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Abstract

EXPLOITING HETEROGENEOUS MULTICORE PROCESSORS

THROUGH FINE-GRAINED SCHEDULING AND

LOW-OVERHEAD THREAD MIGRATION

Lina Hakam Sawalha, PhD
The University of Oklahoma, 2012

Supervisors: Ronald D. Barnes
Monte P. Tull

Heterogeneous (also known as asymmetric) multicore processors (HMPs)

offer significant advantages over homogeneous multicores in terms of both power

and performance. Power-efficient cores can be paired with higher-performance

cores to achieve advantageous power/performance tradeoffs. Particular cores

could also be tailored to efficiently meet the demands of particular applica-

tion domains. Unfortunately, HMPs also create unique challenges in effective

mapping of running processes to cores. The greater the diversity of cores,

the more complex this problem becomes. Existing dynamic scheduling ap-

proaches for HMPs fall into two categories: sampling and prediction. Sam-

pling approaches permute running applications to across core types to find

the best-performing assignment. This sampling step hurts performance and

power due to time spent migrating threads through non-optimal assignments.

Alternatively, prediction-based approaches estimate the performance for each

application on different types of cores and choose the schedule with the best

x



estimated performance. Prediction eliminates the cost of sampling but may

result in sub-optimal scheduling decisions. This dissertation introduces new

and novel phase-identification-based online schedulers for HMPs that combine

aspects of both sampling and prediction approaches by identifying phases of

execution (instruction sequences with similar behavior), sampling new phases,

recognizing repeating phases and reusing recorded phase information to predict

the best performing schedule and optimize the schedule for either performance

or power consumption. While previous approaches utilized only phase-change

detection to begin evaluating new schedules, the proposed approaches recog-

nize the current phase of each executing thread and reuse phase information

recorded in a Signature History Table when the same or similar behavior of

programs reoccurs. This dissertation further proposes machine-learning based

schedulers that learns effective scheduling policies using the same characteris-

tics of these program phases.

Exploiting differences between relatively short duration phases using

the presented scheduling techniques results in frequent thread migrations that

can harm performance. Operating system (OS) context switching can be time

consuming. To reduce this context switching overhead, a context switching

circuit that both accelerates thread switches among cores in HMPs and reduces

switching cost within each core (multitasking) is further introduced in this

work. This novel context switch circuit enables low-overhead hardware-level

thread migration between cores on a chip and results in up to1380X speedup

as compared to an OS context switch. Together with the presented scheduling

approaches, this mechanism enables efficient and fine-grained scheduling for

HMPs.
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Chapter 1

Introduction

As microelectronic technology has advanced, transistor sizes have become smaller,

and the number of transistors on a chip have increased. This allows computer

architects to place more hardware logic on the same chip area. Architects im-

proved processor performance by building deeper pipelines to increase processor

frequency, building larger components such as caches and branch predictors to

increase the number of instructions per cycle, and exploiting instruction level

parallelism (ILP) to increase the number of executed instructions per cycle. Re-

cently, power constraints have limited these increases in frequency to improve

performance. Increasing performance by only increasing frequency is infeasible

due to the amount of power consumed, heat generated and cooling required

to prevent the processor from damage. Achieving higher performance through

exploiting ILP almost reached the limit because it depends on the number of

independent instructions that can execute simultaneously for each thread or

application. With the contemporary limits on higher frequency processors and

the small room for improvement that can be achieved by exploiting ILP, com-

puter architects have moved to implementing increasing numbers of processing

cores on the same chip to achieve improved system performance. A multicore

processor implemented on a single silicon die is also known as chip multipro-

cessor (CMP). CMPs allow users to run multiple applications in parallel. They

also allow multithreaded applications, however, they do nothing to accelerate

1



the sequential programs or sequential regions of programs.

Most of the currently available CMPs are homogeneous; each processor

core is identical to other cores on a chip. Homogeneous multicore processors can

be targeted for either single-thread efficiency, or thread-level parallelism (TLP),

or specific domain applications. However, future high-performance processors

are expected to be heterogeneous with larger number of cores than those cur-

rently available [25]. Heterogeneous multicore processors (HMPs) are CMPs

that combine different types of processing cores on the same die area. While

homogeneous CMPs are easier to design and verify, heterogeneous architec-

tures can be exploited for power efficiency and targeted for performance or

domain specific applications. However, HMPs create new challenges for de-

signers and/or programmers in mapping applications to the different types of

cores. Because user applications are heterogeneous in natures, they differ in the

amount of resources they require, power they consume and performance they

result in, heterogeneous multicore processor serves those applications’ needs

more efficient than homogeneous processors. Moreover, those applications may

change their behavior over time. A static assignment that maps applications to

core before hand does not adapt to the dynamic workload changes and can re-

sult in a decreased performance and increased power consumption. Thus, a dy-

namic scheduling mechanism is required to adapt to the dynamically changing

workloads, and improve system performance and/or reduce power consump-

tion.

This dissertation demonstrates that fine-grained online scheduling tech-

niques with fast thread migration mechanisms can maximize performance and

minimize energy consumption for HMPs. The proposed scheduling techniques

2



identify changes in applications behavior to re-evaluate the current schedule.

The techniques combine both sampling and prediction approaches to adapt to

dynamic changes in workload behaviors and find the best map of threads to the

dissimilar cores in HMPs. While frequent sampling (permuting applications on

the different types of cores to find the best thread-to-core map) hurts perfor-

mance, prediction (anticipating the performance for different thread-to-core as-

signments) may not produce accurate results and may hurt performance. Com-

bining both sampling and prediction approaches can result in better throughput

through performance sampling when a new behavior of a thread is encountered

and predicting system’s throughput of different possible assignments for new

and repeating phases. However, fine-granularity scheduling results in frequent

thread migrations, which causes performance degradation when performed in

software. This dissertation further proposes hardware/software cooperative

techniques that reduces the cost of thread migrations.

Processing cores in an HMP contain a mix of two or more general pur-

pose processors, special purpose processors, accelerators and/or programmable

logic such as field programmable gate arrays (FPGAs). All cores can either

share the same instruction set architecture (ISA), execute subsets of an ISA,

or each core (or a set of cores) can execute a different ISA. This work utilizes

single-ISA HMPs where all cores execute the same ISA, but can be applied for

other types of HMPs as well. Single-ISA heterogeneous systems lack the spe-

cialization of the instruction set that could be found in a general heterogeneous

system, but maximize the flexibility in scheduling or mapping computation to

processors. In such systems, any processing core may run any application

thread. However, not all cores provide equal levels of performance or efficiency.
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1.1 Motivation and Challenges for Heterogeneous Mul-
ticore Processors

According to Moore’s Law [51, 68], the number of transistors on an integrated

circuit doubles every two years as the size of transistors becomes smaller. Ex-

ploiting this, computer architects make use of the extra transistors on a chip to

improve systems’ throughput by: increasing the frequency( by exploiting deeper

pipelines), improving the number of instructions executed per cycle (through

enhanced branch predictors, caches, instruction dispatch and the number of

execution units) and building more processing cores on a chip. With multiple

cores, users can run more applications or threads in parallel, which leads to an

increased system’s performance. HMPs can further increase the performance

of a system by serving a wider range of applications more efficiently than ho-

mogeneous CMPs. Heterogeneous multicore processors can efficiently execute

both single-threaded applications and parallel (TLP) applications. HMPs can

be exploited for both performance and power. Some processing cores on an

HMP can be built to target some domain specific applications.

The number of applications that support multiple threads is increas-

ing. Thus, the ability to handle multiple parallel threads is crucial for high

performance processors. Designers aim for a large number of cores to support

the execution of a large number of parallel threads. Numerous simple, power-

efficient cores are more desirable than a few high performance cores in this case.

While executing multiple parallel threads is crucial for parallelizable program

pieces, handling the serial part of program is vital for the overall system per-

formance [32]. Amdal’s Law [3,32] states that the speedup of a program using

multiple processors in parallel is limited by the time needed for the execution of

4



sequential fractions of the program. Hence, a high-performance core is desired

for the serial part of a program. For these reasons, a heterogeneous mix of

cores are being considered.

With heterogeneous cores, a processor can have more processing cores

compared to a homogeneous processor, which contains high single-thread per-

formance cores, occupying the same area [42]. For instance, a small in-order

core occupies less area than a big powerful superscalar out-of-order core. Hav-

ing more processing cores allow the system to execute more threads in parallel

and service interrupts simultaneously. In HMPs, dissimilar types of cores re-

sult in different performance for any given application. In addition, a typical

application’s behavior changes over time, thus transitioning through distinct

program phases [44]. Each phase of execution has different characteristics that

may lead to a different behavior of the application or thread. These charac-

teristics include the type and number of executed instructions, the degree of

instruction-level parallelism and the utilization of available resources. Thus,

each phase of a thread may result in different throughput. For example, a pro-

gram phase that contains many memory accesses with last-level-cache misses

may perform much better running on an out-of-order processor core than on

an in-order core, due to the out-of-order core’s ability to better tolerate long,

variable latencies.

1.1.1 Challenges of Designing Heterogeneous Multicore Processors

In addition to the increased core design and verification complexity, there are

several challenges in designing HMPs–based system. Some of the challenges

include: efficiently scheduling threads to the different processing cores, switch-
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ing threads among cores, memory design and managing core interconnection

overheads.

Scheduling Tasks on Heterogeneous Multicore Processors

Effective scheduling of threads on HMPs can be a more difficult problem than

scheduling for homogeneous multicores, because of the difference between the

processing cores. These differences can include the microarchitecture, numbers

and types of execution units, sizes of execution units, sizes of local caches, types

and sizes of branch predictors, ISA, etc. An efficient scheduling algorithm maps

threads to cores by taking into consideration the characteristics, behavior and

relative performance of applications while executing on cores of the various

types, and matching them to the relevant characteristics of the cores.

Moreover, applications change their behavior over time, such that some

execution phases may have different behavior characteristics and performs bet-

ter on a different core type. A thread might achieve the best performance when

running on one core for some phases, and running on another core for some

other phases. While static scheduling approaches (offline thread-to-core as-

signments) provide a fixed assignment of applications to cores before execution

and avoid thread migrations, dynamic schedulers are capable of reassigning

threads online to adapt to the dynamic changes in workload behavior. A dy-

namic scheduler can benefit from the heterogeneity in the system to increase

applications performance and/or reduce their energy consumption.
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Thread Migration

The operating system (OS) typically is responsible for switching the contexts of

running threads. With time-multiplexing between threads, the CPU saves the

context of the old thread and launches another thread. Similarly, when a thread

requests an IO (e.g. data from disk), the CPU does not wait for the request

to be served (reading to finish). Instead, it switches to another thread, and

when the first thread finishes reading, the CPU is interrupted with the result

of the read. In HMPs, the same need for operating system context switches

obviously exists. However unless a single, fixed core assignment is used, the

CPU needs to be able to switch a thread among its cores depending on the

thread’s relative characteristics and behavior in the current phase of execution.

The overhead and extensive computations associated with context switching in

software limits the number of switches per second for a CPU. Thus, enabling

more frequent or fine-grained thread reassignments in HMPs requires a faster

thread migration mechanism among cores.

1.2 Dissertation Motivation

As an example of the varying behavior of a program, figure 1.1 shows the num-

ber of executed instructions per cycle (IPC) over a short interval of 10,000

instructions of an application, bzip2, run on both in-order and out-of-order

cores. Figure 1.1 demonstrates that the behavior of bzip2 varies over relatively

short intervals of execution. For most intervals, the performance of the ap-

plication running on the out-of-order core is better than the performance of

the same instruction interval running on the in-order core. This is not sur-

prising as the out-of-order processor is able to dynamically exploit available

7



instruction-level and memory-level parallelism by selecting instruction execu-

tion in an order other than program order. However, the opposite is true for

other intervals. As can be more clearly seen in Figure 1.2, the in-order core

actually outperforms the out-of-order core for some intervals, due to its shorter

pipeline, larger cache and increased instruction issue width.
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Figure 1.1: IPC of an in-order core and an out-of-order core, for bzip2 applica-
tion.

In general, to maximize throughput by benefiting from the heterogeneity

in a system, an effective on-line scheduling technique that reassigns threads-

to-cores dynamically is required to adapt to the dynamic changes in workload

behavior [66, 67]. The dynamic scheduler is responsible for evaluating thread-

to-core assignments over time and changing the schedule to improve perfor-

mance and/or reduce energy consumption. One way to adapt to the dynamic

changes in workload is to detect relatively short changes in program behavior

and re-assign jobs to cores on the fly. This work represents an adaptive online

scheduler for HMPs, which detects fine-grained changes in programs’ behavior
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Figure 1.2: The ratio of IPC of an in-order core over an out-of-order core, for
bzip2 application.
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Figure 1.3: The performance of applications on a quad core processor using
different scheduling granularity.

and efficiently reassigns threads to the different cores on a chip whenever a

change in a program’s behavior or a new phase of execution is detected. The

scheduler keeps track of active threads behavior (or phases of execution) and

their performance or best assignment, recognizes recurring phases and reuses

the recorded information to predict the best map of threads to the cores.

Figure 1.3 shows the results of executing four-tuple applications on a
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quad-core processor with different sizes for windows of executed instructions,

over which execution phases are detected. The figure demonstrates that, with

ignoring context switching overhead, exploiting shorter changes in program be-

havior can result in an improved performance. However, fine-grained schedul-

ing yields a large number of thread switches among the heterogeneous cores.

Frequent thread migrations hurt performance. Thus, to support fine-grained

scheduling and to overcome the overhead of thread migration, a faster context

switching is required.

1.3 Dissertation Contributions

This dissertation makes the following contributions:

• It analyzes the different design options of HMPs as well as industry trends

for building HMPs, and it proposes different designs for single-ISA HMPs.

• It proposes online scheduling algorithms that adapt to fine-grained changes

in programs’ behavior to benefit from the asymmetry in the design to

maximize performance and minimize energy consumption. The schedul-

ing algorithms combine both sampling and prediction approaches to pro-

duce more accurate decisions for both performance and energy consump-

tion.

• It introduces a machine learning technique to make the schedule intelli-

gently learn when to switch to a different assignment to maximize per-

formance.

• It demonstrates that the finer the granularity of scheduling, the higher

the performance of HMPs can be–ignoring the cost of context switching.
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It also analyzes both the direct cost and indirect cost of thread migrations

between the cores on a chip.

• It proposes a hardware switching circuit that drastically reduces the direct

cost of context switching, the cost of copying the processor state.

1.4 Dissertation Organization

This dissertation is organized as follows: Chapter 2 provides background in-

formation and related work. Chapter 3 shows the design, simulation and eval-

uation parameters used through all the dissertation. Chapter 4 introduces

different scheduling approaches for HMPs. Those approaches are applied to

scheduling for both performance and energy consumption. The chapter also

provides comparisons between my scheduling approaches and other methods.

Chapter 5 analyzes the overhead of context switching and provides solutions

for the direct cost of thread migration. Chapter 6 proposes a reinforcement

learning-based scheduling for many-core processors. Finally, Chapter 7 con-

cludes the dissertation and provides future work.
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Chapter 2

Background

In the history of computing, there has been three main computing domains:

high-performance computing domain, personal computing domain and embed-

ded computing domain. The high performance computing domain concerns

with multi-threaded and multiprogram applications throughput. It serve multi-

program and multithreaded applications through server systems. The personal

computing domain concerns with single-application performance. The demand

of personal applications performance was at the beginning through personal

desktop computers. The embedded computing domain concerns mainly with

power-consumption and serving real-time applications. There are several em-

bedded systems that serve the demand of reduced power consumption, such as

cell-phones, tablets, aircraft controllers, etc.

Furthermore, there has been many applications and devices that lie in

the intersection of some of these domains such as personal laptops. When

laptops first came to the market, they were designed to serve both demands

of single-application performance and low-power consumption. Recently, there

is a convergence in computer architecture such that many applications and

devices requires a sufficient service level for the three demands. For example,

most of the mobile devices today such as laptops, tablets, notebooks and cell

phones contain multi-core processors to serve more than one application and
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at the same time single-application performance is important. In addition,

battery life in mobile devices is a vital issue, thus these processors are designed

to consume less power than processor designed for other applications.

2.1 Multicore Processors

The first microprocessor, Intel 4004 [2], was introduced in 1971. It consisted

of only 2300 transistors and operated at 784KHz. Since then, the number of

transistors that microprocessors’ manufacturers are capable of fabricating on

a chip has doubled roughly every 18 months, closely following Gordor Moore’s

famous observation [51]. Computer architects has used the increased number of

transistors to improve performance by increasing parallelism through additional

components on chip and increasing frequency through ever-deeper pipelines.

The frequency of current processors has reached the GHz scale. However,

significantly improving the performance of monolithic processors by increasing

frequency is no longer an option for a cost-effective design because of power

and thermal limitations. The dynamic increasing the frequency of a processor

increases the dynamic power dissipation linearly as shown from Equation 2.1

below:

P = ACV 2F (2.1)

where P is the dynamic dissipated power, V is the voltage, F is the operating

frequency and A is the activity factor. However, frequency is also closely re-

lated to operating voltage making the relationship super linear. More dissipated

power yields more generated heat; this often means that more expensive heat

dissipation methods are required. Moreover, improving performance through

extracting instruction-level parallelism (ILP) has reached diminishing returns.
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Dynamically finding this parallelism requires power-hungry support and re-

quires larger numbers of independent instructions that are often not available

in typical programs. In addition, exploiting increased ILP increases the veri-

fication complexity and cost. For all these reasons, designers have moved to

more power-aware and complexity-aware approaches to computing.

To benefit from the increased number of transistors on a chip to improve

performance, architects have added more cores on a chip, which is known as

chip multiprocessors (CMPs). CMPs improve the system performance by al-

lowing multiple applications or threads to run on parallel. Instead of looking

for concurrency at the instruction-level, multicore processors looks for concur-

rency at a coarser granularity–thread-level parallelism (TLP). Multi-threaded

applications execute threads on different cores and communicate with each

other through message passing or shared memory. In addition, parallelizing

applications is often a complicated work for some programmers. In a more

straightforward fashion, multicore processors can exploit a coarser granularity

than TLP at the application level parallelism. Multicore processors can exe-

cute more than one application simultaneously, known as multi-programmed

workload. Multicore processors can be either homogeneous processors where

all cores on a chip are the same, or heterogeneous where some cores on a chip

are designed differently than others. Most of the available multicore processors

are homogeneous containing multiple symmetric processing cores.

2.1.1 Homogeneous Multicore Processors

Multicore processors can be classified depending on their applications domain,

power/performance, memory model and architecture design [10]. With contem-
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porary power limitations, power/performance tradeoffs are becoming the main

processor design concern. Although there has been convergence in computer ar-

chitecture, most multicore processors lie on two points in the power/performance

range: energy-efficient processors and high-performance processors.

Energy-Efficient Homogeneous Processors

Typical power-efficient processors are composed of small identical cores, usually

with in-order execution model, or small, power-efficient out-of-order execution

model. In in-order processors, the pipeline executes instructions in program

order. Out-of-order execution model reorder instructions and execute them

out of their program order to increase the number of instructions executed per

cycle, while preserving the dependency order or between instructions. Power-

efficient homogeneous processors can be further classified to either low-latency

or high-throughput processors.

For applications where processor’s power-consumption is very important

such as mobile devices, few power-efficient low latency cores are used. However,

in mobile devices, along with power consumption, applications performance

is also important. Combining both demands, power-efficient with relatively

low-latency processors are desired for real-time and mobile applications. For

instance, ARM’s cortex A9 MPCore processor can contain up to four symmetric

cores on a chip. Each processing core contains an out-of-order eight-stage

pipeline [4]. Cortex A9 provides relatively low-latency (or hight-performance)

in low-power constraint devices such as smart phones, digital TVs, etc.

The second type of power-efficient homogeneous processors is the high-

throughput processors where the system throughput is the main concern. In
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parallel computing, many processing cores are desired for multithreaded ap-

plications to execute many threads simultaneously. Small, power-efficient pro-

cessing cores occupy less area than larger aggressive cores, hence more cores

can be fabricated on a single chip than larger cores. In addition, small power

efficient cores consume less power and require less sophisticated cooling than

larger aggressive cores. Because of their small area and reduced energy con-

sumption, those power-efficient cores are desired for parallel applications where

single-thread throughput is not as important as the whole system throughput.

In this case, more executing threads results in an increased throughput even

if the single-thread performance is lower than that of a higher performance

processor. This type of processor usually contain several small in-order cores

to support a large number of threads with low power consumption.

An example of the high-throughput power-efficient processors is Intel’s

single-chip cloud computer (SCC) [1]. The SCC is a research chip that Intel

built to study many-core CPUs. The SCC consists of 48 cores, where each

couple of cores form a tile. Each core is based on a simple, in-order processor.

The SCC tiles are connected using a 6x4 synchronous mesh fabric [33]. The chip

has multiple voltage and frequency domains and can be dynamically targeted

for fine-grain power and performance management.

A group of researchers in MIT developed the Raw processor [83]. It is

made up of a set of programmable tiles that are connected through a tightly in-

tegrated programmable interconnects. Each tile contains an in-order pipeline,

and private data and instruction memories. The Raw processor is mainly tar-

geted for parallel and multimedia applications, and it allows for custom opera-

tions. This domain-specific application processor supports several multimedia
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applications or threads at the simultaneously while the over-all system through-

put is the main concern.

One of Sun’s multicore processors is the UltraSPARC T-1 [39]. This

processor consists of eight simple in-order four-way simultaneous multithreaded

cores. The T-1 is targeted at multithreaded applications. Thus, up to 32

threads can execute simultaneously on the processor. UltraSPARC T-1 may

result in a lower single-thread performance than high-performance processors,

but it increases system throughput by supporting the execution of many threads

simultaneously. This processor is suitable for servers that does not require huge

amount of computations such as web servers.

High-Performance Homogeneous Processors

Unlike the power-efficient processors described above, high-performance mul-

ticore processors are typically composed of a few larger aggressive superscaler

cores with out-of-order execution model than the power-efficient cores. This

type of processors aim for the highest performance of single-thread applica-

tions. This type of processor can be targeted for a very high-performance

applications.

Intel has recently produced the latest in a series of multicore processors.

Core i7 is an Intel’s quad core processor with hyper threading (HT) technology,

Intel’s version of simultaneous multithreading. With HT, two threads can

execute simultaneously on each core. The highest end version of the i7 has six

cores and is capable of handling 12 threads simultaneously. Because Core i7 is

designed for servers and desktops, it results in high performance for individual

threads. However, it contains fewer cores and less multithreading support,
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and is much less power efficient than small power-efficient cores such as the

UltraSpace T-1 and T-2.

2.1.2 Heterogeneous Multicore Processors

A heterogeneous multicore architecture is one system design approach to meet-

ing user’s expectations of increased software capabilities and performance even

in the presence of tight power constraints. By balancing specialization, single-

thread performance and efficient parallel multiprocessing, such systems have

the potential to outperform homogeneous architectures while at the same time

providing a more power-efficient solution.

When designing a heterogeneous multiprocessor system, the choice of

the different sets of processor cores is crucial for power, performance and pro-

grammability. Some processor cores may produce higher single-thread perfor-

mance but require significantly more power or greater chip area. Cores may

have different number of execution units, support varying degrees of out-of-

order execution, have a different type/size of branch predictors, and feature a

different size of private caches. The power consumption and die area require-

ments of each core play important roles in choosing the cores in a heterogeneous

multicore processor.

Heterogeneous multicore systems can either be composed of processing

cores that execute specialized instruction sets for a particular domain, or they

can execute the same instruction set but feature heterogeneity in the types

of characteristics mentioned above. Today, most heterogeneous systems fol-

low the former approach. For example, IBM’s Cell Broadband Engine [31] is

a heterogeneous multicore processor targeted for specific applications related
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to streaming media and similar scientific applications. The Cell processor is

composed of one Power Processing Element (PPE), and eight Synergetic Pro-

cessing Elements (SPEs). The PPE is a two-way multithreaded general purpose

core, which handles most of the control and coordination and acts as the con-

troller for the eight SPEs. The PPE is similar to a 64-bit PowerPC (PPC)

RISC processor. The SPEs are single-instruction multiple-data (SIMD) vector

processors with instruction sets focused on SIMD vector instructions, similar

to the SIMD vector instructions on the PowerPC. By combining one general

purpose core with 8 small but computationally powerful cores, the Cell is an ef-

ficient and high performance processor for the multimedia application domain.

Similarly, multicore architectures [13] that combine general purpose process-

ing units with specialized graphics processing units (GPUs) offer the exciting

promise of exploiting GPU SIMD hardware for accelerating computation.

However, partitioning computation between disparate cores with dif-

ferent ISAs is a challenging task, and one that must be done at software de-

velopment level. Performing this partitioning automatically can be extremely

difficult. In one approach to partitioning Cell applications, Blagojevic et al. [9]

introduced a model of multigrain parallelism (MMGD) for parallelizing tasks

on heterogeneous parallel architectures. They utilized a phased hierarchical

task graph (HTG) to partition applications into multiple phases of execution

and split these phases into nested sub-phases and evaluated their technique

on a Cell Broadband Engine consisting of two PPEs (host processor unit) and

16 SPEs (accelerator processor unit). While approaches like this one for map-

ping application code to heterogeneous architectures are promising, multi-ISA

heterogeneous architectures make it difficult, if not impossible, to dynamically
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partition application threads using run-time information.

Recently, ARM introduced a heterogeneous multicore processor named

big.LITTLE [30]. This processor combines both a large superscalar proces-

sor (ARM Cortex-A15) for high performance, and a small in-order processor

(Cortex-A7) for energy efficiency that both execute the same instruction set

architecture. Two different implementations for this big.LITTLE processor ex-

ists. In one implementation, only one core is powered on at a time and the other

is turned off. For this implementation, applications switch transparently be-

tween the two cores; they switch to Coretex-A7 to reduce power consumption,

or to Cortex-A15 for increased performance. In the second implementation,

both cores are switched on if there are more than one application running.

Applications are statically mapped to their best fit core beforehand. While

static mapping can prevent thread switching between the two cores, my dy-

namic scheduling techniques with the low-switching overhead described in this

dissertation would work efficiently for this big.LITTLE processor and adapt to

the dynamic changes of applications’ behaviors.

Pericas et al. [57] proposed a flexible heterogeneous multicore processor

(FMC). The FMC allows changing instruction window size at runtime based

on an execution locality concept. Rather than allocating a single core for each

thread, FMC allows threads to use as many resources as they need from a pool

of available cores.

2.2 Scheduling Applications to Cores

Heterogeneity significantly increases the complexity of scheduling the differ-

ent types of applications on the dissimilar cores. Additionally, applications
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changes their behavior over time and adapting to these dynamic changes in

applications’ behaviors makes scheduling even more complicated. There has

been several work on scheduling for heterogeneous systems, such as heteroge-

neous multiprocessor systems [29, 55] and distributed systems [5, 6]. However,

scheduling for a single-chip heterogeneous multicore processor is different than

these larger systems because multiprocessors and distributed systems consist of

physically separated node locations. The time that is taken to migrate a task

from one processor node to another differs widely depending on the distance

between the two nodes. Distributed scheduling algorithms need also to account

for recovery from node failures and relocation.

To adapt to the dynamic workload and the different execution phases

of applications within a heterogeneous multicore processor requires dynamic

reassignment of threads or applications to cores. There are many previous

works that present scheduling algorithms for heterogeneous multicore proces-

sors. Each of these scheduling techniques can be classified as: static (off-line)

scheduling, static/dynamic scheduling and dynamic (on-line) scheduling tech-

niques.

2.2.1 Static (Off-line) Scheduling Techniques

In static scheduling approaches the processing core to which each application

will be mapped is decided prior to execution based on certain characteristics

of applications. Most HMP off-line schedulers rely on previous analysis of

benchmarks characteristics. In one such approach, after off-line profiling of mi-

croarchitectural independent characteristics, a signature is composed for each

application representing the resources required by that application [69]. These
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architectural signatures are inserted into the executable binaries of applica-

tions’ headers. The heterogeneity-aware signature-supported (HASS) scheduler

uses those signatures to estimate the performance of entire applications on the

different core types within an HMP, and maps applications to their highest-

performing core. This approach was evaluated on symmetric cores operating

under different frequencies using dynamic voltage frequency scaling (DVFS),

and did not consider different types of architectures.

Chen and John [16] proposed another static scheduling algorithm that

matches cores to programs. Similar to HASS, the scheduling software analyzes

program characteristics and the hardware configurations of each core. The

scheduler then matches runtime programs to cores depending on the charac-

teristics of the program, resource demands, and the physical characteristics of

cores. This algorithm looks at the inter-program diversity and does not adapt

to dynamic changes in workloads.

2.2.2 Static/Dynamic Scheduling Techniques

Static/dynamic schedulers combine both off-line analysis of applications and

on-line rescheduling of jobs to the processing cores. In one static/dynamic

approach, an offline program phase detection and marking were employed in

HMP scheduling [74]. Phase marker code fragments were instrumented at

statically detected phase transition points in application executable binaries.

These markers perform dynamic performance analysis of these phases and han-

dle threads’ reassignment. Similarly, Cong and Yuan [20] uses static analysis

to determine loops and function boundaries to determine program phases, and

optimizes the scheduler assignments for reduced energy-delay product (EDP).
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Instrumentation functions are inserted in the executable binaries of programs

at the boundaries of loops and functions. The instrumentation functions are

responsible for measuring the call time and number of instructions for each

loop and function call. A call graph is constructed from the detected loops and

functions, and then major program phases are identified. To overcome the loss

of performance due to thread migrations from one core to another, thresholds

are used for the number of instructions and invocations. At runtime, when an

instrumented code is reached, the EDP is predicted on both core types using

regression model, and the scheduler predicts the lowest EDP schedule.

The aforementioned approaches require offline analysis of program be-

havior. While the scheduling approaches presented in this dissertation exploit

the phase behavior of programs, they utilize a dynamic detection and identi-

fication of program phases that does not require special modification of code

to be executed. Rather than relying on application code to make scheduling

decisions as in [74], these techniques perform scheduling on a system-wide basis

in a way that is transparent to the running applications.

Chen and John [15] proposed an energy-efficient scheduling mechanism

for heterogeneous multicore processors. Instruction-level parallelism, branch-

transition rate and data dependency distance characteristics are chosen to mea-

sure the suitability of cores issue width, branch predictor size and L1 cache

size respectively. Programs are analyzed off-line for these three characteris-

tic. Fuzzy logic was used to combine the individual suitabilities, determine an

overall suitability that indicates a degree to find the best program-to-core map.

This approach requires previous analysis of programs and is not adaptable to

new applications.
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2.2.3 Dynamic (On-line) Scheduling Techniques

Dynamic schedulers are capable of changing job-to-core assignments on the fly

without the need for off-line analysis or profiling. In this way, they can adapt

to dynamic changes in program behaviors without prior profiling or analysis

of applications. In a heterogeneous multicore processors, dynamic schedulers

have increased potential to improve the system throughput through on-line

rescheduling by adapting to both changes in programs behavior and need of

resources. Dynamic scheduling techniques can be classified as: sampling, pre-

diction and sampling/prediction techniques.

Sampling-Based Scheduling Techniques

Kumar et al. [42] designed a sampling-based heuristic scheduling approach for

assigning jobs to cores dynamically. Like this work, they focused on single-ISA

heterogeneous multicore architectures in which cores can vary in performance

and power consumption but not in ISA. Their scheduling algorithm is divided

into two different phases, a sampling step and a steady step. In the sam-

pling step, all of the possible assignments of jobs to cores are examined and

a weighted speedup is recorded for each assignment. In their evaluation, each

assignment is run for two million cycles. Then the assignment with the best

weighted speedup was chosen as the schedule for the steady step. Calculating

the weighted speedup for this method requires before-hand knowledge of the

performance of each application executed along on the system. Becchi and

Crowley [7] proposed a similar approach called IPC-driven, in which an IPC

ratio between a fast core and a slow core is presented as a more practical eval-

uation criteria. In either approach, whenever an execution phase change is
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detected or a certain number of cycles elapsed, the dynamic scheduler begins a

new sampling phase. Note, that while both studies utilize a simple mechanism

to detect when a phase change occurs, they do not seek to identify the par-

ticular phases. This distinction with the study in this dissertation is further

clarified in Chapter 4.

A limitation of Kumar’s scheduling algorithm [42] is its inefficiency in

estimating the performance of particular mappings. The scheduler must ex-

amine all the possible assignments before it chooses the best assignment and

enters the steady step . For a small number of cores and core types, this may be

feasible but the number of possible mappings grows factorially with the number

of unique core types. It also grows linearly with the number of total cores for

fixed number of asymmetric core types. Thus, with a larger number of permu-

tations only some of the possible assignments can be attempted. Furthermore,

a significant amount of time is spent in the sampling phase, most of which is

spent with a sub-optimal thread-to-core assignment. This can significantly hurt

performance. The sampling approaches use coarse grain changes in program

behavior, however, performance sampling can happen during fine grain changes

in program behavior or during different sampling intervals, thereby misleading

the scheduler decision. For instance, if a thread transits through a short phase

that contains several last-level cache misses during one sampling interval and

then for the next sampling interval the application transits through a phase

with high instruction-level parallelism (ILP) the performance is different for

both phases even on the same core types. This may cause the scheduler to

choose a suboptimal assignment.

A scheduling algorithm called hierarchical hungarian was proposed for
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many-core HMPs is proposed [85]. The cores in a processor are divided into

clusters and the hungarian algorithm is applied for each cluster. Sampling is

used to get performance information of each application on the different core

types.

Prediction-Based Scheduling Techniques

The prediction-based scheduling approach relies on predicting the performance

of threads on different core types, and/or predicting the assignment of threads

on the different core types. In a related approach, Jooya et al. [37] introduced

the history-aware, resource dynamic (HARD) scheduler for heterogeneous chip

multiprocessors. The HARD scheduler performs reassignment of jobs to cores

when an application phase change occurs by “upgrading” or “downgrading” job

assignment to a higher-performance or more power-efficient core, respectively.

Like Kumar’s technique, the HARD scheduling approach relies on a change

in an application’s performance (in this case throughput and core utilization)

to detect a change in a program phase. While HARD avoids permuting ap-

plications amongst different types of cores, it relies upon a strict performance

ordering for processor core types. This may not always be the case, as some

cores may have better performance for certain application domains.

Other scheduling algorithms exploit off-chip performance, such as mem-

ory accesses, to detect changes in programs behaviors [40,60]. Such algorithms

do not account for the differences in the architecture such as the execution

units, pipeline, etc. [60]. In one approach, Koufaty et al. [40] correlates an ap-

plication’s behavior with internal (on-chip) and external (off-chip) stalls. They

estimate a bias for each application using performance counters that keep track
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of the external stalls. The algorithm uses overlapping windows of instructions

to calculate a running average of each of the metrics. The bias of an application

changes if the amount of stalls goes over or below a certain threshold. This algo-

rithm can be implemented with any type of operating system scheduler without

changing the properties of the scheduler such as responsiveness and fairness.

However, it periodically checks the load balance of the system and migrates

the thread with the highest bias to a “big” core. Saez et al modified the HASS

scheduler (discussed in Section 2.2.1) to dynamically assign threads to cores

by detecting program phases [61]. Similarly, the last-level cache miss rate is

used to estimate a speedup factor. Initially, the speedup factor is assigned to

a default value and after that it is calculated using the profiled information of

last-level cache misses. The scheduler detects coarse-grain program phases and

updates the speedup factor before making a decision.

Some scheduling algorithms for HMPs are concerned with multithreaded

applications performance [12, 43]. In the age-based scheduling technique [43],

the length of threads are predicted, using history of previous instances of code

for predicting the next barrier or end of thread. The threads with the longest

estimated run time are scheduled to run on the fastest cores. This schedul-

ing technique improves the throughput of parallel applications by overcoming

the barrier bottleneck through accelerating the longest thread. However, for

single-threaded applications workloads, this approach acts the same as static

approaches. Instead of measuring thread length, Poovey et al [12] measured

thread complexity through analyzing dependance chain. The scheduler evalu-

ates the current assignment every 100 ms and resets the dependence chain.

A dynamic scheduling approach for assigning threads in an HMP that
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includes a central processing units (CPUs) and a graphical processing unit

(GPU) was performed [46]. In [46], a dynamic compilation of programs to

native machine codes is performed at run time to adapt to changes in the envi-

ronment. The scheduler, Qilin, uses an empirical method to map computations

to cores. The first time a program runs on Qilin, it is considered a training

run. The input of the program is divided in two parts: one part runs on the

GPU and the other part run on the CPUs. The execution-time projections are

kept in a database, such that when the same program run again with different

input size, the execution-time projection stored in the database are used to de-

termine the mapping of computations to the processing cores. The algorithm

attempts to find the fraction of work to run on CPU to minimize execution

time. This method focuses on multimedia and parallel applications and as-

sumes that programs are repeated before their information are forced out of

the database.

The above prediction-based scheduling techniques rely on performance

estimation. Another way to predict threads-to-cores map is to learn over time

the best assignment that results in the best throughput when encountering

certain features of programs [26,87].

Prediction/Sampling Based Scheduling Techniques

Prediction/sampling scheduling approach combines both prediction and sam-

pling techniques to improve the performance of the system. While sampling

alone hurts performance when performed frequently, prediction may result in

sub-optimal assignments. Thus, combining both prediction and sampling im-

proves system throughput, by sampling when new behaviors of programs are
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detected and predicting when similar behavior are encountered again. This

type of scheduling techniques is used in this dissertation for scheduling on het-

erogeneous multicore processors because of its accuracy and reduced sampling

cost. Wu et al. [86] proposes a hardware/software co-designed heterogeneous

multicore processor that contains narrow out–of-order (OoO) with x86 ISA and

wide in-order (IO) very long instruction window (VLIW) virtual machine. The

code is dynamically translated from x86 to the VLIW machine. When the

code is running on OoO core, there is no need for dynamic translation and it

executes native machine code. Dynamic profiling is performed, and when one

or more hot spots are detected the code is dynamically translated and opti-

mized for the IO core. Two predictors are used to predict continuing on the

same core and to predict switching to the other core in case of sampling. The

first predictor compares data collected on both core types to decide whether to

stay on the same core or not. Continuation is allowed for only K continuous

times and then sampling is forced. If the scheduler predicts not to continue

on the same core, the other core is activated and sampling is performed for a

short interval to collect information. Based on the collected information the

scheduler decides whether to stay or switch again to the first core.

2.3 Context Switching

Scheduling jobs on heterogeneous multicore processors requires switching among

the different cores on chip frequently to benefit from the heterogeneity. Con-

text switching is the process of saving the central processing unit (CPU) state

(context) and restoring it when switching to another process. The conventional

mechanism for this migration is through software context switching. The con-
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text of a CPU consists of a process control block (PCB), which includes the

state of the process, CPU registers and information about memory manage-

ment. Context switching is time consuming and depends on the objects to

be switched–register, thread or process switching. It also depends on the size

of data to be copied, which in turn depends on the behavior of the running

program.

The OS is typically responsible for switching tasks to allow several

threads to share the CPU (time-multiplexing) and to be able to switch the

CPU to another thread when there is an interrupt or the current thread re-

quests to use an IO device. On the other hand, some processors (including

modern Intel x86 processors) have hardware support for context switching,

by saving the processor state in a system data structure called the task state

segment (TSS). The TSS consists of two types of fields: dynamic fields and

static fields. The dynamic fields include the general purpose registers and the

segment selector, while the static fields contain local descriptor table (LDT),

CR3 control register, stack pointers and I/O map address [35]. The TSS is

intended to automate switching between programs. However, it restricts how

OS programmers can configure context switching. Instead of taking advantage

of the TSS, many x86 OSs use their own context switching mechanism. For

instance, Linux does not use the TSS feature. Instead, it simply creates only

one TSS for each processor and modifies it for each process. However, Linux

does use the static fields of Intel’s TSS such as the control register CR3 while

switching tasks.

There are two types of context switching overhead: direct cost and in-

direct cost [45]. The direct cost includes the time copying the context of the
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CPU, such as CPU registers and TLB, and flushing the processors pipeline in

which the switched thread is running. The direct cost can be measured using

Ousterhout’s method by forking a child process and sending a message forth

and back between the parent and the child processes, using two pipes, periodi-

cally [56]. McVoy and Staelin improved Ousterhout’s technique by eliminating

system call overhead ( [22, 48]). The indirect cost comprises the performance

degradation of such a system caused by resource sharing. For example, switch-

ing a thread between two cores might result in more L1 cache misses and branch

miss prediction since the thread was using the previous core’s resources, which

in turn affects the performance of the system. The indirect cost of context

switch resulting from cache performance loss, ranges between several microsec-

onds to few thousands microseconds [45], [22]. Other researchers have also

examined the indirect cost of context switching for caches [50, 75, 76], and the

cost of context switching for branch predictors [18]. Some hardware efforts to

speed up context switch for ARM architecture are: fast address space switch-

ing (FASS) [84], and fast context switch extension (FCSE) [14]. Cho et al. [17]

proposed a protocol that is ensures a deadlock-free thread switches for fine-

grained migration architectures. Chapter 5 will discuss both types of switching

overhead and possible solutions in more details.

2.4 Program Phase Detection

Many applications exhibit behavior in which program execution occurs in dis-

tinct phases, where each phase consists of a set of code blocks that are executed

with a high degree of temporal locality. Many common types of programs ex-

hibit this execution phase behavior [44]. There are several different mechanisms
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which have been proposed to detect application phase changes. Some of these

techniques can be used to identify unique application phases.

In one of the single-ISA heterogeneous scheduling approaches described

in Sectiion 2.2, Kumar used a simple mechanism to determine when an appli-

cation’s phase changes by monitoring the instructions executed per cycle (IPC)

over some windows. When this value changes by more than 50% for one appli-

cation or by a total of 100% changes for all applications [42], a phase change

is said to have occurred. This approach makes no attempt to identify the indi-

vidual phases, but instead only detect coarse changes in program behavior. It

further lacks the ability to detect more subtle changes in application behavior

because it relies on a significant change in the IPC.

More precise phase detection methods rely on statistical sampling of

executing instructions. Such samples can be subsequently analyzed in software

to determine phase composition. Hardware performance monitoring counters

or the program counter can be sampled to gather low-overhead profiles, but

such profiles do not support the differentiation of one phase from another.

Basic block distribution analysis [70] combines intense, periodic sample-based

profiling to determine the composition of repetitive phases.

Special purpose hardware can be used to reduce the overhead of accurate

phase detection and identification. The hot spot detector [49] is a hardware

mechanism for detecting and identifying program phases based on the address

and taken/not-taken direction of retired branch instructions. Working set sig-

natures [23] can be used to provide an efficient, compressed representation of

an application’s phases, which are composed of windows of retired instruc-

tions. Exploiting the correlation between a working set phase and program
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behavior, this approach was used to control reconfigurable hardware resources,

and provides a relatively general mechanism for finding relatively short phases.

Sherwood et al. [72] used a similar technique but weighted the profiled code

by a phase’s frequency of execution. Their architecture provides an accurate

way of not only identifying program phases, but also predicting when a phase

change will occur and which phase will execute next.

Many performance metrics correlate strongly to application phases, in-

cluding cache behavior, branch predictor behavior, utilization of core resources

and IPC [72]. Any of the mechanisms for identifying application phases could

be used with our approach, but for the purposes of this work, I utilize the

relatively straightforward working set signatures mechanism [23], which is de-

scribed in more detail in Chapter 3. Only improved results from using more

accurate phase identification techniques are expected.
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Chapter 3

Methodology

This chapter describes the experimental setup and evaluation metrics used in

this work. It also includes a description and initial evaluation of some param-

eters of the phase detection method used in this dissertation.

3.1 Simulation Environment

The simulation environment used to evaluate the proposed techniques includes

both a cycle-accurate simulator and a simulation model described below.

3.1.1 Cycle-Accurate Simulation Framework

Detailed evaluations of the techniques proposed in this dissertation was per-

formed using a cycle-accurate simulation framework, Soonergy, a microarchi-

tectural simulator developed by the Soonergy Architecture Research Lab at

the University of Oklahoma [27]. This simulator provides timing simulations

comparable with a physical hardware design because it provides a cycle-by-

cycle timing and performance simulation. The simulator is based on the x86

instruction set architecture (ISA), and is developed to simulate different archi-

tectural designs (including multicore architectures) for performance and power.

The simulator runs on Windows platform systems and allows users to simulate

different processor configurations.

34



Two types of experiments were performed using Soonergy: single-core

simulations and multicore simulations. Single-core simulations are used to eval-

uate the different characteristics of the executed programs and as inputs for the

performance estimation model model described in Section 3.1.2. Each single-

core/single-benchmark ran for 300 million instructions. The Soonergy simu-

lator profiled performance and microarchitectural behavior. Multicore simu-

lations include heterogeneous mixes of different x86 cores. Different types of

cores are distinct in micro-architectural design including pipeline depth and

architecture, number and sizes of execution units, different cache sizes, and

branch predictors. Dual-core and quad-core simulations were performed. In

the presented experiment, the simulator runs all benchmarks on the multi-

core system simultaneously until the slowest benchmark executes 300 million.

Faster benchmarks execute more than 300 million by looping through bench-

mark’s trace files.

3.1.2 Performance Estimation Model

A model was developed to estimate multicore processor performance using sin-

gle core runs as inputs to the emulator. It specifically emulates different appli-

cation scheduling techniques for heterogeneous multicore processors (HMPs).

Because Soonergy is a detailed cycle accurate simulator, multicore runs are rel-

atively slow. Thus, it is time consuming to run many processor configurations

and all sets of benchmarks on Soonergy simulator. Instead a performance esti-

mation model was used to estimate the performance of HMPs using different

scheduling algorithms and different phase-detection parameters with all com-

binations of benchmarks. The model gives a reasonable performance estimate
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compared with the cycle-accurate simulator, such that initial evaluations for

core and parameter choices can be done using the model. Moreover, many more

results can be generated for different the configurations and combinations of

benchmark inputs.

3.1.3 Processor Configurations

Three different types of x86 cores are used for this study which I refer to as:

Corei7 like, Core2duo like and Atom like. The cores differ in the issue width,

cache size, branch predictors and other characteristics as shown in Table 3.1.

All cores share a last-level cache of 6MB for both dual-core and quad-core

processors. Single core runs included a last-level cache of 2MB, 1MB and

512KB for the Corei7 like, Core2duo like and Atom like cores respectively.

Table 3.1: Processor configurations.
Parameter Corei7 like Core2duo like Atom like

Pipeline Out-of-order Out-of-order In-order
Fetch width 6 4 2
Issue width 5 3 2

Number of stages 16 16 18
L1 cache 32KB 32KB 24KB
L2 cache 256KB - –

Branch predictor GShare (32KB) and Bimodal (4KB) GShare (32KB) and Bimodal (4KB) GShare (4KB)
Reservation station 36 32 –

Reorder buffer 128 96 –
Integer latency 1 1 1
Floating point 5 4 3
Packed latency 5 4 2

Multiplication/division latency 10 9 7(int), 8(fp)
L1 cache latency 4 2 2

3.1.4 Experimental Workload

A subset of SPEC CPU 2006 benchmark suite were simulated using Soonergy

simulator. The chosen benchmarks are the C and C++ written applications

that can be compiled with Visual Studio 10. Tables 3.2 shows a description of

these benchmarks. Many of the benchmarks have more than reference input

36



such as (astar (2), bzip2 (6), gcc (9), gobmk (5), h264 (3), hmmer (2), perl

(3), soplex (2)). Each of the reference inputs were considered individually.

Each application was executed for 300 million x86 instructions chosen from a

statistically relevant portion of the program. The SimPoint tool [71] was used

to determine the number of instructions skipped for each benchmark to reach

the 300 million instruction point.

Table 3.2: SPEC2006 benchmarks simulated.
Program Type Description

astar Integer Computer game, artificial intelligence, path finding
bzip2 Integer Compression program
dealII Floating Point Partial differential equations solver

gcc Integer C language optimizing compiler
gobmk Integer Artificial intelligence, game playing
h264ref Integer Video compression
hmmer Integer Search engine for a genetic database

lbm Floating point Computational Fluid Dynamics, Lattice Boltzmann
mcf Integer Combinatorial optimization

namd Floating point Scientific, structural biology, classical molecular dynamics simulation
omnetpp Integer Discrete event simulation
perlbench Integer Programming language

povray Floating point Computer visualization
soplex Floating point Simplex linear program solver

xalancbmk Integer XSLT processor transforming XML documents to html, text or other

Each application was executed on all of the core types described in Ta-

ble 3.1. The following statistics were collected: the number of instructions

executed per cycle (IPC), private caches miss and hit rates, shared-level cache

miss and hit rates, branch predictor accuracy and instruction-type mix. Fig-

ures 3.1 shows the percentage of all types of instructions for each program.

Figures 3.2 shows the performance of the benchmarks executed on the

three types of cores described earlier. In general, the largest superscalar core

(Corei7 like) outperforms both the other superscalar (Core2duo like) and the

in-order (Atom like) cores. However, over short windows of intervals, the
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smaller cores can result in better performance as illustrated earlier in Sec-

tion 1.2.

3.1.5 Evaluation Metrics

Choosing an evaluation metric is a critical issue for online schedulers. While

instructions executed per cycle (IPC) represents system throughput, using this

metric to evaluate different thread-to-core assignments favors high throughput

threads/applications over low-throughput ones. A fair metric that does not

favor threads over others is desired for improved system performance. Snavely

and Tullsen [73] proposed a weighted speedup as an evaluation metric that

provides an equal contribution of each thread to the total work. This evaluation

metric represents the summation of IPC ratios between each running thread on

its current core and the IPC of that thread while running alone on the system

(Equation 3.1)).

Weightedspeedup =
n∑

i=1

IPCthreadi−current−core

IPCthreadi−alone−on−system

. (3.1)

This evaluation metric is used by Kumar et al. [42] in their HMP scheduler

to evaluate all possible assignments. However, this evaluation metric requires

a previous knowledge of the IPC of each thread after running alone on the

system. Such metric is only feasible for online dynamic schedulers when the

final results of different scheduling approaches are evaluated and compared

with each other. In this study, a similar weighted speedup is used by dividing

the IPC of a thread for the current sampling interval over the best IPC across

all sampling interval on the different core types as shown in Equation 3.2.

This provides an intuition on how threads perform during different phases of
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Figure 3.2: A Comparison of the performance on three cores (Corei7 like,
Core2duo like and Atom like) described in Table 3.1 for SPECCPU2006.

execution. The IPC is calculated online for each thread over program sampling

intervals for each sampling occurrence.

Weightedspeedup =
n∑

i=1

IPCthreadi−currentcore

IPCthreadi−fastestcore

. (3.2)

3.1.6 Program Phase Detection Method

The phase-identification based scheduling mechanisms presented in this work

utilize and reuse performance and assignment information for previously en-

countered phases. A working set signature (WSS) approach was used to detect

and identify program phases [23]. A working set signature is a highly com-

pressed representation of a program’s working set of retired instructions. The

WSS approach uses non-overlapping windows of retired instructions to generate

programs signature for each window. In [23], a window size of 100k instructions

is used and a signature size of 256 to 1024 bits is proposed to capture reason-

ably sized phases within feasible hardware requirements. A signature identifies

a working set of instructions. During temporally local program segments, these
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signatures will be similar for several consecutive windows, thus composing a

phase. When the same program phase repeats at a later point in time, the

same (or very similar) signature indicates a repeated phase. This dissertation

proposes methods to exploit fine-grained phase detection and attempt different

relatively small window sizes and signatures. The next chapter includes an

evaluation of different window sizes and signature sizes for this phase detection

method.

The WSS is calculated using a portion of the bits of the program counter

hashed into a working set signature vector as shown in Figure 3.3. In the

presented evaluations, the least-significant 6-bits of the program counter are

excluded, corresponding to the instruction cache block size of 64 bytes. Thus,

each instruction in the same cache block will hash to the same bit in the

WSS vector. When an instruction that hashes into a particular bit in the

current signature vector is executed, this bit is set. That means, the process

of computing a WSS is that of setting specific bits in the current signature.

The signature is cleared at the beginning of subsequent windows and the next

window signature is computed.

A new phase is detected if the signature of the current working set is

significantly different from the previous one. The relative distance between the

two signatures is computed as the number of bit positions with different values

between the two signatures divided by the population count of ones in the

union of the two signatures. Because the boundaries of working set signature

windows and a program phase do not necessarily match, noise is often observed

when comparing two signatures. To account for this noise, a threshold of 50%

is used by [23] as well as my work. If the difference between the two signatures

41



Figure 3.3: Computation of current working set signature.

is less than 0.5, they are identified as the same phase.

To demonstrate that the phases are in fact highly correlated to the

performance of applications, several SPEC2006 benchmarks were evaluated on

different types of processor cores as described in Section 3.1.3. For each phase

in the application, the standard deviation of the IPC was computed across each

occurrence of the phase. IPC varies little across different occurrences of the

same phase. In particular, for applications that have strong phase behavior

for the segment of execution analyzed, IPC varies significantly less during the

same phase (including repeated occurrences of that phase) compared to the

variation in IPC over the application segment of execution. These results are

described in greater detail in Section 4. Since the IPC is relatively stable over

the execution of a phase, the IPC seen during the first instance of a phase is a

good predictor of the IPC of future occurrences of the same phase.

Figure 3.4 shows an example of applications phases over execution time.

The performance of xalan changes over time depending on its execution phase.

Each phase can consist of different numbers and types of instructions, different

42



0	  

0.5	  

1	  

1.5	  

2	  

2.5	  

3	  

3.5	  

4	  

4.5	  

1	  
56
8	  

11
35
	  

17
02
	  

22
69
	  

28
36
	  

34
03
	  

39
70
	  

45
37
	  

51
04
	  

56
71
	  

62
38
	  

68
05
	  

73
72
	  

79
39
	  

85
06
	  

90
73
	  

96
40
	  

10
20
7	  

10
77
4	  

11
34
1	  

11
90
8	  

12
47
5	  

13
04
2	  

13
60
9	  

14
17
6	  

14
74
3	  

15
31
0	  

15
87
7	  

16
44
4	  

17
01
1	  

17
57
8	  

18
14
5	  

18
71
2	  

19
27
9	  

19
84
6	  

20
41
3	  

20
98
0	  

21
54
7	  

22
11
4	  

22
68
1	  

23
24
8	  

23
81
5	  

24
38
2	  

24
94
9	  

25
51
6	  

26
08
3	  

26
65
0	  

27
21
7	  

27
78
4	  

28
35
1	  

28
91
8	  

29
48
5	  

M
ic
ro
-‐o
ps
	  p
er
	  c
yc
le
	  

Executed	  Instruc4ons	  of	  10k	  windows	  

Figure 3.4: Executed micro-operations per cycle over 10 000 instruction win-
dows for a CPU 2006 benchmark xalan.

caches miss and branch prediction behavior. The relationship between per-

formance characteristics such as L2 cache Misses is highly correlated to the

execution phases. Figure 3.5 shows how the number of L2 cache misses corre-

sponds to the execution phases in Figure 3.4.
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Figure 3.5: The number of L2 cache misses for xalan.
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Chapter 4

Scheduling for Heterogeneous Multicore

Processors

Heterogeneous systems could take advantages of ISA diversity by matching ap-

plications to cores whose ISA can be best exploited by particular applications.

Some processing cores can support applications targeted accelerated instruc-

tions, such as with SSE4.2 in Intel’s Corei7. However, single-ISA HMPs allow

a single piece of software to be scheduled and rescheduled among distinct pro-

cessing nodes without the need of compiling programs for different ISAs or

using an intermediate byte-code or a virtual instruction set architecture. This

dissertation focuses on single-ISA HMPs, also known as asymmetric chip mul-

tiprocessors (ACMPs), however the same scheduling techniques can be applied

to multiple-ISA HMPs.

As described in Chapter 4, Kumar et al. [42] designed a heuristic schedul-

ing approach for dynamically assigning jobs to cores for single-ISA HMPs. In

this approach, a scheduler evaluates all possible assignments before choosing

the best assignment. A reassignment is evaluated whenever there is a drastic

change in the performance of one of the executing threads. Trying all possible

assignments of threads on unique core types can cause significant execution

time to be spent in suboptimal arrangements. Permuting threads between core

types also quickly becomes impractical as the number of different types of cores

increases.
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This work proposes novel phase-identification-based scheduling approaches

for single-ISA HMP systems. Each phase represents a sequence of program exe-

cution with similar behavior. Whereas previous approaches used phase-change

detection to initiate the evaluation of new schedules, my approach seeks to

actually identify the current phase of each executing thread and reuse perfor-

mance evaluations whenever previously recognized phases reoccur. Specifically,

the working set signature (WSS) [23] approach, described earlier in Chapter 3,

is used to identify program phases. A signature, identifying the currently ex-

ecuting application working set, is computed over some window of execution.

A phase change is encountered when the signature of the current working set

is significantly different from that of the previous one.

4.1 Phase-Based Scheduling

A working set signature (WSS) is a highly compressed representation of a

program’s working set of retired instructions. The WSS approach uses non-

overlapping windows of retired instructions to generate programs signature for

each window. A signature identifies an application’s code over a working set or

windows of instructions. Dhodapkar et al. [23] used a window size of 100 000

instructions to detect medium length program phases. They also suggested a

signature size from 256 bits to 1024 bits to detect program phases. During

temporally local program segments, these signatures will be similar for several

consecutive windows, composing the duration of a phase. When the same pro-

gram phase recurs at a later point in time, the same (or very similar) signature

indicates a repeated phase.

The WSS is calculated using a portion of the bits of the program counter
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hashed into a working set signature vector as shown previously in Figure 3.3.

The least-significant 6-bits of the program counter are excluded, corresponding

to the instruction cache block size of 64 bytes. Thus, each instruction in the

same cache block will hash to the same bit in the WSS vector. When an

instruction that hashes into a particular bit in the current signature vector

is executed, this bit is set. That means, the process of computing a WSS is

performed simply by setting those specific bits in the current signature.

To assess the suitability of working set phases for predicting an effec-

tive thread-to-core mapping, the IPC of each application was measured over

windows of different number of executed instructions. The standard deviation

across all windows of an application was computed to reflect the variation in

IPC over the run of each application. The weighted mean was also computed

for the standard deviations of retired IPC within phases detected using the

same windows. The standard deviation for all windows are weighted depend-

ing on the number of windows occurring in each phase. These are shown for

fifteen SPEC CPU2006 benchmarks in Figure 4.1. Single-window phases are

excluded in this comparison because they result in a zero standard deviation.

The weighted mean of the standard deviation (WMS) of instruction through-

put of windows within the same program phase is always less than the standard

deviation over all windows (StDev). Thus, the throughput of each application

(IPC) during each phase is relatively more consistent, typically varying much

less during occurrences of the same phase than it does throughout the entire

execution of the thread. Note that for few applications, such as astar, lbm and

dealII, this difference appears quite small because only a very small number of

long-running phases are detected.
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Figure 4.1: Standard deviation of IPC over the entire application (StDev) and
weighted mean standard deviation across windows of the same phase for each
benchmark.
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Because program behavior often repeats over time, the phase-aware

scheduler can learn from the past history of applications to predict the per-

formance/power on the different types of core for each application. When a

phase repeats, its performance/power is expected to be similar to the previous

recurrence of that phase.

4.1.1 Scenario

Consider a scenario where there are two programs, represented by threads A

and B, and two cores C1 and C2. Suppose that each program has two different

phases, and both program threads alternate between their two phases. The

phase lengths are different, and each thread exhibits different IPC values for

each phase, as shown in Table 4.1. From the table, we can see that C1 is always

slower than C2. Combining phases of both threads into one execution phase

(or set of phases), the scheduler may detect four different execution phases

(Table 4.2). The scheduler first samples the performance of threads’ phases

on the different core types. Initially, the scheduler assigns thread A to C2

and thread B to C1 randomly, entering a sampling interval. During sampling

intervals, the scheduler permutes the assignment of threads A and B among

cores C1 and C2. The scheduler then switches the threads to perform the

second sampling interval. While sampling, the scheduler profiles the execution

of threads and then uses the generated profiles to choose the new assignment

for the current phase of execution. It calculates the weighted speedup for each

thread using Equation 3.1. Table 4.2 shows the assignments of threads A and

B to the cores C1 and C2 for the four possible phases.

Threads A and B, each executes a phase that performs differently ac-
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Table 4.1: IPC and number of instructions of each phase of threads A and B.
Threads phases C1 C2 No. Instrcutions

Thread A Phase AI 0.5 2.7 3000
Thread A Phase AII 1.0 2.0 7000
Thread B Phase BI 1.3 2.0 4000
Thread B Phase BII 0.4 1.5 6000

Table 4.2: Possible sets of phases, combining both threads A and B.
Execution phase A B C1 C2

Phase set 1 Phase AI Phase BI B A
Phase set 2 Phase AI Phase BII A B
Phase set 3 Phase AII Phase BI B A
Phase set 4 Phase AII Phase BII A B

cording to the type of the core it is running on. Thus, each thread requires

a different number of cycles to finish the execution of any particular phase.

Assume threads A and B run for 10000 instructions each and the scheduler

detects three distinct phases (Table 4.3). When sampling is completed, the

scheduler chooses A to run on C2 and B to run on C1. Now, we can calculate

the number of cycles it takes for each execution phase, using the number of

instructions for each phase and the IPC, see table 4.3 from the possible set of

phases in Table 4.2. Phase AI of thread A runs on the faster core and has

fewer instructions than Phase BI in thread B, thus, it finishes execution faster.

Next, thread A changes its execution phase to Phase AII while thread B is

still in Phase BI, but the scheduler detects a new execution phase (Phase set 3 )

and samples again. The same thing happens when thread B changes its execu-

tion phase. As shown in Table 4.3, Phase BII of thread B finishes execution

faster than Phase AII of thread A, so Phase AII continues to run while thread

B enters a new phase (Phase BI ). This results in a different execution phase
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Table 4.3: Execution phases–identified when running threads for 10 000 A and
B.

Execution phase A B No. cycles C1-C2

Phase set 1 Phase AI Phase BI 1429 B-A
Phase set 3 Phase AII Phase BI 1648 B-A
Phase set 4 Phase AII Phase BII 4000 A-B
Phase set 3 Phase AII Phase BI 2390 B-A

(Phase set 3 ), which is a repeated phase. Therefore, the scheduler does not

need to sample again, instead it retrieves the assignment from its history table.

The result of the scenario for hardware scheduling using working set

signatures is shown in Figure 4.2. On the left of the figure, there are two data

sets that represent static assignments. The phase-aware scheduler performs

better and spends less time sampling than the two possible static assignments.

Furthermore, for this particular scenario the phase-based scheduler performs

better than the previous work in [42] since it detects short phases. The heuristic

method in [42] does not detect fine-grained phases and in this case performs

exactly the same as the static scheduler, because the sampling period used

in [42] is two million cycles. This is longer than several, short changes in

program behaviors.

4.1.2 Phase Sampling Approach

In the first proposed phase-based scheduling approach, Phase Sampling, a sam-

pled performance evaluation (IPC) of each thread on each core type is initiated

when a previously unencountered combination of executing phases is identified.

The weighted speedup is calculated using the sampled IPC information on each

core by dividing that IPC on the highest IPC of all the samples. This perfor-

51



0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Static: A-C1, B-C2 Static: A-C2, B-C1 HSWSS

N
u

m
b

e
r 

o
f 

cy
cl

e
s

Assignment Policy

A

B

Figure 4.2: Number of executed cycles for different assignment polices for two
threads running on a dual-core HMP.

mance evaluation is akin to the sampling done in Kumar’s work [42]. However,

Kumar et al. [42] divided the IPC of each sample on the total IPC of each

application as if it is running alone in the system [42]. This required a priori

knowledge of the isolated performance alone on the system. Such a require-

ment likely makes the sampled evaluation methodology of Kumar [42] imprac-

tical for real systems. In Phase Sampling, the highest performance schedule

for the given set of program phases is selected and that schedule is recorded in

a Signature History Table (SHT) for that set of phases. An example SHT for

the Phase Sampling approach is shown in Figure 4.3. When a phase change

is detected, the scheduler searches the SHT for the combination of currently

executing threads. The signatures of executing threads are compared with

the ones previously recorded in the SHT. Recognizing the same set of phases

again enables for the reuse of a previously determined schedule without any

additional evaluation.

The main limitation of Phase Sampling is that to reuse a schedule for

a recorded set of phases, each running thread must be in the same phase as
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  Thread ID                Thread Signature              Best scheduler

8    15   32   39   011011.. 100011..  101010.. 101010..  C0    C2     C3    C1

  15   21   32   39  001011.. 110001..  111010.. 001010..  C1    C0     C3    C2

64 bits                        2048bits                          16 bits

Figure 4.3: Signature History Table for Phase Sampling Approach.

before. The second proposed phase-identification based approach, Phase IPC

described in Section 4.1.3, relaxes this requirement.

4.1.3 Phase IPC Approach

The second scheduling approach, Phase IPC, attempts to more fully exploit

the correlation between repeating program phases and the performance of that

phase on a processor core. In this approach, when a phase change occurs, the

scheduler is invoked to determine a potentially new mapping between executing

program threads and the processor cores. The signature of the new individual

phase is compared with those in a hardware Signature History Table (SHT),

and if a match is found a previously identified phase has been detected. The

observed performance of that phase (measured in instructions per cycle), on

each type of processor core, is used as the prediction of the performance for

this detected phase. Figure 4.4 shows a SHT for Phase IPC on a heterogeneous

system with four different types of cores. For the phase signature shown in the

table, the performance prediction for the thread’s current phase if it was to

execute on Core 0 is 1.0, while the prediction of performance on Core 3 is

1.9. Only when a previously unencountered phase is detected, is it necessary
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to evaluate the performance of that phase on each core. Note that unlike the

sampling approaches, this does not require permuting all of the mappings of

threads to cores, but rather only rotating a particular thread to each core

for an evaluation period. If four different types of cores are executing four

threads, there are 24 possible mappings of the four threads to the different core

types. However, Phase IPC approach only requires evaluating the performance

of a previously unencountered phase of execution of each thread on each of

the four cores. When, individually, each application is executing a previously

seen phase (for that application), the performance prediction from the SHT is

used to predict which mapping of application threads to cores will yield the

highest throughput. Thus, in this case, even if the exact set of phases currently

executing has not been encountered together, evaluating the performance of the

threads on different cores can be avoided as long as the phases have previously

been evaluated separately.

1001110100..  1.1   0.9   1.3    1.5

      WS              IPC  IPC   IPC   IPC
    Signature       C0    C1   C2   C3

Thread n

Thread 0

Figure 4.4: Signature History Table for Phase IPC Approach.
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Table 4.4: processor configurations

parameter core 0 core1 core 2 core 3

execution io ooo ooo ooo

issue width 4 2 3 4

l1 cache 32kb 16kb 16kb 32kb

l2 cache 256kb 256kb 512kb 512kb

rob – 64 96 128

rs – 16 24 32

4.1.4 Evaluation and Results

To further evaluate the phase-based scheduling techniques using WSS for fine-

grained scheduling, an appropriate signature size and window size over which

phases are detected are evaluated.

Evaluation of Window Size for Computing Working Set Signature

To determine an appropriate working set’s window size over which program

phases are calculated, each application was run and analyzed using several dif-

ferent window sizes: 2k, 5k, 10k, 20k, 50k, 100k and 500k executed instructions

for total of 250 million instructions. Each program was evaluated on the cores

shown in Table 3.1 and Table 4.4 using the multicore performance estimation

model described earlier in Chapter 3.

Figure 4.5 shows a characterization of each window for a 250 million

instruction segment run using 256-bit signature size. In this figure, these win-

dows are divided into three categories: single-window phases, repeated-window

single phases and repeated-window repeated phases. As shown in Figure 4.5,

on average, the percentage of single-window phases increases as the window

size decreases. These phases are transitory phases that can be considered noise

associated with computing phase signatures over small windows. In general,
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the number of windows that compose repeated phases is higher than those

that compose transitory or single-stable phases. Note, that while a relatively

large portion of some application’s execution is spent in repeated-window sin-

gle phases (phases that do not reoccur during this 250 million instruction seg-

ment), these phases in all likelihood may recur over much longer periods of

instructions. This has been observed anecdotally for several benchmarks but

multi-billion instruction runs of each application have not been done due to

the significant simulation time required.

In choosing an appropriate window size, parameters such as the number

of program phases identified and the number of repeated phases encountered

should be considered. In general, as the number of instructions in a window

decreases, the number of detected phases increases. This trend is seen in Fig-

ure 4.6 and this is because smaller window sizes results in finer detected phases.

Window sizes smaller than 5 000 instructions are not considered because they

contain a significant amount of noise. Moreover, because a large number of

phases are detected in these cases, there are also a large number of possible

thread switches. Thus, such small sizes can be excluded for practical reasons.

Rescheduling threads at the granularity of even moderate window sizes may

have significant overhead. On the other hand, the use of large window sizes

does not allow for detecting fine-grained changes in program behaviors. Be-

cause of the overhead of thread migration, scheduling may need to be performed

with a period equal to several of the windows used for detecting program phase

behavior. In this study, windows are considered to detect execution phases,

and scheduling is performed on phases-granuralities. Phases vary in length

during program execution and each phase may contain one to several windows
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Figure 4.6: Average number of phases and repeated phases detected using
different signature sizes.

of instructions.

Evaluation of Signature Size for Computing Working Set Signatures

To evaluate the impact of signature size on detecting fine-grained application

phases, applications ran using 32-bit, 64-bit, 128-bit, 256-bit and 512-bit sig-

natures sizes. Signatures larger than 256-bits are ignored because of the large

space required to store them in the SHT table. Figure 4.6 shows the average

number of detected phases and repeated phases for SPEC2006 benchmark ap-

plications using different signature sizes smaller than 512-bits. The average

number of detected phases increases with increasing the signature size because

larger signatures are detecting ever finer differences between detected phases.

The difference in the number of detected phases among the different signature

sizes is bigger for smaller window sizes.
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In addition to the effect of window size and signature size on the number

of detected and repeated phases, the performance estimation model is used to

find the highest possible performance using the Phase IPC scheduling mecha-

nism for the different window sizes. In general, the smaller the window size, the

higher the performance is. Conversely, the smaller the signature size, the lower

the performance. The lowest signature size is neglected because it produces

the lowest weighted speedup, and the highest signature size is also neglected

because of the large number of bits required to store the signature.

Multicore Results Using the Performance Estimation Model

To evaluate the proposed phase-guided approaches, a quad-core system com-

posed of one of each of the two types of cores (2 Corei7 like, 2 Atom like) was

simulated. Five hundred sets of four benchmarks were chosen randomly from

the set SPEC CPU2006 benchmarks evaluated as workloads for this heteroge-

neous multicore processor system. The two different types of scheduling algo-

rithms, Phase Sampling and Phase IPC, described earlier, were evaluated and

compared to a fine-tuned heuristic scheduling method. The Phase Sampling

method attempts to match the four-tuple of application phases (running on

the four cores) and reuse any previously determined schedule for that set of

phases. When a new set of phases is encountered, this method requires 24 dif-

ferent sampling intervals, evaluating each thread-to-core-type mapping. The

second method, the Phase IPC method, records the IPC for a new phase as

it is sampled on each of the core types. Because it records the performance

for each application thread in isolation (without regard to the phase in which

other running applications are in), it only needs to perform four sampling in-
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tervals for each phase–one sampling interval for each core type. Sampling is

performed only the first time a particular program phase is encountered. Each

time a previously encountered phase occurs, the scheduler simply reuses the

results of the previous sampling intervals of those recurring phases to predict

the assignment that will produce the highest summation of weighted speedups

and utilizes that assignment as the current schedule.

The final results of these scheduling approaches are evaluated using

the weighted speedup across all four applications. The weighted speedup for

each thread is computed using IPC achieved for each application thread over a

specified interval on the core onto which it was scheduled divided by its perfor-

mance on the best performing core during the entire run(Equation 3.1). Note

that this weighted speedup is different from the one used for dynamic schedul-

ing to evaluate the different possible assignment in Equation 3.2. The goal of

each scheduling approach is to achieve the highest possible weighted speedup.

The weighted speedups were summed across the four applications and averaged

across each of the intervals over the entire one billion instruction execution (250

million instructions per application thread). Note, that a weighted speedup of

four would mean that the multicore processor achieved the performance of a

four-core, homogeneous system whose processors are all implemented as the

best performing core type.

Figure 4.7 shows the weighted speedup of the two proposed scheduling

mechanisms compared with a fine-tuned heuristic, the ideal assignment for each

interval, the worst case assignment and the average of the 24 static possible

assignments. The ideal assignment is an approximation of the best schedule

for each working set of instructions computed as the weighted speedup of the
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highest-performance mapping for each window. The worst case assignment

similarly represents the assignment that results in the worst weighted speedup

for the 24 different static scheduling possibilities. The average of the 24 static

assignments is also provided for comparison. This would be the expected value

of the performance of a randomly picked assignment. Figure 4.7 shows that in

terms of overall weighted speedup, the Phase Sampling method performs almost

as good as the ideal assignment and outperforms Phase IPC and the fine-tuned

heuristic approaches. Phase Sampling achieves a higher weighted speedup than

the fine-tuned heuristic approach because Phase Sampling initiates scheduling

decisions based on an accurate signature-based phase identification compared

to the coarse-grained phase change detection used by Kumar [42]. However,

Phase Sampling requires more sampling (often significantly more). This is due

to the fact that relatively fine-grained phases are being detected and that a

match is required of all four executing phases across the four applications in

order to reuse a previously determined schedule. The number of sampling

intervals for this approach can be reduced by requiring a phase change in more

than one application to initiate a search for a phase set match in the SHT

or a sequence of sampling. However, this could also negatively impact the

weighted speedup achieved. The fine-tuned heuristic approach yields a lower

weighted speedup than Phase Sampling. Phase IPC approach typically yields a

weighted speedup slightly below that of the . However, the Phase IPC requires

only roughly half the sampling intervals and application thread switches as

that of the fine-tuned heuristic method. Phase IPC bases its scheduling on the

IPC that was measured during the first window of the first time that a phase

is identified. By reusing this measurement, the amount of sampling required
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is greatly reduced. The performance of Phase IPC could likely be improved

by detecting when this estimation does not accurately represent the overall

behavior of the phase and reinitiating sampling.

Multicore Results Using the Cycle-Accurate Simulator

Two types of multicore experiments are performed on the cycle accurate simula-

tor: dual-core simulations and quad-core run. The dual-core processor contains

an Atom like core and a Corei7 like core. The quad-core processor contains two

Atom like and two Corei7 like cores. These type of cores where chosen to rep-

resent a realistic asymmetric system that combines both a superscalar high

performance processor such as the Corei7 like and an energy-efficient in-order

processor such as the Atom core. Phase IPC scheduling is evaluated using the

cycle-accurate simulator, Soonergy, on both processor types. Results in this

chapter ignore the direct cost of thread migrations but do take the indirect

cost of thread migration into consideration.

Dual-Core Simulations

Phase IPC is evaluated on the two core processor neglecting the direct

cost of thread migration. The indirect cost represents warming up of microar-

chitectural structures such as caches and branch predictors after switching, and

is considered in this work. Branch predictors are not invalidated after switching

the running thread to a different core; the new thread continues from the same

state where the other thread was and warms up the branch predictor while

executing. Two approaches for dealing with caches are evaluated. The first

approach is the invalidation of the data caches. Cache invalidation can cause

more overhead after switching a thread from one core to the other. Figures 4.8
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and 4.9 show the results of Phase IPC including the overhead from invalidating

caches. Phase IPC results are compared to the heuristic approach in Kumar

et al. [42]. The second way of handling caches is by using an update coherence

protocol, which allows some cache information for the next time the thread

migrates back to the same core. Only cache blocks that are evicted by data

accesses from the new thread allocated to the current core will be missing.

Although applications that are considered in this study are single-threaded,

when an application switch from one core to another, data from writes to

locations in both caches are kept coherent. Constantinou et al. [21] showed

that if a thread migrates to a previously visited core for a system with Pri-

vate L1 caches and a shared L2 cache, the performance loss can be minimized.

Figure 4.8 shows the weighted speedup of Phase IPC compared to Kumar’s

heuristic method [42]. Note again that Kumar’s method [42] requires a priori

knowledge about each application running separately on the system. For some

combination of applications that benefit the most from exploiting finer gran-

ularity of phase changes. For instance, astar namd input combination benefit

significantly from Phase IPC through exploiting fine-grained changes in their

behaviors. Specifically namd application consists of very fine-grained phases

that result in many L2 cache misses; by adapting to these fine changes in namd,

Phase IPC performs better than the heuristic sampling method [42]. For some

other input combinations, the IPC of some benchmarks such as gobmk does vary

much through the entire simulation run, thus, exploiting fine-grained schedul-

ing to adapt to the change of the other inputs may reduce the weighted speedup

of applications such as gobmk. In general, Phase IPC yields a 1.8% improve-

ment in the weighted speedup over Kumar’s sampling heuristic approach [42].
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Phase IPC also results in 1701 switches on average which is significantly more

than Kumar’s approach (37.2 average switches). Thus, Phase IPC has a better

potential to provide even better performance with reducing the indirect cost

of thread migrations such as warming up caches than the work in [42]. This

overhead can be greatly reduced by using cache prefetching mechanisms such

as Suleman’s et al. [77]. The weighted speedup of the Phase IPC algorithm

is similar to the heuristic algorithm on average. When using an update cache

coherency protocol the weighted speedup showed only a slight improvement,

however, larger improvement is observed on the execution time.

Figure 4.8: Weighted speedup from Phase IPC compared to Kumar’s sampling
method [42] on a dual-core system.

Although the improvement over a previous sampling approach is only

1.8%, Phase IPC results in a shorter run time of both benchmarks for most of

65



the input combinations as shown in Figure 4.9. Note again, that the heuris-

tic sampling approach by Kumar et al. [42] uses before-hand knowledge about

the IPC of each application as if it is running alone in the system. In general,

Phase IPC yields 12.5% reduction in execution time for both applications. The

heuristic sampling approach by [42] may result in a cognitive bias while evaluat-

ing the different assignments. Because the sampling duration used by Kumar et

al. [42] is long (two million cycles), this can cover more than one phase change

and affects the IPC of that sample. A similar effect on the IPC for other

different assignments can be observed if they are sampled on the same set of

instructions, however, other assignments may observe different application be-

haviors. Thus, the evaluation method might be biased towards one assignment

because different application’s behaviors occur during sampling itself. This also

can be true for small sampling intervals when sampling is not triggered at the

boundaries of phases.

Quad-Core System

A quad-core processor was also simulated using the Phase IPC scheduler

and a random static assignment for eight different four-tuple combintations

of benchmarks (randomly chosen). Phase IPC shows a great improvement

over a random static assignment. Figure 4.10 shows the weighted speedup of

both Phase IPC and a random assignment; Phase IPC improves the weighted

speedup of the system by 9.5% on average. Similar to the dual-core system,

Phase IPC observes a slight improvement on system performance when using

a coherency update protocol. Figure 4.11 shows the execution time of the

quad-core processor for Phase IPC compared with a random static; Phase IPC

results in 37.2% reduction in execution time on average over the random static
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Figure 4.9: Weighted speedup of Phase IPC compared to heuristic method on
a dual-core system.

assignment. In addition, it results in an average of 27.15% increase in system

throughput over a random static assignment as shown in Figure 4.12.

4.2 Energy-efficient Scheduling Algorithm

HMPs can be exploited for either increased performance or reduced power con-

sumption. If the goal is improved (reduced) power consumption, then an ap-

proach similar to Phase IPC can be used. In such an approach, program phase

information is used to dynamically map applications to cores of various types

on a single-ISA HMP processor targeting reduced energy consumption [64].

Program execution phase “signatures” are calculated on the fly, and when a

phase change occurs the scheduler re-evaluates the assignment to optimize for

energy-delay product. Phase-aware scheduling is applied for energy consump-
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Figure 4.10: Weighted speedup of Phase IPC compared to random static as-
signment on a quad-core system.

tion reduction using energy-delay product as an evaluation metric rather than

performance. The energy-delay product is a common metric for evaluating

energy-efficiency; it balances between energy consumption and performance.

4.2.1 Phase EDP Scheduling Algorithm

The proposed energy-efficient phase-identification based scheduling approach,

Phase EDP, exploits the correlation between repeating program phases and the

EDP of each phase on a processor core. When a phase repeats, the EDP of

the repeated phase is expected to be similar to the EDP of the first occurrence

of that phase. Figure 4.14 shows that the EDP behavior of 100 000 instruc-

tion intervals repeats over time for the bzip2 application. Similar behavior was

observed for the other simulated programs. Thus, the EDP information calcu-
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Figure 4.11: Execution time of Phase IPC compared to heuristic method on a
quad-core system.

Figure 4.12: Throughput of Phase IPC compared to heuristic method on a
quad-core system.
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Figure 4.13: Flow chart showing Phase EDP scheduling technique.

lated over the first window of the first occurrence of a phase is used to predict

the schedule that leads to the lowest total EDP, for all set of phases, when a

phase change occurs in one or more of the executing programs with repeated

phases.
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Figure 4.14: Energy-delay product for bzip application on an energy efficient
in-order core and a less energy efficient, high-performance out-of-order core.

When a previously unidentified phase is encountered, the scheduler eval-

uates the EDP for the thread in that phase on each core type by sampling the

execution of that thread on each core. The EDP for each currently executing

application thread is recorded separately in a Signature History Table (SHT)
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modified to store EDP rather than IPC. When a detected phase signature

matches one in the SHT, the previously observed EDP of that phase on the

respective core types is used as a prediction of the EDP for the current detected

phase. This is then used to predict the minimum EDP arrangement of threads

for the available core types. Through the use of these signatures to identify

repeated occurrences of previous phases, actual EDP evaluations are necessary

only when a previously unencountered phase is detected.

Figure 4.13 shows a flow chart diagram of the Phase EDP scheduling

process. First, after each instruction in the pipeline finishes execution, a bit

in the signature vector is set. The signature is calculated over a window of in-

structions. At the end of each window, the signature of the window is compared

with that of the previous window. If the difference between the two signatures

is below a certain threshold (τ), the two windows are assumed to be in the

same execution phase. Otherwise, a phase change is detected, in which case

the signature is compared to the ones recorded earlier in the SHT to find if the

current phase is a repeated phase. If the difference between signatures is above

τ , a new phase is detected and recorded in the SHT. The new phase is sampled

on the different core types for EDP and the EDP value is also recorded in the

SHT. Next, the scheduler chooses the assignment that leads to the lowest EDP.

On the other hand, if the signature was similar to one in the SHT, the phase

is considered a repeated phase, and the EDP value from the SHT is used to

predict the schedule with the lowest EDP.

Phase EDP is evaluated using a multicore processor consisting of a mix

of one simple energy-efficient IO core and larger, higher performance out-of-

order (OoO) cores with different configurations as shown in Table 4.4. All
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Figure 4.15: Energy-delay product for four-tuple of programs (250 million in-
structions) using different scheduling methods.

cores possess private level one (L1) and level two (L2) caches. The OoO cores

vary in instruction issue width, L1 cache size, reorder buffer (ROB) size and

number of reservation stations (RS) listed for each type of core. In general, for

OoO cores, the higher the issue width the better the performance. However,

but the more energy consumption is associated with extra overhead needed to

find additional instructions to execute in parallel. Similarly for L1 cache, ROB

and RS, the larger the size, the better the performance. However, this comes

along with greater energy consumption. Different integer and floating point

applications from the SPEC CPU2006 suite were used in our evaluations.

Initial evaluation of Phase EDP, was performed for different benchmarks

on a quad-core processor consisting of one core of each type. Energy-delay prod-

uct information was computed over 300 million instruction runs of all programs

using an architectural power modeling approach based on [11] with scaling for

the different core types. Sets of four different applications were then chosen

to create several multiprogrammed workloads. Figure 4.15 shows the results
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Figure 4.16: Percentage reduction in EDP from Phase EDP over average of all
static assignments.

of the energy-delay product for our scheduling algorithm compared with those

of the average of the 24 static different possible assignments of applications

on each of the core types. The assignment with the maximum EDP and the

assignment with the minimum EDP are also shown. For most workloads, the

EDP of the phase-aware scheduling approach results in a reduced energy-delay

product compared to the average assignment. Note that this average repre-

sents the EDP of a randomly chosen static assignment. Figure 4.16 shows

the percentage reduction in EDP through the Phase EDP scheduling method

over the average static assignment. The mean percentage of EDP reduction

is 15.9% over the average static assignment. Although some workloads show

only a slight reduction in EDP from Phase EDP over the average static as-
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Figure 4.17: Weighted speedup of Phase EDP compared with the average of
all static assignments.

signment in Figure 4.15, the percentage decrement of EDP is significant as

shown in Figure 4.16. Although Phase EDP results in a significant reduction

in power consumption, it is important that this reduction does not come at a

corresponding significant reduction in performance.

Figure 4.17 shows a comparison of the weighted speedup for Phase EDP

and the average of the 24 different possible static assignments. The weighted

speedup represents the sum of the ratios of the performance of each application

over the performance of that application on the best performing core. While

the Phase EDP method provides 16% reduction in EDP over the average, it

typically does not result in worse performance. The weighted speedup of the

Phase EDP is very similar to that of the average of the 24 assignments and

even better in some cases. Thus, Phase EDP results in a reduced EDP without

harming the performance.
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Chapter 5

Hardware Support for Fast Context Switching

In computer systems, context switching, the task of saving the state of one

process or thread in memory and loading the state of another, is often time

consuming. This overhead increases the granularity of the time-slices each

process must be appropriated to avoid excessive time during which the system

does no useful work. The penalty of context switching includes both a direct

cost of saving and loading process state and an indirect cost, which includes the

time that is needed to repopulate microarchitectural structures such as caches

and predictors. This chapter evaluates the direct cost of migrating a thread

from one core to another and presents a novel hardware context switching

circuit that drastically reduces the direct cost of context switching.

Heterogeneous (or asymmetric) multicore processors (HMPs) can par-

ticularly benefit from faster process migration [65]. Differences between cores

enable the exploitation of fine-granularity changes in program behavior but

this requires frequent process migration. In addition to fine-grained scheduling

for HMPs [66], faster thread migration benefits many other migration-based

techniques including load balancing [63], thermal and power management [19],

coherence protocols [38] and manufacturing-fault tolerance [58].

In multicore and multi-processor systems, the operating system (OS) is

responsible for switching executing thread contexts. With time-multiplexing
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between threads, the central proceeding unit (CPU) saves the context of the

old thread and launches another thread. Similarly, when a thread requests

an IO (such as reading data from disk), the CPU does not stall waiting for

the I/O read to finish. Rather, it switches to another process, and when the

first thread finishes reading, the CPU is interrupted with the result of the

read. In dynamically scheduled HMPs, the same need for operating system

context switches obviously exists. The CPU needs to be able to switch a thread

among its cores depending on the thread’s relative characteristics and behavior

in the current phase of execution. For example, a thread might achieve the

best performance when running on one core for some phases, and running on

another core for some other phases. The overhead and extensive data transfer

associated with software context switching limits the number of switches per

second for a CPU.

5.1 Methods to Support Frequent Thread Migrations

Accelerating thread migrations between the different cores on a chip can be

done in software, hardware or software/hardware. Software acceleration of

context switching can be achieved by modifying the operating system. Strong

et al. [76] modified the Linux operating system to reduce the amount of time

spent on both the direct overhead and indirect overhead of migrating threads

from one core to another. Nellans et al. [53] continued on Strong’s work to

reduce the indirect cost of switching by adding a L2 OS-cache separate from

User cache. Software methods have been shown to reduce the cost of context

switching by a sizable percentage but are not able to eliminate the majority

of context switching overhead. While software solutions are inexpensive, they
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are still relatively slow especially when considering frequent context switching.

An alternative to software solutions is to perform context switching entirely in

hardware. Hardware solutions should be faster than software but can not be

dynamically configured or set threads’ priorities. One of ARM’s big.LITTLE

processor designs utilize a such hardware context switching mechanism [30].

However, this particular design assumes that one core is powered on at a time

while the other is turned off. A running application transfers from one core

to the other dynamically depending on its performance needs. This disser-

tation proposes an efficient fast switching mechanism that is a cooperative

hardware/software technique. By benefiting from fast switching in hardware

while at the same time allowing the operating system to reconfigure the hard-

ware switching mechanism, the context switch process can handle multitasking,

serve interrupts, and reset applications’ priorities.

5.2 Measuring the Overhead of Context Switching

The indirect cost of context switching consists of the performance degradation

of such a system caused by resource sharing and warming up microarchitectural

structures. For example, switching a thread between two cores might result in

more L1 cache misses and branch miss predictions, which in turn affects the

performance of the system. The direct cost of context switching includes time

that is spent copying the context of the CPU, such as CPU registers, and flush-

ing the processors pipeline in which the switched thread is running. Tsafrir [79]

measured the direct cost of context switching on Pentium IV (2.2 GHz) pro-

cessor to be 16.4% to 59.4% for LMbench benchmark suite depending on the

way the operating system handles the wall-clock time. Although the indirect
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overhead of context switching is greater than the direct cost, the indirect cost

consist of more than one type of overhead. Thus, decreasing the indirect cost of

switching requires addressing each cost component separately (such as warming

up instruction caches, data caches, branch predictors, etc). The direct cost of

context switching including the execution of kernel code and saving the state

of one process and loading the state of another is a major single component of

the total overhead of context switching. Thus, I measure the direct overhead of

thread migrations and provide a new hardware/software solution to this major

component of the total overhead.

The direct cost can be measured using Ousterhout’s method by fork-

ing a child process and periodically sending a message forth and back between

the parent and the child processes using two pipes [56]. McVoy and Staelin

improved Ousterhout’s technique by eliminating system call overhead ( [48]).

In this work, the direct cost of context switching for a multicore processor

was measured by changing the processor affinity for a process that does not re-

quire any memory accesses over 10 000 000 processor core switches. The system

contains a quad-Core i5 x86 (2.67 GHz) processor running a Linux operating

system. The direct cost calculation is measured as the real time of the sys-

tem reduced by the user time and then divided by the number of switches

(equation 5.1).

time(switch) =
timereal − timeuser
No.Switches

(5.1)

To reduce the noise in calculations, this process was repeated for 500 times.

The direct cost of context switching is measured to be 9.306 ± 0.15µs with a

marginal error of 0.0115µs. This means that for the 2.67GHz processor, the

direct cost of a context switch consumes on average 24 848 clock cycles with a
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marginal error of 30 cycles.

The total switching cost was also measured for one program, dealII,

on the same system in which the direct cost was measured, by forking two

children processes: one responsible for running dealII and the other responsible

for switching the processor affinity for which dealII is running. The total cost of

a context switch in this experiment was measured as 21.8µ seconds. Thus the

indirect cost represents 42.6% of the total context switch overhead for dealII in

this experiment.

5.3 Hardware Thread Migration and Context Switching

This dissertation proposes a novel hardware context switching circuit that en-

ables low-overhead hardware thread migration between cores in a single-chip

multiprocessor and cooperate with software, such that the OS is responsible

for setting threads’ priorities and choosing the threads to run on the next time

interval. This switching circuit supports multiple simultaneous thread switches

and can store the context of both currently running and time-multiplexed

threads. This circuit both accelerates migration of threads between cores in

a multicore processor and reduces the direct cost of context switching within

each processing core. The thread switching circuit responsible for switching

threads among different cores consists of control logic, a crossbar switch, ad-

ditional registers and a Shared Context Unit (SCU). Figure 5.1 shows a block

diagram of the hardware context switch.

The SCU contains multiple context sets (CSs). Each context set consist

of all the registers that are required to save the state of a processing core. To

accelerate switches between time-multiplexed threads, the number of CSs in the
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Figure 5.1: Block diagram for the context switch circuit.

SCU can exceed the number of cores. When the CPU runs multiple processes,

it records information about these processes in different context sets and does

not require the operating system to copy the CPU state and registers from

memory when switching between processes. Having multiple context sets for

each CPU (or processing core) on a chip supports multitasking for each core.

Other architectural approaches similarly utilize multiple register files including

simultaneous multithreading (SMT) [24] and checkpointing [34]. In SMT [24],

multiple register files support multiple threads executing simultaneously within

the same core. In out-of-order execution with checkpointing, additional copies

of register values are used to save the processor state at appropriate points of

execution [34]. These copies are used to repair register contents to a previous

state when exceptions or branch mispredictions occur. By necessity, the SCU

should be physically laid out near each of the cores. Because the architectural

CPU registers must be closely integrated with the retirement stage of the CPU’s
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pipeline, long wire delay would be intolerable. For a processor with large

numbers of cores, it may be almost impossible to share the same context unit

amongst all the cores. Some of the cores will be located farther away than

others, and sharing the context unit among all of them may cause a considerable

amount of latency in writing the architectural registers. Because of these layout

constraints, a system with many cores on a chip can consist of clusters of

cores, such that few cores form a cluster and share one context unit. If a

process/thread migrates from one cluster to another the scheduler must copy

the entire context of the migrating process/thread from one cluster’s context

unit to another, possibly requiring OS coordination.

Figure 5.2 shows a detailed circuit the hardware context switch. This

circuit is responsible for switching threads among different cores and consists of

control logic, a crossbar switch, additional registers and the SCU. The control

logic receives information about threads and their scheduling assignment to

different cores from the OS and the scheduler. The scheduler could be part

in software as part of the OS or a hypervisor, or could be implemented in

hardware. Additional registers are used to record scheduling information and

the indices to the CSs in the SCU. Figure 5.3 shows a flow chart of the hardware

context switch technique. The circuit is composed of three main partially

overlapping sets of components utilized for context switching: multitasking

support, thread migration and CS pointer switch shown in Figures 5.4, 5.6

and 5.7 respectively. The circuits in each figure show four cores (n=4) and

eight CSs (m=8) but these can be extended for reasonable m and n, where

n ≤ m.
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Figure 5.3: Hardware context switching flow chart.
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Multitasking Support

In the first set of components, multitasking support, shown in Figure 5.4, the

OS assigns IDs of threads that are scheduled to run during the next time

interval to an active-thread list (ATL). The number of entries in the ATL is the

same as the number of processing cores (n). Along with the thread ID for each

entry, a dlog2me-bit context set index, a dlog2 ne-bit core index and an exist

bit are present for each active thread. The context set index is written after

each thread is assigned a CS. The scheduler inserts the core number that each

active thread is assigned. The exist bit is reset before multitasking processing

is started and set whenever the thread, associated with the same entry in the

ATL is found in one of the CSs. Otherwise that thread is assigned a new CS in

the SCU. A context set thread ID (CST ID) register file contains a number of

registers equal to the number of CSs (m) in the SCU. Each register is composed

of a 16-bit thread ID and a 1-bit exist flag (e). Each register corresponds to

one CS in the SCU containing the context (state) of that thread. The CST ID

register file is sequentially searched for a thread ID match from the thread IDs

in the ATL. A dlog2 ne-bit counter (within the multitasking support control in

Figure 5.4) and an nx1 multiplexer is used to select one thread ID in the active

list every 1 to m cycles (depending on the time required to search for that ID

as subsequently explained). Another dlog2me-bit counter is used to point to

the current CST ID register as the CST ID register file is searched for a match

with the thread ID from the ATL. This counter is reset once IDs match. Each

thread ID in the ATL is compared to each thread ID in the register file (one

per cycle) until the thread ID is found or all registers are searched. If the

thread ID is found, the exist bit is set to one in both the CST ID register and
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the corresponding entry in the ATL, and the dlog2 ne-bit counter is enabled.

The next thread ID is then searched. Figure 5.5 shows a flow chart for the

multitasking step.

The process of searching all thread IDs takes between (1+2+...+l) and

mxl cycles, where l is the number of active threads (l ≤ n). After all thread

IDs are searched, the number of the exist bits in the register file that are set

is calculated using an dm/2e-bit full adder. The dlog2 ne least significant bits

of the summation are compared to the value of the number of active threads

register (NAT). If the result is less than the NAT value, this means that some

threads do not exist in the SCU. Each thread that does not exist in the SCU

is then assigned an available CS in the SCU and a corresponding spot in the

CST ID register file. The CSs in the SCU are assigned round-robin to insure

fair utilization of all sets.

Thread Migration

Hardware support for thread migration, shown in Figure 5.6, is divided into two

scenarios, migration due to multitasking and migration due to dynamic thread

reassignment to adapt to the dynamic changes in workload behavior (e.g. to

increase performance or reduce power consumption in an HMP [67]). In the

case of multitasking, after all threads are assigned a CS from the SCU pool, the

scheduler stores the new assignment of active threads to the processing cores

in the ATL. Thread IDs in the CST ID register file are compared to thread IDs

in the ATL. The indices to the CSs of active threads are then recorded in n

context set index (CSI) registers, shown in Figure 5.6, each of (log2m) bits size.

Each CSI register corresponds to one of the n cores. In the second scenario,
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if the scheduler changes the assignment of the same threads that are currently

executing, it writes the new core numbers for each thread ID in the ATL and

asserts changeSchedule signals for each core that is switching to another thread.

Next, the CSs’ indices in the CSI registers are updated using the information

recorded in the ATL in parallel.

Context Set Pointer Switch

After all pipelines that are switching to different threads are flushed (or drained),

a switch signal is set. Each core receives a new index to the proper CS for a

new thread to execute. The index to the CS is stored in a dlog2me bit pointer

register (PR) as shown in Figure 5.7. Each PR register is updated with a new

value from its corresponding register in the CSI register file after the switch

signal is set. Next, all cores are assigned to point to their proper CSs for the

applications/threads they are executing through an n×m crossbar switch. The

crossbar switch is capable of connecting all n cores to any n CSs out of the m
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sets in the context unit simultaneously. Because a cluster of cores is assumed

to contain only a few cores sharing a single SCU, the cost of the crossbar switch

is limited. Each core points to only one CS at a time but is capable of accessing

any of the CSs through the crossbar switch.

5.4 Evaluation

Each CS in the SCU contains a copy of the processor context including the

basic execution environment (584 bytes for a x86 64-bit processor), debug,

control and design-specific registers, etc. (∼1000 bytes). Using CACTI [52], a

CS’s area was estimated as 1971 nm2 for a 32 nm process with each 8-byte ac-

cess consuming 1.4 pJ. This fast switching mechanism results in approximately

1 380X improvement for migrating the same executing threads between cores

and 407X improvement for migrating threads with multitasking support (time-

multiplexing) for a quad-core system with eight context sets over the traditional
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Figure 5.8: Slowdown of executed applications due to the direct cost of switch-
ing only.

operating system switch mechanism.

For frequent thread migration, the direct cost of switching results in a

significant slowdown of applications. Figure 5.8 shows the slowdown of 300

Million instruction for various applications using different number of context

switches. With 1000 switches, the average percentage slowdown is 9%, however

with more switches the slowdown in performance grows from 2X for 10 000

switches to 19.5X for 200 000 switches on average. This means, that the direct

cost alone makes it almost impossible to exploit frequent switching and thus

fine-grained scheduling.
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Chapter 6

Application Scheduling for Many-Core

Processors

Previous chapters focused on heterogeneous multicore processors (HMPs), in

which each processor contains a small number of cores. The described sam-

pling/predictions approaches can exploit such processors to improve perfor-

mance (Phase IPC and Phase Sampling) or reduce energy delay product (Phase

EDP). Through fine-grained phase-based approaches, the aforementioned sche-

duling techniques works efficiently for all lengths of benchmarks (small, medium,

or long). However, when the number of cores grows, the requirements to sup-

port these algorithms grows linearly. For instance, the scheduler requires a

larger signature history table (SHT) table, which is used to record all signa-

ture of all executing applications, to achieve the same performance of multicore

processors. Unfortunately, the SHT is not free, a larger sized SHT is costly:

area and power. This chapter proposes a new approach to exploit fine-grained

scheduling for heterogeneous many-core processors (HMCPs) containing ten’s,

hundreds, or even thousands of processing cores on the same chip.

6.1 Scheduling for HMCPs using Machine Learning

Previous methods described in this study used a signature vector to repre-

sent the history of program behaviors. Because using an SHT table would
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be infeasible for many-core processors with hundreds and thousands of cores

on a chip, more systematic ways to detect and represent program behaviors

is desired such as machine learning techniques. Machine learning is an artifi-

cial intelligence method that provides computers the ability to learn without

being programmed and make predictions based on new data [62]. Machine

learning has been used for different computer problems, including scheduling.

Berral et al. [8] proposed a machine learning approach for an scheduling in

data centers targeting energy-efficiency. There are several machine learning

algorithms, specifically reinforcement learning (RL) algorithm is used in this

dissertation. Reinforcement learning has been used for resource allocation prob-

lems [28,54,78,80–82]. McGovern et al. [47] used RL to build a basic block in-

struction scheduler, which produces higher performance than already available

commercial schedulers. Ipek et al. [36] proposed an RL-memory scheduler for

memory controllers. Their results showed that the controller significantly im-

proves the performance of parallel applications on chip multiprocessors through

optimized DRAM bandwidth utilization. It also showed that RL-based mem-

ory scheduling is feasible for hardware implementation. Federova et al. [26]

proposed an RL solution to heterogeneous multicore scheduling by providing

only some theoretical analysis. However, they did not implement the algorithm.

6.1.1 RL-Based Fine-Grained Scheduler

Having many cores on a processor complicates phase identification methods

such as working set signatures because of the tremendous amount of behavior

that must be detected on such systems with hundreds of cores. Previous ap-

proaches presented in this dissertation shows correlates between the execution
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phases of programs and program behavior. The performance of an applica-

tion is also highly correlated to the application’s behavior and its phases of

execution. Figures 3.4 and 3.5 shown in Chapter 3 demonstrates how xalan

features such as L2 misses are highly correlated to system performance or IPC.

This was also observed for other system features such as L1 cache misses and

branch misspredictions. Similar results were observed for all other benchmarks.

For many applications running on an HMCP, an even-more compressed repre-

sentation of program behavior than Phase IPC is desired. RL algorithms can

provide a compressed representation of history of applications running on the

different types of cores. RL is composed of four main components: A learning

agent, an environment, reward and selected features as shown in Figure 6.1.

The learning agent is the scheduler, the environment is an HMCP with features

are the monitored behavior of applications on the different core types and the

reward. Through maximizing long term rewards, RL agents can find a near-

global optimization policy. Q-learning is an RL technique that was chosen for

an initial study of scheduling in HMPs. Through interaction with the HMCP

environment, Q-learning can find the optimal policy for mapping threads to

the different types of cores. States of the system and actions are paired such

that each state-action pair is assigned a Q-value, which represents the expected

reward for that state-action pair. Equation 6.1 shows how this Q-value is up-

dated used the old Q-value, α the learning rate, γ the discount factor and

the next maximum expected reward. In each state, the agent compares the

Q-value of all the available state-action pairs. In the typical greedy step, the

agent chooses the next action, the one that has the highest Q-value for the

current. However, to explore different options and speed the learning process,
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a small percentage of actions consist of exploration steps. This means that, in

order for the agent to learn a small fraction of the time an action other than

the action with the highest Q-value for the current state, it tries a random

action. After each action a reward (r) is assigned based on the number of ex-

ecuted instructions per cycle. The goal of this approach is to maximize the

global reward in terms of weighted speedup computed similar to [42] in that

the weighted speedup is calculated by dividing on the IPC of the application

running separately on the system, requiring prior profiling.

Figure 6.1: Reinforcement learning.

Q(st, at) = Q(st, at) + α[rt+1 + γ max
a

Q(st+1, a)−Q(st, at)] (6.1)

Scheduling Agent

The heterogeneous nature of applications and the different types of cores on

a chip causes a gross behavior of the system. Thus, the HMCP behavior is

considered continuous. To represent this continuous behavior, artificial neu-

ral networks are used (ANNs). ANN is a mathematical model that is used to

model complicated relationships between system features and its output [59].

It consists of a set of computational nodes called neurons that receive input

and produce output. Artificial neurons are inspired by the biological neu-
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rons. ANNs support non-linear relationships between inputs and outputs. A

fully connected network, with hidden layers of artificial neurons along with

easily obtained system features (behaviors) and appropriate reward (weighted

speedup), updates the expected reward for each available action. Thus, the re-

inforcement learning agent can efficiently assign threads to the dissimilar types

of cores in HMCPs.

Figure 6.2: RL-based HMCP scheduler.

HMCP Features and Actions

The HMCP system features represent the states of the environment gathered

during execution. Actions in the HMCP scheduling system represent the possi-

ble thread-to-core assignments. For an initial study of this approach, nineteen

different architectural and performance evaluation features are associated with

each core. The nineteen different features are: percentage breakdown of exe-

cuted instruction types (between load, store, multimedia, basic floating point,

floating point multiplication, floating point division, basic integer, integer mul-
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tiplication and integer division), percentage of total executed instructions that

are L1 and L2 cache hits/misses, and percentage of correctly and incorrectly

predictor branch instructions over total executed instructions. ANNs use non-

linear function approximation to represent relationship between state and ex-

pected reward for each action for the current. The number of ANNs that are

used in this study depends on the number of actions that are available. In this

work, four actions are used for a quad-core system containing one out-of-order

(OoO), core 3, and three in-order (IO), core 0, from Table 4.4. Each ANN

represents the relationship between state and action pair. In each system, all

ANNs have the same structure. In this study, there are three layers in each

ANN including one input layer, one hidden layer and one output layer. The

first layer, input layer, contains the same number of neurons as the number

of system features. The second layer is a hidden layer that contains half the

number of neurons as the input layer. The third layer, output layer, contains

only one output neuron that represents the Q-value (expected reward) for each

ANN. Because Q-value is estimated from system features through an ANN,

updating the Q-value during learning is performed through back-propagation

in the ANN. In this way, ANNs using non-linear functions are used by re-

inforcement learning method to update the expected rewards of state-action

pairs.

For every state, the available actions are the same: one of the four ap-

plications is scheduled to run on the OoO core and all others run on the IO

cores. Every 10 000 instruction intervals (episodes), the system sends state fea-

tures to the RL agent. All ANNs receive these continuous features to estimate

the expected reward for each available action. As described earlier, scheduling
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consists of two steps: greedy steps and exploration steps. In a greedy step,

the action with the largest expected weighted speedup, which is the output of

ANN, is taken. For a small fraction of the actions, the scheduler agent takes an

exploration step in which an action is randomly selected from available actions.

In each episode, the weighted speedup is calculated for that window and used

as the actual reward. The ANNs are updated using back-propagation according

to this actual reward. The RL-based agent thereby learns towards an optimal

scheduling policy during the execution of applications.

6.2 Evaluation and Results

Initial evaluations are performed using the performance estimation model de-

scribed in Chapter 3. Two types of evaluations are performed: on-line learning

and off-line training. On-line learning is the process of teaching the scheduling

agent the best policy to map threads to the different types of cores on-line while

applications are running. Off-line training is the process of teaching the agent

(training it) off-line how to map threads to cores. The RL-based agent is given

ample time to learn a scheduling policy off-line. In Each set of benchmarks

was run repeatedly through for 10 000 times to make sure a complete learning

curve is generated. The experiments were performed on a quad-core processor

for a fast evaluations of RL-based scheduling techniques for HMCPs and can

be easily extended.

To demonstrate how the scheduling agent’s policy improves during the

iterative learning process, 300 million instruction regions of each benchmark

in each set 10 000 times were ran. The average weighted speedup for all exe-

cuted windows all of benchmarks are recorded. Iterative learning results are
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shown in full learning curves shown in Figure 6.3. Figure 6.3(a) shows a full

learning curve for four benchmarks on a quad-core HMP. The learning results

are better than both fine-tuned heuristic sampling [41] and the average of all

static assignments. Figure 6.3(b) shows the average learning curve for fifteen

randomly picked benchmark combinations. Figure 6.5 shows a comparison

between trained learning results, heuristic results and static results. Trained

learning results are taken from the level-off portion of learning curve. For all

fifteen benchmark combinations, the trained learning results are significantly

better than the other scheduling results. Trained learning results in 1.77% im-

provement on average over the fine-tuned heuristic sampling results (ignoring

the cost of context switching) and 6% improvement over the average of all static

assignment.

6.2.1 On-line Learning

Using on-line learning, twelve four-tuple combination of applications were run

once and the cumulative mean of the IPC is recorded for each window. Fig-

ure 6.4(a) represents on-line learning results for four benchmarks running on

the quad-core system for twelve different combinations. The accumulated mean

of the weighted speedup is recorded for each window. The weighted speedup

results of the on-line learning scheduler is compared to that of the fine-tuned

heuristic sampling method. The results shows that the RL agent learns quickly

to find a better schedule than heuristic method even at an early stage. Fig-

ure 6.4(b) shows the average learning process in one complete run of each of

the twelve four-tuple combinations of benchmarks on the quad-core system.

This figure shows that RL agent again quickly learns to outperform the fine-
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(a) poveray, soplex, xalan, astar

(b) average

Figure 6.3: Full learning curves from quad-core system compared with static
and heuristic assignments.
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tuned heuristic-sampling-based scheduler in early stage of program execution

and eventually learns a good policy to assign applications to the different types

of cores. Figure 6.6 represents the comparison between on-line learning re-

sults and the fine-tuned heuristic sampling results. on-line learning results are

taken from the last point of on-line learning curve. The weighted speedups for

on-line learning are better than those for heuristic sampling for most bench-

mark combinations. On average, the on-line learning result is 2.4% better than

heuristic results (ignoring switching cost). Real world applications are usually

longer than the portions of benchmarks simulated, thus the reinforcement-

learning-based scheduler is capable of optimizing such applications efficiently

and transparently.

6.2.2 Off-line learning

Off-line learning is a way for training the scheduler to learn the weight of each

feature that is used to decide an action. Off-line learning can be used to set the

scheduler to choose the best assignment depending on the previously learned

policy. This also reduces the complexity of hardware implementations of such

schedulers. During off-line learning, rather than training the RL-based sched-

uler on individual benchmark combinations, the scheduler was trained using

twelve benchmark combinations sequentially. In this case, the scheduler can

see more states than what it actually sees during individual benchmarks train-

ing. An RL-based agent learns during training a general scheduling policy that

can be used for all sets of applications. An RL-based scheduler can be trained

off-line and results of training can be applied directly for a global scheduling

policy. In off-line-trained systems, the choice of the training set is very im-

100



(a) poveray, soplex, xalan, astar

(b) average

Figure 6.4: on-line learning curve from quad-core system compared to heuristic
assignments.
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Figure 6.5: Comparison between learning, static, and heuristic results in the
quad-core system.
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Figure 6.6: Comparison between on-line learning and heuristic results in the
quad-core system.
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portant to make a global scheduling policy that improves system performance.

In this study, the off-line-trained scheduler only works well for some of the

benchmark combinations. This is because the training set that was used did

not include all the states (behaviors) of applications that other applications

encounter. Figure 6.7 shows that the off-line scheduler generate results that

are even better than the fully learned individual trained results in the best case.

The results indicate that there is a potential for off-line learning, but that for

such an off-line-training approach a training set that covers most of the states

(features) need to be carefully studied and selected such that the global policy

would work for all combination of applications.In all of the above evaluations of

RL-based scheduler performed in this study, 19 features were used. However,

more careful selection of only the most important features can be performed to

reduce the hardware overhead for on-line learning schedulers.
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(a) perl, astar, gobmk, mcf

(b) poveray,soplex,xalan,astar

Figure 6.7: Comparison between individual training, off-line trained, and sam-
pling heuristic results in quad-core system.
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Chapter 7

Conclusions and Future Work

This dissertation presented fine-grained thread scheduling combined with low-

overhead thread migration for heterogeneous processors to maximize perfor-

mance and reduce energy consumption. Two phase-based scheduling algo-

rithms were proposed to benefit from the short changes in applications behavior

and fully utilize heterogeneous resources on an HMP.

7.1 Summary

In this work, three scheduling approaches targeting performance and one ap-

proach targeting reduced energy consumption were proposed. The first ap-

proach, Phase IPC, has a significant advantage over existing sampling based

scheduling techniques int that it does not require examining the performance

of permuting all application threads across each core type. Instead, for each

program phase, the performance of a thread is evaluated once on each pro-

cessor core type. While this results in schedules that achieve a slightly lower

weighted speedup compared to more aggressive sampling based approaches,

this approach requires far fewer performance evaluation intervals. This ap-

proach results in approximately 2% improvement in speedup and 12.5% re-

duction in execution time over previous sampling heuristic method, and 9.5%

improvement in weighted speedup and 37.2% reduction in execution time over
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a random static assignment. The second approach, Phase Sampling approach

outperforms other evaluated approaches, but correspondingly requires the most

sampling intervals in my evaluation. Since both of the presented approaches

utilize the identification of program phases for the reuse of previously evalu-

ated performance, it is likely that the amount of reuse would be larger over the

entire application execution (sometimes trillions of instructions), thus elimi-

nating some of the need for additional sampling. Even for Phase Sampling,

there is a good chance that as the length of each of application’s run increases,

the number of repeated phase sets will increase. By taking advantage of phase

behavior, the presented approaches and future approaches have the potential

to achieve high throughput and require minimal performance sampling.

Additionally, this dissertation demonstrated that like performance the

energy efficiency of application codes running on cores of different types varies

along with program execution phases. The (Phase EDP) scheduling technique

demonstrates the utility of phase identification for energy-delay-aware schedul-

ing of applications on single-ISA HMPs. Unlike many previous approaches, the

Phase EDP technique does not require evaluating energy consumption (just as

Phase IPC does not require evaluation of the performance of each thread-to-

core mapping) by permuting all application threads across each core type. Sim-

ulated evaluation of the Phase EDP approach shows 16% on average and up to

29% reduction in energy-delay product compared to the average of EDP for all

possible static assignments. At the same time, while a significant reduction in

EDP is achieved, there is only a very slight reduction in program throughput.

To support fine-granularity scheduling a novel thread context switching

circuit is also proposed. The circuit supports multitasking through additional
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context sets beyond the number of cores in the processor. It further supports

migrating all executing threads on processor cores simultaneously, and sup-

ports fine-granularity thread scheduling by rapidly migrating the contexts of

all executing threads simultaneously. Only two cycles are required to switch

the executing threads among cores (in addition to the time required to flush

processor pipelines). Additionally, the maximum number of cycles required for

thread assignment due to multitasking is m× l+2, where l is the active number

of threads and m is the number of CSs. This hardware design results in a large

reduction in the latency of context switching among multiple cores, compared

to tens of thousands of cycles for the direct cost of context switching by the OS.

This fast switching mechanism results in approximately 1 380X improvement

for migrating the same running threads between cores and 407X improvement

for migrating threads with multitasking for a quad-core system with eight con-

text sets over the traditional operating system switch method. Furthermore,

this fast switching technique can support other migration-based systems such

as load balancing, thermal and power management, manufacturing-fault toler-

ance and coherence protocols.

Finally, this dissertation demonstrated that a reinforcement learning al-

gorithm is effective at scheduling for heterogeneous systems, exploiting some

differences between fine-grained program phases. In the proposed online-trained

approach the scheduler agent improves its decision policy over time and results

in an increased performance without any prior offline training. Preliminary

evaluations of off-line trained agent showed that such scheduler agent can be

capable of choosing near optimal thread-to-core assignments. However, care-

ful choice of the quantity and variety of training sets are crucial to achieve a
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Table 7.1: Comparison between the proposed scheduling algorithm and heuris-
tic sampling approach [42].

Metric Phase IPC Phase Sampling Heuristic sampling [42] RL-Based

Reschedule interval small window size (short intervals) short intervals Long intervals short intervals
Learning mechanism yes yes no yes

Previous info. no no yes yes
Phase detection working set signature working set signature IPC change Behavior change using RL
Thread life time short, medium or long Short, medium or long medium or long medium or long

Frequency of switching high high low learns
Number of sampling periods short short long exploration only
Number of cores on a chip small small small medium or large

Required training no no no yes

global optimization policy. Additional training sets need to be investigated to

maximize the benefit from this scheduling technique. The RL-based schedul-

ing mechanism, through its greedy policy and exploration of different policies,

shows a great potential for scheduling on heterogeneous many-core processors

in which combining both sampling and prediction such as the Phase IPC may

result in large overheads due to the amount of memory needed to record pro-

grams signatures in a hardware history table.

Table 7.1 summarizes four different scheduling techniques proposed in

this dissertation. While the Phase IPC, Phase EDP and Phase sampling meth-

ods work efficiently for short, medium and long runs, the on-line trained RL-

based scheduling technique is more suited for long runs.

7.2 Future Work

• This work utilized multiprogram workloads consisting of single-threaded

applications. While studying single-threaded applications behavior on

the different types is important, it would also be interesting to consider

a fully multithreaded, multiprogram workload. For parallel applications

with relatively homogenous threads, it is likely that each of these threads

should be mapped to cores of the same particular type. For other appli-
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cations with functionally different parallel tasks, these differences can be

exploited by mapping these tasks to different types of cores, each suited

for a particular task. In either case, our approach can be modified to

incorporate application throughput instead of single-thread instructions

per cycle.

• To support fine-granularity scheduling and further exploit heterogeneous

systems, fast and transparent thread migrations are desired. This disser-

tation provided a hardware solution for the direct cost of context switch-

ing that drastically minimized the direct overhead of switching. However,

there is still some overhead due to the indirect cost resulted by warming

up caches and branch predictors. To maximize the benefit from fine-

grained scheduling on HMPs, a reduced indirect cost is desired. More

work could be done on reducing the overhead of warming up data and

instruction caches.

• With the increased number of transistors on a chip, future microproces-

sors are expected to include hundreds of cores on a chip. Many-core

processors will a challenge for both designers and programmers. Hetero-

geneous many-core processors have the ability to support an increased

number of processor cores on a chip and an increased variety of domain

specific applications than multicore processors. Additionally, increased

functionality failures and transistor parameter variation will cause differ-

ent performance and power consumption in different cores of the same

design adding heterogeneity that complicates the scheduling problem.

• As heterogeneous multicore processors replace our current homogeneous
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ones (due to their benefits in performance, power, and adaptability to

program requirements and behavior) this will be a sea-change in the field

of computing. The recent era of homogeneous multicore processors has

already challenged programmers with task parallelization. Having differ-

ent types of cores will multiply these challenges. ISA specialization will

additionally provide a great opportunity for even further enhancement.

However, different ISAs will make the job of the programmer that much

more difficult. New models of computing are needed to make this feasi-

ble for programmers, including novel architectures and hidden dynamic

binary (ISA-to-ISA) translation.
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