + 1, this defines a nestled (2g + 1, 2)-action on Sg. If we choose P as the

distinguished fixed point for the action h, then θ(h) = 2π(g+1)
(2g+1)

.

Remark 2.2.4. Every nestled (n, ℓ)-action has an invariant disk around its dis-

tinguished fixed point. Let F be a closed oriented surface with a fixed Riemannian

metric ρ, and let h be a nestled (n, ℓ)-action on F with a distinguished fixed point
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4π
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x
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x x
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Figure 2.1: A nestled (2g + 1, 2)-action for g = 1.

P . Consider the Riemannian metric ρ̄ defined by

⟨v, w⟩ρ̄ =
1

n

n∑
i=1

⟨hi
∗(v), h

i
∗(w)⟩ρ ,

where v, w ∈ TPF . Under this metric ρ̄, h is an isometry. Since there exists ϵ > 0

such that expP : Bϵ(0) ⊂ TPF → Bϵ(P ) ⊂ F is a diffeomorphism, h preserves

the disk Bϵ(P ).

Definition 2.2.5. Two nestled (n, ℓ)-actions h and h′ on F with distinguished

fixed points P and P ′ are equivalent if there exists an orientation-preserving

homeomorphism t : F → F such that

(i) t(P ) = P ′.

(ii) tht−1 is isotopic to h′ relative to P ′.

Remark 2.2.6. By definition, equivalent nestled (n, ℓ)-actions h and h′ on F

are conjugate in Mod(F ). Since conjugate homeomorphisms have the same fixed

point data, we have that θ(h) = θ(h′).
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2.3 Compatible pairs and roots

Suppose that C is a curve that separates a surface F of genus g into two sub-

surfaces. As mentioned earlier, the central idea is defining compatible nestled

actions on the subsurfaces that “fit together” to give a degree n root of the Dehn

twist tC . We will show in Theorem 2.3.4 that compatible pairs of equivalent

actions correspond bijectively to conjugacy classes of roots of tC .

Notation 2.3.1. Suppose that C separates a closed orientable surface F into

subsurfaces of genera g1 and g2, where g1 ≥ g2. Let Fi denote the closed

surface obtained by coning the subsurface of genus gi. We will think of F as

(F1, C)#(F2, C), that is, the surface obtained by taking the connected sum of

the Fi along C. For convenience, we will denote this by F = F1#CF2.

Definition 2.3.2. Equivalence classes [hi] of nestled (ni, ℓi)-actions hi on closed

oriented surfaces Fi for i = 1, 2 are said to form a compatible pair ([h1], [h2]) if

θ(h1) + θ(h2) = 2π/n mod 2π.

The integer n = lcm(n1, n2) is called the degree of the compatible pair. We

may treat ([h1], [h2]) as an unordered pair, since ([h2], [h1]) is a compatible pair

if and only if ([h1], [h2]) is.

Lemma 2.3.3. Let F be a compact orientable surface, possibly disconnected. If

h : F → F is a homeomorphism such that hn is isotopic to idF , then h is isotopic

to a homeomorphism j with jn = idF .

Proof. When F is connected, this is the Nielsen-Kerchkoff theorem [11, 12, 19].

Suppose that F is not connected. We may asssume that h acts transitively on the

set of components F1, F2, ..., Fℓ of F . Choose notation so that h |Fi
: Fi → Fi+1

and h |Fℓ−1
: Fℓ−1 → F1. Since hn = (hl)

n/ℓ ≃ idF , the Nielsen-Kerchkoff theorem
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implies that hℓ |F1≃ j1 where j1 is a homeomorphism on F1 with j1
n/ℓ = idF1 .

Therefore, idF1 ≃ j1 ◦ (hℓ |F1)
−1

via an isotopy Kt. Define an isotopy Ht of h by

Ht |Fi
= h for 1 ≤ i ≤ ℓ− 2 and Ht |Fℓ−1

= Kt ◦ h |Fℓ−1
. Then, H1 |Fℓ−1

= K1 ◦ h =

j1 ◦ (hℓ |F1)
−1 ◦ h. We see that (H1 |Fi

)ℓ = hi ◦ (j1 ◦ h1−ℓ) ◦ hℓ−1−i = hi ◦ j1 ◦ h−i

and (H1 |Fi
)n = (H1 |Fi

ℓ)
n/ℓ

= hi ◦ j1
n/ℓ ◦ h−i = hi ◦ h−i = idFi

. The required

homeomorphism is j = H1.

Theorem 2.3.4. Let F = F1#CF2 be a closed oriented surface of genus g ≥ 2.

Then the conjugacy classes in Mod(F ) of roots of tC of degree n correspond to

the compatible pairs ([h1], [h2]) of equivalence classes of nestled (ni, ℓi)-actions hi

on Fi of degree n.

Proof. We will first prove that every root of degree n yields a compatible pair of

([h1], [h2]) of degree n.

Fix a closed annulus neighborhood N of C. Let F̃i for i = 1, 2 be the compo-

nents of G−N , and denote the genus of F̃i by gi . We fix coordinates on F so

that the subsurface F̃1 is to the left of C as shown in Figure 2.2. By isotopy we

may assume that tC(C) = C, tC(N) = N , and tC |F̃i
= idF̃i

for i = 1, 2.

C

F̃1 F̃2
N

Figure 2.2: The surface F with the separating curve C and the tubular neigh-
borhood N of C.

Suppose that h is an nth root of tC . We have tC ≃ htCh
−1 ≃ th(C), which

implies that h(C) is isotopic to C. Changing h by isotopy, we may assume that
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h preserves C and takes N to N . Put h̃i = h|F̃i
for i = 1, 2. Since hn ≃ tC and

both preserve C, there is an isotopy from hn to tC preserving C and hence one

taking N to N at each time. That is, h̃1

n
is isotopic to idF̃1

and h̃2

n
is isotopic

to idF̃2
. By Lemma 2.3.3, h̃i is isotopic to a homeomorphism whose nth power

is idF̃i
for i = 1, 2. So we may change h̃i and hence h by isotopy to assume that

h̃i

n
= idF̃i

for i = 1, 2.

Let ni be the smallest positive integer such that h̃i

ni
= idF̃i

for i = 1, 2. Let

s = lcm(n1, n2). Clearly, s|n since ni|n. Also, hs = idF̃1∪F̃2
which implies that

hs = tC
d for some integer d. Hence, (hs)n/s = (tC

d)
n/s

i.e. hn = tC
dn/s. We get,

tC = tC
dn/s which implies that dn/s = 1 since no higher power of tC is isotopic

to tC . Hence, d = 1 and n = s = lcm(n1, n2).

Assume for now that h does not interchange the sides of C. We fill in the

boundary circles of F̃1 and F̃2 with disks to obtain the closed orientable surfaces

F1 and F2 with genera g1 and g2 . We then extend h̃i to a homeomorphism hi on

Fi by coning. Thus hi defines a Cni
action on Fi where ni|n, Cni

= ⟨hi | hni
i = 1⟩

for i = 1, 2 and lcm(n1, n2) = n. Since the homeomorphism hi fixes the center

point Pi of the disk Fi − F̃i, we choose Pi as the distinguished fixed point for hi.

So hi defines a nestled (ni, ℓi)-action on Fi for some ℓi.

The orientation on F restricts to orientations on the Fi, so that we may speak

of rotation angles θ(hi) for hi. Then the rotation angle θ(hi) = 2πki/ni for some

ki with gcd(ki, ni) = 1. As seen in Figure 2.3, the difference in turning angles

equals 2πk2/n2−(−2πk1/n1) = 2π/n, giving θ(h1)+θ(h2) ≡ 2π/n mod 2π. That

is, (h1, h2) is a compatible pair.

Suppose now that h interchanges the sides of C. Then h must be of even

order, say 2n, and h2 preserves the sides of C and is of order n. Since the actions

of h2|F̃i
on the F̃i are conjugate by h|F̃1∪F̃2

, these actions will induce conjugate
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A
P1

h1(A)

B

h2(B)

P2

A

B

Figure 2.3: The local effect of h1 and h2 on disk neighborhoods of P1 and P2

in F1 and F2, and the effect of h on the neighborhood N of C in F . Only
the boundaries of the disk neighborhoods are contained in F̃i, where they form
the boundary of N . The rotation angle θ(h1) is 2πk1/n1 and the angle θ(h2) is
2πk2/n2 = 2π(1/n− k1/n1).

Cn-actions on the coned surfaces Fi. Consequently, these induced actions will

have the same turning angles at the centers Pi of the coned disks of Fi. For

this compatible pair of nestled (ni, ℓi)-actions, say (h1, h2), associated with h2,

we must have θ(h1) = θ(h2) = π/n and n1 = n2 = n. If we extend to N using a

simple left-handed twist, the twisting angle is 2πk/n, and consequently h2n = t2kC .

Other extensions will differ from this by full twists, giving h2n = t2k+2jn
C for some

integer j. In any case, h2n cannot equal tC . This proves that h cannot reverse

the sides of C.

Suppose that we have roots h and h′ that are conjugate in Mod(F ), that is,

there exists t ∈ Mod(F ) such that h′ = t ◦ h ◦ t−1. Then (h′)n = t ◦ hn ◦ t−1,

that is, tC = t ◦ tC ◦ t−1 = tt(C). This shows that C and t(C) are isotopic curves.

Changing t by isotopy, we may assume that t(C) = C and t(N) = N . Let ti, hi

and h′
i respectively denote the extensions of t|F̃i

, h|F̃i
and h′|F̃i

to Fi by coning.

Assume for now that t does not exchange the sides of C. Since t, h and h′

all preserve N , we may assume that the isotopy from t ◦ h ◦ t−1 to h′ preserves

N , and consequently each ti ◦ hi ◦ ti
−1 is isotopic to h′

i preserving Pi. Since ti
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takes Pi to Pi, hi and h′
i are equivalent as nestled (ni, ℓi)-actions on Fi, so h and

h′ produce the same compatible pair ([h1], [h2]).

Suppose that t exchanges the sides of C. Then g1 = g2, h
′
3−i ≃ ti ◦ hi ◦ ti−1

and ti(Pi) = P3−i. So the actions h1 and h′
2 are equivalent, as are the actions

h′
1 and h2. Therefore, the (unordered) compatible pairs for the two roots are the

same.

Conversely, given a compatible pair ([h1], [h2]) of equivalence classes of nestled

(ni, ℓi)-actions, we can reverse the argument to produce a root h. For let Pi denote

the distinguished fixed point of hi and let pi denote the corresponding cone point

of order ni in the quotient orbifold Oi. By Remark 2.2.4, there exists an invariant

disk Di for hi around pi. Removing Di produces the surfaces F̃i, and attaching

an annulus N produces the surface F of genus g. Condition (ii) on compatible

pairs ensures that the rotation angles work correctly to allow an extension of

h1|F̃1
∪ h2|F̃2

to an h with hn being a single Dehn twist about C.

It remains to show that the resulting root h of tC is determined up to con-

jugacy in the mapping class group of F . Suppose that h′
i ∈ [hi]. Let P ′

i denote

the distinguished fixed point for h′
i, and let D′

i be an invariant disk for h′
i around

P ′
i . Removing the D′

is produces surfaces F̃ ′
i
∼= Fi, for i = 1, 2, and attaching an

annulus N ′ with a 1/nth twist, extends h′
1|F̃ ′

1
∪ h′

2|F̃ ′
2
to a homeomorphism h′ on

a surface F ′ ∼= F of genus g. Since h′
i ∈ [hi], by definition, there exists ti such

that ti(Pi) = P ′
i and ti ◦ hi ◦ ti−1 ≃ h′

i rel P
′
i via an isotopy Hi in Mod(F ′

i ). Since

hi and h′
i have finite order and are conjugate up to isotopy by ti, we may assume

that ti(Di) = D′
i and, identifying F and F ′ using t, that the isotopy Hi from

ti ◦hi ◦ ti−1 to h′
i is relative to Di. With respect to this identification, we choose a

k : N → N such that h′|N = k ◦ h|N ◦ k−1. Now define t : F → F by t|F̃i
= hi|F̃i

,

and t|N = k. Then h′ ≃ t ◦ h ◦ t−1 via an isotopy H given by H|F̃i
= Hi|F̃i

, and
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H|N = idN .

2.4 Nestled (n, ℓ)-actions and data sets

In this section, we introduce the language of data sets of degree n in order to

algebraically encode equivalence classes of nestled (n, ℓ)-actions. We will prove

that the equivalence classes of nestled (n, ℓ)-actions actually correspond to the

possible data sets.

Definition 2.4.1. A data set for F is a tuple D = (n, g̃, a; (c1, x1), . . . , (cℓ, xℓ))

where n, g̃ and the xi are integers, a is a residue class modulo n, and each ci is

a residue class modulo xi, such that

(i) n ≥ 1, g̃ ≥ 0, each xi > 1, and each xi divides n.

(ii) gcd(a, n) = gcd(ci, xi) = 1.

(iii) a+
ℓ∑

i=1

n

xi

ci ≡ 0 mod n.

The number n is called the degree of the data set. If n = 1, then we require that

a = 1, and the data set is D = (1, g̃, 1; ). The integer g defined by

g = g̃n+
1

2
(1− n) +

1

2

ℓ∑
i=1

n

xi

(xi − 1)

is called the genus of the data set. We consider two data sets to be the same if

they differ by reordering the pairs (c1, x1), . . . , (cℓ, xℓ).

Remark 2.4.2. For any data set D = (n, g̃, a; (c1, x1), . . . , (cℓ, xℓ)),

lcm{x1, x2, . . . , xn} = n. To see this, put k = lcm{x1, x2, . . . , xℓ}. Since each
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xi | n, k | n. So it remains to show that n | k. Condition (iii) implies that

ak

k
+

ℓ∑
i=1

n(k/xi)

k
ci ≡ 0 mod n .

Multiplying by k we get

ak + n

ℓ∑
i=1

(k/xi)ci ≡ 0 mod n .

Since gcd(a, n) = 1, we have n | k.

Notation 2.4.3. For a nestled nestled-(n, ℓ) action h on a closed orientable sur-

face F of genus g, we will use the following notation throughout this section. Let

O be the quotient orbifold for the action and let g̃ be the genus of its underlying

2-manifold. Let P be the distinguished fixed point of h and let p be the cone

point in O of order n that is its image in O. Let p1, . . . , pℓ be the other possible

cone points of O, if any.

p
p1p2 α

γ1
γ2

Figure 2.4: The orbifold O

Figure 2.4 shows a generator α of the orbifold fundamental group πorb
1 (O)

that goes around the point p, and generators γi, 1 ≤ i ≤ ℓ going around pi. Let

aj and bj, 1 ≤ j ≤ g̃ be standard generators of the “surface part” of O, chosen

to give the following presentation of πorb
1 (O):
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πorb
1 (O) = ⟨α, γ1, . . . , γℓ, a1, b1, . . . , ag̃, bg̃ |

αn = γx1
1 = · · · = γxℓ

ℓ = 1, αγ1 · · · γℓ =
g̃∏

1=1

[ai, bi] ⟩.

With this notation, we are ready to establish the key property of data sets.

Proposition 2.4.4. Data sets of degree n and genus g correspond to equivalence

classes of nestled (n, ℓ)-actions on closed orientable surfaces of genus g.

Proof. From orbifold covering space theory [22], we have the following exact

sequence:

1 −→ π1(F ) −→ πorb
1 (O)

ρ−→ Cn −→ 1 .

The homomorphism ρ is obtained by lifting path representatives of elements of

πorb
1 (O)— these do not pass through the cone points so the lifts are uniquely

determined.

For 1 ≤ i ≤ l, the preimage of pi consists of n/xi points cyclically permuted

by h, where xi is the order of the stabilizer of each point in the preimage of pi.

Each of the points has stabilizer generated by hn/xi . Its rotation angles must be

the same at all points of the orbit, since its action at one point is conjugate by a

power of h to its action at each other point. So the rotation angle at each point

is of the form 2πc′i/xi, where c′i is a residue class modulo xi and gcd(c′i, xi) = 1.

Lifting the γi, we have that ρ1(γi) = h(n/xi)ci where cic
′
i ≡ 1 mod xi.

Finally, we have ρ(
∏g̃

i=1[ai, bi]) = 1, since Cn is abelian, so

1 = ρi(αγ1 · · · γℓ) = ta+(n/x1)c1+···+(n/xi)ci
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giving

a+
ℓ∑

i=1

n

xi

ci ≡ 0 mod n .

The fact that the data set D has genus equal to g follows easily from the

multiplicativity of the orbifold Euler characteristic for the orbifold covering F →

O:

2− 2g

n
= 2− 2g̃ +

(
1

n
− 1

)
+

ℓ∑
i=1

(
1

xi

− 1

)
(2.1)

Thus, h gives a data set D = (n, g̃, a; (c1, x1), . . . , (cℓ, xℓ)) of degree n and genus

g.

Consider another nestled (n, ℓ)-action h′ in the equivalence class of h with

a distinguished fixed point P ′. Then by definition there exists an orientation-

preserving homeomorphism t ∈ Mod(F ) such that t(P ) = P ′ and th′t−1 is isotopic

to h relative to P . Therefore, the two actions will have the same fixed point data

and hence produce the same data set D.

Conversely, given a data D = (n, g̃, a; (c1, x1), . . . , (cℓ, xℓ)), we can reverse the

argument to produce an equivalence class of a nestled (n, ℓ)-action h on a surface

F of genus g. We construct the orbifold O and representation ρ : πorb
1 (O) → Cn.

Any finite subgroup of πorb
1 (O) is conjugate to one of the cyclic subgroups gener-

ated by α or a γi, so condition (ii) in the definition of the data set ensures that the

kernel of ρ is torsionfree. Therefore the orbifold covering F → O corresponding

to the kernel is a manifold, and calculation of the Euler characteristic shows that

F has genus g.

It remains to show that the resulting action on F is determined up to our

equivalence in Mod(F ). Suppose that two actions h and h′ on F with dis-

tinguished fixed points P and P ′ have the same data set D. D encodes the

fixed-point data of the periodic transformations h. By a result of J. Nielsen [19]
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(see also A. Edmonds [5, Theorem 1.3]), h and h′ have to be conjugate by an

orientation-preserving homeomorphism t. As in the proof of Theorem 1.1 in [16],

t may be chosen so that it preserves t(P ) = P ′. Thus D determines h up to

equivalence.

Proposition 2.4.4 enables us to view equivalence classes of nestled (n, ℓ)-

actions simply as data sets.

Notation 2.4.5. We will denote a data set of degree n and genus g by Dn,g,i,

where i is an index. The trivial data set D = {1, g, 1; }, for any g, will be denoted

by D1,g.

Example 2.4.6. The following are examples of data sets that represent nestled

(n, 2)-actions, for every g ≥ 1 and n equal to 2g + 1, 4g and 4g + 2:

(i) D2g+1,g,1 = (2g + 1, 0, 1; (g, 2g + 1), (g, 2g + 1)).

(ii) D4g,g,1 = (4g, 0, 1; (1, 2), (2g − 1, 4g)).

(iii) D4g+2,g,1 = (4g + 2, 0, 1; (1, 2), (g, 2g + 1)).

Remark 2.4.7. For the data set D = (n, g̃, a; (c1, x1), . . . , (cn, xℓ)) associated

with a nestled (n, ℓ)-action, Equation 2.1 in the proof of Proposition 2.4.4 gives

the following inequality

1− 2g

n
= −(ℓ− 1)− 2g̃ +

ℓ∑
i=1

1

xi

≤ −(ℓ− 1) +
ℓ∑

i=1

1

xi

. (2.2)

Remark 2.4.8. There exists no non-trivial action with ℓ = 0. Suppose that we

assume the contrary. Using Notation 2.4.3, we have

πorb
1 (O) = ⟨α, a1, b1, . . . , ag̃, bg̃ |αn = 1, α =

g̃∏
j=1

[aj, bj] ⟩ .
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Since Cn is abelian, ρ(α) = ρ(
∏g̃

j=1[aj, bj]) = 1, which is impossible since ρ has

torsion free kernel.

2.5 Data set pairs and roots

By Theorem 2.3.4, each conjugacy class of a root of tC in Mod(F ) corresponds

to a compatible pair ([h1], [h2]) of (equivalence classes of) nestled actions, and by

Proposition 2.4.4, such a pair determines a pair (D1, D2) of data sets. To deter-

mine which pairs arise, we must replace the geometric compatibility condition in

Theorem 2.3.4 by an algebraic compatibility condition on the corresponding data

sets.

Definition 2.5.1. Two data sets D1 = (n1, g̃1, a1; (c11, x11), . . . , (c1ℓ, x1ℓ)) and

D2 = (n2, g̃2, a2; (c21, x21), . . . , (c2m, x2m)) are said to form a data set pair (D1, D2)

if

n

n1

k1 +
n

n2

k2 ≡ 1 mod n (2.3)

where n = lcm(n1, n2) and aiki ≡ 1 mod ni. Note that although the ki are only

defined modulo ni, the expressions
n
ni
ki are well-defined modulo n. The integer n

is called the degree of the data set pair and g = g1 + g2 is called the genus of the

data set pair. We consider (D1, D2) to be an unordered pair, that is, (D1, D2)

and (D2, D1) are equivalent as compatible pairs.

We can now reformulate Theorem 2.3.4 in terms of data sets.

Theorem 2.5.2. Let F = F1#CF2 be a closed oriented surface of genus g ≥ 2.

Then, data set pairs (D1, D2) of degree n and genus g, where D1 is a data set of

genus g1 and D2 is a data set of genus g2, correspond to the conjugacy classes in

Mod(F ) of roots of tC of degree n.
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Proof. Let h denote the conjugacy class of a root of tC of degree n with compat-

ible pair representation ([h1], [h2]). From Proposition 2.4.4, the hi correspond to

data sets Di = (ni, g̃i, ai; (ci1, xi1), . . . , (ciℓi , x1ℓi)). So it suffices to show that the

geometric condition θ(h1) + θ(h2) = 2π/n in Definition 2.3.2 is equivalent to the

condition n
n1
k1 +

n
n2
k2 ≡ 1 mod n in Definition 2.5.1.

As in the proof of Proposition 2.3.4, let Pi denote the center of the filling

disk of the subsurface F̃i of genus gi. Choosing Pi as the distinguished fixed

point of hi, we get that θ(hi) = 2πki/ni, where gcd(ki, ni) = 1 and aiki ≡

1 mod ni. Since hn = tC , the left-hand twisting angle along N is 2π/n, which

equals 2πk2/n2 − (−2πk1/n1) = 2π/n, giving n
n1
k1 + n

n2
k2 ≡ 1 mod n. The

converse is just a matter of reversing the argument.

Corollary 2.5.3. Suppose that F = F1#CF2. Then there always exists a root of

the Dehn twist tC about C of degree lcm(4g1, 4g2 + 2).

Proof. As in Theorem 2.5.2, let F̃i denote the subsurfaces obtained by cutting

F along C, and let Fi denote the surfaces obtained by adding disks to the Fi.

Let n1 = 4g1 and n2 = 4g2 + 2. From Example 2.4.6, for any residue class ai

modulo ni with gcd(ai, ni) = 1, the data set D1 = (n1, 0, a1; (−a1, 2g1), (a1, 4g1))

defines a nestled (n1, 2)-action on a surface F1 of genus g1, and the data set

D2 = (n2, 0, a2; (a2, 2), (a2g2, 2g2 + 1)) defines a nestled (n2, 2)-action on F2 of

genus g2.

Let ki denote the inverse of ai modulo ni and let n = lcm(n1, n2). We will

now show that the ai can be selected so that Equation 2.3 is satisfied. In other

words, this will prove that D1 and D2 form a data set pair (D1, D2). Since n
n1
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and n
n2

are relatively prime, there always exist integers p and q such that

n

n1

p+
n

n2

q = 1 .

In particular, since n
n1

and n
n2

are not both odd, by [16, Lemma 7.1], p and q

can be chosen so that gcd(p, n1) = gcd(q, n2) = 1. Let k1 be the residue class of

p modulo n1 and let k2 be the residue class of q modulo n2. Taking modulo n,

we get

n

n1

k1 +
n

n2

k2 ≡ 1 mod n .

Therefore, by Theorem 2.5.2, there exists a root of tC of order lcm(4g1, 4g2 +

2).

Corollary 2.5.4. Let F = F1#CF2 be a closed oriented surface of genus g ≥ 2.

Suppose that M denotes the maximum degree of a root of the Dehn twist tC about

C. Then 2g2 + 2g ≤ M .

Proof. If g is even, then Corollary 2.5.3 with g1 = g2 = g
2
gives a root of degree

lcm(2g, 2g+1) = 2g(2g+1). If g is odd, then g1 =
g+1
2

and g2 =
g−1
2

gives a root

of degree lcm(2(g + 1), 2g) ≥ 2g(g + 1).

2.6 Classification of roots for the closed orientable

surfaces of genus 2 and 3

2.6.1 Surface of genus 2

Let F denote the closed orientable surface of genus 2. Up to homeomorphism,

there is a unique curve C that separates F into two subsurfaces of genus 1.
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Given a root of tC , the process described in the proof of Theorem 2.5.2 produces

orientation-preserving Cni
actions on the tori Fi for i = 1, 2 with n = lcm(n1, n2).

If a cyclic group Cn acts faithfully on a surface F fixing a point x0, then the

map Cn −→ Aut(π1(F, x0)) is a monomorphism [2, Theorem 2, p.43]. We also

know that the group of orientation-preserving automorphisms Aut+(π1(Fi, x0)) ∼=

Aut+(Z × Z) ∼= SL(2,Z) ∼= Z4 ∗Z2 Z6. Since any element of finite order of an

amalgamated product A ∗C B is conjugate into one of the groups A or B [14], it

can only be of order 2, 3, 4 or 6. Taking the least common multiple of any two

of these orders gives 12 as the only other possibility for the order of a root of tC .

We summarize these inferences in the following corollary.

Corollary 2.6.1. Let F be the closed orientable surface of genus 2 and C a

separating curve in F . Then a root of a Dehn twist tC about C can only be of

degree 2, 3, 4, 6, or 12.

Given below are the data set pairs that represent each conjugacy class of

roots.

For n = 2:

(i) (D2,1,1, D1,1), where D2,1,1 = (2, 0, 1; (1, 2), (1, 2), (1, 2)).

For n = 3:

(i) (D3,1,1, D1,1), where D3,1,1 = (3, 0, 1; (1, 3), (1, 3)).

(ii) (D3,1,2, D3,1,2), where D3,1,2 = (3, 0, 2; (2, 3), (2, 3)).

For n = 4:

(i) (D4,1,1, D1,1), where D4,1,1 = (4, 0, 1; (1, 2), (1, 4)).

(ii) (D4,1,2, D2,1,1), where D4,1,2 = (4, 0, 3; (1, 2), (3, 4)).
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For n = 6:

(i) (D6,1,1, D1,1), where D6,1,1 = (6, 0, 1; (1, 2), (1, 3)).

(ii) (D6,1,2, D3,1,1), where D6,1,2 = (6, 0, 5; (1, 2), (2, 3)).

(iii) (D3,1,2, D2,1,1).

For n = 12:

(i) (D6,1,2, D4,1,1).

(ii) (D4,1,2, D3,1,1).

It can be shown using elementary calculations that these are the only possi-

ble roots for the various orders. For example, when n = 12, the condition

lcm(n1, n2) = 12 would imply that the set {n1, n2} can be either {6, 4} or {4, 3}.

When n1 = 6 and n2 = 4, the data set pair condition gives 2k1+3k2 ≡ 1 mod 12.

Since ki is a residue modulo ni, the only possible solution to this equation is

k1 = 5 and k2 = 1. This would imply that a1 = 5 and a2 = 1 since ai is the

inverse of ki modulo ni. Geometrically, this represents the root h of tC whose

twisting angle on one side is 2πk1/n1 = 5π/3 and on the other side of C is

2πk2/n2 = π/2. Each data set Di in the data set pair (D1, D2) is then uniquely

determined by condition (iii) (for data sets) and the formula for calculating the

genus gi. Similar calculations can be used to determine all the data set pairs for

the surface of genus 3.

2.6.2 Surface of genus 3

Up to homeomorphism, the surface of genus g = 3 has a unique curve that

separates the surface into two subsurfaces of genera 2 and 1.
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Given below are the data set pairs that represent roots of various degrees. For

n = 2:

(i) (D1,2, D2,1,1).

(ii) (D2,2,1, D1,1), where D2,2,1 = (2, 0, 1; (1, 2), (1, 2), (1, 2), (1, 2), (1, 2)).

(iii) (D2,2,2, D1,1), where D2,2,2 = (2, 1, 1; (1, 2)).

For n = 3:

(i) (D1,2, D3,1,1).

(ii) (D3,2,1, D1,1), where D3,2,1 = (3, 0, 1; (2, 3), (2, 3), (1, 3)).

(iii) (D3,2,2, D1,1), where D3,2,2 = (3, 0, 2; (1, 3), (1, 3), (2, 3)).

For n = 4:

(i) (D1,2, D4,1,1).

(ii) (D4,2,1, D1,1), where D4,2,1 = (4, 0, 1; (1, 2), (1, 2), (3, 4)).

(iii) (D4,2,2, D4,1,1), where D4,2,2 = (4, 0, 3; (1, 2), (1, 2), (2, 4)).

For n = 5:

(i) (D5,2,1, D1,1), where D5,2,1 = (5, 0, 1; (1, 5), (3, 5)).

(ii) (D5,2,2, D1,1), where D5,2,2 = (5, 0, 1; (2, 5), (2, 5)).

For n = 6:

(i) (D1,2, D6,1,2).

(ii) (D6,2,1, D1,1), where D6,2,1 = (6, 0, 1; (2, 3), (1, 6)).
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(iii) (D2,2,1, D3,1,2).

(iv) (D2,2,2, D3,1,2).

(v) (D3,2,2, D2,1,1).

(vi) (D3,2,1, D6,1,2).

(vii) (D6,2,2, D3,1,1), where D6,2,2 = (6, 0, 5; (1, 3), (5, 6)).

For n = 8:

(i) (D8,2,1, D1,1), where D8,2,1 = (8, 0, 1; (1, 2), (3, 8)).

(ii) (D8,2,2, D2,1,1), where D8,2,2 = (8, 0, 5; (1, 2), (7, 8)).

(iii) (D8,2,3, D4,1,1), where D8,2,3 = (8, 0, 7; (1, 2), (5, 8)).

(iv) (D8,2,4, D4,1,2), where D8,2,4 = (8, 0, 3; (1, 2), (1, 8)).

For n = 10:

(i) (D10,2,1, D1,1), where D10,2,1 = (10, 0, 1; (1, 2), (2, 5)).

(ii) (D5,2,3, D2,1,1), where D5,2,3 = (5, 0, 3; (1, 5), (1, 5)).

(iii) (D5,2,4, D2,1,1), where D5,2,4 = (5, 0, 3; (3, 5), (4, 5)).

For n = 12:

(i) (D4,2,2, D3,1,1).

(ii) (D3,2,1, D4,1,2).

(iii) (D4,2,1, D6,1,2).

(iv) (D6,2,2, D4,1,1).
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For n = 15:

(i) (D5,2,5, D3,1,2), where D5,2,5 = (5, 0, 3; (1, 5), (1, 5)).

(ii) (D5,2,6, D3,1,2), where D5,2,6 = (5, 0, 3; (3, 5), (4, 5)).

For n = 20:

(i) (D5,2,5, D4,1,1), where D5,2,5 = (5, 0, 4; (4, 5), (2, 5)).

(ii) (D5,2,6, D4,1,1), where D5,2,6 = (5, 0, 4; (3, 5), (3, 5)).

(iii) (D10,2,1, D4,1,2), where D10,2,1 = (10, 0, 7; (1, 2), (4, 5)).

For n = 24:

(i) (D8,2,4, D3,1,2).

(ii) (D8,2,3, D6,1,1).

For n = 30:

(i) (D10,2,2, D3,1,1), where D10,2,2 = (10, 0, 9; (1, 2), (3, 5)).

(ii) (D5,2,7, D6,1,2), where D5,2,7 = (5, 0, 1; (1, 5), (3, 5)).

(iii) (D5,2,8, D6,1,2), where D5,2,8 = (5, 0, 1; (2, 5), (2, 5)).

2.7 Spherical nestled actions

A spherical action is simply a nestled (n, ℓ)-action whose quotient orbifold is

topologically a sphere. We will show in Proposition 2.7.3 that nestled (n, ℓ)-

actions must be spherical when n is sufficiently large relative to g. This means

that in order to derive bounds on n, it suffices to restrict our attention to spherical
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actions. We will also derive several other results on spherical actions which we

will use in later sections.

Definition 2.7.1. A non-trivial nestled (n, ℓ)-action is said to be spherical if the

underlying manifold of its quotient orbifold is topologically a sphere.

Example 2.7.2. The actions in Examples 2.1 and 2.4.6 are spherical actions.

Proposition 2.7.3. If n > 2
3
(2g − 1), then every nestled (n, ℓ)-action on F is

spherical.

Proof. Let D = (n, g̃, a; (c1, x1), . . . , (cn, xℓ)) be the data set associated with a

nestled (n, ℓ)-action on F . Equation 2.2 gives

g̃ =
1

2
+

2g − 1

2n
− ℓ

2
+

1

2

ℓ∑
i=1

1

xi

, (2.4)

Each xi ≥ 2, and by Remark 2.4.8, we must have ℓ ≥ 1, so this becomes

g̃ ≤ 1

2
+

2g − 1

2n
− ℓ

4
≤ 1

4
+

2g − 1

2n
.

That is, g̃ ≥ 1 can hold only when n ≤ (4g − 2)/3.

Remark 2.7.4. There exists no spherical nestled (n, ℓ)-action with ℓ = 1. Sup-

pose we assume on the contrary that ℓ = 1. Then, Equation 2.1 would imply

that

1− 2g

n
=

1

x1

.

This is impossible since x1 > 0 and g ≥ 1.

Proposition 2.7.5. Suppose that a surface F of genus g has a spherical nestled

(n, ℓ)-action. Write the prime factorization of n as n = paq1
a1 · · · qkak where
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pa > qi
ai for each i ≥ 1, and write q for min{p, q1, . . . , qk}. If

n >
2g − 1

2− 2
q
− 1

pa

,

then ℓ = 2.

Proof. Each xi ≥ q, and by Proposition 2.4.2, at least one xi ≥ pa. Using

Equation 2.4 we have

0 =
1

2
+

2g − 1

2n
− ℓ

2
+

1

2

ℓ∑
i=1

1

xi

≤ 1

2
+

1

2pa
+

2g − 1

2n
− ℓ

2
+

ℓ− 1

2q

ℓ ≤ 1 +
q

(q − 1)pa
+

q

q − 1

(
2g − 1

n

)

The right-hand side of the latter inequality is less than 3 when the inequality in

the proposition holds. Therefore, by Remark 2.7.4, ℓ = 2.

Corollary 2.7.6. Suppose that a surface F of genus g has a spherical nestled

(n, ℓ)-action, ℓ ≥ 2.

(i) If n = 2, then ℓ = 2g + 1. In particular, there does not exist a spherical

nestled (2, 2)-action.

(ii) If n = 3, then ℓ = g + 1. There exists a spherical nestled (3, 2)-action if

and only if g = 1.

(iii) If n is even, n ≥ 4, and n > 4
3
(2g − 1), then ℓ = 2.

(iv) If n is odd, n ≥ 5, and n > 15
17
(2g − 1), then ℓ = 2.

Proof. For (i), an Euler characteristic calculation shows that ℓ = 2g + 1 when

n = 2. These are exactly the hyperelliptic actions.
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For (ii), when n = 3, an Euler characteristic calculation shows that ℓ = g+1,

and as seen in Section 2.6, there is a nestled (3, 2)-action on the torus.

For (iii), suppose first that n = 6. In Proposition 2.7.5 we have q = 2 and

pa = 3, giving the conclusion that if 6 > 3
2
(2g − 1), then ℓ = 2. The condition

6 > 3
2
(2g − 1) holds exactly when g ≤ 2, so (iii) is true in this case. One can

check that there exist nestled (6, 2)-actions exactly when g ≤ 2. For the cases of

(iii) other than n = 6, we have q = 2 and pa ≥ 4, and Proposition 2.7.5 gives the

result.

For (iv), we have q ≥ 3 and pa ≥ 5. Again Proposition 2.7.5 gives the

result.

2.8 Bounds on the degree of a root

In this section, we use Theorem 2.5.2 and the results derived in Section 2.7 to

derive some results on the degree n of a root. Among the results derived is an

upper bound and a stable upper bound for n.

Remark 2.8.1. It is a well known fact [7] that the maximum order for an auto-

morphism of a surface of genus g is 4g + 2. In Example 2.4.6, we showed that a

nestled action of order 4g + 2 always exists.

Proposition 2.8.2. There exists no nestled (4g + 1, ℓ)-action.

Proof. By Proposition 2.7.3, a nestled (4g+1, ℓ)-action must be spherical, and by

Proposition 2.7.5, ℓ = 2. Therefore, Equation 2.1 in the proof of Theorem 2.5.2

simplifies to give

2g + 2

4g + 1
=

1

x1

+
1

x2

.
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Without loss of generality, we may assume that x1 ≤ x2. Since xi | 4g + 1,

xi ≥ 3. If x1 = 3, then

x2 =
3(4g + 1)

2g + 5
= 3

(
2− 9

2g + 5

)
.

Since x2 = 3 is the only integer solution for x2, Proposition 2.4.2 would imply

that n = 3 which contradicts that fact that n = 4g+1. If x1 ≥ 4, then we would

have that

1

2
<

2 + 2g

4g + 1
=

1

x1

+
1

x2

≤ 1

2
,

which is not possible.

Proposition 2.8.3. Let F = F1#CF2 be a closed oriented surface of genus g ≥ 2.

Let (D1, D2) be a data set pair corresponding to a root of tC of degree n, and let

ni be the degree of Di for i = 1, 2. Then the ni cannot both satisfy ni ≡ 2 mod 4.

Proof. Suppose for contradiction that both ni satisfy ni ≡ 2 mod 4. Let ai denote

the a-value ofDi, and let ki denote the inverse of ai modulo ni. Since gcd(ki, ni) =

1, the ki must be odd. Also the fact that gcd(n1, n2) = 2k for some odd integer

k implies that n
ni

is odd. From Equation 2.3 for the data set pair (D1, D2), we

must have that

n

n1

k1 +
n

n2

k2 ≡ 1 mod n ,

which is impossible since n
n1
k1 +

n
n2
k2 and n are even.

Proposition 2.8.4. Let F = F1#CF2 be a closed oriented surface of genus g ≥ 2.

Suppose that M(g1, g2) denotes the maximum degree of a root of the Dehn twist

tC about C. Then M(g1, g2) ≤ 16g1g2 + 4(2g1 − g2)− 2.
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Proof. Let n be the order of a root of tC , given by a data set pair (D1, D2).

We have n = lcm(n1, n2), where ni is the degree of Di. By Remark 2.8.1, each

ni ≤ 4gi+2. By Proposition 2.8.2, neither ni = 4gi+1, and by Proposition 2.8.3,

we cannot have both n1 = 4g1 + 2 and n2 = 4g2 + 2. If both n1 = 4g1 and

n2 = 4g2, then lcm(n1, n2) = 4 lcm(g1, g2) ≤ 4g1g2 ≤ 16g1g2 + 4(2g1 − g2)− 2. In

general, since g1 ≥ g2, we have that M(g1, g2) ≤ max{(4g1 + 2)(4g2 − 1), (4g1 −

1)(4g2 + 2)} = 16g1g2 + 4(2g1 − g2)− 2.

Notation 2.8.5. We will denote the upper bound 16g1g2+4(2g1−g2)−2 derived

in Proposition 2.8.4 by U(g1, g2).

Theorem 2.8.6. Let F = F1#CF2 be a closed oriented surface of genus g ≥ 2.

Suppose that n denotes the degree of a root of the Dehn twist tC about C. Then

n ≤ 4g2 + 2g.

Proof. Since g2 = g − g1, we have that 16g1g2 + 4(2g1 − g2) − 2 = −16g21 +

g1(16g + 12) − (4g + 2), which has its maximum when g1 = 1
8
(4g + 3). The

fact that g1 is an integer implies that when g is even, g1 = g2 = g/2, and when

g is odd, g1 = (g + 1)/2 and g2 = (g − 1)/2. So Proposition 2.8.4 tells us

that when g is even, n ≤ M(g/2, g/2) ≤ 4g2 + 2g − 2, and when g is even,

n ≤ M((g + 1)/2, (g − 1)/2) ≤ 4g2 + 2g.

Notation 2.8.7. We will denote the upper bound 4g2 + 2g derived in Theo-

rem 2.8.6 by U(g).

For 2 ≤ g ≤ 35, Table 1 gives the realizable maximum degrees of root, m(g)

(coming from compatible pairs of spherical nestled (n, 2)-actions) and the upper

bound U(g). The last column gives the ratio m(g)/U(g). These computations

were made using software [20] written for the GAP programming language.
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g m(g) U(g) m(g)/U(g)
2 12 20 0.60
3 30 42 0.71
4 42 72 0.58
5 90 110 0.81
6 126 156 0.81
7 210 210 1.00
8 240 272 0.88
9 330 342 0.96
10 390 420 0.93
11 462 506 0.91
12 546 600 0.91
13 570 702 0.81
14 714 812 0.88
15 798 930 0.86
16 858 1056 0.81
17 966 1190 0.81
18 1122 1332 0.84
19 1254 1482 0.85
20 1326 1640 0.81
21 1518 1806 0.84
22 1650 1980 0.83
23 1794 2162 0.83
24 1950 2352 0.83
25 2046 2550 0.80
26 2262 2756 0.82
27 2418 2970 0.81
28 2550 3192 0.80
29 2730 3422 0.80
30 2958 3660 0.81
31 3162 3906 0.81
32 3306 4160 0.79
33 3570 4422 0.81
34 3774 4692 0.80
35 3990 4970 0.80

Table 2.1: The data seems to indicate that for large genera the ratio m(g)/U(g)
stabilizes to the 0.79-0.82 range.
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Proposition 2.8.8. Suppose that we have a spherical nestled (n, ℓ)-action on a

surface F of genus g, where n is a positive odd integer. Then n ≤ 3g + 3.

Proof. From Remark 2.7.4, we have that ℓ ̸= 1. When ℓ ≥ 2, the proposition

follows from Corollary 2.7.6. Let D = (n, 0, a; (c1, x1), (c2, x2)) be a data set for

the nestled (n, 2)-action on F . Since n is odd and xi | n, we have that xi ≥ 3.

If x1 ≥ 3, then Remark 2.4.2 implies that x2 ≥ n
3
. So Equation 2.2 gives the

inequality

1− 2g

n
≤ −1 +

1

3
+

3

n
,

which upon simplification gives n ≤ 3g + 3.

Corollary 2.8.9. Suppose that we have a spherical nestled (4g−N, 2)-action on

a F of genus g, where N is a positive odd integer. Then g ≤ N + 3.

Theorem 2.8.10. Let F = F1#CF2 be a closed oriented surface of genus g ≥ 2.

Suppose that M(g1, g2) denotes the maximum order of a root of the Dehn twist

tC about C. Then given a positive odd integer N , we have that M(g1, g2) ≤

16g1g2 + 4(2g1 −Ng2)− 2N whenever both gi > N + 3.

Proof. By Remark 2.8.1, each ni ≤ 4gi+2. From Propositions 2.8.2 and 2.8.3, we

know that ni ̸= 4gi+1 and that ni cannot both be 4gi+2. Suppose that the ni are

not both even. If ℓi > 2, then from Corollary 2.7.6 we have that ni ≤ 15
17
(2gi− 1).

If ℓi = 2, then Corollary 2.8.9 tells us that for all gi > N + 3, there exists

no spherical nestled (4gi − N, 2)-action on F . In particular, if gi > N + 3,

then from Proposition 2.7.3, ni ≤ 2
3
(2gi − 1) ≤ 15

17
(2gi − 1). So for all ℓ, if

gi > N + 3, then ni ≤ 15
17
(2gi − 1). We can see that 15

17
(2gi − 1) ≤ 4gi − N

whenever gi ≥ 1
38
(17N−15). Therefore, if gi > max{N+3, 1

38
(17N−15)} = N+3,

then we have that M(g1, g2) ≤ max{(4g1 − N)(4g2 + 2), (4g1 + 2)(4g2 − N)} =
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16g1g2 + 4max{(2g1 −Ng2), (2g2 −Ng1)} − 2N = 16g1g2 + 4(2g1 −Ng2)− 2N .

Suppose that both the ni are even. Then from Propositions 2.8.2 and 2.8.3,

we have that M(g1, g2) ≤ lcm(4g1 + 2, 4g2) ≤ 8g1g2 + 4g2. We need to show that

8g1g2 + 4g2 ≤ 16g1g2 + 4(2g1 −Ng2)− 2N . Since g1 > N + 3, (16g1g2 + 4(2g1 −

Ng2) − 2N) − (8g1g2 + 4g2) = 8g1g2 + 8g1 − 4(N + 1)g2 − 2N > 8g1g2 + 8g1 +

4(g1 − 2)g2 + 2(g1 − 3) = 12g1g2 + 10g1 − 8g2 − 6 > 0.

Notation 2.8.11. We will denote the upper bound 16g1g2 + 4(2g1 −Ng2)− 2N

derived in Theorem 2.8.10 by U(g1, g2, N).

Example 2.8.12. When N = 11, if both gi > 14, then from Theorem 2.8.10,

M(g1, g2) ≤ U(g1, g2, 11) = 16g1g2 + 4(2g1 − 11g2)− 22. For genera pairs (g1, g2)

with 30 ≤ g1 + g2 ≤ 35, Table 2 gives the values of the realizable maximum

degree m(g1, g2) (coming from compatible spherical nestled (n, 2)-actions), the

upper bound U(g1, g2) (derived in Proposition 2.8.4), and the stable upper bound

U(g1, g2, N).
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g (g1, g2) m(g1, g2) U(g1, g2, 11) U(g1, g2)
30 (15, 15) 2790 3038 3658
31 (16, 15) 3162 3286 3906
32 (16, 16) 3264 3498 4158
32 (17, 15) 3162 3534 4154
33 (17, 16) 3570 3762 4422
33 (18, 15) 3534 3782 4402
34 (17, 17) 3570 3990 4690
34 (18, 16) 3774 4026 4686
34 (19, 15) 3534 4030 4650
35 (18, 17) 3990 4270 4970
35 (19, 16) 3876 4290 4950
35 (20, 15) 3690 4278 4898

Table 2.2: For N = 11, this data illustrates the stable bound U(g1, g2, 11) and
the upper bound U(g1, g2). When g = 32, we can see that both U(16, 16, 11) and
U(17, 15, 11) are significantly closer to m(32) = 3306 when compared with U(32).
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