
 

 

UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE 

 

DATA GATHERING TECHNIQUES ON WIRELESS SENSOR NETWORKS 

 

 

 

 

A DISSERTATION 

SUBMITTED TO THE GRADUATE FACULTY 

in partial fulfillment of the requirements for the 

Degree of 

DOCTOR OF PHILOSOPHY 

 

 

 

 

By 

ARAVIND MOHANOOR 

Norman, Oklahoma 

2008 

 

 

 

 



 

DATA GATHERING TECHNIQUES ON WIRELESS SENSOR NETWORKS 

 

A DISSERTATION APPROVED FOR THE 

SCHOOL OF COMPUTER SCIENCE 

 

 

 

 

 

 

BY 

 

 

_____________________________________ 

Dr. Sridhar Radhakrishnan, Chair 

 

_____________________________________ 

Dr. S. Lakshmivarahan 

 

_____________________________________ 

Dr. Sudarshan Dhall 

 

_____________________________________ 

Dr. John Antonio 

 

_____________________________________ 

Dr. Marilyn Breen 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by ARAVIND MOHANOOR 2008 

All Rights Reserved



iv 

 

Acknowledgments 
 

I wish to express my sincere gratitude to my dissertation advisor Dr. Sridhar 

Radhakrishnan for his guidance and inspiration without which this work would have 

been impossible. His constant enthusiasm and support was a big factor in my persisting 

through the many peaks and troughs which are commonplace during graduate studies.  

It is fair to say that I learnt much from him about research as well as life. 

I would like to express my gratitude to my committee members Dr. S. Lakshmivarahan, 

Dr. Sudarshan Dhall, Dr. John Antonio and Dr. Marilyn Breen for serving on my 

dissertation committee. I would also like to thank Dr. Venkatesh Sarangan of 

Oklahoma State University for many interesting discussions about research and for 

helping me introduce rigor to my approach to research writing. 

I would like to express many thanks to Dr. Henry Neeman for a very stimulating and 

enjoyable experience as a Teaching Assistant for CS 1313. I would also like to express 

thanks to Dr. Shivakumar Raman for the financial support during the last year of my 

doctoral studies. 

I am very grateful for the support and well wishes I received from all my friends in 

Norman and elsewhere. It would be hard to list all of them, but special thanks to 

Muhammad Javed, whose help, encouragement and counsel helped me and I am sure, 

many others who know him. I personally do not know of anyone more willing to help 

others. I would also like to thank my friends Shankar Banik, Jonghyun Kim, Tao Zheng, 

Ta Chun Lin, Yuh Rong Chen, Yu Hsin Li, Celi Sun, Pedro Diaz Gomez, Jayashree, 

Bharath Ramanujam, Waleed Numay, Casmir Agbaraji, Igor Wasinski, Ramnathan 



v 

 

Muthuraman, Naren Pappu, Sujith Jagini, Sudhir Vallamkondu, Prashant Kakani, 

Nicolas Lundgaard, Tom Hughes, Shirish Deshpande, Ganesh Krishnamurthy, Hira 

Shrestha, Zhaowen, Kyle Abbott, Moshe Gutman, Clay Packard, Darren White, Jason 

Black and so many others who have been a part of my life during my years in graduate 

school.  

I am also thankful to the wonderful and very supportive staff members in Computer 

Science, especially Barbara Bledsoe, Sandy Johnson, Chyrl Yerdon, Jim Summers and 

all others who work/worked very hard to keep the Computer Science department 

running smoothly and for the kind words and encouragement when students come for 

help and advice. 

Last but not least, I would like to thank all my family members for their constant 

support and encouragement, especially my parents, M. C. Satagopan and Vijayalakshmi 

Satagopan.  My continued progress towards my doctoral degree would not have been 

possible without the moral support from my sister, Aarthi Narasimhan, my brother-in-

law P.L.Narasimhan and my cousin Harish. 

 

 

 

 

 

 

 

 

 



vi 
 

Table of Contents 
 

1 Introduction .............................................................................................................................. 1 

1.1 Energy as network resource – extending the network’s lifetime ...................................... 4 

1.2 Bandwidth as network resource – improving wireless throughput ................................... 7 

1.3 Message size constraints ................................................................................................... 8 

1.4 Improving resource utilization using multiple radios ....................................................... 9 

1.5 Lifetime aware network decomposition for executing distributed algorithms ............... 11 

1.6 Quality of information techniques for knowledge centric sensor networks.................... 15 

1.7 Organization of the dissertation ...................................................................................... 18 

2 Extending network lifetime .................................................................................................... 20 

2.1. Introduction .................................................................................................................... 20 

2.2 Related work ................................................................................................................... 23 

2.3 Problem definition and proposed solution ...................................................................... 25 

2.4 Relationship between the total energy and the residual energy of paths ........................ 29 

2.5 Derivatives of Shortest Widest path................................................................................ 32 

2.6 Performance of the shortest widest path approach on a benchmark topology ................ 34 

2.7 Performance on general topologies ................................................................................. 36 

2.8 Distributed implementation ............................................................................................ 45 

2.9 Hop-by-hop routing for multi-metric shortest paths ....................................................... 51 

2.10 Summary ....................................................................................................................... 51 

3 Throughput of wireless networks ........................................................................................... 53 

3.1 Introduction ..................................................................................................................... 53 

3.2 Related Work .................................................................................................................. 55 

3.3 System Model ................................................................................................................. 57 

3.4 Impact of path length on achievable aggregate throughput ............................................ 59 

3.5 Non destructive interference patterns ............................................................................. 65 

3.6 Computing interference aware multi-path sets for a single s-t pair ................................ 67 

3.7 Interference aware paths for multiple s-t pairs ................................................................ 69 

3.8 Performance evaluation .................................................................................................. 73 

3.9 Summary ......................................................................................................................... 75 

4 Distributed algorithm for interference aware vertex disjoint paths routing ........................... 77 



vii  
 

4.1 Introduction ..................................................................................................................... 77 

4.2 Related Work .................................................................................................................. 78 

4.3 Finding interference aware multiple paths ...................................................................... 79 

4.4 A distributed algorithm for interference aware s-t paths ................................................ 81 

4.5 Summary ......................................................................................................................... 91 

5 Multi-radio activation ............................................................................................................ 92 

5.1 Introduction ..................................................................................................................... 92 

5.2 Problem definition .......................................................................................................... 95 

5.3 Complexity of MHP2C problem ..................................................................................... 97 

5.4 Solving MHP2C through existing solutions ................................................................. 101 

5.5 A greedy solution for the MHP2C problem .................................................................. 105 

5.6 Performance evaluation of MHP2C solutions .............................................................. 108 

5.7 The MP2C and MPKC problems .................................................................................. 110 

5.8 Performance evaluation of MP2C and MPKC solutions .............................................. 116 

5.9 Related works ............................................................................................................... 117 

5.10 Summary ..................................................................................................................... 119 

6 Energy aware network decomposition techniques ............................................................... 120 

6.1 Introduction ................................................................................................................... 120 

6.2 The Widest Path Problem: A Network Decomposition Approach ............................... 125 

6.3 Network Decomposition for Improving Lifetime ......................................................... 131 

6.4 Experimental Evaluation ............................................................................................... 134 

6.5 Summary ....................................................................................................................... 136 

7 Quality of Information (QoI) metrics for knowledge centric sensor networks .................... 137 

7.1 Introduction ................................................................................................................... 137 

7.2 Motivation for QoI-aware data collection strategies ..................................................... 139 

7.3 A brief review of QoS models on sensor networks ...................................................... 140 

7.4 Benefits of QoI aware data collection ........................................................................... 142 

7.5 Summary ....................................................................................................................... 145 

8 Conclusion and future work ................................................................................................. 147 

Bibliography ........................................................................................................................... 150 

Appendix A ............................................................................................................................. 157 

IRIS Mote ........................................................................................................................... 157 

MICAz OEM module ......................................................................................................... 158 



viii  

 

MICA 2 ............................................................................................................................... 159 

IMote2 ................................................................................................................................. 160 

TelosB ................................................................................................................................. 161 

Appendix B ............................................................................................................................. 162 

Volcano monitoring ............................................................................................................ 162 

Vineyard monitoring ........................................................................................................... 162 

Zebra monitoring ................................................................................................................ 165 

Storm Petrel habitat monitoring .......................................................................................... 166 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

List of figures 
 
Figure 1.1 Wireless sensor network used for volcano monitoring ................................................ 1 
Figure 1.2 Forest fire detection using wireless sensor network .................................................... 2 
Figure 1.3 Sensor network for precision agriculture ..................................................................... 2 
Figure 2.1 MaxResidualEnergy algorithm to find the widest s-t path ........................................ 27 
Figure 2.2(a) A graph showing energy levels at nodes and energy required to transmit at each 
edge. ............................................................................................................................................ 28 
Figure 2.2 (b) shows the corresponding energy graph. ............................................................... 28 
Figure 2.3 Shortest Widest Path algorithm ................................................................................. 29 
Figure 2.4: Total energy of path vs the residual energy .............................................................. 30 
Figure 2.5: Total energy of path Vs residual energy graph......................................................... 31 
Figure 2.6 Shortest Width Constrained Path ............................................................................... 33 
Figure 2.7 Shortest Fixed Width Path ......................................................................................... 34 
Figure 2.8: Benchmark topology from max min zPmin ................................................................ 35 
Figure 2.9 Performance of power-aware algorithms vs basic algorithms ................................... 39 
Figure 2.10 (a): Lifetime vs Session length (b): Energy remaining vs session length ................ 41 
Figure 2.11 (a): Lifetime vs transmission radius (b): Energy remaining vs transmission radius 42 
Figure 2.12 (a): Lifetime vs node density (b): Energy remaining vs node density ..................... 43 
Figure 2.13 Impact of the communication cost estimate on actual lifetime ............................... 45 
Figure 2.14 (a): Lifetime vs session length (b): Energy remaining vs session length (distributed 
algorithm) .................................................................................................................................... 49 
Figure 2.15 (a): Lifetime vs transmission radius ........................................................................ 49 
Figure 2.15 (b): Energy remaining vs transmission radius (distributed algorithm) .................... 50 
Figure 2.16 (a): Lifetime vs node density and (b): Energy remaining vs node density 
(distributed algorithm) ................................................................................................................ 50 
Figure 3.1: Wireless Pipeline Scheduling Diagram for a path P1. .............................................. 59 
Figure 3.2: WPSD shows that three paths can provide the maximum possible throughput. ...... 60 
Figure 3.3 Schedule for unequal hop paths with equal remainders r1 and r2. ............................. 63 
Figure 3.4 The set of paths allow maximum throughput despite interpath interference ............. 64 
Figure 3.5 Interference aware algorithm for single s-t pair ........................................................ 69 
Figure 3.6 Interference aware multiple s-t pairs algorithms ....................................................... 72 
Figure 3.7 Algorithm for finding good paths given source destination requests ........................ 73 
Figure 3.8 Algorithm to compute diminishing return ................................................................. 73 
Figure 3.5  Impact of node density on throughput ...................................................................... 74 
Figure 3.6 Aggregate throughput vs number of flows ................................................................ 75 
Figure 4.1: The set of paths allow maximum throughput despite interpath interference. ........... 82 
Figure 4.2: (a) Bridges B1..B10 marked on original graph G. (b) conceptual edges of bridge 
graph GB. ..................................................................................................................................... 83 
Figure 4.3: Vertex disjoint paths in original graph G ................................................................. 85 
Figure 5.1(a) MHP2C example. .................................................................................................. 97 
Figure 5.1(b) MHP2C example. .................................................................................................. 98 



x 

 

Figure 5.2 Hitting set reduction. ............................................................................................... 100 
Figure 5.3 Minimum Connected dominating set transformation. ............................................. 104 
Figure 5.4 Approximation algorithm Alg-A for solving the MHP2C problem. ........................ 107 
Figure 5.5 Average case performance of different MHP2C solutions ...................................... 110 
Figure 5.6 Approximation algorithm Alg-B for solving the MP2C problem. ........................... 113 
Figure 5.7 Average case performance of different MP2C solutions ......................................... 116 
Figure 5.8 Average case performance of different MPKC solutions evaluated for K = 3 ........ 117 
Figure 6.1 (a) A graph showing energy levels at nodes and energy required to transmit at each 
edge.  Figure 6.1 (b) shows the corresponding energy graph. .................................................. 127 
Figure 6.2 Network decomposition algorithm .......................................................................... 134 
Figure 6.3 Lifetime of decomposition vs centralized algorithm ............................................... 136 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

List of tables 
Table 2.1: Number of messages transmitted using different algorithms .................................... 36 
Table 3.1 Suitable t1 and t2 values for various values of r1 and r2. Parameters r1 and r2 represent 
the remainders of dividing the hop lengths of the two paths by 3. ............................................. 62 
Table 3.2: Suitable t1, t2, and t3 values for various values of r1, r2, and r3 ................................... 64 
Table 5.1 Approaches for solving MHP2C with c groups ........................................................ 108 
Table 7.1 An overview of QoS approaches for sensor networks .............................................. 142 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii  
 

Abstract 
 

The nearly exponential growth of the performance/price and performance/size ratios of 

computers has given rise to the development of inexpensive, miniaturized systems with 

wireless and sensing capabilities.  Such wireless sensors are able to produce a wealth of 

information about our personal environment, in agricultural and industrial monitoring, 

and many other scenarios. Each sensor due to its miniature nature has severe resource 

constraints in terms of processing power, storage space, battery capacity and bandwidth 

of radio. Our goal in this research is to maximize the extraction of information out of 

the sensor network by efficient resource utilization. 

The typical deployment scenarios of these wireless sensors require that the 

individual computers (sensors) communicate with each other over multiple hops. A 

natural representation of this network is as a communication graph where each sensor is 

represented as a node in the graph and each wireless link between two sensors is 

represented as an edge. With this representation, it is clear that there are many choices 

of paths which may be used for communicating the data. Hence a good choice of the 

communication path is an important aspect of optimal resource utilization in such 

networks.  

Solving these problems lead to the following graph and path problems: 

a) The lifetime of a sensor network is defined as the number of packets which can be 

transmitted (i.e. the amount of data collected) before two sensors are unable to 

communicate with each other due to depletion of battery power along the 



xiii  

 

intermediate nodes connecting them. To collect the largest amount of data possible, 

using a multi-metric shortest path called as the shortest widest path, as well as close 

derivatives, is crucial. 

b) Optimal utilization of the available bandwidth and thus improving the perceived 

throughput is beneficial in multiple ways. First of all, better throughput is a 

desirable end goal in itself. Also it can be shown that better throughput requires the 

sensors to be transmitting for smaller durations of time and thus also saves energy. 

In order to optimize the throughput in a multi-hop wireless network, we must focus 

on a strategy of finding paths which are ‘interference aware’. Unlike earlier work 

which primarily concentrated on link and node scheduling for this problem, our 

path scheduling approach produces superior throughput at very reasonable 

computational costs. 

c) As we have seen, path problems on sensor networks play an important role in good 

network resource utilization. Typically we are also interested in implementing these 

path problems in a distributed manner. When we develop distributed algorithms for 

wireless sensor networks, we must be respectful of the typical packet size in a 

wireless sensor network, which is currently of the order of tens of bytes. This puts 

an impediment on developing distributed path algorithms which transmit large sized 

messages. Exploiting earlier work on low bit complexity distributed algorithms 

provides a way around this impediment.  

d) Another important technique for distributedly computing paths is to use network 

decomposition strategies. Our work presents a network decomposition strategy well 
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suited for wireless sensor networks as it provides energy aware execution of 

distributed algorithms without sacrificing scalability.  

e) As individual sensors become more powerful and start carrying multiple radios, the 

problem of activating the radios in an energy aware fashion will turn out to be 

critical. Our work on radio activation provides additional insight into this problem 

and shows that the essential question is one of finding and creating such topologies 

where high power radios form high degree clusters so that the number of nodes 

connected per high power radio activated is fairly high. 

f) We can use these results to provide qualitative specifications for the data being 

collected. Our work on Quality of Information (QoI) discusses how we can define 

attributes for information quality so as to perform data collection with good 

resource utilization. 
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Chapter One 
 
1 Introduction 
 

The increasing availability of cheap, low power, embedded processors with radios, 

sensors and actuators is enabling the use of wireless communication and computing for 

interacting with the physical world in a plethora of applications such as security and 

surveillance, habitat monitoring, medical monitoring and others [30].1  A wireless 

network comprising such devices, also called a wireless sensor network (WSN), is 

being deployed in a wide variety of situations ranging from experimental deployments 

with yet to be discovered tangible benefits [89, 86, 54] to the ROI-enhancing 

applications [13, 69, 46] with directly measurable commercial benefits2. Figure 1.1 

demonstrates an example of a wireless sensor network used for volcano monitoring.  

 

Figure 1.1 Wireless sensor network used for volcano monitoring
3 

                                                      
1 Refer to Appendix A for some discussions about the physical capabilities of sensor devices 
2 Refer to Appendix B for a list of some real world wireless sensor networks and their applications 
3 http://fiji.eecs.harvard.edu/Volcano 
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Figure 1.2 Forest fire detection using wireless sensor network4 

Similarly, figures 1.2 and 1.3 demonstrate how wireless sensor networks are being 

used in forest fire detection and for precision agriculture. Precision agriculture is the 

practice of fine grained monitoring and management of crops, which is enabled by the 

use of wireless sensors which can collect and report the requisite data. 

 

Figure 1.3 Sensor network for precision agriculture5 

The wide variety of application scenarios proposed for sensor networks is matched 

by an equally large number of constraints and requirements when translated to 

mathematical models and graph formalizations, and one could say that this is still a 

                                                                                                                                                           
 
4 http://web.mit.edu/newsoffice/2008/trees-0923.html 
5 http://blog.xbow.com/xblog/2007/10/worlds-largest-.html  
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nascent period of discovery in terms of graph algorithms and network protocols for 

wireless sensor networks. While the exhaustive research on wired as well as wireless 

networks could be adopted according to specific requirements for wireless sensor 

networks, the extremely resource constrained nature of these networks indeed pose a 

different set of questions and more importantly, fundamentally challenge the layered 

network model (the OSI seven layer model) in various ways. It is not uncommon to 

find popular sensor network protocols which tune all lower layers directly to suit the 

application level requirements [28, 33]. This is in part due to the autonomous nature of 

typical sensor network deployments, which often makes it unnecessary to consider 

adversarial behavior on the part of network participants. 

While initial research has focused on developing protocols which may span 

multiple layers of the seven layer model, there is also a case to be made for finding out 

the optimal ways in which individual resources in the network such as battery power, 

bandwidth, storage and packet size could be used. The knowledge of optimal utilization 

of individual resources would help identify ways of data collection such that we can 

simultaneously optimize along multiple resource constraints. This helps provide a data-

specification abstraction to the end user which is both flexible and resource friendly. 

To provide an understanding of the kinds of resource constraints we encounter in 

sensor networks, we consider a sensor with an Intel StrongArm processor which 

consumes 400mW of power in normal mode, 100mW in idle mode and 50µW in sleep 

mode. The energy required to transmit a single bit by such a sensor is about 1µJ. These 

sensors are powered by batteries with typical voltage rating 1.5V and has a capacity of 

400mAh. Since a watt-hour is 3600J, this means the number of bits which can be 
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transmitted using a single battery is about 270 MBits. Additionally, the energy required 

for a single computation is about 1 nJ per instruction, which means the ratio of 

communication energy cost to computation energy cost is nearly 1000! Energy is a vital 

resource and communication costs can be overwhelming. So we can see that the energy 

constraints (as well as other resource constraints) require that we make prudent use of 

the available resources. Besides, the typical deployment scenario of a wireless network 

calls for unsupervised operation and it is possible that once the battery of a sensor dies, 

the sensor is simply discarded. It is expected that the redundancy of the coverage 

coupled with the inexpensive nature of the sensors would make this a possibility. In 

such a scenario, it is crucial that the network is operated in a resource friendly manner. 

1.1 Energy as network resource – extending the network’s lifetime 
 

Energy management in wireless networks is of paramount importance due to the 

limited energy availability in the wireless devices. Since wireless communication 

consumes a significant amount of energy, it is important to minimize the energy costs 

for communication as much as possible by practicing energy aware routing strategies. 

Such routing strategies can increase the network lifetime. In the second chapter, we 

focus on developing routing strategies for multiple hop wireless networks where all the 

nodes are powered by a battery or other external power sources such as solar energy. 

Usually network lifetime is quantified through the number of packets that can be 

transferred in the network before the source and destination get disconnected from each 

other [48, 65]. A suitable energy-aware routing strategy for wireless networks is to use 

those wireless nodes with high energy levels and avoid those with low energy levels.  
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In developing energy aware routing techniques, wireless networks are modeled as 

graphs wherein, the vertex represents a wireless device and an edge between two 

vertices indicates that they are in direct communication range of each other.  The 

weight on a vertex indicates the residual energy available at that wireless node and the 

weight on an edge (u, v) represents the amount of energy required by node u (resp. v) to 

transmit one unit of data to node v (resp. u). The residual energy of a path is defined as 

the minimum energy level of any node in the path.  The max-min routing paradigm 

suggested in the literature [1, 48, 81] aims to maximize the network lifetime  by finding 

the path where the residual energy is the maximum and forwards packets through this 

path termed as the maximum residual energy path. The energy consumed along a path 

(or simply the energy of a path) is the sum of the weights on the edges along the path.  

Notable routing strategies which utilize the concept of the residual energy (either 

directly or indirectly) proposed so far include MMBCR [81], MRPC [1] and max-min 

zPmin [48]. These research works also caution that merely using the residual energy 

strategy may lead to higher energy consumption in the network, since the energy 

consumed along the data forwarding path is not taken into consideration. In our work, 

we show a theoretical justification of this notion by developing a relationship between 

the residual energy of the nodes along a path and the total energy of the path. A good 

energy-aware routing technique should balance two different goals: choosing a path 

with maximal residual energy and choosing a path with minimal energy consumption. 
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We note that the residual energy along a path is a concave metric6, whereas the energy 

consumed along a path is an additive metric. 

We present three polynomial time combinatorial techniques which can provide a 

good balance between metrics 1 and 2. The first technique, called the Shortest Widest 

Path, first maximizes the concave metric (the residual energy of a path) and then 

minimizes the additive metric (energy consumed along a path). The second technique, 

which we call the Shortest Width Constrained Path, finds paths with a suitably high 

residual energy (which may not be the maximum), and then minimizes the energy 

consumed along such a path. Lastly, our third approach (Shortest Fixed Width path) is 

similar to the second approach in the sense that it finds a minimum energy path among 

the paths that have a high residual energy. However, unlike the shortest width 

constrained path, it does not change the residual energy with each route calculation; the 

residual energy level is changed only when it becomes infeasible to find paths between 

the source and the destination at the current residual energy level. Our simulation 

studies show that the performance of the proposed techniques is superior to that of the 

best known routing approach proposed in the literature (Park and Sahni [65]). We also 

discuss the performance of our proposed algorithms in a distributed setting. Even if the 

nodes lack an accurate global knowledge of the instantaneous node energy levels, we 

find that the two phased routing techniques perform reasonably well. We also find that 

the proposed distributed techniques outperform the distributed implementation (that we 

have developed) of the algorithm proposed by Park and Sahni [65].  

                                                      
6
  For definitions of concave and additive metrics, see Wang and Crowcroft [84]. 
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1.2 Bandwidth as network resource – improving wireless throughput 
 

The throughput observed in a single path in a multiple hop wireless network can be no 

more than a third of the single hop bandwidth under the standard radio model [48]. 

There are some applications where one might require a higher end-to-end throughput 

than that available through the use of a single path. As an example, the volcano 

monitoring example mentioned in Section 1.1 is a typical application which requires 

frequent monitoring and hence fairly high data rates. In contrast, improving the network 

throughput may not be as important in other sensor network applications where data is 

generated much less frequently. In any case, a better utilization of the available 

bandwidth could lead to less idling and hence improved network lifetime. The 

traditional way to achieve higher throughputs in wired networks is to use multiple paths 

in parallel so as to improve the aggregate bandwidth. While a similar approach can be 

adopted for wireless sensor networks too, wireless networks suffer from the additional 

challenge that in most network topologies the discovered paths may lie close to each 

other. Consequently, packet transmissions in one path may interfere with transmissions 

taking place in other paths in the path set leading to a significant reduction in the 

overall throughput [87]. 

This reduction in throughput in wireless networks can be avoided by appropriate 

path selection combined with careful packet transmission scheduling. It has been noted 

in the literature [48] that the maximum possible throughput equaling the single hop 

bandwidth can be achieved by using three non-interfering paths. Hence having multiple 

paths which do not interfere with each other is ideal. However, we show in chapter 3 
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that this problem is the same as the problem of finding chordless cycle containing a pair 

of vertices in a graph, which is actually NP-Complete [10]. We then turn our attention 

towards finding path sets in static wireless networks which would provide the same 

level of aggregate throughput as non interfering paths while at the same time permitting 

interfering links. 

Our contributions are: (a) we demonstrate that it is possible for a set of paths 

between source s and destination t with some interference between them to provide 

high aggregate throughputs provided the interfering edges among the paths follow 

certain favorable patterns; we present a combinatorial approach for finding such paths 

in a wireless network. (b) we extend our approach to scenarios involving multiple s-t 

pairs and show that the proposed approach can improve the throughput in such 

scenarios too (c) our combinatorial approach can also provide a straightforward 

mechanism for scheduling the transmissions at various links and finally, (d) the 

computation of the transmission schedule is shown to be amenable to a distributed 

implementation under the proposed approach. 

1.3 Message size constraints 
 

The size of messages exchanged in a sensor network is also an important constraint. 

Besides the fact that larger size messages require larger energy for transmission, the 

usual fragmentation of packets would require multiple transmissions for successful 

packet transmission. This affects both the latency of the message exchange as well as 

leads to a potentially larger chance for transmission loss and thus larger retransmission 

cost over lossy wireless links. Distributed algorithms, which are primarily based on 
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message transfers, cover the entire gamut from algorithms based on single bit messages 

[44] to algorithms which may be fairly oblivious to the size of the messages being 

transferred [70]. However, a sensor network provides an environment where distributed 

algorithms with low message-bit complexity can be more easily implemented.  

We focus on a specific problem – namely, increasing the wireless throughput for 

multiple source destination pairs in a wireless network. The ideas from chapter 3 are 

adapted for a distributed implementation. The fourth chapter of this dissertation 

provides distributed techniques for the throughput improvement problem which have 

low message-bit complexity and which use only single messages even under small 

packet sizes. 

1.4 Improving resource utilization using multiple radios 
 

While the first generation of wireless sensors had limited processing and storage 

capabilities, advances in technology, in combination with increased application 

demands have resulted in more powerful second generation sensor nodes. These nodes 

possess relatively higher processing and storage capabilities achieved through the use 

of powerful CPUs, and large memories [34], [57]. These nodes are also capable of 

operating multiple radios simultaneously, each with a different power, range and 

bandwidth rating. Though such multi-radio sensors are currently used as gateways or 

cluster-heads in sensor networks, technological advancement may soon equip even the 

commonly used sensor nodes with multiple radios. 

While the capabilities of sensor nodes have increased along several fronts, they will 

continue to be powered by batteries. Consequently, energy conserving mechanisms are 
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of paramount importance even in next generation wireless sensor networks. The radios 

in a multi-radio sensor node may differ not only in terms of their communication 

capabilities but also in terms of energy efficiency and usage. High bandwidth, long-

range radios usually possess higher energy efficiency, in terms of energy expended per 

bit transmitted, than low bandwidth, short-range radios [80]. However, high bandwidth 

radios also consume more power when idling than low bandwidth radios. Therefore, 

activating several high bandwidth radios when there is not a lot of data to be 

transmitted may result in considerable energy wastage. On the other hand, due to their 

greater reach, long-range radios can reduce the network diameter; consequently, the 

latency involved in delivering sensory data to a prescribed destination will decrease 

with the use of long range radios. Several of them may need to be activated when the 

application demands smaller data delivery latency. Thus the issue of radio activation is 

closely tied to the requirements of the application and is the focus of chapter 5 in this 

dissertation. 

Earlier research on multi-radio systems assume that the network remains connected 

even when all the sensor nodes activate only their lowest power radio. However, in a 

general setting, such a requirement on the connectivity cannot be guaranteed. Radios 

with higher power and longer range may have to be activated even to make the network 

connected. In chapter 5, we focus on energy efficient radio activation in a sensor 

network where each node has K > 1 radios. The radios r1, r2,…, rk in a node are such 

that the one hop reachability distance (resp. energy expended) of (resp. by) radio r i is 

greater than that of r j, 1 ≤ j < i ≤ k. Given such a network, the problem of energy 

efficient radio activation is to minimize the total energy spent by the active radios 
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across all nodes in order to maintain a connected network. We make several 

contributions: (1) We show that the problem of energy efficient radio activation is NP-

Complete. (2) We propose four different polynomial time approximation 

methodologies for solving this problem in networks with K = 2. The first two 

methodologies employ a series of non-trivial reductions to leverage on existing 

approximation solutions for other known NP-Complete problems. The third 

methodology is based on the minimum spanning tree algorithm. The fourth 

methodology is a greedy algorithm that is proposed afresh. (3) We extend these 

solutions to the general case of K > 2 radios as well. (4) Our analytical and 

experimental studies of the four solutions reveal that the greedy algorithm and the 

minimum spanning tree solution have the best worst case performance while the greedy 

algorithm has the best average case performance.  

1.5 Lifetime aware network decomposition for executing distributed algorithms 
 

As noted earlier, energy aware routing strategies help in extending the lifetime of a 

wireless network.  This is very important for sensor networks where the energy is an 

important nonreplenishable resource. A suitable energy-aware routing strategy for 

wireless networks is to use those wireless nodes with high energy levels and avoid 

those with low energy levels.  The routing strategies on sensor network involve the 

following general steps, a) find routes; b) perform routing; c) update network values 

and perform step a).   

Consider a centralized algorithm wherein a single node (call it central node) keeps 

track of the topology information.  The central node will determine the routes (step a) 
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by executing a local algorithm.  When a source node requires a message to be routed to 

the destination, it sends a request to the central node which will provide the entire route 

to the destination.  After the receipt of the information from the central node, the source 

node can perform routing (step b).  Assuming that the source node follows the exact 

route provided by the central node, the central node can determine the energy changes 

of the intermediate node (without the intermediate nodes explicitly informing the 

central node) and re-compute the routes locally for the next route request. In addition to 

the energy consumed when packets are routed along the route path, energy is also 

consumed at intermediate nodes along the path from source to central site and vice-

versa for route request and response.  This straight-forward algorithm has all the 

weaknesses of any centralized algorithm such as lack of fault-tolerance and problems 

associated with hot spots created by request/response information travelling to and from 

the central node.  In fact with repeated route requests it is easy to observe that the 

neighbors of the central site may quickly lose energy thereby making the central node 

unreachable and consequently decreasing lifetime.  One could choose a new central 

node and use a simple distributed algorithm such as the distributed depth first search 

[70] to learn the topology of the network including the node and link information.  Yet 

another weakness of the centralized algorithm is that for large resource limited sensor 

networks a single central node may have neither the space capacity to store the entire 

network nor the computation power to compute the paths in a short period of time, or 

even enough energy to perform the computation as it is nearing the end of its battery 

life. 



13 

 

 Given a distributed system consisting of computational nodes, a distributed 

algorithm solves a particular problem of interest by exchanging messages among the 

nodes.  In the distributed system each node knows its neighbors by their unique 

identities and the total number of nodes in the distributed system.  A distributed 

algorithm is evaluated based on the total number of messages exchanged (message-

complexity) and the time-taken for the completion of the distributed algorithm (time-

complexity). Depending on the problem to be solved the distributed algorithm must be 

rerun after a node or link update either on the entire network or a portion of the network. 

Distributed algorithms are scalable as they do not require a single node to keep track of 

the entire topology information. The fundamental weakness of the distributed 

algorithms for sensor networks stems from the fact that after step b) of the routing 

strategy is completed, the intermediate nodes have new energy levels and now the 

distributed algorithm to determine routing paths (step a) has to be re-executed.  That is 

after each route request is complete the distributed algorithm is re-run and thereby the 

message complexity is overwhelmed by the number of route requests that have been 

completed. 

 From the above discussion it is clear that the centralized algorithm is message 

efficient, but ineffective on lifetime as a result of hot spots and other issues relating to a 

centralized site. The distributed algorithm addresses the deficiencies of the centralized 

algorithm but is ineffective in terms of lifetime due to large number of messages 

required to recompute the routing paths after a completion of a route request.  We 

propose a network decomposition approach that will combine both the centralized and 

distributed approaches described above by decomposing the network into smaller 
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networks (referred to as clusters).  The centralized algorithm is executed on each 

cluster and the distributed algorithm is executed on the central nodes (referred to as 

cluster head) of each cluster. 

 Network decomposition is akin to divide-and-conquer approaches to problem 

solving wherein, a larger problem is broken into smaller sub-problems and solutions of 

the smaller sub-problem are combined to arrive at the solution to the larger problem.  

Network decomposition has been effectively used to solve many problems in sequential, 

parallel, and distributed environments.  Network decomposition techniques have shown 

to reduce the message complexity of distributed algorithms by (i) decomposing the 

network into a set of connected components, (ii) running a pseudo-distributed algorithm 

on each connected component (we will call the connected component a cluster), and (iii) 

solving the optimization problem by executing a distributed algorithm involving cluster 

heads of each cluster.  Note that a node that is along the path connecting two cluster 

heads will only forward messages.  

 Using network decomposition approaches one can alleviate the problems resulting 

in having central site. Updates in each cluster are sent to its cluster head.  The cluster 

heads perform a local computation using the topology information as in the case of 

centralized algorithm.  The cluster heads communicate using “meta” data and execute a 

distributed algorithm to solve the problem at hand.  Conceptually since the number of 

cluster heads is smaller and fewer nodes will participate in the distributed algorithm the 

message complexity could be smaller. The above idea has been used to solve many 

distributed algorithms effectively [4]. 
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 Awerbuch and Peleg [5, 6, 7, 8] have published a series of seminal works in the 

area of distributed algorithms that use the concept of network decomposition.  These 

works and the work by Linial [51] and Naor and Stockmeyer [64] exploit the concept of 

“locality” in distributed computations.  The concept of locality is that certain functions 

when locally computed do not affect the global solution.  For certain problem the 

solutions of the local computation can be cleverly combined to obtain global solution.  

Considering network problems on networks that have been decomposed, certain 

coloring problem instances can be solved efficiently for the entire network by cleverly 

stitching together solutions for each cluster.  

 In chapter 6, we introduce the widest path problem and its application to improving 

network lifetime.  We present an algorithm to perform widest path routing (or called the 

maximum residual energy path routing) given a set of clusters.  Ideal network 

decomposition which is suitable for improving network lifetime is then described and a 

decomposition algorithm for such a lifetime aware decomposition is also presented.   

1.6 Quality of information techniques for knowledge centric sensor networks 
 

A primary necessity for sensor network deployments is to be able to collect data about 

environmental (and other) phenomena under observation and transform it into useful, 

actionable knowledge. However, sensor networks due to their resource constrained 

nature have some key differences from general communication networks (such as the 

World Wide Web, and corporate intranets). The differences are fundamental, and hence 

we use the term message centric networks to refer to big, powerful networks such as the 
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WWW and corporate intranets, and knowledge centric networks to refer to sensor 

networks which usually lie on the other end of the spectrum in terms of scale.  

Unit of atomicity – The unit of atomicity can be defined as the ‘indivisible’ unit of 

information which still retains semantics. In a knowledge centric network, where 

combining information is encouraged and loss of information is tolerated, the unit of 

information is the aggregate knowledge rather than the individual message.  

Resource assumptions – the simple act of resending a message is commonplace 

(and even vital for everyday tasks such as browsing the internet) on a message centric 

network, where we can make assumptions of virtually unlimited resources. Resending a 

single message would require careful planning on a resource constrained sensor 

network, where minimal assumptions are made about the availability of resources. 

Data gathering - Nearly all messages generated can be and are usually stored or 

collected in a message centric network, while that is neither a requirement nor a prudent 

choice on a knowledge centric and resource poor sensor network. 

Data dispersal – Data dispersal refers to the replication of the same data and its 

dispersal over multiple media and devices (such as backing up important files on to a 

USB drive, a backup disk, and online storage). In a message centric network such as the 

internet, data dispersal is common and quite useful. Such data dispersal would be costly 

on a typical sensor network.  

Search techniques – this is perhaps a vital difference and a key motivation for the 

QoI strategy. Any data collected, in order to be made useful, needs to be analyzed and 

processed. This would usually require doing a search over the data at some point in 
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time. In a message centric network, due in large part to the resource rich nature, the 

exponential growth of data is tolerated and search techniques evolve to deal with the 

rate of data generation. We call this the “store and search” strategy. In a fundamentally 

resource constrained sensor network, the rate of data generation and transmission is 

controlled by using a top down strategy where the search comes first - in terms of 

usefulness of data collected, i.e. the “Quality of Information” . Here we first search for 

what needs to be stored - and hence we “search and store”. 

Hence the transformation of data into information (or knowledge) requires a more 

top down approach which can balance information needs and resource utilization rates. 

If we begin by defining our information needs (i.e. specifying the Quality of 

Information requirements), we would be able to better utilize the often non-renewable 

resources of a sensor network. We believe that adding the Quality of Information (QoI) 

as another dimension will greatly benefit the knowledge which can be extracted from a 

sensor network. Mapping the aspects of QoI to different kinds of sensor network 

applications will allow the user to more clearly specify what he or she wants from the 

sensor network deployment. By providing a framework to deliver what the user wants, 

we give more flexibility to the user for defining his/her needs and to understand and 

analyze the tradeoffs involved. 

The most important benefit of the QoI approach to routing on sensor networks is the 

explicit knowledge of the various tradeoffs involved, which leads to higher quality of 

data collected from the sensor network. The explicit use of QoI attributes provides a 

considerable variety of options for data collection. A second benefit of the QoI 

approach is a better utilization of network resources. In many scenarios, the use of QoI 
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for specifying the requirements for the data collection process will actually allow for 

better utilization of network resources than the case where QoI is not considered. For 

example, we may wish to collect information from highly relevant sensor nodes. We 

expect to find a fair degree of redundancy in the network; so many sensors could 

possibly satisfy the relevance constraint. We may choose only a few sensors among 

them for the data collection task. The sensors chosen may have higher residual energies, 

and thus we could perform the data collection in an energy-balanced fashion. We could 

also select sensors which are closer to the sink, hence reducing the latency of data 

collection. We can clearly see that using the QoI approach (in this case, specifying that 

the user is interested in the ‘relevance’ of the data) allows us to utilize network 

resources far more effectively while also satisfying the end user requirements. 

We present the case for using an application centric viewpoint for improving 

network resource utilization. Specifically, we recommend the use of well defined 

attributes for the information quality to be applied to the data which is being collected 

from the network - called as Quality of Information (QoI), similar to Quality of Service. 

Using QoI attributes for specifying the type of data to be collected would be an 

abstraction which provides a fair amount of flexibility to the end user while also 

allowing good network resource utilization. 

 

1.7 Organization of the dissertation 
 

The rest of the dissertation is organized as follows. Chapter 2 describes multi-metric 

shortest path techniques for extending the lifetime of a sensor network and thus keeping 
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it operational for a long time. Chapter 3 proposes interference aware routing by 

analyzing the impact of interference on the throughput which can be achieved in a 

wireless network. By identifying interference patterns which are non-destructive, i.e. do 

not lead to a reduction of throughput, we propose ideas for combining route selection 

and transmission scheduling in such a way as to increase the throughput utilization. 

Chapter 4 provides distributed techniques for the implementation of the aforementioned 

interference aware routing algorithms. Using multiple radios can lead to improved 

resource utilization in sensor networks. Chapter 5 identifies and provides solutions for a 

connectivity problem which arises in the context of multi-radio sensor networks. It has 

been shown that the performance of distributed algorithms in terms of scalability and 

message complexity can be improved using network decomposition techniques. 

Chapter 6 describes network decomposition techniques which are lifetime aware and 

shows how these ideas can be applied in the context of energy aware routing discussed 

in Chapter 2. Chapter 7 makes the case for data collection in sensor networks from an 

application centric viewpoint and shows how it can impact resource utilization in a 

wireless sensor network. The conclusions of this dissertation are presented in Chapter 8 

along with a discussion of the future directions in which this research could be 

extended. 
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Chapter 2 
 

2 Extending network lifetime 
 

2.1. Introduction 

Energy management in wireless sensor networks is an important consideration due to 

the limited energy availability in battery powered wireless devices. Wireless 

communication consumes a significant amount of energy and it is important to 

minimize the energy costs for communication as much as possible by practicing energy 

aware routing strategies. Such routing strategies can increase the network lifetime. In 

this chapter, we focus on developing routing strategies for multiple hop wireless 

networks where all the nodes are powered by a battery or other external power sources 

such as solar energy. Usually network lifetime is quantified through the number of 

packets that can be transferred in the network before the source and destination get 

disconnected from each other [48, 65]. A suitable energy-aware routing strategy for 

wireless networks is to use those wireless nodes with high energy levels and avoid 

those with low energy levels.  

We model the wireless network as a graph wherein, the vertex represents a wireless 

device and an edge between two vertices indicates that they are in direct 

communication range of each other.  The weight on a vertex indicates the residual 

energy available at that wireless node and the weight on an edge (u, v) represents the 

amount of energy required by node u (resp. v) to transmit one unit of data to node v 

(resp. u). The residual energy of a path is defined as the minimum energy level of any 

node in the path (referred to as metric 1 in our work).  The max-min routing paradigm 
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suggested in the literature [1, 48, 81] aims to maximize the network lifetime by finding 

the path where the residual energy is the maximum and forwards packets through this 

path termed as the maximum residual energy path. The energy consumed along a path 

(or simply the energy of a path) is the sum of the weights on the edges along the path 

(referred to as metric 2 in our work). While some defining characteristics of wireless 

networks, such as lossy links, non-uniform transmission range etc. cannot be 

completely described by this somewhat idealized graph model it can be used as a good 

starting point for estimating lifetimes. Also, we are interested in maximizing the 

lifetime which can be achieved, and the more realistic network models are unlikely to 

improve on these bounds. That is, the realistic network models typically provide a 

smaller value of the computed lifetime when compared to the more idealistic model we 

use, and we are interested in finding lifetimes which are as close as possible to the 

maximum theoretically achievable value. 

Earlier routing strategies which utilize the concept of the residual energy (either 

directly or indirectly) proposed in the literature include MMBCR [81], MRPC [1] and 

max-min zPmin [48]. These research works also caution that merely using the residual 

energy strategy may lead to higher energy consumption in the network, since the 

energy consumed along the data forwarding path is not taken into consideration. They 

suggest that a good energy-aware routing technique should balance two different goals: 

choosing a path with maximal residual energy and choosing a path with minimal energy 
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consumption. We note that the residual energy along a path is a concave metric7, 

whereas the energy consumed along a path is an additive metric. 

In this chapter, we present three polynomial time combinatorial techniques which 

can provide a good balance between metrics 1 and 2. The first technique, called the 

Shortest Widest Path, first maximizes the concave metric (the residual energy of a path) 

and then minimizes the additive metric (energy consumed along a path). The second 

technique, which we call the Shortest Width Constrained Path, finds paths with a 

suitably high residual energy (which may not be the maximum), and then minimizes the 

energy consumed along such a path. Lastly, our third approach (Shortest Fixed Width 

path) is similar to the second approach in the sense that it finds a minimum energy path 

among the paths that have a high residual energy. However, unlike the shortest width 

constrained path, it does not change the residual energy with each route calculation; the 

residual energy level is changed only when it becomes infeasible to find paths between 

the source and the destination at the current residual energy level. Our simulation 

studies show that the performance of the proposed techniques is superior to that of the 

best known routing approach proposed in the literature (Park and Sahni [65]). We also 

discuss the performance of our proposed algorithms in a distributed setting. Even if the 

nodes lack an accurate global knowledge of the instantaneous node energy levels, we 

find that the two phased routing techniques perform reasonably well. We also find that 

the proposed distributed techniques outperform the distributed implementation (that we 

have developed) of the algorithm proposed by Park and Sahni [65]. The results of our 

research work has been presented in [59] and [62]. 

                                                      
7  For definitions of concave and additive metrics, see Wang and Crowcroft [84]. 
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The chapter is organized as follows. Section 2.2 provides an overview of the related 

work. Section 2.3 provides the definition of the network lifetime problem as well as our 

basic solution. In Section 2.4, we deduce a relationship between the residual energy of 

nodes along a path and the minimum energy for a given residual energy value. In 

Section 2.5, we describe two other solutions which may be considered derivatives of 

our basic solution. Section 2.6 compares the performance of our basic algorithm with 

other approaches on a benchmark topology to show that using the widest path (also 

called as max-min) approach usually improves the network lifetime. We use empirical 

evaluations to discuss the performance of our three solutions on general topologies in 

Section 2.7. We describe the distributed implementations of the solutions we propose, 

and their performance, in Section 2.8. We conclude our discussion in Section 2.9. 

2.2 Related work 

We are interested in lifetime maximization using centralized approaches. Localized 

algorithms for the lifetime maximization problem have been proposed in the literature 

under some restricted models. For example, Madan and Lall [53] propose a linear 

programming based approach for lifetime maximization where the information 

generation rate is assumed to be constant. Also, Zussman and Segall [92] have 

proposed localized algorithms for the anycast routing model for emergency network 

applications. In the centralized case, notable routing strategies which utilize the concept 

of the residual energy (either directly or indirectly) include CMMBCR [81], max-min 

zPmin [48] and CMRPC [1]. The pioneering work done by Toh et al [81] establishes 

multiple formulations for the online energy aware routing problem, of which 

CMMBCR (Conditional Min Max Battery Capacity Routing) is shown to be better than 
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the remaining approaches. CMMBCR uses minimum energy paths in the first phase, 

and then shifts to paths with maximum residual energy after node energy levels in the 

network fall below a certain threshold. 

Qun Li et al. [48] describe the max-min zPmin algorithm. The max-min zPmin 

algorithm attempts to balance metric 1 and metric 2 by calculating a path based on the 

residual energy levels, but then rejecting any path whose total energy is more than a 

factor z times the minimum energy path. The quality of the solution provided by the 

max-min zPmin algorithm depends on the empirically generated parameter z, and this 

does not always provide an optimal solution.  

The CMRPC algorithm [1], which is similar to CMMBCR algorithm proposed in 

[81], uses the residual ‘packet capacity’ instead of the residual energy for optimization. 

The residual packet capacity denotes the capacity of each edge in the graph based on 

the residual energy, the communication cost of the edge as well as the initial energy 

levels.  

Chang and Tassiulas [15] combine metrics 1 and 2 into a single metric and run 

Dijkstra’s algorithm on this new metric. While it is a good heuristic, this method does 

not actually optimize either metric and makes their approach closely dependent on the 

empirical values assigned to the parameters used as power terms in the combined 

metric.  

Park and Sahni [65] present the Online Maximum Lifetime (OML) heuristic, which 

is an enhancement of the CMAX algorithm presented by Kar et al [41].  OML initially 

removes edges with low residual energy from the graph. The edge weights are then 
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modified such that a high cost (and thus a heavy penalty) is associated with edges 

having low residual energy or high communication cost. Dijkstra’s algorithm is run on 

the modified graph such that the paths found usually use nodes with high energy levels 

and edges with low energy costs. They report that OML gives the best network lifetime 

among all routing approaches in the current literature.  

2.3 Problem definition and proposed solution 

Let G = (V, E) represent a wireless network with nodes V and edges E.  Let w(u), u ∈ V, 

represent the available energy at node u.  Let c (u, v), (u, v) ∈ E, be the energy required 

to transmit a packet from node u to node v.  We assume that c (u, v) = c (v, u), for all (u, 

v) ∈ E. 

Let P(v0, vk) = v0, v1, …, vk, be a path in G.  The energy of the path P(v0, vk) denoted 

e(P(v0, vk)) is given by 

                                       ������, �	
� � ∑ ����, ����
	��
���   (1) 

 

The residual energy of a path P(v0, vk) denoted r(P(v0, vk)) is defined as  

 r(P(v0, vk)) = mini(w(vi)-c(vi,vi+1)), 0 ≤ i < k. (2) 

When a packet is sent along P(v0, vk), we need to perform the following energy 

decrease operation on each node along the path except on the node vk: w(vi) = w(vi) – 

c(vi, vi+1), 0 ≤ i < k.  That is, after the packet is sent by a node, the energy level of the 

node is decremented by the amount of energy required to send the packet.  In our model, 

we have not included the cost of reception explicitly to avoid clutter in our discussions 
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and such a cost can be easily incorporated in our proposed work. We discuss this at the 

end of this section. 

Given a source s, a destination t, and a single packet to be routed, we can define two 

problems formally: 

a. Minimum energy path problem: Find a path P(s, t) with minimum e(P(s, t)). 

b. Maximum residual energy path problem: Find a path P(s, t) with maximum 

r(P(s, t)). 

Let G0 be set to the initial network G.  Assume that P0(s, t) is a path in G0.  Now 

after routing a single packet along the path P0(s, t) and applying the decrease operation 

we obtain a new network G1.  In the network G1 the edge weights are the same as in G0 

but the node energy levels are different.  If a node u’s energy level becomes 0 after the 

decrease operation, node u and its associated edges (u, v) ∈ E as well as (v, u) ∈ E are 

removed from the network.  For the second packet we can again find a path P1(s, t) in 

G1 and the process continues until there exists no path between s and t in some network 

Gk. That is, we can send at most k packets from s to t before the network is 

disconnected.  The goal of the network lifetime problem with respect to a source s and 

destination t is to find paths P0(s, t), P1(s, t),… Pk-1(s, t), such that the value of k is 

maximized. Here we would like to point out that while our goal is to maximize the 

network lifetime, it has been shown that computing the value of k is NP-hard [65]. 

While it would be more appropriate to call this the lifetime improvement problem, we 

have decided to use the standard terminology in the literature and refer to this as the 

lifetime maximization problem. 
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We will begin by outlining our solution to the network lifetime problem. The graph 

G is modified into an energy graph EG = (V, E΄) as follows. We leave the vertices 

intact but replace each single undirected edge in G with two directed edges. The weight 

of a directional edge in EG is made equal to the difference between the originating 

node’s energy level and the transmission cost along the edge. This is also the residual 

energy of a node as defined in Li et al [48]. In Figure 2.2 (a) we have shown an 

example wireless network and in Figure 2.2 (b), the corresponding energy graph. 

Algorithm MaxResidualEnergy (EG, source) 
// s – source node 
//Adj[s] – adjacency list representing the neighbors of the source 
// weight(u,v) = capacity of edge (u, v) in graph EG 
// width(u) = weight function for a node u in graph EG 
begin 
1. width[s] = 0 
2. width[v] = weight(s,v) if v ∈ Adj[s] 
3. width[v] = 0 for all other nodes 
4. S = s 
5. Q =V[EG] – s 
6. while Q ≠ ϕ { 
7.    find u ∈ Q where width[u] is maximum ∀ u ∈ Q 
8.    Q = Q – u 
9.    S = S ⋃ {u} 
10.  for  each vertex v ∈ Adj[u] 
11.      if  v ∉ S do RELAX(u, v, weight(u, v)) 
12. } 
End 
 
RELAX (u, v, weight(u,v)) 
1.if  width[v] < min(width[u], weight(u, v)) 
2.   width[v] = min(width[u], weight(u,v)) 
3.   Pred(v) = u 

Figure 2.1 MaxResidualEnergy algorithm to find the widest s-t path 

Given a source node s and a destination node t, a two-phased routing algorithm 

called as shortest-widest path, is executed on this energy graph EG to find a suitable 

path between s and t. In phase I, we apply a variant of the Dijkstra algorithm 

(Algorithm MaxResidualEnergy) which returns a path whose residual energy will be 

the maximum in the network. Let the path returned by phase I have a residual energy of 
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B. It is to be noted that there could be many paths in the network between s and t with a 

residual energy of B. The algorithm MaxResidualEnergy given in Figure 2.1 computes 

the value of the maximum residual energy of the paths originating from a given source 

to all other nodes. 

 

 

Figure 2.2(a) A graph showing energy levels at nodes and energy required to transmit at each edge. 

   Figure 2.2 (b) shows the corresponding energy graph. 

In phase II, we choose from the set of all paths with a residual energy of B, a path 

which has the lowest energy consumption. This can be accomplished as follows. Let E" 

be the set of edges in EG whose residual energy is less than B. These edges are pruned 

from EG and by using Dijkstra’s algorithm, the least energy cost path on EG\E" is 

determined. If there are many such paths, we arbitrarily choose one among them.  

It can be noted that this algorithm can also handle the energy cost of reception if 

such information was available. We would need to modify step 1 of the RELAX 

procedure to add the energy cost of reception. It must also be noted that the pruning is 

temporary, in other words, the pruned edges are restored before the next route 

computation. Each time a path is computed, we will invoke Dijkstra’s algorithm twice 

in sequence. Hence our algorithm has a complexity equal to k times the complexity of 
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Dijkstra’s algorithm, where k is the number of packets transmitted. The algorithm 

ShortestWidestPath given in Figure 2.3 calculates the shortest widest path on the 

modified graph EG for a given source and destination pair. 

Algorithm ShortestWidestPath(EG, source, dest) 
// source – source node; dest – destination node 
// MinimumEnergyPath (EG, source, dest) uses Dijkstra’s algorithm to find the  
// minimum energy path in the graph EG based on energy cost on each edge 
begin 
1. w = WIDEST(EG, source, dest) 
2. for each edge e ∈ EG 
3.    if (weight[e] < w) EG = EG\e 
4. p = MinimumEnergyPath (EG, source, dest) 
5. Restore all edges back in EG 
end 
 
WIDEST(EG, source, dest) 
1. MaxResidualEnergy(EG, source) 
2. return  width[dest] 

 

Figure 2.3 Shortest Widest Path algorithm 

 

2.4 Relationship between the total energy and the residual energy of paths 

While the maximum residual energy path computation identifies the path whose 

bottleneck edge has maximum energy and allows us to discover the maximum residual 

energy subgraph, we can also define residual energy constrained subgraphs.  

Definition: Let EG(w) represent the subgraph constructed from the original residual 

energy graph EG, by pruning all those edges in EG which have residual energies less 

than w.  
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Figure 2.4: Total energy of path vs the residual energy 

Let Emin(w) represent the energy consumed along the minimum energy path from 

source s to destination t in EG(w). For example, in the graph shown in Figure 2.4, we 

can observe that for EG(65), which is the subgraph constructed by pruning all edges 

whose residual energies are below 65, the minimum energy path from s to t requires 30 

units of energy, i.e. Emin(65) = 30. On the other hand, Emin(60) = 20 and Emin(55)= 10. 

That is, as the constraint on the residual energy increases, the energy required for the 

minimum energy path also increases.  
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If we were to repeatedly compute the minimum energy path for all the possible 

residual energy values of a graph (a graph can have at most m such discrete values, 

where m is the number of edges) we would obtain a non-decreasing graph similar to the 

one shown in Figure 2.5. This result is stated in the following lemma:  

Lemma 2.1: Let Emin(w) represent the energy consumed along the minimum energy  

path from s to t in EG(w). Given the residual energies of all the edges in the graph EG 

in increasing order as (w1, w2…, wm), i.e. w1 ≤ w2 ≤ … ≤ wm, then Emin(w1) ≤ Emin(w2) 

≤ … ≤ Emin(wk). 

Proof: Let G1 = EG(w1) and G2 =  EG(w2) where w1 ≤ w2. Any edge in G2 also exists in 

G1, by definition. Thus the minimum energy path in G1 cannot have higher energy than 

the minimum energy path in G2. In other words, Emin(w1) ≤ Emin(w2). By induction, we 

get the result. ■ 

 

Figure 2.5: Total energy of path Vs residual energy graph 

We gain some useful insight from the relationship between the residual energy 

along a path and the minimum energy path possible for such a residual energy. For one, 
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knowing that we have a lower energy path, we could avoid routing the packet along a 

path with identical residual energy but which consumes a much higher energy for the 

entire path. From Figure 2.5 we can infer that using a higher residual energy path also 

automatically implies we may spend more energy in forwarding a packet along that 

path. 

2.5 Derivatives of Shortest Widest path 

In addition to the shortest widest path discussed earlier, we propose two other online 

energy aware routing algorithms. These algorithms too are two-phased strategies and 

are derivatives of the shortest widest path algorithm discussed before. The derivatives 

are based on the following idea: we first prune off all edges in the graph which have 

residual energy levels (in the modified energy graph) below a certain cutoff value, and 

we find the minimum energy path on the remaining subgraph. The difference between 

the two algorithms lies in the value we choose for the cutoff and the way we select the 

cutoff values. 

2.5.1 Shortest width constrained path 

Besides the shortest widest path (or the minimum energy maximum residual energy 

path), we can also use paths which are “tradeoffs” in the solution space. That is, by 

sacrificing the high residual energy of the absolute widest path, we could use a path 

with a slightly lesser residual energy, but which can provide us the benefit that it 

consumes lesser energy along the path. We call this routing approach the shortest width 

constrained path. We place a constraint on the width (residual energy) to be a certain 

fraction of the maximum possible residual energy for the given source destination pair. 

Suppose the width of the absolute widest path between source and destination is W. Let 
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the width (bottleneck residual energy) of the minimum energy path between the source 

and destination be W′. Let ∆W = W – W′. We multiply ∆W by a factor η (η < 1) and 

add that to W′ to get the constraint width Wconst. In other words, Wconst = W′+ ηΔ

W. The edges whose width is less than this constraint width are removed (temporarily) 

from the graph. The minimum energy path is computed on the remaining edges, and 

this path is used for routing. In our experiments, we set η = 0.5. The shortest width 

constrained path algorithm is described in Figure 2.6.  

Algorithm ShortestWidthConstrainedPath (EG, source, dest) 
begin 
   1. w = Widest(EG, source, dest) 
   2. p = MinimumEnergyPath  (EG, source, dest) 
   3. for  each edge e in p 
   4.    if  (weight[e] < minW) minW = weight[e] 
   5. w' = w  + (η × minW) 
   6. for  each edge e ∈ EG 
   7.    if  (weight[e] < w') EG = EG\e 
   8. p = MinimumEnergyPath (EG, source, dest) 
   9. Restore all edges back in EG 
end 
 

Figure 2.6 Shortest Width Constrained Path 

2.5.2 Shortest fixed width path 

A third algorithm that we propose fixes the width (residual energy) of the path at a 

certain value (for each source destination pair), prunes the edges with residual energy 

which is less than this fixed value, and finds the minimum energy path on the pruned 

graph. This procedure is repeated until no path can be found for the given width, at 

which point the width is decreased (by a constant fraction) and so on, until the source 

and destination get disconnected. As an example, let us suppose the widest path 

between the source and the destination has a width of 100. We may select our fixed 

width to be a high fraction of 100, say 80. Now we prune all edges in the graph with 
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width less than 80, and keep finding the minimum energy path until the source and 

destination get disconnected (on the pruned graph). Now we change the fixed width to 

60, and repeat the process. We call this the shortest fixed width algorithm. The shortest 

fixed width path algorithm is given in Figure 2.7. 

Algorithm ShortestFixedWidthPath(EG, source, dest) 
//initialNodeEnergyLevel – the initial energy level of the nodes in the network 
begin 
   1.fixedWidth = 0.95 × initialNodeEnergyLevel 
   2.for  each edge e ∈ EG 
   3.    if  (weight[e] < fixedWidth) EG = EG\e 
   4.p = MinimumEnergyPath (EG, source,  dest) 
   5.if  (p not found)  
   6.    if fixedWidth ≤ 0 stop 
   7.else 
   8.    fixedWidth = fixedWidth – (0.2 ×  initialNodeEnergyLevel) 
   9.goto step 2 
end 

Figure 2.7 Shortest Fixed Width Path 

2.6 Performance of the shortest widest path approach on a benchmark topology 

We compare the performance of the proposed shortest widest path approach with those 

of two other approaches in the literature on an illustrative topology shown in Figure 2.8 

(from Li et al [48]). In the network shown in Figure 2.8, each node (other than source 1 

and destination n) has energy 20 + є. The weight of each edge (along the semi-circle) is 

set to 1, but the weight of each straight edge is set to 2. The energy of the source is 

infinite. We can note that the residual energy of the path along the semicircle is 19 units, 

while the straight edge path (1, x, n), where 3 ≤ x ≤ n-2 has residual energy 18 units 

which is less than the path along the arc of the semicircle. Hence Li et al. [48] state that 

using a max-min (widest path) approach, it is possible that only twenty messages can be 

sent before the network gets disconnected (by sending all messages along the 

semicircular arc). The authors then state that using the straight line edges 10(n-4) 

messages can be sent before the network gets disconnected [48], where n is the number 



35 

 

of nodes in the network. This is achieved by alternately sending the packet through 

different nodes lying inside the semicircle. For example, the first message will take the 

path (1, n-2, n).  The second message will take the path (1, n-3, n), and so on until the 

(n-4)th message will take the path (1, 3, n).  

 

Figure 2.8: Benchmark topology from max min zPmin 

Banerjee and Misra [1] define the residual packet capacity as the number of packets 

which can be transmitted by a node at its current energy level. In their algorithm 

CMRPC, they define a parameter γ which represents the threshold energy level of the 

critical nodes. When nodes reach this energy level, they shift from minimum energy 

routing to maximum residual capacity routing. 

Suppose the parameter γ is set at 0.5 (representing 50% of node’s energy). The 

authors of the MRPC algorithm do not mention how they make the choice of minimum 

energy paths when there is more than one. Suppose we use the sequence {(1, n-2, n), (1, 

n-3, n),..., (1, 4, n), (1, 3, n)}, we can send 5(n-4) messages using the straight line edges 

after which each forwarding node (except 2 and n-1) will be left with energy 10 + є. 

Since we reach the threshold value, we start using the maximum residual capacity paths. 

Using the maximum residual capacity paths, only 10 more messages could be sent, for 

a total of 10 + 5(n-4) messages. In fact, we may not be able to send more than 10γ(n-4) 

+ 20(1- γ) messages. The maximum value of this quantity happens when γ = 1 (which 
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means packet capacity is never used), in which case we can still send only 10(n-4) 

messages.  

Algorithm Total messages transmitted 

Greedy max-min [48] 20 

Qun Li et al. [48] 10(n-4) 

Banerjee and Misra [1] 10(n-4) 

Shortest Widest Path 10(n-3) 

Table 2.1: Number of messages transmitted using different algorithms 

On the other hand, if one were to use the two-phased shortest widest path approach 

we have proposed, the following paths will be used for routing. We will repeat the 

sequence {(1, n-2, n-1, n), (1, n-2, n-1, n), (1, n-3, n), (1, n-4, n), (1, n-5, n)…, (1, 4, n), 

(1, 3, n)} before source and destination get disconnected. Consequently, it is easy to see 

that a total of 10(n-3) messages can be sent before the nodes run out of energy. This 

demonstrates a key aspect of our two phased strategy. There are multiple possible 

widest paths which can be used for routing, and a good choice among these possibilities 

will still allow us to use the widest path and achieve a good lifetime (we use the widest 

path which is shortest). A poor choice of the widest path in Li et al. [48] makes them 

conclude that it is unsuitable in general to use the widest path, which is not actually the 

case. A summary of these results is shown in Table 2.1.  

2.7 Performance on general topologies 

Having studied the performance on a benchmark topology, we now discuss the 

performance of our three algorithms on general topologies. We used LEDA (Library of 

Efficient Data structures and Algorithms) [31] as our simulation tool. 
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2.7.1 Simulation settings 

In our experimental study, we compare the performance of the proposed algorithms 

with the on-line maximum life-time (OML) heuristic proposed by Park and Sahni [65] 

and the max-min zPmin algorithm proposed by Li et al [48]. Reference [65] has shown 

the superiority of OML over other existing works. For completeness, we have also 

included performance evaluation comparisons with the max-min zPmin algorithm [48].  

Topologies Used:  We use a topology which is identical to that used for OML. We 

randomly populate a 25×25 grid with 50 nodes. We add edges to the network if the 

nodes are within each others’ transmission range, which is decided by the transmission 

radius rT. The energy cost of transmitting a single packet is calculated as 0.001×d3 

where d is the Euclidean distance between the nodes. These settings are identical to the 

ones used for OML.  

Session Length: A parameter that we generalize in our simulation study is session 

length.  Earlier works assume that a single packet is transmitted in a session between a 

given node-pair. However, in reality, it is highly likely that multiple packets will be 

exchanged in a session between two nodes. Therefore, in our experiments, we assume 

that k packets are transmitted in a session between a given node-pair.  We vary the 

value of k and observe the performance of the different routing schemes. As in other 

works in the literature, we calculate the route afresh for each packet transmission. 

Traffic pattern used: We conduct our experiments assuming an any-to-any 

communication model, i.e. source-destination pairs are selected at random and packets 

are transmitted between them. 
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Unless otherwise mentioned, we use the following default values: there are 50 

nodes placed randomly on a 25×25 grid, the transmission radius is set to 8, the session 

length is set to 1 (single packet), the initial energy level for each node is set to 30 and 

any-to-any communication pattern is assumed.  

We use 10 different random topologies, and 10 different request sequences for each 

such random topology. Each request sequence is an infinite set of requests of the form 

{( s1,t1), (s2, t2),.., }, where (si, ti) represent the source and the destination for the given 

packet. The same source destination pair is allowed (and expected) to repeat in the set. 

During algorithm execution, we choose the next outstanding request from this set until 

network disconnection. The average value of these 100 runs is reported here. The 

lifetime of the network is calculated as the total number of packets which can be 

transmitted in the network before the first session failure occurs. 

2.7.2 Performance comparison with basic algorithms 

First, we would like to demonstrate that we do indeed get significantly improved 

lifetimes by using power-aware algorithms. We show this by comparing the lifetime 

obtained by the Shortest Widest path and derivative algorithms and two other power-

aware algorithms – namely OML and max-min zPmin - against the lifetime obtained by 

two basic algorithms - the Minimum Energy Path and the shortest path (hop count). We 

set the session length as 1, the transmission radius as 8, and the number of nodes in the 

network as 50. We used 10 different topologies and 10 request sequences and report the 

average value of the 100 runs.  
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Figure 2.9 Performance of power-aware algorithms vs basic algorithms 

In Figure 2.9 we show the variation of lifetime as a function of the session length. 

In the graph shown, the acronyms used for representing the different algorithms are as 

follows:  SEP – Shortest energy path, or minimum energy path, SHP – shortest hops 

path or shortest path, MaxMin – max-min zPmin proposed by Li et al. [48], OMLP – 

Online Maximum Lifetime heuristic proposed by Park and Sahni [65], SWRP – shortest 

widest residual path, SFWP – shortest fixed width path and SWCRP – Shortest Width 

Constrained Residual Path. We have observed that using power aware algorithms 

improve the lifetime by nearly 70% over the shortest path algorithm and by as much as 

30% over the minimum energy path. Similar results were seen when performing 

comparisons using other metrics such as transmission radius and node densities. Hence 

this justifies the energy expended in finding power aware routes. 

2.7.3 Effect of session length 

We first observe the effect of varying the session length k on the lifetime achieved by 

various routing algorithms. Here, we send k packets at once for each session. Figure 
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2.10(a) shows the results of our experiments. In general, the widest path and its 

derivative algorithms have a much better lifetime than the OML heuristic, and the 

shortest width constrained path algorithm (SWCRP) consistently betters the max-min 

zPmin algorithm (MaxMin). This supports our rationale behind selecting the widest path 

as well as its derivative algorithms for improving the network lifetime.  

Figure 2.10(b) shows the fraction of energy remaining in the network at the time of 

first session failure. That is, we consider the remaining energy levels at each node as a 

fraction of its initial energy level, and calculate their average. It is interesting to note 

that the network nodes retain a higher average residual energy under the proposed 

routing algorithms than under OML and max-min zPmin. This shows that the widest 

path and its derivative algorithms are able to send more packets at fewer energy cost 

and hence there is more energy available for the nodes to use for other tasks. We 

obtained similar data for all the other simulation values. 
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Figure 2.10 (a): Lifetime vs Session length (b): Energy remaining vs session length 

2.7.4 Effect of transmission radius 

Figures 2.11(a) and 2.11(b) show the impact of the transmission radius on the lifetime 

and energy levels of the sensor network. We can see again that the shortest widest path 

and its derivatives perform much better than OML and equal or better the performance 

of max-min zPmin. 
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Figure 2.11 (a): Lifetime vs transmission radius (b): Energy remaining vs transmission radius 

2.7.5 Effect of node density 

We evaluate the performance of the algorithms for the node densities 50, 75 and 100. 

We increase the number of nodes while keeping the total area constant, thus increasing 

the density. The results are presented in Figure 2.12 (a) and (b). Here again we can see 

that the shortest widest path and its derivatives are generally outperforming OML and 

max-min zPmin.  
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Figure 2.12 (a): Lifetime vs node density (b): Energy remaining vs node density 

 

Among the three widest path algorithms proposed, we note that both the shortest 

width constrained path as well as the shortest fixed width path algorithms provide better 

lifetimes in general (than the shortest widest path).  
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2.7.6 Impact of communication cost estimate on lifetime 

While communication is a primary source of energy depletion in sensor networks, 

we would also need to consider other factors of energy depletion to get a better 

understanding of the lifetime. For this we have considered the following question – if 

the estimate of the communication cost of each edge in the network is off by x% (in 

other words, the energy to transmit a packet costs x% more energy than estimated) what 

is the impact on the network lifetime? 

Here we consider the impact on the Shortest Widest Residual Path algorithm 

(other algorithms indicate similar or better results). We consider estimate errors of x = 5, 

10, 15 and 20% respectively. Other simulation settings are similar to the settings in 

Section 2.7.2. We note the difference in the lifetime – that is, we measure how much 

lesser (as a percentage) the actual lifetime is from the value computed if the 

communication cost was estimated correctly. Figure 2.13 shows the results of this 

evaluation. As expected, the percentage error in lifetime increases as the error in the 

cost estimate increases. The x = y line represents the values of x and y such that the 

percentage difference in the lifetime equals the percentage error in computing the 

communication cost. The curve for the percentage lifetime difference always lies below 

the x=y line and thus we note that the percentage error in lifetime does not rise as 

quickly as the error in the communication cost estimate, which shows that our 

algorithm is not adversely affected by this error. 
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Figure 2.13 Impact of the communication cost estimate on actual lifetime 

 

2.8 Distributed implementation 

It is highly desirable to have a distributed implementation of any routing algorithm. We 

now discuss how the aforesaid routing strategies can be implemented in a distributed 

setting. Primarily, there are two models of developing distributed implementations. In 

the purely distributed model, the algorithm is completely based on message passing. 

That is, the algorithm’s implementation is only based on passing messages and when it 

terminates, each node knows the neighbor to whom it must forward packets so that the 

algorithm rules are followed. The other approach is to make each node aware of the 

global state by enabling each node to advertise its local state to the entire network so 

that each node can locally compute the route based on the global state. In this case, the 

source will know the entire route to reach the destination, and may add the information 

about the route in the packet itself. 
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2.8.1 Collecting global state information 

Multiple message passing and the convergence latency involved in the purely 

distributed scheme consumes time and energy for each run of the algorithm and hence 

may not be desirable in a wireless network. For this reason and motivated by the fact 

that real world protocols such as OSPF [68] use similar strategies, we use the second 

approach. We construct a rooted spanning tree on the wireless network graph and the 

global information is collected as follows: all nodes at level j are expected to send their 

energy level information to their parents, before the nodes at level j-1 start transmitting 

their information to their parents. We start with the nodes at the lowest level on the tree 

sending their energy information to the parents on the tree. This provides us a bound on 

the number of links used (and thus the amount of energy spent) for collecting the global 

information. In other words, each node sends all the information it has to its parents all 

at once. Once the complete network information is collected at the root, the root then 

transmits this information to all the nodes using the links on the spanning tree. It is 

important to note that we only collect global information periodically (in our 

experiments we use a time based periodicity, i.e. each node advertises this information 

once every 360 seconds) and not after every single message transmission. 

There is additional latency involved in this approach of collecting global state 

information. In a wireless network using 802.15.4 wireless nodes, we can have a data 

rate of 250kbps [65]. If we assume that the energy level and the node ID for each node 

in the network would require 32 bits of data to encode and suppose we have a 1000 

node sensor network, we would still be able to encode all the information within 32000 

bits. All this information can still be transmitted within 1 second over a single link in a 
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network with a data rate of 250kbps. Depending on the height of the spanning tree, we 

must still be able to complete the global update process within at most tens of seconds. 

While this is only a rough estimate and factors such as interference in the wireless 

network should be taken into account, we argue that since the global information is 

collected only periodically, it will not prove to be a bottleneck for the operation of the 

routing algorithms in a distributed setting. 

To compute the energy spent during the global update process, we calculate the 

average energy eav required to transmit a packet across a link in the network, and use 

twice that number as the total amount of energy required for the global information 

collection. In other words, we subtract 2eav units of energy at each node in the network 

after each global update process. For purposes of evaluation, we assume that the 

average packet size used in the expressions for calculating the energy required per 

packet transmission (mentioned in Section 2.3) is based on continuous transmission for 

one second.  

2.8.2 Performance of distributed implementations 

The performance of the distributed versions of the algorithms with varying transmission 

radius and varying node densities are presented in Figures 2.14 – 2.16. The following 

acronyms are used for the graphs in this discussion of distributed algorithms: dSWRP – 

distributed Shortest Widest Residual Path, dMaxMin – distributed max-min zPmin, 

dOMLP – distributed Online Maximum Lifetime heuristic; dSFWP – distributed 

Shortest Fixed Width path, and dSWCRP – distributed Shortest Width Constrained 

Residual Path.  
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From these results, we note that the distributed implementations of the shortest 

widest path and its derivatives give rise to better network lifetimes than the distributed 

implementations of OML and max-min zPmin. Therefore, one may be able to infer that 

the distributed implementation of the shortest widest path and its derivatives are less 

sensitive to the lack of up-to-date global energy level information than the distributed 

versions of OML and max-min zPmin. While the average residual energy level in the 

network seems to be lower for the proposed algorithms than OML, it has to be noted 

that the proposed algorithms forward lot more packets in the network than OML (as can 

be observed from the graphs) and therefore are left with a smaller residual energy.  
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Figure 2.14 (a): Lifetime vs session length (b): Energy remaining vs session length (distributed algorithm) 
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Figure 2.15 (a): Lifetime vs transmission radius 
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Figure 2.15 (b): Energy remaining vs transmission radius (distributed algorithm) 
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Figure 2.16 (a): Lifetime vs node density and (b): Energy remaining vs node density (distributed algorithm) 
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2.9 Hop-by-hop routing for multi-metric shortest paths 

In a pioneering work, Sobrinho [78] discusses the implications of the concept of 

isotonicity for various path problems. He introduces the notion of a path algebra which 

includes a binary operator which takes as input a path and an edge or two paths, and a 

relation operator which acts as a ordering function between two given paths. Isotonicity, 

stated simply, is the property of certain types of paths where the application of the 

binary operator on two given paths (for example by adding an edge to both of them) 

maintains the order relation between them.  

In the context of the widest path problem, it has been shown in [78] that the shortest 

widest path is non-isotonic. In other words, it is not possible to find a hop-by-hop 

distributed algorithm for finding the shortest widest path. It would require at least two 

passes for any distributed algorithm if it wishes to find the shortest widest path. Since 

the shortest width constrained path as well as the shortest fixed width path depend on 

finding the widest path as a preliminary step, it follows that they would also be non-

isotonic. The reference [78] also proves some types of paths to be isotonic – the 

ubiquitous shortest path problem as well as the widest shortest path, among others.  

2.10 Summary 

The shortest widest path algorithm and two of its derivatives have been proposed in this 

chapter for performing online energy aware routing in wireless networks. All of the 

proposed algorithms have been shown to improve the network lifetime when compared 

with the best solution known in the literature. By exploiting a simple relationship 

between the energy consumed along a path and the residual energy of the bottleneck 
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nodes along the path, we have presented a solution space where we have a better 

chance of prolonging the network’s lifetime.  
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Chapter 3 
 
3 Throughput of wireless networks 
 

3.1 Introduction 

The throughput observed in a single path in a multiple hop wireless network can be no 

more than a third of the single hop bandwidth under the standard radio model [47]. 

There are some applications where one might require a higher end-to-end throughput 

than that available through the use of a single path. For example, a city-wide wide area 

network implemented as a multi-hop static mesh network, may benefit from higher 

throughputs. The traditional way to achieve higher throughputs in wired networks is to 

use multiple paths in parallel so as to improve the aggregate bandwidth. While a similar 

approach can be adopted for wireless networks too, wireless networks suffer from the 

additional challenge that in most network topologies, the discovered paths may lie close 

to each other. Consequently, packet transmissions in one path may interfere with 

transmissions taking place in other paths in the path set leading to a significant 

reduction in the overall throughput [87]. 

This reduction in throughput in wireless networks can be avoided by appropriate path 

selection combined with careful packet transmission scheduling. It has been noted in 

the literature [47] that the maximum possible throughput equaling the single hop 

bandwidth can be achieved by using three non-interfering paths. Hence having multiple 

paths which do not interfere with each other is ideal. However, we show in this chapter 

that this problem is the same as the problem of finding chordless cycle containing a pair 

of vertices in a graph, which is actually NP-Complete [10]. We then turn our attention 
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towards finding path sets in static wireless networks which would provide the same 

level of aggregate throughput as non interfering paths while at the same time permitting 

interfering links. 

Our contributions are: (a) we demonstrate that it is possible for a set of paths 

between source ‘s’ and destination ‘t’  with some interference between them to provide 

high aggregate throughputs provided the interfering edges among the paths follow 

certain favorable patterns; we present a combinatorial approach for finding such paths 

in a wireless network. (b) we extend our approach to scenarios involving multiple s-t 

pairs and show that the proposed approach can improve the throughput in such 

scenarios too. (c) our combinatorial approach can also provide a straightforward 

mechanism  for scheduling the transmissions at various links and finally, (d) the 

computation of the transmission schedule is shown to be amenable to a distributed 

implementation under the proposed approach. Preliminary results of this work has been 

presented in [61]. 

The rest of the chapter is organized as follows. Section 3.2 discusses literature that is 

relevant to the proposed work. Section 3.3 presents the notations and conventions of a 

timing diagram termed the Wireless Pipeline Scheduling Diagram which is a visual tool 

to aid in the understanding of the material. Section 3.4 discusses the impact of the hop 

length on the aggregate throughput when we are able to discover paths which do not 

interfere with each other. Section 3.5 presents the relationship between the patterns of 

interference that can exist between multiple paths and the achievable aggregate 

throughput rates. Even when paths interfere, we show that there exist certain 

interference patterns (which we call non-destructive interference) which can still 
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support high aggregate throughputs. Using this idea, in Section 3.6 we develop an 

algorithm for finding interference aware path sets between a s-t pair. In Section 3.7, we 

extend our approach for finding paths under the multiple s-t pairs case, which is more 

typical in static wireless mesh networks. In Section 3.8, we present some performance 

evaluations and in Section 3.9, we present our conclusions and directions for future 

research. 

3.2 Related Work 

Wu and Harms [87] identify the issue of interference between multiple paths on a 

wireless network and show that there is a loss in aggregate throughput due to 

interference. Given a wireless network, a source s and a destination t, previous results 

related to the study of throughput performance using multiple paths in a wireless 

multihop network can be categorized into three classes. (a) the first class of solutions 

try to find multiple node disjoint paths between s and t such that there are no edges 

connecting two vertices belonging to different paths (we call such edges interpath 

links), (b) solutions under the second class use a centralized multi-commodity flow 

based linear programming (LP) formulation to exhaustively search and determine the 

maximum achievable throughput with interpath links (c) the third class of solutions 

adopt a combinatorial approach to find multiple paths which can support a high 

throughput even with interpath links.  

Techniques presented under class (a) do not consider the case of simultaneous 

multiple s-t transmissions. Solutions suggested under class (b) neither give the paths 

nor provide a schedule for transmissions, but nevertheless are important as they 

establish the bounds for throughput against which other schemes could be compared. 
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While schemes under classes (b) and (c) consider multiple s-t transmissions, approach 

(c) is combinatorial and hence could possibly result in distributed solutions.  

Hu et al. [18], Saha et al. [72] and Jones et al. [39] discuss techniques which fall 

under class (a). Hu et al. [18] address this issue by creating a forbidden region around 

the first path and finding a second path outside this forbidden region. While this is a 

good strategy for finding interference free paths, their strategy does not work if there 

are no interference free paths in the network. Saha et al. [72] propose using directional 

antennas to reduce the interference between paths and thereby improve the throughput 

of multipath routing. Jones et al. [39] introduce an interference metric to assess the 

quality of disjoint paths and use this metric to find high quality multiple paths which 

can improve the throughput. Saha et al. [72] and Jones et al. [39] both presume that 

interference is inherently destructive and should be avoided. Consequently, they favor 

node-disjoint paths with no interpath links which could possibly preempt some s-t pairs 

from enjoying a high throughput transmission when several such node pairs wish to 

communicate simultaneously. In our approach, by accommodating certain interpath 

links which do not lead to interference (which we call as nondestructive edges), we can 

potentially find multiple paths with high throughput values in more scenarios than in 

[72] and [39]. 

Jain et al. [36] and Buragohain et al. [12] discuss strategies which fall under class (b). 

Jain et al. [36] show that finding optimal throughput for multiple s-t pairs is NP-Hard, 

and it is NP-Hard even to approximate the optimal throughput. Additionally, they 

provide a systematic analysis of the achievable lower and upper bounds for the 

throughput using a multi-commodity linear programming approach. Buragohain et al. 
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[12] improve on the work by Jain et al. [36] by proposing a node based LP formulation 

combined with a node ordering technique, which allows them to achieve a 1/3 

approximation of the optimal throughput. However, their technique too, unlike ours, 

does not provide the actual schedule for achieving the throughput owing to the LP 

formulation. 

The approach proposed in this chapter falls under class (c). A relevant work under 

this class is presented in Liaw et al. [50]. Liaw et al. [50] determine the maximum 

achievable throughput for a given wireless network by computing all possible shortest 

paths of a given length k and independent paths for these shortest paths in such a way 

that for a given shortest path an independent shortest path is a vertex disjoint path. 

Clearly, this approach of computing the maximum throughput will have exponential 

complexity. They further make an important observation to indicate that the maximum 

throughput can be achieved when spatial-reuse with respect to the source is very high, 

where spatial-reuse is defined as the maximum number of nodes (including the source) 

that can transmit simultaneously without causing interference. In this chapter, we 

generalize this spatial-reuse concept and show that by having additional relaxations we 

can improve the throughput considerably.  We provide a polynomial time heuristic to 

find multiple paths for a single s-t pair as well as single paths for multiple s-t pairs that 

can achieve high aggregate throughputs. We also give a simple method to determine the 

best transmission schedules to achieve these throughputs. 

3.3 System Model 

We adopt a system model with the following features which is similar to the one used 

in [18]: 
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a) The transmission time in the medium is divided into slots and the nodes are 

assumed to have synchronous clocks. Clock synchronization among the network 

nodes can be achieved by using strategies similar to the one presented in [56]. 

b) A node can either transmit or receive once in a time slot. The width of the slot is 

sufficient enough for the largest packet to be transmitted and received. 

c) No node can transmit and receive simultaneously. 

d) A node cannot “hear” more than one neighbor at once – in other words, if more than 

one neighbor of any node transmit in the same time slot, the node loses all the 

packets.  

e) The internal nodes in the path forward the packets they receive without any delay 

 

To aid the purpose of analysis, we use a timing diagram that we call the Wireless 

Pipeline Scheduling Diagram (WPSD) to investigate the theoretical capacity limits of 

employing multi-path routing in a wireless network under different scenarios. An 

example of such a timing diagram is shown in Figure 3.1, where it is shown that the 

maximum possible throughput for a single path is only a third of the available 

bandwidth. Another example of the wireless pipeline scheduling diagram is shown in 

Figure 3.2, where we show paths with equal hops. In this case, since the destination 5 

receives a new packet during every time slot (after receiving its first packet), the 

maximum aggregate throughput is achieved.  
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Figure 3.1: Wireless Pipeline Scheduling Diagram for a path P1.  

 
3.4 Impact of path length on achievable aggregate throughput 

We now present a formal analysis of the relationship between the path length (in terms 

of hops) and the achievable aggregate throughput when we have multiple paths which 

do not interfere with each other. We later use this in our algorithm for finding multiple 

paths for a given s-t pair. For simplicity of analysis, we consider the two paths case 

first. We assume that packets are injected into all the paths in the multi-path set at a 

constant rate. Let λ be a constant denoting the inter-packet interval time, also referred to 

as the periodicity. Here λ is the inter-packet arrival time with respect to a single path. (It 

must be noted that our definition of λ differs from the statistical average arrival rate 

used commonly for Poisson processes). The nodes along a path relay the packets that 

they receive in the time slot following the reception without any delay. Allowing the 

intermediate nodes to delay their forwarding could have an adverse effect on end-to-

end delay experienced by the subsequent packets sent along the path. 
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Figure 3.2: WPSD shows that three paths can provide the maximum possible throughput. 

  
3.4.1 Two paths 

Let h1 and h2 be the number of hops in paths P1 and P2 between source s and 

destination t. The paths P1 and P2 are called non-interfering paths if there are no 

interfering edges8 between P1 and P2. It is to be noted that though P1 and P2 may not 

have any interfering edges, since they may be of unequal hop-lengths, collisions can 

still occur at the destination t. Let t1 and t2 represent the time slots when the first 

packets are respectively injected into paths P1 and P2. Let the packets traveling along P1 

be designated as type I and packets traveling along P2 be designated as type II.  

Lemma 3.1: At the destination node, no collisions occur between packets of type I and 

type II if t1 and t2 are chosen such that (h1 + t1) mod λ  ≠ (h2 + t2) mod λ.  

Proof: Based on the parameters given, we can see that the destination t receives packets 

of type I at times S1 =  {(h1-1)+t1, (h1-1)+t1+ λ, (h1-1)+t1+2λ,(h1-1)+t1+3λ,…} and it 

                                                      
8 An edge e is considered an interfering edge if its two endpoints lie on P1 and P2, but the edge e itself belongs to neither P1 nor P2. 
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receives packets of type II at times S2 = {(h2-1)+t2, (h2-1)+t2+λ, (h2-1)+t2+2λ,(h2-

1)+t2+3λ,…}. We can ensure that there are no collisions at the destination if S1 and S2 

have no elements in common. Given two sequences Sa = {a + λ, a + 2λ, a + 3λ, …} and 

Sb = {b + λ, b + 2λ, b + 3λ,…} we can ensure that Sa and Sb do not share a common 

element if a mod λ ≠ b mod λ. The proof is as follows: if a mod λ ≠ b mod λ then (a + 

k1λ) mod λ = a mod λ ≠ (b mod λ) = (b + k2λ) mod λ ∀ k1, k2 ≥ 0. Substituting (h1 – 1) 

+ t1 for a and (h2 – 1) + t2 for b, this condition translates as (h1 + t1) mod λ ≠ (h2 + t2) 

mod λ. That is the condition for scheduling time slots t1 and t2 so that there are no 

collisions at the destination. ■ 

While the primary condition for achieving collision free transmissions along the two 

paths has been stated, we make some additional observations:  

1. For a given set of paths λ should be made as small as possible to achieve the 

maximum aggregate throughput. While the example discussed using Figure 3.1 has 

made clear that λ cannot be less than 3, it is possible (and in fact desirable) that λ is 

exactly 3.  

2. The two initial time slots t1 and t2, should both be as small as possible so the 

transmission can start early.   

3. Also, t1 cannot be the same as t2, since it would mean that we are transmitting 

different data simultaneously to two neighbors during the same time slot.  

In the two paths case, we can find suitable values for t1 and t2 for all values of h1 and h2 

such that λ is exactly 3. Let r1 and r2 represent the remainders after dividing h1 and h2 

by 3 (3 represents the minimum value we seek for λ). There are only three possible 

values for each of r1 and r2, representing a total of nine combinations.  
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r1 r2 t1 t2 (r1+t1)mod 3 (r2+t2)mod 3 

0 0 1 2 1 2 
0 1 1 2 1 0 
0 2 1 3 1 2 
1 0 2 1 0 1 
1 1 1 2 2 0 
1 2 1 2 2 1 
2 0 3 1 2 1 
2 1 2 1 1 2 
2 2 1 2 0 1 

Table 3.1 Suitable t1 and t2 values for various values of r1 and r2. Parameters r1 and r2 represent the remainders of 
dividing the hop lengths of the two paths by 3. 

 

We give appropriate values for t1 and t2 for each case in Table 3.1.  We see that the 

last two columns show that (r1 + t1) mod 3 ≠ (r2 + t2) mod 3 for all these cases, thus 

satisfying the condition in Lemma 3.1. Figure 3.3 shows an example where we have 

unequal hop paths, but the aggregate throughput is still two thirds of the channel 

bandwidth as λ = 3 (and the destination receives a packet twice every three time slots). 

Here we see that h1 is 3 and h2 is 6, and thus both r1 and r2 are 0. We note that t1 = 1 

and t2 = 2, where t1 and t2 are the first time slots during which sender 1 transmits its 

packets to the neighbors in paths P1 and P2 respectively. 
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Figure 3.3 Schedule for unequal hop paths with equal remainders r1 and r2. 

 

In the three path case too, given the remainders r1, r2 and r3 (for paths P1, P2 and P3), 

it is possible to determine the smallest periodicity λ as well as time slots t1, t2, t3 (all as 

small as possible) such that there are no collisions at the receiver.  The following two 

lemmas provide the necessary guidelines for achieving this.  

Lemma 3.2.1: Let us assume we have three paths with hop counts h1, h2 and h3. There 

are no collisions at the destination if (h1 + t1) mod λ ≠ (h2 + t2) mod λ ≠ (h3 + t3) mod λ.  

Proof: Follows from Lemma 1.■ 
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Figure 3.4 The set of paths allow maximum throughput despite interpath interference 

 

Lemma 3.2.2: Let r1, r2 and r3 be the remainders after dividing the hop counts h1, h2 

and h3 by 3. The condition in lemma 3.2.1 is satisfied for λ = 3 only if r1 = r2 = r3 or if 

r1≠ r2 ≠ r3. If r1= r2 ≠ r3, then the smallest value of λ which satisfies Lemma 3.2.1 is 4.  

Proof: A simple enumeration of all the possible time slots t1, t2 and t3 proves the 

lemma.■ 

r1 r2 r3 P t1 t2 t3 r1 r2 r3 P t1 t2 t3 r1 r2 r3 P t1 t2 t3 

0 0 0 3 1 2 3 1 0 0 4 1 3 4 2  0 0 4 1 2 4 

0 0 1 4 1 2 3 1 0 1 4 1 3 4 2 0 1 3 2 3 1 

0 0 2 4 1 3 2 1 0 2 3 1 3 2 2 0 2 4 1 2 3 

0 1 0 4 1 2 4 1 1 0 4 1 2 4 2 1 0 3 1 3 2 

0 1 1 4 1 2 3 1 1 1 3 1 2 3 2 1 1 4 1 3 4 

0 1 2 3 1 2 3 1 1 2 4 1 4 2 2 1 2 4 1 3 2 

0 2 0 4 1 2 3 1 2 0 3 1 2 3 2 2 0 4 1 3 2 

0 2 1 3 2 1 3 1 2 1 4 1 2 4 2 2 1 4 1 2 4 

0 2 2 4 1 2 4 1 2 2 4 1 2 3 2 2 2 3 1 2 3 

Table 3.2: Suitable t1, t2, and t3 values for various values of r1, r2, and r3 
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As in the two paths case, it is possible to enumerate the t1, t2 and t3 values for 

various combinations of r1, r2 and r3 (shown in Table 3.2). 

Note: If we decide to choose no more than two paths between a s-t pair, we would seek 

a periodicity of λ = 3, 4 or 5 to give rise to a bandwidth utilization of 2B/3, 2B/4, and 

2B/5 respectively, all of which are superior to the single path bandwidth of B/3. If we 

decide to choose three paths, we would seek a periodicity of no more than λ = 4 giving 

an aggregate bandwidth of 3B/4 which is superior to the maximum possible two path 

bandwidth of 2B/3. 

3.5 Non destructive interference patterns 

The problem of finding two non-interfering paths between a source and destination is 

the same as the problem of finding a chordless cycle containing two given vertices in a 

graph, which has been shown to be NP-Complete [10]. Our goal in this section is to 

show that there exist interfering paths which achieve the same aggregate throughput as 

non-interfering paths. 

 Figure 3.4 shows a topology with three paths having mutual interference (the 

dashed lines represent the interfering edges). However, as the example illustrates, the 

path set still provides the maximum possible aggregate throughput equal to the single 

hop bandwidth B. The reason for this is that the paths exhibit non-destructive 

interference, i.e., the nodes on the two ends of all the interfering edges receive and 

transmit their packets simultaneously, thereby avoiding collisions. Such interfering 

edges are referred to as non-destructive edges. A set of two or three vertex disjoint 

paths are said to have non-destructive interference if it is possible to schedule packet 
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transmissions along the paths without any collisions for a desired periodicity λ despite 

the presence of interfering edges. In other words, a set of vertex disjoint paths are said 

have non-destructive interference if all the interfering edges among the paths are non-

destructive in nature.  

Lemma 3.3: Let e be an interfering edge between nodes v1 and v2 which lie along paths 

P1 and P2. Let the nodes v1 and v2 be k1 and k2 hops away from the source s. The edge e 

will be non-destructive if : 

(i)│((k1 + t1) mod λ − (k2 + t2) mod λ│≠ 1, and  

(ii)│((k1 + t1) mod λ − (k2 + t2) mod λ│ ≠ λ−1.  

Proof: We first consider the case where the interfering edge e can cause a problem with 

the packet transmissions on the two paths. Essentially, if node v1 transmits its packet at 

time slot t and node v2 receives its packet during the same time slot, then there will be a 

collision at v2 and v2 will not   receive   its   intended   packet.   Similarly, if   v2 

transmits a packet at time slot t and v1 receives a packet during the same time slot, then 

v1 will not receive any packet. Hence we see that the time slots during which v1 and v2 

receive their packets must not differ by 1. 

We can see that node v1 receives its packets at time slots S1={ t1+(k1−1)+ λ, 

t1+(k1−1)+2λ, t1 + (k1−1)+3λ,… } and node v2 receives its packets at time slots S2 = 

{ t2+(k2−1)+λ, t2+(k2−1)+2λ, t2 + (k2−1)+3λ,…}. Following an argument similar to the 

proof in lemma 3.1, we will have no time slots with unit difference in sequences S1 and 

S2 if we can ensure that │ (k1 + t1) mod λ − (k2 + t2) mod λ│ ≠ 1 and   │ (k1 + t1) mod λ 

− (k2 + t2) mod λ│ ≠ λ−1. ■ 
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We now state the following theorem which directly follows from Lemma 3.3. 

Theorem 3.1: Two (resp. three) vertex disjoint paths have non-destructive interference 

between them for a given periodicity λ if all the interfering edges among the two (resp. 

three) paths are non-destructive with respect to λ and if Lemma 3.1 (resp. Lemma 3.2.1) 

is satisfied.■ 

As an example, in Figure 3.4, let us consider the (interfering) edge between nodes 6 

and 3. Node 6 receives its packets at the following time slots: {2, 5, 8, ...} i.e. it has t1 = 

2 and k1 = 1. We note that node 3 also has the same schedule for receiving packets: {2, 

5, 8, ...}and in this case we see that t2 = 1 and k2 = 2. In effect, the packets arriving and 

leaving from these two nodes never collide with each other. Also, the three path lengths 

are the same, and hence lemma 3.2.1 is satisfied for periodicity λ = 3. 

3.6 Computing interference aware multi-path sets for a single s-t pair 

Jain et. al [36] have shown that computing the multi-path set that gives the highest 

throughput between a given source and destination is NP-Hard [36].  In this section, we 

describe a polynomial-time heuristic for finding a good set of paths between a source s 

and destination t that can give a high throughput. We incorporate our knowledge of the 

non-destructive interference patterns into this heuristic. The heuristic works by first 

discovering a path between the given s-t pair. Any path between s and t would be fine, 

though in this chapter we use the shortest path. the heuristic then finds another path 

between s and t which has ‘good’ interference awareness with respect to the first path.  

 The heuristic works as follows. We first find the shortest path from the source to 

destination. To find a second path, we mark all the nodes in the graph with labels which 
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indicate which nodes are their neighbors in the first path. Using these labels, we 

compute a suitable interference aware path and a transmission schedule which 

guarantees that the interpath links are non-destructive.  

We model the given wireless network as a graph G = (V, E), where V is the set of 

all nodes and E is the set of all edges between the nodes. Let P1 be the first path from 

source s to destination t in graph G. For each internal node n ∈P1, let d(n) be the 

number of hops from s to n along P1. Let neighbors(n) represent the set of nodes in the 

graph which are neighbors of n in G which do not belong to P1. We now label all the 

nodes v ∈ G, v ∉P1 with a label set L(v) as follows: for each node n, for each node v1 

∈neighbors(n), L(v1) = L(v1) U d(n)}. Since the same node in graph G could be a 

neighbor of multiple nodes in path P1, it is evident that L is a set of numbers rather than 

a single value. Once we have completed labeling all the nodes in G, we remove 

(temporarily) all the internal nodes of P1 from graph G. On the remaining graph, a good 

interference aware path from s to t will be a path P2 whose node labels obey the 

following property: there is at least one feasible pair of time slots (t1, t2) such that ∀ 

nodes n2 ∈ P2, all edges incident on n2 are non-destructive. Let d2(n2) be the number of 

hops from s to n2 along P2. Now let ∆t represent the time slot difference t1−t2. The 

condition for all edges to be non-destructive is as follows: for each element l ∈ L(n2), 

|d2(n2) −l+∆t| mod λ ≠ 1 and ≠ λ −1 - this directly follows from Lemma 3 (but 

remembering that ∆t cannot be 0).  

The Algorithm InterferenceAwarePath is a polynomial time algorithm that finds a 

good interference aware path with respect to a path P1 between a source s and 
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destination t.  We note here that determination of a common value of λ for the two 

paths, a suitable ∆t, and the fact that each intermediate node forwards a packet in the 

next time slot after reception collectively define the transmission schedule needed to 

realize a high throughput. It must also be observed that the algorithm uses a greedy 

approach and is hence only a heuristic. 

Algorithm InterferenceAwarePath (s, t, P1) 
// Input – Source s, destination t, path P1 between s & t 
// Output – A good interference aware path P2 between s and t along with λ (the schedule for 

transmission). 
// h(P, s, u) – number of hops from source s to node u in path P 
1. For each internal node u U P1, mark all nodes n which are neighbors of u with the label h(P1, 

s, u) 
2. Temporarily remove all internal nodes from the graph  G 
3. Initialize ( ) 
4. While |Q| > 0 and t ∉ P2 
5.     for λ  = 3 to 6  
6.         for ∆t = − (λ−1) to (λ−1) 
7.               u � getBestFeasibleSet(Q) 
8.              P2 � P2 U {u} 
9.              for all neighbors w of u 
10.                    if |∆t + (h(P,u,s) − label(w))| != 1 and  |∆t + (h(P,u,s) − label(w)) | != λ −1  
11.                         feasibleSet(w) = feasibleSet(w) U {∆t} 

getBestFeasibleSet (Q) 

return v where v ∈ Q has max. |feasibleSet(v)|  

Initialize ( ) 

1. For each node v ∈ G  
2.         feasibleSet(v) = {− (λ−1), − (λ −2),…, λ−2. λ−1} 
3.         Q � Q U {v} 

Figure 3.5 Interference aware algorithm for single s-t pair 

3.7 Interference aware paths for multiple s-t pairs 

We now discuss the case of finding good interference aware paths when we have 

multiple source destination pairs. Let us say we have a request set R = {(s1, t1), (s2, 

t2),…, (sk, tk)} where we need to find multiple paths between (si, ti) ∀ i ∈ [1, k] such 

that the aggregate throughput across all these paths is maximized. We consider long 
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lived flows (duration of flow is infinite) between all the source destination pairs, which 

is likely to be true in the back-bone of a wireless mesh network. 

 We construct a set of paths called the Concurrent Transmission Paths Set (CTPS) 

such that the source nodes along the paths in a given CTPS can be scheduled for 

concurrent transmissions. We construct different CTPSs so that the union of all the 

CTPSs supplies each s-t pair in R with an individual path such that the chosen paths 

have a high aggregate throughput.  

3.7.1 Diminishing Returns 

Suppose we wish to construct the CTPS for the request set R = {(s1, t1), (s2, 

t2),…,(sk,tk)}. To begin with, let us consider the pair (s1, t1) and discover a path P1 

between these nodes. This path is added to the CTPS. Based on this path, interference 

aware paths between other node pairs are discovered and added to the CTPS. For this 

reason, path P1 is called the seed. The keen reader will observe that different seeds may 

lead to different CTPSs and hence a CTPS is always identified based on its seed as 

CTPS(P1). 

 Consider CTPS(P1) ={P1}. Let us suppose the path Pi between (si, ti) has the highest 

throughput value (minimum λ) with respect to P1. While one may be tempted to add Pi 

to CTPS(P1), the principle of diminishing returns must be applied to determine if this 

can be done. The principle of diminishing returns states that path Pi can be added to a 

CTPS provided the overall throughput of the CTPS with the addition does not get 

reduced to a lower value than what it would have been without adding it. As an 

example, if CTPS(P1) = {P1} and the path Pi with the highest throughput value results 



71 

 

in a λ =6. In this case, adding the path Pi to the CTPS may not help since we may have 

only two paths in the resulting CTPS and scheduling transmission along them 

sequentially will result in the same throughput as scheduling them concurrently. 

However, if the path Pi results in a λ = 5, it may be worth adding the path to the CTPS 

since concurrent scheduling of the paths will have a higher throughput than sequential 

scheduling.  If path Pi has been added to the CTPS(P1), we say that the pair (si, ti) has 

been serviced. 

 We continue this process until we arrive to the stage wherein we could no longer 

add any path to CTPS(P1). Now, we choose a path Pk between an unserviced (sk, tk) as 

the seed and build another CTPS to serve the other un-serviced pairs and so on. We 

keep repeating the process until all the requests in R have been satisfied.  

 While reducing the number of CTPSs may help in increasing the overall throughput 

at times, it may not always be the case. For example, let there be ten (s, t) pairs. One 

possible arrangement of CTPSs might be {(4, 3), (4, 3), (3, 3)}, where the first number 

in the ordered pair represents the number of paths in the set, and the second number 

represents the value of λ. A second possible CTPS arrangement might give us {(5, 5), 

(5, 5)}. In the first case, overall throughput of (B/3+B/3+B/3)/3 = B/3 is obtained, while 

in the second arrangement we only get (B/5+B/5)/2 = B/5. In other words, the best sets 

of CTPSs are those that maximize the weighted throughput. 

 It is easy to see that given the CTPS sets for each request pair (si,ti) as the seed, 

ascertaining the best possible set of CTPSs is still an NP-Complete problem, since it is 

equivalent to the set cover problem when all the λ values in the second term of the 
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ordered pair are equal. Consequently, we propose a greedy heuristic to find the best set 

of CTPSs. Let η = |CTPS|/λ for each CTPS. In other words, η represents the ratio of the 

number of elements in the CTPS set over the λ for the set. We keep adding sets with 

maximum η to our collection of sets until all the requests have been satisfied. 

Based on the above discussions, an algorithm for finding a good set of CTPSs 

given a request set R is outlined below. 

Algorithm InterferenceAwarePath 
 
//Input – k source-destination pairs {(s1,t1), …, (sk,tk)} 
//Output – k paths (one each for each source destination pair) and the schedule for transmission 
 
//CTPS – Concurrent Transmission Paths Set 
//numCTPS – number of Concurrent Transmission Sets 
  
1. numCTPS = 0; 
2. for each pair (si, ti) ∉ {CTPS[0]...CTPS[numCTPS]}  
3.       find shortest path Pi from si to ti 
4.      CTPS[numCTPS] = CTPS[numCTPS] ∪ Pi 
5.      path Px = getGoodPath (CTPS[numCTPS]) 
6.      while (NOT diminishReturns(CTPS[numCTPS], Px) 
7.         CTPS[numCTPS] = CTPS[numCTPS] ∪ Px 
8.         path Px = getGoodPath (CTPS[numCTPS]) 
9.      numCTPS = numCTPS + 1 

 

Figure 3.6 Interference aware multiple s-t pairs algorithms 

getGoodPath 
//input – Concurrent Transmission Paths Set with source-destination requests 
//output – Path P which is interference aware with respect to the paths in the Concurrent 
Transmission Paths Set 
 
1. set minLambda = Infinity; 
2. for each req. pair (sj, tj) ∉ {CTPS[0]…CTPS[numCTPS]} 
3.     λ = minimumPeriodicity(CTPS,j) 
4.     if λ  < minLambda  
5.        minLambda = λ 
6.       bestPath = Pj 
7. return Pj 
minimumPeriodicity 
//input – Concurrent Transmission Paths Set CTPS 
//output – best periodicity using interference constraint 
 
1. for each path Pk in CTPS 
2.     Let i be an internal node in Pk 
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3. for each n(i) where n(i) ∈ neighbor(i) & n(i) ∉ Pi 
4.      label(n(i)) = label(n(i)) ∪ hops(i, Pi) 
5. scheduleNotFound = true 
6. while (scheduleNotFound) and (λ < β) 
7.     for ∆t = − (λ −1) to (λ−1) 
8.          find path P in graph such that all nodes  
                       have non-destructive interference 
9.     if path P is found then  
10.         scheduleNotFound = false 
11.     else 
12.          λ  = λ  + 1 

 

Figure 3.7 Algorithm for finding good paths given source destination requests 

 

diminishReturns 
//input – current concurrent transmission set, and the new path to be added to the CTPS 
//output – Boolean result indicating if the new path improves or worsens the overall 

throughput of the CTPS 
 
1. if |CTPS| / λ1 > |CTPS U Px| / λ2 then  return true 
2. else return false 

Figure 3.8 Algorithm to compute diminishing return 

 

The above algorithm for finding interference aware paths for multiple s-t pairs case 

involves a Dijkstra-like computation (with similar complexity) and this is invoked at 

most O(r)×O(r) times – we do this with respect to each request pair, for every other 

request pair. Hence the overall complexity of our algorithm is O(r2(E+VlogV)) where E 

and V represent the number of edges and nodes in the graph, respectively. In the 

algorithm described above, the parameter β is bounded by the number of requests and is 

thus O(r) and we could consider different paths as our seeds, adding a factor O(r) to the 

complexity of the algorithm. 

3.8 Performance evaluation 

We evaluated the performance of our algorithm against the work done by Jain et al. 

[36]. In their work, the authors use the concept of a conflict graph to find links which 
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can be scheduled for concurrent transmission. They formulate this as a LP problem and 

provide a lower bound for the throughput which can be achieved using their approach. 

Using simulation settings previously suggested in the literature [12], we randomly place 

O(n) nodes on a O(√n) * O(√n) grid, with a transmission radius of 3.  

 For our first experiment, we perform a comparison for the single s-t pair case. We 

considered the effect of number of nodes in the network (network size) on the 

throughput of our approach as well as that of [36].  We used values of n = 25, 36, 49 

and 64. We implemented the linear programming constraints specified in Jain et al. [36] 

using CPLEX. We implemented our algorithm using the LEDA graph library. For each 

network size, we took the average value of the throughput over 5 trials. The simulation 

results in Figure 3.5 and 3.6 indicate that our algorithm consistently provides high 

throughput for various network sizes. In Figure 3.5 CPLEX represents the throughput 

values obtained by using the algorithm in [36], while IAMP (Interference Aware 

Multiple Path) refers to our work. 

 

Figure 3.5  Impact of node density on throughput 

For our second experiment, we perform a comparison for the multiple s-t pairs case. 

We use a 5 × 5 grid with 25 nodes placed at random and a transmission radius of 2. We 

simulated 10 trials with differing topologies and source destination pairs. The average 
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Figure 3.6 Aggregate throughput vs number of flows 

we have shown the impact of interference patterns on the throughput of 

wireless networks. We use a path based scheduling strategy (as opposed to the more 

common node or link based scheduling strategy) and this provides higher throughputs 

to account global information as opposed to the local information 

considered by the link and node based strategies. We show that the impact of 

0

0.2

0.4

0.6

0.8

1 2 3

A
gg

re
ga

te
 

th
ro

ug
hp

ut

Number of flows

CPLEX

IAMP

destination pairs). 

pair algorithm on this topology.  The throughput for 

] is computed as per the constraints given in their paper. In their paper, 

evable throughput, which we 

The throughput value in our algorithm is simply the inverse of the 

 found by the algorithm, multiplied by the number of s-t paths. We 

ths between the source and 

destination in all cases) = 0.66. Hence we could obtain a constant throughput of 2×1/3 

6 we can see that our 

by Jain et al. [36].  

we have shown the impact of interference patterns on the throughput of 

wireless networks. We use a path based scheduling strategy (as opposed to the more 

common node or link based scheduling strategy) and this provides higher throughputs 

to account global information as opposed to the local information 

considered by the link and node based strategies. We show that the impact of 
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interference on multi-hop wireless networks is more due to the pattern of the 

interference than the number of interfering links themselves. Since energy is a concern 

in wireless networks, as future work we would like to combine lifetime considerations 

along with the aforementioned routing strategies to extend the lifetime of the network.  
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Chapter 4 
 
4 Distributed algorithm for interference 
aware vertex disjoint paths routing 
 

4.1 Introduction 

With the introduction of multi-hop wireless services such as city-wide wide area mesh 

networks, it has become important to improve the throughput of wireless networks to 

provide good quality of service. Under the standard radio model, the multihop 

bandwidth can be at best a third of the single hop bandwidth [36]. Using multiple paths 

is one way to improve the end-to-end throughput, but interference between these 

multiple paths causes a significant reduction in the overall throughput [47].  

By combining appropriate path selection, and a systematic packet transmission 

schedule, this throughput reduction can be avoided. While the maximum  possible 

throughput can be achieved using three non-interfering paths [39], the problem of 

finding such non-interfering paths is the same as the problem of finding a chordless 

cycle containing a pair of vertices in a graph, which is actually NP-Complete [10].  

It is not always necessary to use non-interfering paths, however. By finding vertex 

disjoint paths between source s and destination t which follow certain patterns of 

interference, we can achieve throughputs which are optimal or close to optimal. In this 

chapter, we focus on finding such paths for a single s-t pair in a distributed fashion. Our 

approach can easily be extended to the multiple s-t pair case.  The results of our work 

has also been presented in [60]. 
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The chapter is organized as follows. Section 4.2 discusses literature that is relevant 

to the proposed work. Section 4.3 presents the ideas underlying the centralized 

combinatorial approach for finding interference aware multiple s-t paths. Section 4.4 

provides the distributed algorithm which is used for finding vertex disjoint multiple s-t 

paths. Section 4.5 concludes the discussion. 

4.2 Related Work 

Many existing centralized algorithms address the issue of improving wireless network 

throughput by minimizing the impact of interference. 

Hu et al. [32], Saha et al. [72] and Jones et al. [36] discuss techniques which try to 

find multiple node disjoint paths between s and t such that there are no edges 

connecting two vertices belonging to different paths. They do not consider 

simultaneous multiple s-t transmissions. 

Jain et al. [36] and Buragohain et al. [12] discuss strategies which use a centralized 

multi-commodity flow based linear programming (LP) formulation to exhaustively 

search and determine the maximum achievable throughput with inter-path links. 

However these solutions provide neither the paths nor the schedules for transmission. 

Nevertheless, they are important as they establish the bounds for throughput against 

which other schemes could be compared.  

A third class of solutions adopts a combinatorial approach to find multiple paths 

which can support a high throughput even with interpath links. The approach proposed 

in this chapter falls under class (c). A relevant work under this class is presented in 

Liaw et al. [50]. Liaw et al. [50] find the maximum achievable throughput for a given 
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wireless network by computing all possible shortest paths of a given length k and 

independent paths for these shortest paths in such a way that for a given shortest path 

an independent shortest path is a vertex disjoint path. Clearly, this approach of 

computing the maximum throughput will have exponential complexity.  

All the current works use a centralized approach to this problem and to the best of 

our knowledge, a purely distributed (message passing) algorithm for solving this 

problem has not been proposed in the literature. 

4.3 Finding interference aware multiple paths 

We mention the key lemmas for finding interference aware s-t paths based on our 

discussion in Chapter 3. We start with the two paths case. We assume that packets are 

injected into all the paths in the multi-path set at a constant rate. Let λ be the inter-

packet interval time, also referred to as the periodicity. Here λ is the inter-packet arrival 

time with respect to a single path.  The nodes along a path relay the packets that they 

receive in the time slot following the reception without any delay. Allowing the 

intermediate nodes to delay their forwarding could have an adverse effect on end-to-

end delay experienced by the subsequent packets sent along the path.  

4.3.1 Two paths 

Let h1 and h2 be the number of hops in paths P1 and P2 between source s and 

destination t. Let t1 and t2 represent the time slots when the first packets are respectively 

injected into paths P1 and P2. Let the packets traveling along P1 be designated as type I 

and packets traveling along P2 be designated as type II. 
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Lemma 4.1: At the destination node, no collisions occur between packets of type I and 

type II if t1 and t2 are chosen such that (h1 + t1) mod λ  ≠ (h2 + t2) mod λ. ■ 

Lemma 4.2.1: Let us assume we have three paths with hop counts h1, h2 and h3. There 

are no collisions at the destination if (h1 + t1) mod λ ≠ (h2 + t2) mod λ ≠ (h3 + t3) mod λ. 

■ 

Lemma 4.2.2: Let r1, r2 and r3 be the remainders after dividing the hop counts h1, h2 

and h3 by 3. The condition in lemma 2.1 is satisfied for λ = 3 only if r1 = r2 = r3 or if r1≠ 

r2 ≠ r3. If r1= r2 ≠ r3, then the smallest value of λ which satisfies Lemma 4.2.1 is 4. ■ 

The problem of finding two non-interfering paths between a source and destination is 

the same as the problem of finding a chordless cycle containing two given vertices in a 

graph, which has been shown to be NP-Complete [10].  

Figure 4.1 shows a topology with maximum possible aggregate throughput even 

with three paths having heavy mutual interference (the dashed lines represent the 

interfering edges). In other words, a packet is received by the destination during each 

time slot starting from time slot 4. The reason for this is that the paths exhibit non-

destructive interference, i.e., the nodes on the two ends of all the interfering edges 

receive and transmit their packets simultaneously, thereby avoiding collisions. Such 

interfering edges are referred to as non-destructive edges. A set of two or three vertex 

disjoint paths are said to have non-destructive interference if it is possible to schedule 

packet transmissions along the paths without any collisions for a desired periodicity λ 

despite the presence of interfering edges. In other words, a set of vertex disjoint paths 
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are said have non-destructive interference if all the interfering edges among the paths 

are non-destructive in nature.  

Lemma 4.3: Let e be an interfering edge between nodes v1 and v2 which lie along paths 

P1 and P2. Let the nodes v1 and v2 be k1 and k2 hops away from the source s. The edge e 

will be non-destructive if : 

(i)│((k1 + t1) mod λ − (k2 + t2) mod λ│≠ 1, and  

(ii)│((k1 + t1) mod λ − (k2 + t2) mod λ│ ≠ λ−1.■ 

Theorem 4.1: Two (resp. three) vertex disjoint paths have non-destructive interference 

between them for a given periodicity λ if all the interfering edges among the two (resp. 

three) paths are non-destructive with respect to λ and if Lemma 4.1 (resp. Lemma 

4.2.1) is satisfied.■ 

Hence our goal is to find paths such that we can satisfy the conditions of theorem 1 

with the smallest possible value of λ greater than or equal to 3. 

4.4 A distributed algorithm for interference aware s-t paths 

A key issue in using a centralized approach for finding paths and schedules based on 

earlier discussions is that the entire network topology information must be stored at the 

source. This could be difficult on large scale wireless networks, and if the network is 

fairly dynamic with nodes entering and leaving the network (or new traffic coming in) 

constantly, it is highly desirable to have a distributed implementation based on message 

passing for finding interference aware vertex disjoint paths.   
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Our distributed algorithm follows the strategy used to find vertex disjoint paths in 

[45]. Our distributed algorithm also uses the knowledge gained from Lemmas 1, 2, 3 

and Theorem 1 for finding interference aware vertex disjoint paths. Thus at the end of 

its execution, the distributed algorithm will find paths which are not only vertex 

disjoint, but also interference aware. 

The centralized algorithm for finding vertex disjoint paths works as follows [45]: 

we are given a graph G = (V, E) and a source s and a destination t. We first find a path 

P1 from source s to destination t (for example, we may use the shortest path from 

source to destination). The numbers marked in Figure 4.3(a) shows an s-t path in graph 

G. We remove all the nodes belonging to the path (including the source and destination) 

and obtain all the connected components of the graph. These connected components are 

called bridges. Figure 4.3(a) shows an example of bridges for the original graph G with 

respect to the path marked from s to t. The edges connecting a bridge to the path P1 are 

called bridge links. Any bridge could have multiple bridgelinks. 

 

Figure 4.1: The set of paths allow maximum throughput despite interpath interference. The right half is a timing 
diagram, where the rows represent time slots and the columns represent the movement of packets through the paths. 
 

The leftmost bridge link is the edge connecting the bridge to a path node which is 

closest to s. The rightmost bridge link is the edge connecting the bridge to a path node 
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which is closest to t. The path node belonging to the leftmost (resp. rightmost) bridge 

link is called the leftmost (resp. rightmost) attachment point. A bridge path is defined as 

a path between the leftmost and rightmost attachment points whose edges all belong to 

the bridge. 

We can define conceptual arcs between bridges to form a bridge graph. Each bridge 

is represented as a node in the bridge graph. The source s and destination t are also 

nodes in the bridge graph. A conceptual arc in the bridge graph is defined as follows: a 

given bridge Bi will have candidate bridges to which it could have a conceptual arc.   

          

Figure 4.2: (a) Bridges B1..B10 marked on original graph G. (b) conceptual edges of bridge graph GB. 

A bridge link em is defined to be to the left (respectively right) of a bridge link en, if 

the path node belonging to em is closer to (respectively farther from) s than the path 

node belonging to en. A bridge Bz is a candidate bridge for bridge Bi if the leftmost 

bridge link of Bz is to the left of the rightmost bridge link of Bi and the rightmost bridge 

link of Bz is to the right of the rightmost bridge link of Bi.Of all the candidate bridges of 

bridge Bi, we add a conceptual arc to the bridge Bj if Bj has a rightmost attachment 

point closest to t among all the candidate bridges Bz of Bi. 
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We also add a conceptual arc from source s to a bridge Bs if s is the leftmost 

attachment point of Bs and the rightmost attachment point of Bs is closer to t than all the 

other bridges whose leftmost attachment point is s. We add a conceptual arc from all 

bridges Bx to the destination t if t is the rightmost attachment point of Bx. Figure 4.2(b) 

shows the conceptual bridge graph for the original graph G in Figure 4.2(a). We 

enforce a rule that a given bridge (as well as node s) can have only a single outgoing 

conceptual arc to another bridge in the bridge graph. When there are multiple bridges 

satisfying the conditions described above, we arbitrarily choose one. In the conceptual 

graph (called a bridge graph), if there exists a path between source s and destination t, 

then it has been proved that there exists two vertex disjoint paths from s to t in the 

original graph G. 

The distributed algorithm of [44] follows the centralized algorithm given in [45]. 

For the distributed algorithm, each bridge in the s-t path in the conceptual graph marks 

the rightmost attachment point and leftmost attachment point as leftmost and rightmost 

special nodes. The first vertex disjoint path is obtained by moving along the path P1 

until a leftmost special node, then moving along the bridge which marked this node, 

and then moving back along the path at the rightmost special node of the bridge, and so 

forth. The second vertex disjoint path is obtained in the same manner, except that we 

start along the bridge path of the bridge connected to s. Figure 4.3 shows the vertex 

disjoint paths (as dashed lines) for the original graph G found by using the given s-t 

path. 

Upon closer observation, we notice that the single s-t path in the bridge graph 

decomposes into two vertex disjoint paths in the original graph G. Thus we can also 
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infer that the choice of the path from s to t in the bridge graph will determine the 

quality of the interference aware path, which is measured based on the value of λ. In 

other words, smaller the λ, the better is the quality of the path set, since smaller λs give 

higher aggregate throughput. Our goal will be to find a path that minimizes λ in the 

bridge graph in a distributed fashion. We will now implement the following steps in a 

distributed fashion.  

 

Figure 4.3: Vertex disjoint paths in original graph G 

Step 1: Find a path P1 from node s to node t in the original graph G: This step can be 

easily done in a distributed fashion by constructing a spanning tree rooted at node s. 

Nodes in the path P1 can also be numbered linearly from s. This step will have a 

message complexity of O(m).  

Step 2: Decompose the graph into its bridges relative to the path P1: The formation of 

the bridges can be accomplished by finding the connected components through a 

distributed construction of spanning trees for all nodes not on path P1. At the end of this 

step, all nodes not on path P1 will be a part of some spanning tree. The leftmost and 

rightmost attachment points of each bridge are also known (and this information is 

propagated to the root of the spanning tree). The identity of the root becomes the bridge 

identifier. At this point, all the bridges of G relative to the path P1 have been formed 
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and the leftmost attachment point of a bridge knows the rightmost attachment point of 

each bridge to which it is attached. Each leftmost attachment point, v, stores in variable 

r+(v) the rightmost attachment point among all bridges for which v is a leftmost 

attachment point. 

The corresponding bridge identifier (i.e. the bridge whose rightmost attachment 

point is r+(v)) is stored in the variable B+(v). The root, v, of the bridge knows the 

leftmost and rightmost attachment points of the bridge and stores these in the variables 

lap(v) and rap(v), respectively. For this step, the number of messages is bounded by the 

number of edges, for a message complexity of O(m). 

Step 3: Construct a new graph GEB(VEB, EEB) called an expanded bridge graph: Node s 

initiates this process by sending a message to the next node on path P1 containing 

values rap(v) and lap(v)  for all bridges whose lap(v) is s. Each node v receiving the 

message does the following: 

Case v of  

1. not an attachment point 

A message is sent to the next node in the path at the end of this case statement 

2. a left attachment point only 

Append to the message rap(i) and lap(i) for all bridges (with root identifier i) for which 

v is a leftmost attachment point 

3. a right attachment point only 

a) bridges = 0 
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b) for all j where v = rap(j) 

i)    for each pair of (rap(i), lap(i)) in the message 

1)      if lap(i) < rap(j) and rap(i) > rap(j) and lap(i) < lap(j) 

A)            append i to the array bridges 

c) Send ADD_BRIDGE_NBOR message containing bridges to root j 

4. left and right attachment point 

a) bridges = 0 

b) for all j where v = rap(j) 

i)    for each pair of (rap(i), lap(i)) in the message 

1)     if lap(i) < rap(j) and rap(i) > rap(j) and lap(i) <lap(j) 

A)          append i to the array bridges 

c) Send ADD_BRIDGE_NBOR message containing bridges to root j 

Append to the message rap(i) and lap(i) for all bridges (with root identifier i) for which 

v is a leftmost attachment point 

End of case statement 

The root of a bridge receiving an ADD_BRIDGE_NBOR message knows that there 

is a conceptual outgoing arc to the bridge identified in i (from the definition of the 

expanded bridge graph) and appends this to an array out-arcs. This process is repeated 

for the next node in the path P1 and when node t receives the message it sends back a 
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message to node s and step 3 is completed. This step consists of sending messages 

along the path and to roots of bridges with time and message complexity O(n). 

Step 4: Find a suitable “best path” from node s to node t in the expanded bridge graph: 

We will consider the interference pattern that a given bridge Bi makes with the path P1 

and compute the best value of λ. This value is assigned as the node weight of each 

bridge. We also assign a weight on an arc (Bi, Bj) with the observed periodicity λ 

caused by the interference pattern of the bridges Bi and Bj combined. Now we execute a 

distributed shortest path algorithm from s to t on the expanded bridge graph with a 

message and time complexity of O(n2)[70].  

Assigning node and edge weights for this distributed shortest path algorithm is a 

key step in this process. Using our knowledge of interference patterns, we can assign 

node and edge costs to the expanded bridge graph so as to find interference aware 

paths. Our solution depending on simple factors such as the path lengths and the hop 

counts of interfering nodes is what allows us to perform this step. The output of the 

shortest path algorithm will result in marking of the left most attachment points of the 

bridges in the shortest path. Sections 4.4.1 and 4.4.2 elaborate on this idea. 

Step 5: From step 4, a path from node s to node t will be found in GEB (the graph is 

assumed to be biconnected). The two vertex disjoint paths between node s and node t 

are constructed as follows: Node s simultaneously sends a message along path P1 and 

across the bridge identified as the next hop in the shortest path. This message contains 

the right most attachment point of the next hop bridge. When the message along P1 

reaches the leftmost attachment point of the second bridge in the shortest path, it 
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branches off from P1 and traverses along the second bridge. When the message sent 

across the first bridge reaches the right most attachment point, it now changes its course 

and traverses along P1.The process continues from the right most attachment of the 

bridge. Because the message traverse along the path and the nodes in the spanning trees 

of the bridges, the total time and message complexity of this step is O(n).The total time 

and message complexity of the entire algorithm is bounded by the time and message 

complexity of the distributed shortest path algorithm used in step 4. 

4.4.1 Finding non-interfering paths 

It is possible to find non-interfering vertex disjoint paths at step 4 of the vertex disjoint 

path algorithm. Notice that a bridge may contain nodes which share edges with the 

selected s-t path, but it cannot have nodes which share an edge with any other bridge. In 

other words, a bridge may interfere with the initial path, but never with another bridge. 

Given bridge Bi, suppose we are able to construct a spanning tree for Bi in step 2 in 

such a way that the lap and the rap have a path on the bridge which do not interfere 

with the initial path. We only choose such bridges in the expanded bridge graph.  

Additionally, when choosing edges for the expanded bridge graph, we may choose 

to add an edge from bridge Bi to bridge Bj in the expanded bridge graph. We add the 

additional restriction that edge (Bi, Bj) will be added to the expanded bridge graph if 

and only if the rap of Bi and the lap of Bj are at least two hops away on the initial s-t 

path (in other words lap(Bj) – rap(Bi) ≥ 2). On this expanded bridge graph, a path from 

source s to destination t forms a pair of non-interfering vertex disjoint paths. Note that 

while this technique may discover non-interfering paths, it is not guaranteed to find a 
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pair of non-interfering paths even if they exist in the graph since it depends on the 

selection of the initial s-t path.  

4.4.2 Finding interference aware paths 

Just as we did in Section 4.5, we can choose to assign node weights to bridges in the 

expanded bridge graph and restrict the edges which we may add to the expanded bridge 

graph to find interference aware paths which can still permit high throughput. A 

preliminary approach to finding these interference aware vertex disjoint paths is as 

follows: for each bridge Bi, assign a node weight which is the minimum value of λ it 

can support with the initial s-t path chosen as the second path, after allowing for the 

following scenario – the lap(Bi) may be the hth hop along one vertex disjoint path, 

where h is computed by looking at all bridges Bj whose rap(Bj) < lap(Bi). After taking 

into account all the possible h mod λ values (which is the essential quantity of interest – 

even if there are many bridges before, the number of possible h mod λ values is still 

bounded by λ itself) we must compute the best possible value for λ that the bridge Bi 

may be able to sustain even with interfering edges to the initial s-t path. Similarly we 

add an edge in the expanded bridge graph between bridge Bi and bridge Bj only if the 

two bridges do not share any edge with the initial s-t path except those vertices in the 

initial s-t path which are shared by both bridges. The edge is assigned a weight of zero. 

In other words, the bridge Bi and bridge Bj are permitted to have interfering edges only 

with those nodes in the initial s-t path whose node numbers (along the path) are smaller 

than rap(Bi) and larger than lap(Bj) if an edge exists between them on the expanded 

bridge graph. The path with the smallest bottleneck node weight on this expanded 

bridge graph (this can be distributedly computed using a shortest path algorithm) yields 
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suitable interference aware vertex disjoint paths between source and destination. Here 

the bottleneck node weight refers to maximum node weight along a given path. Note 

that in contrast to the algorithm described in section 4.5, this approach does permit 

interference among the bridges and the initial s-t path. However, we are still likely to 

fall short of the throughput realizable from the centralized algorithm proposed in 

section 3.7 as the algorithm in Section 3.7 considers a much larger set of combinations 

for the possible paths. 

4.5 Summary 

In this chapter, we have presented a distributed algorithm for finding interference aware 

vertex disjoint s-t paths to improve the throughput of wireless networks. In the context 

of wireless sensor networks, it is important that the distributed algorithms used for path 

problems respect the typically small packet size in most sensor networks (of the order 

of 10s of bytes). The proposed approach will allow interference aware vertex disjoint 

path discovery requiring single messages communicated even under such restrictive 

packet sizes.  

The inherently hard nature of the problem of finding suitable routing paths for 

improving wireless throughput also raises the interesting question of how well a 

distributed algorithm for such a purpose may perform. When packet size constraints are 

added, this leads to even more restricted implementations for these distributed 

algorithms. Exploring the tradeoffs between solution quality and the amount of 

resources allocated to a distributed algorithm, be they total energy, maximum packet 

size or perhaps storage space, would be interesting future work. 
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Chapter 5 
 

5 Multi-radio activation 
 

5.1 Introduction 
 

While the first generation of wireless sensors had limited processing and storage 

capabilities, advances in technology, in combination with increased application 

demands have resulted in more powerful second generation sensor nodes. These nodes 

possess relatively higher processing and storage capabilities achieved through the use 

of powerful CPUs, and large memories [34], [57]. These nodes are also capable of 

operating multiple radios simultaneously, each with a different power, range and 

bandwidth rating. Though such multi-radio sensors are currently used as gateways or 

cluster-heads in sensor networks, technological advancement may soon equip even the 

commonly used sensor nodes with multiple radios. 

While the capabilities of sensor nodes have increased along several fronts, they will 

continue to be powered by batteries. Consequently, energy conserving mechanisms are 

of paramount importance even in next generation wireless sensor networks. The radios 

in a multi-radio sensor node may differ not only in terms of their communication 

capabilities but also in terms of energy efficiency and usage. High bandwidth, long-

range radios usually possess higher energy efficiency, in terms of energy expended per 

bit transmitted, than low bandwidth, short-range radios [80]. However, high bandwidth 

radios also consume more power when idling than low bandwidth radios. Therefore, 

activating several high bandwidth radios when there is not a lot of data to be 

transmitted may result in considerable energy wastage. On the other hand, due to their 
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greater reach, long-range radios can reduce the network diameter; consequently, the 

latency involved in delivering sensory data to a prescribed destination will decrease 

with the use of long range radios. Several of them may need to be activated when the 

application demands smaller data delivery latency. Thus the issue of radio activation is 

closely tied to the requirements of the application. 

Earlier research on multi-radio systems primarily used the additional radios to 

improve the network performance in several ways. The focus of such works have been 

on transmission scheduling [74], [55], hierarchical power management [79], throughput 

enhancement [91], and resource discovery and mobility support [77], [67]. Multiple 

radios have also been used to find suitable end to end paths satisfying certain quality 

guarantees [74]. There also have been works that clearly document the performance 

benefits of multi-radio wireless networks in real-life settings [22], [83], [71]. The above 

works assume that the network remains connected even when all the sensor nodes 

activate only their lowest power radio. However, in a general setting, such a 

requirement on the connectivity cannot be guaranteed. Radios with higher power and 

longer range may have to be activated even to make the network connected. In [14], the 

authors consider linear networks where a random fraction of the nodes in the network 

have dual-radio functionality and apply probabilistic techniques to describe the 

connectivity of such networks. 

In this chapter, we focus on energy efficient radio activation in a sensor network 

where each node has K > 1 radios. The radios r1, r2,…, rk in a node are such that the 

one hop reachability distance (resp. energy expended) of (resp. by) radio r i is greater 

than that of r j, 1 ≤ j < i ≤ k. Given such a network, the problem of energy efficient radio 
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activation is to minimize the total energy spent by the active radios across all nodes in 

order to maintain a connected network. We make several contributions in this work: (1) 

We show that the problem of energy efficient radio activation is NP-Complete. (2) We 

propose four different polynomial time approximation methodologies for solving this 

problem in networks with K = 2. The first two methodologies employ a series of non-

trivial reductions to leverage on existing approximation solutions for other known NP-

Complete problems. The third methodology is based on the minimum spanning tree 

algorithm. The fourth methodology is a greedy algorithm that is proposed afresh. (3) 

We extend these solutions to the general case of K > 2 radios as well. (4) Our analytical 

and experimental studies of the four solutions reveal that the greedy algorithm and the 

minimum spanning tree solution have the best worst case performance while the greedy 

algorithm has the best average case performance. Preliminary results from this work 

have been submitted in [63]. 

The rest of this chapter is organized as follows. In section 5.2, we define the 

different variants of the radio activation problem. Section 5.3 discusses the complexity 

of the basic version of the radio activation problem while sections 5.4 and 5.5 describe 

different solution methodologies for solving this problem. We study the average case 

behavior of these solutions in section 5.6. Section 5.7 focuses on the complexity of the 

general versions of the radio activation problem and their solutions. We study the 

average case behavior of these solutions in section 5.8. We discuss literature relevant to 

the proposed research in section 5.9. Finally, we present our conclusions in section 5.10 

and outline our ongoing and future research efforts in this direction. 
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5.2 Problem definition 

Let v1, v2,…, vn be the nodes present in a wireless sensor network. Each node vi is 

equipped with K radios r1, r2, …, rk. Let Rk and Pk respectively be the range and power 

consumption of radio k. Without loss of generality let R1 ≤ R2 ≤… RK and P1 ≤ P2 

≤…PK. Let I i,k be an indicator variable which denotes the on/off status of radio k in 

sensor node vi, i.e., I i,k = 1, if radio k is turned on in node vi and is 0, if it is turned off. 

Two nodes vi and vj are said to have an edge of type k between them if and only if d(vi, 

vj) ≤ Rk and I i,k = Ij,k = 1, where d(vi,vj) denotes the geographical distance between the 

nodes vi and vj. Thus two nodes can have a maximum of K edges between them. A path 

is said to exist between two nodes vi and vj if a sequence of distinct nodes vi, va, vb,…, 

vm, vj can be found such that any two adjacent nodes in the sequence have an edge of 

some type between them. 

Given these notations, we focus on a set of related problems each of which is 

significant in its own way. To begin with, we consider a network of devices that have 

dual radios (i.e., K = 2) – a low power, short-range radio and a high power, long-range 

radio. Such devices are already available commercially off-the-shelf [34] and hence 

have immediate relevance. In such networks the radio activation problem can manifest 

in two different variations. 

Problem MHP2C: In the first kind, the low power radios in all the devices are turned 

on by default. As this may not guarantee network connectivity, the aim is to turn on 

minimum number of high power radios so as to make the network connected. This 

problem is referred to as the Minimum High Power 2-Radio Connectivity problem 
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(MHP2C). Formally, given that I i,1 = 1, i ∈ {1, 2, …, n}, determine I i,2, i ∈ {1, 2, …, n} 

such that:  

1) A path exists between vi and vj, i, j ∈ {1, 2, … , n}, and 

2) ∑ ��,�
�
���  is minimized. 

Problem MP2C: In the second kind, no radios are turned on by default and the 

objective is to activate the best set of low and high power radios to get a connected 

network with minimum power. This problem is referred to as the Minimum Power 2-

Radio Connectivity Problem (MP2C). In other words, the objective is to determine I i,k, 

k ∈ {1,2}, i ∈ {1, 2, …, n}, such that  

1) A path exists between vi and vj, i, j ∈ {1, 2, …, n} 

2) ∑ ∑ ���,	 � �	
�
	��

�
���  is minimized 

Problem MPKC: The above MP2C problem can be generalized to a scenario where 

each device may have up to K radios. The objective in such a network is to selectively 

activate each of the K radios in a node to guarantee network connectivity while 

minimizing the total power consumed across the active radios in all the nodes. This 

problem is referred to as the Minimum Power K-Radio Connectivity Problem (MPKC). 

Formally stating, the objective is to determine I i,k, i ∈ {1, 2,…, n}, k ∈ {1, 2, …, K} 

such that:   

1) A path exists between vi and vj, i, j ∈ {1, 2, …, n} and   

2) ∑ ∑ ��,	 � �	
�
	��

�
���  is minimized 
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As mentioned earlier, each of the three problems defined above are useful in their 

own way. In the following sections, we initially focus on the MHP2C problem and take 

up MP2C and MPKC problems later. 

5.3 Complexity of MHP2C problem 

We can also observe that the network formed by the dual-radio sensor nodes is best 

modeled as a multi-graph with at most two edges between any two vertices. We argue 

that such a multi-graph can be converted to a simple graph for the MHP2C problem 

without any loss of generality. Under the MHP2C problem, when all the low power 

radios are turned on, the network as a whole need not be connected. This implies that 

the network may remain partitioned as a set of connected components. No two 

components can communicate with each other unless they are connected by a high 

power radio link. This necessitates that at least one node in each component should turn 

its high power radio on and the goal is minimize the number of high power radios that 

are turned on across all components. Figure 5.1 illustrates the MHP2C problem through 

an example. In the following discussions, the term low (resp. high) power edge will 

refer to an edge of type 1 (resp. 2) in the network. 

 

Figure 5.1(a) MHP2C example. The solid lines represent low power edges, the dashed lines represent high power 
edges. The number of high power radios which need to be turned on in this case is 8. 
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Figure 5.1(b) MHP2C example. A different way of connecting the components. The solid lines represent low power 
edges, the dashed lines represent high power edges. The number of high power radios which need to be turned on in 

this case is only 6. 

 

Theorem 1. The MHP2C problem is NP-Complete.  

Proof: We show that MHP2C is NP-Complete by obtaining a reduction from the 

minimum hitting set problem. We show that for every instance of the minimum hitting 

set problem (a known NP-Complete problem), we can create an instance of the MHP2C 

problem such that the solution to the MHP2C problem is also a solution to the 

minimum hitting set problem. The minimum hitting set problem is defined as follows: 

Given a collection C of subsets of a finite set S, the aim is to find a subset S' ⊆ S such 

that S' contains at least one element from each subset in C. The minimum cardinality 

subset S' is called the minimum hitting set. The minimum hitting set problem is known 

to be NP-Complete [23]. 

We now state our reduction. Let C1, C2,…, Cn be the subsets belonging to C. 

Consider any subset Cp ∈ C. We can construct a disconnected graph G = (V, E) as 

follows. For each element i ∈ Cp ∀ Cp ∈ C, we add a vertex vi,p to graph G. This gives 
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us a set of ∑|Ci| vertices for graph G. The edge set of G is constructed as follows. For 

each element i ∈ Cp, for every other element j ∈ Cp, an edge ei,j is constructed 

connecting i and j in graph G. This step is repeated for each C' ∈ C. Now G is a disjoint 

union of cliques, with each clique representing a subset Cp ∈ C. We now add what we 

call ‘inactive’ edges to the graph G as follows: for each element m ∈ S such that m ∈ Ci 

and m ∈ Cj where i ≠ j, we add an edge connecting vm,i and vm,j.  

Now graph G can be viewed as a network formed by dual-radio wireless sensor 

nodes with each vertex being the sensor node. The cliques in G represent the different 

low-power connected components in the dual radio network. The edges connecting the 

vertices within a component represent the low power radio links between the 

corresponding nodes. We call these edges as component edges. The inactive edges 

between the cliques represent the high power radio links between the components in the 

network. An inactive edge becomes an active edge when the high power radios of both 

nodes on which the edge is incident are turned on. Let a set of high power radios be 

turned on such that the set of active edges plus the component edges forms a connected 

sub-graph G' that connects all the components in G. 

Consider the set H = { i | vertex vi,p ∈  G'}. If vi,p is a node whose high power radio is 

turned on, then element i of set Cp will be included in the set H. Since G' is connected 

sub-graph of G, there exists a node vi,p ∈  Cp, ∀ Cp ∈ C1, C2, …, Ck such that its high 

power radio is turned on. In other words, the set H defined above is a hitting set of C. It 

follows that the if one can determine the minimum number of nodes required to turn on 

their high power radios to obtain a connected subgraph G', then the corresponding H 
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will also be a minimum hitting set for C. Figure 5.2 shows an example of how the 

reduction works.  

 

Figure 5.2 Hitting set reduction. In the example shown, solid edges are the component edges within a clique. The 

dashed edges are inactive edges, and once they become active they turn into dotted edges. The numbers 

corresponding to the active edges (in this case 2 and 3) are chosen to form the hitting set. 

Suppose we could find a solution to the MHP2C problem in polynomial time. The 

above reduction shows that a polynomial time solution to MHP2C will also solve the 

minimum hitting set problem in polynomial time. However the minimum hitting set 

problem is a known NP-Complete problem. Hence MHP2C is also NP-Complete.■ 

As mentioned earlier, we propose four different methodologies for solving the 

MHP2C problem. The first two employ a series of non-trivial reductions to leverage on 

existing approximation solutions for other known NP-Complete problems. The third 

solution is based on the minimum spanning tree solution while the fourth methodology 

is proposed afresh.  
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5.4 Solving MHP2C through existing solutions 

While we can prove the NP-Completeness of the MHP2C problem using a reduction 

from the minimum hitting set problem, unfortunately not every instance of the MHP2C 

problem can be mapped to a minimum hitting set problem. Consequently, solutions of 

the hitting set problem may not be applicable for MHP2C. Hence we look towards 

other approaches which can be used to solve the MHP2C problem.  

5.4.1 Node weighted group Steiner tree 

The first approach we take is to consider the MHP2C problem as a node weighted 

group Steiner tree problem. The group Steiner tree problem is defined as follows: given 

an undirected weighted graph G = (V, E) with a cost function w on the edges and a 

family N = N1,...,Nc of c disjoint groups of nodes Ni ∈ V , find a minimum cost tree 

which contains at least one node from each group Ni. The node weighted group Steiner 

tree problem is identical to the group Steiner tree problem except that the cost function 

w is defined on the nodes. It is easy to see how the MHP2C problem can also be 

considered as a node weighted group Steiner tree problem – if we consider the 

disconnected graph formed by the low power nodes, each component forms a  group. 

Now we need to select at least one high power radio from each group and ensure that 

the network becomes connected.  

There is no readily available solution for solving the node weighted group Steiner 

tree problem. Most solutions proposed in the literature for the group Steiner tree 

problem consider the edge weighted case [24], [29]. Arie Segev has shown in [75] that 

any node weighted Steiner tree problem with nonnegative node costs can be 

transformed into the edge weighted directed Steiner tree problem as follows 
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(Transformation I): Let wj be the node cost associated with node j, and wij represent the 

edge cost associated with edge (i, j). If both node and edge cost coefficients wi and wij 

are nonnegative and a root node is identified, the original problem can be transformed 

into the standard edge weighted directed Steiner tree problem by defining arc cost 

coefficients for each edge (i, j) such that the new cost coefficient wij ' = wij + wj. 

Through Transformation I, we convert our node weighted group Steiner tree 

problem to a directed edge weighted group Steiner tree problem on the transformed 

graph. Charikar et al showed in [16] that every directed group Steiner tree problem 

instance can be solved as a directed Steiner tree problem using the following 

transformation (Transformation II): for each group Ni, introduce a dummy vertex xi and 

connect xi using zero cost edges to each of the vertices in Ni. These dummy vertices are 

the terminals (or the required nodes) in a directed Steiner tree instance with the same 

root. After Transformation II, the original node weighted group Steiner tree problem 

becomes a directed edge weighted Steiner tree problem, which is NP-Complete [16]. 

Let the number of nodes in the network be n and the number of groups be c. The best 

known approximation algorithm for solving the directed edge weighted Steiner tree 

problem is by Charikar et al.  [16], where they provide an algorithm which achieves an 

approximation ratio of i(i-1)c1/i in time O(nic2i) for any fixed i > 1. Setting i = logc, this 

is a quasi-polynomial time solution with an O((logc)2) approximation ratio. 

5.4.2 Minimum Connected Dominating Set solution 

The minimum connected dominating set (MCDS) problem is defined as follows: given 

a graph G = (V, E), a connected dominating set is a set of vertices V' ∈ V such that a) 
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every vertex not in V' is connected to at least one member of V' by an edge in E and b) 

the subgraph induced by V' is connected. The connected dominating set of least size 

(here the size refers to the cardinality of the set) is the minimum connected dominating 

set for G. If the objective function that is being minimized is the sum of the node 

weights, then this is the weighted minimum connected dominating set problem, which 

is also known to be NP-Complete [25]. 

Let H = (V,E) be the given multi-radio network where V is the set of all dual-radio 

sensors and E is the set of all low power and high power edges in the network. Let H' = 

(V, E'), where E' ∈ E is the set of low power edges in E. The connected components of 

H' are determined. The given network H is transformed into a graph G = (V', E″ ) on 

which an MCDS solution is run to find the set of nodes that need to activate their high 

power radio. Graph G = (V', E″) is obtained from H as follows. To each component i of 

H', a dummy vertex i is added. The vertex set V' is the union of set V and the set of all 

dummy vertices {xi}. The edge set E″ is the a) set of all lower power edges in H, b) 

high power edges (u, v) in E such that u and v are in different connected components of 

H', and c) edges (xi, u) from each dummy vertex belonging to a connected component i 

to all nodes u in the same connected component i. On this resulting graph, the MCDS 

algorithm is executed and the dominating set is determined. The purpose of adding a 

dummy vertex is to make sure that at least one vertex from each component is selected 

to have its high power radio turned on. Without the dummy vertex, it is possible that 

every vertex in some component to be dominated by a connected dominating set 

containing vertices not belonging to the component. Figure 5.3 uses a subset of the 

connected components of Figure 5.1 to explain this approach. The best known 
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polynomial time approximation algorithm for the minimum connected dominating set 

problem on unit disk graphs has been proposed by Wan et al [82] and provides a 

constant approximation factor of 8. Their distributed algorithm has a time complexity 

of O(n) and a message complexity of O(nlogn), which means the centralized version of 

their algorithm has a complexity of O(n2log n).  

 

Figure 5.3 Minimum Connected dominating set transformation. The gray edges connect all nodes in a group to the 

dummy vertex of the group. We can see that the set of nodes {x3, a, b, x1, c, d, x4} form a connected dominating set. 

5.4.3 Minimum spanning tree solution 

The third approach we adopt for solving the MHP2C problem is to employ a minimum 

spanning tree (MST) algorithm such as Kruskals [19]. We do this by assigning suitable 

edge weights to the links in the network. A communication link requires two radios to 

be turned on. Therefore, for all high (low) power radio edges, we assign an edge weight 

equal to twice the power consumed by the high (low) power radios. Only those radios 

that correspond to the edges in the resulting spanning tree are activated. By its very 

nature, the spanning tree so constructed guarantees that the network is connected.  
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Lemma 2. The approximation ratio for the MST solution for MHP2C is 2.  

Proof: The MST is constructed by sorting all edges by their edge weights and 

incrementally adding these edges in ascending order to form a tree. Therefore, the low 

power edges are first used to construct the tree before the high power edges are used. 

Therefore it is clear that the MST will form low power connected components first and 

then find the suitable high power edges to connect these components. Hence the 

number of high power edges used will be no more than the number of components 

which need to be connected. Since each high power edge effectively turns on no more 

than two high power radios, the number of high power radios will at most be 2c, where 

c is the number of components.  

However, we also have a theoretical lower bound on the minimum number of radios 

which have to be turned on for connectivity – one high power radio from each group 

(connected component) giving us a total of c such radios. Let OPT represent the 

optimal number of radios to be turned on for achieving connectivity in our given 

network. So we know c ≤ OPT. This gives us an approximation ratio of 2 for the MST 

solution. ■ 

5.5 A greedy solution for the MHP2C problem 

While the MST solution minimizes the number of high power edges required to connect 

the network, it does not minimize the number of nodes that are required to turn their 

radios on. In the following paragraphs we discuss a greedy approach that attempts to 

achieve this while maintaining network connectivity. 
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Let the term group refer to a subset of nodes that remain connected when no high 

power radios are turned on. In other words, each group is a connected component of the 

network formed by using just the low power edges. Without the loss of generality, let 

us assume that the network consists of more than one group. By a covered group, we 

refer to a group in which at least one high power radio has already been activated. By 

uncovered group, we refer to a group in which no high power radio has yet been 

activated. Clearly, before the algorithm begins to execute, the set of covered groups, C, 

is empty, while the set of uncovered groups, U, contains all the groups. A node is said 

to be a covered node if it belongs to a covered group. Let v be a vertex belonging to 

group Ni. The span of a node u is the number of neighbors v such that: (a) (u,v) is a high 

power edge, (b) u and v belong to different groups, and (c) v belongs to an uncovered 

group. Given a network with n nodes and m high power edges, the span of every node u 

can be easily determined in O(n+m) time after determining the connected components 

formed using low power edges. 

Our polynomial time approximation algorithm, named Alg-A, for solving the 

MHP2C problem is given in Figure 5.4. At each step, we select the node with the 

highest span. We turn on the high power radio of the node. We also select the node’s 

high power neighbors; one from each of the groups spanned by the node, and activate 

their high power radios as well. After the activation, we update the spans of all the 

nodes in the network and repeat the process.  

1)Initialize the span of all nodes 
2)Do while u ≠ ∅  
a)     Select node vmax with highest span. Turn on its high power radio. 
b)     For each uncovered group N' which is a neighbor of vmax 
i)          C � C ⋃ N' 
ii)         U� U\ N' 
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iii)        Select u ∈ N' such that u and vmax share a high power edge; turn on u’s high power radio 
c)      Update the span of each vertex in the network 
3)End while 
 

Figure 5.4 Approximation algorithm Alg-A for solving the MHP2C problem. 

Time Complexity of Alg-A: If we have a total of c groups in a network with n nodes 

and m high power edges, the outer DO-WHILE loop requires at most c steps. We can 

construct a max heap such as the Fibonacci Heap [19] using the span values of each 

node in O(n) time. In the entire execution of the algorithm, at most n nodes will be 

removed and at most m decrease operations are performed (Step 2c) on the heap. These 

operations on the Fibonacci Heap is very similar to the operations required to execute 

the Dijkstra’s shortest path algorithm [19]. Hence the total time taken to remove the 

nodes and update the span values will be m+n logn. Therefore the total time complexity 

is O(cm + nlogn). 

5.5.1 Approximation ratio 

Lemma 3. The approximation ratio of Alg-A is 2. Proof: We derive the approximation 

ratio of Alg-A while observing that it is a loose bound and there may be scope for 

tightening it. Recall that in each step of Alg-A (the outer loop), at least one group is 

selected and added to the covered set C. We turn on exactly one high power node per 

uncovered group added at each step. Also, the high power radio of node vmax is turned 

on. In other words, if we add p groups to the covered set at any step, we turn on exactly 

p+1 high power radios in that step. Since we must necessarily select two groups in the 

first step, we effectively execute the outer do loop no more than c-1 times (assuming 

we would have a connected network if all high power radios were turned on). If the 

outer loop executes c-1 times, then we add at most 2 high power radios per step (since p 
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= 1 at each step). Hence at the end of algorithm execution, we have turned on at most 

2(c-1) = 2c-2 high power radios which gives us an approximation ratio of 2 (by noting 

that we need to turn on at least one radio from each component to form the connected 

graph). ■ 

Algorithm  Approx. Ratio Complexity 
Directed Steiner Tree[16] logc(logc-1) O(nlogc) 
MCDS[82] 8 O(n2logn) 
MST[19] 2 O(mlogm) 
Alg-A 2 O(cm+nlogn) 

Table 5.1 Approaches for solving MHP2C with c groups 

The approximation ratios and the time complexities of different MHP2C solutions 

discussed so far are summarized in Table 5.1. The asymptotic time complexities of 

MST and Alg-A look comparable and their approximation ratios are same as well. 

However, as we will see in the following section, our experimental studies validates the 

fact that Alg-A outperforms MST (in terms of the number of high radios activated) in 

the average case. 

5.6 Performance evaluation of MHP2C solutions 

The analytical studies carried out thus far have revealed the worst case performance of 

the different solutions. However, a more useful metric in practice would be the average 

case performance of these algorithms. We investigate the average case behavior of the 

different solutions through simulation experiments. We use the LEDA graph algorithms 

library [2] to implement the different algorithms for our simulation. 

We use two types of radios for each sensor node. The low power radio has a range 

of 2.3 units while the high power radio has a range of 5.5 units. The power required to 

activate the low power and high power radios are fixed respectively at 1 and 29 units. 

The power values are derived from the standard assumption that the power consumed 
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by an active during transmission is proportional to rβ, where r is the range and β is the 

path loss exponent. In our setting, we have taken β = 3.98 [27]. We randomly place n 

nodes in a square grid. We increase the number of nodes in the network and 

correspondingly also increase the square area of the network so as to keep the node 

density constant. With this approach, we observed that the number of low power 

components created in the graph were almost uniform (variation less than 10%) for a 

given number of nodes. The number of nodes n were increased from 250 to 1800 in 

order to vary the number of low power components from 50 to 400. 

We study the performance of the following four MHP2C solutions: (1) Steiner tree 

solution, (2) Minimum Connected Dominating Set (MCDS) solution, (3) Minimum 

Spanning Tree (MST) solution, and (4) Alg-A, which is a greedy solution. The 

performance of these solutions is studied by varying the number of low power 

connected components in the network and the average number of high power radios 

activated per component is observed. The results of this study are shown in Figure 5.5. 

Solutions with superior performance should have this average closer to 1.00 – higher 

values indicate poor performance. 
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Figure 5.5 Average case performance of different MHP2C solutions 

From the graph, we can clearly see that for networks with fewer components, the 

Steiner tree solution has a good performance. However, as the number of components 

are increased, its performance degrades and is dominated by Alg-A and MST. Between 

Alg-A and MST, we see that Alg-A consistently outperforms MST. Therefore, even 

though these two algorithms have similar worst case performance and time 

complexities, Alg-A might be preferred on account of its average case performance. 

5.7 The MP2C and MPKC problems 

Having discussed the MHP2C problem, we now take up the other two problems, MP2C 

and MPKC. To begin with, we discuss the complexities of these two problems.  

Lemma 4. The MP2C problem is NP-Complete.  

Proof: The MP2C problem contains the MHP2C problem as a special case, wherein the 

cost of the low power radios is zero. This means that one can turn on all the low power 

radios to form connected components, without increasing the total energy costs. 

Solving the MHP2C problem on the resulting network will also provide the answer to 
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the special instance of the MP2C problem. Since MHP2C is NP-Complete, MP2C is 

also NP-Complete. ■ 

Lemma 5. The MPKC problem is NP-Complete.  

Proof: The MPKC problem contains the MP2C problem as a special case where K = 2. 

Hence the MPKC problem is also NP-Complete.■ 

Recall that in the MHP2C problem, the multi-graph representation of the given multi-

radio network can be reduced to a simple graph without any loss in the solution quality. 

However, a similar reduction in the case of MP2C and MPKC problems will decrease 

the solution quality. Nevertheless, we still apply such a reduction in order to leverage 

on the resulting simplicity of the solution. We provide a polynomial time 

approximation algorithm for the MP2C problem which makes use of the previously 

discussed Alg-A solution for the MHP2C problem.  

5.7.1 Approximation algorithms for the MP2C problem 

An approximation algorithm, termed Alg-B for solving the MP2C problem is given in 

Figure 5.6. Alg-B works as follows. In the first step, we find all the connected 

components formed by using the low power radios alone. Then, in step 2 we use the 

previously described Alg-A to find the set of high power radios VH which need to be 

turned on so as to create a connected graph. At this step, there may be some redundant 

low power radios which have been turned on in step 1. Such radios are identified and 

turned off in step 3. For example, if Alg-A turns on multiple high power radios within 

the same component, then these nodes, by virtue of being connected through the high 

power radios, can all turn off their low power radios (excluding one). However, if any 
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of these nodes happen to be cut points with respect to the low power radios of the 

component, then clearly their low power radios cannot be turned off. 

Lemma 6. The approximation ratio of Alg-B is (2α +1)/(α+1), where α = PH/PL, PH is 

the power consumed by the high power radio in active state, and PL is the power 

consumed by the low power radio in active state.  

Proof: Suppose we have n nodes in the network. In the case of Alg-B algorithm, we will 

turn on a set of high power radios first (step 2). Suppose we turn on h high power radios. 

The power required for this is hPH. Notice that steps 3 and 4 do the following – they 

remove certain nodes from the candidate set of Ci. Effectively, for these nodes, we do 

not need to turn on the low power nodes since they are connected to the network 

because of their high power radios already. Let gi be the number of nodes removed 

from candidate set Si (i.e. gi = |Vi|-|Si|). Let g = ∑gi,  1 ≤ i ≤ p. The number of low power 

radios which need to be turned on will then be (n-g) and the total power required by the 

low power radios is (n-g)PL. So the total power consumed by all the radios under Alg-B 

is hPH + (n-g)PL. The maximum value of h is reached when h = (2c-2) and the 

minimum value of g is reached when g = 0. Hence the total power consumed under Alg-

B is at most (2c-2)PH + nPL. When c > 1, the minimum power required to connect all 

the components is nPL+cPH. It can be easily  verified that the resulting approximation 

ratio of (nPL+(2c-2)PH)=(nPL+ cPH) is bounded by (2α+1)/(α+1) where α = PH/PL. ■ 

 

1) Find all the components C = {C1, C2, …, Ck} by turning on low power radios 
2) Run Alg-A to find the set of high power radios VH that has to be turned on to connect all the 
components 
3) For each component Ci ∈ C /* Post processing */ 
a.     Let Si = {Vi | Vi ∈ Ci be the candidate set of nodes in component Ci} 
b.     Find the set of articulation points Va of Ci 
c.     Turn off all low power radios in Ci 
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d.     Turn on all high power radios in set VH ⋂ Ci 
e.     For each connected subgraph G' = (V', E') such that V' ⊂ Ci 
i.           Construct Vc = {Vj | Vj ∈ V' and Vj ∉ Va} 
ii.          Randomly select Vs ∈ Vc, and Si = Vs ⋃ Si – Vc (i.e. except for randomly selected Vs remove 
other nodes     
             in V' from the candidate set Ci) 
iii.         Using the selected Vs as root construct a spanning tree Ti on Si 
iv.         Turn on low power radios of all nodes in spanning tree Ti 
f.      End for  
4) End for  

 

Figure 5.6 Approximation algorithm Alg-B for solving the MP2C problem. 

Time Complexity of Alg-B. The time complexity of Alg-A which is called as a 

subroutine, dominates the complexity of Alg-B. It can be shown that Alg-B’s time 

complexity is O(cm+nlogn) when c components are created by activating only the low 

power radios. 

 

Remarks. We note here that a MST based approach can also be used for solving the 

MP2C problem. Such an approach will be identical to Alg-B described in figure 5.6 but 

for step 2 which will be replaced by the approach described under section 5.4.3. It can 

be shown that as with Alg-B, the total power consumed under the MST approach is at 

most nPL +(2c-2)PH. Hence the approximation ratio for the MST based solution for 

MP2C will also be bounded by (2α + 1)/(α + 1).  

 

One can also develop solutions for MP2C based on the Steiner tree and MCDS 

solutions. However from the discussions in sections 5.4, 5.5 and 5.6, one can infer that 

such solutions may not have a superior worst case or average case behaviors in 

comparison to Alg-B and MST. Hence, we do not consider such solutions. 
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5.7.2 Approximation algorithms for the MPKC problem 

A similar approach could be used for solving the MPKC problem, where one could 

progressively turn on all the lower power radios and keep forming connected 

components up to the (K-1)th radio. The algorithm, termed Alg-C works as follows. 

When radios 1 through i, i < K are turned on in all the nodes, the network may not be 

connected but be composed of several components. Let !"
�  denote the connected 

component q when radios 1 through at most i are activated in all the nodes in the 

network. To begin with all the !"
�s and !"

�s in the network are determined. Any given 

component !#
� in the network will be composed of a subset $#

� of !"
�s. This subset $#

� is 

fed to Alg-B described earlier so that the component !#
� can be determined such that 

power consumed by the active radios across all the nodes in !#
�  to form !#

� s is 

minimized. The process is repeated for other $"
�s and !"

�s. Now, the different !"
%s in the 

network are determined and the subset $#
�  of !"

� s that comprise a given !#
%  are 

identified. These are then fed to Alg-B to form the different !"
%s in the network with 

minimum power consumption. The above process is repeated until a single !"
	 is output 

from Alg-B. 

Lemma 7. The approximation ratio of Alg-C is bounded from above by 

(1+4αK)/(1+2αK) where αK = PK/P1, PK is the power consumed by the highest power 

radio K in active state, and P1 is the power consumed by the lowest power radio 1 in 

active state. 

Proof: Suppose we have n nodes in the network. Let the power for radios 1, …, K be 

respectively P1, P2, …, PK. Let Ci denote the number of components in the network 

formed when radios up to i-1 are turned on in all the nodes. Similar to the discussions 
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in the proof for lemma 5, the minimum power required for connecting the network will 

be Pmin = nP1 + C2P2 + … + CKPK. The maximum power required under Alg-C will be 

Pmax = nP1 + (2C2-2)P2+…+(2CK-2)PK which is less than nP1+2C2P2+…+ 2CKPK. The 

maximum value of C2 is obtained when C2 = n. Let us discuss the maximum possible 

value for C3. Recall that radios of type 3 will be turned on only for newly formed 

components – in other words, if an already existing component formed using radio of 

type 2 does not connect to even a single node that lies outside the component by turning 

on radio 3 in any of its constituent nodes, then no node in that component will turn on 

radio 3. Given the above fact and that maximum value of C2 is n, the maximum value 

of C3 is n/2, i.e., components at the level of radio 2 should get paired up. Extending the 

discussion, we can show that the maximum value of Ci, 2≤i≤K will be n/2i-2. Also, C2P2 

+ … + CKPK < C2PK + C3PK+… + CKPK which is again less than 2nPK. From these, we 

can derive that Pmax/Pmin < (1 + 4αK)/(1 + 2αK).■ 

 

Time Complexity of Alg-C. The time complexity of Alg-C is also dominated by that of 

Alg-A which is called as a subroutine. Under Alg-C, when c components are created by 

activating only the low power radios, Alg-A is invoked on each of these c components 

no more than K times. Therefore, Alg-C’s time complexity is O(Kcm + Knlogn). 

 

Remarks. Using Alg-C’s framework, a MST based approach can also be applied for 

solving MPKC by replacing Alg-B with the MST based MP2C solution. Using a similar 

argument as shown for the MST approximation for the MP2C problem, we can show 
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that the MST based approach to the MPKC problem has an approximation ratio of (1 + 

4αK)/(1 + 2αK).  

 

5.8 Performance evaluation of MP2C and MPKC solutions 

 

As before, we study the average case performance of the MP2C and MPKC solutions 

through experimentation. When the MP2C solutions are studied, the simulation settings 

remain the same as in section 5.6. Figure 5.7 shows the performance of Alg-B and the 

MST based solution for the MP2C problem. The number of low power connected 

components in the network is varied and the average power consumed across all the 

active radios in a component is observed. A solution that lowers this average value is 

desired. From the figure, we can clearly see that Alg-B consistently outperforms the 

MST based solution thereby showing that Alg-B has a better average case performance 

than the MST based solution. 

 
 

Figure 5.7 Average case performance of different MP2C solutions 
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We also studied the performance of the two MPKC solutions by setting K = 3. The 

simulation settings remain same as before, but for the fact that an additional radio is 

introduced at each node. This new radio has a range of 4 distance units and an energy 

consumption of 9 energy units. The performance of Alg-C and the MST based solution 

are shown in figure 5.8. From the figure one can clearly see that Alg-C maintains the 

trend by outperforming the MST based solution. 

 

 
Figure 5.8 Average case performance of different MPKC solutions evaluated for K = 3 

 
5.9 Related works 

Multiple radios have many benefits, and they have been exploited for different 

functions in earlier works. In [74], the authors use dual radios to provide improved data 

transmission scheduling. In [55], the authors use dual radios with the low power radios 

exchanging pulse messages which synchronize the other radio used for data 

communication. In [79], the authors present a hierarchical power management scheme 

involving radios on sensor motes, PDAs and laptops (the three together is considered as 
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a single device). In this work, the low power radios wakeup the high power radios in 

such a way as to elongate the lifetime of the network. 

Zhu et al. [91] propose wireless protocols that exploit the knowledge of coexistence 

of multiple radios to improve the system throughput. Bilstrup et al. [11] divide the 

network into clusters and use multiple radios for inter-cluster scheduling to break the 

dependence between local medium access schedules of adjacent clusters. Here the use 

of multiple radios helps improve the system throughput, while also providing better 

network connectivity. In [77], the authors propose using one of the multiple radios for 

resource discovery, which allows a low power radio to be always on for the sake of 

discovering network resources. The high power radios are turned on only when a wake 

up message is received. In [67], the authors use multiple radios in a hierarchical radio 

structure for providing mobility support. In [80], the authors use the low power radios 

to find suitable end to end paths satisfying certain quality guarantees. Recently, dual 

radio testbeds are also being increasingly evaluated for their performance benefits [22], 

[83], [71]. The improvement in system performance measured along various different 

parameters has shown the feasibility and utility of multi-radio networks. The above 

works assume that the network remains connected even when all the sensor nodes 

activate only their lowest power radio. The raison-d’etre for low power radios in most 

of the existing research is to turn the high power radio on when required to create 

alternate paths. However, in a general setting, such a requirement on the connectivity 

cannot be guaranteed. Radios with higher power and longer-range may have to be 

activated even to make the network connected necessitating the proposed work. While 

our research may seemingly appear similar to other works that adjust the power levels 
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of radios for performing topology control [85], [73], it differs from such works in a 

fundamental way: we have multiple radios at each sensor node (as opposed to single 

radio in these works) and we selectively activate one or more of them at each sensor; 

the individual power levels of the radios are not adjusted. In [14], the authors consider 

linear networks where a random fraction of the nodes in the network have dual-radio 

functionality and use probabilistic techniques to describe the connectivity of such 

networks. Our work provides deterministic solutions, is applicable to any given 

network topology, and also considers the general case of K radios.  

5.10 Summary 

In this chapter, we studied energy efficient radio activation in wireless sensor networks 

where each node has K > 1 different radios. We showed that achieving optimal radio 

activation that minimizes the total energy spent by the active radios across all nodes 

while maintaining network connectivity is NP-Complete for K > 1. We proposed four 

different polynomial time approximation algorithms solving the optimal radio 

activation problem. Our analytical and experimental studies reveal that the proposed 

greedy algorithm and the minimum spanning tree solution have the best worst case 

performance while the greedy algorithm has the best average case performance.  
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Chapter 6 
 

6 Energy aware network decomposition 
techniques 
 

6.1 Introduction 

Wireless communication consumes a significant amount of energy, and it is important 

to minimize the energy costs for communication as much as possible by practicing 

energy aware routing strategies. This is very important for sensor networks where the 

energy is an important non-replenishable resource. Routing strategies can increase the 

network lifetime. Network lifetime is quantified as the number of packets that can be 

transferred in the network before the source and destination get disconnected from each 

other [48, 65]. A suitable energy-aware routing strategy for wireless networks is to use 

those wireless nodes with high energy levels and avoid those with low energy levels.  

The routing strategies on sensor networks involve the following general steps, a) find 

routes; b) perform routing; c) update network values and perform step a).   

Consider a centralized algorithm wherein a single node (call it central node) keeps 

track of the topology information.  The central node will determine the routes (step a) 

by executing a local algorithm.  When a source node requires a message to be routed to 

the destination, it sends a request to the central node which will provide the entire route 

to the destination.  After the receipt of the information from the central node, the source 

node can perform routing (step b).  Assuming that the source node follows the exact 

route provided by the central node, the central node can determine the energy changes 

of the intermediate node (without the intermediate nodes explicitly informing the 
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central node) and re-compute the routes locally for the next route request. In addition to 

the energy consumed when packets are routed along the route path, energy is also 

consumed at intermediate nodes along the path from source to central site and vice-

versa for route request and response.  This straight-forward algorithm has all the 

weaknesses of any centralized algorithm such as lack of fault-tolerance and problems 

associated with hot spots created by request/response information travelling to and from 

the central node.  In fact with repeated route requests it is easy to observe that the 

neighbors of the central site may quickly lose energy thereby making the central node 

unreachable and consequently decreasing lifetime. One could choose a new central 

node and use a simple distributed algorithm such as the distributed depth first search 

[76] to learn the topology of the network including the node and link information.   

Yet another weakness of the centralized algorithm is that for large resource limited 

sensor networks a single central node may have neither the space capacity to store the 

entire network nor the computation power to compute the paths in a short period of 

time, or even enough energy to perform the computation. In this “utopian” model of 

centralized algorithms all nodes behave perfectly as instructed by the central node and 

the central node is able to compute real time and accurate information about the energy 

levels of the nodes in the network. Even if such a utopian model where possible, the 

reliability of the central node itself (being a sensor, it is equally prone to die, or 

experience lossy links to neighbors) as well as the lack of scalability of this approach 

(as more sensors are added, the rapid rise in communication costs are felt acutely at the 

neighbors of the central node) makes the centralized algorithm nearly impractical for 

implementing in a sensor network. 
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 Given a distributed system consisting of computational nodes, a distributed 

algorithm solves a particular problem of interest by exchanging messages among the 

nodes.  In the distributed system each node knows its neighbors by their unique 

identities and the total number of nodes in the distributed system.  A distributed 

algorithm is evaluated based on the total number of messages exchanged (message-

complexity) and the time-taken for the completion of the distributed algorithm (time-

complexity). Depending on the problem to be solved the distributed algorithm must be 

rerun after a node or link update either on the entire network or a portion of the network. 

Distributed algorithms are scalable as it does not require a single node to keep track of 

the entire topology information. The fundamental weakness of the distributed 

algorithms for sensor networks stems from the fact that after step b) of the routing 

strategy is completed, the intermediate nodes have new energy levels and now the 

distributed algorithm to determine routing paths (step a) has to be re-executed.  That is 

after each route request is complete the distributed algorithm is re-run and thereby the 

message complexity is overwhelmed by the number of route requests that have been 

completed. 

 From the above discussion it is clear that the centralized algorithm is message 

efficient, but ineffective on lifetime as a result of hot spots and other issues of relating 

to a centralized site. The distributed algorithm addresses the deficiencies of the 

centralized algorithm but is ineffective in terms of lifetime due to large number of 

messages required to recompute the routing paths after a completion of a route request.  

Our goal in this chapter is to introduce a network decomposition approach that will 

combine both the centralized and distributed approached described above by 
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decomposing the network into smaller networks (referred to as clusters).  The 

centralized algorithm is executed on each cluster and the distributed algorithm is 

executed on the central nodes (referred to as cluster head) of each cluster. 

 Network decomposition to akin to divide-and-conquer approaches to problem 

solving wherein, a larger problem is broken into smaller sub-problems and solutions of 

the smaller sub-problem are combined to arrive at the solution to the larger problem.  

Network decomposition has been effectively used to solve many problems in sequential, 

parallel, and distributed environments [21].  Network decomposition techniques have 

shown to reduce the message complexity of distributed algorithms by (i) decompose the 

network into a set of connected components, (ii) run a pseudo-distributed algorithm on 

each connected component (we will call this a cluster), and (iii) solve the optimization 

problem by executing a distributed algorithm involving cluster heads of each cluster.  A 

node that is along the path connecting two cluster heads will only forward messages.  

 Using network decomposition approaches one can alleviate the problems resulting 

in having central site. Updates in each cluster are sent to its cluster head.  The cluster 

heads perform a local computation using the topology information as in the case of 

centralized algorithm.  The cluster heads communicate using “meta” data and execute a 

distributed algorithm to solve the problem at hand.  Conceptually since the number of 

cluster heads is smaller and that fewer nodes will participate in the distributed 

algorithm the message complexity could be smaller. The above idea has been used to 

solve many distributed algorithms effectively [4]. 
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 Awerbuch and Peleg [5, 6, 7, 8] have published a series of seminal works in the 

area of distributed algorithms that uses the concept of network decomposition.  These 

works and the work by Linial [51] and Naor and Stockmeyer [64] exploit the concept of 

“locality” in distributed computations.  The concept of locality is that certain functions 

when locally computed do not affect the global solution.  For certain problem the 

solutions of the local computation can be cleverly combined to obtain global solution.  

Considering network problems on networks that have been decomposed, certain 

coloring problem instances can be solved efficiency for the entire network by cleverly 

stitching together solutions for each cluster.  

 Several wireless sensor network routing schemes that utilize the concept of 

“hierarchy” and “clusters” have been proposed before in literature.  Our work differs 

from the existing body of literature in several ways. In existing works, the clusters are 

defined based on geographical location and/or radio reachability alone. Cluster 

formation in such works is not directly related to the objective of maximizing the 

network-life time as done in our work. Also, very few of the existing hierarchical 

routing schemes have their objective as network life-time maximization. Further, the 

benefits of using hierarchical routing and intelligent cluster formation on network life-

time have not been clearly and quantitatively documented in existing works. 

 The rest of the chapter is organized along the following lines.  In section 6.2 we 

introduce the widest path problem and its application to improving network lifetime.  

We present an algorithm to perform widest path routing (or called the maximum 

residual energy path routing) given a set of clusters.  Ideal network decomposition for 

suits better for network lifetime is described in section 6.3 and a decomposition 
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algorithm for such decomposition is also presented.  In section 6.4, we experimentally 

validate that network decomposition is the ideal approach to improving network 

lifetime in sensor networks.  We conclude in section 6.5. 

6.2 The Widest Path Problem: A Network Decomposition Approach 

In this section, we first describe the relevance of the widest path problem to lifetime 

aware routing on sensor networks in section 6.2.1. Given the need to frequently 

compute the widest path (or a variant) on the network, section 6.2.2 then provides a 

network decomposition approach for doing the same. The energy costs involved in the 

network decomposition approach are discussed in section 6.2.3. 

6.2.1 Relevance of widest path to lifetime aware routing 

In developing energy aware routing techniques, wireless networks are modeled as 

graphs wherein, the vertex represents a wireless device and an edge between two 

vertices indicates that they are in direct communication range of each other.  The 

weight on a vertex indicates the residual energy available at that wireless node and the 

weight on an edge (u, v) represents the amount of energy required by node u (resp. v) to 

transmit one unit of data to node v (resp. u). The residual energy of a path is defined as 

the minimum energy level of any node in the path.  The max-min routing paradigm 

suggested in the literature [1, 48, 81] aims to maximize the network lifetime by finding 

the path where the residual energy is the maximum and forwards packets through this 

path termed as the maximum residual energy path. 

 Let G = (V, E) represent a wireless network with nodes V and edges E.  Let w(u), u 

∈ V, represent the available energy at node u.  Let c (u, v), (u, v) ∈ E, be the energy 
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required to transmit a packet from node u to node v.  We assume that c (u, v) = c (v, u), 

for all (u, v) ∈ E. 

Let P(v0, vk) = v0, v1, …, vk, be a path in G.  The energy of the path P(v0, vk) denoted 

e(P(v0, vk)) is given by 

                                       ������, �	
� � ∑ ����, ����
	��
���     (1) 

 

The residual energy of a path P(v0, vk) denoted r(P(v0, vk)) is defined as  

 r(P(v0, vk)) = mini(w(vi)-c(vi,vi+1)), 0 ≤ i < k.              (2) 

 When a packet is sent along P(v0, vk), we need to perform the following energy 

decrease operation on each node along the path except on the node vk: w(vi) = w(vi) – 

c(vi, vi+1), 0 ≤ i < k.  That is, after the packet is sent by a node, the energy level of the 

node is decremented by the amount of energy required to send the packet.   

 Let G0 be set to the initial network G.  Assume that P0(s, t) is a path in G0.  Now 

after routing a single packet along the path P0(s, t) and applying the decrease operation 

we obtain a new network G1.  In the network G1 the edge weights are the same as in G0 

but the node energy levels are different.  If a node u’s energy level becomes 0 after the 

decrease operation, node u and its associated edges (u, v) ∈ E as well as (v, u) ∈ E are 

removed from the network.  For the second packet we can again find a path P1(s, t) in 

G1 and the process continues until there exists no path between s and t in some network 

Gk. That is, we can send at most k packets from s to t before the network is 

disconnected.  The goal of the network lifetime problem with respect to a source s and 
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destination t is to find paths P0(s, t), P1(s, t),… Pk-1(s, t), such that the value of k is 

maximized. Here we would like to point out that while our goal is to maximize the 

network lifetime, it has been shown that computing the value of k is NP-hard [65].   The 

work by Mohanoor et. al [62] provide an algorithm for computing the widest path and 

investigate prior work in the area of lifetime for sensor networks.  The algorithm 

described in [62] converts the original network into residual energy network as given 

below. 

 We will begin by outlining a description of the widest path which is used in the 

solution of Mohanoor et al [62]. The graph G is modified into an energy graph EG = (V, 

E΄) as follows. We leave the vertices intact but replace each single undirected edge in G 

with two directed edges. The weight of a directional edge in EG is made equal to the 

difference between the originating node’s energy level and the transmission cost along 

the edge. This is also the residual energy of a node as defined in Li et al [48]. In Figure 

6.1 (a) we have shown an example wireless network and in Figure 6.1 (b), the 

corresponding energy graph. 

 

Figure 6.1 (a) A graph showing energy levels at nodes and energy required to transmit at each edge.  Figure 6.1 (b) 
shows the corresponding energy graph. 

 After obtaining the energy graph an algorithm similar to the shortest path algorithm 

is executed to obtain the maximum residual path.  
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6.2.2 A network decomposition approach to distributed widest path problem 

Our goal in this section is to describe an algorithm that takes advantage of the clusters 

that are formed as a result of the network decomposition.  In the next section, we will 

construct the clusters taking into account lifetime issues and impacts. The following 

algorithm provides a way to find the widest path on a network. As we will describe 

later, what we compute here is an approximation of the widest path – which we term as 

a ‘weak’ widest path. 

a) Form a set of clusters C1, C2, …, Ck from a given network G=(V, E).  Let hi ∈ Ci 

be the cluster head, 1 ≤ i ≤ k. With each hi as the root construct a spanning tree 

distributedly that includes only the nodes in Ci.  Learn the topology of the 

network induced by the nodes in the cluster Ci.  Let the network learned be 

G(Ci). The network G(Ci) is stored at hi. Compute all-pairs widest path on G(Ci) 

at hi. 

b) For each cluster Ci find all its neighboring clusters.  Two clusters Ci and Cj are 

neighbors if there exists a node vi ∈ Ci and vj ∈ Cj such that (vi, vj) ∈ E. Let 

N[Ci] be the neighbors of Ci and let &�!� , !'� �  max�+,-,+-,
∈. &���', �'�
 where 

vij ∈ Ci and vji ∈ Cj, and d(vij, vji) represents the weight of edge (vij, vji).  (In this 

case, the weight is the residual energy of the edge in the energy graph as 

calculated in Figure 1(b)). Both N[Ci] and &�!�, !'� can be determined during 

the learning step as mentioned in step a). Let Di[] be a distance vector stored at 

cluster head hi.  Initially, for each neighbor j ∈ N[Ci], Di[j].d = &�!�, !'� , 

otherwise it is set to zero. 
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c) Execute a distance-vector distributed algorithm using the distance vectors Di[] 

stored at cluster heads hi.  Let us denote Di[k].nh = Cj to be a next-hop neighbor 

of cluster Ci along the widest path to cluster Ck.  Let Di[k].n0 = vij and Di[k].n1 = 

vji be the nodes identified in step b).  A message from one cluster head hi travels 

to a neighboring cluster head hj along precomputed paths between the two 

cluster heads.  The vector Di[] is sent from hi to vij along this precomputed path.   

 Since only the weight on the edges joining two clusters (i.e. the bridges) is 

considered for computing this widest path, it is quite easy to see that what we are 

computing here is only an estimate of the widest path between two nodes belonging to 

different clusters. Hence we refer to it as a ‘weak’ widest path. However, Mohanoor et 

al.[62] have shown that while it is important to choose high residual energy paths, it is 

not necessary to use the ‘widest’ path to extend the lifetime – a sufficiently ‘wide’ path 

will suffice, a fact which is also borne out by other works in the literature ([1], [48], 

[81]). 

Once the distance vector algorithm has been executed distributedly, we would then use 

the results of this algorithm for the energy aware routing. The following steps show 

how the actual routing is performed. 

 Let s ∈ Ci and t ∈ Cj. 

1) If Ci and Cj are neighbors, then follow steps below: 

a. Node s will ask hi the widest path from s to vij. 
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b. Node s will next send the packet along the widest path to vij indicating to 

it that it should send it to vji and it is meant for t which is in Cj. 

c. The node vji upon receiving the message will request hj for a widest path 

to t. 

d. Upon receiving the widest path vji will send the message to t. 

2) If Ci and Cj are not neighbors, then let Di[j].nh=Ck.  If D
i[k].n0 = sk and Di[k].n1 

= tk , route the packet from s to sk and make s = tk, and i = k. If i and j are now 

neighbors, execute steps 1(a)-1(d), else execute step 2.  

6.2.3 Energy costs 

The energy costs incurred by using the network decomposition technique is two-fold: 

the cost of updating the energy levels of all nodes within a cluster to the clusterhead, 

and the cost of executing the distributed algorithm among the clusterheads. 

Furthermore, the cost of updating the energy levels of all nodes within a cluster is 

assumed to be a one-time cost. Since we presume that a sender will use the route 

suggested by the cluster-head, it is possible to compute the decreased energy levels of 

all the nodes along the route. This is true of all the intermediate nodes which are 

involved in forwarding packets – our scheme ensures that a clusterhead is aware of the 

instantaneous energy level of every node within its cluster which is used for any given 

s-t request.  As we have precomputed routes along which a cluster node will 

communicate with its clusterhead, the energy cost involved at each node in this request-

reply process is also known to the clusterhead. The energy cost of executing the 

distributed algorithm is not a one time cost, as we can clearly see that the bridge with 
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the highest energy level would keep changing as we keep forwarding packets. When a 

clusterhead becomes aware of the fact that the bridge link chosen as the highest energy 

edge is no longer the one with the highest energy, it initiates the distributed algorithm 

between the clusterheads once again. The final energy cost incurred by the network 

decomposition technique must take into account both these costs.  

6.3 Network Decomposition for Improving Lifetime 

In the previous section we have presented an algorithm to compute widest path given 

the arbitrary network decomposition.  The following are some of the desirable 

properties of any decomposition. 

a) The diameter of each cluster should be smaller.  The diameter of a cluster S denoted 

diam(S) is the longest shortest path value in the subgraph induced by nodes in S. 

Given that some node in the cluster will be chosen as the cluster head, the number 

of hops required to communicate with the cluster head should be smaller.  Reducing 

the number of nodes in the node-cluster head path will result in energy saving 

thereby increasing lifetime. 

b) The number of nodes in each cluster should be bounded.  Clearly, the size of the 

cluster and the number of clusters is a tradeoff between the energy consumption as 

part of the intra-cluster centralized and inter-cluster distributed computations. 

c) The number of clusters should be smaller.  Keeping the number of clusters smaller 

would reduce the inter-cluster communications required by the distributed 

computation.  Finding a minimum number of clusters satisfying the diameter 

constraint is same as the partition into cliques problem [23] which is NP-complete. 
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d) The number of bridges from each cluster should be high.  If there are more bridges 

then the inter-cluster distributed computations can use more paths to the cluster 

containing the destination node and thus improving lifetime.  It can also be said that 

the anchor nodes connecting the bridges should have high residual energy since it is 

going to see more traffic as part of the distributed computation and widest path 

routing. 

A distributed algorithms along the lines described in [8] can be used for obtaining a 

desirable decomposition.  The distributed algorithm presented in [8] starts constructing 

a breadth-first search tree in a distributed fashion.  As the breadth-first search tree 

grows we can stop further exploration if either the desired depth bound or size bound 

has been reached.  The choice of which node to explore (or to be added next) will 

provide a tradeoff between a)-c) of the desirable properties. 

 A formal centralized algorithm for the network decomposition taking into account 

the desirable properties above is given in Figure 6.2.  In the algorithm Decompose, the 

parameters k1 and k2 specify bounds on the size and diameter of each cluster, 

respectively.  The parameter f defines a fraction that is used to select the set of high 

degree nodes (to increase the number of bridges).  For notational purposes let ρ(v) 

denote the either the degree or residual energy of a node v in the network. It can be 

shown that the time-complexity of the above algorithm for a n node and m edges 

network to be O(mlogn).   

 The basic idea behind the algorithm is to start with an arbitrary vertex and add 

nodes with low value of ρ one at a time.  As we add nodes to a cluster we have to make 
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sure that the size and diameter constraints are satisfied.  After we add a sufficient 

number of nodes with low value of ρ we have to start adding nodes with high value of ρ.  

We will be adding nodes to the cluster in such a way that the cluster is a connected.  It 

is quite possible that after adding the nodes with low values of ρ, the diameter of the 

cluster could reach the desirable diameter, thereby preventing the addition of nodes 

with high values of ρ.  Clearly, the order in which nodes are added is going to dictate 

the size and diameter of the cluster and eventually decide the number of clusters that 

are formed.  Since the partition problem is NP-complete (as observed previously), our 

goal is to provide a better heuristic.   Among the nodes that can be connected to the 

existing connected cluster, we will choose low or high ρ value nodes, depending on the 

current size of the cluster.  One could also choose high ρ value nodes after the diameter 

has reached a particular value. 

Algorithm  Decompose (G, k1, k2, f) 
begin 
1. Set P ← Φ 
2. Select an arbitrary node v ∈ V and V ← V – {v} 
3. while (V ≠ Φ) do 
4. Set S ← {v} 
5. L ← construct a min-max heap with ρ values of nodes which are immediate 
neighbors of v (N(v)) 
6. while (|S| < k1) and (diam(S) < k2) do 
7. if  (|S| × f < k1) then 
8. u ← L.deleteMin() 
9. S ← S ∪ {u} and V ← V – {u} 
10. for each node x ∈ V and x ∈ N(u) do 
11. L.insert(x) based on ρ (x) 
12. end for 
13. else 
14. i ← k1 – |S| 
15. while (i > 0) and (diam(S) < k2) do 
16. u ← L.deleteMax() 
17. S ← S ∪ {u}, V ← V – {u}, and i ← i – 1 
18. for each node x ∈ V and x ∈ N(u) do 
19. L.insert(x) based on ρ (x) 
20. end for 
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21. end while 
22. end if 
23. end while 
24. P ← P ∪ S 
25. Select a node v ∈ V such that it has maximum number of neighbors in G(P) (the   
26.  graph included by  the vertices in P) 
27. end while 
28. return P 
end 

Figure 6.2 Network decomposition algorithm 

The algorithm Decompose described in Figure 6.2 provides a suitable network 

decomposition strategy that results in clusters which satisfy the multiple and sometimes 

conflicting constraints – for example, we would like to bound the size of the cluster but 

also restrict the total number of clusters. Clearly, some tradeoffs are involved in the 

construction of suitable network decompositions. Besides, one may also add additional 

hierarchical strategies to find a balance between the number of clusters (and thus the 

number of messages used for the distributed algorithm) and the number of nodes per 

cluster (update costs after routing). It must be noted that the Decompose strategy may 

produce paths (for example widest paths) quite different from a centralized strategy. 

However, our argument here still holds since the network lifetime is decided by a 

combination of the paths computed and the strategy used for computing the paths (e.g. 

centralized vs Decompose). The possible inaccuracy of the paths is compensated by a 

reduction in the amount of messages used in its computation. 

6.4 Experimental Evaluation 
 
We performed preliminary evaluations of our idea by using the LEDA graph algorithms 

library [31]. The main objective of our simulation study is to show the feasibility of the 

concept and especially to compare the performance of the purely distributed, 

centralized and network decomposition schemes. 
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We generated a random graph with 250 and 500 nodes and created components 

(clusters) by assigning both a low power as well as a high power radius to each node. 

When only the low power radius is used to create edges, we get a set of disconnected 

components. Now we turn on all the high power edges also, and take care to remove 

multiple edges between nodes by removing the high power edge between two nodes if a 

low power edge already exists between them. 

All the nodes which are boundary nodes, i.e. which have an edge to a different 

cluster if their high power edges are used, are used as anchor nodes. All internal nodes 

are assigned low energy levels of 20 units and all the anchor nodes are assigned high 

energy levels of 50 units each. Note that when the network decomposition algorithm is 

executed, it will produce clusters with similar properties after its completion. For 

consistency, the energy required to communicate between two neighboring nodes is set 

as 0.001 x r3 where r is the high power radius value.  

When we ran the purely distributed algorithm, the amount of energy required to 

simply exchange sufficient number of messages for algorithm termination, which is 

2|V||E| in the worst case, leads to energy depletion at such a rapid rate that the algorithm 

itself cannot be executed more than a handful of times.  Hence the results of the purely 

distributed scheme are omitted. 

Our preliminary results for the two different graph sizes n = 250 and n = 500 given 

in Figure 6.3 show that the network decomposition scheme indeed outperforms the 

utopian centralized scheme in terms of the number of packets (lifetime) which can be 

routed before network disconnection. 
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Figure 6.3 Lifetime of decomposition vs centralized algorithm 

 
6.5 Summary 
 

We have presented a lifetime aware network decomposition approach for executing 

distributed algorithms on wireless sensor networks. The utopian centralized model 

suffers from the problems of reliability and scalability, as observed earlier. In addition, 

in an energy constrained sensor network, it also leads to the creation of hotspots and 

hence leads to smaller lifetimes for the sensor network. By decomposing the network 

into clusters and executing the distributed algorithm among the cluster heads, we avoid 

hotspot creation and show how such a technique can lead to improved lifetimes for 

sensor networks. 
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Chapter 7 
 
7 Quality of Information (QoI) metrics for 
knowledge centric sensor networks 
 

7.1 Introduction 

A primary necessity for sensor network deployments is to be able to collect data about 

environmental (and other) phenomena under observation and transform it into useful, 

actionable knowledge. However, sensor networks due to their resource constrained 

nature have some key differences from general communication networks (such as the 

World Wide Web, and corporate intranets). The differences are fundamental, and hence 

we use the term message centric networks to refer to big, powerful networks such as the 

WWW and corporate intranets, and knowledge centric networks to refer to sensor 

networks which usually lie on the other end of the spectrum in terms of scale.  

Unit of atomicity – The unit of atomicity can be defined as the ‘indivisible’ unit of 

information which still retains semantics. In a knowledge centric network, where 

combining information is encouraged and loss of information is tolerated, the unit of 

information is the aggregate knowledge rather than the individual message.  

Resource assumptions – the simple act of resending a message is commonplace 

(and even vital for everyday tasks such as browsing the internet) on a message centric 

network, where we can make assumptions of virtually unlimited resources. Resending a 

single message would require careful planning on a resource constrained sensor 

network, where minimal assumptions are made about the availability of resources. 
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Data gathering - Nearly all messages generated can and is usually stored or 

collected in a message centric network, while that is neither a requirement nor a prudent 

choice on a knowledge centric and resource poor sensor network. 

Data dispersal – Data dispersal refers to the replication of the same data and its 

dispersal over multiple media and devices (such as backing up important files on to a 

USB drive, a backup disk, and online storage). In a message centric network such as the 

internet, data dispersal is common and quite useful. Such data dispersal would be costly 

on a typical sensor network.  

Search techniques – this is perhaps a vital difference and a key motivation for the 

QoI strategy. Any data collected, in order to be made useful, needs to be analyzed and 

processed. This would usually require doing a search over the data at some point in 

time. In a message centric network, due in large part to the resource rich nature, the 

exponential growth of data is tolerated and search techniques evolve to deal with the 

rate of data generation. We call this the “store and search” strategy. In a fundamentally 

resource constrained sensor network, the rate of data generation and transmission is 

controlled by using a top down strategy where the search comes first - in terms of 

usefulness of data collected, i.e. the “Quality of Information” . Here we first search for 

what needs to be stored - and hence we “search and store”. 

Hence the transformation of data into information (or knowledge) requires a more 

top down approach which can balance information needs and resource utilization rates. 

If we begin by defining our information needs (i.e. specifying the Quality of 
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Information requirements), we would be able to better utilize the often non-renewable 

resources of a sensor network. 

7.2 Motivation for QoI-aware data collection strategies 
 

We believe that adding the Quality of Information (QoI) as another dimension will 

greatly benefit the knowledge which can be extracted from a sensor network. Mapping 

the aspects of QoI to different kinds of sensor network applications will allow the user 

to more clearly specify what he or she wants from the sensor network deployment. By 

providing a framework to deliver what the user wants, we give more flexibility to the 

user for defining his/her needs and to understand and analyze the tradeoffs involved. 

The most important benefit of the QoI approach to routing on sensor networks is the 

explicit knowledge of the various tradeoffs involved, which leads to higher quality of 

data collected from the sensor network. The explicit use of QoI attributes provides a 

considerable variety of options for data collection. 

A second benefit of the QoI approach is a better utilization of network resources. In 

many scenarios, the use of QoI for specifying the requirements for the data collection 

process will actually allow for better utilization of network resources than the case 

where QoI is not considered. For example, we may wish to collect information from 

highly relevant sensor nodes. We expect to find a fair degree of redundancy in the 

network; so many sensors could possibly satisfy the relevance constraint. We may 

choose only a few sensors among them for the data collection task. The sensors chosen 

may have higher residual energies, and thus we could perform the data collection in an 

energy-balanced fashion. We could also select sensors which are closer to the sink, 
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hence reducing the latency of data collection. We can clearly see that using the QoI 

approach (in this case, specifying that the user is interested in the ‘relevance’ of the 

data) allows us to utilize network resources far more effectively while also satisfying 

the end user requirements. 

Some questions could be raised as to what can be categorized as a QoS attribute and 

what can be categorized as a QoI attribute. We propose a rule of thumb that QoS refers 

to “objective” attributes whose value remains independent of the interpretation. As an 

example, the bandwidth of a link has a standardized definition so that given the unit of 

measurement, everyone will measure the same value for the bandwidth. On the other 

hand, QoI refers to “subjective” attributes whose value would depend on the 

specification as well as the interpretation. Some QoI attributes could be defined as 

graph problems (e.g. our definition of density) which will be objective, but there are 

also other attributes (for e.g. the relevance of data) which will be fairly subjective and 

application specific. 

7.3 A brief review of QoS models on sensor networks 

We now present a brief overview of the literature which pertains to several qualitative 

issues that occur in data collection for sensor networks. The primary goal for the works 

we cite here is to satisfy QoS requirements under an additional constraint on the 

resource of the network (usually energy). However, we argue that they cannot be 

termed as QoS since they are more dependent on the information than the service 

offered by the network. Though the works cited call these as QoS problems, they are in 

reality QoI problems or a combination of QoI and QoS. In Table 7.1, we present some 

sensor network QoS problems considered in the literature. 
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In their paper on finding a predictive quality control strategy for wireless sensor 

networks, Liang et al. [49] use the number of active sensors as a measure of the QoI, 

since it dictates the spatial resolution of the sensed parameters. They optimize for the 

number of active sensors so as to achieve optimal lifetime (energy) for the network. 

Perillo and Heinzelman [66] aim for a reliable description of the environment as the 

QoI attribute, while simultaneously making the network energy efficient and ensuring 

that it meets the bandwidth constraints. Gundappachikkenahalli and Ali [26] propose 

the AdProc framework, where the criticality of information (QoI) is traded off against 

the latency and the energy requirements. Mingming Lu et al. [58] address the problem 

of maximizing the network lifetime while maintaining target coverage (QoI).  

Wu et al. [88] attempt to turn off sensors making redundant measurements 

(redundancy is the QoI) while they attempt to reduce the network energy consumption. 

Kay and Frolik [43] optimize for the network spatial resolution (QoI) and control the 

network so that sensors participate equally so as to conserve energy. Jin Zhu and 

Papavassiliou [90] propose a framework called Resource Adaptive Information 

Gathering (RAIG) that can aggregate data on the fly by making suitable tradeoffs 

among latency, energy and quality. They do not define the quality explicitly, and their 

analysis is based on sensors having knowledge of the quality of the data which is 

transmitted or forwarded. Delicato et al. [20] describe a strategy for managing the duty 

cycle of sensors, by selecting different sets of nodes to be active at different times. The 

nodes with higher residual energy and greater relevance (QoI) to the application are 

kept awake.  
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Reference QoI attribute(s) QoS 
attribute(s) 

Resource 
optimized 

Liang[90] Number of active 
sensors as a measure of 

QoS 

N/A Maximize 
network 
lifetime 

Perillo[42] Reliable description of 
environment 

Bandwidth Maximize 
network 
lifetime 

Gundappachikkenah
alli[26] 

Criticality of 
information 

Latency Better energy 
distribution 

Mingming Lu[58] Coverage of target N/A Maximize 
network 
Lifetime 

Wu[88] Degree of redundancy N/A Maximize 
network 
Lifetime 

Kay[43] Spatial resolution N/A Conserve 
total Energy 
used 

Jin Zhu [90] Sink specified quality Latency Energy 
savings per 
Sensor due to 
aggregation 

Delicato [20] Target coverage, 
aggregation 

Data 
Acquisition 
Rate 

Increase 
network 
Wide 
residual 
energy 

Table 7.1 An overview of QoS approaches for sensor networks 

7.4 Benefits of QoI aware data collection 

Not all information is equally important, and preferential treatment of this information 

can help us use resources optimally. The knowledge which can be extracted determines 

the information gathering process. However, knowledge is subjective, and information 

which is useful for some applications may not really be very useful for others. For 
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example, we broadly classify data delivery models on sensor networks as query driven, 

event driven and continuous delivery [17]. In the continuous delivery model, we are 

interested in data which is spatially and temporally diverse, since we do not always 

know exactly what we are looking for. In the event based model, we seek information 

which is at least sufficient to track an event, and preferably allows a deep analysis of 

the event. This information may not be spatially or temporally diverse, but we may 

expect quick notification and perhaps use techniques like multipath routing for 

maximizing the effective bandwidth. With the query based model, the information 

which is processed is dependent on the kind of query which is asked. Such a model 

might support specific techniques like aggregation which is a resource friendly 

approach when answering queries.  

Here we consider the density, a Quality of Information attribute representing the 

spatial resolution of the sensors reporting their data, and show how we can improve the 

utilization of network resources by careful choices of the sample set. In their paper 

describing a vision for the worldwide sensor web [9], the authors mention the following 

as important outstanding issues for data management in such a network: 

a) Data ingest – the calibrate, gap-fill and regrid process which would allow easier 

multi-dimensional querying of sensor data 

b) Data exploration, analysis and visualization – for these advanced usage 

scenarios, ascertaining and ensuring data quality is a major problem facing 

embedded sensing 

c) Statistical modeling of sensor data – this is one of the most ubiquitous 

processing tasks performed on sensor data 
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Suppose we consider these as rough guidelines for choosing a set of sensors which 

need to report their data to a sink in the network. Let us also assume the sink has 

knowledge of the network topology. So we would like to sample data from sensors 

which would satisfy the following requirements 

1) Provide adequate coverage of the network – this would help in tasks b) and c) 

mentioned above 

2) Avoid holes in the data – this would help us with the regrid process of task a) 

3) Have a way to verify the accuracy of data collected by reconfirming with data 

values from the neighbors – this would improve the results in tasks b) and c) 

4) Provide for sufficient redundancy of data in case step 3) above indicates a faulty 

sensor - but do not oversample 

We can see straightaway that reducing the number of sensors sampled will bring us 

cost savings in terms of energy cost and thus sensor lifetime. Besides, the redundancy 

of data collection will help avoid going back and repeating the data collection (in case 

some readings are faulty) and the adequate coverage of the network may also help with 

future data collection requests (“I have data collected from region A which is only 5 

minutes old, and I could reuse that information for my new query”). Thus we can see 

that using a QoI approach to data collection provides manifold benefits in terms of 

information utility obtained per unit resource spent. 

We provide the following definition of the density (a subjective definition, as one 

would expect) – choose a set of sensors such that every sensor has at least x % of its k-

hop neighbors chosen in the sample set (the sensor itself will also be included in this 
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list of neighbors). We can observe that this provides us with a way of increasing and 

decreasing the value of x according to requirements and the needs of the end user 

application.  

As a graph problem, this translates to the minimum multi-dominating set problem 

discussed in [37]. Suppose the neighborhood includes all nodes within k hops. We add 

edges between each node in the graph and all its neighbors up to k hops to create the 

modified graph G1. On this modified graph, we can find the minimum multi-

dominating set by setting r(v) to be the x × deg(v) on the modified graph G1.  

7.5 Summary 

Sensor networks differ in some fundamental respects from Internet model networks. A 

QoI approach towards data collection would serve to maximize (or at least improve) the 

resource utilization as a function of the knowledge extracted from these networks.  

This strategy could also have some downsides. A QoI approach seems to require 

more centralized strategies for data collection or decentralized data collection 

mechanisms which still satisfy QoI definitions (which would be harder to implement 

than less selective data collection strategies). Another issue to consider is that collecting 

data based on some particular QoI attribute may turn out to be a poor choice if the 

application requirements change.  

The QoI approach would need further refinements for developing into a science. 

The new perspective on QoS is likely to lead to new work on redefining QoS 

parameters, such as collective and aggregate QoS parameters as mentioned in [17]. A 

major issue is network learning – how to obtain knowledge of global state (if 
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necessary), who (and how many) need to obtain this information and the frequency of 

such network learning – are all important questions in this context.  
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Chapter 8 
 
8 Conclusion and future work 
 

The primary purpose of a wireless sensor network deployment could be stated as the 

collection of timely, actionable data about the phenomenon under observation. The 

resource constraints in a wireless sensor network make the following question highly 

relevant: how can we gather this data from sensor networks in such a way as to 

maximize the utilization of the networks’ resources? It is clear that the utilization is a 

fairly subjective concept and varies according to the application scenario. However, this 

question helps us focus on the process of data collection in a more systematic way. In 

this dissertation, we discussed questions on resource utilization along multiple 

dimensions.  

By solving a series of graph and path problems, we initially find optimal and near 

optimal methods of resource utilization independent of any subjective constraints. A 

result of our findings is a set of core principles which lead to an improvement in 

resource utilization – these principles can then be utilized and combined in various 

different ways to collect the data needed and to specify the constraints in a resource 

friendly manner.  

The core principles arising from this work can be summarized as follows 
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• If our goal is to extend the lifetime of a sensor network to collect the largest amount 

of data possible, using a multi-metric shortest path called as the shortest widest path, 

as well as close derivatives, is crucial. 

• If our goal is to optimally utilize bandwidth available in a multi-hop wireless 

network, we must focus on a strategy of finding paths which are ‘interference 

aware’. Unlike earlier work which primarily concentrated on link and node 

scheduling for this problem, our path scheduling approach produces superior 

throughput at very reasonable computational costs. 

• If our goal is to execute distributed algorithms for finding paths in wireless sensor 

networks, we must be respectful of the typical packet size in a wireless sensor 

network, which is currently of the order of tens of bytes. This puts an impediment 

on developing distributed path algorithms which transmit large sized messages. 

Exploiting the work of low bit complexity distributed algorithms provide a way 

around this impediment.  

• As individual sensors become more powerful and start carrying multiple radios, the 

problem of activating the radios in an energy aware fashion will turn out to be 

critical. Our work on radio activation provides additional insight into this problem 

and shows that the essential question is one of finding such topologies where high 

power radios form high degree clusters so that the number of nodes connected per 

high power radio activated is fairly high. 

Our goal is to maximize the extraction of knowledge by intelligent resource 

utilization. This in turn requires a specification of subjective constraints which need to 

be applied during the data collection such that the data will yield good ‘knowledge’. An 
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important issue which arises in this context is the level of abstraction presented to the 

end user of the network. The end users are generally specialists with perhaps a good 

amount of domain specific knowledge but not necessarily trained in the nuances of 

technical details of wireless sensor devices. However, extracting knowledge from these 

networks in a resource efficient manner requires considerable amount of such technical 

knowhow. While early work in this field used lower level abstractions with 

considerable technical expertise expected from the end user, the need of the hour is to 

find ways to push this level of abstraction up – in other words to provide a higher level 

of abstraction and shield the end user from requiring intricate knowledge of wireless 

sensor devices. 

The identification of the core principles described earlier represents an important 

step forward in pushing the abstraction of the network representation towards higher 

levels. This frees the end user to make decisions based on application requirements 

without getting mired in the technical details. We also described a set of quality 

measures (used during data collection) which can be applied in monitoring scenarios so 

as to allow us to obtain a high amount of ‘knowledge’ with efficient resource utilization.  
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Appendix A 
 

IRIS Mote 

 

Processor: 

Program flash memory 128 KB 

Measurement flash (for sensing) 512 KB 

RAM 8K bytes 

Processor current draw 8mA active mode, 8µA sleep mode 

Radio: 

Frequency band 2405 MHz to 2480 MHz 

Transmit data rate 250 kbps 

Radio current draw 16mA receive mode, 17mA transmit mode (typical) 

Batteries: 2 AA batteries 

Source:  

http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/IRIS_Datasheet.pdf 
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MICAz OEM module 
 

 

Processor: 

Program flash memory 128KB 

Measurement flash 512 KB 

RAM 4KB 

Current draw 8mA active mode, <15µA sleep mode 

Radio: 

Frequency band 2400 MHz to 2483.5 MHz 

Transmit data rate 250 kbps 

Current draw 19.7mA receive mode, 17.4mA transmit mode 

Batteries: 2 AA batteries 

Source: 

http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_OEM_Editio

n_Datasheet.pdf  
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MICA 2 

 

Processor: 

Program memory 128 KB 

Measurement flash 512 KB 

Configuration EEPROM 4KB 

Current draw 8mA active mode, <15µA sleep mode 

Radio: 

Frequency band 868-916 MHz 

Transmit data rate 38.4 Kbaud 

Current draw 10mA receive, 27mA transmit 

Batteries: 2 AA batteries 

Source:  

http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf 
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IMote2 

 

Processor: 

SRAM memory 256kB 

SDRAM memory 32MB 

FLASH memory 32MB 

Current draw 66mA active mode, 390µA sleep mode 

Radio: 

Frequency band 2400-2483.5 MHz 

Data rate 250kbps 

Batteries 3 AAA batteries 

Source: 

http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/Imote2_Datasheet.pdf 

Note: This sensor can run the .NET micro framework (like a Java Virtual Machine for mobile 

devices) 
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TelosB 

 

Processor: 

Program flash memory 48KB 

Measurement flash 1024 KB 

RAM 10KB 

Radio: 

Frequency band 2400-2483.5 MHz 

Transmit data rate 250kbps 

Batteries 2 AA batteries 

Source: 

http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/TelosB_Datasheet.pdf 
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Appendix B 
 

Here we list some real world sensor network deployments. 

Volcano monitoring 

From http://fiji.eecs.harvard.edu/Volcano 

“This interdisciplinary project is investigating the use of wireless sensor networks for 

monitoring eruptions of active and hazardous volcanoes. Wireless sensor networks have 

the potential to greatly enhance our understanding of volcanic activity. The low cost, 

size, and power requirements of wireless sensor networks have a tremendous advantage 

over existing instrumentation used in volcanic field studies. This technology will permit 

sensor arrays with greater spatial resolution and larger apertures than existing wired 

monitoring stations.  

We have deployed three wireless sensor networks on active volcanoes. Our initial 

deployment at Tungurahua volcano, Ecuador, in July 2004 served as a proof-of-concept 

and consisted of a small array of wireless nodes capturing continuous infrasound data. 

Our second deployment at Reventador volcano, Ecuador, in July/August 2005 consisted 

of 16 nodes deployed over a 3 km aperture on the upper flanks of the volcano, and 

measured both seismic and infrasonic signals with high resolution (24 bits per channel 

at 100 Hz). Our third deployment at Tungurahua in August 2007 tested the [[Lance]] 

utility-driven data collection system that we developed to enhance data fidelity.” 

Vineyard monitoring 

From http://camalie.com/WirelessSensing/WirelessSensors.htm  
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“Camalie vineyards currently has one of the most advanced soil moisture monitoring 

systems in operation in U.S. agriculture today.    It uses the wireless sensor networking 

technology developed by UC Berkeley in collaboration with Intel Corp and 

commercialized by Crossbow Inc.  It is used for optimization of irrigation; reducing 

water consumption and associated pumping energy costs as well as increasing grape 

quality without sacrificing yield.  It also serves as a monitor of the irrigation system, 

failure of which can cause substantial long term impact on the large capital investment 

in the vines.  This monitoring system, Camalie Net, as such provides a form of risk 

management.       

Mark Holler, owner of Camalie Vineyards, developed interface circuitry and adapted 

Crossbow hardware and associated TinyOS firmware for the  Watermark soil moisture 

tensiometer, soil temperature probe and water pressure sensors used in the first version 

of this system which was deployed in the summer of 2005.   Mark is also the grower 

who looks at the data and makes the irrigation decisions.   Ramon Pulido vineyard 

manager for Camalie Vineyards brings 32 years of growing experience on Mt. Veeder 

to the vineyard.  He manages all of the cultural practices, spraying for powdery 

mildew,  and erosion control using cover crop in the vineyard.     

Soil moisture sensing began at Camalie Vineyards in 2003 using a Davis weather 

station with three Watermark Sensors.   This data was found to be quite useful but, it 

was clear data from other irrigation blocks was needed to irrigate optimally in them as 

well.  The lack of a scalable solution to gather data from more locations was the driving 

force behind the development of Camalie Net.    
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Camalie Net was used during the 2005, 2006 and 2007 growing seasons to guide 

irrigation decisions in the 4.4 acres of Camalie Vineyards.  Yield per vine in 2005 was 

double that of the 2004 yields for same age vines yet water consumption was 

constant.  Water consumption normally goes up with canopy size which more than 

doubled for these 2.5 year old vines in 2005.  Grape quality was excellent.  Some of 

this success was due to generally better than average weather in 2005 but, we believe 

our visibility of the soil moisture played a significant role.  Extra drippers were added 

to some areas of the vineyard based on the soil moisture data.   Also irrigation intervals 

were shortened based on sensor data to reduce the amount of water that penetrated 

below the root zones where it would be wasted.  

In 2006, the third year for our vines, the yields again doubled from 4 tons to 8 tons.    

In the 4th year, 2007 the yield again doubled to 16 tons of fruit that was sold and 

another 1.5 tons that we made home wine from.  The yield was 3.97 tons per acre 

which is very rare on Mt. Veeder especially with water limited due to less than half the 

normal rainfall in the winter of 06/07.  Water had to be purchased but thanks to our 

precision irrigation we minimized water purchasing and still had great yields.  Fruit 

quality was again excellent although early rains near harvest bloated some of the first 

fruit harvested, reducing Brix levels to the 25-26 range. Some of the last fruit harvested 

after a week or two of dry weather, however, had a late in the day Brix average of 

29.7!   

At the end of the 2007 growing season the network was upgraded from my 433MHz 

prototypes which use Crossbow mica2dot radios  to eKo Pro series alpha units 



165 
 

opperating in the 2.4GHz band.  The network was scaled up at this time from 10 

sensing sites in one vineyard to 17 sites covering Camalie Vineyards and the vineyards 

of two neighbors and the Mt. Veeder Irrigation Co-op was formed.      On March 3, 

2008 it was scaled up again to 25 sites. In May six of the nodes at Camalie Vineyards 

were fitted with third soil moisture sensors at 36" depth.  In April 2008 Camalie 

Networks LLC was formed to sell, customize and service this technology.” 

Zebra monitoring 

From http://www.princeton.edu/~mrm/zebranet.html  

“Funded by a research grant from the National Science Foundation through their 

Information Technology Research (ITR) initiative, ZebraNet is a project to explore 

wireless protocols and position-aware computation from a power-efficient perspective.  

The Princeton ZebraNet Project is an inter-disciplinary effort with thrusts in both 

Biology and Computer Systems.  On the computer systems side, ZebraNet is studying 

power-aware, position-aware computing/communication systems.  Namely, the goals 

are to develop, evaluate, implement, and test systems that integrate computing, wireless 

communication, and non-volatile storage along with global positioning systems (GPS) 

and other sensors.  On the biology side, the goal is to use systems to perform novel 

studies of animal migrations and inter-species interactions.  

As a computer systems research problem, ZebraNet is compelling because the needs of 

the biological researchers are stringent enough to require real breakthroughs in wireless 

protocols and in low-power computer systems design and computer systems power 
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management.  These breakthroughs can be leveraged into other (non-wildlife-oriented) 

fields of research; essentially ZebraNet is a power-aware wireless ad hoc sensor 

network, but with more serious bandwidth and computational needs than most prior 

sensor networks research problems.  As a biology research problem, ZebraNet allows 

researchers to pose and to answer important long-standing questions about long-range 

migration, inter-species interactions, and nocturnal behavior.” 

Storm Petrel habitat monitoring 

From http://www.coa.edu/html/motes.htm  

“This project represents a collaboration between College of the Atlantic and the Intel 

Research Laboratory at Berkeley. Through a combination of funding from the Henry 

Luce Foundation and in-kind donation of equipment and expertise from the Intel 

Research laboratory students under the direction of John Anderson and Dr. Alan 

Mainwaring engaged in the active demonstration of wireless sensor network technology 

as applied to micro-habitat monitoring on Great Duck Island.  

Intel-developed "motes" consisting of micro-processors containing temperature, 

humidity, barometric pressure, and infra-red sensors were deployed within Leach's 

Storm Petrel nesting habitat, and linked to a computer base station in the Eno Research 

Station. This in turn fed into a satellite link that allowed researchers to download real-

time environmental data over the internet. 

The ultimate goal was to enable researchers anywhere in the world to engage in non-

intrusive monitoring of sensitive wildlife and habitats.” 

 


