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ABSTRACT 
 

 Coupling of the carbon and hydrological cycles, such as the relationship 

between photosynthesis and transpiration, are essential global and environmental 

change issues, which are interrelated to future water availability, carbon and water 

feedback to climate, and carbon sequestration.  The goal of this dissertation is to 

recapitulate three projects that use independent experimental, analytical, and 

modeling approaches to evaluate the influence of climate change on the carbon and 

water cycle.  In the first study, I used the Terrestrial ECOsystem (TECO) model to 

evaluate the ecohydrological and carbon-water coupling response to single and 

multiple climate change scenarios – this included combinations of warming, elevated 

CO2, and altered precipitation on runoff, evaporation, transpiration, rooting zone soil 

moisture content (RZSM), water use efficiency (WUE), and rain use efficiency 

(RUE) - in a North American tallgrass prairie. The 200 different scenarios, with 

gradual change for 100 years, showed strong responses in runoff, evaporation, 

transpiration, and RZSM to changes in temperature and precipitation, while effects of 

CO2 changes were relatively little.  For example, runoff decreased by 50% with a 10 

oC increase in temperature and increased by 250% with doubled precipitation. 

Ecosystem-level RUE increased with CO2, decreased with precipitation, and 

optimized at 4-6 oC of warming. In contrast, plant-level WUE was highest at doubled 

CO2, doubled precipitation, and ambient temperature. The different response patterns 

of RUE and WUE signify that processes at different scales responded uniquely to 

climate change.  Combinations of temperature, CO2, and precipitation anomalies 

interactively affected response magnitude and/or patterns of ecohydrological 
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processes. Our results suggest that ecohydrological processes were considerably 

affected by global change factors and then likely regulate other ecosystem processes, 

such as carbon and nitrogen cycling.  

 The second experiment was conducted to assess the effects of warming and 

doubled precipitation on soil water dynamics in a tallgrass prairie ecosystem.  Using a 

one year “pulse” experiment, with 4°C warming and a doubling in precipitation 

intensity, an analysis of annual soil moisture, soil moisture frequency, and water loss 

was done. There was a decrease in soil moisture frequency from 0–120 cm in both 

warming and warming with increased precipitation experiments. Different soil depths 

had similar patterns of change in soil moisture and soil temperature frequency. A 

statistical difference in soil moisture was found among the different treatment types. 

A correlation of evapotranspiration and soil moisture allowed for an estimate of 

changes in evapotranspiration from the wilting point (Ew) to maximum 

evapotranspiration (Emax). These results revealed a shift in the slope and position of 

Ew to Emax with experimental warming. Our results showed that the soil moisture 

dynamics and the ecohydrology were significantly changed by different global 

climate change scenarios. 

 The third study was an investigation the role of experimental warming on 

carbon-water coupling across multiple ecosystem types.  Here I used a meta-analysis 

technique to evaluate the impact of experimental warming on rain use efficiency.  

These results indicate that increases in temperature cause a significant increase in 

RUE.  Additionally, we show that experimental warming had the largest impact on 

shrubland and tundra sites, while grasslands, receiving the highest amount of 
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precipitation and lowest experimental temperatures, had the second lowest response 

to experimental warming. Wetland biomes had the lowest response to experimental 

warming.  This research demonstrates that there are temperature limitations that span 

multiple ecosystems and these results are beneficial for large-scale modeling projects.   

 

 

 

Keywords: global climate change, carbon-water coupling, ecohydrology, terrestrial 

ecosystem ecology, grassland, warming, precipitation, CO2, rain use efficiency, 

runoff, evaporation, transpiration, soil moisture, water use efficiency, ecosystem 

modeling 
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Chapter 1 
 
 
 

Introduction 
 
1.1 Introduction 
 
 The influence of greenhouse gases on atmospheric temperature is a well 

understood process.  Some of the earliest research on understanding the impact of 

greenhouse gases on Earth’s temperature was done in 1820s by the French scientist 

Jean Baptiste Joseph Fourier.  Subsequent work was done by John Tyndall, a British 

scientist, on characterizing the particular gases that cause the greenhouse gas effect.  

In the 1890s, a Swedish scientist, Svante Arrhenius, mathematically derived that an 

increase in carbon dioxide (CO2) would increase the Earth’s temperature.  However, 

it was not until the 1950s that a United States’ scientist, Dr. Charles Keeling, devised 

a method of measuring atmospheric CO2 concentrations.  Soon afterwards it was 

discovered that the average concentration of atmospheric CO2 increased every year 

and many scientists speculated that the increase in CO2 was related to the burning of 

fossil fuels (i.e. coal and oil).  Since 1990, the Intergovernmental Panel on Climate 

Change (IPCC) has released four assessments on the anthropogenic increase in 

greenhouse gases (e.g. CO2, N2O, CH4, and CFC) and the subsequent connection of 

increases in atmospheric temperatures.  

 In the next century, climate change is predicted to continue to change due to 

various human activities that will increase greenhouse gases (e.g. continued increase 

in dependence on fossil fuels, destruction of forests, and the increasing human 

population).  As a consequence, CO2 is predicted to continue to increase and the 
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Earth’s surface temperature is expected to rise somewhere between 1.1 to 6.4 °C by 

the end of the 20th Century.  In addition, warmer atmospheric temperature is likely to 

result in higher moisture demand and cause alterations in hydrological cycle 

(Huntington 2006).  The IPCC (2007) has indicated that there could be a 0.5 to 1% 

change in precipitation per decade for the next century.  These changes in climate 

conditions (i.e. temperature, CO2, and precipitation) could have an unparalleled 

change in ecosystem processes and functions.   

 Multiple climate change scenarios have shown to alter different hydrological 

processes.  Huntington (2006) predicted an exponential increase in specific humidity 

due to an increase in atmospheric temperature.  Climate modeling studies estimate 

that a 3.4% increase in precipitation should occur per every degree Kelvin (Allen and 

Ingram, 2002).  Additional analysis indicates that intensity and severity of 

precipitation will result from climate change (Easterling et al., 2000).  Furthermore, 

site specific ecosystem studies have evaluated a multitude of possible changes in 

various hydrological processes under different climate change scenarios.  For 

example, research was conducted on changes in soil moisture (Owensby et al., 1993; 

Gerten et al., 2007), runoff (Wetherald and Manabe 2002; Betts et al., 2007), 

transpiration (Nijs et al., 1997; Lockwood et al., 1999;Yang et al., 2003), and plant 

water use (Allen et al, 2003; Morgan et al., 2004)  with different climate change 

scenarios.  No studies, to this author’s knowledge, have investigated all hydrological 

processes under various climate change scenarios or linked these changes with other 

biogeochemical cycles (e.g. carbon).         
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 Interactions of anthropogenic climate change on ecosystem processes have 

become a topic of interest to ecologists seeking to scientifically evaluate changes in 

the Earth’s biosphere.  This includes investigating the changes in biogeochemical 

cycles (e.g. carbon, nitrogen, and water).  A biogeochemical cycle is a pathway that 

allows a chemical element, or compound, to move through the Earth’s biosphere, 

atmosphere, hydrosphere and lithosphere.  These cycles have now been changed 

because of human activities.  For example, the burning of coal and oil is rapidly 

releasing stored terrestrial carbon into the atmosphere and stored nitrogen in the 

atmosphere is being manufactured as agricultural fertilizer through the human-

engineered Haber-Bosch process.  These unprecedented changes in biogeochemical 

cycles and climate make it important to understand ecosystem response and its ability 

to withstand future perturbation.   

 Ecologists have used multiple methods to investigate future climate change 

scenarios.  This research comprises of field experiments that use various warming 

techniques, precipitation manipulation, and increased CO2.  A few specific examples 

include a continuous warming experiment, using infrared heating apparatuses, for the 

past 9 years at The University of Oklahoma (Wan et al. 2002), a precipitation 

manipulation experiment, that altered the rainfall frequency and intensity, at the 

Konza Prairie Biological Station (Harper et al. 2005), and the Duke Forest Face site 

that has increased CO2 concentrations to a loblolly pine forest (Ellsworth et al. 1995).  

Furthermore, a few experiments have used combinations of climate change factors to 

simulate multidimensional future conditions.  For example, there was a one year 

“pulse” warming and precipitation experiment at The University of Oklahoma (Zhou 
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et al. 2006) that was designed to evaluate the impacts of an anomalous year (or 

“pulse”).  Although a large amount of research has addressed the interaction of 

climate change and ecosystem processes, there are many environmental questions that 

remain unanswered. 

 Ecohydrology is a new discipline that combines both hydrology and ecology 

to understand the hydrological cycle.  It is well known that multiple ecosystem 

processes actively contribute to the terrestrial hydrological cycle (e.g. transpiration, 

plant uptake of water, and rainfall interception).  Hence, climate change manipulation 

experiments on various ecosystems allow for a better understanding of the processes 

that govern ecohydrology.   For example, transpiration increased by experimental 

warming (Nijs et al. 1997) was significantly altered either positively or negatively 

based on rainfall manipulation (Fay et al. 2003), and decreased with higher 

atmospheric CO2 (Polly et al. 1999; Ferrestti et al. 2003).  Furthermore, various 

climate change research has demonstrated that other ecohydrological processes will 

be changed by factors such as soil moisture (Wullschenger et al. 2002; Morgan et al 

2004), runoff (Wetherald and Manabe2002; Betts et al. 2007), and evaporation 

(Ferretti et al. 2003).  Although most of these studies have focused on single factor 

experiments or large scale modeling efforts, this research has proved valuable and 

helped in identifying changes in various processes, albeit with some limitations.  

Hence, climate change will occur in combination with multiple factors and could 

produce interactions that cannot be accounted for with single factor experiments or 

large scale modeling.  Therefore, identification of these potential interactive processes 

and regional scale patterns become increasingly important.   
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 There is little available research that focuses on the coupling of 

biogeochemical cycles.  Historically, researchers have generally focused on specific 

biogeochemical cycles.  These cycles, however, are not isolated from each other in 

nature and always work in concert.  Hence, it is important to understand how 

biogeochemical cycles respond in unison with climate change.  In order to examine 

multiple interactions of biogeochemical cycles and a variety of combinations of 

climate change scenarios it is sometimes necessary to use modeling.          

 The work in this dissertation addresses the response of the hydrological cycle 

and carbon-water cycle coupling to global climate change using three approaches: 

ecosystem modeling, meta-analysis, and a one year “pulse” experiment.  The results 

of this research will help scientists, politicians, and the general public better 

understand the implications of global climate change on ecosystem processes 

especially changes in the hydrological and carbon cycle.  This endeavor can help 

guide future scientific experimental research and, in particular, the modeling 

component could be very helpful in illustrating which potential climate change 

combinations are most beneficial for changing ecosystem processes.  Additionally, 

these results could be useful for understanding and implementing local ecosystem 

processes and feedbacks into regional and global scale models.  Politicians, regional 

planners, and natural resource managers should be interested in the response of 

carbon and water to different climate change scenarios.     
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Figure 1.1 Schematic illustration of the terrestrial ecosystem carbon and hydrological 

cycle.  Red arrows represent the transport of carbon and the blue arrows represent the 

transport of water; each arrow is labeled with the appropriate process. This diagram is 

to show the similarities between the two cycles and the atmosphere-plant-soil 

interaction.  
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 In Chapter 2, I use the Terrestrial Ecosystem (TECO) model to analyze 

changes in the hydrological cycle and explore the relationship of carbon-water 

coupling at two different scales.  This technique focuses on the tallgrass prairie in 

Oklahoma because of the availability of actual data for validation of the model.  In 

Chapter 3, I analyze soil moisture dynamics during a one year “pulse” experiment at 

The University of Oklahoma.  This experiment was designed to simulate both single 

and multiple scenarios of climate change in a tallgrass prairie.  In Chapter 4, I 

investigate the carbon-water coupling at multiple experimental warming sites and 

utilized a meta-analysis statistical technique to evaluate results from individual 

experimental studies.    Finally, Chapter 5 presents the conclusions of this dissertation 

and discusses future research needs in global climate change.  It should be noted that 

Chapter 2, 3, and 4 are developed for peer-review publication.    
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Abstract 
 
 

 Relative impacts of multiple global change factors on ecohydrological 

processes in terrestrial ecosystems have not been carefully studied. In this study, we 

used a terrestrial ecosystem (TECO) model to examine effects of three global change 

factors (i.e., climate warming, elevated CO2, and altered precipitation) individually 

and in combination on runoff, evaporation, transpiration, rooting zone soil moisture 

content, water use efficiency (WUE), and rain use efficiency (RUE) in a North 

American tallgrass prairie. We conducted a total of 200 different scenarios with 

gradual changes of the three factors for 100 years.  Our modeling results show strong 

responses of runoff, evaporation, transpiration, and rooting zone soil moisture to 

changes in temperature and precipitation, while effects of CO2 changes were 

relatively minor.  For example, runoff decreased by 50% with a 10 oC increase in 

temperature and increased by 250% with doubled precipitation. Ecosystem-level RUE 

increased with CO2, decreased with precipitation, and optimized at 4-6 oC of 

warming. In contrast, plant-level WUE was highest at doubled CO2, doubled 

precipitation, and ambient temperature. The different response patterns of RUE and 

WUE signify that processes at different scales responded uniquely to climate change.  

Combinations of temperature, CO2, and precipitation anomalies interactively affected 

response magnitude and/or patterns of ecohydrological processes. Our results suggest 

that ecohydrological processes were considerably affected by global change factors 

and then likely regulate other ecosystem processes, such as carbon and nitrogen 

cycling.  In particular, substantial changes in runoff to different climate change 

scenarios could have policy implications because it is a major component to 
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replenishing freshwater.  These modeling results should be tested by and could 

influence design of field experiments on ecohydrological processes.      

Keywords: Temperature, CO2, precipitation, ecohydrology, rain use efficiency, water 

use efficiency  

 
 
 

2.1. Introduction 

The atmospheric concentration of carbon dioxide (CO2) has increased from 

pre-industrial levels of 280 ppm to the present level of around 379 ppm (IPCC, 2007). 

Consequently, the Earth surface’s temperature has increased by 0.76 oC over the last 

150 years and at a rate of 0.13 oC per decade over the last fifty years (IPCC, 2007). It 

was predicted that Earth surface temperature will continue to increase by 1.1 to 6.4 oC 

over the next century (IPCC, 2007). This expected increase in temperature will likely 

result in alterations in the hydrological cycle at regional and global scales. Huntington 

(2006), for example, predicted an almost exponential increase in the specific humidity 

due to the increase in temperature; whereas, modeling analysis showed a 3.4% 

increase in precipitation per degree Kelvin (Allen and Ingram, 2002). This leads to a 

question: how will the hydrological cycle in terrestrial ecosystems respond to 

multifactor climate change? 

Individual ecohydrological processes may differentially respond to global 

change, leading to complex patterns and changes in ecosystem water balance (Gerten 

et al. 2008). Wetherald and Manabe (2002) showed that modeled runoff decreased 

globally with an increase in temperature for a thirty year period due to increased 

evapotranspiration. However, an increase in precipitation in a given year results in 
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increased runoff due to over-saturation of soil moisture.  The two components of 

climate change (i.e., warming and altered precipitation) could interplay to affect 

evaporation. In addition, plant transpiration is regulated by atmospheric CO2 

concentration (Lockwood, 1999) and length of growing seasons.  Sherry et al. (2007) 

have showed that an increase in temperature extended the growing seasons. This 

extension in the growing season could increase the amount of water transpired, while 

an increase in CO2 can decrease the amount of transpiration from a plant due to a 

more efficient stomatal opening (Farquhar and Sharkey, 1982).  The processes of 

evaporation, transpiration, and runoff all influence soil moisture content (Yang et al., 

2003), The Lund-Potsdam-Jena model demonstrated varying effects of different 

climate change scenarios on soil moisture in different regions (Gerten et al., 2007) 

and consequently on biomass growth and net primary production (NPP) (Cramer et 

al., 2001). To improve our understanding of complex ecohydrological responses to 

climate change, we need to systematically examine interactions of multiple factors in 

influencing components of the terrestrial hydrological cycle, such as runoff, soil 

moisture, transpiration, and evaporation.  

Additionally, the hydrological cycle in the terrestrial ecosystem is closely 

coupled with biogeochemical cycles. The hydrological-biogeochemical coupling may 

strongly respond to climate change. For example, plant water use efficiency (WUE), a 

major index of carbon-water coupling, usually increases with an increase in 

atmospheric CO2 concentration but decreases with an increase in temperature (Allen 

et al., 2003) and with an increase in rainfall. It is also essential to understand how 

WUE responds to multi-factor global change scenarios.  Carbon-water coupling at 
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ecosystem and regional scales is usually indicated by rain-use efficiency, which, to 

the best of our knowledge, has not been carefully studied under different climate 

change scenarios using experimental approaches.  

Comparative studies of ecosystem rain use efficiency (RUE) and plant WUE 

is helpful in revealing different processes that influence carbon and water coupling.  

RUE, defined by a ratio of above-ground net primary productivity (ANPP) over 

yearly precipitation, measures the amount of biomass production per unit of 

precipitation over one year.  Plant-level WUE, defined by a ratio of ANPP over 

transpiration, measures the amount of water lost via plant transpiration for production 

of one unit of plant biomass. Plant WUE primarily reflects changes in leaf 

photosynthesis and transpiration in response to climate change; whereas ecosystem 

RUE measures changes in plant growth biomass in association with changes in all 

hydrological processes at the ecosystem scale under different climate change 

scenarios. An increase in precipitation, for example, usually results in increases not 

only in plant biomass but also in runoff and soil evaporation. Plant WUE can only 

measure the plant-level responses.  We need ecosystem RUE, to describe changes in 

other ecosystem processes. Similarly, climate warming and rising atmospheric CO2 

concentration are likely to differentially influence plant WUE and ecosystem RUE.      

Ecohydrological processes are influenced by climate change factors 

individually or in combination.  There have been studies on how single-factor climate 

change influences ecohydrological processes.  For example, Knapp et al. (2002) 

showed that an increase in rainfall variability resulted in a reduction of net primary 

production and shifts in community composition. Nilsen and Orcutt (1998) showed 
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that decreases in soil moisture will reduce the amount of plant water potential. 

However, responses of ecohydrological processes to one factor are likely modified by 

other global change factors.  A few experiments have examined ecosystem responses 

to multifactor global change, primarily on carbon and nutrient processes. How co-

varying multifactor climate change will alter ecohydrological processes has not been 

carefully examined. Modeling studies have the potential to provide insight on the 

effects of multi-factor global change on ecohydrological processes (Knapp et al., 

2007).  

 This study was designed to understand ecohydrological responses to global 

change factors (i.e., altered precipitation, warming, and elevated atmospheric CO2 

concentration) individually or in combination. We used the Terrestrial ECOsystem 

(TECO) model (Weng and Luo 2008) to examine changes in ecohydrological 

processes under 150 scenarios from 6 levels of climate warming (i.e., increases in 

temperature by 0, 2, 4, 6, 8, and 10 oC above the ambient), 5 levels of CO2 

concentration from ambient to doubled CO2 with each increment of 25%, and 5 levels 

of precipitation from -25 to 75% of the ambient with each increment of 25%. In 

addition, we also examined ecosystem responses to combinations of various 

temperature and precipitation levels at subambient CO2 concentration (280 ppm) for 

studying three-way interactions.  This modeling analysis was focused on responses of 

runoff, evaporation, transpiration, rooting zone soil water content, water use 

efficiency (WUE) and rain use efficiency (RUE) to climate warming, elevated CO2, 

and altered precipitation.   
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2.2. Materials and Methods 

Model Description  

The terrestrial ecosystem (TECO) model is a process-based ecosystem model 

(Weng and Luo. 2008), which evolved from the terrestrial carbon sequestration (TCS) 

model developed by Luo and Reynolds (1999). TECO and its precursor, TCS model, 

have been applied to study responses of forest ecosystems to elevated CO2 (Luo et al. 

2001, 2003, Xu et al. 2006) and examine nonlinear patterns of grassland responses to 

multifactor global changes (Zhou et al. 2008). The TECO model has four 

components: a canopy photosynthesis sub-model, a soil water dynamic sub-model, a 

plant growth sub-model, and a soil carbon transfer sub-model.  The canopy 

photosynthesis and soil water dynamic sub-models run at hourly steps while the plant 

growth and soil carbon transfer sub-models run at daily steps. The TECO model was 

described in detail by Weng and Luo (2008).  Here we provide a brief description of 

carbon sub-models and a full description of the soil water dynamics sub-model 

because the latter is the focus of this study.  

The canopy sub-model is from a two-leaf photosynthesis model simulating 

canopy conductance, photosynthesis, transpiration, and energy partitioning (Wang 

and Leuning, 1998). The sub-model is composed of foliage levels that are divided in 

sunlit and shaded leaf area index (LAI). Leaf photosynthesis is estimated based on the 

Farquhar photosynthesis model (Farquhar et al., 1980) and the Ball and Berry 

stomatal conductance model (Ball et al., 1987). The Plant Growth sub-model 

simulates allocation of assimilates to plant pools, plant growth, plant respiration, and 

carbon transfer to litter and soil carbon pools. Allocation of assimilates depends on 
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growth rates of leaves, stems and roots, and varies with phenology based on the 

ALFALFA model (Luo et al., 1995) and parameterization of litter fall by Arora and 

Boer (2005). Seasonal dynamics of phenology is represented by the variation of LAI. 

Commencement of leaf onset is regulated by growing degree days (GDD) and leaf 

fall is determined by low temperature and dry soil conditions. The end of the growing 

season occurs at LAI <0.1. The Carbon Transfer sub-model simulates carbon 

movement from plant pools to litter and soil pools in three layers.  Carbon releases 

from litter and soil carbon pools are based on decomposition rates and pool sizes (Luo 

and Reynolds, 1999).  

The soil water sub-model divides soil into ten layers as in the ALFALFA 

model (Luo et al., 1995) while soil carbon sub-model has three layers for carbon 

dynamics. The sub-model simulates dynamics of soil water content based on 

precipitation, runoff, evapotranspiration, and the amount of water content in the 

previous time step as:   

 ETRunoffPWW soilsoil −−+= 0                                        (1)     

where Wsoil is soil water content, Wsoil0 is soil water content in the previous time step, 

P is precipitation, and ET is evapotranspiration equaling the amount of plant 

transpiration and soil surface evaporation. Transpiration is calculated based on the 

canopy model for simulating canopy conductance, photosynthesis and energy 

partitioning of sunlit and shade leaves separately.  Evaporation (Es) is controlled by 

the amount of water lost from the soil surface based on evaporative demand (Sellers 

et al., 1996): 

λγ

ρ 1)(*
p

dsoil

asoil
s

c

rr

eTe
E

+

−
=      (2) 
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Figure 1.  Structural diagram of the TECO model. (A) Canopy model; (B) Soil water 

dynamics model; (C) Plant growth model; (D) Carbon transfer model. Boxes 

represent the carbon pools. Ra is autotrophic respiration. Rh is heterotrophic 

respiration. NSC is non-structure carbohydrates.   
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The soil water sub-model divides soil into ten layers as in the ALFALFA 

model (Luo et al., 1995) while soil carbon sub-model has three layers for carbon 

dynamics. The sub-model simulates dynamics of soil water content based on 

precipitation, runoff, evapotranspiration, and the amount of water content in the 

previous time step as:   

 ETRunoffPWW soilsoil −−+= 0                                        (1)     

where Wsoil is soil water content, Wsoil0 is soil water content in the previous time step, 

P is precipitation, and ET is evapotranspiration equaling the amount of plant 

transpiration and soil surface evaporation. Transpiration is calculated based on the 

canopy model for simulating canopy conductance, photosynthesis and energy 

partitioning of sunlit and shade leaves separately.  Evaporation (Es) is controlled by 

the amount of water lost from the soil surface based on evaporative demand (Sellers 

et al., 1996): 

λγ

ρ 1)(*
p

dsoil

asoil
s

c

rr

eTe
E

+

−
=      (2) 

where e*(Tsoil) is the saturation vapor pressure at temperature of the soil, ea is the 

atmospheric vapor pressure, rsoil is soil resistance, rd is the aerodynamic resistance 

between ground and canopy air space, ρ is the density of air, cp is the specific heat 

capacity of air, γ is the psychrometric constant, λ is the latent heat of evaporation 

(Sellers et al., 1996).  

When rainfall input into soil is more than water recharge to soil water holding 

capacity, runoff occurs and is estimated by the following equation: 

maxWWRunoff soil −=                                        (3) 
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where, Wmax is soil water holding capacity. The soil moisture scalar is important in 

regulating photosynthesis, plant growth rate, and soil carbon turnover time. We 

estimated the scalar by: 

min

max min

min 1.0,3.33 soil
w

W W
f

W W

  −
= ⋅   −  

                 (4) 

where, Wmin is the permanent wilting point.  

Model input data included air temperature, soil temperature, relative humidity, 

precipitation, and photosynthetically active radiation. Vapor pressure deficit was 

estimated from relative humidity and temperature. All of the daily climate data from 

2000 to 2005 were from a MESONET station near Washington, Oklahoma. The 

model was run to an equilibrium state using 6-year repeated cycles of the climate 

data. The spin-up simulations were done for 100 years before we applied different 

scenarios.  

 

Validation  

We validated the model using data collected from a long-term warming 

experiment that has been ongoing at the Kessler’s Farm Field Laboratory (KFFL) in 

McClain County, Oklahoma (34° 59’ N, 97° 31’ W) since November 1999. The 

dominant species at the site were C4 grasses, Schiachyrium scoparium, Sorghastrum 

nutans, and Eragrostis curvula, and C3 forbs, Ambrosia psilostachyia and 

Xanthocephalum texanum. Average annual rainfall is about 915mm and average 

annual temperature is 16.3 °C. Data sets that were used in the model validation were 

aboveground and belowground biomass, soil moisture, and soil respiration. The 

measurements of aboveground biomass were done once a year for 6 years and 
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belowground biomass only twice (Wan et al., 2005). Measurements of soil moisture 

and respiration were done twice a month (Luo et al., 2001, Wan et al., 2005, Zhou et 

al., 2006). All of the model patterns matched closely with the observed data.  A full 

description and graphical representation of model validation can be seen in Weng and 

Luo (2008).  

 

 

Table 1 Scenarios for one and two factors 

Factors Scenarios 

Temperature ambient, +2°C, +4°C, +6°C, +8°C, +10°C 

CO2 concentration ambient, +25%, +50%, +100% 

Precipitation ambient, -25%, +25%, +50%, +75% 

 

 

 

Scenarios 

The validated TECO model was used for this study.  We developed 6 levels of 

climate warming (i.e., increases in temperature by 0, 2, 4, 6, 8, and 10 oC above the 

ambient), 5 levels of CO2 concentration from ambient at 385 ppm to doubled CO2 

with each increment of 25%, and 5 levels of precipitation from -25 to 75% of the 

ambient with each increment of 25%.  We used full combinations of three factors 

with their respective levels individually and in combinations and examined a total of 

150 scenarios. The two- and three-factorial design allowed us to examine interactive 
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effects of different combinations of climate change.  For the simultaneous changes in 

three-factors: temperature, CO2, and precipitation, we only show modeled results 

under four precipitation scenarios (-25%, ambient, 25%, and 50%) and three CO2 

concentrations (280, 385, and 780 ppm), representing preindustrial, current, and 

future conditions. All the combinations were run until conditions mimicked present 

day and then a gradual change began for the ensuing 100 years. Simulation results 

averaged of these 6 years were reported in the paper for comparative study of 

ecosystem responses to different climate change scenarios. 

  

2.3. Results 

Runoff 

Runoff greatly varied with global change scenarios in precipitation, CO2, and 

temperature (Fig. 2). When precipitation changed from a decrease of 25% to increases 

of 25, 50 and 75% from the control (i.e., ambient precipitation), there was a change in 

runoff by a decrease of 64% to the increases of 75, 157 and 245%, respectively (Fig. 

2, A1). When temperature increased by 2 – 10 oC, runoff decreased by 25 - 73% (Fig. 

2, A2). Changes in atmospheric CO2 concentration had little impact on runoff as a 

single global change factor (Fig. 2, A3).   

Two-factor climate change had a varying effect on runoff (Fig. 2, B1-3).  For 

example, when temperature increased by 10 oC with precipitation changes of -25, 25, 

50 and 75%, runoff varied from -90, -35, 21 and 92%, respectively (Fig. 2, B1).  

Precipitation was the primary cause for a change in runoff with different 

combinations of CO2 and precipitation scenarios (Fig. 2, B3).  Interactive effects of 
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CO2 and temperature on runoff were minor (Fig. 2, B2).  Three-factor climate change 

also had varying changes in runoff depending on the scenario (Fig. 2, C1-3).  

However, changes in CO2  

 

Rooting Zone Soil Moisture 

Simulated rooting zone soil moisture had a relatively small change in percent 

response to single or multi-factorial global climate change compared to other 

ecohydrological variables (Fig. 3). The largest change caused by a single global 

change factor was an 18% decrease in rooting zone soil moisture due to a temperature 

increase by 10 oC (Fig. 3, A2). When precipitation decreased by 25% from ambient, 

there was a decrease in rooting zone soil moisture by 3.9% (Fig. 3, A1).  A 

precipitation increase by 75% resulted in a rooting zone soil moisture increase of 

6.4%. An increase in atmospheric CO2 concentration had the lowest impact on 

rooting zone soil moisture (Fig. 3, A3).   

 Two-factor climate change scenarios had variations in output; however, most 

of the variation occurred with combinations of precipitation and temperature.  Hence, 

a combination of a 10 oC increase in temperature and a precipitation decrease of 25% 

resulted in a decrease of 22% in rooting zone soil moisture in comparison to that at 

ambient conditions (Fig. 3, B1). Interactive effects of CO2 concentration with changes 

in either temperature or precipitation on rooting zone soil moisture were minor (Fig. 

3, B2-3).  The patterns of three-factor changes were similar to the patterns of two-

factor  
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Figure 2.  Runoff results from TECO model, (A1-3) single factor climate change 

scenarios, (B1-3) two factor combinations of precipitation, temperature and CO2, 

(C1-3)  three-way interactions of with multiple combinations of temperature and 

precipitation; under 280ppm, 385ppm and 780ppm CO2 concentrations, respectively.  

concentration were miniscule when compared to the changes in precipitation or 

temperature.  Precipitation was the most influential on changes in runoff under three-

factor change.     
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Rooting Zone Soil Moisture 

Simulated rooting zone soil moisture had a relatively small change in percent 

response to single or multi-factorial global climate change compared to other 

ecohydrological variables (Fig. 3). The largest change caused by a single global 

change factor was an 18% decrease in rooting zone soil moisture due to a temperature 

increase by 10 oC (Fig. 3, A2). When precipitation decreased by 25% from ambient, 

there was a decrease in rooting zone soil moisture by 3.9% (Fig. 3, A1).  A 

precipitation increase by 75% resulted in a rooting zone soil moisture increase of 

6.4%. An increase in atmospheric CO2 concentration had the lowest impact on 

rooting zone soil moisture (Fig. 3, A3).   

 Two-factor climate change scenarios had variations in output; however, most 

of the variation occurred with combinations of precipitation and temperature.  Hence, 

a combination of a 10 oC increase in temperature and a precipitation decrease of 25% 

resulted in a decrease of 22% in rooting zone soil moisture in comparison to that at 

ambient conditions (Fig. 3, B1). Interactive effects of CO2 concentration with changes 

in either temperature or precipitation on rooting zone soil moisture were minor (Fig. 

3, B2-3).  The patterns of three-factor changes were similar to the patterns of two-

factor changes; however, there was a slight decrease in rooting zone soil moisture 

with an increase in CO2 concentration (Fig. 3, C1-3).  

 

 



 25 
                                                                     
 

Precipitation Change (%)

-25 0 25 50 75

S
oi

l M
oi

st
ur

e 
(%

)

22

24

26

28

30

32

Temperature Change (%)

0 2 4 6 8 10

CO2 Change (%)

0 20 40 60 80 100

Precipitation Change (%)

-50 -25 0 25 50 75

S
oi

l M
oi

st
ur

e 
(%

)

22

24

26

28

30

32

CO2 Change (%)

0 25 50 75 100

CO2 Change (%)

-25 0 25 50 75 100

Precipitation Change (%)

-25 0 25 50

S
oi

l M
oi

st
ur

e 
(%

)

22

24

26

28

30

32

Precipitation Change (%)

-25 0 25 50

Precipitation Change (%)

-25 0 25 50

A1 A2 A3

B1 B2 B3

C1 C2 C3

Two Factors

Three Factors

Single Factor

ambient
2oC
4oC
6oC
8oC
10oC

ambient
2oC
4oC
6oC
8oC
10oC

ambient
-25%
25%
50%
75%

ambient
2oC
4oC
8oC

280ppm 385ppm 785ppm

 

Figure 3.  Rooting Zone Soil Moisture results from TECO model, (A1-3) single 

factor climate change scenarios, (B1-3) two factor combinations of precipitation, 

temperature and CO2, (C1-3)  three-way interactions of with multiple combinations of 

temperature and precipitation; under 280ppm, 385ppm and 780ppm CO2 

concentrations, respectively.  
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Evaporation and Transpiration  

 Simulated transpiration from the TECO model responded positively to most 

climate change scenarios.  Single-factor precipitation change had the least impact, 

whereas an increase in temperature had the greatest impact on transpiration (Fig. 4, 

A1-2).  Transpiration varied from -9 to 11% as precipitation varied from -25 to 75% 

from the control, whereas transpiration increased by 57% with an increase in 

temperature by 10oC.  Doubled CO2 concentration caused a minor decrease in 

transpiration (Fig. 4, A3).  

 Two-factor climate change caused some variations under different scenarios. 

The greatest degree of change in transpiration occurred with different combinations 

of both precipitation and temperature (Fig. 4, B1). The largest percent change in 

transpiration came from combined increases in temperature by 10 oC and 

precipitation by 75%; which resulted in a simulated increase of transpiration by 

101%.  Two-factor change with CO2 had little impact on the rate of transpiration (Fig. 

4, B2-3).  Three-factor climate change scenarios had little variation from two-factor 

precipitation and temperature change (Fig. 4, C1-3).   

 Simulations of the TECO model showed variable responses of evaporation to 

different single and multi-factor scenarios of climate change (Fig. 5).  Single-factor 

precipitation had the largest impact on evaporation among the three global change 

factors.  For example, evaporation decreased by 16% from control when precipitation 

was reduced by 25%, and increased by 27% when precipitation increased by 75% 

from the ambient level (Fig. 5, A1).  Temperature caused the next largest percentage 

change; a  
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Figure 4.  Transpiration results from TECO model, (A1-3) single factor climate 

change scenarios, (B1-3) two factor combinations of precipitation, temperature and 

CO2, (C1-3)  three-way interactions of with multiple combinations of temperature and 

precipitation; under 280ppm, 385ppm and 780ppm CO2 concentrations, respectively.  
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Figure 5.  Evaporation results from TECO model, (A1-3) single factor climate 

change scenarios, (B1-3) two factor combinations of precipitation, temperature and 

CO2, (C1-3)  three-way interactions of with multiple combinations of temperature and 

precipitation; under 280ppm, 385ppm and 780ppm CO2 concentrations, respectively.  
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10 oC increase in temperature resulted in a decrease in evaporation by 20% from that 

of the control (Fig. 5, A2).  Single-factor CO2 concentration had a marginal effect on 

evaporation (Fig. 5, A3).   

 Two-factor change had a linear response with all combinations (Fig. 5, B1-3).  

When temperature increased by 10 oC and precipitation decreased by 25%, simulated 

evaporation rate was reduced by 42%.  With a CO2 increase of 100% and a 

precipitation increase of 75%, evaporation increased by 29%.  Three-factor climate 

change had a response that was most similar to precipitation change.  Evaporation had 

some slight changes under increased temperature and negligible changes under 

varying CO2 concentrations.   

Rain-use Efficiency 

 Simulated rain-use efficiency (RUE) was calculated from NPP and annual 

rainfall (RUE = NPP/rainfall).  Single-factor climate change caused varying changes 

in RUE; with precipitation causing the largest percent change.  The largest change in 

RUE, by 31%, came with a 75% increase in precipitation from ambient (Fig. 6, A1).  

When precipitation decreased by 25%, RUE increased by 14% in comparison to that 

of control.  Increases in temperature caused nonlinear changes in RUE by 17, 28, 27, 

21 and 13%, respectively, with temperature increases of 2, 4, 6, 8 and 10 oC from the 

ambient (Fig. 6, A2). When CO2 concentration increased from ambient by 25, 50, and 

100%, RUE increased by 11, 18, and 20% (Fig. 6, A3).  

 Two- and three-factor climate change scenarios had multiple interactive 

effects on RUE. For example, a temperature increase of 10oC combined with multiple 

levels of  
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Figure 6.  Rain-use efficiency results from TECO model, (A1-3) single factor climate 

change scenarios, (B1-3) two factor combinations of precipitation, temperature and 

CO2, (C1-3)  three-way interactions of with multiple combinations of temperature and 

precipitation; under 280ppm, 385ppm and 780ppm CO2 concentrations, respectively.  
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precipitation change (decrease by 25% to increases by 25, 50 and 75%) resulted in 

corresponding changes in RUE by 16, 9, 0.5, and -9% (Fig. 6, B1). However, at a 10 

oC increase in temperature with CO2 increases by 25, 50, and 75% there were 

increases in RUE by 28, 36, and 38%, respectively (Fig. 6, B2).  The optimal RUE 

with two-factor climate change occurred with doubled CO2 and a 25% decrease in 

precipitation (Fig. 6, B3), a 4 oC increase in temperature and a 25% decrease in 

precipitation (Fig. 6, B1), and a 4 oC increase in temperature and doubled CO2 (Fig. 6, 

B2).  The responses of RUE to three-factor climate change scenarios were largely 

influenced by precipitation; when temperature and CO2 concentrations also had an 

impact on RUE (Fig. 6, C1-3).     

 

Water-use Efficiency  

 Plant-level water-use efficiency (WUE) was calculated from NPP divided by 

the amount of transpiration (WUE=NPP/Transpiration).  Nonlinear responses in 

WUE were seen with single-factor changes in precipitation (Fig. 7, A1), temperature 

(Fig. 7, A2), and CO2 (Fig. 7, A3).  WUE increased with precipitation and CO2 

concentration but decreased with an increase in temperature.  10% stimulation in 

WUE occurred with a single-factor 75% increase in precipitation (Fig. 7, A1) and 

doubled single-factor CO2 concentration caused an increase of 26% (Fig. 7, A3). 

However, WUE decreased by 34% when temperature increased by 10 oC from control 

(Fig. 7, A2).  

 Two-factor scenarios altered WUE in the same nonlinear patterns (Fig. 7, B1-

3).  Simulated optimal WUE occurred under the scenarios of doubled CO2 and a 75% 
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increase in precipitation (Fig. 7, B3), a 75% increase in precipitation at the ambient 

temperature (Fig. 7, B1), and doubled CO2 at the ambient temperature (Fig. 7, B2).   

However, the highest percent change in WUE, i.e., a 39% increase, occurred with a 

doubled CO2 concentration and a 75% increase in precipitation.  Three-factor 

scenarios also caused various nonlinear patterns of change in WUE with different 

conditions (Fig. 7, C1-3).    

 

 

2.4. Discussion 

 Little is known about how different ecohydrological processes will respond to 

varying combinations of CO2, precipitation and temperature in the future (Knapp et 

al, 2008).  Our modeling results show that all components of the terrestrial 

hydrological cycle are changed under different scenarios of climate change. These 

results are important in explaining potential ways in which the ecosystem will 

respond given future alterations. Hopefully, our modeling results can be tested by and 

help in the design of future multi-factor experiments.  To further illustrate our results, 

we will first explain how climate change altered ecosystem rain use and plant level 

water use, and then further explain effects of single- and multiple-factor climate 

change on the rest components of the water cycle. 
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Figure 7.  Water-use efficiency results from TECO model, (A1-3) single factor 

climate change scenarios, (B1-3) two factor combinations of precipitation, 

temperature and CO2, (C1-3)  three-way interactions of with multiple combinations of 

temperature and precipitation; under 280ppm, 385ppm and 780ppm CO2 

concentrations, respectively.  
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 Effects of Global Change on Rain- and Water-Use Efficiency  

 Our simulations showed that ecosystem rain use efficiency (RUE) was 

dramatically different from plant water use efficiency (WUE) in response to global 

change.  A decrease in precipitation, for example, caused an increase in RUE but a 

decrease in WUE (Figs. 6 and 7). Our modeled increase in RUE was consistent with 

the experimental results of Huxman et al. (2004), which showed an increase in RUE 

with decreased precipitation across different biomes, due to an increase in the relative 

amount of water used for plant production in water limited ecosystems. Our simulated 

responses of plant-level WUE due to changes in precipitation were similar to the 

modeling results by Coughenour and Chen (1997).  Their results showed that WUE 

increased with increases in precipitation from 80 to 120% in all studied grasslands, 

which included Kenya, Colorado, and Kansas. It should be noted that both our 

modeling results and the results of Coughenour and Chen (1997) are dealing with a 

system level response in WUE and not leaf level responses.  Meanwhile, RUE and 

WUE differentially responded to warming. RUE optimized at 4-6 oC temperature 

increase whereas WUE decreased with temperature (Fig. 6 and 7). Similarly, De 

Boeck et al. (2006) showed that plant WUE in Belgium grasslands decreased with 

warming. Modeled positive responses of both RUE and WUE to an increase in CO2 

(Fig. 8 and 9) were consistent with experimental results in many studies (e.g., Hui et 

al. 2001, Owensby et al. 1993, Morgan et al. 2004).  

 Contrasting responses of RUE and WUE to various scenarios of global change 

resulted from different effects of environmental factors on processes at different 

scales.  Increased precipitation resulted in dramatic increases in runoff, substantial 
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increases in evaporation, and little changes in transpiration.  As a consequence, WUE 

increased as NPP increased in response to increased precipitation.  However, 

increased precipitation resulted in water loss by evaporation and runoff at a 

magnitude larger than the magnitude of changes in NPP, resulting in decreased RUE. 

Warming caused an increase in transpiration in a larger magnitude than that for NPP, 

leading to decreased plant WUE. Warming increased RUE because NPP was 

stimulated by warming without a change in precipitation.  The stimulation of NPP 

due to warming was partially caused by increased partitioning of precipitation to 

transpiration as shown by a modeling study by Weng and Luo (2008).  Our modeling 

analysis demonstrated that plant-level processes to global climate change can not 

simply be scaled up to predict ecosystem-level responses, which is especially true of 

the hydrological cycle.  Our results show that the plant level WUE is a poor 

determinate in explaining the total water budget for an ecosystem.  However, 

ecosystem level RUE is more likely to illustrate changes in the rest of the water 

budget from alterations based on climate change.      

 

Effects of single global change factor on ecohydrological processes 

 Simulated effects of single factor global change on hydrological processes in 

ecosystems with the TECO model were generally consistent with results from field 

experiments and other modeling studies. For example, our simulated runoff increased 

with precipitation (Fig. 2A) and rising atmospheric CO2 but decreased with warming. 

At the global scale, Betts et al. (2007) showed that runoff increased by 6% with 

doubled CO2. This increase in runoff was due to decreased stomatal conductance and 
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transpiration under elevated CO2. Regional modeling analysis by Cramer et al. (2001) 

showed that increased CO2 causes an increase in WUE that will result in more runoff. 

These results are similar to our results, which showed that with an increase in CO2 

there was a slight increase in runoff and a large increase in WUE. Under the single 

factor simulation of increased temperature there was a decrease in runoff (Figure 2). 

There has been little research done on how single factor climate change will alter 

runoff. A modeling study by Wetherald and Manabe (2002) showed that with an 

increase in global temperatures there will be an increase in runoff.  However, all of 

these global or regional scale modeling results do not just take warming into account, 

but also show that warming stimulates precipitation.  This comparison of global and 

regional modeling efforts should be valuable in validating our ecosystem modeling 

results.  Additionally, our ecosystem level results could illustrate possible interactions 

that may be overlooked by larger scale modeling analysis.   

 Our modeling results also showed that with a change in temperature alone has 

the largest impact on transpiration and evaporation. With a 10 oC increase in 

temperature there was a 20% decrease in evaporation and a 57% increase in 

transpiration. The simulation results on transpiration are consistent with the leaf level 

study by Nijs et al. (1997) which showed that transpiration rates increased with 

warming, although it should be noted that in the same document the canopy level 

transpiration of Lolium perenne decreased with warming. An increase in transpiration 

due to higher temperatures could be responsible for absorbing more biologically 

available water and decreasing the amount of soil evaporation. The next largest 

percent change in evaporation and transpiration was due to precipitation, followed by 
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CO2. With an increase in precipitation there was a gradual increase in our simulated 

results for both evaporation and transpiration. These results correspond to Ferretti et 

al.’s (2003) data that an 11.90% increase in rainfall, from 2000 to 2001, over in a 

Colorado grassland caused a 73% increase in transpiration and a 100% increase in 

evaporation.  They also showed that with an increase in CO2 there was a slight 

increase in transpiration and a decrease or an increase in evaporation from control 

under different precipitation amounts (Ferretti et al. 2003).  They attributed the 

increase in transpiration to an increase in total biomass in the elevated CO2 plots.  Our 

model results of CO2 change were not as responsive to changes in ET as other results 

that have been reported. For example, Ham et al. (1995) showed that open-topped 

chambers with 2x CO2 enrichment caused a 22% decrease in ET.  However, this 

study was only conducted over a 34 day period during peak biomass; whereas our 

study was over the entire growing season.  Studies over a larger spatial area show that 

minimal reduction in ET is due to increased leaf area under elevated CO2 (Kergoat et 

al. 2002; Schafer et al. 2002).   

 TECO model results showed that increased temperature had the greatest 

impact on rooting-zone soil moisture (Figure 3). Reduced rooting zone soil moisture 

at increased air temperature was probably a response to an increase in transpiration 

and an increase in the growing season.  Precipitation caused the second greatest 

change in percentage with an increase in rooting zone soil moisture. An increase in 

precipitation resulted in a strong increase in rooting zone soil moisture.  Lastly, CO2 

had the least and most variable influence on rooting zone soil moisture. A doubling of 

CO2 caused a slight increase in soil moisture relative to that at control. Other results 
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have shown a similar pattern of soil moisture under elevated CO2 (Wullschleger et al. 

2002 and Morgan et al. 2004).       

 Some of the modeled results, however, have not yet been carefully explored 

by field research. This is due to the fact that not all ecohydrological components have 

been fully evaluated in response to climate change. Most of the experimental studies 

did not examine all of the ecohydrological components under climate change. This 

lack of data leaves a large void to be filled by future research.  

 

Interactive effects of multifactor global change on ecohydrological processes 

 Multi-factor climate change resulted in both linear and nonlinear interactions 

of individual factors in influencing ecohydrological processes (Zhou et al. 2008). 

These results are of importance when evaluating how multifactor global change will 

alter ecohydrological processes. Hence, the results are likely useful for field 

researchers to consider the importance of multifactor global change on experimental 

design. The two largest influences on runoff were temperature and precipitation, 

while CO2 had only a marginal effect. There were some interactive effects on runoff 

with simultaneous changes in precipitation and temperature. Increases in runoff, due 

to increased precipitation, were dampened with increases in temperature (Figure 2). 

Most other results have shown that future climate change will tend to increase runoff 

(Wetherald and Manabe 2002) but our results indicate that if there is a decrease in 

precipitation, or if the increase in temperature goes past the point at which 

precipitation can compensate, there will be a decrease in ecosystem-level runoff 

(Figure 2 B1).  
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 Our model simulations showed that the interactive effect of temperature and 

precipitation had the most varying results on transpiration and evaporation (Figure 4 

& 5). All other combinations of CO2, temperature and precipitation varied less from 

control under differing conditions.  However, a decrease in precipitation seemed to 

cause more change in ecosystem response.  Knapp et al. (1993) explained that the 

impact of CO2 will probably be more detectable during drought conditions.  Their 

results correspond with our results of less transpiration under elevated CO2 and 

decreased precipitation.   The response of evaporation and transpiration are essential 

for understanding the potential of terrestrial hydrological feedbacks on weather 

patterns. Raddatz et al. (2003) demonstrated that regional transpiration has a positive 

effect on the potential energy needed to increase the probability of occurrence and 

intensity of severe thunderstorms. Hence, these hydrological feedbacks are also 

significant in regional climate modeling efforts.  

 Multi-factor responses produced varying alterations in rooting zone soil 

moisture from control. The largest percentage change in rooting zone soil moisture 

was the interactive effect of temperature and precipitation. Rooting zone soil moisture 

was highest with low temperatures and high precipitation, which was probably due to 

greater infiltration and decreased water loss via evapotranspiration. However, when 

temperatures increased and precipitation stayed constant there was a decrease in 

rooting zone soil moisture. This decrease was associated with higher 

evapotranspiration. Other combinations of climate change scenarios showed linear 

changes from control. Owensby et al. (1993) suggest that an increase in soil moisture 

with higher CO2 concentrations are likely attributed to higher water use efficiency 
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and lower rates of evapotranspiration.  Our results showed similar patterns, but when 

compared to the effects of temperature and precipitation these changes were not as 

significant.  These changes in soil moisture control many additional ecosystem 

processes.  Rodriguez-Iturbe et al. (1999), for example, illustrated that changes in soil 

moisture dynamics could influence nutrient cycling, plant species composition, 

vegetation stress, and productivity.      

 Three-factor modeling with TECO was performed to show potential 

interactive effects of multifactor climate change on WUE and RUE.  Both RUE and 

WUE were lower at 280ppm CO2 (Figures 6 C1 and 7 C1) than at the other CO2 

levels (Figures 6 C2 and C3; Figure 7 C2 and C3) for each of the temperature and 

precipitation scenarios.  At 785 ppm CO2 both RUE (Figure 6 C3) and WUE (Figure 

7 C3)  had greater variability among the various climate change scenarios than at 280 

and 380 ppm, suggesting that CO2 concentration amplified responses of RUE and 

WUE to changes in temperature and  precipitation. In addition, values of WUE 

themselves were larger than RUE for all the temperature, precipitation, and CO2 

scenarios.      

  Our results set a precedent for research on how different interactive climate 

change scenarios influence ecohydrological components. To our knowledge, no other 

modeling study has divided up specific components of ecohydrology and performed a 

full evaluation of how each specific component responded to different global climate 

change scenarios. Our study has applications for field researchers studying specific 

interactions in different ecosystem types under dual climate change scenarios. These 

results have helped identify which ecohydrological components have the greatest 
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priority for further research. For example, combinations of temperature and 

precipitation had the largest interactive impacts on evaporation, runoff, transpiration, 

and rooting zone soil moisture. Our research also has the possibility of being 

applicable to regional and global climate modelers, since we have shown that two 

major contributing factors, transpiration and evaporation, of hydrological feedbacks 

to the atmosphere change under different climate change scenarios. This feedback 

could have some importance in understanding climatic changes (Betts 2006).  Lastly, 

our runoff component has the potential, but should be approached with great care, in 

helping government agencies determine how climate change could alter the amount 

of freshwater in local streams and rivers.    

    

2.5 Conclusions  

 Using the TECO model, we were able to distinguish ecosystem-level 

ecohydrological responses from that at the plant level. The model showed that 

combinations of precipitation and temperature had the largest impact on ecosystem-

level variables (e.g., runoff, evaporation, and soil moisture), whereas CO2 and 

temperature had the largest impact on plant-level variables (e.g., transpiration and 

WUE). We also explored how each ecohydrological process responded to different 

climate change scenarios.  All of our results showed that the interaction of multiple 

climate change factors could lead to an assortment of changes in the terrestrial water 

cycle.  Additionally, we found ecosystem-level RUE to be a better indicator of 

potential changes in the water cycle than plant-level WUE.    



 42 
                                                                     
 

 To evaluate regional evapotranspiration feedbacks to climate change under 

different climate change scenarios, we need to use coupled water-carbon models (e.g., 

TECO) in a wide variety of ecosystem types to examine if some modeled patterns in 

this paper can be extrapolated across multiple landscapes.  Lastly, more research 

needs to evaluate if the patterns of runoff change are widespread (Luo et al. 2008); 

because these simulations may have a socioeconomic impact on replenishing 

freshwater supplies for agricultural and human use due to potential changes in the 

amount of runoff from different climate change scenarios. 
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Appendix A.  
 
We graphed the two-factor modeled combinations of different climate change 
scenarios.  This information should be used for determining estimated interactions 
between scenarios and the data could derive predictions for future experiments.  All 
combinations are representative of percent change from control.   
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Appendix Figure 1 Model simulations of Runoff (%) in response to different 
multifactor co-varying scenarios of temperature, CO2 and precipitation change. A) 
Precipitation change and the increase in carbon dioxide B) Temperature increase and 
precipitation change C) Temperature increase and carbon dioxide increase. Control 
was set at 0.5457 mm d-1. 
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Appendix Figure 2 Model simulations of Evaporation (%) under different 

multifactor co-varying scenarios of temperature, CO2 and precipitation change. A) 

Precipitation change and the increase in carbon dioxide B) Temperature increase and 

precipitation change C) Temperature increase and carbon dioxide increase. Control 

was 0.7060 mm d-1. 
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Appendix Figure 3 Model simulations of Transpiration (%) under different 

multifactor co-varying scenarios of temperature, CO2 and precipitation change. A) 

Precipitation change and the increase in carbon dioxide B) Temperature increase and 

precipitation change C) Temperature increase and carbon dioxide increase. Control 

was 0.9435 mm d-1. 
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Appendix Figure 4 Modeled rooting zone soil moisture (%) under different 

multifactor co-varying scenarios of temperature, CO2 and precipitation change. A) 

Precipitation change and the increase in carbon dioxide B) Temperature increase and 

precipitation change C) Temperature increase and carbon dioxide increase. Control 

was 29.25 % d-1. 
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Appendix Figure 5 Net primary production (NPP) (%) under different multifactor 

co-varying scenarios of temperature, CO2 and precipitation change. A) Precipitation 

change and the increase in carbon dioxide B) Temperature increase and precipitation 

change C) Temperature increase and carbon dioxide increase. Control was 413.33 g C 

m-2 yr-1. 
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Appendix Figure 6 Modeled rain use efficiency (%) under different multifactor co-

varying scenarios of temperature, CO2 and precipitation change. A) Precipitation 

change and the increase in carbon dioxide B) Temperature increase and precipitation 

change C) Temperature increase and carbon dioxide increase. Control was 0.5159 

g/mm d-1 yr-1. 
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Appendix Figure 7 Modeled water use efficiency (%) under different multifactor co-

varying scenarios of temperature, CO2 and precipitation change. A) Precipitation 

change and the increase in carbon dioxide B) Temperature increase and precipitation 

change C) Temperature increase and carbon dioxide increase. Control was 1.20 g/mm 

d-1 yr-1.  
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in a tallgrass prairie 

 

 

 

 

 

 

________________________________________________________________________ 
This chapter has been accepted for publication in Water Resource Research (2009) 



 51 
                                                                     
 

Abstract 

 There is considerable evidence that future global climate change will increase 

temperature and alter precipitation regime. To better understand how these factors 

will influence soil water dynamics, it is imperative to use multi-factorial experiments. 

A one year “pulse” experiment, with 4°C warming and a doubling in precipitation, 

was performed to evaluate the changes in soil moisture dynamics. Frequency 

distribution analyses of soil moisture and soil temperature were used to explore the 

consequences of climate change on ecohydrological processes at different soil depths. 

There was a decrease in soil moisture frequency from 0–120 cm in both warming and 

warming with increased precipitation experiments. Different soil depths had similar 

patterns of change in soil moisture and soil temperature frequency. Additionally, we 

correlated evapotranspiration and soil moisture to look at changes in 

evapotranspiration from the wilting point (Ew) to maximum evapotranspiration (Emax). 

These results revealed a shift in the slope and position of Ew to Emax with 

experimental warming. Our results showed that the soil moisture dynamics and the 

ecohydrology were changed by different global climate change scenarios. 

Understanding the effects of global warming on soil moisture dynamics will be 

critical for predicting changes in ecosystem level processes.   

Key words: soil moisture dynamics, climate change, ecohydrology, tallgrass prairie, 

warming, precipitation 
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3.1 Introduction 

Over the past century the global mean temperature has increased by about 0.6 

°C and is predicted to increase 1.1–6.4 °C in the 21st century (IPCC, 2007). With this 

warming there is a predicted acceleration in the water cycle due to an exponential 

increase in specific humidity (Huntington 2006) and an associated increase in the 

intensity and severity of precipitation events (Easterling et al., 2000). Changes in 

temperature and alterations in the precipitation patterns have been shown to cause 

multiple changes to ecosystem processes (e.g. net primary production, root biomass, 

and soil respiration) Knapp et al., 2008. A central component controlling ecosystem 

processes is soil water balance. However, our understanding of the response to 

climate change on ecosystem water balance is largely limited. 

A National Ecological Observatory Network (NEON) report (2004) stated that 

is important to understand how biologically available water in terrestrial ecosystems 

will respond to climate change. Evidence has shown that changes in climate variables 

(e.g. rainfall) will cause shifts in net primary production and community composition, 

which will likely impact soil water balance (Knapp 2002; Sherry et al. 2008; Sherry 

et al. unpublished data).  Other plant responses (e.g. photosynthesis) and 

biogeochemical cycling (e.g. carbon and nitrogen) are also closely linked to changes 

in soil water balance (Knapp et al., 2008). For example, a change in plant-level 

response can be seen when there is a reduction in biologically available soil moisture 

that causes a loss in turgor, xylem cavitation, stomatal closure and a decrease in 

photosynthesis (Nilsen and Orcutt 1998; Porporato et al. 2001; Porporato et al. 2004).  
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A multitude of factors can influence soil water loss due to climate change. The 

most explicit cause of reduced soil moisture is higher rates of soil water evaporation 

due to increased thermal radiation. Further decrease in soil moisture could also occur 

as increased temperatures influence plant-level processes (Mellander et al. 2004), 

although this may vary in specific circumstances (Jones 1992; Daly et al. 2004). 

However, greater amounts of precipitation as a result of climatic change should in 

general increase the amount of soil moisture present. This contradiction leads to 

interesting and perplexing questions about how multiple climate change factors will 

contribute to changes in soil moisture dynamics.  

It is important to understand how climate change will alter soil moisture given 

its importance for vegetation growth, plant physiological processes and 

biogeochemical cycles (Stephenson et al., 1990). One global modeling study 

suggested a decrease in soil moisture in semiarid regions under future climate change 

(Wetherald and Manabe, 2002). Whereas, a modeling study by Gerten et al. (2007) 

found varying soil moisture changes in different regions, with a predominant pattern 

of decreased soil moisture with increased temperatures. However, different model 

scenarios have shown vast differences in soil water balance (Cramer et al., 2001; 

Gordon and Famiglietti 2004). According to actual long-term soil moisture 

measurements from the Global Soil Moisture Data Bank, soil moisture has increased 

over the last half-century (Robock et al., 2000).  

A copious amount of research has looked at different ways of manipulating an 

ecosystems’ climate (Harte et al., 1995, Marion et al., 1997, Hobbie & Chapin, 1998, 

Melillo et al, 2002, and Wan et al., 2002). Warming has had different magnitudes of 
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effect on soil moisture with each of these experiments. For example, Wan et al. 

(2002) saw little to no change in soil moisture with a 2oC increase in temperature 

alone; but with clipping and warming there was an 11% decrease in soil moisture. 

Whereas, an experimental warming site in a montane meadow showed a reduction in 

soil moisture as a result of an increased physiological response of the vegetation 

(Saleska et al., 1999). This large amount of variability in soil moisture response to 

climate change among individual ecosystem makes it important to understand how 

different systems will respond if predictions are to be made at regional and global 

scales.  

In this study, we examine the effects of two different climate change variables 

including increased temperature and precipitation intensity, and their combination, on 

the soil water balance of a prairie ecosystem. Not only do we consider the potential 

change in soil moisture, but also, the change in soil temperature. This is one of the 

first studies focusing on the extent to which biologically available soil moisture is 

altered under single and multi-factor scenarios of climate change. Also, our 

evaluation is one of the first to analyze the response of soil temperature and soil 

moisture to different climate scenarios in multiple soil-layers.  Included in our 

analyses is an evaluation of the effects of experimental climate change on 

evapotranspiration/leakage (water loss) at wilting point (Ew) and at maximum 

evapotranspiration/leakage (Emax) (Rodriguez-Iturbe 2000).  Shifts in Ew and Emax 

provide insight on the impact climate conditions have on an ecosystem’s ability to use 

and conserve water (Rodriguez-Iturbe 2000).   



 55 
                                                                     
 

Our study used a multifactor experiment with levels of change in warming and 

precipitation consistent with those predicted for the region (Wan et al. 2002). We 

hypothesized (1) increase in temperature would decrease soil moisture, (2) increase in 

precipitation would increase soil moisture (3) treatment of increased temperature and 

doubled precipitation would have an intermediate effect. The experiment was a short-

term, one year “pulse” experiment using a probabilistic/frequency approach to 

evaluate changes in soil moisture dynamics and fully incorporate the stochastic nature 

of soil moisture dynamics.  

 

3.2 Methods  

Study Site  

 The experiment was located at the Kessler’s Farm Field Laboratory in 

McClain County, Oklahoma (34 59’ N, 97 31’ W), approximately 40km southwest of 

the University of Oklahoma. The area is a 137.6-ha field station positioned in the 

Central Redbed Plains (Tarr et al., 1980). The study site is predominately a tallgrass 

prairie mix of Panicum virgatum, Schizchyrium scoparium, Andropogon gerardii, 

Sorgastrum nutans, Ambrosia psilostachyia, and Bromus japonicus. Mean annual 

temperature is 16.3 °C, with monthly air temperature ranging from 3.3 °C in January 

to 28.1 °C in July. Mean annual precipitation is 915 mm, with monthly precipitation 

ranging from 30 mm in January to 135 mm in May (average values from 1948 to 

1998, via the Oklahoma Climatological Survey) (Figure 1). The soil is part of the 

Nash-Lucian complex with a neutral pH, a high available water capacity, and a deep, 

moderately penetrable root zone (USDA, 1979).  
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2.2 Experimental Design 

 The one year pulse experiment was set at a target treatment of a 4.0 °C 

increase in soil temperature at a depth of 2cm.  Twenty plots were placed in two rows 

that were separated by approximately 3m and each plot was 3 x 2 m. The distance 

between plots  
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Figure 1. Daily precipitation amount during the experimental season from February 

2003 to February 2004. (Mesonet, Oklahoma Climatological Survey)  
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within one row was 1.5 m. Ten out of the twenty plots were randomly selected to 

receive warming treatments and had 2 infrared heaters suspended in the middle of the 

plots at the height of 1.5m above the ground.  The other 10 plots had “dummy” 

heaters made of metal flashing suspended at the same height as in the warmed plots. 

Five of both the warmed and unwarmed plots were randomly selected to receive 

doubled precipitation using a “rain-catchment” device, which is an angled catchment 

the same size as the plot. The “rain-catchment” device was designed to funnel water 

onto these plots to provide an additional amount of precipitation that would normally 

fall on the control. Piping was used to evenly distribute the rainwater across the plots. 

Several variations were tested before the final design was selected for the experiment 

based on the most even distribution of precipitation. It should be noted that this 

experiment was designed to increase rainfall intensity and had no impact on the 

frequency of rainfall. There were four treatments of control (C), warmed (W), 

precipitation doubling (PPT), and warmed plus precipitation doubling (W+PPT), and 

each treatment had five replicates. The duration of the experiment was from 20 

February 2003 to 20 February 2004. 

Soil Moisture and Temperature Measurements  

 Soil Moisture was measured using automatic TDR probes (time domain 

reflectometry; E.S.I. Equipment, Environmental Sensors Inc. Sidney, Canada). Each 

probe recorded hourly measurements at 5 different depths 0–15 cm, 15–30 cm, 30–60 

cm, 60–90 cm, and 90–120 cm (Figure 2a). Data were logged through a CR10X 

measurement and control system (Campbell Scientific, Inc., Logan, Utah). Nine of 
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the TDR probes experienced damage or malfunction during the study. Complete data 

sets were available for only 11 of the 20 plots.   

 Soil Temperature was measured hourly at six depths using thermocouple 

wires attached to a 25 channel solid state multiplexor (AM25T) (Campbell Scientific, 

Inc., Logan, Utah). Each measurement was automatically measured at six depths 

starting at the soil surface, 7.5 cm, 22.5 cm, 45 cm, 75 cm, and 105 cm (Figure 2b).  

 To show changes in soil moisture and temperature at different depths, we 

constructed graphs of yearly average soil moisture and temperature. The data was 

collected from the entire experimental period. Additionally, similar graphs were 

configured for seasonal variation. The four seasons of winter (December 22 – March 

19), spring (March 20 – June 20), summer (June 21 – September 20), and fall 

(September 21 – December 21) were based on the standard division of a temperate 

zone in the Northern Hemisphere.     
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Figure 2.  a) Soil moisture responses to different climate change treatments (C, PPT, 
W+PPT, and W). Depth of soil is divided into different segments.  Each treatment 
was statistically compared with other treatment types (mean ± SE n=365).  Statistical 
difference was shown with a, b, c, and d.  b) Soil temperature responses to different 
climate change treatments (C, PPT, W+PPT, and W). Depth of soil is divided into 
different segments.  Each treatment was statistically compared with other treatment 
types (mean ± SE n=365).  Statistical difference was shown with a, b, c, and d.   
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Water loss (Evapotranspiration and Leakage) 

 Water loss (W l), an estimate of evapotranspiration and leakage, was 

calculated using the daily average of bulk soil moisture at a given day (St) minus the 

daily average of bulk soil moisture from the following day (St+1). Rainfall (R) was 

then added as a water input: 

     W l = (St – St+1) + R 

 Soil moisture measurements were taken from the TDR probes and rainfall 

data were collected from the Oklahoma Mesonet.  Our analysis used bulk soil 

moisture to account for the entire root profile.   

 Points were collected between an estimated Ew and Emax to analyze changes in 

the different experiment conditions on water loss.  Estimations of Ew and Emax were 

derived from the calculations of (W l) during the longest dry period in the summer of 

the experiment year.  This rainless period occurred during a twenty-one day stretch 

from day 139 to day 160 after the beginning of the experiment.  W l was then 

correlated with daily average bulk soil moisture for days 139 to 160.  From the data, a 

graphical representation was made of the correlation between the points within Ew 

and Emax with the sequential bulk soil moisture to show changes in the four climate 

change scenarios.  Rodriguez-Iturbe (2000) gave an illustrative diagram of the 

relationship between soil moisture and water loss.  

Statistical Analysis 

 The analysis of variance (ANOVA) was conducted using the Statistical 

Analysis System (SAS) software (SAS Institute Inc., Cary, NC, USA).  The One-way 
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ANOVAs were performed for a comparison of soil moisture and temperature between 

the four treatments (C, PPT, W, and W+PPT) for the entire experimental period 

(Table 1 and 2).  A post hoc of multiple comparisons was done using the least 

significant difference (LSD) method for both moisture and temperature across the 

four different treatment types (Figure 2).  Additionally, soil moisture and temperature 

dynamics, at multiple depths, were evaluated by analyzing frequency distributions 

using histograms in Statistical Analysis System (SAS, SAS Institute Inc., Cary, NC, 

USA) (Figure 3 and 4).  The bins for the histograms were designated by 5°C 

segments for temperature and 5% segments for soil moisture. 

 

 
 
Table 1. ANOVA of soil moisture content at different depths 
 

Source df SS F-ratio P-value 

Surface 3 6965.799 27.36 <.0001 

7.5cm 3 5322.511 35.99 <.0001 

22.5cm 3 3267.211 25.55 <.0001 

45cm 3 2166.116 19.33 <.0001 

75cm 3 846.8216 9.14 <.0001 

105cm 3 389.741 4.98 0.0019 
(α = 0.05)  
  

 

3.3 Results  

Soil Moisture  

 We found that soil moisture varied between different experimental conditions 

for the investigational period. Within each treatment (C, PPT, W, and W+PPT), a 
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statistically significant difference in soil moisture was found at all soil depths (0–15, 

15–30, 30–60, 60–90, and 90–120 cm) (Table 1) (Figure 2). PPT and C plots had the 

wettest soil moisture conditions at all depths; furthermore, C plots had slightly wetter 

soil moisture values in 0-30cm while PPT plots had higher values in 30-120cm.  

W+PPT and W plots had the driest soil moisture values in all levels, with W 

consistently having the lowest value.  Furthermore, an increase in soil moisture with 

depth was also seen under all experimental conditions (Figure 5a).  Likewise, the 

same patterns were observed when soil moisture was analyzed over seasons (Figure 

5b-e).   

 Frequency distributions of soil moisture were constructed at multiple soil 

depths to demonstrate the probabilistic changes in available soil moisture among the 

different experiment treatment types (Figure 3).  Patterns of change in the frequency 

distributions closely resembled the mean soil moisture results in Figure 2a.  However, 

frequency distributions allow for a better illustration of the actual probabilistic nature 

of soil moisture dynamics with each experimental treatment type.  C and PPT had the 

wettest soil moisture frequency distributions at all depths while W+PPT and W had 

the driest soil moisture frequencies.  Overall, the driest soil moisture frequency 

distributions were found in the W plots.  
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Figure 3. Soil moisture change in frequency at different soil depths. Each treatment 
type, C; control, W+PPT; warmed and doubled precipitation, W; warmed, PPT; 
doubled precipitation.  
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Soil Temperature  

 Both experimental warming treatments (W and W+PPT) showed significantly 

higher temperatures at all depths (Soil Surface, 7.5, 22.5, 45, 75, and 105cm) 

compared to non-warming treatments (C and PPT) (Table 2).  No significant 

difference was found on soil temperature between C and PPT at any depth and a 

similar non-significant pattern was also established between W and W+PPT (Figure 

2b).  PPT and C plots had little to no change in temperature with depth; however, W 

and W+PPT had nearly a 3°C decrease in temperature from the soil surface to 105cm. 

W+PPT and W plots had the lowest soil temperature values in all levels, with W 

having consistently the lowest value.  This is further illustrated with Figure 6a, 

showing the average yearly soil temperature for the different treatment types.  

Additionally, there were similar patterns when the treatments were divided into 

seasons (Figure 6b-e).   

 Frequency distributions of soil temperature were plotted at multiple soil 

depths to illustrate the probabilistic nature of soil temperature within the different 

experimental treatment types (Figure 4).  Frequency distributions were similar to the 

mean soil temperature patterns seen in Table 2.  Furthermore, C and PPT had the 

lowest temperature frequencies distributions at all depths while W+PPT and W had 

the highest temperature frequencies distributions.   
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Table 2. ANOVA of soil temperature content at different depths 
 

Source df SS F-ratio P-value 

Segment 0-15cm 3 6834.217 54.35 <0.0001 

Segment 15-30cm 3 9343.574 62.24 <0.0001 

Segment 30-60cm 3 8578.948 77.34 <0.0001 

Segment 60-90cm 3 14132.709 281.56 <0.0001 

Segment 90-120cm 3 13371.408 186.74 <0.0001 
(α=0.05) 
 

 

 

 

Ew and Emax   

 We found that the points between the estimated Ew and Emax showed changes 

in both slope and position, based on the different experimental conditions (Figure 7).  

The experimental warming plots had the greatest change, of any experimental 

treatment, with Ew to Emax occurring in the driest soil moisture conditions (Figure 7).  

Thus, the wilting point in the experimental warming plots occurred at a soil moisture 

percentage around 7%.  However, little to no change occurred in the soil moisture 

between Ew to Emax with the PPT plots and C plots and the wilting point was 

occurring in soil moisture conditions of around 10%. There was also a change in the 

position of the points between Ew to Emax for the W+PPT plots, resulting in the area 

between the wilting point and maximum evaporation to occur in wetter soil moisture 

conditions (around 12%).    
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Figure 4. Soil temperature change in frequency at different soil depths. Each 
treatment type, C; control, W+PPT; warmed and doubled precipitation, W; warmed, 
PPT; doubled precipitation. 
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3.4 Discussion  

 To our knowledge, this is the first study conducted with the goal to understand 

the impacts of different climate change scenarios on soil conditions at multiple 

depths.  Furthermore, the data presented here clearly show that warming and 

precipitation change alters soil moisture dynamics and change soil moisture 

frequency in a tallgrass prairie ecosystem.  The changes in soil moisture and 

temperature are particularly significant for understanding the consequences of climate 

change for belowground plant and soil processes.  For example, Day et al. (1991) 

showed that changes in soil temperature alter the ability of roots to uptake water and 

nutrients; furthermore, increase in soil water, or lack there of, directly affects their 

ability to access water.  Other studies also coincide with changes in root biomass and 

function with changes in temperature (Bowen 1991; Li et al. 1994; Majdi & Ohrvik 

2004)    

Observed patters of change in soil moisture and temperature 

 Our results confirm earlier experimental findings that climate change will 

have an impact on belowground soil hydrological conditions (Harte et al, 1995, 

Saleska et al, 1999, Melillo et al 2002, Wan et al, 2002).  However, these previous 

studies have not explained the extent to which different climate change scenarios 

would alter soil hydrological conditions at multiple depths.  Our study focused on the 

impacts on soil moisture dynamics and changes in temperature in deep soil, with 

different climate change scenarios (warming, warming and increased precipitation, 

increased precipitation).  There were significant changes in soil temperature and 
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moisture with all experimental conditions.  Soil moisture measurements were highest 

in both the C and PPT plots followed by the PPT+W plots and then W plots. 

Therefore, more biologically available water is accessible by plants in the C and PPT 

plots and compared to both of the warming plots.  The deeper layers of the PPT plots 

showed the highest amount of soil moisture.  This could be attributed to increased 

movement of water to deeper layers as a result of the higher precipitation, and less 

evaporative demand because of the lower temperatures. Both W and W+PPT had the 

lowest soil moisture at all depths, and this could be a response mechanism of plants to 

higher temperatures.  Two factors could interplay to cause more moisture uptake in 

the warming plots.  First, more water could be lost to the atmosphere from an increase 

in transpiration and evaporation.  Plants could then increase the amount of water 

uptake to compensate for the additional transpirational loss.  Second, there is a 

significant increase in temperature at the lower soil depths due to warming and this 

should increase root activity (Bowen 1991).  Previously, experimental evidence 

showed that there was an increase in root biomass under warming in the experimental 

plots (Fei, Zhou, Sherry, and Luo, unpublished data).  Both of these factors could 

together explain the decrease in soil moisture with an increase in temperature from 

experimental warming.   
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Figure 5. Average soil moisture profile; (a) yearly average, (b) winter, (c) spring, (d) 
summer, and (e) fall for the different experimental treatments. 
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 Increase in deep soil temperature from higher atmospheric temperatures could 

result in unexpected changes.  Changes in temperature around deep roots have been 

shown to change moisture uptake (Day et al, 1991) and there is evidence that higher 

soil temperatures can increase transpiration (Mellander et al. 2004).  Additionally, 

evapotranspiration is a driving force for changing atmospheric weather patterns and 

has been cited in causing changes in storm severity (Raddatz and Cummine 2003). 

Questions on how climate change alters soil moisture in different systems and how 

these feedbacks impact ET’s ability to change boundary layer conditions, need to be 

addressed.   
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Figure 6. Average soil temperature at multiple depths; (a) yearly average, (b) winter, 
(c) spring, (d) summer, and (e) fall divided among different treatments.   
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 Our results also indicated that this experimental system was affective in 

influencing climatic change among all treatment types. Similar results were obtained 

in a congruent experiment using similar methods (Wan et al., 2002).  In addition, our 

results further explain how experimental warming, from infrared heaters, alters 

temperature along a soil profile.  Other infrared warming studies have identified 

changes in soil temperature and moisture (Harte et al., 1995; Bridgham et al., 1999; 

Wan et al., 2002); whereas, our study identifies that there are significant changes in 

temperature and moisture at multiple depths. 

Change in probability distribution and the environment 

 Changes that occur in soil moisture frequency distribution also affect the 

overall climate-vegetation-soil interaction.  Our study used frequency distributions to 

understand potential climate change impacts on soil moisture dynamics; these results 

could be helpful for future probabilistic modeling studies (Porporato et al., 2004).  

Both W and W+PPT plots had changes in frequency distributions to lower soil 

moisture conditions.  These results indicate that there is a higher likelihood of 

changes in other ecosystem processes due to lower soil moisture availability.   

Soil moisture dynamics are directly linked to both the carbon and nitrogen 

cycle (Porporato et al. 2003); hence, the change in soil moisture frequency will likely 

alter other nutrient cycles.  Furthermore, earlier articles have highlighted that our 

experiment should expect a decrease in litter quality and lower rates of organic matter 

decomposition in W and W+PPT plots (Rodriguez-Iturbe et al., 2001; Porporato et al. 

2003).  Thus, there would be less microbial activity and enzymatic oxidation of 

organic matter to produce soil respiration (Howard and Howard, 1979; Davidson et 
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al., 1998). However, Zhou et al. (2006) showed the opposite results with an increase 

in soil CO2 efflux with experimental warming; additionally, increases in soil moisture 

content caused greater soil CO2 efflux, but the change was smaller than increased 

temperature. This suggests that increases in temperature will have a larger impact on 

microbial activity than moisture availability. Furthermore, the changes in the carbon 

cycle should cause an associated change in the nitrogen cycle (i.e. ammonification 

and nitrification).   

Additionally, drier soil moisture frequency distributions, in the W and 

W+PPT plots, could also cause plant water stress. Change in water stress has been 

shown to cause an associated change in the ecosystem vegetative community 

composition.  For example, Porporato et al., (2003) showed how varying amounts of 

water stress across a precipitation gradient in the Kalahari affected both the plant 

community type and ecohydrological processes. Other experiments also showed 

similar results (Rodriguez-Iturbe et al., 1999; Laio et al., 2001). Plant water stress, 

caused by changes in the soil moisture dynamics, can in turn cause varying 

transpiration rates in plant, thus impacting the total amount of evapotranspiration 

(Rodriguez-Iturbe 2000). These responses will then cause overall changes in 

ecohydrological processes.   

 Other changes in the grassland ecosystem could occur with effects that are 

consistent with our study but occur on a much larger scale.  For example, a change in 

the frequency distribution of soil moisture could impact the amount of plant biomass 

(Sherry et al. 2008); hence, having a direct affect on the nitrogen and carbon cycle 

(Rodriguez-Iturbe et al. 2001).  Our results hopefully demonstrate the important 
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effects of climate change on soil moisture dynamics, and the possible implications on 

biogeochemical cycling.  In addition, we observed that warming, even combined with 

increased precipitation, had a drying effect on the soil moisture frequency.  This 

suggests that warming may have a greater impact on soil moisture conditions than 

increased precipitation.     

Changes in Ew and Emax 

 To understand the full impact of the four climate change scenarios on 

ecohydrological processes we analyzed the changes in wilting point (Ew) to the 

maximum evaporation rate (Emax).  These results showed the conditions between Ew 

and Emax changed with each climate change scenario. We were able to make some 

predictions on how belowground processes of water uptake were changing with 

different climate conditions.   

W+PPT treatment showed a slight change in Ew to Emax to wetter soil moisture 

conditions than the control; additionally, there was a shift to drier soil moisture 

conditions in the warming plots and little change in the PPT plots.  Shifts in the W 

plots Ew to Emax are likely a plant level response to environmental stress.  Less soil 

moisture would cause the plants to increase belowground activity and root growth in 

search of water (Turner and Kramer, 1980).  This increased belowground activity 

would allow for more soil water to be available for plant use and the plants would be 

able to withstand lower soil moisture percentages, causing shifts in Ew and Emax to 

drier soil moisture conditions.  

 Plant level stress response would also be an explanation of why both C and PPT 

showed similar Ew to Emax.  Hence, the availability of water will cause no stress to the 
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plant.  However, this could also be the reason W+PPT has an Ew to Emax shift to 

wetter soil moisture conditions.  W+PPT could have lower stress due to higher 

temperature with the addition of doubled precipitation.  Hence, there would be more 

photosynthesis and increased available water to meet the plant’s demand.  Thus, 

W+PPT would show a slight shift in Ew to Emax to higher soil moisture conditions, 

than those of C.   
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Figure 7. Ew and Emax were calculated to see changes in different treatments types. 
C (dark circles) is for experimental control (p< 0.001), W (dark squares) is for 
increased warming (p< 0.001), PPT (open cicles) is for increased precipitation (p< 
0.023), W+PPT (open squares) is for increase warming and precipitation (p< 0.001).   
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These results suggest that different climate change conditions will possibly 

shift an ecosystem’s ability to use and acquire water, which is critical in 

understanding the soil-plant-climate interface (Rodriguez-Iturbe 2000).   

Additionally, it should be noted, that the warming experiment is not increasing 

overall atmospheric water demand and that this might change with future climate 

change (Huntington 2006); hence, there could be even greater evapotranspiration in 

actual future scenarios.   

 

3.5 Conclusions  

 A complete understanding of the effects of climate change on soil moisture 

dynamics is increasingly important. Particular focus needs to be made on recognizing 

how changes in available moisture will affect the entire ecosystem. Multifactor 

experiments must be performed to fully understand the climate-vegetation-soil 

interaction under different climate change scenarios (Shaw et al., 2002; Norby and 

Luo, 2004). Experiments similar to this one will help explain changes in nutrient 

cycles, vegetation and biomass, and numerous other ecosystem components that are 

influenced by soil moisture changes. This will then enable better predictions of the 

future alterations to the environment and ecohydrology of natural systems.  
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Appendix A. Demonstrates that precipitation intensity has increased over the last 50 

years in Oklahoma. a-c Ten year averages of rainfall intensity from 1950-2000 across 

a precipitation gradient encompassing much of the state of Oklahoma (USA)  a) 

Southeastern Oklahoma  where the average yearly rainfall was 270 mm. b) Central 

Oklahoma where the average yearly rainfall was 970 mm. c) Western panhandle of 

Oklahoma where the average yearly rainfall was 480mm. 
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Changes in rain use efficiency across multiple biomes with increased 
temperature: a meta-analysis approach 
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Abstract 
 
 Terrestrial ecosystem processes (e.g. biogeochemical cycling) are limited by 

the availability of water.  Recently, a maximum rain-use efficiency (RUE = 

ANPP/precipitation) across multiple biomes was established for years with low 

average precipitation (Huxman et al. 2004).  However, little is known about the 

impact of temperature on the limitation of water to ecosystem processes.  Here we 

show that RUE varies across different biomes with different mean annual 

precipitation and analyzed the impact of temperature change on RUE within biomes.  

Our results show that increases in temperature cause an increase in RUE.  

Additionally, we show that experimental warming had the largest impact on 

shrubland and tundra sites.  Grassland, receiving the highest amount of precipitation 

and lowest experimental temperatures, had the second lowest response to 

experimental warming. Wetland biomes had the lowest response to experimental 

warming.  Increase in temperature allows for ecosystems to reach a RUEmax despite 

variations in area specific sensitivities to physical and biological differences.  This 

research demonstrates that there are temperature limitations on ecosystem processes.  

These results should be considered for future large-scale modeling projects. 

 
 
 
 
 
 
 
 
 
 
 
Keywords: rain-use efficiency, warming, carbon, water, global climate change   
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4.1 Introduction 
 
 Anthropogenic climate change, over the 21st century, is predicted to increase 

global atmospheric temperatures from 1.1–6.4 °C (IPCC 2007).   Temperature is 

known to be a factor in regulating ecosystem processes and biogeochemical cycles.  

For example, atmospheric warming has been shown to be responsible for regulating 

most terrestrial plant processes; including aboveground net primary productivity 

(ANPP) (Rustad et al. 2001), plant productivity (Warren-Wilson 1957), 

photosynthesis (Coughenour and Chen 1997), root dynamics (Boone et al. 1998; 

Pregitzer et al. 2000; Gill and Jackson 2000), and plant nutrient uptake (BassiriRad et 

al. 2000; Rustad et al. 2001).  Furthermore, water is the primary resource that can 

limit these various biological activities; this is especially true in arid and semi-arid 

areas (Knapp et al. 2008).  Despite the connection of temperature and water on 

ecosystem processes, there has been little research conducted on the impact of higher 

atmospheric temperature on carbon – water coupling at the ecosystem level.   

 Recently, Huxman et al. (2004) established a relationship between ANPP, 

precipitation, and rain-use efficiency (RUE) among different biomes.  Additionally, 

they found that there was a common RUE with the driest years in each biome 

(RUEmax).  Furthermore, there was evidence that increases in resource availability 

would shift an ecosystem’s rain-use efficiency closer to a RUEmax.  For example, the 

addition of resources (nitrogen and carbon dioxide) to a grassland in Jasper Ridge, 

California, caused RUE to increase near a predicted RUEmax.  These results 

demonstrate that there are common constraints on ANPP across a large geographical 

scale, and changes in resource availability in varying geographic sites will allow for 
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the maximization of carbon uptake.  However, the Huxman et al., (2004) study did 

not investigate how increases in temperature would alter rain-use efficiency.   

 Over the last 10-15 years, multiple active research projects have addressed 

ecosystem responses to changing temperature in the form of temperature-

manipulation experiments (Rustad et al. 2001).  These experiments have shown a 

wide array of ecosystem responses (e.g. plant productivity, soil respiration, N 

mineralization and soil moisture) to warmer temperatures; including many different 

trends in ecosystem responses with each individual site (Arft et al. 1999; Rustad et al. 

2001).  However, no study has tried to evaluate how rain-use efficiency changes in 

different ecosystem types with experimental warming.  This leads to the question, 

“How is experimental warming altering rain-use efficiency across different 

ecosystems?”   

 In this paper, we use meta-analysis to analyze different ecosystem’s rain-use 

efficiency in four ecosystem types and 48 site years of data.  There were four broadly 

categorized ecosystem types, including tundra, grassland, shrubland, and wetland.  

Additionally, a variety of warming apparatuses were used in the analysis (infrared 

lamp, greenhouses, cables, etc.).  Meta-analysis allows us to synthesize rain-use 

efficiency data from multiple sites and make comparisons based on changes in 

different geographic locations.  Due to the lack of continuous measurements and site 

locations, there were some limitations to the analytical abilities of the meta-analysis.    

 We hypothesized that rain-use efficiency will increase with experimental 

warming in all sites.  We also hypothesized that tundra would receive the largest 

amount of change in RUE with higher temperature because tundra is more limited by 
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temperature than other systems.  Grassland sites were hypothesized to have the 

second largest change in rain-use efficiency with increased temperatures because 

these systems regularly experience large fluctuations in temperature and the known 

ability of this biome to physically adapt to climate change (Knapp et al. 2002; Fay et 

al. 2003; Porporato et al. 2004; Sherry et al. 2008).  Meanwhile, shrublands and 

wetlands would be less apt to change because of slow growth and being controlled by 

water availability, respectively. For example, the shrubland systems will have slower 

growth because the primary vegetation component was woody biomass and should 

take longer to growth.  Wetland sites should have more limitations based on nutrient 

availability and water availability instead of temperature.      

 
4.2 Material and Methods 
 
Experimental sites  
 
 The data for this study came from 48 years of experimental ecosystem 

warming across various biomes in the Northern Hemisphere.  Mean annual 

precipitation for all of the experimental warming sites ranged from 301 to 1741 mm.  

Increased experimental warming at the individual experiments varied from 1.5 to 5 

oC.  Individual characteristics of each site are given in Appendix 1.  A variety of 

heating apparatuses were used in the various experiments, including ground cables, 

greenhouses, infrared lamps, and night time warming.  Most sites were selected from 

a thorough literature review and additional data were obtained from access to local 

experimental sites.  All data from published papers were extracted from figures and 

tables.  A complete list of experimental sites and citations can be found in Appendix 

1.      
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 Each site year was characterized into tundra (n=7), shrubland (n=11), 

grassland (n=16), or wetland (n=4) based on the dominant vegetation types.  In our 

study, unlike Rustad et al (2001), bogs were incorporated into the wetland sites 

because they also have the ability of accessing non-precipitation water for growth.  

All sites were selected on the condition that ANPP (or peak biomass) along with 

measurements of mean annual precipitation were available in the study.   No forested 

sites were included in our analysis because of a lack of ANPP or peak biomass data 

from warming studies.    

Meta-analysis 

 Rain-use efficiency was calculated using the ANPP and the mean annual 

precipitation for each site (RUE = ANPP/Precipitation).  For each experimental year 

we retrieved the mean, sample size, and the standard error, in order to calculate the 

standard deviation.  In cases where no standard errors or standard deviations are 

reported, a standard deviation was assigned by using 10% of the mean.   

 The means in the treatment group and control group were then used to 

calculate the response ratio.  A weighted response ratio was calculated from 

individual response ratios to give greater statistical weight to sites with higher 

precision and low variance.  The 95% confidence interval is derived from the log 

response ratio.  If the confidence limits do not overlap zero, the response ratio is 

significantly different.   

 Additionally, a frequency distribution was used to show the variability of the 

response ratio in the experimental warming studies.  Frequency distribution was 

derived using SPSS software.  Luo et al. (2006) provides a full description of the 
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meta-analysis procedure followed in this study.  Meta-analyses were run with 

MetaWin 2.0 (Rosenberg et al. 1997). 

 

4.3 Results 

Temperature and Precipitation 

 The mean temperature increase for all experimental warming sites was 2.92 

oC, with shrublands having the highest average temperature increase of 3.76 oC, 

tundra having an average increase of 3.57 oC, wetlands having an average increase of 

2.85 oC, and grasslands having an average increase of 1.50 oC (Figure 1A).   

 Average yearly precipitation across all sites was 582.70mm.  The highest 

average yearly precipitation was found at all grassland biome sites (777.67mm), 

followed by all wetland sites (634mm), then by shrubland sites (560.86mm), and then 

by tundra sites (358.26mm) with the lowest average precipitation among the biomes 

(Figure 1B).   

Rain-use efficiency 

 Rain-use efficiency response to warming at individual experimental sites was 

slightly variable.  There was an increase in RUE with experimental warming in most 

of the site years; however, some sites experienced negative to no change in RUE with 

warming.  Experimental warming increased RUE at 37 of the 48 sites years, and 

decreased RUE at 11 of the 48 sites, for which data were available.  Histogram was 

constructed to demonstrate the variation in RUE among individual sites (Figure 2). 

Additionally, there was an increase in the total mean value of experimental warming 

RUE (0.475, ±SE = 0.044) from control RUE (0.424, ±SE = 0.045).  
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 Meta-analysis was preformed to compare RUE responses to warming across 

all biomes and within individual biomes (Table 1).  Mean RR++ for RUE in all of the 

experimental site years, across all biomes, significantly increased under additional 

warming (RR++ = 0.1489, with a 95% confidence interval of 0.1648 – 0.1329).  

Individual biomes had diverse variations in RUE due to experimental warming; 

however, all biomes (wetland, shrubland, grassland, and tundra) had a positive 

increase in RUE in response to  
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Figure 1.  Experimental warming site conditions for each biome (Shrubland, 
Grassland, Tundra and Wetland).  A, Average experimental temperature increases at 
the different biome types.  B, Average annual precipitation amongst different sites 
used for the meta-analysis.   
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experimental warming (Figure 3).  Wetland biomes had the lowest significant 

response to warming with a RR++ of 0.1089 (95% confidence interval of 0.1963 – 

0.0214); whereas, shrubland biomes had the greatest significant response to 

experimental warming (with a RR++ of 0.1840 and a 95% confidence interval of 

0.2240 – 0.1440).  Tundra biomes also experienced a large change in RUE with 

experimental warming (RR++ of 0.1446, 95% confidence interval = 0.1988 – 

0.0903).  As for the grassland biome, there was a significant increase in RUE with 

warming of 0.1278 RR++ (95% confidence interval of 0.1460 – 0.1096).   

 Overall, experimental warming was found to increase the amount of carbon 

uptake per unit of rainfall received in all biomes and under varied experimental 

warming techniques. An analysis of RUEmax was not preformed due to a lack of 

sufficient data.  In order to do an analysis of RUEmax, multiple years of ANPP data 

must be present at each site to locate the minimum annual yearly precipitation.  

However, an estimate of RUEmax was obtained from Huxman et al. (2004).  The 

estimated RUEmax was not stated in these results, but is used in the discussion section 

of this paper for a comparison to our observed RUEmax.  Estimated RUEmax can be 

obtained from Huxman et al. (2004). 

 

Biome RR++ SE(RR++) n 

Tundra 14.46 0.0277 7 

Grassland 12.78 0.0093 16 

Shrubland 18.4 0.0204 11 

Wetland 10.89 0.0446 4 
 
Table 1.  Response ratios (x100) of the rain-use efficiency and standard error for 
warming treatments in the four biome types.    
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Figure 2.  Frequency distributions of the response ratios (RR) of rain-use efficiency 
amongst all experimental site years.  Mean = 0.1567, STDEV = 0.40719, N = 48.   
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4.4 Discussion 

 Experimental warming of ecosystems significantly increased rain-use 

efficiency across all treatment sites for which data were available (Figure 3). 

Generally, the response was greater in the ecosystems that were in colder 

environments and had lower annual precipitation with the strongest responses found 

in the shrubland and tundra sites. The increase in rain-use efficiency may be an effect 

of either higher rates of photosynthesis due to higher atmospheric temperatures 

(Coughenour & Chen 1997), or sufficiently longer growing seasons (Sherry et al. 

2007). Changes in soil water availability, resulting from increased rates of root 

production and root growth (Boone et al. 1998; Pregitzer et al. 2000; Gill and Jackson 

2000), is also a potential explanation.  These effects of experimental warming could 

be particularly important in colder ecosystems and in water-limited ecosystems 

because both tend to be limited by temperature and resources (Arft et al. 1999).  

 Experimental warming has been shown to increase plant productivity in 

multiple reports from individual subarctic tundra sites (Chapin et al. 1995; Jonasson 

et al. 1996; Press et al. 1998; Hartley et al. 1999, Rustad et al. 2001).  Increased levels 

of plant production would result in a greater uptake of CO2 and increase the available 

carbon in roots and leaves for transfer into soils.  However, our study is the first to 

address changes in carbon uptake per unit of precipitation from experimental 

warming. 

 Huxman et al. (2004) reported changes in rain-use efficiency with the addition 

and subtraction of resources, but no significant research has focused on large scale 

changes in RUE with changes in resources.  Additionally, Huxman et al. (2004) 
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performed an analysis of different temporal and precipitation trends across different 

biome types.  This study tried to replicate their results and focus on the variation in 

RUEmax across different biomes.   A lack of sufficient long term data made the 

analysis incomplete, and we were not able to determine a RUEmax for the 

experimental study sites.  However, based on the increase in RUE at each site, it can 

be determined that RUE individual sites will approach RUEmax with higher 

temperatures.  This is illustrated in Huxman et al. (2004), where an addition of 

resources (carbon dioxide and nitrogen) caused RUE to increase near RUEmax.  

Additionally, our meta-analysis concluded that all biomes will increase RUE with 

increases in temperature, demonstrating that RUE is increasing to a RUEmax.  Under 

these conditions there is a greater utilization of water resources for ecosystem 

processes with a moderate increase in temperature.  Our study is not able to precisely 

estimate how close RUE is to RUEmax or what the response of RUE will be with 

temperature increases that surpass RUEmax.  There is modeling evidence that RUE in 

a tallgrass prairie will decrease with temperatures past a 4 °C increase (Bell et al. in 

review).    

 There was some inconsistency with our original hypotheses on the patterns of 

RUE in different biome types.  Foremost, we predicted that shrubland systems would 

have the lowest amount of change with experimental warming based on the fact that 

shrubland sites are composed of woody vegetation and should have a less dramatic 

response to short-term warming experiments.  Rustad et al (2001) found that woody 

vegetation sites had no significant difference in plant production with  
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 Figure 3.  Response ratios (RR, mean ± SE for each biome) of rain-use efficiency 
under experimental warming.   
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experimental warming.  However, our analysis found that shrubland biomes had the 

largest change in RUE.  Some factors can contribute to large increases in RUE at 

shrubland sites.  First, data for our study were predominantly available for shrubland 

ecosystems in colder, higher latitude areas.  Secondly, shrubland sites had the highest 

average experimental warming among all sites.  Combined, these factors could allow 

for higher rates of photosynthesis and greater increases in rain-use efficiency (Arft et 

al. 1999).   

 Furthermore, our results differed from our original hypothesis that grassland 

systems would have larger variations due to increased temperatures.  This was due to 

most of the grassland sites being located in temperate areas which are exposed to 

dramatic fluctuations in temperature.  These areas seasonally experience fluctuations 

in climate and are less likely to respond to slight temperature increases.  In addition, 

the grassland sites had the lowest average temperature increases of all the sites and 

the highest average yearly precipitation.  Our analysis suggests that more temperate 

ecosystems may not be as limited by temperature, in regard to carbon uptake per unit 

of rainfall, when compared to colder regions.   

 Overall, our analysis suggests that temperature can act as a limitation on rain-

use efficiency across a variety of biomes and that an increase in temperature will 

allow for ecosystems to near a RUEmax.  These trends are evident despite variations 

that occur among biomes based on soil properties, plant species composition and 

climate differences.  In addition, no information has been acquired on how these 

biomes will respond to additional increases in temperature and how RUE will respond 

to temperature increases past the point of RUEmax.  Further warming experiments 
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must address the possibility of ecosystem “tipping points” (Knapp et al. 2008).  

Lastly, the responses of ecosystems to changes in temperature could result in 

additional ecological constraints and should be incorporated into ecosystem modeling 

for future predictions on the global carbon balance.  
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Appendix 1.  List of all the sites and manuscripts used for the analysis of RUE.   
Site Location Year Biome Citation 

Toolik Lake (tussock)  
Alaska, 

USA 1997 Tundra Grogan & Chapin, 2000 

Toolik Lake (inter-tussock)  
Alaska, 

USA 1997 Tundra Grogan & Chapin, 2000 

Alaska (LTER-Brook Range) 
Alaska, 

USA 1983 Tundra Chapin et al. 1996 

Alaska (LTER-Brook Range) 
Alaska, 

USA 1989 Tundra Chapin et al. 1996 

Alaska (LTER-Brook Range) 
Alaska, 

USA 2000 Tundra Gough & Hobbie, 2003 

Toolik Lake  
Alaska, 

USA 1983 Tundra Chapin, 1995 

Toolik Lake 
Alaska, 

USA 1989 Tundra Chapin, 1995 
Taisetsu Mountains Japan 1995-1999 Shrubland Kudo & Suzuki, 2003 
Abisko Scientific Research 
Station Sweden 1993 Shrubland Hartley et al. 1999 
Abisko Scientific Research 
Station Sweden 1994 Shrubland Hartley et al. 2000 
Abisko Scientific Research 
Station Sweden 1995 Shrubland Hartley et al. 2001 
Abisko Scientific Research 
Station Sweden 1994 Shrubland Hartley et al. 2002 
Abisko Scientific Research 
Station Sweden 1995 Shrubland Hartley et al. 2003 
Abisko Scientific Research 
Station Sweden 1997 Shrubland Hartley et al. 2004 
Abisko Scientific Research 
Station Sweden 1998 Shrubland Press et al. 1998 
Ericacea Site UK 2000 Shrubland Penuelas et al. 2004 
Ericacea Site Netherlands 2000 Shrubland Penuelas et al. 2004 
Ericacea Site Spain 2000 Shrubland Penuelas et al. 2004 
Toivola and Alborn USA 1994-1997 Wetland Weltzin et al. 2000 
Toivola and Alborn USA 1994-1997 Wetland Weltzin et al. 2000 
Toivola and Alborn USA 1994-1997 Wetland Weltzin et al. 2000 
Toivola and Alborn USA 1994-1997 Wetland Weltzin et al. 2000 
Jasper Ridge Bio Station USA 1999 Grassland Zaveleta et al. 2003 
Jasper Ridge Bio Station USA 2000 Grassland Zaveleta et al. 2003 
Jasper Ridge Bio Station USA 2001 Grassland Zaveleta et al. 2003 
Jasper Ridge Bio Station USA 2001 Grassland Zaveleta et al. 2003 
Rocky Mountain Biological Lab USA 1996 Grassland Valpine & Harte, 2001 
Rocky Mountain Biological Lab USA 1997 Grassland Valpine & Harte, 2002 
Buxton Site UK 1994-1998 Grassland Grime et al. 2000 
Wytham Site UK 1994-1998 Grassland Grime et al. 2000 
Gunnison Site USA 1992 Grassland Harte et al. 1995 
Gunnison Site USA 1992 Grassland Harte et al. 1995 
One-year Warming Site 
Oklahoma USA 2003 Grassland Not cited 
Multi-year Warming Site 
Oklahoma USA 2000-2006 Grassland Not cited 
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5.1. Conclusions 
 
 
 The analysis presented in this thesis proposes several important conclusions 

regarding the response of ecosystems to climate change.  As illustrated in Chapter 1, 

there is a relatively large amount of data on how global climate change impacts on 

ecosystem processes. However, there is little known about ecosystem would respond 

to different combinations of climate change scenarios with carbon-water coupling 

associated with future changes.  Understanding these responses is exceedingly 

important for developing a conceptual framework of possible future environmental 

change.    

 In this thesis, a direct investigation of multifactor (both with modeling and 

field experiments) climate change was done on understanding the response of 

ecosystem processes (i.e. carbon and water cycles).  Additionally, an evaluation of 

climate change’s impact on carbon-water coupling was done.  Some of the major 

findings are below: 

 

 The terrestrial ecosystem modeling showed that ecohydrological processes 

varied in a tallgrass prairie with different combinations of altered yearly precipitation, 

CO2, and temperature. Temperature and precipitation had the greatest impact on most 

components of the hydrological cycle; however, CO2 had a greater impact on rain use 

efficiency and water use efficiency.  Three-factor combinations of CO2, temperature, 

and precipitation produce slight variations from two-factor responses.  The modeling 

results show that rain use efficiency increases with temperature to around 4°C, but 

any additional temperature increase past 4-5°C causes a decrease in RUE.  This 
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pattern with RUE peaking at 4-5°C is more prominent with combinations of 

precipitation and CO2.  Furthermore, there was no similar pattern of peaking with 

water use efficiency.  It should also be noted that runoff had a considerable decrease 

with temperature.       

 

 The experimental warming and doubled precipitation experiment gave 

multiple insights on changes to soil moisture dynamics under different climate change 

scenarios.  Warming caused a significant decrease in soil moisture at multiple soil 

depths and precipitation caused a significant increase in soil moisture at lower depths.  

Under the combination of warming and doubled precipitation, the soil moisture 

content was significantly decreased from control.  This suggests that warming has a 

larger impact on soil moisture dynamics than increased precipitation.  Furthermore, 

the probabilistic analysis of soil moisture dynamics under different climate conditions 

is very important for modeling.   

 Based on the analysis of evapotranspiration vs. soil moisture, there was an 

overall change in the ecosystem’s ability to use water.  The estimated wilting point 

shifted to drier soil moisture conditions with higher atmospheric temperature, along 

with the maximum evapotranspiration point.  Other shifts in wilting point and 

maximum evapotranspiration were found in the other treatment types, suggesting that 

internal ecosystem mechanisms can change with different climate change conditions 

and cause changes to the hydrological cycle.   
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 The meta-analysis study examined the patterns of rain use efficiency across 

multiple biomes (tundra, grassland, shrubland, and wetland) with experimental 

warming.  The results show that warming causes an increase in rain use efficiency for 

every biome in the analysis.  This suggests that warming is increasing rain use 

efficiency to near maximum rain use efficiency (Huxman et al. 2004).  In addition, 

the ratio of carbon uptake per unit of precipitation increases with an increase in 

temperature, suggesting that there are large scale ecosystem patterns associated with 

global climate change.      

 

5.2 Implications for future work 

 

 The results from the TECO model demonstrated that runoff changed with 

varying scenarios of climate change in a grassland ecosystem.  It has yet to be 

examined whether these results are represented in field experiments and consistent 

across multiple ecosystem types.  To clearly understand the response of runoff to 

climate change, it is imperative to elicit new experiments to determine the rates of 

runoff change from the actual field, which can examine both single and multifactor 

experiments.  Additionally, new modeling runs should be done on multiple ecosystem 

types to examine if the pattern holds and what are some of the possible alterations 

that could cause any incongruity.    

 

 The interactive effects of climate change on the hydrological cycle suggest 

that multifactor experiments are important for understanding the potential responses 
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of ecosystem processes.  Few experiments have tried to analyze all hydrological 

processes with different climate change scenarios.  However, this does not suggest 

that single factor experiments are insubstantial, these studies are actually quite 

important for isolating ecosystem responses to climate change.  Ideally, these results 

will be important for understanding the availability of water resources and 

quantifying different plant-atmosphere water “feedbacks” that drive weather and are 

important for future climate modeling.   

 

 The apparent increase in rain use efficiency across multiple biomes with 

experimental warming suggests that other large-scale ecosystem patterns exist in the 

presence of climate change.  To clearly evaluate the underlying commonalities, it is 

essential to assemble long-term data and use inventive exploratory processes to elicit 

patterns.  This could include the utilization of other data (e.g. climate) to assess large-

scale processes.  For example, a great deal of information could be derived by 

combining precipitation intensity and frequency with ecosystem properties (Figure 1).  

These results will be important for understanding the response of the biosphere to 

external drivers and allow for forecasting of anthropogenic and natural climate 

change.  
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Figure 1. Four year averages from 1955-2006 of (d) rainfall event intensity and (e) 

frequency of days with rain for Corfu, Greece where the average yearly rainfall was 

1100mm (Klein et al., 2002 - Data and metadata available at http://eca.knmi.nl). 
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 Patterns of aboveground net primary production with precipitation were 

evaluated at local and large-scale patterns.  An entire evaluation of total biomass 

across sites has yet to be performed.  Inclusion of root biomass would be important 

for understanding whole plant response to climate change and give further indication 

of carbon uptake.  Limited information is available on root response to climate 

change, mostly due to accuracy and difficulty of the measurements. 

 

 Global Climate Models are used to predict future climate in response to 

anthropogenic atmospheric change.  Within the GCMs there is a component that 

includes the land-surface feedbacks (i.e. evapotranspiration and CO2 efflux).  Based 

on the effective response of the TECO model to climate change, it would prove 

beneficial to incorporate the TECO model into the GCMs.  The mechanistic model 

will provide for a more realistic terrestrial feedback to the GCMs and allow for more 

accurate prediction of future climate change.  

 

 Many countries and regions have developed a regulatory means of reducing 

CO2 emissions to combat anthropogenic climate change.  There are, however, no 

emission control mechanisms in place that will effectively curb the total production of 

greenhouse gases.  Based on the possibility of potential outcomes and the wide range 

of variance in future climate response, a more scientific approach needs to be 

implemented on understanding climate change impacts on ecosystem processes.  

Because of the large number of possible outcomes for future climate, there needs to 

be more research on various climate scenarios and gradients to determine ecosystem 
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response and potential tipping points.  Hence, future climate experiments should 

include multiple scenarios and give a wider array of possible combinations of climate 

change.  This information will be highly valuable for validating future ecosystem 

models and making predictions on areas that will be most vulnerable to stress 

thresholds that cause alteration in ecosystem type.   

 

 Science has been closely woven into policy in the United States since before 

the formation of the National Science Foundation.  Based on some of the ecological 

problems that we face currently and in the coming decades, the science of ecology 

can be used as an effective way for guiding policy decisions (Clark et al., 2001).  

Advancements in modeling and analytical techniques along with greater availability 

of temporal and spatial data, allows for a better ability to predict ecosystem responses 

in the threat of an ever-changing environment.  Connections need to be made between 

ecology and policy that will allow for a relevant decision-making process.  These 

connections will most likely be formed with the advent of scientists extending their 

expertise to policy specialists.  All fields have some contribution to policy; however, 

here are a few fields that standout as highly important for future interdisciplinary 

interaction: global climate change/disturbance, species invasion, disease transmission, 

and the production of biofuels.      
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