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Chapter 1

Introduction

1.1 History of Filling Functions

This thesis contains results concerning Isoperimetric Inequalities of finitely pre-

sented groups. The complexity of the word problem has been the core of research

for several Geometric Group Theorists for more than a hundred years now. In

the 1910’s Dehn realized that the problems with which he was trying to under-

stand low-dimensional manifolds were examples of more general group-theoretic

problems. In 1912 he proposed the three decision problems namely, the Word

Problem, the Conjugacy Problem and the Isomorphism Problem in his famous

paper [16]. In spite of his findings about the link between geometry and group

theory, the connection between these two fields did not appear in the research of

topologists until the 1960’s when Roger Lyndon rediscovered the paper’s main

idea, where Dehn had used planar diagrams to study word problems. At the

same time Weinbaum found E. van Kampen’s work where the latter used planar

2-complexes or diagrams (now known as van Kampen diagrams) to study finitely

presented groups. Later on in the 1980’s and 1990’s it was due to Gromov ([22]
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and [23]) that the precise equivalence between filling functions of manifolds and

complexity functions for word problems came to light.

The origin of the quest to find a link between topology and combinatorial

group theory can be traced back to Belgian physicist Plateau’s (1873, [32]) clas-

sical question whether every rectifiable Jordan loop in every 3-dimensional Eu-

clidean space bounds a disc of minimal area. Since then geometers and topologists

have been investigating various ways to obtain efficient fillings of spheres by min-

imal volume balls. Thanks to the efforts of Dehn [16] and Gromov [21] we now

know that there is an intimate connection between this classical geometric prob-

lem and group theory. Various other results on Dehn functions can be found

in papers by McCammond [27], Ol’shanskĭı [30] and Rips [33]. The most signifi-

cant development in this area has been Gromov’s introduction of word hyperbolic

groups.

Important results in the area of Dehn functions using different techniques also

appear in the pair of following papers, the first in 1997 (published in 2002) by

Sapir, Birget and Rips ([35]) and the second in 2002 by Birget, Ol’shanskĭı, Yu,

Rips and Sapir, ([5]). They showed that there exists a close connection between

Dehn functions and complexity functions of Turing machines. One of their main

results said that the Dehn function of a finitely presented group is equivalent

to the time function of a two-tape Turing machine. More of this history and

background on isoperimetric inequalities can be found in the paper by Bridson

in [13].

Since the 1990’s topologists have been interested in Dehn functions in higher

dimensions. Gromov [23], Epstein et al.[17], first introduced the higher order

Dehn functions and Alonso et al. [3] and Bridson [11] produced the first few

results in the context of these functions. In this thesis we have results on second
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order Dehn functions for lattices of the 3-dimensional Nil and Sol geometries.

1.2 Goal of this thesis

In the main theorems of this thesis we provide upper and lower bounds of the

second order Dehn functions for 3-dimensional groups Nil and Sol.

Theorem 1.1 (A. Mukherjee). The second order Dehn function (denoted by δ(2))

of the lattices in the Nil geometry is given by δ(2)(n) ∼ n
4

3 .

In other words, second order Dehn function of the groups Z2 ⋊φ Z, where φ has

eigenvalues ±1 and has infinite order, is given by, δ(2)(n) ∼ n
4

3 .

Theorem 1.2 (A. Mukherjee). The second order Dehn function (denoted by δ(2))

of the lattices of the 3-dimensional geometry Sol is given by δ(2)(n) ∼ n ln(n).

In other words, that the second order Dehn functions for the groups Z2 ⋊φ Z,

where the eigenvalues of φ are not ±1, δ(2)(n) ∼ n ln(n).

1.3 Overview of proof of the main theorems

The main goal of this thesis is to obtain upper and lower bounds of second order

Dehn function in case of groups mentioned in the theorems above.

We will show that δ(2)(n) � n
4

3 for the lattices in the Nil geometry and

δ(2)(n) � n ln(n) in case of lattices in the Sol geometry. To establish a lower

bound in each of these cases, we will exhibit a sequence of embedded 3-balls and

their boundary 2-spheres such that the volume growth of the 3-balls is as large

as possible relative to the growth of boundary area.

Next, in order to obtain upper bounds, we start with a reduced, transverse

diagram f : (D3, S2) → K, where D3 is a 3-ball, S2 is its boundary sphere and K
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is the 3-dimensional ambient space. We then define a dual Cayley graph Γ in the

ambient space K where each vertex of Γ is a 3-cell in K and each edge is a 2-cell

common to two adjacent 3-cells. Now, we consider a finite subset of vertices D of

Γ corresponding to the 0-handles of the diagram mapped into K and we define an

integer-valued function φD : Γ(0) → Z+ with finite support i.e, φD(α) = number

of pre-images of α in (D3, S2) for all α ∈ D, otherwise φD(α) = 0. This leads us

to the fact that the volume of the 3-ballD3 and ||φD|| =
∑

σ∈D

φD(σ) are equal. The

boundary of D according to Varopoulos is ∂VD = {τ : τ is a face of two 3-cells,

σi, σj;φD(σi) 6= φD(σj)}, next we define ‖ ∇φD ‖=
∑

τ∈∂V D

|φD(t(τ)) − φD(i(τ))|,

where i, t are functions which determine the initial and terminal vertices of an

edge in Γ. This function gives the number of edges in the boundary ∂VD. In fact,

we can show that ‖ ∇φD ‖≤ V ol2(S2). Therefore the problem of upper bound

reduces to an inequality involving ||φD|| and ‖ ∇φD ‖ provided V ol3(D3) = ||φD||

and V ol2(S2) ≥ ||∇φD||.

Finally, we show that ||φD|| ≤ ||∇φD||
4

3 for the lattices in the 3-dimensional

geometry Nil and ||φD|| ≤ ||∇φD|| ln(||∇φD||) for the lattices in the 3-dimensional

geometry Sol using a variation the Varopoulos transport argument.

1.4 Organization of the Thesis

This thesis is organized as follows, in the second chapter we introduce ordinary

Dehn functions as well as higher order Dehn functions and discuss results involv-

ing higher order Dehn functions.

In the third chapter we give a survey of generalized handle body diagrams

in 2 and 3-dimensions which can be thought of as higher dimensional analogs of

van Kampen diagrams. We use transverse maps for this and the main result here
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is to show that a reduced diagram can be obtained from an unreduced diagram

without changing the map on the boundary. Reduced diagrams are a key to

obtaining upper bounds for second order Dehn function.

The fourth chapter introduces the structure of the 3-manifolds which are

torus bundles over the circle. We then describe the cell decomposition of the

torus bundles and introduce the notion of dual graphs in the cell decomposition.

Finally we focus on the main examples of this thesis which are lattices in the

3-dimensional geometries Nil and Sol and obtain the lower bounds of the second

order Dehn function in both these cases.

The main result in the fifth chapter is that the isoperimetric inequality involv-

ing V ol3(D3) and V ol2(S2) reduces to an inequality between ||φD|| and ||∇φD||.

We do this by defining a dual graph in the ambient space.

In the sixth chapter we use the Varopoulos transport argument to obtain the

upper bounds of second order Dehn functions in case of both Nil and Sol.
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Chapter 2

Basic Notions on Dehn Functions

In this section we introduce some basic definitions on ordinary and higher dimen-

sional Dehn functions. We also present a short survey of results involving higher

dimensional later in the chapter. The definitions were primarily taken from [13]

and [6].

2.1 Dehn Functions

Definition 2.1. (Dehn function). Let P = 〈A | R〉 be the finite presentation of

a group G, where A denotes the set of generators and R denotes the set of all

relators.

We can define the Dehn function of P in the following way: ([13])

Given a word w = 1 in generators A±1,

Area(w) = min{Nw ∈ N : ∃ an equality w =
Nw∏

i=1

xirix
−1
i ; xi ∈ F (A) and ri ∈ R},

here F (A) denotes the free group on the generating set A.

The Dehn function of P is δP(n) = max{Area(w) : |w| ≤ n}.

Example 2.2. The group of integers Z can be expressed as the finite presentation
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〈a | 〉, so the Dehn function for this presentation is δ(n) ≡ 0. If we use the

finite presentation 〈a, b | b 〉 for Z, δ(n) = n. In fact, for any positive integer

k, there is a presentation of Z which has a Dehn function kn. For example,

given the presentation 〈a, b, c | a, ab−1〉 , the Dehn function is δ(n) = 2n, next,

given a positive integer k, the Dehn function for 〈a1, a2, ..., ak, t | a1, aia
−1
i+1; i =

1, 2, .., k − 1〉 is given by, δ(n) = kn.

Thus this example where different presentations of the same group gives rise

to different Dehn functions, raises the question of equivalence in Dehn functions.

Definition 2.3. (Equivalent Functions). Two functions f, g : [0,∞) → [0,∞)

are said to be ∼ equivalent if f � g and g � f , where f � g means that there

exists a constant C > 0 such that f(x) ≤ Cg(Cx) + Cx, for all x ≥ 0, (and

modulo this equivalence relation it therefore makes sense to talk of “the” Dehn

function of a finitely presented group). This equivalence is called coarse Lipschitz

equivalence.

Proposition 2.4 (Gersten, [19]). If the groups defined by two finite presentations

are isomorphic, the Dehn functions of those presentations are ∼ equivalent.

More generally, Alonso ([4]) showed that the Dehn functions of two quasi

isometric groups are equivalent.

Dehn Function vs Isoperimetric Function

Definition 2.5. (Isoperimetric Function of a Group). A function f : N → N is

an isoperimetric function for a group G if the Dehn function δP � f for some

(and hence any) finite presentation P of G.
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Given a smooth, closed, Riemannian manifold M , in the rest of this section

we shall describe the isoperimetric function of M and discuss its relationship with

the Dehn function of the fundamental group π1(M) of M .

Let c : S1 →M be a null-homotopic, rectifiable loop and define FArea(c) to

be the infimum of the areas of all Lipschitz maps g : D2 → X such that g|∂D2 is

a reparametrization of c.

Note that the notion of area used here is the same as that of area in spaces

introduced by Alexandrov [1]. The basic idea is to define the area of a surface (or

area of a map g : D2 → X) to be the limiting area of approximating polyhedral

surfaces built out of Euclidean triangles.

Note 2.6. Given two metric spaces (X, dX) and (Y, dY ), where dX denotes the

metric on the set X and dY is the metric on set Y (for example, Y might be the

set of real numbers R with the metric dY (x, y) = |x−y|, and X might be a subset

of R), a function f : X → Y is called Lipschitz continuous if there exists a real

constant K ≥ 0 such that, for all x1 and x2 in X, if dY (f(x1, x2)) ≤ KdX(x1, x2).

The smallest such K is called the Lipschitz constant of the function.

Definition 2.7. (Isoperimetric or Filling function) Let M be a smooth, com-

plete, Riemannian manifold. The genus zero, 2-dimensional, isoperimetric func-

tion of M is the function [0,∞) → [0,∞) defined by,

FillM0 (l) := sup{FArea(c) | c : S1 → M null-homotopic, length(c) ≤ l}.

The Filling Theorem provides an equivalence between Dehn function and the

Filling function defined above.

Theorem 2.8 (Filling Theorem, Gromov [21], Bridson, [13]). The genus zero,

2-dimensional isoperimetric function FillM0 of any smooth, closed, Riemannian

8



manifold M is ∼ equivalent to the Dehn function δπ1M of the fundamental group

of M .

Example 2.9. Here are a few examples of manifolds and their Dehn functions.

1. The Dehn function of the fundamental group of a compact 2-manifold is

linear except for the torus and the Klein bottle when it is quadratic.

2. The groups that interest us are fundamental groups of 3-manifolds and the

Dehn functions of these groups can be characterized using the following

theorem by Epstein and Thurston.

Let M be a compact 3-manifold such that it satisfies Thurston’s geometri-

sation conjecture ([38]).

The Dehn function of π1(M) is linear, quadratic, cubic or exponential. It

is linear if and only if π1(M) does not contain Z2. It is quadratic if and

only if π1(M) contains Z2 but does not contain a subgroup Z2 ⋊φ Z with

φ ∈ GL(2,Z) of infinite order. Subgroups Z2 ⋊φ Z arise only if a finite-

sheeted covering of M has a connected summand that is a torus bundle

over the circle, and the Dehn function of π1(M) is cubic only if each such

summand is a quotient of the Heisenberg group.

2.1.1 Geometric Interpretation of the Dehn function.

The connection between maps of discs filling loops in CW complexes (or in other

words a geometric interpretation of the Dehn function defined above) and the

algebraic method of reducing words can be explained by any one of the following,

• van Kampen diagrams,

• pictures and,

9



• Handle body diagrams.

1. van Kampen diagram.

Definition 2.10. (van Kampen diagram, [9]). Given a finite presentation

P = 〈A | R〉 of a group, let Cay2(P) denote the Cayley 2-complex corre-

sponding to P (the Cayley 2-complex is the universal cover of the presen-

tation 2-complex of P which has the Cayley graph as its 1-skeleton). A van

Kampen diagram for a word w ∈ F(A) such that w = 1, is a combinatorial

map π : △ → Cay2(P), where △ is a connected, simply connected, planar

2-complex and the word around the boundary of △, (starting from a base

vertex), reads w.

The planar 2-complex △ in the definition above is referred to as the van

Kampen diagram for w over the presentation P.

van Kampen’s lemma provides a necessary and sufficient condition for the

existence of a van Kampen diagram.

Lemma 2.11 (van Kampen’s Lemma, [26]). Given a finite presentation

P = 〈A | R〉 of a group Γ, let w be a word in F(A).

• w = 1 in P if and only if there exists a van Kampen diagram for w

over P.

• Moreover, if w = 1 in Γ then, Area(w) = min { Area (△) | △ is a

van Kampen diagram for w over P}, where Area(△) is the number of

2-cells in △.

2. Pictures.
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Definition 2.12. (Pictures, [9]) Consider the presentation P = 〈A | R〉,

the standard complex K2(P) and w ∈ 〈〈P〉〉 (the normal closure of R).

Then w defines a path γw in the 1-skeleton K2(P)(1) which is null-homotopic

in K2(P). This means that there is a map f : (D, ∂D) → (K2(P),K2(P)(1))

such that f |∂D = γw. The picture corresponding to f is the disc D together

with the collection of subdisks (or “fat vertices”) Vi and the embedded loops

and arcs. Each arc and loop is transversely oriented and labeled by some

a ∈ A, inducing labels ri on the boundary of each Vi, and a label w on ∂D,

when read from appropriate points, and in an appropriate direction.

The pictures are dual to the van Kampen diagrams in the sense that each

compact region (interior of a 2-cell) in the diagram is a subdisk, dual to

each edge separating any two faces in the diagram we insert an arc joining

the two adjacent subdisks. Finally we label and transversely orient these

arcs according to the orientations of the original edges in the diagram.

3. Handle body diagrams.

Definition 2.13. (i-Handle, [14]) An index i-handle is written as H i =

Σi×Dn−i, where Σi is a connected i-manifold (we will consider Σi = Di in

all our examples) and Dn−i is a (n− i) closed disk.

Definition 2.14. (Generalized handle decomposition or Handlebody dia-

grams, [14]) A handle decomposition of an n-manifold M is a representa-

tion of the manifold as a filtration M0 ⊂ M1 ⊂ ..... ⊂ M where each Mi is

obtained from Mi−1 by attaching finitely many i-handles.

Note that handle decompositions are never unique. A detailed discussion

on handle body diagrams is provided in Section 3. This technique proves to
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be most efficient when used to geometrically interpret higher dimensional

Dehn functions discussed below.

The following example provides an illustration of the diagrams and pictures men-

tioned above and helps bring out the relation between the three.

Example 2.15. The following Figure (2.1) is an illustration of all the three

diagrams and pictures mentioned above.

Part (i) is the handle body diagram, the numbers in the figure are labels of 0,

1 or 2-handles. The 0-handles are 2n-sided polyhedral 2-discs where n denotes

the number of sides of 2-cells in the van Kampen diagram, (ii), in this example

the 2-cells are either triangular or quadrilateral, so this means the 0-handles are

hexagonal or octagonal discs and each 0-handle corresponds to each 2-cell in the

diagram. A 1-handle is homeomorphic to a rectangle (= I × I) which has two

0-handles glued to {0} × I and {1} × I or in some cases one 0-handle glued to

one side while the other side goes to the boundary.

Part (ii) in the figure is the van Kampen diagram with boundary word reading

abcdefgh, part (iii) is the picture obtained in the following way from the van

Kampen diagram. The subdisks in the picture (iii) are dual to the faces in (ii),

the arcs joining the subdisks are transverse to the edges in the van Kampen

diagram and the labels and orientations transverse to the arcs correspond to the

labels in (ii) .

The map φ from the handle-body diagram to the van Kampen diagram is the

2-handle collapse to vertices together with the (horizontal) 1-handle collapse to

edges.

The other map ϕ on the other hand goes from the handle-body diagram to

the picture which is a (vertical) 1-handle collapse to the arcs. Hence the labels

12
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Figure 2.1: (i) Handle body diagram, (ii) van Kampen diagram, and (iii) corre-
sponding Picture
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a, b, c etc. in the 1-handles of (iii), become transverse orientations on the arcs of

the picture (ii).

2.2 Higher dimensional Dehn functions

2.2.1 Definitions and notations

Epstein et al. [17] and Gromov [23] first introduced higher dimensional Dehn

functions at about the same time. However later, Alonso et al. [3] and Bridson

[11] provided equivalent definitions which were different from the two mentioned

above. In the discussion on higher dimensional Dehn functions presented here we

will be using Brady et al ’s ([6]) definition which is based on the prior definitions

given by Bridson and Alonso et al. Before we introduce higher dimensional Dehn

functions we note the definition of groups of type Fn. We also explain below the

reason groups of this type are important in the discussion of higher dimensional

Dehn functions.

Definition 2.16. (Eilenberg-Maclane complex, [12]) The Eilenberg-Maclane com-

plex (or classifying space) K(Γ, 1) for a group Γ is a CW complex with funda-

mental group Γ and contractible universal cover. Such a complex always exists

and its homotopy type depends only on Γ.

Definition 2.17. (Finiteness property Fn, [40]) A group Γ is said to be of type

Fn if it has an Eilenberg-Maclane complex K(Γ, 1) with finite n-skeleton. Clearly

a group is of type F1 if and only if it is finitely generated and of type F2 if and

only if it is finitely presented.

Note 2.18. It is necessary to consider finite presentation of the groups in the

context of Dehn functions since, if we have an infinite presentation the Dehn
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function turns out to be rather uninteresting and in some extreme cases even a

constant.

For example, let 1 → N(G) → FA → G → 1 be a short exact sequence for a

group G, where FA is a free group on a generating set A for G and N(G) the

normal closure of G. Now if we consider the infinite presentation 〈A |N(G)〉,

then the Dehn function δ(x) =max{Area(w) | w is a word in G, |w| ≤ x} = 1, a

constant function, for all x.

Intuitively, the k-dimensional Dehn function, k ≥ 1 , is the function δ(k) :

N → N defined for any group G which is of type Fk+1 and δ(k)(n) measures

the number of (k + 1)-cells that is needed to fill any singular k-sphere in the

classifying space K(G, 1), comprised of at most n k-cells. Up to equivalence the

higher dimensional Dehn functions of groups are quasi-isometry invariants.

The following part of this section is devoted to the technical definition of

higher dimensional Dehn function given by Brady et al., ([6]).

Notation 2.19. Henceforth we will denote an n-dimensional disc (or ball) by

Dn and an n-dimensional sphere by Sn.

Definition 2.20. (Admissible maps) Let W be a compact k-dimensional man-

ifold and X a CW complex, an admissible map is a continuous map f : W →

X(k) ⊂ X such that f−1(X(k) −X(k−1)) is a disjoint union of open k-dimensional

balls, each mapped by f homeomorphically onto a k-cell of X.

Definition 2.21. (Volume of f) If f : W → X is admissible we define the volume

of f , denoted by V olk(f), to be the number of open k-balls in W mapping to

k-cells of X.

Given a group G of type Fk+1, fix an aspherical CW complex X with fun-

damental group G and finite (k + 1)-skeleton. Let X̃ be the universal cover of
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X. If f : Sk → X̃ is an admissible map, define the filling volume of f to be the

minimal volume of an extension of f to Dk+1 in the following way,

FVol(f) = min{V olk+1(g) | g : Dk+1 → X̃, g|∂Dk+1 = f},

then, k−dimensional Dehn function of X is

δ(k)(n) = sup{ FVol(f) | f : Sk → X̃, V olk(f) ≤ n}.

Remark 2.22. Here are a few observations regarding higher dimensional Dehn

functions,

1. Up to equivalence, δ(k)(n) is a quasi-isometry invariant.

2. In the above definitions it is possible to useX in place of X̃ since f : Sk → X

(or f : Dk+1 → X) and their lifts to X̃ have the same volume.

All the groups discussed in this thesis is at most 3-dimensional so we will

restrict k in the above definitions such that k ≤ 2.

The following are examples of second order Dehn functions.

Example 2.23. (Examples of groups and their second-order Dehn functions):

1. By definition,the second order Dehn function of a 2-complex with con-

tractible universal cover is linear.

2. The second order Dehn function of any group of every (word) hyperbolic

group H is linear and so is the direct product of H with any finitely gen-

erated free group, both these results were established by Alonso et al. in

[2].

3. The following is a result by Bridson on the second order Dehn function of

HNN extensions.
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Theorem 2.24 (M. Bridson, [11]). (a) The second order Dehn function

of any HNN extension of Z2 with finitely many stable letters is � n2.

(b) The second order Dehn function of any HNN extension of Z3 with

finitely many stable letters is � n3, provided that the amalgamated

subgroups are all of infinite index in Z3.( Note that here � means up

to a coarse Lipschitz equivalence.)

4. The second order Dehn function of any finitely generated abelian group

with torsion-free rank greater that two is ∼ n3/2, e.g, Z3 ([41]).

2.2.2 Results involving higher dimensional Dehn functions

Over the last decade there has been a considerable research that has led to a bet-

ter understanding of higher dimensional Dehn functions. We start with the paper

by Alonso et al. ([3]) where they talk about higher dimensional volume and fill-

ing volume of CW complexes and also discuss the link between Dehn functions of

complexes and Dehn functions of groups. One of the important results proved by

them is that if two k-connected combinatorial complexes admit discrete cocom-

pact group actions and are quasi-isometric then their higher dimensional Dehn

functions are equivalent. They use pictures which are dual to higher dimensional

analogs to van Kampen diagrams in order to prove the results in this paper.

In another 1999 paper Wang and Pride ([42]) provided upper and lower bounds

for second-order Dehn functions of HNN extensions, and then they use this to

establish the existence of superquadratic second order Dehn functions. They show

that for any positive integer r, there is a group Gr such that δ
(2)
Gr

lies between

n
r
2
+1 and nr+1.

In 2000, N. Brady and M. Bridson [7] had proved the following theorem on
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the isoperimetric spectrum of second order Dehn functions. The k-dimensional

isoperimetric spectrum (k ≥ 1) is given by,

IP (k) = {α ∈ [1,∞) | f(x) = xα is equivalent to a k-dimensional Dehn

function}.

Theorem 2.25 (N. Brady and M. Bridson, [7]). For each pair of positive integers,

p ≥ q,there exists a finitely presented group whose second order Dehn function

∼ n2− 1

α , where α = 2 log2(2p/q). In particular, the spectrum of exponents of

second order Dehn functions is dense in [3/2, 2].

In 2002 Wang published the article ([41]) where he provided upper and lower

bounds of second-order Dehn functions of some split extensions of the form

Z2 ⋊φ Z. He used spherical pictures of second homotopy module of the group

presentations in order to obtain the bounds. The main result of Wang’s 2002

paper is given below:

Theorem 2.26 (X. Wang, [41]). Denote the second order Dehn function of the

split extensions Z2 ⋊φ Z by δ
(2)

Z2⋊φZ
.

1. If φ has finite order, then δ
(2)

Z2⋊φZ
∼ n

3

2 .

2. If φ has eigenvalues ±1 and has infinite order, then n
4

3 � δ
(2)
Z2⋊φZ

� n
3

2 .

3. If the eigenvalues of φ are not ±1, then δ
(2)

Z2⋊φZ
� nln(n).

Remark 2.27. In 1983 Pansu [31] provides a proof for isoperimetric inequalities

for 3-dimensional Heisenberg group i.e, the group (ii) above, in the case where

φ ∈ SL2(Z) is represented by




1 1

0 1


. Here is the main theorem of the paper.
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Let G be the 3-dimensional Heisenberg group i.e, the group of upper triangular ma-

trices




1 α β

0 1 γ

0 0 1




, where α, β, γ are real entries. Let g be a left invariant metric

on G. Then, for any domain D ⊂ G, one has vol(D) ≤ const(g) vol(∂D)4/3.

But a geometric interpretation of Pansu’s proof in the context of higher dimen-

sional Dehn functions mentioned in the previous section implies that the isoperi-

metric inequality given in the theorem above holds only for embedded balls and

spheres .

In [41], Wang refers to the Coulhon and Saloff-Coste paper [15] for the upper

bound in part (iii), but again the results of [15] holds in the case of embedded

balls and spheres.

So the following is a natural question and the main purpose of this research

was to investigate it thoroughly.

Problem 2.28. Show that the second-order Dehn functions for groups mentioned

in Wang’s result above are the following:

For part (ii), δ
(2)

Z2⋊φZ
∼ n

4

3

For part (iii), δ
(2)
Z2⋊φZ

∼ nln(n).

More recently in 2005, Brady, Bridson, Forester and Shankar, ([6]), proved

a number of results on k-dimensional isoperimetric spectrum. One of the main

results of the paper is mentioned below. This result is obtained by investigating

higher dimensional Dehn functions of products G× Z.

Theorem 2.29 (Brady, Bridson, Forester and Shankar, [6]). Let IP (k) be the

k-isoperimetric spectrum defined above, then Q ∩ [(k + 1)/k,∞) ⊂ IP (k).
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The paper by Brady and Forester, ([8]) on the density of isoperimetric spectra

is the latest in the list of articles in this fast developing area of geometric group

theory. The examples they discuss here are similar to one of the examples in

this thesis, namely Sol but the matrices corresponding to the groups here have

determinant > 1. The main result of this article is,

Theorem 2.30 (Brady and Forester, [8]). IP (k) is dense in [1,∞) for k ≥ 2.

As seen in this chapter, there has been a lot of research where higher dimen-

sional Dehn functions are concerned since the 1990’s. Over the years geometric

group theorists have provided answers to old questions using machinery that

suitably fits the context of the problems. In this thesis we will provide solu-

tions to two well known problems on second order Dehn functions using a version

of Varopoulos transport argument and handle body diagrams by Buoncristiano,

Rourke and Sanderson.
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Chapter 3

Transverse Maps, Handle

Decompositions and Reduced

Diagrams

In this chapter we will discuss generalized handle decompositions which will help

us compute upper bounds for higher dimensional Dehn functions in specific cases

later in the thesis.

3.1 Background on Handle Decompositions

Any compact, smooth or piecewise linear manifold, admits a handle decomposi-

tion ([28], [34]), also each handle decomposition can be made proper (see details

in [34]). In 1961 S. Smale [36], established the existence of exact handle decom-

positions of simply connected and cobordisms of dimensionality n ≥ 6. In the

former paper by Smale he defines the handlebodies, the elements of H(n, k, s) in

the following way, if H ∈ H(n, k, s), then H is defined by attaching k number of
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s-discs, to an n-disc and thickening them. Then, he proved a number of results

on handle decompositions like the theorem given below, which gives the Heegaard

decomposition in case of 3-manifolds.

Theorem 3.1. Let M be a closed C∞(2m + 1)-manifold which is (m − 1)-

connected. Then M = H ∪ H ′, H ∩ H ′ = ∂H = ∂H ′ where H,H ′ ∈ H ∈

H(2m+ 1, k,m) are handlebodies (∂V means boundary of manifold V ).

The handlebody theorem is one of the important results of this paper which

states that:

Theorem 3.2. Let n ≥ 2s+2 and if s = 1, n ≥ 5; let H ∈ H(n, k, s), and let V =

χ(H ; f1, ..., fr; s+1) be another smooth manifold obtained by attaching to H copies

of Ds
i ×Dr−s

i using the attaching maps fi, also note that πs(V ) = 0. In addition,

if s = 1, assume π1(χ(H ; f1, ..., fr−k; 2)) = 1. Then V ∈ H(n, r − k, s+ 1).

Note that the attaching maps mentioned above fi : ∂Ds
i × Dr−s

i → ∂H for

i = 1, 2, .., k are imbeddings with disjoint images for s ≥ 0 and n ≥ s.

At about the same time in his article ([37]), Stallings pointed out a gap in the

handlebody theorem for the case s = 1.

In this thesis we will be using the generalized handle decomposition of manifolds,

mainly due to Buoncristiano, Rourke, Sanderson, [14]. This reference by Buon-

cristiano, Rourke, Sanderson ([14]) is a lecture series on a geometric approach to

homology theory.

Here they introduce the concept of transverse CW complexes. These com-

plexes have all the same properties of ordinary cell complexes. The result from

this article which we will be using in this thesis is known as the Transversality

Theorem, and using this theorem any continuous map may be homotoped to a
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transverse map (Definition 3.8). Here is the statement of the Transversality the-

orem and is used to show the maps from the handle decompositions we construct

to the ambient space are transverse.

Theorem 3.3 (Buoncristiano, Rourke and Sanderson, [14]). Suppose X is a

transverse CW complex (a CW complex is transverse if each attaching map is

transverse to the skeleton to which it is mapped), and f : M → X is a map

where M is a compact piecewise linear manifold. Suppose f |∂M is transverse,

then there is a homotopy of f rel ∂M to a transverse map.

In fact, if M is a generalized handle decomposition i.e, it is constructed from

another manifold with boundary M0, by attaching finite number of generalized

handles, then the map f itself is homotopic to a transverse map. Handles are still

the same as handlebodies, defined above in the Smale case and they are attached

to M0 via the boundaries of the handles.

3.2 Handlebody Diagrams

The following definitions and statement of Transversality theorem were taken

from the lecture notes for a course [18] taught by Max Forester.

Definition 3.4. (Index i-Handle) An index i-handle is written asH i = Σi×Dn−i,

where Σi is a connected i-manifold (we will consider Σi = Di in all our examples)

and Dn−i is a (n− i) closed disk.

Note 3.5. The boundary of a i-handle is ∂H i = ∂Σi ×Dn−i ∪ Σi × ∂Dn−i.

Given an n-manifold M0 with boundary and an i-handle H i, let φ : ∂Σi ×

Dn−i → ∂M0 be an embedding. Form M0 ∪φ H i a new manifold with boundary
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obtained from M0 by attaching an i-handle in the following way, (M0∐H i)/(x ∼

φ(x), ∀x ∈ ∂Σi ×Dn−i).

Definition 3.6. (Generalized Handle Decomposition) A generalized handle de-

composition of M is a filtration: ∅ = M (−1) ⊂ M (0) ⊂ M (1) ⊂ ...... ⊂ M (n) = M

such that:

• EachM (i) is a codimension-zero submanifold ofM . (L ⊂M is a codimension-

zero submanifold if L is an n-manifold with boundary and ∂L is a subman-

ifold of M .)

• M (i) is obtained from M (i−1) by attaching finitely many i-handles.

Remark 3.7. In case M is a compact n-manifold with boundary denoted by,

∂M , then the generalized handle decomposition of M is:

• A generalized handle decomposition of ∂M , namely: ∅ = N (−1) ⊂ N (0) ⊂

N (1) ⊂ ...... ⊂ N (n−1) = ∂M , where each M (i) is a codimension-zero sub-

manifold of ∂M

• A filtration of M , ∅ = M (−1) ⊂ M (0) ⊂ M (1) ⊂ ...... ⊂ M (n) = M where

each M (i) is a codimension-zero submanifold of M and M (i) is obtained

from M (i−1) ∪N (i−1) by attaching i-handles.

• Each (i − 1)-handle of N is a connected component of the intersection of

N with an i-handle of M (this means that N (i−1) = ∂M ∩M (i)).

Definition 3.8. (Transverse Maps) Let M be a compact n-manifold and X a

cell-complex. A continuous map f : M → X is transverse if M has a generalized

handle decomposition such that for every handle H i = Σi × Dn−i in M , the

restriction f |Hi: Σi×Dn−i → X is given by φ◦pr2 where pr2 : Σi×Dn−i → Dn−i
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is a projection map to the second coordinate and φ is the characteristic map of

an (n− i)-cell of X. We will refer to the generalized handle decomposition of M

as a handle body diagram or just a diagram.

Note 3.9. An i-handle maps to a (n− i)-cell this implies, f(M) ⊂ X(n) = X.

Definition 3.10. (“good” CW complex ) A CW complex is “good” if and only

if, each attaching map is transverse to the skeleton to which it is mapped.

Next we have a version of the Transversality theorem which we will refer to

later in this thesis.

Theorem 3.11 (Transversality Theorem [14]). If X is an n-dimensional, “good”

CW complex and M is a genaralized handle decomposition of a compact n-

manifold, then every continuous map f : M → X is homotopic to a transverse

map g. Moreover, if f |∂M is transverse, then there is a homotopy of f rel ∂M

to a transverse map.

Lemma 3.12. Every cell-complex is homotopy equivalent to a “good” cell-complex.

For the proof of this lemma, we can apply induction on the i-skeletons and

apply Transversality Theorem to the attaching maps.

The purpose of this research is to prove isoperimetric inequalities for certain

groups, in other words, we want to compare the volume of n-dimensional balls

with the area or volume of their boundary spheres. For this purpose we will

be considering handle decompositions of n-balls. The handle decompositions are

higher dimensional analogs of van Kampen diagrams. Henceforth, we will denote

a handle body diagram or the handle decomposition of a n-ball by (Dn, Sn−1)

where Dn is an n-ball and Sn−1 is its boundary sphere .
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Example 3.13. Here are a few examples of situations where handle body dia-

grams are better suited compared to van Kampen diagrams,

1. In case a van Kampen diagram has folded cell pairs. This is illustrated in

part (i) of Figure 3.1. However in the same figure part (ii), we have the

corresponding part of a handle body diagram and the problem of folding

no longer persists.

A
A

B
B

CC

(i)
(ii)

2-handle

Figure 3.1: (i) Portion of a van Kampen diagram with a folded cell pair, (ii)
Corresponding part in a handle body diagram.

2. Another example is shown in part (i) of Figure 3.2 where the 2-cell has

been cut open. So, there are seven edges and one face. The corresponding

part in a handle body diagram shown in the same figure part (ii), shows

a 0-handle with seven 1-handles attached to it in such a way that they

correspond to the edges in (i) attached to each other.

Definition 3.14. (Unreduced Diagram). A diagram f : (Dn, Sn−1) → K is said

to be unreduced if in the interior of (Dn, Sn−1) there exists two 0-handles H0
1 and

H0
2 joined together by a 1-handle such that, f(H0

1 ) = f(H0
2 ) is an open n-cell in
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1-handles

1-handles

1-handle

0-handle

0-handle

Base-point
(i) (ii)

Figure 3.2: (i) Portion of a van Kampen diagram with a 2-cell which has been
cut open, (ii) Corresponding part in a handle body diagram.

K and (f |H0
1

−1 ◦ f |H0
2
) is an orientation reversing map. Otherwise, the diagram

is said to be reduced.

In other words, a diagram is unreduced if there exists another diagram with

the same boundary length or area (in case of 2 or 3-dimensional cases respectively)

but strictly smaller filling area or volume for 2 or 3-dimensional cases respectively.

Under these circumstances we will eliminate these 0-handles along with the 1-

handle connecting them but keeping the boundary of the diagram same and

ensuring that we still have a disc. Hence, our intention is to get a reduced diagram

from an unreduced one. We will give an example in a 2-dimensional case via

figures and also a method of obtaining a reduced diagram given an unreduced

one (Example 3.16). But first here is an example of a handle-body decomposition

in 3-dimensions which may or may not be a reduced diagram.

Remark 3.15. Note that all the maps discussed in the rest of this section, from

the (reduced or unreduced) diagrams to the ambient space K will be admissible
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maps (Definition 2.20).

Example 3.16. Given an unreduced diagram f : (D2, S1) → K, there is a disc

D2′ such that D2 and D2′ have the same boundary but D2′ has fewer 0-handles.

Moreover there is a transverse map f ′ : D2′ → K such that f |∂D2 = f ′|∂D2′ and

f ′ is also an admissible map.

H0H0H1

H1 H1

H1

H1H1

H1

aa

bb

c c

dd

Figure 3.3: Unreduced diagram

In the Figure 3.3, the diagram seen has 0-handles which are 2-discs or blown-

up versions of the 2-cells present in the ambient space i.e; if the 2-cells in the

original space is an n-gon (n sided polygon), then the corresponding 0-handle will

be a 2n-gon. This diagram is unreduced since there is a pair of 0-handles which

have the properties mentioned in Definition 3.14.

Once we remove the pair of 0-handles along with the 1-handle connecting

them, we have the annulus (D2 \ D2
1) ⊂ D2 be named A2. The annulus is

illustrated in Figure 3.4 below.

Next, we identify the opposite edges, labeled with the same letters a, b, c etc.

This is possible as they are mapped to the same edge in K via f . So there is
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H1

H1H1

H1H1

H1

aa

bb

cc

Figure 3.4: Annulus A2

a homeomorphism α , from one of these edges for example the one named b,

to the same edge in K and there is another homeomorphism β from the other

edge in the annulus A2/∼ labeled b to the same edge in K mentioned above .

The composition (β−1 ◦ α) is a homeomorphism between the two edges labeled

b in the annulus A2/∼. This operation of identifying homeomorphic edges can

be denoted by a new equivalence relation ∼′. Once all the edges with the same

labels are identified with each other we have the following situation (Figure 3.5)

but (A2/∼)/ ∼′ (= D2′) is again a disc with the same boundary as the original

disc D2.

Since this does not change the boundary, f |∂D2 = f1|∂D2′ . If f1 is not a

transverse map then by the Transversality theorem (Theorem 3.11) we have a

transverse map f ′ such that f ′ ∼ f1 and f ′ has all the same properties as f1,

most importantly, f |∂D2 = f ′|∂D2′.

Next we will discuss how to obtain a reduced diagram from an unreduced one.

This argument was given by Brady and Forester ([8]).
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a

b

c

Figure 3.5: Disc D2′ (with 1-handles shown in dotted lines)

Let f : (Dn, Sn−1) → K be an admissible map, and let H0
1 and H0

2 be 0-handles

in (Dn, Sn−1) connected together with a 1-handle. Let α be a core curve in

the 1-handle connecting H0
1 and H0

2 homeomorphic to an interval (Figure 3.6).

Suppose f maps α to a point and maps H0
1 and H0

2 to the same n-cell, with

opposite orientations. As H0
1 and H0

2 are 0-handles, there are homeomorphisms

hi : (H0
i , ∂H

0
i ) → (Dn, Sn−1) such that f |H0

i
= φ ◦ hi for some characteristic

map φ : (Dn, Sn−1) → K. We first consider the curve α along with a tubular

neighborhood around it and collapse it to a point to get part (ii) of Figure 3.6.

Next remove the interiors of H0
i from (Dn, Sn−1) and form a quotient (Dn

1 , S
n−1
1 )

by gluing boundaries via h−1
0 ◦ h1, an orientation reversing map. The new space

maps to K by f , and there is a homeomorphism g : (Dn, Sn−1) → (Dn
1 , S

n−1
1 ).

Now f ◦ g is an admissible map (Dn, Sn−1) → K with two fewer 0-handles. The

map can be then be made transverse with the rest of the 0-handles unchanged.

Figure 3.6 illustrates the method pictorially.
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H0
2

H0
2

H0
1

H0
1α

(i)

(ii) (iii)

g

h

Figure 3.6: (i) two 0-handles joined by a 1-handle and core curve α, (ii) Picture
of (i) after α has been removed, and (iii) Final Picture
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Chapter 4

Lower Bounds for Nil and Sol

Here we provide lower bounds for second order Dehn functions in case of lattices

in the Nil and Sol geometries. The argument used here to obtain these bounds

is due to Brady and Forester [8].

4.1 The connection between Linear Algebra and

Cell Decomposition of Mapping Tori

In this section we discuss the structure of the 3-dimensional manifolds that have

the lattices of the Nil and Sol geometries as fundamental groups.

The 3-manifolds considered here are the mapping tori where the attaching

maps corresponds to matrices in SL2(Z). In other words, given a group of the

form Z2 ⋊ψA
Z, where ψA ∈ Aut(Z2) and can be represented by a matrix A ∈

SL2(Z), the geometric realization of these groups are mapping tori where the

attaching maps are the automorphisms of Z2. For example if ψA is the identity

map then, the corresponding space is Z3 ⊂ R3. Other specific examples we are

interested in are the lattices in the 3-dimensional geometries Nil and Sol. In
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particular we will be looking at lattices corresponding to the matrix




1 1

0 1




for Nil and




2 1

1 1


 in case of Sol. Another way of looking at these are as torus

bundles over the circle and they are described below.

Let us denote the mapping torus T×I
(t,0)∼(ψA(t),1)

by AT , where ψA is the attach-

ing map. Let ψA be represented by the matrix A ≡




x z

y w


 ∈ SL2(Z) . So,

if the generating curves of the torus in AT are labeled a, b, then the presentation

of the corresponding fundamental group is given by,

Γ = 〈a, b, t | [a, b], tat−1 = A(a) = axby, tbt−1 = A(b) = azbw〉.

4.1.1 Cell Decomposition of the Mapping Torus AT

We know that the mapping torus AT consists of two copies of the torus attached

via the map ψA. Here we will demonstrate an effective way of triangulating the

2-cell spanned by the generators of the group Γ and hence obtain a model space

for Γ.

We subdivide the 2-cells of both copies of the torus in AT into a either a

number of triangular faces or a combination of triangular and quadrilateral faces.

The following example illustrates this process in details.

Example 4.1. Let A ≡




1 1

0 1


, then the corresponding group is the 3-

dimensional, integral Heisenberg group H = 〈a, b, t | [a, b], tat−1 = a, tbt−1 =

ab〉.

This subdivision of the mapping tori below, (Figure 4.2) shows that the top
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a a

aa

aa

a

a a

a

a a

b

bb

b

b

bb

b bb

b

ψA

Figure 4.1: Sub-division of R2 under the action of the map ψA .

b

b

b

a

a

a

a

c
c

c

t

t

t

A

B

C

D

E

F

G

H

Figure 4.2: The mapping torus corresponding to the matrix A above.
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has been divided into two triangular faces each of which can be mapped via ψA to

their exact replicas in base. This is the picture of the model space for the group

H which is piecewise Riemannian. This 3-cell also serves as the fundamental

domain for the action of H on the corresponding universal cover. The base point

is named A and all other vertices of the cell are also labeled.

Example 4.2. If we have the matrix B ≡




2 1

1 1


, then the corresponding

group presentation is S = 〈a, b, t | [a, b], tat−1 = a2b, tbt−1 = ab〉.

ψB
a a

aa

aa

aa

aa

a

a

a

aa

b

bb

b

b

b

b

b

b

bb

b

Figure 4.3: Sub-division of two copies of R2 under the action of ψB .

Again Figure above shows that the subdivision is compatible to the relations

in the group presentation S.

This triangulation of the mapping tori below, (Figure 4.4) shows that the

top has been divided into four triangular faces each of which can be mapped

via ψB to their exact replicas in base. This is the picture of the model space

for the group S which is piecewise Riemannian. This 3-cell also serves as the

fundamental domain for the action of S on the corresponding universal cover.
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b1
b1

b1

b2

b2

b2

a

a

a

c1

c1

c1

c2

c2

c2

d
d

d

t

t
t

t

A

B

C

D

E

F

G

H

M1

M2

M3

M4

Figure 4.4: The mapping torus corresponding to the matrix B above.

4.2 The Lower Bounds

In this section provide lower bounds for the second order Dehn function for H

and S and show that the growth of balls in the first case is polynomial while in

case of the latter it is exponential.

Let M be the 3-manifold corresponding to the lattice S in the Sol geometry

mentioned above in Example 4.2 (along with the triangulation shown). Let X̃ be

its universal cover. So, one can find numerous copies of M inside X̃. To obtain a

lower bound for the second order Dehn function in case of the lattice of the Sol

geometry, we will exhibit a sequence of embedded balls Bn ⊂ X̃. This argument

is due to Brady and Forester [8].

We will construct a ball in X̃, by defining regions Rn ⊂ M which are easy

to measure in the Riemannian metric. Then we approximate these regions using

combinatorial subcomplexes in X̃.

Notation 4.3. In this section we will denote the volume of an 3-ball by V ol3(B3)

and the area of its boundary sphere by Area(S2).
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The matrix




2 1

1 1


 has two eigenvalues λ > 1 and µ < 1. Now let us

define in the coordinates of M , Rn = [0, λn] × [0, 1] × [0, n], Figure 4.5.

The volume of Rn can be easily computed by integration. The area of a

horizontal slice A = [0, λn] × [0, 1] × z is λn so area of Rn is given by 6λn,

integration in the z-coordinate gives us V ol(Rn) = nλn.

A 1

n

λn

λn

Figure 4.5: Region Rn in case of Sol.

Then we approximate the Riemannian regions using combinatorial subcom-

plexes which are described briefly below. Let Si,n ⊂ R2 × [i− 1, i] for 1 ≤ i ≤ n

be subcomplexes in X̃ such that Rn ⊂ Sn =

n⋃

i=1

Si,n ⊂ R′
n+k, where R′

n+k is a

translate of Rn+k, k > 0 in the x and y-directions. The details of the construction

of the subcomplexes Sin can be found in Section 4 of [8].
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Therefore the ball obtained after the approximation in the step above, has

volume ≥ nλn ≈ Area(ln(Area)).

Remark 4.4. The lower bound argument with all necessary details can be found

in the paper by Brady and Forester, [8].

Lemma 4.5. If B(n) is a ball of radius n in X̃ corresponding to S, then |B(n)| ∼

O(kn), for some positive constant k.

Proof. In order to determine the lower bound of the growth of balls in the case

of the group S, we will show that the monoid generated by 〈t, ta〉 is a free group

embedded in the group S.

Let us denote the matrix




2 1

1 1


 associated with this group by M . In the

vector notation we write t as the zero vector
−→
0 and ta as the vector −→a . The

following is a list of elements, at level two we have four elements, t2, tta, tat, tata

which may be represented in vector notation as
−→
0 ,−→a ,M−1−→a ,−→a +M−1−→a respec-

tively. Similarly in level three we have t3, t2ta, ttat, tat2, ttata, tatta, tatat, tatata

represented by
−→
0 ,−→a ,M−1−→a ,M−2−→a ,~a+M−1~a,~a+M−2~a,M−1~a+M−2~a,

~a + M−1~a + M−2~a respectively. So in general, at each level i, i ≥ 1 we have 2i

elements and in the general case, ignoring the negative power of M , the elements

have the form ~a,M~a,M2~a, ......,M i~a,~a+M~a,~a+M2~a, ....,~a+M i~a etc. Next we

claim that each of these vectors are distinct. In fact, at each stage the vectors

get stretched by a factor of λ > 1, one of the eigenvalues of the matrix M (Figure

4.6). For a large positive integer N the stretching factor is λN . For instance, it

is easy to see M~a,M2~a are each different from ~a and M~a+M2~a is different from

~a and so on.

Now if we proceed by induction on the number N . For N = 1, it is easy to
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Figure 4.6: Stretching the vectors.

see that the vectors given above are all distinct. Let us consider this to be true

for some specific N , this is the induction hypothesis. If we project these vectors

on to the plane it looks like the following Figure 4.7, which gives an idea of the

geometric growth.

At the N + 1 level we see the part marked Z, after the vertex marked λN+1

is distinct by the induction hypothesis and the remaining portion starting at

the end of X is distinct as it consists of vectors of the form MN+1~a,M~a +

MN+1~a, ...,MN~a + MN+1~a which are stretched more than MN~a but less than

MN+1~a.

Therefore we have a free group inside which means that the growth of the

balls (of radius n) in the manifold corresponding to S is bounded below by λN .

The upper bound for the cardinality is same as the upper bound on cardinality

of balls corresponding to a free group on three generators. So at level k in Figure

4.8 we have at most 6.5k elements. Therefore a ball of radius n has at most
n∑

k=0

6.5k + 1 elements. So, |B(n)| ≤ 3
2
(5n) − 1

2
< Const.5n.
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So |B(n)| ∼ O(kn) for a positive constant k, where λ ≤ k ≤ 5.
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Figure 4.8: Number of elements in a ball of radius 1, 2 etc.

Proposition 4.6. Given an embedded 3-ball B3,with boundary sphere S2 in the

universal cover corresponding to H, V ol3(B3) � (Area(S2))
4

3 .

Proof. In order to show this we will exhibit a sequence of embedded balls Bn ⊂ X̃.
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(This argument is due to Brady and Forester [8]). We will construct a ball in X̃,

by defining regions Rn ⊂ X which are easy to measure in the Riemannian metric.

Then we approximate these regions using combinatorial subcomplexes in X̃.

Let us consider Rn to be the region [0, n2]× [0, n]× [0, n]. Then approximate

this Riemannian region combinatorially by filling it with 3-cells in the universal

cover of the complex associated with H and each of the 3-cells have the appro-

priate cell decomposition shown in Example 4.2.

Consider the following figure (Figure 4.11) which partially shows how to build

a 3-ball that fills a given 2-sphere in case of Nil. At level (1) we see that the base

is a parallelogram with a and c sides so we extend the base on either side by

adding triangular regions of length to obtain a square base with sides a and b.

The extra area added on each side is 1
2
n2. We go on in this way until we reach

the nth level, adding areas at each level exactly equal to n2, the extra area added

after level (2) is 2n2. So total area of the faces at the front and back add up in

the following way n+2n+3n+ ......+n2 = n
(
n(n+1

2
)
)
∼ O(n3). Area of the faces

on the sides add up to give, 2n3 + n2(n− 1) while the area of the top is n2 and

the base after n levels is ∼ O(n3). The area of all faces of the ball is (AreaTop =

)n2 + (AreaSides) = (3n3 − n2) + (AreaFront+Back =)(n3 + n2) + (AreaBase =)n3

Thus the total area is Area(S2) = 5n3 + n2 and for a large value of n, (n ≥ 1),

Area ≤ const.n3 � O(n3). The volume of this ball is therefore ≥ O(n4).

Next we claim that this ball is an optimal filling of the sphere S2 because

if there was one other ball filling it along with the one constructed above, then

this would give rise to a non-trivial 3-cycle in a contractible 3-complex which is a

contradiction. In other words, we would see a 3-sphere sitting inside a contractible

3-complex. So in conclusion we can say that V ol3(B3) � (Area(S2))
4

3 .
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Remark 4.7. From the previous proposition we obtain a lower bound for the

second order Dehn function for H, δ(2)(n) � n
4

3 .

Lemma 4.8. If B(n) is a ball of radius n in case of H, then |B(n)| ∼ O(n4).

Proof. Let us start by considering the brick shown in the following picture (Figure

4.2). The structure of the brick is same as the ball shown in the proof above

(Figure 4.11). In order to obtain a lower bound for the growth of balls in this

case we will show that any vertex in this ball is in a ball of radius 4n and that

the number of elements in the brick is ∼ O(n4).

Let us look at the Figure below where we have a clear picture of the top and

base of the subcomplexes in the ball at each level. Let A denote the base point

now, if we consider any point in the face F1 can be reached via a path of length

≤ n. The point C which is farthest from A but the length of the path is n.

Next let us consider the second level (2), any point in F2 can be reached via
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a path of length ≤ (n + 1), any point the left triangular face can be reached via

a path of length ≤ (n + 1). On the other hand the points on the right hand

triangular face can be reached via a path of length ≤ (2n+1). The length of the

path from the base point to C1 is exactly (n+ 1).

Proceeding in the same way, we look at level (3) and there is a path of length

≤ (2n+ 2) from A to any point in F3. Length of path from the base point to C2

is again ≤ (2n+ 2). In general, at level (i), 1 ≤ i ≤ n, the length of a path from

A to any point in Fi or the triangular faces on both sides is ≤ (2n + i).

Therefore after n levels the lengths of paths from A to any point in Fn is at

most 3n. So, this brick is in a ball of radius at least 3n.

Now the number of elements in level (1) is n2, level (2) is (2n)n. In general at

any level (i), 1 ≤ i ≤ n, the number of elements is (in)n. Hence the total number

of elements in the brick is n2(1 + 2 + .... + n) = n2
(
n(n+1)

2

)
∼ O(n4).

Next for an upper bound, we have the following lemma,
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Lemma 4.9. Any word w in H in the letters a±1, b±1 and t±1 where, |w| ≤ r can

be reduced to its normal form axbytz such that |x| ≤ n2, |y| ≤ n and |z| ≤ n.

Proof. We should note that if we have the following subwords in w, they can be

replaced with those mentioned alongside,

ta = at, tb = abt, tb−1 = b−1t, ta−1 = a−1t, t−1b = a−1bt−1, t−1b−1 = ab−1t−1, t−1a =

at−1, t−1a−1 = a−1t−1.

We will start by moving all the occurrences of t or t−1 in w to the right using

the relations shown above and it is clear from these relations that the number of

t, t−1 do not increase in the process. So now we have a word of the form axbytz,

where |z| ≤ n, also note the number of b, b−1 remain the same but the number

of a or a−1, increases, in fact for each instance of b or b−1 we end up with an

extra a or a−1 hence, we end up with at most product of number of t, t−1 and

the number of b, b−1 both of which are bounded above by n, so we have |x| ≤ n2.

Recall that the ball of radius n for a finite presentation P = 〈A | R〉 is defined
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by B(n) = {w ∈ F(A) : |w| ≤ n}. Therefore the total number of words possible

in a ball of radius r is ≤ n4.
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Chapter 5

Upper Bounds- Reduction to

Varopoulos Isoperimetric

Inequality

Chapters 5 and 6 are devoted to obtaining upper bounds for the second order

Dehn functions of H and S using a variation of Varopoulos Transport argument.

In chapter 5 we reduce the original isoperimetric problem involving volume of

3-balls and areas of their boundary 2-spheres to a problem involving Varopoulos’

notion of volume and boundary of finite domains in dual graphs.

5.1 Definitions

Since we will use barycentric subdivisions to obtain the dual graph, we will start

this chapter with the following definitions. (These definitions and notations have

been taken from[13].)

Definition 5.1. (Barycentric Subdivision of a convex polyhedral cell) Let C be
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a polyhedral cell in an n-dimensional polyhedral complex K. The barycentric

subdivision of C denoted by C ′ is the simplicial complex defined as follows:

There is one geodesic simplex in C ′ corresponding to each strictly ascending

sequence of faces F0 ⊂ F1 ⊂ .... ⊂ Fn of C; the simplex is the convex hull

of barycenters of Fi. Note that the intersection in C of two such simplices is

again such a simplex. The natural map from the disjoint union of these geodesic

simplices to C imposes on C the structure of a simplicial complex - this is C ′.

Definition 5.2. (Barycentric Subdivision of a polyhedral n-complex K) Let p :

∐
λCλ → K (where Cλ are the polyhedral cells of K), be a projection. For each

cell Cλ we index the simplices of the barycentric subdivision C ′
λ by a set Iλ; so

C ′
λ is the simplicial complex associated to

∐
Iλ
Si → Cλ where Si denotes the

simplices of C ′
λ. Let λ′ =

∐
λ Iλ. By composing the natural maps

∐
Iλ
Si → Cλ

and p :
∐

λCλ → K we get a projection p′ :
∐

i∈λ′ Si → K. Let K ′ be the

quotient of
∐

i∈λ′ Si by the equivalence relation [x ∼ y iff p′(x) = p′(y)]. K ′ is

the barycentric subdivision of K.

Note 5.3. : Given any complex, there is a poset P on the cells of the complex

ordered by inclusion. Therefore for any ascending chain in P there is a simplex

in the barycentric subdivision of the complex.

5.2 Dual Graphs

The examples in the previous section gives us an idea of the cell decomposition

of the spaces under consideration. The groups considered here are all finitely

generated, so the groups act properly and cocompactly by isometries on their

respective universal covers. In fact, the translates of the fundamental domain

covers the universal cover X̃ in each case.
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It is essential to mention here that the only groups we are interested in are

the 3-dimensional groups H and S from Section 4.1 and we will use the letter G

to refer to them in general.

Next, we define the dual graph Γ using Definition 5.8. The vertex set of Γ,

VΓ = {σ : σ is a 3-cell of X̃} while the edge set is, EΓ = {τ : τ is a codimension

one face (2-cells) shared by two adjacent 3-cells of K}.

Lemma 5.4. There is a map that embeds the graph Γ in K.

Proof. Consider the barycentric subdivision of both the graph Γ and the universal

cover X̃, we denote these barycentric subdivisions by Γ′ and X̃ ′ respectively.

Next we map the vertices in VΓ to the barycenters of the 3-cells while we map the

barycenter of an edge τ , labeled by τm in EΓ to the barycenter of the codimension

one face shared by the two 3-cells in VΓ, serving as the initial and terminal

vertices of τ . Finally, if τ is an edge with initial and terminal vertices σ1 and

σ2 respectively, then, the left half-edge of τ is mapped to the simplex in K ′

corresponding to the ascending chain τ ⊂ σ1 in the poset P while, the right half-

edge maps to the simplex in K ′ corresponding to the ascending chain τ ⊂ σ2 in

P.

As there is a natural bijection between the barycentric subdivision of a space

and the geometric realization of the space itself so, there is a map which takes Γ

into K.

So, now we have a dual graph in X̃ which is also a Cayley graph (with the same

name Γ), with respect to a finite generating set which we will define subsequently.

The aim of the remaining part of this section is to show that Γ is quasi-isometric

to X̃ using Švarc−Milnor Lemma ([13]).
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Given a length space X. If a group G acts properly and cocompactly by isome-

tries on X, then G is finitely generated and for any choice of basepoint x0 ∈ X,

the map f : G→ X, defined by g 7→ g.x0 is a quasi-isometry.

Let C be the fundamental domain of X̃ ( a compact subset of X̃ such that

its translates covers all of X̃). We then define the generating set of the group G

in the following way, A = {g ∈ G | gC ∩ C = codimension− one face}.

In case of H the valence of a vertex is eight, while in the case of S the valence

is twelve. Hence, the generating sets in these cases will contain four and six

elements respectively. We will define the generating sets in detail for specific

examples i.e, for the groups H and S in the following lemma.

Note 5.5. In the following lemma, we shall denote the triangular faces of the

cell decomposition obtained in the previous section as △XY Z, where X, Y, Z are

the labels of vertices in the cell decomposition forming a triangle.

Lemma 5.6. Given the cell decompositions for groups H and S in section 4.1:

1. A0 = {b, c, t, tb} is a finite generating set for H, where c = b−1a (from

Figure 4.2).

2. A0 = {d, t, c1c2, td−1, tc−1
2 c−1

1 , tb1c
−1
1 } is a finite generating set for S, where,

a1a2 = a, d = ba = ab, c1 = ab1, c2 = b2a (from Figure 4.4).

Proof. (of (i)) We consider Figure 4.2 for this part of the proof. The vertex A is

chosen as the base point of universal cover X̃. Therefore this point represents the

identity element of the group. The paths that take the base point to its images in

copies of the fundamental domain (which are 3-cells sharing codimension one faces

with the fundamental domain) represent the isometries that take the domain to its

copies and hence they are the generators of the group with respect to the Cayley
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graph Γ. In case of H, there are eight other 3-cells sharing codimension one faces

with the fundamental domain or in other words, due to the cell decomposition

shown in section 4.1, any 3-cell in the universal cover shares a codimension one

face with eight other 3-cells.

In the following lines we give a list of isometries and hence the words which

generate translates of the fundamental domain that share a codimension one face

with the domain.

The path from A to D represents the isometry b taking the domain to the

3-cell to its right; path from A to H represents the word c takes the domain

to the cell behind itself; A to B, the word t takes the domain to the 3-cell on

the face △BCG; path from A to G, the word tb takes the domain to the 3-

cell on the face △GFC. The isometries that take the domain to the rest of

the neighboring 3-cells, are inverses of the words already mentioned above. For

example the isometry taking the domain to the 3-cell sharing the face △ADE

is t−1, while the one taking it to the 3-cell associated with the face △AHE is

b−1t−1 etc. So it is clear that A0 = {b, c, t, tb} is a finite generating set for H and

A0
−1 = {b−1, c−1, t−1, b−1t−1}.

(Proof. of (ii)) This can be shown in a similar way as above. In this case,

the fundamental domain shares codimension one faces with twelve other 3-cells,

(four cells each above and below, two on each side and the remaining two at the

front and back). As before the translates d and t generate copies to the right and

vertically above (and sharing the face △BFM1) the fundamental domain respec-

tively. The translate td−1 generates the copy sharing the face △BGM1, while

tc−1
2 c−1

1 generates the copy of the fundamental domain along the face △BM2F .

Finally tb1c
−1
1 is responsible for the copy of the domain sharing the face △M2CF

with the fundamental domain. So A0 = {d, t, c1c2, td−1, tc−1
2 c−1

1 , tb1c
−1
1 }. Also, it
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is easy to check that A0
−1 = {d−1, t−1, dt−1, c1c2t

−1, c1b
−1
1 t−1}.

Proposition 5.7. Cay(G,A0), the Cayley graph of the group G with respect to

the generating sets A0 defined in Lemma 5.6 is quasi-isometric to X̃ .

Proof. Milnor’s Lemma says that the group G is finitely generated and quasi-

isometric to the ambient space X̃. But the Cayley graph Cay(G,A) with respect

to any finite generating set A of the group G, is quasi-isometric to the group itself,

this quasi-isometry can be seen as the natural inclusion G →֒ Cay(G,A), defined

by g 7→ g.1 for all g ∈ G. This last quasi-isometry is also a simple illustration of

Milnor’s Lemma.

Finally, two Cayley graphs associated to the same group but with different

generating sets are quasi-isometric, this implies Cay(G,A0) is quasi-isometric to

X̃.

5.2.1 Definitions and Notations

We start with the definition of a dual graph (Section 5.2).

Definition 5.8. Given an ambient n-dimensional space K, we define a graph Γ

in the following way:

Vertex set VΓ: VΓ = {σ : σ is a n-cell of K}

Edge set EΓ: EΓ = {τ : τ is a (n− 1)-cell and τ is a face of exactly 2 n-cells

of K}.

Given a finitely presented group G, let X be the corresponding n-dimensional

cell-complex and let X̃ be its universal cover. Let f : (Dn, Sn−1) → X̃ be a

reduced diagram (defined in Section 3.2) where Dn and its boundary sphere Sn−1

are either embedded or immersed in X̃. Note that the map f considered here
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is transverse and hence admissible, so each i-handle in the diagram maps to an

(n− i)-cell in X̃. Now we have the following definitions.

Definition 5.9. Define a finite subset D of the vertex VΓ such that,

D = {σ : σ is an n-cell in X̃ such that σ ∈ Im(f)}.

Associated with D is a function analogous to a characteristic map, given by,

φD : VΓ → N ∪ {0} defined by, φD(σ) = number of pre-images of σ under f .

Remark 5.10. Let ||φD|| =
∑

σ∈D

φD(σ), this is the number of 0-handles in the

diagram i.e, ||φD|| = V oln(Dn) where V oln(Dn) denotes the volume of the n-ball

Dn.

Remark 5.11. It is clear that if f is an embedding in the above definition then

φD is in fact the characteristic function of the set D.

Next we define the boundary of the finite set D defined above:

Definition 5.12. (Varopoulos Boundary of D ) is defined to be the set of all

(n − 1)-cells τ ∈ EΓ such that τ is a face of exactly two n-cells σi, σj ∈ VΓ such

that φD(σi) 6= φD(σj), ∂VD = {τ : τ ∈ EΓ is a face of two n-cells, σi, σj ;φD(σi) 6=

φD(σj)}.

Next we define ∇φD : EΓ → N ∪ {0} by, ∇φD(τ) = |φD(t(τ)) − φD(i(τ))|,

where i and t have the same definition as before.

The cardinality of the Varopoulos boundary |∂VD|, in this case can be given by,

‖ ∇φD ‖=
∑

τ∈∂V D

|φD(t(τ)) − φD(i(τ))|.

This definition says that τ ∈ EΓ is a boundary edge of D if φD(t(τ)) 6= φD(i(τ)).
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5.2.2 Reducing to Varopoulos Isoperimetric Inequality

In this section we show that our problem to obtain an upper bound for the second

order Dehn functions can be reduced to finding an inequality between volume and

boundary notions according to Varopoulos in case of H and S. We start with the

following lemma which works in general for dimensions 1 or more.

Lemma 5.13. ‖ ∇φD ‖≤ |∂Dn|, where |∂Dn| is the area or volume of the bound-

ary sphere of the diagram (Dn, Sn−1) for n > 1.

Proof. Let us consider the n-dimensional reduced diagram g : (Dn, Sn−1) → X̃

(Definition 3.14). Let τ ∈ X̃ be the (n−1)-cell such that i(τ) = σ1 and t(τ) = σ2,

for σ1, σ2 ∈ D. In terms of poset P, τ ⊂ σ1 and τ ⊂ σ2 where σ1, σ2 are n-cells

in X̃ with the property that σ1, σ2 ∈ D(⊂ VΓ) and also φD(σ1) 6= φD(σ2).

σl2σk1

σi1

σj2

τ i

τ j
τk

Figure 5.1: 2-diemnsional example with pre-images σ1 , σ2 and 1-cell τ in (D2, S1)

By the definition of φD, there are φD(σ1) 0-handles in (Dn, Sn−1) that map

onto σ1 via g and similarly there are φD(σ2) 0-handles in (Dn, Sn−1) that map

onto σ2 via g. Next, as we have φD(σ1) 6= φD(σ2), this implies τ is one of the
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(n − 1)-cells forming the boundary (n − 1)-sphere, i.e, τ ∈ ∂VD and as both

n-cells have more than one pre-images, thus, τ too has one or more pre-images in

(Dn, Sn−1) associated with pre-images of both σ1 and σ2. The pre-images of σ1

and σ2 are either in the interior of (Dn, Sn−1) with pre-images of τ or they are at

the boundary with τ as a boundary (n− 1)-cell in some instances. If all the pre-

σi2σi1

σj1

τ i

τk

Figure 5.2: 3-diemnsional example with pre-images for cells σ1 , σ2 and 2-cell τ
in (D3, S2)

images of σ1 and σ2 are in the interior of (Dn, Sn−1) with all pre-images of τ in

the interior, then this implies φD(σ1) = φD(σ2), which is against our assumption.

Without loss of generality let us assume that φD(σ1) > φD(σ2). In this case if

at most φD(σ2) of the pre-images are in the interior of (Dn, Sn−1), then as we are

considering handle decomposition of n-balls which are manifolds, the only way a

pre-image of σ2 appears in the interior is if it is accompanied with a pre-image of

σ1 and they share a pre-image of τ which is a 1-handle. Figures 5.1 and 5.2 are

illustrations of this in two and three dimensions, where τ i denotes a pre-image
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of τ while σik etc. denotes the pre-images of σk for k = 1, 2. In this figure, one

pre-image of τ , a 1-handle, is in the interior of (Dn, Sn−1) between pre-images of

σ1 and σ2 which are both 0-handles, while the other is at the boundary adjoined

to the 0-handle which is another pre-image of σ1 . This implies that at least

(φD(σ1) − φD(σ2)) = (φD(i(τ) − φD(t(τ)) of the pre-images of σ1 are at the

boundary of (Dn, Sn−1) with τ as a boundary (n− 1)-cell.

Thus, |∂Dn| ≥
∑

τ∈∂V D

|φD(i(τ)−φD(t(τ)| which implies, ‖ ∇φD ‖≤ |∂Dn|.

Remark 5.14. At this point the problem involving the volume of the balls

V oln(Dn) and the area or volume of the boundary sphere |∂Dn−1|, has reduced to

one involving ||φD|| and ||∇φD||. In the next chapter we are going to use Varopou-

los transport argument to prove the isoperimetric inequality involving ||φD|| and

||∇φD||. In case of the group H we will show that ||φD|| ≤ const.||∇φD||
4

3 and

in the case of S, we will show that ||φD|| � const.||∇φD|| ln(||∇φD||). These

inequalities automatically provide upper bounds for the second order Dehn func-

tions in both cases.
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Chapter 6

Upper Bounds- Varopoulos

Transport Argument

In this section we are going to use Varopoulos transport to obtain isoperimetric

inequalities in case of groups H and S. We are going to consider reduced dia-

grams, since in case they are unreduced we can always use Proposition 3.14 from

Section 3.2 to obtain a reduced diagram. As before, we will denote the volume

(or area) of an n-ball by |Dn| and the volume (or area) of its boundary by |∂Dn|,

for any n.

The Varopoulos isoperimetric inequality and Dehn functions have very little

in common with each other. The only cases where they appear likely to agree are

when the groups are fundamental groups of manifolds and also we are considering

only top dimensional Dehn functions. So, in the cases we have here we can

apply Varopoulos transport to obtain the isoperimetric ineqaulity and hence the

upper bounds of second order Dehn functions. Here is a short discussion on this

connection between the two concepts.
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6.1 The connection between Dehn functions and

Varopoulos Isoperimetric Inequalities

Varopoulos isoperimetric inequality was discussed by Varopoulos in [39]. One

of his inspirations for looking at groups as geometric objects was Milnor’s 1968

paper [29]. In this paper Milnor had showed that the fundamental group of a

negatively curved compact manifold is of exponential growth. But the funda-

mental group of any compact manifold is finitely generated, hence the interest in

finitely generated groups. Let the group G be generated by g1, g2, ..., gk. A ball

of radius n, centered at the identity e ∈ G, was the set of group elements of the

form g = gε1i1 g
ε2
i2
.....g

εp

ip where, 0 ≤ p ≤ n, 1 ≤ iα ≤ k and εα = ±1. The number

of elements in the n-ball, is denoted by γn, and is known as the growth function

of the group G. After Milnor’s work the growth in volume of these groups were

studied in details and in 1981 Gromov ([20]) gave an algebraic characterization

of groups that satisfied γn = O(nA), for some fixed A ≥ 0. This automatically

raised the question to consider the isoperimetric inequalities on finite subsets of

G and Varopoulos showed that it was a valid question. He showed that, if Ω ⊂ G

is finite and the boundary of Ω is ∂Ω = {ω ∈ Ω | d(ω,G\Ω) ≤ 1}, then for A ≥ 1,

Card(Ω)
A−1

A ≤ C Card(∂Ω) (∗)

(C > 0 and Card(.) denotes the cardinality of a set) implied that γn ≥ C1n
A.

The converse of this implication was also proved by him in the same article. The

isoperimetric inequality (∗) is referred to as Varopoulos isoperimetric inequality

in this context.

It should be noted here that there is no connection between this classical
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isoperimetric inequality and Dehn functions mentioned above except for a special

case. We will illustrate this fact about the lack of connection between the two with

examples given below. Both these examples are groups of exponential growth and

we use the following result by Coulhoun and Saloff-Coste ([15]) to show that the

Dehn function and the isoperimetric inequality by Varopoulos do not match in

these cases.

Theorem 6.1 (Coulhoun and Saloff-Coste, [15]). Given a finitely presented group

G, let {g1, g2, ....., gk} be a finite generating set. For any finite subset Ω of G

we define the boundary of Ω by ∂Ω = {x ∈ Ω | ∃i ∈ {1, ..., k} and ǫ = ±1

such that xgǫi ∈ Ωc}. Then, if V (n) = |B(n)| is the function of growth, (where

B(n) = {x ∈ G | x = gǫ1i1 ...g
ǫn
in
, i1, ..., in ∈ {1, 2, ..., k}, ǫj = 0,±1} is the ball of

radius n) and V (n) ≥ Cecn
α

, 0 < α ≤ 1 we have |Ω|(log |Ω|)−1/α ≤ C |∂Ω|.

Example 6.2. Let us consider the group F2 × Z, where F2 denotes the free

group on two generators. The ordinary (first order) Dehn function for this group

is given by δ(x) ∼ x2 (please refer to Brick’s article [10] for the details). But this

group has exponential growth which is clear if one looks at the universal cover

in this case which is T × R where T represents an infinite four-valent tree (the

universal cover corresponding to F2). In case of F2×Z, V (n) ≥ 4n = eln(4)n which

implies that α = 1. Therefore, using Theorem 6.1 above we have the following

isoperimetric inequality, |Ω|
(log |Ω|)

≤ C ∂|Ω|.

Since ln(x) < x1/p for any positive integer p, we choose a positive integer

p > 2 say and then, |Ω|
p−1

p ≤ C ′ |∂Ω|, which implies, |Ω| ≤ C ′′ |∂Ω|
p

p−1 .

Example 6.3. Next let us consider the following presentation for the Baumslag

Solitar group BS(1, 2), P = {a, t | tat−1 = a2}. In this case too the group has

exponential growth and the Dehn function is δ(x) ∼ 2x (please refer to Bridson’s
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article in [13] for the proof). Next we can check by looking at the Bass-Serre tree

that V (n) ≥ 3
n
2 which implies that α = 1. The Bass-Serre tree can be obtained

by collapsing each segment in the universal cover (Figure 6.1) to a point and each

strip of 2-cells to an edge and it turns out to be a tri-valent tree in this case and

so |V (2n)| ≥ 3n hence, |V (n)| ≥ 3
n
2 = eln(3)n

2 .

Therefore, |Ω|
(log |Ω|)

≤ C ∂|Ω| for a finite subset Ω ⊂ BS(1, 2). Again since

ln(x) <
√
x, so |Ω| 12 ≤ C ′ |∂Ω|, which implies, |Ω| ≤ C ′2 |∂Ω|2.

The reason for the difference in the Dehn function and the isoperimetric in-

equality can be attributed to the structure of the space associated to the group.

If we take a look at the Cayley complex of this group we notice that the structure

is not locally like a manifold as there is a noticeable branching in the universal

cover (Figure 6.1). At each level, there are three horizontal strips made up of

2-cells, that joined along one segment. This means that the Varopoulos boundary

defined above is larger compared to the boundary of the discs considered for the

Dehn function.

a

aaaaa

aa

aaa

tttttt

t

tt

tt t t

t

tt

t

t

a = t =

Figure 6.1: Portion of Cayley complex of BS(1, 2)
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However, if we have a group G = π1(M
n) where Mn represents an n-manifold

then there should be a correspondence between the top dimensional Dehn function

(δ(n−1)) and the Varopoulos isoperimetric inequality of the group G. In this thesis

our main aim was to obtain (upper) bounds for second order Dehn functions for

lattices of the Nil and Sol geometries using Varopoulos’s isoperimetric inequality

by considering dual graphs in the universal covers of the complexes corresponding

to these groups.

6.2 Intuition behind the Varopoulos argument

In this section, we present the intuition behind the notion of transportation of

mass from a finite-volume subset of a space. It is important to note here that

all our examples are finitely presented groups and the space under consideration

will be the universal covers associated to the groups.

The following argument is originally due to Varopoulos [39]. It was used by

Gromov in [25] to demonstrate the transportation of mass (volume) in Rn and

also that of a finite subset of group. This notion of transport was first described

by Varopoulos in [39], where he described transport in association with random

walks. The same argument was further discussed by Gromov in [25]. Gromov also

used this argument in his paper on Carnot-Carathéodory spaces [24]. The lemma

here is appropriately called “Measure Moving lemma” and helps in the proof

of isopermetric inequalities of hypersurfaces in Carnot-Carathéodory manifolds.

Before going into the technical details of the argument in Section 6.3, we will

sketch the idea behind the argument and the reason it works, in this section.

Given a graph Γ letD be a finite subset of the vertices of the graph transported

by a path γ, then the amount of mass transported through the boundary of D is
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obviously bounded above by (|γ|vol(∂D)). But we have to find a particular γ to

bound vol(D) by vol(∂D), for this we compute average transport. Transport of

D corresponding to some γ is defined as the mass of D that is moved out of D by

the action of γ. In other words it is the number of vertices in the set (Dγ \D),

where Dγ = {vγ | v ∈ D}.

D Dγ

γ

Figure 6.2: Transport of D

Next for the lower bound for the transport we have to show that it is possible

to move a percentage of the set D off it. It is always possible to choose the path

γ such that lγ is large enough that almost all of D is transported off itself, but

the key is to find a γ in the graph such that it is small enough and moves at least

half of D off itself. Since the shape of D maybe very unpredictable Figure 6.3,

therefore transport via a path α maybe very small compared to the mass of D

again for another path γ the transport maybe very large. In order to solve this

problem we bound the length of the path by considering a ball of radius R in Γ,

denoted by B(R) such that |B(R)| ≈ 2|D| and taking the average transport over

all γ ∈ B(R). Once we show that the average transport is at least half of D,

we know that there is at least one path γ0 such that the transport of D via γ0
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is at least half of the mass of D. This inequality in turn leads to the respective

isoperimetric inequalities of the groups we discuss in this context.

D

α

γ

Figure 6.3: Transport of D with α is small compared to the mass of D while that
with respect to γ is large compared to D

6.3 The Transport Computation

Given a finitely presented group G, let the Γ be the dual Cayley graph (defined in

Section 5.2.1) corresponding to the universal cover of n-complex X corresponding

to G. This graph is infinite but it is locally finite. The edges are directed and

labelled, also there is only one outgoing (incoming) edge with a given label at

any vertex. Γ is a Cayley graph with respect to the presentation of the groups

defined in Section 5.2. Also the graph is endowed with the path metric and each

edge is isomorphic to the unit interval [0, 1].

As defined in the previous section, in the following discussion the vertex set

of Γ will be denoted by VΓ and edge set by EΓ. Next, consider the subset D

in VΓ corresponding to the n-cells in the image of f : (Dn, Sn−1) → X. Let us

consider the case when f is an embedding. Then we denote the map φD by the

characteristic function χD : VΓ → {0, 1} defined by χD(σ) = 1 when σ ∈ D,

63



otherwise χD(σ) = 0. In this case ||χD|| = |D|, where |D| denotes the number of

vertices in D.

Next, ∇χD : ∂VD → {0, 1} is defined in the following way,

∇χD(τ) = |χD(t(τ)) − χD(i(τ))|, where i, t : EΓ → VΓ gives the initial and

terminal vertices respectively of any edge in EΓ.

Therefore, |∂VD| =
∑

τ∈∂V D

|χD(t(τ)) − χD(i(τ))|.

Let γ ∈ B(r) ⊂ Γ, where B(r) represents a ball of radius r in the graph. We

choose r large enough such that |B(r)| ≥ 2|D| > |B(r − 1)|.

Varopoulos Transport T γD = |Dγ \D|

Average Transport T̂ γD = 1
|B(r)|

∑

γ∈B(r)

T γD.

Proposition 6.4 (Varopoulos, [39]). T̂ γD ≥ 1
2
|D|.

Proof. T̂ γD = 1
|B(r)|

∑

σ,γ

|{(σ, γ) | σ ∈ D, σγ ∈ (VΓ \D), γ ∈ B(r)} |

= 1
|B1(r)|

∑

γ∈B(r)

∑

σ∈D

(χD(σ) − χD(σγ))

=
∑

σ∈D

1

|B(r)|
∑

γ∈B(r)

(χD(σ) − χD(σγ))

=
∑

σ∈D




|B(r)|
|B(r)| χD(σ) −

∑

γ

χD(σγ)

|B(r)|




=
∑

σ∈D

(
1 − |Bσ(r) ∩D|

|B(r)|

)
, where Bσ(r) is a ball of radius r at

vertex σ.
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But since we assumed that |B(r)| > 2|D|, so we have,

T̂ γD ≥
∑

σ∈D

(1 − 1

2
),

or, T̂ γD ≥ 1
2
|D|

So there is γ0 ∈ B1(r) such that T γ0D ≥ |D|
2

.

Next we obtain an upper bound for the transport T γD in the following propo-

sition.

Proposition 6.5. T γD ≤ lγ |∂VD|; where lγ is the length of γ.

Proof. The path corresponding to the word γ can be expressed as a sequence of

the generators in Γ, namely, a1a2a3....alγ where ai = α±1 or = β±1 for 1 ≤ i ≤ lγ .

Notation: Let a1a2...ak = αk for 1 ≤ k ≤ lγ and α0 is the identity of the

group.

The Varopoulos Transport as defined before is,

T γD = |Dγ \D|

∴ T γD =
∑

σ∈D

|{(σ, γ) | y ∈ D, σγ ∈ (VΓ \D), γ ∈ B1(r)} |

=
∑

σ∈D

|χD(σ) − χD(σγ)|

Now using the sequence and notation defined above, we can write,

T γD ≤
∑

σ∈D

(
lγ∑

i=1

|χD(σαi) − χD(σαi−1)|
)
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So in the inner sum, in the expression above, the terms have value either 0 or

1, the terms which have value 1, represent boundary edges.

In order to establish the upper bound for the transport of D by γ ∈ Γ, we

will show that each of the boundary edge mentioned above appears at most lγ

times in the sum. So, we start with the transport of a vertex σi ∈ D via the

path γ. Let us denote the edge between the vertices σiαj−1 and σiαj by τ where

1 ≤ j ≤ lγ . Now let us express the path γ as the sequence γ1τγ2; where γ1, γ2

are two sub-paths of γ such that the initial vertex of γ1 is σi while the terminal

vertex of γ2 is σiγ, and τ is the label of the jth edge of γ. Then, by uniqueness

of path liftings in a Cayley graph, it is known that γ1 and γ2 are both unique

with respect to initial vertex σi. In other words, the paths corresponding to γ

originating from vertices of D other than σi, do not have τ as the jth edge. So

if the path γ originating from vertex σj ∈ D, (where σj 6= σi), can be expressed

as γ3τγ4, then, here τ is the label for say the kth, (k 6= j) edge of this path while

γ3 and γ4 are both unique sub-paths with respect to σj . So a particular edge in

path γ can appear at most lγ times.

Therefore, T γD ≤ lγ
∑

σi,σj∈VΓ

|χD(σi) − χD(σj)|.

So, T γD ≤ lγ |∂VD|.

Next we will consider f : (Dn, Sn−1) → X to be an immersion, and so instead

of a characteristic function we consider a non-negative, integer-valued function

φD (Definition 5.9) and show that the Varopoulos argument works in this case

too. Assume as before, that γ ∈ B1(r) ⊂ G, where B1(r) represents a ball of

radius r centered at the identity in the graph. We choose r large enough such

that |B1(r)| ≥ 2 ‖ φD ‖> |B1(r − 1)|.
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Varopoulos Transport T γD =
∑

σ∈D

|φD(σ) − φD(σγ)|.

∴ Average Varopoulos Transport is given by,

T̂ γD = 1
|B1(r)|

∑

γ∈B1(r)

T γD .

Remark 6.6. The definitions of ||φD||, ||∇φD|| used below can be found as

Remark 5.10 and Definition 5.12 respectively in Section 5.2.1

Proposition 6.7 (Calhoun, Saloff-Coste, [15]). T̂ γD ≥ 1
2
||φD||

Proof. T̂ γD = 1
|B1(r)|

∑

γ∈B1(r)

∑

σ∈D

|φD(σ) − φD(σγ)|

=
∑

σ∈D

1

|B1(r)|
∑

γ∈B1(r)

|φD(σ) − φD(σγ)|

≥
∑

σ∈D

1

|B1(r)|
∑

γ∈B1(r)

|φD(σ)| − |φD(σγ)|

≥
∑

σ∈D

1

|B1(r)|


|B1(r)|φD(σ) −

∑

γ∈B1(r)

φD(σγ)




≥
∑

σ∈D


φD(σ) − 1

|B1(r)|
∑

γ∈B1(r)

φD(σγ)




Since,
∑

γ∈B1(r)

φD(σγ) ≤ ‖ φD ‖, we have,

T̂ γD ≥
∑

σ∈D

(
φD(σ) − ‖ φD ‖

|B1(r)|

)

According to our initial assumption, ‖φD‖
|B1(r)|

≤ 1
2
, and that implies, ‖φD‖

|B1(r)|
≤

φD(σ)
2

, for any particular σ ∈ D.

∴ T̂ γD ≥
∑

σ∈D

φD(σ)

2
=

1

2
‖ φD ‖
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In particular, ∃γ0 ∈ B1(r) such that, T γ0D ≥ ‖φD‖
2

.

Proposition 6.8. T γD ≤ lγ ||∇φD||, where lγ denotes the length of the path/word

γ.

Proof. We will use the same argument as in proof of Lemma 6.5 to show this.

The path corresponding to the word γ can be expressed as before by a sequence of

the generators in Γ, namely, a1a2a3....alγ where ai = α±1 or = β±1 for 1 ≤ i ≤ lγ .

Notation: Let a1a2...ak = αk for 1 ≤ k ≤ lγ and α0 is the identity of the

group.

The Varopoulos Transport as defined before is,

T γD = |Dγ \D|

∴ T γD =
∑

σ∈D

|φD(σ) − φD(σγ)|

As before,

T γD ≤
∑

σ∈D

(
lγ∑

i=1

|φD(σαi) − φD(σαi−1)|
)

The terms in the inner sum are either zero or a natural number. In the case

when they are non-zero, they represent boundary edges in the Varopoulos sense.

So as in the proof of Lemma 6.5, each of these afore-mentioned boundary

edges appear in the sum at most lγ times. Therefore,

T γD ≤ lγ
∑

σiσj∈VΓ

|φD(σi) − φD(σj)|,

which means, T γD ≤ lγ ‖ ∇φD ‖.
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6.4 Isoperimetric Inequalities for groups of Poly-

nomial growth

6.4.1 A 2-dimensional Example

Here we will discuss the 2-dimensional example Z2. Let us consider the pre-

sentation 〈a, b | [a, b]〉 for Z2. Let X̃ be the universal cover of the 2-complex X

corresponding to the presentation given above for Z2. As before let us denote a

ball of radius r centered at the identity in X̃ by B1(r).

Let us choose r such that |B1(r)| ≥ 2||φD|| > |B1(r − 1)|. Also, |B1(r)| ∼

O(r2).

From the propositions above, we already know that:

1
2
||φD|| ≤ T γ0D ≤ lγ0 |∂VD| for some γ0 ∈ B1(r).

∴ ||φD|| ≤ 2lγ0 ||∇φD||

∴ ||φD|| � ||φD||
1

2 |||∇φD|| ; since lγ0 ≤ r

∴ ||φD|| � ||∇φD||2

When the 2-disc along with its boundary circle is embedded in X̃ via the trans-

verse map f : (D2, S1) → X̃, ||∇φD|| = |∂D2|. On the other hand, in the case

when we have a reduced diagram f : (D2, S1) → X̃, such that the disc and its

boundary are not embedded, then by Lemma 5.13 ||∇φD|| ≤ |∂D2|. Hence we

have the following isoperimetric inequality.

∴ ||φD|| � ||∇φD||2 ≤ (2Const.)2|∂D2|2.

∴ V ol2(D2) � |∂D2|2.
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6.4.2 A 3-dimensional Example

In this section we present the an upper bound for the second-order Dehn functions

of the 3-dimensional group H and consequently all cocompact lattices in the Nil

geometry. In other words we complete the proof of Theorem 1.1 here.

Lemma 6.9. ||φD|| � ||∇φD||
4

3

Proof. Let Γ denote the dual Cayley graph embedded in X̃ corresponding to the

generating set A0 defined in Lemma 5.6 part (i) where X̃ is the universal cover

of the 3-complex corresponding to H. Let us consider the reduced 3-dimensional

diagram f : (D3, S2) → X̃ (defined in Section 3.2). Let D be the finite set of

vertices in Γ dual to the 0-handles present in the diagram mentioned above.

Next, let us choose a ball of radius r in the graph Γ such that |B1(r)| ≥

2||φD|| > |B1(r − 1)| , where K > 2 is real and K is sufficiently large. Also,

|B1(r)| ∼ O(r4), by Lemma 4.5.

From Section 6.3, we already know that, 1
2
||φD|| ≤ T γ0D ≤ lγ0 |∂VD| for

some γ0 ∈ B1(r). Also as lγ0 ≤ r and r− 1 ≤ (2||φD||)
1

4 ⇒ r � (||φD||)
1

4 and we

have the following,

∴ ||φD|| ≤ 2lγ0 ||∇φD||

∴ ||φD|| � 2||φD||
1

4 ||∇φD||

∴ ||φD|| � ||∇φD||
4

3 .

Given a reduced diagram f : (D3, S2) → X̃, if the 3-ball and its boundary

sphere are embedded in X̃, then ||∇φD|| = |∂D3|. If they are not embedded

then by Lemma 5.13, ||∇φD|| ≤ |∂D3|. Hence we have the following inequality.

∴ V ol3(D3) � |∂D3| 43 , where |∂D3| is the volume of the boundary sphere.

Therefore, by the definition of δ(2), if x is the maximum number of 3-cells in

the boundary sphere, then δ(2)(x) � x
4

3 .
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6.5 Isoperimetric Inequalities for groups of Ex-

ponential growth

In this section we present the upper bound for the second-order Dehn functions

of S and consequently all cocompact lattices in the Sol geometry. In other words,

the proof of Theorem 1.2 will be completed here.

Lemma 6.10. ||φD|| � ln(||∇φD||) ||∇φD||.

Proof. We start with a reduced 3-dimensional diagram (D3, S2), corresponding

to a finitely presented group G. In this sub-section, we have a 3-dimensional

example with exponential growth namely, the solvable group S.

Let us choose r such that |B1(r)| ≥ 2||φD|| > |B1(r− 1)|, |B1(r)| ∼ Celn(k)r,

k, C are both positive constants,(by Lemma 4.8). Therefore we have,

||φD|| ≥ Celn(k)r.

∴ r � ln(||φD||)

Next, from Section 6.3, we already know that, 1
2
||φD|| ≤ T γ0D ≤ lγ0 ||∇φD||

for some γ0 ∈ B1(r).

∴ ||φD|| ≤ 2lγ0 ||∇φD||

∴ ||φD|| � ln(||φD||) ||∇φD|| ; since lγ0 ≤ r (∗)

As in the case of H, we can say the in the embedded case ||∇φD|| = |∂D3|,

while in the immersed case we have ||∇φD|| ≤ |∂D3|, using the Lemma 5.13

above. Hence we have the following isoperimetric inequality,

Taking natural logarithm, ln, on either side of (∗) we get,

ln(||φD||) � ln(ln(||φD||) ||∇φD||),

∴ ln(||φD||) � ln(ln(||φD||) + ln(||∇φD||),

Now from (∗),for large values of ||φD||,
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ln(||φD||) ≤ ||φD||
ln(||φD ||)

� ||∇φD||,

∴ ln(||φD||) � ln(||∇φD||)

Again from (∗),

||φD|| � ln(||∇φD||) ||∇φD||.

From the lemma above we have, V ol3(D3) � ln(|∂D3|) |∂D3|, where |∂D3|

is the volume of the boundary sphere. Therefore, by the definition of δ(2), if x is

the maximum number of 3-cells in the boundary spheres then δ(2)(x) � x ln(x).
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