Name: John Miles Frey
Date of Degree: May 28, 1961
Institution: Oklahoma State University
Location: Stillwater, Oklahoma
Title of Report: BASIC PRIMCIPLES ADD APPAICATIONS OF QUANTUM TECHNICS

Pages in Report: 22
Candidate for Degree of Master of Science
Major Field: Natural Science
Scope of Study: The principle of quantum mechanics is a relatively new field and is generally above the level of the average high school student. This paper is concerned with the very basic explanation of quantum mechanics omitting the advanced mathematics on which the theory is based.

By use of the electron contiguration of atoms, derived from quantum mechanics, a better understanding of the atom is available. Some of the simple explanations that can be based on this arrangement of the electrons are: bond types, geometry of the molecule, complex ions, transition metals, aton size, screening properties of electrons and effective nuclear charge.


```
    OT QUEMTM WBCRERICS
```

By
JOHN TLIDS REEY
Dachelor ot Science Colozado Stato University Port Collins, Colorado 1955

Subuitton to the faculty of the Graduate Echool of the Oklahone State University
in partial fulfillment
of the reguirementes
for the degree of
WHETE OR SCTMACE
May, 1061

W.STC PRTMCTDTIS AMD APPTICATIONS OR GUAMTUN: WCREMLCD

Report hpproveu.

ACKNOWLEDGEENTS

The writer wishes to express his aporeciation and gratitude to Dr. James H. Zant, Director of Academic Year Institute of the National Science Foundation, and to Dr. Henry D. Johnston, Associate Professor of Chemistry, for their suggestions and counsel in the preparation of this report; to Mr. David i. Travis and Miss Nancy Am Baron for their assistance.

Indebtedness is acknowledged to the East Yuma County Board of Education for granting me a leave of absence to take advantage of this year of training; to the National Science Foundation for the financial assistance which made this year possible.

RABLE OF CONTENTS

Topio page
I. INRMODUCTIOM 1
II. BGR'S THEORY 1
1II. WVE MECHMICS 5
IV. QUQMEUE NUBPRE 11
 19
UTMBCTURE CITED 23

LISI OF FIGURES

Pigure
Page

1. Energy Levels for an Electron in the Hydrogen Atom 10
2. A Plot of Electron Distribution for Various Values of the Distance from the Mucleus 12
3. Pethod for Determining Increasing Energy Levels for Orbitals 14
4. Radial Probability for Lower States of Hydrogen 16
5. Summary of Electron Distribution in Energy Levels 18

The nuclear atom describes a physical model. a small. dense, positively charged nucleus surrounded by electrons. ${ }^{1}$ The atom has striking similarities to the solar system with several major exceptions. The solar system resembles a saucer with the planets all lying in aporoximately the same plane, whereas the atom is more spherical, which results in a cloud of electrons or a hazy fog of negative electrionty of non-uniform density. ${ }^{2}$ The electrons are considered to be in constant motion and their location within the sphere is in terms of the probability of finding them at a particular spot at a given time. ${ }^{2}$

2wo thermodynamic difficulties in comparing the atom to the solar systen are;

1. In accelerating charged body. must radiate energy. The electron is charged and accelerating, therefore it must radiate energy. The loss of energy should make it siral into the nucleus.
2. Ell particles should contribute to the heat capacity of the atom commonly referred to as the Law of Equipartition of Energy. ${ }^{1}$

BOHR'S MHHORY

Bohr accepted the plenetary model and first considered circular orbits. 1 He proposed a revolutionary theory that provided a basis for detemining the electronic structure of atoms. He also proposed that an electron, as it moves around the nucleus, can attain only certain energy levels.

An atom whose electrons all possess specific energies is said to be in a stationary state. In the stationary state called the ground state, the electrons possess the energy values which make the energy for the atom a minimum. States having more energy than the ground state are called activated states. ${ }^{3}$

Bohr's big mistake in his experiments was the selection of the simplest atom, hydrogen, to work with. However, his theories made it possible to do more accurate work on the more complex atoms.

When the light fron a hydrogen lamp is passed through a spectroscope, a number of narrow colored lines separated by dark regions appear. 4 One line was found in the red region, which is the longest wave length, one in the blue, one in the violet, the fourth close to the ultraviolet region, and five lines in the ultraviolet region. 5 The spectroscope can be focussed so that a given colored line coincides with cross hairs in the eye piece. This marks an angle on a circular scale that is definite, reproducible, and characteristic of that particular Line. Fron auxiliary measurenents, it is possible to correlate this angle with a quantity colled the wavelength of the light.

Bohr successfully explained the known series of spectral lines for hydrogen and by the end of the 19 th century, many of the spectral lines of hydrogen had been measured and classified into what appeared to be groups of associated wavelengths. 4

It was Bohr's theory that a single electron was responsible for the procluction of these spectral lines. Hydrogen is like a solar system with one planet and the planet could revolve in fixed tracks in space or in different energy levels; K, L, T, N, and 0.5 The quantum theory, postulated by Bohr and Rutherford, states that systens can possess only cextain definite amounts of energy; \mathbb{E}_{1}, E2, and E3. If the body changes from one energy level to another, then energy must either be emitted or absorbed in amounts given by the equation

$$
E_{1}-E_{2}=\frac{h c}{\lambda_{1}}
$$

where c is the velocity of light, λ the wavelength of the energy enitted or absorbed, and h is Plank's Constant.

Bohr suggested that the electron can move in a circular orbit without losing energy, which was contary to the belief at the time. He contened that small particles did not operate as lare particles in their relation to the electrical theory. It was also his idea that electron and proton systems can possess only certain definite energies and that when the energy of the system changes it does so in certain specified jumps. ${ }^{4}$ This situation reminds us of an elevator, if we suppose that by automatic control, the elevator can stop only at the floor levels, not between floors. The elevator, normally waiting for passengers on the ground level, can by the absorption of energy, be lifted to any floor above, then when it falls back to lower floors, energy is released, the greater the fall, the
greater the energy released. ${ }^{5}$
He proceeded to show that if the electron jumped from one circular orbit to another, the energy of the atom changed by an amount

$$
E_{1}-E_{2}=\frac{h c}{\lambda_{1}} \quad E_{2}-E_{3}=\frac{h c}{\lambda_{2}}
$$

The wavelengths, $\lambda_{1} \lambda_{2}$, were to be related to the wavelengths of the light einitted by hydrogen in the discharge tube. Hydrogen emits light of only certain wavelengths because the atom can only possess certain well defined energies. ${ }^{4}$

As a crude analogy, we nay examine the static distribution of magnetized needles as they float on water in an unright position, supported by corks. If we place at the center of a dish of water a permanent magnet or establish a magnetic field in the same place by means of a coil of wire wound about the dish, we then have something that is analogous to the positive charge of the atomic nucleus. If we now float in the dish a single cork bearing a vertical magnetized needle, we find that the needle will approach the center of the dish because of the attraction of the neighboring unlike poles. If we use two needles, we find that they repel each other, and, since both are attracted to the center, they take up positions diametrically opposite each other. When a third needle is added, the needles take up positions at the corners of an equilateral triangle. With four needles, we find that the figure assumed by the mobile system is a square, and with five needles a pentagon. As the figure expands, however, all of the needles become
further removed from the center of attraction because of their mutual repulsion. Eventually the polygon must become so unsteble that it will give away to a system consisting of a small group of needles inside a larger group. Thus With six needles we are likely to find that one needle moves to the center of a pentagon and seven needles would produce a hexagon with a needle in the center. With eight needles, two move to the center of a hexagon and with ten needles the usual arrangement is an octagon arranged about two central needles. These arrangements of needles illustrate the fact that, under conditions of mutual repulsion and central attraction, a large hollow geometric figure is improbable.

If the attracting or retaining magnetic field is decreased, the needles all move away from each other and the geometric figures assume larger dimensions, but the shape remains the same. As we increase the strength of the magnetic field, the figure is draw into a more compact form. ${ }^{2}$

WAVE NECHAOICS

The hydrogen atom is not as simple as Bohr's model. The electron is not confined to a circular or elliptical orbit, but there is a definite chance of finding the electron anywhere outside of the nucleus. A "census" of the number of times we "see" an electron in a given area gives us regions of high and low density. 4

Bohr's theory did not explain the whole story. In 1924, Louis de Broglie suggested that the electron not be treated as a charged ball, but as possessing wavelike properties. In 1926, Heisenberg postulated his "principle of uncertainty" which states that the momentum and the position cannot be simultaneously specified more closely than a certain approximation. The more precisely we know the momentum, the less precisely we know the position of the electron and conversely.

Also in the mid 1920^{\prime} s, Schroedinger proposed a theory that deals less sharply with the details of the motion of the electron with respect to the proton and it gives information not on where an electron is but on the probability of finding the electron somewhere in the space surrounding the proton. This theory is less precise about the energy which is in accord with Heisenberg's Principle. ${ }^{4}$

In quantura mechanics, the motion of electrons around a nucleus is described in tems of mathematical functions called wave functions. The wave function for a particular electron called its orbital wave function indicates the mathematical probability of finding that electron at different distances from the nucleus. ${ }^{3}$

This new theory retained the idea that atoms possess only certain definite energies and this theory specified what these energies are. ${ }^{4}$ Energy, like matter, is not continuous, but is made up of "pieces" or "bunches" called quanta. The mognitude of energy in a quantura is directly
proportional to the frequency of light, mathematically expresses as

$$
E=h v
$$

Where E is the energy of the electron transition in ergs, h is Plank's Constant (6.60×10^{-27} erg-seconds), and v is the freguency of the emitted light in cycles per second.

The frecuency of light is inversely proportional to the wave length. Quanta of long waves, like radio waves, carry little energy, and short waves, like $X-r a y$ and cosmic rays, possess high energy. 5 Therefore, the greater the energy change, the higher the frequency of the emitted light, and the shorter the wave length or ${ }^{2}$

$$
\text { Frecuency }(v)=\frac{\text { Velocity (Plank's Constant) }}{\text { Wave length }}
$$

Depending upon the energy content, quanta may appear as infrared, visible, or ultraviolet light. Waves of low frequency and low energy will appear in the infrared region of the spectrum, while waves of high frequency and energy will appear in the ultraviolet region. ${ }^{2}$

Since the energy levels for each element is different, the light emitted by excited atoms has a characteristic frequency or color that can be used for positive identification. For instance, the sodium vapor lamp is yellow as is the flame test and the characteristic color of neon lights is due to the excited electrons of the gas. ${ }^{2}$

Line spectra forced scientist to believe electrons exist in discrete energy levels. ${ }^{2}$ Sodium has one outer electron loosely held, which is similar to hydrogen.

Therefore, we should expect the spectral lines to be similar. But, instead of one set of converging spectral lines, four sets are observed. Detailed study of the spectral lines for the different elements reveals that the second, third, fourth, and adcitional outer levels are actually solit into subshells whose energies are almost equal and electron transition from a subshell of one shell to another suosuell in a different shell gives rise to extra spectral lines. Hence, we speak of a main level or shell characterized by the value \underline{n} and sublevels designated by the symbols $\underline{s}, \underline{p}$, d, and \underline{f} from sharp, principle, diffuse, and fundamental which were used by early spectroscopists to describe various series of spectral lines. ${ }^{3}$

The x-rays studied by Dosely were called K x-rays and we now know that these are due to disturbances resulting in the transfer of electrons from higher shells to the first or K shell. ${ }^{4} \mathrm{~K}_{a}$ spectrai lines were produced by electrons dropping from the L level to the \mathbb{K} level and K_{β} lines were caused by electrons dropping from the in level to the K level. When vacancies occurred in the K level due to removal by electron beam bombardnent, electrons from higher levels would drop dow, eritting light with characteristic frequency
and energy. The differences in frequency that Mosely found When he tested the various elements stems from the influence of greater nuclear charge on the attraction between the electrons and the nucleus. 3

Ell transitions from higher states to the ground state ($n=1$) gives rise to soetral lines in the Lyman series. These freguencies are quite high which results in short wave lengths and the spectral lines appear in the ultraviolet region of the spectrum. Transitions from higher states to the first excited state ($n=2$) results in the Balmer series, spectral lines that are visible but near the ultraviolet region. Transitions from higher states to those states for which $n=3$, 4, and 5 gives rise to the Paschen, Brackett, and Pfund spectral series respectively. All three series are in the infrared region of the spectrum. ${ }^{1}$

Figure 1 shows an energy level diagram of hydrogen and indicates the changes in energy levels which gives rise to the several series of spectral lines.

Remember that the Lyman series results from an electron dropping from one of the higher levels to the lowest energy level. Also included in this figure are the first five. energy levels for the electron and their energies in tems of electron volts. The electron volt (ev) is the kinetic energy accuired by an electron in falling through a potential difference of one volt. One mole of electrons (6.023×10^{23} electrons) falling through a potential difference of one volt will acquire a total kinetic energy equal to 23,900 calories.

Figure 1

From the diagram, an ele ctron moving spontaneously from the fourth level to the second level, will emit 2.5 ev . of energy in the form of radiant energy similar to light. If it drops from the second level to the first, the radiation emitted has 10.1 ev. of energy. From the fourth to the first level, 12.6 ev. of energy wili be released.

To lift the electron from lower to higher energy levels requires the same energy as was emitted by the electron in its descent to the lower level. If the energy supplied to the electron in the first level is 13.6 ev . or more, the electron will move entirely out of the atom and form
the hydrogen ion. The smallest anount of energy required to remove an electron entirely out of the atom is the ionization energy or ionization potential. ${ }^{3}$

QUANMUM NUMBERS

In quentum theory, certain numbers called quantum numbers are associated with each energy level. ${ }^{3}$ Quantum numbers are always whole intergers as they determine the energy of electrons, which must exist in definite, discrete energy levels. ${ }^{2}$ To the various energy levels, we assign quanturn numbers $1(\mathbb{K}), 2(\mathrm{~L}), 3(\mathrm{~N}), 4(\mathrm{~N}), 5(\mathrm{O}), 6(\mathrm{P})$, and 7 (Q).

It is seen that more energy is needed to raise the electron from its lowest level to the second than from the second to the third, etc. Differences between levels becomes progressively smaller as we proceed to higher levels. This is in agreement with Bohr's theory. 4 As the total quanturn number of the initial state becomes large, the states crowd together and hence, the spectral lines do also.

As n approaches infinity, the continum of states is reached and the spectral lines are replaced by regions of continuous emission. Bohr's formula predicted this wave length to be $3647.05 \mathrm{AO}^{1}$

There are results describing the probability of finding the electron which are best expressed in the language of mathematics, but can be approximately represented by physical models. For hydrogen, in the lowest level, the probability
is quite high that the electron will be found in the volume close to the surface of a sphere with a definite radius, but with a fuzzy outline at the surface. The electron density pattern is called an orbital, the region in space about a nucleus in which the probability of finding the electron is the greatest. ${ }^{4}$

Figure 2

The increased energy involved in locating electrons in orbitals of higher energy corresponds to an increase in the effective size of the atom. The higher the quantum number, the further are the electron densities associated with that quantum number removed from the nucleus. The number of orbitals will also increase with the principal
quantum nuber because there is roon for more orbitals the further we nove from the nucleus. 4

Orbitals are arranged using symbol 1 representing numbere $0,1,2,3, \ldots$ or by using letters s, p, d, f, \ldots from the first initial used to describe the spectroscopy of the subushells. The values that 1 may assune for a given n value may be $n-1, n-2, \ldots 0$ and the maximun number of electrons in any orbital is equal to $2(21+1)$.

Example:
in shell - Krypton ($n=3$)
Subshells may have values of

$$
\begin{aligned}
& \mathrm{n}-1=2 \quad 3 \mathrm{rd} \text { orbital or } \mathrm{d}=2(2 \times 2+1)=10 \\
& \mathrm{n}-2=1 \quad \text { and orbital or } \overline{\mathrm{p}}=2(2 \times 1+1)=6 \\
& n-3=0 \quad \text { lst orbital or } \underline{s}=2(2 \times 0+1)=2
\end{aligned}
$$

Energy levels are subdivided into orbitals with a specific number of electrons in each orbital and are designated by specifying the values of \underline{n} and 1.5

Ist shel1	$s(2)$			
2nd shell	$s(2)$	$p(6)$		$=2$
3rd shel1	$s(2)$	$p(6)$	$d(10)$	
4th shel1	$s(2)$	$p(6)$	$d(10)$	$f(14)$
		$=18$		

By adding the number of electrons in each orbital of a shell, you detemine the number of electrons that each shell may ontain.

The energy of an electron in a d or $\underline{\underline{I}}$ orbiticl is greater that that of an electron in the sor p subshell of the next higher main shell. 5

The order of energy then is dependent upon \underline{n} and $\underline{\underline{l}}$ numbers and to some extent on the multiplet, such that the energy levels in increasing order are as follows:

$$
1 s, 2 s, 2 p, 3 s, 3 p,(4 s, 3 d), 4 p,(5 s, 4 d),(4 f, 5 p, 6 s, 5 d)
$$

The orbitals in brackets have energies that are very nearly the same and do not completely follow the regular pattern of filling with electrons.

Two simple methods for establishing the order of increasing energy can be explained. The first is simply the addition of the \underline{n} and \underline{I} numbers, if the lowest energy level is considered to be 1 , the next 2, etc. The 1 numbers assume the numerical values of $s=0, p=1, d-2$, and $f=3$. The lowest sum of the \underline{n} and \underline{I} numbers will be the lowest energy level.

If different orbitals have the same sum, then the orbital with the lower \underline{n} is considered to be the lowest energy level. This rule holds true except at the start of the Lanthanide Series.

Figure 3 illustrates a second method used to determine the order of increasing energies.

It is customary in speaking of hydrogen-like atoms in a specified state indicated as $1 \mathrm{~s}, 2 \mathrm{~s}$, and 3 s states. In these terms, one may conclude from radial distribution curves that for a given nucleus, electrons of a given type spedfied by the letters s, p, d, and f are progressively further renoved from the nucleus as the principal quantum number increases. But, the eragies of the general atomic orbitals depends upon both the in and 1 numbers. Thus the energies of the 3s, 3p, and 3d atomic orbitals are not. identical, but increase in the indicated order. For a given value of \underline{n}, the energy increases with increasing values: of 1, and this spread of energy for each given principal quantun numer may become so great for higher values of n. that the sub-shelis overlap for different values of $n{ }^{1}$ For a given n number, the \underline{s} electron is the farthest from the nucleus and the p, d, and f electrons are progressively closer. Thus, an electron in a given state may be located on tho everage nearer the nucleus than an electron of lower energy (n smaller) provided the first electron is in a state of sufficiently large angular momentum (1 large). ${ }^{1}$

However, for a given value of n, the \underline{s} electrons penetrate most deeply of all; the electrons are the least completely screened and most tightly held. This results in the energies of the atomic orbitals increasing in order s, p, d, and f for a given value of the principal quantum nuaber. ${ }^{1}$

The following diagran (Figure 4) shows the radial
probability for lower states of hydrogen

Tigure 4

The reason for the variation of energy with 1 lies in what is colled screening of the outex electrons from the nucleus by the inner electrons. The outer electrons are acted upon by an effective field arising from the nucleus and the inner electrons, the latter acting in effect, to diminish the nuclear field. Those electrons which do not penetrate near the nucleus are well screened by imer electrons and hence are more loosely held than are electrons which approach the nucleus closely, and are thereby less well screened. The probability distribution function for various sets of guantum numbers show that an electron whose benavior is described by the d orbital does not in general penetrate as near the nucleus as one described by a p orbital for the same value of \underline{n}; in like manner, the electron described by a p orbital lie on the average, outside s orbitals.

Besides the principal quantun numbers (n) and the secondary quantum numbers (1), two other quantum numbers are used to characterize each distinct dynanical state of the system. The II or Ine number deteraines the component of $^{\text {n }}$ angular momentum along the Z axis or simply the direction in space and the shape of the orbital. The \underline{m} number is dependent on the 1 number and may have any integral value between $+\underline{1}$ and $-\underline{1}$ including 0 . The $\underline{\underline{m}}$ number therefore, has $21+1$ possible values. The shape of the elliptical orbital may approximately be determined by allowing the 1 number to represent the radius of the minor axis of the ellipse and the \underline{n} nunber the radius of the major axis. The most eccentric orbital is $1=1$, where the electron may pass very close to the nucieus. Theoretically, the electron would pass through the nucleus if $\underline{l}=0$ or there was no angular momentum ${ }^{1}$

In 1925, Uhlenbeck and Goudsmit showed that certain properties associated with atomic spectra can be explained if it is assumed that the electrons in the atom can be considered to have spin. Two types of spin possible are negative and positive, clockwise and counterclockwise. 4 So the fourth and final quantum number is \underline{s} or m_{s} which detemanes the pairing of electrons in an orbital. Actually, the electrons do not spin in the true usual meaning of the word.

This now brings us to the Pauli Exclusion Principle, which states that no two electrons in an atom can have the same values for all the guantum numbers that are necessary
to completely describe the state of an electron. This is because no. two electrons can occupy the same space at the same time. ${ }^{2}$

The principle leads to a periodic structure of the elements since successive electrons must occupy the successive energy levels in accordance with the development of the numers.

To briefly sumarize, each energy state is specified by a particular value of n. In general, however, there are for each value of \underline{n} several possible different values of 1 ($0,1, \ldots \mathrm{n}-1$). Furthermore, for each 1 value, there are $21+1$ different values of m possible (-1...0....t1). For each \underline{m} there is a spin property associated such that the spins must be opposite, therefore, there are two values for each \underline{m} designated $a s+1 / 2$ and $-1 / 2.1$ Finally, no two electrons can have the same four quantum numbers. Therefore, it is possible to sum up the number of different electrons in each shell, as is partially show in Figure 5.

Pigure 5

If we were to examine the inert gas Radon, with 36 electrons $(2,8,18,32,18,8)$ we would find something significant about the completed electron shells having observed numbers of electrons. The completed shells, 2,8,18 and 32, fit a general scheme of $2 n^{2}$ where \underline{n} has the values of $1,2,3$, and 4. ${ }^{2}$ This formula is used to deternine the total number of electrons that each shell may hold.

QUANYU NU BERS AND THE PERIODIC TABLE

The mextmuan number of electrons in the first level is two and they have at least one guanturn number that is different. This number is associated with the spin of the clectron for the two electrons in the first level spin in opposite directions. In an atom, any two electrons that have the same guantum numbers except for the spin numbers are called pairs. ${ }^{3}$

In the second level, there are four possibilities or orbitals. One of these is spherically symmeterical but further removed from the proton than the lowest energy level. The symbol, 2s, is used to distinguish its energy and shape. The other three possibilities are mutually perpendicular orbitals which cre described as pairs of spheres tonching each other at the proton and are described as $2 \mathrm{p}_{\mathrm{x}}$, $2 \mathrm{py}_{\mathrm{y}}$, and $2 \mathrm{p}_{\mathrm{z}}$. 4 In higher shells, the shape of the s and p orbitals are the sane but further removed from the nucleus. The d orbitals have five possible arrangements, described as $d_{z y}, d_{y z}, d_{z x}, d_{x}{ }^{2}-y^{2}$, and $d_{z}{ }^{2}$. They all are
four directional in space, shaped like four ellipses, all touching at the proton. The first three are in orientation about the axis of a three dimensional graph. The fourth is turned to coincide with the x and y axis and the fifth has two large lobes corresponding to the z axis and Lwo smaller lobes perpendicular to these larger lobes. The \underline{f} state has seven possible arrangements, but is too complicated to iIIustrate here.

If there are an insufficient number of ele ctrons in an atom to fill all the orbitals in a shell with pairs, then the electrons tend to arrange themselves with one electron per orbital. Only after each orbital has one electron do the electrons begin to pair off with opposite spins.

A simple shorthand methoel is used to indicate electron configuration.

Oxygen $\quad 1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}_{\mathrm{x}}{ }^{2}, 2 \mathrm{p}_{\mathrm{y}}{ }^{1}, 2 \mathrm{p}_{\mathrm{z}}{ }^{1}=2$ pair -2 singles
Carbon has two possible arrangements because of its ability to form hybrids. ${ }^{2}$ It may exist as one pair and two singles or as four singles, the latter being more comuon.

The building up of complex atoms is seen to follow a simple and regular pattern for the first twenty elements, and then to exhibit somewhat more erratic behavior. It ... must be remembered that the order of energies is not exactly the same for all atoms and there will be a few discrepancies or deviations from the expected order in the case of atoms of moderate to large atomic number. The first twenty electrons fill the 1s,2s,2p,3s,3p,
and 4 s subshells. The 2lst electron goes into the 3 s subshell which is not the valence or outer shell. The 3d level fills with 10 electrons (21 to 29) before the 4 p sub-shell begins to fill and electrons again go into the valence sheli. This gives a series of ten elements with only two electrons in the outer shell and a partly filled inner sub-shell. Under these conditions, the series is called a short transition metal series. Two similar series occur from yttrium to silver (39 to 47) where the 4 d sub-shell is filling and lutetiuan to gold (71 to 79) where the 5 d level is filling. Two long transition series with fourteen electrons in each series also occur. The Lanthanide Series (57 to 7l) is formed as the $4 f$ level is being filled. \mathbb{R} similar series, called the Actinide Series, starts at element 89, where the 5 f sub-shell starts to fill. ${ }^{5}$. At present, the Actinide Series is not complete. Theoretically, when it is completed, another short transition series of ten elements will fill the 6 d level and the shell will be completed at element 118 with the filling of the 7p representative elements. Elenent 118 should be an inert gas as are all the elements that have complete \underline{s} and \underline{q} orbitals. ${ }^{3}$

In none of the elements how known or likely to be prepared in the near future does the 0 . shell become completely filled, since it requires 110 electrons to fill it and the electrons enter the sixth and the seventh shells before the fifth shell becomes filled. ${ }^{4}$ That such
large atons do not exist seems not to result from chenical. fectors concerning the extranuclear electrons and the stability of the muclous-electron systen, but rather from physical considerations of stability within the atonic nucleus itself.

ITTMRETURE CMTED

1. Detnberg, Jacob; Argersinger, illian J.; and Griswold, Emest. Inorganic Chemistry. Bosto:: D. C. Beath and Company, 1960.
2. Rochow, Eugene G., and Wilson, Fine Kent General Chemistyy - E Topical Introduction. Nev Foxk: Jom Hiley and Sons, Inca, 1954.
B. Bextox, John F., and Steiner, Luke E. Jodern Chenistry. Englewood Cliffs, New Jersey: Prentice-Hen, Inc., IgJs.
3. Eutchinson, Eric. Chentstry - The Elements and Theix Recotions. Pailadelphia: . D. Saunders Company, 1959.
4. Mack, Edvord; Garrett, Slfred Benjonin; Haskins, Joseph Predic; and Verhoek, Frank Henry. Texbook of Chemistry. Wew York: Ginm and Company, 1956.

VITA
John Viles Akey
Candicate for the Degree of
Master of Science

Report: BASIC PRINCIPLES AMD APPLICAPIONS OF OUAMTUN MECHANICS

Najor Field: Natural Science
Biographical:
Personal Data: Born in Vray, Colorado, January 19, 1934, the son of Ellis N_{N}. and Lucile C. Akey.

Education: Attended grade school, junjor high and graduated from Wray High School, Wray, Colorado, in May, 1951: received the Bachelor of Science degree from Colorado State University, Fort Collins, Colorado, with major in Agriculture and minors in Physical and Biological Sciences, in June, 1955; attended Denver University, Denver, Colorado, and Colorado University, Boulder, Colorado, during the summer of 1956; attended Syracuse University, Syracuse, New York, during the sumer of 1957; attencled Baylor University, Waco, Texas, during the summer of 1958; completed the requirements for the Master of Science degree in May, 1961.

Professional experience: Taught science and math with coaching at Eckley High School, Eckley, Colorado, from September, 1955 to May, 1956; taught science with coaching at Wray High School, Wray, Colorado, from September, 1956 to May, 1960.

Member of: National Education Association; Colorado Educotion Association; National Science Teachers Hssociation; Colorado Science Teachers Essociation; Eest Yuma County Education Association; Lancer's; Alpha Zeta; Omicron Delta Kappa; Phi Delta Kappa.

