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Abstract 
 

Geometric attributes such as coherence and curvature have been very successful 

in delineating faults in sedimentary basins. While not a common exploration objective, 

fractured and faulted basement forms important reservoirs in Venezuela, USA (Southern 

California), Brazil, Libya, Algeria, Egypt, Russia, and Vietnam (Landes, 1960; Canh, 

2008). Because of the absence of stratified, coherent reflectors, illumination of basement 

faults is more problematic than illumination of faults within the sedimentary column. In 

order to address these problems, it is important to carefully analyze alternative forms of 

the 3D seismic data, which in this dissertation will be primarily combinations of one or 

more seismic attributes, and interpret them within the context of an appropriate structural 

deformation model. For that purpose, in this research, I concentrate on analyzing 

structural dip and azimuth, amplitude energy gradients, and a large family of attributes 

based on curvature  to better illuminate fracture ‘sweet spots’ and estimate their density 

and orientation. I develop and calibrate these attribute and interpretation workflows 

through application to a complexly folded and faulted, but otherwise typical, geologic 

target in the Chicontepec Basin of Mexico. I then apply this calibrated workflow to better 

characterize faults and build fracture models in the granite basement of the Cuu Long 

Basin, Vietnam, and the granite and rhyolite-metarhyolite basement of Osage County, 

Oklahoma, USA. In the Cuu Long granite basement, it forms an important 

unconventional reservoir. In Osage County, we suspect basement control of overlying 

fractures in the Mississippian chat deposits. 
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Chapter 1 Motivation and Objectives 

In Vietnam, the first oil and gas discovery in fractured granite basement rocks was 

in 1987. Since that time, oil and gas production from fractured granite basement 

reservoirs has played a very important part in the oil and gas industry of Vietnam, as well 

as the national economy development. Although there have been exploration and 

production activities in fractured basement reservoirs in Vietnam for over 20 years, there 

are still a lot of challenging problems that remain unsolved, to enhance oil recovery from 

this special type of reservoir  (Canh, 2008). 

The illumination of faults is more problematic in granite basement than in the 

sedimentary zones, for a number of reasons: in the granite basement, faults and fractures 

are more complicated, and lack horizontal, coherent layered reflectors, and the seismic 

data quality is much lower. 

The basement fractures increase porosity and permeability, allowing it to serve as 

a hydrocarbon reservoir. Knowing fault/fracture intensity and orientation can guide 

horizontal drilling programs, thereby increasing production, and optimizing drainage. 

In this research, I use detailed analysis of seismic attributes relate to folds, faults 

and fractures, including structural dip, amplitude gradients, and curvature and coherence 

to better delineate structurally complex features, map density and orientation of fracture 

zones. 

Objective of my research is to provide methods and tools to enhance the signature 

of basement faults or fractures zone, to automatically and quickly evaluate fracture 

intensity and orientation, thereby locating potential prospects, and aiding design of 

horizontal drilling programs to enhance production and maximize drainage. 
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Chapter 2 Introduction 

The oil industry has been developing rapidly. Most of the conventional reservoirs 

that fall within today’s environmental and political constraints have been found or are 

being actively explored. As the task for exploration becomes more difficult, we need to 

look for oil and gas reservoir targets that are smaller, deeper, poorly illuminated due to 

complex structure, or are considered unconventional, requiring hydraulic fracturing, or 

are “new” play concepts, such as production from basement. To achieve these goals, new 

technologies are required, new research is carried out, and new processing algorithms are 

developed. In this dissertation, I summarize the research and contributions I have made as 

part of OU’s Attribute-Assisted Seismic Processing and Interpretation (AASPI) research 

team. I have developed my own algorithms, debugged algorithms written by colleagues 

(and my own), developed graphical user interfaces,  and most important, developed and 

calibrated workflows in applying  seismic attributes to structurally complex environments 

such as the granite basement faulting in the Cuu Long Basin, Vietnam, the faulted and 

folded environment of Chicontepec Basin, Mexico, and many other places. 

Since my goal has been not only the development but also the transfer of 

technology, my dissertation will be in form of a list of scientific papers and published 

expanded abstracts.  

In Chapter 3, I begin with a summary of some of the basic concepts necessary to 

read the subsequent chapters – definitions of volumetric dip and azimuth, curvature, 

reflector shapes, amplitude gradients, and so forth, some of which were developed by me 

(Euler curvature and volumetric rose diagrams) and others that were developed by 

colleagues. 
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Chapter 4 is a paper to be submitted in May 2010 to Geophysics on the Cuu Long 

Basin, Vietnam, that forms the primary focus of my thesis. 

 Chapter 5 is a paper to be submitted in May 2010 to Geophysics on the 

Chicontepec Basin, Mexico, which serves as the calibration of my attribute interpretation 

workflows on a data volume that is difficult, but somewhat conventional, in that the 

folding and faulting occurs in the sedimentary column rather than basement. 

Chapter 6 includes a suite of seven expanded abstracts that have presented and 

published at international meetings in the U.S.A., Australia, Vietnam, and Japan, as well 

as a paper published in the First Break where Satinder Chopra applied some of my 

workflows to data acquired over complex faulted geology from Alberta, Canada. 

Each of the above papers and expanded abstracts are followed by the appropriate 

references.  

I conclude this thesis with a snapshot of the Graphical User Interfaces (GUIs) that 

I have developed, along with a few representative shell scripts. I am proud to say that 

these GUIs are currently being used by the 16 AASPI’s sponsors, representing the six 

inhabited continents.  Although a computer programming exercise rather than a scientific 

contribution, I wish to include it not so much because of the considerable time invested in 

their development, but rather because the ‘client interaction’ of such software distribution 

and support helped my define and clarify our attribute work flows much more clearly. 
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Chapter 3 Theory and Methodology 

Structural dip, amplitude gradient, and curvature – A 360o perspective 

Geologically and mathematically, a planar surface such as a formation top, a 

dipping bed or a fault surface can be represented by the magnitude of its true dip θ and 

strikeξ, or dip azimuthψ, with respect to North. The true dip θ can be represented by 

apparent dips θx and θy along the x and y axes (Figure 1). Figure 2 is an example of a 

faulted surface from Phan Thiet, Vietnam. The exfoliation fault plane (rectangle) is 

represented by strike ξ  in NE-SW direction, and dipping with magnitude θ into the 

direction of unit vector dip.  

Seismically, any impedance contrast can scatter energy sent from the seismic 

source back to receivers. The seismic response of a smooth reflector results in aligned 

peak and troughs. We can find the dip of a reflector by searching for the dip angle 

exhibits the maximum semblance (Figure 3).  

There are several popular means of computing volumetric dip components, 

including those based on weighted versions of the instantaneous frequency and wave-

numbers (Barnes, 2000),  on the gradient structure tensor (Randen et al., 2000) and on 

discrete semblance-based dip searches (Marfurt, 2006).  

Figure 4 is a schematic diagram showing a 3D search-based estimate of seismic 

coherence, for time-migrated seismic data, with apparent dip components (px, py) along 

the inline and crossline directions in s/ft or s/m. Apparent dip components are computed 

as: 

xtpx ∆∆= / ,         (1a)
 

ytpy ∆∆= / .         (1b)
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For depth-migrated seismic data such as our Cuu Long survey, we simply 

compute θx and θy and display them either as components or as dip magnitude, θ, and dip 

azimuth, ψ, or alternatively as dimensionless apparent dip components (px, py) measured 

in ft/ft or m/m.  

)/atan( xzx ∆∆=θ ,        (2a)
 

)/atan( yzy ∆∆=θ .        (2b)
 

The relationship between apparent seismic time dips and apparent angle dips are: 

vp xx /)tan(2 θ∗= ,        (3a)
 

vp yy /)tan(2 θ∗= ,        (3b)
 

where v is an average time to depth conversion velocity. A graphic representation of px is 

displayed in Figure 5.  

Directionally, one can compute apparent dip at any angle ψ from North through a 

simple trigonometric rotation: 

)sin()cos( φψφψψ −+−= yx ppp ,      (4) 

where  φ is the angle of the inline seismic axis from North. 

Marfurt (2006) also describes an amplitude gradient vector attribute that has 

inline and crossline components (gx, gy). We can therefore compute an amplitude gradient 

at any angle,ψ , from North: 

)sin()cos( φψφψψ −+−= yx ggg .      (5) 

To compute the apparent curvature at an angle, δ, from the azimuth of minimum 

curvature, χ, one can slightly modify Roberts’ (2001) description of Euler’s formula: 

δδδ
2

min
2

max cossin kkk += ,     (6) 
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where kmin and kmax are the minimum and maximum curvatures. To compute the apparent 

curvature at an angleψ, from North one obtains: 

)(cos)(sin 2
min

2
max χψχψψ −+−= kkk .     (7)  

Using equations 4, 5, and 7, I am able to animate through a suite of apparent dip, 

amplitude gradient, and curvature images, rotating 360o from the North, and examine 

which perspective best illuminates structural features of interest. Figure 6 shows the 

workflows to generate these attributes. 

Curvature 

Planar surface is only one special type of geological surface, or reflector. In the 

real world, geological surfaces are commonly folded (Figure 7).  

Geometric description 

Curvature at any point, P, on a 2D curve is defined by the reciprocal of the radius 

of the osculating circle, R, tangent to the curve at the analysis point (Figure 8). For a 3D 

surface, we define curvature at a point P by fitting two circles within perpendicular 

planes tangent to that surface at the analysis point (Figure 9). The reciprocal of the radius 

of these two circles give rise to what are called apparent curvatures. We rotate the two 

perpendicular planes until we find the circle with the minimum radius. The reciprocal of 

this radius is defined as the maximum curvature, kmax. For a quadratic surface, the tangent 

circle contained in the plane perpendicular to that with the minimum radius will contain 

the circle with the maximum radius, whose reciprocal defines the minimum curvature, 

kmin. With the vertical axis being defined as positive down, we will define anticlinal 

features to have positive maximum curvature, and synclinal features to have negative 

maximum curvature. 
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Mathematical description 

Fitting a quadratic surface for any point on an analysis surface, with the 

approximation 

z(x,y)=ax2 + by2 + cxy + dx + ey + f,      (8) 

Based on Rich (2008), one can compute the principal curvatures k1 and k2 as the 

eigenvalues of the quadratic surface: 

 
2322

2122

1 1

11
/

/

)e+d(

β)(αcde)+db()+ea(
k

+
−+−+= ,      (9) 

and  

 
2322

2122

2 1

11
/

/

)e+d(

β)(αcde)+db()+ea(
k

+
−−−+= ,      (10) 

where 

222 11 )]db()e[a(α +−+= ,        (11) 

)]dc(ade)][ec(bde[β 212212 +−+−= ,      (12) 

Most references (in both mathematics and geology) define the maximum 

curvature to be the greater of absolute of the two principal curvatures, k1 and k2 (largest 

absolute curvature values) 

||||

||||

 if

 if

21

21

2

1
max {

kk

kk

k

k
k

<
≥

= ,       (13) 

and minimum curvature to be the smaller of the absolute of the two principal curvatures 

||||

||||

 if

 if

21

21

1

2
min {

kk

kk

k

k
k

<
≥

=  .       (14) 

The above definition is related to the definition of the first eigenvalue being the 

largest in magnitude, regardless of the shape (concave or convex) of the corresponding 



 

9 

eigenvector that best describes a quadratic surface. Roberts (2001) also defines the most-

positive and most-negative curvatures 

2/122 ])[()( cbabakpos +−++= ,      (15) 

and 

2/122 ])[()( cbabakneg +−−+= .      (16) 

In the special case of zero dip, (i.e., at the crest and troughs of synclines and at the 

top and bottom of domes and bowls, we have d = e = 0, such that at these locations only 

kpos=k1 , (d=0, e=0)         (17) 

and 

kneg=k2 , (d=0, e=0).        (18) 

Shape index and curvedness 

In principal, the geologic structure can be visualized by animating between the 

two principal curvature k1 or k2. A simpler image can be obtained by combining k1 and k2 

into the shape index, s 










−
+=

21

21ATAN
2

kk

kk
s

π
,       

 (19) 

and curvedness 

2/12

2

2

1
)( kkc +=         (20) 

where values of s = -1.0, -0.5, 0.0, +0.5, and +1.0, indicate bowl, valley, saddle, ridge, 

and dome quadratic shapes (Figure 10). Figure 11 is an example from Chicontepec basin, 

displaying shape index modulated by curvedness. In the figure, ridge, valley, dome, bowl, 

and saddle shape are presented. 
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Curvature Lineaments – Multi-attribute displays and rose diagrams 

Combining multiple attributes in a single image allows us to visually ‘cluster’ 

mathematically different attributes that are sensitive to the same underlying geology, 

which in Cuu Long Basin are faults and fracture lineaments. Since the ridge or the valley 

component of curvature might be related to the up-thrown size or down-thrown side of 

faults, and minimum curvature azimuth in this case is the strike of these features, I 

combine these attributes, and represent the results alternatively, as a 2D color display, or 

as a rose diagram. In Figure 12, I show a composite image of the ridge component of 

curvedness, cr,  

( )5.0−•= sGccr ,        (20) 

where G is a function of shape index, as plotted in Figure 13, and minimum azimuth of 

curvature, ψmin from DiamondM field, Texas. The lightness represents the lineament 

component of curvedness, which in this case is ridge, and hue represents the azimuth of 

minimum curvature. The black area is where the curvedness is low, or flatter zone. 

For a more conventional display of these lineaments, we generate rose diagrams 

for any defined n-inline by m-crossline analysis window. Within each analysis window, 

we threshold  the ridge (or valley) components of curvedness, cr (or cv), bin within each 

voxel according to its azimuth, ψmin, and sum the threshold-clipped values of the ridge or 

valley components, thereby generating volumetric rose diagrams over a suite of windows 

spanning the entire seismic volume. A 3D rose diagram on a time structure map of top 

reef from DiamondM field is displayed in Figure 14. In this figure, locations of no 

lineaments, lineaments increasing, decreasing, rotating, constant, unidirection, bidirection 

are presented. 
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Summary 

 There are many geometric attributes that can be used to interpret geological 

structure. In this chapter, I have summarized the theory and mathematical foundation for 

apparent dip, amplitude gradient, curvature, and combinations of curvature attributes 

such as the shape index with curvedness, ridge curvedness with minimum curvature 

azimuth in multi-attribute display and rose diagrams. The applications of these methods 

are presented in the subsequent chapters. 
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List of Figures 

  
Figure 1: Mathematical definition of a dipping surface. By convention, n = unit vector 

normal to the surface; a = unit vector dip along the surface; θ  = dip magnitude; ψ = 
dip azimuth; ξ = strike; θx = the apparent dip in the xz plane; and θy = the apparent 
dip in the yz plane (modified after Chopra and Marfurt 2007). 

 

   
Figure 2: Outcrop of fracture granite basement in Phan Thiet, Vietnam. The exfoliation 

fracture surface (rectangle) is represented by the strike ξ  in E-W direction, dipping 
θ into the direction of unit vector dip a (image courtesy of PetroVietnam).  
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Figure 3: A schematic diagram showing a 2D estimate of coherence. The high coherence 

response represents a seismic reflector (modified after Marfurt et al. 1998).  
 

  
Figure 4: A schematic diagram showing a 3D search-based estimate of coherence, in 

which px indicates the inline and py the crossline components of vector time dip 
(modified after Marfurt et al. 1998). 
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Figure 5: A schematic diagram showing the calculation of seismic reflector dip. θx = the 

apparent dip magnitude in the x direction. px = the inline components of vector time 
dip. v = average time to depth conversion velocity. 

 

 
Figure 6: Processing workflow to generate directional attributes. (a) Generating 

directional dip or amplitude energy gradient attribute from seismic amplitude. (b) 
Generating Euler curvature attributes from inline and crossline dip attributes. 
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Figure 7: Folding surface, Lago Argentino 

 
 

 
 

Figure 8: Definition of curvature. For a particular point P on a curve, green arrows 
indicate normal vectors, n, to the curve. τ is the vector tangent to the curve at point 
P. Curvature is defined in terms of the radius of the circle tangent to the curve at the 
analysis point. Anticlinal features have positive curvature (k2D>0), and synclinal 
features have negative curvature (k2D <0). Planar features (dipping or horizontal) 
have zero curvature (k2D =0) (modified after Roberts, 2001). 
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Figure 9: A quadratic surface with the normal, n, defined at point P. The circle tangent to 

the surface whose radius is minimum defines the magnitude of the maximum 
curvature, |kmax|≡1/Rmin (in blue). For a quadratic surface, the plane perpendicular to 
that containing the previously defined blue circle will contain one whose radius is 
maximum, which defines the magnitude of the minimum curvature, |kmin|≡1/Rmax 
(in red). Graphically, the sign of the curvature will be negative if it defines a 
concave surface and positive if it defines a convex surface. For seismic 
interpretation, we typically define anticlinal surfaces as being convex up, such that 
kmax has a negative sign and kmin has a positive sign in this image. 

 

 
Figure 10: The definition of 3D quadratic shapes expressed as a function of the most-

positive principal curvature, k1, and the most-negative principal curvature, k2. By 
definition, k1 ≥ k2. Thus, if both k1 and k2 are less than zero, we have a bowl; if both 
are greater than zero, we have a dome; and if both are equal to zero, we have a 
plane. 
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Figure 11: Example of shape index modulated by curvedness. Chicontepec, Mexico. 
 

 
Figure 12: Example of ridge curvedness and the azimuth of minimum curvature 

composite image, DiamondM, Texas. 
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Figure 13: G function of shape components (al-Dossary and Marfurt, 2006) 

 
 

 
Figure 14: Example of 3D rose diagrams on time structure map, DiamondM, Texas. 
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Chapter 4 Attributes applied to the Cuu Long Basin, Vietnam 

Description 

Oil and gas production from fractured granite basement reservoirs plays a very 

important part in the oil and gas industry of Vietnam, with 85% of crude oil in Vietnam 

produced from the basement. Due to the complexity of this non-layered type of reservoir, 

the seismic data quality are very low. The following paper, to be submitted to Geophysics 

journal of Society of Exploration Geophysicists in May 2010, shows how seismic 

modeling, careful reprocessing, and depth migration followed by attribute analysis can 

help delineate these important basement fractures.  
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ABSTRACT 

 
 

The fractured granite basement is the primary oil and gas reservoir in the Cuu Long 

Basin, Vietnam. Due to the complexity of this non-layered target, seismic data quality 

within the basement is very low. For these reasons, it is important to apply improved 

seismic data processing workflows to improve the fracture imaging quality. 

Our studies in the fractured granite basement of the Cuu Long Basin show that 

application of τ-p deconvolution and parabolic Radon transforms improves the signal-to-

noise ratio by suppressing multiples, thereby revealing the top of the faulted basement. 

Using a multi-arrival-solution controlled beam migration (CBM) further improves the 

signal-to-noise ratio, and helps image steeply dipping discrete fracture events. Applying 

geometric attributes such as apparent dip, energy gradient, and curvature further delineate 

these faults and fractures. Mapping fracture intensity and orientation assists in delineating 

sweet spots and aids in planning horizontal wells. 
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INTRODUCTION 

The basement of the Cuu Long Basin is composed of pre-Cenozoic granite rocks. 

They were strongly deformed, fractured by tectonic events, exposed to weathering, and 

hydrothermally altered. These processes created local structural highs and a network of 

fractures with sufficient pore space and permeability to form an economic hydrocarbon 

reservoir.  

Due to the complexity and non-layered nature of the structure, the seismic data 

contain a lot of noise and multiples. It is therefore critical carefully process, filter, and 

migrate the data to suppress multiples and other noise trains thereby revealing faults and 

fractures within the upper basement reservoir.  

 Throughout studies, we see that applying τ-p deconvolution and parabolic Radon 

transforms do a good job on suppressing noise to signal and removing multiples. Dealing 

with complicated steeply dipping faults in the area, applying multiple-arrival migration 

like controlled beam migration helps image events from fractured basements. Calculating 

geometric attributes, such as apparent dips, energy gradients, and curvature, we can 

generate shaded-relief maps from orthogonal attributes (Barnes 2003), hence highlighting 

the faults and features perpendicular to analysis direction. All of these processes help the 

interpreter to create a better map of the fault and fracture networks, providing better 

understanding of the basement reservoir, and to design better drilling solutions. 

We begin with an overview of the unique geologic play in Cuu Long Basin. Next, 

we describe a suite of seismic models to better understand fracture illumination and the 

effectiveness of alternative multiple suppression strategies. We then apply our processing 

flow to depth migrate the seismic volume. We interpret our images with azimuth-
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sensitive attributes to enhance our fractures. We conclude with a discussion on the 

effectiveness of our workflow. 

CHARACTERISTICS OF PRE-CENOZOIC BASEMENT IN CUU LON G BASIN 

The Cuu Long Basin is located on the Southeast continental shelf of Vietnam 

(Figure 1). Figure 2 shows a geological cross-section, indicating the sequence and 

relative thicknesses of the E, D, C-Lower, Middle and Upper Oligocene, as well as the B-

Miocene layers. These sediment sections directly overlay the Pre-Cenozoic basement 

granite rocks. Tests and production data confirm that a vast reservoir exists in the 

basement’s fractured granite rock, with the pore space containing oil. This target is the 

main exploration objective in Vietnam (Tan, 1990, 2001). 

The structure of the Pre-Cenozoic basement of the Cuu Long Basin is very 

complex, being composed of magmatic rocks formed at different stages. The main 

lithology of the basement consists of granites, granodiorites, diorite, quartzite-diorite, and 

metamorphic rocks. The age of these basement rocks is late Jurassic - early Cretaceous 

(97-178 Ma). The basement has been deformed and fractured by a number of different 

factors, including rifting, followed by uplift, weathering and hydrothermal alteration 

(Figure 3). Tectonomagmatic activities occurred in Jurassic-Cretaceous and ended in 

mid-Miocene. The combined effects of tectonic deformation and a subsequent diagenesis 

have produced a fabric that is a mixture of fractures, vugs, forming favorable conditions 

for hydrocarbon from the Oligocene-Miocene source rocks to migrate and accumulate 

into the basement highs.  

Surface weathering of the granite during exposure to sub-aerial conditions prior to 

the Oligocene resulted in the development of a zone of porosity enhancement near the top 
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of the basement. Weathered zones were only detected in a few wells with their thickness 

varying greatly.  

Where present, the weathered zone makes a significantly increase to porosity and 

well productivity, but its sporadic and restricted development limits the impact on the 

reservoir performance as a whole. In contrast, the fracture systems in basement  rocks 

created favorable conditions for hydrothermal alteration, and dissolution, confirmed by 

the presence of secondary minerals such as calcite, zeolite, and quartz encountered in the 

fractures.  

Given these characteristics, the fractured granite basement reservoir in southeast 

continental shelf of Vietnam is one of the more unusual reservoirs in the world. For this 

reason, we need to recalibrate seismic processing and interpretation workflows that have 

been perfected for more traditional reservoirs encountered in layered sedimentary rocks. 

SEISMIC MODELING 

The pre-Cenozoic granite basement lies at great depth under a thick sediment cover 

is structurally complex, and lacks a clear bedded character. The porosity of the basement 

reservoir is composed of fracture porosity (including vuggy and cavern fracture porosity), 

which differs from the inter-granular porosity seen in sedimentary rocks. The unique 

characteristics of the Cuu Long basement reservoir require a careful reevaluation and 

possibly a unique processing, imaging, reservoir characterization, and exploitation 

workflow. Fagin (1991) found seismic modeling to be an effective tool when 

encountering new seismic structures and plays.  

Based on early Kirchhoff depth migrated images 3D seismic, it was possible to 

generate a detailed model of the basement oil reservoir. The model was made for the 

purpose of studying the wave propagation within fractured granite, and provided a basis to 



Attributes applied to Cuu Long Basin, Vietnam 
 

26 

propose an optimum seismic processing sequence. A 2D seismic model representing the 

fractured basement is shown in Figure 4, where we note that the velocity field varies both 

vertically and laterally. 

The lithology can be represented by a suite of clastic overburden layers overlying 

the granitic basement. The depth of the top of granite basement ranges between 2km and 

6km.  Where the upper Oligocene lies directly on top of the basement, the large velocity 

contrast provides a strong seismic response. Where the lower Oligocene lies on top of 

basement, the velocity contrast is small, making the signature of the top basement 

seismically weak.  

2D finite difference gathers were simulating using the same source and receiver 

spacing and frequency as the 3D survey. These models indicate that simple and interbed 

multiples reflections are originating in the Oligocene mask the much weaker internal 

basement fracture response,  

Figure 5a and 5b show the modeled seismic gathers with and without noise 

suppression using parabolic Radon filters. Note that the basement diffraction signal is 

overprinted by high amplitude multiples (Vien, 2003). 

SEISMIC PROCESSING AND IMAGING 

Given the findings from our model study, we are able to perfect our processing and 

imaging workflow. Although Sonic log measurements show the granite matrix velocity to 

be between 5.4-6.0 km/s, some imaging studies found that a velocity of 4.6 km/s was 

more applicable for the migration and stacking response of the intra-granite fractures. 

The initial velocity model was built on this premise. 

Velocity updating was performed using tomography, based on residual curvature 

analysis of common image gathers. While this method successfully handled the 
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overburden clastics, defining the velocity for the deeper zone was difficult because of the 

weaker primary reflectivity, remnant multiple contamination and the general insensitivity 

of the method to velocity perturbations at depth.   

To continue the velocity update into the E-Sequence and Basement, a stacking 

velocity sweep method was used. The interpreted Top E horizon was fixed as the upper 

boundary of the stack sweep.  The velocity field above the Top E remained static, while 

the velocity field below Top E was smoothed and used as the reference velocity.  

Percentage variations around this reference velocity were calculated, generating a total of 

seven different velocity models to be input into migration – in this case, beam migration, 

thus generating seven controlled beam migration (CBM) stacks.  The seven stacks were 

analyzed at each location and depth, and the preferred stack response picked as one 

would for any velocity analysis.  The criterion for picking was based on both the quality 

of the signal and the geologic plausibility of the structure.  After all locations were 

analyzed, the pick were smoothed and input into 3D tomography to compute the final 

velocity.  

ENHANCEMENTS OF THE STUDIES IN FRACTURED BASEMENT 

In order to enhance the data quality and imaging of the fractured basement in the 

Cuu Long Basin, we used τ-p deconvolution and parabolic Radon transforms to model 

and remove multiple reflections, thereby revealing the weaker diffractions from the 

fracture basement. We used controlled beam migration to image steeply dipping fault and 

fracture plane events. Finally, we used seismic attributes to further delineate and map our 

fractures. 

Radon and τ-p filters 
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Our model study shows that there are many types of multiples with different nature 

and characteristics that affect the quality of the processed data. Two types of multiples 

are particularly important: high amplitude surface related multiple reflections from a 

number of strong reflection surfaces, and internal multiples between the strong reflection 

surfaces of the Lower Miocene, Oligocene, and top Basement. We find that τ-p 

deconvolution and parabolic Radon transforms do a good job in enhancing the signal-to-

noise ratio, allowing us to image the diffraction signals from the fractured basement. 

Based on their properties, multiple suppression methods can be based on either 

prediction criteria or on NMO differential. In the Cuu Long Basin, the primary reflections 

in the deep part of the section are normally weak, compared to multiple energy left after 

applying predictive deconvolution before stack on far-offset traces. 

In general, multiples seen on far offset traces lose the periodicity seen in near offset 

traces. Treitel et al. (1982) showed that this periodicity can be preserved and thereby 

exploited in the τ-p domain to suppress multiples. Multiples from the shallow section 

often have a greater move-out than primaries arriving at the same time. Hampson (1986) 

showed that parabolic Radon transforms can effectively model such events, which can 

then be subtracted from the original data.  

Internal reflections generated between reflection surfaces of the Lower Miocene 

and Oligocene are commonly characterized by a considerable residual normal move out. 

Unlike F-K demultiple filters, the Radon filter attempts to more equally suppress 

multiples for all traces including near- and far-offset traces. Figures 6a and 6b show 

prestack time migrated images without and with τ-p deconvolution and parabolic Radon 

transform filtering (Tan, 2001; Vien, 2003). We note that after effectively eliminating 
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multiples by the τ-p deconvolution and parabolic Radon transforms processes, signals 

from the basement are visible. 

Improvements in Seismic Imaging in Fractured Basement  

Both Kirchhoff and controlled beam migration (CBM) were used in the final pre-

stack depth migration. Kirchhoff migration was run to image the shallow section and to 

facilitate any possible AVA analysis, while controlled beam migration was used to image 

the top of granite basement and the fracture zones inside the basement. 

Controlled beam migration has an advantage of enhancing the signal-to-noise ratio, 

particularly for steeply dipping events. In a medium of complex velocity, a subsurface 

point may have multi-arrival ray paths. Since conventional Kirchhoff migration is a 

single-arrival migration algorithm, only one of several multi-arrivals is imaged, 

depending on certain predefined criteria. The remaining events are ignored, which can 

result in poor imaging. Wave equation migration does not use ray paths to represent the 

propagation of wave fronts, and thus accounts for all arrivals, and in general, produces 

cleaner images. However, it does not image steeply dipping events such as our fault and 

fracture planes. 

Controlled beam migration has the advantage of both the Kirchhoff migration and 

wave equation migration. It can handle multi-arrival ray paths, and preserve steeply 

dipping reflection, resulting in a cleaner image (Raz, 1987; Sun, 2000; Hill, 2001; Bone 

et al., 2008). A good review of CBM with applications to this survey can be found in 

Gray (2009) 

Figures 7 and 8 show a comparison of the Kirchhoff migration and the CBM 

migration on vertical and depth slices. The intra-basement events that were barely visible 

in Kirchhoff migration are clearly imaged with CBM. 
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The improvement in imaging allows a better understanding of the orientation, 

spacing and potential connectivity of the fracture zones within the basement. It also helps 

further attribute analysis and fault interpretation within the basement, and improves our 

confidence in targeting development well trajectories, and thus assists in optimizing 

productivity.  

Attribute illumination of basement faults 

Geometric attributes such as coherence and curvature have been very successful in 

delineating faults in sedimentary basins. Because of the absence of stratified, coherent 

reflectors, illumination of basement faults is more problematic than illumination of faults 

within the sedimentary column. In order to address these limitations we make simple 

modifications to well-established vector attributes including structural dip and azimuth 

and amplitude energy gradients to provide greater interpreter interaction (Mai et al., 

2009).  

Barnes (2003) showed how volumetric estimates of structural dip and azimuth can 

be used to generate shaded-relief volumes. Based on this idea, we could mathematically 

generate simple axis rotations and project the two orthogonal dip or energy gradient 

components along the surface against the direction of illumination.  

A planar surface such as a dipping horizon or fault can be presented by its true dip 

azimuth, θ, and strike, ψ. The true dip θ can be presented by apparent dips θx  and θy 

along the x and y axes (Figure 9). 

For time-migrated seismic data, it’s more convenient to measure apparent seismic 

time dip components along inline (px) and crossline (py) directions in s/ft or s/m. For 

depth-migrated seismic data such as our Cuu Long survey, we simply compute θx and θy.  
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There are several popular means of computing volumetric dip components, 

including those based on weighted versions of the instantaneous frequency and wave-

numbers (Barnes, 2000),  on the gradient structure tensor (Randen et al., 2000) and on 

discrete semblance-based dip searches (Marfurt, 2006).  

We can compute apparent dip at any angle ψ from North through a simple 

trigonometric rotation 

 )sin()cos( φψφψψ −+−= yx ppp ,      (1) 

where  φ is the angle of the inline seismic axis from North. 

Marfurt (2006) also describes an amplitude gradient vector attribute that has inline 

and crossline components (gx, gy). We can therefore compute an amplitude gradient at 

any angle, ψ,  from North: 

 )sin()cos( φψφψψ −+−= yx ggg .      (2) 

Using equations 1 and 2, we are able to animate through a suite of apparent dip, 

amplitude gradient images at increments of 30O to see which perspective best illuminates 

structural features of interest.  

Results 

We begin by computing apparent dip and energy-weighted amplitude-gradient 

methods, near the top of basement (Figure 10). 

Figure 11 shows depth slices at the top of basement level (2850 m) through the 

apparent dip volume, pψ, as a function of azimuth, using equation 1 for ψ  = 0O, 30O, 60O, 

90O, 120O, and 150O. White arrows indicate the major NE-SW trending main faults.  Red 

arrows indicate subtle faults running NE-SW and cutting into the basement. Yellow 

arrows indicate the faults that cut across the basement, in the N-S and NW-SE directions. 
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The reflector dip enhances different lineament features as the direction of illumination is 

rotated, as we can see by comparing Figures 11a and 11c. Since the dip attribute 

measures the dip of a reflector surface, the dip attribute computed on or near the top of 

basement reveals lineaments well. However, if we look deeper inside the basement, the 

dip estimates become noisier, making it harder to interpret the results (Figure 12). 

In contrast, amplitude gradients are computed along local dip and better delineate 

high energy cross cutting fractures. Apparent amplitude energy gradient results were 

generated at the illumination direction ψ  = 0O, 30O, 60O, 90O, 120O, and 150O from the 

North. Figure 13 shows depth slice at 3100 m cutting through the top of the granite 

basement. White arrows indicate lineaments that we interpret to be indicative of the 

major NE-SW trending faults that run along the boundary of basement top. Red arrows 

indicate subtle faults running NE-SW and cutting into the basement. Yellow arrows 

indicate the faults that cut across the basement, in N-S and NW-SE direction.  

By rotating the direction of illumination, the apparent energy gradients enhance the 

signature of faults or fractures that are perpendicular to the illumination direction. At the 

apparent direction of 0O and 150O, we see NE-SW fractures (Figures 13a and 13f), while 

at 60O and 90O, we see N-S or NW-SE fractures. 

CONCLUSIONS 

The discovery of oil bearing reservoir in the fractured zones in basement rocks has 

opened a new trend for oil and gas prospecting in Vietnam. The reservoirs in basement 

are weathered rocks formed under the influence of tectonic deformation, hydrothermal 

alteration, and weathering processes. Highly fractured zones with good reservoir 

properties are usually concentrated in the basement highs, controlled by regional faults. 
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Seismic modeling in Cuu Long Basin shows that the signal from the basement 

consists of weak diffractions masked by a strong coherent noise. Multiple reflections in 

particular significantly reduce the signal-to-noise ratio in the deeper parts of the section. 

These model studies provide guidance in selecting an effective processing methods and 

parameters to improve the seismic imaging of the fractured basement in Cuu Long Basin. 

We found τ -p deconvolution and Radon parabolic transform enhances our signal-to-

noise ratio, allowing us to image the diffracted fractured basement signal. 

Controlled beam migration effectively images the top basement and intra-basement 

events. The image quality of CBM is clearly superior to that of Kirchhoff migration. 

Considerable care and multiple CBM iterations are necessary to correlate with well logs, 

in order to provide an accurate migration result. 

Volumetric attributes such as dip and amplitude energy gradients, are multi-

component in nature and are thus amenable to visualization from different user-controlled 

perspectives. By defining a suite of azimuths to investigate, the interpreter can enhance 

subtle faults and fractures that might otherwise be missed, or that are more likely to be 

open rather than sealed. 
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Figure 1: Cuu Long basin in the Southeast Continental shell of Vietnam (image courtesy 

of PetroVietnam). 
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Figure 2: Geological cross section, Cuu Long basin. 
 

 
Figure 3: Seismic cross section showing fractures and faults inside granite basement, 

generated during rifting of the basin.  
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Figure 4: Seismic model representing fractured basement in Cuu Long Basin.  

 

 
Figure 5: Modeled gather (a) before and (b) after application of parabolic Radon filter. 
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Figure 6: Time-migrated seismic section showing the basement (a) before and (b) after 

re-processing with Radon and τ-p filters applied. 
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Figure 7: Comparison of (a) Kirchhoff depth migration and (b) controlled beam 

migration on depth slice at z=3100m. Line AA’ shown in Figure 8. While the lateral 
resolution is slightly lower, the controlled beam migration much better indicates the 
fractures. 
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Figure 8: Comparison of (a) Kirchhoff depth migration and (b) controlled beam 
migration on a vertical seismic section. Yellow line indicates location of depth slice 
displayed in Figure 7. 
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Figure 9: Mathematical, geologic, and seismic nomenclature used in defining reflector 

dip. By convention, n = unit vector normal to the reflector; a = unit vector dip along 
the reflector; θ  = dip magnitude; ψ = dip azimuth; ξ = strike; θx = the apparent dip 
in the xz plane; and θy = the apparent dip in the yz plane (after Chopra and Marfurt 
2007). 

 

 
Figure 10: Vertical seismic section showing top of basement and interpreted faults. 

Depth slices shown in Figure 11-13 are indicated in green and yellow lines. 



Attributes applied to Cuu Long Basin, Vietnam 
 

43 

 

 

 
Figure 11: Depth slices at z=2850 m through apparent dip, pψ, computed at apparent 

direction ψ=0O, 30O, 60O, 90O, 120 O, and 150O from North. White arrows indicate 
lineaments were interpreted as main NE-SW faults running along basement top. 
Red and yellow arrows indicate faults and fractures within basement. 

 

 
Figure 12: Depth slices at z=3100 m through apparent dip, pψ, computed at apparent 

direction ψ=0O and 60O from North. 
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Figure 13: Depth slices at z=3100 m through apparent amplitude gradients, gψ, 

computed at apparent direction ψ=0O, 30O, 60O, 90O, 120O, and 150O from North. 
White arrows indicate lineaments were interpreted as main NE-SW faults running 
along basement top. Red and yellow arrows indicate faults and fractures within 
basement. 
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Chapter 5 Attributes applied to the Chicontepec basin, Mexico 

Description 

Geometric attributes such as coherence and volumetric curvature are commonly 

used in delineating faults and folds. While fault patterns seen in coherence and principal 

curvature measures are easily recognized on time slices, they are often laterally shifted 

from each other. The kind and degree of lateral shift is an indication of the underlying 

tectonic deformation. This tutorial chapter illustrates some of the lateral relationships 

between coherence and the various curvature measures in order to give a better 

understanding of tectonic environment based on seismic attributes. The dataset used in 

this research is from a high-quality, structurally-complex 3D survey acquired within the 

Chicontepec basin, Mexico. 

The paper is to be submitted to Geophysics journal of Society of Exploration 

Geophysicists in May 2010. 
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ABSTRACT 

 

Geometric attributes such as coherence and volumetric curvature are commonly 

used in delineating faults and folds. While fault patterns seen in coherence and principal 

curvature measures are easily recognized on time slices, they are often laterally shifted 

from each other. The kind and degree of lateral shift is an indication of the underlying 

tectonic deformation. Unlike coherence, curvature also images folds and flexures that 

link fault systems. With proper understanding of the tectonic environment, a skilled 

interpreter can recognize horsts and grabens, en echelon faults, relay ramps, and pop-up 

structures on simple time slices. In this tutorial paper, we illustrate some of the lateral 

relationships between coherence and the various curvature measures using a high-quality, 

structurally-complex 3D survey acquired within the Chicontepec basin, Mexico.  
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INTRODUCTION 

While coherence  attributes measure lateral changes in the waveform and allow us 

to map reflector offsets, lateral changes in stratigraphy, and chaotic depositional features, 

volumetric curvature attributes measure lateral changes in dip magnitude and dip 

azimuth, and thus allow us to map folds, flexures, buildups, collapse features, and 

differential compaction. Both attributes are used widely in detecting faults, with each 

attribute having its advantages and disadvantages. Coherence accurately tracks vertical 

faults cutting coherent seismic reflectors. For dipping faults, coherence often exhibits a 

vertically-smeared stair-step appearance on vertical slices, due to most implementations 

being computed on vertically-oriented windows parallel to the seismic traces. Where 

there is fault drag, reflector offset below seismic resolution, or antithetic faulting that 

appears as fault drag, dip-steered coherence may not illuminate the fault at all.  For faults 

with very small displacement, the reflectors appear to have a subtle change in dip, 

resulting in the lack of a coherence anomaly; rather, these features appear as a slight 

flexure resulting in a curvature anomaly.  

For faults having significant offset, curvature anomalies often track dip changes on 

either side of a fault due to drag, antithetic faulting, or syntectonic deposition. For this 

reason, curvature anomalies are often laterally displaced from the fault trace. The most 

common way to calibrate attribute anomalies seen on time slices is to visualize their 

relationship with conventional vertical slices through the seismic amplitude data. 

Typically, the interpreter animates through a suite of vertical slices to better understand 

the attribute anomalies. However, given an understanding of the tectonic style, we will 

show how a skilled interpreter can visualize the 3D fault and fold relationships with only 

a minimal amount of calibration with the vertical amplitude data. 
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 Murray (1968) provides what we believe to be the first published application of 

curvature to the detection of subsurface fractures. Later, Lisle (1994) computed curvature 

from the Goose Egg dome outcrop and correlated it to fracture density. McQuillan (1974) 

showed air-photo scale of fracture patterns related to basement-controlled lineaments. 

Roberts (2001) showed the value of curvature computed from interpreted surfaces from 

3D seismic surfaces. Stewart and Wynn (2000) and Bergbauer et al. (2003) showed the 

value of computing curvature at multiple scales, providing long-wavelength and short-

wavelength images. Al-Dossary and Marfurt (2006) extended these ideas to volumetric 

computations.   

In this paper we emphasize the interpretational rather than the computational 

aspects of volumetric curvature and shape indices, showing how it is complementary to 

the more widely-utilized coherence and other edge detection attributes. 

We begin by defining several of the more common curvature attributes, and how 

they can be computed volumetrically. Given these definitions, we propose using the two 

principal curvatures, k1 and k2, rather than the more commonly used maximum, kmax, and 

minimum, kmin, curvatures or most-positive, kpos, and most-negative, kneg, curvatures. 

Next, we compute and interpret these attributes for a 3D survey acquired over complexly 

folded and faulted Mesozoic section in the deeper part of the Chicontepec basin, Mexico, 

to illustrate their lateral relationships. We conclude with a summary of our findings for 

this type of deformation and discuss potential artifacts and pitfalls in attribute 

interpretation. 

GEOMETRIC DESCRIPTION OF CURVATURE 

Curvature at any point, P, on a 2D curve is defined by the reciprocal of the radius of 

the osculating circle, R, tangent to the curve at the analysis point (Figure 1). For a 3D 
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surface, we define curvature at a point P by fitting two circles within perpendicular 

planes tangent to that surface at the analysis point (Figure 2). The reciprocal of the radius 

of these two circles give rise to what are called apparent curvatures. We rotate the two 

perpendicular planes until we find the circle with the minimum radius. The reciprocal of 

this radius is defined as the maximum curvature, kmax. For a quadratic surface, the tangent 

circle contained in the plane perpendicular to that with the minimum radius will contain 

the circle with the maximum radius, whose reciprocal defines the minimum curvature 

kmin. With the vertical axis being defined as positive down, we will define anticlinal 

features to have positive maximum curvature, and synclinal features to have negative 

maximum curvature. 

The interpretation of curvature volumes computed over cylindrically-folded 

geologies (i.e., those defined by a simple 2D cross-section) is straightforward. For the 

anticline shown in Figure 3, the strongest maximum curvature value will be aligned with 

the hinge line of the fold, resulting in positive anomalies along the anticlinal fold axis and 

negative anomalies along the synclinal fold axis. 

Along planar portions of the limbs, the curvature values will be approximately zero. 

Since the layers are continuous, the corresponding seismic waveform for simply folded, 

constant thickness layered geology would be continuous along the fold, such that dip-

steered discontinuity measurements such as coherence will not show any anomalies.  

The attribute expression of faults can be considerably more complicated. For 

normal faults with vertical displacements greater than half a seismic wavelength, we 

often see a discrete discontinuity that is clearly delineated by a low coherence anomaly. 

For highly competent rocks we may see no volumetric curvature if the reflector dip on 

both sides are equal (Figure 4a). However, commonly we see drag on either side of the 
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fault, which may be either through plastic deformation or through a suite of conjugate 

faults (Figure 4b). Parallel to the fault strike, we often have ramp structures, generating 

more complicated 3D curvature anomalies. For an excellent outcrop analysis of such 

features we direct the reader to a recent publication by Ferrill and Morris (2008). 

Listric fault geometries associated with syntectonic deposition can also be 

complicated. On the footwall, we may see very little deformation, with the sediments 

maintaining their original attitude at some angle to the fault face. On the hanging wall, 

the reflectors rotate with depth, often maintaining a near-normal relation to the fault face. 

We may also see a positive curvature anomaly over a roll-over anticline if one exists 

(Figure 4c). Coherence does a good job at delineating the fault dislocation. Deeper in the 

section, as the fault begins to sole out, both coherence and curvature images become 

noisy and less easily interpreted. 

MATHEMATICAL DESCRIPTION OF CURVATURE 

Curvature is one of the fundamental components of differential geometry and is 

used routinely in 3D computer graphics (Salomon 2005), medical (Chen et al. 2007), 

facial recognition (Bruner and Tagiuri, 1954; Millman and Parker, 1977), and molecular 

docking (Tripathi, 2006). Mathematicians define curvature as the eigenvalues of a local 

surface in 3D Gassmannian space (Guggenheimer, 1977).  

In this paper we use the same nomenclature as Roberts (2001) who discussed 

curvature computed from interpreted horizons. All of our computations will be 

volumetric rather than horizon-based and are built on previously-computed estimates of 

inline and crossline dip. Currently, there are at least four well-established means of 

computing volumetric dip based on  complex trace analysis (Barnes, 2000), the gradient 

structure tensor (Randen, 2000), coherence-based scanning methods (Marfurt et al., 1998; 
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Marfurt, 2006), and prediction error filters (Fomel, 2002).  Rather than fitting a quadratic 

surface to a point on a picked surface with the approximation 

feydxcxybyaxyxz +++++= 22),( ,     (1) 

we define the quadratic surface through the inline and crossline derivatives  
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Since curvature involves 2nd derivatives of structural elevation (or time for time-migrated 
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 a
x

yxpx 2
),( =

∂
∂

,          (4) 

 b
y

yxpy 2
),(

=
∂

∂
,          (5) 

and 

 c
x

yxp

y

yxp yx =
∂

∂
=

∂
∂ ),(),(

.        (6) 

We improve upon Al-Dossary and Marfurt (2006) who computed derivatives on time 

slices by using full 3D derivatives, shown in Figure 5. This modest improvement 

significantly improves the appearance of curvature and shape images on vertical sections. 

Given these five quadratic coefficients Rich (2008) defines the most-positive and most-

negative principal curvatures (k1 and k2) to be  
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and  
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We conclude our mathematical discussion with Roberts (2001) definition of the shape 

index, s 
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The values of s = -1.0, -0.5, 0.0, +0.5, and +1.0, indicate bowl, valley, saddle, ridge, and 

dome quadratic shapes.  

MULTIATTRIBUTE VISUALIZATION 

 Guo et al. (2008) provide a tutorial showing how to use the HLS model to 

modulate one attribute by another. Kidd (1999) showed how transparency (1.0-opacity) 

can be used to blend two attributes. In general, we find that blending works best when 

one of the images is plotted against a polychromatic color bar, while a second is plotted 

against a gray scale. Later, we illustrate this concept in Figure 6, where we plot the shape 

index modulated by curvedness against a 2D hue-lightness color map co-rendered with 

seismic amplitude plotted against a gray scale and set to be 50% transparent (Figure 6c)., 

and then co-rendered with coherence where high coherence is transparent (Figure 6d). 
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APPLICATION TO THE CHICONTEPEC BASIN, MEXICO 

In order to illustrate the lateral relationship of our definitions of the most positive 

and most negative principal curvatures and coherence, we use a 3D seismic data acquired 

over the Amatitlán area of the Chicontepec basin (Figure 7). The Paleocene age 

Chicontepec formation consists of turbidities and mass transport complexes derived from 

the Sierra Madre Oriental to the west with perhaps a minor component from the Golden 

Lane high to the east. The underlying Mesozoic section is structurally deformed, 

providing accommodation space for the Tertiary sequences, with some faults cutting the 

exploration objective. The seismic survey is of high quality, with detailed mapping 

complicated by difficulties in distinguishing zones that are geologically chaotic such as 

mass-transport complexes and zones that are geophysically chaotic, due to overlying 

volcanic intrusive and extrusive rocks as well as areas of low seismic fold (Pena et al., 

2009).  

Figure 8 shows the most-positive curvature anomalies, kpos, in yellow, and the most-

positive principal curvature anomalies, k1 in red. On the right side of the image, k1 

exhibits an anomaly along the axis of a dipping flexure (red arrow) while kpos exhibits an 

anomaly that is correlated to the axis of a less geologically-interesting part of the fold 

with respect to the horizontal (yellow arrow).  In the gently dipping areas seen on the left 

side of the image, k1 and kpos are nearly identical (orange arrow). 

Multiple volumetric attributes (most-positive curvature kpos, most-negative 

curvature, kneg, maximum curvature, kmax, minimum-curvature, kmin, most-positive 

principal curvature, k1, most-negative principal curvature, k2, azimuth of minimum 

curvature, ψmin, and energy ratio coherence, c, were calculated from the seismic volume.  
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The appearance of anticlines and synclines 

Figure 9a shows a cartoon of the anticlinal feature corresponding to the green picks 

line in Figure 9b. Since there are no discrete reflector offsets present along the interpreted 

horizon, there are no significant coherence anomalies seen in Figure 9c. However, the dip 

along the interpreted horizon varies laterally.  Along the axis of the anticlinal fold, we see 

anomalies in the most-positive principal curvature (in red). Where the reflectors are 

synclinal, we see anomalies in the most-negative principal curvature (in blue). Along 

planar dipping areas of the interpreted horizon, we see no curvature anomaly. In the 

vertical section, the most-positive principal curvature defines the anticlinal fold axis. The 

most-negative principal curvature anomalies define the edges of the folded anticline. 

Figure 9d shows the curvature anomalies as visualized using modern 3D interpretation 

software. On the time slice, we are able to trace the anticlinal fold axis in NW-SE 

direction. Figure 9e shows the shape index modulated by curvedness that provides an 

image of a long (yellow-brown) ridge on the time slice of the large anticline seen on the 

vertical section. Synclinal features bracketing the anticline appear as (cyan) valleys. 

Coupled with an appropriate deformation model, Masaferro (2003) showed how maps of 

the axial folds can be used to predict fractures.  

The appearance of reverse faults in a pop-up block 

Figure 10 shows several reverse fault features. We note a center pop-up block, with 

the reflectors bent down along the hanging wall side of the faults. At the top left corner, 

the fault shows simple displacement with no drag on the reflector; we only see a 

coherence anomaly (in green). At the right side in Figure 10c, where we note fault drag, 

the coherence anomaly (in green) are bracketed by a most-positive principal curvature 

anomaly (in red) on the hanging wall, and a most-negative principal curvature anomaly 
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(in blue) on the foot wall. At the bottom left of the figure, we only see reflector drag on 

the hanging wall side, which results in the most-positive principal curvature and 

coherence anomalies. Figure 10e shows the shape index modulated by curvedness. The 

faults (grey arrows) are bracketed by long lineaments of (cyan) valleys, and (yellow-

brown) ridge. There is a deformation on the structure, creating a (red) dome in the middle 

of the pop-up block.  

The appearance of a graben 

Figure 11a and b show normal faults delineating a graben. In Figure 11c, we see a 

pair of most-positive principal curvature anomalies and coherence next to each other, 

with a most-negative principal curvature lineament further away. These are the same 

geometries discussed by Sigusmondi and Soldo (2003). Vertically, curvature anomaly 

appears to be more continuous, and more easily interpreted than the coherence anomaly 

which tends to be discontinuous and vertically smeared. Figure 11d shows the curvature 

anomalies and coherence as visualized in 3D. On the time slice, we are able to trace the 

faults as they are laterally extended in the NW-SE direction. In Figure 11e, we display 

the shape index modulated by curvedness co-rendered with the seismic amplitude 

providing further insight into the shape of the bowl-shaped graben. 

The appearance of seismic noise 

Like other attributes, curvature is sensitive to data quality. Falconer and Marfurt 

(2008) show how consistent errors in velocities can cause very subtle, periodic, 

acquisition footprint anomalies in travel time, which are enhanced by dip component 

attributes, and further enhanced by curvature attributes. At the Mesozoic level of the 

Amatitlán survey presented here, the overlying changes in lateral velocity are so great 

that any footprint periodicity is destroyed. These acquisition and processing artifacts – 
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most commonly associated with migration aliasing – give rise to curvature artifacts 

(Figure 12).  

The use of image processing to enhance faults and axial planes 

 Recent advances in image enhancement have made significant progress in 

accelerating the interpretation process. One of the primary focuses is to skeletonize and 

join up discontinuities measured by coherence to approximate a more-continuous fault 

plane generated by a human interpreter.  One approach is to use a suite of successive non-

linear median-family filters (e.g. Barnes, 2006).  We use a commercial implementation of 

an ‘ant-tracking’ algorithm described by Pedersen et al. (2002) to improve the continuity 

and sharpness of faults measured by coherence (Figures 13b, c, 14a, and b). We can also 

apply the same algorithm to improve the continuity and sharpness of axial planes as 

measured by curvature (Figures 13b and 14a). 

Calibration on horizons 

Our final calibration exercise is to examine curvature and coherence attributes 

extracted on a picked horizon. Figure 13a shows a conventional time-structure map at the 

top of Cretaceous enhanced with shaded relief illumination. Figure 13b shows a horizon 

slice through the coherence volume co-rendered with the most-positive and most-

negative principal curvatures.  Figure 13c shows a horizon slice through the coherence 

volume co-rendered with the shape index modulated by curvedness. Armed with our 

previous analysis of the attribute expression of structural styles (normal faults, grabens, 

axial planes, pop-up blocks) as well as of migration artifacts, we can confidently interpret 

the features seen on this multi-attribute horizon slice.   

Figures 14a and b show time slices at t=1.5s at the approximate top-Cretaceous 

level through the same co-rendered attribute volumes. Note that the patterns are markedly 
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similar and that we can easily identify grabens, and pop-up features on the uninterpreted 

attribute volumes. Pop-up blocks appear as yellow (ridge) anomalies bound by two low 

coherence faults. Down-dropped blocks with drag on the faults appear as low coherence 

zones bracketed by a ridge on the hanging wall and a valley on the foot wall.  By 

animating through these co-rendered time and vertical slices, we quickly define the 

structural complexity even in areas that may not contain mappable horizons.  

CONCLUSIONS 

Discontinuity measurements such as coherence are not sensitive to folding 

continuities, and often result in anomalies that are broken when viewed in the vertical 

section. Where they are not vertically smeared, they accurately locate the discontinuity. 

In contrast, curvature lineaments are more continuous on the vertical section and map 

folds and flexures. With fault drag and/or antithetic faulting, volumetric curvature will 

commonly bracket faults but may not coincide with the exact fault location. Co-rendering 

curvature with coherence along with the seismic amplitude data provides a superior 

interpretation product, allowing us to quickly visualize and quantify the structural style 

on uninterpreted vertical and time slices. 
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LIST OF FIGURES 

 
Figure 1. Definition of curvature. For a particular point P on a curve. Green arrows 

indicate normal vectors, n, to the curve. τ is the vector tangent to the curve at point 
P. Curvature is defined in terms of the radius of the circle tangent to the curve at the 
analysis point. Anticlinal features have positive curvature (k2D>0), and synclinal 
features have negative curvature (k2D <0). Planar features (dipping or horizontal) 
have zero curvature (k2D =0). (Modified after Roberts, 2001). 

 

 
Figure 2. (a) A quadratic surface with the normal, n, defined at point P. (b) The circle 

tangent to the surface whose radius is minimum defines the magnitude of the 
maximum curvature, |kmax|≡1/Rmin (in blue). For a quadratic surface, the plane 
perpendicular to that containing the previously defined blue circle will contain one 
whose radius is maximum, which defines the magnitude of the minimum curvature, 
|kmin|≡1/Rmax (in red). Graphically, the sign of the curvature will be negative if it 
defines a concave surface and positive if it defines a convex surface. For seismic 
interpretation, we typically define anticlinal surfaces as being convex up, such that 
kmax has a negative sign and kmin has a positive sign in this image. 
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Figure 3. Lateral displacement of most-positive (kpos) and most-negative curvature (kneg) 

anomalies, correlating the crest and trough of the folded structure from what we 
denote as the most-positive and most-negative principal curvature anomalies (k1 and 
k2) which correlate to the more geologically relevant anticlinal and synclinal fold 
axes. For this image with approximately 2D symmetry in the vertical plane, the 
anomalies for kmax would be identical in location and sign for those of k1 and k2, 
such that the major anomalies could be efficiently mapped using a single (rather 
than two) attributes. 
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Figure 4. Normal faults expressing different mechanisms: (a) a fault showing simple 

displacement with no drag, that would result in a coherence anomaly, but exhibiting 
no change in dip and hence no volumetric curvature anomalies, (b) a fault with drag 
on both sides exhibiting no coherence anomalies, but a most-positive principal 
curvature anomaly on the footwall (in red) and a most-negative principal curvature 
anomaly on the hanging wall (in blue), and (c) a growth fault with syntectonic 
deposition, which would exhibit both a coherence anomaly and a most-positive 
principal curvature anomaly over the roll-over anticline (in red).  
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Figure 5. A vertical slice along y=-30 m, of the 3D  derivative operator s (a) ∂/∂x, (b) 

∂/∂y, and (c) ∂/∂t applied to the inline and crossline components of dip used in 
volumetric curvature computation for data sampled at ∆x=30 m, ∆y=30 m, and 
∆t=2 ms. The operator ∂/∂t is computed from ∂/∂z using a constant reference 
velocity.  The value of ∂/∂y along y=0 is identically zero.  
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Figure 6. (a) Representative seismic amplitude vertical and time slice. On the same 

slices, I co-render (b) shape index modulated by curvedness with (c) seismic 
amplitude and (d) coherence and seismic. The seismic amplitude is set to be 50% 
transparent.  White arrows indicate faults, blue arrows indicate valleys, and yellow 
arrows indicate ridge features. (e) 2D color table used in shape index modulated by 
curvedness, and color legend for coherence and seismic amplitude.  
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Figure 7. Location of Chicontepec basin, Mexico. (After Salvador, 1991).  
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Figure 8. Most-positive curvature anomalies (yellow) co-rendered with most-positive 

principal curvature anomalies (red). Note how the anomalies are aligned in the 
western, flatter part of the image.  

 



Attributes applied to Chicontepec Basin, Mexico 

70 

 

 

 
 
Figure 9. (a) A cartoon of a fold. Anticlinal feature with most-positive principal 

curvature anomalies, k1, in red, delineating the anticline’s hinge line, and most-
negative principal curvature anomalies, k2, in blue, corresponding to the synclinal 
axes of the fold. There are no significant coherence anomalies. (b) Representative 
vertical slice through the seismic amplitude volume showing a fold. (c) Seismic 
amplitude co-rendered with most-positive and most-negative principal curvatures. 
(d) 3D view of a vertical and time slice through the amplitude data co-rendered with 
most-positive and most-negative principal curvature. (e) The shape index 
modulated by curvedness, co-rendered with seismic amplitude. 2D color legend 
same as Figure 6e. 
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Figure 10. (a) Cartoon of a pop-up structure showing two faults giving rise to coherence 

(green) anomalies separating most-positive principal curvature (red), and most-
negative principal curvature (blue) anomalies.  (b) Vertical section through the 
seismic amplitude data showing a pop-up block. (c) Seismic amplitude co-rendered 
with most-positive and most-negative principal curvatures and coherence. (d) 3D 
view of a vertical and time slice through the amplitude data co-rendered with most-
positive and most-negative principal curvature and coherence. (e) The shape index 
modulated by curvedness, co-rendered with coherence and seismic amplitude. 2D 
color legend same as Figure 6e. 
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Figure 11. (a) Cartoon of a graben structure showing two faults giving rise to coherence 

(green) anomalies separating most-positive principal curvature (red), and most-
negative principal curvature (blue) anomalies.  (b) Vertical section through the 
seismic amplitude data showing graben. (c) Seismic amplitude co-rendered with 
most-positive and most-negative principal curvatures and coherence. (d) 3D view of 
a vertical and time slice through the amplitude data co-rendered with most-positive 
and most-negative principal curvature and coherence. (e) The shape index 
modulated by curvedness, co-rendered with coherence and seismic amplitude. 2D 
color legend same as Figure 6e. 
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Figure 12. Seismic artifacts due to shallow volcanic and low fold giving rise to curvature 

and coherence anomalies. 
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Figure 13. (a) Time-structure map of the top-Cretaceous horizon. (b) Horizon slice 

through coherence along the top-Cretaceous co-rendered with corresponding most-
positive and most-negative principal curvature slices. (c) Horizon slice through 
coherence along the top-Cretaceous co-rendered with the shape-index modulated by 
curvedness slice.  2D color legend same as Figure 6e. 
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Figure 14. (a) Time slice at 1.5s at the approximate top Cretaceous level though seismic 

amplitude, co-rendered with corresponding most-positive and most-negative 
principal curvature slices. (b) Time slice at 1.5s at the approximate top Cretaceous 
level though coherence along the top-Cretaceous co-rendered with the shape-index 
modulated by curvedness slice.  2D color legend same as Figure 6e. 
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Chapter 6 Use of seismic attributes in structural interpretation 

Summary 
In this chapter, I include a suite of published abstracts that illustrate effective 

work flows using volumetric estimates of curvature, structure lineaments, rose diagrams 

and other tools to data volumes from Canada, Mexico, USA, and Vietnam: 

• Mai, H. T., and K. J. Marfurt, 2008, Attribute Illumination of Basement Faults, 

Cuu Long Basin, Vietnam: 78th Annual International Meeting, SEG, Expanded 

Abstract, 27, 909-913. 

• Mai, H. T., O. O. Elebiju, K. J. Marfurt, 2008, Attribute illumination of basement 

faults, examples from Cuu Long Basin basement, Vietnam and the Midcontinent, 

USA: 2nd International Fractured Basement Reservoir Conference, Petro Vietnam, 

Proceedings, 181-190. 

• Mai, H. T., C.F. Russian, K. J. Marfurt, R. A. Young, A. W. Small, 2009, 

Curvatures lineament and multi-attribute display of full-stack PP, SS, and 

Acoustic Impedance seismic data – Diamond-M field, West Texas: 79th Annual 

International Meeting, SEG, Expanded Abstract, 28, 1112-1116. 

• Mai, H. T., K. J. Marfurt, S. Chávez-Pérez, 2009, Coherence and volumetric 

curvatures and their spatial relationship to faults and folds, an example from 

Chicontepec basin, Mexico: 79th Annual International Meeting, SEG, Expanded 

Abstract, 28, 1063-1067. 

• Chopra S., K. J. Marfurt, H. T. Mai, 2009, Using 3D Rose diagrams for 

correlation of seismic fracture lineaments with similar lineaments from attributes 

and well log data: 79th Annual International Meeting, SEG, Expanded Abstract, 

28, 3574-3578. 
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• Mai, H. T., K. J. Marfurt, M. T. Tan, 2009, Multi-attributes display and rose 

diagrams for interpretation of seismic fracture lineaments, example from Cuu 

Long basin, Vietnam: 9th SEGJ International Symposium, SEGJ, Paper 0093. 

• Chopra S., K. J. Marfurt, H. T. Mai, 2009, Using automatically generated 3D rose 

diagrams for correlation of seismic fracture lineaments with similar lineaments 

from attributes and well log data: First Break, 27, 37-42. 
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Attribute Illumination of basement faults, Cuu Long Basin, Vietnam 
Ha T. Mai* and Kurt J. Marfurt, University of Oklahoma, Norman, USA 

Summary 

Geometric attributes such as coherence and curvature 
have been very successful in delineating faults in 
sedimentary basins. While not a common exploration 
objective, fractured and faulted basement forms 
important reservoirs in Mexico, India, Yemen, and 
Vietnam. Because of the absence of stratified, 
coherent reflectors, illumination of basement faults is 
more problematic than illumination of faults within the 
sedimentary column. In order to address these 
limitations we make simple modifications to well-
established vector attributes including structural dip 
and azimuth, amplitude gradients, and maximum and 
minimum curvature, to provide greater interpreter 
interaction. We apply these modifications to better 
characterize faults in the granite basement of the Cuu 
Long Basin, Vietnam, that form an unconventional, 
but very important oil reservoir. 
 
Introduction 

Faults play an important role in forming effective 
fracture porosity for hydrocarbon traps in the granite 
basement of the Cuu Long Basin, Vietnam. Mapping 
fault/fracture intensity and orientation can help 
delineate sweet spots and better aid horizontal drilling. 
In the Cuu Long Basin, faults and fractures tend to be 
planar and steeply dipping, such that we expect to see 
them more distinctly by viewing them perpendicular to 
their strike. Interactive shaded-relief maps of picked 
horizons are provided in nearly all 3D seismic 
interpretation software packages. Although most 
easily understood as sun-shading with locally higher 
relief features creating shadows that enhance the 
appearance of subtle dips, mathematically, shaded-
relief maps comprise simple axis rotations and 
projection of the two orthogonal dip components of 
the surface with the direction of illumination  
 
Barnes (2003) showed how volumetric estimates of 
structural dip and azimuth can be used to generate 
shaded-relief volumes. We imitate this work and 
generate directional structural dip, amplitude gradient, 
and curvature volumes and evaluate the results in 
terms of basement fault illumination in the Cuu Long 
basin. 
 
Method 

A planar surface such as dipping horizon or faults can 
be presented by its true dip azimuth θ and strike ψ. 
The true dip θ can be presented by apparent dips θx  

and θy along the x and y axes (Figure 1).  
 
For time-migrated seismic data, it’s more convenient 
to measure apparent seismic time dips (px, py) 
components along inline and crossline directions in 
s/ft or s/m. For depth-migrated seismic data such as 
our Cuu Long survey, we simply compute θx and θy 

and display them either as components or as dip 
magnitude, θ, and dip azimuth, ψ, or alternatively as 
dimensionless (px, py) measured in ft/ft or m/m.  
 

 
Figure 1:  Mathematical, geologic, and seismic 
nomenclature used in defining reflector dip. By 
convention, n = unit vector normal to the reflector; a = 
unit vector dip along the reflector; θ  = dip magnitude; 
ψ = dip azimuth; ξ = strike; θx = the apparent dip in 
the xz plane; and θy = the apparent dip in the yz plane. 
(after Chopra and Marfurt 2007) 
 
There are several popular means of computing 
volumetric dip components, including those based on 
weighted versions of the instantaneous frequency and 
wave-numbers (Barnes, 2002),  on the gradient 
structure tensor (Randen et al., 2000) and on discrete 
semblance-based dip searches (Marfurt, 2006). The 
relationship between apparent seismic time/depth dips 
and apparent angle dips are: 

 
vxxp /)tan(2 φ∗= ,   (1a) 

 
vyyp /)tan(2 φ∗= ,   (1b) 

where v is an average time to depth conversion 
velocity.  
 
We can compute apparent dip at any angle ψ from 
North through a simple trigonometric rotation: 

 φ)(ψ
y

pφ)(ψ
x

p
ψ

p −+−= sincos , (2) 

where  φ is the angle of the inline seismic axis from 
North. 
 
Marfurt (2006) also describes an amplitude gradient 
vector attribute that has inline and crossline 
components (gx,gy). We can therefore compute an 
amplitude gradient at any angle, ψ,  from North: 

 )sin()cos( φψφψψ −+−= ygxgg . (3) 

To compute the apparent curvature at an angle, δ, from 

the azimuth of minimum curvature, χ, we slightly 
modify Roberts’ (2001) description of Euler’s 
formula: 

 
δδδ

2
cosmin

2
sinmax kkk += , (4) 
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where kmin and kmax are the minimum and maximum 
curvatures. To compute the apparent curvature at an 
angle ψ,  from North we write: 

 
χ)(ψkχ)(ψkψk −+−= 2

cosmin
2

sinmax . (5)  

Using equations 2, 3, and 5, we are able to animate 
through a suite of apparent dip, amplitude gradient, 
and curvature images at increments of 150 to see 
which perspective best illuminates structural features 
of interest.  
 
Application 

We compute apparent dip, energy-weighted 
amplitude-gradient methods, and curvature for our 3D 
post-stack depth-migrated seismic dataset from the 
Cuu Long basin, Vietnam.  
 
The structure of Pre-Cenozoic basement of the Cuu 
Long Basin is very complex, and is mainly composed 
of magmatic rocks. Under the influence of tectonic 
activity, the basement was broken into a suite of fault 
systems. This faulting provided favorable conditions 
for hydrocarbons from a laterally deeper Oligocene-
Miocene formation to migrate and accumulate in the 
basement high.  
 
Since the nature of this basement is magmatic rocks, 
the seismic signal is very weak and noisy. Applying 
different methods to enhance the faults signatures will 
aid our seismic interpretation, with the ultimate goal of 
estimate fracture location, density, and orientation.  
 

 

 
Figure 2:  Seismic section on (a) apparent dip depth 
slice and (b) amplitude gradient. The white arrows 
show location where the attributes help interpreting 
fault features 
 

The top of basement was highly compressed, forming 
a high angle push-up to about 2500 m (Figure 3). The 
top of this basement high dips to the east and west at 
about 60o. Faults were formed along all four sides and 
cut deep into the basement (Figure 2). 
 
In Figure 3 we display depth slices at 2750 m through 
the apparent dip volume, pψ, as a function of azimuth. 
We used equation 2 to compute images at ψ  = 0O, 
30O, 60O, 90O, 120O, and 150O.. White arrows indicate 
the major NE-SW trending main faults, while yellow 
arrows indicate more subtle faults cutting across them.  
 
In Figure 4 we display depth slices at 2750 m through 
apparent the amplitude gradient volume, gψ, as a 
function of azimuth. We used equation 3 to compute 
images at ψ  = 0O, 30O, 60O, 90O, 120O, and 150O. 
White arrows indicate lineaments that we interpret to 
be indicative of subtle faults and fractures.  Close to 
the north azimuth, we see a suite of NE-SW dipping 
features, which include faults and top basement 
boundary. The basement edge is dipping rapidly at an 
angle of about 70O or more at this location. There are 
many faults running along this edge that propagate 
into the shallower sedimentary column.  
 
In Figures 4d and 4e, nearly perpendicular to inline 
direction, we recognize many NW-SE trending 
features, which are believed to be faults cutting across 
the basement. These features did not appear in the 
apparent gradient images parallel to the features. 
 
Apparent curvature is computed from the maximum, 
minimum curvatures and the azimuth of minimum 
curvature shown in Figure 5. 
 
Conclusions 

Several modern attributes, including volumetric 
computation of structural dip and azimuth, structural 
curvature, amplitude gradients, and amplitude 
curvature, are multi-component in nature and are thus 
amenable to visualization from different user-
controlled perspectives. Precomputing every desired 
azimuthal view results in consumption of significant 
disk storage. However, through the use of ‘fast-batch’ 
spreadsheet-like attribute calculators available in 
several 3D interpretation software packages, such 
manipulation can now be put under user control. 
Eventually, we envision generating truly interactive 
azimuthal visualization software, thereby enabling the 
interpret to extract as much information from the data 
as possible.   
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Figure 3:  Depth slices at z=2750 m through apparent dip, pψ, computed  at ψ=0O, 30O, 60O, 90O, 120O, and 150O. from 
North. Block white arrows indicate lineaments that we interpret to be associated with faults and fractures. Several 
meandering channel segments can be seen in the sedimentary section to the SE. 
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Figure 4:  Depth slices at z=2750 m through apparent amplitude gradients, gψ, computed  at ψ=0O, 30O, 60O, 90O, 120O, 
and 150O. from North. Block white arrows indicate lineaments that we interpret to be associated with faults and fractures. 
Several meandering channel segments can be seen in the sedimentary section to the SE. 

 
Figure 5:  Depth slices at z=2750 m through (a) maximum curvature (b) minimum curvatures and (c) azimuth of 
minimum curvature. 
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Attribute illumination of basement faults, examples from Cuu Long 
Basin basement, Vietnam and the Midcontinent, USA 
Ha T. Mai, Olubunmi O. Elebiju, and Kurt J. Marfurt, University of Oklahoma, Norman, USA 
 
Abstract 
 
Geometric attributes such as coherence and curvature have been very successful in delineating faults in sedimentary 
basins. While not a common exploration objective, fractured and faulted basement forms important reservoirs in 
Southern California, Mexico, India, Yemen, and Vietnam. Basement faulting controls hydrothermally-altered dolomite 
in the Appalachian Basin of the USA, and is suspected to play a role in diagenetic alteration of carbonates in the Fort 
Worth Basin of north Texas where copper has been found in some wells, as well as in Osage County, OK, not far from 
the classic Mississippi type lead-zinc deposits. Because of the absence of stratified, coherent reflectors, illumination of 
basement faults is more problematic than illumination of faults within the sedimentary column. In order to address 
these limitations we make simple modifications to well-established vector attributes including structural dip and 
azimuth, amplitude gradients, and minimum and maximum curvature, to provide greater interpreter interaction. Using 
this workflow, we can better illuminate fracture ‘sweet spots’ and estimate their density and orientation. We apply this 
workflow to better characterize faults and build fracture models in the granite basement of the Cuu Long Basin, 
Vietnam, and the granite and rhyolite-metarhyolite basement of Osage County, Oklahoma, USA. Cuu Long forms an 
important unconventional reservoir. In Osage County, we suspect basement control of shallower fractures in the 
Mississippi chat deposits. 
 
Introduction 
 
Faults play an important role in forming effective fracture porosity for hydrocarbon traps in the granite basement of the 
Cuu Long Basin, Vietnam. Mapping fault/fracture intensity and orientation can help delineate sweet spots and better 
aid horizontal drilling. In the Cuu Long Basin, faults and fractures tend to be planar and steeply dipping, such that we 
expect to see them more distinctly by viewing them perpendicular to their strike. Interactive shaded-relief maps of 
picked horizons are provided in nearly all 3D seismic interpretation software packages. Although most easily 
understood as sun-shading with locally higher relief features creating shadows that enhance the appearance of subtle 
dips, mathematically, shaded-relief maps comprise simple axis rotations and projection of the two orthogonal dip 
components of the surface with the direction of illumination  
 
Barnes (2003) showed how volumetric estimates of structural dip and azimuth can be used to generate shaded-relief 
volumes. We imitate this work, and generate directional structural dip, amplitude gradient, and directional curvature 
volumes and evaluate the results in terms of basement fault illumination of Cuu Long Basin, Vietnam, and in Osage 
County, in the Midcontinent region of Oklahoma, USA. 
 
Recently, Singh et al. (2008) showed that the major faults delineated by seismic attributes may not be those associated 
with fracture permeability. They used an ant-tracking filter to highlight those faults having an azimuth consistent with 
fractures seen in image logs. Here, we use a simple rotational filter to illuminate faults and fractures having different 
orientations in an animation loop. 
 
Method 
 
A planar surface such as dipping horizon or faults can be presented by its true dip azimuth θ and strike ψ. The true dip 
θ can be presented by apparent dips θx  and θy along the x and y axes (Figure 1).  
 

 

Figure 1:  Mathematical, 
geologic, and seismic 
nomenclature used in defining 
reflector dip. By convention, n = 
unit vector normal to the 
reflector; a = unit vector dip along 
the reflector; θ  = dip magnitude; 
ψ = dip azimuth; ξ = strike; θx = 
the apparent dip in the xz plane; 
and θy = the apparent dip in the yz 
plane. (after Chopra and Marfurt 
2007) 
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For time-migrated seismic data, it’s more convenient to measure apparent seismic time dips (px, py) components along 
inline and crossline directions in s/ft or s/m. For depth-migrated seismic data such as our Cuu Long survey, we simply 
compute θx and θy and display them either as components or as dip magnitude, θ, and dip azimuth, ψ, or alternatively 
as dimensionless (px, py) measured in ft/ft or m/m.  
 
There are several popular means of computing volumetric dip components, including those based on weighted versions 
of the instantaneous frequency and wave-numbers (Barnes, 2002),  on the gradient structure tensor (Randen et al., 
2000) and on discrete semblance-based dip searches (Marfurt, 2006). The relationship between apparent seismic 
time/depth dips and apparent angle dips are: 

 px = 2 * tanθx  / v,       (1a) 
 px = 2 * tanθy  / v,       (1b) 

where v is an average time to depth conversion velocity.  
 
We can compute apparent dip at any angle ψ from North through a simple trigonometric rotation: 

    )sin()cos( φψφψψ −+−= ypxpp ,    (2) 

where  φ is the angle of the inline seismic axis from North. 
 
Marfurt (2006) also describes an amplitude gradient vector attribute that has inline and crossline components (gx,gy). 
We can therefore compute an amplitude gradient at any angle, ψ,  from North: 

    φ)(ψygφ)(ψxgψg −+−= sincos .    (3) 

To compute the apparent curvature at an angle,δ, from the azimuth of minimum curvature, χ, we slightly modify 
Roberts’ (2001) description of Euler’s formula: 

   
δkδkδk

2
cosmin

2
sinmax += ,     (4) 

where kmin and kmax are the minimum and maximum curvatures. To compute the apparent curvature at an angle ψ,  from 
North we write: 

   
χ)(ψkχ)(ψkψk −+−= 2

cosmin
2

sinmax     (5)  

Using equations 2, 3, and 5, we are able to animate through a suite of apparent dip, amplitude gradient, and curvature 
images at increments of 150 to see which perspective best illuminates structural features of interest.  
 
Positive curvature attribute indicate concave downward features, and negative attribute indicate concave upward 
features. With respect to fault plane, they are usually on one side of the plane, where the reflection boundary is curving 
most. 
 

 
Application 
 
We begin by computing apparent dip, energy-weighted amplitude-gradient methods, and curvature for our 3D post-
stack depth-migrated seismic dataset from the Cuu Long basin, Vietnam.  The structure of Pre-Cenozoic basement of 
the Cuu Long Basin is very complex, and is mainly composed of magmatic rocks. Under the influence of tectonic 
activity, the basement was broken into a suite of fault systems. This faulting provided favorable conditions for 
hydrocarbons from a laterally deeper Oligocene-Miocene formation to migrate and accumulate in the basement high.  
 
The basement is un-layered granitic rocks, such that the seismic signal appears to be very weak and noisy. We apply 
our workflow to enhance the faults signatures will aid our seismic interpretation, with the ultimate goal of estimating 
fracture location, density, and orientation.  
 

 
Figure 2:  An illustrated definition of 2D curvature. Concave downward features 
have a positive value while concave upward features have a negative value. 
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The top of basement was highly compressed, forming a high angle push-up to about 2500 m (Figure 3). The top of this 
basement high dips to the east and west at about 60o. Faults were formed along all sides and cut into the basement 
(Figure 3). 
 

 
Figure 4 shows depth slices at 2750 m through the apparent dip volume, pψ, as a function of azimuth. We used equation 
2 to compute images at ψ  = 0O, 30O, 60O, 90O, 120O, and 150O. White arrows indicate the major NE-SW trending main 
faults, while yellow arrows indicate more subtle faults cutting across them.  
 
Figure 5 shows depth slices at 2750 m through the apparent amplitude gradient volume, gψ, as a function of azimuth. 
We used equation 3 to compute images at ψ  = 0O, 30O, 60O, 90O, 120O, and 150O. White arrows indicate lineaments 
that we interpret to be indicative of subtle faults and fractures. Close to the north azimuth, we see a suite of NE-SW 
dipping features, which include faults and top basement boundary. The basement edge is dipping rapidly at an angle of 
about 70O or more at this location. There are many faults running along this edge that propagate into the shallower 
sedimentary column. In Figures 5d and 5e, nearly perpendicular to inline direction, we recognize many NW-SE 
trending features, which we intepret as faults cutting across the basement. These features did not appear in the apparent 
gradient images parallel to the features. 
 
Investigating the detail faults direction ψ=0O  from North in apparent dip image (Figure 6), we can distinguesh the main 
SW-NE fault trend. The major faults have a mean direction of 740 from North, nearly perpendicular to the 0 O  apparent 
dip direction. 
 
Investigating the detail faults direction ψ=90O  from North in apperant dip image (Figure 7), the SW-NE fault trend 
becomes less distinguisable. Insread, the faults in N-S trend can be recoginized easier. The major faults have a mean 
strike of 1610 from North, nearly perpendicular to the 90 O aparent dip direction. 
 
The apparent amplitude gradients maps behave in an analoguous facture,  delineatingfeatures that strike perpendicular 
to the direction of investigation.. In Figure 8, ψ=0O, the major faults trend 690 from North, and at ψ=90O  (Figure 9), 
the major fault trends at 1570 from North. 
 
Figure 10 shows depth slices at 2750m through the original seismic, variance, most positive curvature and most 
negative curvature volumes. The fractured features inside the basement are clearly delineated. White arrows indicate 
the major NE-SW trending main faults,  paralleling and adjacent to the  sides of the basement uplift, while yellow 
arrows indicate more subtle faults cutting across them. Most of the inside faults cutting across the basement are in NW-
SE direction. 
 
The Osage county, Oklahoma encompassing the Osage Indian Reservation is located west of Ozark uplift and east of 
the Nemaha uplift. Within the Indian reservation, Precambrian basement surface is an irregular erosional surface with 
series of domes overlain by Paleozoic rocks (Thorman et al., 1979). Precambrian structure identified (The Labette 
fault) within the basement has a predominantly NE-SW trending direction (Denison, 1981).  
 
Previous work within this areas have suggested a possible reactivation of these structure and other Paleozoic structures 
such as the Nemaha Uplift (locally referred to as the Humboldt Fault) (Luza et al., 1983). The Nemaha uplift consists 
of complex units of crustal uplift with NE, NW trending structures. An E-W trending dextral strike-slip fault supported 
by aeromagnetic data has been inferred south of the Labette fault. This structure is suggested to offset the Nemaha 
Uplift 

 
Figure 3:  Seismic section on (a) negative curvature and (b) positive curvature depth slice. The arrows show location 
where the attributes help interpreting fault features 
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Figure 11 shows the complex nature of faults and fractures that plaque the Osage county sedimentary section. 
Comparing the basement feature at approximately 700 ms and networks of lineaments seen at about 630 ms indicates 
that in addition to the NE-SW and dominantly E-W trending lineaments seen within the basement, NW-SW lineaments 
predominates the sedimentary section at 630 ms which might correspond to the Arbuckle group.  
 
The NW-SE lineaments cross cut the other lineaments present and we suggest that it is younger in age. Thus, the NW-
SE lineaments represent the latest event in the area. The presence of such lineament in both basement and sedimentary 
section, suggested that they post-date both basement and the penetrated sedimentary section. It will be interesting to see 
if the location of such NW-SE lineaments coincides with the weak zone of intensely sheared or mylonitized 
Precambrian basement. Luza et al. (1983) have revealed that the Precambrian basement beneath the Nemaha fault is 
strongly mylonitized and sheared.  
 
Figure 12 shows a time slices at 700 ms, right below the Precambrian basement, through seismic, variance, most 
positive curvature and most negative curvature volumes from Osage county. The white arrows indicate distinctive 
primary fault features in NE-SW direction and yellow arrows indicate the later faults in E-W or ESE-WNW direction 
The faults extend upward into the sedimentary layers above the basement. Figure 13 shows times slices at 630ms, 
above basement top, thought the same volumes. We can see the same faults pattern in NE-SW and E-W directions, in a 
higher contrast, as of the less-complexity of the sedimentary layers. 
 
Figure 14 shows an NE-SW and in E-W trending lineament over inline and crossline amplitude gradient at 700ms 
(bellow basement top) and 630ms (above basement top). 
 
Evidently, we suggested that the NW-SE features as part of the reactivated faults that crosscut inherent NE-SW 
network basement lineaments. From magnetic study, similar NW trending fault (e.g Creek County Fault) is identified 
southwest of the Osage Indian Reservation area. 
 
The attribute analysis has helped us to identify basement lineament, which will not have been possible in ordinary 
seismic data. The correlation of basement lineaments with sedimentary lineament might suggest a basement influence 
on some of the sedimentary lineaments. 
  
Conclusions 
 
Volumetric computation of structural dip and azimuth, structural curvature, amplitude gradients, and amplitude 
curvature, are multi-component in nature and are thus amenable to visualization from different user-controlled 
perspectives. By defining a suite of azimuths to investigate, the interpreter can enhance subtle faults and fractures that 
might otherwise be missed, or that are more likely to be open rather than sealed. 
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Figure 4:  Depth slices at z=2750 m through apparent dip, pψ, computed at ψ=0O, 30O, 60O, 90O, 120O, and 150O. from 
North. Block white arrows indicate lineaments that we interpret to be associated with faults and fractures. Several 
meandering channel segments can be seen in the sedimentary section to the SE. Cuu Long basin 
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Figure 5:  Depth slices at z=2750 m through apparent amplitude gradients, gψ, computed at ψ=0O, 30O, 60O, 90O, 120O, 
and 150O. from North. Block white arrows indicate lineaments that we interpret to be associated with faults and fractures. 
Several meandering channel segments can be seen in the sedimentary section to the SE. Cuu Long basin 

 
Figure 6:  (a) Depth slices at z=2750 m through apparent dip, pψ, computed at ψ=0O from North. (b) Major fault 
frequency detected in direction ψ=0O. Mean direction of faults detected in this case is about 740. Cuu Long basin 
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Figure 7:  (a) Depth slices at z=2750 m through apparent dip, pψ, computed at ψ=90O from North. (b) Major fault 
frequency detected in direction ψ=90O. Mean direction of faults detected in this case is about 1610. Cuu Long basin 

 
Figure 8:  (a) Depth slices at z=2750 m through apparent amplitude gradients, pψ, computed at ψ=0O from North. (b) 
Major fault frequency detected in direction ψ=0O. Mean direction of faults detected in this case is about 690. Cuu Long 
basin 

 
Figure 9:  (a) Depth slices at z=2750 m through apparent amplitude gradients, pψ, computed at ψ=90O from North. (b) 
Major fault frequency detected in direction ψ=90O. Mean direction of faults detected in this case is about 1570. Cuu Long 
basin 
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Figure 10:  Depth slices at z=2750 m through (a) seismic, (b) variance, (c) positive curvature, and (d) negative curvature 
– Cuu Long basin  

 
Figure 11:  Seismic section on (a) negative curvature and (b) positive curvature time slice. The arrows show location 
where the attributes aided   fault interpretation - Osage county  
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Figure 12:  Time slices at z=700ms through (a) seismic, (b) variance, (c) negative curvature, and (d) positive curvature. 
Osage county  

 

 
Figure 13:  Time slices at z=630 ms through (a) seismic, (b) variance, (c) negative curvature, and (d) positive curvature. 
Osage county  
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Figure 14:  Time slices at 700ms through (a) inline amplitude gradient, (b) crossline amplitude gradient and Time slices at 
630ms through (a) inline amplitude gradient, (b) crossline amplitude gradient. Osage county 
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Summary 
 
Geometric attributes are routinely used in mapping 
tectonic deformation and geomorphology. AVO and 
inversion analysis is routinely used to map lithology 
and the presence of hydrocarbons. We apply 
geometric attributes to angle-stack and full-stack PP 
and SS as well as acoustic impedance inversion 
volumes over the Diamond M survey, Horseshoe 
Atoll, west Texas, and find lineaments corresponding 
to the edges of the Pennsylvanian-age reef structure.  
 
Introduction 
 
The large subsurface feature termed the Horseshoe 
Atoll, located in the Midland Basin of west Texas, is a 
series of primarily Missourian and Virgilian-age 
carbonate reservoirs (Reid, 2001). The data available 
for this research covers part of the Diamond-M field 
which lies in the Scurry Reef Trend in Scurry Co., 
Texas (Figure 1). Since the development of the Kelly-
Snyder oil field, exploration has moved southeast of 
the atoll in search of small reef bodies (Jumper and 
Pardue, 1996). Our goal is to evaluate the 
effectiveness of curvature-related lineaments in better 
defining reef edges as well as internal fractures within 
the reefs.    

 
Theory and Method 
 
Curvature of a surface is measured by the radius of 
two circles tangent to it. The circle with the tightest 
radius defines the maximum curvature (kmax) while the 
circle perpendicular to it defines the minimum 
curvature (kmin). In further clarification, kmax of a 
surface with an anticlinal shape has a positive value, 
while kmax of a surface with synclinal shape has a 
negative value (Figure 2). Also, the intersection of the 
plane containing the circle defining minimum 
curvature with the horizontal defines a strike, which is 
commonly referred to as the azimuth of minimum 
curvature, ψmin. 

 
 

 
A folded surface can be further defined as having a 
certain shape, measured by the shape index (e.g 
Roberts, 2001). Furthermore, the long axis of 
elongated domes, ridges, saddles, valleys, or elongated 
bowls corresponds to ψmin. By modulating the shape 
indices with the curvedness, c, (where c2=kmin

2+kmax
2) 

Al-Dossary and Marfurt (2006) show how we can 
generate different shape components. 
 

 
Combining multiple attributes in a single image allows 
us to visually ‘cluster’ mathematically different 
attributes that are sensitive to the same underlying 
geology. In Figure 3, we show a composite image of 
the ridge component of curvedness, cr, and ψmin. 
 
For a more conventional display of these lineaments, 
we generate rose diagrams for any defined n-inline by 
m-crossline analysis window. Within each analysis 
window, we threshold  the ridge or valley components 

 
Figure 1:  Location of study area, Midland basin, 
Texas. (after WorldOil.com) 

 
Figure 2:  An illustrated definition of 3D 
curvature. Synclinal features have negative 
curvature and anticlinal features have positive 
curvature. (After Lisle, 1994). 

 
Figure 3:  2D multi-attribute display. The ridge 
component of curvedness is plotted against 
lightness and modulates the azimuth of minimum 
curvatures, ψmin, plotted against hue. 



Curvatures lineament and multi
Impedance seismic data 

of curvedness, cr, or cv,, bin each voxel according to 
its azimuth, ψmin, and sum the threshold
of the ridge or valley components, thereby generating 
volumetric rose diagrams over a suite of windows 
spanning the entire seismic volume (Figure 4). 
 

 
Data 
 
We apply this simple work flow to three different data 
types for this project: the PP full stack, the SS full 
stack, and the acoustic impedance (AI) derived from a 
model-based sequential inversion. The zone of interest 
is isolated to a single time slice below the top of the 
Canyon Reef Formation where isolated r
structures can be found. To this end, we analyze both 
the conventional P-wave and the more experimental S
wave (SH-SH) data volumes over the approximately 
25 mi2 (~65 km2) of the Diamond M field described 
by Small et al. (2007). Both data vol
signal-to-noise ratio and have been pre
migrated onto 75 ft x 75 ft (22 x 22 m) CMP bins.
 
The P-wave data was subjected to a model
impedance inversion that used the well control to 
increase the overall bandwidth of the da
anticipate that attributes computed from this acoustic 
impedance volume may illuminate structural 
lineaments not seen on the seismic reflection data. 
 
Interpretation 
 
The time-structure map corresponding to the top of the 
Canyon Reef Formation (Figure 5) gives a general 
idea of structure alignment related to the reef build up 
formation. The map shows a central big reef that 
expands laterally towards the eastern portion of the 
survey. Also, in the SE portion of the survey we can 
identify a smaller reef build up. Using the previously
defined workflow, we are not only able to estimate the 
outer most edges of the reef structure

Figure 4: (a) Multi-attribute display of the azimuth of 
minimum-curvature, ψmin, modulated by the ridge 
component of curvedness and (b) the corresponding 
rose diagrams. 
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,, bin each voxel according to 
, and sum the threshold-clipped values 

of the ridge or valley components, thereby generating 
volumetric rose diagrams over a suite of windows 
spanning the entire seismic volume (Figure 4).  

We apply this simple work flow to three different data 
pes for this project: the PP full stack, the SS full 

stack, and the acoustic impedance (AI) derived from a 
based sequential inversion. The zone of interest 

is isolated to a single time slice below the top of the 
Canyon Reef Formation where isolated reef build-up 
structures can be found. To this end, we analyze both 

more experimental S- 
SH) data volumes over the approximately 

) of the Diamond M field described 
by Small et al. (2007). Both data volumes have a high 

noise ratio and have been pre-stack time 
ft x 75 ft (22 x 22 m) CMP bins. 

wave data was subjected to a model-based 
impedance inversion that used the well control to 
increase the overall bandwidth of the data. We 
anticipate that attributes computed from this acoustic 
impedance volume may illuminate structural 
lineaments not seen on the seismic reflection data.  

structure map corresponding to the top of the 
ure 5) gives a general 

idea of structure alignment related to the reef build up 
formation. The map shows a central big reef that 
expands laterally towards the eastern portion of the 
survey. Also, in the SE portion of the survey we can 

ef build up. Using the previously-
defined workflow, we are not only able to estimate the 
outer most edges of the reef structure but also 

lineaments that might suggest the inner fabric and 
depositional control of this Pennsylvanian
   

 
Nissen et al. (2007) have shown that volumetric 
curvature can delineate karst-enhanced fractures in the 
Fort Worth Basin, Central Kansas, and Western 
Kansas. Our goal here is to apply the described 
workflow to the three different data sets, thereby 
highlighting structural features such as minor reef 
build-ups or karst-enhanced fractures not previously 
seen. 
 
We begin our interpretation with the PP data set, and 
include interpretation of what the authors interpret to 
be reef associated lineaments (Figure 6). Note the 
correlation of the most positive curvature anomalies 
and the edges of the central reef. Further
interpretation of the western portion of the survey 
suggests that the previously identified reef structure 
continues to the west. This trend is also seen on the 
most negative curvature image. In most
most-negative curvature blended image
besides edges of the reef, we see indications of a reef 
talus slope deposited in the eastern flank of the central 
reef (white arrows) correlating to high amplitude 
respond on the amplitude map. In addition, we 
generate 2D multi-attribute disp
curvedness with minimum curvature azimuth, and 
overlaying with volumetric rose diagrams (Figure 6d). 
This composite display, helps visualizing lineaments, 
with their intensity and orientation, which not only 
corresponds to the reef’s edges, but also potentially 
indicates inner-structure compartmentalization of the 
reef. 
 
Although the lineaments from the PP and SS data 
volumes are similar, detailed comparison suggests that 
lineaments differ in some areas. In Figure 7, it can be 
seen that the most westerly lineaments (green arrows) 
cannot be detected and a central valley (black arrow) 
is not apparent. On the other hand, the SS dataset 
allows improved interpretation of the central “main” 
reef since the edges are better resolved and defined.
Subsequent rose diagrams (Figure 7d) better define 
lineaments associated to the central reef.

 
attribute display of the azimuth of 

, modulated by the ridge 
component of curvedness and (b) the corresponding 

Figure 5:  Time structure map coresponding to top of 
Pennsivanian age Canyon Reef formation, interpreted 
from the PP seismic data. 

stack PP, SS, and Acoustic 
 

lineaments that might suggest the inner fabric and 
depositional control of this Pennsylvanian-age reef. 

Nissen et al. (2007) have shown that volumetric 
enhanced fractures in the 

ort Worth Basin, Central Kansas, and Western 
Kansas. Our goal here is to apply the described 
workflow to the three different data sets, thereby 
highlighting structural features such as minor reef 

enhanced fractures not previously 

We begin our interpretation with the PP data set, and 
include interpretation of what the authors interpret to 
be reef associated lineaments (Figure 6). Note the 
correlation of the most positive curvature anomalies 
and the edges of the central reef. Furthermore, 
interpretation of the western portion of the survey 
suggests that the previously identified reef structure 
continues to the west. This trend is also seen on the 
most negative curvature image. In most-positive and 

negative curvature blended image (Figure 6c), 
besides edges of the reef, we see indications of a reef 
talus slope deposited in the eastern flank of the central 
reef (white arrows) correlating to high amplitude 
respond on the amplitude map. In addition, we 

attribute display, combining ridge 
curvedness with minimum curvature azimuth, and 
overlaying with volumetric rose diagrams (Figure 6d). 
This composite display, helps visualizing lineaments, 
with their intensity and orientation, which not only 

dges, but also potentially 
structure compartmentalization of the 

Although the lineaments from the PP and SS data 
volumes are similar, detailed comparison suggests that 
lineaments differ in some areas. In Figure 7, it can be 

the most westerly lineaments (green arrows) 
cannot be detected and a central valley (black arrow) 
is not apparent. On the other hand, the SS dataset 
allows improved interpretation of the central “main” 
reef since the edges are better resolved and defined. 
Subsequent rose diagrams (Figure 7d) better define 
lineaments associated to the central reef. 

 
:  Time structure map coresponding to top of 

Pennsivanian age Canyon Reef formation, interpreted 



Curvatures lineament and multi-attribute display of full-stack PP, SS, and Acoustic 
Impedance seismic data – Diamond-M field, West Texas 

95 

 
Interpretation over acoustic impedance can lead to a 
more straight forward definition of lineaments, since 
the wavelet side lobes are strongly attenuated in the 
inversion process. Hence, the better delineation of the 
lineaments associated with the central main reef in 
Figure 8 (a-d), western reef build up, valley between 
the buildup reef previously denoted on Figure 7, and 
SE smaller patch reef showing very symmetrical and 
circular lineaments. As would be expected on the 
acoustic impedance results, there is a better definition 
of intensity and orientation when analyzing the rose 
diagrams (Figure 8d). 
 
Conclusions 
 
Volumetric curvature for lineament determination and 
multi-attribute display shows differences on the three 
different surveys: PP, SS, and Acoustic Impedance. 
Reef related structures were identified as their edges 
correspond to curvature lineaments. Sub-lineaments 
cutting reef edges suggest the possibility of 
compartmentalization, an interpretation that needs to 
be confirmed with production data. Curvature 
lineaments are more continuous in the acoustic 
impedance inversion volume. 
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Figure 6:  PP data at time slice t=935ms just below the 
top of the Canyon Reef Fm through (a) most-positive 
and (b) most- negative curvature volumes. (c) Multi-
attribute display using transparency to show anomalous 
features seen in (a) and (b) on top of the seismic 
amplitude time slice. (d) Multi-attribute ridge-ψmin, 
display described in Figure 3 overlain by rose diagrams 
(in white). 
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Figure 7:  SS data at time slice t=1871ms (just below 
the top of the Canyon Reef Fm and equivalent to 935ms 
in PP data) through Reef Fm through (a) most-positive 
and (b) most- negative curvature volumes. (c) Multi-
attribute display using transparency to show anomalous 
features seen in (a) and (b) on top of the seismic 
amplitude time slice. (d) Multi-attribute ridge-ψmin, 
display overlain by rose diagrams (in white).   

 

 

 

 
Figure 8:  Acoustic Impedance data at time slice 
t=935ms just below the top of the Canyon Reef Fm 
through (a) most-positive and (b) most- negative 
curvature volumes. (c) Multi-attribute display using 
transparency to show anomalous features seen in (a) 
and (b) on top of the seismic amplitude time slice. (d) 
Multi-attribute ridge-ψmin, display overlain by rose 
diagrams (in white).   
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Summary 
 
Geometric attributes such as coherence and volumetric 
curvature are commonly used in delineating
folds. While fault patterns seen in coherence, most
positive curvature and most-negative curvature are 
easily recognized on time slices, they are often 
laterally shifted from each other. The kind and degree 
of lateral shift is an indication of 
tectonic deformation. In this tutorial, we document 
some of these relationships when applied to the 
structurally-complex section within the Chicontepec 
Basin, Mexico.  
 
Introduction 
 
While coherence  attributes measure lateral changes in 
the waveform and allow us to map reflector offsets, 
lateral changes in stratigraphy, and chaotic 
depositional features, volumetric curvature attributes 
measure lateral changes in dip magnitude and dip 
azimuth, and are thus allows us to map folds, flexures, 
buildups, collapse features, and differential 
compaction. Both attributes are used widely in 
detecting faults with each attribute has its advantages 
and disadvantages. Coherence accurately tracks 
vertical faults cutting coherent seismic reflectors. For 
dipping faults, coherence exhibits a vertically
stair-step appearance, due to most implementations 
being computed on vertical seismic traces. Where 
there is fault drag, or sub-seismic resolution 
faulting that appears as fault drag, coherence 
illuminate the fault at all.  For faults with very small 
displacement, the reflectors appear to have subtle 
change in dip, have no coherence anomaly, and rather 
appear as a slight flexure which appears as a curvature 
anomaly. For faults having 
curvature anomalies track the folds on either side of a 
fault, where drag, antithetic faulting, or syntectonic 
deposition results in slightly folded reflectors. For this 
reason, curvature anomalies often do not align with 
faults. 
  
Since faults are often more easily visualized on 
attribute time slices, we will use a complexly folded 
and faulted survey acquired in the Chinconetepec 
Basis, Mexico, to illustrate some of these 
interpretational features.. 
 
Theory 
 
Curvature in 2D is defined by th
tangent to a curve (Figure 1, after Roberts, 2001). In 
3D, we need to fit two circles tangent to a surface 
(Figure 2). The circle with minimum radius is the 
maximum curvature (kmax) and the circle with 
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Geometric attributes such as coherence and volumetric 
curvature are commonly used in delineating faults and 
folds. While fault patterns seen in coherence, most-

negative curvature are 
easily recognized on time slices, they are often 
laterally shifted from each other. The kind and degree 
of lateral shift is an indication of the underlying 
tectonic deformation. In this tutorial, we document 
some of these relationships when applied to the 

complex section within the Chicontepec 

While coherence  attributes measure lateral changes in 
waveform and allow us to map reflector offsets, 

lateral changes in stratigraphy, and chaotic 
depositional features, volumetric curvature attributes 
measure lateral changes in dip magnitude and dip 
azimuth, and are thus allows us to map folds, flexures, 

ildups, collapse features, and differential 
compaction. Both attributes are used widely in 
detecting faults with each attribute has its advantages 
and disadvantages. Coherence accurately tracks 
vertical faults cutting coherent seismic reflectors. For 

ng faults, coherence exhibits a vertically-smeared 
step appearance, due to most implementations 

being computed on vertical seismic traces. Where 
seismic resolution antithetic 

faulting that appears as fault drag, coherence may not 
illuminate the fault at all.  For faults with very small 
displacement, the reflectors appear to have subtle 
change in dip, have no coherence anomaly, and rather 
appear as a slight flexure which appears as a curvature 
anomaly. For faults having significant offset, 
curvature anomalies track the folds on either side of a 
fault, where drag, antithetic faulting, or syntectonic 
deposition results in slightly folded reflectors. For this 
reason, curvature anomalies often do not align with 

ults are often more easily visualized on 
attribute time slices, we will use a complexly folded 
and faulted survey acquired in the Chinconetepec 
Basis, Mexico, to illustrate some of these 

Curvature in 2D is defined by the radius of a circle 
tangent to a curve (Figure 1, after Roberts, 2001). In 
3D, we need to fit two circles tangent to a surface 
(Figure 2). The circle with minimum radius is the 

) and the circle with 

maximum radius is the minimum cur
relation to geology, anticlinal features will have 
positive maximum curvature, and a synclinal feature 
will have negative maximum curvature.
 

 

 
The interpretation of curvature volumes computed 
over folded geologies is straightforward. For 
anticlines, we see a positive curvature lineament along 
the fold axis and two negative curvature lineaments at 
the limbs. For synclines, we see a negative curvature 
lineament along the fold axis and two positive 
curvature lineaments along the limbs (Figure 3). Since 
the layers are continuous, the waveform is also 

continuous along the fold, such that discontinuity 
measurements such as coherence do not show any 
anomalies.  
 

Figure 1:  An illustrated definition of 3D curvature. 
Synclinal features have negative curvature and 
anticlinal features have positive curvature

Figure 2: Most-positive and most
curvatures (Modified from Lisle, 1994)

Figure 3: Illustration of fold 
negative curvature. 
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maximum radius is the minimum curvature (kmin). In 
relation to geology, anticlinal features will have 
positive maximum curvature, and a synclinal feature 
will have negative maximum curvature. 

The interpretation of curvature volumes computed 
over folded geologies is straightforward. For 
anticlines, we see a positive curvature lineament along 
the fold axis and two negative curvature lineaments at 

or synclines, we see a negative curvature 
lineament along the fold axis and two positive 
curvature lineaments along the limbs (Figure 3). Since 
the layers are continuous, the waveform is also 

continuous along the fold, such that discontinuity 
such as coherence do not show any 

 
:  An illustrated definition of 3D curvature. 

eatures have negative curvature and 
have positive curvature 

 
positive and most-negative 

curvatures (Modified from Lisle, 1994) 

 
: Illustration of fold with positive and 
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The attribute expression of faults can be considerably 
more complicated. For normal faults with vertical 
displacements greater than half a seismic wavelength, 
we often see a discrete discontinuity that is clearly 
delineated by a low coherence lineament. For highly 
competent rocks we may see no curvature anomalies 
associated with a simple normal fault. However, more 
commonly we see drag on either side of the fault, 
which may be either through plastic deformation or 
through a suite of conjugate faults. Parallel to the fault 
strike, we often have ramp structures. For an excellent 
outcrop analysis of such features we direct the reader 
to a recent publication by Ferrill and Morris (2008). A 
schematic of curvature associated with normal faults is 
shown in Figure 4.  

 
Listric faults geometries associated with syntectonic 
deposition can be considerably more complicated. On 
the footwall, we may see very little deformation, with 
the sediments maintaining their original attitude at 
some angle to the fault face. On the hanging wall, the 
reflectors rotate with depth, often maintaining a near-
normal relation to the fault face. We may also see a 
positive curvature anomaly over the roll-over anticline 
if one exists. Coherence does a good job of delineating 
the fault dislocation. Deeper in the section, as the fault 
begins to sole out, both coherence and curvature 
images become noisy and less easily interpreted. 
 
Alternative definitions of maximum and minimum 
curvature 
 
Most references (in both mathematics and geology) 
define the maximum curvature to be the tightest 
(highest absolute value) of the two principal 
curvatures, k1 and k2: 
 kmax = k1  and kmin=k2, if |k1| >|k2|  
 kmax = k2  and kmin=k1, if |k2| >|k1|. 
Many interpreters find this definition to be an effective 
means of mapping fault throw from time slices (e.g. 
Sigisumundi and Soldo, 2003). However, other 
workers (e.g. Rich, 2008) find it to be 
interpretationally useful to define kmax = MAX(k1,k2) 
and kmin = MIN(k1,k2). 
 

The second author has long favored most-positive and 
most-negative curvature since they provide images of 
karst and differential compaction that are 
interpretational simpler to understand. Rich (2008) 
points out that this 2nd (less common) definition, 
produces images similar to most-positive and most-
negative curvature, but take account of the reflector 
rotation.   

 
Figure 5 shows the results of ant-tracking applied to 
most-positive and the newly-defined maximum 
curvature. The latter shows the axis of a dipping 
flexure (pink arrow) while the most-positive shows the 
axis of a less geologically-interesting fold with respect 
to the horizontal.  In gently dipping areas such as in 
the Fort Worth Basin, kmax and kpos are nearly identical 
(Figure 5, yellow arrow). 
 
Example from Chicontepec basin, Mexico 
 
In order to illustrate the lateral relationship of our new 
definitions of maximum and minimum curvature with  
and coherence, we use 3D seismic data from 
Amatitlán, Chicontepec basin. 
 
Multiple volumetric attributes (kpos, kneg, kmax, kmin, 
ψmin, energy ratio coherence, and variance) were 
calculated from the seismic volume. Where indicated 
in the captions, a commercial “ant-tracking” image 
processing algorithm was applied to the attributes to 
“skeletonize” the image, thereby increasing the visual 
continuity for interpretation purposes.  
 
Figure 6 shows an anticlinal feature. Since there is no 
interruptions present along the interpreted horizon 
(white dashed line), there are no significant coherence 
anomalies present. However, the dip does change 
along the horizon such that we see maximum 
curvatures anomalies along the fold axis, and 
minimum curvature anomalies along the fold limbs. 
 

 
Figure 4:  An illustration of normal faults with 
positive and negative curvature: (a) simple 
displacement with no drag, (b) fault with drag on 
one side, (c) fault with drag on two sides, and (d) 
fault with syntectonic depositions. 

 
Figure 5:  Ant-tracking on most-positive curvature 
(red, with blue arrow) and on new defined maximum 
curvature (pink, with pink arrow).  
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For fault features, the interpretation is much more 
complicated. Figures 7 and 9 show several reverse 
fault features. We note a  center pop-up block, with 
the reflectors bent down along the east side of the  
west fault. The maximum curvature anomaly appears 
to the  right of the coherence anomaly (Figure 7, red 
arrow). To the west side of the fault, due to fault drag, 
the curvature anomaly  is broader, with the minimum 
curvature anomaly  a some distance from the fault, as 
well as from maximum curvature and coherence 
anomalies. Figure 9 shows the same features, with 
coherence, maximum and minimum curvatures on 
vertical and time slices. Following the fault to the east, 
the minimum curvature lineament approaches to the 
most-positive curvature lineament, indicating folding 
or drag, creating a pair of maximum/minimum 
curvatures with coherence in the middle, thereby 
defining the fault. 
 
Figures 8 and  10 shows normal faults delineating a 
graben. Again, we see a pair of maximum curvature 
and coherence next to each other, and a minimum 
curvature lineament at a distance. This are the same 
geometries discussed by Sigusmondi and Soldo 
(2003). Vertically, the curvatures appear to be more 
continuous, and more easily interpreted than the 
coherence anomaly which tends to be discontinuous 
and vertically smeared. 
 
Conclusions 
 
Discontinuity measurements such as coherence are not 
sensitive to smooth folding, and often result in 

anomalies that are discontinuous when viewed in the 
vertical section. Where they are not vertically 
smeared, they accurately locate the discontinuity. In 
contrast, curvature lineaments are more continuous on 
the vertical section and maps folds and flexures. With 
fault drag and/or antithetic faulting, volumetric 
curvature will commonly bracket faults with 
maximum and minimum anomalies but does not give 
exact fault location. Co-rendering curvature with 
coherence along with the seismic amplitude data 
provides a superior interpretation product.  
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Figure 6:  Anticlinal feature. Minumum curvature 
features (blue) delineate the two limbs of the fold, 
while  maximum curvature (red) delineate the axial 
plane.. There are no significant coherence 
anomalies. 

 
Figure 7:  Intepreted faults (yellow)  on a pop-up 
feature bound by coherence (green), maximum 
curvature (red), minimum curvature (blue) anomalies. 

 
Figure 8:  Interpreted faults (yellow) and intervening 
graben delineated by  maximum curvature (red) and  
minimum curvature and coherence (green). 
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Figure 9: A representative seismic line with (a) 
interpreted faults, (b) coherence, (c) co-rendered ant-
tracked maximum curvature, minimum curvature and 
coherence with the vertical seismic line, and (d) with an 
itersecting time slice as well. Intepreted faults (yellow) 
on a pop-up feature bound by coherence (green), 
maximum curvature (red), minimum curvature (blue) 
anomalies.  

 

 

 

 
Figure 10: Interpreted faults (yellow) and 
intervening graben delineated by  maximum 
curvature (red) and  minimum curvature and 
coherence (green): (a) seismic line with 
interpreted fault (b) coherence, c) ant-tracked 
maximum curvature, minimum curvature and 
coherence on seismic line, d) their horizontally 
extend.  
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Summary 
 
Fractures can enhance permeability in reservoirs and 
hence impact the productivity and recovery efficiency 
in those areas. Consequently, the detection and 
characterization of fractures in reservoirs is of great 
interest which is driving significant improvements in 
azimuthal anisotropy velocity analysis, azimuthal 
AVO, image-log breakout interpretation, and seismic 
attribute analysis. Surface seismic data have long been 
used for detecting faults and large fractures, but recent 
developments in seismic attribute analysis have shown 
promise in identifying groups of closely spaced 
fractures or interconnected fracture networks. 
Coherence and curvature are two important seismic 
attributes that are used for such analysis. Curvature 
attributes in particular exhibit detailed patterns for 
fracture networks that can be correlated with image 
log and production data to ascertain their authenticity. 
One way to do this correlation is to manually pick the 
lineaments seen on the curvature displays for a 
localized area around the boreholes falling on the 
seismic volume, and then transform these lineaments 
into rose diagrams. These rose diagrams are then 
compared with similar rose diagrams obtained from 
image logs. Favorable comparison of these rose 
diagrams lends confidence to the interpretation of 
fractures. 
 
In this work we report the automated generation of 
rose diagrams from seismic attributes throughout the 
3D volume which can then be ‘visualizually’ 
correlated to the lineaments seen on different seismic 
attributes like coherence but also be compared to the 
rose diagrams available from image logs. Since these 
rose diagrams are generated at selected regular grid 
points areally, at every time sample, these are 
essentially 3D rose diagrams. Appropriate 
visualization of these 3D rose diagrams with the 
seismic attribute volumes helps with interpreting the 
fracture lineaments confidently. 
 
Coherence and curvature attributes for fracture 
detection 
 
Coherence detection has been used for detection of 
faults and fractures for over a decade. With the 
evolution of the eigenstructure algorithms, coherence 
is able to further improve the lateral resolution and 
produce relatively sharp and crisp definition of faults 
and fractures. However, volume curvature attributes 
have shown promise in helping us with fracture 
characterization (Al-Dossary and Marfurt, 2006; 
Chopra and Marfurt, 2007a). By first estimating the 
volumetric reflector dip and azimuth that represents 
the best single dip for each sample in the volume, 

followed by computation of curvature from adjacent 
measures of dip and azimuth, a full 3D volume of 
curvature values is produced. There are many 
curvature measures that can be computed, but the 
most-positive and most-negative curvature measures 
are the most useful in mapping subtle flexures and 
folds associated with fractures in deformed strata. In 
addition to faults and fractures, stratigraphic features 
such as levees and bars and diagenetic features such a 
karst collapse and hydrothermallyaltered dolomites 
also appear to be well-defined on curvature displays. 
 
Multi-spectral curvature estimates introduced by 
Bergbauer et al. (2003) and extended to volumetric 
calculations by Al Dossary and Marfurt (2006) can 
yield both long and short wavelength curvature 
images, allowing an interpreter to enhance geologic 
features having different scales. Long-wavelength 
curvature often enhances subtle flexures on the scale 
of 100-200 traces that are difficult to see in 
conventional seismic, but are often correlated to 
fracture zones that are below seismic resolution, as 
well as to collapse features and diagenetic alterations 
that result in broader bowls. 
 
The quality of these attributes is directly proportional 
to the quality of the input seismic data. So it is 
advisable that the data going into attribute 
computation is cleaned up. We make use of structure-
oriented filtering (PC-filtering) for this purpose and 
obtain results that exhibit more coherent reflections 
exhibiting sharper lateral discontinuities. 
 
Calibration with well log data 
 
It is always a good idea to calibrate the interpretation 
on curvature displays with log data if possible. One 
promising way is to interpret the lineaments in a 
fractured zone and then transform them into a rose 
diagram. Such rose diagrams can then be compared 
with similar rose diagrams that are obtained from 
image logs to gain confidence in the seismic –to-well 
calibration. Once a favorable match is obtained, the 
interpretation of fault/fracture orientations and the 
thicknesses over which they extend can be used with 
greater confidence for more quantitative reservoir 
analysis. Needless to mention such calibrations need 
to be carried out in localized areas around the wells for 
accurate comparisons. 
 
Rose diagrams 
 
Fractures are characterized by lineaments that are 
oriented in different directions. Rather than view 
individual lineament orientation at a given point, it is 
possible to combine the various orientations in all 
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directions into a single rose diagram with angles 
ranging from 0 to 180 degrees. The length of each 
petal of the rose is dependent on the frequency of 
lineaments falling along any angle. Rose diagrams are 
commonly used for depicting orientations of specific 
lineaments and are preferred due to their ease of 
comprehension (Wells, 2000). 
 
Figure 1 shows hand-picked lineaments on the most-
positive curvature display in yellow-colored line 
segments discussed in an earlier paper (Chopra and 
Marfurt (2007b)). These are then transformed into a 
rose diagram shown in the inset. Notice, in one single 
display it is possible to see the orientation of fractures 
and their density on this surface. Ideally, this rose 
diagram should be generated at a localized area around 
a given borehole, instead of over the whole area of the 
seismic volume. 
 
3D rose diagrams 
 
The curvedness, c, of a surface is defined as c2 = 
kmin2+ kmax2 where kmin and kmax are the minimum 
and maximum curvature (Roberts, 2001). The 
curvedness attributes that are directly related to 
lineaments are the ridge and valley attributes. So a 
combination of the ridge component of curvedness (Al 
Dossary and Marfurt, 2006) and axis of the folding 
plane (strike, corresponding to minimum curvature 
azimuth ψmin), can visually interpret lineaments. 
 
For a more conventional display and qualification of 
lineaments, we generate rose diagrams for any 
gridded-square area defined by an n-inline by m-
crossline analysis window, for each horizontal time 
slice. Within each analysis window, we bin each pixel 
into rose petals according to its azimuth ψmin, 
weighted by its threshold-clipped ridge or valley 
components of curvedness, then sum and scale them 
into rose diagrams. The process is repeated for the 
whole data volume. After that, the rose diagrams are 
mapped to a rose volume which is equivalent to the 
data volume, and centered in the analysis window, 
located at the same location as in input data volume. A 
robust generation of rose diagrams for the whole 
lineament volume (corresponding to the seismic 
volume) is computed, yielding intensity and 
orientation of lineaments. 
 
Thus 3D rose diagrams are generated from two 
significant attributes namely the azimuth of minimum 
curvature and as stated above another attribute that 
would have a good measure of the shape of the 
features. This attribute could be the valley attribute or 
the ridge attribute. Figure 2 shows the generation of 
the rose diagrams from these attributes as well as the 
azimuth of the minimum curvature attribute. The 
displays correlate well with the lineaments seen on 
coherence aligning with the rose petals; conversely, 
where there are no lineaments seen on the coherence 
display, the rose petals do not exhibit significant size. 

As the size and lateral spacing of rose generation can 
be controlled, an optimum spread of the roses needs to 
be ascertained. To do so, in Figure 3 we show the 
roses generated at a specific choice of the search 
radius. In this example, the roses with a radius of 
600m appear to have their spread reasonably matching 
the lineaments on the coherence. However, the 
correlation of lineaments computed from curvature to 
those seen on coherence depend strongly on the 
tectonic deformation. For example, NS en echelon 
reverse faults may be linked by nearly perpendicular 
folds. Strike-slip faults may have subparallel folding 
on one side and almost perpendicular folding on the 
other (e.g. Rich, 2008). 
 
As shown in the foregoing examples, a significant 
advantage of the volumetric generation of roses at grid 
nodes is that it is possible to merge them with a 
suitable attribute volume. Figure 4 shows the merge of 
a stratal volume from coherence with the rose volume. 
It is possible to animate through this volume to the 
desired level and then examine how the lineaments 
match the rose petals. A blowup of the rose diagram 
volume is shown in Figure 5. Such 3D roses help the 
interpreter notice, within the thickness of the strat-
cube shown, if the orientation of the fractures is the 
same or if it changes. There are at least five roses 
marked with arrows that indicate changes in 
orientation of fractures with depth. 
 
Finally, another advantage of such a composite 
visualization is that in multi-level fracture zones of 
interest, it is possible to animate to these desired 
fracture zones. Figure 6 shows stratslices at 50 ms and 
100 ms below a marker horizon. Notice how nicely the 
petal orientations match the low coherence lineaments 
seen on these displays. 
 
Conclusions 
 
3D rose diagrams can be generated as a volume using 
either the ridge or the valley shape attribute in 
combination with the azimuth of minimum curvature 
attribute. Such a volume can be merged with any other 
attribute volume that has been generated to study the 
fracture lineaments and their orientation. We have 
illustrated this application through examples from a 
real seismic data volume from Alberta, Canada. 
Visualization of these volumetric 3D rose diagrams 
with other discontinuity attributes lends confidence to 
the interpretation of fracture lineaments. Finally, such 
3D rose diagrams can be correlated with similar rose 
diagrams from image logs, with azimuthal anisotropy 
velocity data, with tracer data and with production 
data 
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Figure 1. Lineaments on most-positive curvature 
horizon slice manually-interpreted as yellow line 
segments and transformed into a rose diagram shown 
in the inset.(After Chopra and Marfurt, 2007b). 
 

 

 

Figure 2. Strat-slice from 
coherence volume displayed 
at a marker horizon and 
merged with 3D rose 
diagrams (in red) generated 
with a search radius of 600 
m. In (a) the rose diagrams 
were generated with the 
ridge attribute and in (b) the 
roses were generated with 
the valley attribute. Notice 
that there are slight 
differences in their 
amplitudes but the 
orientations seem to be 
close. 

 

 
Figure 3. Strat-slice from coherence volume displayed at a marker horizon and merged with 3D rose diagrams (in red) 
generated with a search radius of (a) 300m, (b) 600 m, and (c ) 100m. In all cases the valley attribute was used besides 
the azimuth of minimum curvature. Notice that this choice will depend to a large extent on the features on the horizon 
or time slices being viewed. 



Using 3D Rose diagrams for correlation of seismic fracture lineaments 

106 

 
Figure 4. 3D rose diagrams merged with a truncated 
coherence volume. This composite volume can now 
be animated to view the alignment and orientation of 
the features seen on the coherence with roses 
generated from different attributes and eventually 
with similar roses from image logs. 

Figure 5.  A blow up of the 3D Rose diagrams at individual 
points in the 3D volume. Notice the alignment of the petals is 
not the same within the thickness of the strat-cube, and the 
changes in orientation of fractures with time are indicated with 
yellow arrows. 

 

 
Figure 6. Strat-cube from a merged volume comprising the 3D rose diagrams as well as the coherence attribute, shown 
in (a) at 50 ms, and (b) 100 ms below a marker horizon. This composite volume can now be animated to view the 
alignment and orientation of the features seen on the coherence with roses shown and eventually with similar roses 
from image logs.
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ABSTRACT 
 

Faults and fractures play a key role in 
forming effective porosity for hydrocarbon traps 
in the granite basement of the Cuu Long Basin, 
Vietnam. Mapping the location, intensity, and 
orientation of these faults and fractures can help 
delineate sweet spots and aid in the positioning 
of horizontal wells. We use volumetric curvature 
attributes including maximum and minimum 
curvature, ridge and valley shape components, 
and the azimuth of minimum curvature to 
provide not only good fault images but also a 
quantitative estimate of fractures as a function of 
strike.  

In this work, we co-render multiple 
attributes in a single composite volume, to 
visually cluster attributes that delineate different 
components of the fracture system. For more 
convenient display of these lineaments, we report 
a new method to automatically generate 
volumetric rose diagrams on user-defined n-
inline by m-crossline analysis windows spanning 
the entire seismic volume. A 3D depth-migrated 
seismic volume acquired over the Cuu Long 
Basin in Vietnam, was used to present these 
analysis techniques, and show lineaments 
corresponding to the granite basement’s faults 
and fractures. 

 
KEYWORDS : Seismic, interpretation, 

attributes, curvatures, rose diagrams. 
 

INTRODUCTION 
 

The granite basement of Vietnam is 
composed of Late-Triassic Cretaceous intrusive 
batholiths. Due to tectonic rifting, the basement 
is strongly faulted and fractured, with large open 
fractures coupled with secondary micro-
fracturing. Together, the primary and secondary 
fractures form “damaged zones”, which create 
effective fracture porosity, thereby enhancing the 
permeability in the hydrocarbon reservoir. In this 
work, we evaluate the effectiveness of curvature-
related lineaments in defining major trends of 
faults and fractures, by co-rendering of multiple 
attributes in a composite display, and by 

automatic generation of 3D rose diagrams from 
shape component attributes. The 3D rose 
diagrams and seismic attribute volumes are 
validated using the tectonic deformation model 
to help us confidently interpret fracture 
lineaments. 
 
METHODOLOGY 
 

Curvature of a surface is defined by two 
orthogonal circles tangent to the surface. The 
circle with the shortest radius defines the 
maximum curvature (kmax) while the circle 
perpendicular to it defines the minimum 
curvature (kmin) (Figure 1). The intersection of 
the plane containing the circle defining minimum 
curvature with the horizontal plane defines a 
strike, which is commonly referred to as the 
azimuth of minimum curvature, ψmin 

 
Figure 1. An illustrated definition of 3D 
curvature. Maximum curvature has shortest 
radius and minimum curvature has largest radius. 
Minumum curvature azimuth  is the direction of 
minumum curvature. (After Lisle, 1994) 

 
The curvedness, c, is defined as  

 c
2
= k

min

2
+ k

max

2
    (1) 

where kmin and kmax are the minimum and 
maximum curvature (Roberts, 2001).  

Roberts (2001) also shows the usage of the 
shape index and defines domes, bowls, saddles, 
valleys, or ridges (Figure 2). The long axes of 
these shapes correspond to ψmin. By modulating 
the shape index with the curvedness, c, Al-
Dossary and Marfurt (2006) show how we can 
generate different shape components. For a 
plane, the curvatures would be zeros. For 
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elongated anticlinal features, kpos is greater than 
zero, and kneg is equal to zero, and we define this 
component of curvedness for this case as ridge 
component, cr. Similarly, valley component of 
curvedness is defined where kpos is equal to zero, 
and kneg is smaller than zero. 
 

 
Figure 2. Geometry of of some folded surfaces. 
By definition, kneg ≤ kpos. If kpos = 0 and kneg <0, 
we have a valley shape, and if kpos > 0 and kneg = 
0, we have a ridge shape. (After Bergbauer et al, 
2003) 
 

Combining multiple attributes in a single 
image allows us to visually ‘cluster’ 
mathematically different attributes that are 
sensitive to the same underlying geology, which 
in our case are faults/fracture lineaments. Since 
the ridge or the valley component of curvatures 
might be related to the up-thrown size or down-
thrown side of faults, and minimum curvature 
azimuth in this case is the extending direction of 
faults, we are going to combine these attributes, 
and represent the results with two methods, as a 
2D color display (Figure 3a), and a rose diagram 
(Figure 3b). We have developed a module to do 
this task. 
 

 
Figure 3. Combination of the azimuth of 
minimum-curvature, ψmin, and the ridge 
component of curvedness to create multi-
attribute display and rose diagrams. 
 

In Figure 4, we show a composite image 
of the ridge component of curvedness, cr, and 
minimum curvature azimuth, ψmin. The lightness 

represents the lineament component of 
curvedness, which in this case is ridge, and color 
represents the azimuth of minimum curvature.  
 

 
Figure 4. 2D multi-attribute display. The ridge 
component of curvedness is plotted against 
lightness and modulates the azimuth of minimum 
curvatures, ψmin, plotted against hue. 
 

 
Figure 5.  (a) Multi-attribute display of the 
azimuth of minimum-curvature, ψmin, modulated 
by the ridge component of curvedness and (b) the 
corresponding rose diagrams. 
 

For a more conventional display of these 
lineaments, we generate rose diagrams for any 
defined n-inline by m-crossline analysis window. 
Within each analysis window, we threshold  the 
ridge (or valley) components of curvedness, cr 
(or cv), bin each voxel according to its azimuth, 
ψmin, and sum the threshold-clipped values of the 
ridge or valley components, thereby generating 
volumetric rose diagrams over a suite of 
windows spanning the entire seismic volume. A 
time slice of a representative rose diagram 
volume is displayed in Figure 5. 
 
CUU LONG BASIN  
 

In the study area, the basement is 
composed of Pre-Cenozoic magmatic rocks. Due 
to special characteristics of the area, with multi-
phase deformation, the structure of granite 
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basement was rifted, highly deformed, faulted 
and fractured. The fractured system provides 
favorable conditions for hydrocarbons from a 
laterally deeper Oligocene-Miocene formation to 
migrate to and accumulate in the basement high. 

The most important tectonic deformation 
occurred during late Oligocene – early Miocene, 
creating normal faults trending NE-SW and open 
fractures. A younger major event was during the 
Miocene, creating strike-slip fault trends in E-W 
and NW-SE direction. Figure 6a is a depth slice 
through the seismic amplitude volume; the 
boundary of the top basement is in white dashed 
lines, while faults appear as black and yellow 
dashed lines. 
 
INTERPRETATION 
 

Figure 6b shows a multi-attribute display 
combining the ridge component of curvedness 
and the azimuth of minimum curvature. The 
colors represent lineament’s azimuth, with blue 
showing features in the N-S direction, pink or 
red showing lineaments features in the NE-SW 
direction, and green showing lineaments in the 
NW-SE direction. The lightness is proportional 
to the intensity of deformation. In this composite 
display, we see two trends of lineament in the 
NE-SW and NW-SE directions, which agrees 
with the geological faulting orientation of the 
area. The blended rose diagram (Figure 6c) 
provides a more conventional, more easily 
quantified display of the lineaments showing the 
lineament orientation and frequency of 
occurrence within each analysis window. The 
NE-SW faults was present along the top of 
basement, while the younger faults in NW-SE 
direction are more concentrated in the center 
section, indicated by yellow arrows in Figure 6c. 

The rose diagrams are generated in each 
analysis window for the whole 3D volume, and 
exported as a new 3D attribute volume; thereby 
provide a means of importing them into 
commercial visualization software. We are thus 
able to co-render the rose diagrams with suitable 
attribute volumes, and animate through these 
volumes to the desired level to better understand 
the lineaments. Figure 7 shows such an image, 
with the 3D rose diagrams co-rendered with a 
seismic amplitude sub-volume (Figure 7a) or 
with a depth/structure map of top basement 
(Figure 7b).  

The length of the rose’s petals represents 
the intensity of lineaments within the analysis 
window. Notice that, in some zones above the 
top of basement, the rose petal length does not 
vary within a thickness (figure 7b, while arrow), 

which indicates a consistency in lineament 
orientation. When the orientation of fractures is 
consistent over a thickness, it implies a 
consistent mechanism of fracture over a long 
period of time. The intensity of lineament varies 
more, when the analysis window is near the top 
of basement (figure 7b, blue arrows). This 
indicates a complication in fracture lineaments of 
the area. The yellow arrow shows a strong NW-
SE lineament, compares with a NE-SW trend 
that could indicate a big fault cutting across the 
top of basement.  

These results agree with previous studies of 
the area. However, in order to calibrate the 
results, it is necessary to compare the 
interpretation with log data, if possible. When we 
obtain a good match between seismic-generated 
rose diagrams and image logs, interpretation of 
faults/fractures orientation and their vertical 
extension can be made with higher confidence, 
for more quantitative reservoir analysis. 

 
CONCLUSIONS 
 

Volumetric curvature as displayed in multi-
attribute composite and rose diagrams can be 
used to illuminate and enhance the signature of 
fault/fracture lineaments. 3D rose diagrams can 
be generated and merged with any other attribute 
volume to study fracture lineaments and their 
orientations. Calibration with well log is 
necessary to validate the results. We have 
implemented this new developed application 
though a real seismic data volume from the Cuu 
Long basin, Vietnam.  
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Figure 6. (a) Seismic amplitude time slice below 
top of granite basement, (b) Multi-attribute 
display of ψmin modulated by the ridge 
curvedness, (c) the blended images with rose 
diagrams (white). 

 

 
Figure 7. 3D rose diagrams showing on (a) 
truncated seismic volume, (b) depth structure 
map of top basement. 
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Abstract  
Detection and characterization of fractures in reservoirs is of great importance for maximizing 
hydrocarbon productivity and recovery efficiency. Coherence and curvature are two seismic 
attributes that have shown promise in identifying groups of closely spaced fractures or interconnected 
fracture networks. Curvature attributes, in particular, exhibit detailed patterns from fracture networks. 
We report the automated generation of rose diagrams from seismic attributes throughout the 3D 
volume which can be visually correlated to the lineaments seen on different seismic attributes like 
coherence and quantitatively correlated to the rose diagrams available from image logs. Since these 
rose diagrams are generated at regular grid points on each time slice, they are essentially 3D rose 
diagrams. Visualization of these volumetric 3D rose diagrams with other discontinuity attributes 
lends confidence to the interpretation of fracture lineaments. 

 
 
Introduction 
Fractures can enhance permeability in reservoirs and 
hence impact hydrocarbon productivity and recovery 
efficiency. Consequently, the need to detect and 
characterize fractures in reservoirs is of great interest 
and is driving significant improvements in azimuthal 
anisotropy velocity analysis, azimuthal amplitude-
versus-offset (AVO) analysis, image-log breakout 
interpretation, and seismic attribute analysis.  
Surface seismic data have long been used for detecting 
faults and large fractures, but recent developments in 
seismic attribute analysis have shown promise in 
identifying groups of closely spaced fractures or 
interconnected fracture networks. Coherence and 
curvature are two important seismic attributes that are 
used for such analysis. Curvature attributes in 
particular exhibit detailed patterns for fracture 
networks that can be correlated with image logs and 
production data to ascertain their authenticity. One 
way to do this correlation is to manually pick the 
lineaments seen on the curvature displays for a 
localized area around the boreholes falling on the 
seismic volume, and then transform these lineaments 
into rose diagrams. These rose diagrams are then 
compared with similar rose diagrams obtained from 
image logs. Favourable comparison of these rose 
diagrams lends confidence to the interpretation of 
fractures. 
In this article we report the automated generation of 
rose diagrams from seismic attributes throughout the 
3D volume. Not only can these rose diagrams be 
‘visually’ correlated to the lineaments seen on 

different seismic attributes like coherence, but they 
can also be quantitatively correlated to the rose 
diagrams available from image logs. Since these rose 
diagrams are generated at a selected regular grid of 
points in the horizontal plane, at every time sample, 
these are essentially 3D rose diagrams. Appropriate 
visualization of these 3D rose diagrams with the 
seismic attribute volumes, coupled with an appropriate 
tectonic deformation model, facilitates confident 
interpretation of the fracture lineaments. 
 
Coherence and curvature attributes for 
fracture detection 

Coherence has been used for detection of faults and 
fractures for over a decade. With the evolution of the 
eigen-structure algorithms, coherence is able to further 
improve the lateral resolution and produce relatively 
sharp and crisp definition of faults and fractures. 
However, volume curvature attributes have shown 
promise in helping us with fracture characterization 
(Al-Dossary and Marfurt, 2006; Chopra and Marfurt, 
2007a). By first estimating the volumetric reflector dip 
and azimuth that represents the best single dip for each 
sample in the volume, followed by computation of 
curvature from adjacent measures of dip and azimuth, 
a full 3D volume of curvature values is produced. 
There are many curvature measures that can be 
computed, but the most-positive and most-negative 
curvature measures are the most useful in mapping 
subtle flexures and folds associated with fractures in 
deformed strata. In addition to faults and fractures, 
stratigraphic features, such as levees and bars, and 
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diagenetic features such as karst collapse and 
hydrothermally-altered dolomites, also appear to be 
well defined on curvature displays. 
Multi-spectral curvature estimates introduced by 
Bergbauer et al. (2003) and extended to volumetric 
calculations by Al-Dossary and Marfurt (2006) can 
yield both long- and short-wavelength curvature 
images, allowing an interpreter to enhance geological 
features having different scales. Long-wavelength 
curvature often enhances subtle flexures on the scale 
of 100−200 traces that are difficult to see in 
conventional seismic data, but are commonly associ-
ated with fracture zones that are below seismic 
resolution or to collapse features and diagenetic 
alterations that result in broader bowls. The quality of 
these attributes is directly proportional to the quality 
of the input seismic data, so it is advisable that the 
data going into attribute computation is cleaned up. 
We make use of structure-oriented filtering (PC-
filtering) for this purpose and obtain results that 
contain more coherent reflections exhibiting sharper 
lateral discontinuities (Chopra and Marfurt, 2008). 

 
Figure 1. Horizon slice for the most-positive curvature 
attribute. Lineaments interpreted as faults are marked 
as yellow line segments and have been transformed 
into the rose diagram shown in the inset. (After Chopra 
and Marfurt, 2007b). 

Calibration with well log data 

If possible, it is always a good idea to calibrate the 
interpretation on curvature displays with log data. One 
promising way is to interpret the lineaments in a 
fractured zone and then transform them into a rose 
diagram. Such rose diagrams can then be compared 
with similar rose diagrams that are obtained from 
image logs to gain confidence in the seismic-to-well 
calibration. Once a favourable match is obtained, the 
interpretation of fault/fracture orientations and the 
thicknesses over which they extend can be used with 
greater confidence for more quantitative reservoir 
analysis. Needless to mention, such calibrations need 
to be carried out in localized areas around the wells for 
accurate comparisons.  
 

Rose diagrams 
Fractures are characterized by lineaments that are 
oriented in different directions. Rather than view 
individual lineament orientation at a given point, it is 
possible to combine the various orientations in all 
directions into a single rose diagram with angles 
ranging from 0 to 180°. The length of each petal of the 
rose is dependent on the frequency of lineaments 
falling along any angle. Rose diagrams are commonly 
used for depicting orientations of specific lineaments 
and are preferred due to their ease of comprehension 
(Wells, 2000). 
Figure 1 shows hand-picked lineaments on the most-
positive curvature display in yellow-coloured line 
segments discussed in an earlier paper (Chopra and 
Marfurt, 2007b). These are then transformed into a 
rose diagram shown in the inset. Note that in a single 
display it is possible to see both the orientation of 
fractures and their density on this surface. Ideally, this 
rose diagram should be generated at a localized area 
around a given borehole, instead of over the whole 
area of the seismic volume.  

 
Figure 2. Horizon slices from (a) coherence, (b) ridge, and (c) valley attributes. 



 
 

114 

 

  
 

 
Figure 3. Strat-slice from a coherence volume displayed at a marker horizon and merged with 3D rose diagrams (in red) 
generated with a search radius of (a) 300 m, (b) 600 m, and (c) 1000 m. In all cases, the other attribute used was the 
ridge attribute. Notice that this choice will depend to a large extent on the features on the horizon or time slice being 
viewed. 
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3D rose diagrams 
The curvedness, c, of a surface is defined by 

 
c2 = k2

min + k2
max    (1) 

 
where kmin and kmax are the minimum and maximum 
curvature (Roberts, 2001). Roberts (2001) also shows 
how kmin and kmax can be used to compute a shape 
index, s, which defines dome (s = +1), ridge (s = 
+1/2), saddle (s = 0), valley (s = –1/2), and bowl (s = –
1) quadratic surfaces. The curvedness defines the 
intensity of deformation in generating these shapes, 
with a planar surface being defined as c = 0. Al-
Dossary and Marfurt (2006) showed how the intensity 
of deformation can be combined with the shape index 
to generate shape components, with the sum of the 
components equal to the curvedness. The choice of 
shape depends on the geological model being used. In 
Figure 2 we show a comparison of the coherence 
horizon slice with the valley and the ridge horizon 
slices. Note that the edges of the channel are 
accentuated by the ridge attribute and the thalweg of 
the channel is defined better by the valley attribute. 
Ridges and valleys (as well as elongated domes and 
bowls) have a well-defined strike. We will therefore 
interpret the azimuth of minimum curvature, ψmin, to 
be a direct measurement of the strike of ridges and 
valleys.  

 

 
Figure 4. Rose diagrams displayed 40 ms above a 

marker horizon. 
 
For a more conventional display and qualification 

of lineaments, we generate rose diagrams for any 
gridded- square area defined by an n-inline by m-
crossline analysis window, for each horizontal time 

slice. Within each analysis window, we bin each pixel 
into rose petals according to its azimuth, ψmin, 
weighted by its threshold-clipped ridge or valley 
components of curvedness, then sum and scale them 
into rose diagrams. The process is repeated for the 
whole data volume. After that, the rose diagrams are 
mapped to a rose volume which is equivalent to the 
data volume and centred in the analysis window, 
located at the same location as in the input data 
volume. A robust generation of rose diagrams for the 
whole lineament volume (corresponding to the seismic 
volume) is computed, yielding intensity and 
orientation of lineaments.  

In this manner, we generate 3D rose diagrams 
from either the ridge or valley component of curvature 
and the azimuth of minimum curvature. The choice of 
ridge or valley depends on the geological processes 
that formed them. Thus, if we wish to generate rose 
diagrams of a channel-levee system, rose diagrams 
generated from the valley component of curvature 
would be a direct measure of the channel axes. 
Likewise, the valley component of curvature is a direct 
measure of intensity of karst-enhanced fractures in an 
otherwise planar carbonate horizon. In structurally 
deformed areas, the noses of the anticlines are often 
‘sharper’ than the valley lows, such that the ridge 
component of curvature may provide more useful 
images (Figure 2). Figure 3 shows the generation of 
rose diagrams from the ridge component of curvature 
and the azimuth of the minimum curvature. The 
displays correlate well with the lineaments seen on 
coherence aligning with the rose petals; conversely, 
where there are no lineaments seen on the coherence 
display, the rose petals do not exhibit significant size. 
As the size and lateral spacing of rose generation can 
be controlled, an optimum spread of the roses needs to 
be ascertained. To do so, in Figure 3 we show the 
roses generated at a specific choice of the search 
radius. In this example, the spreads of roses with a 
radius of 600 m appear to match the lineaments on the 
coherence reasonably well. However, the correlation 
between lineaments computed from curvature and 
those seen on coherence depend strongly on the 
tectonic deformation. For example, N–S en echelon 
reverse faults may be linked by nearly perpendicular 
folds. Strike-slip faults may have subparallel folding 
on one side and almost perpendicular folding on the 
other (e.g., Rich, 2008). In Figure 4 we show the 3D 
rose diagrams 40 ms above a marker horizon, which is 
a convenient way of correlating these with the rose 
diagrams. 

As shown in the foregoing examples, a 
significant advantage of the volumetric generation of 
roses at grid nodes is that it is possible to merge them 
with a suitable attribute volume.  Figure 5 shows the 
merge of a stratal volume from coherence with the 
rose volume.  It is possible to animate through this 
volume to the desired level and then examine how the 
lineaments match the rose petals. A blowup of the rose 
diagram volume is shown in Figure 6.   
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 Figure 5. 3D rose diagrams merged with a truncated 
stratal coherence volume. This composite volume can 
now be animated to view the alignment and orientation 
of the features seen on the coherence with roses 
generated from different attributes and eventually with 
similar roses from image logs.  
 

 

 
Figure 6. A zoom of the 3D rose diagrams at individual 
points in the 3D volume. Notice the alignment of the 
petals is not the same within the thickness of the strat-
cube, and the changes in orientation of fractures with 
time are indicated with yellow arrows. 

 
 Figure 7. Strat-cube from a merged volume comprising the 3D rose diagram as well as the coherence attribute, shown 
in (a) at 50 ms, and in (b) at 100 ms below the marker horizon. This composite volume can now be animated to view the 
alignment and orientation of the features seen on the coherence with roses generated from different attributes and 
eventually with similar roses from image logs.  
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Such 3D roses help the interpreter notice, within the 
thickness of the strat-cube shown, if the orientation of 
the fractures is the same or if it changes. There are at 
least five roses marked with arrows that indicate 
changes in orientation of fractures with depth. 

Finally, another advantage of such a composite 
visualization is that in multi-level fracture zones of 
interest, it is possible to animate to these desired 
fracture zones.  Figure 7 shows strat-slices at 50 ms 
and 100 ms below a marker horizon. Notice how 
nicely the petal orientations match the low coherence 
lineaments seen on these displays. 

 
Conclusions 
3D rose diagrams can be generated as a volume using 
either the ridge or the valley shape attribute in 
combination with the azimuth of minimum curvature 
attribute. Such a volume can be merged with any other 
attribute volume that has been generated to study the 
fracture lineaments and their orientation. We have 
illustrated this application through examples from a 
real seismic data volume from Alberta, Canada. 
Visualization of these volumetric 3D rose diagrams 
with other discontinuity attributes lends confidence to 
the interpretation of fracture lineaments. Finally, such 
3D rose diagrams can be correlated with similar rose 
diagrams from image logs, with azimuthal anisotropy 
velocity data, with tracer data, and with production 
data. 
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Chapter 7 Conclusions 

Geometric attributes related to structure such as apparent dip, amplitude gradient 

and curvatures help enhance the signature of geological reflectors, especially the 

reflectors related to faults and folds. While the apparent dip attribute shows a range of 

value, along a dipping reflector surface, the amplitude energy gradient shows a higher 

resolution where the properties of the reflector are changing. Rotating the apparent 

illumination direction gives the interpreter a visual tool to better delineate structurally 

complicated features such as faults and fractures.  

Volumetric curvature attributes provide further indication of lineaments. With 

respect to faults, these attributes may not coincide with the exact fault location. They 

commonly bracket faults. Combining curvature with coherence and seismic amplitude, 

the interpreter can quickly visualize and quantify structural style on an uninterpreted 

seismic volume.  

Combining two or more attributes and visualizing them in the form of multi-

attribute displays or rose diagrams, allows the interpreter to further delineate location of 

faults or other lineament features, quantify their intensity and orientation (with rose 

diagrams), or define structural shapes (shape index). 

Using a proper suite of attributes, we can generate a superior interpretation 

product, which can help in drilling or production design decision making.  
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Appendix 

Overview 

As part of the effort, I have generated a complete set of interactive Graphic User 

Interfaces (GUIs), shell scripts, and documentation on how to use the AASPI software for 

OU students, staff, as well as AASPI sponsors. 

The AASPI software runs on a Linux system. It includes three parts (Figure A1):  

- AASPI Graphic User Interfaces: provide an easy way to launch jobs, quality 

control user-defined parameters, and generate simple graphical displays. 

These GUIs are programmed in C++, using FOX Toolkit graphic libraries. I 

have written 100% of the GUIs. 

- Shell scripts: read parameters from the GUIs, do some simple error checking 

when possible, and submit a job to AASPI computing applications in the 

background, typically running in parallel under the Message Passing Interface 

(MPI). I have modified all of the shell scripts to interface with the GUIs, and 

written from scratch those that invoke the Fortran90 applications I have 

written, as well as those that convert input and output to and from the SEGY 

standard 

- AASPI computing applications: The heart of AASPI software that perform the 

actual seismic attributes computation. These applications are written in 

FORTRAN90. I have written applications that generate rose diagrams and 

Euler components of curvature, and significantly modified algorithms for 

multi-attribute display. I have also written the basic conversion codes that pad 

and quality control the data conversions from SEGY. 



 

Figure A

 

The interface includes one master GUI (aaspi_util)

computing and plotting GUIs

into four groups:  

GUIs

AASPI Utilities
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Figure A1: AASPI software workflow 

Figure A2: AASPI software components 

The interface includes one master GUI (aaspi_util) and 17 

GUIs (Figure A2). The attribute computing GUIs 

Shell Scripts Applications

dip3d

image_filt3d

sof3d

similarity3d

curvature3d

apparent_cmpt

euler_curvature

real_pca_spectra

real_pca_waveform

spec_cmp

footprint_suppression

glcm3d

hlplot

hsplot

hlsplot3d

spec_cmp_plot (4D)

generate_roses

 

 

seismic attribute 

GUIs are classified 

Applications

apparent_cmpt

euler_curvature

real_pca_spectra

real_pca_waveform

footprint_suppression

spec_cmp_plot (4D)

generate_roses
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• Volumetric Attributes: dip3d, image_filt3d, sof3d, similarity3d, 

curvature3d, apparent_cmpt, euler_curvature 

• Formation Attributes: real_pca_spectra, real_pca_waveform 

• Others: generate_roses, spec_cmp, footprint_suppresion, glcm3d. 

• Plotting Tools: hlplot, hsplot, hlsplot3d, spec_cmp_plot 

Each GUI is connected to one or more seismic attribute computing or displaying 

application. 
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Master Graphic User Interface (GUI): aaspi_util 

All the seismic attribute applications can be called from the master GUI: 

aaspi_util (Figure A3), through the drop-down menu (Volumetric Attributes, Formation 

Attributes, Display Tools, and Others). The I/O and display utilities are: Segy2sep, 

Sep2Segy (auto), Sep2segy (single), and SEP Viewer.  

Segy2sep converts 3D seismic files in SEG-Y standard format (IBM 32bits) into 

SEP format that we use internally for attribute computation. 

Sep2Segy (auto) automatically searches and converts selected sets of attributes 

from SEP format to SEG-Y format for further processing and interpretation. 

Sep2Segy (single) converts one selected seismic file from SEP format into SEG-Y 

format. 

SepViewer does simple seismic data display of SEP format files, for quality 

control. 

     
Figure A3: AASPI Utilities 
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The master GUI also links with an AASPI software manual (Figure A4), which 

include the detail description of each application and on how to use them. 

 
Figure A4: AASPI Manual: Running AASPI Software with GUIs 
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AASPI seismic attribute GUIs and computing programs 

 

 
Figure A5: AASPI dip3d 

dip3d - compute 3D dip components using analytic semblance in overlapping 

analysis windows (a Kuwahara implementation). 

The program dip3d is supported by an external excel dip angle estimator (Figure 

A6). This estimator helps converting the degree of dipping events from seismic data units 

(traces and trace spacing for horizontal axis, and time or depth for vertical axis) into 

geometry unit (degree) to use as maximum dip search (theta_max) in dip3d program. 



Figure A
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Figure A6: AASPI Dip Angle Estimator 
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Figure A7: AASPI image_filt3d 

image_filt3d - filters inline and crossline components of structural dip along the 

previous estimate of dip using edge-preserving filters. 

 
Figure A8: AASPI sof3d 

sof3d - structure-oriented filtering of 3D data volumes, rejecting random noise 

and presser edges. 
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Figure A9: AASPI similarity3d 

similarity3d  - calculate 3D similarity-type attributes from a migrated data 

volume. 

 
Figure A10: AASPI curvature3d 

curvature3d - calculates curvature attributes from an input 2-component vector. 

 



 

128 

 
Figure A11: AASPI apparent_cmpt 

apparent_cmpt - calculates apparent dip and amplitude gradient attributes from 

an input 2-component vector. 

 
Figure A12: AASPI euler_curvature 

euler_curvature - calculates Euler curvature attributes from k1, k2 and azimuth of 

minimum curvature. 
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Figure A13: AASPI real_pca_spectra 

real_pca_spectra - extract real principal components from a vertical suite of 

seismic amplitude or spectral magnitude data extracted along an interpreted surface. 

 
Figure A14: AASPI real_pca_waveform 

real_pca_waveform - extract real principal component waveforms corresponding 

to a window of seismic data extracted parallel to an interpreted surface. 
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Figure A15: AASPI generate_roses 

generate_roses – combine lineament curvedness and azimuth of minimum 

curvature components and generate 3D rose diagrams. 

 
 

 
Figure A16: AASPI spec_cmp 

spec_cmp – decomposes seismic data into either Ricker or Morlet wavelets using 

a matching pursuit technique. The complex spectrum (amplitude and phase) of each 

wavelet is accumulated to generate a time-frequency spectral decomposition. 
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Figure A17: AASPI footprint_suppression 

footprint_suppression – a processing workflow remove acquisition footprints. 

 
Figure A18: AASPI glcm3d 

glcm3d – calculate grey level co-occurrence matrix attributes from a migrated 

data volume.  
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Figure A19: AASPI hlplot 

hlplot  - bins two input attributes against a 2D  hue and lightness color table. The 

output composite data volume ranges in values from 0 to 255 (or n-color) which maps 

one-to-one against color tables that range from 0 to 255. Petrel, IESX, Landmark, 

Voxelgeo, Geomodelling, and SEP format color tables are generated which can be loaded 

into commercial workstation software applications. 
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Figure A20: AASPI hsplot 

hsplot - bins two input attributes against a 2D  hue and saturation color table. The 

output composite data volume ranges in values from 0 to 255 (or n-color) which maps 

one-to-one against color tables that range from 0 to 255. Petrel, IESX, Landmark, 

Voxelgeo, Geomodelling, and SEP format color tables are generated which can be loaded 

into commercial workstation software applications. 
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Figure A21: AASPI hlsplot3d 

hlsplot3d - bins three input attributes against a 2D hue, lightness, and saturation 

color table. The output composite data volume ranges in values from 0 to 

(hue*lightness*saturation) which maps one-to-one against color tables that range from 0 

to (hue*lightness*saturation). Petrel, IESX, Landmark, Voxelgeo, Geomodelling, and 

SEP format color tables are generated which can be loaded into commercial workstation 

software applications. 
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Figure A22: AASPI spec_cmp_plot (4D) 

spec_cmp_plot – quick tool to plot SEP spec_cmp 4D volume. 


